

CP110 SUPERJOLT REFERENCE MANUAL

CP110

Single Board Computer

(Superjolt Series)

© 1978 Synertek Systems Corp. All Rights Reserved

MAN-A-260007 Rev A

TABLE OF CONTENTS

SECT	ZION	PAGE
1	CUDED TOLE CEADER UP	
1.	SUPERJOLT START UP	
	Hooking Up The Power Supply	
	Hooking Up A Terminal To The JOLT	
	EIA	
	TTY	-
	TTL	
	Ready To Run?	
	Hooking Up The I/O	1-6
2.	SUPERJOLT MODULE	
	General	
	CPU	
	Program RAM	2-2
	Monitor ROM And Interrupt Vector RAM	2-2
	Programmable User I/O	2-3
	Standard Interface Circuits	2-3
3.	ON-BOARD JUMPER OPTIONS AND MEMORY MAP	3-1
4.	DEMON TM SOFTWARE INFORMATION	4-1
	Demon Monitor Checkout	4-1
	Checkout Instructions	4-3
	How To Hand-Assemble JOLT Programs	4-17
	Notes, Hints And RecommendationsFor Using Your Jolt Microcomputer	4-27
	Detailed Description Of Demon	4-28
	The MCS 6502 Instruction Set	4-35
	Chart Of Branches: Decimal To Hexadecimal	4-43
	Listing Of Demon Monitor	
	Listings Of Diagnostic Programs	
	System Exerciser Memory Address Test	

TABLE OF CONTENTS (Continued)

SECT:	<u>Pac</u>	ſΕ
5.	ROM RESIDENT SOFTWARE (Optional)5-	-1
	ROM Operation Instructions5-	-1
	JOLT Tiny BASIC5-	- 2
	JOLT Resident Assembler Program5-	٠3
	AM9216 ROM Description5-	٠6
	*	
6.	SUPERJOLT SCHEMATIC AND ASSEMBLY DRAWING6-	.1

© by Synertek Systems Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of Synertek Systems Corporation.

SECTION 1

SUPER JOLT START-UP

HOOKING UP THE POWER SUPPLY

The proper power supply is an important part of your SUPER JOLT system. Be sure to check your power source and have identified the proper connections and have tested the power supply to be certain that all voltages are proper and that none have overvoltage surges when TURNING ON power.

Your SUPER JOLT card requires a minimum of two voltages and one ground connection. The card, as delivered will perform with +5v, GND, and -10v if you are using the TTY current loop. If you plan to use the EIA terminal connection or 2708 PROMS you will need to add the +12v supply. Power supply requirements are listed below.

POWER SUPPLY REQUIREMENTS

	TYP	ICAL	MAXIMUM						
Voltage	W/ROMs	W/O ROMS	W/ROMs	W/O ROMs					
+12v <u>+</u> 5%	70 ma	4.4 ma	110 ma	6 ma					
+5v <u>+</u> 5%	550 ma	520 ma	880 ma	850 ma					
-10v±5%	30 ma	30 ma	40 ma	40 ma					

^{*} SW101 TINY BASIC/Resident Assembler ROMs

All power connections are hooked up as indicated below and as marked on the P.C. card.

HOOKING UP A TERMINAL TO THE JOLT

<u>Types of Terminals</u>: The following is a list of qualifications a terminal must have to run on a SUPER JOLT system with DEMONTM installed:

- A. Character Set: Must transmit and receive the standard ASCII character set. (64, 96, or 128 character).
- B. Mode: Mode of transmission is bit serial full duplex (full duplex is where the keyboard sends only to the computer and the computer sends only to the printer).
- C. Transmission Rate: Transmission rate can be anything from 110 to 300 baud (10 to 30 characters per second) the SUPER JOLT will synchronize to the baud rate of the terminal.
- D. Bit Serial Format: Start bit, seven data bits, one parity bit (this bit is ignored by $\mathsf{DEMON}^\mathsf{TM}$ on receive and set to a "1" on transmit), and one, one and a half, or two stop bits.
- E. Electrical Interface: Any one of three types of electrical interfaces can be used with the SUPER JOLT
 - 1. RS-232C (EIA)
 - 2. 20 milliamp current loop interface
 - 3. TTL logic interface

HOOKING UP THAT ELECTRICAL INTERFACE

E.I.A.: The first type of interface we will discuss is the E.I.A. or RS-232C standard, here after referred to as E.I.A.. Table 1 shows the complete standard for signal assignment on the 25 Pin Cannon connector which is the standard connector for terminal-modem computer hookup with E.I.A.. Figure 1 shows the connection of a typical E.I.A. terminal to the SUPER JOLT CPU. When using the SUPER JOLT with an E.I.A. interface equipped terminal, connections should be made in this fashion. Note that the D.S.R. signal from the CPU is required only on some terminals.

TTY CURRENT LOOP

The most common example of a current loop interfaced terminal is the model ASR33 Teletype TM. Before hooking up your Teletype TM or other current loop type terminal

RS-232 STANDARD SIGNALS AT THE TERMINAL

* Signals Commonly Used

PIN	FUNCTION
*1	Protective ground
*2	Transmitted data
*3	Received data
4	Request to send
5	Clear to send
6	Data set ready
*7	Signal ground
8	Data carrier detector
9	Reserved for data set testing
10	Reserved for data set testing
11	Unassigned
12	Unassigned
13	Unassigned
14	Unassigned
15	Unassigned
16	Unassigned
17	Unassigned
18	Unasșigned
19	Unassigned
20	Data terminal ready
21	Unassigned
22	Ring indicator
23	Unassigned
24	Unassigned
25	Unassigned

TABLE 1

FIGURE 1. SUPER JOLT HOOKED TO AN EIA EQUIPPED TERMINAL

refer to its maintanence manual and be certain that it is set up for 20 milliamp current loop operation and identify the four interface wires shown in Figure 2 for the Teletype TM. If your Teletype TM also has a paper tape reader, then check to see that it is an automatic reader as SUPER JOLT does not supply a "reader run" relay control circuit.

Unlike RS-232C, the 20 milliamp current loop interface has no standard connector. Every computer and terminal manufacturer has their own type of connector. For interfacing the SUPER JOLT you should select a connector that mates with the one on your particular model Teletype $^{\rm TM}$.

Figure 2 shows a typical teletype hookup to SUPER JOLT using the 20 milliamp current loop interface.

FIGURE 2. SUPER JOLT HOOKED TO A 20 ma CURRENT LOOP TELETYPE OR TTL INTERFACE

TTL

The third type of serial interface to the SUPER JOLT is "TTL" which is a direct logic level interface. Most commercial terminals do not use this type of interface, however some homemade terminals and inexpensive terminals use this method to save costs in interfacing (i.e. the T.V. typewriter). Interfacing this type of equipment to the SUPER JOLT CPU is provided for. See figure 2 for the proper connections.

READY TO RUN?

Your SUPER JOLT card comes ready to power-up automatically to the on-board debugger-monitor DEMONTM using a TTY. Refer to section 4 on using DEMONTM. If you wish to power-up to your application program in 2708 PROM refer to section 3 for selection of the proper on-board jumpers. Many other jumper options are available concerning negative power input, 6530 on-board RAM, terminal input and address line tristate control. The user should become very familiar with the function of each option in order to most effectively use the SUPER JOLT card. Again, if you have a TTY (20 ma current loop) and a power supply your SUPER JOLT is ready-to-use with no jumper changes. Power-up or reset will cause the 6502 CPU to execute the DEbug MONitor.

HOOKING UP THE I/O

SUPER JOLT is designed with two types of connectors. The first, called J1, is on the upper left and is used mainly for system expansion such as RAM, PROM, I/O etc. J1 should only be used to expand to other available SUPER JOLT cards or for your own special card designs. The second, called J2, is on the upper right and contains all on-board I/O lines. Table 2 list J2 I/O pin #'s and software address assignments and Table 3 list available mating connectors. Pin numbering on both connectors is illustrated as follows:

PORT #1	Bit #	NAME	PIN #	ADDRESS
	0	PAO-1	31	
	. 1	PA 1-1	32	6520 PIA
	2	PA2-1	30	4600 Direction/Data
	3	PA3-1	29	4601 Control
	4	PA4-1	28	
	5	PA5-1	27	
	6	PA6-1	33	
	7	PA7-1	34	
	Interrupt input	CA1-1	38	
	Control	CA2-1	39	
PORT #2	BIT #	NAME	PIN #	
	0	PBO-1	35	
	1	PB1-1	36	6520 PIA
	2	PB2-1	37	4602 Direction/Data
	3	PB3-1	26	4603 Control
	4	PB4-1	25	
	5	PB5-1	24	
	6	PB6-1	23	
	7	PB7-1	22	
	Interrupt Input	CB1-1	21	
	control	CB2-1	20	
PORT #3	BIT #	NAME	PIN #	*
	0	PA0-2	10	
	1	PA1-2	15	6530 I/O
	2	PA2-2	16	6E00 Data
	3	PA3-2	17	6E01 Direction
	4	PA4-2	18	
	5	PA5-2	19	
	6	PA6-2	14	
	7	PA7-2	13	
PORT #4	BIT #	NAME	PIN #	
	2	PB2-2	12	6E02 Data
	3	PB3-2	11	6E03 Direction

TABLE 2. SUPER JOLT I/O ASSIGNMENTS ON J2

APPLICATION	MANUFACTURER	PART NUMBER
FLAT CABLE CONNECTORS*	T&B ANSLEY	609-4000
	SPECTRA-STRIP	802-140
	3M	3417-0000
P.C.B. MOUNTING CONNECTORS	AMP	86418-2
*RECOMMENDED FLAT CABLING	T&B ANSLEY	171-40
	SPECTRA-STRIP	MANY TYPES
	3M	3302/40, 3365/40,
		3469/40, 3476/40

TABLE 3. J1 & J2 CONNECTOR PART NUMBERS

SECTION 2

SUPER JOLT MODULE

<u>Gene</u>ral

The SUPER JOLT CPU card is a complete microcomputer on a single printed circuit board. When connected to a terminal, the CPU card provides everything necessary to begin writing, debugging and executing microcomputer programs. The salient features of the SUPER JOLT CPU card are:

- o A Synertek SY6502 NMOS microprocessor
- o 1024 bytes of program RAM, and 64 bytes of interrupt vector RAM
- o 1024 bytes of mask programmed ROM containing $\mathsf{DEMON}^{\mathsf{TM}}$, a powerful debug monitor
- o Sockets for 2048 bytes PROM memory
- o 28 programmable I/O lines
- o Crystal controlled clock
- o Serial I/O ports for use with a teleprinter current loop drive/receiver, EIA standard driver/receiver, or TTL
- o Expandable address and data buses
- o Buffered CPU address and data lines
- o Hardware interrupts
- o Control panel interface lines available on card connector
- o Optional ROM resident TINY BASIC and Assembler

The CPU card was designed to be a general purpose microcomputer with provisions for expanding memory and interfacing to serial or parallel I/O devices. System expansion may be accomplished through the use of standard SUPER JOLT support cards

CPU

The SY6502 CPU chip is a parallel 8-bit microprocessor with 16 address lines and an internal oscillator. The data bus (DO-D7) is bi-directional and will drive one TTL (1.6 ma, 130 pf) load directly. The 64K byte (2¹⁶) address space is used to address program memory and to select I/O devices for communication with the CPU. The address will also drive one TTL (1.6 ma, 130 pf) load directly. On-board address and data buffers expand the drive capability to 48 ma.

The internal oscillator operates in a "free run" mode based on a crystal oscillator frequency of 1 MHZ. The crystal provides a very stable clock which allows for accurate and repeatable programmed timing loops.

The RESET input to the CPU is pulled to logic ground by a 555 timer circuit on the printed circuit board. The CPU normally fetches a new program count vector from hex locations FFFC and FFFD upon activation of the RESET line, but these locations are in the interrupt vector RAM and therefore volatile. Hardware on the CPU board causes the CPU to begin executing the monitor program by forcing the effective sixteenth bit of the address bus (Al5) to a logic ZERO during reset. As a result, the RESET function on the SUPER JOLT CPU card cause the debug monitor (DEMON to begin executing. This can be altered by changing the various on-board jumpers. (see section 3)

There are two interrupt inputs to the CPU. One interrupt is maskable under program control $\overline{(IRQ)}$ and the other $\overline{(NMI)}$ is not.

A READY control line provides for asynchronous operation with slow memory or I/O devices.

The address bus (AO-Al5), the data bus (DO-D7), the two phase clock (PIT,P2T), the reset line (*RESET), the interrupt lines (*IRZ, and *NMI) and the ready line (RDY) are all available at the edge connector of the CPU card.

A more detailed description of the CPU inputs and outputs may be found in the SY6500 hardware manual available from Synertek Inc.

PROGRAM RAM

There are 1024 bytes of program RAM provided on the CPU card. The program RAM is hardwired addressed as the first 1024 bytes of the CPU's 64K of memory address space. It may become necessory to remove these RAM's from their sockets if a 4K memory card is also hardwired in this address space. The program RAM on the CPU card uses 2114 4K static RAMS.

MONITOR ROM AND INTERRUPT VECTOR RAM

The monitor ROM is located in the last 1K bytes of the lower half of memory space (first 32K bytes). The interrupt vector RAM is located in the last 64 bytes of the 64K memory address space.

The monitor ROM and interrupt vector RAM as well as additional I/O are implemented with a single SY6530 chip.

PROGRAMMABLE USER I/O

The programmable I/O lines available from the CPU card are provided by a Peripheral Interface Adapter (PIA) and the 6530 multi-function chip.

The PIA has two 8-bit I/O ports with two interrupt-causing control lines each. A data direction register for each port determines whether each I/O line is an input or an output. A detailed description of the PIA chip may be found in the SY6500 microcomputer family Hardware Manual.

The 6530 ROM chip provides 10 additional I/O lines that may also be specified as input or output lines under program control. There are eight I/O lines from one port on the 6530 and two lines from the second port. These I/O lines may be used in conjunction with DEMON for interfacing a high speed paper tape reader to the CPU card. In the paper tape reader application, the eight I/O lines from the second port are used to accomplish the handshake control between the reader and the CPU card.

The PIA is hardwired addressed as location 4600_{16} to 4603_{16} in the memory address space. Memory addresses from 4000_{16} to 5003_{16} are allocated for PIA devices so that the SUPER JOLT system may be easily expanded to accommodate up to eight PIA chips. For a complete illustration of memory allocation refer to section 3.

STANDARD INTERFACE CIRCUITS

The SUPER JOLT CPU card provides direct interfacing with a 20 ma current loop RS232C interface requires +12v and -10v. Both interfaces are wired in parallel on the input and output thereby allowing both interfaces to be used simultaniously. The TTL input must be jumpered as an option in place of the EIA input. For further assistance in connecting the SUPER JOLT CPU to a terminal refer to section 1.

SECTION 3

MEMORY MAP AND ON-BOARD JUMPER OPTIONS

SUPER JOLT SYSTEM MEMORY MAP

The memory map on the following pages explains what functions have been assigned to each segment of the SUPER JOLT address space. It is recommended that users respect this space allocation when adding memory and peripherals to their SUPER JOLT systems. Space has been reserved for 32K bytes of user RAM or ROM, seven additional PIA devices, and up to 512 user I/O devices registers. Other areas are reserved for JOLT expansion, i.e., new SUPER JOLT peripherals and memory options will use these spaces. Users are advised to not use SUPER JOLT expansion space unless absolutely necessary.

Note that some areas used by the SUPER JOLT CPU board and PIA boards have more space indicated than there are registers or locations in the device occupying them. This is because these devices do not decode all address bits, or use some of the address bits for special functions. For example, the 6530 timer determines the time scale and interrupt enable/disable by the address used to access it. Thus, these "partly filled" areas are actually entirely used and are not available for other uses.

(1) Standard on Superjolt CPU Card

- (1) Standard on JOLT CPU board.
- (2) Available to user—not used by DEMON.
- (3) To get enable-interrupt address, add 0008_{16} to disable-interrupt address with corresponding functions.
- (4) Reserved for DEMON use—TTY control and reset functions.

