
introduction
to

computp.r
proqramminq

w ith
com al 8 0 and the c o m m o d o re 64/128

d william leary

in-broducb ion "bo compu-ber programming

with

COMAL ©O

and the

commodore 64/128

j. william leary, ed.d.

Cover design, illustrations and drawings:
Roselyn Stewart Leary

Acknowledgements

Without the help and support of the following, this book still would be
an idea to pursue "tomorrow":
Dr. C. Holland, Superintendent of Schools, Pocahontas County, W.V.;
Kenneth E. Vance, Principal, Pocahontas County High School; Dan Curry,
Curriculum Development, Pocahontas County Schools; Cora Lee Wyatt,
Treasurer; Gwennie Friel, Secretary; and, to these students for those
tedious but essential tasks of proofing, duplicating and collating, Tammy
Armstrong (first draft), Mary Kay Irvine (Girl Friday, final copy), Tina
Roach, Carl Seielstad, Carol Arbogast, Angie Matheny, Kathy Roach and
Delana Irvine.
A special thank you to Len Lindsay, Editor, COMAL TODAY, for his
supportive critique of the manuscript. (Any errors or obfuscous
explanations remain the responsibility of the author.)
The author is also indebted to Robert L. Poland, Richmond High School
(Indiana) --an unusually gifted teacher, for introducing him to COMAL in
the Summer of 1984.

Printed in the United States of America. Published by:

COMAL Users Group, U.S.A., Limited
6041 Monona Drive
Madison, WI 53716

Please note the following trademarks:

Captain COMAL of COMAL Users Group, U.S.A., Limited; Commodore 64 of Commodore Electronics
Limited; IBM of International Business Machines; Apple of Apple Computer;

Copyright 1985 by J. William Leary
Copyright 1986 by COMAL Users Group, U.S.A., Limited

All rights reserved. No part of this book may be reproduced in any way or by any means,
without permission in writing from the publisher.

ii

CONTENTS

1. introduction 1
2. mathematical operations 12
3. introduction to programming 21

4. computer management techniques 30
5. LIST and EDIT commands 39
6. introduction to Strings 46

7. more mathematical operations 54
8. more on Strings 67
9. FOR / ENDFOR loop 72

10. counting and summing 80
11. binary decisions: IF / THEN / ELIF / ELSE / ENDIF 87
12. binary numbering system 97

13. logic operators 106
14. READ - DATA 111
15. INPUT - numerics and Strings 126

16. REPEAT - UNTIL 135
17. nested loops 142
18. WHILE - DO 152

19. CASE - OF 158
20. procedures 163
21. arrays 181

22. String arrays 196
23. two-dimensional arrays 204
24. sorting 217

25. introduction to files 231
26. the graphic turtle 248
27. for further study 259

index 262

iii

to goose

and each faith matheny

iv

This book is written for the COMAL 80 cartridge.
It may be obtained from:

COMAL Users Group
USA, Limited

6041 Monona Drive
Madison, WI 53716

phone: 608 222-4432

v

VI

CHAPTER ONE
d-n .-fc a r o dL o n .

o t> o e c t iv e s

At the completion of the chapter the student will be able to:

1. State what the acronym COMAL represents;
2. Tell what the difference is between a ROM and a RAM;
3. Place the cursor at any place on the monitor screen;
4. Show the difference between tapping the CLR HOME key alone and

tapping it along with the SHIFT key;
5. Tell what the function of the RUN/STOP key is;
6. Define what a system reserved word is;
7. Use the operands + , -, /, * and t in simple programs;
8. Know how to implement the AUTO function for numbering lines;
9. Know how to use RENUM to change the numbering of lines; and,
10. Write a simple program to find the area of a polygon or circle.

1 . 1 C O M A L — C O M m o n Algorithmic Language— is a
powerful computer language. Though it has striking

similarities with BASIC, it is an over simplification to dismiss COMAL as
"just structured BASIC." The painful short comings of BASIC began to
surface in the 70*3 and though there have been many (excellent)
revisions, they remain just that --revisions.
On the other hand, to say COMAL is a pre-Pascal language is to imply it
lacks the power and sophistication of that computer language. COMAL, in

111

©very aspect, can match (and exceed, in the author’s opinion) Pascal in
clarity, structure and power.
At this writing (1985) COMAL has been adopted as the official school
language in seven European countries, the latest being Scotland. In
Denmark, COMAL is used in the operation of its airports.

