JOHNSON

COMPUTER

BULLETIN
TO: ALl KIM BASIC users.

To more specifically describe the start-up procedure for loading the KIM BASIC from
cassette, we are offering the following:

(1) Have at least 16K of memory added on to your KIM-1, beginning at address 2000 HEX.

(2) We suggest you make a memory test at this point to be sure you have no bad memory
bits.

(3) If you are loading via the KIM-1 hexadecimal keyboard, enter the following:

* AD O0O0F1 DA 00

AD 17F9 DA 01

+ 00 + 1C + 00 + 1C + 00 + 1C

AD 1873 G
* Start tape recorder with volume set at approximately 80% and treble on full.
* After three minutes, you should get a display of 0000.
* Flip your switch to transfer to your terminal.

* Press '"RUBOUT" key on your terminal.

* 0On your terminal, type in ''4065" (starting address for KIM 9 digit BASIC)
followed by the space bar.

* Type "G".

* KIM BASIC should come up asking memory size,

* Tap the "RETURN" key. However, if you want to set aside memory at the high
end, answer with the decimal value of the highest memory location KIM BASIC
can use. KIM BASIC memory must be contiguous from 2000 HEX up.

* KIM BASIC should now ask for terminal width.

* Tap the "RETURN" key if you have a 72 character terminal width. If you have
less than 72 characters across, or if you have more than 72 characters and

plan on using the entire terminal width, type in actual terminal width.

(Cont. on Page 2)

P.O. BOX 523 MEDINA, OHIO 44256
(216) 725-4560

* BASIC will ask if you want SINE, COSINE, etc. We suggest you always answer
"y, for YES.

You should now be in BASIC.

(4) If you intend to transfer to the keyboard for the entire start-up, use the
following procedure:

* Press "RS" on the KIM-1 hexadecimal keyboard.
* Press '"RUBOUT" on your terminal keyboard.
* Type in the following on your terminal keyboard:
00F1 (space bar) 00 .
17F9 (space bar) 01 .
o0 . 1C . 00 . 1C . 00 . 1C .
1873 (space bar) G

* At this point, turn on the cassette. After a successful load, the screen
will display:

KIM
0000

* type starting address and routine as follows:
4065 (space bar) G

* Answer questions on memory size, terminal width and trancendental functions
as on page one.

You are now in BASIC.

Saving programs on cassette is accomplished as follows:

(1) Plan to save only one program per cassette. That program should be in your memory
when you are ready to record. Use the following procedure:

* On your terminal keyboard, type ''SAVE".
* Start your tape recorder. When leader has passed, type "G".
* A successful SAVE will be indicated by the following display cn your screen:

KIM
0000

(2) Since 0000 is WARM START, get back to BASIC simply by typing "G'".

In order to load a program from cassette back into KIM, use the following procedure:

* Enter BASIC as above and then type "LOAD".

(Cont. on Page 3)

* Tap the "RETURN" key.
* Start tape recorder with volume at approximately 80% and tone full treble.
* A successful load will be indicated by the following on the screen:

KIM
0000

* Since 0000 is WARM START, simply type a "G" to get back into BASIC.
Program is loaded.

Read the USAGE NOTES in the BASIC's documentation to better understand the initialization
dialogue and the cassette interface.

M Technolopy £502, % DIGIT BASTC- by
MICROSOFT, Copyright 1977

0004260 10 #01 St. &ED

KIM
1873 A% G :

KIM

0000 A0 4045

4045 A2 G

MEMORY SIZE?

TERNINAL WIDTH? 132

LIANT SIN-COS-TAN-ATN? Y

24510 BYTES FREE

MOS8 TECH 6502 BASIC V1.1
COPYRIGHT 1977 BY KWICROSOFT CO. f

0K .
1.0AD

KIM
0000 4L GLOADED
LI8T .

5 PRINT "THIS IS A TEST PROGRAM FOR THE MICROSOFT 9 BIBIT BASIC FOR KIN-1"
10 PRINT 2+3+4°SIN(COS{TAN(ATN(SAR(.123454789)))))
20 DIM A(SD)
30 FOR I=1 TO 52:A(1)=1"2:NEXT
40 FOR I=1 TO S2:PRINT A(I)I:NEXT:PRINT
30 DEF FNALX)=X+5 - ’
60 INPUT "VALUE"N
70 PRINT FNA(N)
80 PRINT"THIS COPY OF KIN BASIC LOADBED INTO A KIN-1 AND RAN SUCCESSFULLY---
90 FRINT"PRINTED ON A TELETYPE 4320-AAC, $1299.00, OUR STOCK.
100 PRINTYTHE TTY 43 PRINTS 30 Ok 10 CH/GEC AND INTERFACES TO RS-232C.
0K
RUN
THIS IS A TEST PROGRAM FOR THE MICROSOFT 9 BIGIT BASIC FOR KIM-1
11.1818508
1 4 9 16 25 34 49,0000001 44 81,0000000 100 121 144 149 194 225 236 289 324 241 400 441.000001 484.000001
529 574.000001 425,000001 474.000001 7?29.000001 784.000001 841 900 941.000001 1024 1089 1156 1225 1294 1349 1444
1521 1600 1481 1764 184% 1934 2025 2114 2209 2304 2401 2500 2801 2704
UALUE? ¢
14
THIS COPY OF KIM BASIC LOADED INTO A KIM-1 AND RAN SUCCESSFULLY--~
FRINTED ON A TELETYPE 4320-AAC, $1299.00, OUR 5TOCK.
THE TTY 43 PRINTS 30 OR 10 CH/SEC AND INTERFACES 7O RS-232C.

0K

JOHNSON

COMPUTER

NOTICE

For perfect load and dump operations using a cassette the following should be
observed:

1.

The small magnetic bar located on the polished surface of the recording head
used in the tape recorder should be aligned to the magnetic information recorded
on the tape. Typically the recording head is secured in place with two screws.
One screw is spring loaded and allows the recording head to be shifted slightly
for alignment with the information stored on the tape. It is possible the
recording head was not aligned properly at the factory or the head has been
jarred to an improper setting by rough handling of the recorder itself.

If a production type tape has been recorded properly it can be used to find the
proper setting of your recording head. While playing the tape the spring loaded
recording head adjustment screw can he varied to obtain maximum brilliance
{sharpness) of tone. Additionally, proper adjustment will allow programs to be
stored on either side (track) of the cassette with no interference between the two.
Recording head misalignment is one of the chief causes of improper loading

from the cassette in the KIM-1 system.

If, after verifying proper recording head alighment, you still have problenms,
check the setting of VR-1 (the 5K potentiometer) located to the left of the
keyboard. Connect a jumber from terminal P on the application connector to
terminal L on the application connector. Next, connect a DC volt meter between
terminal X on the expansion connector and ground.

Then, referring to the KIM-1 User's manual Page E2 adjust the potentiometer to
get a reading of +1.4V (no less than .7V and no more than 3.0V). This is a
very touchy adjustment.

If you have properly aligned your recorder head and the KIM-1 is properly
calibrated you should have no problem dumping to your recorder and loading

from your recorder. Shouldlyou still have a problem you might check to be sure
that the tape you are trying to load in your KIM-1 was recorded on a properly
adjusted recorder head. If this was not done, the program can be saved by
readjusting your recorder head in the wrong position so that it properly lines
up with the bad.cassette, loading to KIM and then readjust your head to its
proper setting and re-recording the program from your KIM to a clean cassette.

P. 0. BOX 523 MEDINA, OHIO 44256

Your KIM-1 Basic by Microsoft cassette has been recorded using HYPERTAPE de-
veloped by Jim Butterfield of Toronto, Canada and published in KIM-1 Users
Notes, Issue 2, Pages 12, 13 and 14. This program enables you to record and
play back in 1/6th of the time required using the standard KIM-1 tape routines.
Playing back into your KIM-1 from a HYPERTAPE recording follows the same pro-
cedure as the standard KIM-1 tape loading routine using 1873 and GO. HYPERTAPE
is more sensitive to the adjustment of the tape recorder head. If you do not
get a load on the first try then there is a strong possibility that your tape
recorder head has not been aligned exactly the same as ours. You can "tune

in" to the tape by using some delightful programs published in KIM-1 Users
Notes.

1. Before changing the setting of your tape recorder head take one of your own
cassettes and generate a SYNC STREAM on your own recorder using the program
from Page 11 of KIM-1 Users Notes, Volume 1, Issue 2.

2. Now, load the VUTAPE into your KIM-1. VUTAPE was written by Jim
Butterfield of Toronto, Canada and published in KIM-1 Users Notes, Issue 2,
Page 12.

3. After loading VUTAPE and 0000, press GO. The last character in your dis-
play will come on in a randam fashion. Now go to your KIM BASIC cassette
and locate the 30 second SYNC STREAM (you can tell it by the steady sound)
which we have recorded immediately following the end of the KIM-1 BASIC.
This is at about 3 minutes and 15 seconds into the tape. Adjust your
volume control to about 2. While playing this sync stream into your
KIM~1, adjust your tape recorder head set screw so that the sync pulses
"lock in" on the right end of display. This adjustment should be very
close to the original adjustment of your head. Once locked in, lower the
volume control to about 1 or even .5 and adjust again.

