SATURN SOFTWARE LIMITED

PRESENTS
»>> SYM-PASCAL <K«
RELEASE 2.0

BY

Ralph Deane

Distributed by:

SATURN SOFTWARE LIMITED

POST OFFICE BOX 397

NEW WESTMINSTER, BRITISH COLUMBIA
V3L 4Y7, CANADA

SYM-PASCAL

DISCLATMER

SATURN SOFTWARE LIMITED and the author makes no warranties, either
expressed or implied, with respect to this manual, or with respect to
the software it describes, or its quality, performance, or suitability
for any particular application. In no event will SATURN SOFTWARE
LIMITED or the author be liable for any direct, indirect, incidental,
or consequential damages resulting from any defects in the manual or
software supplied.

While this software package is now operational of the author's 32K
SYM-1/KTM-2 system, it should be expected that the purchaser may have
to provide custom I/0 drivers to match his/her particular terminal and
printer configuration.

COPYRIGHT NOTICE

SYM-PASCAL COPYRIGHT (C) DECEMBER 1, 1981
BY SATURN SOFTWARE LIMITED (ALL RIGHTS RESERVED)

This manual describing SYM-PASCAL, and the accompanying cassette
containing the SYM-PASCAL object code, are copyrighted, and are
provided for the personal use and enjoyment of the original purchaser
only. All rights are reserved. Reproduction by any means whatsoever,
without the prior written consent of SATURN SOFTWARE LIMITED, is
strictly prohibited. The original purchaser is, however, permited to
make backup copies of the cassette software to protect against
accidental loss or erasure. The use of SYM-PASCAL for the promotion of
sales of microcomputer hardware and equipment s strictly prohibited
without the prior written consent of SATURN SOFTWARE LIMITED.

Address all communications to:

John W. Brown, President

SATURN SOFTWARE LIMITED

POST OFFICE BOX 397

NEW WESTMINSTER, BRITISH COLUMBIA
V3L 4Y7, CANADA

COPYRIGHT (C) SATURN SOFTWARE LIMITED

TABLE OF CONTENTS

Introduction = = =c = = 2 2 oL s L 2 s e e -05

Equipment Required - - - = = - = = = = = - - - - - - < 05
1/0 Customization =« = = = = = = = = = = = = & = = = - 05
System StAPtlp = == = = = = = s« = =0 = = = = = = .4 06
The Editor = = = = = = = = = = = 0 o 2 0 0 00 02 n s 07
Pascal Subset - - - - - - - - - - - -0 b s mao - 10
An Editor Program in Pascal - - - - = = = = = = - - - 10
Character Set = = = = = = = o & o 0 & 2o 2 2o 0 0 =2 - 15
Names = - = = = = = = = = = = = = - = - - - - - - - - 15
Numbers = = = = = = = = = = = = = = =« = = = 2 - - = 15
Comments - - = = = = = = = = = = - = - 2 - - - - oo 16
Integer Operations - - = = = = = = = = = = = = = = = = 16
Logical Operators - - - = = = = = = = = = e 17
Comparison Dperators - -= - = = = = = = = = = = = = « = 18
Declarations - = = = = = = = = = = = = & = = - w oo - 18
Constant -« = = = = = = = = c = = = = = = = = = = 18
Variable - - - = = = - & - 0 m e e - e - - - oo 19
FUNction - = = = = = ¢ ¢ = = & = & = = o = = = = 20
Program Body - = 22
Assignment Statement - - - - - - - - - - - - - - 22
Compound Statement - - - = = = = = = = = = = - - 23
Procedure Call - = « = = = = = = = = = = = = = - 23
Machine Language Call = = = = = = = = = = = = = - 23
Memory Operations - - - - - = = - - - - - - - - - 24
Printer Control - = = = = = = = = = = - = = = - = 24
WHILE Statement = = =« = = = = = = = = = 2 = & = = 25
REPEAT Statement = - = = = = = = = = = « = = = = 25

COPYRIGHT (C) SATURN SOFTWARE LIMITED

TABLE OF CONTENTS

FOR Statement - = « = = e = sis = = & = = = = o 26
IF Statement = = = = = = = = = = = = = = = = = = 27
CASE Statement - - - - = = = = = - = = = = = - - 27
WRITE Statement - - - = = = = = = = = = « = = = = 28
READ Statement - = - = ='= = = @ = = sa o &= = 29
RecuUrsion - - = = = = = = = = & & - & - - - .- .- 31
Compiling from Tape = = = = = = = = = = = = = = = = - 31
Error Messages - - - = = = = = = = = = = = = = = = = = 31
The P-Machine =« - = - = - = = = o 0w v o b mm o 33
P-Code Decompiler - - = = = = = = = = = = = = = = = o 35
Sample Programs = = = = = = = = = = = = = = = = = = = 37
Min-Max - - - = = = = = = = = = - - - - o - - -~ 37
Add - = = = = = = & o - o h e ma e - 38
POWEr - = 38
Average - = - = = = = = @ = & = & = 4 - = = - - - 39
Greatest Common Factor =- - = = = = = = =« = = = = 39
Totals = = = = = & o & 2 e e e - e ee - 39
Day = = = = = = = = = = = & - - .- - - == 40
CATCUTELOR « = = wim = Gt o =m0 = o = o 41
Centigrade-Fahrenheit - - = = = = = - = = = = = & 41
Histogram - - - = = = = = = = = = = = = = = - - -42
Quick Sort = = = = = = = = = - = - 2 202 - o 42

COPYRIGHT (C) SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 5

Introduction

What is Pascal ?

Pascal 1is not an acronym, unlike many languages. It was named
after the mathematician Blaise Pascal (1623-1662) by the man who
first specified the language, Niklaus Wirth. Pascal is an ideal
block-structured programming language that inherently forces
structured programming techniques and good programming practices.
Writing an application in Pascal will reduce programming time by up
to 50% for many problems. Program maintenence and the time spent
adding program enhancements are also reduced because of Pascal's
features.

What is SYM-Pascal ?

SYM-Pascal 1is a program which compiles and executes a subset of
the Pascal language. This is done in two steps. First, the Pascal
source program is compiled into an intermediate code similar to
machine code, called P-code. The P-codes are then executed
interpretively by the SYM-Pascal interpreter program. The
interpreter s actually an idealized stack wmachine which is
implemented 1in software instead of hardware, and whose native
language is P-codes. Full compile-time (and execution time) error
checking is done and, in spite of this, the compilation is extremely
fast - approx. 50 to 100 lines per second. The program is also
quite compact, with the editor, compiler and interpreter requiring
only 8K of memory. SYM-Pascal can be run on machines with limited
resources.

Equipment Required

SYM-Pascal requires the following minimum hardware in order to
execute properly :

1. A SYM-1 computer with the RAE-1 ROM(s) installed.
2. At least 16K of RAM, addressed from $0000 to $3FFF.
3. A terminal such as a KTM-2/80 or equivalent,

4. One or two remote controlled cassette recorders, installed as per
the RAE specifications.

5. (optional) A printer hooked to the SYM-1 20ma current loop.
The following information should help you find the locations to

change/patch for your preference or 1/0 setup.

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 6

$0200 Cold start entry point.

$0203 Warm entry point.

$o020c New system Input Vector.

$020F New system Terminal Output Vector.

$0212 System bell vector, set to call SYM-beeper.
$0215 New system printer vector.

Note: A1l you I/0 customization routines must use the above new
vectors! SYM-Pascal hooks onto RAE by patching supermon and RAE
vectors. This is done between $0218 and $0258 which can be
dissassembled and modified with caution if found necessary.

$0258 Printer baud rate- currently set to $06 for 2400 baud.
$0259 Terminal baud rate- currently set to $01 for 4800 baud.
$025A KTMFLG- Currently set to $01 for KTM-2 type terminal.

Note: The only intelligent function your terminal must have is the
ability to move back one character position on the screen when sent a
backspace ($08).

The printer driver provided is the same as presented in the Super
Terminal Patch for RAE from Softnews (01:03:06). The code is located
at $025B through $02A0 and you may wish to disassemble and modify
this routine rather than write your own from scratch.

You may hate the control codes provided with the 1line editor! The
input line editor code is again essentially the same as in Softnews
(01:03:06) and is Jlocated at $0310 through $0490D. You may
disassemble this, compare with what appeared in Softnews and change
the control codes to suit your fancy!

