

From the Authors of KIM-1 BASIC

Before a computer can perform any useful function, it must be “told” what to do. Unfortunately, at
this time, computers are not capable of understanding English or any other "human” language. This is
primarily because our languages are rich with ambiguities and implied meanings. The computer must be
told precise instructions and the exact sequence of operations to be performed in order to accomplish any
specific task, Therefore, in order to facilitate human communication with a computer, programming
languages have been developed.

KIM-1 BASIC* is a programming language both easily understood and simple to use. It serves as an
excellent “tool" for applications in areas such as business, science and education. With only a few hours of
using BASIC, you will find that you can already write programs with an ease that few other computer
languages can duplicate.

Originally developed at Dartmouth University, BASIC language has found wide acceptance in the com-
puter field. Although it is one of the simplest computer languages to use, it i1s very powerful, BASIC uses a
small set of common English words as its "commands”. Designed specifically as an “interactive' language,
you can give a command such as "PHIHT 2+27, and KIM-1 BASIC will immediately reply with “4"_ It
Isn’'t necessary to submit a card deck with your program on it and then wait hours for the results. Instead
the full power of the KIM-1 is "“at your fingertips'.

Generally, if the computer does not solve a particular problem the way you expected it to, there 15 2
“Bug' or error in your program, or else there is an error in the data which the program used to calculate its
answer. |f you encounter any errors in BASIC itself, please let us know and we'll see that it's corrected,
Write a letter to us containing the following information:

1) System Configuration

2) Version of BASIC

3) A detailed description of the error. Include all pertinent information such as a listing of the program in
which the error occurred, the data placed into the program and BASIC printout.

All of the infermation listed above will be necessary in order to properly evaluate the problem and correct
it as quickly as possible. We wish to maintain as high a level of quality as possible with all of our KIM-1
saftware.

MOTE: BASIC is available under license or purchase agreements. Copying or otherwise distributing Micro-
soft software outside the terms of such an agreement may be a violation of copyright laws or the agreement
itself.

If any immediate problems with Microsoft software are encountered, feel free to give us a call at 216/725-
4568/4560

We hope that you enjoy KIM-1 BASIC, and are successful in using it to solve all of your programming
needs.

* KIM-1 is a registered Trademark of MOS TECHNOLOGY
BASIC is a registered trademark of Dartmouth University

Distributed by:
Johnson Computer
P.0. Box 523

| Medina,OH 44256
‘l 216/725=-456B/4560

We recommend that you try each example in this section as it is presented. This will enhance your “feel” for BASIC and how it is used.

Once your 1/0 device has typed “* QK ", you are ready to use KIM-1 BASIC.
NOTE: All commands to KIM-1 BASIC should end with a carriage return. The carriage return tells BASIC that you have finished

typing the command. If you make a typing error, type a back-arrow [+), usually shift/0 or an underline, to eliminate the last
character, Repeated use of "+ " will eliminate previous characters. An at-sign { @ |} will eliminate the entire line that you are

Typing.
Mowe, try typing in the following:

PRINT 10-4 (end with carriage return)
KIN-1 BASIC will immediately print:

B

oK

The print statement you typed in was executed as soon as you hit the carriage return key. BASIC evaluated the formula after the
“PRINT" and then typed out its value, in this case 6.

Mow try typing in this:
PRINT 1/2,3*10 {* * ' means multiply, * /" means divide)
BASIC will print:
5 30
As you can see, KIM-1 BASIC can do division and multiplication as well as subtraction. MNote how a ", " {[comma) was used in the print
command to print two values instead of just one. The comma divides the 72 character line into 5 columns, each 14 characters wide. The last

two of the positions an the line are not used. The result is a ', ' causes BASIC to skip to the next 14 column field on the terminal, where the
value 30 was printed.

Commands such as the “PRINT" statements you have just typed in are called Direct Commands, There is another type of command
called an Indirect Command. Every Indirect command begins with a Line Number, A Line Number is any integer from 0 to 64000,

Try typing in the following lines:

10PRINT 243
20PRINT 2-3

A sequence of Indirect Commands is called a “Program™. Instead of executing indirect statements immediately, KIM-1 BASIC saves
Indirect Commands in the KIM-1's memory. When you type in RUN , BASIC will first execute the lowest numbered indirect statement that
has been typed in, then the next highest, etc. for as many as were typed in.

Suppose we type in RUN now:
RUN
KIM-1 BASIC will type out:

5
-1

OK

In the example above, we typed in line 10 first and line 20 second. However, it makes no difference in what order you type in indirect
statements, BASIC always puts them into correct numerical order according to the Line Number,

If we want a listing of the complete program currently in memery, we type in LIST . Type this in:
LIST

KIM-1 BASIC will reply with:
10 PRINT 2+3

20 PRINT 2-3
oK

Sometimes it is desirable to delete a line of a program altogether, This is accomplished by typing the Line Number of the line we wish to
delete, followed only by a carriage return.

Type in the following:

10
LIST

KIM-1 BASIC will reply with:

20 PRINT 2-3
oK

We have now deleted line 10 from the program, There is only one way to get it back. To insert a2 new line 10, type in 10 followed by the
statement we want BASIC to execute.

Type in the following:

10 PRINT 2°3
LIST

KIM-1 BASIC will reply with:
10 PRINT 2*3

20 PRINT 2-3
oK

There is an easier way to replace line 10 than deleting it and then inserting a new line. You can do this by just typing the new line 10 and
hitting the carriage return, BASIC throws away the old line 10 and replaces it with the new one,

Type in the following:

10 PRINT 3-3
LIST

KIM-1 BASIC will reply with:
10 PRINT 3-3

20 PRINT 2-3
OK

_It i5 not recommended that lines be numbered consecutively by increments of one (eg., 1,2, 3...). |t may become necessary to insert a
new line between two existing lines. An increment of 10 between line numbers is generally sufficient,

If you want to erase the complete program currently stored in memory, type in “NEW", If vou are finished running one program and are
about to read in a new one, be sure to type in * NEW "' first. This should be done in order to prevent a mixture of the old and new programs.

Type in the following: KIM-1 BASIC will reply with: Now type in: KIM.-1 BASIC will reply with:

NEW OK LIST 0K

COMPANION

SECTION

1.2
1.3
2.3

2.7

2.8

28
21

213

3.2
3.3
34

15
3.5
4.1
4.2
4.3
4.4
4.5
4.5

B.1

5.2
56
B.1

COMPANION TO THE SCHAUM’S OUTLINE SERIES’

PaGE

14

17

ig

18
22

38
39
40

41
43
53

L]
58
B3

b

i

a1
a1

83

By
113

PROGRAMMING WITH BASIC

COMMENT

Skip to page 6, just after example 1.4, Timeshare and KIM BASIC share the interective capability,
Rule 1-kE 104 allows multiple statements per line if each statement is separated from any previous statement of the same line by a colon ().

For KIM, each MUMERIC VARIABLE must consist of a letter, a letter followed by an integer, or a letter followed by a letter. Similar con-
ditions apply to a3 STRING VARIABLE with all STRING VARIABLES followed by a dollar sign (5], FNS is a specific letter-letter-S that is
Aot 4 usable sering varcable fname on K 1hd.

Aule 3, Ex. 2.9 = Raiging a number to the 1/2 or .5 power will result in the square root of that numbaer, Similarly, to obtain the cube root
of a number, raige it 1o the 1/3 ar 333333 power, Again, the fourth root of a number is the same as that number raised 10 the 1/4 ar .26
power,

Ex. 2.13 — The first, third and fourth statements are not valid with Kb, Multiple assignments are not valid. MOTE: On KIM, the word LET
is optionl,
Fule 4 = Alsa sirings cantaining "7 g

Tha EMD sratement is aptional wdath KIM, |f thera i an END statemant it does nat have to be ar the end of the program but can be
embeadded in the program.

Ex. 2.28 = Invalid on KIM._ Instead use;
40 LET X1=[-B=R}J|2*A:REM CALCULATE FIRST ROOT
50 LET X2=|-B-RI/{2*A):BEM CALCULATE SECOND ROOT
Where the word LET is optional.

Does nat pertain to KIM BASIC,
KIM has the prompting word O rather than the symbal = "

To delate characters with KIM tvype an underseare!) ar back goaing arrow [+], Type it once and ong prévious character 15 deleted, Typs i
twice and two previous characters aqe deleted, and s an,

See this manual for KIM system commands and how 19 wse them

Dioes not pertain o KIM,

Ses paragraph preceding Ex. 4.2 — KIM BASIC does nat ignare trailling blanks

See paragraph 2 — KIM BASIC also allows GOTO rather than THEM.

See Ex. 4.8 — THEN cannot replace GOTO in ON-GOTO statement.

Again, EMD is optional for KIM and can appear elsewhere than the ghysical end of the program,

Only STEP sith KIM, not BY,

Running varable after MEXT is aptional shen obvious

KIM loops will execute once under conditions 3ial, 3{b), and 3ic)

See Ex, 4,15 = To effect indenting on KIM start the line with acolon {:1: eg. 1685: LET Z=¥X+Y.

See FIG, 4,10 — On printgut, when 1=3 and F=2 the fibonacci number will not be labeled prime. On line 140, when 1=3, J=2 and F=2. The
BASIC wsad by Mr. Gotfried does not execute the loop at all (see pg. 64 100l and skips down 1o line 180, But KIM executes the loop once
in which case line 160 is true and tha program branches o hine 190, For the program to woerk properly do the fol lowsng:

106 7 “l="3 ~F=":2:"[PRIME)"

110 FOR |=4 o N:REM GENERATE FIBONACCI NUMBERS

See rable 5,1 — KIM does nat utilize COT, Usa 1/TAN,

See paragraph 1 — On KIM, negative numbers with functions that reguire positive argurments will generate an error message and the function
will mat be analyzed.

Sew program listing, Change ling 70 and add 72 and 74
70 ?TABIITI:TANIX);
72: IF X)0 THEN 7 TABM91LOGIX] TABIG1LEXPIX);
74: 7:REM PROVIDES CARRIAGE RETURMN
Thig is neaded because the first value of X i not a valid argument for the LOG ar EXP functions.

