PL/65

USER'S
MANUAL

$10.00

‘l' Rockwell International
1978 Document No. 29650 N37

All Rights Reserved
Printed In U.S.A. November 1978

SECTION

APPENDIX A

TABLE OF CONTENTS

TITLE

INTRODUCTION

STRUCTURE OF PL/65 PROGRAMS

STATEMENT TYPES IN PL/65

Wwwwwwwww
. Y
W 0o~ U s WN

Declarations

Assignment

Imperative

Specification
Conditional

Branching

Looping

Compiler Generated Labels
Page Zero Utilization

INSTALLATION AND OPERATION

Loading the PL/65 Compiler
Operating the PL/65 Compiler
Loading the PL/65 Optimizer
Operating the PL/65 Optimizer
PL/65 Test Program

STATEMENT FORMATS

>

g

.
Ho O 00U s W N

w

o« o . .
N = e

ol i

o
—
IS

A.15

ASSIGNMENT
BLOCK
CALL

CASE
CLEAR
CODE
COMMENT
DATA
DECKW>
DECLARE
DEFINE
ENTRY
EXIT
FOR-TO~BY
GO TO

wwwwwwwcfw
[} 1
WOV WwN

-
[}

XTRTYY
WO~ uou s N

i
O

A-10
A-10
A-11
A-12

SECTION

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

TABLE OF CONTENTS (Cont.)

TITLE

A.16 HALT
A.17 IF-THEN-ELSE
A.18 IFF-THEN
A.19 INCLKW>
A.20 PULSE
A.21 RETURN
A.22 ROTATE
A.23 RTI

AR.24 SET
A.25 SHIFT
A.26 STACK

A.27 TAB
A.28 UNSTACK
A.29 WAIT

A.30 WHILE
ABBREVIATIONS
ASSEMBLER EQUIVALENTS
SAMPLE PL/65 PROGRAMS

"SORT" COMPILER INPUT

"SORT" COMPILER OUTPUT

"TOGGLE TEST" COMPILER INPUT
"TOGGLE TEST" COMPILER OUTPUT
"MONITOR SEGMENT" COMPILER INPUT
"MONITOR SEGMENT" COMPILER OUTPUT

[viiwilviielvile]
D)
D W N

PL/65 TEST PROGRAM

ii

PAGE

A=-12
A-13
A-14
A-15
A-16
A-17
A-17
A-18
A-18
A-19
A-20
A-20
A-20
A-21
A-21

D-1
D-2
D-4
p-5
D-3
D-9

INDEX

TITLE
== statement

ACCUMULATOR

AND

ARRAYS

ASSEMBLER EQUIVALENTS
ASSIGNMENT

BEGIN~END blocks
BINARY

Binary

BINARY Constants
BIT

BLOCK

BRANCHING
Bubble sort

CALL

CARRY

CASE

CHARACTER

CLEAR

CODE

COMMENT

Compiler generated labels
Computed GO TO
CONDITIONAL

DATA

DATAW

DEC

DECIMAL
DECLARATIONS
DECLARE
DECW

DEFINE

ENTRY
EXCLUSIVE OR
EXIT
EXPRESSIONS

FOR-TO-BY

iii

PAGE

B-1
B-1
3-2,
c-1
3-1,

W W
Lt
~

~

N

Py Y
H SO Wo o aHEn
:

(9%}
1
N

~

A-8
A-9
B-1
3-1,

A-8,
3-2,

3-6,
B-1

3-6,
3-2,

3-8,

3-3

B-1

A-5
A-6, B-1

A-7

A-7, A-8

3-2

A=-9
A-10

A-10
3-3

A-11

INDEX (Cont.)

TITLE PAGE

GO TO 3~8, A-12
HALT A-12
HEXADECIMAL 3-3, B-1
HEXADECIMAL Constants 3-4
IFF~-THEN-ELSE 3-6, A-13
IFF~-THEN A-14
IMPERATIVE 3-1, 3-5
INC A~15, A-16
INCW A-15, A-16
INDEX X B-1
INDEX Y B-1
Indirect GO TO A-12
INITIAL A-9, B-1
INSTALLATION 1-1
INTEGER 3-3
INTERRUPT B-1
INTRODUCTION 1-1
LABEL 3-3
Logical operators 3-3
LOOPING 3-1, 3-8
NAME 3-3
NEGATIVE B-1

OR B-1
OVERFLOW B-1

Page zero utilization 3-9
Parenthetical expressions 3-3, 3-4
PROCESSOR STATUS B-1
PROGRAM STRUCTURE 2-1
PULSE A-16
Quantifier 3-3
REGISTERS A-14
Relational operator in IF 3-6
RETURN A-17

ROL A-17

iv

TITLE

ROR
ROTATE
RTI

SET

SHIFT

SHL

SHR
SPECIFICATION
STACK

STACK POINTER
STATEMENT FORMATS
STATEMENT TYPES
Subscripts
SUBSCRIPTS

TAB
UNSTACK
VARIABLE
WAIT
WAIT ON

WHILE

ZERO

INDEX (Cont.)

3-5, als

A-18, A-19
3-5, A-19

3-6

A=-20

3-5

A-20

A-21

A-21, A-22

SECTION 1

INTRODUCTION

A high level systems implementation language, PL/65, has been developed
for use on the Rockwell SYSTEM 65 Microcomputer Development System. This
document describes an implementation of that language for the R6500
family of microprocessors. The language resembles PL/1 and Algol in
general form, but a large number of simplifying assumptions have been made
to avoid unnecessary complexity and to ease compiler implementation. The
result is a mid-level language which has the power and flexibility of
Assembler and the structuring potential of a high-level language.

All language features are aimed at improving the productivity of the
systems programmer by simplifying the writing of systems normally written
in Assembler. PL/65 compilers produce assembler code rather than object
code. Thus, symbol table manipulation in the compiler is avoided.
Furthermore, this allows the systems programmer to enhance or debug at the
assembler language level if necessary. In fact the programmer may
revert to assembler language whenever it is expedient to do so.

In spite of the simplicity of the language, the systems programmer is able
to structure programs for readability and logical organization without
sacrificing run-time efficiency. Program logic essentially becomes self-
documenting. Control structures for conditional and iterative looping and
the IF-THEN-ELSE conditional coupled with a simplified block structure add
greatly to the language potential for highly structured programs. This
document describes the language features of PL/65. Consult Section 4 for
PL/65 installation and operating instructions on SYSTEM 65.

This PL/65 Language Reference Manual assumes user familiarity with pro-
gramming in a high-level language.

SECTION 2

STRUCTURE OF PL/65 PROGRAMS

A PL/65 program is a collection of PL/65 statements. The compiler does
not impose an ordering of the program, hence the systems programmer
bears the responsibility for correctly formed programs. The general
structure of PL/65 programs is illustrated in the following ascending
order bubble sort routine.

PAGE '**SORT**';
i
"ASCENDING ORDER SORT":
i
DECLARE F, I, TMP;
i ENTRY $200;
P
N=N-2; "SET TERMINAL VALUE FOR LOOP";
F = 1; "SET FLAG";
WHILE F = 1
DO;
F = 0;
FORI =0 TO N
BEGIN;
IF B{I] > B[I+1l] THEN
BEGIN;
F =1;
TP = B[I];
B{I}=B[I+1];
B[I+1]=TMP;
END;
END;
END;
N: DATA 10; "N IS NUMBER OF SORT ELEMENTS";
B: DATA 23,55,36,28,54,39,99,86,21,67;
i
EXIT;

Example l. ASCENDING ORDER BUBBLE SORT

Programs normally start with an ENTRY statement; and terminate with
an EXIT; statement. Their use is explained in later sections. The
sample sort routine above shows program structures common to many high

level languages. Particular structures shown are: assignment, integer
arithmetic, conditional looping (WHILE-DO), iterative looping (FOR),
conditional execution (IF-THEN), collective execution (BEGIN-END), linear
array manipulation, data area declaration (DECLARE), and array initializa-
tion (DATA). Statements are separated by semi-colons and optional com-
ments. Comments are delimited by double quotes and terminated by semi-
colons. The compiler is not column sensitive so statements can be indented
for readability. TABS can also be used. The following routine is design-~
ed for execution on an R6500. A transistor switch and relay are assumed
to be connected to pin 1 of an R6522 Port B Data Register. The program
cycles through an array T for a switch position (1L = on, 0 = off) and a
time delay (in seconds).

PAGE 'TOGGLE SWITCR';

’
DEF DRB=SA000, DDRB = $A002
DEF T1CL=$A004, TI1CH = $A005
DEF ACR=$A00B, PCR = $A00C
DEF IFR=$A00D
DEFINE *=$10;
DCL J,K,L;
DCL TIME;
ENTRY;
UDDRB=§FF;
ST: CLEAR ,CARRY;
T1CL=$50
T1CH=$C3
FOR J=0 TO 10 BY 2
BEGIN;
DRB=T [J] ;
TIME=T [J+1];
CALL DELAY;
END;
GO TO ST;

i

DELAY: FOR K=1 TO TIME

BEGIN;
"FOLLOWING IS A 1 SECOND DELAY";
FOR L=1 TO 20
BEGIN;
WHILE BIT {6] OF IFR A=0;
END;
RETURN;

i

"FOLLOWING IS SWITCH POSITION AND TIME DELAY";
DATA },5,0,10,1,5,0,15,1,5,0,2;
EXIT;

Example 2. SWITCHING WITH TIME DELAY

Assembly language generated by the compiler for the above routines is
given in Appendix D. These routines were selected specifically to
show some of the commonality between PL/65 and other languages. The
following routine illustrates some of the features which make PL/65
unique.

PAGE '*MONITOR SEGMENT';

’
"SEGMENT OF A MONITOR PROGRAM";
RST: .X=$FF;
. S=.X;
SPUSER=.X;
CALL INITS;
DETCPS: CNTH30=$FF;
+A=$01;
DETl: IFF BIT{SAD] THEN START;
IFF .N THEN DET1;
«A=$FC;
DET3: CLEAR .CARRY;
«A+§01;
IFF A.C THEN DET2;
CNTH30+1;
DET2: .Y=SAD;
IFF A.N THEN DET3;
CNTL30=.4;
«X=$08;
CALL GETS;

Example 3. SEGMENT OF A MONITOR PROGRAM

This example shows some of the extended features of PL/65 using named
bits and named registers. Also shown is a special form of the IF~THEN
conditional statement. These features are explained in detail in later
sections.

