

RTTYdecoder

Interest in Radio Teletype (RTTY) traffic has grown appreciably over the past few years. One of the reasons for this is that micro-computers, such as the Elektor Junior Computer, which find their way into more and more homes, lend themselves readily to this absorbing hobby. Such a computer can become an effective RTTY Decoder by the addition of a small electronic circuit and a suitable program.
> teletype reception by computer

Our last issue contained articles on the decoding of morse signals by means of the Junior Computer and the Elektor Z80A card. In this issue it is the turn of teletype enthusiasts.
Owners of an expanded Junior Computer can save themselves the purchase of a costly teleprinter and RTTY converter. A simple interface and an EPROM with the right program will translate the teletype gibberish on short waves into a clear text on the screen.
The principle of transmission and decoding in teletype is not much different from that in morse. Digital coded information is transmitted by interrupting a radio carrier wave: this is called CW (keyed Continuous Waves). In morse transmissions, the interruptions are in accordance with the by today's standards somewhat cumbersome morse code; in teletype, with the logically constructed 5-unit CCITT Code No. 2, better known as the Baudot code. A more detailed treatment of this subject can be found elsewhere in this issue.
Apart from the codes, there is another fundamental difference between morse and teletype operation. In morse, only one carrier is transmitted which is interrupted in the rhythm of the dots and dashes of the morse code. In teletype operation two
carriers are used, of which one is used for the transmission of the logic ls and the other for the 0s. It is as if two transmitters are operating side by side, but each working on a different frequency. When the transmitted bit is 1 , one of the transmitters is switched on, while the other is off; when the transmitted bit is 0 , the first transmitter is off and the second is on. In reality only one transmitter is used of which the output frequency is shifted, according to whether a 1 or a 0 is transmitted. This method of operation is therefore called Frequency Shift Keying (FSK).
In teletype, logic 1 is called 'mark' and logic 0 , 'space'. The transmission containing all the bits 1 is called the 'mark signal' and that containing only 0 's, the 'space signal'. The mark and space signals are very close to one another: the frequency separation is called the 'shift'.
The output of the receiver therefore contains two different audio frequencies: one represents logic 1 (mark), the other logic 0 (space). When both are present simultaneously, there is a fault in the transmission.

The RTTY interface

The signals emanating from the short-wave receiver are not suitable for driving the
computer as this, as a norm, requires squarewave inputs. To modify the receiver output signals to the required shape, an interface is needed. This interface must be capable of differentiating between the two received frequencies and of transforming them into a digital signal. For this purpose use is made of a tone decoder followed by an integrator and Schmitt trigger. Two such set-ups are required in the RTTY interface because it has to cope with two different audio signals. With reference to figure 2, the level of the incoming audio signals is set as required by means of potentiometer P7 at the input of the circuit. Then follows a level indicator stage consisting of transistor Tl and a red LED, D1. The input signal is fed to two decoders, ICl and IC2. Whereas tone decoder ICl is aligned to one audio frequency, by means of potentiometer P8, decoder IC2 can be aligned to six different frequencies. This enables it to be switched to teletype transmissions with differing frequency shifts. Tone decoder ICl is aligned to a nominal frequency of 1275 Hz . The frequency of decoder IC2 is then $1275 \mathrm{~Hz} \pm$ the shift frequency. Table 1 gives the shift- and

Table 1. Most frequently used audio and shift frequencies in RTTY traffic.

signal	set with:	frequency (audio) Hz	shift-frequency (Hz)
mark	P8	1275	0
space 1	P1	var.	var.
space 2	P2	1445	170
space 3	P3	1575	300
space 4	P4	1700	425
space 5	P5	2125	850
space 6	P6	2275	1000

audio-frequencies normally encountered in RTTY traffic.
The output circuit of the tone decoders contains three indicator LEDs: D2 (green) for the mark signal (ICl), D3 (red) for the space signal (IC2) and D4 (yellow) for the situation when a mark and space occur simultaneously. Because the frequency is shifted between mark and space, the overlap between the two signals during good reception is very small and D4 therefore lights rarely if at all. Bright lighting of D4 indicates a faulty adjustment or bad reception.

