6502
MACRO ASSEMBLER

AND
TEXT EDITOR

FOR PET, APPLE, SYM and OTHERS

>ASSEMBLE LIST
0100 ;MOVE FROM TABLEl TO TABLE2

. 0110 .BA $L00
0400~ A0 00 0120 START LDY #00
0402~ B9 OB O% 0130 LOOP LDA TABLEL,Y
0405- 99 0B 05 0140 STA TABLE2,Y
0408- 8 0150 INY
0409- DO F7 0160 BNE LOOP
0165
0170 ;
o4oB- . 0180 TABLEL .DS 256 ; STORAGE
050B- 0190 TABLE2 .DS 256 P
0200 ;
0210 .EN

LABEL FILE [/ = EXTERNALJ
START= 0400 LOOP=0402 TABLE1=040B
TABLE2=050B

//0000,060B,060B
>

This ASSEMBLER and TEXT EDITOR was written in machine language-not BASIC

1. INTRODUCTION

This 6502 relocating Macro assembler (ASSM) and text editor
(TED) resides simultaneously in approximately 8K bytes of
memory. The ASSM/TED can be loaded into RAM or stored in ROM
memory. Sufficient memory must be provided for not only the
ASSM/TED but for a text file and label file (symbol table).
Approximately 2K is sufficient memory for the text file for
small programs or larger programs if assembled from tape. A
good rule of thumb is one byte of memory for the label file for
each byte of object code. If an executable object code file

is to be stored in memory during assembly, sufficient memory
must be provided for that also. On cold start entry (2000), the
ASSM/TED will set the file boundaries as follows.

Text file =
Label file = See part 13
Relocatable Object buffer =

The label file and text file that this ASSM/TED generates is
position independent and may be located pratically anywhere in
RAM memory. The object code file location is dependent on the
beginning of assembly (.BA pseudo op) -and the .MC pseudo op.

The ASSM/TED was designed such that records in the label file
and text file are variable in length and directly dependent
on the number of characters to be stored. This results in
more efficient utilization of memory.

Some unique features of this ASSM/TED are:

Macro and conditional assembly support.

Labels up to 10 characters in length.

Auto line numbering for ease of text entry.

Creates both executable code in memory and relocatable
object code on tape.

Manuscript feature for composing letters and other text.
Loading and storing of text on tape.

Vectors for linkage to disc operating systems.
Supports up to two tape decks, CRT and keyboard, and
printer.

String search and replace capability, plus other
powerful editing commands.

Throughout this document, output generated by the ASSM/TED
is underlined to distinquish from user input.

Initial entry to the ASSM/TED is at address 2000. If the break
command (»BR) is executed, one may return to the address following
the break. 1Initial entry provides the following default
parameters:

Format - set

Manuscript - clear

Auto line numbering - O or clear
Text file - clear

Tape decks - off

The ASSM/TED is designed to operate with a record deck and a
separate play deck and/or disc system. A single record/play
deck may be used but one will not be able to create relocatable
object files when assembling from tape.

This software has been extensively tested and is believed to be
entirely reliable. It would be foolish to guarantee a program
of this size and complexity to be free of errors. Therefore,
we assume no responsibility for the failure of this software.

This ASSM/TED is protected by a copyright. This material may
not be copied, reproduced or otherwise duplicated without
written permission from the owner, Carl Moser. The purchaser
may however make copies of this software on his storage medium
(such as paper, disc, or magnetic tape) for his own personal
use. The purchase of this software does not convey any license
to manufacture, modify and/or copy this product. Providing
coples of this software to friends or associates without
authorization i1s a violation of Federal law.

2. TEXT EDITOR (TED) FEATURES

The TED occupies approximately one-half the total memory space

of this software. The purpose of the TED is to setup and
maintain the source file by interacting with the user via various
commands.

When inputting to the TED, the user has the following options:

Control H (hex 08) or
RUBOUT (hex TF) - Deletes previous character. More than
one of these may be entered to delete a

number of characters
Control X (hex 18) - Deletes the entire line.

Break - Halts outputting, and waits for input of appropriate
control code (part 11).

A. Commands

The TED provides 27 command functions. Each command mnemonic must
begin immediately after the prompter (»). When entered, a command
is not executed until a carriage return is given. Although a
command mnemonic such as »PR may be several non-space characters
in length, the ASSM/TED only considers the first two. For example,
2PR, »PRI, »PRINT, and »PRETTY will be interpreted as the print
command. -

Some commands can be entered with various parameters. For example,
»PRINT 10 200 will print out the text in the text file with line
numbers between 10 and 200. One must separate the mnemonic and
the parameters from one another by at least one space. - Do not
use commas.

A description of each command follows:

>AUTO x

Automatic line numbering occurs when an x value not equal zero
is entered. x specifies the increment to be added to each line
number. Auto line numbering starts after one enters the first
line. To prevent auto line numbering from reoccurring, enter
2Au or »Au O,

>CET Fx y

Get text file with data assoclated with file number x from tape
or disc. The data will be loaded at line number y, or will be
appended to end of the text file if the keyword APPEND is entered
for y. Defaults are x=00 and y = line number O.
Examples: 2GE

>GET F13 100

>GET APPEND

>PUT Fw x ¥

Put text file between lines x and y to tape or disc, and assign
the recorded data file number w. If w is not entered, 00 will
be assumed. If x and y are not entered, the entire text file is
recorded, If the letter X is entered as the parameter such as
»PU X and end of file mark is recorded.

>NUMBER x y

Renumber the text file starting at line x in text file and
expanding by constant y. For example to renumber the entire
text file by 10, enter »NU O 10.

2DELETE x ¥

Delete entries in text file between line numbers x and y. If
only x 1s entered, only that line is deleted.

>OUTPUT Fw

Create a relocatable object file on tape deck O and assign file
number w to the recorded data. If w is not entered 00 will be
assumed. This command uses the 256 byte relocatable buffer that
can be reallocated via the >SET command.

>HARD w x

Control output to hard copy output device (printer). Turn on
outputting (w = SET) or turn off (w = CLEAR). The starting page
number is x. This command is designed to leave a small margin
at top and bottom, and provide a page number heading at the top
of each page. It is designed to work with 66 line pages. An
entry of »HA PAGE results in the printer advancing to the top of
the next page.

>PRINT x y

Print the text file data between line number x and y on the CRT.
If only x is entered, only that line is printed. If no x and
y, the entire file is outputted.

>ASSEMBLE w X

Clear the label file and then assemble source in the text file
starting at line number x or O if x is not entered. If w=LIST
then a listing will be generated. If w=NOLIST or LIST not entered
then an errors only output will be generated.

>RUN label

Run (execute) a previously assembled program. If a symbolic
label is entered, the label file is searched for the starting
address. The called program should contain an RTS instruction
as the last executable instruction.

>LABELS

Print out the label file.

>PASS

Execute the second pass of assembly. Not required if source is
all in internal memory and the .CT pseudo op 1s not encountered.

>FORMAT w

Format the text file (where w = SET) or clear the format feature
(where w = CLEAR). Format set tabulates the text file when
outputted. This lines up the various source statement fields.
This feature, set or clear, does not require extra memory.
Assembly output is dependent on the state of the format feature.

>DUPLICATE Fw

Duplicate files from tape 1 to tape O until file w. This command
starts by reading the next file on tape 1 (or the disc input)

and if that file is file w or an end of file (EOF) mark then

it stops. If not, the file just read will be written to tape

0 (or the disc output) and then tape 1 is read again. This
continues until file w or EOF is encountered.

2COPY x ¥y z

Copy lines y thru z in the text file to just after line number
X. The copied lines will all have line numbers equal x. At
completion, there will be two copies of this data - one at x
and the original at y.

>MOVE x y 2z

Move lines y thru z in the text file to just after line number
%x. The moved lines will all have line numbers equal x. The
original lines y thru z are deleted.

>SET ts te 1ls le bs

If no parameters are given, the text file, label file, and
relocatable buffer boundaries (addresses indicating text file
start, end, label file start, end, and relocatable buffer start)
will be output on first line, then on the second line the output
consists of the present end of data in the text file followed
with the present end of data in the label file. This command

is commonly used to determine how much memory is remaining in
the text file. If you are inputting hex digits for these
addresses, preceed each with a '$' character.

If parameters are entered, the first two are text file start
(tsg and end (te) addresses, then the label file start (1s) and
end (le) addresses, and finally the relocatable buffer start
address (bs).

YUSER

User defined command. The ASSM/TED will transfer control to
location $0003. The user routine can reenter ASSM/TED via a
warm start.

2ENTER filename

Enter a filename in the disc directory. This opens a disc output
file. If no filename is entered, the result is a close
operation. See parts 6 and 7 for details.

>LOOKUP filename

Look up a filename in the disc directory. This opens a disc
input file. If no filename is entered, the result is a close
operation. See parts 6 and 7 for details.

>FIND tS1t

Find string S1. See part 10B for details.

>MANUSCRIPT w

If w = SET, line numbers are not outputted when executing the

$PR command. If w = CLEAR, line numbers are outputted when the
;PR command is executed. Assembly output ignores the HMA command.
Tf manuscript is to be generated with this ASSM/TED, manuscript
should be set and format clear (HMA SET,»FO CLEAR). Since the
TED considers a blank line a deletion, one must enter a non
printable control character to trick the TED into inserting a
blank line.

20N n

Turn on tape deck n (where n is O (record), or 1 (play) deck).
If an n is not entered, O is assumed.

20FF n

Turn off ‘tape deck n (where n is 0 (record), or 1 (play) deck).
If an n is not entered, O is assumed.

»CLEAR

Clear text file and turn off tape decks.

>BREAK

Break to monitor (executes BRK instruction). A return to the
TED can be performed at the address immediately after the break
instruction. (A control C operation does the same thing).

>n

Any entry beginning with one or more decimal digits is considered
and entry/deletion of text. Details on this follows.

2EDIT tsltsat or EDIT n
See part 10A.