JUMPER	POSITION	APPLICABLE ADDRESS OPTION	DESCRIPTION
A	1 2		ADDRESS BUFFERS ALWAYS ENABLED ADDRESS BUFFERS TRI-STATE EXTERNALLY CONTROLLED
В	3 4		-10v power input (ON-BOARD REGULATED TO -5v) -5v power input (BY-PASSES REGULATOR)
C (1)	5 6		AUTO POWER-ON TO "DEMON" - ENABLED AUTO POWER-ON TO "DEMON" - DISABLED
D	7 8	E,F,G,H A,B,C,D	All CONTROL'S ROM SOCKET SELECTION Alo CONTROL'S PROM SOCKET SELECTION
E	9 10	E,F,G,H A,B,C,D	Al5 ROM ADDRESS ENABLE All PROM ADDRESS ENABLE
F	11 12	C,D,G,H A,B,C,D	A13 PROM/ROM ADDRESS ENABLE A13 PROM/ROM ADDRESS ENABLE
G	13 14	E,F,G,H A,B,C,D	A10 ROM ADDRESS ENABLE -5v prom ADDRESS ENABLE
H (1)	15 16	A,E	ENABLES 16 BYTE RAM ON 6530 DISABLES 64 BYTE RAM ON 6530
J	17 18	B,D,F,H A,C,E,G	Al2 PROM/ROM ADDRESS ENABLE Al2 PROM/ROM ADDRESS ENABLE
K	19 20		EIA INPUT TTL INPUT

NOTE: (1) - The purpose of option H-16 is to allow PROM or RAM memory to exist at high address locations (such as F---) while still using the 6530 I/O - timer and "DEMON" subroutines, however, use of this option disables the Auto Power-On to "DEMON" (Jumper C must be in position 6)

EXA	MPLES	<u>FUNCTION</u>
C-6	H-16	PWR. ON TO PROM/ROM MEMORY AT RESET VECTOR
C-6	H-15	PWR. on to 6530 RAM (not useful)
C-5	H-16	AUTO PWRON DISABLED, 6530 RAM DISABLED
C-5	H-15	AUTO PWRON, 6530 RAM ENABLED

SUPER JOLT ON-BOARD JUMPER OPTIONS

ADDRESS BITS →	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		ADDRE OPTIC	
START ADDRESS F800 FC00	1	1	1	1	1	0	-	-	-	-	<u>-</u>	-	-	-	-	-	(1Kx8)2708 2708	PROM-1 PROM-2	A
E800 EC00	1	1	1	0	1	0	-	-	-	-	<u>-</u>	<u>-</u>	-	<u>-</u>	<u>-</u>	-	2708 2708	PROM-1 PROM-2	В
D800	1	1	0	1	1	0	<u>-</u>	-	-	-	-	<u>-</u>	-	-	<u>-</u>	-	2708 2708	PROM-1 PROM-2	С
C800	1	1	0	0	1	0	-	-	<u>-</u>	-	<u>-</u>	-	-	<u>-</u>	<u>-</u>	<u>-</u>	2708 2708	PROM-1 PROM-2	D
F000 F800	1	1	1	1	0	-	-	-	-	-	-	-	-	<u>-</u>	<u>-</u>	<u>-</u>	(2Kx8)9216 9216	ROM-1 ROM-2	E
E000 E800	1	1	1	0	0	-	-	- -	- -	-	-	- -	-	-	<u>-</u>	-	9216 9216	ROM-1 ROM-2	F
D800	1	1	0	1	0	-	<u>-</u>	- -	-	<u>-</u>	-	-	-	<u>-</u>	<u>-</u>	-	9216 9216	ROM-1 ROM-2	G
C800	1	1	0	0	0	-	-	-	-	-	<u>-</u>	- -	-	- -	<u>-</u>	-	9216 9216	ROM-1 ROM-2	н
7000	0	1	1	1	Х	x	-	_	-	-	-	-	-	-	-	-	1Kx8 6530 "	'DEMON" R	MON
0000 FFC0	0	0	0	0	0 X	0 X	1	1	1	1	-	-	-	-	<u>-</u>	-	1Kx8 64x8	RAM 6530 RAM	1
4600	0	1	0	0	0	1	1	X	х	x	X	x	X	X	-	-	6520/	6820 PIA	
6E00	0	1	1	0	x	х	1	0	0	0	-	-	-	-	-	-	6530	I/O TIME	R
Legend for Above:																			

(1) Legend for Above:

- Address lines decaded inside memory or I/O chip
- O Address line logic state for valid enable
- 1 Address line logic state for valid enable
- X Indicates address line not used in decoding
- (2) How to use: Select one (1) address option from A-H, then use jumper option chart to determine the required on-board jumpers.
- (3) Address Decoding equations on-board (inside) 6530 Chip

RSO = PIN 4 CSI = PIN 18 CS2 = PIN 19

ROM ENABLE = RSO · CSI · CS2

 $= \overline{\text{A15} \cdot \text{A14} \cdot \text{A13} \cdot \text{A12}} \quad \text{(for Super Jolt)}$ RAM ENABLE = RSO·CSI·CS2·A9·A8·A7·A6

= A15 - A14 - A13 - A12 - A9 - A8 - A7 - A6

I-O/TIMER ENABLE = RSO CSI CS2 A9 A8 A7 A6

= A15-A14-A13-A12-A9-A8-A7-A6

SUPER JOLT MEMORY - I/O DECODING MAP

SECTION 4

DEMON MONITOR CHECKOUT

You are now ready to check out your JOLT DEMON monitor. The instructions which follow assume that your JOLT is connected to a suitable power supply and a teletype or other serial computer terminal. A detailed description of the DEMON monitor starts on page 4-28. Here is a summary of its features:

DEMON is the DEbug MoNitor program for the JOLT Microcomputer. It is supplied in read-only memory (ROM) as part of the 6530 multi-function chip on the JOLT CPU board. Because the DEMON code is non volatile, it is available at system power-on and cannot be destroyed inadvertantly by user programs. Furthermore, the user is free to use only those DEMON capabilities which he needs for a particular program. Both interrupt types, interrupt request (IRQ) and non-maskable interrupt (NMI) may be set to transfer control to DEMON or directly to the user's program.

DEMON communicates with the user via a serial full-duplex port (using ASCII codes) and automatically adjusts to the speed of the user's terminal. Any speed--even non-standard ones--can be accommodated. If the user's terminal has a long carriage return time, DEMON can be set to perform the proper delay. Commands typed at the terminal can direct DEMON to start a program, display or alter registers

and memory locations, set breakpoints, and load or punch programs. If available in the system configuration, a high-speed paper tape reader may be used to load programs through a parallel port on the 6530 chip. Programs may be punched in either of two formats—hexadecimal (assembler output) or BNPF (which is used for programming read-only memories). On loading or modifying memory, DEMON performs automatic read-after-write verification to insure that addressed memory exists, is read/write type, and is responding correctly. Operator errors and certain hardware failures may thus be detected using DEMON.

DEMON also provides several subroutines which may be called by user programs. These include reading and writing characters on the terminal, typing a byte in hexadecimal, reading from high-speed paper tape, and typing a carriage-return, line-feed sequence with proper delay for the carriage of the terminal being used. Program tapes loaded by DEMON may also specify a start address so that programs may be started with a minimum of operator action.

CHECKOUT INSTRUCTIONS

- () l. Turn power on, or if the power is on, perform a RESET operation. Type a carriage-return on the terminal. DEMON should respond with:
- * 7052 30 18 FF 01 FF

 (Exact values may vary, although the first and last values should be as shown). If no response or a garbled response occurs, RESET and try again. In case of continued trouble, refer to the diagnostic section of the CPU Assembly Manual.

The "* 7052 30 18 FF 01 FF" printout is DEMON's standard breakpoint message format. It consists of an asterisk "*" to identify the breakpoint printout, followed by the CPU register contents in this order: PC, P, A, X, Y, and S, i.e., Program Counter, Processor Status, Accummulator, X index, Y index and Stack Pointer. Note that all DEMON inputs and outputs are in base 16 which is referred to as hexadecimal, or just hex. In hexadecimal, the "digits" are 0,1,2...,A,B,C,D,E,F. After printing the CPU registers, DEMON is ready to receive commands from you, the operator. DEMON indicates this "ready" status by typing the prompting character "." on a new line.

() 2. DEMON's response to RESET is to wait for a carriagereturn and then print the user's registers. DEMON uses this carriage return-character to measure the terminal line speed. If you have a settable-rate terminal, change the rate (any speed between 10 and 30 cps will work) and repeat Step 1. DEMON should respond at the new terminal speed.

() 3. The user's CPU registers may also be displayed with the R command. Type an R. The monitor should respond as above, but without the asterisk. Presence of the asterisk indicates that an interrupt or break instruction caused the printout.

- () 4. Displayed values may be modified using the Alter
- (:) command. To modify register contents, type a colon (:)
 followed by the new values. For example:

Notice that DEMON automatically types spaces to separate data fields. (Note: Characters typed by you, the user, are underlined in this document for clarity. Everything else is typed by the computer.) Examine your registers (R command) to verify the changes.

Memory may be examined and modified, as above, using the M and : commands. Try this:

 \underline{M} 0100 00 66 23 EE 01 A2 41 6E The memory command (M) causes DEMON to type the contents of the first eight bytes of memory. (Memory data will be random on startup). Alter and verify these bytes using the Alter command, as above:

If only part of a line is to be altered, items to be left unchanged can be skipped over by typing blanks, and carriagereturn (1). Try this:

() 5. Try to alter a location in DEMON ROM:

DEMON verifies all changes to memory. Since locations 7000 through 7007 are in read-only memory, alteration is not possible. DEMON signals write failure with a question mark. Similarly, the monitor will notify you of an attempt to alter a non-existant location:

Note that attempts to <u>read</u> non-existant memory will normally yield the high-order byte of the address read.

() 6. There are three hardware facilities which may be used to stop a running (or run-away) program without the program itself calling DEMON. These are the hardware inputs RESET,

IRQ, and NMI. To test this feature enter the following program at location 0000:

location	contents	ins	instruction						
0000	4C	LOOP	JMP	LOOP					
0001	00								
0002	00								

(Use the M and : commands.)

Now, set the program counter (PC) to this location using the R and : commands. Finally, tell DEMON to start executing your program using the GO (G) command:

The computer should now be executing the program. It will continue to run until interrupted. Using the interrupt request line (IRQ), interrupt the processor. It should respond with:

Try the same experiment with non-maskable interrupt (NMI). The result should be the same except for a "#" character preceeding, which identifies the NMI printout. Finally, try it with RESET. RESET, however, forces JOLT to branch to DEMON, loosing the old PC and other register contents. Thus NMI is the preferred means for manually interrupting program execution. IRQ may also be

used unless it is required for other functions such as peripheral interrupts.

() 7. Use M and : to enter the following test program called CHSET because it prints the character-set on the terminal.

Note that Alter (:) commands may be repeated without intervening M commands to set sequential locations:

; CHECKOUT PROGRAM -- PRINT THE CHARACTER SET ON USER TERMINAL

CRLF =\$728A ;ADDRESS OF DEMI	ON CRLF ROUTINE
WRT = \$72C6 ;ADDRESS OF DEMI	ON WRITE ROUTINE
;	
OOOO *=0 ; VARIABLE STORAG	GE IN PAGE ZERO
COOO CHAR *= *+1 ;STORAGE FOR CHA	ARACTER
;	
3001 #=\$0100 ;PROGRAM STARTS	ON PAGE ONE
i	
	TURN & LINE FEED
0103 A9 20 LDA #\$20 FIRST CHAR IS	A SPACE
0105 85 00 STA CHAR ;INITIALIZE	
;	
0107 A5 00 LOOP LDA CHAR GET CHARACTER	
3109 C9 6C CMP #\$6C ;CHECK FOR LIMI	Τ
010B FO 08 BEO DONE ; DONE IF 60	
;	
0100 20 C6 72	
0110 E6 00 INC CHAR : NEXT CHAR CODE	
0112 4C 07 01 JMP LOOP ; CONTINUE	
;	
	TO DEMON MONITOR

0100 20 8D 72 20 EC 72 . <u>M</u> 8D 26 0100 · <u>:</u> 20 8A 72 A9 20 85 00 A5 0108 00 C9 60 F0 08 72 · <u>:</u> 20 C6 0110 E6 00 4C 07 01 00 4C 00 • : Ţ 0118 01 . :

Now run the program. Do this by setting the PC to 0100 and using the G command. The listing should look like this:

```
•R 0000 30 00 00 00 FF

• i 0100 }
• G

• ''**$%&'()*+,-•/0123456789:;<=>?@ABCDEFGHIJKLMN@P@RSTUVWXYZ[\]*+

* 0116 33 60 00 00 FF
```

The program may be continued, causing it to execute again, by typing G:

```
• G
    !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMN@PQRSTUVWXYZ[\]++
    # 0116 33 60 00 00 FF

• G
    !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMN@PQRSTUVWXYZ[\]++
    * 0116 33 60 00 00 FF

• G
    !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMN@PQRSTUVWXYZ[\]++
    * 0116 33 60 00 00 FF
```

The CHSET program uses two DEMON monitor functions: CRLF is the DEMON function which causes a carriage-return and line-feed to be typed on the terminal. WRT is the routine which prints the character whose code is in the A register at the time of the call.

() 8. Save the CHSET program on paper tape (if your

terminal has a punch) as follows: First, punch some leader tape with the terminal in local mode. Then return to line mode and enter:

.WH 0100 0118 }

Turn the punch on after typing the second address, but <u>before</u> typing carriage-return. Then type carriage-return to punch the tape. When punching stops, turn the terminal back to local and type:

;00

and some blank trailer. This is a zero-length record which terminates your tape. See Appendix III for more information on tape formats.

() 9. Try re-loading your program using the LH command:

.LH

Now start the reader to load the program. The tape will be read and printed simultaneously. Stop the tape when the end is reached. (Before loading, you may wish to destroy the program in memory to verify that loading from tape actually works.)

() 10. Use the M and : commands to load the following program:

```
CHECKOUT PROGRAM -- PRINT BINARY OF TYPED CHARACTER
               ÷
                                   ; VARIABLE STORAGE IN PAGE ZERO
                       *=0
0000
                                   STORAGE FOR CHAR DURING DISSECTION
0000
               BINARY
                       *=*+1
                                   COUNT OF BITS REMAINING TO PRINT
                       *=*+1
               CCUNT
0001
                                   PROGRAM BEGINS ON PAGE ONE
                       *=$0100
0005
                                   ; DEMON CRLF ROUTINE
               CRLF
                       =$728A
                       =$7206
                                   ; DEMON WRITE ROUTINE
               WRT
                                   ;DEMON READ ROUTINE
               RCT
                       =$72E9
                                   ; DEMON SPACE ROUTINE
               SPACE
                       =$7377
                       JSR CRLF
                                  PRINT CARRIAGE RETURN & LINE FEED
0100 20 8A 72
               PBIN
                                  GET A CHARACTER
0103 20 E9 72
                       JSR RDT
                       STA BINARY ; SAVE FOR DISSECTION
0106 85 00
                       JSR SPACE ; PRINT A SPACE
0108 20 77 73
                                   ; INITIALIZE BIT COUNT
010B A9 08
                       LCA #8
                       STA COUNT
010D 85 01
                       LDA # 0
                                   ;ASSUME ZERO: LOAD ASCII "O"
010F A9 30
               PBLCOP
0111 06 00
                       ASL BINARY ; C=NEXT BIT
                       BCS PRINT SPRINT ZERO
0113 BC 02
                                   ;LOAD ASCII "1"
                       LD4 # 1
0115 49 31
                                   PRINT BINARY DIGIT
                       JSR WAT
0117 20 06 72
               PRINT
                       DEC COUNT SCOUNT BIT PRINTED
011A 06 01
                       BPL PBLOOP ;00 NEXT BIT
0110 10 F1
                                  ;DO IT ALL AGAIN
011E 40 00 01
                       NIES SML
```

```
00 A5
                                       20
                                             85
                           72
                                 Α9
       0100
               20
                     8D
. <u>M</u>
                                             72
                                                   85
                                                         00
                      8A
                           72
                                 20
                                       E9
       0100
                20
· <u>:</u>
                                                   01
                                                         A9
       0108
                20
                     77
                           73
                                 <u>A9</u>
                                        08
                                             85
<u>:</u> :
                                                         20
                                             A9
                                                   31
                30
                     06
                           00
                                 B0
                                       02
       0110
• <u>:</u>
                                                         00
                                        10
                                             F1
                                                   4C
                C6
                      72
                           C6
                                  01
       0118
. <u>:</u>
       0120
                01
<u>. :</u>
```

The purpose of this program is to print the binary representation of an ASCII input character on the terminal.

Run the program by starting it at location 0100. Try typing some characters:

There is obviously something wrong with the program. Bits which should be printed as 1's are 0's and vice versa. (Refer to your 6500 reference card for character codes.) Looking at the program, the problem is that the branch after PBLOOP goes the wrong way! It should be BCC, Branch if Carry Clear (or alternatively, the 1 and 0 loads could be interchanged). Thus, when a one-bit is shifted out of the character, a one should be printed.

Patch the program and try again (the code for BCC is 90).

```
72 C6
                       A9
                             31
                                       C9
             В0
                   02
      0113
. <u>M</u>
      0113
              90
             31
                  FC
                       FF
                             01
                                  FF
. <u>R</u>
      7052
      0100
· :
.<u>G</u>
U 010101010
B 010000100
   001100010
```

There is, alas, still an error--one too many bits is being printed. The cause of this is a little less obvious. (Do you see it?) To investigate the problem, set a breakpoint at location OllE. Do this by replacing the instruction there with a BRK (code of 00). Then run the program:

```
4C
                                       00
                                            01
                                                00
      011E
             4C
                  00
                        01
                             EF
. M
      011E
             00
· <u>:</u>
                  FC FF
      7052 31
                             01 FF
. <u>R</u>
      0100
<u>. :</u>
. <u>G</u>
  010101010
U
                  00 00 AA FF
      011F B0
```

Once the break has occurred, you are free to investigate the state of the program using DEMON. In particular, check the value in location COUNT:

.M 0000 00 FF 1B 2E 31 EA FO FA

Aha! Although COUNT starts out with a value of 8, it is going one step too far (FF is minus 1). This is because the test instruction, BPL PBLOOP is testing to see whether the count is

greater than or equal to zero. Replace it with BNE (code D0), replace your breakpoint with the original contents at that location, and try the program again.

