With a Morse decoder program from R. Unterricker

Many radio amateurs and shortwave listeners are very interested in receiving Morse transmissions. However, the problem is understanding Morse signals, a skill that can only be learned with experience.
The alternative is to own a Junior Computer. Using a small circuit and a program, the Junior can learn to read Morse!
copying Morse with the computer

Who can read Morse nowadays? Radio amateurs with the full (HF) licence have passed a Morse test. But this skill that was once learned with considerable effort is often forgotten, and is hardly sufficient in practice anyway. A large number of people are unable to read Morse but are interested in copying these signals. A Morse decoder gives them access to the world of dots and dashes.
This type of Morse decoder converts Morse signals to normal characters. In principle, any microcomputer can be provided with a small hardware interface and a Morse decoder program, allowing it to be used for this purpose.
This article describes a universal Morse interface and a powerful decoder program for the Junior Computer.

Decoding Morse signals

As most people know, a Morse signal consists of dots and dashes. However, the intervals between the dots and dashes are also important. Since the individual characters consist of a different number of dots and dashes, the intervals of different lengths
indicate the end of a character and the end of a word.
Within a Morse character, the intervals between dots and dashes are shorter than twice the duration of a dot. Between two letters in a word the interval is longer than two, but shorter than four dots, and between two words the interval is longer than four dots.
The problem in decoding Morse is that exact timing is almost never encountered; the durations of dots and dashes can vary as well as the intervals; the ratio between these times can vary as well as the speed at which the characters are sent. There are no absolute values, and everything is relative. As an intelligent being, however, the human is able to cope with this situation as long as there is some difference between the durations of dots, dashes and intervals. This is considerably more difficult for a computer. On the other hand, it is easier to teach the computer Morse than to learn it oneself. The many interfering signals received with the desired Morse signal on shortwave present another handicap for the computer. These can be atmospheric interference, radio
interference, interfering carriers, beating with stations on adjacent frequencies, noise and the like. A skilled Morse operator can 'copy' very weak Morse signals which are almost buried in the noise level.
Clearly, a computer Morse decoder cannot compete with these outstanding human capabilities. Nevertheless, the computer is an excellent aid for shortwave listeners, allowing most stations to be decoded. Only very weak stations or those sending extremely poor Morse will be incorrectly copied by the computer.
The Morse audio signals emitted by a receiver cannot be used by the computer. It requires an interface which converts the Morse tones to a square-wave signal which the computer can understand, and which simultaneously suppresses interference. The computer must first measure the pulse and interval durations of this square-wave signal; then, using relatively simple software routines, it must decide whether it is receiving a dash, a dot, a short, medium-length or long interval. Once the individual elements have been detected, there is no difficulty in grouping the received dots and dashes in binary-coded characters and then converting them to ASCII code. Figure 1 is a block diagram showing the structure of the microprocessor Morse decoder. A printer can be connected to the computer instead of a video interface with monitor.

The Morse interface

In principle, the function of this circuit is that of an audio-tone decoder: if a 1 kHz tone is applied to the input, a logic 1 is present at the output. If there is no signal the output goes to logic 0 . An interrupted 1 kHz tone (Morse signal) results in a square-
length corresponds to the duration of the tone.
Using the beat frequency oscillator (BFO) of the shortwave receiver, the frequency of the Morse tones can be set to exactly 1 kHz . Since the Morse interface only responds to this frequency, interfering signals of a different frequency are considerably auppressed. However, the selectivity of the tone decoder is not sufficient for pulsetype interference which exhibits a wide frequency spectrum. For example, an interfering pulse appearing in a Morse signal interval could be incorrectly detected as a dot. For this reason, the circuit of the Morse interface also contains an integrator which ensures that only pulses of a certain minimum length result in a logic 1 at the output of the tone decoder. Most short interfering pulses are thus eliminated. Figure 2 explains the method of operation of the Morse interface with simplified signal diagrams.
The circuit is shown in figure 3 and the printed circuit board in figure 4. The interface is connected to the tape

2

Figure 2. Simplified signal diagram for the Morse interface. A tone decoder forms a square-wave signal from the different lengths of the Morse signals. By integrating this signal with the following threshold switch (trigger), short interfering pulses are suppressed.

