554 — alektor may 1982

software cruncher and puncher

Junior Computer owners regularly send
us programs that they have written for
‘their’ machine and Elektor's editorial
staff dutifully twy them all out and
‘unravel’ them with the disassembler.
Unfortunately, the task is not always
a rewarding one and occasionally the
work resembles that of 2 pathology
lab. Nevertheless, it is gratifying to
receive so many sparks of initiative!
Any attempt in this direction auto-
matically calls for a disassembler, but
that is by no means the only reason
for having a 'software cruncher’. Used in
combination with the editor and as-
sembler the disassembier enables oper-
ators both to write their own programs
and decode those gleaned from friends
Or Magazines.

and puncher

disassemble Junior Computer software
and program 2716 EPROMs

Whereas developing one’s own software is often like taking a leap

in the dark, analysing other people’s programs can sometimes be quite
a revelation. In either case a disassembler is called for, such as the

one described here. In addition, it is a useful aid towards ‘BASIC’
conversion. And, as the software cruncher is stored in 2716 EPROM,
why not include an EPROM programming program, (to use up the
remaining EPROM space), together with the EPROM hardware

published in January?

-
o el

.
b, iy
Ty

& <

AT

&4

The details

The software cruncher is stored in 2716
EPROM. The software occupies the
address range SFBOD ... SFFFF. The
EPROM may either be mounted on a
RAM/EPROM card or on the mini
EPROM card published in the April
issue. Locations SF80@...%5FDD9
store the actual disassembiler.

SFDDA. . . .$FFF9 contain the ‘EFROM
PROGRAMMING UTILITIES" (which
are described later on in the article} and
$FFFA ... SFFFF include the vector
data with which JC owners are already
familiar.

| The disassembler section of the soft-

ware ‘cruncher’ is shown in Table 1.
After initiation {enter the start address
$FCAE through PM!] the computer
reports back by defining the relevant
function keys. The D key is operated
to enter two addresses which ‘cordon
off’ the memory range that is to be
disassembled (ending in CR). In the

example given in Table 1 this comprises
$0200 ... S022F. Note that the end
address must be entered and that the
‘end address + 17 rule does not apply
here.

This is followed by the message ‘L, P,
SP?. By depressing the L key the
operator can disassemble the entire
memory range ‘in one go’. The P key,
on the other hand, does this in blocks
of 15 instructions (& full TV screen, the
top line being the last one to be printed
before P was operated] and the space
bar SP allows each instruction to be
disassernbled in turn and is therefore
the slowest method.

The ‘crunched’ program in Table 1
gives an idea of the type of informa-
tion that is printed. Table 2 shows the
Hex dump of the disassembler. First of
all, the address and the op code of the
instruction are displayed followed by
the byte(s) contained in the instruction.
Then the mnemonics (the instruction
‘shorthand’) are printed preceded by
several spaces, Wherever relevant, the
line ends with the operand data. The
displacements involved in conditional
jump instructions are ‘translated’, so to
speak, as the ‘jump address’.

Data that is not acknowledged to he
the op code of an instruction has the
mnemonic consisting of three American
AT symbols assigned to it [see address
@21E, for example). Such data is one
byte long. Mote that FF is not acknowl-
edged as a label op code.

Then R is operated and the program
returns to P, What could be easier?

Tahbie 1.

FC4E

FCA4E A2 R

VALID COMMAMNDS: ADHLPRSP
D

DISASSEMBLE: 200, 22F

L P SP?

L

0200 AD 00 LDA &S00
0202 AD 0102 LDAS0201
0205 A5 03 LDA $03
0207 A1 D4 LDA (304X}
0209 B1 05 LDA (S05},Y
0208 BE 06 LDA $06,X
0200 BD 07 08 LDA S0807,X%
0210 B9 09 0A LDA $0A09,Y
0213 B 0B LDX S0B,Y
0215 20 OCO0D JSR s0DOC
0218 4C OEQF JMP SOFQE
0218 BC 1011 JMP ($1110)
021E 77 i

021F FF i

0220 00 BRK

0221 00 BRK

0222 CA DEX

0223 C8 INY

0224 ES8 INX

0225 DA ASL A

0226 FO 12 BEQ 80234
0228 DO FE BME 20228
0224 BO 34 BCS 80260
022C 90 EE BCC $021C
022E FA A

022F 00 BRE

software cruncher and puncher

elektor may 1982 — 5.55

destear o
T

1 o e
SOREA DESEA
- -
B8EZ BBE2
CURAD POINT :
BRET MMER erp \“Fﬁ
- = P e
3 - = =
™ swurse [~ daetination | I
painter ﬁ e
mAM HAM
EFROM EFROM
SOREA
[T T p—
J .
i A A A AL
ir
Ll EMNE-1
(L

IDIF] = DESRA) - (S0RSA)
[IDESSA} > (S0REAI| U [IDESEA} < |7 + 150RSA| ~ ISOREA] |

Figure 1. The memory ranges involved in the EPRUTL routine. Operating the M, R, WV or F key
causes the CURAD and POINT pointers to move through every location from SORSA and

DESSA to SOREA and DESEA, respectively.