B. Entry/Deletion of Text

Source is entered in the text file by entering a line number
(0-9999) followed by the text to be entered. The line number
string can be one to n digits in length. If the string is greater
than 4 digits in length, only the right-most 4 are considered.
Text may be entered in any order but will be inserted in the text
file in numerical order. This provides for assembling, printing,
and recording in numerical order. Any entry consisting of a line
number with no text or just spaces results im a deletion of

any entry in the text file with the same number. If text is
entered and a corresponding line number already exists in the
text file, the text with the corresponding number is deleted

and the entered text is inserted.

To delete the entire file, use the »CL command.
To delete a range of lines, use the »DE command. To edit an

existing line or lines having similar characteristics, use the
2ED command.

To find a string, use the »FI command. To move or copy lines
use the MO or »CO commands. To copy from input tape to output
tape until a specific file, use the »DU command.

The CRT input buffer is 80 characters in length. There are

10 tab points preset at 8 character intervals. Thus, the first
tab point is at the 8-th column, the second at the 16-th
column, etc. Entry of control I (AI) will result in a movement
to the next tab point. When inputting, the cursor may not
position exactly at the tab point but will position properly
when the text file is outputted via the »PR command.

Text may be entered more easily by use of the auto line

numbering feature (»AU command). Any »AU x where x does not
equal O puts the TED in the auto line number mode. To temporarily
exit from this mode, type »//. To prevent auto line numbering

from reoccurring every time you insert or delete, enter »AU O.

When entering source for the assembler, one need not space over
to line up the various fields. Labels are entered immediately
after the line number or » when in auto line numbering.

Separate each source field with one or more spaces. If the
format feature is set (see »FO command), the TED will automatically
line up the fields. Note: ~If a space is entered before the
label, the TED will line up the label in the next field. This
should result in an assembler error when assembled. If a
control I (tab) is entered, a tab to the 8-th column is
performed. These tabs are preset and can not be changed.
Commands, mnemonics, and pseudo ops may be entered as upper

case or lower case characters. Assembly labels may also be
entered in upper or lower case but a label entered as upper case
will be unique to the same label entered as lower case.

3. ASSEMBLER (ASSM) FEATURES

The ASSM scans the source program in the text file. This requires
at least two passes (or scans). On the first pass, the ASSM
generates a label file (or symbol table) and outputs any errors
that may occur. On fthe second pass the ASSM creates a listing
and/or object file using the label file and various other

internal labels.

A third pass (via »0U) may be performed in order to generate a
relocatable object file of the program in the text file. This
file is recorded on tape deck O (record deck) and may be reloaded
into the memory using the relocating loader at practically any
location.

10.

A. Source Statement Syntax
Each source statement consists of 5 fields as described below:

»?line number label mnemonic operand comment

label

The first character of a label may be formed from the following
characters:

@Athruz L N] ~ _
While the remaining characters which form the label may be
constructed from the above characters and the following
characters:

/Othrug : ; < > 1

The label is entered 1mmed1ate1y after the line number or
prompter (2) if in the auto line numbering mode.

Mnemonic or
Pseudo Op

Separated from the label by one or more spaces and consists of
a standard 6502 mnemonic of table A or pseudo op of table B.

3

Operand

Separated from mnemonic or pseudo op by one or more spaces and
may consist of a label expression from table C and symbols
which indicate the desired addressing mode from table D.

Comment

Separated from operand field by one or more spaces and is free
format. A comment field begins one or more spaces past the
mnemonic or pseudo op if the nature of such does not require an
operand field. A free format comment field may be entered if

a semicolon (;) immediately follows the line number or » if

in auto line numbering mode. -

Note: It is permissable to have a line with only a label. This
is commonly done to assign two or more labels to the same
address.

To insert a blank line, enter control I (°"I).

11.

TABLE A - 6502 Mnemonics

(For a description of each mnemonic,
consult the 6502 Software Manual)

ADC CLD LDA SBC
AND CLI LDX SEC
ASL CMP LY SED
BCC CPX LSR SET
BCS CPY CLV STA
BEQ DEC ORA STX
BIT DEX PHA STY
BMI DEY PHP NOP
BNE EOR PLA TAX
BPL INC PLP TAY
BRK INX ROL TSX
BVC INY ROR TXA
BVS JMP RTI TXS
CLC JSR RTS TYA

TABLE B - Pseudo Ops

.BA label expression

Begin assembly at the address calculated from the label
expression. This address must be defined on the first pass
or an error will result and the assembly will halt.

.CT

Indicates that the source program continues on tape.

.CE

Continue assembly if errors other than 107, 104, and 117 occur.
All error messages will be printed.

LS

Set the list option so that the assembly begins printing out
the source listing after the .LS on pass 2.

.LC

Clear the list option so that the assembly terminates printing
the source listing after the .LC on pags 2.

.05

Set the object store option so that object code after the .0S
is stored in memory on pass 2.

12.

.0C

Clear the object store option so that object code after the .0C
18 not stored in memory. This is the default option.

.MC label expression

When storing object code, move code to the address calculated
from the label expression but assemble in relation to that
specified by the .BA pseudo op. An undefined address results
in as immediate assembly halt.

.SE label expression

Store the address calculated from the label expression in the
next two memory locations. Consider this address as being an
external address. Note: If a label is assigned to the .SE,
it will be considered as internal.

.RC

Provide directive to relocating loader to resolve address
information in the object code per relocation requirements

but store code at the pre-relocated address. This condition
remains in effect until a .RS pseudo op 1s encountered. The
purpose of the ,RC op is to provide the capability to store an
address at a fixed location (via .SI pseudo op) which links
the relocatable object code module to a fixed module.

EJ

Eject to top of next page 1f »HA SET was previously entered.

.MD

Macro definition. See part 3F.

.ME

Macro end. See part 3F.

.EC

Suppress output of macro generated object code on source listing.
See part 3F. This is the default state.

.ES

Output macro generated object code on source listing. See part 3F.

13.

.DS label exp.

Define a block of storage. For example, if label exp. equated
‘to 4, then ASSM will skip over 4 bytes. Note: the initial
contents of the block of storage is undefined.

.RS

Provide directive to relocating loader to resolve address
information in the object code per relocation, and store the
code at the proper relocated address. This is the default
condition.

.BY

Store bytes of data. Each hex, decimal, or binary byte must be
separated by at least one space. An ascil string may entered
by beginning and ending with apostrophes ('). Example: ,BY

00 'ABCD' 47 69 'Z' $FC #1101

.SI label expression

Store the address calculated from the label expression in the
next two memory locations. Consider this address as being an
internal address.

label ,DE label exp.

Assign the address calculated from the label expression to the
label. Designate as external and put in label file. An error
will result if the label i1s omitted.

label .DI label exp.

Assign the address calculated from the label expression to the
label. Designate as internal and put in label file. An error
will result if the label is omitted.

.EN

Indicates the end of the source program.

Note: Labels may be entered for any of the pseudo ops.

14,

TABLE C - Label Expressions

A label expression must not consist of embedded spaces and is
constructed from the following:

Symbolic Labels:

One to ten characters consisting of the ascii characters as
previously defined.

Non-Symbolic Labels:

Decimal, hex, or binary values may be entered. If no special
symbol preceeds the numerals then the ASSM assumes decimal
(example: 147). If $ preceeds then hex is assumed (example
$F3). If % preceeds then binary is assumed (example %11001).
Leading zeros do not have to be entered. If the string is
greater than 4 digits, only the rightmost 4 are considered.

Program Counter:

To indicate the current location of the program counter use the
symbol =.

Arithmetic Operators:

Used to separate the above label representations:
+ addition - subtraction

Examples of some valid label expressions follow:

LDA #%1101 load immediate OD

STA *TEMP+$01 store at byte following TEMP
LDA $471E36 load from 1E36

JMP LOOP+C - $461

BNE =+8 branch to current PC plus 8 bytes

One special label expression i1s A, as in ASL A. The letter A
followed with a space in the operand field indicates accumulator
addressing mode. Thus LDA A is an error condlition since this
addressing mode is not valid for the LDA mnemonic.

ASL A+$00 does not result in accumulator addressing but instead
references a memory location.

15.

TABLE D - ADDRESSING MODE FORMATS

Immediate

LDA #%1101 binary OD
LDA #$F3 hex F3

LDA #F3 load value of label F3

IDA #'A ascii A
LDA #H, label expression

ILDA #L, label expression

Absolute
LDA label expression
Zero Page

LDA *label expression

Absolute Indexed

LDA label expression,X
LDA label expression,Y

Zero Page Indexed

LDA ¥label expression, X
LDA *label expression,Y

Indexed Indirect

LDA (label expression, X

Indirect Indexed

LDA (label expression),Y
Indirect

JMP (label expression)
Accumulator

ASL A

hi part of the address of the label
expression
lo part of the address of the label
expression

the asterisk (*) indicates zero
page addressing

letter A followed with a space
indicates accumulator addressing

mode.

16.

Implied

TAX Operand field ignored
CLC

Relative
BEQ label expression
B. Label File (or symbol Table)

A label file is constructed by the assembler and may be outputted
at the end of assembly (if a ,LC pseudo op was not encountered)
or via the »LA command. The output consist of each label
encountered in the assembly and its hex address. A label in the
label file which begins with a slash (/) indicates that it was
defined as an external label. All others are considered as
being internal labels. When a relocatable object file is
generated (via 20U command), any instruction which referenced

an internal label or a label expression which consisted of at
least one internal label will be tagged with special information
within the relocatable object file. The relocating loader uses
this information to determine if an address needs to resolved
when the program is moved to another part of memory.

Conversely, instructions which referenced an external label or
a label expression consisting of all external references will
not be altered by the relocating loader.

At the end of the label file the number of errors which
occurred and program break in the assembly will be outputted
in the following format: J/XXXX ,YYYY » 2222

Where xxxx 1s the number of errors found in decimal representation,
yyyy 1s last address in relation to .BA, and zzzz is last address
in relation to .MC.

C. Assembling not from tape

With the source program in the text file area, simply type A8
X. Assembly will begin starting at line number x. If a .CT
pseudo is not encountered, both passes will be accomplished
automatically. If a .CT pseudo op was encountered, the 2PA
command would have to be executed to perform the second pass.

D. Assembling from tape

Source for a large program may be divided into modules, entered
into the text file one at a time and recorded (ZPU) on tape.