1 . 2 T H E M A R V E L O U S T E C H N O L O G Y of the
computer will be left to the engineers. The user,

however, should understand two primary features: 1. The ROM; and, 2. The
RAM.
The ROM chip(s) cannot be changed by the user. ROM is an acronym for
Read Only Memory. These chips have been programmed by the manufacturer
and they are, essentially, what makes each computer distinctive from any
other. ROMs are not interchangeable from one brand of computer to
another.
RAMs (Random Access Memory), on the other hand, can be programmed by the
user — as long as he follows the sequence of logic built into the ROM by
the designer. Many RAMs are interchangeable and can be purchased from
any of several electronic companies.
When the computer is turned off, what ever memory the user has "built
into" the RAMS is lost. This is not true for the ROMs unless, of course,
they are destroyed by a power surge or static electricity.

1 . 3 W H A T I S T Y P E D on the KEYBOARD is changed
into machine language (a language based on binary

numbers) by the CENTRAL PROCESSING UNIT. Once this has been
accomplished, it is "operated" on by the instructions we have programmed
into the RAMS. When this task has been completed, the final results are
then changed back and displayed on the monitor screen or the printer.

1.-4: B E F O R E S T A R T I N G , T H E R E are some
things we need to become familiar with on the C=64

keyboard.
When we turn on the computer we will note, at the end of the printed
message on the screen, a flashing square light. This is called the
CURSOR. By tapping certain keys, we can move it about the screen.
In the lower right of the keyboard there are two keys. One has arrows
pointing up and down with the letters C R S R in the middle. The other
has the same letters only the arrows point left and right. By using
these keys in conjunction with a S H I F T key we can place the cursor
in any position on the screen. If we wish to move the cursor DOWN or to
the RIGHT we do so without employing a SHIFT key; to move the cursor up
or to the left we must keep the SHIFT key depressed.
Because the CURSOR is so important, practice for several minutes moving
it about the screen. Put it into the four corners, half way down one

C2H

side, then the other side, in the middle and, finally, middle top and
middle bottom rows.
The cursor is the best servant we have. Commodore has designed their
ROMs so that we can edit programs (using the cursor) while they are still
on the screen --even to changing just one letter or one number. More on
this later.
Every time we finish typing a line we must tap the R E T U R N key. By
doing so we are 'telling1 the computer, "This is what I want. Do it."
It may not always agree. We may have asked it to do something it is not
programmed by the ROM(s) to do; in which case, it will flash an error
mess.age on the screen before allowing us to type further. This is an
outstanding strength of COMALi And before we have finished with this
book we will come to appreciate it more and more.
There are other ways of moving the cursor. If we tap the
I N S T / D E L key the cursor will move one position to the left. If
there is a character there, it will be erased (a form of editing). If we
wish to move the cursor forward with the I N S T / D E L key, then we
use it in conjunction with a S H I F T key. We can also use these two
procedures to move text back and to push text forward.
Tapping the C J L R / H O M E key will
move the cursor to the upper left hand
corner of the screen, WITHOUT ERASING
TEXT. Tapping this key ALONG with a
S H I F T key will move the cursor to
the upper left hand corner A N D
will clear the screen at the same
time!
The R U N / S T O F key does just
that. When a program is running and
we wish to stop it, then tapping that
key will do so. There are times when
the computer "locks up" and depressing
the R U N / S T O F key WHILE tapping
the R E S T O R E key will often
UNLOCK it. Computers are "funny",
though, and no matter what we try
(short of a sledge hammar), nothing
short of turning the computer off and
then on seems to work in the effort to
"unlock" them. This is why we should save what we are doing after every
few lines.
Another important key is the long one at the bottom of the keyboard. It
is the space bar. It functions the same as the space bar on a typewriter
--with one nice exception, it can erase! Type a few characters on the
screen and WITHOUT tapping the R E T U R N key, move the cursor back to
the beginning of the line using the SHIFT key in conjunction with the
left and right arrow CRSR key. Now, tap the space bar three times.
Finally, depress the space bar and keep it there until all the letters
are erased.