System Startup

After loading the program from tape, the normal ‘cold start'
entry point is at $0200. Entry at this point makes no assumptions
about text and/or P-codes in memery. The presence of the SYM-Pascal
copyright message indicates that the program is running and waiting
for input. Users with disk systems should boot SYM-Pascal after
initializing their RAY disk patches (with RU $200). SYM-Pascal does
not change the ENT LOD or DC vectors so you may use these commands to
save and load Pascal source text and P-Codes to and from mass
storage.

If, for some reason, you must exit the SYM-Pascal program it can
be re-entered without affecting the text or P-codes. This is done by
entering at location $0203, the 'warm start' address. A warm start
should only be attempted after the system has been initalized by a
cold start. Errors could occur otherwise. It should be noted that a
warm start re-initalizes the tape control ports so that remote
operation is still functional.

After both cold and warm starts, information about the state of

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 7

the system is output. The format of this data is :

Textstart-textend P-codestart
Textpointer

The textstart and textend addresses indicate the area set aside
for the creation of the Pascal source program. The textpointer is
the address of the actual end of the source text. The P-codestart
address is the address at which the compiler will start depositing
the P-code program.

Editor

One of the reasons that SYM-Pascal is so compact is that it
'sits on top' of the RAE system and uses its editor and file system
in the preparation of the Pascal source program. The compiler
accepts RAE compatible text as its input.

A slightly modified version of the Super Terminal Patch for RAE
(by Jack Brown - Saturn Softnews 1:03) has been included in the
SYM-Pascal editor as well as most RAE editing commands. Those RAE
commands recognized by the SYM-Pascal editor are :

AUTO §AU) BREAK (BR) CLEAR ECL;
coPY C0) DELETE {(DE) DUPLICATE (DU
EDIT (ED) FIND (F1) GET (GE)
HARDCOPY $HA) MANUSCRIPT (MA) MOVE {M0)
NUMBER NU) OFF (OF) ON (ON)
PRINT {(PR) PUT (Pu)

SET (SE) USER {us)

A1l other RAE commands will result in an !ED error. RAE's error
messages are used. The commands EDIT (ED) and SET (SE) have been
modified from the normal RAE operation. Their new actions are :

SET (SE)

-executing SE will output the state of the system in the format
described in the Startup section.

-executing SE addrl addr2 will reset the textstart address to
addrl and textend to addr2. An error will occur if both addresses
are not present, although textstart will be changed. The error
message is a warning that one address is missing.

EDIT (€D) :

-executing ED line# will dump the contents of the line numbered
line# to the input buffer where it can be edited using the 1line
editor features.

-executing ED string will work in the normal RAE fashion.

Some new commands have been added to the SYM-Pascal editor which
are not RAE compatible. These are :

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 8

PASCAL - (PA)

-compile the Pascal program present in the text area. The P-codes
are placed 1in memory starting at the P-codestart address. The
P-codes are not executed.

EXEC (EX)

-compile as per PASCAL. Execute the P-code program. The run-time
P-code stack starts at the end of the P-code program so memory must
be avalible there.

Both PASCAL and EXEC print out the start and end address of the
P-code program.

PSET (Ps)
-change the P-codestart address. Used in the form :

PSET addr
where addr is the new P-codestart address.
GO (60)

-execute the P-code program which starts at the P-codestart
address.

SAVE (SA)
-save onto tape the P-code program which starts at the P-codestart
address. Used in the form :

SAVE Fnumber

where number is the id number of the file. If Fnumber is omitted an
id of 00 is used.

PLOAD (PL)
-load a P-code program from tape into memory, starting at the
current P-codestart address. Used in the form :

PLOAD Fnumber

where number is the desired file id number. If Fnumber is omitted
the next file found will be loaded.

It should be noted that P-code programs are address independant and
can be executed from anywhere in memory. Therefore the load address
does not have to be the same as the save address.

The 1ine editor uses control codes to allow you to edit an input
line. These codes are :
Control-A

-move cursor to start of current line and set buffer pointer to
zero. This does not clear or cancel the current line of text.

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 9

Control-B

-insert a null ($00) into the text 1line and terminate the edit
operation. This 1is used to insert a blank line into the text file.
The compiler ignores all non-printable characters.

Control-C
-cancel or exit auto line mode. This equivalent to the standard //
(ret) AU (ret) used by RAE.

Control-H

-backup the cursor one position on the screen and in the buffer.
This has no effect on the buffer's contents but only serves to move
the cursor back in a line for possible insertions or deletions. If
the cursor is already at the start of the line, it will wrap around
and appear at the end of that line.

Control-I

-tab forward one position in the buffer (and the screen) updating
the current screen position if necessary. Tabbing past the end of
the 1line will cause the cursor to wrap around to the start. This
cormand is the opposite of Control-H.

Control-J (LineFeed)

-linefeed will put you in auto line mode with a step size of 1. If
Tinefeed is typed with text in the buffer, the line is processed as
normal before the next line number prompt is output.

Control-M (CarriageReturn)
-terminate the editing and send the 1line to S$YM-Pascal for
processing. The line is truncated at the current cursor position.

Control-P
-toggle the printer on and off. When hardcopy is set, using this
command, the line count is set to 4 and the page count to O.

Control-§
-escape to the SYM monitor. To return to Pascal type G (ret).
Monitor 1/0 is sent to the printer if the hardcopy flag is set.

Control-T
-toggle the cassette motors on and off. No characters are echoed
to the terminal but otherwise this is identical to RAE's Control-T.

Control-X

-cancel the current input line and clear the buffer. Text can now
be re-entered into the line.

Control-Y
-exit to the monitor for one command. On completion you are
returned to Pascal.

Control-Z

-move the cursor to the end of the line, updating the screen if
necessary, and then erase to the end of the input line.

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 10

Escape (ESC)
-followed by any other character - skip through buffer and leave
cursor at next location after first occurance of that character.

Delete (DEL)
-delete character to the left of the cursor position and close wup
that space in the buffer. The screen is not updated.

A1l other control characters are dgnored. All non-control
characters are inserted into the buffer at the cursor location. The
screen is not updated but the characters are echoed to the terminal.

The 1line editor is designed to work with a terminal similar to
the KTM-2, but can be adapted to a non-cursor oriented terminal.
This is done by setting the value of KTMFLG ($025A) to $00. The only
command which now does not work 1is Control-H. An input of this
command is ignored. Delete (DEL) will also output a '\' to indicate
that a character was deleted.

The SYM-Pascal line editor is essentially the same as the one
included in SYM-FORTH and Extended SYM BASIC and should present no
problems to users of those packages. Practice is needed to get the
hang of using the proper command so don't despair.

Pascal Subset

The following material will explain the details of the Pascal
subset supported by SYM-Pascal. MWe will begin by presenting a sample
Pascal program and then explain each part in detail. This will be
followed by a detailed explanation of each SYM-Pascal feature.

The program listed here is a simple line editor. It inputs
characters from the terminal and builds a complete 1ine of text in
vector TEXT. Three editing commands are recognized by the editor.
These are :

Control-H
-delete the last character entered into TEXT.

Control-X
-cancel the current input line, clear TEXT and start over again.

Carriage Return

-terminate the editing session. The contents of TEXT are then
printed out.

All other non-printing characters are ignored. Printable data is
inserted sequentially into TEXT, up to a maximum of 80 characters.