SECTION 3

STATEMENT TYPES IN PL/65

Statements in PL/65 can be grouped into seven classes:

e Declaration
DECLARE
DEFINE
DATA
comment

e Assignment
byte move
multiple byte move

e Imperative
SHIFT
ROTATE
CLEAR
SET
CODE
HALT
WAIT
STACK
UNSTACK
INC
INCW
DEC
DECW
PULSE

e Specification
ENTRY
EXIT

® Conditional
IF-THEN-ELSE
IFF-THEN
CASE

e Branching
GOTO
CALL
RETURN
RTI
BREAK

e Looping
FOR-TO-BY
WHILE

Sections 3.1 through 3.7 provide a very general description of PL/65
statement types and their function. A more formal definition and detailed
examples are given in Appendix A.

In the descriptions to follow, VARIABLE refers to either a name (label) or
an integer. An integer may be decimal, hexadecimal (number preceded with
a '$'), or binary (number preceded with a '%'). EXPRESSION means vari-
ables connected with arithmetic or logical operators. In an expression,
the first term may normally be subscripted and sometimes may be indirect
if that mode is not explicitly restricted. SUBSCRIPT refers to a variable
or expression (which is non-indirect and non-subscripted) which reduces
to a one byte value. STATEMENT is a single PL/65 statement and BLOCK
refers to a group of PL/65 statements delimited with the words DO;-END;
or BEGIN;-END;.

3.1 DECLARATIONS

The only data types in PL/65 are bytes and linear arrays of bytes. The
compiler does not verify data type and there are no implicit type conver-
sions. The sole purposes of the DECLARE command are to reserve and
initialize data storage. The statement DECLARE ALPHA; reserves a byte (8
bits) of storage which can be referenced symbolically by ALPHA. The
statement DECLARE GAMMA BYTE INITIAL{13]; reserves a byte (8 bits) and
initializes that byte to decimal 13. Areas for byte arrays and character
arrays can be reserved and initialized. Sample array declaration and
character array initialization are shown by the following:

DECLARE IOTA[40];
DCL R CHARACTER['RAIN'];

In the above example IOTA is an array of 40 bytes and there is no init-
ialization. The symbol R references the first character of the string
'RAIN'. Pairs of bytes (words) can also be reserved; DCL SUB WORD[30];
reserves 30 pairs of bytes. Words can also be initialized as shown
by:

DCL D WORD INIT[5];
("INIT" stands for "INITIAL".)

The DEFINE statement is equivalent to an assembly language equate. The
statement DEFINE J=32; defines the symbol J to have the value decimal 32.
Virtually no syntax checking is done by the compiler on the DEFINE expres-—
sion; any string of symbols is accepted by the compiler without error.
Errors in expression formation are noted at assembly time rather than at
translate time. Note that the PL/65 compiler produces assembly code
rather than machine code.

Arrays can be initialized with a DATA statement as in the example:
MT: DATA 24, 36, 27, 54;

Here, a 4 byte array named MT is defined and initialized. All arrays are
zero origin. Hence, MT[0] is 24 and MT[3] is 54. Except for the facility
to initialize arrays, the DATA statement serves the same purpose as
DECLARE. Word arrays can be initialized with the DATAW statement.

Comments in PL/65 are strings of characters delimited by double quotes as
in "SET MAX VALUE TO 5";. Comments require terminating semicolons as do
all other statement types. Comments may be freely used wherever state-
ments .can occur, but comments cannot be inserted between syntactic ele-
ments of statements. Spacing of the listing may be accomplished with
lines that contain only a semicolon (null statement).

3.2 ASSIGNMENT

The data movement instruction in PL/65 is the assignment statement which
has been enhanced to make data movement more convenient. The statement B
= C; means move the byte at location C to location B. Also, B.l = C;
means move the byte at location C to location B, and B.3 = C; means move 3
consecutive bytes starting at location C. The more general form B.K = C;
specifies movement of K bytes.

A variable name with decimal point is said to be "quantified"” and the
expression to the right of the decimal point is the quantifier. In the
absence of a quantifier, single byte operations are implied. The gquanti-
fier can be a PL/65 arithmetic expression, or simply a variable name or
constant.

An expression is an operand followed by an arbitrary number of operator-
operand pairs. The operands can be variable names of integers. A typical
expression in PL/65 is B + 3 - C which is evaluated as if it were (B + 3)
- C. Similarly D - E - F is evaluated as (D - E) - F. Thus, the state-
ment B.K - 3 + J = C; will cause (K-3)+J bytes to be moved from byte
locations starting at C to consecutive locations starting at B.

NOTE:

Since the symbols ‘aA', 'x', 'Y', 'S', and 'P'
have special meaning in R6500 Assembler they
should not be used as variable names in PL/65.

The right side of an assignment can be a PL/65 expression, as in:

B=C+D-~-E + 24;

Expressions are evaluated left to right, in the order in which operators
are encountered. Parentheses are allowed in assignment statements.
The major restriction is that the right side of an assignment statement
must not begin with a left parenthesis. Thus

B = (C+ (D =5));

is invalid. Note that parenthetical groups lower code efficiency and
should be used with appropriate care.

Byte arrays and words, character strings, and quantified variables can be
used in arithmetic expressions. The operators are permitted

+, =, «AND [logical AND], .OR [logical OR], and .EOR or .XOR
[exclusive OR].

Operands follow assembly language conventions: a prefix $ indicates a
hexadecimal constant, % indicates binary, and # signifies that the address
of the symbol is to be used rather than the value. As noted, arrays of
bytes are always zero origin. The statement B[0] = C[0]; has the same
effect as B = C; Further, B[0].1 = C; has the same effect as B.l = c;
However, byte assignments should not be so quantified or reduced code
efficiency will result.

Subscripts can be integers, variable names, or expressions. Thus, the
most general form of byte assignment is

B{expl] .exp2 = Clexp3]; or
Blexpl] .exp2 C operator D;

]

Note that only one subscripted variable is allowed on the right side of
the '=' and, if present, it must be the only variable. The statement
Blexpl] = Clexp2] is a single byte assignment. Unlike code generated by
some compilers there is no subscript range checking for arrays. Thus, an
errant array reference could refer to executable code as data. Since only
byte arithmetic is used, the largest value a subscript may have is 255.

Indirect single byte assignments are permitted with the operators '@’ or
's'. '&' means that the variable is already in page zero. '@' means that
the variable is not in page zero and will be moved to a temporary page
zero location before being used. The most general form of indirect
assignment is:

@Variable[sub] = @variable+[sub]

[

or
@variable[sub] = @variabletexpression;

where either '@' may be replaced with '&' if appropriate. Subscripts

in indirect assignments will always generate code corresponding to the
INDIRECT Y form in the Assembler. For example:

@B([5]

addresses the fifth byte after the location pointed to by B. If location
B contains $1000 (stored as $00, $10), @B[5] refers to location $1005.

For word assignments, the alternate form '==' may be used for the '.2'
quantifier. Thus:

WORD1l.2 = WORD2;
WORD1 == WORD2;

are equivalent statements.

3.3 IMPERATIVE

Each computer model has its own unique instruction set and format.
However, certain functions are common to a broad spectrum of machines.
That set has been included in the PL/65 language as a convenience to the
programmer. Bit manipulation is performed with the instructions SHIFT,
ROTATE, CLEAR, and SET, which operate on single bytes. The instruction
SHL B.3; is a shift left of 3 bit positions with zero fill. ROL B.2; is
an end-around shift left 2 bit positions. The default quantifier is 1.
Bits of a byte can be cleared or set by providing a mask for the variable
name as in

SET BITS[203] OF B;

which will set bit positions corresponding to ones in the binary repre-
sentation of the value 203 decimal (i.e., 11001011).

The CODE statement allows the user to specify assembler code directly.
Any information in single quotes is copied directly to the output file
without any processing. Hence, assembler code can be inserted in single
quotes. The keyword CODE is optional. Blocks of assembler code may
be passed between two lines which have an '*' in the first column.

The HALT; command is a termination of program execution. For the R6500
processor the code generated is a jump to self [JMP *].

A WAIT instruction is included in PL/65 to help handle asynchronous
interrupts. A WAIT is a conditional delay for an asynchronous event. The
form is WAIT ON BITS[100] OF T; In this case, T wculd normally be some
register which can be affected by external events. As soon as any of the
specified mask bits of T are 'l' the wait is terminated and execution
continues. At times a delay may be required until all of the bits speci-
fied are set. Also, it is sometimes necessary to wait until the bits are
clear (i.e., 0). Four options with the WAIT statement are shown in
the examples below. Note that default options are "ALL" and "SET".

WAIT ON ANY BITS[ALPHA] SET OF BETA;
WAIT ON ANY BITS[ALPHA] CLEAR OF BETA;
WAIT ON ALL BITS[ALPHA] SET OF BETA;
WAIT ON ALL BITS[ALPHA] CLEAR OF BETA;

Two stack manipulation instructions are present in PL/65 and they are
extremely useful for saving and restoring register values on entry or
exit from subroutines. Examples are:

STACK RO, Rl, R2;
STACK WORD R1;
STACK R2, Rl, RO;
UNSTACK RO,R1,R2 ;
UNSTACK WORD R1;

3.4 SPECIFICATION

Normally the first statement of a PL/65 program is ENTRY. Actions
performed correspond to initialization functions. For the R6500 the
ENTRY statement initializes the instruction counter to $0200 (page 2),
clears decimal mode, and initializes the stack pointer to $FF. If pro-
grams are to be assembled at a location other than $0200 the address
can be specified as for example: ENTRY $0300;. The EXIT statement
generates an assembler ".END" instruction.

3.5 CONDITIONAL
The decision structure common to many high-level languages such as Algol
and PL/1 is the IF-THEN-ELSE conditional. Here is one form of the condi-

tional for single byte tests:

IF B<LC THEN

D =D+ 1;
ELSE
B=B - 1;

The general form is:

IF expl relopr exp2 THEN
Statement [or block]
ELSE

Statement [or block]

The ELSE clause is optional and may be omitted. The expressions expl
and exp2 are as defined in Section 3.2 with the restriction that exp2 may
not be indirect. The relopr (relational operator) must be one of the
following:

< 1less than

<= less thap or equal to

> greater than

>= greater than or equal to
= equal to

A= not equal to

Multiple byte comparisons may be made on direct values only (i.e.,
indirection is not allowed) and the comparison must be chosen from:

= equal to
A= not equal to

Conditionals can be nested to any depth as illustrated by:

IF P > B + C THEN

IF C < 5 THEN
IF E~ 4 = F THEN
P =E + F .EOR G;

Collective conditional execution is accomplished by using BEGIN-END
blocks.