See first santence — With KIM, arrays can be |sbeled letter-integer-S or letter-letter-5.
RESTORE, but not RESTORES or RESTORE*, is valid with KIM.

Far KIiM: Functions miust appear in the program before the linge on which they are used. They cannot be grouped at the end af a program
but should ba grouped near the beginmmg. Also, no string funetions, no multiple hine functans, Ao mulople argument functions, and no
function without an argumant (Use a place holder variable e.g.

10 DEF FNK=C"2"B becomes

10 DEF FNK{X|=C"2"B where the argurment af FMNEK s & variable that does not appear w the definitianl,

6.3 118
6.4 121
6.5 123
123
123
123
126
6.6 127
6.7 127
128
130
6.9 137
138
B0 143

Does not pertain to KM BASIC,
Mat applicable 1o KR,

When using A5SC, any letter arqument must aDPear in Quotes:
B0 C=ASC{"P"),

CHAS is a string Turnction whech returns a ane character string which containg the ASCI eguivalent of the argument. ASC rakes the frst
character of a string and comwverts 1t 1o s ASCH decimal value, One of the most comman wses of CHRS is to send @ special character 1o the
uger's termunal. The most often used of these characters is the BEL (ASCI 7). Printing this character will cause a bell 1o ring on sarme ter

minals and a "'beep” on many CRT s. This may be used 82 a preface 10 an érror message, as a novelty, oF just 1o wake up tha user i1 ha hag
fallen asleep. (Example: PRINT CHRS(71;). A major use of special characters is on those CRT s that have cursor positioning and othar
special functions {such as turming on a hard copy printer!.

As an example, try sending & form feed ICHRS(121] 1o vour CRT. On most CRT's this wall usually cause the screen 1o erese and the cursar
to "home"™ or move to the upper left corner.

Some CRT's give the user the capability of drawing graphs and curves in a special point-plotter mode. This feature may sasily be taken
advantage of through use of KiMd-1 BASIC's CHRS function.

Example 6,13, BASIC line number 70 - should read
FOIF LI =ASCI™ ") THEN 110

Ex. B.15 uses CHANGE which $ nat a KIM function.
Example 6.15, Program line 230 — not vahid for KIM BASIC. Use 230 FOR I=1 TO LEMNINS): LU= ASCIMIDSINS I 111 NEXT
See EX. 6.16 and preceding paragraph — With KIM, an argument is needed far the function RND

than ry argument for RND affects the random number generator and is sometimes called the "seed.” e.g.
50 INPUT “PLEASE ENTER RANDOM SEED:" RS
60 X=RANDIRS|

See Ex, 6.2, the program outlina, point 2lel — A carriage return only in response to 8 question will end execution of the KIM pragrem. Use
space then carriage return,

See Ex. 6.2, Fig, 8.13 — Program uses multiline function and is therefore not compatible with 1M BASIC, Use the following
15 DEF FMEIX)=(1+INTIG*RMNDIRS 1+ 1+INTIE*RANDOIRSH
20 INPUT "RANDOM SEED™ RS
90 K=FNKI{1)
180 E=FMEKI{1}

Line 720 of program should read as indicated by flowchart:

720 T3-Ti6) (P2-CIE J1)
After leaving a FOR-NEXT LOOP such as in lines 660-710 the value of the running variable is one mare than the spegified final index value,
i.e, It leaves the GEQ-710 FOR-NEXT LOOP &s 1=7 and not 6,

Although Mr, Gottried did not use quotations around his response to NAME?, it is necessary 1o do o0 on KIM because of the comma used in

last-name-first entries. Se¢ section 2.9, Page 18, rule =4 and Ex. 2.15. In order to avoid having to use guotation marks change line 210 to:
210 INPUT N2E NS

Where N25 is the last name and N15 is the first name or beginning initials. (See again section 2.9, page 18 regards multiple inputs). Moe

that heére one might have been rempied to use FNS for First Mame but the specific character combination FNS is not acceptabie by KIM

because it too closely resembles the label of a wser defined function,

Cn a 20K computar system with 8K BASIC it may be neécessary to dispense with the blank lines, the remarks, and perhaps even lines 580
through 610 in ordar to hawve enough room 1o run the grogram.

Chapter 7 does not pertain to KA,
Chapter 8 does not pertain oo K16,

Mote: In the following an argument of % or W denotes a numeric variable, X denotes 8 numeric expression, X3 denotes a string exprassion
and an | or ! genotes an expression that o5 fruncated to an integer before the statement s executed, Truncation means that any fractional part

of (he numbar i§ 1051, .0, 3.9 hacomas 3, 4.0]1 becomas €.

An gxpression is a sries of varables, operators, function calls and constants which after the operations and function calls are pasfarmed

using the precedence rules, evaluates o a numaric or string value.
A conitant is either a numbar {3.14) or a string literal {*FCO"}.

AMD =z IF A }5 AMD 8 } 2 THEN 7 If expression 1
(& _':.55 AMD expression 2 (B :I.!'] are Both truee, then branch

Lo hine 7.

ASCIXS] Raturns the ASCI numeric value af the first
character of the string exprassion X3, an FC error will ocour
if X5 a8 the null siring.

ATMIX] Gives the arctangent of the argument X, Thea
Fesult is returnegd in radians and ranged fram P2 to PIJ2.
[(PI1/2=1. 5708}

ABS[X] Gives the absodule value of the expression X,

CHRSII] Raturns a one character string whode single char-
agoter is tha ASCIH aquivalent of the value af tha argument [1]
which must be = } 0 and { = 255,

CLEAR Clears all yariables, rasets FOR L GOSLIE state
and RESTORE data.

CONMT Continues program execulion after a control/c is
iypad ar 4 STOP sistement i axecuted. You cannot con-
tinue after any error, after modifying your Srogram, or
beforg your program has been run, One of the main purposes
of COMNT is debugging. Suppose at some point after ramnimg
Your program, nothing is printed. This may be Decausa your
pragram is performing some fime consuming calculation, bul
it may be because you hawe fallen intd an “‘infinite loop™,
An infinite loop 15 & series of BASIC statements from which
there |5 no escape. The KIM:-1 will keep executing the series
of statemants over and ower, untll youw intervens or until
power o the FIM-1 js cut off, If FOU SUSPEECT yoUr program
Is im an infinita loop, T¥pae in a control/c, Tha ling numBber of
the statemeant BASIC was exacuting will e typed out, after
BASIC nas typed oul DK, wouw can use PRIMT tao tvme out
some of the valuas of your variables. Afier axamining these
waluas yau may Decamea satisfied that your program s Tung-
tioning corractly. You should then type in COMNT Lo
cantlinue exaculing Your grogram whera it faft off, or 1¥pe a
direct GOTO statement 1o redume axeculion of the grogram
at a different line, You Sowld alds use S55igrmant “_ETF
giatemeants Lo sat some of your variables to ditferant valueas,
Bamamber, if you contral 0 a program and expact 1o £on-
tinue it later, you must nol gatl any arrcrs Or 1Y Pe in any naw
program lines, 17 yvou da, yvou won't be able 1o continue and
will getl a "CiN"™ ﬂl’.‘ﬂl‘ltiﬁu'l‘." mol] arror. 1Eis impossible 10 con-
tinuea & direct cammand, COMT siways resumes axaculion st
the next staterment to be execuled in Yyour program when
control/C was typed,

COS(X) Gives the cosine of the expression X. ® is inter-
pratad as being in radians.

DATA sSpecifies gata, raad from left to right., Information
Appears in data statements in Uhe same order as it will be read
in the prograrm,

DEF 100 DEF FMNA[W)=W/B+C The user can define
functions like the bulit-in functions (SQR, SGM, ABS5, etc.)
through the use of the DEF statement. The name aof the
function is "FN" fallowead by any legal variable nama, Tor
exampla: FREXE, FRNJIT?, FNED, FMRZ, User defined tfunctions
are restricted to one line. A function may be defined to be
any axprassion, butl may only have omng argument. o the
axample B & C are variables that are usad in 1the program.
Exacuting the DEF statement defines the Tunction. sar
defined functions can Be redefined by axaculing anoibher
DEF statement for the same function. User defined string
functions are not allowed, “V' is called the dummy variable,
110 E=FmMA(3)}) Execution of this statement following the
above would cause £ to be set 1o F/B+C, but the value of W
wiould be unchanged.

DM 113 DM A3}, Bl Allocates space for arravs,
Al array elements are set to zero Dy the DIM statement,
114 DM R3I[5.5), D3{2.2,2) Arrays can have more than
ong dimeansion, Up o 25% dimensions ara allowsed, but due
to the restriction of 72 characters per ling the practical maxi-
mgme i about 34 dimeansions. Arrays can b dimensionadg
dymnamically during program esacution. 1T an array is not ax-
plecitly dimensionad with a DI statamant, it i5 assumad (o
ba a single dimansioned matrix of whose singlg sUBDsCcript may
range form O (o L0 {aleven elemanis). 117 AfE)=4 if this

staternent was encountered before a DIM statement for A
wask found in the prograrm, it would be as if a DIM A(1D] nad
Deen axaculed praviows 1o the execution of line 117, All sub-
sCcriphs start at 2ero (D], which means that D& X (100} really
allocates 101 matrix alements,

END Terminates program execution without printing a
BREAK meétdage, [see STOP) COMNT after an END dtata-
ment cautel axacution o redume al the statemenl alier fhe
EMD statermant, EMND can be wied anywiheEre in e grogram,
and is aptional,

EXP(X] Gives the constant “E* (2. 71828) raised o the
power X, (E [X) The maximum argument thatl can be passed

o EXP without overflow occuring is 87.3365.