As for the H and A keys, depressing
H is equivalent to operating M during
PM and A represents ‘ASCI dump’.
Thus, a hex dump is printed after two
address entries followed by CR (see
table 2). The A key causes a hex dump
to be printed showing the ASCII code
of any alphanurmeric character within
the $20... $7E range. In the case of
data outside this range, a space appears.
This feature allows data, such as com-
puter messages that need printing, to
be located swiftly. Once readers
manage to crunch the disassembler
they will see that this is riddled with
such messages.

Mot only, but also . . .

The printing operation of the dump or
listing may be interrupted by depressing
the BRK key. The BRK jump wvector
leads the 6502 uP to a central point in
the program where it waits for a (new)
key 1o be operated,

When two addresses are entered for the
purpose of defining a listing or dump,
the second address must be higher than
the first. Otherwise, the two addresses
will have to be re-entered, only this
time in the right order please!

Az well as storing data in much used
memory locations in pages 00 and 1A,
the software cruncher must dispose of
SO019 ... 30027, S0028 must now also
be added to accommodate the extra
software. Operators must be careful
not to use these memory locations

for the program they wish to ‘sort
out’.

Software puncher

As mentioned earlier, now that we

have the necessary hardware (Elektor
January 1982), a start can be made an
loading RAM or EPROM software into
2716s. The program is started by

way of PM at address $FDDA. After
initialisation, the name of the program
is printed along with a list of valid keys.
Then the parameter key, P, should be
depressed so as to define the address
range by entering three addresses, as
shown in figure 1, First of all, the
‘FIRST, LAST SOURCE ADDRESS’
must be specified, in other words, the
SORSA and SOREA addresses at either
end of the data block that is 1o be
stored or relocated, Make sure SOREA
has a higher number than SORSA, as
otherwise the entry procedure (first
address — comma — |ast address — CR)
will have to be repeated. Next, enter the
‘FIRST DESTINATION ADDRESS'.
This is known as DESSA and determines
the location of the first address belong-
ing to the data being programmed or
maved. [Enter the first address followed
by CR.}

The following key functions are valid:
The M (MOVE] key ensures that the
SORSA . .. SOREA data block is stored
or relocated (provided the EPROM
programmer is connected and pre-
pared for programming — more about
this later) into the destination bloeck
DESSA ... DESEA. For reasons in-
volving the V key, the two blocks may
not overlap. The three address pointers
must be set according to the parameters
indicated in figure 1. At the end of the
program 'DATA MOVED' appears on
the screen/is printed.

The F (FF check) key enables the oper-
ator to check whether locations
DESSA ... DESSA +n — 1 contain FF
{n represents the number of mamory
locations in the data block being pro-
grammed). If so, data may be stored in
that particular range. The address and
contents of any memaory locations that
do not contain FF are printed. Once all
‘n’ locations have been run through,
‘DATA COMPARED' appears.

FBMD: Al OD BY Y0 &5 2 29 OF B3 'R AN 2
rEigr B5 14 an ¥ Yr AR 01 85

T
]

a0 &0
2 [
o 84
o "
o 1 af
TE b4 0 60 32 31 2 3D
NS A3 AD M& T orr 7L oee
@ ze n9 rd M oFEoEd TR
I NS AD B 4D e osn 9
727 TR 2t B2 O OO &8
3 Lk 56 64 P4 DA F4 8F
3OS0 70 FCOBEOFLO9E &C
BCORF P& LTt
W7 AC 54 T0 A e an
GBS I3 20 08 ra 60 a3

=
=
=
a
-
-
&
=
-

u
FrEd: M0 CGE FR 20 FF PR 20 54 4F E0 % %p OO AS &9 20
FrFD: BB FE AT EB 30 DB MR AL 22 FE B W fp ¢ 22 OF

Tabla 2. Hax dump of the cruncher.

556 — elektor may 1982

software cruncher and puncher

The B (RELOCATE) key. All the absol-
ute addresses within the data block
SORSA . . SOREA are adapted to the
new situation brought about by moving
or programming a data block. The new
address is determined by the contents
of DIF (see figure 1}. At the end of the
procedure, ‘RELOCATED" is printed.
The R key function is not needed while
relocatable software is being stored
{without any internal JMPs and sub-
routines) or if the contents of one
EPROM are being loaded into another.,
In order to copy RAM data into
EPROM, depress R, then M. But to
store EPROM data into RAM, depress
M followed by R.

The V (VERIFY) key. This compares
the original data block and its relocated
version, byre by byte. Whenever an
error crops up, the offending location is
printed along with its address and con-
tents. The operation signs off with the
‘DATA COMPARED’ message.
The B (BACK) key introduces a refurn
to PM whenever the computer is ready
or the operator wishes to disassemble a
relocated/programmed data block [to
werify the R key routine).