IF N < MAX THEN
BEGIN;

SUM = SUM + P;
N=N+ 1;

P = B[N];
END;

An alternate form of conditional execution based on a computed value
is provided as a form of CASE statement. An example is:

CASE [N] ([LBl1l, LB2, LB3};

In this example a branch is made to label LB1l, LB2, or LB3, depending on
whether N is 1, or 2. The value of the expression must reduce to an
integer for which there is a label in the list. There is no range
checking on the computed value and random execution errors will occur if
the range is improper. Any number of labels is permitted and the condi-
tional value can be an expression. The PL/65 CASE statement is analagous
to a computed GO TO in FORTRAN; in fact, the keywords "GO TO" may be used
in place of "CASE".

3.6 BRANCHING
Statements may be labeled with a name of 1 to 6 alphanumeric characters

followed by a colon. Multiple labels are not permitted. An unconditional
branch to a specific statement can be made with a GO TO, e.g., GO TO

START;. Indirect branches are supported, e.g., GOTO @START;. The uncon-
ditional branch should be avoided when possible since it often obscures
the logic of the program.

Subroutine calls are supported with the commands CALL and RETURN.

CALL SUB1;
Bl: ..o
RETURN;

The CALL executes a Jump to Subroutine (JSR) and acts as an absolute
branch to the specified label. The RETURN executes a Return from Sub-
routine (RTS) and causes execution to resume at the statement following
the call. Since all variables are global to the main program and all
subroutines, there is no need or provision for parameter passing. An RTI
(return from interrupt) instruction is available, also.

3.7 LOOPING

Two forms of looping constructs are implemented in PL/65. An example of
the iterative form is:

FOR I = 1 TO 13 BY 2
BEGIN;

cl1]
SuM
END;

N~

sSUM + B;

The general form is:

FOR name = expl TO variable BY variable
statement [or blockl]

where expl is the initial value for the variable name, exp2 is a test or
terminal value and exp3 is the value of the variable incremented each
iteration. As in PL/1, the test is made prior to first execution of
the statement and hence there are cases where the statement may not be
executed at all as in the example:

FORJ =5 TO 4 «0os ;

The BY clause is optional; an increment of 1 is assumed if it is omitted.
FOR-LOOPS may be nested to any depth. The locp is executed until the
value of the loop variable exceeds the value of the terminal expression.
Thus,

FORJ =1 TO 1

is a non-terminating loop with exit from the loop by a direct GOTO state-
ment presumably. The second form of looping has no iteration and is shown
by:

WHILE B < C + D

DO ;
B =B+ 1;
C c - 2;
END;

The loop block is executed as long as the conditional expression is
true. As in the FOR-LOOP the test is made prior to first execution and
hence the block may be bypassed with no execution.

The general form is:

WHILE variable relopr variable
DO;

Statement(s]

END;

The relopr (relational operator) and variables are as defined earlier.

3.8 COMPILER GENERATED LABELS

Note that the compiler generates labels which are of the form 'ZZ'
followed by a number. Therefore, it is strongly recommended that any
labels generated by the programmer are of a different form.

3.9 PAGE ZERO UTILIZATION

PL/65 imposes certain minor restrictions on the use of page zero: The
first is that locations $0 through $5 are used as temporary locations
by the compiler. It is recommended that programs start their page zero
locations at $10. This may be easily done with the DEF *=§$10; statement.
The second restriction applies to PL/65 on the SYSTEM 65, but is a good
programming practice on any machine. Since the compiler uses page zero
when it is running, the program must not generate values into page zero
by using the INIT option of the DECLARE statement or any other statement
which cause corruption of page zero. Thus, the general rule is that the
program should initialize page zero when it is started, and not when it
is compiled.

SECTION 4

INSTALLATION AND OPERATION

The PL/65 Compiler is provided in object code form on mini-floppy diskette
for direct installation on SYSTEM 65. Also included on the diskette is
the object code for a PL/65 Optimizer program and a PL/65 Test program.
The files are identified as:

FILE NAME FILE DESCRIPTION
PL65Vn PL/65 Object Code
OPTVn Optimizer Object Code
TEST PL/65 Test Program

4.1 LOADING THE PL/65 COMPILER

1. Install the PL/65 Compiler diskette into one of the two SYSTEM
65 disk drives.

CAUTION:

The PL/65 Compiler object code occupies 14K bytes of
RAM -~ from address $0200 to $3700. Be sure to save
any data required within this address range before
loading the PL/65 compiler.

2. Type L after display of the Monitor prompt. SYSTEM 65 will respond
with:

<L>IN=
3. Respond to the input prompts:
<L>IN= F FILE= PL65Vn DISK=1
SYSTEM 65 will load the PL/65 Compiler object code into RAM and
will display the Monitor prompt at the end of the load (after approxi-

mately one minute):

<

The PL/65 Compiler disk may be removed from the SYSTEM 65 disk
drive until subsequent load of the compiler or optimizer is re-
quired.

OPERATING THE PL/65 COMPILER

If the PL/65 application source program is contained on diskette,
install the diskette in one of the SYSTEM 65 disk drives.

Enter PL/65 Compiler by typing 7. SYSTEM 65 will respond with:
<7>

PL/65 [VX]
IN=

NOTE:

X will be a version number.

Enter the code of the input device containing the PL/65 application
source program. For example, if a source program with file name
PLSRC is contained on a diskette and is mounted in SYSTEM 65 disk
drive 1, type in this data in response to SYSTEM 65 prompts:

IN=F FILE=PLSRC DISK=1 OUT=
Enter the code of the output device where the formatted PL/65 source
program listing is to be directed. For example, if the output is to
be printed, type P. SYSTEM 65 will respond with:

IN= FF FILE=PLSRC DISK= 1 OUT=P
SYSTEM 65 will proceed to list the formatted PL/65 source code.
At the completion of listing the formatted source program, PL/65
will display the error count in decimal and ask for an output device

code.

ERRORS= NN where NN= 00 TO 99
oyuT=

Enter the code of the output device that the PL/65 compiler output
(R6500 Assembler Source Statements) is to be directed. For example,
if the output is to be directed to a diskette on SYSTEM 65 disk drive

2 with file name ALSRC, type in this data in response to SYSTEM 65
prompts:

OUT=F FILE= ALSRC DISK=2.
PL/65 will then compile the PL/65 application source program into
R6500 assembly statements and at the end of the compilation, will

display a disassembled instruction and the Monitor prompt:

=XXXX 4C 00 02 JMP $0200
<

If it is desired to optimize the assembler source code, follow
the procedure described in Sections 4.3 and 4.4. Otherwise, the
PL/65 compiler output assembler statements may be assembled in
accordance with the SYSTEM 65 operating procedure (see Section 9 of
the SYSTEM 65 User's Manual).

LOADING THE PL/65 OPTIMIZER

Ensure that the PL/65 Compiler diskette 1is installed into one of
the two SYSTEM 65 disk drives.

Type L after display of the Monitor prompt:
<L>IN=

Respond to the input prompts:
<L>IN=F FILE=OPTVn DISK=[1,2]

SYSTEM 65 will load the PL/65 Optimizer object code into RAM and
will display the Monitor prompt at the end of the load:

A

The PL/65 Compiler diskette may be removed from the SYSTEM 65 disk
drive until subsequent load of the PL/65 Compiler or Optimizer
object code is required.

OPERATING THE PL/65 OPTIMIZER

If the PL/65 compiler output assembler statements are contained on
diskette, install the diskette in one of the SYSTEM 65 disk drives.

Enter the optimizer by typing 7. SYSTEM 65 will respond with:
<7>IN=

Enter the code of the input device containing the input assembler
source program. For example, if the source program with a file
name of ALSRC is contained on a diskette mounted in SYSTEM 65 disk
drive 1, type in this data in response to SYSTEM 65 prompts:

<7>IN=F FILE=ALSRC DISK=1 OUT=

Enter the code of the output device which is to receive the optimized
assembler source program. For example, if the output is to be stored
on a diskette mounted in drive 1 with file name ALSRC', type in this
data in response to SYSTEM 65 prompts:

<7>IN=F FILE=ALSRC DISK=1 OUT=F FILE=ALSRC' DISK=1

SYSTEM 65 will proceed to optimize the input assembler source pro-
gram. At the end of the optimization process, SYSTEM 65 will recpond
with a decimal count of the number of instructions deleted:

COUNT = NN Where NN = 00 TO 99.
=XXXX 4C 00 02 JMP 0200

The optimized assembly source statements may now be assembled in
accordance with the SYSTEM 65 Assembler instructions (see Section
9 of the SYSTEM 65 User's Manual).

4.5 PL/65 TEST PROGRAM

The source code of the PL/65 Test Program may be used as a test file
to become familiar with the PL/65 Compiler processing. Use this file as
the PL/65 Compiler application source program in Section 4.2.

APPENDIX A

STATEMENT FORMATS

This section describes the format possibilities for the various types
of statements. Examples are given to show most format types. The
descriptions are alphabetized according to statement type. Brackets < >
denote the field is optional and a slash / indicates that a choice is to
be made from the alternatives given. Descriptions are in the following
order:

ASSIGNMENT A.l

BLOCK A.2

CALL A.3

CASE A.4

CLEAR A.5

CODE A.6

COMMENT A.7

DATA A.8

DEC A.9

DECLARE A.10
DEFINE A.1ll
ENTRY A.l1l2
EXIT A.13
FOR~TO-BY A.14
GO TO A.15
HALT A.l6
IF-THEN-ELSE A.17
IFF-THEN A.l8
INC A.19
PULSE A.20
RETURN A.21
ROTATE A.22
RTI A.23
SET A.24
SHIFT A.25
STACK A.26
TAB A.27
UNSTACK R.28
WAIT A.29
WHILE A.30

A.l1 ASSIGNMENT

The assignment statement is probably the most powerful and useful state-
ment type in PL/65. This does not mean that it is also the hardest one
to understand. There are certain restrictions on the types of assignment
statements which are legal. These restrictions may, at first, seem to
be arbitrary but are fairly easy to understand if you look at the code
generated for a particular statement. In general, the restrictions
are caused by the availability of only two index registers on the R6500
processor or the size of the index registers (8 bits). The examples
below attempt to illustrate the types of statements which are legal
but a few general rules may be stated:

1. The left term may always be subscripted. One subscripted term
may appear on the right side. If present, it must be the first term
and must be the only term in a multiple byte assignment. Subscripts
must fall in the range 0 to 255.