0010 (* A Line Editor written in SYM-Pascal *)
0020
0025 CONST CNTRLX=$18; CNTRLH=$08;

COPYRIGHT SATURN SOFTWARE LIMITED

0030
0035
0040
0045
0050
0055
0060
0065
0070
0075
0080
0085
0090
0095
0100
0105
0110
0115
0120
0125
0130
0135
0140
0145
0150
0155
0160
0165
0170
0175
0180
185
0190
0195
0200
0205
0210
0215
0220
0225
0230
0235
0240
0245
0250
0255
0260
0265
0270
0275
0280
0285
0290
0295
N300

SYM-PASCAL PAGE 11

CR=$0D; SPACE=$20 ;

VAR TEXT : ARRAY[79] OF INTEGER ;
INDEX,CHARACTER,FLAG, TEXTPTR : INTEGER ;

PROC BACKSPACE ;
BEGIN
IF INDEX>0 THEN
BEGIN
INDEX:=INDEX-1 ;
TEXTLINDEX]:=SPACE ;
WRITE (CNTRLHG@) ;
END ;
END ;

PROC CLEARTEXT ;
BEGIN
FOR TEXTPTR:=0 TO 79 DO
TEXTLTEXTPTR]:=SPACE ;
END ;

PROC CANCELINE ;

BEGIN
CLEARTEXT ;
INDEX:=0 ;
WRITE(N)

END ;

PROC CARRIAGERETURN ;
BEGIN
FLAG:=1 ;
INDEX:=INDEX-1 ;
WRITE(\)
END ;

PROC ENTERTEXT ;
BEGIN
IF CHARACTER>=SPACE THEN
BEGIN
TEXT[INDE X]:=CHARACTER ;
WRITE (CHARACTER®) ;
INDEX:=INDEX+1 ;
END
END ;

BEGIN (* MAIN *)
CLEARTEXT ;
INDEX:=0 ;
FLAG:=0 ;
REPEAT
READ (CHARACTER@) ;
CASE CHARACTER OF

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 12

0305 CNTRLX : CANCELINE ;
0310 CNTRLH : BACKSPACE ;

0315 CR : CARRIAGERETURN

0320 ELSE ENTERTEXT

0325 END ;

0330

0335 UNTIL (FLAG=1) OR (INDEX>79) ;
0340

0345 IF INDEX>79 THEN

0350 INDEX:=79 ;

0355

0360 FOR TEXTPTR:=0 TO INDEX DO
0365 WRITE(TEXTLTEXTPTRIR) ;
0370

0375 END . (* MAIN *)

0380

The explaination of each section is :
Line 10

This is a comment line giving the title of the program. A
comment is any text enclosed by (* and *) and can be used anywhere.

Line 25 to 30

In this section we are defining constant values. The names
CNTRLX, CNTRLH, CR and SPACE are all assigned specific values -
CNTRLX equals (hex) 18, CNTRLH equals (hex) 08, CR equals (hex) 0D
and SPACE equals (hex) 20. These names can now be used in place of
the actual values throughout the program, aiding in readability. The
definition of constants must be the first section (except for
comments) in any Pascal program.

Line 40 to 45

This section is the declaration of variables. All variables
must be declared before they can be used. In this declaration we are
defining TEXT to be an array of 1 dimension (a vector) with 80
elements, those being numbered 0 to 79. We also define INDEX,
CHARACTER, FLAG and TEXTPTR to be scalar integer variables.
Variables and arrays have undefined values after they are declared.
A1l variable declaration must follow the constant section.

After all constants and variables have been declared, we can
start defining the subroutines to be used by our program. These
subroutines are called procedures in Pascal and must be defined prior
to their use.

Line 55 to 95
This is a procedure called BACKSPACE. What BACKSPACE is
supposed to do is delete the Tlast character entered into TEXT.

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 13

First, it checks to see if we are at the start of the line (ie.
INDEX=0). If not it then executes a sequence of instructions. This
sequence decrements INDEX by 1 so that it points to the last entered
character, puts a space into that location in TEXT, and outputs a
Control-H to the terminal. The procedure then terminates, returning
control to the calling routine.

Line 105 to 125

This is a procedure called CLEARTEXT, which sets every element
in TEXT to blanks. This 1is done using a FOR loop. TEXTPTR is
initally set to 0 and is incremented by 1 on every pass through the
loop. The 1loop ends when TEXTPTR is greater than 79. The body of
E?e loop sets each element of TEXT, as indexed by TEXTPTR, to a

ank.

Line 135 to 160

This procedure s <called CANCELINE. It clears TEXT to blanks
{using CLEARTEXT) and resets INDEX to 0. It then outputs a carriage
return/line feed to the terminal.

Line 170 to 195

CARRIAGERETURN is the name of this procedure. It sets FLAG to
1, decrfments INDEX by 1 and does a carriage return/line feed on the
terminal.

Line 205 to 245

The procedure ENTERTEXT tests CHARACTER to see if it is a
printable character (ie. ASCII value greater than or equal to
SPACE). If this is true, it puts CHARACTER into the next location in
TEXT, increments INDEX by 1, and outputs CHARACTER (as an ASCII
character) to the terminal.

You will notice that the names of all the procedures are a good
indicator of their function. SYM-Pascal allows names of procedures
variables and constants to be any length, although only the first 8
characters are significant. This feature makes SYM-Pascal programs
very readable even without comments.

Once all of the subroutines are defined we can define the main
body of the program. The main portion of the program is enclosed
inside the words BEGIN END . and does the following :

Line 265 to 275

This 1is the initalization section. TEXT is set to blanks and
both INDEX and FLAG are zeroed.

Line 285

This is the start of our input loop. The Tloop construct used

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 14

is:
REPEAT <statements> UNTIL <condition-true)>

In ‘this loop we will input a character from the terminal and process
it using our previously defined procedures. The loop will terminate
if TEXT is full or FLAG equals 1.
Line 295

This inputs one ASCII character from the terminal and puts it in
CHARACTER. The @ in the READ statement indicates character input.
The input character is not echoed to the terminal.
Line 300 to 325

This CASE statement is wused to process the input character.
CHARACTER is tested by CASE and the following happens :

If "CHARACTER=CNTRLX then execute the CANCELINE procedure.
If CHARACTER=CNTRLH then execute the BACKEPACE procedure.
If CHARACTER=CR then execute the CARRIAGERETURN procedure.
Otherwise execute the ENTERTEXT procedure.

Line 335

This tests to see if the loop should end. The test performed is

if FLAG=1, indicating the input of a carriage return, or INDEX>79,
indicating that TEXT is full. If either of these conditions is true
the loop terminates. Otherwise execution continues at REPEAT.

Line 345 to 350

Once the loop terminates it is necessary to make sure that INDEX
is not greater than 79. If this is true then INDEX is set to 79.

Line 360 to 365

The contents of TEXT is now output using & FOR loop. The Tloop
will terminate when TEXTPTR is greater than the value of INDEX.

You will notice that this program is easy to read and understand
even without comments. The structured programming techniques forced
on you by Pascal ensure this. Spaghetti code is hard to write in
SYM-Pascal due to the absence of "'a GOTO statement. A nicely
structured program is also easy to enchance. For instance, we could
add new commands to our line editor program simply by adding new
procedures and more tests in the CASE statement. Nothing could be
simpler.

COPYRIGHT "SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 15

Now that the walk through of a sample Pascal program has
hopefully started your understanding of SYM-Pascal, we will Tlook
deeper at each aspect of the subset.

Character Set

The SYM-Pascal character set consists of the following :

letters A-Z

numbers 0-9

special characters R + - * / = ¢ > ()\
£1. s5:""%%
and space.

Names

Names in SYM-Pascal consist of letters and/or numbers and may be
any number of characters long. The first character must be a letter
and the first 8 characters must be different than the first 8
characters of any other name. The following names are reserved by
the Pascal language and cannot be user defined :

AND ARRAY BEGIN CALL CASE CONST

DIV 00 DOWNTO ELSE END FOR
FUNC IF INTEGER MEM MOD NOT
OF OFF ON OrR PRINT PROC

READ REPEAT SHL SHR THEN T0
UNTIL VAR WHILE WRITE

Numbers

A1l numbers in SYM-Pascal are integer numbers (16 bit) with a
range of -32768 to +32767. There are three forms of integer numbers
- decimal, hexidecimal and character. Decimal numbers are a string
of digits such as :

700
5192
3708

Hex numbers are a string of digits or letters A-F preceded by a §$.
Examples are :

$20
$6CIA
$00FE

Character numbers are a single character enclosed in quotes ('). The
numerical value of these numbers is the ASCII value of the character.
Example :

Al (541]
‘e ($21)
e ($5C)

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 16

Comments

Any text enclosed between (* and *) is a comment. Comments can
be placed anywhere in the program and are ignored by the compiler.
Some examples are :

(* This is a comment *)
(* Start of Main Program *)

Integer rations

The integer operations provided by SYM-Pascal are (in ascending
order of precedence) :

+ : addition
- : subtraction
* : multipication
DIV : division)
MOD : modulo (remainder after division)
SHL : bitwise shift left
SHR : bitwise shift right

Examples :
-addition
5+1
NAME+TYPE
SCORE+1
-subtraction
4-2
NAME-1703
$9E0-SCORE
-multipication
74*41
TYPICAL*31
IBI'I@I
~division
1031 DIV 10
NAME DIV 200
SCORE DIV ":'
-modulo
17 MOD 5
SCORE MOD TYPE

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 17

TYPICAL MOD $19
-shift left

The value to the left of the operator is shifted left the number of
bits specified by the value to the right.

