
8700 Horsens Tlf. 05 • 61 11 00

Publications Number 6500-15B

KIM-l

MICROCOMPUTER MODULE

USER MANUAL

AUGUST 1976

The information in this manual has been reviewed and is believed to be entirely reliable. However,
no responsibility is assumed for inaccuracies. The material in this manual is for informational
purposes only and is subject to change without notice.

Second Edition
© MOS T E C H N O L O G Y , INC. 1976

"A ll Rights Reserved"

MOS TECHNOLOGY DEP. Frankfurter StraBe 171-175 D -6078 Neu-lsenburg
Telefon: (0 61 02) 80 03 Telex: 04185663 comod

TABLE OF CONTENTS

CHAPTER 1 YOUR KIM-1 MICROCOMPUTER MODULE 1

CHAPTER 2 GETTING STARTED 5

2.1 Parts Complement 5
2.2 A Few Words of Caution! 6
2.3 First Steps 6
2.4 Let's Try a Simple Problem 9
2.5 Adding an Audio Tape Unit 12
2.6 Adding a Teleprinter 17

CHAPTER 3 THE KIM--1 SYSTEM 21

3.1 KIM-1 System Description 21
3.2 KIM-1 Memory Allocation 34
3.3 KIM-1 Operating Programs 40

CHAPTER 4 OPERATING THE KIM-1 SYSTEM 43

4.1 Using the Keyboard and Display 43
4.2 Using the Audio Tape Unit 47
4.3 Using the Teleprinter 50

CHAPTER 5 LET'S TRY A REAL APPLICATION 55

5.1 Defining the Interface 55
5.2 Writing the Program 58
5.3 Entering the Program 65
5.4 Executing the Program 66
5.5 Program Debugging and Modification 67

CHAPTER 6 EXPANDING YOUR SYSTEM 71

6.1 Memory and I/O Expansion 71
6.2 Interrupt Vector Management 75

CHAPTER 7 WARRANTY AND SERVICE 79

7.1 In-Warranty Service 79
7.2 Out-of-Warranty Service 80
7.3 Policy on Changes 80
7.4 Shipping Instructions 80

LIST OF FIGURES

CHAPTER 2 2-1 KIM MODULE 7
2-2 Power Supply Connections 8
2-3 Audio Tape Unit Connections 13
2- 4 TTY Connections 18

CHAPTER 3 3-1 KIM-1 Block Diagram 24
3- 2 Detailed Block Diagram 25
3-3 Control and Timing 26
3-4 IK x 8 RAM Memory 27
3-5 Keyboard and Display 28
3-6 Keyboard Detail 29
3-7 TTY Interface 30
3-8 Audio Tape Interface 31
3-9 Application Connector 32
3-10 Expansion Connector 33
3-11 Memory Block Diagram 37
3-12 Memory Map 38
3-13 Special Memory Addresses 39
3-14 Flow Chart 41

CHAPTER 5 5-1 Speaker Application 57
5-2 Assembly Language Listing 60
5-3 Square Wave Output 62
5-4 Machine Language Code Table 63
5- 5 Key Sequence: Enter Program 65

CHAPTER 6 6-1 4K Expansion 73
6- 2 65K Expansion 74
6-3 Vector Selection 78

iv

LIST OF APPENDICES

APPENDIX A KIM-1 Parts List A-l

APPENDIX B KIM-1 Parts Location B-l

APPENDIX C In Case of Trouble C-l

APPENDIX D Suggested Power Supply D-l

APPENDIX E Audio Tape Format E-l

APPENDIX F Paper Tape Format F-l

APPENDIX G 6502 Characteristics G-l

APPENDIX H 6530 Characteristics H-l

APPENDIX I KIM-1 Program Listings 1-1

v

CHAPTER 1

YOUR KIM-1 MICROCOMPUTER MODULE

Congratulations and welcome to the exciting new world of micro­
computers! As the owner of a KIM-1 Microcomputer Module, you now have at
your disposal a completely operational, fully tested, and very capable
digital computer which incorporates the latest in microprocessor tech­
nology offered by MOS Technology, Inc. By selecting the KIM-1 module,
you have eliminated all of the problems of constructing and debugging a
microcomputer system. Your time is now available for learning the opera­
tion of the system and beginning immediately to apply it to your specific
areas of interest. In fact, if you will follow a few simple procedures
outlined in this manual, you should be able to achieve initial operation
of your KIM-1 module within a few minutes after unpacking the shipping
container.

Your KIM-1 module has been designed to provide you with a choice of
operating features. You may choose to operate the system using only the
keyboard and display included as part of the module. Next, you may add
a low cost audio cassette tape recorder to allow storage and retrieval
of your programs. Also, you may add a serial interfaced teleprinter to
the system to provide keyboard commands, hard-copy printing, and paper
tape read or punch capability.

1

At the heart of your KIM-1 system is an MCS 6502 Microprocessor
Array operating in conjunction with two MCS 6530 arrays. Each MCS 6530
provides a total of 1024 bytes of Read-only Memory (ROM), 64 bytes of
Random Access Memory (RAM), 15 Input/Output pins, and an Interval Timer.
Stored permanently in the ROM's of the MCS 6530 arrays are the monitor
and executive programs devised by MOS Technology, Inc. to control the
various operating modes of the KIM-1 system.

The KIM-1 system is intended to provide you with a capable micro­
computer for use in your "real-world" application. Accordingly, the
system includes a full 1024 bytes of RAM to provide data and program
storage for your application program. In addition, you are provided
with 15 bidirectional input/output pins to allow interface control of
your specific application. Finally, one of the interval timers included
in the system is available for generation of time base signals required
by your application.

Your KIM-1 system comes to you complete with all components mounted
and tested as a system. You need not worry about timing signals (we’ve
included a 1MHz crystal oscillator on the module), interface logic or
levels between system components, or interface circuitry to peripheral
devices. In fact, you need only apply the indicated power supply voltages
to the designated pins to achieve full operation of your KIM-1 system.

We recommend that you read all of this manual before applying power
to or attempting to operate your KIM-1 module. In the order presented,
you will find:

Chapter 2 - "hints and kinks" to help you achieve initial
system operation

Chapter 3 - a more detailed description of the KIM-1 system
hardware and software

Chapter 4
Chapter 5

operating procedures for all system modes
an example of a typical application program
using all of the features of the KIM-1 system.

2

At some future time, you may find it desirable to expand the KIM-1
system to incorporate more memory, different types of memory, or addi­
tional input/output capability. Again, we have tried to make system
expansion as simple as possible with all required interface signals
brought out to a special connector on the module. Watch for:

Chapter 6 - a guide to system expansion for increasing
both memory and input/output capability

Despite our best efforts to provide you with a fully operable
and reliable system, you might encounter some difficulties with your
KIM-1 module. If so, refer to:

Chapter 7 - some guidance on warranty and service
procedures for your KIM-1 module

Following the basic text of this manual, you will find a series of
Appendices intended to provide you with detailed information on certain
specialized subjects of interest to you in understanding the operation
of the KIM-1 system.

Lastly, since this manual cannot presume to provide all of the
technical information on the hardware or programming aspects of the
MCS 6502 microprocessor array, we are including with your KIM-1 system
two additional manuals for your reference. The Hardware Manual defines
the various elements of the system, their electrical and interface
characteristics, and the basic system architecture and timing. The
Programming Manual provides the detailed information required to write
effective programs using the MCS 6502 instruction program set.

So much for introductory comments! Now lets get started and see
if we can get your KIM-1 Microcomputer Module doing some real work for you.

3

CHAPTER 2

GETTING STARTED

This chapter is intended to guide you through the first important
steps in achieving initial operation of your KIM-1 Microcomputer Module.
We will ask you to perform certain operations without explanation at this
time as to why they are being done. In later sections of this manual,
full explanations will be offered for every operating procedure.

2.1 PARTS COMPLEMENT

After unpacking the shipping container for your KIM-1, you should
have located the following items:

3 Books - KIM-1 Users Manual
Hardware Manual
Programming Manual

1 Programming Card
1 System Schematic
1 KIM-1 Module
1 Connector (Already mounted on the Module)
1 Hardware Packet
1 Warranty Card

You may wish to save the shipping container and packing material
should you need to return your KIM-1 module to us at some future date.

5

2.2 A FEW WORDS OF CAUTION

WARNING

Your KIM-1 module includes a number of MOS integrated circuits. All such
circuits include protective devices to prevent damage resulting from
inadvertant application of high voltage potentials to the pins of the
device. However, normal precautions should be taken to prevent the appli
cation of high voltage static discharges to the pins of an MOS device.

Immediately before removal of the packing material from your KIM-1 module
you should develop the following precautionary habits:

1. Discharge any static charge build up on your body by touching a
ground connection before touching any part of your KIM-1 module.
(This precaution is especially important if you are working in a
carpeted area)

2. Be certain that soldering irons or test equipment used on the
KIM-1 module are properly grounded and not the source of
dangerously high voltage levels.

On a different subject, after unpacking your KIM-1 module, you will
note the presence of a potentiometer. This adjustment has been set at
the factory to insure correct operation of the audio cassette interface
circuits. It should never be necessary for you to change the position of
this potentiometer.

2.3 FIRSTSTEPS

After unpacking the KIM-1 module, locate the small hardware packet
and install the rubber pads provided. The rubber pads are located at the
bottom of the module (see attached sketch) and act both to lift the card
off your work surface and to provide mechanical support for the module
while you depress keys.

6

Place the module such that the keyboard is to your lower right and
observe that two connector locations extend from the module to your left.
The connector area on the lower left is referred to as the Application
connector (A). You will note that a 44 pin board edge connector is
already installed at this location. The connector area to the upper
left is for use by you for future system expansion and is referred to
as the Expansion connector (E).

BOTTOM TOP
VIEW VIEW

KIM-1 M odule
FIGURE 2.1

1

Remove the (A) connector from the module and connect the pins as
shown in the sketch.

Power Supply Connections
FIGURE 2.2

Reinstall the (A) connector making certain that the orientation is
correct.

Note 1: The +12 volt power supply is required only if you
will be using an audio cassette recorder in your system.

Note 2: The jumper from pin A-K to Vss (Pin A-l) is essential
for system operation. If you expand your system later,
this jumper will be removed and we’ll tell you what to
do to pin A-K.

Note 3: If you don't have the proper power supplies already
available, you may wish to construct the low cost
version shown with schematic and parts list in
Appendix D. In any event, your power supply must
be regulated to insure correct system operation and
must be capable of supplying the required current
levels indicated in the sketch.

8

Now, recheck your connections, turn on your power supplies, and
depress D m (reset). You should see the LED display digits light

as your first check that the system is operational. If not, recheck
your hookup or refer to Appendix C (In Case of Trouble).

2. 4 LETS TRY A SIMPLE PROGRAM

Assuming that you have completed successfully all of the steps thus
far, a simple program now can be tried to demonstrate the operation of
the system and increase your confidence that everything works properly.
We'll be using only the keyboard and display on the module for this
example. (In the next two sections we'll worry about the teleprinter
and the audio cassette).

For our first example, we will add two 8 bit binary numbers together
and display the result. We presume that you are familiar with the hex­
adecimal representation of numbers and the general rules for binary arith­
metic.

First check and be sure that the slide switch in the upper right
corner of the keyboard is pushed to the left (SST Mode is OFF). Now
proceed with the following key sequence:

Press Keys See On Display Step

1 AD 1 XXXX XX 1cm □ □ cm cm 0002 xx 2
fo * 1 0002 xx 3cm cm 0002 18 4
d cm cm 0003 A5 5
d cm cm 0004 00 6D cm cm 0005 65 7CD cm cm 0006 01 8CD cm cm 0007 85 9CD cm cm 0008 FA 10CD cm cm 0009 A9 11CD cm cm 000A 00 12ID cm cm 000B 85 13D cm cm 000C FB 14D cm cm 000D 4C 15D cm cm 000E 4F 16D cm cm 000F 1C 17

9

What you have just done is entered a program and stored it in the
RAM at locations 0002 through 000F. You should have noticed the purpose
of several special keys on your keyboard:

- selects the address entry mode r°*i - selects the data entry mode
Q - increments the address without

changing the entry mode
- 16 entry keys defining the hex
code for address or data entry

You’ve noticed as well that your display contains 6 digits. The
four on the left are used to display the hex code for an address. The
two on the right show the hex code for the data stored at the address
shown. Therefore, when you pressed [*°l (step 1) and N R M m
(step 2), you defined the address entry mode, selected the address 0002,
and displayed the address 0002 in the four left-most display digits.
Incidentally, when we show an "xM in the display chart, we mean that we
don’t know what will be displayed and we "don't care."

Next you pressed [°*1 (step 3) followed by □mz] (step 4). Here,
you have defined the data entry mode and entered the value 18 to be
stored at your selected address 0002. Of course, the 18 then was dis­
played in the two right-most digits of your display.

You remained in the data entry mode but began to press EZ) followed

by a two digit number (steps 5 to 17). Note that each depression of the
m key caused the address displayed to increase by one. The hex keys

following the ED key continued to enter the data field of the display.
This procedure is merely a convenience when a number of successive address
locations are to be filled.

If you made any mistakes in pressing the keys, you should have noticed
that correcting an error is simply a matter of reentering the data until
the correct numbers show on the display.

10

The program you have entered is a simple loop to add two 8 bit
binary numbers together and present the result on the display. For a
programmer, the listing of the program entered might appear as follows:

POINTL = $FA
POINTH = $FB
START = $1C4F
0000 VAL1
0001 VAL2
0002 18 PROG CLC
0003 A5 00 LDA VAL1
0005 65 01 ADC VAL2
0007 85 FA STA POINTL
0009 A9 00 LDA #00
000B 85 FB STA POINTH
000D 4C 4F 1C JMP START

Stated in simple terms, the program will clear the carry flag (CLC),
load VAL1 into the accumulator (LDA VAL1), add with carry VAL2 to the
accumulator (ADC VAL2), and store the result in a location POINTL (STA
POINTL). A zero value is stored in a location POINTH (LDA //00 and STA
POINTH) and the program jumps to a point labelled START (JMP START).
This pre-stored program will cause the display to be activated and will
cause the address field of your display to show the numbers stored in
locations POINTH and POINTL. Note that the result of the addition has
already been stored in location POINTL.

The hex codes appearing next to the address field of the listing are
exactly the numbers you entered to store the program. We refer to these
as machine language codes. For example, 4C is the hex code for the JMP
instruction of the microprocessor. The next two bytes of the program
define 1C4F (START) as the jump address.

As yet, you are not able to run the program because you have not yet
entered the two variables (VAL1 and VAL2). Lets try an actual example:

Press Keys See On Display Step //
1 ad | 000F 1C 17A
r~o~i Hoi n n r n 00F1 xx 17B
1 PA | 1 O 1 1 O 1 00F1 00 18
1 a d | 00F1 00 19
1 O 1 1 o 1 1 o 1 1 o 1 0000 xx 20
1 Da I 1 O 11 2 1 0000 02 21
1 + 1 1 o 1 1 3 1 0001 03 22
E D d°] 0002 18 23

11

Steps 17A, 17B, and 18 insure that the binary arithmetic mode is
selected.

Steps 19 to 21 store the hex value 02 in location 0000 (VAL1). Step
22 stores the hex value 03 in location 0001 (VAL2). Now we are ready to
run the program. In step 23, the [g o) key causes the program to execute
and the result, 05, appears in the right two digits of the address display.
Although the problem appears trivial, it illustrates the basic principles
of entering and executing any program as well as providing a fairly high
assurance level that your KIM-1 module is operating properly.

You should try one more example using your stored program. Repeat
steps 17A to 23 but substitute the value FF for VAL1 and VAL2 at locations
0000 and 0001. Now when you press the r°°i key, your display should read:

00FE xx
The answer is correct because:

FF = 1111 1111
+ FF = 1111 1111

FE 1111 1110

Try some more examples if you wish and then let's move on to the rest
of the system.

2.5 ADDING A TAPE RECORDER

In the previous section, you entered and executed a program. If you
turn off the power supplies to the system, your program- is lost since the
memory into which you stored your program is volatile. If you require
the same program again, you would have to repower the system and reenter
the program as in the previous example.

The KIM-1 system is designed to work with an audio cassette tape
recorder/player to provide you with a medium for permanent storage of your
programs or data. The cassette with recorded data may be reread by the
system as often as you wish. In this section, you will connect the audio
cassette unit to the system and verify its operation.

12

The recording technique used by the KIM-1 system and the interface
circuits provided have been selected to insure trouble-free operation
with virtually any type and any quality level audio cassette unit. (We
have demonstrated correct operation with a tape unit purchased for less
than $20.00 from a local discount outlet). In addition, tapes recorded
on one unit may be played back to the system on a different unit if
desired. We recommend, of course, that you make use of the best equip­
ment and best quality tapes you have available.

In selecting a tape unit for use with your KIM-1 system, you should
verify that it comes equipped with the following features:

1. An earphone jack to provide a source of recorded
tape data to the KIM-1 system.

2. A microphone jack to allow recording of data from
the KIM-1 system on the tape.

3. Standard controls for Play, Record, Rewind, and Stop.

Note: You should avoid certain miniaturized tape equipment intended
for dictating applications where the microphone and speaker are enclosed
within the unit and no connections are provided to external jacks. If
such equipment is used, you will have to make internal modifications to
reach the desired connection points.

To connect your tape unit to the KIM-1 module, turn off the power
supplies and remove the connector (A) from the module. Add the wires
shown in the sketch:

(A)

M

i

i

_ AUDIO DATA OUT (LO)
MIC

TAPE
UNIT

^ v s s
REMOTE

©
EARPHONE__G)

1

AUDIO DATA INL

P ---------- ►AUDIO DATA OUT (HI)

\zJ

Audio Tape Unit Connections
FIGURE 2.3

13

Keep the leads as short as possible and avoid running the leads near
sources of electrical interference. The connections shown are for typical,
portable type units. The Audio Data Out (LO) signal has a level of approx­
imately 15 mv. (peak) at pin M. Should you desire to use more expensive
and elaborate audio tape equipment, you may prefer to connect the high
level (1 volt peak) audio signal available at pin P to the "LINE" input
of your equipment.

Return the connector (A) to its correct position on the KIM-1 module
and turn on the power supplies. To verify the operation of your audio
cassette equipment, try the following procedures:

1. Reenter the sample program following the procedures
outlined in the previous section (2.4). Try the
sample problem again to be sure the system is
working correctly.

2. Install a cassette in your tape equipment and REWIND
to the limit position.

3. Define the starting and ending address of the program to
be stored and assign an identification number (ID) to
the program.

Press Keys See On Display Step
r AD l XXXX XX 1
L O) I o II F | | ~ 1 00F1 xx 2
L DA I I o II O 1 00F1 00 3
I AD I 00F1 00 4
i 1 II 7 I I F | | 5 I 17F5 xx 5
I DA l I O II o I 17F5 00 6
I + l I O II O 1 17F6 00 7
i + l | 1 | | O 1 17F7 10 8
i + I 1 o II O 1 17F8 00 9
I + I 1 o II _ ! _] 17F9 01 10
L AD I 17F9 01 11
L 1 J L i_ J r~o— i r o 1 1800 xx 12

You will recall that the program we wish to store on tape was loaded
into locations 0000 to 000F of the memory. Therefore, we define a start­
ing address for recording as 0000 and store this in locations 17F5 and
17F6 (Steps 4 to 7). We define an ending address for recording as one
more than the last step of our program and stored the value 0010
(= 000F + 1) in locations 17F7 and 17F8 (Steps 8,9). Finally we pick
an arbitrary ID as 01 and store this value at location 17F9 (Step 10).

14

The starting address of the tape recording program is 1800. In Steps
11 and 12 we set this address value into the system. If we were to press
F ° 1 . the system would proceed to load data on to the magnetic tape. But

first, we’d better start the tape!
4. Select the Record/Play mode of the tape recorder. Wait a

few seconds for the tape to start moving and now:
Press lGQ I

5. The display will go dark for a short time and then will
relight showing:

0000 xx

6. As soon as the display relights, the recording is finished
and you should STOP the tape recorder.

Now, you should verify that the recording has taken place correctly.
This can be proven by reading the tape you have just recorded. Proceed
as follows:

1. Rewind the tape cassette to its starting position.
2. Turn off the system power supplies and then later,

turn them back on.

This has the effect of destroying your previously stored program
which you already have recorded on tape.

3. Prepare the system for reading the tape as follows
Press Keys See On Display Step #

l ns l
I AD~I XXXX XX 1mmmm 00F1 xx 2
L.daJ I O II O I 00F1 00 3
| AD I 00F1 00 4
nnrrnmm 17F9 xx 5
I DA | 17F9 xx 6

17F9 01 7
I ad | 17F9 01 8
m m m m 1873 xx 9
I GO | (Dark) 10

15

The KIM-1 system is now looking for tape input data with the ID
label 01. Recall that this is the same ID label we assigned when we
recorded the program.

4. If your tape unit has a volume control, set the control
at approximately the half way point.

5. If your tape unit has a tone control, set the control
for maximum treble.

6. Now, turn on the tape using the PLAY mode. The tape
will move forward and the system will accept the recorded
data. As soon as the data record (ID=01) has been read,
the display should relight showing:

0000 xx

You may now stop the tape unit. If the display relights and shows;
FFFF xx

this means that the selected record has been located and read but that an
error has occurred during the reading of the data. In this case, press
the E key and repeat the read tape procedures from the beginning. If

the FFFF still shows on the display, repeat the entire recording and play­
back procedures checking each step carefully. If the problem persists,
refer to Appendix C, (In Case of Trouble).

If the tape continues to run and the display does not relight, this
means that the system has been unsuccessful in reading any data back from
the tape. In this case, repeat the entire recording and playback proce­
dures checking each step carefully. If the problem persists, refer to
Appendix C, (In Case of Trouble).

7. Assuming that you have read the tape successfully, you
now may verify that the program has been restored to
memory by trying a sample problem. (02 + 03 = 05)

NOTE: The KIM-1 interface circuits for the audio tape system
are designed so that you d£ not require special test
equipment to set up correct operating levels. If you
have followed the procedures indicated, the tape system
should work without the need of any adjustments by you.

16

2.6 ADDING A TELEPRINTER

If you have access to a serial teleprinter, you may add such a unit
to the KIM-1 system with very little effort. One of the more commonly
available units of this type is the Teletype Model 33ASR which we will
use for the purposes of illustration in this section. However, if you
have available different equipment, you may use the information presented
here as a guide to connecting your specific unit. In any case, we recom­
mend you follow the directions offered by the equipment manufacturer in
his instruction manual to effect the desired wiring and connection options.

The KIM-1 provides for a 4 wire interface to the TTY. Specifically,
the "20 MA loop" configuration should be used and you should check that
your TTY has been wired for this configuration. If not, you may easily
change from "60 MA loop" to "20 MA loop" configurations following the
manufacturers directions. The KIM-1 has been designed to work properly
only with a teleprinter operating in full duplex mode. Check the
literature supplied with your teleprinter if you are unsure if your
unit is properly configured. You are not restricted to units with specific
bit rates (10 CPS for TTY) since the KIM-1 system automatically adjusts
for a wide variety of data rates (10CPS, 15CPS, 30CPS, etc.).

To connect the TTY to the system, proceed as follows:
1. Turn off system power and remove connector (A) from

the module.
2. Add the wires shown in the sketch to connector (A) and

to the appropriate connector on the TTY unit.

