
Hal Chamberlin
29 Mead St
Manchester NH 03104

This article first appeared in
the September 1977 issue of
BYTE. 1977 BYTE Publi-
cations, Inc. Peterborough NH
03458 USA. All rights re-
served. Reprinted and pub-
lished by permission.

A Sampling of Techniques for

Computer Performance of Music
Computer music is probably one of the

most talked about serious applications for
home computers. By serious I mean an appli-
cation that has a degree of complexity and
open-endedness which can totally preoccupy
experimenters and funded institutions for
years. Computer performance of music is a
discipline so vast that the final, "best" tech-
nique for its implementation or even a good
definition of such a technique may never be
discovered.

At the same time, computer music is an
easy field to break into. With only minimal
effort and expenditure a very impressive
(to the uninitiated) music performance
demonstration may be put together. With a
l ittle more work a system may be assembled
which is of great value to other family mem-
bers, particularly children just starting to
learn music theory. Such a system could, for
example, eliminate manual dexterity as a
factor in a child's musical development.
Finally, on the highest level, it is no longer
very difficult to break into truly original
research in serious performance of music by
computer. The advances in digital and linear
integrated circuits have made putting to-
gether the hardware system for supporting
such research largely a matter of clever sys-
tem design rather than brute financial
strength. Programming, tempered with
musical knowledge, is the real key to ob-
taining significant results. Thus, in the
future, hobbyists working with their own
systems will be making important contribu-
tions toward advancement of the computer
music art.

While the scope of one article cannot

fully cover such an extensive topic, it
should serve to acquaint the reader with the
more popular techniques, their implemen-
tation, strengths, weaknesses, and ultimate
potential.

Generally, all computer music perfor-
mance techniques can be classified into two
generic groups. The first includes schemes
i n which the computer generates the sound
directly. The second covers systems where
the computer acts as a controller for exter-
nal sound generation apparatus such as an
electronic organ or sound synthesizer.

Early Techniques

Just as soon as standard commercial com-
puters such as the IBM 709 and, later, the
1401 made their appearance, programmers
started to do frivolous things with them
after hours, such as playing games and
music. Since elementary monotonic (one
note at a time) music is just a series of tones
with different frequencies and durations,
and since a computer can be a very precise
timing device, it did not take long for
these early tinkerers to figure out how to
get the machine to play such music. The
fundamental concept used was that of a
timed loop.

A timed loop is a series of machine
language instructions which are carefully
chosen for their execution time as well
as function, and which are organized into a
loop. Some of the instructions implement a
counter that controls the number of passes
through the loop before exiting.

Let's

	

examine

	

some

	

fundamental

PIN CONNECTIONS FOR THE MTU K-1002 8 BIT AUDIO SYSTEM BOARD

Note 1. The raw analog output is an unfiltered, fait settling analog voltage between 0 volts for a zero digital input and -5 volts for a digital input
of 255 decimal. Source impedance is 5K ohms. In order to use this output. cut thee printed circuit trace between the two unused holes on
the board. To resume use of the on-board filter and amplifier, solder a jumper between these two holes.

Note 2. This voltage is used as a reference source for the digital to analog converter and bias source for the filter and amplifier. Although heavily
filtered, it should be welll regulated for applications other than sound generation. Current drain is under 2 MA.

K-1002 KIM-1
Pin Appllcanon Signal Name

Number Pin Number

1 Power Amplifier Output (Speaker High)
2 512 Volts Supply Voltage
3 - Raw Analog Output (see note 1)
4 2 Digital Bit 3
5 3 Digital Bit 2
6 Digital: Bit 1
7 14 Digital But 0 (Least. Significant Bltl
8 6 Digital Bit 5
9

10 t5 Volts Supply Voltage (see note 2)
71 7 Digital Bit 6
1 2 8 Digital Bit 7 (Most Significant Bit)
1 3 5 Digital Bit 4
1 4 Common Ground
1 5 Common ground (Speaker Return)

imatthews

choice of instructions in the loop, but basic-
ally has a flat audio spectrum like that of
a narrow pulse waveform. Noise and distor-
tion arise from other logic circuitry in the
computer which switches erratically with
respect to the timed loops. One practical
difficulty with this method is there is no
clearly identifiable way to get the com-
puter to "shut up" for rests or space be-
tween identical notes.

The Hammer-Klavier

Other early methods used some kind of
output peripheral to make sound. In a
demonstration of an IBM 1401 over a de-
cade ago this was literally true: the com-
puter played a line printer! It seems that the
hookup between a 1401 central processing
unit and the 1403 printer was such that
software had control of the printer hammer
ti ming. Each time a hammer was fired a
pulse of sound was emitted upon impact
with the paper. Using a timed loop program
with a print hammer fire instruction im-
bedded in the loop gave a raspy but accur-
ately pitched buzz. [It also tended to cause
IBM, customer engineers great trepid-
ation . . .CHJ This same scheme should also
be possible on some of the small, completely
software controlled dot matrix printers that
are now coming on the market.

A sane approach, however, is to connect
a speaker to an output port bit through an
amplifier. Instructions would then be placed
i nside the timed loops to toggle the bit and
thus produce a clean, noise-free rectangular
wave.

Timed Loop Example

Let's look at an example of a timed loop
music playing program, not so much for its
musical value (which is negligable), but for
some insight into what is involved, and also
to introduce some terms. The MOS Techno-
logy 6502 microprocessor will be used for
these examples. These programs are designed
to run on a KIM-1 system, and should run
on most other 6502-based systems with very
minor modifications. Motorola 6800 users
should be able to easily convert the pro-
grams into 6800 machine language. 8080
users will benefit most because successful
conversion indicates a thorough under-
standing of the concepts involved.

Figure 1: A basic tone generation subroutine. There are two nested loops in
this routine: the first, or inner loop controls the frequency (or pitch) of the
note to be generated, while the second, outer loop controls the duration of
the note. A train of square waves is generated at the output port bit which is
used to drive the circuit in figure 2 to produce an audible tone.

timed loop relationships. If the sum total
execution time of the instructions in the
l oop is M microseconds then we have a
l oop frequency of

I f the initial value of the decrementing
counter that controls the number of loop
passes is N, then the total execution time
before exit from the loop is (MxN) micro-
seconds. Thus what we really have is a
"tone" with a frequency of

and a duration of

Using different loops with more or fewer in-
structions will give us different Ms and thus
different notes. Using different Ns when
entering these loops gives different durations
for the notes, and so we have satisfied the
definition of elementary monotonic music.

Of course at this point the computer is
merely humming to itself. Several techni-
ques, some of them quite strange, have
evolved to make the humming audible to
mortals.

One such method that doesn't even re-
quire a connection to the computer is to
use an AM portable radio tuned to a quiet
spot on the broadcast band and held close
to the computer. Viola! [Sic] The humming
rings forth. in loud, relatively clear notes.
As a matter of fact, music programs using
this form of output were very popular in
the "early days" when most small system
computers had only 256 bytes of memory
and no 10 peripherals except the front
panel.

What is actually happening is that the
internal logic circuitry with its fast rise
ti me pulses is spewing harmonics that
extend up into the broadcast band region of
the radio spectrum. Since some logic gates
will undoubtedly switch only once per
loop iteration, the harmonics of the swit-
ching will be separated in frequency by the
switching or loop frequency. Those high
frequency harmonics that fall within the
passband of the radio are treated as a
"carrier" and a bunch of equally spaced
nearly equal amplitude sidebands. The
radio's detector generates an output fre-
quency equal to the common differences of
all these sidebands, which is the loop fre-
quency and its harmonics. The timbre of the
resulting tones is altered somewhat by the

http://forth.in
imatthews

Table 1: Equally tempered
scale note frequencies in
Hertz. In order to deter-
mine frequencies of notes
in the higher octaves,
multiply by 2 for each
octave above this one. For
lower octaves, divide by 2
for each lower octave.

The heart of the program is the tone gen-
eration subroutine which will be named
TONE. Ideally, such a routine would accept
as input two arguments: one related to the
pitch of the note and the other controlling
the duration. With such a subroutine avail-
able, playing a piece of music amounts to
si mply fetching the arguments from a
"song" table in memory and calling the
routine for each note to be played.

,As mentioned previously, we could have
a separate, carefully timed loop for each
different tone frequency needed. TONE
would then call the proper one based on the
pitch parameter. Indeed this approach is
very accurate (to within 1 gs on the 6502)
but a great deal of memory is consumed for
the 30 or so notes typically required. It also
lacks flexibility. (This will be discussed
l ater.) A better approach is to embed a
second, waiting loop to control the execu-
tion time of one pass through the outer
l oop, and thus the tone's frequency. Figure
1 i s a flowchart illustrating this. When
using this scheme, the frequency argument
directly determines the number of times
through the inner, waiting loop and the
duration parameter directly determines
the number of times through the outer,
tone generation loop.

Now, how are the argument values
determined to get the frequencies and
durations desired? First the execution
ti me of the nested loops must be
determined. In the KIM-1 with a 1 MHz
clock and a 6502 the tightest inner waiting

Figure 2: A speaker driver circuit designed to accept square or rectangular
waves and produce audible tones through a loudspeaker. In this particular
application the circuit is driven from an output port bit of a KIM-1 micro-
computer, although the circuit can accept any TTL compatible output port
bit. When the input to the circuit is a logical 0 level, the transistor turns on
and drives the speaker. When the input is a logical 1, the transistor turns off
and current to the speaker is interrupted.

l oop that can be written is 5 µs, assuming
that the inner loop count (frequency argu-
ment) is 256 or less and that it is held in a
register. The total time spent in the loop
i s [(5xM)-1]) microseconds, where M is
the frequency argument and the -1 is due
to the shorter execution time of an un-
successful branch. (The observant reader
will note that the execution time of some
6502 instructions is altered if they cross
a memory "page boundary"; thus, an
assumption of no page crossing is made.)
But there is still the time required for a pass
through the outer loop to output a pulse and
decrement the duration counter. This is
termed "loop overhead." For an example,
let's say that the loop overhead is 25 us.
As a result, the total outer loop time is
[(5xM)-1+25], or [(5xM)+2-f] microseconds
which is the period of the audio waveform
output. In order to determine the M re-
quired for a particular note, a table of note
frequencies (see table 1) is consulted. Then
the equation,

where F is the desired frequency, is solved
for the nearest integer value of M. Lower
frequency notes are preferred so that the
percentage error incurred due to rounding M
i s minimized. The duration argument is
actually a count of the number of audio
tone cycles which are to he generated for
the note, and thus its value is dependent on
the tone frequency as well as the duration.
I ts value can be determined from the rela-
tion N=DxF, where N is the duration argu-
ment, D is the duration in seconds, and F is
the note frequency in Hertz.