- .<u>M</u> <u>011C</u> 10 F1 00 00 01 EF 4C
- .<u>:</u> 011C <u>D0</u> <u>4C</u>
- .<u>R</u> 011F B0 00 00 AA FF
- ·<u>: 0100 }</u>
- .<u>G</u>
- <u>U</u> 01010101
- <u>B</u> 01000010
- <u>1</u> 00110001
- <u>I</u> 01001001
- <u>w</u> 01010111
- 0 01001111
- <u>R</u> 01010010
- <u>K</u> 01001011
- <u>s</u> 01010011

```
CHECKOUT PROGRAM -- PRINT BINARY OF TYPED CHARACTER
               ;
                                  ; VARIABLE STORAGE IN PAGE ZERO
0000
                       *=0
0000
               BINARY
                       *=*+1
                                   STORAGE FOR CHAR DURING DISSECTION
                                   ; COUNT OF BITS REMAINING TO PRINT
1000
               CCUNT
                       *=*+1
               ;
2000
                       *=$0100
                                  ;PROGRAM BEGINS ON PAGE ONE
               CRLF
                       =$728A
                                  ; DEMON CRLF ROUTINE
                                  ; DEMON WRITE ROUTINE
               WRT
                       =$7206
               RCT
                       =$72E9
                                  ; DEMON READ ROUTINE
               SPACE
                       =$7377
                                   ; DEMON SPACE ROUTINE
0100 20 84 72 PBIN
                                  PRINT CARRIAGE RETURN & LINE FEED
                       JSR CRLF
0103 20 E9 72
                       JSR RDT
                                  GET A CHARACTER
                       STA BINARY ; SAVE FOR DISSECTION
0106 85 00
0108 20 77 73
                       JSR SPACE ; PRINT A SPACE
010B 49 08
                       LCA #8
                                  ; INITIALIZE BIT COUNT
010D 85 01
                       STA COUNT
                      LDA # 0
               PBLCOP
010F 49 30
                                  ;ASSUME ZERO: LOAD ASCII "O"
                       ASL BINARY ; C=NEXT BIT
0111 06 00
0113 90 02
                       BCC PRINT JPRINT ZERO
               ;
                                  ;LCAD ASCII "1"
0115 A9 31
                       LCA # 1
0117 20 06 72
               PRINT
                       JSR WRT
                                  PRINT BINARY DIGIT
                       DEC COUNT ; COUNT BIT PRINTED
011A 06 01
                       BNE PBLCCP ; DO NEXT BIT
0110D0 F1
011E 4C 00 01
                       JMP PBIN
                                 ;DO IT ALL AGAIN
```

CORRECTED PBIN PROGRAM

() 11. Save the corrected program using the WH command. Before punching the terminating record (as above in step 8), turn off the punch and set the PC to the start address of the program (0100). Then punch locations 00F6 and 00F7 on the tape, then the terminator (;00), and finally, some trailer:

.R 7052 30 37 FF 01 FF
.: 0100
$$\frac{1}{2}$$

.WH 00F6 00F7 $\frac{1}{2}$
;0200F6000101A2

The resulting tape can be loaded and then started as follows:

Locations 00F6 and 00F7 contain the starting address for programs. You may assemble and load your starting address into these locations to make tapes which can be started with a minimum of operator action. The carriage-return delay time may also be set in this manner. See Appendix III.

() 12. It is also possible to punch BNPF-format tapes using DEMON. BNPF is the format used by some ROM programmers. The command is similar to that for writing hex tapes:

This command would punch the corrected PBIN program in BNPF

format. Try punching a BNPF tape. (Note that DEMON will not load tapes in this format--use hex format (WH) for saving programs for later loading into your JOLT.)

() 13. If you have a high-speed paper tape reader attached to your JOLT system, you can use it to load programs in hex format. The H command switches the load device to and from the high speed reader. If you have a high speed reader, try loading a tape as follows:

.<u>Н</u> .LH

Note that control will not return to the user terminal until a terminator record (;00) is read.

THIS COMPLETES STEP-BY-STEP CHECKOUT OF THE DEMON MONITOR

HOW TO HAND-ASSEMBLE JOLT PROGRAMS

If you do not use an assembler to convert your JOLT programs to machine language (hexadecimal), you will have to convert your programs manually. Here is a suggested procedure.

The procedure consists of four steps:

- STEP 1: Decide which variables and subroutines are to be placed in page zero and assign fixed locations to them.
- STEP 2: Look up each instruction in the 6502 code chart and record the operation code in hexadecimal, noting how many bytes of memory are required by each instruction.
- STEP 3: Determine the location in hexadecimal of each labelled instruction or variable.
- STEP 4: Fill in all remaining values, using the locations determined in Step 3.

When writing a program for hand assembly, it is desirable to split your code into small routines which can be assembled separately. Since you will be loading and debugging your program by hand, you should leave some space for changes so that complete reassembly is not required to fix small problems.

By way of illustration, the PBIN program (used in the Monitor Checkout section) will be hand-assembled:

```
; CHECKOUT PROGRAM -- PRINT BINARY OF TYPED CHARACTER
                         ; VARIABLE STORAGE IN PAGE ZERO
BINARY *=*+1
                         ;STORAGE FOR CHAR DURING DISSECTION
COUNT *-*+1
                         ; COUNT OF BITS REMAINING TO PRINT
       *=$0100
                         ; PROGRAM BEGINS ON PAGE ONE
                         ; DEMON CRLF ROUTINE
CRLF
       =$728A
WRT
                         ; DEMON WRITE ROUTINE
       =$72C6
RDT
       =$72E9
                        ; DEMON READ ROUTINE
SPACE =$7377
                        ; DEMON SPACE ROUTINE
PBIN
       JSR CRLF
                        ; PRINT CARRIAGE RETURN & LINE FEED
                        GET A CHARACTER
       JSR RDT
       STA BINARY
                         ; SAVE FOR DISSECTION
       JSR SPACE
                         ; PRINT A SPACE
       LDA #8
                         ; INITIALIZE BIT COUNT
       STA COUNT
PBLOOP LDA #'0
                        ;ASSUME ZERO: LOAD ASCII "0"
       ASL BINARY
                         ; C=NEXT BIT
       BCC PRINT
                         ; PRINT ZERO
      LDA #'1
                         ;LOAD ASCII "1"
PRINT JSR WRT
                         ; PRINT BINARY DIGIT
       DEC COUNT
                         ;COUNT BIT PRINTED
      BNE PBLOOP
                        ; DO NEXT BIT
       JMP PBIN
                        ; DO IT ALL AGAIN
```

Step 1

Decide which variables and subroutines are to be placed in page zero and assign fixed locations to them.

Page zero contains locations 0000 to 00FF. The variables that are to reside in page zero must be identified prior to assembling the rest of the program since the mode and length of some instructions depend on whether their operands are in page zero. The sample program has two variables in page zero. They are simply assigned locations sequentially:

Loc Contents Instruction

:

0000 XX BINARY *=*+1 ;STORAGE FOR CHAR DURING DISSECTION
0001 XX COUNT *=*+1 ;COUNT OF BITS REMAINING TO PRINT
:

The program does not specify initial values of these locations, so the contents position is marked with X's, indicating that no values will have to be loaded there. In this example, there are no subroutines or other instructions to be assembled in page zero. It will be more convenient for hand assembly if such code, when it occurs, is placed after the variables. Then the position of variables will not depend on the length of preceding instructions.

Step 2

Look up each instruction in the 6502 code chart and record the operation code in hexadecimal, noting how many bytes of memory are required by each instruction.

The length and code of each instruction is determined by its mode. Some instructions, such as JSR and BNE, have only one possible mode, and thus present no difficulty. The mode for other instructions depends on the operand. For example, immediate mode is indicated by a pound sign (#) followed by a value. Instructions of this type use the operation code from the immediate columns of the code chart. The value following the pound sign is put in the second byte of the instruction. For example:

Contents	Instructi	<u>on</u>
A9 08	LDA #8	
A9 31	LDA #'1	;ASCII "1"

Instructions which have a zero page mode may be assembled in that mode if the operand is in fact in page zero:

85 01 STA COUNT

The same operation with a non-zero page operand would occupy three bytes:

Since symbols other than page zero (and certain preassigned addresses like WRT) do not have locations yet, we must leave blank spots to fill in later. Do mark the correct number of spaces for the unknown bytes, since the length of instructions determines the position of instructions which follow. Similarly, branch instructions will have their second bytes blank at this point:

DO BNE PBLOOP

Thus far, the partially assembled program looks like this:

	-,	
Location	Contents	Instruction
		;CHECKOUT PROGRAM PRINT BINARY
0000 0001	XX XX	*=0 BINARY *=*+1 COUNT *=*+1
		*=\$0100 CRLF =\$728A WRT =\$72C6 RDT =\$72E9 SPACE =\$7377
	20 8A 72 20 E9 72 85 00 20 77 73	PBIN JSR CRLF - JSR RDT STA BINARY JSR SPACE
	A9 08 85 01	LDA #8 STA COUNT
	A9 30 06 00 90	PBLOOP LDA #'0 ASL BINARY BCC PRINT
	A9 31	LDA #'l
	20 C6 72 C6 01 D0	PRINT JSR WRT DEC COUNT BNE PBLOOP
	4C	JMP PBIN

Step 3

Determine the location in hexadecimal of each labelled instruction.

It is now possible to fill in the location column, because the length of each instruction is known. Count in hex $(0,1,2,\ldots,9,A,B,C,D,E,F)$ and write in the locations (of the first bytes)

of instructions and variables which have labels:

Location	Contents	Instru	ction
		; CHECK	OUT PROGRAM PRINT BINARY
0000 0001	XX XX	BINARY COUNT	
			*= \$0100
		CRLF WRT RDT SPACE	=\$72C6 =\$72E9
0100	20 8A 72 20 E9 72 85 00 20 77 73	PBIN	JSR CRLF JSR RDT STA BINARY JSR SPACE
	A9 08 85 01		LDA #8 STA COUNT
010F	A9 30 06 00 90	PBLOOP	LDA #'0 ASL BINARY BCC PRINT
	A9 31		LDA #'1
0117	20 C6 72 C6 01 D0	PRINT	JSR WRT DEC COUNT BNE PBLOOP
	4C		JMP PBIN

Step 4

Fill in the remaining values, using the locations determined in Step 3.

Locations of variables not already entered may now be filled in. Be sure to enter the low half first and the high half second.

For example, location PBIN is at address 0100. It is recorded as:

4C 00 01 JMP PBIN

Branches can now be completed by counting the number of bytes from the instruction to the target address. When going forward, count beginning with the first byte following the instruction, up to but not including the first byte at the target address. Thus, the boxed bytes are all that are counted in this example:

90				BCC	PRINT
A9	3			LDA	#'1
20	C6	72	PRINT	JSR	WRT

When branching backwards, count those bytes from the end of the branch instruction itself (counting both bytes) to and <u>including</u> the first byte of the instruction at the target address. Thus:

STA COUNT LDA #'0 A9 30 BPLOOP 010F 06 00 ASL BINARY BCC PRINT 90 02 LDA #'1 A9 31 JSR WRT 0117 20 C6 72 PRINT DEC COUNT C6 01 BNE PBLOOP JMP PBIN 4C 00 01

Although you could count in hexadecimal, it is easier to count in decimal (base 10). When counting in decimal, count up whether going forward or backward, and look up the correct hexadecimal value on the Branch Chart shown on the next page and also in Appendix V. (If you do count in hexadecimal, backward counts need to be negated. Do this by subtracting the count from 100 hexadecimal. Forward hexadecimal counts may be used without modification.)

The assembly is now complete and ready to be loaded into JOLT.

CHART OF BRANCHES: DECIMAL TO HEXADECIMAL

FORWARD	I		T	Γ	<u></u>	<u> </u>	Τ		
MSD →	0	1	2	3	4	5	6	7	
\LSD\									
0	+	16	32	48	64	80	96	112	
1	1	17	33	49	65	81	97	113	F
2 -	2	18	34	50	66	82	98	114	E
3	3	19	35	51	67	83	99	115	D
4	4	20	36	52	68	84	100	116	С
5	5	21	37	53	69	85	101	117	В
6	6	22	38	54	70	86	102	118	A
7	7	23	39	55	71	87	103	119	9
8	8	24	40	56	72	88	104	120	8
9	9	25	41	57	73	89	105	121	7
A	10	26	42	58	74	90	106	122	6
В	11	27	43	59	75	91	107	123	5
С	12	28	44	60	76	92	108	124	4
D	13	29	45	61	77	93	109	125	3
E	14	30	46	62	78	94	110	126	2
F	15	-31	47	63	79	95	111	127	
	16	32	48	64	80	96	112		0
									†LSD†
	F	Е	D	С	В	A	9	8	← MSD BACKWARD

Location	Contents	Instru	ction
		;CHECK	OUT PROGRAM PRINT BINARY
0000 0001	XX XX	BINARY COUNT	
		WRT RDT	=\$728A =\$72C6 =\$72E9 =\$7377
0100	20 8A 72 20 E9 72 85 00 20 77 73	PBIN	JSR CRLF JSR RDT STA BINARY JSR SPACE
	A9 08 85 01		LDA #8 STA COUNT
010F	A9 30 06 00 90 <u>02</u>	PBLOOP	LDA #'0 ASL BINARY BCC PRINT
	A9 31		LDA #'1
0117	20 C6 72 C6 01 D0 <u>F1</u>	PRINT	JSR WRT DEC COUNT BNE PBLOOP
	4C 00 01		JMP PBIN

NOTE, HINTS, & RECOMMENDATIONS FOR USING YOUR JOLT MICROCOMPUTER

Storage Allocation

Some care in selecting locations for programs will save programming time and memory space. Page zero storage (0000 to 00FF) is a special resource in your system since it can be used for indirect references (to tables or routines) and since direct references to page zero locations require shorter instructions (2 instead of 3 bytes) for most instructions. Therefore, you will probably want to give priority to putting variables and data in page zero. Be sure to avoid locations at the high end of the page, however, since these are used by DEMON (00E3 to 00FF).

Code and data may also be placed in page one (0100 to 01FF). Be careful, however, to leave sufficient space for the stack (which, with DEMON's initialization, fills from the high end of the page downward, from location 01FF towards location 0100). You should allow at least three bytes for each level of nested subroutine call or interrupt possible in your program, plus space for all data you push onto the stack, plus an additional 20₁₀ bytes for DEMON. Failure to leave enough space may cause part of your program or data to be overwritten by the stack, with unpredictable results.

DETAILED DESCRIPTION OF DEMON

DEMON Commands +

Command	Description
\overline{f}	Set line speed. After RESET, a carriage
	return is typed to allow DEMON to measure
	the line speed.
• <u>R</u>	Display user registers. The format is:
	PC P A X Y S
	where:
	PC is the program counter
	P is the processor status
	A is the A (accumulator) register
	X is the X (index) register
	Y is the Y (index) register
	S is the stack pointer low byte (high byte is always 01)
• <u>G</u>	Go. Begin execution at user PC location (see R command).
.M addr	Memory examine. DEMON will display the eight
	bytes beginning at address <u>addr</u> .
.: ADDR <u>data</u>	Alter registers or memory. DEMON allows the
	user to alter registers (if R command pre-
	cedes) or memory (if M command precedes).
	Values for registers or memory locations
	which are not to be changed need not be typed
[†] Characters typed ters are typed by	by the user are underlined. All other charac- the computer. I means carriage return.

— these fields may be skipped by typing spaces instead of data. The remainder of the fields in a line may be left unchanged by typing carriage return. The : command may be repeated to alter subsequent memory locations without the necessity of typing intervening M commands. Note that DEMON automatically types spaces to separate data fields.

. LH

Load Hexadecimal. DEMON responds with carriage return, line-feed and loads data in assembler output format from the terminal or high-speed paper tape reader. The format is:

Zero or more leading characters except
";" (usually blank leader)

Any number of records of the form: ;ccaaaadddd....ddssss

where:

 cc is the number of bytes in the record in hex

aaaa is the hex address to store the first byte of data

dddd....dd is the data (two hex digits
per byte)

ssss is the check-sum, which is the arithmetic sum, to 16 bits, of all the count, address and data bytes represented by the record

A terminating record of zero length, either: ;00 or ;

Note that read-after-write and check-sum tests are performed. An error will result in a "?" being typed at the point the error occurred. Data from records with bad check-sums is deposited in memory as received, prior to the error stop.

• <u>H</u>

High-speed/low-speed reader switch. This command switches the load device from the user's terminal to the high-speed reader or vice versa.

.WH addl addh \

Write Hexadecimal. An assembler-format tape is generated at the user's terminal. Format is as described above in the LH command description. Note that the address range must be specified with the lower address first. As in the Alter command, DEMON types the space between the address fields.

.WB addl addh }

Write BNPF. A BNPF format tape is generated at the user's terminal. Format is one or more records as follows:

aaaa Bdddddddf Bdddddddf Bddddddf Bddddddf Where:

aaaa is the address of the first of the four bytes specified in the record. (Note: BNPF conventions require that the letter "B" never occur in the address field. Blanks are substituted by DEMON.)

B is the letter "B", meaning begin data. dddddddd is eight data bits—P for logical true, N for logical false.

F is the letter "F", meaning finish.

Note that the BNPF format is output as multiples of four bytes. Thus, a multiple of four bytes will always be punched even if a non-multiple of four bytes is specified.

11

Cancel Command. While typing any command, its further effect may normally be terminated by typing one or two carriage returns, as required. During alter (:), carriage return means that no further bytes (or registers) are to be altered.

DEMON Interrupt and Breakpoint Action

BRK

The BRK instruction causes the CPU to interrupt execution, save PC and P registers on the stack, and branch through a vector at locations FFFE and FFFF. DEMON initializes this vector to point to itself on RESET. Unless the user modifies this vector, DEMON will gain control when a BRK instruction is executed, print an asterisk "*" and the registers (as in R command), and wait for user commands. Note that after a BRK which vectors to DEMON, the user's PC points to the byte following the BRK; however, users who choose to handle BRK instructions themselves

should note that BRK acts as a two-byte instruction, leaving the PC (on return via RTI) two bytes past the BRK instruction.

IRQ

Interrupt Request is also vectored through location FFFE. The CPU traps (as with BRK) through this vector when IRQ goes low, provided interrupts are not inhibited. Since this vector is the same as for BRK, DEMON examines the BRK bit in the P register after this type of interrupt. If a BRK did not cause the interrupt, then DEMON will pass control through the UINT vector. Users should normally put the address of their interrupt service routine in the UINT vector location. If an IRQ occurs and UINT has not been set by the user, DEMON reports the unexpected interrupt in the same way as an NMI (see below).

NMI

Non-Maskable Interrupts vector through location FFFA. DEMON initializes this vector at RESET to point to itself. If an NMI occurs, a pound-sign character (#) precedes the asterisk and CPU registers printout. This action is the same for IRQ's if the user has not set this vector to point to his own routine.

RESET or POWER-UP

On RESET or POWER-UP, DEMON takes control, initializes itself and the system, sets defaults for interrupt vectors and waits for a carriage-return input from the user to determine terminal line speed. After carriage-return is typed, control is passed to the user as in BRK.