10 SHL 2 (shift 10 left 2 bits)
SCORE SHL TYPE
TYPICAL SHL $0A

-shift right

The value to the left of the operator is shifted right the number of
bits specified by the value to the right.

10 SHR 1 (shift 10 right 1 bit)
TOP SHR SCORE
TYPICAL SHR MAX

If the right side value is negative in either SHL or SHR then the
other direction shift is used - ie:

10 SHR -2 s 10 SHL 2
50 SHL -9 is 50 SHR 9

Logical Operations

The Tlogical operations provided are, in ascending order of
precedence :

OR : bitwise logical OR

AND : bitwise logical AND

NOT : bitwise logical NOT
Examples :

-logical OR

255 OR $100
NAME OR SCORE

-logical AND

$CF AND $87
TYPE AND TOP

-logical NOT

NOT O Eequals 1)
NOT 100 (equals 0)

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 18

Comparison

These operations (also called relational operators) result in a
0 if false and a 1 if true. The operators provided are :

: true if equal

: true if less than

: true if greater than

<> : true if not equal

<= : true if less than or equal to

>= 1 true if greater than or equal to

VoAl

Examples :

A=B
NAME <> SCORE
TYPE>=TOP
NAME<='Z"

‘Declaration

At the start of a program there is the declaration section, in
which all objects 1local to the program are defined. These objects
must be declared in a specific order, as follows :

1. constant definition
2. wvariable declaration
3. procedure and function declaration

We will look at each object separately and in detail.
1. Constant Definition

A constant definition introduces a name as a synonym for a
numeric value. The use of constants generally makes a program more
readable and acts as a convenient documentation aid. It also allows
you to group system dependant values at the beginning of the program
where they can be easily noted or changed.

The word CONST introduces the constant definition part, which
uses the form :

CONST <name> = <value> ;

A series of constants can be defined by repeating the <name> =
<valued section, separating each definition by a semicolon (;).
The word CONST can appear only once in a declaration section. The
definition can spread over more than one line. The value assigned
can be either an wunsigned number or a previously defined constant
name .

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 19

Example :

CONST TYPE10=100 ,

CONST HEX10=$10 ;

CONST CHAR='A' ; CHAR9=CHAR ;

BETA='B" ;
2. Variable Declaration
Every variable occuring in a program must first be declared in a

variable declaration. This must precede any usage of that variable.
A variable declaration associates a name and type with a new variable
simply by listing the name followed by the type. SYM-Pascal has two
variable types - scalar integer and l-dimensional integer arrays.

The word VAR heads the variable declaration section and is in
the form :

VAR <name> : <type>
A series of variables of the same type can be declared by :
VAR <namel>,<{name2», ... ,<nameN> : <type>
The <{name> : <{type> portion can be repeated more than once in a
variable declaration as long as they are separated by semicolons (;).
As with CONST the word VAR may appear only once in the declaration
section. The declaration may spread over more than one line.
The <type> portion of the declaration can be either :
INTEGER : for scalar integer or
ARRAY[<size>] OF INTEGER : for integer arrays
In the array type <size> can be an unsigned number or a constant
defined name. An array's elements start at 0, so a <size> of 10 will
declare an array with 11 (0 to 10) elements.
Example :
VAR 1,J,K : INTEGER ;
VAR VECTOR : ARRAY[75] OF INTEGER ;
VAR XYZ : INTEGER ;

FILE : ARRAY[TYPE10] OF INTEGER ;
KLM,JKL : INTEGER ;

The value of a variable is obtained simply by refering to it by

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 20

name. In the case of scalar integers this is all that is needed.
Integer arrays need to be indexed as well. This is done by :

<array name>[<expression)]

where <expression> is any valid SYM-Pascal expression. No check is
made to see if the size of the index is in bounds so care must be
used.

Example :

1
XYZ
VECTOR[17]
FILE[J+K]

3. Procedure and Function Declaration
A. Defining a Procedure

It may happen that a particular set of actions has to appear
several times in a program. We can avoid writing out the statements
each time if we group them into a procedure. A procedure gives a
name to a set of actions, which may then be called by referring to
the name. A procedure may be considered as a program dedicated to
some subtask of the overall problem.

The word PROC is used to identify the procedure declaration. In
its simplest form it is like :

PROC <name> ;

The body of the procedure follows after this declaration. As an
example, here is a procedure called DRAWLINE which outputs a line
consisting of 10 '-' in a row :

PROC DRAWLINE
CONST LENGTH=10 ;
VAR 1 : INTEGER ;

BEGIN

FOR I1:=1 TO LENGTH DO
WRITE('-") ;
WRITE(\)

END ;

You'll notice that the body of the procedure is a complete program in
itself, with a declaration section and all. It is important to note
that any variables, constants, procedures or functions defined inside
a procedure are 'local' to that procedure and are inaccessable from
the outside. Anything defined or declared outside the procedure body
is considered 'global' and can be accessed from the procedure body.
If a Tlocal and global object have the same name, reference will
always be to the local name (from inside the procedure body, of
course).

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 21

The usefulness of a procedure is enchanced if its action can be
varied from call to call. This is achieved by use of parameters. In
SYM-Pascal these are variables used inside the procedure, which are
given a different starting value with each call. These variables are
local to the procedure. Parameters are specified in the declaration
by : s

PROC <name>(<parml>,<parm2>, ...) ;

where <{parml>, <parm2> etc. are valid scalar integer variable names.
As an example, suppose DRAWLINE was to output a different length and
character line on each call. It could be done as :

PROC DRAWLINE (LENGTH,CHAR) ;
VAR 1 : INTEGER ;
BEGIN
FOR 1:=1 TO LENGTH DO
WRITE (CHAR@) ;
WRITE (\)
END ;

LENGTH and CHAR are automatically defined as scalar integer variables
local to DRAWLINE. These are known as 'value parameters', since only
an inital value is passed to the procedure. Values cannot be passed
back to the calling routine except through global variables.

B. Defining a Function

A procedure is used to identify a set of actions. A function
identifies an expression by associating a name (and parameters) with
the calculation of a value. The name of the function, and its
parame;ers, may be used wherever a variable or constant value might
be used.

The word FUNC is wused to introduce a function declaration.
Everything else about a function is identical to a procedure except
that the function name must be assigned a value somewhere in the
function body. For example, a function MAX whose value is the larger
of its two parameters :

FUNC MAX(X,Y) ;
BEGIN

IF X>Y THEN
MAX:=X
ELSE MAX:=Y
END ;

The function name must be assigned a value in the program body or the
function value will be wundefined. The value is considered to be
scalar integer.

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 22

Program Body

The body of a program is a series of statements bracketed by
BEGIN and END. The statements are separated by semicolons (;).
SYM-Pascal has many different types of statements and we will examine
each in detail.

A. The Assignment Statement

The most fundamental of all statements 1is the assignment
statement. It specifies that a newly computed value be assigned to a
variable. The form of an assignment is :

<variable> := <{expression>

where := is the assignment operator, not to be confused with the
relational operator = .

The value assigned to the variable is obtained by evaluating an
expression. An expression consists of :

1. constant operands
-these are either a number or a constant defined name.

2. variable operands
-these are a variable name (and subscript if necessary).

3. operators
-these are Integer, Logical and comparision operators.

4, function designators
-these are a function name and parameter list.

5. memory load
-this is like BASIC's PEEK command and is represented by :

MEM[<expression>]

where <expression)> evaluates to the address of the desired
byte.

Brackets ((' and ')') may be freely used in an expression. The
conventional rules of left to right evaluation and operator
precedence are observed in an expression.

Examples :

ROOT1 := SPACE+27

BYTE := MEM[ALPHA+10] DIV 4
DEGREE := DEGREE+10
FILE[10] := MAX(X,Y)+$110F
VECTOR[1] := VECTOR[J]*100
FLAG := (X>1) OR (Y>1)

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 23

Note that the assignment statement is very free-form. Spaces may be
inserted as needed and the assignment may continue onto more than one
line, The only restriction is that words can not be broken in the
middle.