4. Next you might want to check your phase lock loop (VR-1) adjustment on
your KIM-1. This is easiest done by using the PLL SET program by Louis
Edwards, Jr. of Trenton, N.J. and published on Page 3 of KIM-1 Users Notes
Issue 5. Now go to the beginning of the KIM-1 BASIC cassette, set up your
load routine. Enter Ident 01 at 17F9. Be sure 00F1 is loaded with 00.

Go to 1873, set volume control at about 8 and GO. You should Toad in three
minutes. Now refer to the enclosed documentation for BASIC operating
instructions.

KIM-1 User Notes is published by Erick Rehnke, 109 Center Street, West Norriton,
PA. 19401. Subscriptions are 6 issues for $5.00 in U.S.A. and Canada, $10.00
for 6 issues elsewhere. Johnson Computer will accept subscriptions on purchase
orders. Individuals make checks payable to "KIM-1 Users Notes". Also, "The
First Book of KIM", by ORB (Ocker, Rehnke & Butterfield) has reprinted most
important programs published in issues 1 through 5 and also includes excellent
text on KIM and the 6502. Price is $9.50 available through Johnson Computer,
P.0. Box 523, Medina, Ohio 44256.

SYNC STREAM - 000G AO BF 8C 43 17 A9 16 20 7A 19 DO F9

VUTAPE - 0000 D8 A9 7F 8D 41 17 A9 13 85 EO 8D 42 17 20 41 1A 46 F9 05 F9 85
0016 8D 40 17 C9 16 DO E9 20 24 1A C9 2A DO F5 A9 00 8D E9 17 20 24
002C 20 00 1A DO D5 A6 EO E8 E8 EO 15 DO 02 A2 09 86 EO 3E 42 17 AA
0041 BD E7 1F 8D 40 17 DO DB

PLL SET - 1780 A9 07 17 A9 01 8D 01 17 85 E1 A9 7F 8D 41 17 A2 09 AO 07
1795 2C 42 02 AC 38 8C 40 17 8E 42 17 2C 47 17 10 FB E6 E2 30 04
17AB A9 91 A9 93 EA 8D 44 17 A9 01 45 E1 85 E1 8D 00 17 E8 E8
17C0 EQ 15 Fo CB

F9
1A

A
F 8D
8D 42
17 30
DO 03
DO CF

JOHNSON

COMPUTER

TO: Users of KIM-1 BASIC by Microsoft

Implementation of a CONTROL C is difficult due to the nature of the KIM I/0 port.
Because only a bit at a time comes into the port, it is impossible to handle a character
typed during computation. By the time BASIC tries to detect a CONTROL C character,
several bits of data may have already passed through the port.

Exiting to the monitor and re-entering at the WARM START location will stop the program,
however, the "CONT'' command will not work properly. In fact, exiting to monitor can
leave BASIC in a state where all variable accesses hang the machine until "RUN", ''NEW'",
or "CLEAR" is typed or a program line is changed, however, this is very unlikely.

The patch given below will cause any character typed to be treated like a CONTROL C:

CONTROL C PATCH

Memory Location

KB-6 KB-9 Code Mnemonic
2614 - . . . 26E3 A9 LDA #3
261S « « . . 26E4 « 03 - .

2616 26E5 . . <« . . 18 - NOP

The CONTROL O facility can be handled by POKEing or using the KIM monitor to set the

CONTROL O flag location of 0013 in KB-6, or 0014 in KB-9, to FF for no output or to 00
for output.

Some people have expressed the desire to have a NULL greater than 8. This can be
increased to 240 decimal by entering F2 at 2663 for KB-6, or 2732 for KB-9.

For those of you who will find the information helpful and have the ability to use it,
on page two are the page 0 locations used by both the 6 digit and the 9 digit version.

P.O. BOX 523 MEDINA, CHIO 44256
(216) 725-4560

Page 0 is configured as follows:
KB-6 uses all locations 0-D4 and FF

KB-9 uses all locations 0-DC and FF

KB-6 KB-9 DESCRIPTION
0 0 JMP to WARM START BASIC.
6 6 Address of routine to transfer USR argument to y,A (AYINT).
8 8 Address of routine to transfer (y,A) to result of USR

function (GIVAYF).

13 14 ‘ FLAG set to FF if output is suppressed (CONTROL O mode).
Set to 0 otherwise.

14 15 Number of NULLS to print.

15 16 . . Current terminal column (equal to POS (0)).

16 17 Line Length.

17 18 Position beyond which there are no more comma fields.

Equal to 14*(INT (line length/14)-1).

1A 1B Input buffer .72 decimal bytes.

76 78 Pointer to start of program.

78 7A » Pointer to start of simple variable table.
7A 7C Pointer to start of array table.

7C 7E First location unused by array table.

7E 80 Lowest location used by string data.

82 v 84 Highest memory location in use by BASIC.
84 86 Current line number.

AS AE Floating accumulator

B9 . CD Routine to read a charactér from current program position.
D1 D8 Curreﬁt random number. '
Ds DD First unused page 0 location.

FF FF ~ Used by STR$ function.

Page 2

Following is information for reading a line:
(1) The routine to input a line from the terminal is located at:

KB-6.. 2351-2386 (start at 2357)
KB-9 2420-2455 (start at 2426}

(2} The compare for a (line delete) is at:

KB-6 236C
KB-9 ., 243B

(3) The compare for a (character delete) is at location:

KB-6 2370
KB-9 243F

(4) Note that codes < 20 HEX and > 70 HEX have already been ignored by the compare
above these. -

If you are having any problems with your KIM-1 BASIC by Microsoft, please write to us.
If at all possible, include a print-out illustrating your difficulty. Document your
print-cut with handwritten notes indicating the difficulty.

All future orders for KIM-1 BASIC by Microsoft will include the patches for CONTROL C
and NULL. o : '

KIM-1 9 digit BASIC by Microsoft is now available in a version adapted for the TIM
monitor manufactured by MOS Technology. TIM stands for Teletype Input Monitor and is
often used by people developing a CPU of their own design. The TIM is part #6530-004
and sells for $14.15. The manual for application of the TIM sells for $4.95. Both
items are available from Johnson Computer.

A PROMable version of the KIM-1 9 digit BASIC by Microsoft will socn be available.
This version can be furnished on cassette or paper tape. It will also be available
already programmed into 2708's or 2716's, as needed, on the KM-8KRO 8K/16K PROM board
designed for direct use with the KIM-4 Motherboard, or on an S-100 PROM board for the
KEM or KIMSI. Pricing is available on request.

In-house object code rights for use on a specific entire project are available for
$750.00. TﬁIs would be appropriate for a user who would otherwise have to purchase
several copies of BASIC authorized for use on a specific KIM unit. As an example,
using KIM in an in-house test stand and then building ten more test stands, each using
a KIM.

In-house source rights to all versions of 6502 BASIC is available to customers who

would like to customize the program for each KIM-1. The price is $3,000.00 for the
in-house for each use of the source code.

OEM source code rights are available for making Microsoft's 6502 BASIC a part of a
product being manufactured for resale. The price for source code rights to an OQEM is
$3,000.00 plus $35.00 for each copy up to 1,000 copies ($35,000.00) after which they
then own the rights. This can be purchased outright for $21,000.00.

Page 3

APPLICATION NOTE: Microsoft has advised us that the value of .1 cannot be represented
exactly in binary floating point. Programs magnify this inaccuracy until it shows up
on print-out. This can be handled by:

(1) Always use integers which are exact and then scale. As an example,
14 x 1.23 would be (14*123)/10.

(2) Use tests such as ABS(X-2) < IE-6 or STR$(X)=STR$(Z).

(3) Round out to the number of digits you want before printing.
The way to save data using Microsoft KIM BASIC is to:

(1) Have it in DATA statements and use CSAVE.

(2) Write your own USR function to perform this.

Microsoft will provide access to cassette data in a future release if there is enough
general interest. Drop us a card if you are interested.

If BASIC is waiting for an input and you type a carriage Teturn, you will exit your
program and return to the Immediate Mode of BASIC. This is intentional. You can return
to the program using CONT. If you want to prevent accidentally leaving the program

in this manner, you can use POKE or the KIM Monitor to change the AS to an A9 at

location 10920 decimal (2AA8 HEX) for the 9 digit version or at location 10688 decimal
(29C0 HEX) for the 6 digit version. Now, however, you will only be able to exit BASIC

by using CONTROL C, encountering a STOP in the program, or if the program comes to an END.

SOFTWARE: Three KIM-1 routines have been written by Ralph Bugg, a user, which are
compatible with the KIM-1 9 digit BASIC. These routines are as follows:

(1) A video drive making the Kent-Moore video board catalog 60083 (32 x 16)
compatible with KIM BASIC . . « + . § 4.00 postage paid

(2) A video driver making the Kent-Moore video board catalog 6K117 (64 x 16)
compatible with KIM BASIC § 4.00 postage pald

(3) A routine for operating KIM BASIC from a parallel
input keyboard. N+ § 4.00 postage paid

(4) Routine for output to a Baudot (5 level) Teletype . $ 4.00 postage paid

From time to time we will make a mailing of miscellaneous information gathered on the
KIM BASIC and related items. If you have any tips you would like to share with others,
please send them in. At this point, there is no schedule or promise for the next issue
but it will be sent out when enough information is accumulated to make it worthwhile.

HYPERTAPE TIP: For those of you who are unaware of Hypertape, this is a program
written by Jim Butterfield of Toronto, Canada and published in Eric Rehnke's KIM-1 User
Notes, Volume I, Issue 2. Hypertape allows you to record on cassette in 1/6 the time
of standard KIM dump routine. Ralph Bugg suggests you place Hypertape at 0300 and
enter the following changes: .

