Hyper about

Slow Load Times?

... KIM Hypertape

is an alternative

Jim Butterfield
14 Brooklyn Ave.
Toronto Ontario M4M 2X5

henever | meet a
bunch of KIM users in
my travels, I'm likely to

notice a couple of guys off to
one side whispering and
gesturing in my direction.
This means either of two
things: I’'m wearing odd socks
{(again), or I'm being identi-
fied as the creator of KIM
Hypertape.

Hypertape, often called
super tape by KIM users, is
indeed a good thing. 1t speeds
up the standard KIM-1
cassette tape interface by a
factor of six times. This gives
a speed of roughly 50 bytes
per second loading or dump-
ing. It saves time and tape.
And it's completely com-
patible with the KIM cassette
tape loader — no extra hard-
ware or software is needed to
read Hypertape.

LIMITER
AUDIO v

|6 2

But | must confess: |
didn’t do it alone. | didn't
even plan to write Hypertape;
it sort of happened. It's not
that I mind the fame. It's
kind of nice getting fan
letters and acknowledgements
in other people’s programs.
And | have no objection to
nubile nymphs strewing rose
petals in my path, either,
although | haven’t had too
many of those yet.

Now, it's time to own up.
| wasn’t a man with a vision
struggling against innumer-
able setbacks. | fell into it on
my way to something else.
It’s like the story of Thomas
Edison picking up the world’s
first light bulb, admiring it,
and then bringing it to his lips
and hollering, ‘‘Hello?
Hello?"’

It all started last fall, when
I was having lunch with
Julien Dube, a friend and
fellow KIM owner, and Rick
Simpson, then manager of

LM3IL
COMPARATOR

7
7 TO 6502

o o . 2
N T LmM565
PLL

TEST POINT

T
7373

Fig. 1. KIM-1 audio tape input circuit.

KiM-1 Product Support for
MGS Technology, Inc. Rick
was talking about the cassette
interface. “Maybe we should
have made it faster,”” he
mused. “It could be speeded
up by a factor of three, but
.. At that moment the
chopped chicken livers
arrived, and the sentence was
never finished. But the phrase
had caught my imagination.
A speedup of three times!
Wow! But how would it be
done? To solve the mystery, |
would have to look into the
workings of the KIM cassette
load/dump programs.

Recording Basics

The KIM User Manual
describes the cassette record-
ing principles quite clearly.
The system uses frequency
shift keying (FSK). The two
tones used are at frequencies
of 3700 Hertz and 2400
Hertz respectively.. During a
dump to cassette, the tones

fo 8 ms—sje-2 5ms+|

~are generated directly from

the microprocessor as square
waves — no oscillators are
involved. In reading back
from cassette, the signal is fed
to an LM565 phase lock loop
used as frequency discrimina-
tor {see Fig. 1). Everything
else is done in software —
timing, assembling of char-
acters, storage of data and
checksum. Handy to know,
but not enough.

The next step was to dig
into the software. How are
the bits represented on tape?
Still not hard to find; KIM is
well documented. The so-
called 2/1 scheme is used: To
record a logic zero, send 3700
Hertz for five milliseconds
duration followed by 2400
Hz for 2.6 ms. To record a
logic one, send 3700 Hz for
2.5 ms followed by 2400 Hz
for 5 ms (see Fig. 2). Either
way, it's about 7.5 ms per bit,
right? And each sequence
commences with the higher
frequency.

Now we're "getting some-
where. The next step is to
look at the tape load monitor
program and see how it gets
those bits back off the tape.
Ahal Here's what KIM does:
It compares the timing of the
two parts, 3700 Hz versus
2400 Hz. If the 3700 Hz
signal lasts longer, the bit
must be zero; if the 2400 Hz
is the long one, then the bit is
logic one. : :

Now, pay attention, we're
almost there. If the KIM
loader doesn’t care about the
actual timing, but just wants
to know which frequency
lasts longer ... we can speed
the whole thing up! As long
as we keep the right timing
ratio between the two fre-
quencies, the KIM monitor
won't worry whether ‘it's fast
or slow. Since we're dealing
with input and output at the
bit level, we don't need to

fe-2.5m8 ~+fe——5ms ——]

3700Hz ,“I_______.“_____,“U_u_[__ ~~~~~ B

2400Hz
LoGgIC O

________________ N IS R

LOGIC |

Fig. 2. Timing of normal KIM tape signals.