Figure 3. The Morse interface identifies the Morse tones by means of tone decoder chip IC2. A relatively involved level indication facilitates tuning of the receiver for good Morse reception.
recorder output of the receiver. A preset potentiometer at the input of the interface is used for matching the levels. A1 and A2 form an active 1 kHz filter. This is followed by amplifier A4 which has an amplification factor of 10 . Diodes D1 and D2 in the feedback loop of the amplifier ensure that the output signal is limited to approximately 600 mV peak to peak value. After some attenuation at the output of A4 (R11/R12) the signal is fed via C6 to the input of the 567 tone decoder (IC2). The output of IC2, pin 8, goes to logic 0 as soon as a 1 kHz tone is applied. The green LED D5 then lights. However, the tone decoder also responds to short interfering pulses with a 0 at its output. These pulses are eliminated by the following circuit consisting of IC3 . . IC5. A CA 3080 OTA (IC3) is configured as an integrator whose time constant is determined by the control current flowing via R27 into pin 5 and by capacitor C13. This integrator decelerates the voltage change from 0 to 1 and vice versa (see
figure 2). The next operational amplifier, IC4, serves as a voltage follower in order not to load C13. IC5 is configured as a comparator with a threshold of 2.5 V . At input voltages above this value, the output (pin 6) is a logic l. If the voltage is lower than this figure, the output presents a logic 0 .
The filtered 1 kHz signal is also fed to A 3 , which amplifies only the positive half of the signal-waveform, and is therefore simply an 'active rectifier'. The purpose of the exercise is to drive the moving-coil meter M1 ($100 \mu \mathrm{~A}$ full scale deflection) to indicate the signal strength.
Diode D7 is only required for aligning the meter; it delivers a reference voltage of 0.6 V when the jumper (drawn in dashes) is soldered in. D4, the red LED, indicates overdriving.

Aligning the Morse interface

The first step is to align the meter: insert the jumper (at D3/D7) and adjust P2 for full

scale deflection. Then remove the jumper. The receiver can now be connected. Set P1 approximately to its mid-point, and tune the receiver to maximum reading on meter M1. Remember to switch on the BFO of the receiver beforehand! In the event of overdriving, reduce the sensitivity with Pl. The tone decoder can now be aligned. Adjust P3 so that the green LED (D5) flashes at the rate of the Morse signal. The 'lock range' that can be set by adjusting P3 is relatively high. When properly adjusted, P3 should be in the middle of this lock range.

Morse decoder software

This is a program for the Junior Computer.
The software contained in a 2716 EPROM is suitable for the Junior Computer with interface card extension and for the DOS Junior.
The Morse interface is connected at PB7 (6532) of the Junior Computer. For demon-
strations and practising, a Morse key can also be connected at PB7 with the debounce circuit shown in figure 5.
After the start of the program, the program name 'Morse decoder' is printed out. The computer first compares the received Morse characters with each other until it detects a difference in length of at least 50 ms . Signals of a duration of less than 80 ms (interference) are ignored. As soon as the relevant time difference of more than 50 ms is detected, the Morse signals received are decoded; the first dash to be encountered serves as a time reference. With each received dash this reference is corrected, so that the decoder immediately and automatically follows any changes in sending speed. The Morse decoder prints 64 characters per line, automatically followed by a carriage return (CR) and line feed (LF) instruction to the printer or video interface. In general, the program uses the following criteria for detecting Morse characters:
. Minimum difference between dot and

Figure 4. The printed circuit board for constructing the Morse interface; this is connected between the receiver and the computer.