2. Indirect operators are '@' which means the term is not located
in page zero but will be moved to a page zero temporary location
before being used. '&' means the term is already in page zero.
This form results in greater code efficiency than does the first
form.

3. Indirect terms may occur on either side of the statement and may
be subscripted. They may only occur in single byte statements.
As mentioned earlier, subscripted indirect statements generate
code which uses the INDIRECT Y Mode. If an indirect term is used on
the right side, it must be the first term.

4. Multiple byte statements may only have two terms on the right side.
If a multiple byte expression is subscripted on the right side,
only that term may appear.

S. The '==' form may be used to signify a two byte move. It generates
exactly the same code that '.2=' would generate.

6. If a character string appears on the right side, it must be the
only term.

7. Single byte assignments (the only form which allows more than two
terms on the right side) may contain parenthetical groupings with
the "(' and ')' operators subject to the restriction that '('
must always be preceded with a arithmetic or logical operator. This
is the only place that parenthetical expressions are allowed.

8. The value of an address may be assigned with the '##' operator
as shown below. A single byte value may be assigned with the
'#' operator.

9. Note that parenthetical groupings and indirect terms on the right
side lower code efficiency due to the necessity of saving intermed-
iate results.

10. The abbreviated form:

ALPHA+n; or ALPHA-n;

may only be used on non-subscripted, non-indirect variables.

<[subl> expression /
<label:> name =array element/;
<.expr> ‘characters'

Examples:

B = C; "SIMPLE BYTE TRANSFER";

@B = C; "BYTE TRANSFER INDIRECT DESTINATION";

B= @C; "INDIRECT SOURCE";

B= #C; "VALUE OF SYMBOL TO LOCATION B";

B = ##C; "ADDRESS ASSIGNMENT":

B= D + F; "SIMPLE ARITHMETIC AND ASSIGNMENT";

B= G[4]; "BYTE TRANSFER FROM ARRAY G ELEMENT 4";

B[J] = C; "TRANSFER TO ARRAY B ELEMENT J";

B.K = C; "TRANSFER OF K BYTES STARTING AT C";

B[J+5) = C; "MOVE BYTE AT C TO ARRAY B ELEMENT J+5";
B[J] = 'X'; "TRANSFER OF LITERAL BYTE 'X' TO B";

B[J+1].K-1 = 'ABCDEF'; "MOVEMENT OF K-1 LITERAL BYTES";
" LOGICAL OPERATORS ";

C =D .AND F;
C =D .OR F;
C =D .XOR F;
C =D AND F .OR 2 .XOR $55;
B .AND 1;

B .OR 2;

B .EOR 2;
B+1;

B-1;

B+5;

B+J;

B-J;

B+J-K+5;

B.K = C~D; "ONLY TWO TERMS ON MULTI BYTE";

B.K = C[J]; "ONLY ONE TERM IF SUBSCRIPTED IN MULTI BYTE":
B{J].15 = Cc{J]; "ALSO LEGAL";

B.K = 5; "SET K BYTES ALL EQUAL TO 5";

@B = @C;
&B = &C;
&B = @C;
@B = &C;

@B[5] = @C[J];

&B[5] = &C[J];

@B[K] = c[5] +D -F;
&B[5] = C[5] +D -F;
&B = C[R]=D-6 .AND 3;

&B[G-3] = C[N]+D-6;
&B[3] = C[4] - (F-D+3);
B[5] = @C+D-(F-N+3);
B[5] = @C;
B[N] = &C;

A.2 BLOCK

A block is a collection of statements (one or more) to be treated as
a single group.

BEGIN;/
<label:> statements END;
DO;

No distinction is made between keywords BEGIN and DO and either may
be used. Nothing more than logical grouping is implied by blocks.

Examples:

FORJ =1 TO 5
DO ;
B[J]
B{J]
END;
IF ALPHA = 0 THEN

BEGIN;

BB = $21; "NOTE HEX CONSTANT";

BC = 17; "NOTE DECIMAL CONSTANT";
BC %$1011; "NOTE BINARY CONSTANT";
END;

i

J~-1;

A-4

A.3 CALL

Labeled blocks may be called as subroutines.

<label>: CALL name;

This statement is the same as GO TO except that when a call is made
a return address is kept so that a RETURN command will cause execution
to be returned to the statement following the call. Any labeled state-
ment is acceptable as a target; however, a block is recommended for
clarity.

Examples:

CALL SUB1;
CALL ALPHA;
Bl: BEGIN;
RETURN;

END;

PPHA: BEGIN;
RETURN;

END;

A.4 CASE

Selection from a number of branch targets based on a computed value
is made possible by the CASE statement.

CASE/
<label:> [expr] [label,label,...}:
GO TO

The name must represent a value corresponding to a position of a label
in the 1label 1list. The first position is zero. Note that the blank
before the '[' is required.

Examples:

CASE [N](Ll,L2,L3]; "N MUST HAVE THE VALUE 0,1, OR 2";
GO TO [N][L1,L2,L3]; "ALTERNATIVE CODING FOR ABOVE";
GO TO [B] [ALPHA,BETA]; "B MUST REPRESENT 0 OR 1";

GO TO [N+B-1] [ALPHA,BETA,Ll,L2,L3};

CASE [B[J+C .OR 40] +N .AND $3F] [Ll,L2,L3];

A.5 CLEAR

Bits of a byte may be set to 0 according to a specified mask.

BITS/ [variablel]
<label:> CLEAR OF name;
BIT
or
<label:> CLEAR condition code;

The mask may be a variable name (unsubscripted) or an integer. The
target must be an unsubscripted variable name. All of the bit positions
which are 1 in the binary representation of the mask are set to zero
in the target. Condition codes may also be cleared with this instruction.

Examples:

CLEAR BITS[5] OF B;

CLEAR BIT[4] OF B;

CLEAR BIT([200] of D;
CLEAR BITS[ALPHA] OF BETA;
" CONDITION CODES ";

CLEAR .CARRY;

CLEAR .DECIMAL;

CLEAR .INTERRUPT;

A.6. CODE

Assembler language code may be inserted directly into programs.

<label:> <CODE> ‘'ASSEMBLER STATEMENT';

The statement between gquotes is passed directly to the output data set
exactly as it is specified. The keyword CODE is optional. The code
statement is useful for specifying assembly language directives not
in the PL/65 language. The code statement should be used with due caution
and the user should be familiar with the code produced by the compiler.
Blocks of code may be passed between two lines which have an '*' in
the first column.

Examples:

CODE ' LDA #5°';

' BCC *+5';

*START OF BLOCK OF CODE
LDA #5

STA BB

LDX #$6A

TXS

*END OF ASSEMBLER CODE

A.7 COMMENT

Comments may be used freely wherever statements can occure.

"characters" ;

Comments are delimited by double quotes and terminated by a semicolon.
Examples:

“THIS IS A SAMPLE STAND ALONE COMMENT";

B = C + 1; "INCREMENT C, ASSIGN TO B";
A.8 DATA

Arrays of integers or character strings can be initialized with the DATA
statement.

expr/
<label:> DATA<W> list/ H
‘characters'

An integer list is a series of integer constants separated by commas.
A list of variable names can also be used; however, the value represented
by the symbol cannot exceed 255 in the DATA statement. A label is op-
tional, but reguired for all practical purposes for referencing the array.
Since the data statement is an implied declaration the label symbol
cannot also appear in a declaration. Note that a character list may not
be used with the DATAW command.

Examples:

B: DATA 2, 3, 6;

DOG: DATA C, BETA;

IOTA: DATA 'READ'; "CHARACTER STRING CONSTANT";
DATAW 2,3,6;

DATAW C,BETA;

DATA BETA, BETA+40, BETA+$40;

DATAW BETA,BETA+20,BETA+40;

A.9 DECKW>

Decrement the value represented by a symbol.

<label:> DEC<W> name;

This statement corresponds to the decrement statement common to micro-
processors. An alternate form for decrementing bytes is also shown
in the examples.

Examples:
DEC ALPHAj;

ALPHA - 1; "SAME AS ABOVE";
DECW ALPHA; "WORD DECREMENT";

NOTE:

It is sometimes necessary to decrement a word that is a
decimal number. One way to do this is to declare a
word that has a value of one and subtract that from the
variable with the decimal flag on. Example:

DCL ONE WORD INIT([1];
DCL NUMB WORD;

A.10 DECLARE

SET .DECIMAL;

NUMB.2 = NUMB-ONE;
or

NUMB == NUMB-ONE;

CLEAR .DECIMAL;

Declarations are used to reserve storage for bytes,
(words), and linear arrays of bytes of words.

Words, bytes,
keyword abbreviatins are DCL for DECLARE,

pairs of bytes

DCL

DECLARE

name

BYTE/ INIT<IAL> [variable];
WORD/ [variable];
CHAR<KACTER> ['characters'];

for INITIAL.

Examples:

DCL
DCL
DCL
DCL

DCL
DCL
DCL

ALPHA; "RESERVE ONE BYTE":

B WORD; "RESERVE ONE WORD [TWO BYTES]";

D CHAR; "RESERVE A BYTE";

E BYTE INIT[5]; "RESERVE A BYTE WITH VALUE 5";

F WORD INIT[44]; "RESERVE A WORD WITH VALUE 44";
H CHAR['#']; "RESERVE A BYTE FOR CHARACTER #";
J[5]; "“RESERVE A LINEAR ARRAY OF 5 BYTES";

K CHAR['LOST DATA']; "INITIALIZE A STRING";

BUF [80); "DEFINE AN ARRAY OF 80 BYTES";

A.l1 DEFINE

A name may be defined to have a value (i.e., address)
language equates.

and character strings can be data initialized. Allowable
CHAR for CHARACTER, and INIT

as in assembly

<label:>

DEF /
name=expr,name=exr,..;
DEFINE

There is almost no syntax checking done by the compiler on the DEFINE
expression. Any string of symbols is accepted by the compiler without
error. Errors in the expression (if any) are flagged at assembly time
rather than at translate time.

Examples:

DEF M = 25; “THE SYMBOL M HAS THE VALUE 25";

"NOTE THIS IS NOT THE SAME AS ASSIGNMENT OF";

“THE VALUE 25 TO THE NAME M";

DEF N = *; "THE SYMBOL N IS GIVEN THE VALUE OF PC";
DEF P = N + 5; "N IS REQUIRED TO BE ALREADY DEFINED";
DEF * = * + 4; "ADVANCE THE INSTRUCTION COUNTER";
DEFINE AA=3, BB=AA+3, JJ=AA+BB-2;

A.12 ENTRY

The assembler instruction counter can be explicitly set.