B. The Compound Statement

In SYM-Pascal, any place that a statement can be wused, a
compound statement may also be used. A compound statement is formed
by the word BEGIN, a group of statements separated by ; and followed
by the word END. Note that the main body of a program has the form
of a compound statement.

Examples :
BEGIN
SCORE := SCORE+SUM ;
COUNT := COUNT+1
END
BEGIN
X := (Y+I) DIV 100 ;
BEGIN
T := (Q*75) MOD 81 ;
F := N-18
END
END

Note that the last statement pior to END does not need to be
terminated by a semicolon.
C. The Procedure Call
A procedure 1is called by referring to the procedure name. Any
parameters must be included, in the proper order and with the
parameter list enclosed in brackets.
Examples :

BACKSPACE
DRAWLINE (15, '**)

In the call to DRAMLINE, LENGTH is set to 15 and CHAR to '*'. The
parameters can also be an expression if so desired.

DRAWLINE (LINE*SPACE ,CHARACT+16)

The proper number of parameters in the list must be provided or an
error will occur.

D. The Machine Language Call

SYM-Pascal allows you to call machine language subroutines from
inside a Pascal program. The form used for doing this is :

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 24

CALL (<expression>)

where <expression> evaluates to the address of the subroutine. All
‘registers (A, X and Y) may be destroyed and the return to Pascal is
made via a subroutine return, RTS.

Examples :

CALLE$SUOU;
CALL (INPUT
CALL (ROUT+0FFSET)

E. The Memory Store Statement

As well as fetching a byte from memory, we can also store a

value into a memory byte. This is like BASIC's POKE command, and the
form is :

MEM[<expressionl>] := <expression2>
where <{expressionl> evaluates to the desired byte's address and
<expression2> is the value to be stored there. Only the lower byte

(range of 0 to 255) of the value is significant.
Examples :

MEM[$A000] := CODE+10
MEM[PARM] := MEM[PARM+2]
MEM[A+757 := VALUE
Since the machine language call cannot pass parameters, the MEM

function can be used to load and store values to be used by the
subroutines.

F. The Printer Control Statement
It is possible to turn the hardcopy flag on and off from a
SYM-Pascal program. If the flag is set, all input and output to and
from the Pascal program will be echoed to the printer. The hardcopy
flag is set by :
PRINT-ON
and is reset by :

PRINT-0FF

If the printer is turned on in a Pascal program but not off it will
remain on upon return to the editor.

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 25

G. The WHILE Statement

The WHILE statement is used to repetitively execute a statement
until a condition is false. The form of the WHILE statement is :

WHILE <expression> DO <statement>

The expression is considered false if it evaluates to 0, It is true
otherwise. The {statement> portion is any valid SYM-Pascal statement
including the compound statement. A flowchart of WHILE looks like :

1
-»---WHILE
! <expression)> --->- false -->
! Do

! !

! [statement]

1 |

The expression is evaluated before every iteration of the loop, so
care must be taken to keep it as simple and fast as possible. The
WHILE loop can iterate any number of times, including zero if the
expression is false when first tested.

Examples ;

WHILE N>0 DO N := N-2
WHILE VECTOR[I]<>15 DO

BEGIN

MAX := VECTOR[I] ;
[:=1+1
END

H. The REPEAT Statement

The REPEAT statement is used to repetitively execute a statement
until a condition is true. The form of this statement is :

REPEAT <statements> UNTIL <expression)
The <expression> is the same as the WHILE statement. The
<{statements> portion is any number of valid Pascal statements,
separated by semicolons. A flowchart of REPEAT looks like :

-=>---REPEAT

! [statements]

| UNTIL
false !

! !
=¢- <expression>
l

true

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 26

The expression is evaluated after every iteration of the 1loop and
because of this the statements portion is always executed at least
once. The loop can iterate any number of times, from one on up.
Examples :

REPEAT
N := N+1
UNTIL N>75

REPEAT
MAX := VECTOR[I] ;
I := 141

UNTIL VECTOR[I]=0

Notice that the last statement in the {statements> part does not need
the trailing semicolon.

I. The FOR Statement

When the number of repetitions of a statement is known, the FOR
statement can be used. This is very similar to the FOR-NEXT loop in
BASIC, except that it is restricted to an increment of 1. The FOR
statement indicates that a statement be repeatedly executed while a
progression of values is assigned to the control variable. The value
of the control variable increases by 1 throughout the progression.
The form of the FOR loop is :

FOR <control variable> := <expressionl> TO <expression2> DO
{statement>

<expressionl> evaluates to the inital value of the control variable,
while <expression2> is the final value. These values are evaluated
only one, at the start of the loop. The loop will terminate when the
value of the control variable is greater than the final value. The
control wvariable is any valid Pascal variable and must have been
previously declared.

Examples :

FOR 1:=0 TO 79 DO
TEXT[I] := SPACE

FOR ALP := 100 TO INDEX DO

BEGIN

HAT := HAT DIV 3 ;
ALP := ALP+1

END

There is also a FOR statement in which the increment is -1. This has
the form :

FOR <control variable» := <expressionl)> DOWNTO <expression2> DO
{statement>

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 27

This 1is identical to the previous FOR loop except that the increment
is -1 instead of 1. The 1loop terminates when the value of the
control variable is less than the final value.

Examples :

FOR I := 75 DOWNTO 1 DO TEXT[I] := I+1

FOR POINT := START DOMNTO LENGTH DIV 4 DO
OUTPUT (X,POINT)

J. The IF Statement

The IF statement specifies that a statement be executed only if
a certain condition is true. If it is false, the either no statement
or the statement following the word ELSE is executed. The two forms
of the IF statement are :

1. IF <expression> THEN <{statement>

2. IF <expression> THEN <statementl> ELSE <{statement2>
In form 1 the statement part is executed only if the expression
evaluates to a true value. In form 2, <{statementl)> is executed if
the expression has a true value and <{statement2> is executed if it
has a false value.
Examples :

IF N>0 THEN A:=A+l

IF TEST THEN

BEGIN
A:=BET+10 ;
TEST:=0
END
IF JACK>=0 THEN
SCORE := SCORE+1
ELSE SCORE := SCORE-1

K. The CASE Statement

The CASE statement selects a single statement for execution from
its component statements. The CASE statement consists of an
expression (the selector) and a 1list of statements, each being
labelled by a constant value(s). CASE selects for execution that
statement whose label is equal to the selector value. If no such
label is listed then either no statement or the statement following
the word ELSE is executed. The two forms of CASE are :

1. CASE <expression> OF
<label 1list> : {statement> ;
{label 1list> : <statement>
END

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 28

2. CASE <expression> OF
{label list> : <(statement> ;
<label 1ist> : <statement>
ELSE <statement>
END

The <label 1ist> consists of one or more constant values separated by
commas (,). If the selector value equals any one of the values in
the label 1list then that statement is executed. In form 2, if no
label match is made then the statement following ELSE is executed.
Examples :

CASE NUMBER OF
10 : A:=A+l ;
11 : A:=A+2
END

CASE (ALPHA*BETA) OF
CONS : CONTROL(X,Y) ;
17, VAL :“TEST(Z) ;
6,$10 : A:=BETA
ELSE TEST(A)

L. The WRITE Statement
The WRITE statement outputs values evaluated from expressions.
It also has some formatting of the output available. The basic form
of the WRITE statement is :
WRITE (<valuel>, ... ,<valueN>)

wzeqe <value> can be a format operator, an expression or a quoted
string.

The stand-alone format operators are \ and " . Their actions
are :

\ : output a carriage return/line feed to the terminal. More than
one \ may be grouped together to be treated as a single operator.

" 1 this is used to set the output field width to the value of the
following constant.

Examples :
WRITE(\) -output one CR
WRITE(\\\) -output three CR
WRITE("10) -set field width to 10

COPYRIGHT SATURN SOFTWARE LIMITED

TP

SYM-PASCAL PAGE 29

WRITE("S) -set field width to 5

The field width can be set more than one time in a WRITE statement
and will remain the same until :

a. it is reset by a " operation
or b. the WRITE statement ends.

The default value of the field width is 1. This is the minimum
number of characters output for every value. If the value requires
less characters, it is preceded by a suitable number of spaces. If
it requires more characters, all the characters will be output. The
entire value is always output.