C 33

1 . 5 T H E C O M P U T E R , T H O U G H not designed to
be a calculator, can be used as one and will allow some

further introduction to the basics of the keyboard and COMAL.
First, an explanation of the mathematical symbols used in COMAL.

+ operand for addition
example: 6 + 4 = 10

operand for subtraction
example: 6 - 4 = 2

* operand for multiplication
example: 6 * 4 =24

/ operand for division
example: 6 / 4 =1.5

t operand for raising to a power
example: 6+4 = 6*6*6*6 = 1296

< less than
example: 4 < 6 = 4 less than 6

> greater than
example: 6 > 4 = 6 greater than 4

<> not equal to
example:

Type the following statement
6 + 4

6 <> 4 = 6 not equal to 4

and then tap the RETURN key.
On the screen, the CURSOR should be flashing over the " + " sign and there
should be the message, "not a statement.” This sentence will most likely
be in lower case letters. If it isn't, depress the Commodore logo key
(C=) and the SHIFT key simultaneously. Another outstanding feature of
COMAL is the system-forced capitalizing of reserved words, PLUS a
system-forced indentation of program lines. This increases the ease of
reading, editing and debugging of programs.

C43

What the computer needed was some instruction. All we entered was "6 +
4". The verb was missing.
If we want the computer to process the data and give an answer, then we
must ask for the output. The key word is 3 P R I N T .
If the cursor is still flashing over the "+" sign, move it down by
tapping, four or five times, the C R S R key --the one with the up and
down arrows on it.
Tap the RETURN key.
Now type this

print 6 + 4
And tap the RETURN key.
The answer, 10, appears on the screen.
Verify the answers for 6-4; 6*4; 6/4; and, 6+4.
All of this is very fine if the statements to be processed are not so
complicated that they call for the use of more than one line; or, if we
do not wish to use the results in another part of a program; or, if we do
not want to save the work for another time. In other words, if all the
work were of the order "6 + 4" in difficulty, then there would no need
for computers. Of course,the truth lies elsewhere.
The heart of computer technology is the ability to design ALGORITHMS
(programs) --within the restriction of its design, to solve problems.
After writing these programs we often wish to save them, either for
reference or for future use.

1_ . 6 T H O U G H G O M A L I N G O R E S line numbers
when a program is RUN, it does allow them as a help or

aid to the programmer. The valid line numbers in COMAL range from 1 to
9999 and can be used in any sequence as long there is successive logic in
the design of the program. COMAL also has built into its ROM the
characteristics of allowing the user to renumber (RENUM) the lines AT ANY
TIME (!), RENUM by specified interval, and to have the computer, as it
were, to provide the next line number(s) AUTOmatically after the current
line is Entered' by tapping the RETURN key.
To illustrate the latter, type the following

auto
and tap the RETURN key. The screen responds with

0010

Tap. RETURN again. The screen displays

0020

Do this several times, noting the screen printout.
Tap the R U N / S T O P key. Doing this will get us out of the AUTO
mode.
Now, type the following

auto 1000
and tap the RETURN key. The screen shows

1000

Tap RETURN once more, and then several more times. Note the printout.
When finished, tap the R U N / S T O R key.
Type this

auto 1000,3
and tap the RETURN key once. Now do it several more times noting, each
time, the printout on the screen.
Try several beginning numbers and several different sequences. Observe
that the default sequence is 10.
This writer prefers starting all programs at 1000. With 9000 lines still
available, this is more than ample for almost any program design.

