Synertek

Systems Corporation

CP110
SUPERJOLT

REFERENCE
MANUAL

CP110

Single Board Computer

(Superjolt Series)

(© 1978 Synertek Systems Corp.
All Rights Reserved

E Synertek Systems Corp.

Sunnyvale, California

MAN~-A-260007 Rev A

TABLE OF CONTENTS

SECTION PAGE
1. SUPERJOLT START UP=— - = m o m e e e e e e e 39 |
Hooking Up The Power Supply=----—-—--—-——————————————o 1-1
Hooking Up A Terminal To The JOLT--~=-———=—=——————-- 1-2
ot T 1-2
I T T — 1-2
i T Dt ety 1-6
Ready TO RUN == m == e e 1-6
Hooking Up The I/O0-———=——mmmmmmm e =5
2. SUPERJOLT MODULE- === === — e e e e e e e Sul]
General———— == e e e e ———————— ey
P U = = m o e 2-1
Program RAM-——————— e e e e 2=2
Monitor ROM And Interrupt Vector RAM—=-———————oe—eme——o 2=2
Programmable User I/0——-—=——mmmmmme e i e — - By
Standard Interface Circuits---————s-mmcmmmmmm e 2-3
3 ON-BOARD JUMPER OPTIONS AND MEMORY MAP--==——m—m—————————— 3-1
4. DEMON MSOFTWARE INFORMATION-——=-—-—=-m——-——=—m—=—=—mmmm—m= Beil
Demon Menitor Checkout-—==—r=—eerceemm e c e e — 4-1
Checkout Instructions--—-——-———==—m——m——emm—mm—m e 4=-3
How To Hand-Assemble JOLT Programs—-—-—--————————-—=—== 4-17
Notes, Hints And Recommendations=---====-=---===nor=— 4-27
For Using Your Jolt Microcomputer
Detailed Description Of Demon-—--—-—-=—=—=———————ce==e=—- 4-28
THe MCS 6502 Instruction Sgt-—ssm——s—cmsmsoammmemas 4-35
Chart Of Branches: Decimal To Hexadecimal-=---—-—--- 4-43
LiSting Of DEmoh Mol BOE—————— s = e i o8 i 4-45
Listings Of Diagnostic Programg—-——-——-———————=————==—= 4-65

System Exerciser
Memory Address Test

TABLE OF CONTENTS (Continued)

SECTION Page
5. ROM RESIDENT SOFTWARE (Optional)-—=—m——mmm e 5-1
ROM Operation Instructions-—---—--——-=————cmommmomoomm 5-1
JOLT Tiny BASIC === e e e e e e e e e 5-2
JOLT Resident Assembler Program-—--————-meo————————— o5—3
AMI216 ROM Description-—-—————=— e e e e 5-6
6. SUPERJOLT SCHEMATIC AND ASSEMBLY DRAWING=-==—-—-—mmcmee———— 6-1

C) by Synertek Systems Corporation

All rights reserved. ©No part of this publication

may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior written consent of Synertek Systems
Corporation.

ii

SECTION 1

SUPER JOLT START-UP

HCOOKING UP THE POWER SUPPLY

The proper power supply is an important part of your SUPER JOLT system. Be sure
to check your power source and have identified the proper connections and have
tested the power supply to be certain that all voltages are proper and that none

have overvoltage surges when TURNING ON power.

Your SUPER JOLT card requires a minimum of two voltages and one ground connection.
The card, as delivered will perform with +5v, GND, and -10v if you are using the
TTY current loop. If you plan to use the EIA terminal connection or 2708 PROMS
you will need to add the +12v supply. Power supply requirements are listed be-

low.

POWER SUPPLY REQUIREMENTS

TYPICAL MAXIMUM

* *
Voltage W/ROMs W/0 ROMs W/ROMs W/0 ROMs

+12v+5% 70 ma 4.4 ma 110 ma 6 ma

+5v+5% 550 ma 520 ma 880 ma 850 ma

-lOvtS% 30 ma 30 ma 40 ma 40 ma

* SW10l TINY BASIC/Resident Assembler ROMs

All power connections are hooked up as indicated below and as marked on the P.C.

card.

J1 J2

+1l2v
+5v
GND

-10v

0000

1-1

HOOKING UP A TERMINAL TO THE JOLT

Types of Terminals: The following is a list of gualifications a terminal must

: ™ .
have to run on a SUPER JOLT system with DEMON H installed:
A. Character Set: Must transmit and receive the standard ASCII character

set. (64, 96, or 128 character).

B. Mode: Mode of transmission is bit serial full duplex (full duplex is
where the keyboard sends only to the computer and the computer sends only

to the printer).

C. Transmission Rate: Transmission rate can be anything from 110 to 300
baud (10 to 30 characters per second) the SUPER JOLT will synchronize to

the baud rate of the terminal.

D. Bit Serial Format: Start bit, seven data bits, one parity bit (this
bit is ignored by DEMONTM on receive and set to & "1" on transmit), and

one, one and a half, or two stop bits.

E. Electrical Interface: Any one of three types of electrical interfaces
can be used with the SUFER JOLT

l. Rs-232C (EIR)

2. 20 milliamp current loop interface

3. TTL logic interface

HOOKING UP THAT ELECTRICAL INTERFACE

E.I.A.: The first type of interface we will discuss is the E.I.A. or RS-232C
standard, here after refered to as E.I.A.. Table 1 shows the complete standard
for signal assignment on the 25 Pin Cannon connector which is the standard
connector for terminal-modem computer hookup with E.I.A.. Figure 1 shows the
connection of a typical E.I.A. terminal to the SUPER JOLT CPU. When using the
SUPER JOLT with an E.I.A. interface equipped terminal, connecticons should be
made in this fashion. Note that the D.S.R. signal from the CPU is required only

on some terminals.

TTY CURRENT LOOP
The most common example of a current loop interfaced terminal is the model ASR33

TeletypeTM. Before hooking up your TeletypeTM or other current loop type terminal

RS~232 STANDARD SIGNALS AT THE TERMINAL

*7

10
Ll
12
13
14
15
16
17
18
19
20
21
22
23
24
25

* Signals Commonly Used

FUNCTION

Protective ground
Transmitted data
Received data
Request to send

Clear to send

Data set ready

Signal ground

Data carrier detector
Reserved for data set testing
Reserved for data set testing
Unassigned

Unassigned
Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Data terminal ready
Unassigned

Ring indicator
Unassigned

Unassigned

Unassigned

TABLE 1

PROTECTIVE

) < GROUND
e —— TRANSMIT
N " 2 DATA
DSR RECEIVE
EIA N , DATA
GND ——t
4
CLEAR TO
5 SEND
DATA SET
Ll . READY
SIGNAL
7 GROUND

25 PIN CANNON
FEMALE CONNECTOR

DB - 258

EIA
INTERFACED
DATA
TERMINAL

(CRT,
DECWRITER,
G.E.TERMINET,
ETC.)

\‘\\J\\\ 25 PIN CANNON

MALE CONNECTOR

25p

FIGURE 1. SUPER JOLT HOOKED TC AN EIA EQUIPPED TERMINAL

refer to its maintanence manual and be certain that it is set up for 20 milliamp

current loop operation and identify the four interface wires shown in Figure 2

for the TeletypeTM. 1f your TeletypeTM also has a paper tape reader, then check

to see that it is an automatic reader as SUPER JOLT does not supply a "reader

run" relay control circuit.

Unlike RS-232C, the 20 milliamp current loop interface has no standard connector.

Every computer and terminal manufacturer has their own type of connector.

For

interfacing the SUPER JOLT you should select a connector that mates with the one

s ™
on your particular model Teletype .

Figure 2 shows a typical teletype hookup to SUPER JOLT using the 20 milliamp

current loop interface.

Your
Connector
+O o + Tranpnsmit l Keyboard
IN- O’ -5 - Return :
Y
+O- -t Beceive Printer
OUT_ C’ e - Return
| -
IN C}-———————————(Serial In
TTL our ()———tfmm——3p Serial Out
@0 Q———1_
N =
T
Teletype M ASR33
SUPER JOLT With Automatic Reader

FIGURE 2. SUPER JOLT HOOKED TO A 20 ma CURRENT LOOP TELETYPETM OR TTL INTERFACE

gy}

The third type of serial interface to the SUPER JOLT is "TTL" which is a direct

logic level interface. Most commercial terminals do not use this type of inter-
face, however some homemade terminals and inexpensive terminals use this method

to save costs in interfacing (i.e. the T.V. typewriter). Interfacing this type

of equipment to the SUPER JOLT CPU is provided for. See figure 2 for the proper

connections.

READY TO- RUN?

Your SUPER JOLT card comes ready to power-up automatically to the on-board de-
bugger-monitor DEMONTMusing a TTY. Refer to section 4 on using DEMONTM. I£

you wish to power-up to your application program in 2708 PROM refer to section

3 for selection of the proper on-board jumpers. Many other jumper options are
available concerning negative power input, 6530 on-board RAM, terminal input

and address line tristéte control. The user should become very familiar with the
function of each option in order to most effectively use the SUPER JOLT card.
Again, if you have a TTY (20 ma current loop) and a power supply your SUPER

JOLT is ready-to-use with no jumper changes. Power-up or reset will cause the

6502 CPU to execute the DEbug MONitor.

HOOKING UP THE I/O

SUPER JOLT is designed with two types of connectors. The first, called J1, is
on the upper left and is used mainly for system expansion such as RAM, PROM,
I/0 etc. J1 should only be used to expand to other available SWUPER JOLT cards
or for your own special card designs. The second, called J2, is on the upper
right and contains all on-board I/0 lines. Table 2 list 72 I/0 pin #'s and
software address assignments and Table 3 list available mating connectors.

Pin numbering on both connectors is illustrated as follows:

Top of Card

PORT #1 Bit # NAME PIN # ADDRESS

0 PAO-1 i
i PAl-1l 32 6520 PIA
2 PA2-1 30 4600 Direction/Data
3 PA3-1 29 4601 Control
4 PA4-1 28
S PAS-1 27
6 PAG6=-1 33
7 PAT-1 34
THEACERE satel 38
QEREET caz-1 39
PORT #2 BIT # NAME PIN #
o] PRO-1 35
1 PB1-1 36 6520 PIA
2 PB2-1 37 4602 Direction/Data
3 PB3-1 26 4603 Control
4 PB4-1 25
5 PB5-1 24
6 PBG6~1 23
7 PB7-1 22
InPREEEP cm1-1 21
cOHERST cm2-1 20
PORT #3 BIT # NAME PIN #
0 PAO-2 10
1 PAl-2 15 6530 1/0
2 PA2-2 16 6EQQ0 Data
3 PA3-2 . 3.7 6EQ0l Direction
4 PA4=-2 18
5 PAS=-2 19
6 PAG=-2 14
7 PA7~2 13
PORT #4 BIT # NAME PIN #
2 PB2-2 i2 6E02 Data
3 PB3-2 1L 6EQ3 Direction

TABLE 2. SUPER JOLT I/0 ASSIGNMENTS ON J2

1-7

TrvEons
A . -)

Us esv g
o Y S
J-dodm ol s _vme .ﬂv B 55, -
2einme
T 7 o) o ;
U2- 2 € sy 1 24 0
A ! o
1%)
o i T .
sy i ks 27
! B3 s
¥Tea "1
| %) W 14|
EEIwY T
Al +sv iy +5v:
s us B8 kres U2 2 wren
" 204/ 4045 2us T 4045
At
u
Uders “fY ey
Rl a3k
o4 u_‘ 1
e |22 N L1 WWRITE:
g1 < % 40
[
ww
8
0 1 b2 s 4 08 26 BT
s o A > Jt
Lo 5V
o b L Jie b &
onedal "
sy 2 un
2108 2708
oy (9216 ®DC) (ueede) |,
5 wrest 2 xpesy
ISEEEEEECHES R ek
N &k e o e
- 3 : >
"
i
0
ao e
22 go T =
24
A e 22
240 20
0
@ an U =
orr M
1 5
vzt & EL! A2 e
2
e
e U ke eev
" oo~ e Py T S—* VE U
- hE o1 —31n, R L — e
b2y W o Paozl_ 5)
O gy Ay oy] RN PY N 9+
p4 —2ny B
o5 bs A3
B o T il a 3
5.0y e ey b7 =2 py 7. ;
o by [T R
ROy e s [=
X » a7 -®s3, 33K
i u o
VO 32
LS
v
vs
vec
55 v
o INED 0
es.|* c4
rour “orur
« 7T "
= LS04
fia v
™
3 © 178 B SNERTEK SYSTEMS CORP
® AL RIGHTS RESERVED —
- T]
sl Lee el lea ol Llao 1] L T el) Symertek Systems Corp.
o T Towr ewT Towe wwT Tow au] SCLEMATIC, DIAGRAN,
s e] CP1IO ~ SUPER JOLT
77, ssveruio acees e R
3 A —1 - Do -
- P none | D [SCH-D~800002-]
e o]
[y

SYHIWAN TIVd YOLDEINNOD ZL£ 3 Tr ¢ dTdYd

ov/9L%E ‘0%/69¥¢€
‘0V/S9€E ‘0¥/20€€E
SHAAL ANVW

WE
dIdLS-YILOEdS

0v-TLT AdISNY € % 4 DNITIYD IYTId QHEHANIWWOOTY x
¢~-8T1¥98 dR¥ SYOLOEANNOD ONILNAOW *€°D°d
0000-LT¥E WE
0¥1T~208 dTILS~VdLDddS
000%-609 XJd'ISNVY € 3 L ¥ SYOLDANNOD HTIVYD LVTA

HHIWAN LIvd

YHINLOVANNYN

NOILYDITAdVY

SECTION 2

SUPER JOLT MODULE

General

The SUPER JOLT CPU card is a complete microcomputer on a single printed circuit
board. When connected to a terminal, the CPU card provides everything necessary
to begin writing, debugging and executing microcomputer programs. The salient

features of the SUPER JOLT CPU card are:
o A Synertek SY6502 NMOS microprocessor
o 1024 bytes of program RAM, and 64 bytes of interrupt vector RAM

o 1024 bytes of mask programmed ROM containing DEMONTM, a powerful debug
monitor

o Sockets for 2048 bytes PROM memoxy
o 28 programmable I/O lines
o Crystal controlled clock

o Serial I/0 ports for use with a teleprinter current loop drive/receiver,
EIA standard driver/receiver, or TTL

o Expandable address and data buses

o Buffered CPU address and data lines

o Hardware interrupts

o Control panel interface lines available on card connector
o Optional ROM resident TINY BASIC and Assembler

The CPU card was designed to be a general purpose microcomputer with provisions
for expanding memory and interfacing to serial or parallel I/0 devices. System

expansion may be accomplished through the use of standard SUPER JOLT support cards

CrU

The SY6502 CPU chip is a parallel 8-bit microprocessor with 16 address

lines and an internal oscillator. The data bus (DO-D7) is bi-directional and will
drive one TTL (1.6 ma, 130 pf) load directly. The 64K byte (216) address space 1i:
used to address program memory and to select I/0 devices for communication with
the CPU. The address will also drive one TTIL (1.6 ma, 130 pf) load directly.
On-board address and data buffers expand the drive capability to 48 ma.

2-1

The internal oscillator operates in a "free run" mode based on a crystal oscil-
lator frequency of 1 MHZ. The crystal provides a very stable clock whict

allows for accurate and repeatable programmed timing loops.

The RESET input to the CPU is pulled to logic ground by a 555 timer circuit on
the printed circuit board. The CPU normally fetches a new program count vector
from hex locations FFFC and FFFD upon activation of the RESET line, but these
locations are in the interrupt vector RAM and therefore volatile. Hardware on

the CPU board causes the CPU to begin executing the monitor program by forcing

the effective sixteenth bit of the address bus (Al5) to a logic ZERO during re-
set. As a result, the RESET function on the SUPER JOLT CPU card cause the debug
monitor (DEMONTM) to begin executing. This can be altered by changing the various

on-board jumpers. (see section 3)

There are two interrupt inputs to the CPU. One interrupt is maskable under program

-control (IRQ) and the other (NMI) is not.

A READY control line provides for asynchronous operation with slow memory or

I/0 devices.

The address bus (A0-AlS5), the data bus (DO-D7), the two phase clock (PIT,P2T),
the reset line (*RESET), the interrupt lines (*IRZ, and *NMI) and the ready line
(RDY) are all available at the edge connector of the CPU card.

A more detailed description of the CPU inputs and outputs may be found in the

SY6500 hardware manual available from Synertek Inc.

PROGRAM RAM
There are 1024 bytes of program RAM provided on the CPU card. The program RAM

is hardwired addressed as the first 1024 bytes of the CPU's 64K of memory address
space. It may become necessory to remove these RAM's from their sockets if a
4K memory card is also hardwired in this address space. The program RAM on the

CPU card uses 2114 4K static RAMs.

MONITOR ROM AND INTERRUPT VECTOR RAM
The monitor ROM is located in the last 1K bytes of the lower half of memory space

(first 32K bytes). The interrupt vector RAM is located in the last 64 bytes of
the 64K memory address space.

The monitor ROM and interrupt vector RAM as well as additional I/0 are implemented

with a single SY6530 chip.

PROGRAMMABLE USER I/0

The programmable I/O lines available from the CPU card are provided by a Periph-
eral Interface Adapter (PIA) and the 6530 multi-function chip.