17

TTY Connections
FIGURE 2.4

3. The jumper wire from A-21 to A-V is used to define for the
KIM-1 system that a teleprinter will be used as the only
input/display device for the system. If you expect to use
both TTY and the KIM-1 keyboard/display, you should install
the switch shown instead of the jumper. Now, the switch,
when open, will allow use of the keyboard and display on
the KIM-1 module and, when closed, will select the tele­
printer as the input/display device. (Of course, you may
use a clip-lead instead of the switch if you desire).

4. Be sure pins A-21 and A-V are connected. Reinstall con­
nector (A) and return power to the system. Turn-on the TTY.

5. Press the |RS| key on the KIM-1 module then press
/ r u s V

the\out/ key on the TTY. This step is most important
since the KIM-1 system adjusts automatically to the
bit rate of the serial teleprinter and requires this
first key depression to establish this rate.

18

If everything is working properly you should immediately observe a
message being typed as follows:

KIM
This is a prompting message telling you that the TTY is on-line and the
KIM-1 system is ready to accept commands from the TTY keyboard.

Should the prompting message not be typed press the E D key on the
KIM-1 keyboard and then the (o t̂) key on the TTY. If the "KIM" message

still is not typed, recheck all connections and the TTY itself and try
again. If the problem persists, refer to Appendix C, (In Case of Trouble).

6. Assuming that the TTY is operable, you may now try a simple
group of operations to verify correct system operation:

Press Keys See Printed Step

KIM
X X X X X X 1

® © @ © 0002 2
ISPACE I 0002 xx 3
© ® ® 18. 4

0003 xx 5
© ® ® A5. 6

©
0004 xx 7
0003 A5 8

^RUffV KIM\ 0 U T j
X X X X X X 9

Step 1 shows the "KIM" prompting message. In Step 2, an address
(0002) is selected followed by a space key in Step 3. The address cell
0002 together with the data stored at that location (xx) is printed.
Step 4 shows the "modify cell" operation using the © key and the hex
data keys preceding. Step 5 shows the incrementing to the next address
cell (0003) after the © key. Note that the modification of cell 0002
also occurs. Steps 6 and 7 show the modification of data in cell 0003
and the incrementing to cell 0004. Step 8 shows the action of the © key

in backing up one cell to 0003 where we can see from the printout that
the correct data (A5) has been stored at that location. Step 9 shows the
reaction to the key in resetting the system and producing a new "KIM"
prompting message. Note, by the way, that in this example you have
repeated a portion of the program entry exactly as you did in Section 2.4
but this time using the TTY.

19

So much for now! If all of the operations have occurred properly,
you may be certain that your TTY and KIM-1 module are working together
correctly. We will describe in detail all of the other operations pos­
sible with the TTY in a later section of the manual.

If you have reached this point without problems, you now have
completed all of the required system tests and may be confident that
the KIM-1 module and your peripheral units are all working correctly.
Our next task is to learn more about the KIM-1 system and its operating
programs.

20

CHAPTER 3

THE KIM-1 SYSTEM

Up to this point you have been engaged in bringing up your KIM-1
system and verifying its correct operation. Now it’s time to learn more
about the various parts of the KIM-1, how the parts work together as a
system, and how the operating programs control the various activities of
the system. The diagrams included in this section together with your
full sized system schematic will be helpful in understanding the elements
of your KIM-1 module.

3.1 KIM-1 SYSTEM DESCRIPTION

Figure 3-1 shows a complete block diagram of the KIM-1 system. You
should note first the presence of the MCS 6502 Microprocessor Array which
acts as the central control element for the system. This unit is an 8
bit microprocessor which communicates with other system elements on three
separate buses. First, a 16 bit address bus permits the 6502 to address
directly up to 65,536 memory locations in the system. Next, an 8 bit,
bidirectional data bus carries data from the 6502 array to any memory
location or from any memory location back to the 6502 array. Lastly, a
control bus carries various timing and control signals between the 6502
array and other system elements.

21

Associated with the 6502 array is a 1 MHz crystal which operates with
an oscillator circuit contained on the 6502 array. This crystal control­
led oscillator is the basic timing source from which all other system
timing signals are derived. In particular, the 02 signal generated by
the 6502 array and used either alone, or gated with other control signals,
is used as the system time base by all other system elements.

The 6502 microprocessor is structured to work in conjunction with
various types of memory. In the KIM-1 system, all memory may be consid­
ered to be of the Read-only (ROM) or Read/Write (RAM) variety. The ROM
portion of the memory provides permanent storage for the operating progams
essential to the control of the KIM-1 system. You will note the inclusion
of two devices, labelled 6530-002 and 6530-003. Each of these devices
include a 1024 byte (8 bits per byte) ROM with different portions of the
operating program stored permanently in each ROM.

RAM type memory is available at three locations in the system.
Again, each of the 6530 arrays include 64 bytes of RAM primarily used for
temporary data storage in support of the operating program. In addition,
a separate 1024 byte RAM is included in the KIM-1 system and provides
memory storage for user defined application programs and data.

Input/output controls for the system also are included within the
6530 arrays. Each 6530 array provides 15 I/O pins with the microprocessor
and operating program defining whether each pin is an input pin or output
pin, what data is to appear on the output pins, and reading the data appear­
ing on input pins. The I/O pins provided on the 6530-002 are dedicated to
interfacing with specific elements of the KIM-1 system including the key­
board, display, TTY interface circuit, and audio tape interface circuit.
The 15 I/O pins on the 6530-003 are brought to a connector and are avail­
able for the user to control a specific application.

22

Finally, each 6530 array includes an interval timer capable of count­
ing a specific number of system clocks to generate precise timing gates.
The exact time interval is preset under program control. The interval
timer on the 6530-003 array is available for a user defined application
program and is not required by the operating programs.

Figure 3-1 shows a major block labelled Control Logic. Included
under this category are an address decoder used for generation of chip
select signals for the 6530 arrays and the static RAM. Also included is
the logic required to debounce the keys for system reset (RS key) and pro­
gram stop (ST key). Lastly, special logic is included to allow operation
of the system in a "single instruction" mode to facilitate program de­
bugging.

Figure 3-1 shows the keyboard/display logic interfacing with the I/O
pins of the 6530-002. Also shown are the interface circuits for trans­
mission of data to and reception of data from the TTY and audio tape units.

Figure 3-2 shows the detailed interconnections between the MCS 6502
and the two MCS 6530 arrays.

Figure 3-3 shows detailed logic and schematics for the control logic.

Figure 3-4 shows a detailed schematic of the static RAM.

Figure 3-5 and 3-6 show the detailed schematic of the keyboard and
display logic and circuits.

Figure 3-7 details the schematic of the TTY interface circuits.

Figure 3-8 details the schematic of the audio tape cassette interface
circuits.

Figures 3-9 and 3-10 provide a summary of all signals available on
either the Application connector or the Expansion Connector.

The fold-out system schematic shows all of the elements of the system
connected together and all signals appearing on the module connectors.

You may refer to the Hardware Manual included with your KIM-1 module
for additional details on the operating characteristics of the 6502 and
6530 arrays as well as detailed information on system timing.

23

EXPANSION CONNECTOR
KIM-1 Block Diagram

FIGURE 3.1
24

A
PP

LI
C

A
TI

O
N

C

O
NN

EC
TO

R

EXPANSION CONNECTOR
Detailed Block Diagram

FIGURE 3.2
25

6
5

0
2

M

PU

CONTROL BUS

Control and Timing
FIGURE 3.3

26

R39

S
< ADDRESS BUS DATA BUS

CONTROL BUS 1Kx8 RAM Memory
FIGURE 3.4

27

0
B

5

P
E

R
IP

H
E

R
A

L

B
U

S
P

E
R

IP
H

E
R

A
L

B

U
S

Keyboard and Display
FIGURE 3.5

28

(6)
ST

(4) (9) (14) (3)
PA4 PA3 PA2 PA I

(5)
PAG

(8)
RS

(12) (2)
PA6 PA5

RO (I)

Rl (15)

R2 (13)

VCC (7)

2 4 6 8 10 12 14
I 0 3 0 5 0 7 O 9 O I I 0 1 3 0 | 3
O O O O O O O O

GO ST RS
SST

AD DA PC +

C D E F

8 9 A B

4 5 6 7

0 1 2 3

33GG (10)

25TT (II)

Keyboard Detail
FIGURE 3.6

29

PE
R

IP
H

ER
A

L
BU

S
TO

65

30
-0

02

A-A

A-R

A-S

A-T

A-1

A-U

TTY Interface
FIGURE 3. 7

30

A
PP

LI
C

A
TI

O
N

CO

NN
EC

TO
R

FIGURE 3.8

K Ci. O'

<
»

30

U>
or̂

V̂
W

V-
i

L-^
W

V -

-)\
-

x OD

"
h

r

EX
PA

N
SI

O
N

C
O

NN
EC

TO
R

AUDIO

PE
R

IP
H

ER
A

L
BU

S

A
PP

LI
C

AT
IO

N

C
O

NN
EC

TO
R

> i z

R 40

22 KB Col D Z KB Row 1
21 KB Col A Y KB Col C
20 KB Col E X KB Row 2
19 KB Col B W KB Col G
18 KB Col F V KB Row 3
17 KB Row 0 U TTY PTR
16 PB5 T TTY KYBD
15 PB7 S TTY PTR RTRN(+)
14 PA0 R TTY KYBD RTRN(+)
13 PB4 P AUDIO OUT HI
12 PB3 N +12v
11 PB2 M AUDIO OUT LO
10 PB1 L AUDIO IN
9 PB0 K DECODE ENAB
8 PA7 J K7
7 PA6 H K5
6 PA5 F K4
5 PA4 E K3
4 PA1 D K2
3 PA2 C K1
2 PA3 B K0
1 VSS GND A VCC +5v

Application Connector
FIGURE 3.9

32

2 RAM/R/W
Y 02
X PLL TEST
W rTw
V R/W
u 02
T AB15
s AB14
R AB13
P AB12
N AB11
M AB10
L AB9
K AB8
J AB7
H AB6
F AB5
E ABA
D AB3
C AB2
B AB1
A AB0

22 VSS GND
21 VCC +5
20
19
18
17 SST OUT
16 K6
15 DB0
14 DB1
13 DB2
12 DB3
11 DB4
10 DB5
9 DB6
8 DB7
7 RST
6 NMI
5 RO
4 IRQ
3 01
2 RDY
1 SYNC

Expansion Connector
FIGURE 3.10

33

3.2 KIM-1 MEMOR Y ALLOCA TION

It has been stated that the 6502 microprocessor array included in
the KIM-1 system is capable of addressing any of 65,536 memory locations.
Obviously, we have not included that much memory in your KIM-1 system and
this section is intended to detail for you exactly what memory locations
are included in the system and where they are located (their exact
addresses).

Each byte of memory in the system is understood to include 8 bits.
Also, you should note that any addressable location in the system may be
performing any one of four functions:

1. A ROM byte - read-only memory in which we have stored the
operating program.

2. A RAM byte - read/write memory for storage of variable data.

3. An I/O location - these locations include both direction
registers which define the I/O pins to be either input pins
or output pins, and the actual data buffer locations contain­
ing the data to be transmitted on output pins or the data
read from input pins. Any I/O location may be viewed as a
read/write memory location with a specific address.

4. An Interval Timer location - a series of addresses are
reserved for each interval timer in the system. Again, you
may write to the timer to define its counting period or read
from the timer to determine its exact state.

Figure 3-11 shows a block diagram detailing all memory blocks in the
KIM-1 system. Figure 3-12 provides a memory map showing all addressable
locations included in the system and their relationship to each other.
Note also the areas in the memory map indicated as available for expansion.
(Section 6 of the manual provides more detail on the subject of memory
expansion). Finally, Figure 3-13 provides a complete listing of all impor­
tant memory locations and will be referenced frequently by you when writing
your application programs.

34

Referring to Figure 3-12, note that the memory map shows a block of
8192 address locations all existing in the lowest address space within
the possible 65,536 address locations. This address space is further
divided into eight blocks of 1024 locations each. Each 1024 block is
further divided into four pages of 256 locations each. The "K"
reference defines a specific block of 1024 locations and refers to the
"K" number of the address decoder included within the system control
logic. The "page" reference defines a specific group of 256 addresses.
A total of 32 pages (0 to 31) are included in the 8192 address locations.
The hex codes for certain addresses are shown at strategic locations in
the memory map.

Beginning from the highest address location of the 8192, note that
the first 1024 block (K7) is assigned to the ROM of the 6530-002 and the
second 1024 block (K6) is assigned to the ROM of the 6530-003. The entire
operating program of the KIM-1 system is included in these two blocks.

Next in order, a portion of the K5 block is dedicated to the RAM,
I/O, and Timer locations of the two 6530 arrays. An expanded view of
this address space is shown in Figure 3-12. Note that the RAM addresses
for the 6530-002 (Hex 17EC to 17FF) are reserved for use by the operating
program and should not appear in a user generated application program.
The same is true for the I/O and Timer locations of the 6530-002 which
also are reserved for use by the operating programs.

The next four blocks in order (K4, K3, K2, Kl) are reserved for
additional memory in an expanded system. In Section 6, the methods for
adding memory will be discussed.

Finally, the lowest 1024 address locations (K0) are assigned to the
static RAM included within the KIM-1 system. You should note that within
this block, Page 0 and Page 1 have special significance. Page 1 is used
as the system stack onto which return addresses and machine status words
are pushed as the system responds to interrupts and subroutine commands.
Page 0 has significance for certain of the special addressing modes avail­
able when programming for the 6502 microprocessor array.

35

Figure 3-12 shows an expanded view of Page 0 and Page 1. Note that
17 addresses (OOEF to OOFF) are reserved for use by the operating program
and must never appear in the user generated application program. Also,
note the comment that a maximum of eight locations may be required on the
stack (Page 1) to service operating program interrupts.

In summary, the user generated application program may make use of
the following areas of memory:

1. All of Page 0 except OOEF to OOFF

2. All of Page 1 (remember that the stack will extend an
extra 8 bytes deep to accommodate the operating program).

3. All of Page 2 and Page 3.

4. In Page 23:
- All I/O locations from 1700 to 173F
- All 64 bytes of RAM from 1780 to 17BF
- An additional 44 bytes of RAM from 17C0 to 17EB

36

M
em

or
y

Bl
oc

k
Di

ag
ra

m

FI
G

U
RE

 3
.1

1

FFFFi
AVAILABLE

FOR
EXPANSION

T
KIM
ROM

6 5 3 0 -0 0 2

KIM
ROM

6 5 3 0 -0 0 3

STACK
PAGE 0"

2000
IFF F HEX

/
/
/
/
/
/
/

ICOO /

IBFF /
/
/
/

1800 /

I7FF
17m

' 6 4 BYTE

RAM
6 5 3 0 -0 0 2

I7FF 1
I7EC J
I7EB '
I7C0

6 4 BYTE I7BF l

RAM
6 5 3 0 -0 0 3 1780 -
I / O a I77F "I
TIMER
6 5 3 0 -0 0 2 1740 J

1/0 a I7 3 F

TIMER
6 5 3 0 -0 0 3 1700 J

KIM RAM

APPLICATION
RAM

KIM I /O

APPLICATION
I /O

1400
I3FF

DECODED
FOR 4K
EXPANSION

OIFF
STACK
POINTER
INITIALIZED

OOFF
OOEF
OOEE

17 BYTES
RESERVED
FOR KIM

Memory Map
FIGURE 3.12

38

ADDRESS AREA LABEL FUNCTION

OOEF t PCL Program Counter - Low Order Byte
00F0 1 PCH Program Counter - High Order Byte
00F1 Machine

Register
P Status Register

00F2 Storage SP Stack Pointer
00F3 Buffer A Accumulator
00F4 1 Y Y-Index Register
00F5 4 X X-Index Register

1700 t PAD 6530-003 A Data Register
1701 Application

I/O
1

PADD 6530-003 A Data Direction Register
1702 PBD 6530-003 B Data Register
1703 4 PBDD 6530-003 B Data Direction Register

1704

i
170F

t
Interval Timer

I
6530-003 Interval Timer

(See Section 1.6 of
Hardware Manual)

17F5 f SAL Starting Address - Low Order Byte
17F6 Audio Tape SAH Starting Address - High Order Byte
17F7 Load & Dump EAL Ending Address - Low Order Byte
17F8 1 EAH Ending Address - High Order Byte
17F9 4 ID File Identification Number

17FA t NMIL NMI Vector - Low Order Byte
17FB 1 NMIH NMI Vector - High Order Byte
17FC Interrupt

Vectors RSTL RST Vector - Low Order Byte
17FD RSTH RST Vector - High Order Byte
17FE 1 IRQL IRQ Vector - Low Order Byte
17FF ♦ IRQH IRQ Vector - High Order Byte

1800 Audio Tape DUMPT Start Address - Audio Tape Dump
1873 ♦ LOADT Start Address - Audio Tape Load

1C00 STOP Key + SST

4
Start Address for NMI using KIM
"Save Machine" Routine (Load in
17FA & 17FB)

17F7 ▲Paper Tape EAL Ending Address - Low Order Byte
17F8 Dum^ (Q) EAH Ending Address - High Order Byte

Special Memory Addresses
FIGURE 3.13

39

3.3 KIM-1 OPERA TING PROGRAMS

Figure 3-14 shows a simplified flow chart of the KIM-1 operating
programs. This section provides a brief explanation of these programs
to assist you in understanding the various operating modes of the
system.

First, you should note that when power is first applied to your
KIM-1 module and the E D (reset) key is depressed, control of the system

automatically is assumed by the operating program. This is true, as well,
for any succeeding depression of the reset key.

For each depression of the reset key, the system is initialized.
At this time, stack pointer values are set, the I/O configuration is
established, and essential status flags are conditioned. Next the
program determines whether the system is to respond to TTY inputs or
is to operate with the keyboard and display on the KIM-1 module.

If the TTY mode has been selected, the program halts and awaits a
first key depression from the TTY (the RubOut Key). Upon receipt of this
key depression, the program automatically performs a bit rate measurement
and stores the correct value for use in receiving and decoding succeeding
data transfers from the TTY. Note that this bit rate measurement is per­
formed after each depression of the reset key.

The program will proceed immediately to a routine causing the
prompting message ("KIM”) to be typed on the TTY. Now, the program halts
at the loop called "Get Character". As each key is depressed on the TTY,
the coded data is accepted and analyzed in the routine called "Execute Key".
The various keys depressed will cause the program to branch to the appro­
priate subroutines required to perform the desired operation. Upon com­
pletion of the individual key executions, the program returns to the "Get
Key" loop and awaits the next key depression.

40

N M I (S T) R S T (R S) IRQ

Flow Chart
FIGURE 3.14

41

Exit from the TTY processing loop will occur in response to:

1. A depression of the reset key,

2. A depression of the G key which initiates execution of
the application program, or

3. A change in the mode from TTY to Keyboard/Display.

If, after system reset and initialization, the Keyboard/Display
mode (KB) is determined to be in effect, the program will proceed dir­
ectly to display, and keyboard scan routines. The program will cause the
display scan to occur continuously ("Display Cell") until one of the keys
on the keyboard is depressed (AK?). Key validation is performed during
an additional scan cycle. If the key is truly depressed (not noise), the
program proceeds to the routine called "Get Key" in which the exact key
depressed is defined. Next, the program moves to the "Execute Key"
routine where branches to appropriate execution routines will be per­
formed. Finally, after key execution, the program returns to the "Display
Cell" routine and waits for the key to be released. When no key is de­
pressed, the program returns to the normal "Display Cell" routine and
awaits the next key depression.

In either the TTY or KB modes, the audio tape load or dump routines
may be executed using appropriate commands from the selected keyboards.
In either case, completion of the tape load or dump routine allows the
program to return to the "Start" position which will, as usual, activate
the KIM-1 display or cause the "KIM" prompting message on the TTY.

You should note the use of the Stop key to activate the non-maskable
interrupt input (NMI) of the 6502 microprocessor array. Depression of
this key causes an unconditional termination of program execution, a
saving of machine status registers on the stack, and a return to the
control of the operating program.

A second interrupt input is available and referred to as IRQ. This
interrupt may be defined by the user and will cause the program to jump to
any location defined by the user in his program.

42

CHAPTER 4

OPERATING THE KIM-1 SYSTEM

Now that you have a better idea of what is included in your KIM-1
system and how it operates, its time to provide you with detailed pro­
cedures for all of the operations you can perform with the system. We
will separate our operating procedures into three areas giving specific
direction for the use of the KIM-1 keyboard and display, the audio tape
recorder, and the serial teleprinter (TTY).

4.1 USING THE KIM-1 KEYBOARD AND DISPLA Y

A brief study of your keyboard shows a total of 23 keys and one
slide switch. First, let’s list the purpose of each key:

- Sixteen keys used to define the hex code
of address or data

- selects the address entry mode
- selects the data entry mode
- increments the address by +1 but does
not change the entry mode

- recalls the address stored in the Program
Counter locations (PCH, PCL) to the display

- causes a total system reset and a return to
the control of the operating program

- causes program execution to begin starting 1
at the address shown on the display

- terminates the execution of a program and
causes a return to the control of the
operating program

r~°iT° r n
[a d)

[d a |

E D

D §]

f°°1

DEI

43

You have seen in an earlier chapter that the six digit display in­
cludes a four digit display of an address (left four digits) and a two
digit display of data (right two digits).

Using only the KIM-1 keyboard and display, you may perform any of
the following operations:

1. Select an Address
Press |ad| followed by any four of the hex entry keys.
The address selected will appear on the display. If an
entry error is made, just continue to enter the correct
hex keys until the desired address shows on the display.
Regardless of what address is selected, the data field of
the display will show the data stored at that address.

2. Modify Data
After selecting the proper address, press fo*l followed by
two hex entry keys which correctly define the data to be
stored at the selected address. The data entered will
appear in the data field of the display to indicate that
the desired code has already been entered.
Note that it is possible for you to select an address of
a ROM memory cell or even the address of a memory cell that
does not exist in your system. In these cases, you will not
be able to change the data display since it is clearly not
possible for the system to write data to a ROM cell or a
non-existent memory location.

3. Increment the Address
By pressing the □ key the address displayed is auto­
matically increased by +1. Of course, the data stored at
the new address will appear on the display. This operation
is useful when a number of successive address locations must
be read or modified. Note that the use of the CD key will
not change the entry mode. If you had previously pressed
the |a d| key, you remain in the address entry mode and a
previous depression of the [d a | means you remain in the
data entry mode.

44

4. Recall Program Counter
Whenever the NMI interrupt pin of the 6502 microprocessor
array is activated, the program execution in progress will
halt and the internal registers of the 6502 are saved in
special memory locations before the control of the system
is returned to the operating program. In the KIM-1 system,
the NMI interrupt may occur in response to a depression of
the E D key (stop) or, when operating in the Single Step
mode, after each program instruction is executed following
the depression of the |g o | key.

The [p c] key allows you automatically to recall the value
of the Program Counter at the time an interrupt occurred.
You may have performed a variety of operations since the
interrupt such as inspecting the contents of various
machine registers stored at specific memory locations.
However, when you press the |p c| key, the contents of the
Program Counter at the time of the interrupt are recalled
to the address field of the display. You now may continue
program execution from that point by pressing the [go | key.

5. Execute a Program
Select the starting address of the desired program. Now,
press the E D key and program execution will commence
starting with the address appearing on the display.

6. Terminate a Program
The ED key is provided to allow termination of program
execution. As mentioned earlier, the [s t | key activates
the NMI interrupt input of the 6502 microprocessor array.