035F 60
275C 20 00 03

Page 4

From the Authors of KIM-1 BASIC

Before a computer can perform any useful function, it must be ““told’ what to do. Unfortunately, at
this time, computers are not capable of understanding English or any other “human"’ language. This is
primarily because our languages are rich with ambiguities and implied meanings. The computer must be
told precise instructions and the exact sequence of operations to be performed in order to accomplish any
specific task. Therefore, in order to facilitate human communication with a computer, programming
languages have been developed. :

KIM-1 BASIC* is a programming language both easily understood and simple to use. It serves as an
excellent *“‘tool” for applications in areas such as business, science and education. With only a few hours of
using BASIC, you will find that you can already write programs with an ease that few other computer
languages can duplicate.

Originally developed at Dartmouth University, BASIC language has found wide acceptance in the com-
puter field. Although it is one of the simplest computer languages to use, it is very powerful. BASIC uses a
small set of common English words as its ‘“‘commands’. Designed specifically as an “‘interactive’ language,
you can give a command such as “PRINT 2+2", and KIM-1 BASIC will immediately reply with “4". It
isn’t necessary to submit a card deck with your program on it and then wait hours for the results. Instead
the full power of the KIM-1 is *‘at your fingertips”'.

Generally, if the computer does not solve a particular problem the way you expected it to, there is a
“Bug" or error in your program, or else there is an error in the data which the program used to calculate its
answer. |f you encounter any errors in BASIC itself, please let us know and we'll see that it’s corrected.
Write a letter to us containing the following information:

1) System Configuration

2) Version of BASIC

3) A detailed description of the error. Include all pertinent information such as a listing of the program in
which the error occurred, the data placed into the program and BASIC printout.

All of the information listed above will be necessary in order to properly evaluate the problem and correct
it as quickly as possibie. We wish to maintain as high a level of quality as possible with all of our KIM-1
software.

NOTE: BASIC is available under license or purchase agreements. Copying or otherwise distributing Micro-
soft software outside the terms of such an agreement may be a violation of copyright laws or the agreement
itself.

If any immediate problems with Microsoft software are encountered, feel free to give us a call at 216/725-
4560. The joint authors of the KIM-1 BASIC Interpreter, Bill Gates, Paul Allen and Monte Davidoff, will
be glad to assist you.

We hope that you enjoy KIM-1 BASIC, and are successful in using it to solve all of your programming‘
needs.
* KIM-1/s a registered Trademark of MOS TECHNOLOGY
~ ‘BASIC is a registered trademark of Dartmouth University

MICROSOFT
S bwn Park Connal Tower
Albuguerque v M X708

We recommend that you try each example in this section as it is presented. This will enhance your “feel” for BASIC and how it is used.
Once your |/O device has typed ** OK “, you are ready to use KIM-1 BASIC.
NOTE: All commands to KIM-1 BASIC should end with a carriage return. The carriage return tells BASIC that you have finished
typing the command. If you make a typing error, type a back-arrow (4), usually shift/0 or an underline, to eliminate the last
character. Repeated use of “‘+ * will eliminate previous characters. An at-sign (@) will eliminate the entire line that you are
typing.

Now, try typing in the following:
PRINT 10-4 {end with carriage return)

<IM-1 BASIC will immediately print:
6
oK

The print statement you typed in was executed as soon as you hit the carriage return key. BASIC evaluated the formula after the
“PRINT"” and then typed out its value, in this case 6.

Now try typing in this:
PRINT 1/2,3*10 (" * " means multiply, * / ”* means divide)
BASIC will print:
5 30
As you can see, KIM-1 BASIC can do division and multiplication as well as subtraction. Note how a **, " (comma) was used in the print
command to print two values instead of just one. The comma divides the 72 character line into 5 columns, each 14 characters wide. The last
‘wo of the positions on the line are not used. The resultisa‘*, “ causes BASIC to skip to the next 14 column field on the terminal, where the

~ value 30 was printed.

Commands such as the “PRINT” statements you have just typed in are called Direct Commands. There is another type of command
called an Indirect Command. Every Indirect command begins with a Line Number. A Line Number is any integer from 0 to 64000.

Try typing in the following lines:

10 PRINT 2+3
20 PRINT 2-3

A sequence of Indirect Commands is called a “Program”. Instead of executing indirect statements immediately, KIM-1 BASIC saves
indirect Commands in the KIM-1’s memory. When you type in RUN , BASIC will first execute the lowest numbered indirect statement that
has been typed in, then the next highest, etc. for as many as were typed in.

Suppose we type in RUN now:

RUN
KIM-1 BASIC will type out:

5
-1

OK

In the example above, we typed in fine 10 first and line 20 second. However, it makes no difference in what order you type in indirect
statements. BASIC always puts them into correct numerical order according to the Line Number.

Hf we want a listing of the complete program currently in memory, we type in LIST . Type this in:
LIST
KiM-1 BASIC will reply with:
10 PRINT 243
20 PRINT 2-3
OK

Sometimes it is desirable to delete a line of a program altogether. This is accomplished by typing the Line Number of the line we wish to
delete, followed only by a carriage return.

Type in the following:

10
LIST

KIM-1 BASIC will reply with:

20 PRINT 2-3
OK

We have now deleted line 10 from the program. There is only one way to get it back. To insert a new line 10, type in 10 followed by the
statement we want BASIC to execute.

Type in the following:

10 PRINT 2*3
LIST

KIiM-1 BASIC will reply with:
10 PRINT 2*3
20 PRINT 2-3
OK

There is an easier way to replace line 10 than deleting it and then inserting a new line. You can do this by just typing the new line 10 and

" hitting the carriage return. BASIC throws away the old line 10 and replaces it with the new one.

Type in the following:

10 PRINT 3-3
LIST

KIM-1 BASIC will reply with:
10 PRINT 3-3

20 PRINT 2.3
oK

It is not recommended that lines be numbered consecutively by increments of one (e.g., 1, 2, 3. ..). It may become necessary to insert a
new line between two existing lines. An increment of 10 between line numbers is generalty sufficient.

If you want to erase the complete program currently stored in memory, type in “NEW"”. If you are finished running one program and are
about to read in a new one, be sure to type in “ NEW *’ first. This should be done in order to prevent a mixture of the old and new programs.

Type in the following: ~ KIM-1 BASIC will reply with: Now type in: KiM-1 BASIC will reply with:

NEW : OK ' LsT oK

COMPANION

SECTION

1.2
1.3
23

27

2.8

29
21

213

3.2
33
34

35
36
41
a2
a3
44
45
46

5.1

COMPANION TO THE SCHAUM’S OUTLINE SERIES’

PAGE

18
22

24

38
39
40

4
43
53

58
58
63
63
64
‘64
70

81
81

83

97
13

PROGRAMMING WITH BASIC

COMMENT

Skip to page 6, just after example 1.4, Timeshare and KIM BASIC share the interactive capability.
Rule 1-KIM allows multiple statements per line if each statement is separated from any previous statement of the same line by a colon (:).
For KIM, each NUMERIC VARIABLE must consist of a letter, a letter followed by an integer, or a letter followed by a letter, Similar con-

ditions apply to a STRING VARIABLE with all STRING VARIABLES followed by a dol!ar sign.($). FN$ is a specific {etter-letter-$ that is
not a usable string variable name on KiM.

Rule 3, Ex. 2.9 — Raising a number to the 1/2 or .5 power will result in the square root of that number. Similarly, to obtain the cube root
of a number, raise it to the 1/3 or .333333 power. Again, the fourth root of a number is the same as that number raised to the 1/4 or .25
power, .

Ex. 2.13 — The first, third and fourth statements are not valid with KIM. Multipie assignments are not valid. NOTE: On KIM, the word LET
is optional.

Rule 4 — Also strings containing S,

The END statement is optional with KIM. if there is an END statement it does not have to be at the end of the program but can be
embedded in the program.

Ex. 2.28 — Invalid on KIM. Instead use:
40 LET X1=(-B+R}/{2*A):REM CALCULATE FIRST ROOT
50 LET X2=(-B-R)/{2*A):REM CALCULATE SECOND ROOT
Where the word LET is optional.

Does not pertain to KIM BASIC.
KIM has the prompting word ""‘CK' rather than the symbol ** *'.

To delete characters with KIM type an underscore(_) or back going arrow (+}. Type it once and one previous character is deleted. Type it
twice and two previous characters are deleted, and so on.

See this manual for KIM system commands and how to use them.

Does not pertain to KIM.

See paragraph preceding Ex. 4.2 — KIM BASIC does not ignore trailing blanks.

See paragraph 2 — KIM BASIC also allows GOTO rather than THEN.

See Ex. 4.8 — THEN cannot replace GOTO in ON-GOTO statement.

Again, END is optional for KIM and can appear eisewhere than the physical end of the program.

Only STEP with KIM, not BY.

Running variable after NEXT is optional when obvious.

KIM loops will execute once under conditions 3(a), 3{b}, and 3(c).

See Ex. 4.15 — To effect indenting on KIM start the line with acolon (:): e.g. 165: LET Z=X+Y.