17.

At assembly, the assembler can load and assemble each module
until the entire program has been assembled. This would
require two passes for a complete assembly. When assembling
from tape, the file indentification number assigned to the
modules is ignored.

Source statements within a module and the modules themselves will be
assembled in the order in which' they are encountered.

The ASSM assumes that if an end of file condition is encountered
before the .EN pseudo op and a .CT pseudo op had not been
encountered, an error is present (107 AT LINE XXXX)

When assembling from tape, the assembler should encounter a .CT
pseudo op before the end of the first module. Two ways to

accomplish this are:

1. a; Load the first module via the »GE command.
b This module should contain a .CT pseudo op

or
2. a) Clear the text file via the »CL command
b) enter »9999 .CT -
9999 is entered since one may have requested any
assembly beginning with a line number. This
insures that the .CT gets executed.

Next ready the play deck and type 2AS x. Either way the ASSM will
start and stop tape deck 1 in the assembly process until the .EN
pseudo op is encountered. At that point tape deck 1 is turned off,
and the message READY FOR PASS 2 1is outputted.

One is now in the TED mode. Rewind the tape deck (»ON 1 and »O0F 1

or Tl accordingly). Perform 1 or 2 as described above and type
PASS to perform the second pass. Again tape deck 1 will be

Furned on and off accordingly under control of the ASSM software.

E. Creating a relocatable object file (ZOU)

In order to create a relocatable object file, the programmer
should define those labels whose address should not be altered
by the relocating loader. This is done via the ,DE pseudo op.
Non-symbolie labels (example: $0169) are also considered as
being external. All other labels (including those defined

via the ,DI pseudo op) are considered as internal. Addresses
asgociated with internal labels are altered by an offset when
the program is loaded via the relocating loader.

18.

Also, the .SE stores a two byte external address and the .SI
stores a two byte internal address. Similarily the relocating
loader will alter the internal address and not the external
address.

An example of an external address would be the calls to your ROM
monitor or any location whose address remains the same no matter
where the program is located. Locations in zero page are
usually defined as external addresses. Expressions consisting
of internal and external labels will be combined and considered
an internal address. A label expression consisting entirely

of external labels will be combined and considered as external.

To record a relocatable object file, insert a blank tape in
tape deck 0 and ready. If the entire source program is in memory,
simply type »0U.

If the source program is on tape, ready as described in 1 and 2
in part 3D and thentype »0U. The ASSM will turn both tape decks
on and off until the end of assembly. The relocatable object
file will be recorded on the tape in deck O. :

After the relocatable object file has been recorded, record
an end of file mark via the PU X command.

F. Macros

ASSM/TED provides a macro capability. A macro is essentially

a facility in which one line of source code can represent a
function consisting of many instruction sequences. For example,

the 6502 instruction set does not have an instruction to

increment a double byte memory location. A macro could be

written to perform this operation and represented as INCD (VALUE.1l).
This macyo would appear in your assembly language listing in the
mnemonic field similar to the following:

BNE SKIP
NOP

|

INCD (VALUE.1) ; INCREMENT DOUBLE
LDA TEFP

i

Before a macro can be used, it must be defined in order for
ASSM to process it. A macro is defined via the .MD (macro definition)
pseudo op. Its form is

11{label .MD (rine ...Ln)
Where label is the name of the macro (||| must preceed the label),
and L1, L2,..., Ln are dummy variables used for replacement with

the expansion variables. These variables should be separated using
spaces, do not use commas.

19.
To terminate the definition of a macro, use the .ME (macro end
pseudo op).

For example, the definition of the INCD (increment double byte)
macro could be as follows:

1 HINCD .MD (Loc) ; INCREMENT DOUBLE

INC LocC
BNE SKIP
INC LOC+1
SKIP .ME

This is a possible definition for INCD. The assembler will
not produce object code until there is a call for expansion.

Note: A call for expansion occurs when you enter the macro
name along with its parameters in the mnemonic field as INCD
(TEMP) or INCD (COUNT) or INCD (COUNT+2)

or any other labels or expressions you may choose.

Note:In the expansion of INCD, code is not being generated
which increments the variable LOC but instead code for the
associated variable in the call for expansion.

If you tried to expand INCD as described above more than once,
you will get a 106 error message. This 1s a duplicate label
error and it would result because of the label SKIP occurring
in the first expansion and again in the second expansion.

There is a way to get around this and it has to do with making
the label SKIP appear unique with each expansion. This 1is
asgomplished by rewriting the INCD macro as follows:

1 {1 INCD .MD (Loc) ;sINCREMENT DOUBLE
INC 1.0C
BNE ...SKIP
INC LOC+1

...SKIP .ME

The only difference is ...SKIP is substituted for .SKIP. What
the ASSM does is to assign each macro expansion a unique macro
sequence number (2%*¥16 maximum macros in each file). If the
label begins with ... the ASSM will assign the macro sequence
number to the label. Thus, since each expansion of this macro
gets a unilque sequence number, the labels will be unigfie and
the IC6 error will not occur.

Tf the label ...SKIP also occurred in another macro definition,
no 106 error will occur in its expansion if they are not nested.
If you nest macros (i.e. one macro expands another), you may
get a 106 error if each definition uses the ...SKIP label.

20.

The reason this may occur is that as one macro expands another

in a nest, they each get sequentially assigned macro sequence
numbers. As the macros work out of the nest, the macro sequence
numbers are decremented until the top of the nest. Then as futher
macros are expanded, the sequence numbers are again incremented.
The end result is that it 1s possible for a nested macro to

have_the same sequence number _as one not nested or one at a different
level in another nest. Therefore if you nest macros, it 1is suggested

that you use different labels in each macro definition.
Some futher notes on macros are:
1) The macro definition must occur before the expansion.

2) The macro definition must occur in each file that references
it. Each file is assigned a unique file sequence number
(2#%16 maximum files in each assembly) which 1s assigned
to each macro name. Thus the same macro can appear in
more than one file without causing a 106 error. If a
macro with the same name is defined twice in the same file,

then the !06 error will occur.

3) Macros may be nested up to 32 levels. This is a limitation
because there is only so much memory left for use in the stack.

4) If a macro has more than one parameter, the parameters
should be separated using spaces - do not use commas.

5) The number of dummy parameters in the macro definition
must match exactly the number of parameters in the call
for expansion.

6) The dummy parameters in the macro definition must be symbolic
labels. The parameters in the expansion may be symbolic or
nonsymbolic label expressions.

7) If the .ES pseudo op is entered, object code generated by
the macro expansion will be output in the source listing.
Also, comment lines within the macro definition will be output
as blank lines during expansion. Conversely, if .EC was
entered, only the line which contained the macro call will
be output in the source listing.

8) A macro name may not be the same as a 6502 mnemonic, pseudo op,
or conditional assembly operator.

21.

G. Conditional Assembly

ASSM also provides a conditional assembly facility to conditionally
direct the assembler to assemble certain portions of your program
and not other portions. For example, assume you have written

a CRT controller program which can provide either 40,64 or 80
characters per line. Instead of having to keep 3 different

copies of the program you could use the ASSM conditional

assembly feature to assemble code concerned with one of the
character densities.

Before we continue with this example, lets describe the Conditional
assembly operators:

IFE 1label exp.

If the label expression equates to a zero quantity, then assemble
to_end of control block.

IFN 1label exp.

If the label expression equates to quantity not equal to zero,
then assemble to end of control block.

IFP 1label exp.

If the label expression equates to a positive quantity (or 0000),
then assemble to end of control block.

IFM label exp.

If the label expression equates to a negative (minus) quantity,
then assemble to end of control block.

* KK

Three asterisks in the mnemonic field indicates the end of the
control block.

SET label=label exp.

Set the previously defined label to the quantity calculated
from the label expression.

Note: All label expressions are equated using 16 - bit
precision arithmetic.

22.

Going back to the CRT controller software example, a possible
arrangement of the program is as follows:

CHAR.LINE .DE 40

{

IFE CHAR.LINE-40
;CODE FOR 40 CHAR./LINE

* %%

IFE CHAR.LINE-64
;CODE FOR 64 CHAR./LINE

*¥¥

IFE CHAR,LINE-80
;CODE FOR 80 CHAR./LINE

* %%
;COMMON CODE

|

Shown i1s the arrangement which would assemble code associated
with 40 characters per line since CHAR.LINE is defined as equal
40. 1If you wanted to assemble for 8C characters, simply define
CHAR.LINE as equal 80.

Conditional assembly can also be incorporated within macro
definitions. A very powerful use is with a macro you don't

want completely expanded each time it is referenced. For example,
assume you wrote a macro to do a sort on some data. It could

be defined as follows:

EXPAND .DE O
{1{ SORT .MD
IFN EXPAND
JSR SORT.CALL ;CALL SORT
* % ¥
IFE EXPAND
JSR SORT.CALL
JMP ..,ABC
;SORT CODE FOLLOWS
SORT. CALL

) RTS
...ABC SET EXPAND=1

Hilio

23.

In this example, EXPAND is initially set to O. When the macro

is expanded for the first time, EXPAND equals O and the code

at SORT.CALL will be assembled along with a JSR to and a JMP
around the sort subroutine. Also the first expansion sets EXPAND
to 1. On each suceeding expansion, only a JSR instruction will be
assembled since EXPAND equals 1. Using conditional assembly in
this example resulted in more efficient memory utilization over

an equivalent macro expansion without conditional assembly.

H. Default Parameters on entry to ASSM

. Assumes not assembling from tape (otherwise use .CT)

. Does not store object code in memory (otherwise use .0S)

. Begins assembly at %0200 (otherwise use .BA)

. Output listing set (otherwise use .LC)

. Stops assembly on errors (otherwise use .CE)
Stores object code beginning at $0200 unless a .BA or .MC
is encountered and if .0S is present.

. Object code generated by macros does not appear on the
assembly listing (i.e. default is .EC).