As a complete example, let's assume that
an eighth note Gµ an octave above middle
C is to be played, and that the piece is in
4/4 time with a metronome marking of 80
beats per minute. Since an eighth note in
this case is one half of a beat, the duration
will he,

or 0.375 seconds. The note table shows that
the frequency of G#an octave above middle
C is 830.6 Hz, which yields a frequency
argument of 236. The duration argument is
311. So if TONE is called with these para-
meters, a nice G# eighth note will be pro-
duced.

Now let's go a step further and look at a
practical "music peripheral" and TONE sub-
routine. Figure 2 shows a circuit for driving
a speaker from any kind of TTL compatible

Note Frequency (Hz)

Middle C 261.62
C# 277.18
D 293.66
D# 311.13
E 329.63
F 349.23
F# 369.99
G 391.99
G# 415.30
A 440.00
A# 466.16
B 493.28

By graduating to a more sophisticated
music peripheral, control of dynamics and
amplitude envelopes can be achieved with a
timed loop music program. The secret is to
use a digital to analog converter connected
to all eight bits of the output port. A digital
to analog converter (DAC) does just what
i ts name implies: it accepts a binary number
from the output port as input and generates
a corresponding DC voltage as its output.

ANALOG
OUTPUT

VOTE. ABOVE RESISTORS MUST
BE 5% CARBON FILM
TYPES- 47K SHOULD BE
FROM THE SAME BATCH

Figure 3: An 8 bit digital to analog converter (DA C). This circuit accepts an 8
bit binary number from the output port and generates a corresponding DC
voltage as its output. The output voltage from this circuit is equal to ((11255)-
x5) V, where / is the decimal equivalent of the 8 bit input which can take on
any value from 0 to 225.

where I is the binary number input between
0 and 255. When working with this kind of
DAC, it is convenient to regard the binary
number, I, as a fraction between 0 and 1
rather than an integer. The benefit of this
will become apparent later when calculations
will be performed to arrive at the value of I.
The output of the DAC must be used with a
sound system or the amplifier circuit in
figure 8, not the simple transistor speaker
driver circuit in figure 2.

As written, the TONE subroutine (see
listing 1) alternately sends 0 and 255 to
the output port with the music peripheral.
With a DAC connected to that port, voltages
of 0 and 5 V will be produced for the low
and high portions of the rectangular wave.
I f instead 0 and 127 were output, the DAC
would produce only 0 and 2.5 V giving a
rectangular wave with about half the amplit-
ude. This in turn produces a less loud
tone, and so control over dynamics is
possible by altering the byte stored at
hexadecimal 101.

Arbitrary amplitude envelopes are also
made possible by continuously exercising
control over the amplitude during a note.
Simple envelope shapes such as a linear
attack and decay can be computed in line
while the note is being sounded. A more
general method is to build a table in
memory describing the shape. Such a table
can be quickly referenced during note
playing. Great care must be taken, however,
to insure that loop timing is kept stable
when the additional instructions necessary
to i mplement amplitude envelopes are
added.

More Complex Techniques

Even if all of the improvements men-
tioned above were fully implemented, the
elementary timed loop approach falls far
short of significant musical potential. The
primary limitations are a narrow range of
tone colors and restriction to monotonic
performance. The latter difficulty may be
alleviated through the use of a multitrack
tape recorder to combine separate parts, but
this requires an investment in noncomputer
hardware and is certainly not automatic.
Also, unpitched percussive sounds such as
drum beats are generally not possible. Musi-
cians, too, will probably notice a host of
other limitations such as lack of vibrato and

The circuit in figure 3, which can be used
with any TTL compatible output port,
gives an output voltage

Table 2: Harmonic amplitudes of rectangular waves. Note that, unlike square waves, asymme-
trical rectangular waves contain even numbered harmonics. This simple technique of varying
the duty cycle of such waves can have an appreciable effect on the timbre of the resulting
sound.

output port bit, including those found in the
6530 "combo chips" used in the KIM-1.
When the output port bit is a logic 0 level,
the transistor turns on and drives a current
determined by the volume control setting
through the speaker. When the bit is a logic
l, the current is interrupted. Larger speakers
or even a high fidelity speaker system will
give a richer timbre to the lower pitched
tones. The AUX input to a sound system
may also be used instead of the transistor
circuit. Using a patch cord, connect the
shield to the common terminal of the power
supply and the center conductor to the
output port bit through a 10 K to 100 K
i solation resistor.

Listing 1 shows an assembled listing of a
practical timed loop tone generation sub-
routine for the 6502 microprocessor. Several
refinements beyond the flowcharted
example have been made to improve tone
quality and flexibility. The inner waiting
l oop has been split into two loops. The first
loop determines the length of time that the
output rectangular waveform is to be a
logic 1 and the second loop determines the
0 time. If both loops receive the same
frequency argument (which they do as
written) and the loop time of both loops is
the same, then a symmetrical square wave
output is produced. However, if one or more
"do nothing" instructions is inserted into
one of the two loops, the output waveform
will become nonsymmetrical. The signifi-
cance of this is that the rectangular wave-
form's duty cycle affects' its harmonic
spectrum, and thus its timbre. In particular,
there is a large audible difference between
a 50%-50% duty cycle (square wave) and a
25%-75% duty cycle. Table 2 lists the
harmonic structure of some possible rec-
tangular waves. As a result, some control
over the timbre can be exercised if a separate
TONE subroutine is written for each "voice"
desired. Unfortunately, if this is done the
frequency arguments will have to be recom-

puted since the outer loop time will then be
altered.

Real music also possesses dynamics,
which are the changes in overall volume dur-
i ng a performance. Furthermore, the ampli-
tude envelope of a tone is an important con-
tributor to its overall subjective timbre. The
latter term refers to rapid changes in volume
during a single note. This is the case with a
piano note, which builds up rapidly at the
beginning and slowly trails off thereafter.
Of course the setup described thus far has
no control over either of these parameters:
the volume level is constant, and the enve-
l ope of each note is rectangular with sudden
onset and termination.

Listing 1: An assembled listing of a practical timed loop tone generation sub-
routine for the 6502 microprocessor. This routine is an elaboration of the
flowchart shown in figure 1 which allows the user to generate nonsymmetri-
cal rectangular waves. Experimenting with the wave's duty cycle affects the
harmonic content of the resulting tone and creates many interesting aural
effects.

TONE SUBROUTINE FOR 6502

ENTER WITH FREQUENCY PARAMETER IN ACCUMULATOR
DURATION PARAMETER STORED AT LOCATION OUR (LOW PART) AND

DUR.1 (HIGH PART) WHICH IS ASSUMED TO BE IN PAGE ZERO

ROUTINE USES A, X, AND DESTROYS DUR

LOOP TIME = 10'(FREQ PARAMETER).44 MICROSECONDS

17UU MPORT X 1 1700

OOEO DUN X'EO

0100 A2FF TONE: LDX IX'FF

0102 8EO017 STX MPORT

0105 AA TAX

0106 CA WHIGH: DEX

0107 DOFD BNE WHIGH

0109 F000 BEQ . .2

OIOB F000 BEQ . .2
O10D FOOD BEQ . .2

aI OF F000 BEQ . .2

0111 FOOD BEQ .
.
2

0113 A200 LDX to
0115 BE0017 STX MPORT

0118 AA TAX

0119 CA WLOW: DEX

011A DOFD BNE WLOW

O11C C6ED DEC DUR

0 D005 BNE TIMWAS

0120 C6E1 DEC DUR.1

0122 DODC BNE TONE

0124 60 RTS
0125 F000 TIMWAS: BEQ . .2

0127 F000 BEQ . .2

0129 DOD5 BNE TONE

ADDRESS OF OUTPUT PORT WITH SPEAKER

ARBITRARY PAGE 0 ADDRESS OF DURATION PARI

SEND ALL 1'S TO THE OUTPUT PORT

TRANSFER FREQ PARAMETER TO INDEX X

WAIT LOOP FOR WAVEFORM HIGH TIME

TIME IN THIS LOOP = 5'FREQ PARAMETER

WAIT 15 STATES TO MATCH TIME USED TO

DECREMENT AND CHECK DURATION COUNT AFTER

WAVEFORM LOW TIME

SEND ALL 0'S TO THE OUTPUT PORT

TRANSFER FREQ PARAMETER TO INDEX X

WAIT LOOP FOR WAVEFORM LOW TIME

TIME IN THIS LOOP = 5 4 FREQ PARAMETER

DECREMENT LOW PART OF DURATION COUNT

BRANCH IF NOT RUN OUT
DECREMENT HIGH PART OF DURATION COUNT

GO DO ANOTHER CYCLE OF THE TONE IF NOT 0

RETURN WHEN DURATION COUNT RUNS OUT

WASTE 7 CYCLES TO EQUAL TIME THAT WOULD

HAVE BEEN SPENT IF HIGH PART OF DUR WAS
. ntrDCYCUTRn sun nn nn sunTURR rvrIR

Wave Harmonics
Duty
Cycle Fund 2 3 4 5 6 7 8 9 1 0
1/2 1.00 0 0.333 0 0.200 0 0.143 0 0.111 0
1 /3 1.00 0.500 0 0.250 0.200 0 0.143 0.125 0 0.100
1 /4 1.00 0.707 0.333 0 0.162 0.236 0.143 0 0.111 0.141
1/5 1.00 0.841 0.561 0.259 0 0173 0.240 0.210 0.116 0
1 /6 1.00 0.867 0.667 0.433 0.200 0 0.143 0.217 0.222 0.173

Figure 4: A sine wave as it would appear at the output from the digital to analog converter
shown in figure 3. Each step in the approximation of this wave is called a sample. This parti-
cular illustration shows a 1.2 kHz sine wave sampled at a rate of 25,000 samples per second.
The resulting waveform is only a very , rough approximation of the original, but low pass filter-
ing can improve accuracy (see figure 5 and text.

other subtle variations. All of these short-
comings may be overcome by allowing the
computer to compute the entire sound
waveform in detail at its own speed.