Note: The [s t| key will operate correctly only if you
store the correct interrupt vector at locations 17FA and
17FB. For most of your work with the KIM-1 system, you
should store the address 1C00 in these locations as follows

IAP Irn 171 m rxi i da i ran nn i + i m i c i

45

Now, when the NMI interrupt occurs, the program will return to
location 1C00 and will proceed to save all machine registers before
returning control to the operating program.

You should remember to define the NMI vector each time the power
to the system has been interrupted. A failure of the system to react
to the ED key means you have forgotten to define the NMI vector.

7. Single Step Program Execution
In the process of debugging a new program, you will find
the single step execution mode helpful. To operate in
this mode, move the SST slide switch to the ON position
(to your right). Now, depress the ED key for each
desired execution of a program step. The display will
show the address and data for the next instruction to
be executed. Note that in the course of stepping
through a program, certain addresses will appear to
be skipped. A program instruction will occupy one, two,
or three bytes of memory depending upon the type of
instruction. In single instruction mode, all of the
bytes involved in the execution of the instruction are
accessed and the program will halt only on the first
byte of each successive instruction.

Note: SST mode also makes use of the NMI interrupt of the
6502 microprocessor array. Again, the NMI vector must be
defined as described in (6) above if the SST mode is to
work correctly.

This covers all of the standard operations you may perform from the
KIM-1 keyboard. Using combinations of the operations described, you may
wish to perform certain specialized tasks as follows:

1. Define the IRQ Vector
You will recall that a separate interrupt input labelled
IRQ is available as an input to the 6502 microprocessor
array. If you wish to use this feature, you should enter
the address to which the program will jump. The IRQ
vector is stored in locations 17FE and 17FF.

2. Interrogate Machine Status
We have mentioned that after an NMI interrupt in response
to the ED key or during the SST mode, the contents of
various machine registers are stored in specific memory
locations. If you wish to inspect these locations, their
addresses are:

46

OOEF = PCL
OOFO = PCH
OOF1 = Status Register (P)
OOF2 = Stack Pointer (SP)
00F3 = Accumulator (A)
00F4 = Y Index Register
00F5 = X Index Register

4.2 USING THE AUDIO TAPE RECORDER

There are two basic operations possible when working with your audio
tape system. You may transfer data from the KIM-1 memory and record it
on tape. Or, you may read back a previously recorded tape, transferring
the data on tape into the KIM-1 memory.

Recording on Audio Tape

The procedure for recording on audio tape requires that you
perform the following steps:

1. Clear decimal mode by entering 00 in location 00F1.
Define an identification number (ID) for the data
block you are about to record. This two digit number
is loaded into address 17F9. Don’t use ID = 00 or
ID = FF.

2. Define the starting address of the data block to be
transferred. This address is to be loaded into
locations:

17F5 = Starting Address Low (SAL)
17F6 = Starting Address High (SAH)

3. Define the ending address as one greater than the
last address in the data block to be recorded. The
ending address is to be loaded into locations:

17F7 = End Address Low (EAL)
17F8 - End Address High (EAH)

As an example, assume you wish to record a data block from
address 0200 up to and including address 03FF. (All of Pages 2 and 3).
You wish to assign an ID number of 06 to this block. Using the KIM-1
keyboard, you should load the data shown into the addresses indicated
so that:

00F1 = 00
17F5 = 00
17F6 = 02
17F7 = 00
17F8 = 04
17F9 = 06

(Clear Decimal Mode)
(SAL)
(SAH)
(EAL) 'I 03FF + 1
(EAH) J *
(ID)

47

Note that the ending address must be greater than the starting
address for proper operation.

4. Assuming that you are using a new cassette on which
no data has been stored previously, insert the
cassette in the unit and rewind the tape to its
start position.

5. Select the starting address of the tape record program.
This address is 1800.

6. Select the Play/Record mode of the audio unit and allow
several seconds for the tape to begin to move.

7. Press the 1g o | key and the recording process will begin.
The display will be blanked for a period and then will
relight showing 0000 xx. This means that the data
block selected has been recorded.

8. You may now stop the tape or allow some additional
seconds of blank tape and then stop the unit.

Loading Data From Audio Tape
The procedure for loading data from an audio tape into the

KIM-1 memory requires that you perform the following steps:

1. Define the ID number of the data block to be loaded
from tape. The ID number is loaded into address 17F9.

2. Select the starting address of the Tape Load program.
This address is 1873^^.

3. Press the r°°i key. The KIM-1 system is now waiting
for the appearance of data from the tape unit.

4. Load the cassette and, presuming you do not know where
on the tape the data block is recorded, rewind the tape
to its starting position. Check the volume control
setting.

5. Start the audio tape unit in its Play mode and observe
that the tape begins to move.

6. Wait for the KIM-1 display to relight showing 0000 xx.
This means the data block has been loaded successfully
from the tape into the KIM-1 memory. If the display
relights with FFFF xx, the correct data block has been
found but there has been an error detected during the
read operation. If the tape continues to run and the
display never relights, the system has not been
successful in finding the data block with the specific
ID number you requested.

48

7. If in step (1), you had selected an ID = 00, the ID
number recorded on the tape will be ignored and the
system will read the first valid data block encountered
on the tape. The data read from the tape will be
loaded into memory address as specified on the tape.

8. If, in step (1), you had selected an ID = FF, the ID
number recorded on the tape will be ignored and the sys­
tem will read the first valid data block encountered on
the tape. In addition, the data block will be loaded
into successive memory locations beginning at the
address specified in locations 17F5 and 17F6 (SAL, SAH)
instead of the locations specified on the tape.

Special Operations with Audio Tape
The KIM-1 system causes data to be recorded on audio tape with

a specific format as detailed in Appendix E. Each recorded data block is
preceeded by a group of synchronizing characters together with an identi­
fication code to define the specific block. Data blocks may be of arbi­
trary length.

With a little care, there is no reason for you not to include a
number of recorded data blocks on the same tape. If you are recording
blocks in sequence and have not rewound the tape between blocks, you need
only specify the parameters of each new block (ID, SAL, SAH, EAH, EAL) and
proceed with recording the new block.

If the tape has been rewound, you will need to know the ID
number of the last recorded data block. Rewind the tape to its starting
point and set up the parameters required to read the last recorded data
block. After reading this block, stop the tape and you may now proceed
to add a new block or blocks to the tape.

If you wish, you may add voice messages between the recorded
data blocks on the tape. The KIM-1 system will ignore these audio
messages when the tape is read back. Of course, you will need to install
an earphone or speaker in parallel with the KIM-1 audio tape data input
pin in order to hear the voice messages.

We do not recommend that you attempt to record data blocks in
areas of the tape which have been used previously for recorded data.
Variations in tape speed and block lengths can result in overlapping of
recorded data which may be read incorrectly by the KIM-1 system.

49

4.3 USING A SERIAL TELEPRINTER

The addition of a serial teleprinter (such as the Teletype Model
33ASR) to work with the KIM-1 system permits a variety of special opera­
tions to be performed. In all cases, you define desired operations by
depressing the proper keys while simultaneously producing a hard-copy
printed record of each operation. If your teleprinter is equipped
with a paper tape reader/punch, you may generate or read paper tapes
using the KIM-1 system. Using the serial teleprinter, you may perform
the following operations:

Select an Address
Type four hex keys (0 to F) to define the desired address.

Next, press the 1 s p a c e | bar.
The printer will respond showing the address code selected

followed by a two digit hex code for data stored at the selected
address location:

Type: 1234 1 SPACE I

Printer Responds: 1234 AF
showing that the data AF is stored at location 1234.

Modify Data
Select an address as in the previous section. Now type two hex

characters to define the data to be stored at that address. Next type
the ® key to authorize the modification of data at the selected address:

Type: 1234 | SPACE |

Printer Responds: 1234 AF
Type:
Printer Responds: 1235 B7

Note that the selected address (1234) has been modified and the system
increments automatically to the next address (1235).

Note: Leading zero's need not be entered for either address
or data fields: For example:

EF 1 s p a c e | selects address 00EF
E 1 s p a c e | selects address 000E
A © enters data 0A

© enters data 00 (etc.)

50

Step to Next Address
Type (^) to step to the next address without modifying the

current address:
See Printed: 1234 AF
Type:
Printer Responds: 1235 B7
Type:
Printer Responds: 1236 C8 (etc.)

Step to Preceeding Address
Type © to step back to the preceeding address:

See Printed: 1234 AF
Type:
Printer Responds: 1233 9D
Type:
Printer Responds: 1232 8E

©
©

(etc.)

Abort Current Operation
Type to terminate the current operation. The prompting

message will be printed ("KIM") indicating that a new operation may
proceed:

Type: 1264
Printer Responds: KIM

xxxx
Type: 1234
Printer Responds: 1234

In the example, the p̂uT/ key is used to correct an erroneous
address selection.

Note: The v^y key must be depressed after each depression
of the KIM-1 reset key in order to allow the operating
program to define the serial bit rate for the tele­
printer.

51

Load Paper Tape
Paper Tapes suitable for use with the KIM-1 system are generated

using the format shown in Appendix F. To read such a tape into the KIM-1
system, proceed as follows:

1. Load the punched paper tape on to the tape mechanism
2. Type ©
3. Activate the paper tape reader

The paper tape will advance and data will be loaded into addresses
as specified on the tape. A printed copy of the data read will be generated
simultaneously with the reading of the paper tape.

Check-sums are generated during the reading of the paper tape
and are compared to check-sums already contained on the tape. A check­
sum error will cause an error message to appear in the printed copy.

Punch Paper Tape
The KIM-1 system can be used to punch paper tapes having the

format described in Appendix F. The procedures for generating these
tapes is as follows:

1. Define the starting address and ending address of the
data block to be punched on the paper tape.

2. Load blank paper tape on the punch unit and activate
the punch.

Type: © © © © 1 SPACE |

See Printed: 17F7 X X

Type: © @ ®
See Printed: 17F8 X X

Type: ® @ ®

See Printed: 17F9 X X

Type: (2) (0) (0) | SPACE |

See Printed: 0 2 0 0 X X

52

You have now loaded the ending address (03FF) into address
locations 17F7 (EAL) and 17F8 (EAH). The starting address (0200) is
selected as shown.

3. Now type®
The paper tape will advance and punching of the data
will proceed. Simultaneously, a printed record of
the data will be typed.

List Program
A printed record of the contents of the KIM-1 memory may be

typed. The procedure is the same as for punching paper tape except that
the punch mechanism is not activated.

Execute Program
To initiate execution of a program using the TTY keyboard, the

following procedures should be followed:

1. Enter the starting address of the program

2. Type®
For example, to begin program execution from
address location 0200:

Type:
See Printed:

@ @ © I space |
0200 xx

Type: ©
Program execution begins from location 0200 and will
continue until the DEI or keys of the KIM-1
module are depressed. The single step feature may
be employed while in the TTY mode.

53

CHAPTER 5

LET’S TRY A REAL APPLICATION

It is not practical in this manual to describe every possible
application or programming technique. However, now that you have become
familiar with the basic elements and operating procedures of the KIM-1
system, this section will show you how to apply what you have learned in
a simple but realistic application example.

Our example will involve the generation of a variable frequency
square wave which will be connected to a speaker to produce an audible
tone. The frequency of the tone will be selected using a set of seven
toggle switches. We will proceed through the example by defining the in­
terface, writing and entering the program, and executing the program.
Finally, we will study a series of program debugging techniques which
will be useful to you for any new program you may write.

5.1 DEFINING THE INTER FA CE

You will recall that a group of 15 I/O pins are brought to the
Application connector from the 6530-003 array. The logic and circuit
details concerning these I/O pins are described in Appendix H and in
Section 1.6 of the Hardware Manual ("Peripheral Interface/Memory
Device -- MCS 6530").

55

For our application example we will use eight of these I/O pins.
One pin (PA0) will be used as an output line to supply a square wave to
a driver circuit and speaker. The other seven I/O pins (PA1 to PA7) are
defined as input points with a SPST toggle switch connected to each.
Figure 5-1 shows the circuit configuration for this example. Note that
the remaining seven I/O pins (the PB port) are not used for this problem.

For the switches connected to the input pins, we would like the sense
of the switch to be defined as a logic "0" when open and a logic "1" when
closed. By connecting the switches to ground, we are producing exactly
the opposite sense and must remember to complement the switch states with
software when we write our program. Also, we must define now that the
switch at PA1 is to be the LSB (least significant bit) and the switch at
PA7 is to be the MSB (most significant bit) of the seven bit binary word
formed by all seven switches. In this way, the state of the switches can
define a binary number from zero (all switches open) to 127_t,_ (all switchesDLL
closed).

56

A -8 A -7 A -6 A -5 A-2 A -3 A -4 A-14 ♦ CONNECTOR

PA7 PA6 PA 5 PA4 PA3 PA2 PA 1 PA0

7 \ J J J | \
♦ PORT A

+ 5 V.

27n

e n
SPKR

A-15

0
A -16 A-13 A-12 A -l 1 A -10 A -9

j PB5
PB4 PB3 PB2 PBI PB0

APPLICATION
“CONNECTOR

♦ PORT B

(THE B PORT IS NOT USED IN THIS EXAMPLE APPLICATION)

Speaker Application
FIGURE 5.1

57

5.2 WRITING THE PROGRAM

Having defined the interface for our application, we may proceed now to
write our program. The effort proceeds in four stages:

1. Generate a flow chart

2. Generate assembly language code

3. Analyze the program

4. Generate machine language code

START
FLOW CHART I

58

Briefly, our flow chart shows a first step of system initialization.
During this step, we must define the I/O configuration of the system in
that pin PA0 becomes the output' to the speaker and that pins PA1 to PA7
become inputs from the seven switches.

After initialization, a loop is set up which begins by inverting the
state of PA0 (Toggle PA0). Next, the state of the switches is read and
the data is complemented to produce the correct "sense" from the switches.
The value so read is used to define a delay before returning to the start
of the loop and again toggling the state of PA0. A little thought will
show that this loop will produce a square wave with a frequency determined
by the setting of the seven switches.

Assembly Language Program

Our next task is to convert the simple flow chart into a
program. The program is first written in "Assembly Language". You should
refer to your Programming Manual to become familiar with all of the pos­
sible 6502 instructions (especially see Appendix B; Instruction Summary).
Figure 5-2 shows the application example programmed in assembly language.

59

LABEL OP CODE OPERAND MACHINE
CYCLES COMMENTS

INIT LDA #$01 2 Define I/O 0=lnput l=0utput
STA PADD 4 PADD = PORT A DATA DIRECTION REG.

START INC PAD 6 Toggle PA0, PA1-PA7 Inputs
not affected

READ LDA PAD 4 READ switches into accumulator
EOR //$FF 2 Complement switch value
LSR A 2 Shift Accumulator 1 bit to right
TAX 2 Transfer final count into X-Index

DELAY DEX 2 Delay by an amount specified
BPL DELAY 3,2 By the count in the X-Index
BMI START 3 Go To START

PADD =$1701 Define absolute address of
Data Direction Reg. A

PAD =$1700 Define absolute address of
Data Reg. A

Assembly Language Listing
FIGURE 5.2

60

You will note that each line of the program is broken into
several fields:

- A label field permitting you to assign a "name" to
a specific location in the program.

- An Operation Code field (Op Code) in which the exact
instruction to be executed is defined.

- An Operand Field where the exact data required by the
instruction is defined together with certain symbols
defining addressing modes or data formats. Symbols
encountered generally in MOS Technology, Inc. manuals
are:

// Immediate Addressing
$ Hex Code
@ Octal Code
% Binary Code
’ ASCII literal
= Equates a label to a value

- A Machine Cycle field defining the total number of
machine cycles required to execute an instruction.
(This information is derived from Appendix B of
the Programming Manual).

- A Comment Field where the programmer may define the
intent of specific program steps.

Program Analysis
The inclusion of the "machine cycle" information of the program

chart (Figure 5-2) allows us to analyze the exact timing relationships
involved in our program example. Note that the KIM-1 system operates
from a fixed frequency (1 MHz) oscillator with each machine cycle being
lys. Therefore, an instruction like "INC PAD" which requires 6 machine
cycles will be executed in a 6ys period.

61

By counting the total machine cycles occurring between each
toggle of PA0, an equation for the square wave frequency can be developed.
The actual frequency is determined by the position of the seven switches,
the number of machine cycles between each toggle of PA0, and the basic
clock rate (1 MHz) of the KIM-1 system. Figure 5-3 shows the waveform
of the PA0 square wave and the derived equations for computing the
exact frequency.

PA0

T * 23 +(CNT* 5) U SEC

T - 2 C 2 3 -H C N T - 5) 3 U SEC

FREQ = y *
IQ6

4 6 -M O * CNT
CPS

n o t e : c n t e q u a l s t h e v a l u e in x - in d e x

WHICH WAS CALCULATED FROM THE
SEVEN SWITCHES 0 5 C N T s 127

Square Wave Output
FIGURE 5.3

62

Machine Language Coding
Our next problem is to convert our assembly language program

into a program written in "machine language". The quickest and most
foolproof method for accomplishing this conversion is by using the
MOS Technology, Inc. Assembler (available for use on the time share
services of United Computing Systems, Inc.). If you choose not to
use this method, you will need to convert your source program to
machine code using "paper-and-pencil" techniques.

You should proceed by constructing a table similar to that
shown in Figure 5-4.

ADDRESS

INSTRUCTION SOURCE CODE

BYTE 1 BYTE 2 BYTE 3 LABEL OP CODE OPERAND

0200 A9 01 INIT LDA #$01
0202 8D 01 17 STA PADD
0205 EE 00 17 START INC PAD
0208 AD 00 17 READ LDA PAD
020B 49 FF EOR #$FF
020D 4A LSR A
020E AA TAX
020F CA DELAY DEX
0210 10 FD BPL DELAY
0212 30 FI BMI START
0214

Machine Language Code Table
FIGURE 5.4

The source code contained in your assembly language program
(Figure 5-2) is entered into the table first. A column is provided to
allow you to define the specific address at which an instruction is
located. The Instruction column provides space for defining one, two,
or three byte instructions. (Please refer to Appendix B of the Program­
ming Manual or to your Programming Card for specific Op Codes).

63

As an example, the first source instruction is LDA #$01 which,
when translated, means load the accumulator with the byte stored in the
next program location (hex 01). This is the "immediate” addressing
mode defined by the "#" symbol. The Op Code for LDA// is A9. This
value is entered in the first column under the heading, Instruction.
The next column contains the hex 01 value defined by the source state­
ment. The initial address for the program is inserted in the "Address"
column as 0200 (an arbitrary selection). The total instruction LDA #$01
now occupies address locations 0200 and 0201.

The next available address is 0202 which is inserted in the
"Address" column for the next source instruction. In this manner, you
will proceed through all of the source statements decoding each and
entering one, two, or three bytes of machine code as required in the
"Instruction" column. The "Address" column will contain the address of
the first byte of machine code (the Op Code) for each source statement.

In cases where the operand of the source statement is a symbol,
the address to which the symbol has been equated should be filled in as
the proper machine code. For example, the source statement "INC PAD"
requires the incrementing of data stored at a location "PAD" defined in
our assembly programs to have the address: PAD = 1700. Therefore, the
address 1700 is entered as the second and third bytes of the source
statement "INC PAD". (See Figure 5-4). Note also that when entering
an address, such as 1700, the low order byte (00) is entered first and
immediately after the Op Code and the high order byte (17) is entered
next as the third byte of the instruction.

When dealing with branch instructions (BPL, BMI, etc.), you
will need to calculate the exact value of the offset which may be either
positive (branch forward) or negative (branch backward). You should refer
to Section 4.1.1 of the Programming Manual to explore "Basic Concept of
Relative Branching." As an example, the source statement "BMI START" (See
Figures 5-2 and 5-4) requires a branch backward by (-15) locations to the
address labelled "START" (from address 0213 backward to 0205 inclusive).

64

(The 2’s complement of the -15 displacement is Fl„___ which you shouldntA
insert at location 0212). Had the branch been to a forward location
the positive value of the offset would be inserted rather than the 2fs
complement value.

5.3 ENTERING THE PROGRAM

With the program now reduced to machine language code, you may enter
the program address and data codes listed in Figure 5-4 following the
procedures detailed in Section 2.4. The procedure for entering the program
is as follows:

Press Keys See On Display
r A o i m m m m 0200 xx
Id a 1 [a J □ □ 0200 A9
m Con c m 0201 01
m 1 8 1 1 D 1 0202 8D
m c m c m 0203 01
Q D c m c m 0204 17
m c m c m 0205 EE
m 1 0 1 1 0 1 0206 00
m m m 0207 17
m 1 A I 1 D 1 0208 AD
m 1 0 1 1 0 1 0209 00
m m m 020A 17
m m m 020B 49
nn m m 020C FF
nn m m 020D 4A
m m m 020E AA
m m m 020F CA
m m c m 0210 10
m m m 0211 FD
m 1 3 1 1 0 1 0212 30
m m m 0213 FI

Key Sequences: Enter Program
FIGURE 5.5

65

5.4 EXECUTING THE PROGRAM

With the program entered, you may proceed to program execution.
First, if the NMI vector has not been defined previously, enter the
vector as follows:

Press Keys

[ap~i m 171 rn i~a~i
I DA I I 0 I I 0 I

CD CD CD

See Displayed

17FA xx
17FA 00
17FB 1C

This procedure insures that the E key will be effective in
terminating the program. Now, select the starting address of your
program (0200) and begin execution as follows:

Press Keys See Displayed

I AD 1 | o | I 2 1 | o | | o | 0200 A9

I g o 1 (Dark)

The program will now execute. If your seven selector switches all
are open, you will probably hear no sound from the speaker because the
square wave frequency is too high. If all selector switches are closed,
you will hear in the speaker the lowest frequency that can be generated
with the program as currently written. You may experiment with other
combinations of switch settings to hear a variety of tones from the
speaker.

Depression of the | s t | key will cause the program execution to stop
(the tone will terminate) and the KIM-1 display will relight. The display
will show the address and data for the next instruction to be executed
(probably 020F or 0210 since this is the delay loop where the program
spends most of its running time).

66

5.5 PROGRAM DEBUGGING AND MODIF/CA TION

If your program did not execute correctly, you would follow a
debugging procedure involving the following steps:

Step 1: List the Program
First make sure you have entered the program steps

correctly. Select the starting address (r°~i hi r°~t r°~i >
and observe that the correct data (A9) is displayed. Now, using
the | + j key, step through the remaining program locations check­
ing for the correct data stored in each location.

Step 2: Single Step the Program
Follow the procedures listed in Section 5-4 for program

execution but before depressing the l~g°1 key, place the SST
slide switch in the ON position. Now, press the [go] key and
the first instruction will be executed. The display will
relight indicating that the operating program is again in
control of the system. The address displayed will be the
address of the first byte of the next instruction to be
executed. You may press the |g o | key again to execute the
next instruction or you may choose to investigate changes in
the contents of machine registers stored in selected memory
locations (See Figure 3-13). The procedure detailed in Figure 5-6
gives a good indication of the various operations you may wish
to perform in the SST mode.

Step 3: Check the I/O Operations
If program entry has been verified and program execution

in the SST mode appears to be normal, you may wish to verify the
correct operation of your specific I/O configuration.

You should recall that writing to or reading from any
I/O port is the same as reading from or writing to any other
memory location in the system. Therefore, if you select the
address of an I/O port, the KIM-1 display will show you the hex
code for the data being read from that address and thus, directly
indicate the state of each I/O pin in the port. For example, the

67

address of the I/O port used for your sample program is 1700.
Press l~*p] CD CD CD CD and the display will show the hex
code corresponding to the settings of your selector switches.
If you change the positions of your selector switches, you will
see the hex code change in the data field of the display.

