
A DIGITAL VIDEO DISPLAY SYSTEM IMPLEMENTED ON A KIM-I

N. Solntseff and M.D. Drummond
Unit for Computer Science

McMaster University
Hamilton, Ontario L8S 4KI

MICROCOMPUTERt

ABSTRACT

The "microelectronic revolution" and the
accompanying decrease in the cost of semiconductor
memory has increased the availability of
raster-scan graphical displays, yet, as pointed out
in a recent survey [BAE79], the implementation of
graphics software for raster-scan systems has
lagged behind that for random-scan ones. The aim of
the work described in the present paper has been to
apply random-scan techniques to a system employing
a relatively inexpensive raster-scan device. The
system, incorporating a display-file processor, is
implemented on a KIM-i microcomputer. The display
device is composed of a Micro Technology Unlimited
video board and a standard TV monitor.

Keywords and phrases: digital video graphics,
random-scan graphics, low-cost graphics, display
file processor, display file, computer animation.

I. INTRODUCTION.

Information can be presented pictorially in
two distinct ways: The first is by means of line
drawings as in the case of a newspaper cartoon,
where the picture is made up of an ordered set of
lines; the second is exemplified by a hooked rug,
where the picture is made up of collections of
points. This distinction is also present in
computer graphics, where the first approach is used
in vector-display devices and the second in raster-
scan devices [NEW79].

The aim of the work described in the present
paper has been to apply the techniques used in the
case of vector-display devices to the display of
structured (or segmented) pictures on a relatively
inexpensive raster-scan device.

In his comprehensive survey of raster-scan
devices, Baecker [BAE79] makes the point that
"There is an increasing body of opinion which holds

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

1980 ACM 0-89791-024-9/80/0900-0189 $00.75 189

that systems software for raster-scan devices can
be constructed in the same manner as that for
vector-scan graphics " [SPR75]. Although this has
been known for some time, few systems have in fact
been constructed (see [BAE79]). Thus, the present
work represents an exploratory effort to assess the
feasibility of using vector-display techniques for
computer graphics on raster-scan devices.

A picture can be broken up into elements, such
as, the foreground, the background, and a number of
"figures" which together form what may be called a
"scene." In their turn, the figures can themselves
be built up from a number of smaller components
which may be called "parts." When a digital video
display system is used to display a picture on a
raster-scan cathode ray tube (CRT), the
representation of the image stored in digital form
must reflect the structure possessed by the
original picture [GIL78]. The digital
representation may be a "frame buffer," where
contiguous sections of memory represent contiguous
pixels (discrete points in the original picture).
Alternatively, the representation may be in encoded
format, in which case it must be translated into
frame-buffer format (scan converted) by the display
system [BAE79].

For the encoded picture representation to
mirror the structure of the picture it defines, the
digital representation must also be structured and
it is customary to build it up from segments
corresponding to the figures in a scene. The latter
are built up from primitives corresponding to the
lines, points, and text characters of a picture
[GIL78]. A digital video display system can thus be
pictured in the manner shown in Fig. I, where
process P1 is responsible for receiving encoded
picture definitions generated in a host CPU and
storing them as a structured "display file" in
display-processor memory. Process P2 performs the
scan conversion and creates the bit map of the
original picture within the frame buffer. The
contents of the latter can now be directly
displayed by process P3 which represents the
display hardware of the complete display processor.

tSupported in part by Grant No. A8327 of the
National Science and Engineering Research Council
of Canada.

I I i I
i I I i I I

I I I I I CODED I I I I FRAME I I I I I
I CPU I->I P1 I->I PICTURE I->I P2 I--->I BUFFER I->I P3 I--->I CRT I
I I I I I DEFINITION I I I I I I I I I

i I I I i i
i I I i

Figure I. A Digital Video Display System [BAN79].

The generation of an image on a CRT will thus
involve the translation of a sequence of picture
elements within the display file into actions
resulting in the drawing of lines, points, or text
characters on the CRT screen. The coded picture
definition (display file) may thus be considered as
a hierarchical collection of instructions to be
executed or interpreted by the display processor. A
single instruction, thus, generates the image of a
primitive entity on the screen.