1

RTTY decoder
elektor june 1983

Figure 1. Block diagram of the RTTY interface. The interface consists of two tone decoders with followon integrators and triggers for noise and interference suppression. Its output contains an adder circuit which will deliver a usable signal even when one of the two audio signals (mark or space) is missing. The NOR connection of the tone decoder signals ensures an indication of transmission failure. With correct settings, the LED indicators for mark and space light alternately at maximum brightness, whereas the error LED lights only dimly.

RTTY decoder elektor june 1983

2

Figure 2. The interface circuit for teletype reception via the Junior Computer. It contains two tone decoders because in teletype operation two audio frequencies are keyed.

Both tone decoders are followed by OTA integrators IC3 and IC4, buffers A1 and A3, and triggers A2 and A4. The high-impedance buffers prevent the overloading of capacitors Cll and $\mathrm{Cl2}$. The integrator and trigger section is identical to that of the morse interface described in our May issue.
Gate N 1 is connected as an inverter; N 2 does not invert because pin 6 has a 0 input. This is important in respect of operational amplifier IC7. This stage makes use of the fact that when one of the two signals, mark or space, is missing, the required teletype information in still fully available in the other signal. The space signal is out of phase with the mark signal but otherwise identical to it. If mark is logic 1 , space is logic 0. Because Nl inverts the mark signal, whereas N2 passes the space signal unchanged, the output of the two gates contains two inphase signals.
IC7 combines these signals in its inverting input circuit. If one of the signals is missing because of interference, the other will still be sufficient to drive the op-amp. Capacitor Cl5 in the negative feedback loop of IC7 ensures further integration of the audio signal by suppressing any residual unwanted signals. Gates N3 and N4 improve the slope of the square-wave output of IC7 so that a TTL compatible signal is available at the output of the interface. These gates also enable reversal of the polarity of the output signal. When S2 is open, both gates function as inverters, while when S2 is closed, they operate as non-inverting buffer stages. The setting of S2 is dependent on the teletype signal being received.

Presetting and adjustment

Once the RTTY decoder has been constructed on the printed circuit board shown in figure 3, it can be preset and adjusted by
means of an audio generator and frequency meter. Both these instruments should be connected to the input (P7) of the interface.
Set P7 to its mid-position, tune the generator to 1275 Hz (as indicated by the frequency meter) and adjust the generator output voltage until Dl just lights. It should now be possible to find a small range of travel of potentiometer P8 at which D2 lights. The correct position of P8 is in the centre of that range. It is also possible to reduce the generator output further and further while searching for a position of P8 where D2 lights. The position so found is the correct one.
Next, the adjustment of tone decoder IC2. Adjust potentiometers P2 . . P6 in the same way as described for P8 above, but with the generator tuned to frequencies in accordance with table 1 (space frequency $=1275 \mathrm{~Hz} \pm$ shift frequency).
Adjusting and presetting without using an audio generator and frequency meter is fairly difficult. When attempting to do so, it is best to set P7 to its mid-position and determine the shift-frequency of each transmission experimentally by adjusting potentiometer P1 with switch Sl set to position 1.
Once the above operations have been carried out, the interface can be connected to the audio output of a short-wave receiver. Search for a teletype transmission and adjust P7 so that LED D1 just lights. Then tune the receiver so that D2 lights as brightly as possible in rhythm with the incoming signal. Then select the correct frequency shift with switch Sl. If the shift is not known, try all positions of Sl until one is found where D3 lights as brightly, and D4 as dimly, as possible. If such a position cannot be found, the shift is non-standard. In that case, set Sl to position 1 and adjust Pl to the shift of the incoming signal. When

Figure 4. Simplified flow chart of the RTTY program. The 'heart' of the program is the bit counter. In contrast to an UAR/T which only scans the (calculated) centre of a pulse (unit of teletype signal), the counter determines whether the input signal during the pulse is longer than half the pulse duration for logic 1. If that is the case, it is taken to be 1 , otherwise as 0 . This system gives an appreciably lower susceptibility to interference, and therefore error rate, than is the case with UAR/T's.