FOR 100 FOR W< TO 9.3 STEP & jste MEMT state-
ment} % Is set cgual to the value of the expression follawing
the agual sign, in this case I. This value is called the initial
valua. Then the statements Detwasen FOR and MEXT are
axecuted. The final valuga is the valus of the expression
following the TO, Tha step is the wvalue of the expression
faligwing STEP, Whan the MEXT statement is ancounterad.
the step s added to the wvariable, 310 FOR w=1 TO 9.3
If no STEP was specified, it is assumed 1o be oneg, If the step
is positive and the new walue of the variable is = Tinal value
I:E.J- i thid exampla), or the siep walue is Neyative and the
new value of the variable is = % the final value, tRen the lirst
statement fallowing the FOR statement i3 execuled.
Otherwisa, the statemant fallowing the MEXT statement is
axecuted. Al FOR foops execube the statemants betwaen
the FOR and the MEXT at leail gnée, evan in cases like FOR
W=1 TO Q, IS FOR W=10"M TO 3.4/ STEP SQR (A}
Mote that expressions (farmulas) may be used for the initial,
final and step values in a FOR lpop. The values of the ex-
pressions are compuied only once, before tha body of the
FOR, . . NEXT loop ii execuled, 320 FOR W=9 TO 1 5TEF
-1 Whan fhe staterment after the NMEXT i1 axecuted, the
Ioop wariable is newver egual to the final value, bul i equal Lo
whatever value caused the FOR, . .MEXT |Ipop to terminate,
Tha statements betwesn the FOR and |ts carrgspomding
MEXT in both examples above (310 & 320) would be execut-
ed 9 timas, JIOFOR'W=]1 TO 10: FORW=1TD MNEXT
WiNEXT W Error: do not use nested FOR, . NEXT loops
with the same index variable, FOR |1oop nasting is limited
only By [he available memory.

FRE(X) OR FRE{XS) 270 PRINT FRE[D] Gilwes the num-
bar of meamary Byles curranily unused by BASIC. Memory
allpcated for STRIMG space i3 nob included in tha count
raturned by FRE.

GOTO Branches to tha statement spacifisd,

GOSUB Branches to the specified statement until 3 HE-
TURM s encountered; whien & Branch is then made to the
statement after the GOSUBR., GOSUB nesting Is limited only
by the availabie memary,

IF. . .GOTO Equivalent to iF, . .THEM, excent that iF, ..
GOTO must be foliowad By a line numbar,

IF. . . THEN IF ¥ %10 THEM 5 Branches to specifiad
statemant if the relation s True, 20IF X (0 THEN PHIMNT
e LESS THE&aM o™ Executes all of the stataments an Lhe
remainder of the limne afier the THEMN if the relation is True,

INFUT Reguests data from the terminal (to be typed ind,
Each wvalue must be separated from the precegding value by a
cormima (.]. Thea last value [ypad should be followed Dy a
carriage return, A “7" |5 typed as a prompt character, If
morg data was requested In anm INPUT statement than was
typed in, 3 777 i5 printed and the rest of the data showld ba
typed in. 1T more data was typed in than was requastad, tha
extra data will Be ighnored, Strings mudl be ingul in the Lamea
format as they are specified in DAT & statemeants,

5 IMPUT “WALUE'™; v Optionally tvpes a prompt string
("VALUE™) before reguesting data from the terminal, if
carriage return is typed to an inpui statement, BASIC returns
to command mode. Typing COMT atter an INPUT command
has Besn interropted will cause axecution o remume at the
IMNPUT statement.

INTIX} Raturns the largest integer less than or equal to its
argument X, For exampie: INT (.23)=0, INT {7)=7, INT

-

f=1h==1, INT [-2}= -2, INT {1.1}=1.

The followming would round X te D decimal places:
INT (¥*10 D+ .5)/10 [D

LEFTSIXS, 1] Gives the leftmast | characters of the string
expression X%, 17| {-‘ﬂ aF }255 an FC grror oocurs,

LEM{XS] Gives the lengtn of the string expression X% in
enaracters {byies)., Mon-printing characters and blanks are
Counted as part of the length,

LET Assignsa value to a variable, “LET" is aptional,

LIST LIST 100- LIST 100 LIST 100-200 Lists
current program ocptionally starting at specified line. List can
be control-C'd (BASIC will finish listing the current line)

LOAD Loads the program from the caiiette tape. & MEW
command s automatically done before the LOAD command
is exacuied. When done, the LOAD will fype out OK as
LEual.

LOG(X] Gives the natural (Base E} logarithm of its argu-
ment X, To oblain the Bate ¥ jagarithm of X wuse the
formulg LOGIXI/LOGIY). Exampie: The base 10 [com-
mon} log of 7= LOG{7yLOG10).

MIDE{XE, I} MIDS called with two arguments relurns
characters from the string expression X8 starting at character
position F. 1f 1 Y LEN(I%), then MIDS réturns & null {2erd
langth) string. 11 1 { =0 or } 255, an FC error occurs.

MIDE(XE1J) MIDS called with three arguments returns a
string expression composed of the characters of the string ex-
prassion X% starting &t the [th character for J characters. |If
fl) LEM[X$], MID$ returns a null strimg. 11 1 ar J % =0 ar

255, an FC error occurs, If J specifies more characters tham
are left in the string, all characters from the 1th on are
returngd,

MEWW Deletes eurrent program and all wariablas,

MNEXT Marks the end of 2 FOR loop. If ao variable is
given, matches the maost recent FOR loop. A single NEXT
may ba used to match mulliple FOR statements, MEXT v W
Is equivalent 1o NEXT WVNEXT W.

NOT IF NOT Q3 THEM 4 If expression "NOT GQ3" is
true (becauses @3 is falsa), then branch 1o line 4. Mote:
MOT =]=0 (NOT true=falsa)

MNULL MNULL 3 Sets the number of null {ASCII 0)
characters printed after a carriage returnfline feed. The num-
ber of nulls printed may b sab from O Lo T, Thid id 4 must
far hardcopy terminals that require & delay after a carriage
returnfling feed. 1L is necessary 1o et the number of mulls
typed on SRLF to O bafare a paper tape of & program is read
In froom a Telelypea [TELETYPE i a registered trademark of
the TELETYPE CORPORATION]. Use the null command to
sl the number af nulls ta Fero. When yow punch a paper
taps of 3 program uiing the st command, null should be set
} =3 for 10 CPS terminals,) =6 for 30 CPS terminals. Wnhen

not making & tape, we recommend that you use a null setting

of 0 ar 1 for Teletypes, and & or 3 for hard copy 30 CPS tar:
minals. & setting of O will work with Telatype compatibia
CHT"s,

ON. . GOSUB dentical o "OM. . .GOTO" axcept that a
subrouting call (GOSUB} 4 axeculed instead of a GOTO,
RETLREMN fram the GOSUB branches to the statement after
the OM, , GOSUBR,

OM, . . BO0TO 100 ON I GOTO 10,20,30,40 Branches lo
the limg indicated by the 1'Ih numbBer after the GOTO, That
I5: IF I=1, THEMN GOTO LINE 10 IF 1=2, THEM
GOTO LINE 20 IF =3 THEMN GOTO LIMNE 30 IF 1=4,
THEN GOTO LIME 40, If i=0or I attempis to saiect a non-
existent line { % =5 in this case), the statement after the OM
statement is executed. However, if | s }255 ar {0, an FC
error massage Wwill result., As many line numbers as will fit on
a line can follow an OM, , GOTO, 1085 ON SGMN{X)+2
GOTO 40,5060 This statemant will branch to line 40 if
the expression X s less than Zero, 1o line 50 if it equals 2era,
and ta line G0 i it is greater tham Zero.

OR IF AL OR B {2 THEN 2 if either expression 1
& { 1y OR expression 8 {Ep i5 true, than branch to ling

PEEK(I] The PEEK function relurns the contents of
memary address . The vafue relurned will be = _}I'.'r amd
{ =258, 1f 1 is)} 65535 or {0, an FC errar will occur, An
aftempt (0 read a non-existent memory address will return
an LENENOWN value, [see POKE Flitﬂmtl‘lt]

POKE 35F POKE | J The POKE statement stores the
byie specified by its second argument (J) into the bocation
given by its Tirst argumeant (1], The byte to be stored must be

= :Iﬂ' and {4255. or an FC error will ocour, The address (1)
miust be = 30 and { =65535, ar an FC error will sesuil. Care
less use of the POKE statement will probably cause you 10
“poke" BASIC to death; that is, the maching waill hang, and
wou will have to reload BASIC and will lose ANVY DG aAm ol
fad tyded in. & POKE toa non-existent memory |ocation is
Rarmiess. One of the main uses nf POKE is 10 pass argurients
1o maching tanguage subroutines. You could also use PEE K
and POKE to write a memary diagnostic or an assamiler in
BASIC,

POS{I} Gives the current position of the terminal pring
mead (or cursor on SRT'5]. The lefimast character position
on the tarminal is position Zero and the right most is 71,

PRIMNT Prints the vaiue of expressians on the termenal, |1
the list of valugs. fo be printed out does nol end with &
comma [,] & a semicolon), thén a Carriads relurn/ing feed
i5 gxacuted arter all the waluds have Daen grinted SErings
in quotes ("' may also e printed. 11 3 semicolon separales
I'wid axpressions in the list, their values are grinted naxtl 1o
asch other, 1T & comma appears alter an expression in fhe
figt, amd 1hé @rint head is at grint position 5& or mare, then
& carri&ge raturngdine feed i3 exacuted, |f the print head is
Before print position 56, then spaces are printed wuntil fhe
carriage it at the beginming of the next 14 column figld [until
the carriage is at column 14, 28, 42 or 56, . .). If there is no
list of expressions to be printed, then a carriage returngling
feed it executed, String expressions may be orinted,

READ Reads data into specified wariabies from a DATA
statement. The first piece of data read will be tha firit piece
of data listed in the first DATA statement of the program,
The second piece of data read will be the tecond piece listed
In the first DATA dtalement, and sa on, When all of the data
mave bBeen read from the firgt DATA statement, 1he next
piece of data to be read will be the first piece listed o the
secand DATA statament of the pragram. Attempting to read
marg data than theare if in all the DATA statements i a reons
gram will Cause an OO0 (aut of datal error,

REM Allows tha programmer 1o pul commaents in his pro-
gram. REM stateameants are not axecuted, buf can e branch-
ed to, A REM statement is terminated By end of line, but
nat by a ",

RESTORE Allows the re-reading of DATA statements.
Alter 8 RESTORE, the next piecce of data read will be bHne
Tirst piace listed in the first DATA statement of the prooram.
The secoand piece of data read will be the second piace listad
in the Tirst DATA statement, and 50 on as In a normal READ
cparation.