2k,

4, EXAMPLES
A. Listing illustrating text entry

An example of the printout which occurs when inputting text
in the text file follows:

PFORMAT SET

AUTO 10

>100;THIS PROGRAM ADDS 06 TO REGISTER X
01102START TXA

0120 CLC

0130 CLD Note the use of // to terminate the auto
0140y ADC #6 line numbering. Auto line numbering can
OI502END RTS be restarted by simply entering the line
01602 .EN number where insertion is to begin. To
21767 éAX prevent auto line numbering, simply type >AU
Z1512// or AU 0.

B. Output listing from ASSM

Listing 1 is a source listing output of a program which provides
a formatted hex dump of a block of memory. It is presently
configured for TIM based systems but can be easily modified for
other systems.

5. USING THE RELOCATING LOADER

A source listing of the relocating loader (1isting 2) is provided.
The relocating loader is not part of the ASSM/TED program body,
and the user will have to enter it via the listing. '

If you prefer to have the loader to reside in some other part of
memory, you should enter the source into the text file, assemble,
and then create a relocatable object file on tape.

To record a program in relocatable format, first assemble (without a
.0S pseudo op) the program at location 0000 (.BA $0). Next create

a relocatable object file via the »0U command. Terminate the
relocatable object file with an end of file mark via the 2PU X
command. To reload a program in relocatable format, first enter

the address where you want the program to reside in memory locations
OOEO (1o) and OOEl (hi), the modules file number in 0110, and

then execute.

25.

When executing the relocating loader, if an error or an end of
file mark 1s detected, a break (BRK) instruction will be executed
so as to return to your monitor. The contents of register A
indicates the following:

00 good load
EE error in loading

All programs to be created in relocatable format should be assembled
at $0000. This is because the offset put in OOEQ and OOEl before
execution is added to each internal address by the loader in order
to resolve addresses while relocating the program. If the

program was originated at say 1000, then one would have to enter
F200 as the offset in order to relocate to 0200 (i.e. F200+1000=
0200). This is somewhat more confusing than an assembly

beginning 0000.

In addition to the program memory space, the relocating loader
uses the following memory loeations.

0008-00C9, 00ODC-O00EL
0110, 011E-0121, 017A-018%4

Plus other stack area for subroutine control.

6. CONFIGURE ASSM/TED FOR DISC OPERATION

ASSM/TED provides the user with four 2-byte address vectors
for linkage to your disc operating system (DOS). They are:

DISCl ¥Fo,HFI

Address vector to your DOS (or patch to DOS) which accepts the
output data filename beginning at $0135,Y. The user provided
patch should accept filename characters by incrementing R(Y)
until a space is encountered. If R(Y)=50 hex then your DOS

- should instead treat this as a CLOSE output file operation.

DISC2 §F2,HF3

Address vector to your DOS (or patch to DOS) which accepts the
input data file name beginning at $0135,Y. The user provided patch
should accept filename characters by incrementing R(Y) until a
space is encountered. If R(Y)=50 hex then your DOS should

instead treat this as a CLOSE input file operation.

DISCI.VEC HF6, §F7

Vector to your DOS (or patch) indicating that data 1s to be
conditionally loaded into memory defined as follows:

26.

LOAD/NO -if=1 then enter in memory.
($123) 1if=0 then get from disc but don't move to memory.
This is required to skip over files not selected.

START.ADD - start address of memory.
($124-125)

END.ADD - end address of memory.
($126-127)

DISCO.VEC H#F#, #FsS

Vector to your DOS (or patch)indicating that data in memory range
START.ADD thru END.ADD is to be stored on disc. LOAD/NO should
be ignored.

7. USING ASSM/TED WITH DISC

Before operating with the disc, the user should set up the
address vectors as described in part 6. This could be done by
executing user provided code using the »RUN command, or simply
manually entering address vectors using your system monitor.

There are two commands which determine if data is to input or
ocutput from tape or disc. They are:

ENTER

Enter in disc directory. A vector thru DISCl is performed. If
entered with a filename then an open of the output file is
performed. At this point all output normally going to tape will
go through vector DISCO.VEC. 1If no parameters are entered, when
your DOS should assume a close operation. At this point any
output will be to tape.

»LOOKUP

Lookup in disc directory. A vector thru DISC2 is performed. If
entered with a filename then an open of the input file is
performed. At this point all input normally read from tape will
go ghrough vector DISCI.VEC. If no parameters are entered, then
~your DOS should assume a close operation. At this point any input
will be from tape.

27.

8. ERROR CODES

An error message of the form lxx AT LINE yyyy/zz where xx 1s

the error code, yyyy is the line number, and zz is the file number
will be outputted if an error occurs. Sometimes an error message
will output an invalid line number, This occurs when the error

is on a non-existant line such as an illegal command input.

The following is a list of error codes not specifically related
to macros:

ERROR CODE

17 Checksum error on tape load.

16 Illegal tape deck number.

15 Syntax error in »ED command.

i2 Command syntax error or out of range error.

II Missing paramefer in »NU command.

10 Overflow in line # renumbering. CAUTION--Y6U should
properly renumber the text file for proper command
operations.

QF overflow in tex¥ -file - lire noT inserted.

OE Overflow in label file - label not 1lnserted.

0D Expected hex characters, found none.

ocC Illegal character in label.

OB Unimplemented addressing mode.

OA Error in or no operand.

09 Found illegal character in decimal string.

08 Underfined label (may be illegal label).

o7 .EN pseudo op missing.

06 Duplicate label

05 Label missing in .DE or .DI pseudo oOp.

ok .BA or .MC Operand Undefined.

03 Illegal pseudo op.

02 Illegal mnemonic.

01 Branch out of range.

00 Not a zero page address.

ED Error in command input.

28.

The following is a 1list of error codes that are specifically
related to macros and condition assembly:

ERROR CODE

2F Overflow in file sequence count (2%¥16 max.)
2E Overflow in number of macros (2%*16 max.)
2B .ME without associated .MD

2A Non symbolic label in SET

29 Illegal nested definition

27 Macro definition overlaps file boundary

26 Duplicate macro definition

25 Quantity parms mismatch or illegal characters
24 Too many nested macros (32 max,)

23 Macro definition not complete at .EN

22 Conditional suppress set at .EN

21 Macro in expand state at .EN

20 Attempt expansion before definition

9. FILE NUMBERS

Information to be recorded on tape via the $PU and 0U commands
may be assigned a file indentification number to diStinquish
between other files of information. A file number is a decimal
number between O and 99. To enter a file number as a parameter
in the PU,»0U, or 2GE commands, begin with the letter 'F!
followed by the file number. Examples are FO, F17, F6, etc.

If no file number is entered with the SPU and »0U commands, file
number O will be assigned by default. -

When loading, all files encountered will result in the outputting
of their associated file numbers and file length in bytes. The
loaded file has, in addition, the memory range of the location
of the loaded data. Example: $GET F17

FOO 01A3

F67 0847

F17 OF93 0200-1193

2

An end of file mark may be recorded via the »PU X command to
indicate the end of a group of files. If an end of file mark is
encountered when loading, FEE will be outputted and a return to
the command mode will be performed.

29.

10. STRING SEARCH AND REPLACE COMMANDS
A. Edit command

A powerful string search and replace, and line edit capability
is provided via the »EDIT command to easily make changes 1in the
text file. Use form 1 to string search and replace, and form 2
to edit a particular line.

Form 1 A
#
2EDIT tS1tsS2t %d * x ¥y

Where: ¢ is a non-numeric, non-space terminator
81 1is string to search for.
32 1is string to replace S1.
4 1is don't care character. Preceed with % character
to change the don't care, else don't care character
will be % by default.

* indicates to interact with user via subcommands
before replacing S1.

indicates to alter but provide no printout.

A (space) indicates to alter and provide printout.

X 1line number start in text file.

y line number end in text file.

asterisk (*) prompted

subcommands : A alter field accordingly.

D delete entire 1line.

M move to next field - don't alter.

S skip line - don't alter.

X exit »ED command

AF (control F) - enter form 2
defaults d =%

x =0

y = 9999

A = (space) print all lines altered

For example, to replace all occurances of the label LOOP with
the label START between lines 100 and 600, enter:

>EDIT .LOOP.START. 100 600

To simple delete all occurrances of LOOP, enter:
2EDIT .LOCP. . 100 600

Uée the *,#,and Aas described.

The period was used in the above examples as the terminator but
any non-numeric character may be used.

. AT the end of the »EDIT operation, the number of occurrances of

the string will be output as //xxxx where xxxx is a decimal
quantity.

30.

Form 2
2EDIT n
Where: n is line number (0-9999) of line to be edited.

subcommands: AF control F) - Pind user specified character.
cr carriage return) - retain any remaining part
of a line.
AD (control D) - delete any remaining part of line.
AH delete a character.

For example, to change LDA to LDY in the following line
LOOP1 LDA #L,CRTBUFFER LOAD FROM BUFFER

Type AF followed with A, then AH, then Y, and then terminate
line with a carriage return.

The corrected line will then be outputted and entered in the text
file. '

B. Find Command

If you want to just find certain occurrances of a particular
string, use the »FIND command. Its form is:
A
SFIND tS1t # x ¥y

Where: t, S1, #,4, x, y are as defined in part 10.A.

For example, »>FIND /LDA/ will output all occurrances of the
string LDA in the text file.

AT the end of the »FIND operation, the number of occurrances of
the string will be cutput as //xxxx where xxxx is a decimal quantity.

A unique use of this command is to count the number of characters
in the text file (excluding line numbers). The form for this is:

2FIND /%/#

11. CONTROL CODES

Ascii characters whose hex value is between hex 00 and 20 are
normally non-printing characters. With a few exceptions, these
characters will be output in the following manner: 4Ac where

¢ 1is the associated printable character if hex 40 was added

to its value. For example, ascii 03 will be output as AC, 18
as ~X, etc.

In addition, some of these control codes have special functions
in ASSM/TED.

31.