The PIA has two S8-bit I/O ports with two interrupt-causing contrel lines each.
A data direction register for each port determines whether each I/0 line is an
input or an output. A detailed description of the PIA chip may be found in the

SY6500 microcomputer family Hardware Manual.

The 6530 ROM chip provides 10 additional I/0 lines that may also be specified as
input or output lines under program control. There are eight I/C lines from one
port on the 6530 and two lines fram the second port. These I/O lines may be
used in conjunction with DEMONTM for interfacing a high speed paper tape reader
to the CPU card. In the paper tape reader application, the eight I/0 lines

from the second port are used to accomplish the handshake control between the

reader and the CPU card.

The PIA is hardwired addressed as location 460016 to 460316 in the memory address
space. Memory addresses from 400016 to 5C0316 are allocated for PIA devices so
that the SUPER JOLT system may be easily expanded to accomodate up to eight PIA

chips. For a complete illustraticon of memory allocation refer to section 3.

STANDARD INTERFACE CIRCUITS

The SUPER JOLT CPU card provides direct interfacing with a 20 ma current loop
RS232C interface requires +12v and -10v. Both interfaces are wired in parallel

on the input and output thereby allowing both interfaces to be used simultaniously.
The TTL input must be jumpered as an option in place of the EIA input. For fur-

ther assistance in connecting the SUPER JOLT CPU to a terminal refer to section 1.

SECTION 3

MEMCRY MAP AND ON-BQARD JUMPER OPTIONS

SUPER JOLT SYSTEM MEMORY MAP

The memory map on the following pages explains what functions have been assigned
to each segment of the SUPER JOLT address space. It is recommended that users
respect this space allocation when adding memory and peripherals to their SUPER
JOLT systems. Space has been reserved for 32K bytes of user RAM or ROM, seven
additional PIA devices, and up to 512 user I/O devices registers. ther areas
are reserved for JOLT expansion, i.e., new SUPER JOLT peripherals and menory
options will use these spaces. Users are advised to not use SUPER JOLT expansion

space unless absolutely necessary.

Note that scme areas usad by the SUPER JOLT CPU kboard and PIA boards have more
space indicated than there are registers or locations in the device occcupying
them. This is because these devices do not decode all address bits, or use some
of the address bits for special functions. For example, the 6530 timer deter-
mines the time scale and interrupt enable/disable by the address used to access
it. Thus, these “partly filled" areas are actually entirely used and are not

available for other uses.

FFFF | INTERRUPT VECTORS | INTERRUPT VECTORS <E£>
F3CO | RAM (1
F3BF
RESERVED
: FOR .
JOLT EXPANSION
c000
BFFF
USER ROM AND RAM AREA
. (RECOMMENDED LOCATION FOR s
ADDITIONAL RAM BOARDS) :
8000
7FFF :
: DEMON MONITOR !
: (RCM) *
7000 (1)
6FFF
RESERVED FOR JOLT PERIPHERALS
6E40
GE3F
. 6530 I/0 TIMER : 8330 <§>
6200 (1) ;
61FF
RESERVED FOR USER I/0
6000
SFEF
. L USER PIAs QE)
4600 SUPER JOLT PIA (1)
4000
3FFF
USER RAM AREA
. (RECOMMENDED LOCATIONS FOR |
FIRST THREE 4X RAM BOARDS)
1000
giFF SPARE RAM SPACE
0255 USER AREA (1)
8%88 USER AREA AND STACK (i) PAGE ONE ’ <§>
0T PAGE ZERO -
0808 USER AREA AND DEMON (1) (E:)

(1) standard on Superjolt CPU Card

3-2

INTERRUPT

s

FFFE,FTFF
FFFC,FFFD
FFFA,FFFB

(:: VECTORS ‘FFFB,FFF9
FFF7

6530

(1)
(2}
(3)

(4)

HARDWARE IRQ VECTOR

HARDWARE RESET VECTOR

HARDWARE NMI VECTOR

DEMON UINT VECTOR

UNUSED
USER RAM

(1,2

FFCO
[~ 6E3F
6E00

TIMER CONTROL,

ENABLE INTERRUPTk3)

TIMER CONTROL,
DISABLE INTERRUPT

6530 PIA PORT

Standard on JOLT CPU board.

Available to user-—not used by DEMON.

To get enable-interrupt address, add 000816

address with corresponding functions.

N

A |

6EQS
6EQ4

RES

6E07

6E06
6E0S
6EQ4

WRITE

|

6EOQ3
6E02
6ECL

6EQQ
e

READ INT_FLAG
(BIT 7)

READ COUNT

SET COUNT (1024 T)

SET COUNT (64 T)

SET COUNT (8 T)

SET COUNT (1 T)

DIRCCTION REG B (4)

DATA REG B (4)

DIRECTION REG A

DATA REG A

to disable-interrupt

Reserved for DEMON use—TTY control and reset functions.

. *
5c00 | PIA ON JOLT CPU BOARD | 5C03 CONTROL B
5800 5c02 | DIRECTION/DATA B
5400 | 5c01 CONTROL A
<:> USER PIAs 5000 ADDITIONAL 5c00 | DIRECTION/DATA A
265 USER PIAs
4800
* SUPER JOLT PIA located at
4400 4600
4000
[oirr o
srﬁcx OLFF WINTMOM
ALLOCATION
20, , BYTES
FOR DEMON
<§> PAGE ONE USER SPACE o1ss
0100
Srmtocom s
!—770_1:"?‘- - T
| Qop3 |DEMON RESERVED SPACE
§ Q0E2 00F7 PCH
f 00F6 PCL
PAGE ZERQ |
(s) ; USER PAGE ZERO 00E3 p—
% SPACE
13
0000

APPLICABLE

JUMPER POSITION ADDRESS DESCRIPTION
OPTION
A 1 ADDRESS BUFFERS ALWAYS ENABLED
2 ADDRESS BUFFERS TRI-STATE EXTERNALLY CONTROLLED
B 3 -10v POWER INPUT (ON-BOARD REGULATED TO -5v)
4 -5y POWER INPUT (BY-PASSES REGULATOR)
c (1) 5 AUTO POWER-ON TO "DEMON" - ENABLED
6 AUTO POWER-ON TO "DEMON" - DISABLED
D 7 E,F,G,H All CONTROL'S ROM SOCXET SELECTION
8 A,B,C,D Al0 CONTROL'S PROM SOCKET SELECTION
E 9 E,F,G,H Al5 ROM ADDRESS ENABLE
10 A,B,C,D All PROM ADDRESS ENABLE
F 11 c,D,G,H Al3 PROM/ROM ADDRESS ENABLE
12 a,B,C,D Al3 PROM/ROM ADDRESS ENABLE
G 13 E,F,G,H Al0 ROM ADDRESS ENABLE
14 A,B,C,D -Sv PROM ADDRESS ENABLE
H (1) 15 ENABLES 16 BYTE RAM ON 6530
16 AE DISABLES 64 BYTE RAM ON 6530
J 17 B,D,F,H Al2 PROM/ROM ADDRESS ENABLE
18 A,C,E,G Al2 PROM/ROM ADDRESS ENABLE
K 19 EIA INPUT
20 TTL INPUT

NOTE: (1) - The purpose of option H-16 is to allow PROM or RAM memory to exist
at high address locations (such as F---) while still using the
6530 I/0 - timer and "DEMON" subroutines, however, use of this option
disables the Auto Power-On to "DEMON" (Jumper C must be in position

6)

EXAMPLES FUNCTION
Cc-6 H-16 PWR. ON TO PROM/ROM MEMORY AT RESET VECTCOR
c-6 H-15 PWR. on to 6530 RAM (not useful)
c-5 H-16 AUTO PWR.=-ON DISABLED, 6530 RAM DISABLED
c-5 H-15 AUTQ PWR.-ON, 6530 RAM ENABLED

SUPER JOLT ON-BOARD JUMPER OPTIONS

ADDRESS
ADDRESS BITS —» (15 14 13 12|11 1098|765 4)3210 OPTION

START ADDRESS

F800 I 2 % 2 1 0-=- = === = === (1Kx8)2708 PROM-1 A
FCO0 1 1 11 L, Loomim e e e o 2708 PROM-2
EBOC 11 1 0 1 O== = =% = o= 2708 PROM~1 B
ECOOQ i1 1 1 B g, Lo=m o s B = 2708 PROM-2
D800 1 1 0 1 L @ == &&= &= 2708 PROM=-1 c
DCoo 1 1 0 1 L L =8 R e e 2708 PROM=-2
Cc800 1 1 0 O 1 = =i == == = 2708 PROM-1 D
ccoo 11 0 0 L A &8&8 |BE & &= @S 2708 PROM-2
FO00 1 1 i & 0 === == == = - == (2KxB)9216 ROM-1 E
F800 1111 I =& & & e = 9216 ROM=-2
EQQO 1 1 1 0 0 === =5 == &«== 9216 ROM-1 F
ES00 1 1 2 @ l mas mEES Rmee 9216 ROM=-2
DOCQ 1 101 G e e s s g 9216 ROM-1 G
D800 1 1 0 & l] m== mr 2= - - 9216 ROM-2
ofslele] 1 1 0 0O 0 S B e i e S e 9216 ROM~-1 &
€800 11 0 @ I = &> peEs BE AR 9216 ROM-2
7000 9 3 1 1 X X== == == =~ - -~ 1xx8 6530 "DEMON" ROM
0000 0O 0 00 0O 0 Q= e e 1Xx8 RAM

FFCO 1 1 1 1 X X¥X1d l1li=ss s==== 64x8 6530 RAM
4600 0 1 ¢ 0 6 11X XXXX XX=~ 6520,/6820 PIA
6EQO 01 1 o X 10 0Q== =&ca 6530 I/0 TIMER

(1) Legend for Above:
- Address lines decgded inside memory or I1/0 chip
0 Address line logic state for valid enable
1 Address line logic state for valid enable
¥ Indicates address line not used in decoding
(2) How to use: Select one (1) address option from A-H, then use jumper option chart
to determine the required on-board jumpers.
13) Address Decoding equations on-koard (inside) 6530 Chip
RSO = PIN 4 CSI = PIN 18 CsS2 = PIN 19
ROM ENABLE = RSO-CSI-CS2
Al5-Al4-Al3-Al2 (for Super Jolt)
RSO-CSI-“CS2-A9-A8-A7-A6
Al5-Al14-A13-A12-A9.A8-A7-A6
RSO-CSI-CS2-A9-A8-A7-A6
Al5-Al4-A13-Al2+A9-A8-A7-R6

RAM ENABLE

I-Q/TIMER ENABLE

I VI I]

SUPER JOLT MEMORY - I/O DECODING MAP

SECTION 4

DEMON MONITOR CHECKOUT

You are now ready to check out your JOLT DEMON
monitor. The instructiohs which follow assume that your
JOLT is connected to a suitable power supply and a tele-
type or other serial computer terminal. A detailed des-
cription of the DEMON monitor starts on page 4-28. Here
is a summary of its features:

DEMON is the DEbug MONitor program for the JOLT
Microcomputer. It is supplied in read-only memory (ROM)
as part of the 6530 multi-function chip on the JOLT CPU
board. Because the DEMON code is non volatile, it is
available at system power-on and cannot be destroyed
inadvertantly by user programs. Furthermore, the user is
free to use only those DEMON capabilities which he needs
for a particular program. Both interrupt types, interrupt
request (IRQ) and non-maskable interrupt (NMI) may be set
to transfer control to DEMON or directly to the user's
program.

DEMON communicates with the user via a serial full-
duplex port (using ASCII codes) and automatically adjusts
to the speed of the user's terminal. Any speed-~even non-
standard ones--can be accommodated. If the user's terminal
has a long carriage return time, DEMON can be set to perform
the proper delay. Commands typed at the terminal can

direct DEMON to start a program, display or alter registers

and memory locations, set breakpoints, and load or punch
programs. If available in the system configuration, a
high~speed paper tape reader may be used to load programs
through a parallel port on the 6530 chip. Programs may be
punched in either of two formats--hexadecimal (assembler
output) or BNPF (which is used for programming read-only
memories}. On loading or modifying memory, DEMON performs
automatic read-after-write verification to insure that
addressed’memory exists, is read/write type, and is responding
correctly. Operator errors and certain hardware failures
may thus be detected using DEMON.

DEMON also provides several subroutines which may be
called by user programs. These include reading and writing
characters on the terminal, typing a byte in hexadecimal,
reading from high-speed paper tape, and typing a carriage-
return, line-feed sequence with proper delay for the carriage
of the terminal being used. Program tapes loaded by DEMON
may also specify a start address so that programs may be

started with a minimum of operator action.

CHECKOUT INSTRUCTIONS

() 1. Turn power on, or if the power is on, perform a
RESET operation. Type a carriage-return on the terminal.
DEMON should respond with:
* 7052 30 18 FF 01 FF

(Exact values may vary, although the first and last values
should be as shown). If no response or a garbled response
occurs, RESET and try again. In case of continued trouble,
refer to the diagnostic section of the CPU Assembly Manual.

The "* 7052 30 18 FF 01 FF" printout is DEMON's
standard breakpoint message format. It consists of an
asterisk "*" to identify the breakpoint printout, followed
by the CPU register contents in this order: PC, P, A, X,
Y, and S, i.e. Program Counter, Processor Status, Accumnmulator,
X index, Y index and Stack Pointer. Note that all DEMON
inputs and outputs are in base 16 which is referred to as
hexadecimal, or just hex. In hexadecimal, the "digits" are
0,1,2...,A,B,C,D,E,F. After printing the CPU registers,
DEMON is ready to receive commands from you, the operator.
DEMON indicates this "ready" status by typing the prompting

character "." on a new line.

() 2. DEMON's response to RESET is to wait for a carriage-
return and then print the user's registers. DEMON uses
this carriage return-character to measure the terminal line

speed. If you have a settable-rate terminal, change the

4-3

rate (any speed between 10 and 30 cps will work) and repeat

Step 1. DEMON should respond at the new terminal speed.

() 3. The user's CPU registers may also be displayed
with the R command. Type an R. The monitor should respond
as above, but without the asterisk. Presence of the asterisk
indicates that an interrupt or break instruction caused the
printout.

.R 7052 30 18 FF 01 FF
() 4. Displayed values may be modified using the Alter
(:) command. To modify register contents, type a colon (:)
followed by the new values. For example:

7052 30 18 FF 01 FF
0100 00 00 00 00 FF

0100 00 00 00 00 FF

R

Notice that DEMON automatically types spaces to separate
data fields. (Note: Characters typed by you, the user, are
underlined in this document for clarity. Everything else is
typed by the computer.) Examine your registers (R command)
to verify the changes.

Memory may be examined and modified, as above, using
the M and : commands. Try this:

.M 0100 00 66 23 EE 01 A2 41 6E

The memory command (M) causes DEMON to type the contents of
the first eight bytes of memory. (Memory data will be random
on startup). Alter and verify these bytes using the Alter

command, as above:

.M 0100 00 66 23 EE 01 A2 41 6E
0100 00 ‘01 02 03 04 05 06 07

If only part of a line is to be altered, items to be left
unchanged can be skipped over by typing blanks, and carriage-

return (). Try this:

M 0100 00 01 02 03 04 05 06 07
.+ 0100 FE __ FF FF }
.M 0100 FF 01 FF FF 04 05 06 07

() 5. Try to alter a location in DEMON ROM:

.M 7000 85 F9 A9 23 DO 58 A9 16
7000 007

DEMON verifies all changes to memory. Since locations 7000
through 7007 are in read-only memory, alteration is not pos-
sible.> DEMON signals write failure with a question mark.
Similarly, the monitor will notify you of an attempt to alter

a non-existant location:

.M 9000 90 90 90 90 90 90 90 90
. 9000 002
Note that attempts to read non-existant memory will normally

yield the high-order byte of the address read.

() 6. There are three hardware facilities which may be used
to stop a running (or run-away) program without the program

itself calling DEMON. These are the hardware inputs RESET,

IRQ, and NMI. To test this feature enter the following

program at location 0000:

location contents instruction
0000 4C LOOP JMP LOOP
0001 00
0002 00

(Use the M and : commands.)

Now, set the program counter (PC) to this location using
the R and : commands. Finally, tell DEMON to start executing
your program using the GO (G) command:

.M 0000 FF 11 11 11 91 91 71 91

.: 0000 4C 00 00 Y

0000 4C 00 00 112 91 91 71 91

0000 30 00 00 00 FF
.1 0000 3

BN

The computer should now be executing the program. It will
continue to run until interrupted. Using the interrupt request
line (IRQ), interrupt the processor. It should respond with:

* 0000 30 00 00 00 FF

Try the same experiment with non-maskable interrupt (NMI). The
result should be the same except for a "#" character preceeding,
which identifies the NMI printout. Finally, try it with RESET.
RESET, however, forces JOLT to branch to DEMON, loosing the old
PC and other register contents. Thus NMI is the preferred means

for manually interrupting program execution. IRQ may also be

2000
spelele]

100
2103
3105

J1e7
3109
0108
100
6110
0112
gl15

0116

2¢
A9
85
A5
€9
FO
20
4C
Qo

4C

used unless it is required for other functions such as periph-

eral interrupts.

() 7. Use M and

to enter the following test program called

CHSET because it prints the character-set on the terminal.