Section 2 provides an overview of our system.
Section 3 describes the stucture of the display
file and the manner in which its instructions are
interpreted by the "display-file" interpreter.
Section 4 deals with the structure and operation of
the "communications" process which accepts coded
picture definitions from the host and manages the
display file. Finally, Section 5 discusses the uses
of the system for the production of animated
pictures and outlines directions for future work in
the area of low-cost raster-scan devices.

2. OVERVIEW OF THE SYSTEM.

The system described in this paper is of the
type called "systems with coded picture
definitions" by Baecker and is closest to that
shown in his Figure i0 [BAN79]. This is shown in
Figure 2 in a somewhat modified form in order to
exhibit the system components as implemented on the
Commodore/MOS Technology KiM-i microcomputer.

serial communication link employing an Asynchronous
Communications Interface Adaptor (ACIA) [0SB77] can
be used for this purpose. Synchronization of the
communication between the host CPU and process P1
is achieved by means of one of the modem control
signals available with the ACIA. This is described
in greater detail below in Section 4.3.

Picture data are generated in the host CPU and
transmitted to the KIM-i in a coded format which
will be described below in Section 3. These data
are read by process P1 (described in Section 4) and
stored as the display file.

The display file is a structured collection of
"segments," each of which describes one part of a
picture, i.e., the picture is represented in a
condensed form which has to be interpreted and
converted into a bit map. Process P2, called the
display-file interpreter (DF interpreter for short)
performs the scan conversion and transforms the
coded picture definition into a bit map, where each
bit represents a picture pixel. The bit map is
stored in the memory provided by the "Visable
Memory" video board manufactured by Micro
Technology Unlimited [MTU77]. The video-board
memory acts as a "frame buffer" and allows the
display of 320x200-point pictures. The video board
contains the display generator (process P3) which
transforms the bit map into a television signal
which is then fed into a standard T.V. monitor.

The host is an Ohio Scientific, Inc.
Challenger III, although any computer with an RS232

i I: I
I CPU I--->I P1
I I: I

......ee.eeee.ee.eeeIeee.e.eee,e.ee.ee.oe.eeetaeeeee-.----I-

......oe.,,.....e........,:

: ::

: ::

I I : : I I
1 I DISPLAY 1 1 I : FRAME 1 I :: I 1
I->I FlEE]->I P2 I---> BUFFER ->I P3 I--->I CRT 1
I I I I I: I I::I I

I I : : 1 I
I I : : :

32 KBytes RAM : 8 KBytes RAM ::
:........o.........,.m.°.::

MTU VIDEO BOARD
:......e.ee.oeeeeeeeeeeeeeeeee.eeeeee°.eee.eeoeeee......-.-.

KIM-I MICROCOMPUTER

Figure 2. The Digital Video Display System as Implemented on a Commodore/MOS Technology
KIM-i Microcomputer.

190

3. TIIE uISi~LAY-FILE INTERPRETER.

3.1 Display-File Instructions.

As mentioned in Section I, the representation
of a scene is broken up into a numner of parts to
reflect the underlying picture structure. The
display file is likewise subdivided into segments,
where a segment represents a part of the complete
scene and contains the instructions needed to draw

it on a CRT screen. These instructions may be
categorized into "primitive-generation,"
"file-organization," and "communications"
instructions. A list of available instructions is
given in Table I.

TABLE i. (a) Primitive-Generation Instructions.

