APRIL/MAY, 1980, ISSUE1

compute I,

An Upgrade for KIM
MICROCHESS 1.0 &>

If you have Peter Jennings” MICROCHESS program
for the KIM-1 microcomputer you can teach it to play
a significantly better game of chess without adding a
single byte of expansion memory. This article describes
a “‘patch’ I have written for MICROCHESS
which gives the computer a more flexible opening
game and two new strategies for the middle and end
game. Just load your copy of MICROCHESS, enter
my code from the accompanying program listing
along with the chess opening sample from table one,
and play chess. There are no changes in the way you
run the program. (For a description of the MICGRO-
CHESS program see KB, August 1978, page 74). For
clarity T will use the term MICROCHESS only to
refer to the original program as written by Peter
Jennings. T will say ““patch’’ to refer to the changes
I am describing here.
Off the Shelf
The MICROCHESS I bought from Micro-ware Ltd.
opens the game by playing from a pre-selected list of
moves for a user chosen chess opening (Roy Lopez,
French Defence, etc.). That opening list also contains
one anticipated opponent move for each computer
move. Things go well as long as the opponent makes
the anticipated replies. But a human opponent seldom
does that -- at least I don’t. As soon as I make a novel
move MICROCHESS permanently abandons the
opening list. Whenever MICROCHESS is forced to
quit the opening list too early, coherent development
of pieces stops, the queen usually comes out too
early, an ill-prepared attack is launched, and the
computer loses its ability to castle (because castling
is only possible from the opening list).
Compromises in 1. 1K
Mr. Jennings points to these problems in his excellent
documentation manual:
““A major problem in the analysis is that there is
only onc strategy which is used for the opening,
the middle game and the end game. This involves
a considerable compromise of three different
types of play.”’
The single strategy used by MICROCHESS is best
suited for the middle game, where the capture of
pieces dominates. In order to add a dynamic opening
strategy which would emphasize the development and
positioning of pieces, I had to settle for my own
set of compromises, as you'll see. I should point out
that Mr. Jennings seems to have surmounted this

Annapolis Junction, MD. 20701

problem in the other versions of MICROCHESS he
has written for microcomputers with more memory,
such as the PET, TRS-80, and the APPLE.

The Opening

Table 1 shows my data format for eight opening
development moves. Unlike in MICROCHESS,
anticipated opponent replies are not listed. On

each turn the patched program evaluates all of the
computer’s available moves. The available move which
comes out with the highest evaluation is compared
with the evaluation for the next legal move in my
opening list and the higher of the two is selected as
the computer’s move for that turn. The development
move is usually selected because its evaluation is
always boosted by a threshold factor. I set the
threshold factor high enough so that only moves with
a significantly higher evaluation can override the
development move. The higher the threshold, the more
likely it is that the development move will be selected
for that turn. Thus, the computer follows an opening
game plan, responds to significant attack threats or
capture opportunities, and then continues to carry
out the opening game plan on the next turn by
consulting the opening list again.

Books on chess openings and opening game
strategy can serve as guides in writing new lists of
development moves. Choose openings which are
general in nature and do not depend on specific
moves by the opponent. Specify each development
move by giving the piece (variable DEVP), the square
of origin (FROM), and the destination (TQ), using
the same notation as in MICROCHESS (see tables 2
and 3). Openings for white and black will require
separate notation. Fill all unused locations in the
opening list with the magic number 1F (hexadeci-
mal), which causes those locations to be skipped
because they are off the board.

Castling

As in MICROCHESS the computer’s castling move
must be completed for it by moving its rook after the
computer signals castling by muving its King the
necessary two squares. My added programming will
prevent castling if the computer’s King is off its
starting square or if it would end up in check. The
other rules for castling are not checked, however. If the
computer castles illegally, then the move must be
refereed. The simplest way is to use the ‘‘touch-
move’’ rule -- once a player touches a piece it