The one fundamental concept that makes
direct waveform computation possible is the
sampling theorem. Any waveform, no matter
how simple or complex, can be recon-
structed from a rapid series of discrete, vol-
tage values by means of a digital to analog
converter such as the one used earlier. As an
example, let's try to generate an accurate
sine wave using a DAC. If this can be done,
i t follows from the Fourier (harmonic)
theorem that any other waveform may also
be synthesized.

Figure 4 shows a sine wave as it would
appear at the DAC output. Each step on the
approximation to the sine wave is termed a
sample, and the frequency with which these
samples emerge from the DAC is the sample
rate. An attempt is being made in the
example to generate a 1.2 kHz sine wave at
a sample rate of 25 kHz, or one sample every
40 µs. Obviously this is a very poor sine
wave, a fact that can be easily demonstrated
with a distortion analyzer.

Before giving up, let's look at the fre-
quency spectrum of this staircase-like wave
on a spectrum analyzer. The spectral plot in
figure 5 shows a strong frequency com-
ponent at 1.2 kHz which is the sine wave
we are trying to synthesize. Also present are
the distortion component frequencies due

to the sampling process. Since all of the
distortion components are much higher in
frequency than the desired signal, they may
be easily removed with a sharp low pass
filter. After filtering, the distortion analyzer
will confirm that a smooth, pure sine wave
i s all that remains.

What will happen if the sine wave fre-
quency is increased but the sampling fre-
quency remains constant? With even fewer
samples on each sine wave cycle the wave-
form from the DAC will appear even more
distorted. The lowest frequency distortion
product is the one of concern since it is the
most difficult to filter out. Its frequency
i s FD=(FS-f) Hertz, where FD is the lowest
distortion component frequency, FS is the
sampling frequency, and f is the sine wave
signal frequency. Thus as f increases, FD
decreases until they merge at f=FS/2. This
frequency is termed the Nyquist frequency

and is the highest theoretical frequency that
may be synthesized. Any attempt to syn-
thesize a higher frequency will result in the
desired signal being filtered out and the
distortion frequency emerging instead. This
situation is termed aliasing because the
desired signal frequency has been replaced
by a distortion component alias frequency.
Operating close to the Nyquist frequency
requires a very sharp filter to separate the
signal from the distortion. With practical
filters, signal frequencies up to 1/4 to 1/3
of the sampling frequency are realizable.

Figure 5: The spectral plot of the staircase-like sine wave approximation shown in figure 4. This
frequency versus amplitude graph indicates a strong frequency component at 1.2 kHz, the fre-
quency of the sine wave. Normally, this would be the only frequency component to appear on
a plot like this, but the presence of steeply rising steps in this waveform approximation intro-
duces distortion components at higher frequencies, as shown.

Since any sound, whether it is a pitched
tone or unpitched sound, is actually a
combination of sine waves, it follows that
any possible sound may be produced by a
DAC. The only limitation is the upper fre-
quency response, which may be made as
high as desired by increasing the sample rate.
The low frequency response has no limit,
and extends down to DC.

There is another form of distortion in
DAC generated sounds which cannot be
filtered out, since it is spread throughout the
frequency spectrum. Quantization noise is
due to the fact that a DAC cannot generate
voltages that are exact samples on the de-
sired waveform. An 8 bit converter, for
example, has only 256 possible output vol-
tage values. When a particular voltage is
needed, the nearest available value will have
to be used. The theoretical signal to noise
ratio when using a perfect DAC is related to
the number of bits by the equation S/N=
(6xM)+4 decibels where M is the number of
bits. A practical DAC may be as much as 6
db worse, but a cheap 8 bit unit can yield
nearly 50 db, which is as good as many tape
recorders. When using 12 bits or more, the
DAC will outperform even the best profes-
sional recorders. Thus it is apparent that
computed waveforms can, in theory, be used
to generate very high quality music; so high,
in fact, that conventional audio equipment
i s hard pressed to reproduce it.

Now that we have the tools, let's see how
the limitations of computer music men-
tioned earlier can be overcome. For tones
of definite pitch, the timbre is determined
by the waveshape and the amplitude enve-
l ope. Concentrating on the waveshape, it
should be apparent that a waveform table
in memory repeatedly dumped into the DAC

will produce an equivalent sound waveform.
Each table entry becomes a sample, and the
entire table represents one cycle of the wave-
form. The frequency of the resulting tone
will be FS/N where FS is the sampling fre-
quency (rate at which table entries are sent
to the DAC) and N is the number of entries
i n the table. To get other frequencies, either
the sample rate or the number of table
entries must be changed.

There are a number of reasons why the
sample rate should remain constant, so
the answer is to change the effective table
l ength. If the table dump routine were
modified to skip every other entry, the
result would be an effective halving of
table size and thus doubling of the tone
frequency. If the table is fairly long, such
as 256 entries, a number of frequencies are
possible by skipping an integer number of
entries.

To get musically accurate frequencies, it
i s necessary to be able to skip a fractional
number of table entries. At this point the
concept of a table increment is helpful in
dealing with programming such an oper-
ation. First, the table is visualized as a
circle with the first entry conceptually
following the last as in figure 6. A pointer
locates a point along the circular table
which represents the sample last sent to
the DAC. To find what should be sent to
the DAC next, the table pointer is moved
clockwise a distance equal to the table
increment. The frequency of the resulting
tone is nnw

where FS and N are as before and I is the
i ncrement.

TABLE
POINTER

Figure 6: Diagrammatic representation of
the circular table used for storing the wave-
form "template. " The technique illustrated
here is that of storing a large number of
samples of one cycle of a musical waveform
in memory as a table which wraps around
itself in circular fashion. A pointer is used
to point to the next sample to be extracted.
In order to create a waveform with a given
frequency, the program is designed to skip
a fractional number of table entries to get
the next sample value. This fractional
number is called the table increment value.
The process is continued around the table
for one revolution to create a complete
waveform. The cycle around the table is
repeated until the duration counter decre-
ments to zero.

With integer increments, the pointer
always points squarely to an entry. With
mixed number increments, the pointer also
will take on a fractional part. The sensible
thing to do is to interpolate between the
table entries on either side of the pointer
to arrive at an accurate value to give to the
DAC. This is indeed necessary to assure
high quality; but simply choosing the nearest
entry may be acceptable in some cases, parti-
cularly if the table is very large.

There is one elusive pitfall in this tech-
nique. The table may contain the tabulation
of any waveform desired, subject to one
limitation: a nonzero harmonic component
of the waveform must not exceed the
Nyquist frequency, FS/2. This can easily
happen with the larger table increments
(higher frequency tones), the result being
aliasing of the upper harmonics. Theoreti-
cally this is a severe limitation. Often a small
amount of aliasing is not objectionable, but

a large amount sounds like gross intermodu-
lation distortion. High sample rates reduce
the possibility or magnitude of aliasing, but
of course require more computation. For the
moment, we will ignore this problem and
restrict ourselves to relatively smooth wave-
forms without a lot of high frequency har-
monics.

Now that the DAC is used for generating
the actual waveshape, how is amplitude con-
trol accomplished? If an amplitude para-
meter is defined that ranges between 0 and
1.0 (corresponding to amplitudes between
zero and maximum), the desired result is
obtained by simply multiplying each sample
from the table by this amplitude parameter
and sending the product to the DAC. Things
are nice and consistent if the table entries
are also considered as fractions between -1
and +1 because then the product has a range
between -1 and +1 which is directly com-
patible with the DAC. (Note that the DAC
i n figure 3 is unipolar. It can be considered
bipolar if +2.5 V output is the zero reference
and the sign bit is inverted.)

The last major hurdle is the generation of
simultaneous tones. Obviously, two simul-
taneous tones may be generated by going
through two tables, outputting to two
separate DACs, and mixing the results with
an audio mixer. This is relatively simple to
do if the sample rates of the two tones are
the same. Actually, all the audio mixer does
i s to add the two input voltages together to
produce its output, but a very important
realization is that the addition can also be
done in the computer before the output
conversion by the DAC! The two samples
are simply added together with an ADD
instruction, the sum is divided by two (to
constrain it to the range of -1 to +1), and
the result sent to a single DAC. This holds
true for any number of simultaneous tones!
The only requirement is that the composite
samples not overflow the -1 to +1 range that
the DAC can accept. Rather than dividing
the sum, it is best to adjust the amplitude
factors of the individual "voices" to prevent
overflow. So now we have the tools nece-
sary to generate an ensemble of tones, each
one possibly having its own waveform,
amplitude envelope, and loudness relative
to the others. Indeed, this is all that is
necessary to si mulate a typical organ.

Up to this point the timbre (waveform)
of a tone has been determined by the con-
tents of a fixed waveform table. Truly inter-
esting musical notes change their timbre
during the duration of the note. A reason-
able alternative to switching between similar
tables for implementing this is to build the
tone from harmonic components. Each
harmonic component of the tone is simply

Listing 2: A program which, in conjunction with tables 3, 4 and 5, generates
four simultaneous musical voices, each with a different waveform and volume
level. The program is designed for use with the 6502 processor coupled to
an 8 hit unsigned digital to analog converter (DAC) like the one shown in
figure 3.