ENTRY <variable> ;

The integer specifies the value to be taken by the assembler instruction
counter. This command also generates initialization code for clearing
decimal mode and establishing the stack pointer at S$FF. Normally the
first statement of a PL/65 program will be the ENTRY statement, though
it can be used at any point.

Examples:
ENTRY ;
ENTRY 1000;
ENTRY 256; "VALUES ARE DECIMAL";
ENTRY $6A00;
ENTRY START;

A.13 EXIT

Termination of a PL/65 program is made by EXIT.

<label:> EXIT;

A-10

This statement generates the .END assembler directive. Normally the last
statement of a PL/65 program will be the EXIT statement.

Examples:

EXIT;

Ll: EXIT;
A.14 FOR-TO-BY

Looping with iteration is implemented with the FOR-100p.

<label:> FOR name = expl TO variable2 <BY variable 3>

block

First expression 1 (expl) is computed and the value assigned to the
name specified. Next the value of expl is compared with variable2. If
the value of expl is less than or equal to variable2 the block is ex-
ecuted. Then the value of variable3 is added to the value for "name" and
the process is repeated with expl being recomputed. 1f the BY clause
is absent the value 1 is assumed for variable3. Note that the block might
not be executed at all depending on expl and variable2.

Examples:

FORJ =1 TO N
BEGIN;

END;

FOR ALPHA = BETA+3 TO GAMMA BY DELTA
BEGIN;

END;

FOR B = H[I+J .AND K] + L .ORM TO M
BEGIN;

END;

FOR B=1 TO H BY -2

BEGIN;

END;

FOR B = 1 TO 25 H[B]=0;

A-11

A.15 GO TO

Absolute branching can be made to any labeled statement.

<label:> GO TO <@>name ;

Normal sequential execution can be interrupted and a branch made to the
label indicated. There are no restrictions on branching out of blocks or
iteration groups. Computed GOTO is covered under the CASE statement.

Examples:

GO TO ALPHA;

GO TO @ALPHA;

GO TO L5;

BEGIN;

IF B = C THEN GO TO LAB2;
cC=D+ 2;
END;

A.l6 HALT

Execution is permanently terminated.

<label:> HALT ;

PL/65 generates a jump-to-self instruction (i.e., JMP *).
Examples:

HALT;
L5: HALT;

A.17

IF-THEN-ELSE

This statement form makes possible the conditional execution of sections
of code based on testing a relational expression.

expl relopr exp2 statement;/

<label:> IF BIT<S> OF name
condition code

THEN
block

statement;/
<ELSE>

If the relation is true the THEN clause is executed, otherwise the ELSE

clause is executed.

(relational operator) must be chosen from:

SINGLE BYTE

less than
greater than
equal to

B v A

MULTIPLE BYTE

= equal to

Examples:

IF B < C THEN
D = E;
ELSE
F = G;
IF B-5 = C-D THEN
BEGIN;
B=3B+ 1;
C = D;
END;
IF E > F THEN
CALL SUBl;
ELSE
BEGIN;
WAIT ON BIT[1l] OF TS;
B{B4] = C[3];
END;
"INDIRECT COMPARISONS ARE ALSO
IF @B=3 THEN RTI;

A-13

<= less than or
>= greater than
A= not equal to

A= not equal to

POSSIBLE";

The ELSE clause is always optional. The relopr

equal to
or equal to

IF B=3 THEN RTI;
IF @B[J]=5 THEN RETURN;
IF B[5]=J THEN RTI;
IF @B[5]>J THEN RETURN;
IF B[6] < J THEN GOTO B;
"CAN TEST BITS":
IF BIT[2] OF BB THEN RETURN;
IF BITS[BB] OF C THEN GOTO B;
"MULTIPLE BYTE COMPARISONS";
IF B[K].J = D THEN RTI;
IF B[K].JA = D THEN
DO;
END;
ELSE
DO;
END;
"CONDITION CODES";
IF .ZERO THEN GOTO B;
IFA = THEN B=2;

A.l8 IFF-THEN

This is an alternate form of conditional execution which corresponds
to compare and conditional branch in the R6500.

named register relopr expl
<label:> IFF BIT|[variable] THEN <GOTO> label;

operator

condition code

The named register must be .A for accumulator, .X for index X, or .Y
for index Y. If the relation is true then a branch is made to the
label indicated. The relopr (relational operator) is more restrictive
than that in the IF-THEN-ELSE statement and must be:

< less than
>= greater than or equal to
= equal to

The condition code must be chosen from among:

.C Carry

A-14

.0 Overflow
.N Negative
+Z Zerxro

The complement of each of these condition codes can be tested by using a

preceding the name. The operator can be any of +, -, or =. Note that
the 'GO TO' after the 'THEN' is optional. The named register must be
chosen from:

A Accumulator
«X Index X
.Y = Index Y

Examp les:

IFF .A = 5 THEN L4;

IFF .C THEN START;

IFF A.O THEN ALPHA;

IFF + THEN DONE;

IFF - THEN BACK;

IFF = THEN BETA;

IFF A= THEN L2;

IFF BIT[4] THEN L2;

IFF BIT{ALPHA] THEN GO TO L3;
IFF .NOT= THEN BETA;

IFF .NOT .CARRY THEN GO TO BETA;
IFF .NOT .OVERFLOW THEN BETA;
IFF .NOT .ZERO THEN BETA;

IFF = THEN BETA;

IFF .CARRY THEN BETA;

IFF .OVERFLOW THEN BETA;

IFF ZERO THEN BETA;

IFF .NEGATIVE THEN BETA;

IFF .X=5 THEN JAMIT;

IFF .Y<6 THEN JAMIT;

IFF .A>=7 THEN BETA;

IFF .XA=3 THEN BETA;

A.19 INC<W>

Increment the value represented by a symbol.

<label:> INCKW> name ;

This statement corresponds to the increment statement common to micro-
processors. An alternate form for incrementing bytes is also shown
in the examples.

Examples:

INC BETA;
BETA + 1; "SAME AS ABOVE":
INCW BB;

It is sometimes useful to be able to increment a decimal word. The
following sequence is one way of doing this.

DCL ONE WORD INIT[1];:
DCL NUMB WORD;

SET .DECIMAL;

NUMB == NUMB+ONE;
CLEAR .D;

A.20 PULSE

Bits may be turned ON-OFF-ON or OFF-ON-OFF.

BIT / SET/
<label:> PULSE [variablel OF name;
BITS CLEAR/CLR

The mask may be a variable name (unsubscripted) or an integer. The
target must be an unsubscripted variable name. The SET condition is
default. It assumes the bits are ones and the instruction changes the bits
to zeroes then back to ones. Alternatively the CLR specification assumes
the bits are zeroes, changes them to ones and back to zeroes again.

Examples:
PULSE BIT[1l] OF BETA;

PULSE BIT[1l] SET OF BETA; "SAME AS ABOVE";
PULSE BITS[ALPHA] CLR OF BETA;

A.21 RETURN

Subroutine exits are made via a RETURN statement.

<label:> RETURN ;

A subroutine call saves the return address to be used when a return
is executed. The RETURN signifies that execution is to be resumed at
the statement following the most recent call.

Examples:

CALL SUB1;
SUBl: BEGIN;
RETURN;

END;

A.22 ROTATE

Bytes may be rotated left or right (end-around fill).

LEFT/
<label:> ROTATE name< [sub]><.expr>
RIGHT

The specified byte is rotated. The integer specifies the number of bit
positions for the rotation. The abbreviations ROL and ROR can be used
for ROTATE LEFT and ROTATE RIGHT.

Examples:

ROTATE LEFT Q.4;

ROL Q.4;

ROR R;

ROTATE RIGHT R.1l;

"CAN ALSO USE SUBSCRIPTS";
ROR B[Q];

ROR B[Q-51;

ROL B[Q-5].3;

"OUANTIFIER MAY BE EXPRESSION";
ROL B[K+5~J] .Q=J+3;

A.23 RTI

A return from interrupt may be explicitly specified by the user.

<label:> RTI ;

This statement causes a return from an external or BRK interrupt. It may
be used in an interrupt service routine block to specify alternate exit
points from the blocke.

Examples:

BEGIN;
RTI;
Ll: RTI;

END;

A.24 SET

Bits of a byte may be set to 1 according to a specified mask.

BIT/

<label:> SET [variable] OF name;
BITS
or

<label:> SET condition code;

The mask may be a variable name (unsubscripted) or an integer. The target
must be an unsubscripted variable name. All of the bit positions which
are 1 in the binary representation of the mask are set to 1 in the target.
Condition codes may also be explicitly set with this command.

A-18

Examples:

SET BITS([5] OF D;
SET BIT[4] OF B;
SET BIT[158] OF C;
SET BIT(255] OF D;
" ALSO CAN SET CONDITION CODES ";
SET .DECIMAL;

SET .D;

SET .CARRY;

SET .Cj;

SET .INTERRUPT;
SET .I1;

SET DECIMAL;

SET .D;

A.25 SHIFT

Bytes may be shifted left or right (zero fill).

LEFT/
<label:> SHIFT name< [sub] ><.expr>;
RIGHT

The specified byte is shifted. The integer specifies the number of bit
positions for the shift. The abbreviations SHL and SHR can be used for
SHIFT LEFT and SHIFT RIGHT.

Examples:

SHIFT LEFT B.3;

SHL B.3;

SHR C;

SHIFT RIGHT C.3;

"CAN ALSO SUBSCRIPT AND QUANTIFY WITH EXPR";
SHR B[K+5 +AND 1].M~K+3;

A-19

A.26 STACK

Variables may be stored on a stack on a last-in first-out basis.

<label:> STACK <WORD> namelist;

The hardware byte stack of the R6500 is used by this instruction and hence
is limited to 256 bytes of memory. It is convenient for storing register
values on entry to subroutines. Multiple names separated by commas are
permitted. Note that word variables may also be stacked.

Examples:

STACK .A, .X, .Y;
STACK BETA, GAMMA;
STACK WORD PC;
STACK 5;

STACK -5;

STACK $AB;

A.27 TAB

The TAB character is used to format the LISTING file of PL/65 source code
for better readability. A 'TAB' character may always be used. On the
SYSTEM 65, a '/' may also be used, since TAB is not supported in the
SYSTEM 65 Editor.

A.28 UNSTACK

Bytes may be fetched from a stack on a last in-first out basis.

<label:> UNSTACK <WORD> namelist;

Items are retrieved from a stack in reverse order of how they were
stacked. Multiple names are separated by commas. Either bytes or words
may be unstacked.

