FOCAL USER'S MANUAL

FOCAL Version 3D

Copyright 19877
Aresco

FOCAL MINI-MANUAL

This manual is designed to be a brief introduction to
FOCAL commands, functions and the language as a whole.

"FOCAL" is a registered trademark of Digital Equipment
Corp.

!!1Note!!! Before running FOCAL on your system make sure that
the zero page memory location "PDLIST" is set correctly for your
memory size. It should contain the address of the highest memory
byte minus FF. ‘

Also, check the section of the listing called FOCDEF.

This area contains definitions of all of the special definition
used by FOCAL. Make sure they match your system configuration.

Loading FOCAL on your KIM system

FOCAL is supplied as an audio cassette containing two
blocks. The ID of both blocks is Pl. One block contains page
zero (0000 - 0100), the other block contains the FOCAL program
(2000 - 36B0). Both must be loaded for FOCAL to operate cor-
rectly. After loading both blocks, enter address 2860 and G
(to GO). FOCAL will type "-17@" and an asterisk. You are now
in FOCAL command mode.

If you ordered FOCAL on paper tape, load the tape using
the "L" command or whatever command loads KIM/TIM format tapes
on your particular system.

Part One
Getting Started in Programming

FOCAL is a programming language which allows the human

. user to communicate with a computer in higher-level mathematical
terms without having to be concerned with electronic particulars
of the given computer. FOCAL is an interactive language, in that
you communicate directly with it through the use of a keyboard-
input system, and it reacts immediately to the commands you give
it. This allows for quick and easy creation, testing, and execu-
tion of programs. This reduces the amount of human effort in-
volved in programming which, in many cases, represents the major
expenditure in solving problems with computers.

Once the FOCAL system has been loaded and initialized on
the computer that you are using (procedures may vary with computer
type), then you are ready to interact with the computer through
commands expressed in the "FOCAL" language. Much of the rest of
this document will be concerned with the structure and rules of
the "FOCAL" language.

Some Fundamental Ideas

The user communicates with the <cwputer through the use of
"commands" which are recognized by the "FCAL" system and cause
it to perform certain specific actions. A FQCAL command must
always begin with a command "name"--which may be abbreviated.
The command "name" is then followed by other parameters upon which
the command will operate. Several commands may be placed on one
line by separating them with the semicolon character (;). The
entire line is ended with the "RETURN" character ("CR" on some
keyboards). The general format may be illustrated as:

COMMAND1 PARAMETER1 ;COMMAND2 PARAMETER? ;COMMAND3 PARAMETER3 RETURN
When the "FOCAL" system requires a line to be input by the

user, it outputs a "prompting" character (usually an asterisk "#*").

High Speed Calculations Using the "TYPE" Command

You only need to learn one FOCAL command, "TYPE" (abbrevi-
ated "T") in order to do calculations such as the following:

10° % 3/1p + 21 - 2
To do this with FOCAL, you type:
*T 1943 *3/19 + 21-2 (And after you press the return key
= 319.90000 FOCAL computes this result. Every
: line nmust end with a return.)

This example shows the arithmetic operations performed by
FQCAL. These are done from left to right except that exponentia-
tion (&)_is done first, then multiplication (%), then division (/),
then addition (+) or subtraction (-).

This means that

*T 6/6%2 is .5808 and not 2.P8@8P8 because multiplication
is done before division in FOCAL.

Enclosures

To make sure that the computer performs these operations
in the order you want, you can place them inside parenthesis
marks. When the computer sees an expression enclosed in paren-
theses, it does that first. If the statement includes parentheses
within parentheses (nesting), it computes the innermost first.

7+(6/3) - (5+2) *3
In this example the computer first computes the values of

the expressions enclosed in parentheses (6/3) is 2, and (5%*2) is
25. Then 7+2 =~ 25%3 = -66.0000.

Another Command: SET

This useful command tells FOCAL, "Store this symbol and
its numerical value. When I use this symbol in an expression,
insert the numerical value."

#SET PI=3.14159; SET E=2.71828; SET R=9.12739

Symbols may consist of one or two (depends on the imple-
mentation you are using) alphanumeric (letters and numbers) char-
acters. The first character must be a letter, but cannot be the
letter "F" which has special meaning, as we will see later.

Just for practice, let's use FOCAL to calculate the volume
of a sphere which has a radius of 9.12739. (We're going to use
two of the symbols we have just defined in the SET commands
above.)

The formula is V = (4/3)*PI*R?® whcih we can type like this:
#T R43%#PI%L/3

You might be interested in running a timing test to show

how long it takes to do such calculations by hand, with a calcu-
lator, and with FOCAL.

The Talking Typewriter

To make the output of your program absclutely clear to other
people, it is sometimes useful to give FOCAL certain messages or
column headings. We call these "character strings." These mes-
sages are enclosed in quotation marks.

#SET E=2.71828

#SET PI=3.1u4159
+ *TYPE "PI TIMES E=",PI®E

-3 -

and FOCAL types out:
PI TIMES E= 8.5397%

You are not allowed to use the carriage return, line feed
or leader-trailer characters in these character strings, but you
can tell FOCAL to do a carriage return/line feed by inserting an
exclamation mark (!). You can get just a carriage return by in-
serting a number sign (#).

