Synertek
Systems

SYM- 1/69

SY M-1 Supplement

SYM-1/69
SUPPLEMENT

Copyright @ by Synertek

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic,

mechanical, photocopying, recording or otherwise
without the prior written consent of Synertek System
Products.

SSPub MAN-260087-A

First Printing: September 1982

Svynertek

System Products

P.O. Box 552 @ Santa Clara, Calif. 95052 @ Telephone (408) 998-5889 @ TWX: 910~338~0135

CHAPTER 1:

1.4
CHAPTER 2:

2.1

2.3

TABLE OF CONTENTS

INTRODUCTION

DESCRIPTION OF THE CONVERSION HARDWARE

DESCRIPTION OF THE REPLACEMENT SUPERMON

THE MANUAL o e e B L ° L] L) 2 L o ® 2 L L] L e e

1.3.1
1.3.2
1.3.3
1.3.4

The Command SeqUENCES & « o o o o o o o
Useful Addresses and Entry Points .

Interrupt Vectors and Memory Allocatlon
Other Advanced Programming Techniques . .

REFEREN CES ® o @ ° ® ® ° @ ° ° ° @ ° ® ® ° L] ® ®

OPERATING THE SYM-1/69

L)
l\)f\)oo Ll el = I S S S Sy

S
2
2
2
2
2
2
2
2
S6
2.
2.

EXAMP
2.3.1

PO OO
° e e o
e o

Wil

Ul w o

LES FOR PROGRAMMING THE SYM-1/S6809 .

YM-1/69 UNIQUE MONITOR IMPLEMENTATION

Register Display and Modification .
Transfer Vectors . . o o s o o &
Address Formation . . « « &+ &+ . o
User Interrupt Vectors
Instruction Trace Implementatlon
Mixed I/0 Configurations
Monitor Extension . « « « o s o o o o o o
SUPERMON as an Extension to User Routines

INSTRUCTION SET AND ASSEMBLY LANGUAGE . .

S6809 Microprocessor Assembly Language Syntax

S6809 Instruction Set e o e e o 4 & o s e

Double-Precision Addition . . « « « « o &
2.3.1.1 Defining Program Flow
2.3.1.2 Coding and "Hand Assembly" . . .
2.3.1.3 Entering and Executing the Progr
2.3.1.4 Debugging Methods
Conditional Testing . +« « ¢« s o o o o o o
Bit Testing « « « o« ¢ 5 & o s s o o o o

Character, Value or Magnitude Testing .
Multiplication . . o o o o « o o » o o

LIST OF ILLUSTRATIONS

MONTIOR CALLS, ENTRIES AND TABLES . . ¢« « « o« &
SYSTEM RAM LAYOUT . . ¢ & ¢ & o« o o o o o o o &
S6809 ADDRESSING MODES & & 4 o ¢ o o o o o o o

DOUBLE PRECISION ADDITION FLOWCHART . .
DOUBLE-PRECISION ADDITION ARITHMETIC ILLU&TRATION
DOUBLE-PRECISION ADDITION ROUTINE « + &
BIT-3 TEST ROUTINE . . « ¢ & & ¢« o & o & « o o o

)
E L] L] L) [

* @ o

§ I
HHE b e RO e

PN Mo PO PO PO PO OO
I

T\}f\)l\)l\)!\.‘f\)l\)b\)l\)fl\)
| |
PP PPV

UL
o oooONTTw e e I B VSR V] RS o

2-20
2-21
2-22
2=27

CHAPTER 1
INTRODUCTION

Congratulations on your purchase of the SYM=1/69! Thils package adds
the power of the S6809 to the excellent input/output capabilities of
the SYM-1. In addition, it provides all of the convenience and
facilities of the SUPERMON monitor program available in your
development of machine language programs for the S6809.

1.1 DESCRIPTION OF THE CONVERSION HARDWARE

The hardware is an adaptation to the S6809 which allows it to occupy a
socket assembly originally designed for the S6509 microprocessor., It
provides a relocation of the various address, data and control lines
to match the appropriate locations on the board. Also included are a
different microprocessor clock and a simulation of some of the signals
required by the SYM-1 which normally are not provided by the S6809.
The generation and usage of these signals is explained further in
Chapter 9 of the SYM-=-1 Manual.

Follow the detailed installation instructions in the enclosed S680Y
Instruction Set Summary card and you will have all of the power of the
36809 in your SYM-1 system.

1.2 DESCRIPTION OF THE REPLACEMENT SUPERMON

SUPERMON, the SYM-1 Monitor program, has been rewritten to provide the
same facilities to the S6809 market as was provided for the SY6502
user in its original form. All of the functions this monitor program
can perform are described in the SYM-1 Manual. Most of the commands
function exactly as described. See the next section for more
information.

1.3 THE MANUAL

This manual was written to supplement Chapter 9 (Advanced Monitor and
Programming Techniques) of the SYM-1 Manual. Chapter 2 contains the
same type of data for the S6809 as was provided in the original

chapter for the SY6502.

The new chapter explains where the command or display sequences differ
and provides a series of programming examples to get you started. In
addition, it shows differences in the allocation of the system memory
areas as described below.

1.3.1 The Command Sequences

Although the detailed SUPERMON keystroke combinations described in the
SYM-1 Manual will perform the same function as the 36809, there will
be some differences in the actual operation because the S6809 is a
more complex microprocessor and has a different display sequence.

To understand the operational differences specified in Chapter 9,
familiarize yourself with Chapter 5 of the SYM-1 Manual. It contains a
description of the operating sequence of the original SY6502 SUPERMON
and explains the basic function of each of the commands. All of these

command sequences remain valid, except for addition of items displayed
in the R or Register display command sequence. This is because the

S6809 has more registers than the SY6502, thus having additional data
to display during this command segquence.

1.3.2 Useful Addresses and Entry Points

As you develop more complex routines, it sometimes becomes convenilent
to avoid '"reinventing the wheel" by incorporating previously debugged
routines into your programs. This usually 1s done by means of a set
of subroutine calls. Table 2-1 provides a list of the entry points
for the various routines and affected registers so you can use them in
your programs. The list corresponds to that shown for the SY6502
SUPERMON in the SYM-1 Manual as Table 9-1.

1.3.3 Interrupt Vectors and Memory Allocation

Data regarding system memory usage and the generation and use of the
interrupt vectors can be found in Section 2.1.4. The organization of
the original memory table (SYM-1 Manual, Figure 4-10) has been
preserved. The notes given in Chapter 4 for this figure have not been
reproduced here because they are still valid.

1.3.4 Other Advanced Programming Techniques

The remainder of this supplement is devoted to programming examples
for the S6809, along with an explanation of the S6809 instruction set.
To effectively use the 36809, obtain a copy of item 1 in the following
references. It contains a description of programming techniques and an
introduction to effective use of the S6809.

1.4 REFERENCES

1. S6809 ASSEMBLY LANGUAGE PROGRAMMING, Lance Levanthal, 1981.
Osborne/McGraw-Hill Book Co.

2. SYM-1 Monitor Theory of Operations Manual (S6502 version, but can
give insight into the construction and utilization of the monitor).
Robert A. Peck, 1979. Available from SYM-1 Users Group, SYM-PHYSIS,
Box 315, Chico, Ca. 95926.

1-2

CHAPTER 2

OPERATING THE SYM-1/69

This chapter is designed to instruct you to create programs for your
S6809 version of the SYM-1. Also included is information about the
SYM-S6809 features, instruction set and assembly language.