Now, leave the same address (1700) selected and press
the fp*l key. If you press any of the hex keys | o | to CD-
you will write the data to the I/O port (1700). Since seven
of the pins of this I/O port are defined as inputs, only one
(PA0) will act as an output and will respond to the data
entered by you from the keyboard. Try alternating rapidly
between the m and m keys and you should hear clicking in
the speaker indicating that you are successfully toggling
the PA0 pin.

This concept of using the KIM-1 keyboard and display
to exercise and verify the operation of I/O ports is a
generally useful technique for debugging the hardware
portions of most specific applications.

68

Press Keys See Displayed Comments

I a D 1 | 0 1 I 2 1 | 0 | I 0 I 0200 A9 Select first instruction address
□ I t X I S 0200 A9 Set SST to ON; All selector

switches open
I g o | 0202 8D Accumulator now loaded with $01
fool 0205 EE PADD now loaded
I g o 1 0208 AD PA0 now toggled
fool 020B 49 Switch values (PA1-PA7) now

loaded
I g o I 020D 4A Accumulator now complemented
fool 020E AA Accumulator now right shifted

1 Bit
[a d] | 0 | 1 0 | I F | | 3 I 00F3 xx Display Accumulator
CZ] 00F4 xx Display Y - INDEX
m 00F5 00 Display X - INDEX
I p c 1 020E AA Restore PC (TAX will

execute next)
fool 020F CA Accumulator now loaded in

X-INDEX
l~AD~l l ~ 0 1 1 0 1 [~~F | | 3 i 00F3 00 Display Accumulator
□ □ 00F4 xx Display Y-INDEX
n n 00F5 00 Display X-INDEX (A=(HX)
f p c l 020F CA Restore PC
fool 0210 10 DEX now completed
[a d] n o c o m m 00F5 FF Display X-INDEX (X<0)
fP C ~ l 0210 10 Restore PC
fool 0212 30 No branch (Result of DEX

not positive)
f G O l 0205 EE Branch (Result of DEX i£

negative). —

SST Mode: Sample Operation
FIGURE 5.6

CHAPTER 6

EXPANDING YOUR SYSTEM

In earlier sections you have learned that the MCS 6502 Microprocessor
Array is capable of directly addressing up to 65,536 locations (bytes) of
memory. (Usually abbreviated to 65K where "K" for the remainder of this
section is to mean 1024 memory locations). In this section, we will
discuss first the techniques for adding memory or I/O locations to the
system and next, the proper handling of interrupt vectors in an expanded
system.

6.1 MEMOR Y AND I/O EXPANSION

In the KIM-1 system, the management of input/output data is handled
exactly the same as transfers to or from any other memory location in the
system. There are no instructions dealing specifically with input/output
transfers. Instead, transfer of data is accomplished by reading from or
writing to registers connected to the data bus and to I/O pins in specific
I/O interface devices (such as the 6530 array). These registers have a
specific address in the system just as does any other memory location.
Therefore, when we speak of expanding the memory of the KIM-1 system, we
are defining the methods for expanding both the real memory (RAM, ROM,
PROM, etc.) as well as the I/O ports since they are both treated exactly
alike as far as address assignments are concerned.

71

The first and most easilly implemented memory expansion is the
addition of up to 4K of memory space. You will recall that
the lowest 8K memory locations are defined by an address decoder included
on the KIM-1 module, (Device U4 on the schematic). The eight outputs
of this decoder (K0 to K7) each define a IK block of addresses in the
lowest 8K of the memory map. Three of the outputs (K5, K6, K7) are
used to select ROM, RAM, I/O and Timer locations on the two 6530 arrays
while a fourth (K0) is used to select the 1024 locations of the static
RAM memory. The remaining four outputs (Kl, K2, K3, K4) are not used
on the KIM-1 module but instead, are brought out to the Expansion connector
for use as chip selects for memory or I/O additions.

Figure 6-1 shows the proper method for deriving the four chip select
signals for the additional 4K of memory. Note that one of input pins of
the decoder (D) was brought out to the Application Connector. It was
this pin which we asked you to connect to ground in Chapter 2 of this
manual. As long as this point remains connected to ground, the decoder
will always select the lowest 8K addresses of the memory field regardless
of the state of AB13, AB14, and AB15.

If you wish to expand the memory and I/O address space beyond the
lower 8K addresses, you must arrange to de-select the lower 8K memory
block while selecting some other 8K block. One suggested method for
expanding beyond the lower 8K space is shown in Figure 6-2.

Note that the three high order address bits (AB13, AB14, AB15) are
connected to a decoder. The eight outputs of the decoder act to divide
the total 65K memory space into eight blocks of 8K each (8K0, 8K1, etc.).
Now, the 8K0 output may be returned as the fourth input (D) to the de­
coder (U4) on the KIM-1 module causing the proper selection and de-selec-
tion of this block within the total address space. The remaining seven
outputs (8K1 to 8K7) may be used to select and de-select the additional
decoders shown in Figure 6-2. You need add only as many decoders (one
for each 8K block of memory) as you need for your desired memory expansion.

72

A word of caution is in order when you decide to add memory to your
system. You have noticed the inclusion of the line receivers for the
AB10, AB11, and AB12 signals, (See Figure 6-2). These devices are
included because of loading limitations placed on the address bus lines
of the 6502 array (Each such line is capable of driving one standard
TTL load and 130pf of capacity. See Appendix G).

I MIT
cnj —* * * *

AVAILABLE FOR 4K
EXPANSION (P U LL-U P REQ'D)

4K Expansion
FIGURE 6.1

73

65K Expansion
FIGURE 6.2

74

Before deciding how to expand your system, we recommend a careful study
of all of the loading limitations of the KIM-1 signals since almost
certainly you will require additional buffering circuits if correct
operation is to be achieved.

6.2 INTERRUPT VECTOR MANAGEMENT

We have referred several times in earlier sections to the interrupt
features of the 6502 Microprocessor Array. We suggest now a careful
reading of Section 9 of the Programming Manual for the subject "Reset
and Interrupt Considerations".

In summary, there are three possible types of interrupt: Reset, NMI,
and IRQ. Each will occur in response to an activation of one of the three
pins of the 6502 array (RST, NMI, IRQ). In response to these inputs, the
6502 array will fetch the data stored at a specific pair of addresses and
load the data fetched into the program counter. The addresses are hardware
determined and not under the control of the programmer. The specific
addresses for each type of interrupt are:

FFFA, FFFB - NMI Vector
FFFC, FFFD - RST Vector
FFFE, FFFF - IRQ Vector

You will note that these addresses define the highest six locations in
the 65K memory map.

In the KIM-1 system, three address bits (AB13, AB14, AB15) are not
decoded at all. Therefore, when the 6502 array generates a fetch from
FFFC and FFFD in response to a RST input, these addresses will be read
as 1FFC and 1FFD and the reset vector will be fetched from these locations.
You now see that all interrupt vectors will be fetched from the top 6
locations of the lowest 8K block of memory which is the only memory block
decoded for the unexpanded KIM-1 system.

75

It is typical in any system to store the interrupt vectors in ROM
so that they are immediately available after power-on. However, it is
desirable that for the NMI and IRQ interrupts, the programmer be allowed
to define as a variable the exact vector to which these interrupts will
direct the system. Accordingly, the NMI and IRQ vector locations contain
an indirect jump instruction referencing a RAM location into which the
programmer will store the specific vector for the two types of interrupt.
In the KIM-1 system, locations 17FA and 17FB contain the actual NMI vector
and 17FE with 17FF contain the actual IRQ vector. The RST vector is not
handled in this manner and always directs the system to the first step
of the power-on initialization routine.

But what happens if we expand our memory above the lowest 8K block
included in the KIM-1 system? Recall that we now must use AB13, AB14,
and AB15 to decode the additional address locations of the memory. By so
doing, the interrupt vector locations are no longer located in the K7 memory
block since the decoder (U4) is de-selected in response to the addresses
generated by the 6502 array in fetching the interrupt vectors (FFFA for
example). We would have the same problem even in an unexpanded system
if we wished to use a RST vector and initialization routine different
than what the KIM-1 system provides and if the RST vector was to be
located in a IK block lower than K7 (K0 for instance).

The solution to this dilemma is to generate logically a special
signal for interrupt select. Referring to Figure 6-2, a special signal
called "Vector Select" is created to define the highest IK memory block
(K65). The fetch of any interrupt vector will cause this signal to
go low "Select". Assuming that the K65 state is not used to select RAM,
this signal may be "wire-or?d" with any one of the other "K" signals
(K0 to K64) to define exactly which IK block is to contain the interrupt
vectors.

76

As an example, assume that you have connected the K65 "Vector Select"
line to the K0 line. When a RST occurs, the 6502 array generates a fetch
from locations FFFC and FFFD. These addresses cause K65 to be selected
which, in turn, accesses the K0 field of the memory and causes the actual
fetch of the RST vector from locations 03FC and 03FD. (Had you chosen to
connect K65 to K7, the fetch of the reset vectors would occur from
locations 1FFC and 1FFD).

In this way, the highest six addresses of any IK block of memory may
be used to supply the interrupt vectors for the system. If desired, a
switch could be installed to allow you to select different areas of memory
as the source locations for the interrupt vectors. (By the way, we
selected the 75145 type decoders in Figure 6-2 specifically to allow the
"wire-or" of K65 with any other K. This is possible because the 75145
decoder is provided with open-collector outputs which allows "wire-or"
of several states using an external load resistor.)

An even simpler arrangement using the "Vector Select" approach is
shown in Figure 6-3. Here, the KIM-1 system is assumed to have only the
lower 8K of memory in place. The address decoder (U4) is de-selected
using the AB15 signal which becomes "true" whenever an interrupt vector
fetch is initiated by the system. The same signal (AB15) is inverted and
"wire-or*d" through a switch to the K0 or the K7 chip select lines. Now,
depending upon the position of the switch, interrupt vectors will be
fetched from the top 6 addresses of either block K0 or K7. K0 in the
KIM-1 system is the RAM and K7 is the ROM in the 6530-002 array (the
operating program). In this way, you may have two different sets of inter­
rupt vectors in your system and may select which set is to be used with a
simple switch.

77

7 4 0 5 OR 7 4 0 6

Vector Selection
FIGURE 6.3

78

CHAPTER 7

WARRANTY AND SERVICE

Should you experience difficulty with your KIM-1 module and
be unable to diagnose or correct the problem, you may return the unit
to MOS Technology, Inc. for repair.

7.1 IN- WARRANTY SER VICE

All KIM series Microcomputer Modules are warranted by
MOS Technology, Inc. against defects in workmanship and materials
for a period of ninety (90) days from date of delivery. During the
warranty period, MOS Technology, Inc. will repair or, at its option,
replace at no charge components that prove to be defective provided
that the module is returned, shipping prepaid, to:

KIM Customer Service Department
MOS Technology, Inc.
950 Rittenhouse Road
Norristown, Pennsylvania 19401

This warranty does not apply if the module has been damaged by accident
or misuse, or as a result of repairs or modifications made by other than
authorized personnel at the above captioned service facility.

No other warranty is expressed or implied. MOS Technology, Inc. is
not liable for consequential damages.

79

72 OUT-OF- WARRANTY SER VICE

Beyond the ninety (90) day warranty period, KIM modules will be
repaired for a reasonable service fee. All service work performed by
MOS Technology, Inc. beyond the warranty period is warranted for an
additional ninety (90) day period after shipment of the repaired module.

7 3 POLICY ON CHANGES

All KIM series modules are sold on the basis of descriptive
specifications in effect at the time of sale. MOS Technology, Inc.
shall have no obligation to modify or update products once sold.
MOS Technology, Inc. reserves the right to make periodic changes or
improvements to any KIM series module.

7.4 SHIPPING INSTRUCTIONS

It is the customer’s responsibility to return the KIM series
module with shipping charges prepaid to the above captioned service
facility.

For in-warranty service, the KIM module will be returned to the
customer, shipping prepaid, by the fastest economical carrier.

For out-of-warranty service, the customer will pay for shipping
charges both ways. The repaired KIM module will be returned to the
customer C.O.D. unless the repairs and shipping charges are prepaid
by the customer.

Please be certain that your KIM module is safely packaged when
returning it to the above captioned service facility.

80

APPENDIX A

ITEM PART QTY. DESCRIPTION
1. U1 1 6502 Microprocessor
2. U2 1 6530 ROM RAM I/O Chip-02
3. U3 1 6530 ROM RAM I/O Chip-03
4. U5 through U12 8 6102 RAM 500ns Acc,0ns
5. U18 through U23 6 7 SEG .3" Red Display
6. U25 1 556 Timer IC
7. U27 1 565 Phase Lock Loop
8. U28 1 311 Comparator
9. U24 1 74145 BCD Decoder IC
10. U13 & U14 2 74125 TRI STATE Buffer
11. U15 1 7400 Quad Nand IC
12. U16 1 7404 Hex Inverter IC
13. U17 1 7406 Hex Inv. 0/C IC
14. U26 1 7438 Quad Nand O/C IC
15. CR1,2,3,4,&8 5 20 MA. 50v Diode - IN914
16. CR5, CR6 2 1A 50v Diode - IN4001
17. CR7 1 6.2v %w Z. Diode - IN4735
18. Q7 1 NPN Transistor B>20, VCE>12 - 2N5371
19. Q1 through Q6 6 PNP Transistor B>20, VCE>6 - 2N5375
20. R24 & R25 2 47Kft ±10% hw Resistor
21. R1,2,3,4, & 6 5 3.3Kft ±10% %w Resistor
22. R34 & R50 2 2.2Kft ±10% %w Resistor
23. R12-R17, R41-R46 12 l.OKft ±10% %w Resistor
24. R35 through R40 6 560ft ±10% Resistor
25. R18-R23, R47 7 220ft ±10% %w Resistor
26. R33 1 47ft ±10% Resistor
27. R52 1 5 Meg. ±10% W Resistor
28. R51 1 30Kft ±5% Resistor
29. R7,R8,R9,R10&R11 5 lOKft ±5% kw Resistor
30. R48, R49 2 150ft ±5%
31. R26 through R32 7 82ft ±5% kw
32. VR1 1 5Kft Potentiometer
33. C2, C3, C6 3 ,22±10& uf.>12 wv. cap
34. Cl, C4 2 luf+80-10%>12WV Cap
35. C5 1 .33 uf±10%>12WV Cap
36. C7,C8,C15,C16,C17 5 .luf+80-10%>12WV Cap
37. C9, CIO, Cll 3 .0068uf±10%>12WV
38. C12 1 .047uf±10%>12WV
39. C13 1 .022uf±10%>12WV
40. C14 1 .OOluf±10%>12WV41. 1 44 Pin Edge Conn. (Vector //R644)
42. XI 1 1 MHz XTAL
43. 1 PCB.
44. 1 24 Key KBD
45. 6 Rubber Pads
46. 1 Shipping Bag (Static Free)
47. 1 Shipping Box
48. 1 Hardware Manual
49. 1 Software Manual
50. 1 KIM Manual
51. 1 Warranty Card
52. 1 Wall Chart
53. 2 #2 x h SS Screws (Keyboard)
54. 1 Program Card
55. C18 1 lOpf CAP
56. R53 1 330K ^w Resistor
57. U4 1 74LS145 BCD Decoder 1C

A-1

APPENDIX B

KIM-1 PARTS LAYOUT

APPENDIX C

SYMPTOM:

SYMPTOM:

IN CASE OF TROUBLE

Display Not Lit

1. Test +5 volt power supply. Using a VOM check for +5
volts between Pin E-21 and E-22. Also check for +5
volts between Pin A-A and Pin A-l. KIM-1 power supply
should be set at +5v ± 5%.

2. Test KB/TTY option wiring (Figure 2-4). Pin A-21 should
not be connected to Pin A-V.

3. Make sure decoder is enabled. See Figure 2-2 and insure
that Pin A-K is connected to ground.

4. Depress the reset key and check all other keys to insure
that no key is stuck.

5. Place a VOM between Pin E-21 (+5v) and Pin E-7 (Reset).
Alternately depress and release the reset key checking to
see if the voltage swings from (>4v) to (<lv).

6. Test Pin E-V (02) with an oscilloscope and insure 1 MHz
operation.

Cannot Dump to Audio Tape
Cannot Load From Audio Tape

1. Test +12 volt power supply. Using a VOM check for +12
volts between Pin A-N (+12v) and Pin A-l (GND). Set
power supply to +12v t 5%. (See Figure 2-2).

2. Check volume control on the tape recorder (Set at half
way point).

C-1

SYMPTOM:

3. Make sure that you are using the proper tape output pin.
See Figure 2-3.

4. Check the tape interface circuit by disconnecting the
tape recorder and shorting Pin A-P (Audio Out High) to
Pin A-L (Audio In). Set up KIM-1 monitor to dump a
section of memory. Using an oscilloscope observe data
at Pin E-X (PLL TEST). See Appendix E for correct data
format and calibration procedure.

5. Record voice on a section of tape and play it back to insure
that the tape recorder is working. Connect another tape
recorder to the system or try another cassette.

6. Make sure Status Register (Location 00F1) has been loaded
with data value "00".

7. Make sure Tone Control is set to High.

TTY Interface Problems

1. Make sure that Pin A-21 is connected to Pin A-V (Figure 2-4)
to allow TTY operation.

2. Compare the connections on Figure 2-4 with interface
schematics in your TTY manual (or any other serial
teleprinter).

3. Depress the reset key on the KIM-1 keyboard followed by
a rub out character from the TTY.

C-2

Su
gg

es
te

d
P

ow
er

 S
up

pl
y

APPENDIX D

APPENDIX E

AUDIO TAPE FORMAT

Data is stored out onto your audio cassette recorder in a specific
format designed to insure an error free recovery. In the unlikely event
that a playback error does occur, several "ERROR DETECTION" methods are
incorporated to warn you of this condition.

Data is transmitted to the tape recorder in the form of serial
"ASCII" encoded characters (seven data bits plus Parity bit). Data
retrieved from the memory is converted into this form by separating each
byte into two half bytes. The half bytes are then converted into their
ASCII equivalents.

Each record transmitted begins with a leader of one hundred "SYN"
characters (ASCII 16) followed by a * character (ASCII 2A). During
playback, this pattern allows your micro-computer to detect the start of
a valid data record and synchronize to the serial data stream. Following
the *, the record identification number (ID), and starting address low
(SAL) and the starting address high (SAH) are transmitted. The data
specified by the starting (SAL, SAH) and ending limits (EAL, EAH) is
transmitted next followed by a "/" character (ASCII 2F) to indicate the
end of the data portion of the record. Following the "/" two "CHECK-SUM"
bytes are transmitted for comparison with a calculated check-sum number
during playback to further insure that a proper data retrieval has taken
place. Two "EOT" characters (ASCII 04) mark the end of record transmission.

E-1

Each transmitted bit begins with a 3700 hertz tone and ends with
a 2400 hertz tone. "Ones" have the high to low frequency transition
at one-third of the bit period. "Zeros" have the transition at two-
thirds of the period. During playback the 565 phase locked loop locks
to, and tracks these two frequencies producing (through the 311
comparator) a logic "1" pulse of one-third the bit period for a "One".
A pulse two thirds the bit period is likewise produced for a "Zero".
Your microcomputer uses a software controlled algorithm for converting
this signal into eight bit data words.

The frequency shift keyed phase lock loop method of data recovery
is relatively insensitive to amplitude and phase variations. The "FREE
RUNNING" frequency of the phase lock loop has been adjusted at the factory
to a frequency half way between the two data frequencies (called the Center
Frequency). This adjustment is accomplished by strapping Pin A-P (Audio
Out High) to Pin A-L (Audio In). A program starting at address 1A6BHEX
provides the center frequency reference that allows the loop to be
adjusted by potentiometer VR1. Pin E-X (PLL TEST) is monitored with a
voltmeter while the pot is rotated until the voltmeter reading is at the
transition point between a logical "1" (+5v) and "0" (GND).

THIS ADJUSTMENT HAS BEEN FACTORY PRESET AND SHOULD ONLY REQUIRE
ADJUSTMENT DUE TO COMPONENT REPLACEMENT.’

E-2

7 .4 5 2 Msec.

___ 2 .4 8 4 Msec I 2 .4 8 4 Msec I 2 .4 8 4 M s e c___
9 PULSES “ 9 PULSES 6 PULSES

j i________ r

LOGIC
(0)

9 PULSES ------ 6 PULSES ----- 6 PULSES H

M U U U ^ M W U U U U U U U U U U U l

I BIT

LOGIC
(I)

£ -4f-
IOO "SYN"

— a --------
ID SALSAH

- f f -----
D ATA-^
“ f *-----

/ CKL CKH EOT EOT

I RECORD

i

Audio Tape Format
FIGURE E-l

E-3

APPENDIX F

PAPER TAPE FORMAT

The paper tape LOAD and DUMP routines store and retrieve data in
a specific format designed to insure error free recovery. Each byte
of data to be stored is converted to two half bytes. The half bytes
(whose possible values are 0 to are translated into their ASCII
equivalents and written out onto paper tape in this form.

Each record outputted begins with a character (ASCII 3B) to
mark the start of a valid record. The next byte transmitted (18ut;,v) isnEA
the number of data bytes contained in the record. The record's starting
address low (1 byte, 2 characters), starting address Hi (1 byte, 2 char­
acters), and data (18 bytes, 36 characters) follow. Each record is
terminated by the record's check-sum (2 bytes, 4 characters), a carriage
return (ASCII OD), line feed (ASCII 0A), and six "NULL" characters
(ASCII 00).

The last record transmitted has zero data bytes (indicated by ;00).
The starting address field is replaced by a four digit Hex number repre­
senting the total number of data records contained in the transmission,
followed by the records usual check-sum digits. A "XOFF" character ends
the transmission.

;180000FFEEDDCCBBAA0099887766554433221122334455667788990AFC
;0000010001

F-1

During a "LOAD" all incoming data is ignored until a ";" character
is received. The receipt of non ASCII data or a mismatch between a
records calculated check-sum and the check-sum read from tape will cause
an error condition to be recognized by KIM. The check-sum is calculated
by adding all data in the record except the ";" character.

The paper tape format described is compatible with all other
MOS Technology, Inc. software support programs.

F-2

APPENDIX G

6502 CHARACTERISTICS

Clocks (0i, 02)

The MCS 6502 is supplied with an internal clock generator. The
frequency of this clock is crystal controlled.

Address Bus (A0-A15)

These outputs are TTL compatible, capable of driving one standard
TTL load and 130pf.

Data Bus (D0-D7)

Eight pins are used for the data bus. This is a bi-directional bus,
transferring data to and from the device and peripherals. The
outputs are tri-state buffers capable of driving one standard
TTL load and 130pf.

Ready (RDY)

This input signal allows the user to single cycle the microprocessor
on all cycles except write cycles. A negative transition to the low
state during or coincident with phase one (0i) will halt the micro­
processor with the output address lines reflecting the current
address being fetched. This condition will remain through a
subsequent phase two (02) in which the Ready signal is high. This
feature allows microprocessor interfacing with low speed PROMS as
well as fast (max. 2 cycle) Direct Memory Access (DMA). If Ready
is low during a write cycle, it is ignored until the following
read operation.