DEMON Monitor Calls and Special Locations

<u>Call</u>	Address	Action		Arg.	Result	Notes
JSR WRT	72C6	Type of ch	aracter	A	None	A,X cleared Y preserved
JSR RDT	72E9	Read a cha	racter	None	A	X cleared Y not preserved
JSR CRLF	728A	Type CR-LF	and delay	None	None	A,X cleared Y preserved
JSR SPACE	7377	Type a spa	ce character	None	None	A,X,Y preserved
JSR WROB	72B1	Type a byt	e in hex	A	None	A,X cleared Y preserved
JSR RDHSR	733D		racter from None paper tape	Xchar read Achar trimmed to 7 bits		Y preserved
Function	Loca	ations	Notes			
Start Addre	ss 00F6	5,00F7	Set with hex tape	e on load		
CR-LF Delay	00E:	3	Set on load or watimes, minimum of time delay).	ith user prof f l. Zero	ogram (in means 256	bit bits-
UINT	FFF	3	User IRQ vector			
NMI Vector	FFF	A	Hardware NMI vec	tor		
RESET Vecto	r FFF	C	Hardware RESET v	ector		
IRQ Vector	FFF	E	Hardware IRQ vec	tor		

6502 Processor

- 1. Addresses for the 6502 processor are always stored low-order byte first, high-order byte second. Thus the lower part of an address is in the location having the lower-numbered address.
- 2. BRK acts as a two-byte instruction. When entered via BRK, DEMON adjusts the PC so as to make BRK in effect, operate as a one-byte instruction. Users who elect to handle BRK themselves (by changing the hardware IRQ interrupt vector) should be aware of this difference and program accordingly.
- 3. Certain undefined operation codes will cause the 6502 CPU to "hang-up". When in this "hung-up" state, the CPU can only be stopped with reset. NMI will not work. All other undefined codes may have unpredictable effects. Undefined codes should be avoided.
- 4. Attempting to read non-existent memory locations will usually yield the high-order part of the address as data. However, this is not true in all cases (indexed loads may respond differently), and should not be relied upon.

The JOLT CPU Board

- 1. User PIA's are not fully address decoded, which means that each PIA uses 1K of address space. Thus, each PIA register appears every 4 locations in the 1K space used by that PIA. See the JOLT memory map in Appendix III.
- 2. Unless debouncing is provided for an NMI button, several interrupts can occur when this button is pressed. The result is that DEMON is interrupted in the process of servicing the original interrupt, and the users CPU registers are lost. With proper debouncing, however, CPU registers printed by DEMON after NMI will correctly reflect the state of the machine when the first interrupt occured.

DEMON Memory Usage

DEMON uses the top 29_{10} bytes of page zero (locations 00E3 through 00FF). The user is advised to avoid these locations, except as noted above, if return to DEMON or use of DEMON subroutines is required before RESETing the processor. DEMON also uses the hardware stack when it is in control. Provided the user does not alter the stack pointer during a break, and provided the stack does not overflow, DEMON will restore the stack to its original status before returning to the user's program. The user is advised to use page 1 (the stack page) cautiously, leaving at least 20_{10} bytes for DEMON use during a break or when using other DEMON functions.

SY6502 INSTRUCTION SET SUMMARY

The following symbols are used in this summary:

A	Accumulator
Х, У	Index Registers
М	Memory
P	Processor Status Register
S	Stack Register
L, LOC	Absolute Location
Z	Zero-Page Location
*	Affected
-	Not Affected
+	Sum
Λ	Logical AND
-	Difference
¥	Logical Exclusive Or
†	Transfer From Stack
¥	Transfer To Stack
→	Transfer To
+	Transfer To
V	Logical OR
PC	Program Counter
PCH	Program Counter High
PCL	Program Counter Low
#	Immediate Addressing Mode

SY6502 INSTRUCTION SET SUMMARY

Addressing Modes

	Ţ				e zero			
Example		Code for transfer A to X	Code for rotate left A	Code for load A immediate Constant to use	Code for load A zero page Low part of address on page	Code for zero page indexed by X Base address on page zero	Code for zero page indexed by Y Base address on page zero	Code for load A absolute Low part of address High part of address
田	i	AA	2A	A9 03	A5 75	B5 75	B6	AD 47 02
		TAX	ROL A	LDA #3	LDA Z	LDA Z,X	LDX Z,Y	LDA L
# Bvtes	7	*	н	2	2	7	6	ю
Description		The operation performed is implied by the instruction.	The operation is performed upon the A register.	The data accessed is in the second byte of the instruction.	The address within page zero of the data accessed is in the second byte of the instruction.	The second byte of the instruction plus the contents of the X register (without carry) is the address on page zero of the data accessed.	The second byte of the instruction plus the contents of the Y register (without carry) is the address on page zero of the data accessed.	The address of the data accessed is in the second and third bytes of the instruction.
Mode		IMPLIED	ACCUMULATOR	IMMEDIATE	ZERO PAGE	ZERO PAGE INDEXED BY X	ZERO PAGE INDEXED BY Y	ABSOLUTE

*Except BRK which is two bytes when not using DEMON.

		Bytes		EX	Example
INDEXED BY X	The address in the second and third bytes of the instruction, plus the contents of the X register is the address of the data accessed.	'n	LUA L, X	47 02	Code for load A indexed by A Low part of base address High part of base address
INDEXED BY Y	The address in the second and third bytes of the instruction, plus the contents of the Y register is the address of the data accessed.	м	LDA L,Y	B9 47 02	Code for load A indexed by Y Low part of base address High part of base address
INDIRECT PRE-INDEXED BY X	The second byte of the instruction plus the contents of the X register (without carry) is the address on page zero of the two-byte address of the data accessed.	~	LDA (Z,X)	A1 75	Code for load A, indirect pre- indexed by X Base address on page zero
INDIRECT POST-INDEXED BY Y	The contents of the page zero two- byte address specified by the second byte in the instruction, plus the contents of the Y regis- ter is the address of the data accessed.	7	LDA (Z),Y	B1	Code for load A, indirect post-indexed by Y Base address of page zero
RELATIVE BRANCH	The second byte of the instruction contains the offset (in bytes) to branch address.	2	BEQ LOC	F0 07	Code for branch if equal Seven bytes.ahead
INDIRECT JUMP	The address in the second and third bytes of the instruction is the address of the address to which the jump is made.	ю	JMP (LOC)	6C 47 02	Code for jump indirect Low part of indirect address High part of indirect address

,												
	БÜ	1	ı	1	ı	ı	1	1	1	1	1	٦.
	>	*	1	1	ı	ı	ı	M6	ı	1		1
Lon	Д	1	1	Ī	ı	1	1	l	1	1		ŀ
Condition Codes	н	1	ı	1	ı	ı	ì	. 1	- 1	1	1	<u></u>
Co	Ü	*	1	*	ı	ı	I	ı	1	Ĭ	1	1
S	N	*	*	*	1	Í	ı	*	I	Ī	1	l .
	Z	*	*	*	ı	ı	ı	М7	ı	1	ı	T
	IND											
	KEL				90	B0	0 [4		30	<u> </u>	9	
	X'(T)	71	31									
	(r'X)	61	21									
	Ι'1	79	39									
	r'x	70	35]E								
Mode	ABS	1 ر07	2D	0E				2C				
MO	X'Z											
	X'Z	75	35	16								
	Z	65	25	90				24				
	MMI	69	29									
	DDA			OA								
	IMP											00
SY6502 INSTRUCTION SET SUMMARY	Description	$A + M + C \rightarrow A$, C Add memory to accumulator with carry	A A M > A "AND" memory with accumulator	C	Branch on C = 0 Branch on carry clear	Branch on C = 1 Branch on carry set	Branch on $\mathbf{Z} = 1$ Branch on result zero	A Λ M, M7 * N, M6 * V Test bits in memory with accumulator	Branch on N = 1 Branch on result minus	Branch on 1 cault not Seto	Branch on N 0 Branch on result plus	Forced interrupt PC↓ P↓ Force break
SYG	Instr	ADC	AND	ASL	BCC	BCS	ВЕО	BIT.	BM 1	. SE	BPL	BRK

INSTRUCTION SET SUMMARY
IWB
18
D8
28
B8
CA

	щ	ı	ı	ī	ı	1	1	i	1	1	ı
	>	1	ı	1	ı	ı	ı	ı	ı	ı	1
lon	Q	1	ı	ı	1	1	1	ı		1	I
nditi Codes	Н	1	ı	1	1	1	i	ı	ı	1	I
Condition Codes	υ	1	1	1	ı	I	ı	ı	ı		1
ပြ	77	*	*	*	*	*	ı	ı	*	· *	*
	z	*	*	*	*	*	ı		*	*	*
	IND						29				
	KET									k t	
	X'(7)		51						Bl		
	(r'X)		41						[<		
	X'7		59						. S	Ë	
	r'x		5D	[1]					GE .		BC
Mode	SAA		4D	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田			4C	20	- C	E K	AC
MO	A'Z									3	
	X'Z		55	9 E1					13.5		B4
	Z		45	E6) V B B C	Ž.	A4
	MMI		49						6.4		AO
	DDA										No. of Contract of
	IMP	88			E8	C8					
SY6502 INSTRUCTION SET SUMMARY	Description	$Y - 1 \rightarrow Y$ Decrement index Y by one	$A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	M + 1 > M Increment memory by one	X + 1 * X Increment Index X by one	$Y + 1 \rightarrow Y$ Increment index Y by one	(PC + 1) > PCL (PC + 2) > PCH Jump to new location	PC + 2 +, (PC + 1) * PCL (PC + 2) * PCII Jump to new location saving return address	M · A Lood accommutation with memory	M + X Load instex X with memory	M · y Load index Y with memory
_1	Instr	DEY	EOR	INC	INX	INY	JMP	JSR	Va"-	Xth.l	LDY

Pescription Prow Pescription Pescrip	ו ותז	SY6502 INSTRUCTION SET SUMMARY					2	Mode	C)						ŭ	Co	nditi Codes	Condition		
ry from accumulator with 38 E5 F5 ED FD F9 E1 F1 * * * * * * * * * * * * * * * * * *		Description			 	-		<u> </u>		 <u> </u>			IMD	z	2	U	н	Ω	>	ш.
+ C Set carry flag + D Set decimal mode flag + D Set decimal mode flag + D Set decimal mode flag + I Set decimal mode flag + I Set decimal mode flag + I Set interrupt disable flag + M Store accumulator in memory + M Store index X in memory - M Store inde	NO NO	ry from accumulator		- E			ļ	<u> </u>	<u> </u>					*	*	*	ı		*	. 1
Fig. 18		C Set carry	38											1	1			1	1	'
* Set interrupt disable flag * Set interrupt disable flag * M * Store accumulator in memory * M * Store index X in memory * Store index X in memory * AA * Transfer accumulator to index X * Transfer stack pointer to index X * Transfer index X to accumulator * A * Transfer index X to stack pointer * A * Transfer index X to stack pointer * A * A * A * A * A * A * A *		D Set decimal mode	F 8				ļ	<u> </u>	<u> </u>	 ļ	ļ	<u> </u>		1	1	1			1	1
* Store accumulator in memory	Н	I Set interrupt disable	78	ļ		1	-		ļ							1		1	,1	1
* M Store index X in memory 84 94 86	Ø.	M Store accumulator in			8	1	2	8.			 			'	1		i	ı		ı
* X Store index Y in memory * X Transfer accumulator to index X Transfer accumulator to index Y * Y Transfer stack pointer to index X Transfer index X to accumulator * X Transfer index X to stack pointer * BA Transfer index X to st	×	M Store index X in			ద	ဖ	96	_						ı	ı	1	1		, 1	1
Transfer accumulator to index X Transfer accumulator to index X Transfer stack pointer to index X Transfer index X to accumulator Transfer index X to stack pointer SA Transfer index X to stack pointer 9A Transfer index X to stack pointer 9A Transfer index X to stack pointer 9A Transfer index X to stack pointer	>-	M Store index Y			<u> </u>		4							- 1	1	1	!	1		- 1
Transfer accumulator to index Y Transfer stack pointer to index X Transfer index X to accumulator Transfer index X to stack pointer 9A Transfer index X to stack pointer 9A Transfer index X to stack pointer + A	A	X Transfer accumulator to index	AA			-								*	*	ı	1	1	,	1
Transfer stack pointer to index X BA * * * Transfer index X to accumulator	Æ	Υ Transfer accumulator to index	A8											*	*			-	, ,	1
Transfer index X to accumulator Transfer index X to stack pointer Transfer index X to stack pointer 9A * * * *	လ	* X Transfer stack pointer to index	BA							 				*	*	- 1			- 1	ı
Transfer index X to stack pointer 9A * * *	×	+ A Transfer index X to	₹											*	*	- 1	1	1	1	1
* * *	×	S Transfer index X to stack	9A							 				1	1	ı	I	ı	1	1
index Y to accumulator	×	+	98		-					 				*	*	1	ı	ı	l.	

CHART OF BRANCHES: DECIMAL TO HEXADECIMAL

FORWARD MSD →	0	1	2	3	4	5	6	7		
↓LSD↓					is is					
0	_	16	32	48	64	80	96	112		
1	1	17	33	49	65	81	97	113	F	
2	2	18	34	50	66	82	98	114	E	
3	3	19	35	51	67	83	99	115	D	
4	4	20	36	52	68	84	100	116	С	
5	5	21	37	53	69	85	101	117	В	
6	6	22	38	54	70	86	102	118	A	
7	7	23	39	55	71	87	103	119	9	
8	8	24	40	56	72	88	104	120	8	
9	9	25	41	57	73	89	105	121	7	
A	10	26	42	58	74	90	106	122	6	
В	11	27	43	59	75	91	107	123	5	
С	12	28	44	60	76	92	108	124	4	
D	13	29	45	61	77	93	109	125	3	
E	14	30	46	62	78	94	110	126	2	
F	15	31	47	63	79	95	111	127	1	
_	16	32	48	64	80	96	112		0	
	 								↑LSD↑	
	F	Е	D	С	В	A	9	8	← MSD BACKWARD	

Forward Branches

Count in decimal from the end of the branch instruction to target address. Do not count bytes in either the branch or target instruction. Find the count in the center of the chart. Use the Most-Significant-Digit at the top of the column, and the Least-Significant-Digit at the left of the row.

Reverse Branches

Count in decimal from the end of the branch to the beginning of the target instruction. Count all bytes in both instructions. Find the count in the center of the chart. Use the Most-Significant-Digit at the bottom of the column, and the Least-Significant-Digit at the right of the row.

Example

Forward 10 gives 0A. Backward 10 gives F6.

Chart Idea Credit

Ray Boaz, Homebrew Computer Club Newsletter, Volume 1, Number 7, September 1975.