[INSTRUCTION [
i I

MNEMONIC[BYTE [BYTE [BYTE [BYTE [BYTE [
[1 [2 [3 [
[-'---I i I

91 abs X Coord

81

Ii

Ol

92

12

82

12

04

LSETPIX

SSETPIX

LCLRPIX

SCLRPIX

LLINE

LERASE

SLINE

SERASE

PRINT

4 l 5 I
l ;

abs Y Coord

I
DX [DY unused

I
abs X Coord abs Y Coord

I
DX [DY unused

I
abs X Coord abs Y Coord

I
abs X Coord abs Y Coord

l
DX [DY unused

I
DX [DY unused

i
character string follows

[I

SEMANTICS

move cursor to (X,Y) and
set pixel ON

move cursor by (DX,DY) and
set pixel ON

move cursor to (X,Y) and
set pixel OFF

move cursor by (DX,DY) and
set pixel OFF

draw line from current
position to (X,Y)

erase line from current
position to (X,Y)

draw line from current
position to (X+DX,Y+DY)

erase line from current
position to (X+DX,Y+DY)

print character string
terminated by ETX

TABLE I. (b) File-Organization Instructions.

MNEMONIC

JMPTO

JMPSUB

RETURN

TEST

EXIT

INSTRUCTIONS

BYTE[BYTE[BYTE
1 [2 [3

...... I ;

43 [seg#

23 [segi~

i
i

13 [00 unused

I
07 [DX DY

I
05 [a d d r e s s

unused

unused

SEMANTICS

interpretation continues with first
instruction of named segment

interpretation continues with first
instruction of named segment; current
seg# & offset within segment are saved

information saved by JMPSUB is restored;
interpretation resumes in calling seg.

test pixel at relative position (DX,DY);
skip next instruction if pixel is ON
exit the interpreter to given address

TABLE i. (c) Communications Instructions.

i l INSTRUCTION l
[MNEMONIC [BYTE [SEMANTICS
I I I
[SETDFLAG [06 [t h e d y n a m i c f l a g i s s e t and t h e PAINTED b i t i n
I [[tne status byte is complemented (see Sect. 3.2)

]9]

The routines needed to implement the primitive
drawing operations were adapted from the graphics
package supplied by Micro Technology Unlimited with
their video board [MTU77]. It should be noted that
text characters are generated by software and can
only be displayed horizontally.

The file organization instructions are five in
number and are two or three bytes in length. They
provide jumps to and returns from subpictures and
are conventional in nature (e.g., by comparison
with those given in [NEW79] and [GIL78]).

The third type of instructions are those
concerned with "dynamic" segments (see the
discussion in Section 5 for details), i.e.,
segments designed to assist in the generation of
animated pictures. Currently, there is only one
instruction of this type which is listed in Table 1
(c).

3.2 Control of the Appearance of a Picture Part.

The appearance of a picture part drawn as the
result of the interpretation of a segment by the
display-file interpreter depends on the values of
the various attributes that a picture part can
possess. The part may be visible or invisible, it
may be static (forming the foreground, the
background, or any other immutable part" of the
picture), or it may be dynamic in order to
represent a moving object. If colour or intensity
variations can be produced by the display
processor, then eolour as well as intensity has to
be specified.

In the case of the system described in this
paper, the attributes are all binary and are
primarily used to minimize the regeneration of the
display as suggested by Newman and Sproull [NEW79].
Only segments which are changed need to be redrawn
and this is indicated by the PAINTED bit [NEW79]
which describes the current state of the display.

If the PAINTED bit is ON, then the segment has
been drawn on the CRT screen at some time in the
past. On the other hand, if the PAINTED bit is OFF,
then the segment has been erased, it has never been
drawn, or it needs regeneration because it has been
changed.

Whether a segment has to be drawn or undrawn
(erased) is controlled by a DRAW/ERASE bit which
specifies the colour to be used in painting the
picture part. Whenever the display is to be updated
the following algorithm is followed by the display-
file interpreter:

if DRAW =
then

ON & PAINTED = OFF
interpret segment
(draw picture part);

if DRAW =
then

ON & PAINTED = ON
ignore segment
(do not redraw;
picture already visible);

if DRAW =
then

OFF & PAINTED = ON
interpret segment
but set all PIXELS to OFF
(erase by "undrawing");

192

if DRAW = OFF & PAINTED = OFF
then ignore segment

(do not undraw;
picture already invisible)

In addition, a segment can be deleted and the
memory occupied by it returned to the system
whenever a picture part is removed from a scene by
changing a DELETE bit from OFF to ON.