Note that Alter (:) commands may be repeated without intervening

M commands to set seguential locations:

$CHECKOUT PROGRAM -- PRINT THE CHARACTER SET ON USER TERMINAL

CRLF =¢$728A

WRT =$72Cé

! #®=0

CHAK ®x=%4]

*#=4$01C0

8A 72 CHSET JSR LRLF
20 LDA #$20
00 STA CHAR
[a)s] LOOP LDA CHAR
6C CMP #$6¢C
08 BEQ ODDNE
cé 12 JSR WRT
aQ INC CHAR
07 01 JMF LGOOP

DONE BRK
oC 01 JMP CHSET

;s ADDRESS OF DEMON CRLF ROUTINE
3ADDRESS OF DEMON WRITE ROUTINE

s VARIABLE STORAGE IN PAGE ZERD
sSTORAGE FOR CHARACTER

sPROGRAM STARTS ON PAGE ONE

sDO CARRIAGE RETURN & LINE FEED
sFIRST CHAR IS A SPACE
SINITIALIZE

sCET CHARACTER

;CHECK FOR LIMIT

;DONE IF €0

s PRINT CHAR

sNEXYT CHAR CODE

;s CONT INUE

3STOP & RETURN TO DEMON MONITOR

500 IT AGAIN

i 0100 20 8A 72 A9 20 85 00 A5
i 0108 00 C9 60 FO 08 20 c6 72
. 0110 E6 00 4C 07 01 00 4cC 00

Now run the program. Do this by setting the PC to 0100

and using the G command. The listing should look like this:

0000 30 00 00 00 FF
0100 }

B
g
T#S7&" (I *+,-./0123456789:5<=>28ABCDEFGHIJKLMN@PRRSTUVWXYZIN]t~
* 0116 33 60 00 00 FF

s e e

The program may be continued, causing it to execute again, by

typing G:

-G
I"HBZ& (I*k+,-./01234567%923<=>2@ABCDEFGHI JKLMNCPORSTUVWXYZIN] t«
* 0116 33 60 00 00 FF

<G

IU#BL& (I %+5,~4/0123456789:23<=>?2@ABCDEFGHI JKLMNOPORSTUVWXYZINIt+
* 0116 33 60 00 00 FF
&
!
*

H#BZ& (I*k+,-./0123456789:3<=>?8ABCOEFGHIJKLMNEPORSTUVWXYZIN] 1+
0116 33 60 00 OO0 FF

The CHSET program uses two DEMON monitor functions: CRLF
is the DEMON function which causes a carriage-return and line-
feed to be typed on the terminal. WRT is the routine which
prints the character whose code is in the A register at the

time of the call.

() 8. Save the CHSET program on paper tape (if your

terminal has a punch) as follows: First, punch some leader
tape with the terminal in local mode. Then return to line
mode and enter:

.WH 0100 0118 }
Turn the punch on after typing the second address, but before
typing carriage-return. Then type carriage-return to punch
the tape. When punching stops, turn the terminal back to local
and type:

;00

and some blank trailer. This is a zero-length record which
terminates your tape. See Appendix III for more information on

tape formats.

() 9. Try re-loading your program using the LH command:

.LH
Now start the reader to load the program. The tape will be
read and printed simultaneously. Stop the tape when the end is
reached. (Before loading, you may wish to destroy the program

in memory to verify that loading from tape actually works.)

() 10. Use the M and : commands to load the following program:

0000
0000
0001

0002

0100
0103
0106
o108

010B
010D
010F
0111

0113

0115
0117
ot1a
0110

Ol1E

a9
20
06
10

40

31
06 72
91
F1

00 01

.
»
°
L4
.
B

BINARY

CCUNT

>

.
3

CRLF
WRT
RCT
SPACKE

PBIN

e

PBLCOP

.
r

°
»

PRINT

CHECKOUT PROGRAM -- PRINT BINARY OF TYPED CHARACTER

*=0 3VARIABLE STORAGE IN PAGE ZERO
k=k+] 3STORAGE FOR CHAR DURING DISSECTION
*k=%+1 sCOUNT OF BITS REMAINING TJ PRINT
*¥=%$0100 3PROGRAM BEGINS ON PAGE ONE

=$7284 sDEMON CRLF ROUTINE

=$7206 3DEMON WRITE ROUTINE

=$72E9 3DEMON READ ROUTINE

=$7377 s DEMON SPACE ROUTINE

JSR CRLF 3PRINT CARRIAGE RETURN & LINE FEED
JSR RDT 3GET A CHARACTER ’

STA BINARY 3SAVE FOR DISSECTION

JSR

LCA
STA
LDA
ASL
BCS

LDA
JSR
DEC
BPL

JMP

SPACE 3PRINT A SPACE

#8 $INITIALIZE BIT COUNT

COUNT

#'0 $ASSUME ZERO: LOAD ASCII "O"
BINARY 3C=NEXT BIT

PRINT 3PRINT ZERO

#1 ;L0aD ASCII "1
WRT SPRINT BINARY DIGIT
COUNT 3COUNT BIT PRINTED

PBRLOOP 3030 NEXT BIT

P3IN 3DO IT ALL AGAIN

.M 0100 20 8D 72 A9 20 85 00 A5
0100 20 8a 72 20 E9 72 85 00
0108 20 77 73 A9 08 85 01 A9

.. 0110 30 06 00 BO 02 A9 31 20
: 0118 Cc6 72 C6 01 10 FL 4C 00
0120 01 }

The purpose of this program is to print the binary rep-
resentation of an ASCII input character on the terminal.
Run the program by starting it at location 0100. Try typing
some characters:

.R 0116 33 60 00 00 FF
© 0100)

.G
101010101
101111011

110011101

I+ jw G

There is obviously something wrong with the program. Bits
which should be printed as l's are 0's and vice versa. (Refer
to your 6500 reference card for character codes.) Looking at
the program, the problem is. that the branch after PBLOOP goes
the wrong way! It should be BCC, Branch if Carry Clear (or
alternatively, the 1 and 0 loads could be interchanged}). Thus,
when a one-bit is shifted out of the character, a one should
be printed.

Patch the program and try again (the code for BCC is 90).

.M 0113 BO 02 A9 31 20 C9 72 C6
.: 0113 90 ¥

.R 7052 31 FC FF 01 FF

o 0100)

&

U 010101010

B 010000100

1 001100010

There is, alas, still an error--one toO many bits is
being printed. The cause of this is a little less obvious.
(Do you see it?) To investigate the problem, set a breakpoint
at location 011E. Do this by replacing the instruction there

with a BRK (code of 00). Then run the program:

.M 011E 4C 00 01 EF 4C 00 01 00

.: O0llE 00 ¥
.R 7052 31 FC FF 01 FF
.: 0100

U 010101010
* 011F BO 00 00 AA FF
Once the break has occurred, you are free to investigate
the state of the program using DEMON. In particular, check the
value in location COUNT:

M 0000 00 PFF 1B 2E 31 EA FO FA

Aha! Although COUNT starts out with a value of 8, it is going
one step too far (FF is minus 1). This is because the test

instruction, BPL PBLOOP is testing to see whether the count is

greater than or equal to zero. Replace it with BNE (code DO),

replace your breakpoint with the original contents at that

location,

and try the program again.
.M 011C 10 F1 00 00 01 EF 4C
: o0llc Do __4c 1}

.R 01l1F BO 00 00 AA FF
.z 0100

.G

U 01010101

B 01000010

1 00110001

I 01001001

W 01010111

0 01001111

R 01010010

XK 01001011

s

01010011

SCHECKOUT PROGRAM ~- PRINT BINARY OF TYPED CHARACTER

.
>

0000 *=0 3VARIABLE STORAGE IN PAGE ZERO
0000 BINARY k=%+] 3STORAGE FOR CHAR DURING DISSECTIUN
0201 CCUNT k=k+] 3COUNT OF BITS REMAINING TO PRINT
H
0002 ' *=$0100 5PROGRAM BEGINS ON PAGE JNE
H
CRLF =$728A s DEMON CRLF ROUTINE
WRT =3$7206 3DEMON WRITE ROUTINE
RCT =$72E9 sDEMON READ ROUTINE
SPACE =$7377 3DEMON SPACE ROUTINE
0100 290 84A 72 PBIN JSR CRLF SPRINT CARRIAGE RETURN & LINE FEED
0103 20 E9 72 JSR RDT SGET A CHARACTER
0106 85 00 STa BINARY 3SAVE FOR DISSECTION
0108 20 77 73 JSR SPACE PRINT A SPACE
3
010B a9 08 LCA #8 3INITIALIZE BIT COUNT
010D 85 01 STA COUNT
010F 49 30 PBLCOP LDA #°'0 3ASSUME ZERO: LOAD AaSCII O
Oti1 06 00 ASL BINARY ;;C=NEXT BIT
0113 90 02 BCC PRINT PRINT ZERD
3
0115 A9 3t LCca #°'! 3LCAD ASCII *"i*
0117 20 06 72 PRINT JSR WRT JPRINT BINARY DIGIT
011A 06 01 DEC COUNT 3COUNT BIT PRINTED
0110D0 F1 BNE PBLCCP ;DO NEXT BIT
H
O11E 4C 00 Ot JMP PBIN 3DJ IT ALL AGAIN

CORRECTED PBIN PROGRAM

() 11. Save the corrected program using the WH command.
Before punching the terminating record (as above in step 8),
turn off the punch and set the PC to the start address of the
program (0100). Then punch locations 00F6 and 00F7 on the
tape, then the terminator (;00)}, and finally, some trailer:

.R 7052 30 37 FF 01 FF

.: 0100 }

.WH O00F6 O00F7
;0200F6000101A2
-100

The resulting tape can be loaded and then started as follows:
.LH

(program loads in)

o)

Locations 00F6 and 00F7 contain the starting address for pro-
grams. You may assemble and load your starting address into
these locations to make tapes which can be started with a min-
imum of operator action. The carriage-return delay time may

also be set in this manner. See Appendix III.

() 1l2. It is also possible to punch BNPF-format tapes using
DEMON. BNPF is the format used by some ROM programmers. The
command is similar to that for writing hex tapes:

.WB 0100 0127 }

This command would punch the corrected PBIN program in BNPF

format. Try punching a BNPF tape. (Note that DEMON will not
load tapes in this format--use hex format (WH) for saving

programs for later loading inte your JOLT.)

() 13. If you have a high-speed paper tape reader attached
to your JOLT system, you can use it to load programs in hex
format. The H command switches the load device to and from
the high speed reader. If you have a high speed reader, try

loading a tape as follows:

B
LH

Note that control will not return to the user terminal until a

terminator record (;00) is read.

THIS COMPLETES STEP-BY-STEP CHECKOUT
OF THE DEMON MONITOR

HOW TO HAND-ASSEMBLE JOLT PROGRAMS

If you do not use an assembler to convert your JOLT
programs to machine language (hexadecimal), you will have
to convert your programs manually. Here is a suggested
procedure.

The procedure consists of four steps:

STEP 1: Decide which variables ané subroutines
are to be placed in page zeroc and assign fixed locations

to them.

STEP 2: Look up each instruction in the 6502 code
chart and record the operation code in hexadecimal, noting

how many bytes of memory are required by each instruction.

STEP 3: Determine the location in hexadecimal of

each labelled instruction or variable.

STEP 4: Fill in all remaining values, using the

locations determined in Step 3.

When writing a program for hand assembly, it is
desirable to split your code into small routines which
can be assembled separately. Since you will be loading and
debugging your program by hand, you should leave some space
for changes so that complete reassembly is not required to

fix small problems.

By way of illustration, the PBIN program (used in the

Monitor Checkout section) will be hand-assembled:

; CHECKOUT PROGRAM —- PRINT BINARY OF TYPED CHARACUYERF
*=0 ; VARTABLE STORAGE IN PAGE ZERO
BINARY *=x*+1 ; STORAGE FOR CHAR DURING DISSECTION
COUNT #=%4] ;COUNT OF BITS REMAINING TO PRINT
*=30100 ; PROGRAM BEGINS ON PAGE ONE
CRLF =$728A ; DEMON CRLF ROUTINE
WRT =572C6 ; DEMON WRITE ROUTINE
RDT =$72E9 ; DEMON READ ROUTINE
SPACE =8$7377 ; DEMON SPACE ROUTINE
PBIN JSR CRLF ; PRINT CARRIAGE RETURN & LINE FEED
JSR RDT ;GET A CHARACTER
STA BINARY ;SAVE FOR DISSECTION
JSR SPACE s PRINT A SPACF
;
LDA #8 ; INITIALIZE BIT COUNT
STA COUNT
i
PBLOOF LDA #'0 ;ASSUME ZERO: LOAD ASCITI "0O©"
ASL BINARY ;C=NEXT BIT
BCC PRINT ; PRINT ZERO
LDA #'1 ;LOAD ASCITI "1"
PRINT JSR WRT ;PRINT BINARY DIGIT
DEC COUNT . ;COUNT BIT PRINTED
BNE PBLOOP ;DO NEXT BIT
JMP PBIN ;DO IT ALL AGAIN

Step 1

Decide which variables and subroutines are to be placed

in page zero and assign fixed locations to them.

Page zero contains locations 0000 to 00FF. The variables
that are to reside in page zero must be identified prior to
assembling the rest of the program since the mode and length
of some instructions depend on whether their operands are in
page zero. The sample program has two variables in page zero.
They are simply assigned locations sequentially:

Loc Contents Instruction

0000 %X BINARY #=sk+] ; STORAGE FOR CHAR DURING DISSECTION
0001 XX COUNT *=%+1 ; COUNT OF BITS REMAINING TO PRINT

The program does not specify initial values of these loca-
tions, so the contents position is marked with X's, indicating
that no values will have to be loaded there. In this example,
there are no subroutines or other instructions to be assembled
in page zero. It will be more convenient for hand assembly if
such code, when it occurs, is placed after the variables. Then
the position of variables will not depend on the length of pre-

ceding instructions.

Step 2
Look up each instruction in the 6502 code chart and record

the operation code in hexadecimal, noting how many bytes of

memory are required by each instruction.

The length and code of each instruction is determined by
its mode. Some instructions, such as JSR and BNE, have only
one possible mode, and thus present no difficulty. The mode
for other instructions depends on the operand. For example,
immediate mode is indicated by a pound sign (#) followed by a
value. Instructions of this type use the operation code from
the immediate columns of the code chart. The value following
the pound sign is put in the second byte of the instruction.

For example:

Contents Instruction
A9 08 LDA #8
A9 31 LDA #'1 ;ASCII "1™

Instructions which have a zero page mode may be assembled
in that mode if the operand is in fact in page zero:

85 01 STA COUNT

The same operation with a non-zero page operand would
occupy three bytes:

&p STA ADDR

Since symbols other than page zero (and certain pre-
assigned addresses like WRT) do not have locations yet, we must
leave blank spots to £ill in later. Do mark the correct number
of spaces for the unknown bytes, since the length of instruc-
tions determines the position of instructions which follow.
Similarly, branch instructions will have their second bytes
blank at this point:

DO BNE PBLOOP

Thus far, the partially assembled program looks like this:

Location Contents

0000 XX
0001 XX

20
20

20

A9
85

A9
90
A9
20
DO

4c

Step 3

8A
E9
00
77

08
01

30

31

Ccé
01

72
72

73

72

Instruction

; CHECKOUT PROGRAM -- PRINT BINARY

BINARY
COUNT

CRLF
WRT
RDT
SPACE

PBIN

PBLOOP

PRINT

*=0

x=x+]1
*k=%+]

*=$0100

=$728A
=$72C6
=$72E9
=$7377

JSR
JSR
STA
JSR

LDA
STA

LDA
ASL
BCC
LDA
JSR
DEC
BNE

JMP

CRLF
RDT
BINARY
SPACE

#8
COUNT

#'0
BINARY
PRINT
$#'1
WRT
COUNT
PBLOOP

PBIN

Determine the location in hexadecimal of each labelled

instruction.

It is now possible to fill in the location column, because

the length of each instruction is known. Count in hex (0l 2 e wmn

9,A,B,C,D,E,F) and write in the locations (of the first bytes)

of instructions and variables which have labels:

Location Contents Instruction
; CHECKOUT PROGRAM -- PRINT BINARY
*:0
0000 XX BINARY #=%+]
0001 XX COUNT *=%+]1
*=$0100
CRLF =$728A
WRT =§72C6
RDT =$72E9
SPACE =$7377
0100 20 8aA 72 PBRIN JSR CRLF
20 E9 72 JSR RDT
85 00 STA BINARY
20 77 73 JSR SPACE
A9 08 LDA #8
85 01 STA COUNT
010F A9 30 PBLOOP LDA #'0
06 00 ASIL, BINARY
90 BCC PRINT
A9 31 LDA #'1
0117 20 C6 72 PRINT JSR WRT
ceé6 01 DEC COUNT
DO BNE PBLOOP
4c JMP PBIN
Step 4

Fill in the remaining values, using the locations determined

in Step 3.
Locations of variables not already entered may now be filled

in. Be sure to enter the low half first and the high half second.

For example, location PBIN is at address 0100. It is recorded
as:

4C 00 01 JMP PBIN
Branches can now be completed by counting the number of bytes
from the instruction to the target address. When going forward,
count beginning with the first byte following the instruction,

up to but not including the first byte at the target address.