CARD # LOC	CODE	CARD
1		•
2		; DEMON DEBUG MUNITOR
3		•
4	v.	; PREMPTING CHARACTER IS A PERIOD
5		·
6		•
7		; DISPLAY COMMANDS
8		;
9		; R DISPLAY REGISTERS (PC.P.A.X.Y.SP)
10		; .M ADDR DISPLAY MEMORY (8 BYTES BEGINNING AT ADDR)
11		•
12		; ALTER COMMAND (:)
13		: .: DATA ALTERS PREVIOUSLY DISPLAYED ITEM OR NEXT ITEM
14		;
15		; PAPER TAPE I/O CUMMANDS
16		; •LH LOAD HEX TAPE
17		: .WB ADDR1 ADDR2 WRITE BNPF TAPE (FROM LGW ADDR1 TO HIGH ADDR2)
18		; .WH ADDR1 ADDR2 WRITEHEXF TAPE (FROM LOW ADDR1 TO HIGH ADDR2)
19		i .
20		; CONTROL COMMANDS
21		; .G GD. CONTINUE EXECUTION FROM CURRENT PC ADDRESS
22		; •H TOGGLES HIGH-SPEED-READER OPTION
23		(IF ITS CN, TURNS IT OFF; IF OFF, TURNS ON)
24		·
25		; BRK AND NMI ENTRY POINTS TO DEMON
26		; DEMON IS NORMALLY ENTERED WHEN A *BRK* INSTRUCTION IS
27		; ENCOUNTERED DURING PROGRAM EXECUTION. AT THAT
28		: TIME CPU REGISTERS ARE BUTPUT: * PC P A X Y SP
29		; AND CONTROL IS GIVEN TO THE KEYBOARD.
30		; USER MAY ENTER DEMON BY PROGRAMMED BRK OR INDUCED NMI. NMI
31		ENTRIES CAUSE A *** TO PRECEDE THE *** IN THE CPU REGISTER
32		; PRINTOUT FCRMAT.
33		•
34		; NON-BRK IRQ (EXTERNAL DEVICE) INTERRUPT HANDLING
35		: A NON-BRK ING INTERRUPT CAUSES AN INDIRECT JUMP TO THE ADDRESS

```
CARD # LOC
               CODE
                          CARD
  37
                           LUCATED AT 'UNIT' (FFF8). THIS LOCATION CAN BE SET
   38
                           USING THE ALTER COMMAND. OR LOADER AUTOMATICALLY IN PAPER TAPE
                           FORM WITH THE LH CMD IF THE USER ASSIGNS HIS IRQ INTERRUPT
   39
                           VECTOR TO SFFFB IN THE SOURCE ASSEMBLY PROGRAM.
   41
                         IF NCT RESET BY THE USER, UNIT IS SET TO CAUSE EXTERNAL
                          DEVICE INTERRUPTS TO ENTER DEMON AS NMI'S. I.E.,
   43
                           IF A NMI OCCURS WITHOUT AN INDUCED NMI SIGNAL, IT IS
                          AN EXTERNAL DEVICE INTERUPT.
   45
                       ; SETTING AND RESETTING PROGRAM BREAKPOINTS
   47
                       ; BREAKPOINTS ARE SET AND RESET USING THE MEMORY DISPLAY
                          AND ALTER COMMANDS. BRK HAS A "00" OPERATION CODE.
   49
                       : TO SET A BREAK POINT SIMPLY DISPLAY THE MEMPOY LOCATION
                         (FIRST INSTRUCTION BYTE) AT WHICH THE BREAKPOINT IS
   50
  51
                           TO BE PLACED THEN ALTER THE LOCATION TO .OO. THERE IS
   52
                           NO LIMIT TO THE NUMBER OF BREAKPOINTS THAT CAN BE
   53
                           ACTIVE AT ONE TIME.
   54
                       ; TO RESET A BREAKFOINT, RESTORE THE ALTERED MEMORY LOCATION
   55
                          TO ITS ORIGINAL VALUE.
  56
                        ; WHEN AND IF A BREAKPOINT IS ENCOUNTERED DURING EXECUTION,
  57
                           THE BREAKPOINT DATA PRECEDED BY AN *** IS DISPLAYED.
  58
  59
   60
                       MDBK
                                =%00010110
   61
                                                   ; X.X.POR.DATA-AVAIL.GOT-DATA.SERIAL-OUT.IN
  62
                       DAVAIL
                                =508
                                 =$04
   €3
                       GOTDAT
  64
                       IGBA SE
                                =$6E00
  65
                       MPA
                                = 105ASE+0
                       MD A
                                =ICBASE+1
  66
  67
                       MPB
                                = I UBA SE + 2
                       MDB
  68
                                = I 08A SE+3
  69
                       MCLKIT
                                =IOEASE+4
  70
                       MCLKRD
                                =ICBASE+4
  71
                       MCLKIP
                                =108A SE+5
                       UNIT
                                =$FFF8
  73
                       NCMDS
                                =7
                       MP 0
                                =$7000
  75
                       MPI
                                =$7100
  76
                       MP 2
                                =$ 7200
  77
                       мРЗ
                                = $7300
  7€
  79
                       : ZERU PAGE MONITOR RESERVE AREA
  80
  81
                       CROLY
                                =227
                                              DELAY FOR CR IN BIT TIMES
```

```
CARD
WRAP
CARD # LOC
                  CODE
                                       =228
   83
                            DIFF
                                       =229
   84
                            HSPTR
                                       =231
   85
                            HS ROP
PREVC
MAJORT
MINURT
                                       =232
   86
                                       =233
   87
                                       =234
   88
                                       =235
   89
                            ACMD
TMP 0
                                       =236
   90
                                       =238
   91
                            TMP2
TMP4
TMP6
                                       =240
    92
                                       =242
    93
                                       = 244
    94
                                       =246
                            PC L
    95
                                       =247
                            PCH
FLGS
    96
                                       =248
    97
                                       =249
    98
                            AC C
                            XR
YR
                                       =250
   99
                                       =251
  100
                                       =252
                            SP
   101
                            SAVX
                                        =253
  102
  103
104
105
                            TMPC
                                       =254
                            TMPC 2
                                       =255
                                       =TMPC
                            RCNT
                                       =TMPC2
                             LC NT
  106
107
                            ; 64 BYTE RAM MONITOR RESERVE AREA;
  108
109
                                       =$FF00
  110
                                        *=RAM64
  111
        0000
```

```
CARD # LOC
               CODE
                           CARD
  113
  114
                        ; DEMON PAGE ZERG (RELATIVE)
  115
      FF00
                                  *=MP0
  116
  117
            85 F 9
                                  STA
                                        ACC
                                                       : SAVE A
  118
       7000
                        NMINT
                                        # #
                                                       : SET A=# TO INDICATE NMINT ENTRY
                                  LDA
       7002
             A9 23
  119
                                  BNE
                                        83
  120
       7004
             DO 55
  121
                                                       : INIT DIR REG. PER TO 1 RELOCATES
                        RESET
                                 LDA
                                        #MDBK
       7006 A9 16
  122
  123
                                  STA
                                        MDB
       7008 8D 03 6E
  124
  125
                                  LDX
                                        #8
                                                       ; X=0
  126
       700B
             A2 08
             BD F7 73
                                        INTVEC-1.X
                                                       : INITILIZE INT VECTORS
                                  LDA
  127
       700D
                        R1
                                        UNIT-1.X
       7010
             9D F7 FF
                                  STA
  128
                                  DEX
  129
       7013
             CA
             D0 F7
                                        R I
  130
       7014
                                  BNE
  131
                                                       ; INIT MAJOR T COUNT TO ZERO
  132
       7016
             86 EA
                                  STX
                                        MAJORT
                                                       : CLEAR HSPTR FLAGS
  133
       7018
             86 E7
                                  STX
                                        HSPTR
  134
       701A
             86 E8
                                  STX
                                        HSRCP
  135
       701C
             CA
                                 DEX
                                                       : X=FF
  136
       701D
             9 A
                                  TXS
                                                       : SP=FF
  137
                                                       : COMPUTE BIT TIME CONSTANT, X=FF
  138
  139
       701E
             A0 01
                                  LDY
                                                       ; SET TO MEASURE 2 BITS
  140
             84 E3
                                  STY
                                        CRDLY
                                                       ; INIT CR DELAY TIME PARM
  141
       7020
  142
       7022
             AD 02 6E
                                  LDA
                                        MPB
                                                       ; WAIT FOR START
  143
       7025
             44
                                  LSR
             90 FA
                                        R O
  144
       7026
                                  BCC
  145
             8E 04 6E
                                  STX
                                        MCLKIT
                                                       ; START CLOCK INITIALLY WITH FF
  146
       7028
                        R2
  147
       702B
             AD 05 6E
                        R3
                                 LDA
                                        MCLKIP
                                  BPL
  148
       702E
             10 04
                                        R4
             E6 EA
                                        MAJORT
                                                       ; COUNT MAJOT T
  149
       7030
                                  INC
                                                       ; GO RESTART CLOCK WITH X=FF
  150
       7032
             D0 F4
                                  BNE
                                        R 2
  151
                                  TYA
       7034
             98
                        R4
  152
             4D 02 6E
                                  EOR
                                        MPB
       7035
  153
                                  AND
             29 01
  154
       7038
                                        #1
                                                       : WAIT FOR Y BIT O AND SERIAL-IN NOT EQU
                                  BEQ
  155
       703A
             FO EF
                                        R3
  156
       70.30
             88
                                  DEY
                                                       ; LOOP UNITE START OF BIT 2
             10 EC
                                  BPL
                                        R3
  157
       7030
  158
       703F
             A) 04 6E
                                  LDA
                                        MCLKED
  159
                                  EOR
                                                       ; COMPLEMENT RESIDUE
       7042
             49 FF
                                        #$FF
  160
                                                       : HALVE IT
                                  LSR
                        RS
  161
       7044
             4 A
                                                       ; HALVE MAJOR
             46 EA
                                  LSR
                                        MAJORT
  162
       7045
                                  BCC
  163
       7047
             90 02
                                        RA
                                                       ; PROPAGATE HO TO LO
  164
       7049
             09 80
                                  CRA
                                        #$80
```

```
CARD
CARD # LCC
               CODE
                                 INY
                       R6
  166 7048 C8
 167 704C FO F6
                                 BEQ
                                       R5
                                 STA
                                       MINERT
  168
       704E
             £5 E8
                        ;
  169
                                                      ; ENABLE INTS
                                 CLI
  170
       7050
             58
                                                     : ENTER DEMON BY BRK
                                 BRK
  171
       7051
             00
  172
                                                     ; SAVE ACC
                        IN TRO
                                 STA
                                       ACC
             85 F9
  173
       7052
                                                      ; FLAGS TO A
                                 PLA
  174
       7054
             68
                                                      : RESTORE STACK STATUS
                                 PHA
  175
       7055
             48
                                                      ; TEST BRK FLAG
                                       #$10
                                 AND
  176
       7056
             29 10
                                                      ; USER INTERRUPT
                                       вх
                                 BEQ
  177
       7058 F0 27
  178
                        :
                                                      ; SET A=SPACE (10 X 2 = 20)
                                 ASL
  179
       705A
             0 A
                                                      SAVE INT TYPE FLAG
                                       TMPC
             85 FE
                                 STA
  180
       7058
                        33
                                                      CLEAR DECIMAL MODE
                                 CLD
  181
       705D
             08
                                                      : # IS ODD. SPACE IS EVEN
                                 LSR
  182
       705E
             4 A
                                                      ; SET CY FOR PC BRK CORRECTION
  183
                                                      ; SAVE X
                                 STX
             85 FA
  184
       705F
                                       YR
                                 STY
  185
       7061
             84 FB
                                 PLA
       7063
             68
  186
                                                      ; FLAGS
                                 STA
                                       FLGS
  187
       7064
             85 F8
                                 PLA
       7066
             68
  188
                                                      ; CY SET TO PC-1 FOR BRK
                                       #SFF
                                 AUC
             69 FF
  189
       7067
                                       PCL
       7069
             85 F 6
                                 STA
  190
                                 PLA
  191
       706B
             68
                                        # 5FF
                                 ADC
  192
       706C
             69 FF
                                       PCH
                                 STA
  193
       706E
             85 F 7
       7070
             BA
                                 TSX
  194
                                       SP
                                                      : SAVE ORIG SP
       7071
             66 FC
                                 STX
  195
  196
                                 JSR
                                       CRLF
       7073 20 8A 72 85
  197
                                       TMPC
       7076
             A6 FE
                                 LDX
  198
  199
                                 IDA
             A9 2A
       7078
  200
                                        WRTWO
       707A 20 C0 72
                                 JSR
  201
                                                      ; SET FOR R DISPLAY TO PERMIT
                                        # * R
       70 7D
             A9 52
                                 LDA
  202
                                                      ; IMMEDIATE ALTER FOLLOWING BREAKPOINT.
                                 BNE
                                        SO
       707F
              00 16
  203
  204
                                 LDA
                                        ACC
       7081 A5 F9
  205
                                                      ; CONTROL TO USER IRQ SERVICE ROUTINE
                                        (UNIT)
       7083 6C F8 FF
                                 JMP
  206
  207
                                                      : NEXT COMMAND FROM USER
                        ST AR T
              A9 00
                                 LDA
                                        #0
       7086
  208
                                                      ; CLEAR H. S. PAPER TAPE FLAG
                                        HSPTR
                                  STA
             85 E7
       7088
  209
                                                      : CLEAR ADDRESS WRAP-AROUND FLAG
              85 E4
                                  STA
                                        WRAP
       70 8A
   210
                                        CRLF
              20 8A 72
                                  JSR
        708C
  211
                                                      : TYPE PROMPTING ...
                                  LDA
                                        # .
              A9 2E
   212
        708F
              20 C6 72
                                  JSR
                                        WROC
   213
        7091
                                                      ; READ CMD. CHAR RETURNED IN A
                                  JSR
                                        RDUC
              23 E9 72
  214
       7094
   215
                                                      : LCOK-UP CMD
                                 LDX
                                       #NC MD S-1
      7097 A2 06
                        SO
   216
```

```
CARD # LGC
               CODE
                           CARD
                                  CMP
                                        CMDS . X
  218
       7099 DD 06 71
                        S1
                                  BNE
  219
       709C
             DO 19
                                        S2
  220
                                                       ; SAVE PREVIOUS CMD
                                        SAVX
       709E
             A5 FD
                                  LDA
  221
                                        PREVC
  222
       70A0
             85 E 9
                                  STA
                                                       ; SAVE CURRENT CMD INDEX
       70A2
             86 FD
                                  STX
                                        SAVX
  223
                                                       ; JUMP INDIRECT TO CMD MODE
                                        #MP1/256
       70A4
             A9 71
                                  LDA
  224
                                                          ALL CMD CODE BEGINES CN MP1
       70 A6
             85 ED
                                  STA
                                        ACMD+1
  225
       70 A8
             BD 00 71
                                  LDA
                                        ADRS .X
  226
  227
       70AB
             85 EC
                                  STA
                                        ACMD
                                                       ; IF :. R CR M (C. 1. CR 2) SPACE 2
  228
       70 AD
             E0 03
                                  CPX
                                        #3
                                  BCS
                                        LIMP
       70AF
             B0 03
  229
             20 74 73
                                  JSR
                                        SPAC2
  230
       7081
  231
             6C EC 00
                        IJMP
                                  JMP
                                        (ACMD)
  232
       7084
  233
       70B7
                        S2
                                  DEX
  234
             CA
             10 DF
                                                       : LOGP FOR ALL COMMANDS
  235
       7088
                                  BPL
  236
                                                       ; OPERATOR ERR, TYPE *? , RESTART
                        ERROPR
                                  LDA
                                        # 1 ?
             A9 3F
  237
       708A
                                        WROC
             20 C6 72
                                  JSR
       70BC
  238
                                        START
                                                       ; JMP START ( WROC RETURNS CY=C)
             90 C5
                                  BCC
       70 BF
  239
  240
                                                       ; TMP2-TMP0 DOUBLE SUBTRACT
                        DC MP
  241
       70C1
             38
                                  SEC
                                        TMP2
             A5 F0
                                  LDA
  242
       70C2
                                  SBC
                                        T MPO
  243
       70C4
             E5 EE
                                        DIFF
                                  STA
  244
       7006
             85 E5
                                        TMP2+1
  245
       70C8
             A5 F1
                                  LDA
                                        T MP0 +1
                                  SBC
  246
       70CA
             ES EF
                                                       ; RETURN HIGH ORDER PART IN Y
  247
       70CC
             A8
                                  TAY
                                                       ; OR LO FOR EQU TEST
                                        DIFF
                                  DRA
  248
       70CD
             05 ES
  249
       70CF
             60
                                  RTS
                                                       : MOVE TMPO TO PCH.PCL
  250
       7000
             A5 EE
                        PUTP
                                  LDA
                                        TMPO
  251
       7002
             85 F 6
                                  STA
                                        PCL
  252
       7004
             A5 EF
                                  LDA
                                        TMP 0+1
  253
       7006
             85 F7
                                  STA
                                        PCH
       7008
             60
                                  RTS
  255
  256
                                                       ; CLEAR REGS
  257
       7009
             A9 00
                        ZTMP
                                  LDA
                                        #0
                                        TMPO.X
             95 EE
                                  STA
  258
       700B
             95 EF
                                  STA
                                        T MP0+1 . X
  259
       7000
                                  RTS
       70DF
             60
  260
  261
                           READ AND STORE BYTE. NO STORE IF SPACE OR RCNT=0.
  262
  263
                        BYTE
                                                       ; CHAR IN A. CY=0 IF SP
       70E0 20 B3 73
                                  JSR
                                        ROOB
  264
  265
       70E3
             90 10
                                  BCC
                                        BY3
                                                       ; SPACE
  266
                                  LDX
                                        #0
                                                       ; STORE BYTE
       70E5
             A2 00
  267
                                        (TMPO,X)
                                  STA
             81 EE
  268
       70E7
                        ;
  269
```

```
CARD # LCC
271 70E9
              CUDE
                          CARD
                                                     : TEST FOR VALID WRITE (RAM)
                                      (TMPO.X)
                                CMP
            C1 EE
                                      BY2
                                BEQ
  272
      70EB
            FQ 05
                                                     : ERR. CLEAR JSR ADR IN STACK
      70ED
             63
                                PLA
  273
                                PLA
      70EE
  274
                                      ERROPR
      70EF
             4C BA 70
                                JMP
  275
  276
                                      DAUD
                                                     ; INCR CKSUM
                                JSR
       70F2
             20 70 72
                       BY2
  277
                                      INCTMP
                                                     ; GO INCR TMPO ADR
                                JSR
      70F5
             20 97 73
                       BY3
  278
      70F8
             C6 FE
                                DEC
                                      RCNT
  279
       70FA
             60
                                RTS
  280
  281
                                LUA
                                                     ; SET TO ACCESS REGS
                                      #FLGS
             A9 F8
                       SETR
  282 70FB
                                      TMPO
      70FD
             85 EE
                                STA
  283
                                      #0
       70FF
             A9 00
                                LDA
  284
                                      T MP0 +1
       7101
             85 EF
                                STA
  285
                                      #5
       7103
            A9 05
                                LDA
  286
                                RTS
  287
       7105 60
  288
                                .BYTE *:
             JA.
                       CMDS
  289
       7106
                                .BYTE .R.
  290
      7107
             52
                                .BYTE .M.
  291 7108
             40
                                 BYTE 'G'
             47
  292
       7109
                                 .BYTE "H"
  293
      710 A
             48
                                BYTE 'L'
  294
       710B
             4C
                                                     ; W MUST BE LAST CMD IN CHAIN
                                 BYTE .W.
  295
      710C
             57
                                BYTE ALTER-MP1
                       ADRS
  296
       7100
             34
                                 .BYTE DSPLYR-MP1
  297
       710E
             14
                                 BYTE DSPLYM-MP1
  298
       710F
             1 C
                                 .BYTE GO-MP1
  299
       7110
             50
                                BYTE HSP-MP 1
             6F
  300
       7111
                                 .BYTE LH-MP1
  301
       7112
             74
                                 .BYTE WO-MPI
  302 7113 C2
```

```
CARD # LOC
               CUDE
                          CARD
 304
 305
                       ; NOTE -- ALL CMD CODE MUST BEGIN EN MP1
 306
 307
                       ; DISPLAY REG CMD - PC.A.P.X.Y. AND SP
 308
 309
                                 JS R
                                       WRPC
                                                      ; REITE PC
      7114
            20 A6 72
                       DSPLYR
 310
                                       SETR
 311 7117 20 FB 70
                                 JSR
                                       MO
                                                      ; USE DI SPLAY
      711A DO 07
                                 BNE
 312
 313
                       DSPLYM
                                 JSR RDOA
                                                      ; READ MEM ADR INTO TMPO
            20 A4 73
 314
      711C
                                 acc
                                      ERRS1
 315
      711F
             90 16
                                 LDA
                                       #8
      7121
             49 08
 316
                                       TMPC
                                 STA
                       MO
 317
      7123
             85 FE
                                 LDY
                                       #0
 318
      7125
             AC 00
                                       SPACE
                                                      : TYPE 8 BYTES OF MEMPOY
       7127
             20 77 73
                                 JSR
 319
                                                     ; (TMPO) PRESERVER FOR POSS ALTER
                                 LDA
                                       (TMPO) .Y
 320
       712A
             81 EE
                                       WROB
       712C
             20 81 72
                                 JSR
 321
                                                     : INCR INDEX
                                 INY
 322
       712F
             C8
             C6 FE
                                       TMPC
                                 DEC
 323
       7130
                                       M1
 324
      7132
            00 F3
                                 BNE
                                       START
 325
      7134
            4C 86 70
                       BEQSI
                                JMP
 326
 327
      7137 4C BA 70
                       ERRS1
                                 JMF
                                       ERROPR
 328
 329
                          ALTER LAST DISPLAYED ITEM ( DR IN TMPO)
 330
      713A
            C6 E9
                       AL TER
                                 DEC
                                       PREVO
                                                     ; R INDEX = 1
 331
                                       A3
 332
     713C DO 0 D
 333
 334
      713E
            20 A4 73
                                 JSR
                                       ROUA
                                                     : CY=C IF SP
      7141
             90 C3
                                 всс
                                       A2
                                                      : SPACE
 335
      7143
             20 00 70
                                 JSR
                                       PUTP
                                                      ; ALTER PC
 336
                                 JSR
                                       SETR
                                                      ; ALTER R'S
 337
      7146
             20 FB 70
                       A2
 338
      7149
            D0 05
                                 BNE
                                                      ; JMP A4 (SETR RETURNS ACC = 5)
                                 JSR
                                       WRUA
                                                      ; ALTER M. TYPE ADR
      7148
            20 9A 72
                       ΑЗ
 339
                                       #8
 340 714E
             A9 68
                                 LDA
 341
      7150
             85 FE
                                 STA
                                       RCNT
 342
                       A4
             20 77 73
                                 JSR
                                       SPACE
                                                      ; PRESERVES Y
      7152
                       A5
 343
                                       BYTE
                                 JSR
 344
      7155
             20 E 0 70
                                 BNE
                                       A 5
      7158
 345
             D0 F8
                                       BEQS 1
 346
      71 5A
             F0 D8
                       A9
                                 BEQ
 347
                                       SP
      715C
             AS FC
                       GO
                                 LDX
 348
                                                     ; ORIG OR NEW SP VALUE TO SP
      715E
             9A
                                 TXS
 349
             A5 F7
                                 LDA
                                       PCH
      715F
 350
                                 PHA
 35 1
       7161
             48
                                 LDA
                                       PCL
      7162
            A5 F6
 352
                                 PHA
 353
      7164
            43
            A5 F3
                                       FLGS
                                LDA
 354
       7165
 355
      7167 48
                                PHA
```

```
CODE
                            CARD
CARD # LOC
              A5 F9
                                   LDA
                                          ACC
  357
       7168
                                   LDX
                                         XR
              A6 FA
       716A
  358
                                   LDY
                                          YR
              A4 F8
  359
        716C
                                   RTI
              40
  360
       716E
  361
                         H5P
                                                         : TCGGLE BIT C
                                   INC
                                          HSRUP
  362
        716F
              F6 F8
              4C 86 70
                                   JMP START
  363
        7171
  364
                                                         ; READ SECOND COMMAND CHAR
              20 E9 72
                                   JSR
                                          RDUC
                         LH
  365
       7174
                                          CRLF
                                   JSR
  366
        7177
              20 8A 72
                                          HSROP
                                                         ; ENABLE PTR OPTION IF SET
                                   LD X
              A6 E8
  367
        717A
                                          HSPTR
                                   STX
  368
       717C
              86 E7
                                          RDOC
              20 F9 72
                                   JSR
                         1 4 1
  369
        717E
                                          # * :
                                                         : FIND NEXT RECORD MARK
                                   CMP
  370
       7181
              C9 3B
                                         LHI
  371
       7183
              D3 F9
                                   BNE
  372
              A2 04
                                   LDX
                                          #4
  373
       7185
                                                         : CLEAR CKSUM REGS TMP4
              20 09 70
                                          ZTMP
                                   JSR
  374
       7187
                                          RDOB
                                   JSR
  375
       718A
              20 B3 73
                                   BNE
                                         LH2
  376
       7180
              DO 06
  377
                                                         : CLEAR HS RDR FLAG
                                   LD X
                                          #0
  378
        718F
              A2 00
                                          HSPTR
  379
       7191
              86 E7
                                   STX
  380
        7193
              F0 9F
                                   BEC
                                          BEGS1
                                                         : FINISHED
  381
                                                         : RCNT
  382
        7195
              85 FE
                         LH2
                                   STA
                                          RCNT
                                                         ; ROD LNGH TO CKSUM
        7197
              20 7C 72
                                   JSR
                                          DADD
  383
                                                         ; SA HO TO TMPO
        719A
              20 83 73
                                   JSR
                                          RDOB
  384
        71 9D
              85 EF
                                   STA
                                          T MPO+1
  385
                                                         ; ADD TO CKSUM
  386
        719F
              20 7C 72
                                   JSR
                                          DADD
  387
        71 A2
              20 B3 73
                                   JSR
                                          RDOB
  388
        71A5
              85 EE
                                   STA
                                          T MPO
        71A7
              20 70 72
                                   JSR
                                          DADD
  389
  390
                                                         : BYTE SUB/R DECRE RONT ON EXIT
  391
        71AA
              20 E0 70
                                   JSR
                                          BYTE
                                   BNE
                                          LH3
  392
        71 AD
              D0 F8
                                                         : CKSUM FROM HEX TO TMPO
              20 A4 73
                                   JSR
                                          RDOA
  393
        71 AF
              A5 F2
                                   LD A
                                          TMP4
  394
        7182
  395
              85 F0
                                   STA
                                          S MMT
        7184
              A5 F3
                                   LDA
                                          T MP4+1