*TYPE "JOHN"!', "“BILL"!, "FRED"!, "sSaM":, "RICHARD"!

RICHARD
B3
Spaces can be used in character strings as needed.

Keeping Track of the Decimal Point

FOCAL results are accurate to 9 significant digits
(depends again on the implementation you are using).

As we have shown in the examples so far, FOCAL assumes at
the start that you want to see your results with 4 digits=(or
spaces) to the left of the decimal point and 4% digits to the right
of the decimal point. This is called fixed-point notation.

You can change the output format within a type statement by
typing "%X,Y" where X is the total number of digits to be output,
and Y is the number of digits to the right of the decimal point.
Both X and Y are positive integers equal to or less than 31. If
Y is a single digit, it must be preceded by #. For example,

%6.082 indicates six digits to the left and two to the right of the
decimal point.

Correcting Mistakes

If you should strike the wrong key, you can delete it by
striking the rubout key. Each time you strike rubout, another
previously typed character will be deleted. When you strike
rubout, FOCAL echoes back a backslash "\" (may vary with imple-
mentations) to inform you that it has deleted the character.

You may erase everything back to the left margin by strik-
ing the "backarrow" key.

Summary of Part One

In this first part you have learned how one FOCAL command
type is used to evaluate expressions, to type out character
strings enclosed in quotes, and to use symbols (defined in SET
commands) in expressions.

In the second part you will learn the other commands and
the use of line numbers to write a sequence of FOCAL statements.
As you learn these techniques you will be advancing rapidly in
the art of computer programming.

Part Tuo

Sequential Commands

Indirect Commands

Up to this point, ail of our comuands have been executed

immediately upon hittiny the "yel 0" “ev. If a line is pre-
fixed by a line number, -t ITino Tl ~oouted immediatelys
instead, it is stored .. the compiter = ey for later execu-

tion, usually as part ©: a4 s3equence o ands.

Line numbers must be in the range from 1.81 to 99.98.

The numbers 1.4, 2.80, et~., are ill-ral line numbers;
they are used to identiiy the entire group. ‘he number to the
left of the point is called the group number; the number to the
right.is called the step number.

*1.1 SET A=l
*1.3 SET B=2
®#1.5 TYPE %1, A+B

Indirect commands are executed by typing GO, GOTO, or DO
commands which may be direct or indirect.

G0 Command

The GO command causes FOCAL to go to the lowest numbered
line to begin executing the program. [the user types a direct
GO command after the indirect commands in the example above,
FOCAL will carry out the command at lin~» 1.1, and then the
others, sequentially.

*G0
3%

GOTO Command

The GOTO comman:: -auses POCAL to transfer control to a
specific line in the indivect program. 1t must be followed by
a specific line number. After executing the command at the spe-
cific line, FOCAL continues to the next higher line. The GOTO
causes a program branch; we have jumped from cne sequence of lines
to another. Sometimes we merely jump back and repeat a sequence
of commands. This technique of repeating sequences is called

Citeration end 1t Is oftern ated by experienced computer programners.
GOTO 1.3 -
2% (Since line 1.1 has not bheen executed, FOCAL gives

the symbol A the value zeroi)

-6 -

For a line number in the GOTO command, FOCAL will allow an
arithmetic expression which begins with a variable (e.g., X*2),
for example, a statement in a program may look like the following:

*1,7 GOTO X*2

Note that the command GOTO 2%#X, is illegal since the arithmetic
expression begins with a number rather than a variable.

Other commands in which line number computation is provided
for are the "DO," IF," "MODIFY," and "ON" commands.

DO Command

The DO command is used to transfer control to a specific
step, or group of steps, and then return automatically to the com-
mand following the DO command. The step, or group of steps, may
be given as an arithmetic expression beginning with a variable (as
in the GOTO command).

*#1.1 SET A=1; SET B=2
*1.2 TYPE "STARTING"
*#1.3 DO 3.2

%#2.1 TYPE "FINISHED"
*#3.1 SET A=3; SET B=u
%3.2 TYPE %1, A+B

*GO

STARTING 3 FINISHED 7%

If a DO command is written without an argument, FOCAL exe-
cutes the entire indirect program.

*1.1 SET A=l

#1.3 SET B=2 .
*1.5 TYPE %1, A+B
DO

The following example causes a programming loop which coculd be
terminated by inserting line 1.5 QUIT, see below.

#1.1 SET A=1
*1.1 TYPE A
*1.3 DO 2.9
#1.4 TYPE "FINISHED"

*#2.1 SET A=A-1
*2.2 TYPE A

DO commands cause specified portions of the indirect program to

be executed as closed subroutines; these subroutines may also be
- terminated by a return command, explained below.

-7 -

RETURN Command

The RETURN command is used to exit from a DO subroutine.
When a RETURN command is encountered during execution of a DO
subroutine, the program exits from its subroutine status and
returns to the command following the DO command that initiated
the subroutine status.