G-1

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence begin
within the microprocessor. The microprocessor will complete the
current instruction being executed before recognizing the request.
At that time, th^ interrupt mask bit in the Status Code Register
will be examined. If the interrupt mask flag is not set, the
microprocessor will begin an interrupt sequence. The Program
Counter and Processor Status Register are stored in the stack.
The microprocessor will then set the interrupt mask flag high
so that no further interrupts may occur. At the end of this
cycle, the program counter low will be loaded from address FFFE,
and program counter high from location FFFF, therefore trans­
ferring program control to the memory vector located at these
addresses. The RDY signal must be in the high state(for control
to the memory vector) located at these addresses. The RDY signal
must be in the high state for any interrupt to be recognized.
A 3Kft external register should be used for proper wire-OR operation.

Non-Maskable Interrupt (NMI)

A negative going edge on this input requests that a non-maskable
interrupt sequence be generated within the microprocessor.

NMI is an unconditional interrupt. Following completion of the
current instruction, the sequence of operations defined for IRQ
will be performed, regardless of the state of the interrupt mask flag.
The vector address loaded into the program counter, low and high,
are locations FFFA and FFFB respectively. The instructions
loaded at these locations causes the microprocessor to branch to
a non-maskable interrupt routine in memory.

NMI also requires an external 3Kft resistor to Vcc for proper
wire-OR operations.

G-2

Inputs IRQ and NMI are hardware interrupts lines that are sampled
during 02 (phase 2) and will begin the appropriate interrupt
routine on the 0i (phase 1) following the completion of the
current instruction.

Set Overflow Flag (S.O.)

This TTL level input signal allows external control of the
overflow bit in the Status Code Register.

SYNC

This output line is provided to identify those cycles in which
the microprocessor is doing an Op Code fetch. The SYNC line
goes high during 0j of an Op Code fetch and stays high for the
remainder of that cycle. If the RDY line is pulled low during
the 0i clock pulse in which SYNC went high, the processor will
stop in its current state and will remain in the state until
the RDY line goes high. In this manner, the SYNC signal can be
used to control RDY to cause single instruction execution.

RESET

This input is used to reset or start the microprocessor from a
power down condition. During the time that this line is held
low, writing to or from the microprocessor is inhibited. When
a positive edge is detected on the input, the microprocessor
will immediately begin the reset sequence.

After a system initialization time of six clock cycles, the mask
interrupt flag will be set and the microprocessor will load the
program counter from the memory vector locations FFFC and FFFD.
This is the start location for program control.

After Vcc reaches 4.75 volts in a power up routine, reset must
be held low for at least two clock cycles.

When the reset signal goes high following these two clock cycles,
the microprocessor will proceed with the normal reset procedure
detailed above.

G-3

APPENDIX H

6530 CHARACTERISTICS

The MCS 6530 is designed to operate in conjunction with the MCS 650X
Microprocessor Family. It is comprised of a mask programmable 1024 x 8
ROM, a 64 x 8 static RAM, two software controlled 8 bit bi-directional
data ports allowing direct interfacing between the microprocessor unit
and peripheral devices, and a software programmable interval timer
with interrupt, capable of timing in various intervals from 1 to 262,144
clock periods.

PAO PA7 PBO PB7

MCS 6530 Block Diagram
FIGURE H.l

H-1

Reset (RES)

During system initialization a Logic "0" on the RES input will
cause a zeroing of all four I/O registers. This in turn will
cause all I/O buses to act as inputs thus protecting external
components from possible damage and erroneous data while the
system is being configured under software control. The Data
Bus Buffers are put into an OFF-STATE during Reset. Interrupt
capability is disabled with the RES signal. The RES signal must
be held low for at least one clock period when reset is required.

Input Clock

The input clock is a system Phase Two clock which can be either
a low level clock (V^L < 0.4, > 2.4) or high level clock
(vil < °-2- vih = vcc !:!>•

Read/Write (R/W)

The R/W signal is supplied by the microprocessor array and is used
to control the transfer of data to and from the microprocessor array
and the MCS 6530. A high on the R/W pin allows the processor to
read (with proper addressing) the data supplied by the MCS 6530.
A low on the R/W pin allows a write (with proper addressing) to
the MCS 6530.

Interrupt Request (IRQ)

The IRQ pin is an interrupt pin from the interval timer. This
same pin, if not used as an interrupt, can be used as a peripheral
I/O pin (PB7). When used as an interrupt, the pin should be set
up as an input by the data direction register. The pin will be
normally high with a low indicating an interrupt from the MCS 6530.

H-2

Data Bus (D0-D7)
The MCS 6530 has eight bi-directional data pins (D0-D7). These
pins connect to the system's data lines to allow transfer of data
to and from the microprocessor array. The output buffers remain
in the off state except when a Read operation occurs.

Peripheral Data Ports
The MCS 6530-002, MCS 6530-003 both have 15 pins available for
peripheral I/O operations. Each pin is individually software
programmable to act as either an input or an output. The 15
pins are divided into 2 8-bit ports, PA0-PA7 and PB0-PB7. PB6
was used as a chip select and is not available to the user. The
pins are set up as an input by writing a "0" into the corresponding
bit of the data direction register. A "1" into the data direction
register will cause its corresponding bit to be an output. When in
the input mode, the peripheral output buffers are in the "1" state
and a pull-up device acts as less than one TTL load to the peripheral
data lines. On a Read operation, the microprocessor unit reads the
peripheral pin. When the peripheral device gets information from
the MCS 6530 it receives data stored in the data register. The
microprocessor will read correct information if the peripheral lines
are greater than 2.0 volts for a "1" and less than 0.8 volts for a
"0" as the peripheral pins are all TTL compatible. Pins PA0 and PB0
are also capable of sourcing 3 ma at 1.5v, thus making them capable
of Darlington drive. Pin PB7 has no internal pull-up (to allow
collector-oring with other devices).

Address Lines (A0-A9)
There are 10 address pins. In addition to these 10, there is the
ROM SELECT pin. The above pins, A0-A9 and ROM SELECT, are always
used as addressing pins. There are 2 additional pins which are mask
programmable and can be used either individually or together as
CHIP SELECTS. They are pins PB5 and PB6. When used as peripheral
data pins they cannot be used as chip selects. PB5 was used as a
data pin while PB6 was used as a chip select and is not available
to the user.

H-3

A block diagram of the internal architecture is shown in Figure H-l.
The MCS 6530 is divided into four basic sections, RAM, ROM, I/O and TIMER.
The RAM and ROM interface directly with the microprocessor through the
system data bus and address lines. The I/O section consists of 2 8-bit
halves. Each half contains a Data Direction Register (DDR) and an I/O
Register.

ROM IK Byte (8K Bits)

The 8K ROM is in a 1024 x 8 configuration. Address lines A0-A9,
as well as RSO are needed to address the entire ROM. With the
addition of CS1 and CS2, seven MCS 6530fs may be addressed, giving
7168 x 8 bits of contiguous ROM.

RAM 64 Bytes (512 Bits)

A 64 x 8 static RAM is contained on the MCS 6530. It is addressed
by A0-A5 (Byte Select), RS0, A6, A7, A8, A9 and CS1.

Internal Peripheral Registers

There are four internal registers, two data direction registers
and two peripheral I/O data registers. The two data direction
registers (A side and B side) control the direction of the data
into and out of the peripheral pins. A "1" written into the Data
Direction Register sets up the corresponding peripheral buffer pin
as an output. Therefore, anything then written into the I/O Register
will appear on that corresponding peripheral pin. A "0" written into
the DDR inhibits the output buffer from transmitting data to or from
the I/O Register. For example, a "1" loaded into data direction
register A, position 3, sets up peripheral pin PA3 as an output.
If a "0" had been loaded, PA3 would be configured as an input and
remain in the high state. The two data I/O registers are used to
latch data from the Data Bus during a Write operation until the
peripheral device can read the data supplied by the microprocessor
array.

H-4

During a read operation the microprocessor is not reading the I/O
Registers but in fact is reading the peripheral data pins. For
the peripheral data pins which are programmed as outputs the
microprocessor will read the corresponding data bits of the I/O
Register. The only way the I/O Register data can be changed is by
a microprocessor Write operation. The I/O Register is not affected
by a Read of the data on the peripheral pins.

Interval Timer

1. Capabilities
The KIM-1 Interval Timer allows the user to specify a preset count

of up to 256iq and a clock divide rate of 1, 8, 64 or 1024 by writing
to a memory location. As soon as the write occurs, counting at the
specified rate begins. The timer counts down at the clock frequency
divided by the divide rate. The current timer count may be read at
any time. At the user's option, the timer may be programmed to generate
an interrupt when the counter counts down past zero. When a count of
zero is passed, the divide rate is automatically set to 1 and the
counter continues to count down at the clock rate starting at a count
of FF (-1 in two's complement arithmetic). This allows the user to
determine how many clock cycles have passed since the timer reached
a count of zero. Since the counter never stops, continued counting
down will reach 00 again, then FF, and the count will continue.

2. Operation
a. Loading the timer

The divide rate and interrupt option enable/disable are programmed
by decoding the least significant address bits. The starting count for
the timer is determined by the value written to that address.

H-5

When the timer has counted down to 0 0 0 0 0 0 0 0 on the next
count time an interrupt will occur and the counter will read
1 1 1 1 1 1 1 1 . After interrupt, the timer register decrements
at a divide by "1" rate of the system clock. If after interrupt,
the timer is read and a value of 1 1 1 0 0 1 0 0 is read, the
time since interrupt is 28T. The value read is in two’s complement.

Value read = 1 1 1 0 0 1 0 0
Complement = 0 0 0 1 1 0 1 1

ADD 1 = 0 0 0 1 1 1 0 0 = 28.

Thus, to arrive at the total elapsed time, merely do a two’s
complement add to the original time written into the timer.
Again, assume time written as 0 0 1 1 0 1 0 0 (=52). With a
divide by 8, total time to interrupt is (52 x 8) + 1 = 417T.
Total elapsed time would be 416T + 28T = 444T, assuming the
value read after interrupt was 1 1 1 0 0 1 0 0 .

After interrupt, whenever the timer is written or read the
interrupt is reset. However, the reading of the timer at the
same time the interrupt occurs will not reset the interrupt flag.

H-6

R/W A3 D7 D6 D5 D4 03 D2 Dl 0 0 R /W A I AO

02 IN

WRITE

Pr o

1. Data written into interval timer is 0 0 1 1 0 1 0 0 = 52iq
2. Data in Interval timer is 0 0 0 1 1 0 0 1 = 25iq

52 - 213- 1 = 52-26-1 = 25
8

3. Data in Interval timer is 0 0 0 0 0 0 0 0 = 0iq
52 - 415- 1 = 52-51-1 = 0

8
4. Interrupt has occurred at 02 pulse #416

Data in Interval timer = 1 1 1 1 1 1 1 1
5. Data in Interval timer is 1 0 1 0 1 1 0 0

two’s complement is 0 1 0 1 0 1 0 0 = 84iq
84 + (52 x 8) = 50010

When reading the timer after an interrupt, A3 should be low so as to
disable the IRQ pin. This is done so as to avoid future interrupts
until after another Write timer operation.

Basic Elements o f Interval Timer
FIGURE H.2

H-7

APPENDIX I

KIM-1 PROGRAM LISTINGS

PAGE

CARD - LQC CODE CARD
3 ; 6 6 6 6 6 6 555 5 5 5 3 3 3 3 3 3 0 0 0 0 0 0
4 ; 6 5 3 0 0
C* ; 6 5 3 0 0
6 ; 6 6 6 6 6 6 5 5 5 5 5 5 3 3 3 3 3 3 0 0
7 ; 6 6 5 3 0 0
8 ; 6 6 5 3 0 0
9 ; 6 6 6 6 6 6 5 5 5 5 5 5 333333 000000

10 ;
11 ;
15 ;
13 ; 000000 000000 3 33333
14 ; 0 0 0 0 3
15 ; — ----- 0 0 0 0 3
16 ; ----- ----- 0 0 0 0 3333 3 3
17 ; ----- ----- 0 0 0 0 3
18 ; 0 0 0 0 3
19 ; 0 0 0000 0 0 0 0 0 0 3 33333
50 ;
51 ;
55 ;
53 ;
54 ;
2 =; ; COPYRIGHT
56 ; MO3 TECHNOLOGY, INC
57 ; DATE OCT 18 1975 REV D
58 ;
59 ;

■3 U
31 ; 6 5 3 0 - 0 0 3 IS AN AUDIO CAS SIETT TAPE
35 ? RECORDER ENTENSION OF THE BASIC
3 3 5 KIM MONITOR
34 ;
35 5 IT FEATURES TWO BASIC ROUTINES
36 ; LDADT-LOAIi MEM FROM AUDIO TAPE
37 ; DUMPT-STOR 1MEM ONTO AUDIO TAPE
3 y ;
39 ! LOADT
40 ; i d= oo IGNORE ID
41 ; i d =f f IGN. ID USE S'A FOP START ADDP
45 ; i d = o i - f e IGN.ID USE ADDR ON TAPE
43 ;
44 ; DIJMPT
43 ; i d =o o SHOULD NOT BE USED
46 ; i d=f f SHOULD NOT BE USED
47 ; ID=01-FE NORMAL ID RANGE
43 ; SAL LSB STARTING 'ADDRESS
49 ; SAH MSB
50 ; EAL LSB ENDING ADDRESS
51 ; EAH MSB
55

PAGE

CARD «
54

LOC : ode CARD
CjCT ; EQUATES
56 ; SET UP POP 653 0 - 0 0 3 I
57 !
58 3RD =*1740 6530 A DATA
59 PADD =*1741 653 0 A BATA DIRECTION
60 SBD =*1748 653 0 B DATA
61 PBDD =*1743 653 0 B DATA DIRECTION
6c‘ CLK1T =*1744 DIV BY 1 TIME
63 CLK8 T =*1745 DIV BY 8 TIME
64 CLK64T =*1746 DIV BY 64 TIME
65 CLKKT =*1747 DIV BY 1084 TIME
66 CLKRDI =*1747 READ TIME DUT BIT
67 CLKRDT =*1746 READ TIME
63
69 0000 ♦ = * 0 OEF

71
MPIJ REb. SAV::' h-’EA IN PAhE 0

7.5 OOEF P'CL ♦ = ♦ + 1 PROGRAM CNT -LOW
73 0 OP 0 PCM ♦ = ♦ + 1 PROGRAM CNT HI
74 00P 1 F’PEG ♦ li ♦ + CURRENT STATUS REG.
75 OOP 8 3PUSER ♦ = ♦ + 1 CURRENT STACK POINT
76 OOP 3 ACC ♦ =♦ +1 accumulator
7 7 OOP 4 YREG ♦ = ♦ + 1 Y INDEX
73 OOP 5 XREG ♦ = ♦ + 1 X INDEX
79
30
31
33

f
KIM PI XED AREA IN PAGE 0

OOP 6 CHKHI ♦ = ♦ +1
33 OOP 7 CHKSUM ♦ = ♦ + 1
34 OOP 3 INL ♦ = ♦ + 1 INPUT BUFFER
35 OOP 9 INN ♦ = ♦ + 1 INPUT BUFFER
y6 OOF A C'G INTL ♦ = ♦ + 1 LSB OP OPEN CELL
87 OOFB PGINTH ♦ = ♦ + 1 MSB OP OPEN CELL
38 0 OF C TEMP ♦ = ♦ + 1
39 OOFD TMPX ♦ = ♦ + 1
90 OOPE CHAP ♦ = ♦ +1
91
98
93

OOFF MODE ♦ = ♦ + 1

; KIM FIXED AREA IN PAGE 83
94
95 010 0 ♦= £ 17E7
96 17E7 CHKL ♦ = ♦ + 1
97 17E3 CHKH ♦ = ♦ + 1 CHK SUM
93 17E9 SAVX ♦=♦+ 3
99 17EC VEB VOLATILE EXECUTION

1 0 0 17P8 CNTL30 ♦ = ♦ +1 TTY DELAY
101 17P3 CNTH30 ♦ = ♦ + 1 TTY DELAY
1 08 17F4 TIMM ♦ = ♦ + 1
1 03 1 7F5 SAL ♦ = ♦ + 1 LOU STARTING ADDRE
1 04 17F6 SAM ♦ = ♦ + 1 HI STARTING ADDRES
1 05 17P7 EAL ♦ = ♦ + 1 LOU ENDING ADDRESS

PAGE 4

C A R D « LOC C O D E C A R D
106 17F8 E R H ♦=♦+1 HI E N D I N G A D D R E S S
107 17F9 ID ♦ = ♦+1
103 !
109 5 I N T E R R U P T V E C T O R S
110 !
111 17FA N M I V ♦ = ♦ + 2 S T O P V E C T O R <STOP*1COO>
112 17FC R S T V R S T V E C T O R
113 17FE IRQV ♦ = ♦ + 2 IRQ V E C T O R <BRK= 1C00>
114 !

PAGE 5

CARD LOC ("DDE CRRD
116 1300 ♦= *1300
117 ;
1 1 © ; in i t VOLATILE EXECUTION BLOCK
119 ; DUMP MEM TO TRPE
120 ;
121 1300 R9 RD DUMPT LDR «*RD LORD ABSOLUTE INST
1££ 13 0£ 3D EC 17 STR VEB
1 £3 1305 £0 32 19 JSR INTVEB
1 £4 ;
1£5 1303 R9 £7 LDR «*£7 TURN OFF DRTRIN PBS
1 £6 IS OR 3D 4£ 17 STR SBD
1 £7 13 on R9 BP LDR «*BP CONVERT PB7 TO OUTPUT
1£8 IS OP 3D 43 17 STR PBDD
1 £9 ;
130 131 £ R£ 64 LDX «*64 100 CHARS
131 1314 R9 16 DUMPT1 LDR «*1 6 SYN CHARTS
1 32 1316 £0 7R 19 JSR OUTCHT
1 33 1319 CR BEX
134 131R no PS BNE DUMPT1
1 35 ;
136 ;
137 131C R9 £R LDR START CHAR
1 33 181E £0 7R 19 JSR OUTCHT
139 ;
140 13£1 RD F9 17 LDR ID OUTPUT ID
141 1324 £0 61 19 JSR OUTBT
14£ ;
143 IS £7 RD F? 17 LDR SRL OUTPUT STARTING
144 182R £ 0 5E 19 JSR OUTBTC ADDRESS
145 132 D RD F6 17 LDR SRH
146 13 3 0 £0 5E 19 JSR OUTBTC
147 ;
143 13 3 3 HD ED 17 DUMPT2 LDR VEB+1 CHECK FOR LAST
149 1336 CD F7 17 CMP ERL DATA BYTE
150 1339 RD EE 17 LDR VEB+£
151 13 3C ED F8 17 SBC ERH
152 1S3C 90 £4 BCC DUMPT4
153 ;
154 1341 R9 £F LDR - s OUTPUT END OF DATA CHR
155 1343 £0 7R 19 JSR OUTCHT
156 1846 RD E7 17 LDR CHKL LAST BYTE HRS BEEN
157 1349 £0 61 19 JSR OUTBT OUT PUT NOW OUTPUT
153 1S4C RD ES 17 LDR CHKH CHKSUM
159 134F £0 61 19 JSR OUTBT
160 ;
161 ;
16£ 185£ RE OE LDX « S 0£ £ CHAR'S
163 1854 R9 04 DUMPT3 LDR «* 04 EOT CHAR
164 1356 £0 7R 19 JSR OUTCHT
165 1359 CR DEX
166 135R DO PS BNE DUMPT3
16? ;

PAGE 6

CARD <* LDC CODE CARD
168 185C 89 0 0 LD8 <*$oo DISPLAY 0000
169 135E 35 F8 STA POINTL FOP NORMAL EXIT
170 I8 6 0 85 FB STA PDINTH
171 1368 4C 4F 1C .IMP START
172 ;
173 1865 3 0 EC 17 DUMF'T 4 JSR VEB DATA BYTE OUTPUT
174 1363 80 5E 19 JSR □IJT BTC
175 ;
176 186B 80 E8 19 JSR INCVEB
177 1S6 E 4C 33 18 JMP DUMPT8
178
179 ; LOAD MEMORY FROM TAPE
180 ;
131 ;
188 1871 OF 19 TAB . WORD LOAD 18
133 1373 89 3D LD8 DT LD8 <*38D INIT VOLATILE EXECUTION
134 1875 3D EC 17 ST8 VEB BLOCK WITH STA AES.
1 35 1373 80 38 19 JSR INTVEB
186 ;
187 137 B 89 4C LD8 <*34C JUMP TYPE PTEN
188 1S7D 3D EF 17 ST 8 VEE+3
189 1880 8 D 71 18 LB A TAB
190 1333 3D FO 17 ST 8 VEB+4
191 1336 8 D 78 IS LDfl TAB+1
198 1839 3D FI 17 ST8 VEB+5
1 93 ;
194 138C 89 07 LDA <*$07 RESET PE5=0 (DATA IN-
195 133E 3D 48 17 ST A SBD
196 ;
197 1391 89 FF SYNC LDA <*$f f CLEAR SRVX FOR SYNC AREA
1 93 1393 3D E9 17 STA SRVX
199 ;
8 00 1896 80 41 18 SYNC 1 J SR RDBIT EFT A PIT
8 01 1399 4E E9 17 L SR S8 VX s h i f t b i t i n t o char
8 08 18 9 C OD E9 17 □R8 S8 VX
8 0 3 189F 3D E9 17 ST8 SAVX
8 04 18 98 8 D E9 17 LDA SRVX GET NEW CHAR
8 05 1385 C9 16 CMP <*316 SYN CHAP-
8 06 13A7 DO ED BNE SYNC 1
8 07 ;
8 03 1389 88 08 LDX <*308 TEST FOP IQ SYN CHAPS
8 09 138® 80 £4 18 SYNC £ JSR RBCHT
810 188E C9 16 CMP <*316
811 13B0 DO DF BNE SYNC IF NOT 10 CHAP RF-SYNC
818 18E8 C8 DEX
£13 13B3 DO F6 BNE SYNC 8
314 ;
815 ?
816 1SB5 8 0 34 18 L0ADT4 JSR RDCHT LOOK FOP START OF
817 18B8 C9 38 CMP <* ♦ DATA CHAR
813 13E9 FO 06 EEC' LOAD11
819 13 PC C9 16 CMP <*$16 IP NOT ♦ SHOULD BE SYN

PAGE:ARD :> LOC iSODE
££0 13 EE DO D1
££1 13C 0 FO F 5
2 ££
££3 13C£ £0 F3 19
£ £4 18C5 CD F9 17
£ £5 13CS FO OD
£££ 18CA AD F9 17
-'£7 18CD C9 0 0
££3 13CF FO 06
££9 13 D1 C 9 FF
£30 1SD 5 FO 17
£31 13D5 DO 9C

£ S3 1807 £0 F3 19
£54 13D A £0 4C 19
£35 13DD 8 D ED 17
£ 56 1SE0 £0 F3 19
£ 9 ? 18E3 £0 4C 19
£ 53 13E6 3D EE 17
£ 39 13E9 4C F3 13
£40
£41 13EC £0 F3 19
£4£ 13EF £ 0 4C 19
£43 13F£ £ 0 F3 19
£44 13F5 3 0 4C 19
£45
£46
£47 18FS A3 0£
£43 13FA £0 £4 1A
£49 13FD C 9 £F
£ 5 0 13FF FO 14
£51 1901 £0 0 0 1A
£5£ 1904 DO £ 3
=• c; 19 06 CA
£54 1907 DO FI
O cr c