2.1 SYM-1/69 UNIQUE MONITOR IMPLEMENTATION

All SYM-1 monitor versions are by design almost identical. However,
their unique registers, interrupts and instruction sets create some
minor, but still visible, differences.

2.1.1 Register Display and Modification

The S6809 registers consist of the program counter, flag register,
stack register, two 8-bit accumulators and two 16-bit index registers.
The R command described in Chapter 5 of the SYM-1 Manual is uniquely
programmed to display and modify these S6809 registers. It is one of
only two SYM-1 commands which is tailored to a specific CPU.

2.1.2 Transfer Vectors

The S6809 instruction set includes an indirect jump to subroutine
command (JSR) which allows all S6809 SUPERMON transfer vectors to be
2 Dbytes long. The JSR to the appropriate routine is made through

the address in the vector, rather than by programming a jump to the

vector, which Jjumps to the routine.

2.1.3 Address Formation

All S6809 microprocessor 2-byte address constants and extended
addresses within the instruction must be in the following form:

INSTRUCTION HI LO
BYTE 1 BYTE 2 BYTE 3
LO = Low-order 8 bits of address

HIGH

High-order 8 bits of address

NAME

ADDRESS

REGISTERS

ALTERED

FUNCTION(S)

¥MONITR

¥WARM

USRENT

SAVINT

DBOFF

DBON

DENEW

GETCOM

DISPAT

ERMSG

SAVER

8000

8004
802B

80T7A

80BC

80C5

80DT7

80EO

817A

819E

8213

*Do not enter by JSR.

ALL

NONE

Cold entry to the monitor. Stack
and initialize.

Warm entry to the monitor.

User pseudo-interrupt entry saves
all registers when entered with
JSR. Displays PC and code 3.
Control passes to the monitor.

Saves all registers when called
after interrupt. Returns by
using RTS.

Simulates depressing DEBUG off
key.

Simulates depressing DEBUG on
key.

Release DEBUG mode to key control.

Get the command and 0-3
parameters. System RAM 1is
unprotected.

No error: A=0D (CR).

Error: A contains erroneous
entry.

Dispatch to execute blocks.
Dispatch to URCVEC if there is an
error. If there is an error at
return, then Carry is set and A
contains a byte in error.

If Carry is set, print (CR)ER NN,
where NN is contents of A.

Save all the registers on the
stack. At return, stack looks
like:

cHO W
g

TABLE 2-1: MONITOR CALLS, ENTRIES AND TABLES

NAME

ADDRESS

REGISTERS
ALTERED

FUNCTION(S)

¥RESXAF

¥RESXF

¥RESALL

INBYTE

PSHOVE

PARM

ASCNIB

OuTPC

OUTABH
OUTBYT

NIBASC

COMMA

¥Do not enter by JSR.

822B

8231

8235

8246

8277

8128

8292

8304

8307
8310
8320

8342

RESTORED

RESTORED

RESTORED

Jumped to here after SAVER to
restore the registers from the
stack except A and F. Perform
RTS.

Jumped to here after SAVER to
restore the registers from the
stack except F. erform RTS.

Jumped to here after SAVER to
restore all the registers from
the stack., Perform RTS.

Get two ASCII hex digits from
INCHR and pack into byte in A.
If Carry is set and V clear, the

first digit is non-hex. If Carry
i1s set and V 1is set, the second

digit is non-hex. N and Z
reflect the compare with a
carriage return if Carry is set.

Shove Parms down 16 bits. Move
P2 TO P1l, P3 to P2 and zeros to
P3.

Get 0 - 3 parameters. Return by

CR or error. A contains the last
character entered. The flags

reflect the compare with CR.
Convert an ASCII character in A
to 4 bits in low nibble of A.
Carry is set if non-hex.

Print user PC. At return, A=PCH
and B=PCL,

Print A and B (four hex digits).
Print A (two hex digits).

Convert low nibble of A to ASCII.
Hex in A.

Print comma,

TABLE 2-1: MONITOR CALLS, ENTRIES AND TABLES (Continued)

2-3

NAME

ADDRESS

REGISTERS
ALTERED

FUNCTION(S)

CRLF

DELAY

INSTAT

GETKEY

HDOUT

SCAND

KEYQ

KYSTAT

BEEP

HKEY

OUTDSP

8355
8363

838A

83D1

8418

841B

834F

848B

949A

84CF

84DE

¥Do not enter by

A,B,X,F

A,B,X,F

NONE

Print (CR) (LF)

Delay according to trace
velocity. Relation is
approximately logarithmic (base =
2?. Result of INSTAT is returned
in Carry.

If a key is down, wait for its

release, Carry is set 1f the key
was down (vectored thru INSVEC).

Get a key from the hex keyboard

(more than one if SHIFT or ASCII
key is used) and return with
ASCII or HASH Code in A. Scan
the display while waiting
(vectored through SCNVEC).

Transfer an ASCII character from
A to hex display, scan display
once and return with Z=1 if a key
is down.

Scan the LED display once from
the data in DISBUF. Return with
Z set if a key on the hex is
down.

Determine if a key is down on the
hex keyboard. If a key is down,
then Z=1.

Determine if a key is down. If a
key 1s down, then Carry is set.

Beep the on-board beeper.

Get a key from the hex keyboard
and echo it in DISBUF. ASCII
returns in A. Scan the display
while wailting (vectored thru
SCVNVEC).

Convert ASCII in A to segment
code and put it in DISBUF.

2-4

TABLE 2-1:

MONITOR CALLS, ENTRIES AND TABLES (Continued)

FUNCTION(S)

NAME ADDRESS REGISTERS
ALTERED
TEXT 8516 F
INCHR 8399 A,F
NBASOC 83BD A,F
OUTCHR 83BD A,F
INTCHR 852C A,F
TSTAT 84c2 B,F
¥RESET 84¢2 ALL
¥*NEWDEV 8AES5 ALL
ACCESS 81F6 NONE
NACCESS 8204 NONE
*PTY 81D2 A,X,F

¥Do not enter by JSR.

Shove scope buffer down and push
A into SCPBUPF.

Get a character vectored thru
INVEC. Drop parity and convert
to upper case. If the character
CTL 0 (OF), toggle bit 6 of TECHO
and get another.

Convert the low nibble of A to
ASCII. The output is vectored
thru OUTVEC.

Qutput an ASCII character from A
(vectored thru OUTVEC). Output
is inhibited by bit 7 of TECHO.,

Get a character from the serial
ports. Echo is inhibited by bit
7 of TECHO. Baud rate is
determined by SDBYT. . Input with
echo masked with TOUTFL.

See if a Break Key 1s down on the
terminal. If one is down, then
Carry is set.

Initialize all registers, disable
Power On Reset (POR), stop tape,
initialize system RAM to default
values, determine input on the
keyboard or terminal, and
determine baud rate and cold
minitor entry.

Determine the baud rate and cold
monitor entry.

Un~write protect system RAM.
Write protect system RAM.

Set vectors, TOUTFL and SDBYT for
TTY.

TABLE 2-1: MONITOR CALLS, ENTRIES AND TABLES (Continued)

2-5

NAME ADDRESS REGISTERS FUNCTION(S)
ALTERED

¥DFTBLK 8FAQ TABLE Default block is entirely copied
into System RAM (A620 - A6TF) at
reset.

¥ASCII 8B29 TABLE Table of ASCII codes and HASH
codes.