Thus, the boxed bytes are all that are counted in this example:

90 BCC PRINT
LDA #'1l
20 C6 72 PRINT JSR WRT

When branching backwards, count those bytes from the end of the
branch instruction itself (counting both bytes) to and including

the first byte of the instruction at the target address. Thus:

STA COUNT
010F a9 BPLOOP LDA #'0
ASL BINARY

BCC PRINT
B9 LDA #'1

0117 £e PRINT JSR WRT

£e 1] DEC COUNT
@]] BNE PBLOOP
4c 00 01 JMP PBIN

Although you could count in hexadecimal, it is easier to
count in decimal (base 10). When counting in decimal, count
up whether going forward or backward, and look up the correct
hexadecimal value on the Branch Chart shown on the next page
and also in Appendix V. (If you do count in hexadecimal,
backward counts need to be negated. Do this by subtracting the
count from 100 hexadecimal. Forward hexadecimal counts may be
used without modification.)

The assembly is now complete and ready to be loaded into

JOLT.

CHART OF BRANCHES: DECIMAL TO HEXADECIMAL

FORWARD
MSD -+ 1 2 3 4 5 6 7
YLSDY
0 16 32 48 64 80 96 1.2 =
1 1.7 33 49 65 81 97 113 B
2 ——— 18 34 50 66 82 98 114 E
3 3 19 35 51 67 83 99 115 D
4 4 20 36 52 68 84 100 116 €
5 5 21 37 53 69 85 101 117 B
6 6 22 38 54 70 86 102 118 A
7 7 23 39 55 71 87 103 119 9
8 8 24 40 56 72 88 104 120 8
9 9 25 41 57 73 89 105 121 7
A 10 26 42 58 74 90 106 122 6
B 11 27 43 59 75 91 107 123 5
c 12 28 44 60 76 92 108 124 4
D i3 29 45 61 ad 93 109 125 3
E 14 30 46 62 78 94 110 126 2
F 15 31 47 63 19 95 12 27— 1
— 16 32 48 64 80 96 112 —— 0
tLSD4
v
F E D c B A 9 8 <« MSD
BACKWARD

Location Contents Instruction

;CHECKOUT PROGRAM =~- PRINT BINARY
*=(
0000 XX BINARY *=x%+1
0001 XX COUNT *=%+1
*=$0100
CRLF =$728A
WRT =$72C6
RDT =$72E9
SPACF =$7377
0100 20 8a 72 PBIN JSR CRLF
20 E9 72 JSR RDT
85 00 STA BINARY
20 77 73 JSR SPACE
A9 0§ LDA #8
85 01 STA COUNT
010F A9 30 PBLOOP LDA #'0
06 0C ASL BINARY
90 02 BCC PRINT
A9 31 LDA #'1
0117 20 C6 72 PRINT JSR WRT
Ccé6 01 DEC COUNT
DO Fl BNE PBLOOP
4C 00 01 JMP PBIN

NOTE, HINTS, & RECOMMENDATIONS
FOR USING YOUR JOLT MICROCOMPUTER

Storage Allocation

Some care in selecting locations for programs will
save programming time and memory space. Page zero storage
(0000 to OOFF) is a special resource in your system since
it can be used for indirect references (to tables or
routines) and since direct references to page zero loca-
tions require shorter instructions (2 instead of 3 bytes)
for most instructions. Therefore, you will probably want
to give priority to putting variables and data in page
zero. Be sure to avoid locations at the high end of the
page, however, since these are used by DEMON (00E3 to
00FF) .

Code and data may also be placed in page one (0100
to 01FF). Be careful, however, to leave sufficient space
for the stack (which, with DEMON's initialization, fills
from the high end of the page downward, from location
01lFF towards location 0100). You should allow at least
three bytes for each level of nested subroutine call or
interrupt possible in your program, plus space for all data
you push onto the stack, plus an additional 204 bytes for
DEMON. Failure to leave enough space may cause part of
your program or data to be overwritten by the stack, with

unpredictable results.

DETAILED DESCRIPTION OF DEMON

DEMON Commands

Command Description

} Set line speed. After RESET, a carriage

return is typed to allow DEMON to measure

the line speed.

-R Display user registers. The format is:
PCPAXYS
where
PC is the program counter
P is the processor status
A is the A (accumulator) register
X 1s the X (index) register
Y 1is the Y (index) register
S 1is the stack pointer low byte (high
byte is always 01)
.G Go. Begin execution at user PC location (see
R command) .
.M addr Memory examine. DEMON will display the eight

bytes beginning at address addr.

.: ADDR data Alter registers or memory. DEMON allows the
user to alter registers (if R command pre-
cedes) or memory (if M command precedes).
Values for registers or memory locations
which are not to be changed need not be typed

n
‘Characters typed by the user are underlined. All other charac-
ters are typed by the computer. ! means carriage return.

—these fields may be skipped by typing
spaces instead of data. The remainder of
the fields in a line may be left unchanged
by typing carriage return. The : command
may be repeated to alter subsequent memory
locations without the necessity of typing
intervening M commands. Note that DEMON
automatically types spaces to separate data

fields.

Load Hexadecimal. DEMON responds with car-
riage return, line-feed and loads data in
assembler output format from the terminal or
high-speed paper tape reader. The format is:

Zero or more leading characters except

"." (usually blank leader)

’

Any number of records of the form:
;ccaaaadddd. ...ddssss
where:

cc is the number of bytes in the
record in hex

aaaa 1s the hex address to store the
first byte of data

dddd....dd is the data (two hex digits
per byte)

ssss is the check-sum, which is the
arithmetic sum, to 16 bits, of all
the count, address and data bytes re-
presented by the record

A terminating record of zero length,

either: ;00 or 1

fm

.WH addl addh}

-WB addl addh}

Note that read-after-write and check-sum
tests are performed. An error will result
in a "?" being typed at the point the error
occurred. Data from records with bad check-
sums is deposited in memory as received,

prior to the error stop.

High-speed/low-speed reader switch. This
command switches the load device from the
user's terminal to the high-speed reader

or vice versa,

Write Hexadecimal. An assembler-format tape
is generated at the user's terminal. Format
is as described above in the LH command des-
cription. ©Note that the address range must
be specified with the lower address first.
As in the Alter command, DEMON types the

space between the address fields.

Write BNPF. A BNPF format tape is generated
at the user's terminal. Format is one or
more records as follows:
aaaa BddddddddrF Bddddddddr Bddddddddr BAdddddddr
where:
aaaa 1s the address of the first of the
four bytes specified in the record.
(Note: BNPF conventions require that

the letter "B" never occur in the address
field. Blanks are substituted by DEMON.)

4~30

B is the letter "B", meaning begin data.

dddddddd is eight data bits—P for logical
true, N for logical false.

F is the letter "F", meaning finish.

Note that the BNPF format is output as multiples

of four bytes. Thus, a multiple of four bytes
will always be punched even if a non-multiple

of four bytes is specified.

11 Cancel Command. While typing any command, its

further effect may normally be terminated by

typlng one or two carriage returns, as required.

During alter (:), carriage return means that no

further bytes (or registers) are to be altered.

DEMON Interrupt and Breakpoint Action

BRK

The BRK instruction causes the CPU to interrupt execution,
save PC and P registers on the stack, and branch through a vec-
tor at locations FFFE and FFFF. DEMON initializes this vector
to point to itself on RESET. Unless the ‘user modifies this vec-
tor, DEMON will gain control when a BRK instruction is executed,
print an asterisk "*" and the registers (as in R command), and
wait for user commands. Note that after a BRK which vectors to
DEMON, the user's PC points to the byte following the BRK; how-

ever, users who choose to handle BRK instructions themselves

should note that BRK acts as a two-byte instruction, leaving

the PC (on return via RTI) two bytes past the BRK instruction.

IRQ

Interrupt Reguest 1s also vectored through location FFFE.
The CPU traps (as with BRK) through this vector when IRQ goes
low, provided interrupts are not inhibited. Since this vector
is the same as for BRK, DEMON examines the BRK bit in the P
register after this type of interrupt. If a BRK did not cause
the interrupt, then DEMON will pass control through the UINT
vector. Users should normally put the address of their in-
terrupt service routine in the UINT vector location. If an
IRQ occurs and UINT has not been set by the user, DEMON reports

the unexpected interrupt in the same way as an NMI (see below).

NMI

Non-Maskable Interrupts vector through location FFFA. DEMON
initializes this vector at RESET to point to itself. If an NMI
occurs, a pound-sign character (#) precedes the asterisk and CPU

registers printout. This action is the same for IRQ's if the

user has not set this vector to point to his own routine.

RESET or POWER-UP

On RESET or POWER-UP, DEMON takes control, initializes itself
and the system, sets defaults for interrupt vectors and waits for
a carriage-return input from the user to determine terminal line
speed. After carriage-return is typed, control is passed to

the user as in BRK.

DEMON Monitor Calls and Special Locations

Call

JSR WRT

JSR RDT

JSR CRLF

JSR SPACE

JSR WROB

JSR RDHSR

Function
Start Address

CR-LF Delay

UINT
NMI Vector
RESET Vector

IRQ Vector

Noteg

A,X cleared
Y preserved

X cleared
Y not preserved

A,X cleared
Y preserved

A,X,Y preserved
A,X cleared
Y preserved

Y preserved

Address Action Arg. Result
72C6 Type of character A None
72E9 Read a character None A
7283 Type CR-LF and delay None None
7377 Type a space character None None
72B1 Type a byte in hex A None
733D Read a character from None X-~-char
high-speed paper tape read
reader A--char
trimmed
to 7 bits
Locations Notes
00F6,00F7 Set with hex tape on load
O0E3 Set on load or with user program {in bit
times, minimum of 1. Zero means 256 bits-
time delay).
FFF8 User IRQ vector
FFFA Hardware NMI vector
FFFC Hardware RESET vector
FFFE Hardware IRQ vector

6502 Processor

1. Addresses for the 6502 processor are always stored
low-order byte first, high-order byte second. Thus the lower
part of an address is in the location having the lower-numbered
address. ’

2. BRK acts as a two-byte instruction. When entered via
BRK, DEMON adjusts the PC so as to make BRK in effect, operate
as a one-byte instruction. Users who elect to handle BRK them-
selves (by changing the hardware IRQ interrupt vector) should
be aware of this difference and program accordingly.

3. Certain undefined operation codes will cause the 6502
CPU to "hang—up". When in this "hung-up" state, the CPU can
only be stopped with reset. NMI will not work. All other un-
defined codes may have unpredictable effects. Undefined codes
should be avoided.

4. Attempting to read non-existent memory locations will
usually yield the high-order part of the address as data. How-
ever, this is not true in all cases (indexed loads may respond

differently), and should not be relied upon.

The JOLT CPU Beard

1. User PIA's are not fully address decoded, which means
that each PIA uses 1K of address space. Thus, each PIA register
appears every 4 locations in the 1K space used by that PIA. See

the JOLT memory map in Appendix III.

2. Unless debouncing is provided for an NMI button, several
interrupts can occur when this button is pressed. The result is
that DEMON is interrupted in the process of servicing the original
interrupt, and the users CPU registers are lost. With proper de-
bouncing, however, CPU registers printed by DEMON after NMI will

correctly reflect the state of the machine when the first interrupt

occured.

DEMON Memory Usage

DEMON uses the top 29lo bytes of page zero {(locations O00E3
through 00FF). The user is advised to avoid these locations,
except as noted above, if return to DEMON or use of DEMON sub-
routines is required before RESETing the processor. DEMON also
uses the hardware stack when it is in control. Provided the
user does not alter the stack pointer during a break, and pro-
vided the stack does not overflow, DEMON will restore the stack
to its original status before returning to the user's program.
The user is advised to use page 1 (the stack page) cautiously,
leaving at least 2010 bytes for DEMON use during a break or when

using other DEMON functions.

SY6502 INSTRUCTION SET SUMMARY

The following symbols are used in this summary:

A Accumulator
X, ¥ Index Registers
M Memory
Processor Status Register
] Stack Register
L, LOC Absolute Location
z Zero-Page Location
* Affected
- Not Affected
+ Sum
A Logical AND
- Difference
v Logical Exclusive Or
4 Transfer From Stack
¥ Transfer To Stack
- Transfer To
A Transfer To
v Logical OR
PC Program Counter
PCH Program Counter High
PCL Program Counter Low
Immediate Addressing Mode

“NOWHA butsn jou usym so3Aq oMl ST UYDTUM g 1deoxdy

ssoappe jo jxed ubtH 20 SUOTIDNIFISUT 3YD
LY JO s934AQ PATY3 PUR PUODDS BYJ UT
INTOSAR Y PROT I0J 8poD av T ¥a1 € ST pPass90de BIEP 3Yl JO SS3Ippe ayl TLNTOSHY
*pOSs900r BlEp 94l JO 0I9z obed
oxaz obed uo ssaappe ased Sl UC SS3appe 9yl ST (AXILRD 3INOYITM)
X Aq 183sThOx X 9yz 3O s3ud3zuod ay3l suld X Ad QIXIANI
pexaput abed oxez 10 SPOD gg X'z ¥a1 z UOTIONIZSUT BYF JO 33AC PUODIBS BYJ AOYd O9AZ
*possedor elep 8Y3x Jo oxaz abed
oxsz obed uo ssaippe aseg (92 uo SSaIpper 8yl ST (AXAPD 3INOYITM)
X Rq I91sTbox ¥ 99Ul JO suajuod ayz snid X A9 JAXTANT
poxeputl obed oixez I10J Spod sg X7 wdl z UOTIONIISUT 3yl JO 234Aq pPuodss aylg A9¥d 0937
SUOTIONIISUT aYyl JO
oxsz abed uo ssaappe jo 3xed mo] SL 934Q puODdS BYF UT ST PISSIODE BIEP
obed oxez Y peOT I0I 8BPOD SY Z va’l 4 2yl Jo oxaz obed utyjzTm Ssaippe 9L IO¥d OHIZ
9SN 03 JUBJISUOD €0 ‘UOT3ONIAISUT BY3 JO 83Aq
SIVIPSUWWT ¥ PROT I0J 3p0D 6Y €4 ¥a1 z puco®s 8Ul UT ST PSSSaDOe eilep oyl ALY ATWAT
sx93sTbox ¥
¥ 3F9T 83e30X X0 9pPOD ¥z ¥ 104 T ay3 uodn pswxoyiad sT uorjexado ayg YOLYHIWNIOY
SUOTIDNIAJISUT Yy AQ
X 03} ¥ A2ISURII I0JF SpOD vy XYL T pertdut sT pawroyxad uorjexado oy, AT TINT
aTduexy EERV.GH uotidTraosag SPOK
#

SOPOW DbUTISS2IPPY

JIYWKNS LS NOILONYLSNI Z0S9AS

4-36

opew sT duml 8yl yoTym 03

ssoappe 309aTpuT Jo 3xed ybtH 0 SsoJppe 9yl JO ssaappe a2yl ST
$S2IPpPE 303ATPUT FO 1Ied MOT Ly UOT3D0IZSUT 8yl JO S23AQ pATU]

JoexTput dwn(103 9pPOD 09 (D071) dWe € pue puoO9s Syl UT SS3IPPE Oyl JWNL LOIYIANT
‘ssoappe youeaq

pesye s934q UDADS 10 03 (s93Aq UT) 39SIJO 9yl SUTRIUOD HONYNE

Tenbs 3T youeiq I0F 2pod 04 20T Omd z UOT3ONIISUT 9Y3 JO 234q puodes ayl AATILYTAT
-passoDoe
elep AU} JO $SaIppe a2yl ST 183
-sibox x Byl JO SIUDIUOD BYL sn1d

oxaz abed JO Ssaiappe ased S fUOTAONIISUT OY3 UT 931AQ PuoOdSs i A9

& Aq poxsputr-3isod ayy Agq periToeds ssaappe 934 QIXIANI-LSOd

JODATPUT ‘Y PeOT I0F 9P0OD 19 X' (z) wal Z oMy oxsz asbed syl JoO SIUBIUOCD BYJL LOMIIANT
‘passoOoDe BlRp 9Y} JO
ssaiIppe 234g-omi @yl Jo oxdz 9bed

oxaz abed uUO ssaappe Ised GL UoO SSOApPpR 9yl ST (AIIRD INOYITHM) X Ad

X AQ pexopur 193sTbox ¥ 9Uy3z Jo sjusjuod oyix suid AAXIANT -THd

~2xd 309XTPUT ‘¥ pPrROT I0J 9pPOD v (X*Z) ¥WaT z UOT3ONAISUT 9yl JO 23AQ puodas ayy IOTITANT
‘posSsSelOr BlRp 9Y3 JO SS8IppR
ssaappe oseq Jo 3xed UbTH 20 3yl ST I83sTHaI X dYl JO S3USJUOD
ssaippe @seq Jo 3ried MmO LY aya snTd ‘UOTIONIISUT 9y JO $93IAQ

A AQ pexepul Y peol 103 {POD [3:1 AT AT € PATU] PUR PUODDS BY} UT SS2IPPR YL A A€l QIXHANT
“possSeddor elEP U} IO SSBIPPR
ssaiappe aseq Jo aied ybig zZ0 8y3 ST 193SThox X @Yyl FO S3IUSIUOD
ssoappe 9seq jo 3ared mog LY ay3 snid ‘uOT3IONAISUT DYl JO S93AJ