IF Command

In order to transfer control after a comparison, FOCAL
contains a conditional IF statement. The normal form the the IF
statement consists of the word IF, a space, a parenthesized ex-
pression or variable, and the three line numbers separated by
commas. The expression is evaluated and the program transfers
control to the first line number if the expression is less than
zero, -to the second line number if the expression has a value of
zero, or to the third line number if the value of the expression
is greater than zero. The IT expressicn or variable must be
enclosed in parentheses. The line numbers can be arithmetic ex-
pressions, but these cxpressions must begin with a variable (as
in the GOTO command).

The program below transfars control to line number 2.18,
2.30, or 2.58, according to the value of the expression in the
IF statement.

*2.1 TYPE "LESS THAN ZiR0'"; QUIT
*2.3 TYPE "EQUAL TO ALRO"' QUIT
%#2.5 TYPE "GREATER THAN ZERO"; QUIT
*IF (25-25)2.1, 2.3, 2.5

EQUAL TO ZERO*

The IF statement may be shortened by terminating it with
a semicolon or carriage return after the first or second line
number. If a semicolon follows the first line number, the ex-
pre351on is tested and control is transferred to that line if the
expression is less than zero. If the expression is not less than
zero the program continues with the next statement.

*#2.28 IF (X) 1.8; TYPL "
%

In the above example, when line 2.20 is executed, if X is

less than zero, control is transferred to line 1. 8 If not, "Q"
is typed out.

%*3,19 IF (B) 1.8, 1.9
*3.20 TYPE B
&%

In this example, if B is less than zero, control goes to
line 1.8. 1If B is equal to zero, control goes to line 1.9. If B
is greater than zero, control goes to the next statement which in
this case is line 3.28 and the value of B is typed out.

If a GOTO or an IF command is executed within a DO subroutine,
two actions are possible:

1. If a GOTO or IF command transfers to a line inside the
DO group, the remaining command in that group will be
executed as in any subroutine before returning to the
command fellowing the DO.

2. 1If transfer is to a line outside the DO group, that
line is executed and control is returned to the command
following the DO, unless that line contains another

GOTO or IF.
*ERASE ALL
*#1.1 TYPE "A"; SET X=-1; DO 3.1; TYPE "D"; DO 2
*#1,2 DO 2

#2.1 TYPE "C"

*2.2 IF (X)2.5, 2.6, 2.7

%*2,5 TYPE "H" .

%#2.6 TYPE "I"

%2.7 TYPE "Jg"

*2.8 TYPE "K" :

%*2.9 TYPE %2.01, X; TYPE " "; SET X=X+1

*#3.1 TYPE "B"; GOTO 5.1; TYPE "F"
*5.1 TYPE “C"
*5.2 TYPE "#"
*5,3 TYPE "L"
(FOCAL types the answer)

ABCDGHIJK-1.H GIJK 1.8 BCEL*

ON Command

The ON command is a three-branch conditional "DO." It
functions similarly to the IF command (actually uses some of IF's
coding) except that the line number (or group) is executed as in
a "DO" command rather than as in a "GOTO" command.
Example:
ON (X)2.1,5,3.43D 63 CONTINUL

-9 -

In this case,

If X < B, Yine 2.1 1is executed and then group 6 is
executed; control continues onto the next
line.

If X = 8, group 5 is executed, then group 6.

If X > 8, line 3.4% is executed, then group 6.

In the ON command, the line numbzr may be an arithmetic

expression, but the arithmetic expression must begin with a vari-
able (as in the GOTO command).

More about Symbols

The value of a symbolic name or identifier is not changed
until the expression to the right of the equal sign is gvaluated
by FOCAL. Therefore, Lofore it is evaluated, the value¥f a symbolic
name or identifier can be changed by retyping the identifier and
giving it a new valuc. i

#SET Al=342

#SET Al=Al+1l

*TYPE %2, Al
10%

Note: Symbolic numes or identifiers must not begin with
the letter F.

The user may request FOCAL to type out all of the defined
symbolic identifiers by typing a dollar sign ("$") in a "TYPE"
command.

*TYPE %6.05,$%

The user's symbol table is typed out like this:

A (p9)= 1111.11900
B (#B)=.3P6P51
g (20)= 381.00000

Subscripted Variables

FOCAL allows variables to be further identified by sub-
scripts (max range may depend on implementation), positive and
negative, which are enclosed in parentheses immediately following
the variable name. A ouloeript may also be an expression:

#SET AL(I+3%5)=2.71; ob1 M1(K+#3%3)=2.79

~-10 -

The ability of FOCAL to compute subscripts is especially
useful in generating arrays for complex programming problems.

An important difference between the "FCCAL" language and
most other languages is that only the elements in an array that
are actually used by the program are set aside in the computer's
memory. Thus no definition of array size is needed.

QUIT Command

A QUIT command causes the program to halt and return con-
trol to the user. FOCAL types an asterisk and the user may type
another command.

COMMENT Command

Beginning a command string with the letter C will cause
the remainder of that line to be ignored so that comments may be
inserted into the program. Such lines will be skipped over when
the program is executed, but will be typed out by a WRITE command.