  396
        7186
                                          TMP 2+1
              85 F1
                                   STA
  397
        7188
                                          DCMP
              20 C1 70
                                   JSR
  398
        71 BA
              FO BF
                                   8E C
                                          LH1
  399
        7180
                         ERRP 1
                                   JMP
                                          ERROPR
              4C BA 70
  400
        71BF
  401
                                   JSR
                                          RDOC
                                                         ; RD 2ND CMD CHAR
        7102
              20 ES 72
                         WU
  402
                                          TMPC
              85 FE
                                   STA
  403
        71 C5
              20 77 73
                                   JSR
                                          SPACE
  404
        71C7
                                   JSR
                                          RDDA
              20 A4 73
  405
        71CA
                                                         ; SA TO TMP2
                                          T 2T 2
                                   JSR
  406
       71 CD
              20 87 73
                                                         : SPACE BEFORE NEXT ADDRESS
                                          SPACE
                                   JSR
  407
        7100
              20 77 73
                                          RDOA
  408
       7103
             20 A4 73
                                   JSR
```

```
CARD # LOC
               CODE
                           CARD
                                                      ; SA TO TMPO, BA TO TMP2
 410 7106 20 87 73
                                       T2T2
                                 JSR
                                                      ; DELAY FOR FINAL CR
                                       RDOC
 411
       71D9 20 E9 72
                                 JSR
 412
       71 DC
             A5 FE
                                 LDA
                                       TMPC
  413
  414
       71DE C9 48
                                 CMP
                                       # º H
 415
       71 EQ
             DQ 59
                                 BNE
                                       WB
  416
  417
       71E2 A6 E4
                        WH O
                                 LD X
                                       WRAP
                                                      : IF ADDR HAS WRAPPED AROUND
                                                      ; THEN TREMINATE WRITE OPERATION
      71 E4
             D) 52
                                 BNE
                                       BCCST
 418
  419
       71E6
             20 8A 72
                                 J SR
                                       CRLF
 420
 421
       71E9
             A2 18
                                 LDX
                                       #24
             86 FE
                                                      : RCNT=24
  422
       71EB
                                 STX
                                       RCNT
  423
       71ED
             A2 04
                                 LD X
                                       #4
                                                      ; CLEAR CKSUM
  424
       71EF
             20 D9 70
                                 JSR
                                       ZTMP
  425
       71 F2
             A9 38
                                 LDA
                                       # 1 :
  426
       71F4
                                 JS R
                                       WROC
                                                      ; WR RCD MARK
 427
            20 C6 72
 428
                                                      ; EA-SA (TMP0+2-TMP0) DIFF IN LOC DIFF.+1
 429
       71F7
            20 C1 70
                                 JSR
                                       DCMP
       71FA
                                 TYA
                                                      ; MS BYTE OR DIFF
 430
             98
       71FB
             DO 0 A
                                 BNE
                                       WH 1
 431
       71FD
                                       DIFF
             A5 E5
                                 LDA
 432
       71FF
                                 CMP
             C9 17
                                       #23
 433
                                                      ; DIFF GT 24
                                 BCS
 434
       7201
             80 04
                                       WH1
                                                      ; INCR LAST TONT
                                 STA
                                       RCNT
 435
       7203
             85 FE
                                 INC
                                       RCNT
 436
       7205
            E6 FE
                                 LDA
                                       RCNT
 437
       7207
             A5 FE
                        WHI
                                                     ; ADD TO CKSUM
             20 7C 72
                                       DAUD
 438
       7209
                                 JSR
                                                      ; RCD CNT IN A
                                       WROB
                                 JSR
 439
       720C
             20 B1 72
                                                      SA HO
                                       T MP0 +1
                                 LDA
 440
       720F
             A5 EF
                                       DADD
             20 7C 72
                                 JSR
 441
       7211
                                       WROB
 442
       7214
             20 81 72
                                 JSR
  443
       7217
            A5 EE
                                 LDA
                                       TMPO
                                                      ; SA LO
 444
       7219
             20 7C 72
                                 J SR
                                       DADD
 445
      721C 20 B1 72
                                 JSR
                                       WROB
 446
 447
      721F A0 00
                        WH2
                                 LDY
                                       #0
 448
      7221
             81 EE
                                 LDA
                                       (TMPO),Y
                                                      : INC CKSUM. PRESERVES A
  449
 450
       7223
            20 7 7 7 2
                                 JSR
                                       DADD
  451
       7226
             20 B1 72
                                 JSR
                                       WROB
  452
       7229
             20 97 73
                                 JSR
                                       INCTMP
                                                      : INC SA
             C6 FE
                                 DEC
                                       RCNT
 453
       722C
                                                      : LOUP FOR UP TO 24 BYTES
  454
       722E
             DO EF
                                 BNE
                                       WH2
 455
 456
      7230
            20 9E 72
                                 JSR
                                       WROA4
                                                      : WRITE CKSUM
  457
       7233 20 C1 70
                                 J SR
                                       DCMP
 458
       7236 BO AA
                                 BCS
                                       W HO
                                                      ; LOOP WHILE EA GT OR = SA
 459
 460
       7238
             4C 86 70 BCCST
                                 JMP
                                       START:
```

```
CARD # LOC
               CODE
                           CARD
  462
                                                       : SAVX TC = NCMDS FOR ASCII SUB/R
  463
       723B E6 FD
                         WB
                                  INC
                                        SAVX
                                                       : IF ADDR HAS *RAPPED AROUND
  464
       723D
             A5 E4
                        WB 1
                                  EDA
                                        WRAP
                                                        ; THEN TERMINATE WRITE OPERATION
                                        BCCST
  465
       723F
             D0 F7
                                  BNE
  466
                                  LDA
  467
       7241
              A9 04
                                        #4
                                        ACMD
  468
       7243
             85 EC
                                  STA
                                        CRLF
  469
       7245
             20 BA 72
                                  JSR
                                                       ; OUTPUT HEX ADR
  470
       7248
             20 9A 72
                                  JSR
                                        WROA
  471
  472
       7248
             20 77 73
                        WBNPF
                                  JSR
                                        SPACE
  473
       724 E
             A2 09
                                  LDX
                                        #9
                                        TMPC
                                                       : LOOP CNT = 9
  474
       7250
              86 FE
                                  STX
                                        (TMPC-9.X)
  475
       7252
             A1 E5
                                  LDA
                                                       ; BYTE TO TMPC2
                                        TMPC2
  476
       7254
             85 FF
                                  STA
  477
       7256
             A9 42
                                  LDA
                                        # * B
                                                        : WRITE B
  473
       7258
             D0 08
                                  BNE
                                        w8F2
  479
                                        # . P
                         WBF 1
  480
       725A
             A9 50
                                  LDA
  481
       725C (5 FF
                                  ASL
                                        TMPC2
  482
       725E
             80 02
                                  acs
                                        WBF2
             A9 4E
                                  LDA
                                         # * N
  483
       7260
  484
       7262
             20 C6 72
                        wBF2
                                  JSR
                                         WROC
                                                       : WRITE N OR P
  485
       7265
                                  DEC
                                         TMPC
             C6 FE
  486
                                  BNE
                                        wBF1
                                                        ; LOOP
  487
       7267
             D0 F1
  488
       7269
             A9 46
                                  LOA
                                        # * F
             20 C6 72
                                  JSR
                                        WRUC
                                                       : WRITE F
  489
       726B
  490
             20 97 73
                                  JSR
                                        INCTMP
  491
       726E
  492
                                  DEC
                                        ACMD
                                                       ; TEST FOR MULTIPLE OF FOUR
  493
       7271
             C6 EC
                                        WBNPF
       7273 DJ D6
                                  BNE
  494
  495
       7275 20 C1 70
                                  JS R
                                        DCMP
  496
       7278
             80 C3
                                  BCS
                                        wB1
                                                       : LOOP WHILE EA GT OR = SA
  497
                                  BCC
                                        BCCST
      727A
  498
             90 BC
  499
                                                       ; SAVE A
                        DADD
                                PHA
  500
       727C
             48
                                  CLC
  501
       7270
             18
                                        TMP4
              65 F 2
  502
       727E
                                  ADC
                                        TMP4
  503
       7280
             85 F2
                                  STA
                                        T MP4+1
       7282
             A5 F3
                                  LDA
  504
                                  ADC
                                        # 0
  505
       7284
             69 00
                                        TMP4+1
                                  STA
  506
       7286
             85 F3
                                                        ; RESTORE A
                                  PLA
  507
       7288
             68
                                  RTS
  508
       7289
              60
  509
                        CRLF
                                  LDX
                                        # 50 D
  510
       728A
             GO SA
  511
       728C
             A9 0 A
                                  LDA
                                        # S OA
                                        WRTWO
  512
       728E
             20 CO 72
                                  JSR
                                                       ; BIT-TIME COUNT FOR DELAY
  513
       7291
             A6 E3
                                  LDX
                                        CRDLY
```

```
CARD # LOC
               CODE
                           CARD
 515 7293 20 10 73 CR1
                                 JSR
                                       DLY2
                                                     : DELAY OF ONE BIT-TIME
       7296
                                 DEX
  516
            CA
       7297 DO FA
                                        CR1
                                 BNE
  517
       7299
                                 RTS
  518
             60
  519
                        ; WRITE ADR FROM TMPO STORES
  520
  521
                        MRCA
                                 LOX
  522
       729A
             A2 01
                                        WRUA1
       729C
             DO 0 A
                                 BNE
  523
             A2 05
                        WROA4
       729E
                                 LDX
                                        #5
  524
                                        WROAT
       72A0
                                 BNE
  525
             DO 06
                        WROA6
                                 LDX
                                        #7
 526
       72 A2
             A2 07
                                        WREAL
             DO 02
                                 BNE
  527
       72A4
                        ₩RPC
                                 LD X
 528
       72A6
             A2 09
                                        #9
                                 LDA
                                       TMP0-1.X
  529
       72 A8
             85 E D
                        WROA1
                                 PHA
  530
       72AA
             48
                                        TMP C . X
  531
       72 AB
             85 EE
                                 LDA
  532
       72 AD
             20 81 72
                                 JSR
                                        WROB
  533
       7280
             68
                                 PLA
  534
  535
                           WRITE BYTE - A = BYTE
                           UNPACK BYTE INTO TWO ASCII CHARS. A=BYTE; X,A=CHARS
  536
 537
  538
       7281
             48
                        ₩R OB
                                 PHA
  539
       7282
                                 LSR
            44
  540
       72B3
             4 A
                                 LSR
                                       Α
  541
                                 LSR
       7284
             44
                                       Α
  542
       7285
                                 LSR
             4A
             20 58 73
                                 JSR
                                        ASCII
                                                       : CONVERT TO ASCII
  543
       7286
  544
       7289
             AA
                                 TAX
  545
       728A
             68
                                 PLA
             29 OF
                                        # $0 F
  546
       7288
                                 AND
             20 58 73
 547
       7280
                                        ASCII
                                 JSR
  548
                        : WRITE 2 CHARS - X, A = CHARS
  549
  550
  551
       72 CO
            48
                        WRTWO
                                 PHA
                                 TXA
  552
       72C1
             84
             20 C6 72
 553
       72C2
                                 JISR
                                        WRT
       72 C5
                                 PLA
 554
             68
 555
                        ; WRITE SERIAL OUTPUT
 556
 557
                        ;
                           A=CHAR TO BE OUTPUT
  558
       72C6
             20 10 73
                                 JSR
                                       DLY2
 559
                        WR T
                                 LDX
                                        #9
  560
       7209
             A2 C9
                                 =WRT
 561
                        WROC
                                        #SFF
             49 FF
                                 EOR
                                                      : COMPLEMENT A
 562
       72CB
  563
       72CD
             38
                                 SEC
  564
 565
       72CE 20 DA 72
                        WRT1
                                 JSR
                                       OUT
 566
       72D1 20 1D 73
                                 JSR
                                       DLY2
```

```
CARD
CARD # LOC
               CODE
             44
                                 LSR
  568
       7204
                                 DEX
             CA
 569
       7205
                                        WRTI
             DO F6
                                 BNE
       7206
  570
             F0 3F
                                 BEQ
                                        RD T5
 571
       72D8
                                                       ; USE BNE?
 572
                        OUT
                                                       ; SAVE A
                                  PHA
 573
       72DA
             48
                                                       ; OLTPUT BIT FROM Y
                                 LDA
                                        MPB
             AD 02 6E
       72 DB
 574
                                        #%11111101
       720E
             29 FD
                                  AND
 575
                                  всс
                                        UUTI
       72E0
             90 02
 576
                                  URA
                                        #%00000010
 577
       72E2
             09 02
                                  STA
                                        MPB
                        GUT1
             8D 02 6E
  578
       72E4
                                                       ; RESTORE A
                                  PLA
 579
       72E7
             68
                                  RTS
             60
  580
       72E8
  581
                        ; OUTPUT RETURNS CHAR IN A
  582
 583
                                  LDA
                                        HSPTR
                                                       ; TEST FRO PTR OPTION
       72E9 A5 E7
                        RD T
  584
                                  LSR
       72EB
             4A
  585
       72EC B0 4F
                                  BCS
                                        RDHSR
  586
                        RDOC
                                  =RDT
  587
                                 LDX
       72EE A2 08
                                        #8
  588
  589
                                  LDA
                                        MPB
  590
       72F0 AD 02 6E
                        RD T1
                                                       ; WALT FOR START BIT
  591
       72F3
             4 A
                                  LSR
                                        RDT1
             90 FA
                                  всс
  592
       72F4
  593
                                  ISR
                                        DLY1
  594
       72F6
             20 20 73
                                                       ; ECHO START BIT
  595
       72F9
             20 DA 72
                                  JSR
                                        DUT
  596
             20 10 73
                                  JSR
                                        DLY2
  597
       72FC
                        RDT 2
                                                       ; CY = NEXT BIT
                                  LDA
                                        MPB
  598
       7.2FF
             AD 02 6E
  599
       7302
             4A
                                  LSR
                                                       : ECHO
  600
       7303
             20 DA 72
                                  JSR
                                        OUT
  601
                                                       ; SAVE BIT
  602
       7306
                                  PHP
                                                       ; Y CONTAINS CHAR BEING FORMED
  603
       7307
             98
                                  TYA
       7308
                                  LSR
  604
                                                       : RECALL BIT
                                  PLP
  605
       7309
             28
             90 02
  606
       730A
                                  BCC
                                        RDT4
                                                       ; ADD IN NEXT BIT
  607
       730C
             09 80
                                  ORA
                                        #$80
                        ROT 4
                                  TAY
       730E
             A8
  608
                                  DEX
  609
       730F
             CA
                                                       ; LOOP FOR 8 BITS
             DO EA
                                  BNE
                                        RDT2
       7310
  610
             49 FF
                                  EOR
                                        #$FF
                                                       : COMPLEMENT DATA
       7312
  611
                                        #$7F
                                                       : CLEAR PARITY
                                  AND
       7314
             29 7F
  612
  613
                                  JSR
                                        DLY 2
       7316 20 10 73
  614
                        RDT5
                                  CLC
       7319
             18
  615
                                                       ; AND DELAY 2 HALF-BIT-TIMES
             20 DA 72
                                  JSR
                                        OUT
  616
       731A
  617
                                  JSR
                                        DLY1
  618 731D 20 20 73
                        DL Y2
```

```
CARD # LCC CU
620 7320 48
              CUDE
                         CARD
                                                  ; SAVE FLAGS AND A
                      DLY1
                               PHA
                               PHP
  621
      7321
            08
      7322
                               TXA
                                                   ; SAVE X
            84
  622
      7323
            48
                               PHA
  623
                               LD X
                                     MAJORT
  624 7324
            A6 EA
                               LDA
                                     MINORT
 625
      7326 A5 EB
  626
                                     MCLKIT
      7328 80 ,04 6E DL 2
  627
  628
  629 7328 AD 05 6E DL3
                               LDA
                                     MCLKIP
                               BPL
                                     DL 3
  630 732E 10 FB
                               DEX
  631
      7330 CA
                               PHP
  632
      7331
            08
                                                   : RESET TIMER INT FLAG
            AD 04 6E
                                     MCLKRD
                               LDA
  633 7332
                               PLP
  634
      7335 28
            10 F3
                                     DL3
                               BPL
  635 7336
                                                   : RESTORE REGS
  6 36
                               PLA
  637
      7338
            68
  638
      7339
            AA
                               TAX
  639
      733A
            28
                               PLP
  640
      733B
                               PLA
            68
  641
      733C 66
                      DL X
                               RTS
  642
                                                  : LOUP ON DATA AVAIL
  643 733D AD 02 SE RDHSR
                               LUA
                                     MPB
  644
      7340 29 08
                               AND
                                     #DAVAIL
                               BEC
                                     RDHSR
  645 7342 F0 F9
  646
                                                   ; READ DATA
            AE OO ÓE
      7344
  647
                               LDA
                                     MPB
                                                   ; SEND GOT-DATA PULSE
      7347
            AD 02 6E
  648
                               URA
                                     #GUTDAT
      734A
            09 04
  643
                               STA
                                     MPB
  650
      734C
            80 02 bE
                                     #%11111011
  651
            29 FB
                               AND
      734F
      7351
                               STA
                                     MPB
            8D 02 6E
  652
                               TXA
      7354
  653
            84
                                     #$7F
      7355 29 7F
                               A ND
  654
                               RTS
  655
      7357
            60
  656
                      ASCII
                               CLC
  657
      7358
            18
                                ADC
            69 06
                                     #6
  658
      7359
                                     # $F0
                                ADC
  659
      7.358
            69 F 0
                               BCC
                                     A SC 1
  660 735D
            90 02
                                     # $06
                               ADC
  661
      735F
            69 06
  662
                       ASC1
                               ADC
                                     #$3A
  663 7361
            69 3A
                                                   : TEST FOR LETTER B IN ADR DURING WBNPF
                               PHA
  664
      7363
            48
                                     # 18
      7364
  665
            C9 42
                               CMP
                                     ASCX
  666
      7366
            DO 0 A
                                HNE
                                     SAVX
  667
       7368
            A5 FD
                               LDA
                               CMP
                                     #NCMDS
  668
      736A
            C9 37
                                                   ; NOT WB CMD
       736C D0 04
                               BNE
                                     ASCX
  669
  670
      736E
            68
                               PLA
  671 736F
            A9 20
                               LDA
```

```
CARD # LCC 673 7371 48 674 7372 68
              CODE
                                 PHA
                        ASCX
                                 PLA
  675
      7373 60
                                 RTS
  676
                                        SPACE
  677
       7374
            20 77 73 SPAC2
                                  JSR
                                                      ; SAVE A,X,Y
  678
      7377
            48
                        SPACE
                                 PHA
  679
       7378
             BA
                                  TXA
       7379
                                  PHA
  680
             48
       737A
                                  TYA
  681
             98
       737B
             48
                                  PHA
  682
  683
       737C
             A9 20
                                  LDA
                                                      : TYPE SP
: RESTORE A.X.Y
             20 C6 72
                                  JSR
                                        WRT
       737E
  684
                       Reskore
                                  PLA
  685
       7381
             68
                                  TAY
       7382
             8A
  686
       7383
                                  PL A
  687
             68
       7364
             AA
                                  TAX
  688
       7385
                                 PLA
  689
             68
  690
       7386
             00
                                  RTS
  691
                        T2T2
                                  LDX
                                        #2
       7387
             A2 02
  692
                        T2 T21
                                  LDA
                                        T MPO -1 . X
       7389 B5 ED
  693
                                  PHA
  694
       7.388 48
                                  LDA
                                        TMP 2-1, X
             85 EF
  695
       738C
                                        TMP0-1 .X
                                  STA
  696
       738E
             95 ED
                                  PLA
       7390
  697
             68
                                        TMP2-1.X
             95 EF
                                  STA
  698
       7391
                                  DEX
  699
       7393 CA
                                  BNE
                                        T 2T 2 1
             D0 F3
  700
       7394
                                  RTS
  701
       7396 60
  702
                           INCREMENT (TMPO, TMPO+1) BY 1
  703
                                       T MPO
                                               ; LOW BYTE
                        INCTMP INC
       7397 Eo EE
  704
                                  BEQ
                                        INC TI
  705
       7399 F0 01
                                  RTS
  706
       7398 60
  707
                                  INC
                                        TMP 0+1
                                                      : HIGH BYTE
                        INCT1
  708
       739¢ £6 EF
                                        SETWRP
                                  BEQ
  709
       739E F0 01
  710
        73A0
            60
                                  RTS
  711
                                                      ; POINTER HAS WRAPPED ARGUND SET FLAG
                                  INC WRAP
                        SETWRP
  712
        73A1
             E5 E4
  713
       73A3 60
                                  RTS
  714
                        ; READ HEX ADR, RETURN HO IN TMPO , LO IN TMPO+1 AND CY=1
  715
  716
                            IF SP CY=0
  717
                                                      READ TWO CHAR BYTE
                                  JSR
                                        RDUB
        73 A4
              20 83 73
                        RDOA
  718
                                                      ; SPACE
                                        RD OA2
        73A 7 90 02
                                  BCC
  719
  720
        73A9
              85 EF
                                  STA
                                        T MP0 +1
  721
        73AB 20 B3 73
                        RDOA2
                                  JSR
                                        RDOB
  722
                                        RDEXIT
                                                       ; SP
        73AE 90 C2
                                  BCC
  723
                                  STA
                                        T MPO
       7380 85 EE
  724
```

```
CARD # LOC
               CODE
                          CARD
 726 7382 60
                       RDEXIT RTS
 727
 728
                          READ HEX BYTE AND RETURN IN A. AND CY=1
                           IF SP CY =0
 729
                           Y REG IS PRESERVED
 730
  731
 732
      7383
                       RDOB
            98
                                 TYA
                                                      SAVE Y
  733
      7384
                                 PHA
             43
  734
                                 LDA
      7385
            A9 00
                                       #0
                                                      : SET DATA = 0
 735
      7387
                                       ACMD
             85 EC
                                 STA
            20 E9 72
 736
      7389
                                 JS R
                                       RDOC
 737
      738C
                                                      ; CR?
             C9 0D
                                 CMP
                                       #$ 00
 738
             00 06
      738E
                                BNE
                                       RD081
 739
      73C 0
             68
                                 PL A
                                                      : YES - GO TO START
 740
      73C1
            68
                                PLA
                                                     ; CLEANING STACK UP FIRST
 741
      73C2
            68
                                PLA
 742
            40 86 70
                                       START
      73C3
                                JMF
 743
            C9 20
 744
      73C6
                       RD081
                                 CMP
                                                     ; SPACE
 745
      73C8
            DO OA
                                BNE
                                       RD082
 746
      73CA
            20 E9 72
                                JSR
                                       RDOC
                                                     ; READ NEXT CHAR
 747
      73CD
             C9 20
                                 CMP
                                       # *
 748
      73CF
            DO OF
                                BNE
                                       RD OB 3
 749
      73 D1
            13
                                CLC
                                                     : CY=0
 750
      7302
            90 12
                                всс
                                       RD CB4
 751
 752
      7304
            20 EB 73
                       RD0B2
                                JSR
                                       HEXIT
                                                     ; TO HEX
 753
      730 7 OA
                                ASL
 754
      7308
            OA
                                ASL
                                       Α
 755
      7309
                                ASL
 756
      73DA
             OA
                                ASL
 757
      73C8
            85 EC
                                STA
                                       ACMD
 758
      7300
            20 E9 72
                                JSR
                                       RDOC
                                                     ; 2ND CHAR ASSUMED HEX
 759
      73E0
            20 EB 73
                       RDUB3
                                JSR
                                      HEXIT
 760
      73E3
            05 EC
                                ORA
                                       A CM D
 761
      73E5
            38
                                SEC
                                                     ; CY=1
 762
      73E6
            AA
                       RD0B4
                                TAX
 763
      73E7
            68
                                PLA
                                                     ; RESTORE Y
 764
      73E8
            A 8
                                TAY
 765
      73E9
            8 A
                                TXA
                                                     ; SET Z & N FLAGS FOR RETURN
 766
      73EA 60
                                RTS
 767
 768
      73E8
            C9 3A
                       HEXIT
                                CMP
                                      #$3A
 769
      73ED 08
                                PHP
                                                     ; SAVE FLAGS
 770
      73EE
            29 OF
                                AND
                                      # $ OF
 771
      73F0
            28
                                PLP
 772
      73F1
                                      HEX09
            90 02
                                BCC
                                                     : 0-9
 773
      73F3 69 08
                                                     : ALPHA ADD 8+CY=9
                                ADC
                                      #8
 774
      73F5 60
                       HEX09
                                RTS
 775
                       ;
      73F6
 776
                                *=MP3+$F8
 777
```