20

compute Il

APRIL/MAY, 1980, ISSUE 1

Table 1 Table 2
Opening Move Data Microchess Piece Notation and Storage
ADDR VARIABLE MOVE WHITE BLACK COMMENT MEMORY LOCATION
0003 .FACTOR 05 05 THRESHOLD CODE PIECE COMPUTER OPPONENT
FACTOR 00 KING 0050 0060
00C4 .DEVP-1 N-KB3 06 06 PIECE 01 QUEEN 0051 0061
00C5 .FROM 01 06 ORIGIN 02 KING ROOK 0052 0062
00C6 .TO 22 25 DESTINATION 03 QUEEN ROOK 0053 0063
00C7 .DEVP-2 P-KN3 0A 0A PIECE 04 KING BISHOP 0054 0064
00C8 FROM 11 16 ORIGIN 05 QUEEN BISHOP 0035 0065
00C9 o) 21 26 DESTINATION 06 KING KNIGHT 0056 0066
00CA DEVP-3 B-KN2 04 04 PIECE 07 QUEEN KNIGHT 0057 0067
00CB .FROM 02 05 ORIGIN 08 KR PAWN 0058 0068
oocc . TO 11 16 DESTINATION 09 QR PAWN 0059 0069
00CD .DEVP-4 P-K3 OF OF PIECE 0A KN PAWN 005A 006A
00CE .FROM 13 14 ORIGIN 0B ON PAWN 005B 006B
00CF .TO 23 24 DESTINATION oC KB PAWN 005C 006C
00D0 .DEVP-5 0-0 00 00 PIECE (KING 0D QB PAWN 005D 006D
s SIDE CASTLE) OE Q PAWN 005E 006E
00D1 .FROM 03 04 ORIGIN OF K PAWN 005F 006F
00D2 .TO 01 06 DESTINATION
00D3 .DEVP-6 K-QB3 07 07 PIECE Table 3
00D4 .FROM 06 01 ORIGIN Board Notati
D5 .TO 25 22 DESTINATION e L
00D6 .DEVP-7 P-O4 OE (U] PIECE Computer
00D7 .FROM 14 13 ORIGIN 00 01 02 03 04 05 06 07
00D8 .TO 34 33 DESTINATION 19 11 19 13 14 15 16 17
00D9 .DEVP-8 (NO 1F 1¥ . .
00DA .FROM (MOVE)1F 1F 2 . 12 2 i 25 0 2
00DB TO iF 1F 30 31 32 33 34 35 36 37
See Tables 2 and 3 for coding of Pieces and Squares 0 2l 4 43 i £ 15 47
50 51 52 53 54 35 56 57
must be moved. Thus, the computer would have to 0 el o2 eR ed RS e
move its King somewhere else, and you would enter A e
OPPONENT

that move for it. If there are no legal moves

left for the King, then the computer must resign.
This situation seldom comes up because I write
openings which castle early enough to avoid the risk
and annoyance of an illegal attempt.

Program Flow

What follows is a description of how the patched
program works. MICROCHESS subroutines which
are not defined in my accompanying program listing
are in bold letters.

Whenever it is the computer’s turn to move,
MICROCHESS command loop CHESS calls my ver-
sion of subroutine GO (see 03A2 in the program
listing). MICROCHESS uses the value of a variable
called STATE to keep track of what it’s doing. State
4 guides the generation and evaluation of the
computer’s available moves. There are other states
for generating potential opponent replies, etc.
MICROCHESS subroutine GNMX (see 03AA)
initializes some variables called “‘counts’” for
evaluating moves and then generates all moves
available to the computer on that turn. GNMX
calls MICROCHESS subroutine JANUS to calculate
and evaluate the counts for each trial move. Based
on the value in STATE, JANUS decides what to do
next -- generate potential opponent replies for
evaluation, calculate exchanges of pieces, etc.

JANUS changes the value in STATE as it goes.

Note: Whether playing White or Black, the Computer’s
starting squares arc always 00 through 17. Be sure to orient
the playing board so that the lower left corner is black. The
White Queen should be on a white square and the Black
Queen should be on a black square.

Table 4
New Variables Used

ADDR VARIABLE COMMENT

00C3 .FACTOR Threshold factor for opening moves

00DC .OMOVE MICROCHESS opening move flag

00DC .OMOVE Base for opening move array

00EF .BKMOB Number of legal moves for Opponent King
00F0 .BIAS Receives threshold factor for legal list move

JANUS and portions of GNMX call each other
recursively, again and again, until all of the compu-
ter’s available moves have been evaluated in the
light of all possible opponent replies. By the time
program control returns from that very first call to
subroutine GNMX, one move has emerged with an
evaluation higher than all the others.

Then my patch searches the opening move list
from the beginning to find the first piece (variable
DEVP) which is still where it is supposed to be
(FROM) (see 03B1). The move by this piece to its
destination (TQ) is checked for legality by a call
into the middle of MICROCHESS subroutine
CMOVE.