; OUTPUT 3700 HZ TO TAPE
;9 PULSES 138 USEC EACH

ONE LDX #9
PHA

BIT CLKRDI
BPL ONE1
LDA #126
STA CLK1T
LDA #$A7
STA SBD
BIT CLKRDI
BPL ONE2
LDA #126
STA CLK1T
LDA #$27
STA SBD
DEX

BNE ONEL
PLA

RTS

ONE1

ONE2

Program A. Original KIM routines for sending the two frequencies to audio output. Note that the labels
ONE and ZRO do not indicate that we are sending logical one or zero from memory.

N =9 pulses
Save A in stack
Check timer
Wait for timeout
Next timing . .

. . into timer
Bit 7 on

.. to output

" Wait for timeout

Next timing . .
.. into timer
Bit 7 off
.. to output
one less cycle
go back if more
bring A back
return from subroutine

; QUTPUT 2400 HZ TO TAPE
;6 PULSES 207 USEC EACH

ZRO

ZRO1

ZRO2

LDBX #6
PHA

BIT CLKRDI
BPL ZRO1
LDA #195
STA CLK1T
LDA #$A7
STA SBD
BIT CLKRDI
BPL ZRO2
LDA #195
STA CLK1T
LDA #8$27
STA SBD
DEX

BNE ZRO1
PLA

RTS .

N = 6 pulses

; OUTPUT FREQ TO TAPE
" ;Y REGISTER SAYS WHICH FREQUENCY

LDX NPUL,Y
PHA

BIT CLKRDI
BPL ZON1
LDA TIMG.Y
STA CLK1T
LDA #$A7
STA SBD
BIT CLKRDI
BPL ZON2
LDA TIMG.Y
STA CLK1T
LDA #s27
STA SBD
DEX

BNE ZON1
PLA

RTS

ZON

ZON1

ZON2

Program B. I've combined the two original KIM routines using the Y
index register to indicate which frequency is involved. Note that I've
done nothing new — just saved memory and punch-up time. But

get N from tabie
save A
Check timer
Wait for timeout
get timing from table
. . into timer
Bit 7 on
.. to output
Check timer
Wait for timeout
timing from table
. . into timer
Bit 7 off
.. to output
one less cycle
go back if more
bring A back
return from subroutine

wait, ZON1 and ZON2 look very similar. Can | save even more?

s OUTPUT FREQ TO TAPE
;Y REGISTER SAYS WHICH FREQUENCY
: LOCATION GANG STARTS AT $27 HEX

ZON LDX NPUL,Y
PHA

BIT CLKRDI
BPL ZON1
LDA TIMG,Y
STA CLKLT
LDA GANG
EOR #$80
STA SBD
STA GANG
DEX

BNE ZON1
PLA

RTS

ZON1

Program C. Further consolidation of the coding. We're now
counting half-cycles instead of cycles, and this turns out to be a big

help.

get half-pulses from table
save A

check timer

wait for timeout

get timing from table

. . put in timer

$27 or $A7

flip it over

output it

and save new GANG value
one less half-cycle.

go back if more

bring A back

end of subroutine

worry about details of tape
formats: special characters,
checksums and items like
that. They will all eventually
be sent as bits — and it's the
format of the bits we're
dealing -with.. To telescope
those bit signals, we must
-return to the audio dump
program. So fong as we write
them properly ontc tape, we
know that the load program
will track them correctly.

Counting Cycles

A little arithmetic, or
failing that, a look at the KIM
manual, shows that logic zero
consists of 18 pulses at the
higher frequency followed by
six pulses at the lower. For
logic one the numbers be-
come nine and 12 (see Fig.
3}. As | noted these numbers,
the words kept echoing
through my head, . . . factor
of three ...” Suddenly the
penny dropped. All the above
pulses aré multiples of three
— so you can reduce the
number of cycles to 2/3 or to
1/3 without getting into
fractions. KIM sends all its

3700 Hz
—————— 18 PULSES

cycles direct from software.
So all you'd need to do is to
change the loop counters and
... hmmm, it might work. Of
course, Rick’s phrase was,
““. .. factor of three, but...”
But what? Would the phase
lock loop be too sluggish to
take the speed increase?