X AQ pOXopul ¥ PeoT 103 2p0od ag W e € pPATY3 pue puUODSS 3yl UT SSSIPpPe Byl ¥ A€ QAXFIANT

o 1durexd so3Ag uot3ldraosaqg DDOK

4

4-37

qeadq 92104 v
R 00 +d +0d 2dnazejur peoiod A
snTd 3TNSE9T U0 YOUurI
a1 T 5T | g Tdeg
O N O gourTgg
L e R A N I I E P R R
= s - - [0 o Loty
SMLTUL ol o ot)
=l=]==1- 0t 1 = N UO youvdy Ll
L 5 aojeTnuwnose yaTm AIowow UT S3TH 3S3] o
[¥ | EIW jor4 44 A W N < LW Wy v T
OAH0Z JTOsBIT U0 yosueigd =
I 0d [= 7 Uo youexd L
1085 ATIRD U0 UDUvIg o
B A I B 0d 1 = D U0 youexqg s
JeOTH Aaded Uo ydurag
I T R A 06 0 = O uo yosueid P
10707
- = x| %) = AT HO 9T 90 70 —nUINDDE IO AJOoWPul) 3T Hu0 3I0T A1JTUS NS
o » [oftfefelvlsolz] - B
JOJRTNUNDOE UYITM AJIOowdW , (INV,,
el e T S TE|TZ | €l dE| dT GE|GT| 62 1 e anNv
. ¥« WY VY
Axxec y3Tm I0ojBTnunose 03 AIowsu v
Sl B I S TL{T9| 6L) OL) aL GL| 69|69 ’ : ov oa¥
O 'Y« DO+ W+ ¥
=l SIGEEE RS A NN W o
TITIDZIRE Bl e x| Bl ElQ B uot3idrIonsag I3sur
| il
Sic)plely) §
LOTITPUOD PSP O AIVHHAS LIS NOILONALSNI ZOG9AS

4-38

U0 AQ X XSPpUT JUDWSIADD
| = & \'ie) & BEE B a Xdda
X <« T - X
au0 Ag AXowsu JIUBWSIADBG
i = = % qa 3D 9dj 90 B oda
W<+« T - W
A xXopul pue Azowsw »xedwo)d
B R 2 0| 00 paT B _—
W - X
¥ xoput pue Azowaw a1edwod
- =] * * od | od Xdo
W - X
IojeTnumooe pue Aiowdu sIedwo)
il Bl R S Ta; 101 6Q;aa|ad qa; sO| 60 0o dWo
beTF MOTIIDAC I€8
I ad 13 17 iis) AT
A<« 0
beT3y @ stp 3dnaaajur IesTd
1ol -1- gc Taestp I T 179
I+« 0
be spoul TrWUTOaP Ies
ol =1 -1 - ad 13 ®p TrUTOSP 179 a1
ad<« 0
be Axxeo IeaTd
L Rl Bl B 81 B t o0
D+« 0
19S MOTIIDA0 UO UYdued
Il B oL & k. g SAE
1 = A uUo youeiag
IeDTD MOTFIDA0 UO ydueid
I 0s t L2 " and
0 = A U0 youeig
HlElE (B ginNe g Bl
alrlo|z g m,(R Bl el 3 ARSRE uotidraosag I3suTr
7A —
SopPO
poD opoH

UOT3TPUOD

XIVWWNS LIS NOILDOWISNI ZO0G9A4S

4-39

AZOWDW U31m A XoPUul peor
N B B BV Dt DY Pl vV 0¥ AQT
A< W
Arouom iy prm RO pon
- - M s SvL AR ' WO
W
i WM Lo e i e it
o B N Tel| LV] o] ae| av SETIRAVIRY Ve
v [
E,L,_v;m;:.
UINJBT HUTALS UOTIEDO] mMou 03 dump
S B B 0z qse
Hod < (¢ + Od)
Tod « (T + Dd) “t Z + Dd
uotTienoT mau o3 dunp
-1 - =1 =-1-109 ob HOd « (2 + Od) AW
Tod <« (T + 2d)
BUO AQ X XOPUT USWSADUT
TLTE Tl ok 80 LA . ANI
A< 1 + &
BUO ACQ X XOPUI JUDWDIADUT
T S RV I fslc) KNI
X« 1T + X
PUO AQ AIOWLDUW JUIWBIADUT
=l =1 =1 %] % qd| q4 94194 ONI
W< T+ W
.) JojeTnunose Yyiatm Azowsw ,,I0-DATSNTOXH,,
B IR O 16 |1V | 65| asjay SGlGv| 6F) ¥Od
¥« W4 ¥
QU0 AQ X X9PUT JUBWDIDA(
e e i PR 38 L e T - & Add
[ST (o2 M Il T B o B 1 NI NNy H| P
(g A oy W ~ |~ < 20 = >
QHUszT,(wAAXSAX 2| 8B uotadraxosag a3sur
| 2
S3POD A
PO ZIVAWNS LIS NOILONJILSNI Z0G9AS

uoT3ITPUOD

4-40

T
| |
i | i SUT3NOIGNS WOXJ UININY
[LT [g ! 1 09 ' SId
~ | Od « T + 2d v 2d
! |
| i :]
, 3dnxI93UT WOXJ UANISY
¥0P15 WOXd | | b
| | B yda +a | P8
: _ | b
R P P 17l 99 omwoow ' V9 (I03BTNUNDOY 10 AIOWOR) i
b , | | __ , 3y8Ty 3Tg PuQ °3EI0Y (o
ﬁ!\ | | ! w w (OO
, ‘ I 1 | -noce 1o Axowdw) 3J8T 3T 2UC 23R304
| | |
- = e ox] ox gE| Az CINE-TARNNE 4 C 108
| 4 - B] ~ [CEelElvIs[ole]
v i ! ¥ X0 W
| L
i | |
! MO0®'3S WOXJF sSN3eds Jossoooad n
}ORIS WOoXd ! gz o'3 E 3ey g e
1 : _, v o
! w ¥OBIS WOAJ XOJBTAWNIOR nd
e e N _ i | 89 ¥ e = , vd
A | | v ¥
|
o oB3S U0 snlels xosssooad ysn
[R IR S B | 50 b fehch e ysnd e
i 4+ d
|
{ 2P3S U0 JXOJRTNWNOIR YsSnh
T T e | gy yoej et ysnd i
_ 4 Y
JojeTnNUNOOR UY3lTm Axousuw MO,
SRl T " TT170} 6T} AT} 4O 6T G0} 60 L ks o Y0
¥+~ WNAYVY
-l -l = -] - . I uotyexado ON dON
(zo3eTnu
-l =l x]x|0 as) vy 95| 9% k47 -node xo Axowsw) 3T duo ybTa IITUS UST
_ (9 « [oft[e]e]r]s]oL] « o
! YR e N O e B N NN . -
alr|o|2 8§ m uz\ ,M e 18] el e B8 uoTadrIosag I3s5uUl
Ll B I
sapo
coaumvwou OPOW - '
L AIVHRWAS 13S NOILDMIISNI Z0G9AS

4-41

I103R[NWNDOE O3 A Xopul Iajsuedy,

YAL
=T T T % ¥ kil ¥« A
1oautod ¥oe3ls 03 X XBpul JI9Jsueil SXL
Vo6 S « X
! ; 103PTNWNDNE O3 X Xapul Iajsued]
| XL
ST T T e ¢ 8 ¥« X
X Xsputl 03 Jajutod ¥O®}S I3Jsuei] _—
ol el B * vd X S
RERERE &5 A XOpuT 03} JOjRTnUNDOR IISURIL AVL
¥ A« ¥
¥ Xopur O3 JO03e[nUMOoe 183jsuely
- -] =1 - % vy , . X« y XYL
AIowaw Uf A X9pPUuT 9I03S
-l - -1 - - o8 ve| b8 W« & ALS
Azowsw UT X X9pur 91035
i B Bl B - 38| 96 98 XIS
W « X
o
- | Azowdw UT XOJRTOUNDDE AIOIS
el B - 16! 1876606, 48 6| 58, Hoe AR
! be 8TqesTp 3dnIasjut 19s
N _ 8L 3 q P 14
I « 1
be13 opow TewldaP 13I8S
- T - Lt ags
T 8 g« T
BEeTJ AIXED 395
i I X 248
! | 8¢ 0« 1
- MOITXOY
U3 TM Jo3einumooe woxd Axowdu 30vI13qns
= - ‘ v i < < S
x * ¥ | * T4 14 6d|a4a a3 GJdl Ga! 62 mozIOH = O -o30 og
¥+« 0O ~-~W~1¥
_ e
BIRIB BRI | ool slelxe
Ajalriojzi{n|{g|ldl~- NEEE RN - I S mud uotidraosaqg I3SUl
s |
S2POD
[c] \
HOTITPUOD POW

AIVNWAS LdS MOTLOMULSNI Z0G9AS

4-42

CHART OF BRANCHES: DECIMAL TO HEXADECIMAL

FORWARD
MSD ~ 0 1 2 3 4 5 6 7
+LSDY
0 — 16 32 48 64 80 96 112 —_
1 1 17 33 49 65 81 97 113 F
2 2 18 34 50 66 82 98 114 E
3 3 19 35 51 67 83 99 115 D
4 4 20 36 52 68 84 100 116 C
5 5 21 37 53 69 85 101 117 B
6 6 22 38 54 70 86 102 118 A
7 7 23 39 55 71 87 103 119 9
8 8 24 40 56 72 88 104 120 8
9 9 25 41 57 73 89 105 121 7
A 10 26 42 58 74 90 106 122 6
B 11 27 43 59 75 91 107 123 5
c 12 28 44 60 76 92 108 4124 4
D 13 29 45 ol 77 93 109 125 3
E 14 30 46 62 78 94 110 126 2
F 15 31 47 63 79 95 A 127 1
— 16 32 48 64 80 96 112 — 0
+LSD+
F E D c B A 9 8 < MSD
BACKWARD

Forward Branches

Count in decimal from the end of the branch instruction
to target address. Do not count bytes in either the branch or
target instruction. Find the count in the center of the chart.
Use the Most-Significant-Digit at the top of the column, and

the Least~Significant-Digit at the left of the row.

Reverse Branches

Count in decimal from the end of the branch to the begin-

ning of the target instruction. Count all bytes in both instruc-

tions. Find the count in the center of the chart. Use the
Most-Significant-Digit at the bottom of the column, and the

Least~-Significant-Digit at the right of the row.

Example

Forward 10 gives 0A. Backward 10 gives F6.

Chart Idea Credit

Ray Boaz, Homebrew Computer Club Newsletter, Volume 1,

Number 7, September 1975.

CARD # LGC

B N0 PWN -

CconE

R T

.
-

1 b ei m3 W oo, @1 es er e BT me

- ®r we wa wr ows

CARDC
DcEMUN DEBUG MUNI TOR

PRCMPTING CHARACTER IS A PERIOD

LISPLAY COMMANDS

R DISPLAY REGISTERS (PCsPsAs XeYa5P)
oM ADUR DISPLAY MEMORY ({8 BYTES BEGINNING AT ADOR)

ALTER COMMAND {:)
.l DATA ALTERS PREVIOUSLY DISPLAYED ITEM OR NEXT ITEM

PAPER TAPE [/0 CUMMANDS

oLH LOAD HEX TAPE

e w3 ADDR1 ADDR2 WRITE BNPF TAPE (FROM LOCW ADDR1 TC HIGH ADDR2)
sWH ADDR1 ADDRZ2 WRITEHEXF TAPE (FROM LLOW ADDRI TO HIGH ADDR2)

COUNTRUL COMMAND S
G GUs CONTINUE EXECUTION FROM CURRENT PC ADDRESS
oH TOGGLES HIGH-SPEEL—-READER OPT ION

(IF ITS CN, TURNS IT UFF3 IF OFF, TURNS CN)

BkK AND NMI ENTRY POINTS TO DEMCGN
DEMON IS NORMALLY ENTERED WHEN A *BRK®' INSTRUCTION IS
ENCOUNTERED DURING PROGRAM EXECUTIUN. AT THAT
TIME CPU REGISTERS ARE CUTPUT: = PC P A X Y SP
ANC CONTROL IS GIVEN TU THE KEYBUARD.

USERk MAY ENTER DcMON BY PRUGRAMMED BRK OR INDUCED NMIes NMI
ENTRIES CAUSE A *#*® TU PRECEDE THE *%% [N THE CPU REGISTER
PRINTCUT FCRMAT .

NUN-BRK [RQG (EXTERNAL DEVICE)} INTERRUPT HANDLING
A NCN-BRK I[KQ INTERRUPT CAUSES AN INDIRECT JUMP TO THE ADDRESS

CARD # LOC coot CARD

37 H LUCATED AT *UNIT® (FFF8)e. THIS LOCATIUN CAN BE SET
38 s USING THE ALTER CUMMANDs OR LOADER AUTOMATICALLY IN PAPER TAPE
39 % FORM WITH THE LH CMD IF THE USER ASSIGNS HIS IRQ INTERRUPT
40 H VECTOR TU SFFFB8 IN THE SGURCE ASSEMBLY PRUGRAM,

41 i IF NCT RESET BY THE USER, UNIT IS SET TO CAUSE EXTERNAL

42 H DEVICE INTERRUPTS TO ENTER DEMCN AS NMI'Se I+Ee,

43 ; IF A NMI OCCURS WITHCUT AN INDUCED NMI SIGNAL, IT IS

44 H AN UXTERNAL DEVICE INTERUPT,

45 ;

46 3 SETT ING ARD RESETTING FRUOGRAM BREAKPUINTS

47 i BREAKPOINTS ARE SET AND KESET USING THE MEMURY OISPLAY

48 H AND ALTER CUMMANDSe. BRK HAS A *00' OPERATIUN CCDE.

49 i TO SET A BREAK PUCINT SIMFLY DISPLAY THE MEMPOY LOCATION

50 ; (FIRST INSTRUCTION SYTE) AT WHICH THE SREAKPCINT IS

51 H TO BE PLACED THEN ALTER THE LOCATION TU *00*'e THERE IS
52 ; NO LIMIT TG THE NUMBER GF BREAKPDINTS THAT CAN BE

53 H ACTIVE AT ONE TIME,

sS4 i TO RESET A BREAKFCGINT, RESTORE ThHE ALTERED MEMORY LOCATICN
55 H TU LTS ORIGINAL VALUE.

56 i WHEN AND IF A BREAKPUINT IS ENCOUNTERED ODURING EXECULTICN,
57 H THE OREAKPCINT DAT A PRECEDED B8BY AN '%* IS DISPLAYED.

58 H

59 H

60 ;

61 MO B K =% 000106110 3 XsXsPORsDATA~AVAIL yGUT~DATALSERIAL=-0OUT , IN
62 DAVA IL =308

€3 GOTDAT =304

64 IGLASE =36E 00

65 MP A = IOBASE+0

66 MD A =[CBASE+1

67 g =[UBASE+2

68 MU £ =1 OBASE+3

69 MCLKIT =I0EASE+4

7¢C NCLKRD =] CHBASE+4

71 MCLKIP SIOBASE+5

72 UNIT =3FFF8

73 NCMD § =7

74 MP T =$7000

75 MP 1 =$7100

76 MP 2 =% 72G0

77 MP3 =$7300

7€ 3

79 3 ZERU PAGE MONI TOR RESERVE AREA

80 ;

81 CROLY =227 $OELAY FOR CR IN BIT TIMES

4-46

CARD # LOC CobE CARD

83 wR AP =228
84 DIFF =229
85 HSP TR =231
86 HS ROP =232
87 PREVC =233
88 MAJORT =234
89 MINGRT =235
90 ACMD =236
g1 TMPO =238
gz T™™P2 =240
93 ™P4 =242
94 TMPo =244
95 PCL =240
96 PCH =247
97 FLGS =248
g8 ACC =249
99 X =280
10¢ YR =251
101 SP =252
102 SAVX =253
iC3 TMPC =254
104 TMRC 2 =285
105 RCNT =TMPC
106 LCNT =TMRLC2
107 i
1¢8 H 64 BYTE RAM MUGNITOR RESERVE AREA
106 i
110 RAMO4 =3FF Q00
11t 0000 *=RAMG4

4-47

CARD # LOC

113
114
118
116
117
118
119
120
121
122
123
124
125
1206
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
i42
143
144
145
146
147
148
149
150
151
152
153
154
168
156
157
158
159
160
161

162
163
164

- FFOO0

7000
7002
7004

7006

7008

7008
7000
7010
7013
7014

7016
70138
701A
701C
7010

701E
7020
7022
7025
7026

7028
7028
702E
7030
7032

7034
7035
7038
703A
703C
7030

TO3F
7042
7044
7045
7047
7049

85
A9
00

A9

80

A2

9D
CA
(2]

80
86
86
ca
A

AD
84
AD
4n
90

98
4D
29
Fo
88
10

Ad
49
4A
46
90
09

CODE

F9
23
16
03
o8
F7
F7
F7
EA

£7
E8

01
02
FA
o4
65
04
EA
Fa

o2

01

EC

04
FF

£A

80

o6&

73

6E

6E
6E

6E

H
.
’

NMINT

we we @

*=MPQ

STA
LDA
BNE

LDA

STA

LOX
LDA
STA
DEX
BNE

STX
STX
STX
DEX
TXs

L.DY
STY
LDA
LSR
sCC

STX
LDA
BPL
INC
BNE

TYA
EOR
AND
BEQ
bey
aPL

LDA
EOR
LSR
LSR
8CC
CRA

DEMGN PAGE ZERGC {(RELATIVE)

ACC
#rE
B3

#MDBK

MDB

#8
INTVEC=14+X
UNIT-14X

R1

MA JORT
HSPTR
HSRCP

#1
CRDOLY
MPB

A

RO

MCLKIT
MCLKIP
R4
MAJORT
RZ2

MP3
#1
R3

R3

MCLKRD
B#3FF
A

MA JORT

RS
#380

*e e

PRI .. W

-

“ es ws

SAVE A
SET A=# TU INDICATE AMMINT ENTRY

INIT DIR REGs PCR TC 1 RZLOCATES

X=0
INITILIZE INT VECTURS

INIT MAJOR T COUNT TO ZERG
CLEAR HSPTR FLAGS

X=FF
SP=FF

COMPUTE BIT TIME CCONSTANT, X=FF
SET TGO MEASURE 2 gITS

INIT CR DELAY TIME PARM
WALIT FOR START

START CLOCK INITIALLY WITH FFf

COUNT MAJOT T
GU RESTART CLOCK WITH X=FF

WALIT FOR Y ©IT 0 AND SERTAL-IN NOT
LUCP UNITL START GF BIT 2
CONMPLEMENT RESIDUE

HALVE IT

HALVE MAJOR

PROPAGATE HO TO LO

EGU

CARD #
166
167
168
1€9
170
i71
172
173
174
175
176
177
178
179
180
181
i82
183
184
185
186
187
188
189
190
191
192
183
194
195
15¢€
197
198
199
200
201
202
263
204
205
2C0
207
208
209
21¢C
211
212
213
214
215
216

LCC

7048
704C
704t

7050
7C01

7052
7054
7055
70586
7C58

705A
7058
7050
705€E

705+
70€1
70€3
7064
70€6
7067
7069
7068
706C
7068
7070
7071

7073
7076

7078
707A
707D
707F

7281
7083

7C86
7088
70&A
708¢C
7C8F
7091
7094

7697

Fo
&5

58
o0

85
68
48
293
FQ

GA
&5
08
GA

85
84
68
83
€8
[<¥F]
85

63
E5

86

26
AS

AG
20
A9
[oe}

AS

AG
&5
35
20
AY
20
29

A2

F3

10
_27

EE

FA
£8

F3

FF
Fo

FE
F7

FC

8A
FE

2A
ce

16

£9
F8

00
£7
£4
3A
2E
Co

Go

72

72

FF

72

2
7.2

INTRQ

.