£56 1909 3 0 4C 19
£57 19 0C 4C EC 17
553 19 OP 3 0 EA 19

191 £ 4C FA 13
£60
£61 1915 3 0 F5 19
£ 6£ 1913 CD E7 17
£65 191 E DO oc
£64 191 D 3 0 F 3 19
£65 193 0 CD E3 17
c 6 6 193 5 DO 04
£67 1935 A 9 0 0
£63 1937 FO 03
£65
£70 1939 A 9 FF
£71 1 93E 35 FR

CARD - LOC CODE
272 19£D 85 FB
£73 19£F 4C 4F 1C

CARD
BNE SYNC
EEQ L0ADT4

LOAD11 JSR RDEYT
CMP ID
EEQ L0ADT5
LDA ID
CMP iff 00
EEQ L0ADT5
CMP “ 'IFF
EEQ L0ADT6
BNE LOADT

L0ADT5 JSR RDEYT
JSR CHKT
STA VEE+1
JSR RDEYT
JSR CHKT
STA VEE+2’
JMP L0ADT7

L0ADT6 JSR RDEYT
JSR CHKT
J SR RDEYT
JSR CHKT

L0ADT7 LDX “ *i; 03
LOAD13 JSR RDCHT

CMP it ■'
EEQ •_0ADT8
JSR PACKT
ENE
DEX

L0ADT9

ENE LOAD 13

J SR CHKT
.IMP VEB

LOAD 13 J 1:’ INCVEB
JMP L0ADT7

L0ADT8 J SR RDEYT
CMP CHKL
ENE L0ADT9
JSR RDEYT
CMP CHK.H
ENE LOADT9
LDA -BOO
EEQ LOAD10

LOADT9 LDA -BFF
LOAD 10 STA ROINTL

CARD
STA PDINTH
■JMP START

READ ID from TAPE
CDMPARE WITH REQUESTED ID

DEFAULT 00 READ RECORD
ANYWAY

DEFAULT FP IGNOR SA DN
TAPE

GET SA FROM TAPE

SAVX IN VEE+1> £

GET SA BUT IGNORE

GET £ CHARS
GET CHAR OX'*
LOOK FOR LAST CHAR

CONVERT TO HEX
Y=1 NON-HEX CHAR

COMPUTE CHECK SUM
SAVX DATA IN MEMORY
INCREMENT DATA POINTER

END OF DATA COMPARE CHKSUM

NORMAL EXIT

ERROR EXIT

PAGE

LOC

193c!
1935
1933
193B
193E
1.940
1943
1945
1943
194B

194C
194D
194E
1951
1954
1957
1959
195C
195D

195E
1961
1962
1963
1964
1965
1966
1969
196 A
I9 6 0
196E

196p
1371
1973
1974
1976

PAGE

CODE CARD

1 SUBROUTINES FOLLOW
j
5 SUB TO MOVE SR TO VEB+l>3

RD F5 17
1
INTVEB LDR SAL

3D ED 17 STR VEB+l
RD F6 17 LDR SRH
3D EE 17 STR VEB+3
R9 60 LDR «*60 RTS INST
3D EF 17 STR VEB+3
R9 00 LDR ttSOO CLEAR CHKSUI
3D E7 17 STR CHKL
SD E8 17 STR CHKH
60 RTS

? COMPUTE CHKSUM FOR TAPE LORD
RTN USES Y TO SRVX R

RS CHKT TRY
18 CLC
6 D E7 17 RDC CHKL
3D E7 17 STR CHKL
RD E8 17 LDR CHKH
69 00 RDC « * 0 0
3D ES 17 STR CHKH
93 TYR
60 RTS

OUTPUT ONE BYTE USE Y
| TO SRVX BYTE

20 4C 19 □UTBTC JSR CHKT COMP CHKSUM
R3 OUTBT TRY SRVX DRTR B
4R LSR R SHIFT OFF L
4R LSR R
4R LSR R
4R LSR R
30 6F 19 •JSR HEXOUT OUT PUT M SD
98 TYR
3 0 6F 19 JSR HEXOUT OUT PUT LSD
93 TYR
6 0 RTS

; CONVERT LSD OF R TO ASCII
;■ RND OUTPUT TO TAPE

89 OF HEXOUT AND «*0F
C9 OR CMP « $ 0A
13 CLC
3 0 03 BMI HEX1
69 07 RDC «S07

PAGE 10

CARD - LOG ■:d d e C9RD
358 1978 6 9 3 0 HE XI 8 DC “ 13 0
359
3 3 0 □UTPIJT' TO T8 PE OHE ASCII
3 31 CH8 R USE SUE'S OHE + ZRO

3 3 3 1978 8E E9 17 DUTCMT STY SAVY
3 34 197D 8C E9 17 STY S8VY+1
3 35 1980 8 0 03 LDY “ £03 START BIT
3 3*3 1988 80 9E 19 i: h t i J SR □HE
3 37 1935 49 L SR 9 GET DATA BIT
3 38 1 986 BO 06 DCS CHT8
3 =:=■ 1988 80 9E 19 J SR □HE DATA BIT = 1
340 1 98 B 4C =i i 19 _|01P CHT3
341 1 93 E 80 C4 19 : h t 8 J SR ZRO DATA BIT = 0
345 1991 8 0 C4 19 i: h t 3 J SR ZRO
343 1994 88 DEY
344 19 95 DO EB BHE CHT1
345 1997 8E E9 17 LDY SAVY
346 1999 8 C E9 17 LDY S8VY+1
347 19 9 D 60 RTS
348
349
350 OUTPUT 1 TD TAPE
351 9 PULS• ES 133 MICRO SEC EACH

19 9E 88 09 [3HE LDY «B09
354 1990 48 PH8 SAVY 9
355 1991 .=• r 47 1 7 □HE 1 BIT CLKRDI WAIT fo r t i m e OUT
356 1994 10 RB BPL □ME1
-.Cj-7 1996 89 7E LD9 «126
353 1998 3D 44 17 ST8 CLK1T
359 198B 99 97 LD8
360 199D 3D 48 17 ST8 SBD SET PB7=1
361 19B0 8C 47 17 □ HE 8 BIT CLKRDI
368 19B3 10 FB BPL OHF£
363 19B5 99 7E LD8 « 1 S 6
364 19B7 3D 44 17 ST8 CLK1T
365 19B8 89 57 LD9 “ 337
366 19 BC 3D 48 17 ST 8 SBD RESET PB7=0
'367 19BF C8 DEY
363 19 CO DO Dc BNF OHE 1
j 6 9 19 C £ 63 PL8
3 7 0 19C 3 6 0 RTS
371
378
3 7 3 OUTPUT 0 TO T9PE
374 6 PULSES 8 07 MICRO SEC E8 CH
375
376 19C4 98 fir, ZRO LDY **■£06
377 19C6 48 PH8 SAVY 8
3 78 19 C 7 8 C 47 17 SROl BIT CLKRDI
379 19C 8 1 0 PB BPL ZROl

h’ P 11

ARB ti LDC i"□BE CAR
330 19CC A 9 C 3
331 13CE SB 44 17
333 19B1 A 9 A7
333 1 3D 3 SB 43 17
334 13 B 6 3C- 47 17 ZftQc
335 19B9 10 FB
336 19BE A 9 C 3
337 19 BE SB 44 17
333 13E0 A 9 57
339 19E3 SB 45 17
390 19E5 CA
391 13E6 BO BF
393 19E8 63
3 33 19E9 60
394 ;
3 35 ;
3 36 ;
3 37 19EA EE ED 17 INCVEB
393 13EB DO 0 3
3 39 19EF EE EE 17
4 00 19F3 60 INCVE1
4 01 ;
4 03 ;
4 03 ;
4 04 19 F 3 30 34 1A RBBYT
4 05 19F6 30 00 1A
4 06 19F9 3 0 34 1A RBBYT3
4 07 13 EC 30 0 0 1A
4 03 19FF 6 0
4 09 ;
410 ;
411 ;
413 ;
413 1A 0 0 C9 30 PACKT
414 1A03 30 IE
415 1A 04 C9 47
416 1A06 10 1A
417 1 AOS C9 4 0
413 1A0A 30 0 3
419 1AOC 13
430 1A0B 69 09
431 1A0F 3A PACKT1
433 1A1 0 3 A
433 1A11 3A
434 1A13 3 A
435 1A1 3 AO 04
436 1A15 3A PACKT3
437 1A16 3E E9 17
438 1A19 88
439 1A1A DO F9
4 30 1A1C AB E9 17
431 1A1F AO 0 0

L BA «195
ST A CLK1T
LB A “ I-A 7
STA SBB SET PB 7=1
BIT CLKRBI
BPL ZR05
■_BA «1 95
STA CLK1 T
LB A i i ' l *?
STA
BEX

SBB RESET PB7

BNE ZRO1
PL A
RTS

RE STORE A

S'JE T□ INC VEB+1«5

INC VEB+1
BNE INCVE1
INC VEB+5
RTS

SUB TO READ BYTE FROM TAPE

JSR RBCH T
JSR PRCKT
JSR RHCHT
J SR PRCKT
RTS

PRC '< H = H s C I I I NT □ SH v
MS HEX DATA

CMP ^ $ 3 0
EMI PACKT3
CMP «*47
BPL PACKT3
CMP “ £4 0
BMI PACKT1
CLC
ABC «$09
ROL A
POL A
ROL A
RGL A
LDY «®04
ROL A
ROL SAVX
DEV
BNE PACKT3
LBA SAVX
LDY »S00

0

Y=0 VALID HEX CHAR

PAGE 1

ARB « LOG CODE CARD
4 35 1A 31 60 RTS Y=0 V A L ID HEX
4 33 1A55 C8 PRCKT3 I NY Y = 1 NOT HEX
4 34 1A5 3 60 RTS
435 ;
4 36 ; GET \i CHAR FROM TARE AND RETURN
4 37 J '.•11T H CHAR IN A USE SAVX+1 TO ASM CHAR
4 3*3
4 33 .1A 54 3E ED 17 RDCHT STY 5AVX+8
440 1A57 A 5 03 LDX « t 0 3 READ 3 B IT S
441 1A59 50 41 1A RDCHT1 J SR RDDIT GET NEXT DATA D IT
445 1A-_C 4E EA 17 LSR 3A V X +1 RIGHT S H IFT CHAR
443 1A3F 0D EA 17 □RA SAVX+1 OR IN SIGN D IT
444 1 A 3 3 3D EA 17 ST A SAVX+1 REPLACE CHAR
4 45 1A 35 CA DEX
4 46 1A 36 DO E l DNE RDCHT1
447 ;
443 1A 33 AD EA 17 <_DA SA V X +1 MOVE CHAR INTO A
4 4 ‘3 1A3B 5 A ROL A S H IF T OFF P A R ITY
450 1A3C 4A L SR A
451 1A 3 D AE ED 17 LDX SAVX+5
4 55 1A4 0 60 RTS
4 53 5
4 54 ; T H IS SUB GETS ONE D IT FROM
455 ; TAPE AND r e t u r n s I T IN SIGN OF A
4 56 !
4 57 1A41 5C 45 17 RDDIT D IT SDD VIAIT FOR END OF START B IT
458 1A44 10 ED d e l RDDIT
4 59 1A46 AD 46 17 LDA CLKRDT GET START D IT TIME
460 1A49 AO EF LDY “ $FF A - 5 5 6 - T 1
461 1A4E: 8C 46 17 STY CLK64T SET UP TIMER
4 65 5
463 1A4E A0 14 LDY «S14
464 1A50 83 R D D IT 3 DEY DELAY 100 MICROSEC
465 1A51 DO ED DNE R D B IT 3
4 66 5
4 67 1A53 5C 45 17 RDDIT5 D IT SDD
4 68 1A56 30 ED DM I R D B IT 5 WAIT EQR NEXT START B IT
4 69 ;
4 70 1A58 38 SEC
471 1A59 ED 46 17 S DC CLKRDT 5 56 - T 1) - 5 5 6 - T8 :• = T 5 - T1
4 75 1A5C AO FF LDY « * F F
4 73 1A5E 3C 46 17 STY C LK64T SET UP TIMER f q r NEXT D IT
474 5
4 75 1A61 AO 0 7 LDY “ 3 0 7
476 1A6 3 33 RDDIT4 DEY DELAY 50 MICROSEC
4 77
J ?C‘

1A64 DO ED DNE R D D IT 4
■4 i O
4 79 1A66 49 - F EQR « *F E COMPLEMENT SIG N OF A
4 80 1A 68 59 3 0 AND “ 3 80 MASK ALL EXCEPT SIGN
481 1A6A 60 RTS

PftGE 13

CARD LQC CODE CARD
433 5
434 DIAGNOSTICS
435 ! MEMOPy
436 j PLl CAL
437
433
439
490 PLLCftL OUTPUT 166 MICRO SEC
491 ! PULSE STRING
492 j
493 lf t6 B ft9 27 PLLCftL LDft »S27
494 1A6 D SB 42 17 STft SBO TURN OFF OAT IN
495 1R70 ft9 BP LDft «*BF CONVERT PB7 TO
496 1A72 30 43 17 STft PBDD
497 ;
493 1A75 2C 47 17 P’LLl BIT CLKROI
499 1ft 73 10 «=B BPL PLL1
5 00 lft7ft h9 9ft LDft <>154 WAIT 166 MICRO
5 01 lft7C 30 44 17 STft CLK1T
5 02 lft7P ft 9 ft7 LDft l i t ft 7 OUTPUT p B7 = l
5 03 lf tS l SO 42 17 STft SBO
5 04 ;
5 05 1ft 34 2C 47 17 PLL2 BIT CLKROI
5 06 1ft 37 10 FB BPL PLL2
5 07 1ft 39 ft9 9ft LDft “ 154
5 03 1A3B 30 44 17 STft CLK1T
5 09 1A3E ft9 27 LDft <>327 PB7=0
510 1A90 30 42 17 STft SBO
511 1A93 4C 75 1ft JMP PLL1
512 1
513 ;
514 ; INTERRUPTS PAGE 27
515 ;
516 1 ft96 ♦= ♦ + 30164 RESERVED FOR TEST
517 lBFft 6 B 1 ft MMIP27 . WORD PLLCftL
513 IB PC 6 B 1 ft PSTP27 .WORD PLLCftL
519 1BFE 6 B 1 ft IRQP27 .WORD PLLCftL
520 ;

p B5 = t
G'JT PUT

'EC

PAGE 14

RRO « LQC CODE CARD
52£ ;
523 ;
524 ;
525 ;
526 ;
527 ;
528 ;
529 ;
530 ;
531 ;
532 ;
533 ;
534 ;
535 ;
536 ;
537 ;
538 ;
539 ;
540 ;
541 ;
542 ;
543 ;

6*66666 5 5 5 5 5 5 3 3 3 3 3 3 0 0 0 0 0 0
6 5 3 0 0
6 5 3 0 0
6 6 6 6 6 6 5 5 5 5 5 5 3 3 3 3 3 3 o 0
6 6 5 3 0 0
6 6 5 3 0 0
6 6 6 6 6 6 5 5 5 5 5 5 3 3 3 3 3 3 0 0 0 0 0 0

000000 000000 222222
0 0 0 0 2

------ 0 0 0 0 2
------ 0 0 0 0 £22222
------ 0 0 0 0 p

0 0 0 0 2
000000 000000 22£2£2

CODE CORD

PAGE 1

ARD « LOC
5 4 5
5 4 6
5 4 7
54S
5 4 9
5 5 0
551
55c1
5 5 3
5 5 4

COPYRIGHT
MOS TECHNOLOGY IN C .
DATE OCT 13 1 9 7 5 REV E

K IM : TTY INTERFACE
: KEYBOARD INTERFACE
s 7 SEG 6 D IG IT D IS P LA Y

5 5 6
5 5 7
5 5 3
5 5 9
5 6 0
561
5 6 3
5 6 3
5 6 4
5 6 5
5 6 6
5 6 7
5 6 8
5 6 9
5 7 0
571
57c1
5 7 3
5 7 4
5 7 5
5 7 6

TTY CMDSs
G GOEXEC
CR OPEN NEXT CELL
LF OPEN PREV. CELL

MODIFY OPEN CELL
SP OPEN NEW CELL
L LOAD OBJECT FORMAT >
Q DUMP FROM OPEN CELL ADDR TO H I L IM IT
RO RUB OUT - RETURN TO START ':KIM>

< '.ALL ILL E G A L CHAR ARE IGNORED)')

KEYBOARD HMDS:
A DDR SETS MODE TO MODIFY CELL ADDRESS
DATA SETS MODE TO MODIFY DATA IN OPEN
STEP INCREMENTS TO NEXT CELL
RST SYSTEM RESET
RUN GOEXEC
STOP S 1C 00 CAN BE LOADED INTO NMIV TO

USE STOP FEATURE
PC D IS P LA Y PC

5 7 9
5 3 0
531

CLOCK IS NOT D ISABLED IN SIGMA 1

PAGE

ARD - LOC CODE CARD
534 1C 0 0 ♦ = * 1
535 ;
536 5
537 1C 00 35 F3 SAVE STft
533 1C 03 68 F’L ft
539 1C 03 35 F I STft
530 1C 05 63 Sft V E 1 F’L ft
531 1C 06 35 EF STft
533 1C 08 85 Fft STft
533 1C OR F’L ft
534 1C OB 35 FO STft
535 ic o n 85 PE STft
536 1C OF 34 F 4 3 ft V EE STY
537 1C 11 36 F5 3 TX
533 1C 13 Eft TSX
533 1 C 14 36 F5 STX
6 0 0 1C 16 30 38 IE JSR
6 01 1C 13 4C 4F 1C JMP
6 03 ;
6 03 1C 1C 6C Fft 17 nm i t JMP
604 1C1F 6C PE 17 IRQT JMP
6 05 5
6 06 1C 33 ft3 FF RST LDX
6 07 1C 34 3ft TXS
603 1C 35 36 P ;£• STX
6 0 3 1C 37 30 83 IE JSR
61 0 ;
611 ;
613 1C 3ft ft 3 FP DE TCP’S LDft
613 1C3C 8D P3 17 STft
614 1C3F ft 3 01 LDft
615 1C 31 3C 4 0 17 DET1 E IT
616 1C 34 DO 13 EME
617 1C 36 30 F3 EMI
613 1C 33 ft3 PC LDft
613 1C 3 ft 13 DET 3 CLC
630 1C3B 63 01 ft DC
631 1C 3D 30 0 3 BCC
633 1C3F EE F3 17 INC
633 1C 43 AC 4 0 17 DET2 LDY
634 1C 45 10 P'3 EF’L
635 1C47 3D P3 17 STft
636 1C 4 ft ft3 03 LDX
637 1C4C 50 6 ft IE J SR
633 ;
633 ;
630 ;
631 ;
633 ;
633 ;
6 34 5 MAKE
6 35 !

0 0

ACC KIM ENTRY VIA STOP <NMI')
□R ERK <IRQ}

PREG
KIM ENTRY VIA JSR <ft LOST:'

PCL
F’OINTL

F-CH
POINTH
YREG
XREG

SPUSER
INI TS
START

<NM IV- NON-MASKABLE INTERRUPT TRAP
IRQV :■ INTERRUPT TRAP

«*FF KIM ENTRY VIA RST

SPUSER
INITS

«*FF COUNT START EIT
CNTH30 ZERO CNTH30
-■ £01 MASK HI ORDER BITS
SAD TEST
START KEYED SSW TEST
DET1 START EIT TEST
ttSFC

THIS LOOP COUNTS
«*01 THE START EIT TIME
DET 2
CNTH30
SAD
DET 3
CNTL30

CHECK FOR END OF START EIT

«$08
GETS GET REST OF THE CHAR

TEST CHAR HERE

TY.-KE SELECTION

PAGE 17

CARD « LOC CODE
6 3 6 1C4F 80 8C IE
6 3 7 1C58 A9 01
6 3 8 IC 5 4 8C 4 0 17
6 3 9 1C 57 DO IE
6 4 0 1C 59 80 £F IE
641 1C5C A£ OA
6 4 8 1C5E 80 31 IE
6 4 3 1C61 4C AF ID
6 4 4
6 4 5 1C 64 A9 00
6 4 6 1C 66 85 F8
6 4 7 1C 68 85 F9
6 4 8 1C6A £0 5A IE
6 4 9 1C6D C9 01
6 5 0 1C6F FO 06
651 1C71 £0 AC IF
6 5 8 1C 74 4C DB ID
6 5 3
6 5 4
6 5 5
6 5 6
6 5 7 1C 77 £0 19 IF
6 5 8 1C7A DO D3
6 5 9 1C7C A9 01
6 6 0 1C7E 8C 4 0 17
661 1C81 FO CC
6 6 8 1C 83 £0 19 IF
6 6 3 1C 86 FO F4
6 6 4 1C 88 £0 19 IF
6 6 5 1C SB FO EF
6 6 6
6 6 7 1C 3D £0 6A IF
6 6 8 1C90 C9 15
6 6 9 1C 98 10 BB
6 7 0 1C 94 C9 14
671 1C 96 FO 4 4
6 7 8 IC 9 8 C9 10
6 7 3 1C9A FO £C
6 7 4 1C9C C9 11
6 7 5 1C9E FO £C
6 76 ICAO C9 1 £
6 7 7 1C A3 FO £F
6 7 8 1CA4 C9 13
6 7 9 1CA6 FO 31
6 3 0 1C A3 OA
681 1CA9 OA
6 3 8 1C A A OA
6 3 3 1CAB OA
6 3 4 1C AC 35 FC
6 3 5 1CAE A£ 04
6 3 6 1CB0 A4 FF
6 3 7 IC B 3 DO OA

CARD
START JSR IN IT 1

LDA « 30 1
B IT SAD
BNE TTYKB
JSR CRLF
LDX « $0 A
JSR PRTST
JMP SH0W1

5
CLEAR LDA « * 0 0

STA IN L
STA INH

READ JSR GETCH
CMP « 3 0 1
BE0 TTYKB
JSR PACK
JMP SCAN

j
5 M AIN R OTINE 1
! AND D IS P LA Y
f
TTYKB JSR SCAND

BNE START
TTYKB1 LDA «B01

B IT SAD
BEQ START
JSR SCAND
BEQ TTYKB1
JSR SCAND
BEQ T T Y K B 1

9
GETK JSR GETKEY

CMP « * 1 5
BPL START
CMP « S 1 4
BEQ PCCMD
CMP « *1 0
BEQ ADDRM
CMP
BEQ DATAM
CMP «'S1£
BEQ STEP
CMP « 4 1 3
BEQ GOV

DATA ASL A
ASL A
ASL A
ASL A
STA TEMP
LD ’K « * 0 4

DATA1 LDY MODE
BNE ADDR

PRT CR LF
TYPE OUT K IM

CLEAR INPUT BUFFER

GET CHAR

KEY BOARD

IF A=0 NG KEY

D IS P LA Y PC
ADDR MODE=l

DATA M O D E-1

STEP

RUN

S H IF T CHAR IN TO HIGH
ORDER N IB B L E

STORE IN TEMP
TEST MODE 1=AEDR
MODE=0 DATA

PAGE 1 3

c a r d L O C C O D E C A R D
6 3 3 1 C B 4 PI F R L D R •:.PQ I N T L * G E T D A T A
6 c’3 1 C B 6 06 F C R S L T E M P S H I F T C H R P
6 9 0 1 C B 8 3 R P O L R s h i f t d a t a
6 9 1 1 C B 9 91 P R S T R C P O I N T L :• j *■ S T O R E O U T D R T R
6 9 3 1C BE 4 C C 3 1C J M P D R T R 3
6 9 *• !l
6 9 4 1C BE OR R D D R R S L R S H I F T C H R P
6 9 5 1 C B F 3 6 F R P O L P O I N T L S H I F T R D D R
6 9 6 1 C C 1 3 6 F B P O L P O I N T H S H I F T R D D R H I
6 9 7 I C C 3 C R D R T R 3 B E X
6 9 3 I C C 4 D O E R B N E D R T R 1 D O 4 T I M E S
6 9 9 1 C C 6 F O 03 B E Q D A T R M 3 E X I T H E R E
7 0 0 ;
7 01 1 C C 3 R 9 01 R D D R M L D R - 3 0 1
7 03
7 0 3
7 04

lCCfl D O 03 B N E D R T R M 1

1 C C C R 9 0 0 D R T R M L D R - 3 0 0
7 05 1 C C E P;Cj F F D R T A M 1 S T R M O D E
7 06 1 C D 0 4 C 4 F 1C D R T R M S J M P ST A P T
7 0 7
7 03 1C D 3 3 0 6 3 IF S T E P J S R I N C P T
7 09 icn6 4 C 4 F 1C J M P S T A R T
7 1 0
7 1 1
7 1 3