4 VOICE PLAY SUBROUTINE

a sine wave with an amplitude dependent
on the waveform of the resulting tone.
Giving a different amplitude envelope
to each harmonic is equivalent to smoothly
changing the timbre during the note. The
aliasing problem mentioned earlier can also
be solved by simply omitting any harmonics
that become too high in frequency.

Dynamic timbre variation can also be
accomplished by a digital filter which does
the same thing to a sampled waveform that
a real inductance-capacitance filter does to
a normal waveform. A digital filter is simply
a subroutine which accepts a sample value
as an argument and gives back a sample value
which represents the filtered output. The
equations used in the subroutine determine
the filter type, and other arguments deter-
mine the cutoff frequency, Q, etc. This is a
fascinating subject which deserves its own
article.

What about other, unpitched sounds?
They too can be handled with a few simple
techniques. Most sounds in this category
are based in part on random noise. In
sampled form, random white noise with a
uniform frequency spectrum is simply a
stream of random numbers. For example,
a fairly realistic snare drum sound may he
generated by simply giving the proper ampli-
tude envelope to pure white noise. Other
types of drum sounds may be generated
by using a digital filter to shape the fre-
quency spectrum of the noise. A resonant
type of digital filter would be used for tom-
toms and similar semipitched drums, for
example. A high pass filter is useful for simu-
l ating brush and cymbal sounds. An infinite
number of variations are possible. This is
one area where direct computation of sound
waveforms really shines.

The sampling theorem works both ways
also. Any waveform may be converted into
digital samples with an analog to digital
converter (ADC) with no loss of informa-
tion. The only requirement is that the signal
being sampled have no frequency com-
ponents higher than half of the sampling
frequency. This may be accomplished by
passing the signal to be digitized through a
sharp low pass filter prior to presenting
i t to the ADC. Once sound is in digitized
form, literally anything may be done to it.
A simple (in concept) application is intri-
cate editing of the sound with a graphic
display, light pen and large capacity disk.
The sound may be analyzed into harmonic
components and the result or a transfor-
mation of it applied to a synthesized sound.
Again, this is an area that deserves its own
article.

•
THIS PROGRAM PLAYS MUSIC IN 4-PART HARMONY ON THE KIM-1 OR

OTHER 5552 BASED SYSTEM USING AN 8-BIT UNSIGNED

DIGITAL-TO-ANALOG CONVERTER CONNECTED TO AN OUTPUT PORT. TUNED

FOR SYSTEMS WITH A
1

MHZ CRYSTAL CLOCK. DOES NOT USE THE ROR

INSTRUCTION.

SONG TABLE IS AT "SONG"

ENTRY POINT IS AT "MUSIC"

0000 0 ORG AT PAGE 0 LOCATION 0

1 700 _AC X'1700 OUTPUT PORT ADDRESS 'WITH DAC

1701 LACDIF X'1701 DATA DIIECTION REGISTER FOR DAC PORT

1 780 AUXRAM X'1780 ADDRESS OF EXTRA 126 BYTES OF RAM IN 6530

1022 KIh440N X'1022 ; ENTRY POINT TO KIM KEYBOARD MONITOR

0000 00 V1PT: BYTE 0 VOICE 1 WAVE POINTER, FRACTIONAL PART

0001 0000 WORD WAVITB INTEGER PART AND WAVE TABLE BASE

0003 00 V2PT: BYTE 0 VOICE 2

0004 DODO WORD WAV2TB

0006 00 V3PT: BYTE 0 VOICE 3

0007 0000 WORD WAV3TB

0009 00 V4PT: BYTE 0 VOICE 4

COCA 0000 WORD WAV4TB

000C 0000 V1IN: . WORD C VOICE 1 INCREMENT (FREQUENCY PARAMETER)

000E DODO V22N: 'WORD C VOICE 2

0010 0000 V3IN: . WORD 0 VOICE 3

0012 0000 V4IN: WORD 0 VOICE 4

0014 00 OUR: . 877E C DURATION COUNTER

0015 0000 NOTES: WORD 0 NOTES POINTER

0017 0002 SONGA: . WORD SONG ; ADDRESS OF SONG

0019 0000 INCPT: WORD 0 POINTER FOR LOADING UP V1NT - VANT

0018 0000 INCA: .'WORD V1IN INITIAL VALUE OF INCPT

OO1D 5200 TEMPO: 'WORD 82 TEMPO CONTROL VALUE, TYPICAL VALUE FOR

3:4 TIME, 100 BEATS PER MINUTE, DUR_64

DESIGNATES A QUARTER NOTE

0100 X'100 START PROGRAM CODE AT LOCATION 0100

MAIN M0JSI_ P10'0[N:1 01iii0RAM

0100 A9FF MUSIC: LDA #X'FF ; SET PERIPHERAL A DATA DIRECTION

0102 8DO117 STA DACDIR REGISTER TO OUTPUT

0105 D8 OLD ; INSURE BINARY ARITHMETIC

0106 A517 LDA SONGA INITIALIZE 40TES POINTER

0108 8515 STA NOTES TO BEGINNING OF SONG

010A A518 :.DA C04GA+1

0100 8516 sTA NOTES+1

010E A000 14USICI: LDY d0 SET UP TO TRANSLATE 4 NOTE ID NUMBERS

0110 A51B LDA INCA INTO FREIUENC'i DETERMINING 'WAVE-FORM TABLE

0112 8519 STA INCPT INCREMENTS AND STORE IN VIIN - 1»1N

0114 B115 LDA , NOTES),Y GET DURATION FIRST

0116 F03C BEG ENDING BRANCH IF END 4F TONG

0118 C901 CMP #1 TEST :F END OF 20N0 TABLE SEGMENT

O11A F029 BEQ NXTSEG BRANCH IF SO

011C 8514 STA OUR OTHER'WOSE SAVE DURATION _N OUR

011E E615 MUSIC2: INC NOTES ; DOUBLE INCREMENT NOTES TO POINT TO THE

0120 D002 BNE MUSIC; NOTE ID OF THE FIRST VOICE

0122 E616 INC NOTES+1

0124 8115 MUSIC3: LDA f: NOTES;,Y GET A NOTE ID NUMBER

0126 AA TAX INTO INDEX X

0127 B520 :. DA FRQTAB+1,i: GET LOW BYTE OF CORRESPONDING FREQUENCY

0129 9119 STA ; INCPT:i,Y , STORE INTO LOW BYTE OF VOICE INCREMENT

012B E619 INC INCPT , INDEX TO HIGH BYTE

012D B51F LDA FRQTAB,X GET HIGH BYTE OF FREQUENCY

012F 9119 STA f, INCPTj,Y STORE INTO HIGH BYTE OF VOICE INCREMENT

0131 E615 INC NOTES ; DOUBLE INCREMENT NOTES TO POINT TO THE

D133 D002 BNE MUSIC4 ; NOTE ID CF THE NEXT VOICE

0135 E616 INC NOTES+1

0137 E619 MUSIC4: INC INCPT INDEX TO NEXT VOICE INCREMENT

0139 A519 LDA INCPT TEST IF 4 VOICE INCREMENTS DONE

0138 0914 CMP IV4IN+2

013D DOES BNE MUS:C3 LOOP IF NOT

013E 205701 JSR PLAY PLAY THIS GROUP OF NOTES

0142 4COEO1 JMP M1JSI^_1 GO LOAD OP NEXT 3E_ IF NOTES

0145 C8 NXTSEG: INY END OF SEGMENT, NEXT TWO BYTES POINT TO

0146 8115 LDA (. NOTES),Y ; BEGINNING OF THE NEXT SEGMENT

0148 48 PHA

0149 C8 INY GET BOTH SEGMENT ADDRES5 BYTES

014A 8115 '.CA !NOTES),Y

0140 8516 STA NOTES-1 THEN STORE IN NOTES POINTER

014E 68 PLA

014F 8515 STA N17E5

0151 4COE01 JMP MUSICI GO START I47ERPRE'.ING NEW SEGMENTT

0154 402210 ENDSNG: JMP KIMMON END OF SONG, RETURN TO MONITOR

imatthews

Sampled Waveform Example

It should be obvious by now that while
these sampled waveform techniques are
completely general and capable of high
quality, there can be a great deal of com-
putation required. Even the most powerful
computers in existence would be hard
pressed to compute samples for a significant
piece of music with many voices and all
subtleties implemented at a rate fast enough
for direct output to a DAC and speaker.
Typically the samples are computed at
whatever rate the program runs and are
saved on a mass storage device. After the
piece has been "computed," a playback pro-
gram retrieves the samples and sends them to
the DAC at a uniform high rate.

Most microprocessors are fast enough to
do a limited amount of sampled waveform
computation in real time. The 6502 is one
of the best 8 bit machines in this capacity
due to its indexed and indirect addressing
modes and its overall high speed. The
example program shown in listing 2 has the
inherent capability to generate four simul-

taneous voices, each with a different wave-
form and volume level. In order to make the
whole thing fit in a basic KIM-1, however,
only one waveform table is actually used.

This program could probably be con-
sidered as a variation of the timed loop tech-
nique, since the sample rate is determined by
the execution time of a particular loop. The
major differences are that all of the instruc-
tions in the loop perform an essential func-
tion and that the loop time is constant
regardless of the notes being played. Using
the program as shown on a full speed (1.0
MHz) 6502 gives a sample rate of 8.77 kHz,
which results in a useful upper frequency
l i mit of 3 kHz. The low pass filter in figure 7
coupled with the DAC in figure 3 and audio
system or amplifier in figure 8 are all the
specialized hardware necessary to run the
program with full 4 part harmony.