¥SEGS 8B6A TABLE Table of segment codes correspond
to ASCII codes above.

¥Do not enter by JSR.

TABLE 2-1: MONITOR CALLS, ENTRIES AND TABLES (Continued)

2.1.4 User Interrupt Vectors

Interrupts are discussed at length in Section 7.4 of the SYM-1 Manual.
Following are details on the specific interrupts available on the
S6809 and their implementation on the SYM-1. There are seven types of
interrupts on the S6809:

NMI - Non-maskable Interrupt
RST - Reset
IRQ - Interrupt Request
FIRQ - Fast Interrupt Request
SW1l - First Software Interrupt
SW2 - Second Software Interrupt
SW3 - Third Software Interrupt

When one of these interrupts occurs, the CPU locates its next address
at one of the following locations:

FFF2, FFF3 - SW3
FFFL, FFF5 - SW2
FFF6, FFF7 - FIRQ
FFF8, FFF9 - IRQ
FFFA, FFFB - SWI
FFFC, FFFD - NMI
FFFE, FFFF - RESET

If SYM-1 interrupt routines are used, the following interrupt codes
will be displayed:

- SW1l Instruction
- TIRQ

- NMI

User Entry

- FIRQ

- SW2

- 3SW3

U whhorE O
i

2-6

If it is necessary to supply your own interrupt rountines, you may
store thelr addresses at the proper places in address FFF2-FFFF. The
default addresses in these interrupt vectors are for the rountines
which, save all registers, display the above interrupt codes and
return to the monitor.

Also, when using the vectors UIRQVC and UBRKVC for the IRQ and
software (BRK) interrupts, respectively, SYM-1 determines whether
the condition causing the interrupt is an IRQ or a BRK. It then saves
all registers and jumps through the appropriate vector.

There are no supplementary user interrupt vector locations in the
S6809 version of SUPERMON as there are in the SY6502 version. This is
because the S6809 automatically vectors BRXKs through separate vectors,
while the SY6502 uses the same interrupt vector locations for the BRK
and IRQ. The SY6502 SUPERMON then provides a routine which determines
if the interrupt was caused by a BRK and jumped through the
appropriate user vector. This routine is not necessary for the S6809.

The following Table 2-2 is the layout of the SY6502 system RAM for
the S6809.

SYMBOL ADDRESS DEFAULT COMMENT
SCPBUF A600 00 32 Bytes
thru Oscilliscope Buffer
AG1lT 00
JTABLE A620 COo JUMP entry 0 - Basic
A621 00 Socket P1
A622 81 JUMP Entry 1 - TTY
A623 D2
A624 8A JUMP Entry 2 - NEWDEV
A625 E5
A626 00 JUMP Entry 3 - Page
AG27 00 Zero
A628 02 JUMP Entry 4 - 0200
A629 00
A62A 03 JUMP Entry 4 - 0200
A62B 00
A62C c8 JUMP Entry 6 - User
A62D 00 Socket
A62E DO JUMP Entry 7 - User
AG2F 00 Socket
TAPDEL A630 0l Tape Delay (90 seconds)
KMDRY A631 2C KIM Tape Boundary
HSBDRY A632 46 High Speed Tape Boundary
TAPET?2 A633 33 High Speed Tape

Second 1/2 Bit

TABLE 2-2: SYSTEM RAM LAYOUT

2-17

SYMBOL ADDRESS DEFAULT COMMENT
TAPET1 A634 59 HIGH Speed Tape
First 1/2 Bit
RC A635 00
SCR6 A636 00 Scratch or Checksum
SCRT7 A637 00 Accumulation
SCR8 A638 00 Monitor
SCR9 A639 00
SCRA A63B 00 Scratch Areas
SCRB A63B 00
DISBUF A63C 00 Display Buffer
A63D 00
A63E 6D
A63F 6F
A640 86
RDIG A6U1 06 Right-most Display Digit
PARNR Ab42 00 Number of Entered
Parameters
P3H A6L3 00 Third Parameter
P3L A6LY 00
P2H A6US 00 Second Parameter
P2L A6L6 00
P1H A6UT 00 First Parameter
P1L A648 00
OLD A6GL9 00 Work Area
A64A 00
PADBIT A64B 01 Number of Pad Bits on
Carriage Return
SDBYT AB4C 4C BAUD Rate (Note 1)
ERCHT AG4D 00 Error Count (Note 2)
TECHO AGLE 80 Terminal Echo (Note 3)
TOUTFL ABGLF BO Iﬁ/Out Enable Flag (Note
)
KSHFL A650 00 Hex Keyboard Shift Flat
TV A651 00 Trace Velocity (Note 5)
LSTCOM A652 00 Last Monitor Command
MAXRC A653 10 Maximum Number Bytes
Paper Tape Received
(Note 6)
PCHR A654 8A User PC Register
PCLR A655 CT Storage
SR A656 01 User System Stack
A657 FF Register Storage
UR A658 00 User Register Storage
A659 00
FR A65A 00 User CC Register Storage
AR A65B 00 User Register A Storage
BR A65C 00 User Register B Storage
DPR A65D 00 User DP Register Storage
ZR A65E 00 User Register X Storage
A65F 00 »
TABLE 2-2: SYSTEM RAM LAYOUT (Continued)

2-8

ADDRESS DEFAULT

COMMENT

YR
INVEC
OUTVEC
INSVEC
URSCVEC
URCVEC
SCNVEC
EXEVEC
TRCVEC
SW3VEC
SW2VEC
FIRQVC
IRQVEC
SW1VEC
NMIVEC

RSTVEC

1. BAUD RATE

2. ERCNT

checksums up to $FF.

A660 00
A661 00
A662 8Y4
A663 CF
A66Y 84
A665 18
A666 84
A66T 8B
A668 82
A669 3B
AGBA 82
A66B 3B
A66C 84
A66D 1B
A66E 8A
A66F 97
A670 80
A6T71 : 5D
ABT2 80
A673 24
AGTY 80
A675 1D
A6T6 80
AGTT 3E
AGT8 80
A6T9 OF
A6T7A 80
A67B 16
A6TC 80
A6T7D 53
AGTE 8A
AGTF CcT7

SYSTEM RAM -~ NOTES

BAUD SDBYT
110 D5
300 4e
600 24

1200 10

2400 06

4800 01

Used by FILL, B MOV

User Reglster Y Storage

Address of Character
Input Routine

Address of Character
Output Routine
In-status Vector

Unrecognized Syntax

Vector

Unrecognized Command
Vector

Display Scan Vector

Input Pointer for
EXEC from RAM
User Trace Vector

Third Software
Interrupt Vector
Second Software
Interrupt Vector

Fast Interrupt Request
Vector

Interrupt Request Vector
First Software Interrupt
NMI Vector

Reset Vector

Number of bytes which failed to write correctly and invalid
Used by LD P as a count of bytes which
failed to write correctly (up to $F).in low nibble and a count of
invalid checksums (up to $F) in high nibble.

2-9

3. TECHO Bit 7 - ECHO/NO ECHO
Bit 6 - OUTPUT/NO OUTPUT

This bit 1is toggled every time a control 0 (ASCII OF) is
encountered in the input stream.

4, TOUTFL Bit 7 = Enable CRT IN
Bit 4 = Enable CRT OUT
5. TV Trace velocity

00 = Single step

Non-zero - Print program counter and
accumulator. Pause and resume.