33

INY
BEQ
STA

cui
BRK

STA
PLA
PHA
AND
BEQ

ASL
STA
CLD
LSR

STX
STY
PLA
STA
PLA
ADC
STA
PLA
ADC
STA
TISX
STX

J SR
LDX

LDA
JSR
LDA
BNE

LDA
JMP

LDA
STA
STA
JSR
LDA
JSR
JSR

LD X

RS
MINCRT

ACC

%10
8X

TMpPC

XR
YR

FLGS

#SFF
PCL

#SFF
PCH

SP

CRLF
TMPC

#Ix
WRTWO
#1R
S0

ACC
{(UNIT)

#0
HSPTR
WRAP
CRLF
#? e
wROC
RDUC

#NCMD S~ 1

e P T] -

. 4 es we ws

- wy

. o

* we e

ENABLE INTS
ENT ER DEMGN BY BRK

SAVE ACC

FLAGS TG A

RESTORE STACK STATUS
TEST BRK FLAG

USER INTERRUPT

SET A=SPACE (10 X 2 = 20}
SAVE INT TYPE FLAG

CLEAR DECIMAL MCDL

1S ODDs SPACE IS EVEN

SET CY FDR PC BRK CORRECTION
SAVE X

Y

FLAGS

Cy SET TO PC-1 FOR BRK

SAVE ORIG SP

SET FUR R DISPLAY TO PERMIT

IMMEDIATE ALTER FOLLGWING BREAKPOINT.
CONTROL TO USER IRQ SERVICE ROUTINE
NEXT CCMMAND FROM USER
CLEAR Has S+ PAPER TAPE FLAG
CLEAR ALDRESS WRAP=AROUND FLAG
TYPE PROMPTING '

READ CMDs CHAR RETURNED IN A

LCCK=-UP CMD

CARD #
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
285
256
257
258
259
260
261
262
263
264
2€35
266
267
268
269

LGCC
7099
705C

709E
70A0
70A2
70A4
70 A6
70A8
70AB
70 AD
70AF
7081

7084

7087
7088

70BA
708C
70BF

70C1
70C2
70C4
70C6
70C8
70CA
70CC
70CO
70CF
7000
7002
7004
7006
7008

7009
7008
7000
70DF

70EC
70E3

70E5
70E7

6C

CA
10

A9
20
99

38
AS
£S
&5
AS
ES
AB
5
60
A5
85
AS
85
60

A9

95
60

20
S0
Az
81

CODE
06 71
1g

oD 71

74 73

EC 00

DF

3F
C6 72
s

EE

EF
F7

o0
EE
EF

B3 73
10

00
EE

CARD
51

ERROPR

oCMp

PUTPR

N ** o

T™MP

CMPR
BNE

LDA
STA
ST X
LDA
STA
LDA
STA
CPX
B8CS
JSR

JME

DEX
3PL

LOA
JSR
8CcC

SEC

LDA
s8C
TAY
ORA
RTS
LDA
STA
LDA
STA
RTS

(DA
STA
5TA
RT3

CMDS + X
s2

S AVX

PRE VC
SAVX
#¥MPL/256
ACMD+1
ADRS 9 X
ACMD

#3

LJmMp
SPACZ2

(ACMD)

S1

#e12
wROC
START

TMP2
T MPO
DIFF
TMP2+1
TMPO +1

DIFF

TMPO
PCL
TMRPO+1
PCH

#0
TMPOs» X
TMPO+1 X

B
N READ AND STORE BYTE,
H

-

JSR
BCC

[W)
STA

ROOB
BY3

#0
{ TMPC 4X)

or we o

.

SAVE PREVIOUS CMD
SAVE CURRENT CMD INDEX

JUMP INDIRECT TOD CMOD MODE
ALL CMD CCDE BEGINES Ch MP1

IF 1y R CR M (C»y» 1+ CR 2} SPACL

LUGP FOR ALL COMMANDS

UPERATOR ERRs TYPE *2', RESTART

JMP START { wROC RETURNS CY=C)

TMP2~TMPO DUUBLE SUBTRACT

RETURN HIGH GRDER PART IN Y
OR LO FUR EQU TEST

MOVE TMPO TO PCH.PCL

CLEAR REGS

NO STORE IF SPACE UR RCNT=D0.

’

’

CHAR IN As CY=0Q [F 5P
SPACE

STORE BYTE

CARD #
271
272
273
274
2795
276
277
278
279
280
281
282
283
284
285
2806
287
288
289
290
291
292
293
294
295
296
297
298
29%
300
301
302

i.CC

709
70E8
70ED
70EE
70EF

70F2
70F5
70FB
70FA

70FB
70FD
TJOFF
7101
7103
7105

7100
7107
7108
7109
710A
7108
710C
7100
710E
710F
7110
7it1
7112
7113

C1

Fo
63
o8B

20
20
(&)
&0

A9
£5
A3
85
A
69

CUDE
EE
05

BA 70

7C 72
S7 73

F8
EE
00

05

CARD

.
8yz
8Y 3

H
SETR

ADRS

cmp
BEQ
PLA
PLA
JMP

JSR
JSR
DEC
RKTS

LDA
STA
LDA
STA
DA
RTS

«BYTE
+BYTE
«B8YTE
«BYTE
«BYTE
«3YTE
oBYTE
«BYTE
«BYTE
«BYTE
+BYTE
BYTE
«BYTE
«BYTE

(T MPO LX)
BY2

E RRUPR

DADLD
INCTMP
RCNT

#FLGS
TMPO
#0

T MPO +1
#5S

3
IR
e
G
LN
[
[R

ALT ER-MPL
D SPLYR-~MP1
DSPLYM=MP 1

G O—-MPL
HSP-MP 1
LH=-MP1
wO-MP1

3 TEST FOR VALID WRITE (RAM)

ERR s CLEAR JSR ADR

INCR CK3UM
GU INCR TMPO ADR

. -

3 SET TO ACCESS REGS

i W MULST BE LAST CMD

IN STACK

IN CHAIN

CARD # L CC CUbE CARD

304 H

308 H

300 3 NOTE ~-- ALL CMD CUODE MULST BEGIN ON MP1

307 H

308 3 DISPLAY REG CMD — PC3sAsFsXaYs AND SP

309 H

310 7114 ZzQ0 A6 V2 DSPLYR JSR WRPC s REITE PC

311 7117 20 F3 70 JSR SETR

312 711A DO C7 BNE MO s USE DISPLAY

313 H

314 711C 20 A4 73 OSPLYM JSR RUOGA i READ MEM ADR INTO TMPO
3195 711F 90 16 Elae ERRS1

31€ 7121 A9 03 LDA #E

317 7123 &5 FE MO STA TMPC

318 7125 A0 QO LOY #C

319 7127 20 77 73 ™l JSR SPACE s TYPE 8 BYTES OF MEMPQY
320 712A 81 EE LDA (TMPO) »Y 3 {TMPQ) PRESERVER FOR POSS ALTER
321 712C 20 Bl 72 JSR wRrROB

322 7i12F C8 INY s INCR INDEX

323 7130 (b FE DEC TMPC

324 7132 00 F3 BNE M1

325 7134 4C 86 70 BEQS1 JMP START

326 H

3z7 7137 4l BA 70 ERRSIL JME ERROPR

328 H

329 i ALTER LAST DISPLAYED ITEM ({ DR IN TMPO)

330 B

331 713A C6 E9 Al TER DEC PREVC 3 R INDEX = 1

332 713C LU OO BNE A3

333 H

334 713E 20 A4 73 J SR RDUA s Cy=C IF sP

338 7141 S0 (3 B8CC A2 s SPACE

336 7143 20 LOC 70 JSR PUTPE 3 ALTER PC

337 7146 - 20 FB8 70 AZ JSR SETR s ALTER RS

338 71498 DO 05 BNE A4 T JMP A4 {SETR RETURNS ACC = &)
339 7148 20 9A 72 A3 JSR WRUA i ALTER M, TYPE ADR
334G, 714E A9 (8 LDA #8

341 i

342 7130 8v FE A4 STA RCNT

343 7152 20 77 73 AS JSR SPACE 5 PRESERVES Y

344 7185 20 EQC 70 JSR BYTE

345 7158 Do F38 SNE AS

34¢€ 7154 FO D8 AY BEQ BEQGS1

347 H

348 T715C A3 FC GO L.OX SP

349 7186 9A TXS + ORIG OR NEW SP VALUE TO SP
350 Ti5F A3 F7 Lba PCH

351 7161 48 PHA

352 7162 AS F6 LDA PCL

353 7164 43 PHA

354 7165 A5 F3 LDA FLGS

3558 7167 48 PHA

CARD #
357
358
359
360
361
362
3€3
3€4
365
3686
367
368
369
370
371
372
373
374
375
276
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
398
396
397
398
399
400
401
402
403
404
405
406
407
408

LOC
7168
716A
716C
716E

716F
7171

TiT4
7177
717A
717C
717
7i81
7183

7185
7187
718A
7180

718F
7191
7163

7195
7167
719A
719D
T1i9F
71A2
71A5
71A7

TLAA
71AD
71AF
7182
7184
71856
7188
7T1BA
718D
7 1BF

71C2
T1Co
71C7
71CA
71CD
7100
7103

A3
A
A4
40

E&
4

20
20
A6
B85
20
o
[Ble]

A2
20
20
D0

A2
656
0

B3
20
20
85
20
20
85
20

29
oo
2¢
AS
85
AD

20
FO
4C

20
85
290
20
20
20
20

CODE

£
FA
FB

04
03
B3
(<]

00
E7
9F

FE
7C
83
EF
7C
B3
BEE
7C

£0
8
A4
F£2
Y
F3
F1
cl1
BF
EA

€S

77
A4
57
77
A4

70
72
72

72

7C
73

72
73

72
73

72

70

73

70

70

72

73
73
73
73
73

CARD

tH1

.

LH2

LH3

ERRP 1

LDA
LDX
Loy
RT I

INC
JME

JSR
JSR
LD X
STX
JSR
cMP
BNE

LOX
JSR
J5R
BNE

LD X
STX
BEG

STA
JSK
JSR
STA
JSR
JSR
STA
J SR

JSR
BNE
JSR

S5TA
LDA
STA
JSR
BEG
Jmp

JSR
5TA
JSR
JSR
JSR
JSFk
J SR

ACC
X R
YR

HSROUP
STARTY

RDOUC
CRLF
HSROP
HSPTR
RDOC
#3
LH1

#4
ZTMpP
rRDOB
LH2

#0
HSPTR
BEGS1

RCNT
DADD
RDOB
TMPO+1
DADD
RDOB
T MPO
DADD

BYTE
LH3
RDOA
TMP4
TMP2
TMP4+1
TMP2+1
pDCMe
LH1
ERROPR

ROOC
TMPC
S PACE
RDUGA
etz
SPACE
RO OA

ae

™

-

. e we

-

e

-

TCGGLE BIT €

READ SECCND COMMAND CHAR

ENABLE PTR OPTION IF SET

FIND NEXT RECORD MARK

CLEAR CKSUM REGS TMP4

CLEAR HS RDR FLAG
FINISHED

RONT

ROD LNGH TO CKSUM
SA HD TC TMPO

ADD TO CKSUM

BYTE SUB/R CECRE RCNT ON EXIT

CKSUM FRUM HEX TG TMPO

RD 2NL CMD CHAR

SA TO TMP2
SPACE BEFURE NEXT ADDRESS

CARD # LGCC ConE CARD

410 7106 20 87 73 JSR T272 s SA TO TMPO, BA TU TMPZ2
411 7109 20 E9 72 JSR RDGC ;i DELAY FOR FINAL (R .
412 710C A5 FE LDA TMPC

413 H

414 710E (9 48 CMpP #'H

415 T71E0 DO 59 BNE wB

416 H

417 71E2 A6 E4 wHO LD X WRAP ;s IF ADDR HAS WRAPPED ARCOUND
413 71E4 D) b2 BNE B8CCST i THEN TREMINATE WRITE OPERATICN
418 4

420 T7T1E6 20 B8A 72 J SR CRLF

421 71E9 A2 18 LDX #24

422 71EB 86 FE STX RCNT i RONT=24

423 71D A2 04 LDX #4 ; CLEAR CKSuUM

424 71EF 20 D9 70 JSR ZT Mp

425 H

426 T71F2 A9 3B LDA #13

427 71F4 20 C6 72 JSR wROC 3 WR RCD MARK

428 H

429 71F7 20 C1 70 JSR DCMP i EA~SA (TMPO+2-TMPC) DIFF IN LOC DIFF s+l
430 71FA GB8 TYA i MS BYTE OR DIFF

431 71FB DO QA BNE wH 1

432 71FD A5 ES LDA DIFF

433 T1FF C9 17 CcMp #¥23

434 7201 8) ¢4 BCS wii 3 DIFF GT 24

435 7203 85 fFE STA RCNTY 5 INCR LAST TONT

436 7205 E6 FE INC RCNT

437 7207 A5 FE Wl LDA RCNT

438 7209 20 7C 72 JSR DALD i ADD TO CKSUM

439 720C 20 B1 72 JSR wR0OB v RCD CNT IN A

440 720F A5 EF LDA TMPO+1 + SA HO

441 7211 20 7C 72 JSR DADD

442 7214 20 B1 72 JSR wROB

443 7217 AS EE LDA TMPO i SA LO

444 7219 20 TC 72 J SR DADD

445 721C 20 Bl 72 JSR wROB

446 H

447 721F A0 00 wH2 LDy #0

448 7221 81 EE LDA (TMPRO)Y

449 H 3 INC CKSUMs PRESERVES A
450 7223 20 7C 72 JSR DADD

451 7226 20 Bl 72 JSR wWRQOB

452 7229 20 97 73 JSR INCTMP 3 INC SA

453 722C b FE DEC RCNT

454 7228 0DQ EF BNE wHz i LUUF FOR UP TO 24 BYTES
455 H

456 7230 20 9E 72 JSR WROAG $ WRITE CKSUM

457 ‘

458 7233 20 C1 70 J SR DCMP

459 7236 B0 AA BCS W HO i LOOP WHILE EA GT UOR = B5A
460 7238 C &€ 70 OCCST JMP START,

CARD # LOC CODE LARD

462 3

4€3 7238 Es FD W5 INC SAVX ;3 SAVX TC = NCMDS FOR ASCII SUB/R
464 723D A5 E4 w1 LDA WRAP i IF ADDR HAS WRAPPED ARCUND
465 723F DO F7?7 BNE BCCST ; THEN TERMINATE wRITE OPERATICN
466 M

467 7241 A9 04 LDA #4

468 7243 85 EC STA ACMD

469 7245 20 A TZ JSR CRLF

470 7248 20 9A 72 JSR WROA i GULTPUT HEX ADR

471 H

472 7248 20 77 73 WBNPF JSR SPACE

473 T24E A2 G9 LDX #9

474 7250 86 FE STX T MPC ; LOOP CNT = 9

475 7252 Al ES LDA (TMPC=9,X)

476 7254 85 FF STA TMPC2 ;3 BYTE TO TMPC2

477 7286 A9 42 LDA 408

478 7258 DO (8 aNE WiF 2 3 WRITE 8

479 g

480 725A A9 50 WHF 1 LDA #1P

481 725C (5 FF ASL TMPC2

482 728E BO 02 acs WHF2

483 7260 A9 4E LDA #N

484 :