RETURMN Causes a subrouting to seturn to the statement
after the maost recently executed GOSUEB.

RIGHTSIXS,l] Gives the rightmost | characters of the
Bireing expression XE. When 1 =0 or EI‘EE-S- an FC errar will
oocer. I | l:ILET"'wI [ME] then RIGHTE returns all of X5,

RND{X) Generates a random number between o and 1.
The argument X controds the ganaralicon of random numbers
as follows: X I:EI staris a maw faguence of random numbers
using =, Calling RMND with the same X starts the sama fan-
dom number sequence, X=0 gives the last random numbear
geneérated. Repeated calis to RMND{Q) will always relurn the
iame random number, A ::“:I ganarates a maw randarm nurber
betwesan O and 1.

Mote that (B-A) "RNO(]1]+8 will generate a random number
Between & & B

SAVE Saves on casdseite tape the current program in tha
KIM'S memory. The pragram in meamary is l8ft uncnanoed.
Mare than one program may ba storad on cassatte using thid
cammand,

SGNIX) Gives 1if X)0, 0§l X=0 and -1 if ¥ {0,

SINIX] Gives the sine of the expression X, X s inlerpret-
gd as being in radiams., MNote: COS [X)=S5IMN [X+3.1415042)
and than | Radian =180/F| degrees=57.2956 degrees; so that
the sing of X degrees=SIM [¥]/57.2958,

SPCl) Prints | space [ar plank) characters on the terminal.
May be wsed only in a PRINT statement, X must be =)0 and
W =255 or an FC error will result,

SOR(X]) Gives e sguare root of the argumant ¥, Aan FC
error will ocour i1 X g fass than Zero,

ETOP cCauses 4 program to stop execution and to entar
command mode. 8000 STOP Prinis BREAK IN LINE
P000. {as per thit example) COMT after 8 STOP branches to
the statement Tollowing the STOR,

STRS(X] Gives a string whnich is the character represenia-
tion of the numeric exprassion X. For instance, S5TRE
(A.1)=""a,1",

TAB(I} 240 PRINT TAB(!] Spaces to the specified print

position {codumn] on the terminal, May be used only In
PRIMNT statements, Zero is the leftmost column an the fgr-
minal, 71 thg rightmaost, I the carriage ids beyond positlon lq
tham no primting s dona. | must ba = _:I-EI and ¢ =255

TAMIX) Gives the tangent of the expression . X ig in-
lerpreted a4 Being in radians.

SR} J=LISR{T] Calls the user's machineg
fanguage subrouling with the argumant |. Ses P‘DHE. PEE K
and LISHE discussion.

WALIXS) Saturns the string expréssion X8 converted to a
numbear. For instancs, VAL ("3,1"1=3.1. If the first nons
space character of the string s not o plus [+] oF mmenas (-}
slgn, & digit or 3 decimal poist (L) then fero will be returned.

WAIT BOS WalT |J.K B0 WaIT |,J This statement
reads fthe status of location 0, axclusive OR'S K with the
status, and then AMNDY the result with J until 3 non=zero
result is obtained, Execution of the program continues at the
statemeant Tollogwing the WAIT statemeant. 17 tha WAIT state-
mant only has wo argumentd, & 4 astumed to be Zerag, If
wau are waiting for a bit to become rero, thers should be a
ane in the corrgspanding position of K. 1, J and K must ba
= %0 and { =255,

SYMBOLOGY AND SPECIAL KEYS
= Assigns a value to a wariable, The LET is oplional.

= Megation. Mota that 0-2 s subtraction, while -& i nega-
tion,

T (Usuaily asnilt/N) Exponantiation 0 T'EI=1 O ioany
other powear = 0, A& TE-. Wwilh A negative and B not an integar
giwes an FC &rror,
L FMultiplication

! Division

+ Baddition. Siring concatentation. The resulting string
st be less than 25%6 characters in length ar an LS error will
QL.

s Subliraction

= ¥} { (=)= {} Stringcomparison operators, Com.
Qarison 12 made on the basis af ASCl codes, a character at a
time until a difference is found. If during the cOmparisan of
Ewao strings, the end of one is reached, the shorter string is
comsidered smaller, MNote that A& ' is greater than A" sinca
traifing spaces are significamt.

@ Erases currant line being typed, and types a carriage
refurn/one tesd. A 9" is usually a shift/P.

= [(backarrow or wnderline) Erases last characier typed. |f
na more characters are left on the line, fypes a carriage
return/line feed. “*=" is usually a shiftso.,

CARRIAGE RETURN A carriage return musl end every
line typed in. Returni print head or CRT cursor to the first
position (leftmost) on line, A line feed is always executed
after a carriage raturm,

CONTROL/C Interrupts execution of a program or a 15t
command. Control/C has effect when a statement finishes
execution, of in the case of interrupting a LIST command,
whan a complete line has finished printing. In both cases a
raturn is made to BASIC's command fevel and OK is typed,

Frints ""BREAK IN LINE XXXX", where XX XX is tha line
number of the next statement to be executed,

: leolon] A colon is used to separate statements on & line.
Colons may be wsed in direct and indirect statements. The
only limit on the number of statements per line is the line
'H:'";TII_'I- It is not possible to GOTO or GOSUB to the middie
af a line,

CONTROL/O Typing a Control/O once causes BASIC to
suppress all output until & return is made to command lewvel,
an input statement & encountered, another conftrol/O s
typad, OF an &rfrar accurs,

P Question marks are equivalent to PRIMT, For instance,
T 2+2 is pquivalent 1o PRINT 2+2, Question marks can also
be wsed In indirect statements, 10 7 X, when listed will be
typed as 10 PRIMT X,

ERROR MESSAGES

Aftar an efror ocours, BASIC returns 1o lével and types OK. WVariable values and the program text ramain intact, but the program can noat be

continued and all GO5UB and FOR content is lost.

When an error Goours in a dirgct statemant, nd lina number is grinted,

Format of error messages:
Direct Statament XX ERROR
Indirect Statement XK ERAOR IMN ¥¥¥YY

Im Both of the above examples, “XX'" will be the grrvor code. The Y ¥¥YY '™ will be the ling number where the error occured far the indirect

statemant.

The following are the possitle error codes and their meanings:

BS Bad Subscript. An attempl was made io reference a array elemeant which is cultside the dimensiaons of the array, This errar can ocour i
the wrong numbar of dimMensions ara used in & matrix reference: for Instance, LET &(L,1,1}1=2 whan A ha: been dimensioned Gk Al2.2,

oD Couble Dimension. Afier an array was dimensionad, another dimension statement for the same array was encouniered. This error often
ocouwrs if an array has been given the defawit dimensicn 10 Decause a statement like A(l1}=3 is encountered and than later in the program a DIM
A(100) is found,

FC Function Call arror, The paramater pasied to a math or string Tuncti?n was oul of range. FC errors cam occur due to: aj a negative
array subscripl (LET A(-1}=0). Bb) an unreasonably large array subscript (/32767). €] LOG-negative or zero argument, d) SQR-negative
a"'EI'-lmEl'l‘l:-] ﬂ.'T‘B with A negative and B not an integer. fh a call to USR befare the address of tha machine languaga subrouting nas baan
patched in. q) calls to MIDS, LEFTS, RIGHTS, INP, OUT, WAIT, PEEK, POKE, TAB, SPC or OM, . JGODTO with an improper argument,
ID iiegal Direct. You cannot use an INPUT ofr DEFFM statement a5 a direct command.

NF MNEXT without FOR. The variable in a MEXT statement corresponds (o no préviously sxecuted FOR statement,

OD Out of Data, A READ statement was executed but all of the DATA statements in the program have already beon read, Tha BF e BT
tried 1o read too much data or insufficient data was included in the program,

OM Out of Memory. Program too large, too many variables, too many FOR loops, too many GOSUB', too complicated an expression or
any combination of the above,

OV Owerflow, The result of 3 calculation was too large Lo be represented in BASIC' number format. If an undarflow occurs, Zero s given as
the result and execution continues without any error message being printed,

Sh ayntax arror. Missing parenthesis in an expression, illegal character in a line, incorrect pusctuation, ate,
ARG RETWRMN without GOSUB. & RETURN statement was ancounterad without a previous SOSUE statement Being executed,
LIS Undefined Statement, An attempt was made to GOTO, GOSUB or THEM to a statement which does not exist,

0 Divition by Zero,

CN Continug errar, Allempl 1o conbinue & grogram snan none geigts, an rrgr ogoured, Of artar 3 naw ling was 1y ped into the progrgm,
LS Long String, Atlempt was made by use of the concatenation operator to create a string more than 255 characters lang,
ET String Temporaries, & siring expression was too complex, Break it into two or more shorter anes,

TR Type Mismatch, The left hand side of an assignment statemeant was a numeric variable and the right hand side was a streng, or wace versa;
of, 3 funclion which expectod 8 Siring argument was Qiven a numaric oneg or Vice varsa,

UF Undefined Funclion., Refegrence was made o a user delined function wwhich nad never been dedined

Here 15 a listing of the error massages of the 9 digit KIM-1 BASIC cross-indesed 1o the érror mestages of the & digit version:

-9 KB-6 KB.9 KH&
BAD 5UBSCRIPT Bs RETURN wiITHOUT GOSUB RG
REDIMENSIOMNED ARRAAY (1s] UMNDEFINED STATEMENT s
ILLEGAL QUANTITY Fc DN ISIOM BY ZERD il
ILLEGAL DIRECT o CAN'T CONTINUE CH
MEXT WITHOUT FOR MNF STRING TOD LONG LS
OUT OF DATA oD FORMULA TOO COMPLEX 5T
OUT OF MEMORY all) TYPE MISMATCH ™™
DVERFLOW W UMDEFINED FUMNCTION LIF
SYNTAX 5N

ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR, DECIMAL CHAR,
000 MUL 033 ! 065 A 097 a
001 SOH 034 e 066 B 028 b
002 STX 035 # 067 c 099 c
003 ETX 036 g 068 D 100 d
004 EOT 037 % 069 E 101 g
005 ENQ 038 & 070 F 102 f
006 ACK 039 071 G 103 g
007 BEL 040 { 072 H 104 h
008 BS 041) 073 I 105 i
009 HT 042 * 074 J 106 i
010 LF 043 + 075 K 107 k
011 VT 044 : 076 L 108 |
012 FF 045 - 077 M 109 m
013 CR 046 : 078 Ul 110 n
014 S0 047 ! 079 0 11 o
015 Sl 048] 080 P 112 o
016 DLE 049 1 081 Q 113 q
017 DC1 050 2 082 A 114 r
018 DC2 051 3 083 5 115 5
019 DC3 052 4 084 g ; 116 t
020 DC4 053 5 085 U 117 u
021 NAK 054 6 086 v 118 v
022 SYN 055 7 087 W 119 w
023 ETB 056 8 088 X 120 X
024 CAN 057 9 089 Y 121 ¥
025 EM 058 : 080 zZ 122 z
026 SUB 059 : 091 [123

027 ESCAPE 060 { 092 \ 124

028 FS 061 = 093) 125

029 GS 062 } 094 1 126 A
030 RS 063 ? 095 . 127 DEL
031 us 064 @ 096

032 SPACE

LF = Line Feed FF = Form Feed CR = Carriage Return DEL = Rubout

INITIALIZATION DIALOG

STARTING BASIC Atier you have loaded BASIC, it will respond:
MEMORY SIZE? It yvou type a carriage return lo MEMORY SIZE?, BASIC will use all the contiguous memeary upwards from location §192
that it can find, BASIC will stop searching when it finds one byte of ROM or non-existent mamary,

I wou wish (o allecata only par! of the memory (o BASIC, type the number of byted of mamory vou with Lo allocale in dacimal, This might
be gone, Tor instance, il you were using part af the memory far a macnine language subroutineg,

There are 4096 bytes of memory in a 4K system, and 8192 bytes in an 8K system.,
BASIC will then ask:

TERMINAL WIDTH? Tnis is to set the output line width for FRIMNT statements anly., Type in the number of characters for the line width
for the particular terminal of ofher outpul device you are using. This may De any number from 1 le 355, depsnding on the terminal. ¥ no
answer if given (i, & carriage refurn is typad) the ling width is 321 {0 72 characters,

Mow HIM:-1 BASIC will gnter a dialeg which will allow you to delete some of the arithmatic functions. Deleting these functions will give more
memaory space o store youwr programs and varlables. Howewer, you will not De able to call the functions you delete. Attempiing (o do 5o will
result in an FC error. The only way o restore a function thal has been deleted is to reload BASIC,

The following is the dialog which will oocur:
WANT SIN-COS-TAN-ATM? Answer """ (o ratain all four of the functions, *MN* to delete all four, or “A" {0 delete ATN only.
Mow BOASIC will type out:

XXX BYTES FREE U"EEHXK™ js the number of bytes available Tor program, variables, array sicrage and the stack. |1t does not include
Abring ipace. :

It welll then print out the BASIC wersion and
COPYRIGHT MICROSOFT CO,
with the yvear of the copyright, and finally
oK
Yoau will now bBbe ready 1o begin wsing KIW-1 BASIC

USING THE CASSETTE INTERFACE

To save & grogram on fape prepare the cassette just as though a dump command where abowl to be issued to the KIM-1 manitor. Then type
“SAavE", O tape D of “FiF* s issued for all BASIC files, so only one BASIC program can be saved per tape. ATter complation of the “"SAVE"™
command contrgl will be refurnegd o the KIM-1 monitor, Regnter BASIC at the “RETSAV " location specified for your warsion using the *G"
command,

To load a program from tape prepara the cassette just as though & “"LOAD" command whare about o be issued fo the Kib-1 monitar. Then

typa "LOAD', Any prévioud program or variable values il be losl. Contral will return 1o the KIM-1 monitar on the complation of the load,

If the load was succagsful 0000 will Be displayed and simply byping "G will returs control o BASIC, Otherwite patch locations 0001 HE X

and 0002 HEX to contain thair grévious valuas [what they were bafore the |oad - HE™ and HEX for KB-G and HE X and
HEX for KB-9) and da a “G" 1o the Dad |oad address [BDLCOAD) speciflied Tor your version of BASIC.

The current version of BASIC does not suppart loading and saving of data files,

KB INTEGER VARIABLES

Infeger variables are aliowed in the 9 digit version of KIM-1 BASIC, Thelr name must be followed by %% wharever they ara used. MNobte that an
integer variable is distinct from a flgating point variable of the same name, Integer arrays are also allowed. Each infeger datum reguires 2 bytes
of storage whargas figating point values require 5 bytes. MNMon-integer values assigned [0 an integer variable will be truncatad. Integer variables
cannot be used in user defined functions or "FOR™ loops. Integer wariabies should be used Lo canserve meamory space, They do not save fimea.
In fact, they are usually slower to use than floating point val ues,

Basic/machine Language interface
There are {our steps required to use @ maching language routine,

11 Set aside memary, The KIM versions of Microsoft 8502 BASIC and Ram starts at 2000 hesx. Contiguous mamory above BASIC is used
for program storage. The highest location used is determinad by Lhe responsa to the "memory 4ize’ guestion. 1T & decimal value is typad
that will ba the highest Iccation uied. OLRerwise BASIC will search Tar the highest contiguous ram addréss by storing and reading values
TPEm MSTiGry,

A machine language routine must not Be in a memory area wsed by BASIC, so it must be
1} Below 2000 hex bul above 200 hex or

2} Abowve the decimal address typed into “memory size® ar
3} Maom-cantiguous with the RAM at 2000 hesx
2) Store the roufine into memary, This can be done aither oefore or after BASIC is loaded, The HIM cassette load, an assembler, kaying

inta memary or BASIC s POKE command may be used,

3} Matity BASIC of the |ocation of the routina. WSALDC which s 2040 Rex in all wardions of KIM BASIC mudl b8 POKEd 1o contain the
address of e "LISE" maching languags routineg,. 2040 hex, B256 dacimal, must Be given 1he low B-bDits of the address and 2041 hex,
E25 7 dagimal, mudl Be given Lha high 8-bils.
Imvaking e "SR function baforg modiTying USELOC will cause an "ILLEGAL QUANTITY ' &rror sincé the original contents of
USRLOC containg theé addreds of the “ILLEGAL QUAMNTITY " érrar raouline,

4] The machine l[anguage routine must be called, The “USH" function is used far this purpase. A single numeric value must be given as the
argumant to USSR, BASIC will dispateh to the address contained in USRLDC, The USH routine may modify all of the registers, an ATS
should be perfaormed when (he routing comeletas,

Data can be passed to the machine language rowiine in two ways:

1] A JSH fo the routing whodsd saddeess s slored 8l Wecation & and T will cause ¥ and & o oe Quydes 1he value af the argumant 90 USSR % aall
oe phe Digh ofdde and A IDE low ofder of 3 16-Di0 signed integer. If the argument i§ Guiside (he range 32768 ta 12767 an “ILLEGAL
CHLIAMRTITY " grear will rosait,

| Cata may ba POKEd into memory unysed by BASIC and loaded by the USH roufing,

Walies may be returmed in bwo ways:

i1 M ISH o ihe routine whose address 15 at location B and 9 will cause the 1&-bit sign integer in [y, &) to be ralurned a5 1The resclt of e
SR function.
21 The LISH rouling can sione values in memaory unused By BASIC which rmay bé read in BASIC through the “PEER funciton,

Example: Ta utilize a program at Q300 hex —
50 POKE B2%5.0
100 POKE B257.3
150 X=USH{Y]
200 END

MORE ON PEEK AND POKE

POKE can be used 1o 48l up your machine language routing in high memary, BASIC doés not restrict which addresses you can POEE.
Fatches which a user withes to include in his BASIC can also be made using POKE .

FEEK and POKE can be used to store byte oriented information. When you initiallze BASIC, answer tne MEMORY SI1£ET guestion with
the amount of memory in your KIK-1 minus the amount of MEMOory you wish 1o use as storaoge Tar byfe formatred dala.

wou are now free to use [he meamory in the top of memory in your KIB-1 as byie storagse.

RULES FOR EVALUATING EXPRESSIONS

1} Cperations of higher préecedence are performed bafore operations of lower precoedence, This means the multiplication and divisions are par-
fomed before additions and subtractions. As an example, 2+<10/5 eguals 4, not 2.4, When operations of equal precedence are found in &
farmula, the left hand one |5 executed first: 6-3+5=8, not -2,

2} The arder in which operations are performed can always be specifiad explicitly through the use of parenthesas. For instance, to add 5 to 3
and then divide that by 4, we would use [3+3/4, which eguals 2. 11 instead we had used S+374, wa would get 5.75 a5 a resuif (5 plus 3747,

The precedence of operators used in evaluating expressions is as Tollows, in order beginning with the Righest precedence:
(Mote: Operators listed on the sama ling have the ame precedencs,)

1} FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED FIRST: 2) ©: 3] NEGATION: a) * f: 5+ -: B}
RELATIONAL OPERATORS: [equal precedence for all six] = ' { ::l 1{= =: M NOT; 8] AND: 9 OR

A relational expression zan be usad as part af ANy GXErassion. .