Pause depends on trace velocity (9TRY TV = 09)

6. User PC Default = 8ACT7 = Reset
7. NEWDEV Change the baud rate on RS-232C
interface

TABLE 2-2: SYSTEM RAM LAYOUT (Continued)

2.1.5 Instruction Trace Implementation

The S6809 hardware implementation provides a pulse signal each time an
address is on the address bus which i1s not in the address ranges
normally used by the monitor. Using this signal and a flag set when
DEBUG is depressed, the 36809 will produce an NMI for each instruction
fetch., As explained in JSection 7.6 of the Sym=-1 Manual, the NMI
interrupt may be used to single step through a set of instructions or
to trace the execution of a set of instructions. If user routines are
added, the system trace routine will be used. Following is the S6809
implementation of the user trace routine (UTRC) as described in the
SYM~1 Manual.

Page -~ 1 TRACE FILE:SYM6809

0000: .PROC TRACE

Current memory available: 8711

0000; 5 .NOPATCHLIST

0000; ; ,
0000; 3 UTRC - USER TRACE ROUTINE FOR S6809

PRINT NEXT OP CODE INSTEAD OF ACCUMULATOR
THIS ROUTINE IS ENTIRELY RELOCATABLE
0000;

0000; 83 3D OPCCOM +EQU 8340H ;PRINT PC, PRINT C
0000; A6 54 PCHR .ECU OA655H

0000; A6 55 PCLR cEQU OA655H ;PRINT BYTE FROM ACC
0000; 83 50 OBCRLF JEQU 8353H ;PRINT BYTE FROM ACC
0000; ;THEN PRINT CR,LF
0000; 83 60 DELAY .EQU 8363H ;DELAY BASED ON TV

2-10

0000; 80 04 WARM ~EQU 800L4H sWARM MONITOR DELAY

0000; 80 74 TRACON . EQU 8076H ;TURN TRACE ON
;s THEN RESUME EXEC
0000; A6 51 TV .EQU OA651H ;TRACE VELOCITY
0000; 5
0000; s
0000; BD 83 40 UTRC JSR OPCCOM ;PRINT PC, COMMA
0003; A6 9F A6 54 LDA @PCHR ; LOAD OP CODE
0007 ; BD 83 53 JSR OBCRLF ;0UTPUT OP CODE, CRLF
0004; 7D A6 51 TST TV ;GET TRACE VELOCITY
000D; 27 05 BEQ NOGO sNOGO IF ZERO
000F; BD 83 63 JSR DELAY ;sDELAY ACCORDING TO TV
0012; 24 03 BCC GO 5;CARRY SET IF KEY DOWN
0014; TE 80 04 NOGO JMP WARM sHALT
0017; 7TE 80 76 GO JMP TRACON ;CONTINUE
001A; . END

The above user trace example is relocatable, which means that in
theory, it may be intered into memory at any user RAM location.
However, in practice, any user trace routine must be fully contained
in address pages 00 or 01 because of the instruction trace
implementation described here. If this restriction is not observed,
the trace routine will be traced and interrupts will occur.

With the S6809 CPU, only a single vector needs to be changed to use
URTC. Change TRCVEC to point to UTRC where A670 is the address of
UTRC. Then, enter a non-zero value in trace velocity, turn DEBUG on
and you are ready to trace.

SD (UTRC), (A670) (CR)

Because the S6809 CPUs do not have SYNC outputs, hardware has been
added to the adapter PCB which will generate an NMI when the following
two statements are true: DEBUG 1is on, and an address is outputted by
the CPU which is not in the monitor, I/0 or address pages 00, 01 or
FF.

Since there is no way of knowing if an address refers to an Op Code,
operand or data, a Monitor command, which accesses user RAM above
address page 01, will generate an NMI if DEBUG is on. DEBUG must be
off if any commands such as Memory, Verify, Deposit, Load (Store)
Paper Tape or Load (Store) Cassette Tape are to be used.

It is important to turn DEBUG off to examine memory during single
stepping and turn it back on before resuming single stepping. Turn
DEBUG off whenever program execution 1is complete.

Address pages 01 or 00 must be used for the system stack to debug user
programs, otherwise portions of the monitor (which will use that
stack) will be traced, destroying the user registers saved in RAM.

2-11

2.1.6 Mixed I/0 Configurations

The following short routine must be entered into RAM 1if 86809 input is
to be echoed on the terminal device. Complete the sequence discussed
in Section 7.7 of the Sym-=1 Manual, then, enter the following routine:

UIN JSR GETKEY
BITA TECHO
BPL UoUT
JMP OUTCHR
UouT RTS

Enter the UIN routine at any user RAM location, then use the SD
command to put the UIN address into INVEC.

2.1.7 Monitor Extension
The following is the S6809 implementation of the monitor extension

command UO which will "AND" together the first two parameters and
display the two hex byte results.

LOGAND CMPA #1L4H ;s USRO
BNE NEXT
CMPX #2 ;two parms
BNE NEXT
DOAND LDD P2H ;Load Parm 2
ANDA P3H shere's the "AND" high
ANDB P3L s TAND" Low
JSR CRLF ;get new line
JMP OUTABH ;print A and B, return to monitor
NEXT ORCC #01 ;8et carry
RTS
. END

To attach LOGAND to the monitor, it must be assembled, entered into
memory and URCVEC altered to contain the address of LOGAND. Note that
more than one command could have been added by pointing NEXT to the
next possible command instead of an RTS.

2.1.8 SUPERMON as an Extension to User Routines

Because SUPERMON contains a user entry, it can easily be appended to
enhance your software. For instance, if a trace routine used an M
command, the SUPERMON would be available to the user. An example of
this code resembles the following:

USRRTN
o User Code
JSR INCHR
CMPA #'M
BNE ELSE
JSR USRENT
ELSE s e Code 1s executed if character

input is not "M",

In this example, the user will type an M to get into the monitor and a
(G) (CR) to return to the calling portion of USSRTN. Note that the
user PC and S registers should not be modified while in the monitor if
a return to UTRACE is intended.

2.2 S6809 INSTRUCTION SET AND ASSEMBLY LANGUAGE
2.2.1 36809 Microprocessor Assembly Language Syntax

The S6809 microprocessor used in your SYM-1 is an 8-bit or 16-bit CPU
which is capable of processing either 8 or 16 bits of data at a time
depending upon the instruction being executed. It has a 16-bit
address bus, which means that up to 65,535 bytes of memory may be
accessed, and it features the many interrupts described in earlier
sections. It also has two 8-bit accumulators, which can be treated as
a single 16-bit accumulator; two 16-bit index registers; two 16-bit
stack registers, which facilitate subroutine and interrupt routine
linkages; a direct (default zero) page register, which can be used to
conserve memory and speed execution; an 8-bit hardware multiply
command; and an almost infinite variety of instruction addressing
modes.,

An assembly language program consists of the following possible parts:

LABEL This is optional. It is used to allow branching to
the line containing the label and for certain
addressing situations.

MNEMONIC This is required. The mnemonic is a three- or
four-character abbreviation which represents the
instruction to be carried out. Thus, the mnemonic
to store the contents of the accumulator in a
specific memory location is STAA (Store Accumulator
A).

OPERAND(S) Some may be required or none may be allowed. This
depends entirely upon the instruction 1itself and
may be determined from the following discussion.