APRIL/MAY, 1980, ISSUE 1

compute Il. 21

If the list move is legal, then the threshold
factor (FACTOR) is stored in the variable BIAS for
later use (see 03D8). MICROCHESS subroutine
JANUS is called to do the counts for this list
move and for the opponent’s potential replies.

To evaluate these counts JANUS calls up my
version of subroutine STRATEGY (see 1780-17C1).
This is where the evaluation of the list move is
boosted by adding the threshold factor which was
stored earlier in the variable BIAS, Actually, this
same subroutine STRATEGY is used by JANUS
to evaluate any trial move but BIAS is always zero
except for legal list moves. If the selected list
move is not legal, then JANUS is not called to
evaluate it, and no more list moves will be tried for
that turn. This ensures that moves from the opening
list are made in the order you wrote them. After
the last list move has actually been moved, the
variable OMOVE is set to zero and the opening
list is ignored for the rest of the game (see 03AF).

As you exit subroutine STRATEGY you enter
that portion of MICROCHESS which compares the
evaluation of the current trial move with that of the
best move so far, saving the better of the two as the
new best move so far. This is also where MICRO-
CHESS tests for check or checkmate before returning
to JANUS. Control then passes to the MICRO-
CHESS subroutine which takes the best trial move
and actually moves it (see 03E3). The computer’s
move is flashed on the KIM display and the program
returns to the MICROCHESS command loop, ready
for the opponent to enter his move.

Middle and End Game

MICROCHESS sees only one and a half moves
ahead. With this limited horizon it has trouble
finding and closing in on the opposing King. To
compensate for this I give a bonus of two points

for moves inside a zone which surrounds the opposing
King and moves along with it. The computer’s
Pawns and King do not get the bonus (sece 179D).

Another strategy encourages moves which hem in
the opposing King, in preparation for checkmate.
The value of any trial move is decreased by the
number of safe moves it leaves for the opposing
King. This is the same as adding a point for each
square denied to the opposing King. Since MICRO-
CHESS calls subroutine JANUS to evaluate only
legal moves, it was easy enough to put a subroutine
call inside JANUS which would increment a mobility
count (BKMOB) for each legal move found for the
opponent King when the computer is checking for
opponent reply moves during state zero (see 0112,
17D9,179A).

Both strategies come into play only after the
opening list has been emptied, so as not to interfere
with the development of pieces during the opening
game (see 1796).

Evaluation

I approached move evaluation in much the same way
as in MICROCHESS -- adding and subtracting
weighted counts representing captures, position, and
mobility for both sides. I did not use some of the
counts generated by MICROCHESS and I created
the new ones I described above. Given the severe
memory restrictions, my goal was an evaluation
formula which emphasizes immediate and tangible fac-
tors, such as position and the values of pieces
captureable during the current turn. Less immediate
factors, such as overall attack strengths, are given
fractional weighting. These become influential only
after more significant factors have cancelled each
other out.

For now I've had to be satisfied with just
breaking MIGROCHESS of its habit of throwing away
its pieces by occasionally making bad decisions about
captures where pieces are exchanged. In my patch any
piece the computer wants to capture must be greater
than or equal to the most valuable piece the computer
would lose by making that move (variable BMAXC).
Only trial moves which pass this admittedly simplis-
tic test are given an extra 20 hex points (see 17B1).
There is more that could be done, like makiné
better use of the MIGROCHESS counts for exchanges
involving up to three captures per side.

I hope I’ve made my point. All you need is
a shoe horn and you can slip just about any changes
you want into the 1.1K KIM MICROCHESS.

You may pinch a few toes in the process, but the
result is a KIM that plays better chess. By trying
to “‘upgrade” MICROCHESS T really learned to
appreciate what an excellent piece of work it is.
MICROCHESS is avatlable on KIM cassette with documentation

manual from Micro-Ware Ltd., 496 Albert St., Suite 7, Waterloo,
Ontario, Canada, N2L. 3V4

Abbreviated Instructions for Loading
and Running MICROCHESS 1.0 UPGRADE

Load:

Enter (RS) to reset KIM

Enter (AD) 00F1 (DA) 00 to reset decimal flag

Enter (AD) 17F9 (DA) C1 to enter tape ID for
program segment

Enter (AD) 1873 (GO) to start read routine of KIM

Press ‘‘Play”’ on cassette player

STOP recorder when display shows: 0000

Enter (RS) (AD) 1873 (GO) to read second program
segment (same label *C1°7)

STOP recorder when display shows: 0000

Enter (RS) (GO) to start program execution

Playing:

Enter (C) on KIM hexpad keyboard to reset program
for new game

Enter (PC) (for ‘play chess”) because KIM plays first

After KIM gives its move, enter your move as
FROM-TO according to the board notations in
table 3 of the article. Keep typing until your move
shows correctly, then enter (F) (PC).