When the result of an expression is output, format operators are
used to indicate the type of output. These operators are :

@ : treat the value as one ASCII character.
% : output value as a hex number.
If no format operator is specified, the value is output as a decimal

number. The @ or % is appended to the end of the expression.
Examples :

WRITE($410) -output the ASCII character A.
WRITE (SCORE) -output as decimal number.
WRITE(VALUE%) -output as hex number.

It should be noted that the character output (@) does not use field
width. Only one character is output and will require only one space.

Messages are output as quoted strings. This s a string of
characters (maximum 80) enclosed by ' . No field width is used.
Examples :

WRITE('Message')

WRITE ('PLEASE HELP')
By combining the different types and formats in the WRITE statement,
a very versatile output feature is available.
Examples :

WRITE('The value of A+B is ',"10,A+B)

WRITE (\\,VAAL%,"'is equal to',VAL,\)
M. The READ Statement
The READ statement is used to input values from the terminal and

place them into Pascal variables. Formatting of the input is also

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 30

available. The general form of the READ statement is :
READ (<valuel>, ... ,<valueN>)

where <value> can be a variable name, format operator or quoted
string.

The only stand-alone format operator is the \ operator, which
outputs a carriage return/line feed to the terminal. This is the
same as the \ operator in the WRITE statement. More than one \ may
be grouped together. The quoted string is output as a message and is
identical to a WRITE statement message.

When <value> is a variable name, format operators are used to
indicate the type of input desired. The operators are :

@ : input one keystroke from the terminal as an ASCII character.
The character is not echoed to the terminal.

% : input as a hex number.

No format operator will cause the input to be a decimal number. With
both hex and decimal number input, any error will cause the system to
backspace over the input field and restart the input. The number may
be signed (+ or -) and is terminated by typing a carriage return. A
space is output at the end of each input field to delimit multiple
inputs.

Examples :

READ (ALPHA,BETA%)
READ('TEST = ',TESTR)
READ (\\,VECTOR[1],'is the value',\)

Summary

This ends the discussion of statements used inside a program
body. If the program body is used in a procedure or function it must
be foliowed by a ; to indicate the end. This would look like :

BEGIN
<{program body>
END ;

If the program body is the main body it must be followed by a period
(.). This will halt the compiler properly. It would Took like :

BEGIN
{program body>
END .

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 31

Recursion

A1l SYM-Pascal procedures and functions are fully recursive.
This means that a procedure or function can call itself from within
the program body. A new set of local variables are generated with
each call so nothing will be disturbed in the calling routine. The
QUICKSORT program 1in the Sample Program section is an example of
recursion. Care must be taken when using recursion to insure that
the recursion will eventually end and that the P-stack does not
overflow memory. Recursion is usually slow and greedy for memory.

Compiling from Tape

It is possible to break a large Pascal program into pieces and
then have SYM-Pascal compile it from the cassette tape machine. This
is accomplished via the .T pseudo-command. When the compiler
encounters .T in a Pascal source program it will load the next source
file from tape, into the Pascal text area, and then continue
compiling at the start of that file. A forced load of the next file
is used to get the source file into memory - ie. an id of 00 is
used. The text area must be big enough to hold the largest program
segment or an error will occur.

By breaking a program down into smaller pieces, a large Pascal
program can be compiled on a machine with a limited amount of memory.
For really large programs the following steps are necessary to
compile and execute :

A. compile from tape using PA and .T .
B. save the P-code program using SA .

C. change the P-code start address to the start of the largest
continuous block of usable memory by use of PS .

D. load the P-code program using PL .
E. execute the program using GO .
This sequence allows you to compile and execute programs which are
normally -too large for the system.
Error Messages
SYM-Pascal has extensive error checking in the editor, compiler

and interpreter. In addition to the RAE editor error messages there
are four new error messages which use the RAE format. These are :

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 32

Error Number Cause
140 out of memory
150 attempted divide by 0
EF missing address in SET or PSET
IFO P-code program not in P-code area

The compiler lists the errors in a different format. Included is the
error number, the line in which it occured and the word nearest to
the error location. The compile-time errors are :

Error Number Cause
02 constant expected
03 - = expected
04 name expected
05 ; or : missing
09 . expected
10 UNTIL expected
11 undeclared name
12 illegal name
13 1= expected
16 THEN expected
17 ; or END expected
18 DO expected
19 incorrect symbol
20 comparison operator expected
21 use of procedure name in expression
22) expected
23 illegal factor
25 BEGIN expected
26 OF expected
28 TO or DOWNTO expected
30 missing parameters in call
31 (expected
33 [expected
34 1 expected
35 parameters mismatched
36 data type unknown
37 , expected
38 ON or OFF expected
39 *) missing
41 number expected
42 field width out of range (1 to 255)
43 null string not allowed

A1l compile time errors are fatal and cause a reentry into the
editor. A program with errors can not be executed, even via GO.
This is a added safty feature of SYM-Pascal.

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 33

The P-Machine

It is not necessary to understand the inner workings of the
P-machine in order to use SYM-Pascal. The information provided here
is for general interest only, as the running of the P-machine is
transparent to the user.

The interpreter portion of SYM-Pascal emulates, in software, an
idealized stack machine whose native (ie. machine) language is
P-codes. This P-machine is a stack oriented processor consisting of
four registers and two memory storage areas. Memory is separated
into program storage and data storage areas. The program storage
area contains the P-code program and remains unchanged during program
execution (ie. no self-modifying code). The data storage area
contains the values of the variables and is also used for temporary
storage during arithmetic and 1logical operations. Though the
variables can be fetched and stored in a random fashion, the data
storage area operates as a stack with respect to arithmetic/logical
operations and run-time variable storage allocation. For this reason
the data storage area is known as the P-stack. The P-stack is
located immediately following the program storage area in memory and
grows upwards. The four registers in the P-machine are :

a. the program counter, which points to the next executable P-code
in the program storage area.

b. the instruction counter, which contains the current P-code.
c. the stack pointer, which points to the top of the P-stack.

d. the base register, which points to the start of the local
variable storage area.

A1l storage allocation is dynamic (ie. as it is needed), so variable
addresses cannot be assigned at compile time. Instead they are
generated as offsets from the base register. This makes P-code
programs address independent and means that they can be executed from
anywhere in memory.

The P-machine has only 11 basic instuctions, each of which is
four bytes long. Variations on these intructions give a total of 43
different operations. In the following description of the P-codes,
these letters stand for :

: static level difference

: displacement from base register

: 16 bit constant value

: 16 bit address, with 0 being the start of the P-code program.
: 8 bit data byte, with range of 0 to 255

B> ZO <

The top stack element is denoted by (sp), while the second element is
denoted by (sp-1).

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 34

The P-machine instruction set is :

Mnemonic Description

LITON copy N onto stack

OPR OO procedure return

OPR 0 1 (sp) := -(sp)

OPR 0 2 (sp) := (sp)+(sp-1)

OPR 0 3 sp) := (sp-1)-(sp)

OPR O 4 sp) := (sp)*(sp-1)

OPR 0 5 (sp) := (sp-1)/(sp)

OPR 0 6 (sp) := low order bit of (sp)

OPR 0 7 (sp) := (sp-1) modulo (sp)

OPR 0 8 test (sp-1)=(sp)

OPR 0 9 test (sp-1)<>(sp)

OPR 0 10 test (sp-1)<(sp)

OPR 0 11 test (sp-1)>=(sp)

OPR 0 12 test isp 1;>(sp)

OPR 0 13 test (sp-1)<=(sp)

OPR 0 14 (sp) := (sp)OR(sp-1)

OPR 0 15 (sp) := (sp)AND(sp-1)

OPR 0 16 (sp) := NOT(sp)

OPR 0 17 shift (sp) left 1 bit

OPR 0 18 shift (sp) right 1 bit

OPR 0 19 (sp) := (sp)+1

OPR 0 20 (sp) := (sp)-1

OPR 0 21 copy (sp) onto stack

LOD VD load a value

LOD 255 0 load a byte from absolute address (sp)
LODX V D load a value with index address (sp)
STovoD store a value

STO 255 0 store a byte at absolute address (sp-1)
STOX VD store a value with index address (sp)
CAL V A procedure call

CAL 255 0 machine language call to address (sp)
INT O N increment stack pointer by N

JMP 0 A Jjump to P-code address A

JPC 0 A jump to P-address A if low order bit (sp)=0
JPC 1A jump to P-address A if low order bit (sp)=1
CSP OO input one character, no echo

CSP B Bl 1 output B by Bl times

CsP 0 2 input a decimal number

CsP 0B 3 output a decimal number with field width B
CSP 0 4 input a hex number

CSP OB S output a hex number with field width B
CSP 0 6 output (sp) as an ASCII character

CSP B 8 output B characters from the following string

These 43 instructions are all that is needed to execute any program
written in SYM-pascal. The small instruction set keeps the
interpreter from being too slow, yet still does the job.

