

This classical task for a microcomputer, a control function which can otherwise only be implemented with a considerable amount of hardware, is executed by a program. Computers have been employed for fullscale versions of this technique for some time. This is now an opportunity to utilise the Junior Computer for the same application in miniature.

D. Herzberg

traffic-light control

traffic-light control system...

The hardware can be easily constructed on a small perforated board, which can be positioned in the vicinity of the port connector. The two traffic lights are connected via two three-core control lines. The positive operating voltage can be taken from smoothing capacitor C5 of the basic power supply for the Junior Computer. Any other unregulated 12 V power supply is just as suitable. Bulbs with different voltage ratings will of course require a different operating voltage. Constructors who prefer to use LEDs for the traffic lights must join the anodes of the LEDs and connect them to the positive operating voltage via a (common) limiting resistor. At 12 V and an LED current of 60 mA (10 mA per LED), for example, the value of the resistor is 200 $\Omega/1$ W. If all LEDs light up equally brightly, a limiting resistor of 1k2, 1/2 W must be connected in series with each LED.

As in the case of other circuits requiring a minimum amount of hardware, this article will merely provide some details regarding construction. Figure 1 shows the control stages for a total of six bulbs in two traffic lights, together with leads and a diode matrix which also provides a protective function. The two traffic lights are controlled by the program in table 1. The program can best be described on the basis of the Assembler listing in table 1. Starting at address Ø2ØØ, the computer starts to 'shift' a logic 1 (which corresponds to a logic 0 at the collectors of the Darlington driver transistors) from PA1 via PA5 to PA0. The traffic light cycles are: traffic light 1 - red, traffic light 2 - amber(for 2 s); TL1 - red/amber, TL2 - red; TL1 - green, TL2 - red (for 10 s); TL1 - amber, TL2 - red; TL1 - red, TL2 - red/amber (for 2 s); TL1 - red, TL2 - green (for 10 s). The cycle then starts ... with the Junior Computer

			IINT	OR'S	ASSEMB	LER		PAGE Ø1
0010.	0200	0	0.112	OR D	nocono	ORG	\$0200	
0020:	0200					A 1999 (1999)	10.0012.0000	
0030:					TOAPETO	TTCH	CTMILLA	TTON WITH THE JUNIOR COMPUTER
0040:					INAFFIC	, LIGHI	SINGLA	TION WITH THE CONTON CONTOLON
0060:						anananan anar		
0070:					WRITTEN	BY DI	ETER HE	RZBERG BERLIN
00000:					DEFINIT	TION OF	ADDRES	SES
0100:								
0110:	0200				PA	*	\$1A80	PORT A DATA REGISTER
0120:	0200				PADD		SINOI	PORT A DATA DIRECTION
0140:	0200				TIMERD	*	\$1A97	
0150:	0200				END	*	\$1A85	
0160:								
0180:	0200	A9	7F		START	LDAIM	\$7F	INITIALIZE PORT A
0190:	0202	8D	81	1A		STA	PADD	
0200:	0205	AØ	012		LOOP	LDYIM	\$02	LOOP COUNTER
0220:	0207	8C	80	1A	1001	STY	PA	BEGIN WITH PHASE 1 =A1:RED/A2:AMBER
0230:								WAR BOD & CROONEC (DUACE 112)
0240:	020A	20	2F	02	NEXT	JSR	SHORT	WAIT FOR 2 SECONDS (PHASE 1+2)
0250:	0200	88	00	IA		DEY	r.	runde 215
0270:	Ø211	DØ	F7	1222		BNE	NEXT	
0280:	0213	20	2C	02		JSR	LONG SØ2	WAIT FOR 10 SEC.AT PHASE 3 PHASE 4+5
0290:	0210	NØ	02			SULTH	402	A10100 314
0310:	Ø218	ØE	80	1A	NEXTA	ASL	PA	
0320:	Ø21B	20	2F	02		JSR	SHORT	WAIT FOR 2 SEC. (PHASE 4+5)
0330:	021E 021F	DØ	F7			BNE	NEXTA	
0350:	0221	A9	Ø1			LDAIM	\$Ø1	PHASE 6=PHASE 1
0360:	0223	8D	80	1A		STA	PA	WATT FOR 10 SEC AT PHASE 1
0370:	0220	20 4C	05	02		JMP	LONG	WAIT FOR 10 SEC. AT FINDE I
0390:		1000	000000	87.77				
0400:	0000		20		LONG	LOVIN	000	DELAN FOR 18 SEC
0410:	022C	20	28		LONG	=	\$20 \$2C	DELAT FOR TO SEC.
0430:	0	20					19	
0440:	Ø22F	A2	Ø8		SHORT	LDXIM	\$Ø8	DELAY FOR 2 SEC.
0450:	0231	AQ	F4		LOAD	LDAIM	SF4	250 MS
0470:	Ø233	8D	97	1A	20112	STA	TIMERD	DIVISION FACTOR 1024 MS
0480:	0000	20	0.5		THEND	DTT	PND	TIME OUT?
0490:	0230	10	FB	IA	TIMEND	BPL	TIMEND	NO
0510:	Ø238	CA	N			DEX		YES LOAD TIMER WITH 2ND DELAY
0520:	Ø23C	10	F3			BPL	LOAD	2ND TIME OUT?
0530:	Ø23E	60				RTS		
0550:								
0560:	Ø23F	A9	7F		US	LDAIM	\$7F	ONLY IF LIGHTS ARE OUT OF ORDER
0570:	0241	8D	81	1A		LDATM	S40	
0590:	0244	A 2	40			bonin	4.10	
0600:	0246	8D	8Ø	1A	PORT	STA	PA	BOTH AMBER LIGHTS FLASHING
0610:	Ø249	A2	04	02		LDXIM	LOAD	I SEC. ON/OFF
0630:	024B	AD	80	1A		LDA	PA	
0640:	Ø251	49	40			EORIM	\$40	INVERT PORT
0650:	0253	4C	46	02		JMP	PORT	
0000:								
SYMBO	L TAB	LE	300	0 30	54			
END	148	85	L	OAD	0231	LON	IG Ø22	C LOOP 0205
NEXT	020	A	N	EXTA	0218	PA	1A8	Ø TIMEND Ø236
TIMER	D 1A9	97	Ű	S	023F	orn		
JUNIO	R							
MHEXDU	MP: 2	200,	255					5 800 1000 0000 eArts
0000	0 1	1 2	3	4	5 6	7 8	9 A B	C D E F F Ø2 ØF 80 1A
0200:	88 T	DØ F	7 2	Ø 20	02 A0	02 ØE	80 1A 2	Ø 2F Ø2 88 DØ
0220:	F7 A	19 6	1 8	D 80	1A 20	2C Ø2	4C Ø5 Ø	2 A2 28 2C A2
0230:	Ø8 A	19 F	4 8	D 97	1A 2C	85 1A	10 FB C	A 10 F3 60 A9
0240:	1A 4	19 4	10 4	C 4F	40 8D	00 IA	AZ 04 2	U JI UL HU UU
0230:	404.1		10		8 .T.T.			
JUNIC	R							

again from the beginning. Another traffic light cycle is simulated with start address Ø23F. In this case the two amber bulbs flash at a 1 s rate. PA6 is utilized for this. The hex dump listing shows a summary of the data to be entered.

In the event of a computer fault, the diodes ensure that at least one traffic light is at red, thus preventing a traffic jam. Accidents are also almost ruled out.

traffic-light control system . . . elektor january 1983