485 7262 20 C€ 72 wBFZ JSR WEOC ; WRITE N OR P

486 7265 (b6 FE DEC TMPC

487 7267 D3 F1 BNE w8F1 3 Loop

488 7269 A9 46 LOA HF

489 7268 20 C6 72 JSR WRUC i ®RITE F

490 s

491 72€E 20 $7 73 JSR INCTMP

492 H

493 7271 C6 EC DEC ACMD 3 TEST FOR MULT IPLE OF FOUR
494 7273 DI DB BNE WBNPFE

495 3

496 7275 20 C1 70 JSR DCMP

497 7278 B8O C3 3Cs w81 i LOOP WHILE EA GT GR = SA
498 727A 93 BC 8cce B8CCST

499 3

500 727C 48 DADD P HA i SAVE A

$01 7270 18 cLC

502 7276 65 £2 ADLC TMP4

503 7280 85 F2 STA TMP 4

504 7282 A5 F3 LDA T MP4+1

505 7284 69 00 ADC #0

506 7286 &5 F3 STA TMP4+]

507 7288 68 PLA i RESTORE A

508 7289 60 RTS

509)

510 728A A2 0O CRLF LOX #3500

511 728C AY 0A LDA #50A

512 728E 20 CO 72 JSR WRTWC

513 7291 A6 E3 DX CRDLY 3 BIT=-TIME COUNT FUR DELAY

CARD # LGC CcooE CARD

515 7293 2) 1D 73 CR1 JSR oLy2 i DELAY OF ONE BIT-TIME
516 7296 CA DEX

517 7297 DO FA BNE CR1

518 72%9 60 RTS

519 H

520 i WRITE ADR FROM TMPO STORES
521 :

522 72%A A2 01 WRCA LOX #1

523 729C DO 0A BNE WRUA 1

524 72%9E A2 05 wWRUA4 LOx #S

525 72A0 DO 06 BNE WROA1

526 72A2 A2 07 wROA6 LOX #7

627 72A4 DO 02 8NE WROAL

528 7246 A2 09 WRPC LD X #9

529 7T2A8 B5 ED WROAL Lba TMPO-14 X

530 T72AA 48 PHA

3% 72AB 85 EE LDA TMP L+ X

532 72AD 20 81 72 JSR wRUB

533 7280 68 PLA

534 H

535 3 WRITE BYTE - A = BYTE

536 3 UNPACK BYTE INTU TWO ASCII CHARS. A=BYTE; XsA=CHARS
537 H

538 7281 48 wR 0B PHA

539 7282 4A LSR A

540 72B3 4A LSR A

541 7284 4A . LSR A

542 7285 4A L SR A

543 7286 20 58 73 JSR ASCIIi i CUNVERT TU ASCII
544 7289 AA TAX

S45 72BA 68 PLA

546 72BB 29 OF AND #EOF

547 728D 20 58 73 JBR ASCII

548 H

549 i WRITE 2 CHARS = Xs A = CHARS
550 H

551 V2C0 48 WRTWO PHA

§%2 72C1 8A TXA

553 72C2 20 C6 72 JSR wWRT

554 72¢5 68 PLA

55685 H

556 5 WRITE SERIAL OUTPUT

557 3 A=CHAR TO BE OQUTPUT

558 H

559 72C6 20 1D 73 W¥RT J 3R oLy2

560 72C9 A2 (9 LDX #9

561 WROC =WRT

562 72CB 49 FF EOR #SFF 3 COMPLEMENT A
563 72¢D 38 SEC

564 H

565 72CE 20 DA 72 WRT1 JSR ouT

566 7201 20 1D 73 JSR DLY2

CARD #
568
569
S70
571
572
573
574
575
576
577
578
579
580
581
582
583
584
58%
586
587
588
589
590
591
592
593
594
£95
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

LGC

7204
72C5
7206
7208

72DA
7208
720E
72E0
72E2
72€4
T72€E7
72E8

72E9
72E8
T2EC

72EE

72F0
72F3
7T2F 4

72F6
72F 9

72FC
72FF
7302
7303

7306
7367
7308
7309
730A
730C
730E
730F
7310
7312
7314

7316
7319
731A

731D

4A
CA
[01¢]
0

48
AD
29
90
03
80
68

AS
4A
80

A2

AD
4A
90

20
20

20

4A
20

8
98
4A
28
20
09
A3
CA
DO
49
29

20
18

20

Cone

Fé
3F

G2
FD
02

o2

4F

08

02

FA

20
DA

10
¢z

DA

02
80

EA
FF
7F
4]
DA

20

6E

13

6E

73
72

73
513

72

73

72

73

CARD

v
ouT

CuTlL

H
3 OUTPUT RETURNS CHAR IN A

RCAOC

RDOT1

ROT 4

-

RDTS

DLY2

LSR
DEX
8NE
3EQ

PHA
LDA
AND
BCC
URA
STA
PLA
RTS

LDA
LSR
BCS
=RO0T
LDX

DA
LSR
8cc

JSR
JSR

JSR
LDA
L SR
JSR

PHP
TY A
LSR
pLP
8CC
ORA
TAY
DEX
BNE
EOR
AND

JSR
cLC
JSR

JSR

WRT1
RDTS

MPB

#%11111101

[EXVE D

#%00000010

MPB

HSPTR
A
RDHS R
#8
MPO

RDT1

oLY1l
nuT

oLY2
MPB

ouT

RDT4
#3880

RDT2
HSFF
#ETF
DLY 2
ouT

oLY1

e ¢ a0

-

-

-,

o . v

USE BNE?
SAVE A
CLTPUT BIT FROM Y

RESTORE A

TEST FRO PTR UPTION

wWAET FOR START BIT

ECHO START BIT

CY = NEXT BIT
ECHO

SAVE BIT
Y CONTAINS CHAR BEING FURMED

RECALL BIT
ADD IN NEXT BIT
LOCP FCR 8 BITS

COMPLEMENT DATA
CLEAR PARITY

AND DELAY 2 HALF-BIT-TIMES

CARD #
620
621
622
623
624
625
62¢€
627
628
629
630
631
632
633
634
635
5 36
637
638
639
640
641
642
643
644
645
646
647
648
6543
650
651
652
€53
€54
655
€56
657
658
£59
60
661
662
6563
664
665
666
667
668
669
670
671

LCC

7320
7321
7322
7323
7224
7326

7328

7228
732&
7330
7331
7332
7335
7330

7338
7339
733A
7338
733C

7330
7340
7342

7344
7347
734A
734C
734F
7351
7354
7355
7357

7358
7359
7358
735D
735F

73€1
7363
7364
7366
7368
736A
736C
73€E
7 3oF

CUde

43
c8
8A
48
A6
AS

8L

AL
10
CA
[925)
AL
2
10

o8
AA
28
1]
oG

AD
23
Fo

At
AD
09
80
29

BA
29
[=3v]

13
69
&9
90
(=3

I
48
[}
00
AS

[31¢]
63
AY

Ca

F3

o=
[¢F:]
=9

00
o2
04
02
F38
o2

7F

0o
F0
02
06

42
QA
F£D
37
G4

20

SE

OE

6k

oE

ok
68

bk

6E

CARD
oLyl

cLz

DL3

oL X

RLHSK

ASCII

ASC1

PHA
PHP
TXA
PHA
LD X
LDA

STA

LDA
BRPL
bEX
PHP
LDA
PLP
BPL

PLA
TAX
PLP
PLA
RTS

LDA
AND
BEG

TXA
AND
RTS

cLc
ADC
ADC
8CC
ADC

ADC
PHA
cmMpP
BNE
LDA
cmp
BNE
PLA
LDA

MA JGCGRT
M INORT

MCLKIT

MCLKIP
DL 3

MCLKRD

oL3

MPg
#DAVAIL
RDHS R

MPA

MPB
#GUTDAT
MPB3
#%11111
MP3

S TF

#6

#3F0
ASCt
#3006

HE3A

LN
ASCX
SAVX
#NCMDS
ASCX

Ll

011

H

“e 4

SAVE FLAGS AND A

SAVE X

RESET TIMer INT FLAG

RESTURE REGS

LOUF ON UATA AVAIL

READ DATA
SEND GOUT-DATA PULSE

TEST FOR LETTER B IN ADR DURING WBNPF

NOT wB CMD

CARD #
67 3
604
675
676

690
691
692
€93
694
695
696
097
6938
£99
7C0
701
702
703
704
705
7¢6
707
7¢8
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

. CC
7371
7372
7373

7374
7377
7378
7379
737A
7378
T37C
737E
7381
7382
7383
7384
7385
7386

7387

7389
7388
738C
738k
7390
7391

7393
7394
7356

7347
7399
7398

739C
7396
73A0

73A1
73A3

73 A4
73A7

73A9
73A8B
73AE
7380

438
wd
0

20

BA
48
98
44
A9
235
&8
A8
o8
AA
68
©0

(345}
Fo
62
£6
Fo
[e39)

o0

cutte

77 73

20

ce 72

02
£ED

Ef
ED

[E3

83 73

va

EF
83
¢2
EE

73

CARD

ASCX

+
SsPACZ2
SPACE

]
T2Te
T2T21

+

PHA
PLA
RTS

JSR
PHA
TXA
PHA
TYA
FHA
tDA
JSR
PLA
TAY
PL A
TA X
PLA
RTS

LDX
L{DA
PHA
iLDA
STA
PLA
STA
DEX
BNE
RTS

H INCREMENT

INCT NP

INCTI

v

SETHRP

INC
BEQ
RTS

INC
8EQ
RIS

INC
RTS

SPACE

Py
WRT

#2
TMPO =1 X

TMP2~1s X
TMPO-1 X

TMP2-1,X

T272z1

(TMP Qs TMP O+ 1)

T MPO
INCTI

TMPO+1
SETWRP

wWRAP

H
i READ REX ADRs RETURN HO

: IF sP CY=0

RDUA

RUGAZ2

JSR
8CC

STA
JSR
a3CC
STA

rROUB
RO QA2

TMPO +1
RLOY
RDEXIT
T MPO

8Y

iN

*

1

TMPO »

SAVE As XsY

TYPE SP

RESTORE Ay XY

LOw BYTE

HIGH BYTE

POINTER HAS WRKAPPLD ARCUND SET FLAG

READ TwWU CHAR BYTE

SPACE

sP

L0 IN TMPO+1 AND CY=1

CARD #
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
T44
745
746
747
748
749
750
751
752
783
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777

LGC
7382

7383
7384
7385
7387
7389
738C
73BE
73Co0
73C1
73C2
73C3

73Ce6
73C8
T73CA
73C0
73CF
7301
73D2

7304
7307
730L8
7309
73DA
73C8
73DD
73€EQ
73E3
73ES
73E6
T3E7
73E8
7389
73EA

73€8
73ED
73EE
73F 0
73F1
7T3F3
T73FS

73F6

60

38
43

A9
85
20
c9
0

68
68
68
4C

<9
Do
20
Cc9
419
13
90

20
OA
QA

QA
85
20
20
0s
38
AA
68
A8

60

9
o8
29
28
906
69
60

COoE

€6

20
OA

20
QF

EB

EC
Es
€8
EC

3A
oF

02
o8

7¢

72

73

72
73

CARD
ROEXIT

®4 we we ® ar

x
]
Q
T

RDOB1

RLOB2

RrDOUB3

RDOB4

BEXIT

HEX09

-

RTS

TYA
PHA
LDA
STA
JS R
CMp
BNE
PLA
PLA
PLA
IME

CMpP
BNE
JSR
cme
8NE
cLC
BCC

JSR
ASL
ASL
AS L
ASt.
STA
JSR
J SR
ORA
SEC
TAX
PLA
TAY
TXA
RTS

cMP
PHP
AND
PLP
8CC
ADC
RTS

#0
ACMD
ROQGC
#3500
RDOB1]

START
#I
rROOB2
rRDOC
B
RDOB3

ROCB4

#S3A

#SOF

HEX09
#8

*¥=MP3+$F8

READ HEX BYTE AND RETJRN IN
IF SP CY =0
Y REG IS PKRESERVED

.

- e

.

-

-

As AND (Cy=1

SAVE ¥
SET DATA = O
CR?

YES ~ GO TO START
CLEANING STACK UP FIRST

SPACE

READ NEXT CHAR

T0O HEX

2ND CHAR ASSUMED HEX

<y=t1

RESTORE ¥

SET Z & N FLAGS FOR RETURN

SAVE FLAGS

0-9
ALPHA ADD 8+CY=9

CARD #
779
780
781
782
783
784

NUMBER

Lo

73F8
73FA
73FC
73FE

Q0
e]¢}
Co
52

OF ERRUORS =

CARD
INTVEC

ws

NUMB ER

« WORD NMINT
+WORD NMINT
o WORD RESET
« WORD INTRQ

+END

OF WARNINGS

DEFAULT USER IRU TO NMINT

SYMBOL T ABLE

SYME0L VALUE LING DEFINED CROSS-REFERENCES
ACC QC+Y 38 118 173 205 357

ACMD 0 oEC 30 225 227 232 468 493 735 757 760
ADRS 7100 296 226

AL TER 713A 331 290

ASCII 7358 €H7 £43 £47

ASCX 7372 &7 4 666 669G

ASC1 7361 663 660

A2 7140 337 235

A3 7148 339 332

A4 7150 342 338

AS 7152 343 245

A9 715A 34856 k%xxx¥

BCCST 7238 460 418 465 498

BEQS1 7134 325 346 380

BX 7061 205 177

BYTE 7CEQ 264 344 391

Byz 70F2 277 272z

8Y3 70F5 278 205

83 7053 130 120

85 7073 197 BT 23

CMD S 7106 289 218

CROLY 00E3 81 141 €13

CRLF 728A 51¢C 197 211 366 420 469
CR1 7293 T B1S 517

DADD 727C 5C 0 _277 383 3t£€ 389 438 441 444 450
DAVAIL ccos 6& 64 4

oCmp 70C1 241 393 429 458 496

DifFF D0Es 84 244 248 422

oL x 733C 641 ER 223

DLY1 7320 ¥y £94 £18

DiLye 731D o018 515 559 5566 597 614
oLz 7z28 €27 K¥%xx

DL3 7323 €29 €30 €35

DSPLYM 711C 314 298

DSPLYR 7114 316 297

ERROPR 70BA 237 27% 327 400

ERRPL 718F 400 KR K

ERRS1 7137 327 315

FLGS COFg 97 87 282 3t4

GO 7150 348 299

GOTDAT [sRvieRcs ©3 £49

HEXIT 73e8 768 752 759

HE X009 T3IFD 774 772

HS P 7 tof 3e2 3¢90

HSPTR s}l 85 133 209 368 379 584
HSROP ooES 86 134 362 367

famp 7084 232 22

INCTMP 7397 704 273 452 431

INCT1 7 39C 708 705

INTRQ 7052 173 782

INTVEC 733 779 127

SYMBOL

I0OBASE
LCNT
LM

LHt
LH2
LH3
MAJORT
MCLKI P
MCLKIT
MCLKRU
MDA
MDG

MO BK
MINURT
MPA
MPB
MP O
Me 1
MP2
MP 3

MO

M1
NCMDS
AMINT
auT
ouUT1
PCH
PCL
PREVC
PUTP
RAMES
RCNT
RDEXIT
RODFKHSR
RDCA
RDDAZ
RDOB
rRDCB81
ROOBZ
RDOEBE3
RO CH4
RDOC
ROT
RDT1
rRDTZ2
RDT4
RDTS
RESET
RO

R1

R2

R3

R4

R5

VALUE

6E00
OCFF
7174
717E
7195
7 1AA
OQ0EA
HECS
6EC4
& EQ4
6EUL
6EC3
0015
ootp
6E00
BEUZ
7000
7100
7200
7300
7123
r127
[leg
7000
T20A
72E4
QOF7
O OF 6
QOEYD
7000
FFOO
QOfk
7382
733D
73A%
7 3A3
7353
7 3¢5
7304
73c0
7 3€6
7229
72E9
72F0
7z2FC
730K
7319
70Co
7022
700D
7023
7023
7034
7044

LINE DEF INED

64
1066
365
309
382
391
88
71
&9
70
66
68
61
89
65
67
74
75
76
77
217
319
73
1is
573
578
96

&5
PR
301
371
a7o
392
132
147
1486
159
EET T
124
122
168
€47
142
116
224
% %k K
775
312
324
216
779
5695

723
586
314
719
o4
738
745
748
750
214
587
S92
610
606
571
781
144
130
150
155
148
167

66

359

149
629
627
£33

668
780
595
283
251
331
342

645
334

375

305

157

CROSS~REFERENCES

67

16z

574

267

600

350
352

393

384

369

68

624

578

298

616

422

405

387

402

4-63

69

4C8

718

411

70 71
SCE £43 648 650 €52
300 301 302
4326 437 453
722
736 740 758

sYMBOL

TMP2
TMP4
T MP6
J272
T2721
UNIT
ws
wBF 1
wBF2
WBNPF
wB1
wWHO
wH 1
w2

WRAP
WRCA
WROAL
WROA4
WRCAL
wWROB
WRCC
WRPC
WRT
WRTWO
WRT1

YR
ZTmp

VAL UE

7048
0OFD
70FB
73A1
00FC
7377
7374
7086
7097
7099
7087
0OFE
O OFF
00EE

COF0
OOF2
20F4
7387
7389
FFF8
7238
725A
7262
7248
7230
7iE2
72¢7
721F
71¢C2
00E4
729A
72A8
729E
72A2
7281
72Co
72A6
72C6
72
72C=
OOFA
QofB
7009