COMMENT This is optional. It 1is separated from the last
operand or from the command mnemonic where no
operand is used by at least one blank. These words
are ignored by the assembler program but included
only to allow programmers and users to understand
the program.

Note that some of the instructions make use of direct addressing, an
important concept 1like page-zero addressing introduced briefly in
Chapter 4 of the SYM-1 Manual. Page~zero addressing modes are
designed to reduce memory requirements and provide faster execution.
When the S6809 processor encounters an instruction using direct
addressing, it assumes the high-order bytes of the address are
supplied by the direct-page register, which means you do not need to
define that byte in your program. This technique is particularly
useful in dealing with working registers and intermediate values.

2-13

2.2.2 86809 Instruction Set

The S6809 Instruction Set Summary card provides a summary of the S6809
instruction set. Each instruction is shown with its mnemonic, a brief
description of the function(s) it carries out and the corresponding Op
Code for its valid addressing modes. The Op Code is the hex
representation of the instruction and what will appear when the
instruction byte is displayed by SUPERMON,

Applications programs for the SYM-1 normally will be written in the
S6809 assembly language mnemonic structure. The user then must perform
a2 "hand assembly" to generate the Op Codes and operands. The hand-
assembling of a code 1s explained in greater detail in Section 9.3 of
the SYM-1 Manual. Refer to this table or to the S6809 Instruction Set
Summary card frequently during programming.

To understand the assembly instructions, be familiar with the six
condition-code register flags and their functions (listed below).
These flags are set and reset depending on the program execution.

E Entire Flag (PC, Flags and all Register) on stack.
F When one, FIRQ to CPU is held pending.
H Half carry. Set to one when the low-order 4 bits of a

sum exceeds 9 (used in decimal adjust).

I When IRQ to the CPU is held pending.

N Set to one when the result of the previous instruction
is negative.

Z Set to one when the result of the previous instruction
is zero.

v Set to one when the result of the previous instruction
causes an arithmetic overflow.

C Set to one when the previous instruction results in an
arithmetic carry. Set to one when the previous
instruction results in borrow (subtract). Also modified

by shift, rotate and compare instructions.

The S6809 has an extensive set of 10 addressing modes. For example,
it has 59 basic instructions. However, 1t will accept 1,464 variations
of addressing modes and instructions. Table 2-3 describes these
addressing modes.

2.3 EXAMPLES FOR PROGRAMMING THE SYM-1/S6809

Creating a program on the SYM-1 using the S6809 involves several
steps. First, the program input and desired output must carefully be
defined. The flow of program logic usually is depicted graphilcally in
the form of a flowchart. Then, the flowchart symbols are converted to
assembly language instructions. These instructions are translated
into machine language, which is entered into memory and executed. If
the program does not run correctly the first time, it must be debugged
to uncover the errors. This chapter illustrates the steps involved in
creating a program that adds two 32-Dbit binary numbers. Two additional
programming problems with suggested solutions also are provided.
These three programs are designed to communicate basic programming
principles and techniques, and to demonstrate a programmer's approach
to simple problems.

2-14

"YAYS UOT3®BOOT 4® padoqs
ST $S8aJpp® 98sS0UM d31£q
Y3 U3 TM ¥ J03BINUWNDOO®E
peOT (XAVS) vart

‘XAVS ST TSqeT
OTITOoqWAS 9SOUM UOTQBOOT
9Yyad 0434UT Y d91ST88d
X83putl SJ4013¢ +XAVS XLS

°Y J03BINWNOO® O4UT
0c X3y peOT ‘HOC# VAT

°d

JOJBTNUNOOB JdBITYH dyI1o

T

TB1BD
9U3 JO SS8Jppe U3 JO S€2Jpp®
9UY9 SUTB3UOD UOTJ3ONJLSUT
paxsaputr ue Jo 9349 asod sya
BUTMOTTOJ $834q g 8yjz ‘3o8a1put
papusgxs Uufx *uTssedpp®
papusjxs |yj 03 peppe
oq £LBW UOT308JTPUT JO TI9AST SUO
‘(moTeq UuOTSSNOSTp) BUTSSdJppE
poxspul Jo 8seO IBIoads ® 8y

*quapuadaputr uoTgIsod
10U ST pU®B S$S9JppPRB @89nJosqge
Uu®B S9UTJIOP UOT9QONJISUT pPopuslxXa
ur £Aq poj3rA2UL2B sgsaodppe
U3 3®BY3 S3O0N “UOTjIONJIAjsuUT
2y3 £q pasSn Ss9JppP® SAT309JJ°
1TQ-9T 8uy3 £Jtoeds ATIng 8pod
do ©su3z 3JUIMOTTIOJ AIS9BTpOUWT
sa1kq 2 aya Jo g4US84U00
oyl ‘3ursseoJapp® pPopuLlIXd UT

*apop do
ouad £Aq paTJrosads jusunlde ayg
Jo 922Ts sys3 uo Builpuadep soniea
S31BTPSWWT 3Tq-9T pue =g yY3joq
sasn 60Q9S @2yl *(uoTj3ondjgsut
°y3 Jo 98pop do @aysg
SMOTTOJ ATS93BIPSUWWT UOT30NJILSUT
9U3 Ul pesn 8q 03 B3RP 9UYj
‘*9°T) opop do oYz SBUTMOTTIOJ
KTsgqeTIpowWWT UOT3BOOT 9yl ST
®31EeD 9U3 JO SS3JpPB SAT109JJ°
ayg ‘BUTSSOJpPpPB 24BIPSWWT UT

*£JBSS905U UOTQRBUWJIOJUT
sSsaJdpp® SyYg TI® SUTIBAUOD
UOT4A0oNJ38sUT a2yl Jo 8pon
dp 92ya ‘opow Jurssadppe STyU3 Uuf

HTdRYXH

SHLAY #

NOIL4IYOSHd

e |

LOJYIANT
HANALXH

HANHLXH

HLVIAHWNT

LNIHTHNT

HAOW

S6809 ADDRESSING MODES

TABLE 2-3

2=15

<

‘X ut
pPOUTB3UOD S83JPP® 9Yj 3®
paJdoqls anTes Y3 UYitm y
JoarTnwnooe peOT X VAT

‘gOOT SouwWTq J99sT3ea o3ed
109JTpP 9Y3 JO S3UL3UCD 3Yj
pur (X®Yy) (0Z Jo wns 3ayj
se poandwoo ss9Jpp® 3YL
7' pOJ03s 9aNTBA 83Ul YITM ¥
JOoaBTNUWNOO® DPBOT :02% VAT

c

‘puedado syl JO
SSaJppR 9AT398JJ9 9Uj SUTBIUOD
21 Aq 1sod suya £q R RS
Jd918T39a 99Ul ‘gpow STU3 Ul

poxopul 39SJJO 0d3%

*09£q gsod sayj3 £Kgq pa3o9T9s
sd® posn o8q 073 J93SsTIad
ays pue Surxepul Jo odf3 aug
*MOTS0 POSSNOSTP 948 BUTXSpPUT
Jo sadfkg 9ATJ 9UL °*nd 40
g ‘n ‘K X sdegsTtds8d ayjz JO SUO
Fursn £q poqBINOIBO ST purdado

syq JO ssoJppe ©AT3198JJ9 8yl
‘gopoll BUTSS2JpPPE POXSPUT UI

*Jd9qsT139d
o8ed q024aTp 9U3 JO S3US3UO0D
sya FUTUTJIOPSd JNOYJTM PSSS200®
sq ueo (@8ed su0) SUOT3BOOT 94¢
LATuo fssJanod JO *BUTSS2JpPD®E
pepue3xd UBYUZ J81SBJ S94NO3XD
pur LJowew SSoT ssdTnbaa spouw
sTys ‘pedainbea sT ssaJdppe 22Ul
J0 22£Lq 1 ATuo 8OUTS *d2q9gT1884a
28ed qo0oatp oysy Lq petrddns ade
saTq g 4Jaddn ayf ‘pasn agq 03
ggoaJdppe @uy3 JO 8319 g JOMOT syj
soTJTo2ds 92340 STUL *gpony do
2y3 SMOTTOJ ssadppe JO 9349 T
£Tuo 4doeoxs BUTSSOJIPDEB PBPUILXD
09 JBTTWIS ST JuTssadppe 390=241(