4

The received data are stored in a file buffer. When the buffer is full, an error signal is given. The contents of the buffer can, of course, be read out.
A further useful feature is the Auto-LetterMode: when receiving Baudot code, the letter sign is often lost. This results in letters being erroneously translated as numerals. In the Auto-Letter-Mode, the decoder automatically switches back to the letter mode when a blank space is received. Figure 4 shows the program structure in a flow chart.
When the program has been started with the address $40 \emptyset \emptyset$, possible baud rates are displayed as shown in table 2. The computer will ask some questions which should be answered by Y (Yes) or N ($\mathrm{No}=$ Return). The baud-rate setting is effected by the keying in of a number between 0 and 5 .
On reception of an ASCII transmission, the question 'ASCII Receiver?' must be answered by Y , because if the answer N is given, the decoder will be set to Baudot code.
After questions as to file buffer, Auto-Letter-Mode, and file buffer print out have been answered, the computer is ready to receive a serial signal across PB7; this is indicated by the display ' $: \quad$:'
If the first question 'Do you like to change it?' is answered by N , the start procedure will be shortened. The decoder will then proceed in the Baudot mode with a baud rate of 50 , indicated by the disappearance of the symbol ' $: ~:$ ' from the screen.
If you want to find out the mode of operation after the program has started, simply press the Break key on the ASCII keyboard. Reset or Change of Mode of Operation is effected with the NMI key.

Operating instructions for the RTTY program

The program requires a storage capacity from $40 \emptyset \emptyset$ up to $7 F F F$ (RAM). A (dynamic) 16 K RAM card on the Junior bus will be suitable.
The starting address is $40 \emptyset \emptyset$.
As the DOS Junior has a storage capacity which differs from that of the expanded Junior, the program for it has been put

RTTY decoder elektor june 1983

Table 4. Amendments for the DOS junior.

Address	Data
4038	A3
4039	FE

Table 5. Amendments for the expanded junior.

Address	Data
$4 \emptyset C 2 \ldots$	$E A, E A, E A$
$4 \emptyset 38$	34
$4 \emptyset 39$	13
$4 \emptyset 41$	$1 A$
$4 \emptyset 57$	$A E$
$4 \emptyset 58$	12
$44 D A$	$1 A$
$44 D B$	$1 A$
$44 E 4$	$1 A$
$44 E 7$	$1 A$
$44 E C$	$1 A$
$44 F 1$	$1 A$
$44 F 6$	$1 A$
4581	$1 A$
4589	$1 A$
$459 B$	18
$45 B E$	18
$45 C 8 \ldots$	$E A, E A, E A$
$45 D 1$	$1 A$
$45 C F$	$1 A$
$45 E \emptyset$	18
$46 \emptyset 6$	18
$46 \emptyset D$	18
$464 \emptyset$	18
4646	18

Table 6. The hexdump of the RTTY decoding program. 8
4 C
48
4 E
C 9 $\begin{array}{lrr}1 & 2 & 3 \\ \mathrm{BD} & 42 & 42 \\ \mathrm{FF} & 7 \mathrm{~F} & 1\end{array}$ $\begin{array}{rr}3 & 4 \\ 42 & 81\end{array}$ $\begin{array}{lll}4 & 5 & 6 \\ 1 & 80 & 80\end{array}$ $\begin{array}{lrr}6 \\ 0 & 8 & 8 \\ 0 & 0\end{array}$ $7{ }^{7}{ }^{8} \quad 9 \quad 9$ - $0{ }^{A}{ }^{-1}{ }^{B}$ $\begin{array}{lll}00 & 95 \\ \text { F0 } & 55\end{array}$ $\begin{array}{rr}\mathrm{E} & \mathrm{F} \\ 55 & 08 \\ 55 & 28\end{array}$ F
20
28
 BF
into an EPROM which should be plugged into socket IC4 on the Junior expansion card.
As the DOS Junior has a storage capacity which differs from that of the expanded Junior, the program for it has been put into an EPROM which should be plugged into socket IC4 on the Junior expansion card. In the expanded Junior the program is stored from $\emptyset 8 \emptyset \emptyset$ to $\emptyset \mathrm{FFF}$; in the DOS Junior, between E8 $\emptyset \emptyset$ and EFFF. Before the program can be started, it must be transferred from the EPROM to the RAM. The required transfer procedure are already contained
in the EPROM. The addresses for the various transfer procedures are given in table 3. After transfer of the program, some bytes have to be changed by hand as shown in detail in table 4 (DOS Junior) or table 5 (expanded Junior).
After these amendments, the program can be started: it is possible to copy it from the RAM onto an audio cassette or floppydisc (DOS Junior) for simpler re-use at a later date.
Readers who want to program the EPROM
themselves will find the Hexdump listing in table 6.