A-20

Examples:
UNSTACK .Y, X, .A;
UNSTACK GAMMA, BETA;
UNSTACK WORD PC;

R.29 WAIT

Execution is temporarily suspended awaiting external events.

ANY/ BITS/ SET/
<label:>WAIT ON [variable] OF name;
ALL BIT CLEAR/CLR

Execution resumes with the instruction following the WAIT as soon as the
WAIT condition is satisfied. The default options are ALL bits SET (i.e.,
set to 1}.

Examples:

WAIT ON BITS[{ALPHA] OF BETA;

WAIT ON ANY BITS[ALPHA] SET OF BETA; "SAME AS ABOVE";
WAIT ON ANY BITS[ALPHA] CLEAR OF BETA;

WAIT ON ALL BITS[ALPHA] SET OF BETA;

WAIT ON ALL BITS[ALPHA] CLEAR OF BETA;

WAIT ON BITS[5] OF BETA;

WAIT ON BITS[5] CLEAR OF BETA;

A.30 WHILE

The WHILE-loop makes possible the conditional execution of a block based
on the computed value of an expression.

statement
<label:> WHILE expl relopr variable
/BLOCK

A-21

If the relation is true then the block is executed. Following execution
of the block the sequence is repeated with evaluation of the relation.
Repeated continuous execution of the loop is possible by specifying a
relation which is always true.

Examples:

WHILE X + 1 < Y

DO;

END;

WHILE 2=2

; "THIS IS A NON-TERMINATING LOOP";
DO;

END;

A=-22

APPENDIX B

ABBREVIATIONS

The following is a list of the permissable relationships,
registers and their abbreviations (if any)

9.

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

AND

BIT

CLEAR

DECIMAL

INITIAL

INTERRUPT

OVERFLOW

OR

NEGATIVE

EXCLUSIVE OR

ZERO

ACCUMULATOR

INDEX X

INDEX Y

STACK POINTER

PROCESSOR STATUS

CARRY

HEXADECIMAL

BINARY

]

& or .AND

BIT or BITS

CLR

«DECIMAL or .D

INIT or INITIAL

INTERRUPT or .I

+OVERFLOW or .0

+OR or

«NEGATIVE or .N

«EOR or .XOR

«ZERO or .2 or =

%)

.P

+«CARRY or .C

operators,

APPENDIX C

ASSEMBLER EQUIVALENTS

There are a number of PL/65 constructs which are exactly equivalent to a
single assembler language statement. The following table lists the
assembler statement and its PL/65 equivalent.

ASSEMBLER* * **PL/G5

LDA #4 «A=4;

LDA #FIX «A=#FIX;

LDA BETA +A=BETA;

LDA BETA,X +A=BETA[.X];

LDA BETA,Y +A=BETA[.Y];:

LDA (BETA,X) +A=@BETA[.X];

LDA (BETA),Y +A=@BETA[.Y];

CLC CLEAR .Cj;

CLD CLEAR .D;

CLI CLEAR .I;

CLV CLEAR .0O;

SEC SET .C;

SED SET .D;

SEI SET .I;

ASL BETA SHIFT LEFT BETA; (or
SHL BETA;)

LSR BETA SHIFT RIGHT BETA; (or
SHR BETA;)

ROL BETA ROTATE LEFT BETA; (or
ROL BETA;)

ROR BETA ROTATE RIGHT BETA; (or
ROR BETA;)

INC BETA BETA+1; (or INC BETA;)

DEC BETA BETA-1; (or DEC BETA;)

INX «X+1; (or INC .X;)

DEX «X~1; (or DEC .X;)

INY «¥Y+1; (or INC .Y;)

DEY .Y-1; (or DEC .Y;)

BCC L1 IFF .CARRY THEN L1;

BCS L1 IFF .CARRY THEN L1;

BVC L1 IFF .OVERFLOW THEN L1;

BVS L1 IFF .OVERFLOW THEN L1;

BEQ L1 IFF = THEN Ll1;

BNE L1 IFF = THEN Ll;

**ASSEMBLER* *

BPL L1
BMI L1
JMP BETA
JMP (BETA)
JSR BETA
RTS

RTI

BRK

PLA

PHA

c-2

PL/65

IFF + THEN Ll;
IFF - THEN Ll;

GO TO BETA;

GO TO @BETA;

CALL BETA;
RETURN;

RTI;

BRK; (or BREAK;)
UNSTACK .A;

STACK .A;

D.1

0001;
Q002;
Q003;
0004;
Q005;
Q006
0007;
0008;
0009
0010;
0011;
0012;
Q013;
0014;
0015;
0014,
0017;
0018;
0019;
0020;
Q0215
DOR2LZ;
Q023;
Q024;
0025;
D026;
0027;

APPENDIX D

SAMPLE PL/65 PROGRAMS

"SORT" COMPILER INPUT

FAGE HXSORTXX’;
*ASCENDING ORDER SORTY;

LECLAKE F. I, TMF;
ENTRY $200;

N=N=-2; *SET

TERMINAL VALUE FOR LLOOF";
F o= 1; °"SET FLAG®;
WHILE F = 1
Do
F o= 0;
FOR I = 0 TO N
REGIN;
IF RBLIT > BLCI+HLD THEN
REGIN;
F o= 1;
TMF = RLI1;:
ELID = BLI+1D;
BLI+1Y = TMF;
ENIH:
ENI;
ENIH
N: DATA 10; "N IS NUMEER OF SORT ELEMENTS":
E: DATA 23,55, 36,28,54, 39, 99,86, 21, 67;
EXIT;

D.2 "SORT" COMPILER OUTPUT

i FAGE “XXGORTXX ;
CFAG RREORTIOR?

*AGCENDING ORDER SORT®;

5 DECLARE F. I, TMF;
Fok=kAd

I k=Rt

TME K=kl

i ENTRY #2005

"GET TERMINAL VALUE FOR LOOF";

= 15 "SET FLAG"

i WHILE F o= 1
ZE0001 LA F
CMF #1

BEQG %+5

MM 270002

H 1G5

j F o= 0;

LA 0

5TA F

; FOR I = 0 TO N
LOA %0

3TA ¥

i BEGIN;
; IF RBRLIJ > BLI+1D THEN

D-2

LA f

oY

Loa T

2L.C

ALC #3

TAX

Loa EB.X
OMF B Y
BEC X455
JMP 220008
i REGIN;
H Fo= 1;
LI #1
STA F
H THMF = RIID;
Loa T

TAX

L B, X

BTA TP

; BLIY = BLI+1D;
s X

Ty -

Loa 1

CLc

ALC #1

TAX

LA B X

STA R, Y

; BLTH1D = TMF;
LA T

cLc

ARC #1

Tay

LA TMF

SThA B, Y

; E NIt

i ENI

220005

INC I

LA I

S 220003

220004

i ENI;

JME 220001

L0002

;O N: DATA 105 "N I8 NUMEER OF SORT ELEMENTS®;
N

CBYT 10
OB DATA 23, 5%, 36, 28,54, 39, 99, 84, 21, 67;
]

CRYT 23,55, 56, 28,54, 37,99, 86, 21,467

EXIT;

CEND D-3

D.3

Q001
Q002;
0003
0004;
Q00%;
0006;
Q007;
0008;
0009;
0010;
0011;
0012,
D013;
0014;
Q01%;
0016;
O017;
0018;
Q019;
V020;
0021;
Q022
Q023
Q024;
Q025;
V0246
V027;
0028;
Q029;
0030;
0031;
Q032;
Q033
0034;
0035;

"TOGGLE TEST" COMPILER INPUT

FAGE ‘TOGGLE TEST’;

DEF LDRE=$A000;

LEF TiCL =$A004, T1CH =$A005;
DEF ACKR =$A00R, FCR=$A00C;
DEF ITFR=$A00L;

DEF INE %=%$10;

neL Jo KoL

DL TIME;

ENTRY;

IDRE=$FF ;
CLEAR . CARRY;
T10L=$50;
T1CH=%C3; R
FOR J=0 TO 10 RY 2
REGIN;
DRE=TLJ1;
TIME=TLJ4+13;
CALL TELAY;
END;

GO 10 §T;

ST:

DELAY: FOR K=1 TO TIME

BEGIN;
"FOLLOWING 15 A 1 SECOND
FOR L=1 TO 20
REGIN;
WHILE IFR ~=0;
ENIL;
ENI

RETURN;

FOLLOWING 1S SWITCH FOSITION AND
DATA 1,5,0,10,1.5,0,15, 1,5, 0,2
EXIT;

DELAY";

TIME DELAY";

D.4 "TOGGLE TEST" COMPILER OUTPUT

i FAGE “TOGGLE TEST;
FAG Y TOGGLE TEST!
i DEF DRE=%A000;

TRRER=$A000

i DEF T1CL =$A004, T1iCH =$A00%5;
TICL=%$A004

TL1CH=$A005

i DEF ACR =$A00K, FCR=$A00C;
ALR=$A00KR

FLR=$/00C

i DEF IFR=$%A00I;

IFR=$A00D

i DEFINE %=%10;

X=$10

FRRN €1 W P -

I £33 £

{ K=X+1

M £33 $3]

i DCL TIME;

TIME %=X%+41

i ENTRY;

i DDRE=$FF;

I.IA #$FF

STA DDRE

i 89T: CLEAR .CARRY:;
ST

CLC

; T1CL=%50;

LI %450

STA TiCL

H TICH=%C3;

LA #4C3

STA TI1CH

i FOR J=0 TQ 10 mY 2
LA #0

STa J

L0001 CMF %10
RBEQ X+7 .