The 8T key (ST/NM! on the main key-
hoard) allows a return to take place
from PM to EPRUTL, like a warm start
entry. Then ‘XXXX <=AD=<YYYY
TO>=2ZZZ" appears, where XXXX
stands for the FIRST SQURCE AD-
DRESS, YYYY stands for the LAST
SOURCE ADDRESS and ZZZZ stands
for the FIRST DESTINATION AD-
DRESS.

By the way, ST may also be operated
during EPRUTL te print the three
address parameters and their interim
status during an operation., This s
extremely useful, as sometimes the
| parameters need 1o be temporarily
altered, At the same time, the operator
is reminded of what was entered three
‘screanfuls’ before.

How to prevent programs from
going ‘off the rails”

1. The EPROM programmer must be
connected to the bus board. The card
is addressed in the normal manner during
programming. This means that a ‘FIRST
DESTINATION ADDRESS' ($2000 or
higher) must be entered for reasons
described in Book 3, But this does not
imply that any EPROM data located
below $2000 in the memaory map, such
as the main board monitor and the TM
and PM software, is excluded. Details
are provided in point 3,
2. Using the 53... 86 switches, a 4K
address block must be selected that
does not coincide with any existing data
blocks. Otherwise double addressing
occurs, If necessary, remove one or two
memory cards from the bus board for
the time being. Remember that the first
two 4K blocks are also out of bounds
{see point 1).
3. The FIRST DESTINATION AD-
DRESS entered just before the start
of the program must be located within
the selected 4K block (see point 2). This
address does not necessarily have to be
the ultimate first address (it may be
moadified later). Right now we intend ta
load data into the EPROM on the
programmer, byte by byte, with the
aid of the M key. But take heed! If any
absolute addresses need to be altered,
start by entering the real FIRST DESTI-
NATION ADDRESS using the P key.
(Then depress R and P again, followed
by the first address of the EPROM
programmer.) Finally, operate M,
4. 52 on the EFROM programmer is
not switched ‘on’ until just before
the actual programming sequence [with
the M key). During programming LED
D9 lights and remains lit for the entire
process. {About 20 bytes are loaded per
second, so it takes quite a while). 82
should be switched off as soon as D9

2

Do = W6 A0 mi
O, = 10 W, 40K bl

TUN
EFROM 3V
>

£

ETRY
E0ma

821182

Figure 2. This circuit is added to the EPROM programmer to prevent the EFROM being loaded
trom hecoming a fried chip if 52 is inadvertently switched on before the EPROM programmar
power supply is connected up. A comman mains switch does not provide a 100% guarantee|

has gone out and ‘DATA MOVED®
appears on the screen!
5. 2716 and 2732 EPROMs have one
thing in common: they do not enjoy
being exposed to the full brunt of the
25V programming voltage without
having the comforting protection of the
5V supply voltage. The circuit in figure
2 15 added to the EPROM programmer
hardware "to cushion the blow’,
6. To find out whether a 2716 IC is
truly empty, access a 4K block on
the EPROM programmer; select a
FIRST DESTINATION ADDRESS that
either corresponds to the first address
in the range or to one 2048 locations
further on, and enter any 2K data
block. Now depress the F key.
7. Whenever EFROM software needs to
be duplicated, store the ‘master’ ver-
sion on a RAM/EPROM card, {unless
it is a system EPROM). Insert the
{presumably) empty EPROM on the
programmer board, Then follow the
instructions given in points 3 and 4.
After a short while the data “transfusion’
should be complete.
8. Loading EPROM software into RAM
is no problem and may come in
handy whenever system programs are to
he stored on cassette or the contents of
an EPROM are to be changed. First
capy the data (using the M key) and
then relocate it (with the R key), if
necessary. The V key allows the oper-
ator to check which locations have
heen altered as a result of the R key
routine.
9, When using the R key, watch out for
lock-up tables and ‘strings’! Data
such as 28 41 64' is ambiguous, for it
may either be the ASCII code for ‘'wAT’,
or stand for JSR-55441! If 54 con-
stitutes an ADM within the data block
being programmed (S2000 ... $5FFF
on the dynamic RAM card) the chances
are, operating the R key will cause the
54 to be deleted. That is why it is a
good idea to check the location of such
tables beforehand, and make sure they
remain intact after R is depressed
{before M is operated). The disassembler
is of great help in these matters.
10. A special program, as described in
the January article on EPROM
software, would be needed to store data
in the ‘step’ mode using the original
monitor routine. Fortunately, this is no
longer necessary, thanks to the PM
routing, Just enter the EPROM location
to be programmed (the EPROM pro-
grammer version! see point 3], depress
the space bar, enter the data and press
the " key. Make sure the EPROM pro-
grammer is ready for programming, as
indicated in point 4.
Although very few keys are needed to
program EPROMs, operators will dis-
cover that they offer a surprisingly
versatile repertoire.

We are informed that a sufitably pro-
grammed 2716 will be available from
Technomatic Ltd, London.]