See FIG. 4.10 — On printout, when 1=3 and F=2 the fibonacci number will not be labeled prime. On tine 140, when =3, J=2 and F=2. The
BASIC used by Mr. Gotfried does not execute the loop at all (see pg. 64 top) and skips down to line 180. But KIM executes the loop once
in which case line 160 is true and the program branches to line 190. For the program to work properly do the following:

1057 1=""3,F=",2;"(PRIME)""

110 FOR 1=4 to N:REM GENERATE FIBONACCI NUMBERS

See table 5.1 — KIM does not utilize COT. Use 1/TAN.

See paragraph 1 — On KIM, negative numbers with functions that require positive arguments will generate an error message and the function
will not be analyzed.

See program listing. Change line 70 and add 72 and 74:
70: ? TAB(37): TAN(X);
72: 1F X)O THEN ? TAB(49);LOG(X);TAB(61)EXP(X);
74: ?:REM PROVIDES CARRIAGE RETURN
This is needed because the first value of X is not a valid argument for the LOG or EXP functions.
See first sentence — With KIM, arrays can be labeled letter-integer-$ or letter-letter-$.
RESTORE, but not RESTORES or RESTORE™*, is valid with KIM.
For KIM: Functions must appear in the program before the line on which they are used. They cannot be grouped at the end of a program
but should be grouped near the beginning. Also, no string functions, no multiple line functions, no multiple argument functions, and no
function without an argument (Use a place holder variable e.g.

10 DEF FNK=C*2*B becomes
10 DEF FNK(X)=C*2*B where the argument of FNK is a variable that docs not appear in the definition).

6.3 18
6.4 121
6.5 123
123
123
123
126
6.6 127
6.7 127
128
130
6.9 137
138
6.10 143

Does not pertain to KIM BASIC.
Not applicable to KIM.

When using ASC, any letter argument must appear in quotes:
50 C=ASC(""P*).

CHRS$ is a string function which returns a one character string which contains the ASCI! equivalent of the argument. ASC takes the first
character of a string and converts it to its ASCI| decimal value. One of the most common uses of CHRS$ is to send a special character to the
user’s terminal. The most often used of these characters is the BEL. {ASCit 7). Printing this character will cause a bell to ring on some ter-
minals and a ""beep” on many CRT’s. This may be used as a preface to an error message, as a novelty, or just to wake up the user if he has
fallen asleep. {Example: PRINT CHR$(7);}. A major use of special characters is on those CRT's that have cursor positioning and other
special functions (such as turning on a hard copy printer}.

As an example, try sending a form feed (CHR${12)) to your CRT. On most CRT's this will usuatly cause the screen to erase and the cursor
to “home’’ or move to the upper left corner.

Some CRT's give the user the capability of drawing graphs and curves in a special point-plotter mode. This feature may easily be taken
advantage of through use of KIM-1 BASIC's CHR$ function.

Example 6,13, BASIC line number 70 - shou!d read
70 iF L{1)=ASC("" ") THEN 110

Ex. 6.15 uses CHANGE which is not a KiM function.
Example 6.15, Program line 230 — not valid for KIM BASIC. Use 230 FOR I=1 TO LEN{N$):L(1)=ASC(MIDS$(N$ 1,1)):NEXT
See EX. 6.16 and preceding paragraph — With KIM, an argument is needed for the function RND.

The necessary argument for RND affects the random number generator and is sometimes called the “‘seed.” e.g.
50 INPUT “PLEASE ENTER RANDOM SEED:";RS
60 X=RND(RS)

See Ex. 6.2, the program outline, point 2(c) — A carriage return only in response to a question will end execution of the KIM program. Use
space then carriage return.

See Ex, 6.2, Fig. 6.13 — Program uses multiline function and is therefore not compatible with KIM BASIC. Use the following:
15 DEF FNK(X)={1+INT(6*RND{(RS)})+1+INT(6*RND(RS))
20 INPUT “"RANDOM SEED'" ;RS
90 K=FNK(1)
180 K=FNK({1)

Line 720 of program should read as indicated by flowchart:

720 T3=T(6,J)*(P2-C(6,J))
After leaving a FOR-NEXT LOOP such as in lines 660-710 the value of the running variable is one more than the specified final index value,
i.e. It leaves the 660-710 FOR-NEXT LOOP as I=7 and not 6.

Although Mr. Gotfried did not use quotations around his response to NAME?, it is necessary to do so on KIM because of the comma used in

last-name-first entries. See section 2.9, Page 18, rule #4 and Ex. 2.15. In order to avoid having to use quotation marks change line 210 to:
210 INPUT N2$N18$

Where N2$ is the last name and N1$ is the first name or beginning initials. (See again section 2.9, page 18 regards multipie inputs). Note

that here one right have been tempted to use FN$ for First Name but the specific character combination FN$ is not acceptable by KIM

because it too closely resembles the label of a user defined function.

On a 20K computer system with 8K BASIC it may be necessary to dispense with the blank lines, the remarks, and perhaps even lines 560
through 610 in order to have enough room to run the program.

Chapter 7 does not pertain to KIM,
Zhapter 8 does not pertain to KIM,

N@ﬂw

Note: In the following an argument of V or W denotes a numeric variable, X denotes a numeric expression, X$ denotes a string expression
and an T or J denotes an expression that is truncated to an integer before the statement is executed. Truncation means that any fractional part
of the number Is lost, e.g. 3.9 becomes 3, 4.01 becomes 4.

An expression is a series of variables, operators, function calls and constants which after the operations and function calls are performed
using the precedence rutes, evaluates to a numeric or string value,

A constant is elther a number (3.14) or a string literal {(**FCO"").

AND 2 IF A)5 AND B) 2 THEN 7 If expression 1
(A ? 5) AND expression 2 (B) 2) are both true, then branch
to line 7.

ASC(X$) Returns the ASCII numeric value of the first
character of the string expression X$. An FC error will occur
if X$ is the nutl string.

ATN(X) Gives the arctangent of the argument X. The
result is returned in radians and ranges from -PI/2 to Pl/2.
{P1/2=1.5708)

ABS(X) Gives the absolute value of the expression X.

CHRS$(l) Returns a one character string whose single char-
acter is the ASCI1 equivalent of the value of the argument (1)
which must be =) 0 and { = 255.

CLEAR Clears all variables, resets FOR & GOSUB state
and RESTORE data,

CONT Continues program execution after a control/c Is
typed or a STOP statement is executed. You cannot con-
tinue after any error, after modifying your program, or
before your program has been run. One of the main purposes
of CONT is debugging. Suppose at some point after running
your program, nothing is printed. This may be because your
program is performing some time consuming calculation, but
it may be because you have fallen into an “infinite loop”.
An infinite ioop is a series of BASIC statements from which
there is no escape. The KIM-1 will keep executing the serles
of statements over and over, until you intervene or untit
power to the KiM-1 is cut off. If you suspect your program
is in an infinite loop, type in a control/c. The line number of
the statement BASIC was executing wilt be typed out. After
BASIC has typed out OK, you can use PRINT to type out
some of the values of your variables. After examining these
values you may become satisfied that your program is func-
tioning correctly, You should then type in CONT to
continue executing your program where it left off, or type a
direct GOTO statement to resume execution of the program
at a different line. You could also use assignment (LET)
statements to set some of your variables to different values.
Remember, if you control/C a program and expect to con-
tinue it later, you must not get any errors or type In any new
program lines. 1f you do, you won't be abie to continue and
will get a “CN" (continue not) error. It is impossible to con-
tinue a direct command. CONT always resumes execution at
the next statement to be executed in your program when
controi/C was typed.

COS(X) Gives the cosine of the expression X. X is inter-
preted as being in radians,

DATA Specifies data, read from left to right. Information
appears In data statements in the same order as it will be read
in the program,

DEF 100 DEF FNA(V)=V/B+C The user can define
functions fike the built-in functions (SQR, SGN, ABS, etc.)
through the use of the DEF statement. The name of the
function is “FN" followed by any legal varlable name, for

© example: FNX, FNJ7, FNKO, FNR2. User defined functions
are restricted to one line. A function may be defined to be
any expression, but may only have one argument, in the
example B & C are variables that are used in the program.
Executing the DEF statement defines the function. User
defined functions can be redefined by executing another
DEF statement for the same function. User defined string
functions are not allowed. “V' is called the dummy vartable.
110 Z=FNA(3) Execution of this statement following the
above would cause Z to be set to 3/8+C, but the value of V
would be unchanged,

DIM 113 DIM A(3), B(10} Allocates space for arravs.
All array elements are set to zero by the DIM statement.
©114 DIM R3(5,5), D$(2,2,2) Arrays can have more than
one dimension. Up to 255 dimensions are allowed, but due
to the restriction of 72 characters per line the practical maxi-
mum is about 34 dimensions. Arrays can be dimensioned
dynamically during program execution. If an array is not ex-
plicitly dimensioned with a DIM statement, it is assumed to
be a single dimensioned matrix of whose single subscript may
range form O to 10 (eleven elements). 117 A(8)=4 I this

statement was encountered before a DIM statement for A
was found in the program, it would be as if a DIM A(10)} had
been executed previous to the execution of line 117. Ail sub-
scripts start at zero (0), which means that DIM X(100) really
allocates 101 matrix elements.

END Teriminates program execution without printing a
BREAK message, (see STOP) CONT after an END state-
ment causes execution to resume at the statement after the
END statement. END can be used anywhere in the program,
and is optional. .

EXP(X} Giyes the constant “E" {2.71828) raised to the
power X. (ETX) The maximum argument that can be passed
to EXP without overflow occuring is 87.3365.