BCC %45

JMP 220002

; REGIN;

H DRE=TL41;
LA J

TaX

LI T, X

STA IIRR

i TIME=TLJ411;
i.na Ll
[
ALC 41

T X

LLa Ty X

STA TIME

; CALL DELAY:
JER DELAY

H END

I.Iia %2
iL.C
ARG J
8TA U
UMP 220001
ZZ0002

;o GOOTO ST
JME8T

i DELAY: FOR K=1 TQ TIME
NELAY

LA 1

8TA K

220003 CMF TIME

3EQ X+7

e ¥+5

JMP 220004

i BEGIN;

i TFOLLOWING IS A 1 SECOND
; FOR L=1 70 20

LA 41

STA L

Z2EQ00% UMP #20

BEQ X47

RCC ¥+35

JMPZZ0006

i REGIN;

i WHILF TFR A=0;

220007 LIy IFR

DELAY":

CMF 40

BNE %45
dMEP 220008
JMEP 220007
220008

i ENT;
INC L

l.na L

JMF 220005
20006

; ENUG
INGC K

LA K

JMF 220003
ZZ0004

i RETURN;
RT&
FOLLOWING IS SWITGH FOSITION ANU
i DATA 1,5, 0,00, 1, %, 0, 1%, 1, %,0,2;
CRYT L, E,0.100,0050005%,0,5,0,2

i EXIT;

CEND

TIME DELAY":

D.5 "MONITOR SEGMENT" COMPILER INPUT

00061;
0002;
Q003;
D0Q04;
Q0Q05;
0006;
Q007;
0008,
Q009;
0010;
Q0115
OO012;
0013;
0014;
D01%;
0016;
0017;
0018;
Q019;
QO20;
Q021
Q022

FAGE ‘MONITOR SEGMENT’;

*SEGMENT OF A& MONITOR FPROGRAM®:
RST: | X=$FF;
L 8=, X
SFUSER=. Xi
call. INITS;
DETCFS: CNTH30=%FF;
.A=%01;
DEYL: IFF BITLSAD] THEN START;
IFF N THEN DEY1;
ATRFC;
DET3: CLEAR . CARRY;
. A+$01;
IFF A C THEN DETZ2;
CNTH30+1;
DETZ2: . Y=85AlL
IFF A N THEN DET3;
CNTH30=_ A;
. X=%$08;
CALL GETS;
EXIT;

D.6 "MONITOR SEGMENT” COMPILER OUTPUT

i PAGE “MONITOR SEGMENT
CPAG CMONITOR SEGMENT
PSEGMENT OF A MONITOR FROGRAM":
i RST: | X=%FF;

RST

LOX #$FF

i o X
TX8
i SFUSER= . X;
STX SFUSER
; CALL INITS;

JEROINITS

i DETCPS: CNTH3O=$FF;

OETCHFS

LA A$FF

STA CNTH30

i CA=HOL;

L.1A #4011

POoDETL: IFF RITLOADD THEN START;
OETL

BIT SAn

BNE START

; TFF N THEN DETL:
BMI DETI

LOA #$FC

[
Anc #$01
i IFF A~ 0 THEN DETZ:
RCC DETE
i CNTH30+ 15
INC ONTH30
i DETE: Y=GAlL
nETa .
LIOY SAD
j IFF A~ N THEN DETI;
BFL. DETS
CMTH3O= . A;
SBTA CNTHIO
; L X=sQ8
LIX #$08
. GETH

APPENDIX E

PL/65 TEST PROGRAM

Q001
Q002;
0003
Q004;
ON05;
D006;
QO07;
2008;
Q007;
0010;
Q011;
D012
OO0L13;
0014;
DOLG;
DOLS;
D017
D018;
D019
DO20;
0021
Q225
0023:;
0024;
QO2%;
D026;
DO27
Q028;
D029
0030;
0031
0032
D033;
0034;
QO3%;
D034;
0037:
0038;
DO39;
0040;
Q041;
D042,
0043;
0D044;
DO4%;
Q04 4;
0047;
0048;
0049;
QON0;
DOG1;
D0EH2;
D053,
D054;
QO55;
DO56;
Q07
02058;

FAGE XkTEST CASESXX’;

" COMPILED ON SYSTEM 65 *;

DCL OB, L, G, O, GAMMA, DELTA, Q. R, RETA;
ENTRY $220;

" OFL/Z6D TEST CASES FROM MANUAL *;

KKK ASSIGN KKK*;

3

B=C:

@R = C;

B o= @

B o= ¥(C;
C=0+F;

C o= DI-F;:

C o= It CANDI F;
Co=10 0R F;

C =10 . XOR F:
C =D _ANI' F .0OR 2 .XOR $55;
ER = € .0OR I
RE = € . XOR I;
BR = C .AND I;

BE . AND 1;

BE . OR 1;

BEH XOR 1:;

" ABBREVIATEL FORM ";
E+1;

R-1;

B+J;

B

B+ J-K+5;

F=(3041;

RLJT = (0

BLAFSD = G

" SINGLE BYTE INDIRECTS®
GRIK] = CLS}+D~F;
SBEKD = CLSI4+D-F;

&R o= CORI4I-6 . AND 3
SBLG-30 = CLNI+D~6;
SRL3Y = CL41-(F-[+3);
BLSD @CHO~(F-N+3);
BLSD @c;

EEN] &Cs

@R=@C;

§R=&C;

SR=@C;

@R=&C;

eRL1I=@CL2];
SRL1I=&CL2D;
SEL1d=@CL21;
@RCLA=&CT2D;

" MULTI RBYTE ARITHMETIC *;
B.K = i

BLOH1T . K-1 = “ARCLOEF’ ;

ionoH

BLJH13 . K = CLKD; * NO AIDITIONAL TERMS WITH®;

" RIGHT SURSCRIFT *;
B.K = CLJY;
E.K = C-I "ONLY TWO TERMS IN MULTI RYTE *;

E-2

Q059;
D060;
OOél,

0085;
Q0&b;
0067;
0068;
00469;
0070;
Q071;
0072;
Q0735
Q074;
QO7%;
0076
Q077;
0078;
0079;
0080;
0081;
0082;
Q083;
Q084;
008Y;
0086
0087;
0088;
008Y;
0090;
0091;
0092;
0093;
0094;
DOP%;
0096;
Q097;
0098;
Q099;
0100;
0101;
0102;
0103;
0104;
0105;
0106;
0107;
0108;
0109;
0110;
0111;
0112;
0113;
0114;
0115,
0116;

BLJT. 1% = CLJAD;

B.K = &; "GET K BYTES AlLLL EQUAL TO

BLJ-K+11 . K~1 = DELTA —~GAMMA;
" FARENTHETICAL GROUFING *;

B =G
R =
B o=
B =
E = (-

* NOTE NO ¢ MAY RBE USED

- (CHEAMMA-Z)

G+(C-GAMMA+R) 5
GHIELTA~ (GAMMA~C+3) ~$55;
G+{GAMMA — (DELTA-2)+6)

(DELTAH(GAMMA-3))

"¥okk BLOCK doxk®™;

FOR J
no

i

=170 %

BLJT = J;
CLJ3 = J-1;
ENID;

IF ALFHA = O THEN
REGIN;

E
C
It

$21;
17;
%1011;

ENI;

Hokk BREAK dkx*®;

BRK:

H
Txokk CALL k®;

CALL SUR1;
CALL ALFHA;

SUEL:

i

ALFHA:

REGIN;:

RETURN;
ENI';

BEGIN;

RETURN;
END:

"hEkk CASE Xkk*";

CASE [NILL1,LZ,L31;

GO TO ENILLL,LZ2,L31;

GO TO ORI CALFHA, BETAD;

GOTO I[N+EB~-11 LCALPHA, BETA,LL,L?,L30;
$3F1 CL1,12,1L.31;

CASE [RLJHC . OR 401 +N .AND

Xk CLEAR Jdonk®;

CLEAR
CLEAR
CLEAR
CLEAR

i

RITSLEY OF E;

RITLC41 OF R;
RITL2001 OF It
BRITSLALFHAL OF EETA;

* ALSO CAN CLEAR CONDITIONAL

i

CODES

o
o]

IMMEDIATELY AFTER = &

H

i

O117; " CARRY OR .Gt " (DECIMAL OR DV %

01L18; * CINTERRUFT OR .1 "; * _OVERFLOW OR .0 ";

7 CLEAR . Ci CLEAR I

EAR | INTERRUFT; CLEAR .OVERFLOW; CLEAR . 0;

TRk CODE KKK
CODE * .FAGE “;
© BCC K57
* ELOCKS OF ASSEMEL
OJL,, *. . BETWEEN TWO LIN
% START OF ASSEMELER
LIA 5%
STA KR
LUX #$66
TXE

ASSEMRLER COMMENT
INY
STA B, Y s COMMENT
X END OF ASSEMRLER CODE

WITH A "%’ IN FIRST COL
COnE

D138 "ok COMMENTS k¥
0139 5 :

0140; B o= G411 5 "INCREMENT ¢, ASGIGN TO R";
0141

0142 XXX DATA Xkx*";

D143;

0144; HRC: DATA 2,3, 6

0145 DOG: DATA O =¥

D146 I0TA: DATA 7 I

0147 DATA BETA, BETA+40, BETA+$40;
0148 "kkk DATA WORINkKkK®;
Q0149 WDOG: DATAW 1.2, BRC:
01%0; DATAW RETA, HETA+20, BETA+60;
0151

Q158 "Xk DNEC Kdkk";

DLS3:

0134 DEC ALFHA:

D155 ALFHA-1;

0156

Q157 "dkk DECREMENT WORIKX";
D158 DECW ALFHA;

D159

01 60; "%k DECLARE X3ok*;

D161

D162 DCL ALF T

Q163 DCL BE WORDG

Ols4; DL T CHAR;

0165 DCL E RYTE INIXITLSD:
0164 NCL FTH WORD INITE44T;
01467 NCL H CHARL &3:

0168; NCL JESD;

01695 DCL K CHARLZLOST UATACTS
0170; DCL RUOFLB0D;

0171 DCL ONE WORD INITL13:
0172

Q173 ¥k DEFINE do0k®;
O174;

R CODE MAY ALS0O RE FASSED. .