Did all these exciting
discoveries send me rushing
to the coding sheets to see if |
could produce triple-speed
tape? Nope. Next day, | was
chatting to Julien Dubé again.
“Funny thing,”” | said in my
wise and knowing way. “i
think there’s a way to in-
crease tape speed by at least
50 percent — it might even go
up to triple speed.”” As usual,
Julien made a good audience
as | outlined my detective
work of the previous evening.
““What's more,”’ | concluded
triumphantly, “’you’d hardly
need to write it. Just copy
out the ROM programs to
RAM, change the pulse
counters, and you have it!"”

| thought no more of the
conversation until late that
evening when Julien called
me. ‘“‘Works fine,”” he re-
ported. “Good at triple
speed, too. Why did you
suspect there might be a
problem?’ 1 found this dis-
concerting. Not only had
Julien been listening to me
earlier in the day, he'd gone
right ahead and done it.-l
collected my thoughts.

“0OK,” | said, “The prob-
lem is that the phase lock
loop is likely coming to the
limit _of its tracking capa-
bility. Put a meter on the
output of the LM311 com-
parator. Normally it's 2.5 V,
but at high speed it will start
to pull because of bias distor-
tion.”

Julien called back very
quickly. “It’s solid on 2.6 V

2400 Hz

———————+fe—6 PULSES ——|

Jursiuinirir L g uy

LOGIC (0}

3700 Hz

2400 Hz

l—9 PULSES —sf+——————12 PULSES ——————+]

Jnitiirruinyuvsuy

Logic (1

pb———————tair- 7.452ms —]

*

.

Fig. 3. KIM standard audio signals.

67

at the highest speed,” he
reported. ‘““Loads without
error, too. Funny thing — I've
listened to the tape itself and
it sounds totally different
than ordinary KIM tape.”

On to the Coding Sheets

| think it was that last
comment that got me. How
can it sound different when
it’s the same two frequencies?
Besides, the phase lock loop
behavior intrigued me: How
could it track on only two
cycles? How much further
could it go? At this stage,
triple speed, we were sending
a minimum of only two
pulses at one frequency and
three at the other. Could |
speed that up without getting
into fractions? | couldn’t see
how. Can you send half a
pulse? That sounds like the
paradox of one hand clap-

ping. | was unable to see it.
Let’s pick over the original
KIM monitor coding for
sending the two frequencies.
It's shown in Program A. Well
written, but since we need to
change it anyway, let's see
what we can do with it. Sub-
routines ONE and ZERO are
almost identical. They differ
in only two items: nine cycles
versus six cycles, and 126
microseconds of delay in the
timer versus 195 micro-
seconds. Automatic program-
ming refiex number one:
Consolidate them and put the
two variables in a table.
Assuming we have that
squared away (see Program
B), there’s another piece of
duplicate coding: The se-
guences at ONE1 and ONE2
(and their counterparts in
ZRO) are almost the same.
This time, the difference is in

hexadecimal 27 versus A7.
These values are sent to the
output register to make bit 7
{the tape output) go on and
off, generating the square
wave that we record on tape.
Automatic programming
reflex number two: when you
have a bit going back and
forth like that, use an EOR
(Exclusive OR) instruction to
flip it over and back.

That last part is more than
just efficient coding; it has
important consequences for
us to follow through. Pre-
viously, we generated a
square wave by having a piece
of program to turn the bit on,
followed by a piece of pro-
gram to turn it off again.
That makes one full cycle of
the square wave. But if we go
the EOR route (see Program
C), we'll fiip the bit over and
generate one-half of the

Program D. The final, polished, complete version for reading and writing data in the Hypertape format.