FOR 300 FOR V=1 TO 9.3 STEP .6 (see NEXT state-
ment) V is set equal to the value of the expression foilowing
the equal sign, in this case 1. This value is called the initial
value. Then the statements between FOR and NEXT are
executed. Tne final value is the value of the expression
following the TO. The step Is the value of the expression
following STEP. When the NEXT statement is encountered.
the step is added to the variable. 310 FOR V=1 TO 9.3
If no STEP was specified, it is assumed to be one. |f the step
is positive and the new value of the varlable is (= final value
(9.3 in this example), or the step value is neuative and the
new value of the variahte is =)the final value, then the first
statement following the FOR statement is executed,
Otherwise, the statement following the NEXT statement is
executed. All FOR loops execute the statements between
the FOR and the NEXT at least once, even in cases like FOR
V=1TO 0. 315FOR V=10*NTO 3.4/QSTEP SQR (R)
Note that expressions (formulas) may be used for the initial,
final and step vaiues in a FOR loop. The values of the ex-
pressions are computed only once, before the body of the
FOR. . .NEXT loop Is executed. 320 FOR V=9 TO 1 STEP
-1 When the statement after the NEXT is executed, the
loop variable is never equal to the final value, but is equal to
whatever value caused the FOR. . .NEXT joop to terminate.
The statements between the FOR and its corresponding
NEXT in both examples above (310 & 320) would be execut-
ed 9 times. 330 FORW=1TO 10: FORW=1TO :NEXT
W:NEXT W Error: do not use nested FOR. . .NEXT loGps
with the same index variable. FOR loop nesting is limited
only by the available memory.

FRE(X) OR FRE(X$) 270 PRINT FRE(0) Gives the num-
ber of memory bytes currently unused by BASIC. Memory
allocated for STRING space is not included in the count
returned by FRE.

GOTO Branches to the statement specified.

GOSUB Branches to the specified statement until a KE-
TURN is encountered; when a branch is then made to the
statement after the GOSUB. GOSUB nesting Is limited only
by the avallable memory.

IF. . .GOTO Equivalent to IF, . .THEN, except that IF. ..
GOTO must be followed by a line number.

IF. . .THEN IF X)10 THEN 5 Branches to specified
statement if the relation is True. 20 1F X (0 THEN PRINT
“X LESS THAN 0" Executes all of the statements on the
remainder of the line after the THEN if the relation is True.

INPUT Request: data from the terminal (to be typed in).
Each value must be separated from the preceeding value by a
comma (,)., The last value typed should be followed by a
carriage return. A ‘‘?” Is typed as a prompt character. if
more data was requested In an INPUT statement than was
typed In, a **??" §s printed and the rest of the data should be
typed in, If more data was typed In than was requested, the
extra data will be ignored. Strings must be input In the same
format as they are specified in DATA statements,

5 INPUT “VALUE"; V Optionally types a prompt string
(“"VALUE") before requesting data from the terminal, If
carriage return is typed to an input statement, BASIC returns
to command mode. Typing CONT after an INPUT command
has been interrupted will cause execution to resume at the
INPUT statement,

INT(X) Returns the largest Integer less than or equal to its
argument X. For example: INT (.23)=0, INT (7)=7, INT

(-1)=-1, INT (-2)= -2, INT (1.1)=1.

The followina would round X io D decimal places:
INT (X*10 TD+.5)/10 TD

LEFTS$(XS$, 1) Gives the leftmost | characters of the string
expression X$. If | (=0 or) 255 an FC error occurs.

LEN{X$) Gives the length of the string expression X$ in
characters (bytes). Non-printing characters and blanks are
counted as part of the length.

LET Assigns a value to a variable. "LET" is optional.

LIST LIST 100- LIST 100 LIST 100-200 Lists
current program optionally starting at specified tine. List can
be controi-C'd (BASIC will finish listing the current line)

LOAD Loads the program from the cassette tape. A NEW
command is automatically done before the LOAD command
is executed. When done, the LOAD will type out OK as
usual.

LOG(X) Gives the natural (Base E) logarithm of its argu-
ment X. To cbtain the Base Y logarithm of X use the
formula LOG(X}/LOG(Y). Example: The base 10 (com-
mon) log of 7 = LOG(7)/L.LOG(10).

MID$(XS$, 1) MIDS$ called with two arguments returns
characters from the string expression X$ starting at character
position 1. {f |)I_EN(Is). then MID$ returns a null (zerOQ
length) string. 11 1 {=0 or) 255, an FC error occurs.

MIDS$(X$,1,J) MID$ called with three arguments returns a
string expression composed of the characters of the string ex-
pression X$ starting at the Ith character for J characters. If
5) LEN(X$), MID$ returns a null string, 1f 1 or J (=0 or

255, an FC error occurs. If J specifies more characters than
are left in the string, all characters from the Ith on are
returned.

NEW Deletes current program and ali variables.

NEXT Marks the end of a FOR loop. If no varlable is
given, matches the most recent FOR loop. A single NEXT
may be used to match muitiple FOR statements, NEXT V,W
is equivalent to NEXT V:NEXT W.

NOT IF NOT Q3 THEN 4 If expression “NOT Q3" Is
true (because Q3 is false), then branch to line 4. Note:
NOT -1=0 (NOT true=faise)

NULL NULL 3 Sets the number of null (ASCII 0)
characters printed after a carriage return/line feed. The num-
ber of nulls printed may be set from 0 to 71. This is a must
for hardcopy terminals that require a detay after a carriage
return/line feed. It is necessary to set the number of nulls
typed on CRLF to 0 before a paper tape of a program is read
in from a Teletype (TELETYPE is a registered trademark of
the TELETYPE CORPORATION), Use the null command to
set the number of nulls to zero. When you punch a paper
tape of a program using the list command, nuli should be set
)=3 for 10 CPS terminals, >=6 for 30 CPS terminals. When
not making a tape, we recommend that you use a nuil setting
ot 0 or 1 for Tetetypes, and 2 or 3 for hard copy 30 CPS ter-
minals. A setting of O witl work with Teietype compatible
CRT's,

ON. . .GOSUB 1dentical to “ON. . .GOTO" except that a
subroutine call (GOSUB) is executed Instead of a GOTO.
RETURN from the GOSUB branches to the statement after
the ON. . .GOSUB,

ON..,.GOTO 100 ON | GOTO 10,20,30,40 Branches to
the line indicated by the I'th number after the GOTO. That
is: IF i=1, THEN GOTO LINE 10 IF =2, THEN
GOTO LINE 20 IF 1=3, THEN GOTO LINE 30 iF 1=4,
THEN GOTO LINE 40. If 1=0 or | attempts to select a non-
existent line ()=5 in this case), the statement after the ON
statement is executed. However, if | is)255 or (0, an FC
error message will result. As many line numbers as will fit on
a line can follow an ON. . .GOTO. 105 ON SGN(X}+2
GOTO 40,50,60 This statement will branch to line 40 if
the expression X is less than zero, to line 50 if it equals zero,
and to line 60 if it is greater than zero.

OR F A (1 OR B (2 THEN 2 If either expression 1
(A (1) OR expression 2 (B (2) is true, then branch to line
2.

PEEK(l) The PEEK function returns the contents of
memory address i. The value returned will be =) 0 and
(=255. 1f | is) 65535 or (0, an FC error wlill occur. An
attempt to read a non-existent memory address will return,
an unknown value. (see POKE statement)

-
POKE 357 POKE 1,J The POKE statement stores the
byte specified by its second argument (J) Into the location
given Dy its first argument {1). The byte to be stored must be

=)0 and (:255, or an FC error will occur. The address (1)
must be =)0 and { =65535, or an FC error will resuit. Care-
tess use of the POKE statement will probably cause you to
“‘poke' BASIC to death; that is, the maching will hang, and
you will have to reload BASIC and will lose any program you
had typed in. A POKE to a non-existent memory location is
harmless. One of the main uses of POKE is to pass arguments
to machine language subroutines. You could also use PEEK
and POKE to write a memory diagnostic or an assembler in
BASIC.

POS(l) Gives the current position of the terminal print
head (or cursor on CRT's). The leftmost character position
on the terminal is position zero and the right most is 71.

PRINT Prints the value of expressions on the terminat. if
the list of values to be printed out dces not end with a
comma (,) or a semicolon (;), then a carriage return/line feed
is executed after all the values have been printed. Strings
in quotes (') may also be printed. If a semicolon separates
two expressions in the list, thelr values are printed next to
each other. If a comma appears after an expression in the
list, and the print head Is at print position 56 or more, then
a carriage return/tine feed is executed. If the print head is
before print position 56, then spaces are printed until the
carriage Is at the beginning of the next 14 column field (until
the carriage is at column 14; 28, 42 or 56. . .). if there is no
list of expressions to be printed, then a carriage return/line
feed is executed. String expressions may be printed,

READ Reads data into specified variables from a DATA
statement. The first piece of ¢ 'a read will be the first piece
of data listed in the first DATA statement of the program.
The second piece of data read will be the second piece listed
in the first DATA statement, and so on. When all of the data
have been read from the first DATA statement, the next
piece of data to be read will be the first piece listed in the
second DATA statement of the program. Attempting to read
more data than there is in all the DATA statements in a rro-
gram will cause an OD (out of data) error.

REM Atlows the programmer to put comments in his pro-
gram. REM statements are not executed, but can be branch-
ed to. A REM statement is terminated by end of linc, but
not by a “:"'. .