LINE DEF INED

166
102

282
712
101

678
&77
208
216
2i8
234
103
104
91

92

94
692
693

72
463
480
485
472
464
417
437
447
402

522
529
c24
526
£38
S61
528
559
551
565

100
257

163
221
311
709
195
319
230
239
203
235
213
105
106
243
320
£96
242
394
* Ak K
406
700
128
415
487
478
494
497
459
431
454
302
210
339
8523
456
Fopk 8
321
213
310
553
201
570
184
185
374

223
337

348
343

32¢

180
476
246
385
704
245
386

410

266

482

434

417
470
525

439
238

561
512
358

359
424

CROSS~REFERENCES

463

404

363

198
481
250
388
708
395
502

464

527

442

427

6384

667

407

460

25z
440
721
397
503

712

445
485

472

742

323

88
443
724
£95
S04

451
489

677

403

289
448

698
506

532

412

268
475

474

271
529

456

283
531

285
693

CARC # LOC

1

2

3

4

8

&

7

€

q

1C 0CCC
11

12

12 3000
14 o0z
1S 0004
1¢ 000¢
17

18 CCo8
16

20 001G
21 (C12
#2 <CCLE
PACHVIoD
z4

Z€ CCla
2€ (G1D
27 QQz¢C
ZE

29

3C 0022
21 0Cz4
22 002¢é
33 C02s
34

35

3¢ (COze
27 Co02D
2

39 002f
4C

41 CC32
42 (CC34
43 0023¢
44 0C38
45 (Cz2A
46 003C
41

4€ CC3C

AS

AS

r
u

2C
LY
AS
B1
2C
ald]
A9

81

20

CCDE

oC

CA
€2

2]
71

00

co
1

£1

FF

71

Cé
17
ce

al

ci

12

12

cC

ccC

00

oc

CARD
sMEMORY ADDRESS TEST
sFOR EACH LCC IN TEST RAN

-+ s

s BREAK
FFERINT

WRT
L0oC
LOw
HIGH
PTR

s

-

bl
MAC

-

;CLEAR
MLL

EST

s CLEAR WHOLE RANGE
SET LOC TO ¢$FF

VERIFY WHOLE RAGE
VERIFY (LCC) TO BE

GE

$0C EXCEPT (LCC)
$EF

TO MONITOR CN ERRCOR WITF LOC IN ((41)
&M CN CCMFLETICN CF P£SS € REFEATY

¥=-400C0

=$7202
R=K42
X =%+ 2
g+ 7
X =%+

X=4$GCC10
LDA 4¢0D
JER WRT

LOA #%0A
JSE WRT

JSR RSTLOC
JSR RSTFTR
LDX #C
MEMORY ARFA UNDER
Los #0

$14 (PTR,X)
JSR INCPTR

BANE ML

H
5PUT $FF IN SELEXTEC CELL
T

LCA #$FF
STE (LOC,X)

sPAGE C

STEST CELL ACER

SLCWER LEIMIT CF TEST
5LPPER LIMIT CF TEST+1
5POINTER TC CELL UNCER TEST
;START ADDR

s1YFE CR

58 LF

sLOC=L0wW

sPTR=LOW

TEST

sSTORE 2ERO
SINCREMENT & TEST

sNEXT LOC

5VERIFY ALL CELLS ZERG EXCEPT (LCC)

b
viLaor

.
0Kl

JER RETPTR

LCA (PTR,X)
BEQ NEXTC
LDY PTR

CFY LOC

EEC (K1

BRK

LDY PTR+1

iPTR=LOW

5CET CELL
s0K IF ZERO
$sNOT ZERO--IS THIS (LOC)?

sNCT (LCO)Y

C2rC # LCC
4S5 Q0Q3F
€0 0OC4l
51 0043
S
£2 0044
5S4 004¢
€€ 0Q48
£¢
571 Q0045
EE 0048
5S
€C 004C
61 005C
€2
€3 0052
£4 Q054
€ 0Qs¢
66 Q2058
&1 CCs58
¢E
6S 00°%C
iC 00eC
T1
12 0062
73 00¢5
14
15
7€ CQeg
11 CocA
78 ©006C
16 00¢t
€C 007¢C
81
&2
€2 00171
84 0073
€c 007¢
£Ee 00717
871 0079
£e
89
S 0074
€1 007C
92
<3 g©oie
S4
S5 0080
e Q082
€7 0084

C4
FO
Q0
c9
cC

A5
g1

2C
oo
AS
DO
AS
<G
A2
2C
Do

20

E6
cc

EE

£5

€

p

co

COCE
01
01

FF
01

o

74 0O
EOQ
Q0
a7
2A
[ole;
8B 00
Cs
€8 00

10 CO

c2

€3
1

2
cé
€3

£ ¢7

CARD

*
CK2

0Kz

d
NEXTC

..

NCSTAR

..

SRESET
RSTLCC

oI LYY

RESET
STPTR

s INCREM
INCPTR

’
INCY

CFY
BEC
BRK

CMP
BEQ
BRK

LDA
STA

LDA

LEX

BNE
JSR
Jre

LCC

PTR
LCA
ST
LcaA
STA
RTS

ENT
INC
ENE
INC

LDA
[oF 12
B'NE

LCC+1
CK2
SNOT (Lot

4$FF ;1S (LOC)--1S DATA CK?
CK3
IWRONG D2TA

40 SRESET (LOC)
(LOC, X}

INCPTR SNEXT CELL
viLoop SIF NOT AT LINMITY

LCC 3PRINT STAR EVERY PAGE BOUNCARY
NOSTAR

#1X

®RT

#C sFIX X AFTER MON CALL

INCLOC SNEXT LGC

TEST

RSTLOC ;P2SS COMPLETE
MAD sNEXT PASS

10 LOW
L CiW
Lac
LOW+1
LCC+1

TC LCw
LCh
PTIR
LCwel
PTR+1

PTR & CHECK FOR LINMIT

PTR 3 INCREMENT
InCL

FTR+1

K IGH $CHECK

PTR

1FPRETY ;AOT AT LINMIT

CARC # LOC CODE

S8

99 00&& A5 CE
100 0088 (5 C7

101

102 008A ¢0

103
104

105 0088 E¢ CC
106 (cc8C CC C2

107

108 0CG8F E¢ Q1

108

110 00S1 AfZ (4
11Tt 0093 (5 00
112 00$5 DO (4
113 00ST AS 05
114 0095 5 01

11¢

116 0098 ¢C

NUMBER QF ERRORS =

SyvBoL

HICH
ILRET
INCLOC
INCPTR
INC]
INCZ
IPRET
Lac

tCh
MAD
mML1
NEXTC
NOSTAR
Kl
k2
CK3
PTK
RSTLOC
KSTPTR
TEST
viLcee
WRT

SYFEGL TABLE

CARD
LDA HIGH+1
CMP PTR+1 32=1 1F AT LINMIT
d
IPRET RIS
sINCREMENT L0OC & CHECK FOR LIMIT
INCLOC INC LOC iINCR
ENE INC2
INC LOC+1
INCZ LCA HIGH sCHECK
cMP LAC
BNE TLRET
LDA HIGH+1
CMP LOC+1 sZ=1 IF AT LIMITY
ILRET RIS
NUMBER OF WARNINCS = 0

VALUE LINE DEFINED

CCCa
CCSe
coee
CoTe
coec
CCs1l
coes
cCcec

cocz
co1c
¢0zz
Co4l
(cel
ccat
CC44
ccas
coce
ccee
co11
CC2¢E
(0:z
72C¢

15
11¢
1CE

<C

S5
11¢
102

13

14
2C
3¢
€C
(]
LE

gE
11z
[
2ve
S1
1C¢€
97
37
114
T¢
7.2
22
42
€4
4c
5C
54
21
25
2¢€
7¢
€1
z1

CRCSS-REFERENCES

S 11C¢ 113

eC

44 49 58 63 17 1S 105 10E

18 83 £

22 (X3

111

100

SECTION S

ROM RESIDENT SOFTWARE (OPTIONAL)

Resident software is available for your SUPER JOLT card in the form of two mask-

programmed ready-only memories (ROMs) .

ROM OPERATION INSTRUCTIONS

These two proprietary 2Kx8 mask ROMs (AM9216's) contain the 6502 Resident As-
sembler Program (RAP) and JOLT TINY BASIC. These ROMs are designed for immediate
use on the CP11l0 SUPER JOLT Card.

Program Location:

TINY BASIC C000 - CS8FF
RAP C900 - CFFF

Ram Reguirements:

Both TINY BASIC and RAP assume RAM at page O and 1 (0000 - OLFF). Both.programs
will, upon execution, determine the extent of RAM memory, beginning at 0200 and
continuing to write/rsad memory until the read fails, indicating the end of RAM
memory. This RAM address space information is used by the programs as the total
extent of RAM available.

Page 0O Vector Initialization:

Prior to running either TINY BASIC or RAP, two branch vectors must be entered at
location 0000. Use DEMONTM to first desplay, then alter these locations as
follows:

.M 0000 XX XX XX XX XX XX XX XX

.. 0000 4C E2 72 4C C6 72
The branch at 0000 (4CES72) is a IJMP to the DEMONTM read character routine (RDT).
The branch at 0003 (4CC672) is a JMP to the DEMONTM write character routine (WRT).

Start Addresses:

TINY BASIC C000
RAP c900
High Speed Paper Tape Input Option (TINY BASIC Only):

TINY BASIC may be made to run using the high speed paper tape input option. First
use DEMONTM to initialize page 0 as follows:

.z 0000 4C 06 00 4C C6 72 a6 EB

.: 0008 86 E7 20 1D 73 4C E9 72
Use DEMON'STM "H" command, to set the high-speed reader mode. Then transfer

control to TINY BASIC at CO00. Input will be read in from the high speed reader

5-1

source, but will not be echoed on the printer device. Following completion of
the read-in, if control is not returned to the terminal, restart BASIC at €003,
(warm start) to preserve the data in memory.

Resident Assembler Test Program:

Users should note that the .ORG $1000 on the RAP test program should be changed
to .ORG $200 for SUPER JOLT usage. This can be done dynamically by stopping the
test run just prior to the read-in of the .ORG $1000, typing in the .ORG $200,
skipping past the .ORG $1000 on the paper tape, and continuing.

JOLT TINY BASIC
The JOLT TINY BASIC interpretive program is a subset of Dartmouth BASIC that re-

sides in 2,304 bytes of program memory. The language consists of 12 statements,
four expressions and two machine language subroutine calls.

PRINT: print-list

This statement prints values of the expressions and/or the contents of the strings
in the print-list. The items may be expressions or alphanumeric strings enclosed
in quotation marks.

INPUT: input-list

This statement checks to see if the current line is exhausted. If it is, a
question mark is prompted with an X-ON control character, and a new line is read
in. Then or otherwise, the input list is scanned for an expression which is eval-
uated. The value thus derived is stored in the first variable in the input-list.

LET variable = expression:

This statement assigns the value of the expression to the variable. The long
form of this statement executes slightly faster than the short form (variable =
expression).

GOTO expression:

The GOTO statement premits changes in the sequence of program execution to the line
number derived by the evaluation of the expression in the GOTO statement. This
permits one to compute the line number of the next statement on the basis of
program parameters during program execution.

GOSUB expression:

The GOSUB statement is like the GOTO statement, except that TINY BASIC remembers

the line number of the GOSUB statement, so that the next occurrence of a RETURN
statement will result in execution proceeding from the starement following the

GOSUB. Subroutines called by GOSUB statements may be nested to any depth.

RETURN:
The RETURN statement transfers execution control to the line following the most
recent UnRETURNed GOSUB.

IF expression rel expression THEN statement:

The IF statement compares the expressions according to one of six relational
operators. If the relationship is TRUE, the statement is executed; if FALSE,
the associated statement is skipped. The six relational operators are:

R I L S L L
END:
The END statement must be the last executable statement to terminate a problem
at any time or to clear out any saved GOSUB line numbers.
REM comments:
The REM statement permits comments to be interspersed in the program.
CLEAR:
The CLEAR statement formats the user hrogram space, deleting any previous programs.
RUN:
The RUN statement is used to begin program execution at the first (lowest} line
number.
LIST:
The LIST statement causes part or all of the user program to be listed. If no
parameters are given, the whole program is listed.
EXPRESSIONS:
An expression is the combination of one or more numbers or variables joined by
operators, and possibly grouped by parentheses. There are four operators:

+(add), = {(sub), *(multiply), and /(divide).

RESIDENT ASSEMBLER PROGRAM
The JOLT Resident Assembler Program (RAP) is a 1.75K byte program designed for use
on CP110 SUPER JOLT systems equipped with at least 4K bytes of RAM

memory. RAP processes source statements producing an output listing on teletype-like
like devices. The assembly process is performed in one pass, reading source

input, printing the listing and generation object code continuously until all
processing is complete. Source input is accepted by the assembler either by

directly typing input at the keyboard or by reading a previously prepared punched
paper tape.

The assembler stores the generated object code directly into JOLT memory. There

it can be executed immediately after assembly or punched out in hex format using

the DEMONTM monitor.

Rap is compatible with the Synertek Cross Assembler with the following

exceptions:
o Expressions and *(used for current program counter) are not allowed.
o The OPT and PAGE pseudo operations are not implemented.
] Octal and binary numbers are not implemented.
o ORG is used instead of *= to origin program.
o RES is used for reserving storage.

Input Line Pormat
Source input is free format where each statement can be composed of the following

optional fields:

o Label - If present, must begin in column one and be terminated by a
space.
o Operation ~ If present, must be preceded by a space and must be one

of the SY 65XX mnemonics defined in the RAP Manual.

o Operands - If present, must be preceded by a space and follow one of
the forms found in the RAP manual.

[} Comments - if present, must have as its first character a semicolon (:)
and if not in column one, must be preceded by a space.

o Carriage return - All lines are terminated by a carriage return.

=] Expressions and * (used for current program counter) are not allowed.

A name is any alphanumeric .symbol. Names are used as labels or in operand fields.

The first character of a name can be any assembler recognized name character or
a letter. The second and following characters of a name can include numbers. A
name is terminated by a blank or a carriage return. Names have no restrictions

on:length other than they must fit on one line.

Numbers are an unsigned string of hexaadecimal or decimal characters. Hexidecimal
numbers are preceded by a § and can contain the numbers O through 9 and the hex
characters A through F. Decimal numbers contain only the decimal characters O

through 9.

ASCII strings have two forms. The short form is used in conjunction with immed~
iate operands and consists of a single quote followed by a single ASCII character.
The long form is used to define large strings of ASCII data. This form is only
valid in the BYTE Pseudo operation. Carriage returns are not allowed within the

string.

All symbols that are intended to be used as an 8-bit immediate eperand must be

defined (appear in a label field) before they are used. Sixteen bit operands and
forward relative branches are inserted at the time of their definition by the
assembler. This means that the value appearing in the assembly listing of
previously undefined symbols is not the ultimate value used at the time the

assembly is complete.

The assembler detects errors during the assembly process and outputs an appropriate
error code after the printed hex output on the listing. Recognized errors include:
Branch address out of range, undefined operation code, size of operand value

exceed 8~bits, multiple appearances of the sympol in the label field, and im-
proper format in the operand field. Additionally, the location field is offset

in the table dump for undefined symbols.

The reverse-slash character may be used to delete the current source line during
an assembly run. Reverse-slash is obtained by the Shift and L key combination.
When used, the delete line causes the current line to be ignored and terminated,
a carriage return will be effected and the assembler will position the carriage

to accept the next line of source data.

The user may at any time, reorigin the assembler to correct areas of code already
assembled. For example, if half way through an assembly, the user realized that
an instruction was omitted, say five lines ahead of its current position, he

may stop the assembler, r2origin back to the location at which the instruction
should be inserted, insert the instruction and then repeat the assembly process

from that point forward.

SECTION 6
SUPERJOLT SCHEMATIC & ASSEMBLY DRAWING

£

g
T s ﬁi?;h

;&*mmnmmw:
: 14“ *‘WW e

SCALL P BIZE | DRAWING NO,
2l ICJI ASD " C*80
DO NOT (4 WING SHEET

g o
<0 4
IRUIUR I
Iza
2
q 3
)
(=
¥
> 5
o}
a2
EN
o
A
)
M
I H
T
£ E Ry
i E[g“?

Toe o] owed T Jvos

P A

-200008-0-HoS Q§ 3NN

o owsvonl s an

Aor H3dNs - Olidd

SN

1]
!

iva_| swaousev

f WYZOVIQ DVAVWIHOS =

30 swgsfig sousg B . i

— QENNIEE SaMEN TV ——
40D GNBISAS MELIVE A el @

=

7

L
T

sl Lo
T Th

wiol, Lt
T T

sniol Lo
T

m_m\

,. 1
.
POy e

FoSTIL Nm\

n

vl Lano

o i

TR

¥
(2%

21

o

[XTa) .
s e
e
T
Were’ een - au
e awin
T
1
e
K bl
iV
(208 M6) (oaa =21e)
woLL soLt
178} omn
i
e
5 Gt
or
S
sravswfoie .
en
o [ar for
153 =3
LE, 5a
ot J
%
7"
e
.

[T T TN - MO 2R
ShorsiAa

st
wf
R
ol
e
g
Pl
o
e
ke L33
» e
oo Soo T s
L T i
%
w
™ % N
»
2559 300 22
(T2 1
xt
w oarx
At
hau
pe
seafse

L= z-ar
or -1

Synertek Systems Corporation

P.O. BOX 552 SANTA CLARA, CALIFORNIA 95052 TEL. (408) 988-5600 TWX: 910-338-0135