22

compute Il

APRIL/MAY, 1980, ISSUE 1

@3A2-
G3a4-
@3A6—
G3A8-
B3AA-
@3AD-
@3AF-
¢3Bl-
G3B3-
g3B4-
#3B5-
@3B7-
#3B9-
#3BB-
#3BD-
G3BF-
g3Cco~
g3cl-
B3C2-
g3C3-
g3ca-
B3C6-
@3ce-
B3C9-
@3CB-
f3CE-
@3DB-
@3D2-
@3D4-
G3D6-
@3D8-
#3DA-
@3DC-
@3DE-
03EQ-
g3E3-
B3ES-
@3E7-

17C2-
17C4-
17¢C6-
17C8-
17CA-
l7¢c-
17CE-
17D6-
17D3-
17D6-
17D8-

1780-
1782~
1783~
1785-
1786-
1787~
1789~

A2
86
86
A2
20
A4
10
Af
c8
C8
84
19
B6
86
B5

48
98

68
D5
D@
E8
B5
20
30
A6
EQ
30
70
A6
86
A2
86
20
A6
E@
aC

94
A6
B5
85
86

85
20
4C
A9
60

AS
18
65
4A
18
69
65

04
FA
B5
12
B2
DC
32
E6

DC
2A
DC

50

DC

DC
D1
13
BO
g8
o2
gB
03
F@
a4
B5
1]
FA
gF
c2

80

EB

40
ED

B2

a2

01

17

a3
ag

9110
0120
9136
0140
9150
ple@
01780
0180
2198
0200
0219
0220
0230
0240
0258
260
0278
82806
8290
8300
@310
6320
0330
08340
8350
360
8370
8380
A390
04089
G410
8429
0430
0440
G450
0460
0470
0480
0490
6509
8519
85280
2530
@540
G558
8560
8570
@580
65906
7600
2610
0620
0630
G640
2650
660
0679
2680
9690
0700
8716

GO

NEXT

LEGAL

NODEVP

~

CONT
MV2

MATE

I

STRATEGY

.BA
LDX
STX
STX
LDX
JSR
LDY

JSR
LDX
CPX
JMP

.BA
BCC
LDX
LDA
STA
STX
LDA
STA
JSR
JMP
LDA
RTS

.BA
LDA
CLC
ADC
LSR
CLC
ADC
ADC

$3A2
#504
*BESTV
*STATE
#512
GNMX
*OMOVE
NODEVP
#SE6

*OMOVE
NODEVP
*DEVP,Y
*PIECE
*BOARD, X

R

*FROM, X
NEXT

r

*T0 ;X
CMOVE
NODEVP
*PIECE
#508
LEGAL
NODEVP
*FACTOR
*BIAS
#5004
*STATE
JANUS
*BESTV
#$0F
CONT

$17C2
MATE
*BESTP
*BOARD, X
*BESTV
*PIECE
*BESTM
*SQUARE
MOVE
CHESS
#SFF

$1788
#580

*WMOB
A

#5490
*WCC

8 Ne e N we wa we e

e e Mo we me We Ne NE S& NE me we we e we o~

o ~e

RESET BEST EVALUATION
SO FAR
STATE = 4; TRAIL MOVES
ZERO COUNTERS & BIAS
GENERATE TRAIL MOVES
OPENING LIST DONE?
- YES, MID-GAME
- NO, NEXT DEVP

INDEX OF DEVP
OPENING LIST EMPTY?
- YES, MID-GAME
-NO, NEXT DEVP

; DEVP LOCATION
INDEX OF FROM
(SAVE DEVP LOCATION)
TRANSFER INDEX OF
FROM INTO X
DEVP LOCATION IN ACCUM
DEVP AT ORIGIN?
- NO, GET NEW DEVP
INDEX OF TO
CHECK LEGALLITY OF DEVP
FROM .FROM TO .TO
NEQ = ILLEGAL MOVE
- LEGAL MOVE
IS PIECE A PAWN
NEG = NOT PAWN
SET = ILLEGAL PAWN CAPTURE
LEGAL OPENING MOQVE!!
SET BIAS TO FACTOR
EVALUATE OPENING MOVE
AND PUT IT IN BESTV
IF ITS THE BEST MOVE
SO FAR
RESIGN OR STALEMATE IF
BESTV TOO LOW