FOR Command

This command is used for convenience in setting up program
loops and iterations. The general format is

*FOR A=B,C,D; (COMMAND(S))

The identifier A is initialized to the value B, then the
commands following the semicolon are executed. When the commands
have been executed, the value of A is incremented by C and com-
pared to the value of D. If A is less than or equal to D, the
commands after the semicolon are executed again. This process is
repeated until A is greater than D, at which time FOCAL goes to
the next sequential line.

The identifier A must be a single variable. B, C, and D
may be either expressions, variables, or numbers. If the comma and
the value C are omitted, it is assumed that the increment is one.
If "C,D" is omitted, it is handled like a SET statement and no
iteration is performed.

The computations involved in the FOR statement are done in
floating-point arithmetic, and it may be necessary in some circum-
stances to account for this type of arithmetic computation.

Example 1 below is a simple example of how FOCAL executes a
"FOR" command. Example 2 shows the FOR command combined with a
DO command.

- 11 -

Example 1:

*ERASE ALL

%#1.1 SET A=108

*1.2 FOR B=1,1,5; TYPE %5.82, "N IS="B+A,
*G0

N IS=191,00

1S=102.00

IS=103.0¢

IS=184.00

1S=105. 00

e

sZx2=2Z2==

Example 2:

*1.1 FOR X=1,1,5;D0 2.0
*1.2 GOTO 3.1

13
*#2.1 TYPE !" "%3,"X"X
%2.2 SET A=X+100.828
®2.3 TYPE 1I" "%5.82, "A"A
*#3.1 QUIT
%G0

X 1

A 101.08

X 2

A 102.00

X 3

A 183.00

X 4

A 1p4.90

X 5 .

A 1p5.88%*

ASK Command

The ASK command iz normally used in indirect commands to
allow the user to input data at specific points during the execu-
tion of his program. 7The ASK command is written in the form

*11.99 ASK X,Y,Z
%

When line 11.99 is encountered by FOCAL the user then types
a value in any format for the first identifier, followed by a

terminator. (Terminators are space, comma, alt mode and return
keys.) TOCAL then asls for another value (no visible indication
on the paper), and the user types a value for the second identi-
fier. This continues until all the identifiers or variables in
the ATK statoment bovse boen yiven values. The user must end the

last number in an ASK sequence with the return key.

- 17 -

*#11.99 ASK X,Y,Z

*DO 11.99

5 4 3 (RETURN KEY WAS TYPED HERE)
1

where the user typed 5, 4, and 3 as the values, respectively, for
X, Y, and Z.

A text string may be included in an ASK statement by enclosing
the string in quotation marks, just as in the TYPE command.

*#1.18 ASK "HOW MANY APPLES DO YOU HAVE?" PPLES
*DO 1.10
HOW MANY APPLES DO YOU HAVE? 25

%

The identifier AP (FOCAL RECOGNIZES the first two characters
only) now has the value 25.

Error Correction Commands and Procedures

One of the advantages in the FOCAL language is the ability
to find errors and to make the appropriate corrections with a
minimum of effort. Several commands and procedures are available
to the programmer for quick and easy debugging.

WRITE Command
The WRITE command without an argument can be used to cause
FOCAL to print out the entire indirect program, allowing the user

to visually check it for errors.

A group of line numbers, or a specific line, may be typed
out with the WRITE command using arguments, as shown below.

*WRITE 2.9 (FOCAL types all group 2 lines)
*WRITE 2.1 (FOCAL types line 2.1)
tWRITE (FOCAL types all numbered lines)

ERASE Command

A line or group of lines may be deleted by using the ERASE
command with an argument. For example, to delete line 2.21, the
user types

*ERASE 2.21
%

- 13 =~

To delete all of the lines in group 2, the uéer types

*ERASE 2.0

kg

‘ Used alone, without an argument, the ERASE command causes
FOCAL to earase the user's symbols and control remains in the
same mode as the one in which the command was issued (either the

stored mode or the immediate mode). In the stored mode, the
ERASE command must be the last command in the line. Note that the
command, ERASE with «n argument, causes control to go to the im-

mediate mode.

Typing WRITE after making corrections causes FOCAL to
print the indirect program as altered. This is useful for check-
ing commands and for obtaining a "clear" program printout.

Corrections

If the user types the wrong character, or several wrong
characters, he can use the rubout key as we explained in Part
One, which echoes a backslash (\) for each rubout typed, to
erase one character to the left each time the rubout key is de-
pressed. TFor example,

*ERASE ALL (Erases program text and variables)
%1.1 P\TYPE X-Y

*#1.2 SET $=13\\\\X=13

*WRITE

1.9 TYPE X-Y
Pl.2@ SET X=13
* .

A line can be corrected by retyping the line number and typing
the new command.

#*#14.99. SET C9(N+3) = 15
13

IS REPLACED BY TYPING
*#14.99 TYPE C9/25-2

*WRITE 14.99
14.99 TYPE C9/25-2
g

MODIFY Command

Frequently, only a tew characters in a particular line re-
quire changing. To facilitate this job and to eliminate the need
to retype the entire line, the I'OCAL programmer may use the MODIFY
command. Thus, in order to modify the characters in line 5.41, the

- 14 -

user types "MODIFY 5.41." This command is terminated by a car-
riage return, whereupon the program waits for the user to type
an altmode character and then a search character. FOCAL then
proceeds to the first occurrence of that character. Characters
can now be inserted or deleted from that point. If the user
wishes to search for another character in another position in
the line, he types another altmode and the search character. If
the user types a line feed, the remainder of the line will be
accepted as is. If the user types a carriage return, all of the
text from the current position to the end of the line will be
deleted.