The program consists of two major
routines: MUSIC and PLAY. MUSIC steps
through the list of notes in the song table
and sets up DUR and V1 IN thru V41N for
the PLAY routine. PLAY simultaneously
plays the four notes specified by V11N thru
V41N for the time period specified by DUR.
Another variable, TEMPO, in page zero con-
trols the overall tempo of the music inde-
pendently of the durations specified in the
song table. The waveform tables for the
four voices are located at WAVITB thru
WAV4TB and require 256 bytes (one
memory page) each. The actual waveform
samples stored in the table have already
been scaled so that when four of them are
added up there is no possibility of overflow.

The song table has an entry for each
musical "event" in the piece. An entry
requires five bytes, the first of which is a
duration parameter. By suitable choice
of the TEMPO parameter in page 0, "round"
(in the binary sense) numbers may be used
for duration parameters of common note
durations. A duration parameter of 0 signals
the end of the song, in which case the pro-
gram returns to the monitor. A duration
parameter of 1 is used to specify a break in
the sequential flow of the song table. In this
case the next two bytes point to the con-
tinuation of the table elsewhere in memory.
This feature was necessary to deal with the
fragmented memory of the KIM-I, but has
other uses as well. All other possible dura-
tion values are taken literally and are fol-
lowed by four bytes which identify the
notes to be played by each voice. Each note
ID points to a location in the note frequency
table which in turn contains a 2 byte fre-
quency parameter for that note which is
placed in Vl IN thru V4IN.

The PLAY routine is optimized for speed,

Listing 2, continued:

0157 A000 PLAY: LDY #0 SET Y TO ZERO FOR STRAIGHT INDIRECT
0159 A61D LDX TEMPO SET X TO TEMPO COUNT

COMPUTE AND OUTPUT A COMPOSITE SAMPLE

0158 1 8 =.A?': CLC CLEAR CARRY
015C 8101 LDA (V1PT.1;,Y ADD UP 4 VOICE SAMPLES
015E 7104 ADC (V2PT.1),Y USING INDIRECT ADDRESSING THROUGH VOICE
0160 7107 ADC (V3PT.1),Y ; POINTERS INTO WAVEFORM TABLES
0162 710A ADC (V4PT.1),Y STRAIGHT INDIRECT WHEN Y INDEX = 0
0164 8DO017 STA X'1700 SEND SUM TO DIGITAL-TO-ANALOG CONVERTER
0167 A500 LDA V1PT ADD INCREMENTS TO POINTERS FOR
0169 650C ADC V1IN THE 4 VOICES
0168 8500 STA V1PT FIRST FRACTIONAL PART
016D A501 LDA V1PT+1
016F 650D ADC V1IN.1
0171 8501 STA V1PT.1 ; THEN INTEGER PART
0173 A503 LDA V2PT VOICE 2
0175 650E ADC V2IN
0177 8503 STA V2PT
0179 A504 LDA V2PT+1
017B 650F ADC V21N.1
017D 8504 STA V2PT.1
017F A506 LDA V3PT ''DICE 3
0181 6510 ADC V3IN
0183 8506 STA V3PT
0185 A507 LDA V3PT+1
0187 6511 ADC V3IN.1
0189 8507 STA V3PT+1
018B A509 LDA V4PT ; VOICE 4
018D 6512 ADC V41N
018E 8509 STA V4PT
0191 A50A LDA V4PT.1
0193 6513 ADC V41N+1
0195 850A STA V4PT+1
0197 CA DEX DECREMENT & CHECK TEMPO COUNT
3198 D008 BNE TIMfAS BRANCH TO TIME WASTE IF NOT RUN OUT
019A C614 DEC DUR ; DECREMENT & CHECK DURATION COUNTER
019C FOOC BEQ ENDNOT JUMP DUT IF END OF NOTE
019E A61D LDX TEMPO RESTORE TEMPO COUNT
01A0 DOB9 BNE PLAY1 CONTINUE PLAYING
01A2 D000 TIM'AAS: BNE . .2 3 WASTE 12 STATES
01A4 D000 BNE . .2 3
DIA6 D000 BNE . .2 3
J:A8 DI-B1 BNE PLAY1 3 CONTINUE PLAYING
0'AA a0 ENDNOT: RTS ; RETURN

TOTAL LOOP TIME = 114 STATES = 8770 HZ

0IAB PlEND - ; DEFINE BEGINNING ADDRESS FOR THIRD PART
OF SONG TABLE

How does it sound? With the waveform
table shown and a reasonably good speaker
system, the result sounds very much like an
electronic organ, such as a Hammond. There
i s a noticeable background noise level due to
compromises such as prescaled waveforms
and lack of interpolation in the tables, but it
i s not objectionable. The pitches are very
accurate, but there is some beating on
chords due to compromises inherent in the
standard equally tempered musical scale.
Also there are noticeable clicks between
notes due to the time taken by the MUSIC
routine to set up the next set of notes. All in
all the program makes a good and certainly
i nexpensive basis for the "family music
application" mentioned earlier.

Synthesizer Control Techniques

So far we have discussed techniques in
which the computer itself generates the
sound. It is also possible to interface a com-
puter to specialized sound generation hard-
ware and have it act as a control element.

The most obvious kind of equipment to
control is the standard, modular, voltage
controlled sound synthesizer. Since the
i nterface characteristics of nearly all synthe-
sizers and modules are standardized, a com-
puter interface to such equipment could
be used with nearly any synthesizer in
common use.

Generally speaking, the function of a
voltage controlled module is influenced
by one or more DC control voltages. These
are usually assumed to be in the range of 0
to +10 volts, although some modules will

Figure 8. An inexpensive,
wide band low power
audio amplifier. This cir-
cuit, when coupled with
the circuits in figures 3
and 7, is all the experi-
menter needs to create
music with his or her
microprocessor.

Table 4: This song table is an encoding of "The Star Spangled Banner" in
4 part harmony which is used by the program in listing 2. Each musical
event in the table consists of five bytes. The first byte represents the dur-
ation of the event in units, according to the value of the "tempo " (0 denotes
the end of the song). The next four bytes contain the note identifications of
the four voices (0 indicates silence for the voice).

•

SONG TABLE
EACH MUSICAL EVENT CONSISTS OF 5 BYTES
THE FIRST IS THE DURATION OF THE EVENT IN UNITS ACCORDING TO
THE VALUE OF "TEMPO-, ZERO DENOTES THE END OF THE SONG.
THE NEXT 4 BYTES CONTAIN THE NOTE ID OF THE 4 VOICES, I THROUGH
4. 0 INDICATES SILENCE FOR THE VOICE.

0200 X'200

	

; START SONG AT 0200

SONG 'ABLE FOR THE STAR SPANGLED BANNER BY FRANCIS SCOTT KEY
AND J. STAFFORD SMITH
DURATION - OUNT = 64 FOR QUARTER NOTE

0200 604A000032 SONG: BYTE 96,74,0,0,50

	

; 3/8 C5

	

C4

	

1
0205 1 044000020 BYTE 1 6,68,0,0,44 1/16 A4

	

A3
020A 4040000024 BYTE 64

	

; 1 /4 G4

	

F3

	

2
020F 4044000024 BYTE 64,68,0,0,36 1 /4 A4

	

F3
0214 404A000022 . BYTE 64,74,0,0,34 1 /4 C5

	

E3
0219 80544E441E BYTE 128,84,78,68,30 1 /2 F5

	

D5

	

A4

	

D3

	

3
021E 3050524410 BYTE 48,92,82,68,28

	

; 3/16 A5

	

E5

	

A4

	

C03
0223 1 058004010 BYTE 16,88,0,64,28 1 /16 G5

	

G4

	

C#3
0228 405400301E BYTE 64,84,0,60,30 1 /4 F5

	

F4

	

D3

	

4
022D 4044003CIE BYTE 64,68,0,60,30

	

; 1/4 A4

	

F4

	

D3
0232 4048403028 BYTE 64,72,64,60,40

	

; 1/4 B4

	

G4

	

F4

	

G3
0237 804A403A32 BYTE 128,74,64,58,50 1 /2 C5

	

G4

	

E4

	

C4

	

5
023C 204A000032 BYTE 32,74,0,0,50 1 /8 C5

	

C4
0241 204A000032 BYTE 32,74,0,0,50

	

; 1 /8 C5

	

C4
0246 6050544424 . BYTE 96,92,84,68,36 3/8 A5

	

F5

	

A4

	

F3 6
024B 2058004028 BYTE 32,88,0,64,40 1/8 G5

	

G4

	

G3
0250 4054003020 BYTE 64,84,0,60,44 1/4 F5

	

F4

	

A3
0255 80524A4032 BYTE 128,82,74,64,50 1/2 E5

	

C5

	

G4

	

C4

	

7
025A 304E46002E BYTE 48,78,70,0,46 3/16 D5

	

BE4

	

383
025E 10524A402E BYTE 16,82,74,64,46 1 /16 E5

	

C5

	

G4

	

3!3
0264 40544A442C BYTE 64,84,74,68,44

	

; 1/4 F5

	

C5

	

A4

	

A3 8
0269 405400003C BYTE 64,84,0,0,60 1 /4 F5

	

F4
026E 404A000032 BYTE 64,74,0,0,50

	

; 1 /4 C5

	

C4
0273 4044000020 BYTE 64,68,0,0,44

	

; 1/4 A4

	

A3

	

9
0278 4030000024 BYTE 64,60,0,0,36

	

; 1/4 F4

	

F3
027D 304A000032 BYTE 48,74,0,0,50

	

; 3/16 C5

	

C4
0282 1 044000020 BYTE 16,68,0,0,44

	

; 1/16 A4

	

A3
0287 4030000024 BYTE 64,60,0,0,36

	

; 1 /4 F4

	

F3

	

10
028C 4044000024 . BYTE 64,68,0,0,36 1 /4 A4

	

F3
0291 404A000022 BYTE 64,74,0,0,34

	

; 1 /4 C5

	

E3
0296 80544E441E . BYTE 128,84,78,68,30 1/2 F5

	

D5

	

A4

	

D3

	

11
029B 3050524410 BY7E. 48,92,82,68,28

	

; 3/16 A5

	

E5

	

A4

	

Oi3

Table 4, continued:

have a predictable response to negative
voltages as well. In a voltage controlled
oscillator, for example, the output fre-
quency is determined by a control voltage.
For typical tuning, 0 V would correspond
to 16 Hz (a very low C), and the frequency
would increase one volt per octave for
higher voltages. Thus, +4 V would produce
middle C, and the maximum input of +10 V

would produce a nearly inaudible 16.4 kHz.
A typical oscillator module has two or three
control inputs and a number of outputs. The
voltages at the inputs are internally summed
to form the effective control value (useful
for injecting vibrato), and the outputs pro-
vide several different waveforms simultane-
ously.