JHEXHANT

LOHYId

HTJWVYH

SHLAY #

NOILLITHOSHA

HAOKH

S6809 ADDRESSING MODES (Continued)

TABLE 2-3

2-16

*94£q asod ayj
UT pP®309T988 ST JULUWSJOUT ayy,

e

‘OM3 J0 duo £Qq psjusWLJIOUT ST in

3T ‘posn ST J93sT804d 8ya J93Jy o
*duo £q Y jusweJoUT usyj *99£q 1g3sod ouy3 £Aq poelBOIPUT
‘X UT pPOUTB3UOO 8S8Jpp® 19181384 =10 fa uT PSUTIBIUOD
8U3 231® pPOJ03S anTeA ST SS9JpP® 9AT309JJ3 8yl °spou
39Ul U3IM Y JO4BTNUWNOO®E paxspul 388JJO0 0J48Z 29Uyl ONIT
pEOT S Yar sejqeaado spow IUTSSLJIPPEB STYL

PSX9pU JUSWBJIOUT 04Ny

*paJdsjTe
ST dJ938Td9a dYy3 Jo 1BvYUs]
JOU JOjBINUWNOO® 3Y3 JO 4qUBQUO0D
U3 JayaTeN ‘puedasdo oyjg

‘X PuB g JO SqU84U0D JO SSs3Jppe ©°AT309JJ9 ayjz piork
paudTs 98yg Jo wns ayjg 03 934£q 3sod sy3z £Lq psjooTes
se psqndwoo ssaJdppe ayj Jd938T38d 8y3 03 pappr ST (
198 P9Jd03s anTeA 9Y3 U3IM ¥ J0 g ‘Y J03BINWNOO®B JO 4US4UO0D
JO3BTNUNOO® PBOT :X°9 VAT quawe Tdwoo s,oM3 DpdBUITS 8Yf,

paxapuyl 398JJ0 J03BINWNOOY

*93£q 3sod syjz BulMoTTOJ
§934q g ay3 3Bursn)92+ 03
g9.ct- pue ‘93£q 3sod sys
BUTMOTTOJ 23£q ayq Jursn o3ued
L2T+ 03 g21- fe23£q 3sod syjg

S6809 ADDRESSING MODES (Continued)

JO s3Tq G Bursn o8ued G+ 01 T

*Y JO §4qU84U0d 9T= :8J® 488JJO JO S§3ZISs 984yl N

puer (Xx8ay) Q¢ Jo uwns |y, ‘PaJ4s3Te® 40U ST 4JUSqU0D 3]

9Uy3 s® poandwod ssaJdppe S ,d918T39d ayy, *purdado &

9yl 31® paJoqs anTeA 9Y3 JO SS99JppE 9ATI09JJS oUj M
U1 UYJ3TM Y J02BTNWNOOR 03 Dpappe ST 39s8JJO0 AquaweTduoo
pPBOT :X‘HOZ -~ VAT S,0M3 poudTs ® ‘epow STY3 Uur

paX3puy 38sJJ0 3UB3SUO) THXHANT

= TR
HTdHVXA S4LA" # NOIIdTIHOSHa HAOKW

X
Jogstl80a snid (TewTo2pP)

01 JO uns 9yj s®e peoandwod
sgodppe @U3 3B PIUTBIUOD

ST $S9J4ppB 9SOUM UOT3EO0T
oya og dunp (X°0T) dWF

+% UT pautejuod gsgadppe
aya 42® DPaJo03s anteA
2ya UaTM V JOoaBTNUWNOOR
peoT usys foUuo
Rq x 3uswsda93(d =X Va1

*q98JJO0 U® sntd aeqst138d
xopul °oys wodd peaBINOTED
ST YOTUM SSSJDPDE S9ATA09JJ9 Uu®e
y8noays K{2094TpUT PIPEOIL ST VY
JOqBeTNUNOO® fmoTaq 9poo 8yl ut
‘oTduexd J04 fue JT 398330
snTd a93s188a X3pul ay3 9yl
Jo sjusjuod 3Uj Ka peTJToeds
uoTgBOOT 29Ul 1I® pauTe3UO0D
g1 pueasdo 23Ul JO SsoJdpp®
oATA93JJ° ¥{U3l ‘gpow ‘BUTSSSJIPPE
109dTPUT DPOXSPUT UI ‘potTJTIOads
s5q Aeuw uotTao94aTpuUT JO T2A9T
TeUOTATPDPE o2T8uUTsS ® ‘(23fq asod
2ya UT DPaUTBIUOD 198JJ0) GT+
o3 91— JO oSurd B UYaTM 2398330
jueq4SUOD puUB SUO £q AUSULJ08D
fquoWaJdOUT 1ds0%?d sapou
FuTssaJdppe pexaput TT® J04

*8¥0®eaS
¢ pue [ouyz 03 KTTEOTIUSDE
oARUSQ 13BUY} SHNOEBIAS 948940
0q pesn aq ued sapou FuUTSSaJpPE
quswadouTysod pue quswoadoapaad
asay], *pasn sT 4T 8J0J94q
oM, Jgo ouo £Kq SELLPEY I EP O]
sT J03sI39Ja ¥yl ndooxd POXopUT
qusweaoUT 03ne 03 TeOT4USPT
ST spou FuTSSadppE STU,

poxapul Juswed23(q 03NV

LOHYIA
AIXHANT

AXHANT

AIdWVXE

SALAY #

NOT.LdTHOSHA

HAOW

S6809 ADDRESSING MODES (Continued)

TABLE 2-3

2-19

‘pogaTwasd ST UOTQ08J4TPUT JO
T9AST TBRUOTILIPPB Uy °9JB8M]JOS
quspusadepur-uoTqgTsod SuTqTaM
JOJ TnJjgeasn sT Jurssedappe
SATAIBIO9J d33UN0COD WBJIATOJdJ

S6809 ADDRESSING MODES (Continued)

*d2qUunoo uedadoad cpurdado syl Jo s$89Jpp®e
2y3 ased s994Lgq Qg UOTIROOT SAT399JJS 8y3y pIsTLk o013 0d HATLVTHY
SUY4d WOJdJ Y JOQBINUWNOO®E 9yl 09 poppe ST 298JJO pAUITS HALNAOD
peOT :0d‘o0¢e vaTtd = € 3TQ-9T J0 —-Q UB ‘8pow STU3 Ul WvYDOoud| |,
o™
*SSOJPPEB MOU SY3 4® S9NUTIUO0D b
UOTAND9Xd pUB d83unod uweddoad i
9Uq O4UT DpPopBOT ST SsoJdppe 3
pe3eInoTeO 8Y3 ‘paTJsIaes w
*d9qunod uwedafoad ayx wodajJ ST UOT4TpPuUOO yYdUuwvJAq 3UY3 IT =
198JJC UB €SB UOTAONJISUT *suTanoa uweddoad syl 049 pappe
SU] UT poassaddxe ST UOTyUMm pue 148$JJO PIUBIS B SB poajlradl
IXTddVT UOT3I®BOOT 9Y3j ode spop do eua FUTMOTTOJ DNISSHHAgv
01 youedg IXTH9YT bHdI ¢ = C se1hkq om3 J0 83£q STIUTS Yy HATLVYTHY