(ORIGINAL MICROCHESS
CODING)
; MOVE AND DISPLAY THE
BEST MOVE

END COMPUTER'S TURN
RESIGN OR

EVALUATION = 84 + OR - SCORE

COMPUTERS'S MOBILITY

RESET EVAL TO 8@ +OR- SCORE
COMPUTER'S ATTACK STRENGTH

APRIL/MAY, 1980. ISSUE 1 compute II. 23

178B- 38 97208 SEC
178C- E5 E5 9730 SBC *BCC ; OPPONENT'S ATTACK STRENGTH
178E- 4A 8740 LSR A
178F- 4A 8758 LSR A ; MOBILITY X 1/16
1796- 4A g760 LSR A ; ATTACK STRENGTH X 1/8
1791=.18 0770 CLC
1792- 69 76 8780 ADC #$78 ; RESET EVAL TO 88 +OR- SCORE
1794- 65 FO 8790 ADC *BIAS ; ZERO UNLESS DEVP MOVE
1796- A4 DC pean LDY *OMOVE ; NEGATIVE IF STILL DEVP
1798- 30 17 8818 BMI CAPTEST ; MID-GAME IF POSITIVE
179a- 38 7820 SEC ; DEDUCT MOBILITY OF THE
179B- E5 EF p83e SBC *BKMOB H OPPONENT'S KING
179D- A6 BS 0840 LDX *PIECE ; BONUS FOR MOVE INTO
179F- CA 6850 DEX ; OPPONENT'S KING ZONE
17A8- EB 67 7860 CPX #$07 ; NOT FOR COMPUTER'S KING
17A2- BO 0D 0870 BCS CAPTEST ; OR PAWNS
17A4- 48 p880 PHA ; (SAVE EVALUATION)
17A5- A5 60 2890 LDA *BK ; LOCATION OF OPPONENT'S KING
17A7- 38 gomp SEC
17A8- E9 38 6910 SBC #8538 ; CALCULATE KING ZONE
17AA- C5 Bl 6920 CMP *SQUARE ; MOVE INTO ZONE?
17AC- 68 0930 PLA ; (RESTORE EVALUATION)
17AD- B@ 02 0940 BCS CAPTEST ; CARRY CLEAR IS IN ZONE
17AF- 69 02 8950 ADC #$02 : ADD BONUS, NEAR KING
17B1- A6 DD #9608 CAPTEST LDX *WCAP# ; IF COMPUTER'S CAPTURE
17B3- E4 E4 2970 CPX #*BMAXC : IS NOT GREATER THAN
17B5- 94 03 7980 BCC QUIT ; OR EQUAL OPP, QUIT
17B7- 18 990 MOVEOK CLC ; PASSES CAPTURE TEST
17B8- 69 28 1000 ADC #5260 ; POINTS FOR GOCOD MOVE
17BA- 65 DD 1816 QUIT ADC *WCAP® ;3 POINTS FOR CAPTURE
17BC- 38 1020 SEC ; POINTS FOR OPPONENT'S
17BD- E5 E4 1030 SBC *BMAXC A MAX CAPTURE IN REPLY
17BF- 4C 77 @3 1040 JMP CKMATE ; TEST FOR CHECKMATE

1850 ;

1060 .BA $17D9
17D9- D@ 06 1078 BEKMOVE BNE OUTBK ; RTS IF STATE NOT ZERO
17DB- C9 00 1080 CMP #$00 ; RTS IF NOT OPP KING'S
17DD~ D@ 62 1090 BNE OUTBK o MOVE
17DF- E6 EF 1100 INC *BKMOB ; COUNT LEGAL OPP KING
17E1- 60 1119 OUTBK RTS ; MOVES

11209 ;

11389 .BA 50112
@112- E@ 060 1140 CPX #$00 ; COUNT LEGAL REPLY MOVES g
@114~ 206 D9 17 1150 JSR BKMOVE i FOR OPPONENT'S KING
#117- EA 1160 NOP

1170 ;

1180 .BA $200
g209- A2 11 1190 LDX #3511 ; CLEAR COUNTERS, NOT BIAS ©

1200 .EN

COMPUTE. and computell.
The Resources!