The ERASE ALL and MODIFY commands are generally used
only in immediate mode because they return to command mode upon
completion.

During command input, the left arrow will delete the line
numbers as well as the text if the left arrow is the rightmost
character on the line. '

Notice the errors in line 7.81 below.

#7.91 JACK AND BILL WANT UP THE HALL
*MODIFY 7.01

JACK AND B\JILL WS\ENT UP THE HA\ILL
*WRITE 7.01

#7.81 JACK AND JILL WENT UP THE HILL
*

To modify line 7.81, a B was typed by the user to indicate
the character to be changed. FOCAL stopped typing when it en-
countered the search character, B. The user typed the rubout key
to delete the B, and then typed the correct letter J. He then
typed the alt mode keys followed by the $, the next character to
be changed. The rubout deleted the $ character, and the user
typed an E. Again a search was made for an A character. This
was changed to I. A line feed was typed to save the remainder of
the line.

Error Detection in Indirect Statements

When an error occurs in executing an indirect statement,
the error message is typed out when the statement is encountered
during program execution. In addition to the error code, FOCAL
types the line number containing the error, as shown in the follow-
ing example.

%#1.10 SET A=2; TYPE "A", A,!
%1.20 SET B=4; TYPE "B", B,
#1.30 GOTO 1.01

%1.40 TYPE "A+B", A+B

*GO

A 2.0000

- 15 -

B 4.9000
?-3 @ 1.30
%

FOCAL executes lines 1.1 and 1.2 and then recognizes that
line 1.3 is an illegal command. Therefore it issued the error
message to show you that an illegal command was used. An error
code table is available at the beginning of each source listing.

To pinpoint an -~ op in 1in. :.3, for example, type "DO
3.3 ?" and the pregram w111l be traced until the error is found.

Using the Trace Feature

The trace feature is useful in checking a program's opera-
tion. Those parts i il program which the user has enclosed in
question marks will be printed out as they are executed.

In the ilowing —mample, parts of three lines are printed.

%ERASE ALL

#1.1 SET A=1

#1,2 SET B=5

#1.3 SET C=3

*#1.4 TYPE %2, ?A+B-C?,!
%1.5 TYPE ?B+A/C?,!
%1.6 TYPE 285-0/77

£G0

A+B-C 3
B+A/C 5
B-C/A 2%

When only one ? is inserted, the trace feature becomes
operative as FOCAL encounters the ? during execution, and the pro-
gram is printed out from that point until another ? is encountered.
The program may loop through the same ? until an error is en-
countered (execution st:ps and an error message is typed), or until
program completion.

* ERASE ALL

* 1.1 ?SET A=0; TYPE 33,A!

* 1.2 for B=1l,1,4; TYFT E+A!
%60 ’

SET A=0 ; TYPE %3,A!

1 TYPE B+A!

2 TYPE B+A!

3 TYPE B+A!

Ly

In this cwamp!le, TOCAL encountered the ? as it entered
line 1.1 anftd oo o b e preceroam,

- 16 -

FOCAL Functions

The functions are provided to improve and simplify arith-
metic capabilities and to give potential for expansion to addi-
tional input/output devices. A standard function call consists
of four (or fewer) letters beginning with the letter F and fol-
lowed by a parenthetical expression:

FABS(A-B*2)

There are basic mathematical functions provided as part of
the FOCAL system, and extended functions which allow the user to
do special operations (like reading data from external storage
devices). Also, FOCAL provides the mechanism for user written
functions, programmed in either "FOCAL" or machine language. Some
FOCAL functions are specific to the machine you are using, or the
implementation of the FOCAL system on that machine.

FOCAL functions are executed using the SET or the TYPE
command

*T FINT(Y)
#S X=FODV(1)

All FOCAL functions return a value, and the value can either be
placed in a variable or typed out. If the function is a mathe-
matic operation the value returned is the result of the operation.
With some non-mathematic function, such as (FODV), the value
returned is superfluous and can be ignored. -7

Absolute Value

The absolute value function (FABS) outputs the absolute or
positive value of the number in parentheses.

* TYPE FABS(-66)
=66
*TYPE FABS(-23)
= 23%
*TYPE FABS(-99)
=99*%

Integer

Integer part function (FINT) outputs the integer part of a
number.

#*TYPE FINT(5.2)

= §%

*TYPE FINT(55.66)
= 5&%

*TYPE FINT(77.u434)
=77%

#TYPE FINT(-4.1)

=-u* - 17 -

Integer Rounding

The inteser 1oaniing function (FINR), keeps the 1nteger
part an< round. v . [. 8.5 or larger to the next higher inte-
ger.

#*TYPE FINR(5.5)
5.0000%
*TYPE FINR(5.6)
6.00080%

Random Number Geneira.or

A random number generator, FRAN (), generates repeatable
random numbers between B and £.999999.