{Hzlaﬂlanar COparator esxpressions will always have a vaiue af True [-1) or a value of Faise {0). Therafore, [5=4)=0, (5=5)=-]1, (3 }5:.:-!]_
[4 4 3)=-1, atc.

The THEM clause of an IF statement § executed whengver the Tormula after the IF is not equal ta O, That is to say, IF X THEM, . . i
equivalent to IF X { } 0 THEN ...

AMNDO, 3R and MOT can be used for bit manipulation, and Tor performing boolean operaljons,

These three operators convert their arguments to sisteen bit, sigread twa's, complament integers in the range -32768 1o +32767. They then
perform the specitied |ogical operation on them and raturn a resull within the sama ramge. If the arguments arg not in this range, an “FC™ arrgr
results.

&3 AMND 16=16 Simce 63 equals binary 111111 and 16 equals binary 10000, the result of the AMND is binary 10000 ar 16,

4 OR 2=6 Binary 100 OR'd with binary 10 eguals binary 110, or & deacimal.

MOT X MOT X is squal to -{=+L}. This is becaute to form the sixtean Bit twa's complemeant of the number, you taka the bit 1|:|I'IE'$]
complament and add one,

The operations are parfarmed in bitwise tashiom, this means that each bit of the result is abtained by fxamining the bit in the 4&me position

for each argument,
A typical use of the bitwise oparators is Lo besl bits set in the KIM® two ports which reflect the state of some exiernal device,

Bit pasition 7 is the most significant bit of & byte, while position O s the least significant,

SPACE HINTS
In prder to make your program smaller and save spaca, the Tollowing hinks may be usaful,

1) Use multiple statements per ling. There is a small amount of owerhead {Sbyles) associated with gach ling in the program. Two of these
five bytes contain the ling number of the line in binary, This means that no matter How many digits vou have in your line nomber [minimuem
line number is @, maximum is 64000}, it takes the same number of bytes. Putting a5 many statements as possible an a line will cuf down an the
rnumber of bytes used Dy your program,

=) | Delate all REM statements and unnecessary spaces Trom YOur orogram.

31 Use variables instead of constanis. Suppose you use the constant 3.1415F ten limes in your program. 1 youw insert a statement
10 P=3.14159 in the program, and use P instead of 314159 sach time it is neaded, you will save 40 bytes, This will aldo result in spasd im-

provement,
4) A program need not end with an END; 50, an END statement at the end of a program may be deleted

o) Reuse the same variabies. If you have a variable T which is used to hold a emporary result In one part of tha orogram and you nead a
temporary variable later In your program, use it again, O if ¥ou are asking the terminal user [0 give a WES ar NO answer to two diffarant
questions at two different times during the execution of the program, use the same temporary variable A% to store the reply.

6} LUse GOSUB"s to execute sections of program statements that perform Identical acticni.,

7l Lise the zaro elemenis of arrays; for Instance, A{0), B0, X].

STORAGE ALLOCATION INFORMATION

simple {non-array} numeric variable like V use 6 bytes; 2 far the variable name, and 4 for the value. Simple non-array string variabies also use §
bytes; 2 Tor the variable name, 2 1or the length, and 2 for 4 pointer,

Array variables use a minimum of 12 bytes. Two bytes are used for the variable name, two for the size of lhe array, two Tor the number of
dimensions and two for gach dimansion along with four bytas for gach of the array elements,

Steong variables also wie one Dyie of string ipace for each character in the string. This is true whether the string wariable is a simple string vari-
able lika 4%, or an alemant of 3 siring matrie such a5 QIS [5.2‘].

Wrhen 3 new Tunclion is daeflined Dy a4 DEF slatemeant, & bytes are used (o store the dalinitian.

Reserved words such as FOR, GOTO or MOT, and the names or the intrinsic functlions such as COS, INT and STHS take up only one byte of
Brogram storage. Al other CHAFACIENS IN Programs ude aone by te of program storage aach.

Wihanm & programn (L Beang easaculed, 4pace 5 dynamically allocated on the stack as Toliows:

1) Eacn actlivea FOR, . NEXT loop uses 22 bybas,

24 Each aclive GOSLUA [(one IHal nas Mol refurmed yeb) uses & bytes,

3} Each parenthesis encountered in an exgrédsdion uies 4 bytes and each temporary resull calculated in an expression wses 12 by tas.

SPEED HINTS

The hints below should improve [he axeculion Tima of your BASIC program. MNote that some of these hintd are ha same as thosa used 1o de-
criase the space wsed Dy your programs. This meeans that in many cases you can increase the efficlency of both the spoad and slze of your pro-

grams at the same 1imea.

1) Delete all unnecéssary spaces and REM's from the program. This may Cause a small decrease in execution time Because BASIC would
aiherwite have to ignare ar skipg over sgaces and REM statemants.

2] THIS IS5 PROBABLY THE MDST IMPORTANT SPEED HIMT BY A FACTOR OF 10, Use variables imstead of constants, |t takes marg
tima 1o convert a constant to ifs Hna:mg ODInt representatlion than it does to Teich the value of a simple aor array variable, This is aspecially ime

portant within FOR, . NEXT Ioops oF alhar code that i3 executed re peatediy,

J:I Wariables which are encountered first during the execution of a BASIC pragram are allocated at the 4tart of the variable table, Thid m&ans
that a statement such a5 a 2 A=0:B8=A:C=A, will place A first, B second, and C third in the symbol table {assuming bine 5 i5 the first statement
executed in the programj. Later in the program, whan BASIC finds a reference Lo the variable A, it will search anly one entry in the symbol
table ta find &, two entriés to find B and three entrigs to Tind C, ate,

4} MNMEXT statemants without the index variable, NEXT it somewhat faster than NEXT | because no check is made to see | the variabla
specified in the NEXT |5 the same as the variable in the most recent FOR statement,

CONVERTING BASIC PROGRAMS NOT WRITTEN FOR THE KIM-1

Thaugh implemeaniations of BASIC on differant computers are in many ways similar, there are somae |Incompatibilities which wou should watch
far il you are planning to convert some BASIC programs that were not written for the Kik-1,
1] -ﬂl"'-i'll" subscripis, Some BASICS usa ** [" and "] " 10 denote array subscripis. KM BASIC uses I: " and ** : L

2} Strings, A number of BAS|Cs force you to dimensicn (deciare] tha length of strings before vou use them. You should remowve all dimension
staterments of this type from the program. In some of these BASICs, a declaration of the form DM AL{1J) declares a string matri= of J ale-
ments gach of which nas a length 1. Conver? DIM statemeants of thid Ivpa (o equivalant oned in KIM-1 BASIC: DIM AS(J).

KIM-1 BASIC uses " = ® for string concatenation not ** |, " or * & ",

Kif-1 BASIC uses LEFTS, RIGHTS and MID3 to take substrimgs of strings. Other BASICS use A1) to access the Ith character of the
itring A%, and A%(1,J) to take a substring of A% from character pasition | 1o character podition J. Convert a4 follows:

oLD MNEW
AS(1} MIDS|A%,1,1)
AZ(1,0) MIDS(AS, 1 J1+1]

This assumes that the refarence to 3 substring of A% i€ in &n expréddion of id on Yhe right side af an assignment, If the reference to AS is on
the left hand side of an assignrment, and X% is the string expression used to replace characters in A%, convert as follows:

oLD MEW
ASI=XS AZ=LEFTS(AS 1-1)+ XS+MIDS(AS 1+1)
ASILJI=XS AS=LEFTS(AS 1)+ XS+MIDS(AS J+1)

) Multiple assignments. Some BASIC: allow statements of the form: 500 LET B=C=0. This statemant would set the variables B & © to rero.

In HIM-1 BASIC this has an entirely different effect, All the “=%" to the right of the first ane would be interpreted as logical comparisan
aperators. This would set Bhe variabie 8 to -1 if € equaled 0. If € did not equal 9, B would be set to 0. The sasiest way to convert state-
ments ke This one is o rewrite them as follows:
500 C=0:8=C

4) Some BASICs use ™ /" imstead of * : " {o delimit multipla statements per lina. Change the * /% " ta * (" " in the program,

3] Paper tapes punched by other BASICs may have no nulls at the end of each line, instead of the three per line recommended for uie with
MR- BASIC,

To get araund this, try to use the tape feed control on the Teletype o slop the tape from reading as soon as KIM-1 BASIC types a carriage
return at the eng af the line. Wail a sacond, and then conlinue faading in the tape,

When you have finished reading in the paper tape of the program, be sure 1o punch a new fape in KIM-1 BASIC" format. This will save you
fraam Raving to repeat this process a secaond time.

&) Programs which use the MAT functions available in some BASICs will have to be re-written using FOR. . \MEXT loops to perform the
appropriate operations.

DERIVED FUNCTIONS

The following functions, while not intrinsic to KIM-1 BASIC, can be calculated using the existing BASIC functions.