A voltage controlled amplifier has as a
minimum a signal input, a control input, and
a signal output. The voltage at the control
i nput determines the gain from the signal
i nput to the signal output. In a typical
setting, +8 V would correspond to unity
(0 db) gain, with lower voltages decreasing
the gain by 10 db per volt.

Many other voltage controlled devices
have been developed during the approxi-
mately 12 year history of this field. In order
to play music, the modules are first "pat-
ched" together with patch cords (like old
style telephone switchboards) according to
the desired sound characteristics. Manually
operated control voltage sources such as
potentiometers, joysticks and specialized
organ-like keyboards are then manipulated
by the player. The music is generally
monotonic due to difficulties in the control
elements (now being largely overcome).
Multitrack tape recorders are universally
utilized to produce the results heard on
recordings such as Walter Carlos's Switched
on Bach.

A useful computer interface to a synthe-
sizer can be accomplished with nothing more
than a handful of digital to analog and
optionally analog to digital converters. The
DACs would be used to generate control
voltages under program control and the
ADCs would allow operator input from the
keyboard, for example, to be stored. Since
control voltages vary slowly compared to the
actual sound waveforms, real time control
of a number of synthesizer modules is
possible with the average microprocessor.
Due to the large number of DACs required
and the relatively slow speeds necessary, a
multiplexing scheme using one DAC and a
number of sample and hold amplifiers is
appropriate. The home builder should be
able to achieve costs as low as s2 per
channel for a 32 channel, 12 bit unit capable
of controlling a fairly large synthesizer.

The routing of patch cords can also be
computerized. A matrix of reed relays or
possibly CMOS bilateral switches interfaced
to the computer might be used for this task.
The patches used for some contemporary
synthesizer sounds resemble the program
patch boards of early computers and thus
are difficult and time consuming to set up
and verify. With computer controlled
patching, a particular setup may be recalled

02AC 105800401C BYTE 1 6,88,0,64,26 1 116

	

G5 G4 Ci3
02A5 405400301E BYTE 64,84,0,60,30 F5 F4 D3

	

1 2
02AA 4044003CIE BYTE 64,68,0,60,30

	

; 1 14

	

A4 F4 D3
02AF 4048403028 BYTE 64,72,64,60,40 1,4

	

B4 G4

	

F4 G3
0234 804A403A32 BYTE 1 28,74,64,58,50 V'2

	

C5 G4

	

E4 C4

	

13
0289 204AG00032 BYTE 32,74,0,0,50 1 /8

	

C5 C4
02BE 204A000032 BYTE 32,74,0,0,50 1 /8

	

C5 C4
0203 6050544424 . BYTE 96,92,84,68,36 3/8

	

A5 F5

	

A4 F3

	

1 4

0208 2058004028 BYTE 32,88,0,64,40 1/8

	

G5 G4 G3

02CD 2054003CZC BYTE 32,84,0,60,44 1/8

	

F5 F4 A3
02D2 80524A4032 . BYTE 1 28,82,74,64,50

	

; 1/2

	

E5 C5

	

G4 C4

	

1 5
02D7 304E46002E BYTE 48,78,70,0,46 3/16

	

D5 3B4 B03
02DC 10524A402E BYTE 16,82,74,64,46 1/16

	

E5 C5

	

G4 BB3
02EI 40544A442C . BYTE 64,84,74,68,44 1 /4

	

F5 C5

	

A4 A3

	

16
02E6 4054000030 BYTE 64,84,0,0,60

	

; 1 /4

	

F5 F4
02EB 404A000032 BYTE 64,74,0,0,50 1 /4

	

C5 C4
02FO 4044000020 BYTE 64,68,0,0,44 1 /4

	

A4 A3

	

1 7
02F5 4030000024 BYTE 64,60,0,0,36 1 /4

	

F4 F3
02FA 01 . BYTE I

	

; DEFINE END OF THIS SEGMENT
02FB 8300 WORD POEND ADDRESS OF BEGINNING 3F NEXT

0083 POEND
SEGMENT

ORG AT END OF PAGE 0 i~GDE
0083 3050544428 BYTE 48,92,84,68,40 3/16

	

AS F5

	

A4 G3
0088 105C544428 BYTE 16,92,84,68,40 1 /16

	

A5 F5

	

A4 G3
008D 4050544424 BYTE 64,92,84,68,36 1 /4

	

AS F5

	

A4 F3

	

1 8
0092 405E544628 BYTE 64,94,84,70,40 1 /4

	

BB5 F5

	

BB4 G3
0097 4062544A2C BYTE 64,98,84,74,44 1 /4

	

C6 F5

	

C5 A3
0090 8062544A2C BYTE 1 28,98,84,74,44 1 /2

	

C6 F5

	

C5 A3

	

1 9
)CA1 205E544628 BYTE 32,94,84,70,40 1 /8

	

BB5 F5

	

BB4 G3
00A6 2050544420 BYTE 32,92,84,68,44 1 /8

	

A5 F5

	

A4 A3
OCAS 4058524032 BYTE 64,88,82,64,50 1/4

	

G5 E5

	

G4 C4

	

20
OGBO 4050544430 BYTE 64,92,84,68,60 1 /4

	

A5 F5

	

A4 F4
0085 405E524640 BYTE 64,94,82,70,64 1/4

	

BB5 E5

	

BB4 G4
DOBA 805E58461A BYTE 1 28,94,88,70,26 1 /2

	

BB5 G5

	

3B4 C3

	

21
OOBF 405E52461A BYTE 64,94,82,70,26 1:, 4

	

BB5 E5

	

BBL C3
0004 605C4A4424 BYTE 96,92,74,68,36 3;8

	

AS C5

	

A4 F3

	

22
3009 20584A402F BYTE 32,88,74,64,40 1 18

	

G5 C5

	

G4 G3
000E 40544A3C2C BYTE 64,84,74,60,44 1 i

	

F5 C5

	

F4 A3
OOD3 80524A4032 BYTE 1 28,82,74,64,0_0 E5 C5

	

G4 C4

	

23
0008 204ECO362E BYTE 32,78,0,54,46 D5 D4 BB3
DODD 20524A3A2E BYTE 32,82,74,58,46 1 :8

	

E5 C5

	

E4 BP3
OOE2 40544A3C2C BYTE 64,84,74,60,44 1 /4

	

F5 C5

	

F4 A3

	

24
00E7 4044300036 BYTE 64,68,60,0,54 1 /4

	

A4 F4 D4
OOEC O1 BYTE 1 DEFINE END OF THIS SEGMENT
OOED ABO1 WORD P1END ADDRESS OF BEGINNING OF NEXT

SEGMENT
31AB P1END ORG AT END OF PAGE 1 CODE
D1AB 4048403028 BYTE 64,72,64,60,40 1 /4

	

B4 G4

	

F4 G3
01&7 804A403A1A BYTE 1 28,74,64,58,26 1 /2

	

C5 34

	

E4 C3

	

25
0185 4G4A000032 . BYTE 64,74,0,0,50 1/4

	

C5 C4
01BA 40544A4424 BYTE 64,34,74,68,36 1/4

	

F5 C5

	

A4 F3

	

26
018F 4054464028 BYTE 64,84,70,64,40 1/4

	

F5 BB4

	

G4 G3
0104 20544A442C BYTE 32,84,74,68,44 1/8

	

F5 C5

	

A4 A3
0109 20524A442C . BYTE 32,82,74,68,44 1/8

	

E5
01CE 404E463C2E . BYTE 64,78,70,60,46 1/4

	

D5 BB4

	

F4 BB3 27
0103 404E463C2E BYTE 64,78,70,60,46 1/4

	

D5 594

	

FL 5B3
0108 404E4A3E2C . BYTE 64,78,74,62,44 1 /4

	

D5 C5

	

Fi<4 A3
O1DD 4058464028 BYTE 64,88,70,64,40 1 /4

	

G5 BB4

	

G4 G3

	

28
01E2 205E460028 BYTE 32,94,70,0,40 1 /8

	

BB5 BB4 03
01E7 2050440020 . BYTE 32,92,68,0,44 1/8

	

A5 A4 A3
OIEC 205840002E . BYTE 32,88,64,0,46 1 /8

	

G5 G4 503
01F1 01 . BYTE 1 DEFINE END OF THIS SEGMENT
01F2 8017 WDRD AUXRAM ADDRESS OF BEGINNING OF NEXT

SEGMENT (IN 6530 RAM)

1 780 AUXRAM ONG AT BEGINNING OF 6530 RAM
1 780 2054300030 BYTE 32,84,60,0,48 1 /8

	

F5

	

F4 B3
1 785 40544A4432 BYTE 64,84,74,68,50 1/4

	

F5

	

C5

	

A4 C4

	

29
1 78A 40524A401A BYTE 64,82,74,64,26 1/4

	

E5

	

C5

	

G4 C3
1 78F 204A000032 BYTE 32,74,0,0,50 1/8

	

C5 1 4
1 794 204A00002E BYTE 32,74,0,0,46 1 /8

	