*TYPE %, FRA™ ()

=9.607295
*TYPE FRAN ()
%=20737615

The random numbcr generator must be initialized before it
is used. Generally, this is done at the beginning of a program.
It can be initializes ‘i:ing the .SLT command.

S X=FRAN(-1)
S X=FRAN(1)

If FRAN i~ . 1" .y 3 positive number, the random sequence
1s repeatable. 1If it is set to a negative value, the sequence is
entirely randsna,

S X=FRAN(B) OR S X=FRAN()

FRAN with a zero subscript returns with X set to a random value.

~

Input and Mi*-t Peeios Tunstinng

Input dewviz -0 -7zn (FIDV) and output device function
(FODV) allow FOCAL to send and receive information through more
than one device. Voo cxample,

*#S X=FIDV(1)

will set FOCAL's input device to device number one. Generally,
device number B is the console device. Other devices such as
printers or cassette recorders can be added by placing the

addresses of the I/0 (dvivers in the I1/0 dispatch table at the
end of the i1ictinr. (7 .: The svmhols IDTVM and ODEVM set
the maximui: wambcr o0 1,0t and output devices allowed. They
may be altered by patehing their value in the routines labeled
CHKODV wrir i i)

- 18 -

Character Input and Output Functions

The functions FOUT and FCHR allow decimal numbers to be
converted to ASCII equivalent characters and vice versa. Here
are some examples:

*S X=FOUT(65)
A%

*3 X=FCHR()
At

*T X
65.A0A0%

In the first example, 65 is converted to the character "A" and
printed. Any prlntable character, control character, or binary
value can be printed or sent to the output device. In the second
example, X is set to the decimal value of the character typed or
sent to FOCAL. Using these two functions the numeric values of
characters may be tested and operated upon mathematically

Echo Control Function

The echo control function (FECH) allows echo to the console
device to be suppressed.

*#S X=FECH(1)
*S X=FECH(#®)

Setting the control to one suppresses the echo, setting it to zero
restores echo.

Memory Examine and Deposit Function

This function (FMEM) allows machine level memory locations
to be examined or deposited by FOCAL. If a memory location is
examined, the function carries two arguments: the decimal equi-
valent of the high and the low byte of the address. If a value
is to be deposited a third argument carries the decimal value to be
loaded into memory.

*T FMEM(28,81)
25.0800%
*S X=FMEM(20,01,08)
*T FMEM(20,01)
B.opopo*

FOCAL Subroutine Function

The subroutine function (FSBR) allows the user to create
functions within a program. TFSBR calls a line or a group of

1

- 19 -

FOCAL code and returns a value. The first argument in the func-
tion is the line or group number of the code, and the second argu-
ment is the value carried to the subroutine. The variable "g"
replaces the second argument and carries its value.

1.1 ASK X;TYPE FSBR(99,X);Q
99.1 S €1=63S £=2;S €3=.p00001

99.2 S €2=81/6;1 (FABS(62-6)=£%£3)99.3;S £=(E+£2)/2;G 99.2
99.3 R .

Initialize Input-Qutput Device Function

These functions (FINI, FINO) allow input and output devices
requiring specialized initialization to be set up through FOCAL.
The address of the initialization routines are placed in the dis-
patch tables and the function is called with the device number as
an argument.

*S X=FINI(2)

Cursor Address and TV Memory Functions

These functions (FCUR, FTVM) allow direct cursogﬁaddressing
and direct TV memory examination. Currently, drivefs €kist only
for the Digital Group system TV board.

- 20 -

Part Three
FOCAL Version 3D

FOCAL Version 3D has a number of new features and optimiza-
tions. These features include increased speed, string functions,
more powerful DO and SET commands, explicit error messages, im-
proved random number generator and priority interrupt control.

SET

SET now has the ability to evaluate more complex expressions.
For example, it is now possible to execute the following statements:

SET X=Y=Z=9

SET X=1, Y=2

SET X=(Y=A+B) + 4

This new feature enables the user to generate much more compact
and ‘efficient statements. The following examples illustrate the

same concepts written in both old and new FOCAL:

014d:
S A=4;S B=D/33;S G=A+B

New:
S G=(A=4)+(B=D/3)

The ability to evaluate complex expressions is also available in
other FOCAL commands. For example:

IF ((Y=D/3)-5)2.1,2.2,2.3

TYPE I=X+U

GOTO Y=G+.1

DO Z=(Y=R+.1)%X=A/B

For X=1, Y=u/R;T X

The SET command can now be used to execute a function without
setting a variable. For example, both of these expressions are
correct:

SET X=FECH(1)

SET FECH(1)

Strings

String functions allow up to 258 characters to be stored in
a single variable. Generally, these are ASCII characters, but
they can also be any 8-bit number (8 - 255).

The format of string variable names is the same as regular
variables except that they are followed by a dollar sign:

AS B5$ Cus(23)

Each position in a string is numbered starting with zero. For
example, "B3§(23)" de51gnates the twenty-third character in

string B3. Each character in 'a string can be treated as a numeric
value, and as such can be operated upon by all normal FOCAL com-
mands. In addition, a number of new functions have been created
to deal with strings.