Control codes which have special functions are:

r@
AB
AC
D
AF
NG
AH
AT
AT

12,

* null (hex00)
go to Basic
go to Monitor (executes BRK instruction)
delete - used by »EDIT
find - used by »EDIT

* bell
* backspace (delete previous character)
* horizontal tab
* linefeed
* carriage return
continue processing but suppress output to CRT
* continue after break operation
(as ATn) toggle Motor Control on deck n
delete entire line entered
jump to location $0000., Return via warm start
terminate processing and go to "»" mode.
* escape character

¥ = Non-printing control character

SPECTAL NOTES

. In addition to the program memory space the ASSM/TED uses

the following memory locations

0100 - up depending on type of function
00B9 - OCF8

plus other stack area for subroutine control. The CRT
buffer is in locations 0135 - 0185

. Keep the cover closed on the tape deck as this keeps

the cassette cartridge stable.

. When entering source modules (without ,EN) you can perform

a short text on the module by assembling the module while
in the text file and looking for the 107 error. If other
error messages occur, you have errors in the moddle. This
short test is not a complete test but does check to make
sure you have lined up the fields properly, not entered

duplicate labels within the module, or entered illegal

mnemonics or addressing modes.

32,

. A 64 character/line (or greater) output device should be
used with this program when printing an assembly listing
in order to provide a neat printout without foldover to next
line.

. Any keyboard input greater than 80 characters in length
will be automatically inserted in the text file without
the user having to enter a carriage return.

. Locations $00D5 {1lo) and $00D6 (hi) contain the address
of the present end of the label file. This address +2
should contain a zero (a forward pointer).

Locations $00D3 (lo) and $00D4 (hi) contain the address
of the present end of the text file. This address +2
should contain a zero (a forward pointer).

. The ASSM/TED and the Relocating Loader were designed so that
they will execute in RAM or ROM.

. To find the address of an entry in the text file, output
the line via the PR command, issue the BR command, and
then get the contents of memory location 00DD, OODE.
This is an address which points to the end of the outputted
line.

LISTINGS

1. Hex dump program
2. Source listing of relocating loader

TABLES

A) 6502 Mnemonics

B Pseudo ops

C Label expression
D Addressing Modes

PRGE 01 LIS'E‘I\S -1_

PASZEMEBLE LIZT

0100 STHIZ PROGRAM 1T PROVIDED RS AM EMAMPLE OF A PROGRAM
0200 SWHICH LZET VYARIOUS FERTURES DESCRIBED IN THIS MANUAL.
QZ00 STHIS FROGRAM DOUTLITE A HEX LISTING

0400 5

oS00 .ER R0
00 LOC

o700 CRLF .DE F¥72ER
azon TEYT .IE ¥7ZB1
0500 IPACE .DE E73F7
1000 ZPRCEZ .LE 37374
1100 COUNT JO1 EMD+OF «PGM
1200 ADDRE LE E0
1200 EMD .DE E010R
1400 5

1500 AT START. ZET PRIMTER TO BEGIN FRINTING ON 3-RFL LINE
1600 sOM Z-RD LINE

1700 STTART RADDREST IN ADDRE:

1500 SEND ADDREZE IN EMD

1200 3

2000 %

2100 SMACKO DEFINITIOM -- IMCREMENT LOUBLE BYTE

zean .EZ

2300 8

400 $RFINCD ML

2500 IMC

00 EME

=il IMC

ZEOD .. LEKIF .ME

Zoan 3

2000 3
aooo- A% 00 3100 BEGIN LIA «=%00
agoz- AA TH=
anoz- 8D SE 00 TH COUNT
anne- S0 28R 72 0 MEST+LM JER CELF

LBA COUHT
fDEC. &0 LINES FER FPRGE
CMP 1 SDECIMAL =0

0oa%- AD SE OO0

3

£}

!
aooc- C9 20 e
GO0E- 290 4D 3
4

4

4

HI] BCC F
anLo- A2 00 o0 LOA 1]
ngtz2- 2o S 00] ZTA COUNT
o0 SISEUE & CRLF-Z AT END OF &0-TH LINE TO G0
4200 7O HEXT FAGE
n1sS- A0 05 4300 LIM B 0e
0o17- 20 2R P2 4400 LOOPS JER CRLF
GuiH- 38 4500 DEY
GO01E- DO FR 4R 00 EME LDOPZ
0010- RO 10 4700 ZKIP LI #%10
a01F- RS 01 4500 LDA +ADDRES+%E1
nogi- 20 Bl T2 49an AZROTENT
aog24- AS 00 sS000 LDA +RLDEI+%0
no2e- 20 B1 72 S1o0 ¢ TEYT
noee- g0 74 73 S204 & ZPACEZ
S300 sNOW ARDDRESE IE OUTFUTTED
a0zc- AL 00 S4un LDOFE LIA CADDRSE ax

0AazE- 20 B v& S500 JEROTENT

PRAGE 02

0031- RS 01 5600 LDA +ADDRS+$01
0023- CD 0B 01 5700 CMP END+$1
0036- S0 11 S200 BCC NOTEND
0038- FO 08 5900 BEG CKLO
002A- 20 SR 72 ©000 ENDEPEM JEZR CRLF
003D- 00 3100 ERK
003E- EA 6200 HOP
003F- 4C 00 00 &300 JMP BEGIN
0042- AS 00 6400 CKLO LDA *ADDRS+§0
0044- CD OAR 01 €500 CMP EHD+$0
0047- B0 F1 6600 BCES EMDePGM
6700 NOT4END INCD ¢ADDRS? $INCREM. RDDRS
0049- E6 00
004B- DO- 02
004D- E6 01
004F- 20 77 72 6200 JSR SPRCE
0052- &8 £900 DEY 3R{Y¥)=BYTE COUNTER
0053- DO D7 7000 EME LOOP2
0055- EE 5B 00 7100 INC COUNT
00S8- 4C 06 00 T7E&00 JMP MEXTLM

7300 END¢OF¢FGM .EN
LABEL FILE: [~ = EXTERNAL I

7CRLF=728BR <TBYT=72E1 <ZPRCE=V377

/SPRACE2=7374 COUNT=00SE AANTRS=0000
#END=010R BEGIN=000Q0 MEXT¢LM=0006
LOOP3=0017 . SKIP=001D ‘ LOogrP2=mq02C
-END«PGM=003R CKLO=0047 NOT+END=004%
®=0000 END¢OF «FGM=005B

#-0000s005B005E
>

PAGE ©1

20ed LEJ
ou7e
2050
2090
21900
@1ie
2120
1708
@140
2150
@iea
@178
2180
2198 3
-0 . BRA $3C27

EC27- 4C EE IF @210 JHMP CRT/OUTPUT
Bzz0 s
=0 . BR $ZFDE
@248 SCRT/0UTPUT
@=5@ sPURPOSE: QUTPUT A CHARAKTER TO THE OUTPUTDEVICE

*# *
COPYRIGHT 1988 RY U. 0. SCHRODER =
+ ES

PURPOSE OF THIS PART:

1. ASSIST YOU TO IMPLEMENT THE ASSM/TED ON YDUR SYSTEM
2. WARN YOU ON SOME DIFFICULTIES THAT MIGHT DCCUR
USING THE ASSM/TED

ME M GE uB B B aE uE ME w0 N uE

D2ED THE RASCII-CHARAKTER IS8 IN M.
278 3 AT RETURN THE CONTENT OF AL REGISTERS
2280 3 MAY BE CHANGED.
229 s
A3 1F AZ0@ CRTY/CR.FND LDR #$1F sDELAYTIME AFTER CR
20 87 IF 2Iie JER DELAY .
A9 2A 2 LDR #+:00 FDUTPUT LNFD AFTER CR
20 EB ZF @33 JER ORT/OUTPUT
A9 1E Az40 LDA #%1E SDELAYTIME AFTER LNFD
=0 87 IF 258 JER DELARY
EfR ZEB NOP
ER az7e NP
&0 azes RTS
48 @z9@ CRT/0UTPUT PHA
ER B4 NOP SINSERT LDY $811F
EA B4a1@ NOP 3 BNE CRT/0OUTZ
ER 420 NOP 3IF YOU USE ONLY ONE
ER D4Z0 NOP SHARDCOPY DEVICE FOR INPUT/QUTPUT
ER a4y NOP
20 AR LE B4Se JER KIM/OUTCH
&8 B4ER CRT/OUTZ PLA
Q4780 CMP #+@D sCARRIAGE RETURN NEEDS
F@ E@ Q480 BEQ CRT/CR. FND
=1 uli=tn} RTS
BS02 5. ...t nenanns Prsasasaasrassesnas
83510 s

@528 sKEYBOARD INPUT

@538 sTHE KIMVERSION ABSUMES THAT INPUT WILL
@540 sBE ECHDOED BY HARDWARE. IF YOU CAN PREVENT
@350 THE ECHO, PLEASE INSERT JSR $IZIBFL1 AT ZC9F

ASED .BA $3089
I0B9- 2B 5A 1E @570 JER KIM/GETCH SRETUR CHAR IN CR)
as5ee s
n590 - BA $IC9F
QEGD
EC9F- EA Pe10 NOP sCHANGE THIS INTO JSR %3BF1
EZCAD- ER DEZO NOP $IF IT IS POSSIBLE FOR YOU

ZCAR1- ER DEZR NOP 3TO PREVENT ECHOING THE INPUTCHAR.

EBDE-

EFE7-
IFBe-
EFE9-
JFEB-
IFED-
GFBE-
EF9R-
FF92-
EF9E-
EF95-
IF97-~

28

77

a1
FC

a1
F&

@i
F@

EF

17

17

1E

2640
2650
DEED
BE7Q
[l =tatv]
2E9D
2728
2712
Q70
Q778
a748
Q750
760
ar7e
a7e0
2790
utsinlng
=38
=y}
2ez0
aean
2850
2862
2E78
ese
Es
as2e
2910
2920
a5ze
2942
2950
236l
na7a
2980
2990
1000
1010
1028
1030
1040
1058
100
1a7@
ipee
1290
iige
1112
1122
1130
1140
1150
1160
1170
1180
1192
1220

PAGE @2

iTHE BREAK-TEST ROUTINE IS ENTERED ONLY IMMEDIATLY
FAFTER PRINTING A CARRIAGE RETURN.