RESTORE Allows the re-reading of DATA statements.
After a RESTORE, the next piece of data read will be the
first piece listed in the first DATA statement of the program.
The second piece of data read will be the second plece listed
in the first DATA statement, and so on as in a normal READ
operation.

RETURN Causes a subroutine to return to the statement
after the most recently executed GOSUB.

RIGHT$(X$,1) Gives the rightmost | characters of the
string expression X$. When | g=o or) 255 an FC error will
occur, If))LEN (X$) then RIGHTS returns all of X$.
RND(X) Generates a random number between o and 1.
The argument X controls the generation of random numbers
as follows: X (o starts a new sequence of random numbers
using X. Calling RND with the same X starts the same ran-
dorn number sequence. X=0 gives the last random number
generated. Repeated calls to RND(0) will always return the
same random number. X)0 generates a new random number
between 0 and 1.

Note that (B-A) *RND(1)+A wili generate a random number
between A & B.

SAVE Saves on cassette tape the current program in the
KIM's memory. The program in memory is left unchanged.
More than one program may be stored on cassette using this
command.

SGN(X) Gives 1 if X)0, 0 if X=0and -1 if X (0.

SIN(X) Gives the sine of the expression X, X is interpret-
ed as being In radians. Note: COS (X)=SIN (X+3.14159/2)
and than 1 Radian =180/P| degrees=57.2958 degrees; so that
the sine of X degrees=SIN (X)/57.2958.

SPC(l) Prints | space (or blank) characters on the terminal.
May be used only in a PRINT statement. X must be =) 0 and
(=255 or an FC error will result.

SAR({X} Gives the square root of the argument X. An FC
error will occur if X is less than zero.

STOP cCauses a program to stop execution and to enter
command mode. 9000 STOP Prints BREAK IN LINE
9000. (as per this example) CONT after a STOP branches to
the statement following the STOP.

i '
STR$(X) Gives a string which is the character representa-
tion of the numeric expression X. For instance, STR$
(3.1)=""3.1".

TAB(l) 240 PRINT TAB(I) Spaces to the specified print

position (column) on the terminal, May be used oaly in + Addition. String concatentation. The resulting string
PRINT statements. Zero is the leftmost column on the ter- must be less than 256 characters In length or an LS error will
minal, 71 the rightmost. 11 the carriage Is beyond position t, occur.,

then no printing is done. | must be =)0 and {(=255. 1
- Subtraction

TAN(X)} Gives the tangent of the expression X. X is in- = $ &)= () Stringcomparison operators. Com-
terpreted as being in radians. parison Is made on the basls of ASCII codes, a character at a
time until a difference Is found. 1f during the comparison of

J=USR(T) Calls the user's machine twa strings, the end of one Is reached, the shorte ring Is
language subroutine with the argument 1. See POKE, PEEK consldered smaller, Note that ““A ' is greater than **A’’ since
and USR discussion. trailing spaces are slgnificant,
.
VAL{X$) Returns the string expression X$ converted to a
31, If the first non- @ Erases current line being typed, and types a carriage

number. For instance, VAL ("3.1"
space character of the string Is not a plus (+) or minus (-}
sign, a digit or a decimal point (.) then zero will be returned.

return/line feed, An “@" is usually a shift/P,

- (backarrow or underiine) Erases last character typed, If

no more characters are left on the line, types a carriage
WAIT 805 WAIT 1,J,K 806 WAIT IJ This statement i N T '
reads the status of location 1, exclusive OR's K with the return/line feed. s usually a shift/0.
status, and then AND’s the resuit with J until a non-zero CARRIAGE RETURN A carrlage return must end every

result is ublalned: Execution of the program contlnue_s at the line typed Iin. Returns print head or CRT cursor to the first
statement following the WAIT s(atgment. If the WAIT state- position (leftmost) on line. A line feed is always executed
ment only has two arguments, K is assumed to be zero. If after a carriage return

you are waiting for a bit to become zero, there should be a)

one in the corresponding position of K. |, J and K must be CONTROL/C Interrupts execution of a program or a list
=)0 and (=255. command. Control/C has effect when a statement finishes
execution, or in the case of interrupting a LIST command,
when a complete line has finished printing. In both cases a
return is made to BASIC's command level and OK is typed.

Prints “BREAK IN LINE XXXX", where XXXX is the line
number of the next statement to be executed.

: {colon) A colon is used to separate statements on a line.

SYMBOLOGY AND SPECIAL KEYS Colons may be used in direct and indirect statements. The

only timit on the number of statements per line is the line

= Assigns a value to a varlable. The LET is optional. Iefng!h, It Is not possible to GOTO or GOSUB to the middie
of a line.

- Negation. Note that 0-A is subtraction, while -A is nega-

tion. CONTROL/O Typing a Control/O once causes BASIC to
suppress all output until a return is made to command tevel,

T {Usually a shift/N) Exponentlation 010=1 0 to any an input statement Is encountered, another control/O is

other power = 0, A TB, with A negative and B not an integer typed, or an error occurs.

gives an FC error, .
? Question marks are equivalent to PRINT. For instance,

- Multiplication ? 2+2 is equivatent to PRINT 2+2, Question marks can also
be used in indirect statements. 10 ? X, when listed will be
/ Division typed as 10 PRINT X.

ERROR MESSAGES

After an error occurs, BASIC returns to level and types OK. Variable values and the program text remain intact, but the program can not be
continued and all GOSUB and FOR content Is lost.

when an error occurs in a direct statement, no tine number Is printed.
Format of error messages:

Direct Statement ?XX ERROR

Indirect Statement ?XX ERROR INYYYYY
In both of the above examples, “XX'' will be the error code. The “YYYYY" will be the line number where the error occured for the indirect
statement.
The following are the possible error codes and thelr meanings:
BS Bad Subscript. An attempt was made to reference a array element which is outside the dimensions of the array. This error can occur if
the wrong number of dimensions are used In a matrix reference; for instance, LET A(1,1,1)=Z when A has been dimensioned DIM A(2,2).

DD Double Dimension. After an array was dimensioned, another dimension statement for the same array was encountered. This error often
occurs if an array has been given the default dimension 10 because a statement like A(1)=3 Is encountered and then later in the program a DIM
A{100) is found.

FC Function Cail error. The parameter passed to a math or string functipn was out of range. FC errors can occur due to: a) a negative
array subscript (LET A{-1)=0)}. b) an unreasonably large array subscript {/32767). ¢) LOG-negative or zero argument. d) SQR-negative
argument. e) ATB with A negative and B not an integer, f) a call to USR before the address of the machine tanguage subroutine has been
patched in. g) calls to MID$, LEFT$, RIGHTS, INP, OUT, WAIT, PEEK, POKE, TAB, SPC or ON, ., .GOTO with an improper argument.
ID lilegal Direct. You cannot use an INPUT or DEFFN statement as a direct command.

NF NEXT without FOR. The variable in a NEXT statement corresponds to no previously executed FOR statement.

oD Out of Data. A READ statement was executed but ail of the DATA statements in the program have already been read. The program
tried to read too much data or insufficient data was included in the program.

oM Out of Memory, Program too large, too many variables, too many FOR loops, too many GOSUB's, too complicated an expression or
any combination of the above.

ov Overflow. The result of a calculation was too large to be represented in BASIC's number format. If an underflow occurs, zero is given as
the result and execution continues without any error message being printed.

SN Syntax error. Missing parenthesis in an expression, lllegal character in a line, incorrect punctuation, etc.
RG RETURN without GOSUB. A RETURN statement was encountered without a previous GOSUB statement being executed.
US Undefined Statement. An attempt was made to GOTO, GOSUB or THEN to a statement which does not exist.

/0 Division by Zero.

CN Continue orror, Attempt to continue a program whon none extists, an error occured, or after a new line was typed into the program,

LS Long String. Attempt was made by use of the concatenation operator to create a string more than 255 characters fong.

ST String Temporaries. A string expression was too complex. Break It Into two or more shorter ones.

™ Type Mismatch, The left hand side of an assignment statement was a numeric varlable and the right hand side was a string, or vice versa;
or, a function which expected a string argument was glven a numeric one or vice versa.

UF Undefined Functlon. Reference was made to a user defined function which had never been defined.