FISL

This function sets aside a certain amount of space for a
string. For example, "S FISL(188,A$)" sets aside 100 characters
for "A" string. Several strings can be initialized at once by
including several arguments with the function.

S FISL(1@9,A$,258,B7$)

When a string is initialized it fills with spaces. If a string
is called by a routine without having been initialized with the
FISL function, the default string length sets the string to 72
characters. Once a string has been initialized, its length
cannot be changed.

FSTI

This function allows characters read from the input device
to be inserted into a string. The function requires three argu-
ments: the number of characters to be locaded, the name of the
string and string position, and a terminating character.

S FSTI(100,A$(4),13)

This statement instructs FOCAL to read characters into "A" string
starting at character position number 4. The function will read
characters into the string until either 100 characters are loaded
or the character represented by the decimal ASCII value 13 is
encountered. In this case, 13 is the decimal value for a carriage
return. If the keyboard is the input device, the user could type
characters into "A" string until either 100 characters are loaded
or a carriage return is typed. Since FOCAL can deal with strings
either as characters or as numeric values, a Smele method has been
provided to convert characters into their numeric values. Preceding
a character with a, single quote (') returns the decimal value of
that character.

- 27?2 -

*T 'A
*65.0000

*S FSTI(108,A$,'Q@)

*F X=0,25;S Y='A+X

FSTO

This function allows part or all of a string to be sent to
the output device. It has the same format as the FSTI function.
For example, "S FSTO(100,A5(4),13)" will send characters from "A"
string starting with position 4. It will continue to send char-
acters until either the 100th character is sent or a carriage
return is encountered in the string.

FSLK

Allows all or part of one string to be compared with all
or part of another string. The function requires four arguments
to define the start and end of the first string and the start and
end of the second string.

*S Z=FSLK(A$(1),A$(5),B$(8),B$(50))

In this example, FOCAL will try to find the characters of the
first string in the second string. If a match is found, Z will
be set to the position number where the match began. If no match
is found, Z is set to -1.

One of the most powerful string functions in FOCAL allows
strings to be set as input and output devices. This enables text
or data generated during program execution to be stored directly
into a string. It also enables data or text to be read directly
into an executing program. We'll go through an example step by
step:

*3 FODV(A$) This sets "A" string as the output device. Now
all information that would normally go to the CRT
or teletype is loaded into "A" string.

*T "HELLO" Executing a TYPE command loads the text into the
string. This is the usual technique used to pre-
load a string.

“#S FSTO(,BS,) Executing this function copies "B" string into
"A" string.

Similar kinds of operations can be performed by setting a string
as the input device. For example:

- 23 -

*1.1 S FODV(A$);T "3,4";R O
#1.2 S FIDV(A$);A X,Y;R I

This routine loads the string with the text "3.4" and then loads
them into variables X and Y.

Notice that the input and output devices must be restored
to the console once the operation is complete. This is accomplished
by using the "R 0" and "R I" commands. The former restores the out-
put device and the latter restores the input device.

One powerful and unusual feature available in FOQCAL is the
ability to execute FOCAL code contained within a string. If the
text contained within a string is a series of FOCAL commands, the
text can be executed using the "DO" command.

FOR Loops

FOCAL now has the ability to exit from a FOR loop before
the loop is completed. This is accomplished using the "RETURN"
command. TFor example: :

#1.1 F X=1,18;I (X-6),,1.3
#1.2 G 6.1
%#1.3 T "DONE";R

The FOR loop will execute until the "IF" statement sees that X

has exceeded 6. The program then goes to line 1.3, where it
encounters the "RETURN." The RETURN forces the FOR loop to finish
and sends the program to line 1.2.

FOR loops can now be stepped in both a positive and nega-
tive direction. . For example:

#1.1 F X=18,-1,1;T X,!
19

HRNWE NN

Exponents

FOCAL now understands negative exponents. For example:

AT 34.674(~12)
- 24 -

Priority Interrupts

FOCAL now has the ability to deal with hardware interrupts
through the FPIC function. The interrupting external device can
be given a priority from 1 to 7, with 7 having the highest pri-
ority.. The priority levels correspond to bits in a special byte;
the most significant bit corresponds with the lowest level of
priority. The user must provide machine language routines to set
the bits that correspond with a specific external device.

FOCAL deals with interrupts by executing a "DO" of a FOCAL
line number that is assigned to the interrupting device. FOCAL
will ignore the interrupt bits unless the specific bits are en-
abled with the FPIC function. Example:

S FPIC(1,99,3,22.1,7,38)

The arguments are arranged in pairs, with the first argument being
the device priority bit and the second argument being the line to
be executed if that device interrupts.

FOCAL looks for interrupts before each command FETCH, so
that in some routines the interrupts would not get serviced very
quickly. Whenever FOCAL returns from program execution to command
mode, all interrupts are disabled and must be re-enabled during
program execution.

Accuracy
FOCAL now calculates floating point numbers to about nine

digits of accuracy. This means that FOCAL can deal with numbers
as large as 999999999,

Saving FOCAL Progfams

. There are several methods of saving programs generated in
FOCAL for later use. Since they depend heavily on the type of
mass storage device available the exact routines have been left
to the user.