SRR WARNING IRRR RS

TR

PIF YOU DON'T WAIT ON THE PROMPTING CHATAKTER
FAND ENTER ANY KEY WHILE THE CARRIAGE RETURN
;I8 PRINTED, THAT KEY WILL BE INTERPRETED

A5 A BREARK! ! EVERY KEY OR COMMAND THEREAFTER
SWILL BE IGNDRED — EXCEPT SOME CONTROL KEYS! !
iTO RECOVER PRESS CONTROL-2 OR CONTROL-Z

FUNTIL YOU GET THE PROMPTING CHARAKTER AGAIN.

"R E R B W AN W NSRS WARMEE NN B YR ERE NS

[FrRpT—

. BRA $ZBDZ SONLY ONE CALL!!!
JSR BRERKTEST ;s CARRY=1=BRERK
-BR $ZF77

SEREAKTEST

s PURPOSE = DETECT IF ANY KEY IS DOWN WHILE

H PRINTING CRARRIAGE-RETURN
SEXPLANATION: INPUT ON KIM IS ON THE
H MOST SIGNIFICANT BIT OF 1740
BREAKTEST BIT $1740
CLC sCARRY=B=NO BREAK
BMI NO/BREGK sMSB=1=N0 INPUT
BREAK/WAIT BIT $174B FWAIT UNTIL ENMD OF BREAK
BPL. BREAK/WAIT
JER KIM/GETCH
SEC sCARRY=1=BREAK
NO/BRERAK RTS

DELRY
PURPOSE: DELAY TIME ACCORDING TD CONTENT OF A.

3 M3 ME a2 T e

H USED ONLY BY CRT/CR.FND
DELRY PHA
DELAY. 2 PHA

DELAY. 4 SEC #1
BNE DELAY.4
PLA
SBC #1
BNE DELAY.Z
PLA
SBEC #1
BNE DELAY
RTS

T a3 AN NN N WY W EENEEEERREREE RN E e

e

KIM/GETCH .DE $1ESA SUSED TWICE
KIM/OUTCH . DE $1EABG FUSED ONE TIME

3 IGNORE KEY AFTER BREAK

DURATION I8 CAY*CAI*(A), WITH 2 (A { %FF

202B- =

IFAE-
IFAB-
ZFAB-
EFAD-

SFEO-
IFBI-
IFES-

EIFRB-

A3
=18
A9

ep

=13}
=]
ap

=1}

AE

)
FE
1C
FF

az

az

et

17

17

17

1218
1228
1230
1240
1250
1270
1280
1290
1Zoe
1318
1328
13Z0
1240

50
1368
1270
1380
1390
1400
1418
1420
1438
1448
14358
1460
1470
1480
1450
1500
1512
1520
1530
1540
1550
1560
1570
1580

.EJ

PAGE @3

sTHE BRERK IS5 USED ONCE AT 2BA9 TO EXIT TED/ASSM
$IF YOU DON'T LIKE THIS WAY OF EXIT
sCHANGE THIS BRERAK INTO A JUMP TO 222

7

$ADDRESS WHERE A SUBROUTINE IS CALLED
5TO INIT THE BREAK-VEKTOR ON THE KIM

7

- BR
JEBR

. BA

BRK. VCT. IN LDA

wr owm owe

ME ME uB up uE g

NI ME ME NE SR uE an wn

STA
LDA
STA

$202B
BRK. VCT. IN IT

®IFAE

#4500 ;51000 1S BREAK-ENTRY ON KIM
$17FE sKIM DDES JMP ($17FE) AT BRERK
#E10

HL7FF

INIT OF I/0 PORT FOR CASSETTE

LDA
ORrRA
STR
RTS

H170%
#400001011
%1702

TABLE OF MEMORY-USE AT 3ZE2C

TEXTBUF/8TART
TEXTEBUF/END sASSM/TED USES I BYTES MORE'!

SYMTAB/START
SYMTRB/END 3ASSM/TED USES X BYTES MORE

RELOC/BUF ;256 BYTE BUFFER

ZBD4a-

4168-
4169-
4180~
416D~
416F~
4171~
4177~

IEZC-

8D4-

4168~
416A-
416B-
41EE-
41eF~
4171~
4173-

EE2C-

]

48
=@
&8
ca
jat]
A9
=17}

74

a3
48
20
&8
ce
Fa
[=1]

74

&8

20

an

2R

a4l

&A

2A
i}

ap
F3

41

41

2a

41

22

1590
1620
1610
1620
1628
1642
1850
1662
1670
1680
16902
1702
i71i@
1720
1738
174@
1758
1760
177@
1780
1798
1808
1810
1820
1830
1840
1850
1860
1872
1880
1890
1900
1910
1922
1938
1948
1850
1960
197@
i98e

PRAGE Q4

EJ
iEXAMPLES OF HARDCOPY DRIVER FOR PRINTER.
iNOTE: FOR EACH NEW LINE THE SUBROUTINE HAS TO RETURN
3 ONE BYTE @A FOR THE LINECOUNTER ROUTINE.
REGISTERS X, Y MAY BE CHANGED.

RRDCOPY . DE 0ooe sFOR REFERENCE ONLY

L T T

PRINTER WITH AUTO-LINEFEED

Mg wr v vz oux wr T e wr o

- BA $Z8D4

JER HARDCOPY/A

<BA %4168 ;0R ELSEWHERE
HARDCOPY/A PHA

JSR HARDCOPY

PLA

CMP #$0D

BNE HC/RTS sON CARRIAGE RETURN

LDA #+8A ;CHANGE $@D INTO @A
HC/RTS RTS
END/A

8
k]

CHANGE START OF TEXTBUFFER
«BR $3ZE2C
- 51 END/A

TRK N NSRS NN W EE RN AR NSNS sk EE R AE R

PRINTER WITHOUT AUTO-LINEFEED

B T TRV Y

. BA «38D4
JSR HARDCOPY/E
- BA %4168 0R ELSEWHERE
DO/LINFEED LDA #$0A
HRRDCOPY/B PHA
JER HARDCOPY
PLA
CMP #$0D $ON CAR.RET. @ ADD LNFD
RER DO/L.INFEED
RTS
END/B
iCHANGE START OF TEXTBUFFER

. BA $3TE2C
- 51 END/B

LABEL FILE:

4158~ 17
415E-
A4168-
4162~

az

0z
FF
24

4158~ 17
A415E-
4160~

41632~

AD
49
29
&

.1-»/

CRT/CR. FND=ZFDE&
BREAKTEST=3IF77
DELAY=3ZFB87
/KIM/GETCH=1ESA
/HARDCOPY=0002
END/R=4174
ND/B=4174

/ /0003, 4163, A1ED

PAGE @5

LEJ
sMODIFICATIONS IN THE CASSETTE ROUTINES SUPPLIED
C/PORT . DE #1702

$CHANGED IN/PORT ROUTINE OF CASSETTE PROGRAM
LBA S415B

LDA C/PORT

AND H&FF

AND #400000100
RTS

IN/PORT

sMASK ALL BUT BIT &

.,

e wz

az

SVERSION IF YOUR CASSETTERECORDER INVERTS DATA

r

-BRA $415B

IN/PORT LDAR C/PORT
EDR #$FF sGOFTWARE CAN IMVERT TO!!
AND #%00200108 sMASK ALL BUT BIT 2
RTS

[EREE St HARDWARE NOTES IR RD

1. DO NOT CONNECT THE REMOTE-CONTROL OR EARPHONE

DIRECTLY TO THE APPLICATION-CONNECTOR OR PIA.

IT MIGHT DESTROY THE PIA!!!

USING BITS OF THE B-PORT RS OUTPUT - NOTE THIS:
READING A OUTPUTBIT WILL NOT ALWAYS REFLEKT THE
ACTUAL VALUE THAT IS OUTPUTTED. READING THE
B-PORT RETURNS THE VALUE THAT IS5 READ ON
THE OUTPUT PINS - S0 EXCESSIVE LDADING A PORT
TO GROUND WILL ALWAYS RETURN ZERO.

CONCLUSION: DO NOT EXCESSIVE LOAD ANY BIT.

7

s

9

k]

a

2

o

7

u

7

®

7

7
-
7w
»
¥
9
K
7
ki
7
»
7
"
3

u. 0. SCHRODER

e

- EN

EXTERNAL +«

CRT/0OUTPUT=ZFEE
BREAK/WAIT=ZF7D
DELAY. 2=2F88

/KIM/DUTCH=1ERAB
HARDCOPY/A=41E8
DO/LINFEED=4168
/C/PORT=1702

CRT/0UTZ2=IFF1
NO/BREAK=ZFEE
DELAY. 4=%F89
BRK. VCT. IN=3FAE
HEC/RTS=4173
HARDCOPY/B=41ER
IN/PORT=4135B

MACRO ASSM/TED - Unconfigured Version and Versions for
KIM

The information on these sheets describe how to load the data on the
supplied cassette and configure this software for your system.

The supplied cassette is in a specially recorded format which can
be read by any 6502 based system with a system clock of 1 mhz.
The procedure for loading the data on this cassette is as follows:

Procedure for loading the data on the cassette tape

1)
2)

3)

4)

n
~

[}
~

Read the description of the Fast Cassette Interface. This is
the software which reads the cassette data.

Manually enter the object code contained on the Fast Cassette
Interface listing, and construct the connection to your tape deck.

Configure this listing per your system. The required changes
pertain to cassette input/output ports and are underlined in
the listing.

Enter the following data: Address Data
0123 01
0124 (0]6]
0125 20
0126 FD
0127 3F

Insert cassette tape and position a few seconds before start
of data, execute the Fast Cassette Interface software at 4141,
and then press the Play switch on the tape deck.

After approximately one minute, the data should have been loaded.
If the contents of the accumulator = 00 then you have a good load.
If = EE then an error was detected, and you should try again.

If it appears the program "hung up", then recheck connections

and the modifications to the Fast Cassette Interface software.
Also try via the invertor in the circuit.

The following is not required for the following versions: KIM
Configure ASSM/TED for your system requirements

1)

2)

Configure via table A by entering the address of appropriate
routines or patches.