Here Is a listing of the error messages of the 9 digit KIM-1 BASIC cross-indexed to the error messages of the 6 digit version:

ke K86 kB9 K86
BAD SUBSCRIPT 8s RETURN WITHOUT GOSUB RG
REDIMENSIONED ARRAY DD UNDEFINED STATEMENT us
ILLEGAL QUANTITY FC DIVISION BY ZERO /0
ILLEGAL DIRECT 1D CAN'T CONTINUE CN
NEXT WITHOUT FOR NF STRING TOO LONG LS
OUT OF DATA oD FORMULA TOO COMPLEX ST
OUT OF MEMORY oM TYPE MISMATCH ™
OVERFLOW ov UNDEFINED FUNCTION UF
SYNTAX SN ’
ASCII CHARACTER CODES
DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
ooo NUL 033 ! 065 A 097 a
001 SOH 034 ” 066 B 098 b
002 STX 035 # 067 C 099 c
003 ETX 036 $ 068 D 100 d
004 EOT 037 % 069 E 101 e
005 ENQ 038 & 070 F 102 f
006 ACK 039 071 G 103 g
007 BEL 040 (072 H 104 h
008 BS 041 } 073 | 105 i
009 HT 042 * 074 J 106 i
010 LF 043 + 075 K 107 k
011 vT 044 , 076 L 108 |
012 FF 045 - 077 M 109 m
013 CR 046 . 078 N 110 n
014 SO 047 / 079 (e} 11 o
015 s 048 0 080 P R RV P
016 DLE 049 1 081 Q 113 q
017 DC1 050 2 082 R 114 r
018 DC2 051 3 083 S 115 $
019 DC3 052 4 084 T 116 t
020 DC4 053 5 085 U 17 u
021 NAK 054 6 086 v 118 v
022 SYN 055 7 087 w 119 w
023 ETB 056 8 088 X 120 X
024 CAN 057 9 089 Y 121 y
025 EM 058 : 090 4 122 z
026 suB 059 : 091 [123
027 ESCAPE 060 < 092 \ 124 |
028 FS 061 = 093] 125
029 GS 062) 094 t 126 N~
030 RS 063 ? 095 - 127 DEL
031 us 064 @ 096
032 SPACE
LF = Line Feed FF = Form Fecd CR = Carriage Return DEL = Rubout

INITIALIZATION DIALOG’

STARTING BASIC After you have loaded BASIC, it will respond:

MEMORY SIZE? if you type a carriage return to MEMORY S1ZE?, BASIC will use all the contiguous memory upwards from location 8192
that it can find. BASIC will stop searching when it finds one byte of ROM or non-existent memory.

If you wish to allocate only part of the memory to BASIC, type the number of bytes of memory you wish to ailocate in decimal. This might
be done, for instance, if you were using part of the memory for a machine tanguage subroutine,

There are 4096 bytes of memory in a 4K system, and 8192 bytes in an 8K system.
BASIC will then ask:

TERMINAL WIDTH? This is to set the output fine width for PRINT statements only. Type in the number of characters for the line width
for the particular terminal or other output device you are using. This may be any niwimnber from 1 to 255, depending on the terminal. if no
answer is given (i.e. a carriage return is typed) the line width is set to 72 characters.

Now KIM-1 BASIC will enter a dialog which will allow you to delete some of the arithmetic functions. Deteting these functions will give more
memory space to store your programs and variables. However, you will not be able to call the functions you detete. Attempting to do so will
result in an FC error. The only way to restore a function that has been deleted is to reload BASIC. .

The foliowing is the dialog which will occur:

WANT SIN-COS-TAN-ATN? Answer **Y* to retain 2§) four of the functions,

' to delete all four, or “*A™ to deiete ATN only.

Now BASIC will type out:

XXXX BYTES FREE «XXXX" is the number of bytes available for program, variables, array storage and the stack. It does not include
string space.

H will then print out the BASIC version and
COPYRIGHT MICROSOFT CO.
with the year of the copyright, and finally
oK
You will now be ready to begin using KIM-1 BASIC

USING THE CASSETTE INTERFACE

0 save a progiam on tape prepare the cassette just as though a dump command where about to be issued to the KIM-1 monitor. Then type
SAVE", A tape ID ot “FF" is issued for all BASIC files, so only one BASIC program can be saved per tape. After completion of the “SAVE''
command control will be returned to the KIM-1 monitor. Reenter BASIC at the *RETSAV' location specified for your version using the “G"
command.

To load a program from tape prepare the cassette just as though a “LLOAD" command where about to be issued to the KIM-1 monitor. Then

type “LOAD'. Any previous program or variable values will be lost. Control will return to the KIM-1 monitor on the completion of the load.

If the lou. was successful ‘‘0000" wiil be displayed and simply typing “G'* will return control to BASIC. Otherwise patch focations 0001 HEX

and 0002 HEX to contain their previous values (what they were before the load - HEX and HEX for KB-6 and HEX and
HEX for KB-9) and do a “G" to the bad load address (BDL.OAD) specified for your version of BASIC

The current version of BASIC does not support loading and saving of data files.

KB-9 INTEGER VARIABLES

Integer variables are allowed in the 9 digit version of KIM-1 BASIC. Their name must be followed by % wherever they are used. Note that an
integer variable is distinct from a floating point variable of the same name. Integer arrays are also aliowed, Each integer datum requires 2 bytes
of storage whereas ftoating point values require 5 bytes. Non-integer values assigned to an integer variable will be truncated. Integer variables
cannot be used in user defined functions or “FOR' loops. Integer varlables should be used to conserve memory space. They do not save time.
In fact, they are usuaily slower to use than floating point vaiues.

Basic/ hine L interface
There are tour steps required i0 use a machine language routine.

1) Set aside memory. The KIM versions of Micrasoft 6502 BASIC and Ram starts at 2000 hex. Contiguous memory above BASIC is used
for program storage. The highest {ocation used is determined by the response to the “memaory size’ question. if a decimal value is typed
that will be the highest location used. Otherwise BASIC wil) search for the highest contiguous ram address by storing and reading vatues
from memory. ’

A machine language routine must not be in a memory area used by BASIC, so it must be

1) Below 2000 hex but above 200 hex or
2) Above the decimal address typed into ““memory size' or
3) Non-contiguous with the RAM at 2000 hex
2) Store the routine into memory. This can be done either before or after BASIC is loaded. The KIM cassette load, an assembler, keying
into memory or BASIC's POKE command may be used.
3) Notify BASIC of the location of the routine. USRLOC which iIs 2040 hex in all versions of KIM BASIC must be POKEd to contain the

address of the “USR™ machine language routine. 2040 hex, 8256 decimal, must be given the low 8-bits of the address and 2041 hex,
8257 decimai, must be given the high 8-bits.

Invoking the “USR’ function before modifying USRLOC will cause an "“ILLEGAL QUANTITY" error since the original contents oi
USRLOC contains the address of the “ILLEGAL QUANTITY" error routine.

a4y The machine language routine must be called. The “USR" function Is used for this purpose. A single numeric value must be given as the
argument to USR. BASIC will dispatch to the address contalned in USRLOC. The USR routine may modify ail of the registers. An RTS
should be performed when the routine completes.

Data can be passed to the machine language routine in two ways:

1) A JSR to the routine whose address Is stored at location 6 and 7 will cause Y and A' to e glven the value of the argument to USR. Y will
be the high order and A the low order of a 16-bit signed integer. If the arguniént is outside the range -32768 to 32767 an “ILLEGAL
QUANTITY" error will result. ' .

2) Data may be POKEd Into memory unused by BASIC and loaded by the USR routine.

Values may be returned in two ways: ': .

1) A JSR to the routine whose address is at location 8 and 9 will cause the 16-bit sign integer in (y,A) to be returned as the result of the
USR function. -

2) The USR routine can store values in memory unused by BASIC which mai/ be read in BASIC through the “PEEK’ function,

Example: To utlilze a program at 0300 hex
POKE 8256,0
100 POKE 8257,3
150 X=USR(Y)
200 END

MORE ON PEEK AND POKE

POKE can be used to set up your machine language routine in high memory. BASIC does not restrict which addresses you can POKE
Patches which a user wishes to include In his BASIC can also be made using POKE,

PEEK and POKE can be used to store byte oriented information. When you initialize BASIC, answer the MEMORY SIZE? question with
the amount of memory in your KIM-1 minus the amount of memory you wish to use as storage for byte formaued data.

You are now free to use the memory in the top of memory in your KIM-1 as byte storage.

RULES FOR EVALUATING EXPRESSIONS

1) Operations of higher precedence are performed before operations of lower precedence. This means the multiplication and divisions are per-
fomed before additions and subtractions. As an example, 2+10/5 equals 4, not 2.4. When operations of cqual precedence are found in a
formula, the left hand one is executed first: 6-3+5=8, not -2.

2) The order in which operatiuns‘-are performed can always be specified explicitiy through the use of parentheses. For instance, to add 5to 3
and then divide that by 4, we would use (5+3)/4, which equals 2. |f instead we had used 5+3/4, we would get 5,75 as a result (5 plus 3/4).

The precedence of operators used In evatuating expressions is as foltows, in order begmnmg with the highest precedence:
{Note: Operators listed on the same line have the same precedence.)

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED F|RST 2) 1; 3) NEGATION; 4)* /; §)+ -; 5)
RELATIONAL OPERATORS: (equal precedence for all six) = O) (= : 7) NO™; 8) AND; 9} OR

A relational expression can be used as part of any expression. .

<Re|at»onal Operator expressions will always have a value of True {-1) or a vatue of False (0), Therefore, (5=4)=0, (5=5)=-1, (4) 5)=0,
{4 (5)=-1, etc

The THEN clause of an 1F statement is executed whenever the formula after the IF is not equal to 0. That is to say, IF X THEN. . . is
cquivalent to IF X () 0 EN

AND, OR ana NOT can bc used for bit manipulation, and for performing boolean operations.

These three operators convert their arguments to sixteen bit, signed two’s, complement integers in the range -32768 to +32767. They then
perform the specified togical operation on them and return a resun within the same range. If the arguments are not in this range, an “FC’’ error
results.

63 AND 16=16 Since 63 equals binary 111111 and 16 equals binary 10000, the result of the AND is binary 10000 or 16.

4 OR 2=6 Binary 100 OR'd with binary 10 equais binary 110, or 6 decimal.

NOT X NOT X is equal to -(X+1). This is because to form the sixteen bit two’s complement of the number, you take the bit (one's)
compiement and add one. -

The operations are performed in bitwise fashion, this means that each bit of the result is obtained by examining the bit in the same position
for each argument.