The three attributes described above are
implemented by means of a STATUS byte associated
with each segment. For convenience, the STATUS byte
is included in the "segment table" (called the name
table in [NEW79]), which allows the display-file
interpreter to access a segment once it has been
given a segment number.

3.3 The DF-Interpreter Algorithm.

The algorithm embodied in the display-file
interpreter can be expressed by the following
PASCAL-like program:

procedure DISPLAYFILEPROCESSOR ;

type DISPLAYFILE : array [0..N] of MEMORY ;
TABLE : array [0..85] of SEGMENTDATA ;
SEGMENTDATA : record

STATUS, ADDRESS : integer
end ;

var PC,OPCODE,SEGMENT : integer ;
DF : DISPLAYFILE ;
SEGTABLE : TABLE ;

procedure DECODE (var DELTA : integer) ;

begin (* decode *)
PC := PC + DELTA ;
OPCODE := DF [PC] ;
case OPCODE of

NOP : DECODE (i) ;
POINT : SETPOINT ;
VECTOR : DRAWLINE ;
JUMP : NEXTSEGMENT ;
PRINT : DRAWTEXT ;
EXIT : goto DF [PC+I] ;
SETDFL : SETFLAG ;
TEST : READPIXEL

end
end ; (* decode *)

begin (* update *) ;
SEGMENT := 0 ;
NEXTSEGMENT ;
while SEGTABLE [SEGMENT].STATUS <> 0 do

DECODE (DELTA) ;
if (any segment was erased) then

(* fill any holes in the display *)
begin

SEGMENT := 1 ;
while SEGTABLE[SEGMENT].STATUS <> 0 do

begin
if SEGTABLE[SEGMENT].STATUS = POSTED

then
SEGTABLE[SEGMENT].STATUS

:= UNPAINTED ;
SEGMENT := SEGMENT + 1 ;

end ;
DISPLAYFILEPROCESSOR ;

end
end (* display file update *) ;

The six procedures invoked by DECODE comprise
the heart of the display-file interpreter. POINT
provides the basic capability for setting
individual pixels. It calculates the cursor
position and calls the appropriate routine from the
MTU package to set or clear the memory bit
indicated.

VECTOR provides the line-drawing capability
and, after calculation of the new cursor position,
calls the ~U line drawing routine. For line
segments drawn with relative cursor positioning,
successive cursor increments may be grouped
sequentially following a single opcode to increase
efficiency. The sequence is terminated with a null
increment. Upon exit from the line drawing routine,
the cursor position remains at the end of the last
line drawn.

The procedure DRAWTEXT allows the full ASCII
character set to be drawn on the display. The
character string which appears following the PRINT
opcode is drawn by the MTU text drawing routine.
The raster matrix for each character is contained
in the MTU package. "Undrawing" of characters is
accomplished by replacing each character to be
drawn with a blank. The character string is
terminated by an ETX (04) character.

The NEXTSEGMENT procedure is provided to allow
some control over the sequence in which segments
are executed and to provide linking from one
segment to another. The JUMP opcode may specify one
of three types of linkage. The simplest is the
JUMPTO (segment number) which retrieves the STATUS

and starting address of the specified segment from
the SEGTABLE. In addition, JUMPTO also determines
from the status whether or not the segment requires
interpretation using the algorithm of section 3.2.
Segments may also be interpreted as subroutines if
the JMPSUB option is specified. Subroutine segments
are interpreted and control is RETURNed to the
calling segment at the instruction following the
JMPSUB call. Any segment may be terminated with a
RETURN instruction which simply transfers control
to the next segment entered in the SEGTABLE if no
JMPSUB call is pending.

The interpretation sequence may also be
altered through the use of the READPIXEL procedure.
This procedure causes the two-byte instruction
which follows to be skipped if the pixel specified
(using relative coordinates) is ON. In this manner,
dynamic program control can be achieved.