If you prefer, link ASSM/TED to the Fast Cassette Interface
software as follows: Address Data

3FA3 4c A5 40 links in load
3FD3 4C 00 40 links in record

C. SYM

The default file boundaries for SYM are: text file = 0200-0BFC,
label file =0COO-OEFC, and relocatable buffer = OFOO. When
entering the file boundary via the >SET command, enter the end
address minus 3 (example: If the end = OBFF, then enter OBFC).

ASSM/TED provides software for controlling two tape motors.
ASSVM/TED assumes the record deck (deck 0) is connected to the
on board motor control. If the user implements motor control
hardware for the play deck (deck 1), ASSM/TED can control it
via pin A-15 ("1" = on, "O" = off).

ASSM/TED for the SYM uses BB-F8 of zero page and most of the
bottom of the stack (0100 up).

PAGE 01 L.is'&ir\3 2 (sym-1)

»ASSEMBLE LIST

o010 3
0020 3
0030 3
0040 3
00s0 .0z
0060
0070 SeesseCOPYRIGHT 1279 BY CARL MOSER.eeeee
0020 jeeeee ALL RIGHTE REZERVED. se00e
0030
0100
0110
120
0130 S+++++++ USER INPUTTED YRRIABLES BEFORE EXECUTION ++++4+++
0140 FILE-MO .DE %0110 SFILE NUUMBER (0D-99)
0150 OFFSET IE SEO0 SRELOCATOR OFFSET ¢2 EBYTES)
0160 BUFFER .IE $C8 JADIRE. OF R.L. BUFFER
a17C ;5
0130
01590
gzan
g210
o220
0230
0240
0250
260
azva
2s0
0290
Qza0
0310
0320
0330
0340
- 0350
0360
02370
0380
0390
a4ao
0410
0420
N4Z0
0440
2450
0460 LBA $0200
0470 3)
0430 FTAPE IMPUT PARMS
0490 LORD-HO JE E0120 0 MO ZTORES 1: STORE
0500 TSTART .DE $AE4C LOAD BEGINMING AT TSTART
0510 TEND .DE $Ac4A STOFP LOADING AT TEND
0520 §
330 s
0540 SHEADER INFUT LATA
0550 HFILE-NO .DE %#0iFYR HEADER FILE NUMBER

++oRELOCATING LOADER FOR THE SYM-1 ASSM-TEDeee

an mn

as wu cancan aw

RELOCATOR DIRECTIVES
DIRECTIVE DEZCRIPTION

EXTERMAL 2 BYTE ADDRE. PRECEEDS
DOM"T RELOCATE. OTHERWISE RELOCARTE.

we cau cas can cae can &

an
Pl
e

-

1F #Ls DATA PRECEEDS.

2F #Hs DATA FRECEEDS. LD PART FOLLOWS.
3F {AZ OF .HZ EYTE FOLLOWS.

4F 2E OR WEI 2 BYTE ADDRS. FOLLOWS.
TURN RELOCATOR OM (VIA RS>,
(REZOLYE ADDRESSES AND RELOCATE
CODE.>

&F TUREN RELOCRTOR OFF (VIR .RC:.
(REZOLVYE ADDRESSES EUT DO MOT
RELOCATE CODE.»

TF DE - 2 BYTE BLOCK VYALUE FOLLOWS.

AR N BN AN mE AR AR S BN AN EN CAE ‘AN AN CAS A ‘Ax AB RN CaE

PRGE (2 -

0560 HITART .DE $01VE HERDER ZTART

0570 HEMND .DE %0170 HERDER END

0530 3

05380 5

0500 SYARIABLES

0610 ZCRAT .DE $11E SCRATCH RARERA

0620 TEMP1 .DE $11F SCRATCH RRER

0630 TEMPZ2 .DE %120 ECRATCH RARER

0640 EAYVE .DE %121 SCRATCH ARERA

05850 ADDRE .DE $IC 4 BYTES OF RADDRESS INFO.

0660 BUFF .END .DE %0123 END OF 256 BYTE BUFFER
0670 BUFF.INDEX .DE %0124 PRESENT ACCESSED DATA FROM BUFFER

0630 3

pe30 3

0700 SRCM»=00: RELOCA+COR ON

0710 SR{¥»=02: RELOCATOR OFF

0720 3

0730 FBEGIM EXECUTIDN AT LAEBEL START

o740 3
0800~ A2 FF 0750 START LI #3FF
0802- 9R [rg Y1) Tes INITIALIZE =TACK
0803- EB8 0770 INY ReMy=00: ZET RELOCATOR IMNITIALLY TO ON
0804— D2 O7FE0 LD
0805— 8E 21 01 0790 ST ZAYE R(X3=00
0208- 20 EZ 08 0800 JZR LOAD«EBUFF
080B- 4C 11 08 0210 AP ENTY
020E- 20 71 09 0220 LOOP1 JIR BET«DATA

0330 §
0811- 09 7F 0240 ENTY CHMP 4%7F iCke. FOR .DE
0213- DO 03 0250 ENE PRO.ZF
0815- 4C AT 08 0860 P PRO.T sJUMP TD PRDCESE DIR. 7F
g218- C9 3F 0270 PRO.ZF CMP #§3F CEG. FOR RELOCATOR DIRECTIVE
021iR- DO OF 0880 ENE DOP«CER
0816- 20 71 09 0320 JIE GET«DRTA
02iF- 21 IC 0200 STA CADDRS o320
nE21- 20 2% 0% 09140 JEZR INC+RDIDRE
nged4- 4C 0E 08 0920 JMP LO0OP1
0827—- 09 4F 09320 OP«CKE CHP #84F Ck6. FOR .ZE. .EI
0z329- DO 03 0940 EME hi:
022E- 4C AR 02 0950 AMP THO«EYTRD
032E- CY9 SF 096l W CMP #$5F Cke. FOR RELOCATOR OM
230- DO 04 0370 BHE CENX
0832- A2 00 0230 LDx @900
0B24- FO D& 0330 RER LOOF1

1000 3§
0226 C9 &F 1010 CkNx CHMF #%85F CK6., FOR RELOCATOR OFF
0238—- Do 04 1020 BNE NO+FEL
0g82A- A2 02 10320 LD #%02
0e3C- Do 1o 1040 ENE LOOP1
083E- 81 IC 1050 NO<REL ZTA <ADDRS .y STORE OP CODE
0840- 20 85 09 1060 JZR INC<ADDRS
0243—- C9 00 1070 CMF #%00 CkKiz. FOR ERE INSTR.
=245- FO C7 1020 BER LDOP1
0847- C9 20 1090 CHMP #$20 CKGS. FOR (SR INSTR.
0849~ FO SF 1100 BEG TuO<«EYT+AD
024~ D 21 01 1110 =TA SAYE SAVE ROA>s IT CONTAINS OP CODE
084E-"29 9F ii1z20 AHD #+E59F

0250- FO BC 1130 BER LOOP1

FAGE 032

0253~ Fi EC 1140 EEQ LDOF1

0255- R 21 01 1150 LTA ZAYE FEZTORE OF CODE

0252- 29 1D 1160 HMID #E1D

025RA- C9 02 1170 CMP 2302 15, FOR ONE BYTE IMSTR.
02sC- FO BX 1130 EER LGOP1

02sSE- £9 18 1130 CHMP #%12 CkiG. FOR OME BYTE INMITE.
02e0—~ FO AF 1200 BEQ LOOF1

' iHOWs TEZ
1230 30OF ADDRESE

FOR IMSTE. COMTARIMING 2 BYTEZ
IMFORMAT ION

b =
= 0
om

iLMP R 00
BER TWO+EYT<RD

1240
a2 AL 21 01 1250 LIA ZRYE REZTORE OF CODE
nez &% 1c tzen AT #E10
oz D 1270 CHP #F 10
0z Fio 4z 220 EER TWO+BvT+AD
0z [B CHF #E1E
a2 F EBER TWO+EYT+RI
= C
= F

[]
G}
I

’
STHE REMAIMIMG COMTRIN ONE EBYTE OF
SALDDREZS IMFORMATION
sPROCSZIMNG OF OM EYTE ADDRESZES PND IMMELIATE IDATA
OME<EYT+AD JZR GET<DATAH

ZTA CADDRE wis

IR IMCEADDRE

GET+IATH
#EZF CkG. FOR RELDCATOR DIRECTIVE
1420 d IMMeHT CFG. FOF $tH»
1440 - #RlF CKS. FOR RELOCATGRE DIRECTIVE
- Do = 1450 EME EMTY

=
|
o
=
N
]
ot

=

1
b
—
[
L]

i
n
pinl
0
oo
1,

o 1400
¥4 03 1410
1420

|
p N
=

[
[s By
0,
-
N4

=c
27e
neve
NE7E
027E- £ &F
azen
nzgs
Dasd

iFROCEST #L» DATA FOR RELDCATICH

A5 03 IMM«LD IEC+RILREE

CHDDRE a3
JER IMC+ADDRE
EACK«TO«L1 _MF LODF1
SFROCEZE #Hs LRTA FOR FELDCRTIOM
IMMe-HT AZR GET<DARTA LOW BYTE FOLLOWE REL.. DIE.
5T [
1580 ALC «0OFFZET FORM THE LD RLDFI. PART
1530 PHF
0% 1804 JZR DEC+RDIRE
1610 PLF
16En LDA CADLDREE »&
= ADC «OFFZET+%1 MOW FORM THE EFFECTIYE 4H.
ZTR CADD
R IMC+RDD
F LOOF1

Ty 00 T o o

ook O e 00

40 11 02

M
1ETH 5
1620 SFPROCE
o nz 1530 TWO<BYT+AD LDY #%02
] Vo0 Ws T%A
] 1710 FPHA ZAYE &OY2

ZZING OF TWO EYTE ALDDREZZES

02AD—~ A
9

02AF-
N2B0- 42

2B1-
OZ2R4—
NZ2BB—
DERS-
02BR~
0ZBRB-
aeRC-
02BE-
02ci-
azc3~
B2C%-
GzCe-
Q2Cs—
nz2cc-

nefF-
uw2Dnl-
n2ha-
021~
02De—
o2 o9
02DE-
020D
02DF-
UZEES-~
azZE2-

O2ES—
I2ES~
O2EER-
REED~
02F 0
nzFa-
02FS-
G2Fa-
N2FE-

20
81
2
55
RS
88
i
21
£9
Do
4c
43
an

=4

A%
20
"3
=31l
A3
a0
an
2D

an

pEI
jat=s

=D
AD
ED
Iia

TH
4F
il
4D
4F
g0
L5

0z

o
[+ 23

PR o 1} X
P ,

i 0t

ot

01
a1
U3

tven
1730
17440
1750
1760
1770
17ad
1720
1500
1210
18ea
1830
1240
1850
1260
1370
1330
1890
1900
12140
1920
1930
1340
1350
19410
1370
1930
1930
2000
2010
2020
2030
2040
2050
SRED
c0v
2080
SR
2100
2110
21z
2130