Note: the interpreter checks for a break key down everytime it

executes another P-code instruction. If the break key was pushed,
the program halts and waits for another keystroke. A Control-Z will

COPYRIGHT SATURN SOF TWARE LIMITED

£l

SYM-PASCAL PAGE 35

halt execution and return you to the editor. A Control-Q will resume
execution. Everything else is ignored. The break key does not work
while waiting for character or numeric input.

P-Code Decompiler

Presented here is a Pascal program which will decompile a p-code
program. With it you can look at the codes produced after compiling
your favorite program.

The first step in decompiling is to compile your program into
memory. Then change the P-code start address to another area, where
you will compile and execute the decompiler program. Watch out that
the two P-code areas do not overlap. When the decompiler program
asks for an address, enter the P-code start address of your program.
The decompiled listing is output in 15 line blocks, with a pause for
keyboard input in between. Any input but a Control-X will output the
next block. A Control-X will cancel the decompiler.

The Pascal P-code Decompiler program listing is :
(* A P-code disassembler written in SYM-Pascal *)

CONST STOPCODE=$1F ;
VAR STARTADDR, LINENUM, NUMBER,LINECNT : INTEGER ;

PROC TEXT ; (* used by CSP b 8 *)
VAR 1 :INTEGER ;
BEGIN
WRITE(' ') ;
WRITE (“3,MEM[STARTADDR+11," ') 5 (* output b *)
WRITE("4,MEM[STARTADDR+2],\) ; (* output 8 *)
WRITE (" ',$278) ;
FOR I:=1 TO HEH[STARTADDR+1] Do
WRITE (MEM[STARTADDR+3+1]@) ; (* output following string *)
WRITE($278) ;
LINENUM := LINENUM+MEM[STARTADDR+3] ;
LINECNT := LINECNT+1 ;
STARTADDR := (MEM[STARTADDR+37*4)+STARTADDR ;

END ;
PROC OPCODE ; (* used by all P-codes except CSP *)
BEGIN
IF (NUMBER=$12) OR (NUMBER=$13) THEN HRITEi'X';
ELSE WRITE(' ') ;
WRITE ('

WRITE("3, HEM[STARTADﬂR+1] e -

NUMBER := (MEM[STARTADDR+3]*256) + (MEM[STARTADDR+2] AND 255) ;
WRITE ("4, NUMBER)
END ;

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 36

PROC CSPCODE ; (* used by CSP *)
BEGIN
CASE MEM[STARTADDR+27] OF
0,2,4,6 : OPCODE ;
8 : TEXT
ELSE BEGIN
WRITE(" ') ;
IF MEM[STARTADDR+1]=255 THEN WRITE("3,$0D)
ELSE WRITE("3,MEM[STARTADDR+1]) ;
WRITE(' ') ;
WRITE ("4 ,MEM[STARTADDR+3],' ') ;
WRITE("4 ,MEM[STARTADDR+27])
END
END ;
END ;

BEGIN (* Main Body *)
READ(\, 'Start address of P-codes (in hex) =$',STARTADDR%,\) ;
LINECNT := 0 ;
LINENUM := 0 ;
NUMBER := 0 ;
WHILE (NUMBER=0) AND (MEM[STARTADDR]<>STOPCODE) DO
BEGIN

WRITE("9,LINENUM) ; (* output P-code address *)
WRITE (' s
LINECNT := LINECNT+1 ;
LINENUM := LINENUM+1 ;
NUMBER := MEM[STARTADDR] ; (* get P-code *)
CASE NUMBER OF
0 : BEGIN
WRITE('LIT') ;
0PCODE
END ;
1 : BEGIN
WRITE('OPR') ;
OPCODE
END ;
2,512 : BEGIN
WRITE('LOD') ;
OPCODE
END ;
3,%13 : BEGIN
WRITE('STO') ;
OPCODE
END ;
4 : BEGIN
WRITE('CAL') ;
OPCODE
END ;
5 : BEGIN
WRITE('INT') ;
OPCODE
END ;

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 37

6 : BEGIN
WRITE (*JMP')
OPCODE

END ;

7 : BEGIN
WRITE("JPC") ;
0OPCODE

END

8 : BEGIN
WRITE('CSP') ;
CSPCODE

END
END ; (* end of CASE *)
WRITE(N) ;
NUMBER := 0 ;
IF LINECNT MOD 15 =0 THEN (* test if 15 lines output *)
BEGIN

READ (NUMBER®) ; (* input keystroke *)
IF NUMBER=$18 THEN NUMBER:=1 (* Control-X cancels *)
ELSE NUMBER:=0 ;
END ;

STARTADDR := STARTADDR+4 ; (* get address of next P-code *)

END ; (* end of WHILE *)
WRITE (" EOF ',\\)
END . (* end of Main Body *)

Sample Programs

This section contains a group of programs written in SYM-Pascal.
They are intended to illustrate various Pascal constructs and to show
typical Pascal programming techniques.
MA X4

The program MAX4 asks you to input four numbers, separated by
carriage returns. It will then print out the largest number of the
four.
(* Find the maximum of 4 numbers *)
VAR NUM1, NUMZ, NUM3, NUM4 : INTEGER :

FUNC MAX(X1,X2,X3,X4) ; (* find max of 4 numbers *)
VAR TEMP1, TEMPZ : INTEGER ;

FUNC MAX2(Y1,¥2) ; (* find maximum of Y1 and Y2 *)
BEGIN

IF Y1>Y2 THEN MAX2 :
ELSE MAX2 :

Y1
Y2

non

END ;

BEGIN (* start of MAX *)
TEMP1 MAX2(X1,X2) ; (* maximum of first two numbers *)
TEMPZ := MAX2(X3,X4) ; (* maximum of second two numbers *)

won

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 38

MAX := MAX2(TEMP1,TEMP2) (* maximum of two largest numbers *)
END ; (* end of MAX *)

BEGIN (* Main *)

REPEAT

READ(\\,'The four numbers? ',NUM1,NUM2,NUM3,NUM4) ;

WRITE(\, 'The largest is ',"6,MAX(NUM1,NUMZ,NUM3,NUM4),\)
UNTIL NUM1<O (* repeat until first number input is negative *)
END . (* Main *)

ADD

The program ADD asks for repeated input of numbers, each
terminated by a carriage return. It will keep a running total of all
the numbers input, and will print out this total when the input
number is 0.

(* Add integers until a 0 is encountered *)

VAR SUM, NUMBER : INTEGER ;
BEGIN (* Main *)
SUM := 0 ; (* set total to 0 *)
REPEAT
READ(\, 'Number? ',NUMBER) ; (* input number *)
SUM := SUM + NUMBER ; (* compute sum *)
UNTIL NUMBER=0 ; (* loop until a 0 is input *)
WRITE(\,'The total is ',"6,SUM) (* output total *)
END . (* Main *)

POWER

The program POWER will ask you for the input of two numbers, A
and B. It will then find and print the largest number N such that
B**N is less than A.

(* Find largest N such that B**N ¢ A *)

VAR A, B, PRODUCT, POWER : INTEGER ;
BEGIN
READ(\,'Value of A? ' A) ; (* input A *)
READ(\, ‘Value of B? ',B) ; (* input B *)
POWER := 0 ; (* N equals 0 *)
PRODUCT := B ; (* set to B**Q *)
WHILE PRODUCT <= A DO (* continue until B**N > A *)
BEGIN
POMWER := POWER+1 ; (* increment N *)
PRODUCT := PRODUCT * B (* compute B**N *)
END ;
WRITE(\,"2, 'The largest power of ',B,' < ',A,' is',P R)
END . (* Main *)

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 39

AVERAGE

This program finds the average of a group of values. AVERAGE
first asks for the number of values to be input. It then asks for
each value, with the prompt ‘Number?'. Terminate each number with a
carriage return. After the correct number of values is input, the
average is printed.