Q178
D176;
0177
D178;
0179;
0180;
0L8L;
0L82;
0183;
184;
0185;
0186;
0187
0189;
0189;
0120;
01921;
0192
0193;
0194;
0195;
0196;
0197;
0198;
0199;
Q200;
0201;
02025
D203
0204;
Q205
Q206;
D207
0208;
V209;
Q2105

0P30;
02315
0232;

DEF M = 205
DEF 2.5
LEF :
DEF % = X +4;

DEF AA=3, BEF=AA+3, JJ=aA+REF~2;
DEF GT = -RE+$33;

TRKK ENTRY dokk*";

ENTRY;
ENTRY $1000;

kK FOR-TO-BY KKK

FOR J = 1 TO N

FOR ALFHA = BETA+3 10 GAMMA RBY DELTA
REGIN;
ENIL
FOR B = HII+J JAND K1 +L. . OR M TO 6
BEGIN; ENI;
FOR E=1 TOQ H RBY -2
BEGIN; ENI;

KRk GOOTO kkxt

GO TO ALFHA;
GOTO @ALFHA; "INDIRECT JUMF®;
GOTO 1L.5;
REGIN:
IF R € THEN GO TO LAR2;
Co= 0+ 2
END

CRKK HALT KKK

HALT:
LARSGY: HALT:

kkk TF~THEN~ELSE X¥ok®;

IF B ¢ € THEN
o= E ;
ELSE
F G s
IF B-% = (C~D THEN
REGIN:
Bo= B 4+ 1
C o= It
END;
ELSE
REGIN;
WAIT ON EITL43 OF T8
B[40 = (CL31;
END;
" CONDITION CODRES MAY RE TESTED ALSO
" UALIDN TESTS ARE: i

oo

0R233; * JZERO OR .Z " ' (CARRY OR .C "
0Z234; " (OQVERFLOW O .0 *; " . NEGATIVE OR
0235 " o= 0N
02365 * OR THE .NOT OR ~ OF ANY AROVE *;
0237 IF (ZERQ THEN GOTO X;
0238; IF .NOT .2 THEN GOTO R;
0239 IF ~ (ZER(D THEN RETURN;
0240; IF = THEN k=1,
02415 IF A= THEN HB=X;
0242 IF B=AA+RE-3 THEN HRETA+1;
0243: IF AR .2 = B THEN GOTOQ OUT;
0244; IF ‘A7 = B THEN O=2;
0245; IF A1 A= B THEN C=3;
02465 YF G2 = B+C THEN RETURN;
0247 IF RL31 = G+H THEN E=5;
0248; IF RLKI.J = I THEN RETURN;
0249 * 1Nﬂ1hFFT COMPARISONS";

o IF @kr=3 THEN RTI;
IF &kB=3 THEN RTI;

~ @REJI=5 THEN RETURN;
C &BIB)=J THEN RTI;
- @RLE1D0 THEN RETURN;
- SBLJICA THEN RETURN;
CAN TEST RITS *°;
[F RITL2) OF RE THEN RETURN;
F RITSCEERI OF C THEN GOTO R,
3 i IF RITER2D OF BR THEN RETURN;
0‘60, IF RITSESD OF BR THEN Af=3:
0261 IF RITSCRED OF C THEN GO TO B
0262 IF BITSLEB0T OF C THEN RTI;
Q263 " MULTIFLE RYTE COMPARISONS®;
O&64; TF BEOKI . = I THEN RETURN;
65 IF BIKI . A= 0 THEN

0 ENTG
ELSE

00 ENIG
* CONDITION CODES *;
IF . ZERO THEN GOTO E;

gk IFF-THEN dkXx”;

IFF . A = 5 THEN OUT;
IFF . C THEN OQUT:

IFF + THEN GO TO QUT; "SAME AS NEXT
IFF + THEN OUT;

IFF — THEN QUT;

O 279 IFF = THEN OUT;

V2805 YFF A= THEN OUT;

02815 QUT: "TARGET FOR IFF*®;
IFF X = % THEN JAMIT;
IFF .Y ¢ 6 THEN JAMIT;
IFF oA 3= 7 THEN JAMIT;
IFF X A= 3 THEN JAMIT;
JAMLI

0288 IFF CNOT = THEN MIKE;
028%; TFF . NOT . CARRY THEN MIKE;
Q290 IFF . NOT . QVERFLOW THEN MIKE;

(NE

i

E~6

f)i“” ;

0?96;
DEYT?

02985
0299;
D300;
Q3015
0302
D303
D304;
D305
0306,
0307
0308;
0309;
0310;
0311
03125
0313
0314;
0315
V31é;
0317;
0318;
0319
0320;
de_. |. H

0343
0N344;
034%;
0344
D347
0348

MIKE
THEN MIKE;

IFF O NOT
IFF . NOT e .
IFF = IHFN MIKE;
IFF TRE
IFF .0 THFN MIKE;
IFF .2 THEN MIKE;
IFF N THEN MIKE;

" OTARGET FOR OIFF "
MIKE:

ok ITNG ok ™ ;
INC RETH:
RETA + 1,

PRk INCREMENT WORI solok®;
INCW BB;

FIRST
i " NOTE THAT BLANK I8 REQUIRED

R FULSE dokk®:

L BITELY OF BETA;
BITLAD SET OF RETA
L RITSLALFHAD CLEAR OF RETA;

H
"Xk ROTATE dokk®;

ROTATE LEFT Q. 4;
ROL Q. 4;
RORCR. 1
ROTATE R
" CAN U
ROR RLQD;
RO BEG-5]

ROL. EBLQ- 3;

*OQUANTIFIER MAY RE EXFRESSION *;
FOL BUEAS-0T . Q- 0435

R
SURSCRIFTS

ok RTT dokkts

LAREL : RTI;

RTI;

ok SET sokk "
BRITSLSD OF In

OF
OF s

3o o

CDECTIMAL; SET LI
U
qm CINTERRUFT:

'*** GHIFT sokk®;

ILNF FOR ONE WITH TITLE®;

IF

ALL CONDITION CODES RUT

NO TITLE®

COVERFLOWY

OA93;
0394;
D395
0 n',)‘z,

0798,
NIP9;

0400;
0401
0402
0403;
D404
0A40%5;
0404

SGHIFT LEFT H.3;

SHL B, 3;

SHR C.1:

GHIFT RIGHT .1

SHR BLK4ES AN 13 M-

CUkkk STACK dokk";

STACK A, X, .Y
STACK BETA, GAMMA:
STACK WORD GAMMA;
STACK s

STACK ~3:

STACK $Ak;

Ak UNSTACK okx™;

UhSTﬁCK LY. U Xs LA
UNSTACK GAMMA, RETA;

;*** WATT Hokie® s

WATT ON KIT
WAIT ON
WaTT OGN
WATT ON
WATT ON ALL
WATT ON ET ;
WATT ON RY CLEAR
Aok WHILE ks

WHILE XX + 1 { YY
e
ENT
WHILE
JIRH
ENI;

hCL L1 WORDL, LS WORDL L3 WORD:
YY WORIDG

NCL XX WORD,

GCL LS WORDL. LARS, TG
CANDRTTIONAL TESTS

*OMIBC. EXAMFLES OF

BL.OYDS
(RLED 42
sFLEABE L3400

K43

OF

H

NOT

BETA;

CLEARK

mfﬁ

RrTﬁ;

IN MaNUAL *;

AGHEM.

L TAR CHARACTERS ARE ALSO
! OF LISTING IN FAGS

" EITHER ‘TAR’ OR ‘RACKSLASH’

a5

EQUIVALENTS "

SUFPFORTED FOR CLARITY

H

ARE

SUFFORTED

i

H

E-8

0407;
0408;
0409;
0410;
0411;
Q412;
0413;
0414;
0415;
0416
0417;
0418;
0419;
0420;
0421;
04225
0423;
0424;
QB2
DA26;
V427
0428;
O429;
0A430;
0431;
0432;
0433;
0434;
0435;

neL Fs

:
»

i
)
H
»

TEST TAR CHARACTER *;
FOR I=1 TO 99
T0;
I=13
IF J=3 THEN
bals
K=3;
ENIE
NEXT THE SAME THING WITH BACKSLASH
TEST ALTERNATE Tak CHARACTER *
FOR I=1 TGO 99
Lk
TI=1;
IF THEN

RE

i

(diz) (ere19) (A1)

(ssalppy 190413)

(Auedwo))

(oweN)

‘NOISIAZH ‘H3IEGWNN LN3IWND0Aa

‘JAVN LN3IWND0d

‘lenuew JnoA o} sajepdn |je 8A18091 A|EOIBWIOINE O} PIBD SIY) UINIS) puUB N0 ||I} 8Ses|d

INHO4 NOILVH1SID3H LNJWNOO0d

— . —— i ——— N —— |

3NIT SIHL ONOTVY 1LND

PLACE
STAMP
HERE

Documentation Manager
D727, RC55

Rockwell International
MICROELECTRONIC DEVICES
3310 Miraloma Ave.

Anaheim, CA 92803

l___—__—___———__—__J

—

HOME OFFICE*
Agckwe international Corp
Microglectronic Devices

Anshem Ca 32603

fnore 17141 £32.6550

X, 310-591 1598

* prso Apzlcatsns Centers

E JROPE

D BC33 My
German

Talex: 0£2°

—

I tnternational GbH
trome Devices
Fraunroferstrasse 11

znen Martinsried

Phune. 10891 8599575
2650

ROCKWELL INTERNATIONAL - MICROELECTRONIC DEVICES
—

REGIONAL SALES GFF

GENTRAL REGION, U.5.A

i 4 Asuicates

e L K

GION. US.A *

8508 Raute t
North Branswick. New jersey 08902
Phane 1201) 246-3630

FAR EAST

MIDWEST REGION. U S A

1G1TE Touhy Avenus, Suite 245
Das Plaines, L 60018
Fhone 13121 797 8RR?

WESTERN REGION, U.S A
3310 Miraloma Avanie
PO Hox 3669

Anaheim, Ca 92803
Phone. {7 141 §32- 0450

Rackweli International Overseas Corp.
ichiban-cho Central Buiiding

221 tehban-cho, Chiyoda-ku

Toyka 102, Japan

Phone: 265-8808

Telex

122198

YOUR LOCAL REPRESENTATIVE

-~

ROCKWELL INTERNATIONAL - MICROELECTRONIC DEVICES

E JROPE
Reckwell International GmbH
Microslectronic Devices
Fraunhoferstrasse 11

-8033 Munchen-Martinsried
German
Phone: ?63‘.” 858-9575

Telex: 052112650

CENTRAL REGION, U.S.A.

- REGIONAL SALES OFFICES

HOME OFFICE" Cortact Robert O Whitesell & Assoviates

Rockwell International Corp. 6691 East Washington Street

Microelectronic Devices Indranapofis. Indiana 46219

PA-O-hBox 385992”3 (317)359-9283 Altn Mit Gamble. Mgr.

naheim, Ca.

Us. EASTERN REGION, U.S.A.*

Phone: (714) 632-0950 Carolier Office Building

TWX: 910-591-1698 860-870 U.S. Route 1

North Brunswick. New Jersay 08902

* Aiso Applications Centers Phone: (201) 246-3630

FAR EAST

MIDWEST REGION, U.S.A.

1011 E. Touhy Avenue, Suite 245

Des Plaines, IL 80018
Phone: (312) 297-8RRY

WESTERN REGION, U.S.A.
3310 Miraloma Avenue

.0, Box 3

Anaheim, Ca. 92803
Phone: {714) 632-0950

Rockwell International Overseas Corp.
Ichiban-cho Central Buitding
22-1 Ichiban-cho, Chiyoda-ku

an

Telex: 122198

—/

8o A\
~

YOUR LOCAL REPRESENTATIVE

~