FUNCTION FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS
SECANT SECIX) = 1/COS(X)

COSECANT CSC(X) = 1/SIN(X)

COTANGENT COT(X) = 1/TAN(X)

INVERSE SINE ARCSIN(X) = ATN{X/SQR(-X"X+1))

INVERSE COSINE
INVERSE SEGANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

ARCCOSIX) = -ATN(X/SQR{-X"X+1) 1+1.6708
ARCSEC(X) = ATNISOR(X " X.1) }+ISGN(X)-1) *1.5708
ARCCSC(X) = ATN{1/SQR(X"X-1] J+(SGM(X).1)*1.5708
ARCCOTIX) = -ATN{X)+1.5708
SINHIX) = (EXP({X)-EXP{-X) /2
COSHIX) = (EXPIX)+EXPI-X} /2

TANH{X] = - EXP [-X)/[EXP{X}+EXP[-X] }"2+1
SECH{X) = 2/{EXP{X)+EXP{-X} |
CSCHIX) = 2/(EXPIX)-EXP-X) |

COTH(X) = EXP{-X}/IEXP(X}-EXP{-X) }*2+1

ARGSINH{X] = LOG(X+SOR (X "X+1])
ARGCOSH(X) = LOG(X+SQR (X*X-1) |
ARGTANHIX) = LOG{ (1+X)1/(1-X) 1/2
ARGSECH(X] = LOG! (SQR(-X"X+1)+1)/X)
ARGSCH(X) = LOGI (SGN(X)*SOR(X*X+1)+11/X)

ARGCOTHI(X) = LOGI {X+1)/{X-1) }/2

IMPORTANT LOCATIONS (HEX)

EOWEST LOCATION
HIGHEST LOCATION
INIT (START)

GLOAD (RETURN FROM GOOD LOAD)
BDLOAD (RETURN FROM BAD LOAD-ALSQ PATCH LOCATIONS 1 & 2)
RETSAV (RETURN FROM SAVE)

USRLOC (FOR USR ADDRESS)

AYINT (PASS ARGUMENT OF USR FUNCTION TO THE ZERO PAGE
ADDRESS. REFER TO ZERO PAGE LISTING)

GIVAYF (RETURN A,Y FROM MACHINE CODE USR ROUTINE)
ISCNTC (CHECK FOR CONTROL/C)

LOCATION OF CALL TO KIM-1 INPUT ROUTINE

LOCATION OF CALL TO KIM-1 OUTPUT ROUTINE

KB- 9P XB-9
2000 2000
3FFF 4260
3E91 4065
2278 0000
2455 2523
26A2 275F
000B 2040
2F04 2FC2
30D7 3195
2610 26DA
238C 2456

2991

2A51

APPLICATION NOTE: Microsoft has advised us that the value of .1 cannot be represented
Exact}y in binary flnating point. Programs magnify this inaccuracy until it shows up
on print-out. This can be handled by:

(1) Always use integers which are exact and then secale. As an example,
14 X 1.23 would be (1l4%123) / 10,

(2) Use tests such as ABS(X-Z) < 1F-6 or STRS (X)=STRS(Z)

(3} Round out to the number of digits you want before printing.
The way to save data using Microsoft KIM BASIC is to:

(1) Have it in DATA statements and use CSAVE.

(2) Write your own USR functiocn to perform this.

Microsoft will provide access to cassette data in a future release if there is enough
general interest. Drop us a card if you are interested.

If BASIC is waiting for an input and you type a carriage return, you will exit your
pProgram and return to the Immediate Mode of BASIC. This is intentional. You can return
te the program using CONT. If you want to prevent accidentally leaving the program

in this manner, you can use POKE or the KIM Monitor to change the A5 to an A9 at
location 10920 decimal (2AA8 HEX) for the RAM version. Now,however, you will only be
able to exit BASIC by using CONTROL C, encountering a STOP in the program, or if the
prcogram comes to an END.

SOFTWARE: Three KIM-1 routines have been written by Ralph Bugg, a user, which are
compatible with the KIM-1 9 digit BASIC. These routines are as follows:

BUGGWARE #1. A video driver making the Kent-Moore video board Catalog 60083
(32 X 16) compatible with KIM BASIC.

A routine for operating KIM BASIC from a parallel input keyboard
$4.00 postage paid

A routine for output to a Baudot (5 level)Teletype
$4.00 postage paid

BUGGWARE #2. A video driver making the Kent-Moore video beard catalog 60117
(64 X 16)

From time to time we will make a mailing of miscellaneous information gathered on the
KIM BASIC and related items. If you have any tips you would like to share with others,
please send them in. At this point, there is no schedule or promise for the next issue
but it will be sent out when encugh Iinformation is accumulated to make it worthwhile,

HYPERTAPE TIP: For those of you who are unaware of Hypertape, this is a program

written by Jim Butterfield of Toronto, Canada and published in Eric Rehnke's KIM-1

User Notes, Volume 1, Issue 2. Hypertape allows vou to record on cassette in 1/6 the time
of standard KIM dump routine, For parallel input Ralph Bugg suggests you place

Hypertape at 0300 and enter the following changes:

KB-9F KB-9
035F 035F 60
269F 275C 20 00 03
Per Chuck Kingston, this may be done using the KIM serial port with:
035E 4C C2 03 03C5 58

83c2 20 BC 1E 03C6 60

Following is information for reading a line:
(1) The routine to input a line from the terminal is located at:

KB‘?;-------.EI‘E-EE‘E‘!}SE [Etartﬁ EH: E{FEE'}
KBOP...vuessa2356-239B (start at 235C)

(2} The compare for a (line delete) is at:

}:’Bhglllllﬁllza‘gﬂ
KBOP. cvsuuss 2371

{3) The compare for a (character delete) is at location:

E:.B-FEIIIIII||2&3F
FBOP s e er e e8Il

{(4) Note that codes & 20 HEX and E 70 HEX have already been ignored by the
compare above these.

If you are having any problems with your KIM-1 BASIC by Microscft, please write
to us. If at all possible, include a print-out illustrating your difficulty.
Document your print-out with handwritten notes indicating the difficulty.

KIM-1 digit BASIC by Microsoft is alsoc available in a version adapted for the TIM
monitor manufactured by MOS Technology. TIM stands for Teletype Input Monitor and is
often used by people developing a CPU of their own design. The TIM is part

#6530-004 and sells for $14.15. The manual for application of the TIM sells for
54.95. Both items are available from Johnson Computer.

You may purchase useage rights or source code listings from Microsoft as follows:

IN-HOUSE OBJECT CODE RIGHTS for use on a specific project are available for $750.00.
This would be appropriate for a user who would otherwise have to purchase several
copies of BASIC authorized for use on a specific KIM unit. As an example, using
KIM in an in-house test stand and then building ten more test stands, each using

a KIM.

IN-HOUSE SOURCE RIGHTS to all versions of 6502 BASIC is available to customers
who would like to customize the program for each KIM-1. The price is $3,000.00
for the in-house for each use of the source code.

OFM SOURCE CODE RIGHTS are available for making Microsoft's 6502 BASIC a part
of a preoduct being manufactured for resale, The price to an OEM for source code
rights is $3,000.00 plus $35.00 for each copy up to 1,000 copies ($35,000.00)

after which they then own the rights. This can be purchased outright for
$21,000.00. An OEM account receives the source listing and may sell the cbject

code as a part of his product but the source code may not be sold, distributed,
given out or leave the account facility.

OEM OBJECT CODE RIGHTS is priced at $1000.00 plus 535.00 per copy up to 1000
coples. Source code available at a later date for the 2000 difference.

OHNSON

COMPUTER

Implementation of a CONTROL C is difficult due to the nature of the KIM
1/0 port, Because only a bit at a time comes into the port, it is
impossible to handle a character typed during computation. By the time
BASIC tries to detect a CONTROL C character, several bits of data may
already have passed through the port.

Exiting to the monitor and re-entering at the WARM START location will
stop the program, however, the "CONT" command will net work properly. In
fact, exiting to monitor can leave BASIC in a state where all variable
accesses hang the machine until "RUN", "NEW", or "CLEAR" is typed

or a program line is changed. However, this is very unlikely.

Changing to a parallel input keyboard eliminates the above problem.
The CONTROL O facility can be handled by POKEing or using the KIM

monitor to set the CONTROL O flag location of 0017 in KB-9F, or 0014 in KBE-9,
to FF for no output or to 00 for outpur.

P.O. BOX 523 MIDINA, OHIO 44256
(216) 725-4560

INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBMLIC SINE
HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPEREOLIC SECANT

HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERAOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

ARCCOS(X) - ATNIX/SORE-X"X+1) }+1.5708

ARCSECIX) = ATNISQR{X X 1) 1+({SGN(X)-1) "1.5708
ARCCSCIX) = ATN{1/SORIX"X-1) J+ISGNIXI-1)"1.5708

ARCCOTIX) - ATN(X}*1 5708
SINHIX) = (EXP[X) EXP{-X) }/2
COSHIX) - IEXPIXI*EXPI-X] 1/2
TANH(X] = EXP [X)/EXPIX}+EXP(-X) }
SECHIX) = 2/{EXPIX}+EXP{. X}
CSCHIX) 2HEXP({X)EXP{ X))

"2+1

COTHIX) = EXP{ X\IEXP(X) EXP{-X) }"2+1

ARGSINHIX) = LOGIX+SQR(X " X+1})
ARGCOLH{X] = LOGIX+SOR(X"X-1) }
ARGTANHI{X} - LOG [(1+X)/11-X))/2

ARGSECHIX) = LOG({ ISOR-X"X+1)+1}/X)

ARGSCH{X) = LOGL (SGMIX | "SOR(X " X+11+ 1)/ %]

ARGCOTH(X] = LOGH (X WX 1) /2

e R e s

— i e B -

IMPORTANT LOCATIONS (HEX)

LOWEST LOCATION
HIGHEST LOCATION

INIT (START)

GLOAD (RETURN FROM GOOD LOAD)

BDLOAD (RETURN FROM BAD LOAD-ALSO PATCH LOCATIONS 1 & 2)

RETSAV (RETURN FROM SAVE)

USRLOC (FOR USR ADDRESS)

AYINT (PASS ARGUMENT OF USR FUNCTION TO THE ZERO PAGE ADDRESS.

See Zero Page Listing)

GIVAYF (RETUEN A,Y FROM MACHINE CODE USR ROUTINE)

ISCNTC (CHECK FOR CONTROL/C)
LOCATION OF CALL TO KIM-1 INPUT ROUTINE

LOCATION OF CALL TO KIM-1 OUTPUT

ROUTINE

KB9FP
PROM)

2000
AFFE
JES1
2278
2455

26A2

000B

ZFQ4

30D7
2610
238C

2991

KE-9

2000

4260
4063
Q0oo
2523
275F

2040

2FC2

3195
26DA
2456

24851

Page 0 is configured as follows: NOTICE: The PROM version initializes
at 3E91. It does not provide SIN, COS,
TAN, ATN, etc. Memory used is $2000
to 53FFF. Workspace begins at $4000.