780 781	73F8 73FA 73FC	00 00 06	70 70	CARD INTVEC	. WORD	NM INT RESET	i	DEFAULT	USER	IRQ	το	TNIMN
782	73FE	52	70		. WORD	INTRO						
783				;								
784					• E ND							

NUMBER OF ERRORS = 0, NUMBER OF WARNINGS = 0

SYMBOL TABLE

SYMBOL	VALUE LINE DEFINED				CROSS-REFERENCES							
ACC	0 CF9		98	118	173	205	357					
ACMD	OOEC		90	225	227	232	468	493	735	757	760	
ADRS	7100		296	226				.,,				
AL TER	713A		33 1	296								
ASCII	7358		657	543	547							
ASCX	7372		674	666	669							
A SC 1	7361		663	66 0	007							
A2	7146		337	335								
A3	7148		339	332								
A 4	7150		342	33 8								
A5	7152		343	345								
A9	715A		346	***								
BCCST	7238		460	418	465	498						
BEQSI	7134		325	346	380	+ , 0						
BX	7081		205	177	500							
BYTE	70E0		264	344	3 91							
BY2	70E3		277	27 2	2 91							
			278	265								
BY3	7 0F 5			120								
63	7053		180									
65	7073		197	***								
CMDS	7106		289	21.8	E + ")							
CROLY	00E3		81	141	513	000	4.00	440				
CRLF	728A		510	197	211	366	420	469				
CR1	7293		515	517	707	766	700	4 20	444	444	450	
DADD	727C		50 0	277	363	386	389	4.38	441	444	450	
DAVAIL	8000		62	644	400	450	496					
DCMP	70C1		241	398	429	458	490					
DIFF	0 0 E 5		84	24 4 * * * *	248	432						
DLX	7330		641		410							
DL Y 1	7320		620	594	618	500	597	614				
DLY2	731D		618	515	559	566	391	614				
DL2	7328		62 7	* * * *	675							
DL3	7 328		629	€30	635							
DSPLYM	711C		314	298								
DSPLYR	7114		310	297	727	400						
ERROPR	70BA		237	275	327	400						
ERRP1	718F		400	****								
ERRS1	7137		32 7	315	000	70.6						
FLGS	00F8		97	187	282	354						
GO	7150		348	299								
GOTDAT	0 30 4		o3	649	750							
HEXIT	7 3 E B		768	752	759							
HEX09	73F5		774	772								
HS P	716F		36.2	300	209	368	379	584				
HSPTR	0 0E7		85	133		367	319	204				
HSROP	0 0E8		86	134	362	301						
IJMP	70 B4		232	229	440	6.11						
INCTMP	7397		704	278	452	4 3 1						
INCT1	7 39 C		708	705								
INTRO	7052		173	78 2								
INTVEC	73F3		779	127								

SYMBOL	VALUE	LINE DEFINED		Ci	Ross-	REFERI	ENCES					
IOBASE	6E00	64	65	66	67	68	69	70	71			
LCNT	OOFF	106	****									
LH	7174	365	301									
LHI	717E	369	371	399								
LH2	7195	382	376									
LH3	71AA	391	392									
MAJORT	OOEA	88	132	149	162	624						
MCLKIP	6EC5	7 1	147	629								
MCLKIT	6E04	69	146	627								
MCLKRD	6 E 0 4	70	159	633								
MDA	6E01	66	***									
MDB	6E03	68	124									
MDEK	0015	61	122									
MINURT	OOLB	89	168	625								
MPA	6E00	65	647									0.000
MPB	6 EU 2	67	142	153	574	578	590	598	643	648	650	652
MPO	7000	74	116									
MPI	7100	75	224	296	297	298	299	300	301	302		
MP2	7200	76	* ** *									
EAM	7300	77	776									
мо	7123	317	312									
M1	7127	319	324									
NCMDS	0.007	73	216	668								
TAIMA	7000	118	779	780								
OUT	72DA	573	565	595	600	616						
OUT 1	72E4	578	576									
PCH	00F7	96	193	253	350							
PCL	0 0F 6	95	190	251	352							
PREVC	0.0E9	87	222	331								
PUTP	7000	250	336									
RAM64	FF00	110	111									
RCNT	OOFE	105	279	342	382	422	435	436	437	453		
RDEXIT	7382	726	723									
RDHSR	7 3 3 0	€43	586	645								
RDCA	73A4	718	314	334	393	405	408					
RDOAZ	73A3	722	719									
RDOB	7383	732	204	375	384	387	718	722				
RDCBI	7305	744	738									
RD082	7 30 4	752	745									
RD083	7 3E 0	759	748									
RD 084	7 3 6	762	750									
RDOC	72±9	587	214	365	369	402	411	736	746	758		
RDT	72E9	584	587									
RDT1	72F0	590	592									
RDT2	7 2F C	597	610									
RDT4	7.30 E	608	606									
RDT5	7319	615	571									
RESET	7006	122	781									
RO RO	7022	142	144									
R1	700D	127	130									
R2	7023	146	150									
R3	7023	147	155	157								
R4	7023	152	148									
R5	7044	161	167									
N.J		-7-										