C5 BB3
1 799 60544A442C BYTE 96,84,74,68,44

	

; 3/8

	

F5

	

C5

	

A4 A3

	

30
1 79E 2058004032 . BYTE 32,88,0,64,50 1/8

	

G5

	

G4 C4
1 7A3 2050004440 BYTE 32,92,0,68,64 1 /8

	

A5

	

A4 G4
1 7A8 205EO04640 . 8YTE 32,94,0,70,64 1/8

	

BB5

	

384 G4
1 7AD 8062505444 .13YTE 1 28,98,92,N 68 1/2

	

C6

	

A5

	

F5 A4

	

31
1 782 20544E4436 BYTE 32,84,78,68,54 1 /8

	

F5

	

D5

	

A4 04
1 787 2058484034 BYTE 32,88,72,64,52 1 /8

	

35

	

B4

	

G4 DB4
1 7BC 605C544A32 BYTE 96,92,84,74,50 3/8

	

AS

	

F5

	

C5 C4

	

32
1 701 205E544E32 BYTE 32,94,84,78,50 1/8

	

BB5

	

F5

	

D5 C4
1 7C6 4058524632 BYTE 64,88,82,70,50 1/4

	

G5

	

E5

	

384 C4
1 7CB 80544A443C . BYTE 1 28,84,74,68,60 1 12

	

F5

	

C5

	

A4 F4

	

33
1 7DO 00 BYTE 0 END OF PIECE

and set up in milliseconds, thus enhancing
real time performance as well as reducing the
need for a large number of different mod-
ules.

Other musical instruments may he inter-
faced as well. One well-published teat is an
i nterface between a PDP-8 computer and a
fair sized pipe organ. There are doubtless
several interfaces to electronic organs in
existence also. Even piano mechanisms
can be activated, as noted elsewhere in this
issue.

Recently, specialized music peripherals
have appeared, usually oriented toward the
S-100 (Altair) bus. In some cases these are
digital equivalents of analog modules of
si milar function. For example, a variable
frequency oscillator may be implemented
using a divide-by-N counter driven by a
crystal clock. The output frequency is
determined by the value of N loaded into a
register in the device, much as a control
voltage affects a voltage controlled oscil-
l ator. Such an approach bypasses the fre-
quency drift problems and interfacing ex-
pense of analog modules. The biggest advan-
tage, however, is availability of advanced
functions not feasible with analog modules.

One of these is a programmable wave-
form. A small memory in the peripheral
holds the waveform (either as individual
sample values or Fourier coefficients), which
can be changed by writing in a new wave-
form under program control. Another advan-
tage is that time multiplexing of the logic
i s usually possible. This means that one set
of logic may simulate the function of several
digital oscillators simultaneously, thus re-
ducing the per oscillator cost substantially.
Actually, such a digital oscillator may be
nothing more than a hardware implemen-
tation of the PLAY routine mentioned
earlier.

Digital/analog hybrids are also possible.
The speech synthesizer module produced
by Computalker Consultants, for example,
combines a programmable oscillator, several
programmable amplifiers and filters, white
noise generator, and programmable switch-
i ng on one board. Although designed for
producing speech, its completely program-
mable nature gives it significant musical
potential, particularly in vocals.

How do these various control techniques
compare with the direct waveform compu-
tation techniques discussed earlier' A de-
finite advantage of course is real time play-
i ng of the music. Another advantage is
si mpler programming, since sound genera-
tion has already been taken care of. How-
ever, the number of voices and complexity
of subtle variations is directly related to the
quantity of synthesizer modules available.

F'I

Table 5: This table is an encoding of the samples of the waveform used by the
program in listing 2. The table is exactly one memory page long on a page
boundary. The maximum value of any entry is decimal 63 or hexadecimal 3F
to avoid overflow when all four voices are summed.

WAVEFORM

EXACTLY

MAXIMUM

OVERFLOW

TABLE

ONE PAGE LONG ON A PAGE BOUNDARY

VALUE 'OF AN ENTRY IS 63 DECIMAL OR 3F HEX TO AVOID

WHEN 4 VOICES ARE ADDED UP

0300

0300

0300

0300

0300

WAV'T3

WAV2TB

WAV3T8

WAV4TB

X'300

	

START WAVEFORM TABLE AT 0300

VOICE I WAVEFORM TABLE

VOICE 2 WAVEFORM TABLE

VOICE 3 WAVEFORM TABLE

; VOICE 4 WAVEFORM TABLE

40TE THAT ALL 4 VOICES USE THIS TABLE DUE

TO LACK OF RAM IN BASIC KIM-1

FUNDAMENTAL AMPLITUDE 1.0 'REFERENCE':

SECOND HARMONIC .5, IN PHASE WITH FUNDAMENTAL

THIRD HARMONIC .5, 90 DEGREES LEADING PHASE

0300

0305

0308

030D
0310

0315
0318

031D

0320

0325

0328

032D

0330

0335

0338
033D

0340

0345

0348

034D
0350

0355

0358
035D

0360

0365

0368

0360

0370

0375

0378
0370

0380

0385

1388

0380

0390

0395

0398
039D

03AO

19A5

03A8

03AD
0380

03B5

0388

03BD

03CO

0305

0308

03CD

03DO

03D5

0308

3334353636

373839
393A3A3B3B

3B3C3D

3C3C3C3C3C

3CIC3C
3C3C3C3B3B

383838

3A3A3A3A3A

3A3939

3939393939

393939
3A3A3A3A3A

3B3B3B

3R3C3C3C3D
303030

3E3E3E -, E3F

3F3F3F

3F3F3F3F3F

3F3F3F

3E3E3E3D3D
3C3C38

383A393838

373635

3433323130
2F2E2D

2C2B2A2928

272625

2423222121

201F1F
1 E1EID1D1D

1 01C1C

1C1C1D1DID

I D1D1E
l ElFIF2020

212122

2323242425
262627

2828292929

2A2A2B

2828282828

82B2A

2A2A292928

272726
2524232221

201F1D

1 013191817

1 51413

1 1100FODOC

OB0908

0706050403

030201

0100000000

000000

0000010101

BYTE

BYTE

. BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

E.TE

. l
-
:E

. _',7E

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

. BYTE

0Y1.
E

BYTE

BYTE

x'33,X'34,X'35,X'36,X'36,X'37,X'38,X'39

X'39,X'3A,X'3A,X'38,X'3B,X'3B,X'3C,X'3C

X'3C,X'3C,X'3C,X'3C,X'3C,X'3C,X'3C,X'3C

X'3C,X'3C,X'3C,X'3B,X'33,X'3B,X'3B,X'3B

X'3A,X'3A,X'3A,X'3A,X'3A,X'3A,X'39,X'39

X'39,X'39,X'39,X'39,X'39,X'39,X'39,X'39

X'3A,X'3A,X'3A,X'3A,X'3A,X'3B,X'38,X'3B

X'3B,X'3C,X'3C,X'3C,0'3D,X'3D,X'3D,X'3D

X'3E,X'3E,X'3E,X'3E,X'3F,X'3F,X'3F,X'3F

X'3F,X'3F,X'3F,X'3F,X'3F,X'3F,X'3F,X'3F

X'3E,X'3E,X'3E,X'3D,X'3D,X'3C,X'3C,X'3B

X'3B,X'3A,X'39,X * 38,X'38,X'37,X'36,X'35

X'34,X'33,X'32,X'31,X'30,X'2F,X 1 2E,X'2D

X'2C,X'2B,X'2A,X'29,X'28,X'27,X'26,X'25

X'24,X'23,X'22,X'21,X'21,X'20,X'1F,X'IF

X'1E,X'1E,X'lD,X'ID,X'1D,X''D,X'IC,X'lC

X'1C,X''C,X'lD,X'lI,X'lD,X'lD,X'1D,X'' E

X'IE,X'1F,X'1F,X'20,X'20,X'21,X'21,X' -L

X'23,X'23,X'24,X'24 X 1 20 E'25,X'26,X'27

X'28,X'28,X'29,X'29,X'Z9,X'2A,X'2A,X'2B

X'2B,X'2B,X'2B,X'2B,X'2B,X'2B,X'2B,X'2A

X'2A,X'2A,X'29,X'29,X'28,X'27,X'27,X'25

X'25,X'24,X'23,X'22,X'21,X'20,X'1F,X'lD

X'1C,X'18,0'19,X'18,X'17,X'15,0'14,0'13

X'11,X'10,X'OF,X'OD,X'OC,X'OB,X'09,X'08

X'07,X'06,X'05,X'04,X'03,X'03,X'02,X'01

X'01,X'00,X'00,X'OO,X'OO,X'00,X'00,X'00

X'00,X'00,X'01,X'01,X'01,X'02,X'03,X'04

:('05,X'06,X'07,X'08,X'09,X'OB,X'OC,X'OD

X'OF,X'10,X'12,X '' 3,X'15,0'16,0'18,X'lA

X'18,X'ID,X '' F,X'20,X'22,X'23,X'25,X'27

X'28,X'2A,X'2B,X'2C,X'2E,X'2F,X'30,X'31

o3DD 020304

03EO 0506070809
0305 OBOCOD

03E8 0F10121315

03ED 16181A

03F0 1B1D1F2022

03F5 232527

03FB 282A2R2C2E

03FD 2F3031

For example, if more voices are needed,
either more modules must be purchased or a
multitrack tape recording must be made,
which then takes us out of the strict real
ti me domain. On the other hand, a new
voice in a direct synthesis system is nothing
more than a few bytes added to some tables
and a slightly lengthened execution time.
Additionally, there may be effects that are
si mply not possible with currently available
analog modules. With a direct synthesis
system, one merely codes a new subroutine,
assuming that an algorithm to produce the
effect is known.