0100 A9 AD
0102 8D EC 17
0105 20 3219
0108 A9 27
010A 85 F5
010C A9 BF
010E 8D 43 17
0111 A2 64
0113 A9 16
0115 20 61 01
0118 A9 2A
011A 20 88 01
011D AD F9 17
0120 20 70 01
0123 AD F5 A7
0126 20 6D 01
0129 AD F6 17
012C 20 6D 01
« O012F20EC17
0132 20 6D 01
0135 20 EA 19
0138 AD ED 17
013B CD F7 17
013E AD EE 17
0141 ED F8 17
0144 90 E9
0146 A9 2F
0148 20 88 01
014B AD E7 17
014E 20 70 01
0151 AD E8 17
0154 20 70 01
0157 A2 02
0159 A9 04
015B 20 61 01
015E 4C 5C 18

0161 86 F1
0163 48 .
0164 20 88 01
0167 68
0168 C6 F1
016A DO F7
016C 60
016D 20 4C 19
¢ 017048
- 0171 4A
0172 4A

shypertape writer starts here
DUMP LDA #$AD
STA VEB
JSR INTVEB
LDA #$27
STA GANG
LDA #$BF
STA PBDD
LDX #$64
LDA #s$16
JSR HIC

LDA #$2A
JSR OUTCHT
LDA ID

JSR OUTBT
LDA SAL
JSR OUTBTC
LDA SAH
JSR OUTBTC
JSR VEB

JSR OUTBTC
JSR INCVEB
LDA VEB+1
CMP EAL
LDA VEB+2
SBC EAH
BCC DUMPT4
LDA #$2F
JSR OUTCHT
LDA CHKL
JSR OUTBT
LDA CHKH
JSR OUTBT
LDX #s02
LDA #$04
JSR HIC

JMP DISPZ

DUMPT4

EXIT

ssubroutines
HIC
HIC1

STX TIC
PHA

" JSR OUTCHT
PLA
DEC TIC
BNE HIC1
RTS
JSR CHKT
PHA
LSR A
LSR A

OUTBTC
OUTBT

LDA command
set up sub

flop flag for SBD
directnl registr
send 100 . .

.+ SYNC chars
send START (*)
send pgm 1D

& start addrs

send byte . .
move to next . .

is it last byte?
no, repeat
yes, send . .
.. END (/)
checksum

send two ..
EOT characters

& we’re done

send character
. . bring it back

repeat as needed

compute checksum
save the character

.. and take its

square wave. That's what
we've been looking for: a way
to generate half a pulse.
We've opened the door to
sixfold speedup.

Now all the pieces have
come together, and the
coding comes easily. We have
the number of half-cycles for
each frequency in a table, so
we can easily adjust the
program for other speeds. At
maximum — Hypertape —
speeds, we'll be sending as

3 PULSES: ./ll PULSE

LOGIC {0}

L5 PULSES, . qz PULSES

LOGIC (1)

T

L242ms

Fig. 4. Hypertape audio signals.

little as one pulse at the lower
frequency and 1.5 pulses at
the higher frequency (Fig. 4).
Can ‘the phase lock loop track
it? You bet it can — and the
2.5 V test point stays steady
as a rock.

Wrapping It Up

The test runs were a bit
eerie. Even when you do the
arithmetic, it doesn’t seem
right for a 30-second program
to load in five seconds. At
first, it all happened so quick-
ly that | was sure there was
something wrong. But it
checked out OK, and Hyper-
tape became a reality.

Tests of various tape re- ~
corders revealed that a few of
them won't carry -Hypertape,
apparently because their
frequency response is too
poor to carry the high side-
bands of the signal. A related
problem occurs in exchanging
tapes from one cassette unit
to another: Slight head mis-
alignment causes those vital
high frequencies to be lost.
I1t's a good practice for KIM
tape swappers to drop their
speed to a paltry three times
normal to eliminate this
potential problem. Of course,
the documented and tidied
up program (Program D) was