(* Form average of N numbers *)

VAR I, N, AVERAGE : INTEGER ;
SUM, NUMBER : INTEGER ;

BEGIN (* Main *)
READ(\, 'Number of values? ',N) ; (* input number of values *)
SUM := 0 ;
FOR 1:= 1 TO N DO (* input N values *)
BEGIN
READ(\, 'Value? ',NUMBER) ;
SUM := SUM + NUMBER (* compute sum of values *)
END :
AVERAGE := SUM DIV N ; (* compute average *)
WRITE(\, 'Average is ',"6,AVERAGE)
END . (* Main *)

GCF
The program GCF finds the greatest common factor of two numbers,
A and B. GCF asks for the input of the A and the B values, and then
prints out the greatest common factor.
(* Find greatest common factor of A and B *)
VAR A, B : INTEGER ;
BEGIN (* Main *)

READ(\,'Value of A? ',A) ; (* input A *)
READ(\,'value of B? ',B) : (* input B *)

REPEAT
WHILE A > B DO

A :=A -8B ; (* dountil A <= B *)
WHILE 8 > A DO

B :=B -A; (* do until B <= A *)

UNTIL A = B ; (* continue until A equals B *)
WRITE(\, 'The greatest common factor is ',"6,A)
END . (* Main *)

TOTALS

This program forms totals of all positive numbers, all negative
numbers and counts zeros from numbers input to it. First, TOTALS

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 40

asks for the number of values. It then inputs the values. When all
values have been input, it will print out the totals.

(* Form a count of positive and negative numbers and
count the number of zeros *)

VAR I, N, NUMBER, COUNT : INTEGER ;
POSSUM, NEGSUM : INTEGER ;

BEGIN (* Main *)
READ(\.'Number of values? ',N) ;
POSSUM := 0 ; ; (* zero both sums *)

NEGSUM := 0 ;

COUNT := 0 H

FOR I:= 1 TO N DO (* loop for N values *)
BEGIN

READ(\,'Value? ',NUMBER) ;
IF NUMBER = O THEN (* test for 0 *)
COUNT := COUNT+1 (* increment 0 count *)
ELSE (* test for positive or negative *)
IF NUMBER > O THEN POSSUM := POSSUM + NUMBER
ELSE NEGSUM := NEGSUM + NUMBER
END ;
WRITE(\, 'Total of positive numbers is ',POSSUM) ;
WRITE (\, 'Total of negative numbers is ‘,NEGSUM) ;
WRITE(\,'Total number of zeros is ',COUNT)
END . (* Main *)

DAY

The program DAY asks for the number of a day of the week. It
then outputs the name of that day. I111egal numbers are error
trapped.

(* Read number, and print out corresponding day of the week *)
VAR DAYND : INTEGER ;

BEGIN
READ(\,'Input the number of day of week: ',DAYND,\) ;
CASE DAYNO OF (* test day number *)
1 : WRITE('SUNDAY') ;
2 : WRITE('MONDAY') ;
33 HRITE{'TUESDAY') Ll
4 : WRITE('WEDNESDAY') ;
5 : WRITE('THURSDAY') ;
6 : WRITE('FRIDAY') ;
7 : WRITE('SATURDAY')
ELSE WRITE('Not a day of week number!')

ND . (* Main *)

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 41

CALCULATOR

This program makes Pascal act like a four function calculator.
When input 1is asked for, you should input a number, terminated by a
carriage return. Then input an operator (+ - * /) with no
terminator. Continue entering number and operator until you want the
answer. Then input = as the operator. The answer is printed out.

(* Hand calculator simulator *)
VAR OPERATOR, ANSWER, NUMBER : INTEGER ;

BEGIN (* Main *)
ANSWER := 0 ; (* initalize values *)
OPERATOR := PR
HRITE(\.'lnput7 ') £
REPEAT
READ(NUMBER) ; (* input number *)
CASE OPERATDR OF

Yyt ANSWER := ANSWER + NUMBER ;
bt e ANSHER := ANSWER - NUMBER ;
'*#' : ANSWER := ANSWER * NUMBER ;
"/' : ANSWER := ANSWER DIV NUMBER
END ;
READ(OPERATOR®) ; (* input operator *)
WRITE (OPERATORE,' ') ;
UNTIL OPERATOR = '=' ;
HRITEE\,‘Answer is ',ANSWER) ;
END . (* Main *)
C2F

This program will print out a range of values in degrees
centigrade along with the value in degrees fahrenheit. The range is
0 to 100 in steps of 5.

(* Convert degrees Centigrade to degrees Fahrenheit *)

CONST OFFSET=32 ; (* conversion offset *)
VAR CENTEMP, FAHRTEMP : INTEGER ;

BEGIN
WRITE(\, 'Centigrade to Fahrenheit',\) ;
FOR CENTEMP := 0 TO 100 DO (* range of 0 to 100 degrees *)
BEGIN
FAHRTEMP := (CENTEMP * 9) DIV 5 + OFFSET ;
WRITE (\,"7,CENTEMP,"10,FAHRTEMP) ;
CENTEMP := CENTEMP+4 ; (* make CENTEMP increment by 5 *)
END
END .

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 42

HISTGRM

This program converts numeric data into a histogram. First, it
asks for the number of values, which must be 15 or less. It then
inputs the values. When finished, the histogram is output.

(* Histogram print routine *)

VAR NUMBER, N, I : INTEGER ;
DATA : ARRAY[15] OF INTEGER ;

PROC DRAWLINE (LENGTH) ;
VAR I : INTEGER ;
BEGIN
FOR I:= 1 TO LENGTH DO
WRITE('*') ;
WRITE(\)
END ;

BEGIN (* Main *)
REPEAT (* size must be less than 16 *)
READ(\, ‘Number of values? ',N)
UNTIL N<16 ;
FOR I:=1 TO N DO
READ(\,'Value? ',DATA[I]) ; (* input data *)
WRITE(\\) ;
FOR 1:= 1 TO N DO
BEGIN
NUMBER := DATA[I] ; (* get next value *)
IF NUMBER > O THEN (* ignore data if not > than 0 *)
IF NUMBER >79 THEN DRAWLINE(79) (* max size of 80 *)
ELSE DRAWLINE (NUMBER) ;
END ;
END .

QUICKSORT

This program does a recursive QuickSort on a list of values. It
first asks for the input of the values in the 1ist (8 of them) and
sorts them. The sorted list is then output.

{* The QuickSort sorting routine *)

CONST N=9 ; (* number of elements in list *)
VAR LIST : ARRAY[N] OF INTEGER ; (* storage area of list *)
K : INTEGER ; (* temporary variable *)

PROC SORT(LOWER,UPPER) ;
VAR I, J, TEMP, VALUE : INTEGER ;
BEGIN
J := UPPER ; (* set upper index value *)
I := LOWER ; (* set lower index value *)
VALUE := LIST[LOWER] ; (* inital comarision value *)
IF LOWER < UPPER THEN (* make sure there is a section to test *)

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL PAGE 43

BEGIN

WHILE I < J DO (* until Tower index = upper index *)
BEGIN
WHILE LIST[J] > VALUE DO

J :=J-1; (* find smaller value *)

WHILE LIST[I] <= VALUE DO

I := 141 ; (* find larger value *)
IF 1 <= J THEN
BEGIN
TEMP := LIST[J] ; (* swap values *)
LIST[Y] := LIST[I] ;
LIST[I] := TEMP
END
END ;

LIST[LOWER] := LIST[J] ; (* swap values *)
LIST[J] := VALUE

END ;

[F J > LOWER THEN
SORT (LOWER,J-1) ; (* sort lower section *)
[F J < UPPER THEN
SORT(J+1,UPPER) ; (* sort upper section *)

END ;

BEGIN

* Main *)

WRITE (N, 'Input’,"2,N-1,"' numbers to be sorted',\) ;

FOR X

:= 0 T0 (N-1) DO (* input N-1 numbers *)

BEGIN
WRITE(\, 'Number',"2,K,'? ') ;
READ (LIST[K])

END

WRITE(\)

LIST[N] := 32767 ; (* set last element to largest number *)
SORT(O,N-1) ; (* sort first N-1 elements *)

WRITE(\\,'The sorted list is :',\) ;

FOR K

:= 0 T0 N-1 DO

WRITE(\,"6,LIST[K]) ; (* output sorted list *)

END .

COPYRIGHT SATURN SOFTWARE LIMITED

SYM-PASCAL

PAGE

44