Parts list
Resistors:
$\mathrm{R} 1=22 \mathrm{k}$
$R 2=680 \Omega$
R3,R29 $=680 \mathrm{k}$
$R 4, R 5=39 k$
R6,R7,R12,R13,R21,
$R 23, R 25=4 \mathrm{k} 7$
$R 8=56 k$
$R 9, R 11, R 15, R 28=10 k$
R10,R14 $=100 \mathrm{k}$
$\mathrm{R} 16=82 \mathrm{k}$
$R 17, R 18=470 \Omega$
$\mathrm{R} 19=12 \mathrm{k}$
$R 20=330 \Omega$
$R 22, R 27=1 \mathrm{M}$
R24,R26 $=47 \mathrm{k}$
$\mathrm{P} 1=4 \mathrm{k} 7$ preset
$P 2, P 3=10 k$ preset
Capacitors:
C1, C2 $=27 \mathrm{n}$
C3 $=100 \mu / 3 \mathrm{~V}$
C4,C5,C6,C8 = 47 n
$C 7=470 \mu / 3 V$
$C 9=120 n$
$C 10=270 n$
C11 $=1 \mu / 6 \mathrm{~V}$
$\mathrm{C} 12=22 \mu / 3 \mathrm{~V}$
$C 13=470 n$
C14 $=1 \mathrm{n}$
Semiconductors:
D1,D2,D3,D7 = 1N4148
D4 = LED red
D5 = LED green
D6 = AA 119
IC1 = LM 324
IC2 = LM 567
IC3 = CA 3080
IC 4, IC5 = CA 3130
Miscellaneous:
M1, moving coil meter, $100 \mu \mathrm{~A}$
morse converter
elektor may 1983

5

Figure 5. For practice and demonstrations a Morse key can be connected to PB7 of the Junior Computer via this debounce circuit.

6

dash lengths at program start

- Minimum interval for spaces
- Minimum interval for a new character (letter)
- Minimum length of a dash
- Number of characters per line

If the Morse decoder should go out of lock without relocking automatically, the program can be restarted with the NMI key. The program structure is shown in detail in the flowchart of figure 6. For reasons of space, it is not possible to provide a full
listing here; we shall therefore briefly discuss the most important sections. After establishing an initial reference time REFT, the computer is in the loop starting at label MJ. Between labels MJ and MK it awaits a Morse signal, but not longer than 18 reference time units; otherwise the last character to be received at the end of the transmission would not be decoded. This 'emergency exit' necessitates the loop under label ML, which stops the processor until the start of a new character.

Subroutine LDTIM standardizes the time located in TIME to that in REFT: RELT $=$ \$OC TIME/REFT. Factor OC is used to keep rounding-off errors low with this division. Subroutine FIGURE compares the Morse character located in FIG A,B with the Morse code of ASCII characters $\$ 22-\$ 5 \mathrm{~A}$. In the event of agreement (identification of a Morse character) the corresponding ASCII character is printed; unidentifiable Morse characters (such as mistakes in sending) are output as an asterisk ((*'). The error signal
(8 dots) of the Morse alphabet is assigned the ASCII character 23 (\#).
Subroutine SHFTIN shifts a recognized dot or dash into the cells of FIG A and FIG B. As can be seen in figure 7,00 is a space, 01 is a dot, 10 is a dash and 11 is an error.

Instructions for using the program
The program requires a memory range of $4 \emptyset \emptyset \emptyset$ to $7 F F F$ (RAM). A (dynamic) 16 k RAM card on the Junior bus is sufficient.

Figure 6. Flowchart of the Morse decoder with which the Junior Computer reliably converts Morse signals to plain language.

Table 1. Start addresses of the copying routines

Figure 7. The subroutine shifts a recognized dot or dash into cells FIG A and FIG B.