1 C D 9 4C C 8 ID G O V J M P G O E X E C

7 1 3
7 1 4 D I S P L A Y P C B Y M O V I N G
7 1 5 P C T O P O I N T
7 1 6
7 1 7 1C DC R 5 E F P C C M D L D R P C L
7 1 3 1C B E QC| F R S T R P O I N T L
7 1 9 1 C E 0 R 5 F O L D R F’C H
7 3 0 I C E S 3 5 F B S T R P O I N T H
731 1C E 4 4 C 4 F 1C J M P S T A R T
f* c c !
7 2 3 L O R D P A P E R T A P E F R O M T T Y
7 3 4
7 3 5 1 C E 7 3 0 5 R IE L O R D J SP G E T C H L O O K F O R F I R S T C H R P
7 3 6 1 C E A C 9 3B C M P - 3 3B S M I C O L O N
7 3 7 1C E C D O F 9 B N E L O R D
•** dtf 1 C E E R 9 00 L O R D S L D R i*$Q0
7 3 9 1 C F 0 pcj c-? S T R C H K S U M
7 3 0
7 31"7 -1 -1

1 C F 3 35 F 6 S T R C H K H I

1C F 4 3 0 9 D IF J SP G E T B Y T G E T B Y T E C N T
7 3 3 1C> 7 HH T R Y S A V E IN X I N D E X
734
“7

1C F 8 3 0 91 IF J SP C H K C O M P U T E CHkSlJM

7 3 6 1 C F B 3 0 3D IF J SP G E T B Y T G E T A D D P F S S HI
7 37 1 C F E s F B S T R P O I N T H
7 “• O 1 D 0 0 3 0 91 IF J S P CHk'
7 39 ID 0 3 3 0 9 D IF J SP G E T B Y T G E T A D D R E S S L O

F'RGE 1 9

CRRD « LOC i30D E
7 4 0 ID 06 0 5 FR
7 4 1 ID 03 2 0 31 I F
7 4 2
7 4 3 ID OB 3R
7 4 4 1D0C FO OF
7 4 5
7 4 6 1 D OE 2 0 9D I F
7 4 7 1 D 11 91 FR
7 4 y 1 D 13 2 0 91 I F
7 4 9 ID 16 2 0 6 3 IF
7 5 0 1 D 19 CR
7 5 1 1D1R DO F ̂
7 5 c' 1D1C ES
7 5 3
7 5 4 1 D 1D 2 0 9 D IF
-7 err 1D 2 0 C5 F 6
7 5 6 ID 2 2 DO 17
7 5 7 ID 2 4 2 0 9D I F
"7 eji~i 1 D 2 7 C5 F 7
7 5 9 1 D 2 9 DO 13
7 6 0
7 6 1 1D 2B 0 ft
7 6 2 1 D2C DO B 9
7 6 3
7 6 4 1D2E R2 OC
7 6 5 1D 3 0 R9 2 7
7 6 6 ID 3 2 0D 4 2 17
7 6 7 ID 35 2 0 31 IE
7 6 3 ID 3 0 4C 4 F 1C
7 6 9
7 7 0 1D 3B 2 0 9D I F
7 7 1 1D 3E ft 2 11
7 7 2 1D 4 0 DO EE
7 7 3
7 7 4
7 7 5
7 7 6
7 7 7
77R ID 4 2 R9 0 0
7 7 9 ID 4 4 0 5 F 3
7 8 0 ID 4 6 0 5 F 9
7 0 1 ID 4 0 R9 0 0
7 0 2 1D4R F 6
7 1D4C 0 5 F 7
7 0 4
7 0 5 1D4E 2 0 2 F IE
7 0 6 1D51 R9 3B
7 0 7 ID 5 3 2 0 RO IE
7 y y ID 5 6 R5 FR
7 0 9 1 D 50 CD F 7 17
7 9 0 1D 5B R5 FB
7 9 1 1D5D ED F 0 17

CRRD
STR POINTL
.J SR CHK

TXR
BEQ LORD 3

LORD 2 J SR GETBYT
STR cPOINTL:-
J SR CHK
J SR INCPT
DEX
BNE LORDS
I NX

LORDS JS R GETBYT
CMP CHK HI
BNE LORDE1
JS R GETBYT
CMP CHKSUM
BNE LORDER

TXR
BNE LORD

L0RD7 L DX iffOC
LORDS LDR « S 2 7

STR SBD
JSR PRTST
JMP STRRT

LORDE1 J SR GETBYT
LORDER L DX - n 1

BNE LORDS

; DUMP TO TTY
; FROM OPEN CELL

TD L IMHL j LIMHH

DUMP LDR if f 00
STR INL
STR INH

DUMP 0 LDR if f 0 0
STR CHK HI
STR CHKSUM

DUMP 1 J SR CRLF
LDR «®3B
JS R OUTCH
LDR POINTL
CMP ERL
LDR POTNTH
SBC ERH

IF CNT=0 DONT
GET RNY DRTR

bE r DRTR
V STORE DRTR

NEXT RDDRESS

X = 1 DRTr r e c o r d
X = 0 LRST RECORD
COMPRRE CHkSUM

X = 0 L R S T RE C0 RD

X-OFF KIM

DISRBLE DRTR IN

DUMMY
X -G FF ERR KIM

RDDRESS

CLERR RECORD COUNT

CLERR CHKSUM

PRINT CR LF
PRINT SMICOLON

TEST POINT GT OR ET
HI L IM IT GO TO EX IT

PAGE S O

ARB “ LOG iso d e CARD
7 9 c' 1D60 90 IS EGG BUMP 4

7 9 4 ID 62 A9 0 0 LDA a 3 0 0 PRINT LAST RECORD
7 9 5 1D64 2 0 3E IE J SR PRTEYT 0 BYTES
7 9 b 1D67 2 0 G G IF J SR QPFM
7 9 7 1 D6 A 2 0 IE IE .J S-P CRTPUT
7 9 8 ;
7 9 9 1 D6 D A 5 Ff, L DA GHK HI PRINT GHKSUM
8 0 0 1 D6 P 2 0 3E IE J SP PRTEYT FOR LAST RECORD
8 01 ID 72 A 5 F7 LDA f:HKSUM
3 02 1D74 2 0 3E: IE JSR PRTEYT
3 08 ID 77 4C 6 4 1 G JMP CLEAR
3 04 ;
8 05 1 B7A H9 13 DU MR 4 LDA - E l 3 pR IN T 2 4 BYTE CNT
3 Ob 1D7C AA TA’:' SAVE AS INDEX
3 07 1 D7D 3 0 3E IE JSR PRTEYT
3 03 1 DSO 2 0 91 IF JSR CM*
8 09 IDS 3 2 0 IE IE JSR PRTPNT
31 0 ;
311 ID 36 AO 0 0 DUMPS LDY - £ 0 0 PRINT 2 4 BYTES
3 1 2 ID 33 El FA LDA CPQIMTL'5 j Y GET DATA
3 1 3 1D3A 2 0 3B IE J SR PRTEYT PRIN T DATA
3 1 4 1D3D 2 0 91 IF J SR GHK COMP GHKSUM
8 1 5 1D90 2 0 6 3 IF J SR INGPT INCREMENT POINT
8 1 6 ID 93 GA BEX
3 1 7 ID 94 DO FO BNE DUMP 2
3 1 3 ;
3 1 9 ID 9 6 A5 F 6 LDA CHKHI PRIN T GHKSUM
3 2 0 ID 98 2 0 3E IE JSR PRTEYT
321 1B9B A5 F 7 LDA GHK SUM
3 2 2 1D9D 20 3E IE JSR PRTEYT
3 2 8 1 DA 0 E 6 FS ING I ML INCREMENT RECORD CNT
3 2 4 1DA2 DO 02 BNE DUMPS
3 2 5 1DA4 E6 F 9 IMG IMH
3 2 6 1DA6 4G 4 3 ID DUMP 3 JMP DUMP 0
8 2 7 ;
3 2 8 1DA9 2 0 GC IF SPACE JSR □PEN □PEN NEW CELL
y y 9 1 BAG 2 0 £F IE SHOW JS R CRLF PR IN T GR LF
8 3 0 1DAF 2 0 IE IE SHCW1 JSR PRTPNT
331 1 DBS 2 0 9E IE JS R □ UTSP PRT SPACE
3 3 2 1BB5 AO 0 0 LDY « * 0 0 PR IN T DATA S P E C IF I E D
3 3 3 1BB7 El FA LDA <POIM TL>? Y BY POINT AD = LDA EXT
3 3 4 1DB9 2 0 3E IE JS R PRTEYT
8 3 5 1DBC 2 0 9E IE J SR □UTSP PRT SPACE
3 “‘6 1DBF 4G 6 4 1 C JMP CLEAR
8.97 5
3 3 8 1 DC2 2 0 6 3 IF RTRN JS R IMGPT □PEN NEXT CELL
3 3 9 1DC5 4G AG ID JMP SHOW
34 0 ;
341 1 DCS A 6 F 2 GOEXEC LDX SPIJSER
3 4 2 1BCA 9A TXS
9 4 9 1 DGB A5 FB LDA POINTH PROGRAM RUNS f r o m

PAGE £1

CARD « LOC CODE CARD
344 1DCD 43 PHA
345 1DCE A5 FA LDA
346 1DD0 43 PHA
347 1DD1 A5 F I LDA
343 1DD3 48 PHA
343 1DD4 A6 F^ LDX
350 1DD6 A4 F4 LDY
351 1DD3 A5 F3 LDA
35£ ID DA 40 RTI
353 ;
354 1DDB C9 £0 SCAN CMP
355 1DDD FO CA BEQ
356 1DDF C9 7F CMP
357 1DE1 FO IB BEQ
353 1DE3 C9 OD CMP
353 1DE5 FO DB BEQ
360 1DE7 C9 OA CMP
361 1DE9 FO 1C BEQ
363 1 DEB C9 c'E CMP
363 1 DED FO 56 BEQ
364 1DEF C9 47 CMP
365 1DF1 FO D5 BEQ
366 1DF3 C9 51 CMP
367 1DF5 FO OA BEQ
363 1DF7 C9 4C CMP
863 1DF9 FO 09 BEQ
370 1DFB 4C 6 A 1C -IMP
871 ;
373 1DFE 4C 4F 1C STV •JMP
373 1E01 4C 43 ID DUMPV .IMP
374 IE 04 4C E7 1C LOADV JMP
375 ;
376 IE 07 33 FEED SEC
377 IE 03 A5 FA LDA
373 1E0A E9 01 SBC
373 1E0C 35 FA STA
3 3 0 1E0E BO 03 BCS
331 1E1 0 C6 FB DEC
333 1E 1 £ 4C AC ID FEED1

■
JMP

334 IE 15 AO 0 0 MODIFY LDY
335 IE 17 A5 FQ LDA
336 IE 19 91 FA STA
387 1E1B 4C Cc‘ ID JMP
383
333

□PEN CELL ADDRESS
PDINTL

PREG

XPEG RESTORE REGS
YREG
ACC

tt*£0 DPEN CELL
SPACE
«$7F RUB DUT <>: I M I­
STY
«S0D NEXT CELL
RTRN
i*$0A PREV CELL
FEED

MODIFY CELL
MODIFY
« 'G GO EXEC
GOEXEC
« 'Q DUMP FROM OPEN CELL TO H I l
DUMPV
“ • L LOAD TAPE
LOADV
READ IGNORE ILLEGAL CHAR

START
DUMP
LOAD

POINTL DEC DOUBLE BYTE
«S01 AT POINTL AND POINTH
POINTL
FEED1
POINTH
SHOW

ttSOO GET CONTENTS OF INPUT BUFF
INL INL AND STOP IN LOC
•"POINTL> > Y SPECIFIED BY POINT
RTRN

I MIT

;
; END OF MAIN LINE

PAGE 2

APD LOG CODE CARD
391 ; SUBROUTINES FOLLOW
99? ;
393 5
394 ;
395 ! SUE: TO PRINT POINTL j POINTH
393 ;
397 IE IE R5 EE: PPTPNT LLA POINTH
393 1E £ 0 20 3B IE JSP PRTBYT
399 IE 23 20 91 1p JSP CHK
900 1E23 A 5 FA LDA POINTL
9 01 IE £3 20 3B IE •JSP PRTBYT
90S 1E2B 2 0 91 IF JSP CHK
903 1E2E 60 RTS
904 ;
905 ; PRINT STRING OF ASCII CHAR FROM
903 : TOP+X TO TOP
907 ;
9 03 1E2F A2 07 CRLF LDX “ t 07
909 1E 31 BD D5 IF PRTST LDA TOP>X
910 IE 34 20 AO IE JSP OUTCH
91 1 1E37 CR DEX
912 1E33 1 0 F7 BPL PRTST STOP ON INDEX ZERO
913 1E3A 3 0 PPT1 RTS-
914 j
915 ; PRINT 1 HEX BYTE AS TWO ASCII CHAR-':
913 ;
917 1E3B 35 FC PRTBYT STA TEMP
918 1E3D 4A LSR A SHIFT CHAR RIGHT 4
919 1E3E 4A LSP A
92 0 1E3F 4A LSR A
921 1E4 0 4A LSR A
922 1E41 2 0 4C IE JSR HEXTA CONVERT TO HEX AND
923 1E44 A 5 FC LDA TEMP GET OTHER HALF
924 1E43 2 0 4C IE JSP HEXTA CONVERT TO HEX AND
925 1E49 A5 Ff: LDA TEMP RESTORE BYTE IN A i
923 1E4B 3 0 RTS
927 ;
928 1E4C 29 OF HEXTA mH[i « $ 0F MASK HI 4 BITS
929 1E4E G 9 OR CMP iit flM
9 3 0 1E5 0 1 3 C L C
931 1E51 3 0 fl £‘ DM I HEXTA1
9 3 2 IE 5? 39 07 ADC - 3 0 7 ALp Hh HEX
9 3 3 1E55 39 3 0 NEXTA1 ATC " f 30 DEC HEX
934 1E57 4C AO IE JMP OUTCH PRINT CHAR
9 35 ;
933 ; GET 1 CHAR FROM TTY
9 37 ; RETURN FROM SUE: WITH CHAR IN A
933 ; X IS PRESERVED AND Y RETURNED = FF
939 ;
94 0 1E5A 33 FP GETCH STX TNPX SAVE X- REG
941 1E5C A 2 03 LDX “ ij3 SET UP 3 BIT CNT
942 1E5E A 9 01 LDA -1 0 1

PAGE 53

APD LOG SODE CRRD
94 3 1E 6 0 6C 4 0 17 3ET1 E' IT SAD
344 1E6 3 no 55 BNE GET 6
945 1E65 3 0 F'9 EMI GET 1 URIT FDR START BIT
946 IE 67 50 D4 IE J SR DELAY DELAY 1 BIT
947 1E6 A 5 0 EE IE GET5 .J SR DEHALF DELRY 1 5 BIT TIME
946 1E6 D RD 4 0 17 GETS LDR SRD GET 8 BITS
949 1E7 0 59 3 0 AND “ 38 0 MASK' OFF LOU ORDER EITS
95 0 1E75 46 FE L SR CHAR SHI^T RIGHT CHARACTER
951 1E74 05 FE DPR CHRP
956 IE 76 85 FE STR CHAR
95 3 1E78 5 0 D4 IE J SR DELAY DELRY 1 BIT TIME
954 1E7B CR HEX
9 5 5 1E7C DO EF BNE GET5 GET NEXT CHRP
356 1E7E 5 0 EE IE J SR DEHRLF EXIT THIS RTN

958 1E 81 R6 FD LDX TMPX
959 IE 83 R5 FE LDR CHAR
960 IE 85 5R POL R SHIFT OFF PARITY
961 IE 36 4R L SE­ R
965 IE 87 60 3ET6 PTS

964 INITIALIZATION FOR SIGMA
965
966 IE 83 R5 01 IN ITS LDX i*3 01 SET LE MODE TO RDDR
967 1E3A 86 FF STX NODE
968
9 6 9 1E3C R5 0 0 INIT 1 LDX «®oo
970 1E8E 8E 41 17 STX PRDD FOP SIGMA USE SflDD
971 1E31 R5 3F LDX “ 33F
3 7 c' IE 93 3E 4 3 17 STX PEDD FOP SIGMA USE SBDD
973 IE 96 R5 07 LDX “ 30?’ ENABLE DATA IN
974 IE 98 8E 45 17 STX SED OUTPUT
975 1E9E D3 OLD
976 1E9C 78 SE-I
III. 1E9D 60 RTS

979 PRINT 1 CHRP C:HRP=R
980 X IS PRESERVED Y RETURNED = FF
981 QIJTSP P R IN T S ' 1 SPACE

983 1E9E R9 5 0 [DUTSP LDR “ 35 0
984 1EA0 55 FE DUTCH STR CHRP
985 1ER5 36 FD STX TMPX
986* 1ER4 5 0 D4 IE JSP DELAY 10 11 BIT CODE SYNC
9 8 7 1ER7 RD 4 5 17 LDR SED START BIT
988 1 ERR 5 9 FE AND “ 3FE
989 1ERC 3D 4 5 17 STR SED
9 30 1ERF 5 0 D 4 IE JSP DELAY
991 1EE5 R5 03 LDX - 3 0 8
9 9 5 1EB4 RD 45 17 □UT1 LDR SED DATA BIT
99 3 1EE7 59 FE AND « 3 F E
994 1EE9 46 FE LSE CHRP

PAGE 54
: rrd - LOG CODE CRRD

995 IEEE: 69 0 0 ADC “ TOO
996 1EBD 3D 42 17 STA 2 ED
997 1EC0 2 0 D4 IE J SR DELRY
998 1 EC 3 CR DEX
999 t EC 4 DO EE BNF GUT 1

1000 IEC6 RD 4 2 17 LDR 2ED STOP BIT
1001 1 EC 9 0 9 01 GRA -SOI
1002 1ECE 3D 42 17 STA 2 ED
1008 1ECE 20 D4 IE J S'P DELRY 2TQP BIT
1 004 IED1 R6 FB LDX TMPX RESTORE ‘INDEX
1005 1ED3 6 0 FT 2
1 006
1 007 DELRY l BIT TIME
1008 AS DETERMEND BY DETCPS
1 0 09
1010 1EH4 RD F3 17 DELRY LDR CNTH3 0 fR I2 LOOP SI MU! _RTE2 THE
1011 1ED7 3D - 4 17 STA TIMM DETCD2 2ECTIGN AMD '.JILL DELRY
1 0 12 12 DA RD F2 17 LDR CNTL30 1 BIT TIME
1013 1EDD 33 DE2 2 EC
1014 IEEE E9 01 DE4 2 EC « t o i
1015 1 EE 0 EO 0 3 EC 2 BE 3
1016 1EE2 CE F4 17 DEC TIMH
1 017 1EE5 RC F4 17 DE3 LDY tim h
1018 1EE8 10 F3 EPL DE8
1019 1EER 6 0 RTS
1 02 0
1021 DELRY HRLF BIT TIME
1022 IEEE RD F3 17 DEHRLF LDR CNTH30 DOUBLE RIGHT SHIFT OF DELRY
1 023 IEEE 3D F4 17 STR TIMH CONSTANT FOR R DIV BY 2
1 024 1EF1 RD F2 17 LDR CNTL30
1 025 1EF4 4R L 2R R
1 026 1EF5 4E F4 17 LSR TIMH
1027 1EF8 9 0 E3 BCC DE2
1 028 1EFR 09 3 0 □PR «330
1029 1EFC EO EO EC 2 DE4
103 0
1031 2UE TG DETERMINE IF KEY IS
1 032 DEPRE;;:2ED OR COMDITION OF SSW
1 033 KEY NOT DEP OR TTY MODE R = 0
1 034 KEY DEP OR KB MODE R NOT ZERO
1 035
1 036
10 37 1EFE RO 0 3 Rk LDY - 8 0 3 3 ROMS
1 038 IF 00 R2 01 LDX —1 01 DIGIT 0
1039
1040 IF 02 R9 FF ONEKEY LDR « tF F
1041 IF 04 3E 48 17 AK1 STX SED OUTPUT DIGIT
1 042 IF 07 E3 I NX GET NXT DIGIT
1043 IF 08 E8 I NX
1044 IF 09 2 D 4 0 17 RNB SAD INPUT SEGMENTS
1045 1F0C 33 DEY
1 046 1F0D DO c 5 ENE hK 1

PAGE £5
CARD « LDC CODE CARD

1047 ;
1 043 IF OF AO 07 LDY «$0 7
1 049 1 FI 1 8 C 43 17 STY SBD
105 0 ;
1 051 1 FI 4 09 80 □R R «*30
1 053 1F13 49 FF EOR « tF F
1 053 1F18 3 0 RTS
1 054 ;
1 055 ; SUB OUTPUT TO 7 SEGMENT DISPLAY
1053 ;
1057 IF 19 RO 00 SCRUB LDY «tOQ GET DATA SPECIFIED
1 053 1 FI B B1 FR LDR <POINTL'> 9Y BY POINT
1 059 IF 1D 35 F9 STR INH SET UP DISPLAY BUFFER
103 0 IF IF R9 7F SCRNDS LDR - t 7 F CHANGE SEG
1031 1F31 SD 41 17 STR F'RDD TO OUTPUT
1 03 £ ;
1 03 3 IF 34 R2 09 LDX « t 0 9 INIT DIGIT NUMBER
1 034 1F33 RO 03 LDY is* 03 OUTPUT 3 BYTES:
1 035 5
1 033 IF £8 B9 F 8 00 SCRND1 LDR INL j Y GET BYTE
1 037 1F3B 4R LSR R GET MSD
1 033 1F3C 4R LSR R
1 039 1F£D 4R LSR R
107 0 1 F£E 4R LSR R
1071 1F3F 30 43 IF JSR CONVD OUTPUT CHAR
1 073 IF 33 B9 F 8 00 LDR INLf Y GET BYTE AGAIN
1 073 1F35 29 OF AND «*0F GET LSD
1 074 1F37 3 0 43 IF JSR CONVD OUTPUT CHAR
1 075 1F3A 33 DEY SET UP FOR NXT BYTE
1 073 1F3B DO EE ENE SCANB1
1077 IF 3D SE 42 17 STX SBD ALL DIGITS OFF
1 073 1F 4 0 R9 00 LDR - t o o CHANGE SEG
1 079 1F43 3D 41 17 STR PRDD TO INPUTS
103 0 1F45 4C FE IE JM* RK GET ANY KEY
1031 ;
1 033 ; CONVERT RND DISPLAY HEX
1 033 ; USED BY SCRND ONLY
1 034 ;
1 035 IF 43 84 FC CONVD STY TEMP SAVE Y
1 033 1F4R R3 TRY USE CHAR AS INDEX
1 037 1F4B B9 E7 IF LDR TABLE»Y LOOK UP CONVERSION
1 033 1F4F RO 00 LDY - t o o TURN OFF SEGMENTS
1 039 1F50 3C 40 17 STY SAD
1090 1F53 3E 43 17 STX SBD OUTPUT DIGIT ENABLE
1091 1F53 3D 40 17 STR SRD OUT PUT SEGMENTS
1 093 !
1 093 IF 59 RO 7F LDY - t 7F DELAY 500 CYCLES APPROX
1094 1F?B 33 C0NVD1 DEY
1 095 1F5C DO FD ENE CONVD1
1 093 ;
1 097 1F5E E8 I NX GET‘ NEXT DIGIT NUM
1093 1F5F ES I NX ADD 3