The final procedure causes a DYNAMIC flag to
be set so that continuous interpretaion of a
segment can be achieved. As well, the PAINTED bit
in the segment status byte is complemented so that
the JUMPTO procedure recognizes the need to repaint
the segment.

The simple instruction set of the display-file
interpreter is designed to achieve maximum
flexibility with a minimum amount of program
overhead so that the device is able to perform at a
reasonable speed. Simple displays are created
easily yet more complicated, dynamic drawings are
not impossible.

4. THE COMMUNICATIONS PROCESS.

4.1 Introduction.

The functions of the communications process P1
(see Fig. 2) are:

is
subroutine calls and returns. Details of
implementation of the communications process
given in the next sections.

(a) to receive picture data from the host,
(b) to receive commands from the host for

displaying a picture at any given time,
(c) to send information back to the host

concerning the state of the display

processor.

A block diagram of the routine implementing P1
shown in Figure 3. Here, arrows represent

the
are

4.2 The Supervisor.

Communication between the host CPU and the KIM
digital video display system is achieved by means
of a serial line. An additional control line

I DISPLAY I
J F ILK i
I INTERPRETER J

Interrupt I 1
I SUPERVISOR 1
i ,s I

1 EVENT 1
I HANDLER I
l l

M

IREADER
I"~'-~IDISPLAY I >IMEMORY I
i IPROGRAM I IMANAGER I
J~ IMANAGER I~ I I

not implemented

Figure 3. The Structure of the Communications Process in the KIM-I Microcomputer.
193

connected to the interrupt request line of the KIM-
I CPU is used to permit the host to interrupt the
KIM-I processor whenever the host requests one of a
number of actions to be performed by the KIM-I.
These requests are initiated by single-character
commands which are summarized in Table 2.

able to inhibit data transmission by the host
whenever the READER is not ready to receive
information.

On being called by the SUPERVISOR as the
result of an M command issued by the host, the

READER expects to receive a four-byte message of
the form

TABLE 2. Commands to the KIM-I Display Unit from
the Host.

ICOMMAND;
I I

FUNCTION

C I CLEAR entire display

....... i

M I RECEIVE information for DF Manager

....... i

R I SEND information about display status

....... i
U I UPDATE (redraw) displayed segment

Note: The R command has not yet been implemented.

The SEND information
implemented, will be used by the
cursor position, light-pen pick
other graphical input data.

command, when
host to obtain

coordinates, and

The RECEIVE command is used to instruct the
KIM-i to read data which represents new segment
status information or picture-data elements
describing a new segment or additions to an
existing segment. The actions which can be
performed by the KIM-I as the result of it
receiving the M command are:

(a) change the status byte of a specified
segment,

(b) delete a specified segment,
(c) create a new segment,
(d) move an existing segment to a new

position,
(e) append picture elements to an existing

segment.

The UPDATE command is used to make the display
reflect the current state of the display file. On
receipt of a U command, the SUPERVISOR calls the
display-file interpreter which will scan the
segment table from the beginning and regenerate the
displayed picture. The effect of the command is
that any UNPOSTED/PAI~ED picture parts are erased
and any picture parts that have to be redrawn at a
new screen location will be appropriately moved.

On getting a RECEIVE command, the SUPERVISOR
calls the READER routine which handles reading of
information sent to the KIM-i by the host. The
operation of the READER is described in detail in

the next section.

4.3 The Reader.

The READER is called by ~he SUPERVISOR
whenever data or instructions have to be received
by the KIM-I. The synchronization of data
transmission between the host and KIM-i is
controlled by the KIM-I. A one-bit control port is
used to provide a not-RTS signal to the not-CTS
input of the host serial-port ACIA. The KIM is thus 194

I I I I l
I NUMBER OF BYTES i SEG. NO. I INSTRUCTIONI

I I I I I

The first two bytes give the number of data
bytes that follow to specify a new segment or
additions to an existing segment. If only status
information is being transmitted by the host to the
KIM-i, then the number of bytes is zero.