A typical use of the bitwise operators is to test bits set in the KIM’s two ports which reflect the state of some external device.

Bit position 7 is the most significant bit of a byte, while position 0 Is the teast significant.

SPACE HINTS
In order to make your program smaller and save space, the following hints may be useful.

1) Use multipie statements per line. There Is a small amount of overhead (S5bytes) assoclated with each line in the program. Two of these
five bytes contain the line number cf the line in binary. This means that no matter how many digits you have in your tine number (minimum
line number is 0, maximum is 64000), it takes the same number of bytes. Putting as many staterments as possible on a line wlli cut down on the
number of bytes used by your program.

2) Delete all REM statements and unnecessary spaces from your program.

3) Use variables instead of constants. Suppose you use the constant 3.14159 ten times in your program. }f you insert a statement
10 P=3.14159 in the program, and use P instead of 3.14159 each time It is needed, you wiil save 40 bytes. This wiil also result in speed im-
provement.

4) A program need not end with an END; so, an END statement at the end of a program may be deleted.

5) Reuse the same variables. It you have a variable T which is used to hold a temporary result in one part of the program and you need a
temporary variable later in your program, use it again. Or, if you are asking the terminal user to give a YES or NO answer to two different
questions at two different times during the execution of the program, use the same temporary variable A$ to store the reply.

6) Use GOSUB's to execute sections of program statements that perform identical actions.

7} Use the zero elements of arrays; for instance, A(0), B(Q,X).

STORAGE ALLOCATION INFORMATION

Simple (non-array) numeric variable like V use 6 bytes; 2 for the variable name, and 4 for the value. Simple non-array string variabies also use 6
bytes; 2 for the variable name, 2 for the length, and 2 for a pointer,

Array variables use a minimum of 12 bytes. Two bytes are used for the variable name, two for the size of the array, two for the number of
dimensions and two for each dimension along with four bytes for each of the array elements.

String variables also use one byte of string space for each charactej in the string. This is true whether the string variable Is a simple string vari-
able like AS$, ,or an element of a string matsix such as Q1$ (5,2).

When a new lunctlon Is defined by a DEF statement, 6 bytes are used to store the definition,

Resorved words such as FOR, GOTO or NOT, and the names or the Intrinsic functions such as COS, INT and STR$ take up only one byte of
program storage. All other characters in programs use one,byte of program storage each.

When a program is being executed, space is dynamicatly allocated on the stack as folows:

1) Each active FOR. . .NEXT loop uses 22 bytes.

2) -Each active GOSUB (one that has not returped yet) uses 6 D;tes.

3)... Each parenthesis encountered in an expression uses 4 bytes and each temporary resuit calculated in an expression uses 12 bytes.

SPEED HINTS

The hints below should improve the execution time of your BASIC program. Note that some of these hints are the same as those used to de-
crease the space used by your programs. This means that in many cases you can increase the efficiency of both thu speed and size of your pro-
grams at the same time.

1) Delete all unnecessary spaces and REM’s from the program. Thls may cause a smail decrease In execution time because BASIC would
otherwise have to ignore or skip over spaces and REM statements.

2) THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR OF 10. Use variabies instead of constants. It takes more
time 1o convert a constant to its floating polnt representation than 1t does to fetch the value of a simple or array variable. This is especially im-
portant within FOR. . .NEXT loops or other code that is executed repeatedly.

3} Variables which are encountered first during the execution of a BASIC program are allocated at the start of the variable tible. This means
that a statement such as a 5 A=0:B=A:C=A, will place A first, 8 second, and C third in the symbol table (assuming line 5 is the first statement
executed in the program). Later in the program, when BASIC finds a reference to the variable A, it will search only one entry in the symboi
table to find A, two entries to find B and three entries to find C, etc.

1) NEXT statements without the index variable, NEXT is somewhat faster than NEXT | because no check is made to see if the vari:ble
specified in the NEXT is the same as the variable in the most recent FOR statement.

CONVERTING BASIC PROGRAMS NOT WRITTEN FOR THE KIM-1

Though implementations of BASIC on different computers are in many ways similar, there are some incompatibitities which you should watch
for if you are planning to convert some BASIC programs that were not written for the KIM-1.
1) Array subscripts. Some BASICs use ** | " and *'] " to denote array subscripts. KiM BASIC uses " (" and ") ™.

2), Strings. A number of BASICs force you to dimension (declare) the length of strings before you use them. You should remove all dimension
statements of this type from the program. In some of these BASICs, a declaration of the form DIM A$(l,J) declares a string matrix of J ele-
ments each of which has a length {. Convert DIM statements of this type to equivalent ones in KIM-1 BASIC: DIM A$(J).

KIM-1 BASIC uses * + ' for s*ring concatenation not *“, " or ** & "',

KIM-1 BASIC uses LEFTS$, RIGHTS$ and MID$ to take substrings of strings. Other BASICs use A$(1) to access the tth character of the
string A$, and A$(l,J) to take a substring of A$ from character position t to character position J. Convert as follows:

oLD NEW
AS(1)} MID${AS,1,1)
AS(L 3} MIDS$(AS$,1,J 1+1)

This assumes that the reference to a substring of A$ is in an expression or is on the right side of an assignment. If the reference to A$ is on
the left hand side of an assignment, and X$ is the string expression used to replace characters in A$, convert as follows:

oLn NEW
AS(1)=X$ AS=LEFTS(AS 1-1)+XS+MIDS(AS 1+1)
AS{1J)=X$ A$=LEFT$(AS,1-1)+X$+MID$(AS$,J+1)

3) Multiple assignments. Some BASICs aliow statements of the form: 500 LET B=C=0. This statement wouid set the variables B & C to zero.
in KIM-1 BASIC this has an entirely different effect. All the *='s’" to the right of the tirst one would be Interpreted as logical comparison
operators. This would set the variable B to -1 if C equaled 0. If C did not equal 0, B would be set to 0. The easiest way to convert state-
ments like this one is to rewrite them as foilows:

500 C-0:
4) Some BASICs use /" instead of * : ' to delimit multiple statements per line. Change the ** /’s " to ** :" in the program.
5) Paper tapes punched by other BASICs may have no nulis at the end of each line, Instead of the three per line recommended for use with

KiM-1 BASIC.
To get around this, try to use the tape feed control on the Teletype to stop the tape from reading as soon as KIM-1 BASIC types a carriage
return at the end of the line. Wait a second, and then continue feeding in the tape.
When you have finished reading in the paper tape of the program, be sure to punch a new tape in KIM-1 BASIC's format. This wi{l save you
from having to repeat this process a second time.

6) Programs which use the MAT functions avaiiable in some BASICs will have to be re-written using FOR, . .NEXT loops to perform the
appropriate operations.

DERIVED FUNCTIONS

The following functions, while not intrinsic to KIM-1 BASIC, can be calculated using the existing BASIC functions.

FUNCTION FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS
SECANT SEC(X) = 1/COS(X)

COSECANT CSC(X) = 1/SIN(X)

COTANGENT COT(X) = 1/TAN(X)

INVERSE SINE ARCSIN(X) = ATN(X/SQR(-X*X+1) }

INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE H . PERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

ARCCOS(X) = -ATN(X/SQR{-X*X+1) }+1.5708
ARCSEC(X) = ATN{SQR{X*X-1) }+{SGN(X)-1) *1.5708
ARCCSC(X) = ATN{1/SQR(X*X-1) }+{SGN(X)-1)*1.5708
ARCCOT(X) = -ATN(X)+1.5708

SINH(X) = (EXP(X}-EXP{-X))/2

COSH(X) = (EXP(X)+EXP(-X) }/2

TANH(X) = - EXP {-X)/{EXP(X)+EXP{-X})*2+1
SECH(X) = 2/{EXP(X}+EXP(-X)

CSCH(X) = 2/{EXP(X)-EXP{-X))

COTH(X) = EXP(-X)/{EXP(X)-EXP(-X))*2+1

ARGSINH(X) = LOG(X+SQR(X*X+1})
ARGCOSH(X) = LOG(X4+8QR(X*X-1))
ARGTANH(X} = LOG { (1+X)/(1-X) }/2
ARGSECH(X) = LOG((SQR{-X*X+1)+1}/X)
ARGSCH (X} = LOG((SGN(X)"CQR(X*X+1)+1)/X)

ARGCOTH(X) = LOG((X+1}/(X-1) }/2

IMPORTANT LOCATIONS (HEX) KB-6
LOWEST LOCATION 2000
HIGHEST LOCATION 4040
INIT (START) 3E44
GLOAD (RETURN FROM GOGD LOAD) 0000
BDLOAD (RETURN FROM BAD LOAD-ALSO PATCA LOCATIONS 1 & 2) 2454
RETSAV (RETURN FROM SAVE) 2690
USRLOC (FOR USR ADDRESS) 2040
AYINT (PASS A,Y TO MACHINE CODE USR ROUTINE) _
GIVAYF (RETURN A,Y FROM MACHINE CODE USR ROUTINE) _
ISCNTC (CHECK FOR CONTROL/C) 2608
LOCATION OF CALL TO KIM-1 INPUT ROUTINE 2387
LOCATION OF CALL TO KIM-1 OUTPUT ROUTINE 296C

KB-9
2000
4260
4065
0009
2523
27SF

2040

2FC2
3195
26DA
2456

2A51