CARD
LDY TEMP RESTORE Y

;
;

RTS
SUB TO INCREMENT POINT

INCPT INC POINTL
BNE INCPT£
INC POINTH

INCPT£ RTS
GET KEY FRDM KEY BOARD
RETURN WITH R=KEY VALUE
A GT. 15 THEN ILLEGAL OR NO KEY

CARD « LDC CODE
1 099 1F60 A4 FC
1100 1F62 6 0
1101
11 02
1103
1104 IF 63 E6 FA
1105 1F65 DO 02
11 06 1F67 E6 FB
1107 1F69 60
11 OS
11 09
1110
1111
1112
1113
1114 1F6A A2 21
1115 1F6C AO 01
1116 1F6E 2 0 02 IF
1117 1F71 DO 07
1115 1F73 EO 27
1119 IF 75 DO F5
1120 1F77 A 9 15
1121 1F79 6 0
1122 1F7A AO FF
1123 1F7C OA
1124 1F7D BO 03
1125 1F7F C 3
1126 1FS0 10 FA
1127 1FS2 3 A
1128 1F83 29 OF
1129 IF 35 4A
1130 IF 36 AA
1131 1F87 98
1132 1F8S 1 0 03
1133 1F 3 A IS
1134 1 FSB 69 07
11 35 1F8D CA
113 6 1F8E DO PA
1137 1F9 0 6 0
11 33
1139
1140
1141 1F91 13
1142 1F92 65 F7
1143 1F94 35 F7
1144 1F96 A 5 F6
1145 1F93 69 0 0
1146 1F9A 35 F6
1147 1F9C 6 0
1143
1149
1150

GETKEY LDX «®21
GETKE5 LDY «®01

JSR □NEKEY
BNE KEYIN
CPX «S£7
BNE GETKE5
LDA «®15
RTS

KEY IN LDY «®FF
KEYINI RSL A

DCS KEYIN2
I NY
BPL KEY INI

KEYIN2 TXA
AND it* OF
LSR A
TAX
TYA
BPL KEYIN4

KEYIN 3 CLC
ADC «*07

KEYIN4 DEX
BNE KEYINS
RTS

;

START AT DIGIT 0
•GET l ROW
A=0 NO KEY
TEST FOR DIGT £
15=N0 KEY

SHIFT LEFT
UNTIL Y=KEY NUM

MASK MSD
DIV BY £

mult cx-n TIMES

; SUB TO COMPUTE CHECK SUM
CLC
ADC CHKSUM
STA CHKSUM
LDA CHKHI
ADC “300
STA CHKH I
RTS
GET £ HEX CHAR'S AND PACK
INTO INL AND INH

PR6E 27
CARD “

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

LOC CODE CRRD
? X PRESERVED V RETURNED = 0
; NGN HEX CHRP WILL BE LOADED AS NEAREST HEX EQU
;

1F9D 2 0 5R IE SETBYT JSR •5ETCH
1 FR0 2 0 AC IF JSR PACK
1FR3 2 0 5R IE JSR GETCH
1FR6 20 AC IP JSR PACK
1FR9 R5 F8 LDA INL
1FRB 6 0 RTS

; SHIFT char i n a INTO
;
■

INL AND INH

1FAC C9 30 PACK CMP Jit 30 CHECK FOR HEX
1FRE 3 0 IB BMI UPDATE
1FB0 C9 47 CMP J*t 47 NOT HEX EXIT
1FB2 10 17 BPL UPDATE
1FB4 C9 40 HEXNUM CMP Sit40 CONVERT TO HEX
1FB6 3 0 03 BMI UPDATE
1FB8 18 HEXRLP CLC
1FB9 69 09 ADC Jit 09
1FBB 2 R UPDATE POL A
1FBC 2 R ROL A
1FBD 2R ROL A
1FBE 2 R ROL A
1FBF RO 04 LDY Jit 04 SHIFT INTO I -0 BUFFER
1FC1 2R UPDAT1 ROL A
1FC2 26 F8 ROL INL
1FC4 26 F9 ROL INH
1FC6 88 DEY
1FC7 DO F8 BNE UF'DATl
1FC9 R9 00 LDA Jit 00 A= 0 IF HEX NIJM
1FCB 6 0 UPDATE

!
RTS

1FCC R5 F8
J
OPEN LDA INL MOVE 1 . 0 BUFFER TO POINT

1FCE 85 FR STA POINTL
1FD0 R5 F9 LDA INH TRANSFER INH- POINTH
1FD2 85 FB STA PDINTH
1 FD4 6 0 RTS

END OF SUBROUTINES

PAGE £8

CARD « LOC CODE CARD
1194 ;
1195 5 TABLES
1196 ;
1197 1FD5 00 TOP . BYTE $ 00 j * 0 0> * 0 0 > * 0 0 * * 00 > * 00 > * OA«* OD
1197 1FD6 0 0
1197 1FD7 0 0
1197 1FD3 00
1197 1FD9 0 0
1197 1FDA 0 0
1197 1FDB OA
1197 1FDC on
1197 1FHB 4D 49 4B
1198 1FE0 20 .BYTE - ' <• * 13 ? '■ RRE ' « " <.*13
1198 1FE1 13
1198 1FE2 52 52 45
1193 1FE5 20
1198 1FE6 13
1199 5
12 00 5 TABLE HEX TO 7 SEGMENT
1201 5 0 1 £ 3 4 5 6 7
1202 1FE7 BF TABLE . BYTE SBF > *8 6 <• *D B * *CF > * E 6 « *ED s *FD « *8 7
1202 1FE8 86
1202 1FE9 DB
1202 1FEA CF
1202 1FEB E6
1202 1FEC ED
1202 1 FED FD
1202 1FEE 87
1203 5 8 9 A B C D E f
1204 1FEF FF . BYTE *FF s * E F , *F7< *F C * * B 9 < SDE <• *F 9 «. * F 1
1204 1F F 0 EF
1204 IF F t F7
1204 1FF2 CC
1204 IF F 3 B9
1204 1FF4 BE
1204 1FF5 F9
1204 1FF6 F I

CARD a LOC COPE CARD
1206
1207 ;
12 03 ;
12 09 ;
1210 ; INTERRUPT '
1211 ;
1212 1FF7 ♦=t1FFA
1213 1FFA 1C 1C NMIENT .WORD NMI.T
1214 1FFC 22 1C RSTENT .WORD RST
1215 1FFE IF 1C IROENT .WORD IRQT
1216 .END

£9

END OF MQ5✓ TECHNOLOGY 650X ASSEMBLY VERSION 4
NUMBER OF ERRORS = 0* NUMBER OF WARNINGS = 0

SYMBOL TABLE

SYMBOL VALUE LINE BEFINEB CROSS -REFERENCE

ACC 00F3 76 587 851
ADDR 1C BE 694 687
ABBPM i c e s 701 673
AK 1EFE 1 037 1080
AK1 IF 04 1041 1 046
CHAR OOFE 90 950 951 95£ 959 984 994
CHK 1F91 1141 734 738 741 748 808 314 899
CHKH 17E8 97 158 £65 £89 £99 301
CHK HI OOFS 82 730 755 7S£ 799 819 1144 1146
CHKL 17E7 96 156 £ 6 £ £88 £97 £98
CHKSUM 00F7 83 7 £9 758 783 801 3£1 1 14£ 1143
CHKT 194C £95 £34 £37 £4£ £44 £56 3 08
CHT1 1982 336 344
CHT£ 198E 341 338
CHT3 1991 34£ 340
CLEAR ICS 4 6 45 803 836
CLKKT 1747 65 ♦♦♦♦
CLKRDI 1747 66 355 361 378 384 493 5 05
CLKRBT 1746 67 459 471
CLK1T 1744 6 £ 358 364 381 387 501 508
CLK64T 1746 64 461 473
CLK8 T 1745 63 ♦♦♦♦
CNTH30 17F3 101 613 6 ££ 1 0 1 0 1 0££
CNTL30 17F£ 100 6 £5 1 01 £ 1 0£4
CONVD 1F4S 1 085 1071 1074
CONVB1 1F5B 1 094 1 095
CRLF lEc'F 908 64 0 785 8£9
DATA 1CA8 680 ♦♦♦♦
DATAM 1CCC 704 675
HATAM1 1CCE 705 70£
BATAM£ 1 CB0 706 699
DATA1 1CB0 686 698
BATA£ ICC 3 697 69£
BEHALF IEEE 1 0££ 947 956
BELAY 1EB4 1 0 1 0 946 953 986 990 997 1003
BETCPS 1C£A 61£ ♦♦♦♦
BET1 1C31 615 617
BET£ 1C4£ 6£3 6£1
BET3 1C 3 A 6 19 6£4
DEc 1EBB 1013 1018 1 0£7
BE 3 1EE5 1017 1015
BE4 IE BE 1014 1 0£9
BUMP 1 B4£ 778 873
BUMPT 1 S 00 1£1 ♦♦♦♦
BUMPT1 1814 131 134
BUMPTS 1833 148 177
BUMPT3 1854 163 166
BUMPT4 1865 173 15£
BUMPV IE 01 873 867
BUMP 0 1B48 781 8 £6
BUMP 1 1 B4E 785 ♦ ♦♦♦

:YMBDL VRLUE L IN E DEFINED CROSS-REFERENCES

DUMPS ID 36 311 317
DUMPS 1DR6 386 334
DUMP4 1D7R 305 798
ERH 1 7F3 1 06 151 791
ERL 17F7 105 149 739
FEED IE 07 376 361
FEED1 1 E 1 S 338 330
GETBYT 1F9D 1154 738 736
GETCH 1E5R 94 0 643 785
GETK 1C 3D 667 ♦ ♦♦♦
GETKEY 1F6R 1114 667
6ETKE5 1 F6 C 1115 1119
GET 1 1E 6 0 943 945
GETS 1 E6 D 943 955
GET5 1E6R 947 687
GET6 1E87 968 944
GOEXEC 1 DCS 341 711 365
GOV 1CD9 71 1 679
HEXRLP 1FE8 1170 ♦ ♦♦♦
HEXNUM 1FB4 1163 ♦ ♦♦♦
HEXOUT 196 F 383 314 316
HEXTA 1E4C 928 988 984
HEXTR1 1E55 9 33 331
HE XI 1973 3 S3 386
ID 17F9 107 140 884
INCPT IF 63 1104 703 749
INCPT8 IF 69 1107 1 1 05
INCVEB 19ER 397 176 853
INCVE1 19 F c 40 0 398
INN 00F9 35 647 780
INITS 1E88 966 6 0 0 609
INIT1 1E8C 969 636
INL 00F8 34 646 779
INTVEB 1938 831 183 185
IRQENT 1FFE 1315 ♦ ♦♦♦
IRQP87 1BFE 519 ♦ ♦♦♦
IRQT 1C1F 604 1815
IRQV 17FE 113 604
KEYIN 1F7R 1188 1117
KEYINI 1F7C 1183 1186
KEYINS 1F8S 1187 1184
KEVINS 1F8R 1133 1136
KEYIN4 1F8 D 1135 1138
LORD ICE 7 785 787 768
LORDER 1D3E 771 759
LORDE1 1D3B 770 756
LORDS 1 CEE 788 ♦ ♦♦♦
LORDT 1373 133 831
L0RDT4 18B5 816 881
LDRDT5 18D7 833 885 883
L0ADT6 1 SEC 841 830
L0RDT7 18F8 847 £39 859
L0RDT8 1915 861 850
LORDT9 1989 870 858 863

739 746 754 757 770
1154 1156

886
815 838

385 1059 1179 1187

383 885 1066 1078 1153 1178 1185

874

866

SYMBOL VALUE L IN E DEFINED CROSS-REFERENCES

LORDV IE 04 874
LDRD10 19SB £71
LORD 11 18C£ ££3
LORD1£ 19 OF £58
LORD13 18FR £48
LORDS 1 DOE 746
LORDS 1D1D 754
L0RD7 1 D£E 764
LORDS 1D30 765
MODE OOFF 91
MODIFY 1 El 5 884
NMIENT IFF A 1 £ 13
NMIP£7 1 BFR 517
NMIT 1 C1 C 603
NMIV 17FR 111
ONE 199 E 353
ONEKEY 1 F 0£ 1040
ONE1 19R1 355
ONES 19B0 361
OPEN 1FCC 1185
OUTBT 1961 309
OUTBTC 195E 308
DUTCH 1ERO 984
DUTCHT 197R 333
DUTSP 1E9E 983
OIJT1 1 EB4 99 £
PACK 1FRC 1164
PRCKT 1R 0 0 413
PACKTl 1R OF 4£1
PRCKT£ 1R15 4£6
PRCKT3 1 A££ 43.3
PRDD 1741 59
PBDD 1743 61
PCCMD 1CDC 717
PCH 0 OF 0 73
PCL OOEF 7£
PLLCRL 1 R6 B 493
PLL1 1R75 498
PLL£ 1R84 505
POINTH OOFB 87

POINTL 0 OF R 86

PREG 0 OF 1 74
PRTBYT 1 E3B 917
PRTPNT 1 El E 397
PRTST 1E31 909
PRT1 1E3R 913
RDBIT 1R41 457
RDBIT£ 1A53 467
RDBIT3 1R5 0 464
RDBIT4 1R63 476
RDBYT 19F3 404
RDBYT£ 19F9 406
RDCHT 1 R£4 439
RDCHT1 1R£9 441

369
£63
£18
18£
£54
751
744

♦ ♦♦♦
77£
68 6 705 967
863

1£ 13
6 03
336 339

1116
356 368
36 £
796 3£3
141 157 159
144 146 174
787 91 0 934
13£ 138 155 164
831 835
999
651 1155 1157
£51 405 4 07
418
4 £9
414 416
970 1061 1 079
1£8 496 97£
671
594 719
591 717
517 513 519
499 511
506
170 £7£ 595 696 7£0

11 06 1188
169 £71 59 £ 6 88 691
81 £ 833 345 877 879
589 847
795 80 0 3 0£ 807 313
797 8 09 830
64£ 767 91 £

♦ ♦♦♦
£0 0 441 458
468
465
477
££3 £33 £36 £41 £43

♦♦♦♦
£09 £16 £48 4 04 406
4 4 6

7 37 79 0 34 3 381 397

695 718 740 747 788
886 90 0 1 058 1104 1186

3£0 3££ 334 393 901

£61 £64

SYMBOL VRLUE LIM E DEFINED CROSS-REFERENCES

READ 1C 6 A 648 37 0
RST 1 CSS 6 06 1 SI 4
RSTENT 1FFC IS 14 ♦♦♦♦
RSTP37 1 BFC 518 ♦ ♦♦♦
RSTV 17FC 1 1 S ♦♦♦♦
RTRN 1DCS 838 359 387
SAD 1740 53 615 633 6 38 66 0 943 948 1 044 1 039 1091
SAH 17F6 104 145 333
SAL 17F5 1 03 143 SSI
SAVE 1C 0 0 587 ♦ ♦♦♦
SAVE 1 1C 05 59 0 ♦ ♦♦♦
SAVES 1C OF 596 ♦ ♦♦♦
SAVX 17E9 93 193 SOI 3 03 3 03 304 333 334 345 346 437

430 439 443 443 444 443 451
SBD 1 74S 60 156 195 360 366 333 339 457 467 494 5 03

510 766 974 987 939 993 996 10 00 1 003 1041
1 049 1077 1 090

SCAM 1 DDB 354 65S
SC AND 1 FI 9 1057 657 663 664
SCAM DS 1 FI F 106 0 ♦ ♦♦♦
SCAMD1 1F£8 1 066 1076
SHOW 1 DAC 3S9 339 333
SHOW 1 1 DAF 330 643
SPACE 1 DA9 8 S8 355
SPIJSEP OOFS 75 599 603 341
START 1C4F 636 171 373 601 616 653 661 669 7 06 709 731

763 373
STEP 1CD3 708 677
STV 1DFE 37S 357
SYNC 1891 197 311 s s o
SYNC 1 1896 SOO S 06
SYNCS 18 A B S 0 9 S 13
TAB 1 871 18S 139 191
TABLE 1FE7 ISOS 1 087
TEMP 0 OF C 33 634 689 917 933 935 1 085 1 099
TIMH 17F4 10S 1 011 1016 1017 1 033 1 036
TMPX OOFD 39 940 953 935 10 04
TOP 1FD5 1197 909
TTYKB 1C77 657 639 65 0
TTYKE1 1C7C 659 663 665
UPDATE 1FBB 1 17S 1169
IJPDAT1 1FC1 1177 1181
UPDATS 1 FCB 1133 1165 1167
VEB 17EC 99 133 143 150 173 184 188 19 0 193 335 338

357 333 334 336 397 399
XREG 00F4 7 7 597 349
YREG 0 OF 5 78 596 85 0
ZRO 19C4 376 341 343
ZROl 19C7 373 379 391
ZROS 19D6 334 335

INSTRUCTION COUNT

ADC 13
AND 9
ASL 7
BCC 4
BCS 5
BEQ £6
BIT 1 £
BMI 9
BNE 44
BPL 15
BRK 0
BVC 0
BVS 0
CLC 8
CLD 1
CL I 0
CLV 0
CMP 38
CPX 1
CPY 0
DEC £
DEX 14
DEV 8
EOR 2
INC 7
I NX 5
I NY £
JMP 31
JSR 115
LDA 108
LDX £9
LDY £5
LSR ££
NOP 0
ORA 6
PHA 5
PHP 0
PLA 5
PLP 0
ROL 18
RTI 1
RTS £8
SBC 5
SEC 3
SED 0
SEI 1
STA 81
STX 14
STY 7
TAX 3
TAY 3
TSX 1
TXA 3
TXS £
TYA 4

« SYMBOLS = £04 (LIM
« LINES = 1£4£ (LIMIT
STOP 0

« BYTES = 1690 (LIMIT = 4 096>
XREFS = 646 (LIMIT = 9 00:*

NOTIZEN

NOTIZEN

ALLES OBER MOS -

VOM DATENBLATT
OBER HANDBOCHER
BIS ZUM 4 -F A R B - POSTER

I v b e M l a t M 4 - 4 Cl 4 * r m % t * 4 i & • « 3 1 / 3 3 9 5 9

BESTELLKARTE
HANDBOCHER

l . lo KIM-1 User Manual englisch DM 19,80 Stck: DM
1.11 KIM-1 Handbuch deutsch DM 19,80 Stck: DM
1.20 KIM-2/3/4 User Manual Expansion Modules Stck: DM

Memory/Errata Sheet/Motherboard englisch DM 9,25 Stck: DM
1.30 KIMath Subroutines Programming Manual englisch DM 15,45 Stck: DM
1.40 KIM Text Editor User Manual englisch DM 8,90 Stck: DM
1.50 KIM Assembler Manual Preliminary englisch DM 10,20 Stck: DM
1.60 Programming Manual englisch DM 28,60 Stck: DM
1.61 Programm ierhandbuch deutsch DM 28,00 Stck: DM
1.70 Hardware Manual englisch DM 24,90 Stck: DM
1.71 Hardware Handbuch deutsch DM 24,90 Stck: DM
1.80 TIM Terminal interface Monitor Manual englisch DM 12,90 Stck: DM
1.90 Cross Assembler Manual Preliminary englisch DM 12,70 -Stck: DM

DATENBLATTER
2.10 Spectrum of Products englisch DM 0,90 Stck: DM
2.20 MCS 6 5 0 0 Microprocessors englisch DM 0,90 Stck: DM
2.30 MCS 6 5 2 0 Microprocessors englisch DM 0,60 Stck: DM
2.40 MCS 6 5 3 0 Microprocessors englisch DM 0,90 Stck: DM
2.80 MCS 6 5 3 2 Microprocessors englisch DM 0,90 Stck: DM
2.60 MCS 6 5 0 X Instruktion Set Summary

6502 thru 6515 englisch DM 0,60 Stck: DM:

SAMMELORDNER
3.10 Loseblattsammelordner aus Kunstleder fur

alle Bucher und Datenblatter DM 4,95 Stck: DM:
3.20 Feltron Microcomputer Information (FMI) deutsch DM 32,50 Stck: DM:
3.21 Kontinuierliche automatische Erganzung

2-monatlich ca. 100 Seiten zur FMI deutsch DM 12,00 Stck: DM:

WANDKARTEN UND PROSPEKTE
4.10 KIM-1 Microcomputer Module, 4-Farb-Poster

(Schaltschema) DM 2,95 Stck: DM:

COMPUTERJOURNALE (Enduserpreise + Porto)
11.10 JOCE&N: Europas einziges Computerjournal deutsch/

in deutsch und englisch fiir Hobby, englisch DM 4,00 Stck: DM
Forschung und Ausbildung Abonnement DM 40,00 Stck: DM

11.11 KILOBAUD: Das bekannte USA-Journal des englisch DM 7.50 Stck: DM
Mini- + MicrocomDutermarktes Abonnement DM 70,00 Stck: DM

11.12 MICROTREK: Eine weitere reizvolle Alter- englisch DM 6,00 Stck: DM
native der USA-ComDuter-Scene Abonnement DM 60,00 Stck: DM

11 1 1 crrc IMTFRPArP- Fharwn hakanntM uiia ho. enalisch DM 6,00 Stck: DM
liebtes USA- Comouter- Club-Journal Abonnement DM 60,00 Stck: DM

11.14 MINI-MICRO SYTEMS: Ebenfalls aus USA enalisch DM 6,00 Stck: DM
fiir Industrielle Anwender Abonnement DM 60,00 Stck: DM

11.15 THE NEW HOBBY COMPUTERS englisch DM 15,75 Stck: DM

11.16 HOBBY COMPUTERS ARE HERE englisch DM 15,75 Stck: DM

COMPUTER CLUB EUROPE e.V.
21.00 MITGLIEDSCHAFT, kostenfreien Bezug von Beitrg/Jahr DM 85,00 Stck: DM:

JOCE&N und kostenfreie europa- Student-
weite Kommunikation und vieles Beitrg/Jahr DM 45,00 Stck: DM:

MCDS Microcomputer Datensysteme GmbH • Luisenplatz 4 • D-6100 Darmstadt

I i i i I i i
Postleltzahl Name (mit dem Familiennamen beglnnend)

I I I I I..............I I I I I I I I I | I I I
Name

I i I

Ort
I— i I

StraQe

Datum Unterschrift/Stempel

m irro r »ni|Miter
ihifcnsYstemc flH ilili

MOS TECHNOLOGY INC.
Iiiiscnplatz 4*
4 Hi ihirmstnilt-

This was brought to you

from the archives of

http://retro-commodore.eu

http://www.retro-commodore.eu