When the READER receives the above message, it
calls the display-file (DF) MANAGER to obtain the
address in the display-file area into which
subsequent data bytes are to be stored. Having
obtained this address, the READER stores incoming
data until it receives the end-of-transmission
character (an ASCII "."). A two-byte checksum is
then transmitted, and the READER will respond with
the ASCII character ACK if the checksum is
verified, otherwise it will send the NAK character
back to the host, which will attempt to retransmit
the data. The READER returns to the SUPERVISOR on
completion of the above cycle of operations.

4.4 The Display-File Manager.

The DF Manager is called by the READER to
create space for new segments, to extend existing
segments, or to change the STATUS byte in the
segment table. The manner in which the DF MANAGER
handles its task in response to a request made by
the host is briefly described below. These requests
are listed in Table 3.

The Append Command causes the addition of
picture elements to the specified segment. On
receiving this command, the DF MANAGER examines the
segment table to find the starting address in KIM-~
memory of the block originally occupied by the
segment. The DF MANAGER then calls the MEMORY
MANAGER to allocate space sufficient to contain the
existing segment data plus the additional data. The
DF MANAGER relocates the existing segment and moves
its picture elements to the beginning of the newly
allocated memory block and calls the MEMORY MANAGER
to reclaim the memory block originally occupied by
the segment. The DF MANAGER finally returns to the
READER with the starting address of the locations
into which the additional picture elements should
be read.

The Change Status Command causes a change in
the status byte of the specified segment. On
receiving this command, the DF MANAGER replaces the
status byte of the specified segment by the new
byte provided by the READER. If the change involves
the deletion of the segment, then the MEMORY
MANAGER is called to release the memory block
occupied by the deleted segment.

TABLE 3. Format for the Commands to the Display
Program Manager.

i I I I i
INO. OF ADDITIONAL BYTESI SEG. NO. I STATUS [

I i i I i

(a) Command for Appending Picture Elements to an
Existing Segment.

I I I I I
[0 [0 I SEG. NO. [NEW STATUS I
i I I l l

(b) Command for Changing the Status Byte of a
Segment.

[I i I I
I 0 I 5 I SEG. NO. I MOVESEG I
I I i I I

(c) Command for Moving a Segment to a New Screen
Position.

I I I [I
I NUMBER OF BYTES I SEG. NO. I NEWSEG I

l I I i I

(d) Command for Creating a New Segment.

The Move Segment Command causes the display of
the specified segment in a new location on the CRT
screen. In order to do this, the DF MANAGER
examines the first instruction of the segment to
determine whether it is an absolute cursor
positioning instruction (LSETPIX or LCLRPIX in
Table i). If this is the case, the DF MANAGER calls
the READER immediately with the address in KIM-I
memory of the first instruction so that the READER
can replace it with a new cursor positioning
instruction.

If the first instruction is not an absolute
cursor positioning instruction, the DF MANAGER
calls the MEMORY MANAGER and requests it to
allocate space in KIM-I memory to hold the segment
data prefixed by an absolute cursor positioning
instruction. The DF MANAGER then relocates the
segment into its new block, leaving five bytes at
the beginning into which the new absolute cursor
positioning instruction will be placed. The MEMORY
MANAGER is next called to reclaim the space
previously occupied by the segment. Finally, the DF
MANAGER returns to the READER with the new starting
address.

The New Segment Command causes the creation of
a segment. On receiving this command, the DF
MANAGER calls the MEMORY MANAGER to request

allocation of space. The DF MANAGER then returns to
the READER with the starting address of the newly
allocated memory block into which display-file
instructions should be read by the READER.

4.5 The Memory Manager.

The function of the MEMORY MANAGER is to
reserve blocks of KIM-1 memory for the storage of
display-file instructions and to release for reuse
any blocks that are no longer needed. The MEMORY
MANAGER is a conventional memory management routine
employing Knuth's algorithm ([KNU68], Section 2.5).
It is described in detail elsewhere ([DRUB0]).