Junior	Copying	Copies	
Computer	routine	from	to
version	start add.	address	address
expanded	$\emptyset E 56$	$\emptyset 8 \emptyset \emptyset$	$4 \emptyset \emptyset \emptyset$
DOS	EB2D	E8Øఏ	$4 \emptyset \emptyset \emptyset$

Table 2. Modifications to DOS Junior/Morse program

Address	Data
4238	A3
4239	FE
426 D	A3
426 E	FE
4284	A 3
4285	FE
428 C	A 3
428 D	FE

Table 3. Modifications to extended Junior/Morse program

Address	Data	Address	Data
4013	1A	4238	34
4018	1A	4239	13
401B	1A	4245. . .	EA, EA, EA
4022	1A	4251	1A
402C	1A	4268	1A
4031	1A	426D	34
4039	1A	426E	13
403C	1A	4280. . .	EA, EA, EA
4048	1A	4284	34
404D	1A	4285	13
40E 1	1A	4288. . .	EA, EA, EA
40F8	1A	428C	34
414F	1A	428D	13
41F5. .	EA,		
4234. . .	EA, E		

7

FIG B

Table 4. Hexdump listing of the Morsedecoderprogram.

	8	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
800	4 C	11	48	00	00	be	00	00	98	90	b0	06	80	08	01	18
810	80	AD	82	FA	29	DF	8 D	82	FA	AD	83	FA	89	20	29	7 F
820	8D	83	FA	A9	00	8D	0F	40	A9	3F	8 D	7A	FA	A9	42	8 D
830	7b	I'A	23	13	BC	A9	81	8D	F7	FA	2 C	D5	FA	10	FB	A 8
848	00	20	2 D	42	A9	4 C	8D	7k:	r'A	A9	42	8 D	7 F	FA	A2	FF
858	20	22	41	20	46	41	20	34	41	E8	AD	93	48	9 D	2 C	43
868	20	46	41	8A	Fi	20	AD	2 C	43	C9	08	18	07	BD	2 C	43
870	C9	08	30	12	38	BD	$2 C$	43	ED	2 C	43	B6	05	49	FF	18
880	69	01	C9	85	18	11	E 8	E0	7 F	10	C3	28	22	41	$A D$	03
898	40	9D	2 C	43	4 C	53	48	BD	2 C	43	CD	2 C	43	18	03	AD
8A ${ }^{\text {a }}$	2 C	43	8D	04	40	8E	U5	40	A2	200	8 E	06	40	8 E	07	48
8 BC	BD	2 C	43	8 D	08	40	28	52	41	28	B2	41	EC	05	48	Fe
8 Cl	11	E8	BD	2 C	43	8D	88	48	28	52	41	20	91	41	E8	4 C
8 Db	88	48	AD	03	40	8 D	88	40	20	52	41	C9	18	10	11	AD
8 Eb	82	FA	29	80	D8	EC	20	5 C	42	De	E7	20	5 C	42	D 8	E 2
8 Fa	20	46	41	28	91	41	AD	82	FA	A 29	80	F6	06	20	46	1
900	4 C	F6	40	28	5 C	42	D8	EE	20	5 C	42	De	$\varepsilon 9$	20	34	41
910	AD	03	40	8D	08	40	20	46	41	20	52	41	28	B2	41	4 C
928	D2	48	20	66	42	D8	FB	28	5 C	42	D0	F6	28	5 C	42	D 6
930	F1	4 C	66	42	28	66	42	Fl	FB	20	5 C	42	F0	F6	20	5 C
946	42	Fg	F1	4 C	66	42	A9	98	8D	83	40	A9	9 C	8 D	FE	FA
950	58	50	8 E	09	48	A2	00	8 E	eA	A 40	8 E	8 B	48	A2	9C	18
960	AD	9A	40	6D	08	48	80	8 A	40	AD	QB	48	69	98	8 D	9B
976	48	CA	DE	EB	38	AD	bA	48	ED	e4	40	8D	4A	48	AD	98
988	40	E9	80	8 D	0B	48	E8	B8	EC	C 8A	8 E	ac	48	$A E$	09	48
998	60	8ε	99	48	AD	ac	48	C9	0A	30	13	C9	18	30	0 C	29
9 Aa	D7	41	78	20	43	42	58	AE	89	40	60	20	D7	41	AE	89
9 Bb	40	60	$A D$	07	40	29	CO	F	99	A9	FF	8 D	06	40	8D	87
9 Cb	40	68	AD	ac	40	C9	49	18	85	A9	32	4 C	D3	41	20	2
9D8	42	A9	01	28	1 E	42	68	A2	22	220	45	42	AD	an	48	CD
9E8	86	48	DG	98	AD	aE	40	CD	87	78	FO	87	E8	E8	5 B	0