KB-9 uses all locatiens 0-CC and FF

PROM used all locations O-DF and FF

PROM RAM
KE-9F ~B-9 DESCRIPTION
2278 0 JMP to WARM START BASIC.
6 6 Address of routine to transfer USR argument to y,A (AYINT).
8 8 Address of routine to transfer (y,A) to result of USR
function (GIVAYF).
13 14 FLAG set to FF if output is suppressed (CONTROL O mode).
Set to 0 otherwise,
14 15 Number of NULLS to print.
15 16 Current terminal column (equal to POS (0)).
16 17 Line Length.
17 1€ Position bevond which there are no more comma fields.
Equal te 14*(INT (line length/14)-1).
1A 1B Input buffer .72 decimal bytes,
76 78 Pointer to start of program.
78 TA Pointer to start of simple variable table.
1A 7C Pointer to start of array tatle.
1c 7E First location unused by array table.
7E 80 Lowest location used by string data.
A2 84 Highest memory locaticn in use by BASIC.
B4 86 Current Iine-numher.
AQ AE Floating accumulator
B4 Bl Value of argument in AYINT
E9 cD Routine to read a character from current program position.
Dl D8 Current random number.
D5 DD First unused page 0 location.
FF FF Used by STRS function.

Page 2

IOHNSON

MPUTER
_

NOT ICE

For perfect load and dump operations using a cassette the following should be
observed:

ll

The small magnetic bar located on the polished surface of the recording head
used in the tape recorder should be aligned to the magnetic information recorded
on the tape. Typically the recording head is secured in place with two screws.
One screw is spring loaded and allows the recording head to be shifted slightly
for alignment with the information stored on the tape. It is possible the
recording head was not aligned properly at the factory or the head has been
jarred to an improper setting by rough handling of the recorder itself.

If a production type tapc has been recorded properly it can be used to find the
proper setting of your recording head. While playving the tape the spring loaded
recording head adjustment screw can he varied to obtain maximum brilliance
(sharpness) of tone., Additionally, proper adjustment will allow programs to be
stored on either side (track) of the cassette with no interference between the two,
Recording head misalignment is one of the chief causes of improper loading

from the cassette in the KIM-1 system.

If, after verifying proper recording head alighment, ycu still have problems,
check the setting of VR-1 (the 5K potenticmeter) located to the left of the
keyboard. Connect a jumber from terminal P on the application connector to
terminal L on the application connector. Next, connect a OC volt meter between
terminal X on the expansion connector and ground.

Then, referring to the KIM-1 User's manual Page E2 adjust the potentiometer to
get a reading of +1.4V (no less than .7V and no more than 3.0V). This is a
very touchy adjustment.

I[f you have properly aligned your recorder head and the KIM-1 is properly
calibrated you should have no problem dumping to your recorder and loading

from your recorder. Should!you still have a problem you might check to be sure
that the tape you are trying to load in your KIM-1 was recorded on a properly
adjusted recorder head, If this was not done, the program can he saved by
readjusting your recorder head in the wrong position so that it properly lines
up with the bad-cassette, loading to KIM and then readjust your head to its
proper setting and re-recording the program from your KIM to a clean cassette.

P. 0. BOX 523 MEDINA, OHIO 44258

Your KIM-1 Basic by Microsoft cassette has been recorded using HYPERTAPE de-
veloped by Jim Butterfield of Toronto, Canada and published in KIM-1 Users
Notes, Issue 2, Pages 12, 13 and 14. This program enables you to record and
play back in 1/6th of the time required using the standard KIM-1 tape routines.
Playing back into your KIM-1 from a HYPERTAPE recording follows the same pro-
cedure as the standard KIM-1 tape loading routine using 1873 and GO. HYPERTAPE
is more sensitive to the adjustment of the tape recorder head. If you do not
get a load on the first try then there is a strong possibility that your tape
recorder head has not been aligned exactly the same as ours. You can "tune

in" to the tape by using some delightful programs published in KIM-1 Users
Notes.

1. Before changing the setting of your tape recorder head take one of your own
cassettes and generate a SYNC STREAM on your own recorder using the program
from Page 11 of KIM-1 Users Notes, Volume 1, Issue 2.

2. Now, load the VUTAPE into your KIM-1. VUTAPE was written by Jim
Butterfield of Toronto, Canada and published in KIM-1 Users Hotes, Issue 2,
Page 12,

3. After loading YUTAPE and 0000, press GO. The last character in your dis-
play will come on in a randam fashion. Now go to your KIM BASIC cassette
and locate the 30 second SYNC STREAM (you can tell it by the steady sound)
which we have recorded immediately following the end of the KIM-1 BASIC.
This is at about 3 minutes and 15 seconds into the tape. Adjust your
volume control to about 2. While playing this sync stream into your
KIM-1, adjust your tape recorder head set screw so that the sync pulses
"lock in" on the right end of display. This adjustment should be very
close to the original adjustment of your head. Once locked in, Tower the
volume control to about 1 or even .5 and adjust again.

4. MNext you might want to check your phase lock loop (VR-1) adjustment on
your KIM=1. This is easiest done by using the PLL SET program by Louis
Edwards, Jr. of Trenton, N.J. and published on Page 3 of KIM-1 Users Notes
Issue 5. Now go to the beginning of the KIM-1 BASIC cassette, set up your
load routine. Enter Ident 01 at 17F9. Be sure O0F1 is loaded with 00.

Go to 1873, set volume control at about B and GO. You should load in three
minutes. Now refer to the enclosed documentation for BASIC operating
instructions.

KIM-1 User Notes is published by Erick Rehnke, 109 Center Street, West Norriton,
PA. 19401. Subscriptions are 6 issues for $5.00 in U.S5.A., and Canada, $10.00
for 6 issues elsewhere. Johnson Computer will accept subscriptions on purchase
orders. Individuals make checks payable to "KIM-1 Users Notes". Also, "The
First Book of KIM", by ORB (Ocker, Rehnke & Butterfield) has reprinted most
important programs published in issues 1 through 5 and also includes excellent
text on KIM and the 6502. Price is $9.50 available through Johnson Computer,
P.0. Box 523, Medina, Ohio 44256.

SYNC STREAM - 0000 AO BF 8C 43 17 A9 16 20 7A 19 DO F9

VUTAPE - 0000 D8 A9 7F 8D 41 17 A9 13 85 EO 80 42 17 20 41 1A 46 F9 05 F9 85 F3
0016 8D 40 17 C9 16 DO E9 20 24 1A C9 2A DO F5 A9 00 8D E9 17 20 24 1A
002C 20 00 1A DO D5 A6 EO E8 EB EO 15 DO 02 A2 09 86 EO 3E 42 17 AA

0041 BD E7 1F 8D 40 17 DO DB

PLL SET - 1780 A9 07 8D 42 17 A9 01 8D 01 17 85 E1 A9 7F 8D 41 17 AZ 09 AQ 07
1795 2C 42 17 30 02 A0 38 8C 40 17 8E 42 17 2C 47 17 10 FB E6 E2 30 04
17AB A9 97 DO 03 A9 93 EA 8D 44 17 A9 01 45 E1 85 E1 8D 00 17 E8 E8
17C0 EO 15 DO CF FO CB

JOHNSON

COMPUTER

BULLETIN
TO: All KIM BASIC users.
To more specifically describe the start-up procedure for loading the KIM BASIC fron

cassctte, we are offering the following:

(1)
(2)

[3)

L P 1 |

Have at least 16K of memory added on to your KIM-1, bepinning at address 2000 HFY,

We suggest yvou make a memory test at this point to be sure you have ne bad memory
bits.

If you are loading via the KIM-1 hexadecimal keyboard, enter the following;

* AD Q0OF1 DA 0O

Al 17F9 DA 01

+« 00 + IC » 00 =+]1C + 00 + 1C

AD 1873 G
* Start tape recorder with volume set at approximately 80% and treble or full.
* After three minutes, you should get a display of 0000.
* Flip your switch to transfer to your terminal.

* Press "RUBOUT" key on your terminal,

* On your terminal, type in "4065" (starting address for KIM 9 digit BASIC)
followed by the space bar.

Sy

= TLype M5,
* KkIM BASIC should come up asking memory si:ze.

* Tap the "KETURN" key. However, if you want to set aside memory at the high

T

end, answer with the decimal value of the highest memorv location KIM BASIC
can use. KIM BASIC memory must be contiguous from 2000 HEX up.

* KIM BASIC should now ask for terminal width,
* Tap the "RETURN" key if you have a 72 character terminal width. [f you have

less than 72 characters across, or if you have more than 72 characters and
plan on using the entire terminal width, type in actual terminal width,

(Cont. on Page 2)

P.O. BOX 523 MEDINA, OHIO 44256
(216) 725-4560

* BASIC will ask if you want SINE, COSINE, etc. We suggest you always answer
nwyv, for YES.

You should now be in BASIC.

(4) If you intend to transfer to the keyboard for the entire start-up, use the
following procedure:

* Press "R5" on the KIM-1 hexadecimal keyboard.
* Press "RUBOUT" on your terminal keyboard.
* Type in the following on your terminal keyboard:
00F1 (space bar) 00 .
17F9 (space bar) 01 .
o0 . 1€ . 00 . IC ., 00 . 1C .
1873 (space bar) G

* At this point, turm on the cassette. After a successful load, the screen
will display:

KIM
0000

* type starting address and routine as follows:
4065 (space bar) G

* Answer questions on memory size, terminal width and trancendental functions
as on page one.

You are now in BASIC.

Saving programs on cassette is accomplished as follows:

(1) Plan to save only one program per cassette. That program should be in vour memory
when you are ready to record. Use the following procedure:

* On your terminal keyboard, type "SAVE".
* 5tart your tape recorder. When leader has passed, tyvpe "G".
* A successful SAVE will lbe indicated by the following display on your screen:

KIM
0000

(2) Since 0000 is WARM START, get back to BASIC simply by ty¥ping "G".

In order to load a program from cassette back into KIM, use the following procedure:

* Enter BASIC as above and then type "LOAD",

(Cont. or. Page 3)