(1) Complete Memory Image

The simplest method of saving a program is to copy the com-
plete core image of FOCAL and the text area onto the mass storage
device. If the mass storage device is fast, this is probably the
easiest way to store a program. If the mass storage device is
slow, this method is tedious and inefficient.

A slightly more e!ficient method involves saving a memory
image of the text and the text pointers only. Before the image is

- 25 -

saved the variable list should be deleted using the "ERASE" com-
mand. The text pointers are on zero page. All of the memory
image between the labels PC: and VAREND: should be saved. The
text area follows the FOCAL interpreter. The pointer on zero
page labeled VARBEG: indicates the end of the current FOCAL pro-
gram. The text is stored between the label PBEG: (at the end of
the interpreter) and the address pointed to by the label VARBEG:

One disadvantage of these two methods is that a memory
image cannot be loaded into a different version of FOCAL, or even
into the same version of FOCAL assembled at different addresses.

(2) Listing Save

The most obvious method of saving a program is to have
FOCAL send a listing to the mass storage device. FOCAL can then
read the text back in as though it were being typed into the key-
board. This method has the advantage of being able to transfer
the program between assemblies and versions of FOCAL. Thes problem
with this method is that after FOCAL sees the carriage return at
the end of the text line it must do quite a bit of processing to
store the line in the text area. If one line of text immediately
follows another, characters will be lost while FOCAL stores the
text.

One solution involves having the mass storage device under
start stop control. This way FOCAL can read text as-it -is needed.
Another solution is to insert delays or fill characters after
every carriage return. The delay should be between 258 and 508
msec. If this method is used, the echo flag must be turned off
while the text is loaded.

The dilemma for us is to find a program save routine that
will work on all possible devices. For example, delays work fine
on cassette mass storage, but are worthless on paper tape. The
lowest common denominator is the memory image method, since every
system can save programs this way.

gpap

9190

BEGIN
MAIN
MEM

FOCAL Memory Map

ZI=SC-ZTCZZSZSSS3SS-SCZZC=SIis-s-—=—TzZZZDZzZ=Z=-c-czZ=z=z===

I I
I ZERO PAGE I
I I
I iR et TR PP I
I I
I TEXT POINTERS I
I I
et ettt P I
I I
I ZERO PAGE I
I I
J===zsz=zz2zzcczczscczze=mzzzzcz2s=s=z22z2s=2===7]
I I
I LINE BUFFER I
I I
I I
I STACK PAGE I
I I
I I
Iz======zzz=zz2zzzczczzzzz=2zz==z=zz==z=z=z=z=zz=z==z7
I I
I I
I I
I MAIN BODY OF FOCAL I
I I
I I
I I
Iz===2z=z=z=z=z=z=z==z=zzz=zz2s=-==zz=z==z==zz=zz===zzz=z==7
I I
I TEXT AREA I
I I

IVVVVVVVVVVVVVVVVVVVVVVVVYVVVVVVVVVVVVVVVVVI

I I
I AVATILABLE MEMORY I
I I
IAA4444440 4440044044444 0 444 0444 0400 4404
I I
I SOFTWARE STACK I
I I
I===z22=2zz=zz==zz===zz=z25z==2=2==zz=z=2=2gz2==2=z=z====T

LCND OF MEMORY

- 27 -

T 200D

Command

ASK

COMMENT
CONTINUE
DO

ERASE

FOR

GO

IF

MODIFY

ON

QUIT

RETURN

Summary of FOCAL Commands

Example

ASK X
ASK "TEXT",X;

C TEST PROGRAM
1.1 C

DO 23.73;

DO 18;

E;

E 12.1

EA

FOR I=1,10;<TEXT>
FOR J=1,3,25;<TEXT>
GO

G0 1.23
IF(X)1.1,1.2,1.3
IF(Y),,2.3;<TEXT>
I(Z-X)3.4;<TEXT>

MOD 1.53
M 1.34=5.43

ON(X)1,2,3;

0(Y),2.3 ;<TEXT>

Explanation

Input value of variable
Type text, then input X

Ignore rest of 1line
Null target of branch

Call line 23.73 as a sub-
routine

Call all of group 18 as a
subroutine

Erase variables
Delete program line 12.18
Erase both text and variables

DO 99 I=1,19
<TEXT>
39 CONTINUE
In Algol, for J:= 1 STEP 3
UNTIL 25

In Fortran,

Start program
Unconditional branch to 1.23

Conditional branch (as in
Fortran IF)

If Y > 9 go to 2.3, else
DO <TEXT>

If Z < X go to 3.4, else
DO <TEXT>

Edit line 1.53

Edit line 5.43 and put the
result in line 1.34. Leave
S.43 alone.

Conditional subroutine call
(-,9,+)

If Y = § do line 2.3; in any
case DO 2.3

Stop program execution. Go
to Mgen mode

Return from subroutine

Command

SET

TYPE

WRITE

Example
SET X=23+3%2;

TYPE X,X*X,X+3

T "<TEXT>"!;

WRITE;
W 3;

29 -

Explanation

Assign the value of 23+3%2
to X

Type the values of X, X*42,
and X+*3

Type <TEXT>, then carriage
return/line feed

List the program
List group 3