A separate problem for the experimenter
is that a "critical mass" exists for serious
work with a direct synthesis system. To
achieve complexity significantly beyond the

Listing 3: Bach's "Toccata and Fugue in D r11inor" as encoded in NO TRAN, a
music language developed by the author (NOTRAN stands for NOte TRAN-
slation). The main function of the language is to transcribe organ music,
but it will work equally well with other types of music. Program state-
ments are used to encode duration, pitch, attack and decay rates, and loud-
ness)l ouch rtr;te.

4 voice example program described earlier,
a high speed, large capacity mass storage
system is needed. This means an IBM type
digital tape drive or large hard surface disk
drive; usually at least $3000 for a new
drive less interface. Used 7 track tapes and
2311 type disks (7.5 megabytes) are often
available for $500 and certainly provide
a good start if the user can design his own
i nterface. Synthesizer modules or peripheral
boards, on the other hand, can be purchased
one at a time as needed.

Music Languages

Ultimately, software for controlling the
sound generation process, whether it be
direct or real time control, is the real fron-
tier. The very generality of computer music
synthesis means that many parameters and
other information must be specified in
order to produce meaningful music. One
function of the software package is to con-
vert "musical units of measure" into phy-
sical sound parameters such as conversion
of tempo into time durations. Another part
i s a language for describing music in suffi-
cient detail to realize the control power
available from music synthesis without bur-
dening the user with too much irrelevant or
repetitious detail. With a good language, a
good editor for the language, and real time
(or nearly so) execution of the language, the
music system becomes a powerful composi-
tion tool much as a text editing system aids
writers in preparing manuscripts.

Music languages can take on two forms.
One is a descriptive form. Music written in
a descriptive language is analogous to a con-
ventional score except that it has been coded
i n machine readable form. All information in
the score necessary for proper performance
of the piece is transcribed onto the com-
puter score in a form that is meaningful to
the user yet acceptable to the computer.
Additional information is interspersed for
control of tone color, tempo, subtle varia-
tions, and other parameters available to the
computer synthesist.

A simple example of such a language is
NOTRAN (NOte TRANslation) which was
developed by the author several years ago
for transcribing organ music. Listing 3 shows
a portion of Bach's "Toccata and Fugue in
D Minor" coded in NOTRAN. The basic
thrust of the language was simplicity of
i nstruction (to both the user and the inter-
preter program), rather than minimization of
typing effort.

Briefly, the language consists of state-
ments of one line each which are executed
i n straight line sequence as the music plays.
I f the statement starts with a keyword, it is

t

	

TOCCATA AND FUGUE IN D-MINOR

	

BACH
VOICEI
VOICE2
VOICE3

40,0,0,0,0,30,0,0,0,0,0,0,0,60,0
37,0,0,0,0,0,0,0,50,0,0,0,0,50,0
0,0,9,0,38,0,0,0,38,19,0,0,0,28,0

10
1015

30,30
60,60100,250

TEMPO 1/4=1200
-/

002 1A3,1/64; 2A2,1/64
lA@3,1/64; 2A@2,1/64
1A3,1/8;
R,1,132

2A2,1/8
103,1/647; 262,1/64.1F3,1/64;
1E3,1/64;
103,1/64;

2F2,1/64
2E2,1/64
203,1/64

1043,1/32; 2042,1/32
103,1/16;
R,1/4

202,1/16
302,1/1; R,1/42C43,1F2; R,1/16
1E3,7/16; R,1/16
163,7/16; R,1/16
1B@3,5/16; R,1/16
1044,4; 16; R,1, 116
1E4,3/16

/-/
140 1B@4,1/8; 104,1/8;

1E3,1/32
103,1/32
10@3,1/32
1044,1/321B@4,1/8

1E4,1/8; 2E3,1/8; 3C+i3,1 6

15@4,1/8; IG4,1,'8;
1A4,1/8; IF#4,1/8;

1E4,1/8;
104,1/8;

1044,1/8;
2F43,1/8; 2E3,1/8;

303,1/8
3043,1/8

TEMPO 1/4=950
103,1/32

TEMPO 1/4=1050
1A3,1/32

TEMPO 1/4=1150
104, 1/32

TEMPO 1/4=1200
1F#4,1/32
1A4,1/81A4,3/8; IF44,1/8; !04,1/8; 2F43,1/8; 303,1/8141 104,1/2; i0@3,1/2; 2G3,1/2; 302,1/4
164,1/2; 3B@2,1/4
1E4,1/4; 1e44,1/4; 2B@3,1/4; 3E2,1/4
1F4,1/4; 104,2;'4; 2A3,1/4; 3F2,1/4

142 1E4,1/2; 2A3,i/'2; 3A2,1;2; R,1/4
1C4,2/4; R,1/4
104,4/2; 2F3,1/4; 3B@2,1/4
2B@3,1/4; 263,1/4; 3G2,1/4

143
END

2A3,3/2; 2F3,3/2; 3D3,3/2; 302,3/2

a specification statement; otherwise, it is a
note statement. Specification statements
simply set up parameters that influence the
execution of succeeding note statements and
take no time themselves.

A VOICE statement assigns the timbre
described by its parameters to a voice num-
ber which is used in the note statements. In
the example score, the first group of para-
meters describe the waveform in terms that
are i mplementation dependent, such as
harmonic amplitudes. The next, isolated
parameter specifies the overall loudness of
the voice in relation to other voice--. The last
pair of parameters specifies the attack and
decay times respectively for notes using this
voice. Depending on the particular imple-
mentation, other parameters may be added
without limit. For example, vibrato might he
described by a set of three additional para-
meters such as vibrato frequency, amplitude,
and a delay from the beginning of a note to
the start of vibrato.

A TEMPO statement relates note dura-
tions in standard fractional terms to real
ti me in milliseconds. The effect of a tempo
statement lasts until another is encountered.
Although the implementation for which the
example was written required a sequence of
tempo statements to obtain a retard, there is
no reason why an acceleration or a
retard set of parameters could not be added.

Note statements consist of one or more
note specifications and are indented four
spaces (the measure numbers are treated as
comments). Each note specification begins
with a voice number followed by a note
name consisting of a letter, optional sharp
(-) or flat ((_al) sign, and an octave number.
Thus C#4 is one half step above middle C.
Following the comma separator is a duration
fraction. Any fraction is acceptable, but
conventional musical fractions are normally
used. Following the duration are two op-
tional modifiers. A period (.) indicates a
"dotted" note which by convention extends
the note's duration by 50°':. An "S" specifies
a staccato note which is played as just an
attack and decay (as specified by the corres-
ponding voice statement) without any
steady state. The presence of a semicolon (;)
after a note indicates that additional notes
which are intended to be part of the same
statement are present, possibly extending to
succeeding lines.

The execution sequence of note state-
ments can become a little tricky due to the
fact that note durations in the statement
may not all be equal. The rule is that all
notes in the statement start simultaneously.
When the shortest one has ended, the notes
in the next statement are initiated, even
though some in the previous statement may

be still sounding. This could continue to
any depth such as the case of a whole note
i n the bass against a series of sixteenth notes
i n the melody. The actual implementation,
of course, limits the maximum number of
simultaneous tones that may be built up.

Also available is a rest specification which
can be used like a note specification. Its
primary function is to provide silent space
between note statements, but it may also
be used to alter the "shortest note" decision
when a note statement is scanned. If the rest
i s the shortest then the notes in the next
statement are started when the rest elapses
even though none of the current notes have
ended. A use of this property may be seen
i n the last part of measure 2 where an
arpeggio is simulated.

As can he seen, NOTRAN is best suited
for describing conventional organ music,
although it could he extended to cover a
wider area as well. One such extension which
has been experimented with but not fully
i mplemented is percussion instruments. First
a set of implementation dependent para-
meters was chosen to define a percussive
sound, and then a PRCUS statement similar
to the VOICE statement was added to the
l anguage. To initiate percussive sounds,
specifications such as "P3,1/4" would be
i nterspersed with the note specifications in
note statements. The "3" would refer to
percussive sound number 3 and the 1/4
would be a "duration" which would be
optional. All percussive sounds in the same
statement would start simultaneously with
the regular notes.

A much more general music language is
the well-known MUSIC V. It was designed to
make maximum use of the flexibility
afforded by direct waveform computation
without overburdening the user. It is a
massive program written in FORTRAN and
clearly oriented toward large computers.
Much significant computer music work has
been done with MUSIC V, and it is indeed
powerful. An excellent hook is available
which describes the language in detail and
i ncludes some background material on
digital sound generation (see entry I in the
l i st of references at the end of this article).

A different approach to music languages
i s a "generative" language which describes
the structure of the music rather than the
note by note details. In use, the structure is
described by "loops," "subroutines," and
"conditional branches" much as an algo-
rithm is described by a computer language.
The structure is "executed" to produce
detailed statements in a conventional music
l anguage which is then played to produce
sound. The intermediate step need not
necessarily be visible to the user. One well

thought out system is de-
scribed in reference 2. It was
actually developed as a musico-
l ogical analysis tool and so has
no provisions for dynamics,
ti mbre, etc. It could, however,
be extended to include these
factors. One easy way to imple-
ment such a language is to write
a set of macros using a good
minicomputer macroassembler.

Conclusion

By now it should be apparent
that computer generated music
i s a broad, multidisciplinary
field. People with a variety of
talents can make significant
contributions, even on a per-
sonal basis. In particular, clever
system designers and language
designers or implementers have
wide open opportunities in this
field. Finally, imaginative musi-
cians are needed to realize
the potential of the technique.

REFERENCES

1. Mathews, Max, The Technology
of Computer Music, MIT Press,
Cambridge MA, 1969. Contains a
detailed description of MUSIC V,
the high level language.

2. Smoliar, Stephen, "A Parallel Pro-
cessing Model of Musical Struc-
tures" PhD dissertation, Massa-
chusetts Institute of Technology,
September 1971.

3. Oppenheirn, A and Shafer, R,
Digital Signal Processing, Prentice-
Hall, NJ, 1975.

imatthews

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15