214

2150
21640
2170
=180
219
2&00
2210
2220
2230
cedn
=250
==l
Zavrn
zean
Ze9n

PRGE 04
:® RET+«DATAH
CADDRE o33
INC+RDDRE

REZTORE ROY2
HE

: SET+DATH
#30F CKE. FOR RELOCATOR DIRECTIVE

EX)

DEC+ADDRE
JER DEC+RDD
$DECREMENT ERCK TO ADDRESE ITHRET

CADDRE

. *OFFIET ADL OFFSET LO

CADDRE»
- «OFFSET+%1 RDD OFFSET HI
CADDRE
INC+RDDRE

JME ENTY

TUBROUTIME LOAD BUFFER WITH DATA FROM TRFE

LOAD<RUFF LDAR «%7R ADDLD OF 3TART OF HEALER.
TR TETART+HEO0
#%7F ALNLLO OF END OF HERDER
TEND+E 00
A #%01 HI ALDDPET
TETART+E 0L
TEHD+$ 01
LOAD-NO 01z IMDICRTE TO LOAD
» JZER-LDAD UZER LDR+ED FROM TRFE ROUTIME

éTHE ABOVE SETE UP RMD LOARDS HEARDER INFORMATION

IFROM TAPE. THE HERLDER COMTAIMI THE MODULE FILE
IMUMEEFR » AMD STRRETIMNG AMD ENDING ADDREST OF FOLLOWING
SDRTA.

EME ERROR IF Z-EIT FALZE. THEM ERROR IN LORDRING
LD 4500
LIA HEWD+E00
ZEC
ZBC HETARTHEQO
ICALCULATE NUMEER OF BYTES IM FOLLOWING DRTH
s

5TA EUFF.EMD INITIALIZE BUFFER END POINTER
LIA HEND+EO]L

SR HITART+E01

EME ERROF OMLY 25¢ BYTE BUFFER ALLOWED

0314~
0316~
0313~
031R~
031D~
0320-
0322~
325-
03z7-

032R-
032D~
032F-
03328~
0z34-
0337~

033R-
033C-
Q33E~-
0341-
0242~
345
0347-
0348-
0349
0:340-
0324D-
D34F—

0351~
0354
0356-
03359~
035Ee-
035D~
03%F-
03260~
0362~
0264~

0367~
0359
02ER-
136C-
d36E-
37 0=
03ve-

AS

128
&D
8D
A%
8D
63
2D

RD
Fo
CD
Fo
SE
20

Do

AD
ce
o
A9
on
ER
ER
4C
A9
no

AD
Fo
RE
A0
B1
25
[3t]
B1
a3
=1

AS
18
&3
25

-5
25

ca
4aC

23
4R
ce
4T
a0
4B

10
ne
A
0z
=260

i

11
na
EE
10
a0

0o
EE
F&

80
o0
21
]
ce
DE

ce
DF
24

DE

Ef
D
El
oF
jadi]

a1

01

o1

01

23200
2310
2320
2320
2340
=350
2360
2370
2380
2330
400
2410
cd4en
24310
2440
2450
24&0
470
c4a0
2430
e&oan
221d
25en
25340
2540
et]
2360
2570
2589
2590
=31l
2hid
el
2B
2640
250
2eEl
2670
2EE0
ZES0
2van
2vid
2ven
2v30
2740
750
2rel
2770
crel
2730
2800
28140
2ae0
2830
2840
2850
=e=131]
2870

LIA
EZTH
LD
ADC
TR
LIR
ETA
RIC
=TH
NOW THE =TRART

PAGE 05

+EBLIFFER
TETART

BUFF .EMD # BYTEZ

TEHWD

SEUFFER+S 01

TETART+%01

Bt 310

TEND+E0L

ANL EHD ADDRESI PARMS HAWE EBEEN

SESET UP 7O LORL FROM TAFE INTO THE EUFFEFR.

LDR
BE#R
CHP
BED
ETH
ZTORE.DRTH J3R

FILE-MO UZER ENTERED FILE MUMEER
ETORE.DRTH IF F# = 00 LOAD RNYIARY
HEILE-NO CMP WITH QSER YERIUS THAT ON TAFE
STORE .DATA

LOAD-MO ReXr=05F MO TTORE

UZER-LOARD

STHE AEBOVE LORDE IN DRTR INTO BUFFER DEPEMDING
sON THE ETTATE OF LOAD-NO

*
ENE
LIix
LIA
CMP
ENE
LDA

E EREK
HOP
HOF
AP

ERROR LA

ERROR Z-BIT = FALEE THEN ERROR
*%0n

HEILE-ND

FEE COMPARE IF END OF FILE
EUFFLORLED

#§00 IMDICATE GOOD LOARD

ITART
#3EE INDICATE ERROR IN LEAD

EME B

e ae

§HOW GET RIDRE.

SADDRE INFO. IS

BUFFLORLED LI
BER
LD%
LDY
LDA
ITA
INY
LDA
STH
ST

INFO. AMD PUT IN ADIRZ+EZs +§3
IN FIRET TwO EBYTES OF BUFFER

LOAD-MO CkG. IF PROPER DATA
LORD«EUFF

SAYE RESTORE ROX)

w500

CBUFFERD »Y

*HDDRI+ED

CBUFFERDY Y
+AIDRE+E3
BUFF .IMDEX ZET BUFFER DRTA POINTER

éEET RELOCATIDN ADDRS. IN RADRDRS+E0s +81

LBR
CLC
RIN
ETAH
LIA
ROC
TR

SADDRS+EE

«OFFZET
*ADDFE
*OFFZET+%¥1
SADDRI+E3
SADDRE+E1

032CA- 85 IE 2450
03CC- 28 3470
03CD- &5 DF 24240
02CF- 85 DF 2430
0301- &8 2500
02D2- 4C 11 02 3510
2520
3520
25410
2550
2560
2570
2550
2590
2500
Ze10
Ze20
IR0
240
BE50
el
2ET0
X
2e90
2700
0305- 20 88 &1 3710
02D2- A3 FF 27Fen
02DA- 81 4E AL 32730
N300~ RO 20 370
030F- 24 FI ITS0
02E1- A9 09 IFED
02E3- 20 RS 2% 32770
03EE- 20 2E 83 3780
02E9- 20 20 852 IT90
0ZEC- 20 PR 2C 3200
SEF- D2 210
O3F 0~ A2 00 20
03Fg- 20 02 2830
02F4- R3 01 =t A]
AS
03Fé&~ 4C B2 £1 S50
2870
2820
90

LAEBEL FILE: [

“FILE-MO=0110
<LOAD-NO=0180
<~HF ILE~<MO=017H

SSCRAT=011E
SAVE=0121
~BUFF . INDE¥=0124
ENTY=0214
Wi=0231
OHE<EYT+AD=0273

TR
TR
ADC
TR
NO .PROC PLA
JMP
H
L]
H
SEYM DEFINITIDN:
SAVER .IE
ACCESE IE
1D OE
MODE .IE
COMFIG IE
ZERCK .JE
PEZICR .JE
LOADT .DE
MACCEZE .TE
RES®AF IE
H
UZER-LOAD JZR
LDR
TR
Loy
TN
LIA
JEzR
JaR
BCC
LDA
SEPERREU-L
: JMP
H
ENTD .FizM EM

- = EXTERNAL 1]

<OFFZET=00ED
~TZTART=RE4C
SHETRRT=01TFE
<TEMF1=011F
SADDRET=00DC
ETRRT=0200

PRO.ZF=021F
CEMH¥=0239

IMM+L O=0c%¢

PRGE 07

*ADDRS+2

SBET HI
*ALDFRS+3
*ADDRE+3

LOOP1

podH
gz188
EEEO6
FAGAE
FFD
2905
F2322E
gE2ar
$ECTE
FaRoC
F21ERs

SAYER
#EFF

1n

#RS0
*MOTE
#E03
CONFIB
ZERCK
PZZCR
LOARLT+%3
#5000
SEFERRUAL
%01

RESHAF

+oeYM CAIZETTE INTERFACE PATCH eee

TRAVYE REGISTERS
s1D=FF FOR UZER RANGE

SBIT 7=1 FOR H.Z.

SENTRY IN TAFE LORD
iZ-BIT =T
iZ-BIT =F
IRESTORE REGS. EMCEPT AsPSR

~BUFFER=0GCE
~TEMD=R&4f
~HEND=017D
~TEMPE=0120
~BUFF .END=0123
LOOFP1=0211

OF «CKEG=022A
HO<REL=0241
BACK«TO<L1=0293

IMM<HI=0296&
XrY=02C8

B=03247
GET«DATA=03274
SKIP«INC1=038E
EKIP<«DEC1=029F
PROC .DE=03E9
“ACCEZZ=8B86&
<CONFIG=89R%5
LOADT=.CTE
UZER-LOARD=02D%

<0000 03F9,03F9

>

TWOeBYT+RAD=02ARD
LOADEBLFF=02E6
ERROR=0G3241T
Wr=0322%
ZKIP«INCE=03324
ZEIP«IECEZ=03RY
MO .FROC=02D1

< 1D=RE4E
SZERCK=832E
SHACCEZS=2R9C
ZEPERFLL-L=02F8

nE=02RF

STORE .DATR=03Z3F
BUFFLORDED=0351
INC€RDDRS=02E8
DECADDRE=0333
FRO.TF=032RA
SEAVER=2188
<MODE=00FD
SPREZCR=8290
~RESHAF=21B8
END.PGM=0N3FS