9 FO	E8	A2	2 A	8 A	78	8 D	63	23	20	6C	42	58	A	36	8 E	06
Ade	40	8 E	07	40	60	BD	6 F	42	8D	©D	40	BD	AF	42	8D	eE
A10	48	60	18	AD	04	48	6D	08	48	4A	8 D	94	40	68	4 A	2 E
A 20	86	40	2 E	07	40	4 A	28	36	48	2E	07	48	60	B9	0 F	43
A 38	C9	00	Fl	日A	8D	63	23	20	43	32	c8	4 C	2 D	42	60	8
A48	4 C	11	46	A9	20	8D	63	23	20	6C	42	68	48	A9	9 C	8 D
A 58	FE	FA	EE	93	48	D0	03	CE	83	48	68	40	A9	7 F	8 D	10
A60	48	CE	18	48	De	FB	AD	82	FA	A 29	88	68	28	43	23	EE
A 78	bF	4.	A9	3 F	CD	eF	48	De	15	A9	80	8 D	0 F	48	A9	D
A88	8D	63	23	28	43	23	A9	9A	80	63	23	20	43	23	68	38
A98	08	59	55	08	$0 \cdot$	00	A9	69	A6	6 de	08	5A	56	66	59	A
AAB	AA	6A	5A	56	55	55	95	A5	A9	95	99	00	56	08	A5	80
$A B 6$	06	95	99	25	01	59	29	55	05	5 6A	26	65	9A	39	2 A	69
ACE	A6	19	15	82	16	56	1 A	96	9 A	A A5	ge	08	80	80	08	be
ADE	00	06	55	de	00	06	06	02	99	988	00	0A	89	06	82	02
AE®	01	01	01	81	01	02	92	${ }^{3} 2$	42	2 aA	99	80	82	80	05	be
AFP	00	co	80	00	00	98	80	30	08	de	34	03	90	08	48	90
Bed	08	08	00	98	88	00	¢8	30	00	- 80	98	88	80	96	08	0 D
B10	aA	0 A	9 A	4 D	4 F	52	53	45	28	44	45	43	4F	44	45	52
B20	0 D	0 a	0A	52	45	41	44	59	bD	bA	a	88	b8	A9	00	A2
B 30	E8	85	be	86	01	A9	08	A2	48	85	82	86	03	20	43	EB
B48	4 C	00	FC	A2	64	Ag	90	B1	08	91	82	88	De	F9	E6	81
B50	E6	03	CA	D 6	FB	60	A9	88	A2	288	85	ge	86	01	A9	de
B60	A2	40	85	82	86	33	20	6 C	E8	4 C	10	1 C	A2	04	Ad	00
B78	B1.	90	91	02.	88	De	F9	E6	01	1 E6	83	CA	De	Fe	60	

The start address is $4 \emptyset \emptyset \emptyset$.
Since the DOS Junior has a different memory structure to that of the expanded Junior, two versions of the Morse program are accommodated in one EPROM. The EPROM is plugged into the socket for IC4 on the Junior extension card.
With the extended Junior it is located in address range $\emptyset 8 \emptyset \emptyset$ to $\emptyset F F F$. With the DOS Junior, on the other hand, it is located in address range E8 \emptyset to EFFF. Before the program can be started it must be copied from the EPROM into the RAM. The necessary copying routines are already contained in the EPROM. The start addresses of the copying routines are specified in table 1.
Once the program has been copied from the EPROM into the RAM, some bytes must be changed manually by typing in the specified bytes at the addresses mentioned on table 2 or 3 .
After this operation the program can be started; it can also be written from the RAM onto a cassette or floppy disk (with the DOS Junior) to facilitate future reuse.
Those readers wishing to program a type 2716 EPROM with the Morse program themselves will find the hex dump listing in table 4. The ready programmed 2716 is available from Technomatic Limited.