HTdWYXH SHLAL # NOILdTIHOSHd HAOW

C START)

CLEAR CARRY

DOUBLE-PRECISION ADDITION FLOWCHART

FIGURE 2-1:

2-20

2.3.1 Double~Precision Addition

Since the 16 bits of the accumulator can represent positive values
only in the range 0-65,535, 65,535 is the largest sum that can be
obtained by loading one 16-bit number into the accumulator and adding
another. However, by utilizing the Carry Flag, which is set to 1
whenever the result of an addition exceeds 65,535, multiple-byte
numbers may be added and the results stored in memory. A 32-bit sum
can represent values up to 4,294,967,295. When 32-bit numbers are
added instead of 16-bit numbers, it is "double-precision" addition.

2.3.1.1 Defining Program Flow

A flowchart is easier to follow than a list of instructions because it
facilitates debugging and serves as a reference when using a program
written in advance. Some common flowchart symbols are shown in Chapter
6 of the SYM-1 Manual.

The object of the following program is to add two 32-bit numbers, each
stored in 4 bytes of RAM, and obtain a 32-~bit result. The sequence of
operations the processor must perform is shown in Figure 2-1.

To accomplish double-precision addition, clear the Carry Flag. The
Carry Flag 1s used in the program and must start at zero. Load the
low=order word of the first 32-bit number into the accumulator and add
the low-order word of the second number by using the add (ADDD)
command. The contents of the accumulator makes up the low-order word
of'" the result. The Carry Flag 1s set if the low-word sum is greater
than FFFF (hex).

Store the accumulator contents in memory, load the high-order 2-byte
word of the first number into the accumulator and add the high-order
2-byte word of the second number plus one if the carry bit 1is set.
After the second addition, the contents of the accumulator make up the
high-order 2-byte word of the result. Figure 2-2 below illustrates
the addition of 98,688 and 32,896.

0000 0000 0000 0001 1000 0001 1000 0000 98,688 (0001 8180 hex)
0000 0000 0000 0000 1000 0000 1000 0000 32,896 (0000 8080 hex)

Add low-order 2 bytes: (Carry/clear)
1000 0001 1000 0000
1000 0000 1000 0000

Carry =1 0000 0010 0000 0000
0000 0000 0000 0001
0000 0000 0000 0000
+ 1 Carry
Carry = 0 0000 0000 0000 0010

Result = 0000 0000 0000 0010 0000 0010 0000 0000
= 131,584
(0002, 0200 hex)

FIGURE 2-2: DOUBLE-PRECISION ADDITION ARITHMETIC ILLUSTRATION

2-21

"T4VIS YOLINOW HO008 o3| WOLINOM

"3[NS3 4O PuoM ABPAO-MOT HE0E nb3 €1 “
"3INSo4 JO PJOM Jop40-UbiH H60€ nd3 €H 5
*A9qWNU puodas JO pJUOM A3PUAO-MOT] H/0¢E E| 2 w
*J49qWnu puodas JO pJOM L@ULO..;@_.I HSOE no3 ZH =
“X3GUNU 3SALE JO PAOM 43P0-MOT HEOE nb3 11 S
"JBqUNU 35AL) $O PAOM 43pJ0-UBLH HTOE nd3 TH 5
2
_ 3
“Joytuow 8y3 03 dunp | YOLINOW dir 00| o8 | 3L || 112 =
"3INS34 4O PuOM U3PAO-yBLY 3403S €K 0LS 60| €0 | a4 | ¥I2 o
*J3qUNU PUODIS O PAOM 3PO-USLY PPY 2H uaay zaay || sofeo | ed]| 112 &
"Aade) 404 T PPY ot aaay 10 oo | €3 || 302 2
"38S 30U SL Auurd 31 20Qy 03 dbIS 20aY 904 g0 | vz || 202 o
“J3qUNU JSALJ $O paoM 49p0-ybLy peot TH 001 ol o | o4 602 2
"¥LNS34 JO puOM SPUO-MO| SAES e1 - aLs aofeo | adf 902 .
"J3GURU PUODBS O PJOM 43PJ0-MO| PPy 21 aaay coleo | ed |l woz i
“ABQUNU 3SAL4 JO P-OM UDPUO-HO| PROT [a1 [cof 0 | 04| 102 o
"I1q A4AB) BY3F SJB3[D UDLyM ‘Y A03L|NUNCOR ABd|) L w1 | 1 aay 47 || 002 5
SINIWWOD ONY33d0 SToam | Tavi || ca]cd | 1@ Wy | &

SNO1L0N¥LSNI

2=22

2.3.1.2 Coding and "Hand Assembly"

Once the program has been flowcharted, you may code it onto a form
like the one in Figure 2-3. The S6809 Microprocessor Machine Code is
described in the 86809 Instruction Set Summary card.

The first step involves finding the S6809 commands that correspond to
the operations specified in the flowchart. Arbitrary labels were
assigned to represent the addresses of the monitor, the two addends
and the sum entered in the operand fields. As written, the assembly
language program specifies where in memory the program and data will
be stored.

To store and execute the program, assemble it by translating the
mnemonics into hex command codes and assign the program to a set of
addresses in user RAM. When you perform this procedure with pencil
and paper rather than with a special assembler program, it is called
"hand assembling".

SUPERMON begins at hex location 8000, and the addends and the sum have
been arbitrarily assigned to locations 0301 through 030C. Note that
the high- and low-order words of a 32-bit number are not restricted to
these contiguous locations.

This program will be stored beginning in locations 0200, another
arbitrary choice. Data and programs may be stored anywhere in user
RAM. Columns Bl, B2 and B3 of Figure 2-2 represent the first 3 of the
5 possible bytes in any S6809 instruction. In this example, Bl always
contains the hex Op Code, and B2 and B3 represent the operand(s). On
the coding form, the LDD and BCC instructions occupy 3 bytes each. On
the Instruction Set Summary card, the LDD mnemonic represents several
different Op Codes depending on the addressing mode selected. FC
indicates absolute addressing and specifies a 3~byte command. When
all the operation codes and operands have been translated into pairs
of hex digits, the program is ready to be entered into memory and
executed.,

2.3.1.3 Entering and Executing the Program

YOU KEY IN DISPLAY SHOWS EXPLANATION

(RST)

(CR) SY1.0..

(MEM) 200 (CR) 0200, %%, Enter memory display and

' modify code

4w 0201, %%, Store FC in location
200 and advance to next
location.

FC 0202. %%, Store 03 in 1location
201 and advance to next
location.

03 0203, *¥, .

03 0204, #%, .

73 0205, %%, .

03 0206, %%, .

07 0207 . %%, .

D 0208 . %%, .

03 0209. %%, .

OB 020A. ¥%, .

¥C 020B. *#*, o

03 020C. ¥#, .

01 020D, ¥¥*, .