LSR A

LSR A

JSR HEXOUT
PLA

JSR HEXOUT
RTS

AND # $0F
CMP #$0A
CLC

BMI HEX1
ADC #s07
ADC #$30
LDY #$07
STY COUNT
LDY #$02
STY TRIB
LDX NPUL.Y
PHA

BIT CLKRDI
BPL ZON1
LDA TIMG,Y
STA CLK1T
LDA GANG
EOR #$80
STA SBD
STA GANG
DEX

BNE ZON1
PLA

DEC TRIB
BEQ SETZ
BMI ROUT
LSR A

BCC ZON
LDY #0
BEQ ZON
DEC COUNT
BPL TRY
RTS

sfrequency /density controls

fired off to the KIM User 0173 4A
Notes for more extensive gi;‘; 3371) o1
field testing. Acknowledge- 0178 68
ment was given to Julien 0179 20 7D 01
Dube for his help. 017C 60 .
A H 017D 29 OF HEXOUT
s you can see, Hyper- 017F C9 OA
tape’s speed came from 0181 18
putting the bits more com- g}gi gg gg
pactly onto tape. There are 0186 69 30 HEX1
still other areas where the 0188 A0 07 OUTCHT
ianal b d 018A 84 F2
signal can be made more 018C AD 02 TRY
efficient. For example, each 018E 84 F3
byte of storage is translated g}gg f;‘: BE 01 ZON
intO two heXadeCimal Char‘ 0194 2C 47 17 ZON1
acters. That's a waste of two- 019710 FB
) : . 0199 B9 BF 01
to-one, sm(?e 16 bits are use’d 019C 8D 44 17
to store eight. Then there’s 019F AB F5
the question of the 2/1 01A:13 39 ioz .
- . 01A3 8D
- coding . sc.heme, that uses 01A6 85 F5
three bit-times to store each 01A8 CA
bit. And of course, we g}:g Eg E9
havent touched on the 01AC C6 F3
question of data compression. 01AE FO 05
There are still worlds to 8;32 ZOAO"
conquer. But | think I'll take 01B3 90 DB
it easy for a while. After all, 01B5 A0 00 SETZ
, . . 01B7 FO D7
there's somethmg to be sz‘ud 01B9 C6 F2 ROUT
for full compatibility with 01BB 10 CF v
the KIM monitor. Then again, 01BD 60
if Julien isn’t doing anything 01BE 02 NPUL
next month....® TIMG

O01BF C3 03 7E

-BYTE $02

four left bits . .

write ’em
now the 4 right bits

remove unwanted bits
convert to ASCII
. . by adding:

$37 if Ato F;
$30 if numeric.
For the 8 bits:

send 3 units
starting at 3700 Hz
of half cycles

Wait for previous . .
cycle to complete
Get timing to the . .
next pulse (7E or C3)

Flip between 1 & 0O

Sent all cycles?

no, go back

ves, recall char
one less to send
branch if last one
branch if no more
Take next bit
..ifit’sa one . .
Switch to 2400 Hz
unconditional return
one less bit

any more? go back

Two pulses! One cycle!

-BYTE $C3,$03,$7E

The Realistic Controls M
FORTRAN 1V*-Minifloppy
Kit gives you the power of
FORTRAN and the speed

and convenience of the
minifloppy drive —

ali for $1095.

*Distributed in the United
States under license from
Unified Technologies, inc.,
of Islington, Ontario.

CALL DIANNA AT:

FORTRAN XY

Our kit includes:

Floppy Disk System

for your

S-100 Bus Computer

«One Shugart SA400 minifloppy ' VDRIVE (assembled and

tested) — Second drive is optional.

e Fully socketed interface module kit featuring processor-

realistic controls corporation

404 WEST 35TH STREET
DAVENPORT, IOWA 52806
(319) 386-4400

eSystem minid isketteTM

independent timing, 7 level vectored interrupts, bootstrap
and diagnostic PROM, parallel 8-bit I1/O ports.

e Cables, cabinet and regulator parts.

with FORTRAN IV (featuring IBM
compatibile floating point, subroutine library, 8080 extensions);
b|t\{'e_l;(nore BASIC; Disk Operating System; Text Editor;

ilities.

The system requires one standard $-100 bus stot, power from
your system supply, and 24K of RAM,

Z//25 FORTRAN IV-Minifloppy Kit $1095

(Assembled & Tested) . . $1220

Second Minifloppy & Expansion
Parts. 449

(Assembled & Tested) . $ 495
Formatted Minidiskettes

(65K capacity)

Packageof5 $ 25

Write for detailed brochure; or
order sending check, money
order, BA, or MC card No. with
expiration date and signature,
PO if D&B rated.

Signature of software non-
disclosure agreement is required.

Freight added to all non-prepaid
orders. iowa and Minnesota
residents add sales tax.

UPS COD shipments accepted
upon 25% down payment. R14

— e —

69