SYMBOL	VALUE	LINE DEFIN	C	ROSS-	REFER	ENCES						
			alla la									
R6	704B	166	163									
SAVX	0 0FD	102	221	223	463	667						
SETR	7.0 F.B	282	311	337								
SETWRP SP	73A1 00FC	71 2 10 1	709 195	348								
SPACE	7377	678	319	343	404	407	472	677				
SPACE	7374	677	230	343	404	407	412	011				
START	7086	208	239	325	363	460	742					
50	7097	216	203	525	303	400	172					
SI	7099	218	235									
52	7087	234	219									
TMPC	OOFE	103	105	180	198	317	323	403	412	474	486	
TMPC2	OOFF	104	106	476	481	J	OLO		712	414	400	
TMPO	OOEE	91	24 3	245	250	252	258	259	268	271	283	285
			320	385	388	440	443	448	475	529	531	693
			696	704	708	721	724					0,70
TMP2	00F0	92	242	245	395	397	695	698				
TMP4	00F2	93	394	396	502	503	504	506				
T MP6	20F4	94	****									
T2T2	7387	692	406	410								
T2T21	7389	693	700									
UNIT	FFF8	72	128	206								
w8	7238	463	415									
WBF1	725A	480	487									
WBF2	7262	485	478	482								
WBNPF	7248	472	494									
WB1	7230	464	497									
WHO	71E2	417	459									
WH 1	7267	4 37	431	434								
WH2	721F	447	454									
WC	71C2	402	302									
WRAP	0 OE 4	83	210	417	464	712						
WRCA	729 A	522	339	470								
WROAL	72A8	529	523	525	527							
WROA4	729E	524	456									
WR CA6	72A2	526	***									
WROB	7281	538	321	439	442	445	451	532				
WRCC	7206	56 1	213	238	427	485	489					
WRPC	72A6	528	310									
WRT	72C6	559	553	561	684							
WRTWO	72C0	55 1	20 1	512								
WRT1	72CE	565	570									
XR	OOFA	99	184	358								
YR	OOFB	100	185	359								
ZTMP	7009	257	374	424								

```
CARD
CARC # LOC
               CCDE
                        ; MEMORY ADDRESS TEST
                        FOR EACH LOC IN TEST RANGE
                                CLEAR WHOLE RANGE
    3
                                SET LOC TO SFF
                                VERIFY WHOLE RAGE $00 EXCEPT (LCC)
                               VERIFY (LCC) TO BE SFF
                        ; BREAK TO MONITOR CN ERROR WITH LOC IN (C.1)
    7
                        FRINT "*" CN CCMFLETICN CF PASS & REPEAT
    8
    Q
       OCCC
                               *= $00C0
                                                   ; PAGE C
   10
   11
                        WRT
                               = $7202
   12
   13
       0000
                        LOC
                                R=*+2
                                                   TEST CELL ACCR
                               *=*+2
                                                    LCWER LIMIT CF TEST
       0002
                        LOW
   14
                                                   ; LPPER LIMIT CF TEST+1
                        HIGH
                               #=#+2
   15
       0004
                                                   FOINTER TO CELL UNDER TEST
   16
       0006
                        PTR
                               ¥ = *+7
   17
                                                   START ADDR
       0008
                               *= $ CC10
   18
   15
                        MAC
                                                   TYPE CR
   20
       0016
             AS OC
                               LDA #10D
       CC12
             20 02 72
                                JSR WRT
   21
                                LDA #$OA
                                                   ; & LF
       CC15
             AS CA
   22
   23
       3017
             20 (2 72
                                JSR WRT
   24
       CCIA
             2C 68 CC
                                JSR RSTLOC
                                                   ; LOC = LOW
   26
       CC1D 2C 71 CC
                                JSR RSTFTR
                                                   ; PTR = LOW
       002C A2 00
                               LDX #0
   27
   28
   29
                        CLEAR MEMORY AREA UNDER TEST
             A9 00
   3 C
       0022
                        MLI
                               LDA #0
                                                   STORE ZERO
             81 C6
                                STA (PTR,X)
   31
       0024
                                JSR INCPTR
             2C 7A 00
                                                   :INCREMENT & TEST
       0026
             DC F7
                               BNE ML1
                                                   ; NEXT LOC
   33
       0029
   34
   35
                        ; PUT $FF IN SELEXTED CELL
       COZE
            A9 FF
                               LDA #SFF
   36
                        TEST
                               STA (LOC, X)
       0020 81 00
   37
                        ; VERIFY ALL CELLS ZERO EXCEPT (LCC)
   38
       002F
             20 71 00
                               JSR RSTPTR
                                                   :PTR=LOW
   4 C
   41
       0032
             A1 C6
                        VLOOP LCA (PTR,X)
                                                   GET CELL
                                                   OK IF ZERO
       CC34
             FO 17
                                PEQ NEXTO
   42
       0036
             A4 06
                               LDY PTR
                                                   ; NOT ZERO--IS THIS (LOC)?
   43
             C4 0C
                               CFY LOC
   44
       0038
   45
       CCZA
             FC 01
                                BEC CK1
                                                   :NOT (LCC)
   46
       0030
             CC
                               BRK
   47
                        OK 1
                               LDY PTR+1
   48
       CC3C A4 C7
```

```
CARE # LCC
               COCE
                           CARD
  49 003F C4 01
                               CFY LCC+1
       0041 FO 01
                               BEC CKS
   50
                                                   ; NOT (LOC)
   51
       0043
             QO
                               BRK
   52
             C9 FF
                        CK2
                               CMP #$FF
                                                   :IS (LOC) -- IS DATA CK?
   53
       0044
   54
       0046
             FC 01
                               BEQ CK3
   55
       0048
             CC
                               BRK
                                                   WRONG DATA
   56
             49 00
                               LDA #0
                                                   ; RESET (LOC)
   57
       0049
                        CK3
   58
       0048 81 CC
                               STA (LOC,X)
   55
       004E 2C 7A 00
                                                   ; NEXT CELL
                        NEXTC JSR INCPTR
   6 C
       005C
             DO E0
                               ENE VLOOP
                                                   , IF NOT AT LIMIT
   61
   €2
                               LDA LCC
                                                   ; PRINT STAR EVERY PAGE BOUNCARY
   63
       0052
             A5 00
   64
       0054
             DO 07
                               ENE NOSTAR
                               LD# # **
   65
       0056
             AS 2A
                               JER WRT
   66
       0058
             20 C2 72
   67
       CC58
             A2 00
                               LCX #C
                                                   FIX X AFTER MON CALL
   68
             20 88 00 NCSTAR JSR INCLOC
   69
       0050
                                                   : NEXT LOC
   70
       006C D0 C9
                               BNE TEST
   71
                               JSR RSTLOC
                                                   : PASS COMPLETE
       0062
            20 68 00
   72
   73
       0065
             40 10 CO
                               JAP MAD
                                                   ;NEXT PASS
   74
                        ; PESET LCC TO LOW
   75
   76
       8300
             A5 02
                        RSTLCC LEA LOW
             85 00
                               STA LOC
   77
       C06A
                               LCA LOW+1
       0060
             A5 C3
   78
             85 C1
   75
       006E
                               STA LCC+1
   23
       007C
            € C
                               RTS
  81
                        RESET PIR TO LOW
   ٤2
   83
       0071
            A5 C2
                        RSTPTR LDA LCW
  84
       0073
            85 06
                               STA PTR
  85
       0075
            A5 C3
                               LEA LCW+1
       0077
            85 C7
                               STA PTR+1
  86
   87
       0079
            6 C
                               RTS
  83
                        ; INCREMENT PTR & CHECK FOR LIMIT
  89
                        INCPTR INC PTR
                                                  ; INCREMENT
      007A E6 C6
  90
   91
      007C DC C2
                               ENE INCL
  92
       Q07E E6 C7
  53
                               INC PTR+1
  94
  95
       0800
             A5 04
                        INCI
                               LDA HIGH
                                                  :CHECK
       0082 C5 C6
                               CMP PTR
  96
                               BNE IPRET
                                                  ; NOT AT LIMIT
             EO C4
       0084
```

CARC #	F QC	CODE	CARD		
9.8			;		
99	9800	A5 C5	LD	HIGH+1	
100	9800	C5 C7	C M	PTR+1	; Z=1 IF AT LIMIT
101			;		
102	A800	60	IPRET RT		
103			;		
104			; INCREMEN	L FOC & CHECK	
105	9800	E6 CC	INCLOC IN	. FOC	; INCR
10€	1800	CC C2	PN	INC 2	
107			;		
108	008F	E6 01	IV	LOC+1	
105			;		
110	0091	A5 C4	INC2 LD	HIGH	: CHECK
111	0093	C5 00	CMI		
112	0095	DO C4	E N	ILPET	
113	0097	A5 05	L D		
114	0099	Ç5 01	CM	2 LOC+1	; Z=1 IF AT LIMIT
115			;		
116	009E	6 C	ILRET RT		

NUMBER OF ERRORS = 0, NUMBER OF WARNINGS = 0

SYMPOL TABLE

SYMBOL	VALUE	LINE DEFINED			CPCSS	-REFER	RENCES					
HIGH ILRET INCLOC	CCC4 COSE COSE	15 116 105	95 112 65	55	110	113						
INCEGE INCPTF INC1 INC2	CO 7 A CO 8 C CC 5 1	90 95 110	32 51 106	£C								
IPRET LOC	4800	102	97 37 114	44	49	58	63	77	79	105	108	111
LCh MAD	COC2 CO1C	14 20 30	7 6 7 2 3 3	78	83	25			i.			
ML I NEXTC NOSTAR	0022 004E 005E	60 69	42 64									
C K 3 C K 3	003E 0044 0045	4 E 5 3 5 7	45 50 54					•			96	100
PTR RSTLOC RSTPTR	0006 0068 0071	16 76 83	31 25 26	41 72 39	43	48	84	86	s (53	70	100
TEST VLCCP NRT	CG2E CG32 72C2	36 41 12	7 C 6 1 2 1	23	66							

SECTION 5

ROM RESIDENT SOFTWARE (OPTIONAL)

Resident software is available for your SUPER JOLT card in the form of two mask-programmed ready-only memories (ROMs).

ROM OPERATION INSTRUCTIONS

These two proprietary 2Kx8 mask ROMs (AM9216's) contain the 6502 Resident Assembler Program (RAP) and JOLT TINY BASIC. These ROMs are designed for immediate use on the CP110 SUPER JOLT Card.

Program Location:

TINY BASIC (

C000 - C8FF

RAP

C900 - CFFF

Ram Requirements:

Both TINY BASIC and RAP assume RAM at page 0 and 1 (0000 - 01FF). Both programs will, upon execution, determine the extent of RAM memory, beginning at 0200 and continuing to write/read memory until the read fails, indicating the end of RAM memory. This RAM address space information is used by the programs as the total extent of RAM available.

Page O Vector Initialization:

Prior to running either TINY BASIC or RAP, two branch vectors must be entered at location 0000. Use \mathtt{DEMON}^{TM} to first desplay, then alter these locations as follows:

- XX XX XX XX XX XX XX XX XX XX
- .: 0000 4C E9 72 4C C6 72

The branch at 0000 (4CE972) is a JMP to the DEMON TM read character routine (RDT). The branch at 0003 (4CC672) is a JMP to the DEMON TM write character routine (WRT).

Start Addresses:

TINY BASIC COOO

RAP

C900

High Speed Paper Tape Input Option (TINY BASIC Only):

TINY BASIC may be made to run using the high speed paper tape input option. First use DEMON TM to initialize page 0 as follows:

- .: 0000 4C 06 00 4C C6 72 A6 E8
- .: 0008 86 E7 20 1D 73 4C E9 72

Use DEMON's TM "H" command, to set the high-speed reader mode. Then transfer control to TINY BASIC at COOO. Input will be read in from the high speed reader

source, but will not be echoed on the printer device. Following completion of the read-in, if control is not returned to the terminal, restart BASIC at C003, (warm start) to preserve the data in memory.

Resident Assembler Test Program:

Users should note that the .ORG \$1000 on the RAP test program should be changed to .ORG \$200 for SUPER JOLT usage. This can be done dynamically by stopping the test run just prior to the read-in of the .ORG \$1000, typing in the .ORG \$200, skipping past the .ORG \$1000 on the paper tape, and continuing.

JOLT TINY BASIC

The JOLT TINY BASIC interpretive program is a subset of Dartmouth BASIC that resides in 2,304 bytes of program memory. The language consists of 12 statements, four expressions and two machine language subroutine calls.

PRINT: print-list

This statement prints values of the expressions and/or the contents of the strings in the print-list. The items may be expressions or alphanumeric strings enclosed in quotation marks.

INPUT: input-list

This statement checks to see if the current line is exhausted. If it is, a question mark is prompted with an X-ON control character, and a new line is read in. Then or otherwise, the input list is scanned for an expression which is evaluated. The value thus derived is stored in the first variable in the input-list.

LET variable = expression:

This statement assigns the value of the expression to the variable. The long form of this statement executes slightly faster than the short form (variable = expression).

GOTO expression:

The GOTO statement premits changes in the sequence of program execution to the line number derived by the evaluation of the expression in the GOTO statement. This permits one to compute the line number of the next statement on the basis of program parameters during program execution.

GOSUB expression:

The GOSUB statement is like the GOTO statement, except that TINY BASIC remembers the line number of the GOSUB statement, so that the next occurrence of a RETURN statement will result in execution proceeding from the starement following the GOSUB. Subroutines called by GOSUB statements may be nested to any depth.

RETURN:

The RETURN statement transfers execution control to the line following the most recent unreturned GOSUB.

IF expression rel expression THEN statement:

The IF statement compares the expressions according to one of six relational operators. If the relationship is TRUE, the statement is executed; if FALSE, the associated statement is skipped. The six relational operators are:

END:

The END statement must be the last executable statement to terminate a problem at any time or to clear out any saved GOSUB line numbers.

REM comments:

The REM statement permits comments to be interspersed in the program.

CLEAR:

The CLEAR statement formats the user trogram space, deleting any previous programs.

RUN:

The RUN statement is used to begin program execution at the first (lowest) line number.

LIST:

The LIST statement causes part or all of the user program to be listed. If no parameters are given, the whole program is listed.

EXPRESSIONS:

An expression is the combination of one or more numbers or variables joined by operators, and possibly grouped by parentheses. There are four operators:

RESIDENT ASSEMBLER PROGRAM

The JOLT Resident Assembler Program (RAP) is a 1.75 K byte program designed for use on CP110 SUPER JOLT systems equipped with at least 4 K bytes of RAM

memory. RAP processes source statements producing an output listing on teletype-like like devices. The assembly process is performed in one pass, reading source input, printing the listing and generation object code continuously until all processing is complete. Source input is accepted by the assembler either by directly typing input at the keyboard or by reading a previously prepared punched paper tape.

The assembler stores the generated object code directly into JOLT memory. There it can be executed immediately after assembly or punched out in hex format using

the DEMON monitor.

Rap is compatible with the Synertek Cross Assembler with the following exceptions:

- o Expressions and *(used for current program counter) are not allowed.
- o The OPT and PAGE pseudo operations are not implemented.
- o Octal and binary numbers are not implemented.
- o ORG is used instead of *= to origin program.
- RES is used for reserving storage.

Input Line Format

Source input is free format where each statement can be composed of the following optional fields:

- Label If present, must begin in column one and be terminated by a space.
- o Operation If present, must be preceded by a space and must be one of the SY 65XX mnemonics defined in the RAP Manual.
- Operands If present, must be preceded by a space and follow one of the forms found in the RAP manual.
- o Comments if present, must have as its first character a semicolon (;) and if not in column one, must be preceded by a space.
- Carriage return All lines are terminated by a carriage return.
- o Expressions and * (used for current program counter) are not allowed.

A name is any alphanumeric symbol. Names are used as labels or in operand fields.

The first character of a name can be any assembler recognized name character or a letter. The second and following characters of a name can include numbers. A name is terminated by a blank or a carriage return. Names have no restrictions on length other than they must fit on one line.

Numbers are an unsigned string of hexaadecimal or decimal characters. Hexidecimal numbers are preceded by a \$ and can contain the numbers 0 through 9 and the hex characters A through F. Decimal numbers contain only the decimal characters 0 through 9.

ASCII strings have two forms. The short form is used in conjunction with immediate operands and consists of a single quote followed by a single ASCII character. The long form is used to define large strings of ASCII data. This form is only valid in the BYTE Pseudo operation. Carriage returns are not allowed within the string.

All symbols that are intended to be used as an 8-bit immediate operand must be

defined (appear in a label field) before they are used. Sixteen bit operands and forward relative branches are inserted at the time of their definition by the assembler. This means that the Value appearing in the assembly listing of previously undefined symbols is not the ultimate value used at the time the assembly is complete.

The assembler detects errors during the assembly process and outputs an appropriate error code after the printed hex output on the listing. Recognized errors include: Branch address out of range, undefined operation code, size of operand value exceed 8-bits, multiple appearances of the symbol in the label field, and improper format in the operand field. Additionally, the location field is offset in the table dump for undefined symbols.

The reverse-slash character may be used to delete the current source line during an assembly run. Reverse-slash is obtained by the Shift and L key combination. When used, the delete line causes the current line to be ignored and terminated, a carriage return will be effected and the assembler will position the carriage to accept the next line of source data.

The user may at any time, reorigin the assembler to correct areas of code already assembled. For example, if half way through an assembly, the user realized that an instruction was omitted, say five lines ahead of its current position, he may stop the assembler, reorigin back to the location at which the instruction should be inserted, insert the instruction and then repeat the assembly process from that point forward.

SUPERJOLT SCHEMATIC & ASSEMBLY DRAWING

Synertek Systems Corporation P.O. BOX 552 SANTA CLARA, CALIFORNIA 95052 TEL. (408) 988-5600 TWX: 910-338-0135