24 020E., ¥¥, .

03 020F. %%, .

C3 0210, *¥#,

00 0211, ¥%,

01 0212, %%,

3 0213, %%,

03 0214, %%,

05 0215. %%,

FD 0216. %%, .

03 0217 .%%, .

09 0218, *¥¥%, .

TE 0219, %%, .

80 021A. %%, .

00 021B. ¥¥%, o

(CR) LN Exit memory display and

modify.

Once the program 1is entered, examine each location to make sure all
values are correct. Then store the addend values in locations 301-308
using the same numbers used in Figure 2-2.

YOU KEY IN DISPLAY SHOWS EXPLANATION

(Mem) 301 (CR) 0301. %%, Enter high-order byte of high-
order word, first addend.

00 0302, %%, Enter low-order byte of high-order
word, first addend.

01 0303, *¥#, Enter high-order byte of low-order

' word, first addend.

81 0304, *¥, Enter low-order byte of low-order
word, first addend.

80 0305. %¥, Enter high-order byte of high-
order word, second addend.

00 0306, %%, Enter low-order byte of high-order
word, second addend. |

00 0307. %%, Enter high-order byte of low-order
word, second addend.

30 0308. ¥¥, Enter low=-order byte of low-order
word, second addend.

80 0309. ¥#*, Exit memory display and modify.

(CR)

To execute the program, enter the command shown below.

YOU KEY IN DISPLAY SHOWS EXPLANATION '

(Ggo) 200 (CR) g 200. Execute program starting at
location 0200.

Now, use the MEM command to examine locations 309 through 30C. Verify
that they are the high- and low-order words of the result, 00, 02, 02
and 00. If you find other data at these locations, the program needs
to be debugged.

2.3.1.4 Debugging Methods

The first step in debugging is to check that the program and data have
been entered correctly. Use the MEM command to examine the program
starting address, then use the right-pointing arrow key to advance one
location at a time to verify the contents of each. If you have a
terminal, generate a listing by entering an SP command without turning
on the tape punch or by using the VER command. Also, examine the
locations that contain the initial data.

If the program and data are correct but the program still does not
execute properly, you may want to use the SYM-1 DEBUG function. If
DEBUG is on when the execute (GO) command is entered, the program will
execute the first instruction, then return control to the monitor. The
address on the display will be the address of the first byte of the
next instruction. If you press GO (CR) again to execute (do not
specify an address this time), the computer will execute the next
instruction, then halt. Execute one step at a time in this manner.

By entering a non-zero trace velocity at location A651, execution will
automatically resume after a pause, during which the accumulator is
displayed. Depressing any key will halt automatic resumption.

After certain instructions, you will want to examine the contents of
memory locations or registers. This can be don by using the MEM or
REG commands, then resume operation by entering another GO command.

For example, to examine the Carry Flag after the low-order addition,
use the REG command as shown below.

YOU KEY IN DISPLAY SHOWS EXPLANATION

(ON) Not important Turn DEBUG function on.

(G0) 200 (CR) 202.2 Execute 4F instruction.

(G0) (CR) 205.2 Execute FC instruction.

(GO) (CR) 208.2 Execute F3 instruciton, low=-order
add with carry set or cleared as a
result.

(REG) (CR) PC 0208. Program counter.

S FD. System-Stack pointer.

U 00 User-stack pointer.

F 63 Status Register.
(CR) 2 63. End register examination.
(GO) (CR) 020B,2 Execute FD instruction.

The Carry Flag is the lowest bit of the Status Register. To determine
whether the Flag was set, convert the hex digits 83 to binary. The
result of this conversion is 1000 0011, and since the low bit is one,
it is confirmed the sum of the 2 low-order words was greater than
65,535 (FFFF hex).

You may turn the DEBUG switch off after instruction. The next time
you press GO0, the program will finish executing.

Since reading from or writing to any I/0 port is the same as reading
from or writing to a memory location, the DEBUG feature also may be
used to debug I/0 operations. When the port address is examined with
a MEM command, the two hex digits representing data 1indicate the
status of each line of the port. For example, if the value C2 is

displayed, pin status is:

PIN 7 6 5 4 3 2 1 O 0 = LOW
1

,_4
ol
ol
ol
ol
|
ol
s
]!

STATUS HIGH

2.3.2 Conditional Testing

The most useful computer programs do not go in straight lines. That
is, they do not simply execute a serlies of instructions in consecutive
memory locations. Instead, they perform different operations by
testing data words and jumping to different locations. Typical tests
answer the following kinds of gquestions.

1. Is a selected bit of a specified data byte a one or a zero?

2. Is the content of a specified data byte equal to a selected
ASCII character or numeric value?

The sample program will answer question one. It also can be patched
to answer question two. Use the same principles in the first two
examples to make more complicated tests.

2.3.3 Bit Testing

This sample program looks at the byte in hex location 31 and tests bit
3, If bit 3 is set to one, it jumps to location 8494; if bit 3 is
zero, 1t returns to the executive. Location 8494 is a monitor
subroutine that makes the SYM-1 beep.

The only problem involved in bit testing is isolating bit 3. - The
simplest way is to use a mask for bit 3, which is a byte in memory
with bit 3 set. If you logically AND the mask with the sample byte,
the value will be zero if bit 3 is zero and non-zero otherwise. The
bit test performs the AND and tests the value without altering the
state of the accumulator. ‘

Figure 2-4 contains the program code for this program.

To test bit 0 or bit 7 of a byte, use a shift operation to place the
selected bit in the Carry status bit and use a BCC or BCS to test
Carry. This saves one or more program locations and alters the
accumulator, so you may have to shift it back for later processing.

2-26

“uanjey SLY IWOH | 6c | woz
"401eLdLunuue ay} dasg 433 diWp ve | ¥8 | 3L L0¢
"udnlad ‘31q Ou SL |usY} 4] JWOH 03d €0 | L¢ ¥0¢
"311q 049Z 33S pue aueduo) ASYI v1ild 80 | 98 AV
*9n|eA 1S3 |yl 19y 15831 van 0 | 96 002
*AN[BA JUBUBISLP B 39S 1S31
jsew ¢ 119 H80 no3 ASYW
"SS3Jppe suiinod ayjz dsag HY6¥8 no3 d33d
SINIWWOD GNYY3dO JINOWINW 138v1 €d¢29 | 14 daay
SNOILONYLSNI

FIGURE 2-4

BIT-3 TEST ROUTINE

=27

[QV]

2.3.4 Character, Value or Magnitude Testing

To test whether a byte is equal to an ASCII character or value, either
use the Compare command or set a mask location equal to that character
or value. Then use the EOR command to find the exclusive OR of the
two values and test the result for zero. It will be zero only if the
values are identical. Note that this destroys the test value, so keep

an extra copy.

To test whether a byte is greater than, equal to or less than a given
value, either use the Compare command or set a mask to the test values
and subtract it from the test value. The test value will be destroyed
by a Subtract command. Test the result to see whether it is positive,
negative or zero (this takes two sequential tests) and branch
accordingly. Try writing a program that makes a series of magnitude
tests to determine whether a given byte 1s an ASCII control character
(0O=-1F hex), punctuation mark, number or letter. The values of the
ASCII character set are listed on the S6809 Instruction Set Summary
card.

2.3.5 Multiplication

Since the S6809 contains a hardware 8-bit multiply instruction which
produces a 16-bit product, a multiplication routine is not presented
here.