5. DISCUSSION AND CONCLUSIONS.

The design and implementation of the system
described above was suggested by the remark in
[NEW79] that " Experience with raster-scan graphics
is simply too limited to justify offering an
authoritative design. ~' Baecker [BAE79] also points
out that few systems for raster-scan graphics have
been constructed on the same principle as
vector-scan systems. The present work should
therefore be viewed as an exploratory project and
represents only one of many possible approaches to
the adaptation of random-scan techniques to raster-
scan graphics.

The segmented display file, in particular, is
an adaptation of a structure which evolved for use
on vector-scan displays. The utility of organizing
picture descriptions into segments is well
established by experience with vector-scan devices;
it allows the user to structure the picture
definition into logically related parts as well as
to selectively manipulate portions of the picture.
As pointed out by Newman and Sproull [NEW79], ...a
major requirement for dynamic computer graphics is
... the ability to make selective modifications to
the picture..." This is easily achieved through the
use of segmented display files. The KIM-i system
described above demonstrates that segmented display
files can also be used effectively to organize,
generate and manipulate a raster-scan display.

Not all refresh display techniques however,
can be used on a raster-scan device. Several
important differences require special attention.
Erasures on a vector-scan device, for example, are
accomplished simply be deleting the particular
segment from the refresh list; raster-scan devices
require the segment being erased to be "undrawn" by
repainting it in the background colour. This leads
to complications when some pixels form part of more
than one segment. The intersecting pixels must be
redrawn, which on a vector-scan display is
automatic but on a raster-scan display, explicit
regeneration is required. On the KIM-i system,
erasure of any segment causes all posted segments
to be re-interpreted immediately. This brute-force
approach works satisfactorily and appears to be an
effective way of dealing with the problem as the
alternative requires a sophisticated,
time-consumming algorithm to detect and fill
"holes".

195

A novel feature incorporated into the KIM-I
graphics system is the notion of a "dynamic"
attribute associated with a segment. This allows
automatic repositioning of the image generated by a

"dynamic" segment without the intervention of the
host CPU. As an example, it is possible to generate
the image of an object which, once started, will
move by itself across the display.

The KIM-I system can serve as the test-bed for
future exploration of the implementation of a
graphics system on a relatively inexpensive
microcomputer. For example, planned future
developments include the addition of graphics input

devices such as a light pen (easily added to the
MTU Video board), joysticks, and a graphics tablet.
The addition of line-clipping software for
windowing is already under way.

In conclusion, the project described in this
paper can be judged to be a highly sucessful one
and it will doubtlessly form the basis of a useful
and sophisticated raster-scan graphics terminal.

[BAE79]

[DRU80]

[GIL78]

[MTU77]

[NEW79]

[OSB77]

[SPR75]

REFERENCES

Ronald Baecker, "Digital video display systems and dynamic graphics," Computer Graphics, 13, No. 2
(August 1979), pp. 48-56.

M.D. Drummond, "A dynamic free storage management package for the 6502", Computer Science Technical
Note 80-CSTN-01, Unit for Computer Science, McMaster University, Hamilton, Ontario L8S 4Ki (1980).

W.K. Giloi, Interactive Computer Graphics, Data Structures, Algorithms, Languages, Prentice-Hall,
Inc. (1978).

Micro Technology Unlimited, Documentation for the K-IO08 Visable Memory Board, MTU, Manchester, New
Hampshire 03108 (1977).

William M. Newman and Robert F. Sproull, Principles of Interactive Computer Graphics, 2nd. Edition,
McGraw-Hill (1979).

A. Osborne, S. Jacobson, and J. Kane, An Introduction to Microcomputers, Vol. 3 -- Some Real
Products, June 1977 Revision, Adam Osborne and Associates, Berkeley, California 94702 (June 1977).

R.F. Sproull and W.M. Newman, "The design of gray-scale graphics software," Procs. of the Conf. on
Computer Graphics, Pattern Recognition, and Data Structures, IEEE Computer Society (May 14-15,
1975), pp. 18-20.

196