1 - T
things:

O N E F U R T H E R O B S E R V A T I O N
importance. Before starting a program always do

of
two

1. Clear the screen; and,
2. Type N E W .

N E W is a reserved system word that clears the memory of the computer
before starting another program. If WE don't type NEW, we could very
well end up with an algorithm containing lines from a previous program.
The end result is predictable.
= = = = = For a few programs the notation / R / will be used to

indicate that we are to tap the RETURN key. = = = = =

1 . B E N T E R T H E F O L L O W I N G program into
the computer (do not use AUTO command)

clearscreen (SHIFT & CLR/HOME keys)
NEW /R/

Nothing happened. And nothing was supposed to have happened. What we
did, t>y 3 _ n s l i n e n u m b e r s , was to tell the
computer, "Look, I'm designing a program here. Do not do anything with
it until I tell you to." And how do we tell the computer to start
working on the program and produce, what we trust, will be the correct
result? By typing

R U N /R/
And now we have the answer (10) to our first program.
Do this one.

1000 print 6 + 4 /R/

clearscreen
NEW
1000 print 6+4
RUN

The printout should be 1296.
Before typing NEW, type

list /R/
Note that "print" is now capitalized. This is system-forced (a nice
feature!) for all words reserved by COMAL in its operation. (To this
point we have introduced four reserved words: NEW, RUN, PRINT; and,
LIST.)
Type the following program, exactly as it appears.

clearscreen
NEW
1000 width := 6
1010 print width
RUN

The printout on the screen is 6.
Let's take a look at each line.

1000 width := 6
The use of " : = " has the meaning REPLACE 'WIDTH' with the value of 6.
This does rro-fc. mean that 'WIDTH' is E Q U A L to 6; it is stating that
the variable, WIDTH, is being R E P L A C E D with the value of 6. The
importance of this concept cannot be over emphasized.
In computer programs, variables are d y n a m i c , that is, their value
may change within the algorithm as many times as the programmer wishes
--and without causing any problems in logic!!

/R /
/ R /
/R /
/R /

/ R /
/ R /
/ R /

The other type of variable is STATIC. Consider the following algebraic

equation.

The program (algorithm) to solve for the value of X is
2X + 4 = 12
2X = 12 - 4

2X + 4 = 15 - 3

2X = 8
X = 8/2
X = 4

The only value of X that will satisfy this equation is the value of 4.
No other value will work — hence, we say the variable is STATIC, not
dynamic.
However, in our computer program we specified the WIDTH to be 6. And
when we asked the computer (in line 1010) to print WIDTH, it printed the
value 6. If we specified (in line 1000) that WIDTH was 8 or 10.11 or
-6.95 then those values would have been printed. After more experience,
we will learn how to change the value of a given variable many times
within a single program.
Now, to extend the logic, let’s consider the formula for the area of a
rectangle.

area := width*height
What we are saying is, take the variable A R E A and REPLACE (!!) it
with the value of WIDTH times HEIGHT.
One more look at this concept. Consider the classic counting loop that
is used so widely in several programming languages (as we will see soon,
COMAL’s counting loop structure is far more logical).

count := count + 1
If we were to say "count equals count plus 1" then we find ourselves
saying 1 = 2 ; because, in extending the logic of "count equals count plus
1", and assigning the value of 1 to COUNT, then we have

1 equals 1 + 1
or 1 = 2. Not so!!

But by stating, conceptually, "count is replaced by count plus 1", then
we have ’count’ taking on successive values of 1, 2, 3 and so forth as
the computer ’clicks’ by the statement each time.
Enter the following

clearscreen
NEW
auto 1000

/R /
/R /

1000 width := 7 /R/
1010 height := 8 /R/
1020 area := width*height /R/
1030 print area /R/
tap
RUN

RUN/STOP key /R/
/R/

What happened was this: The computer
started the program at line 1000 after
we typed "RUN." It took the value of
1 width’, ran down to its storage
cells, labeled one ’width’ and placed
the value of ’7’ in it; it then went
back, fell through to 1010 and
repeated what it did on 1000, only
this time it labeled a storage cell
"height" and put the value ’8’ in it;
went back, fell through to 1020, ran
down to the storage cells and labeled
another one "area" and then zoomed
over to the cells ’width’ and
’height’, noted what values were in
them, multiplied them together and
then put that value (56) into the
storage cell ’area’; it went back,
fell through to 1030 --where we told
the computer to print the value of
area-- zooooooommmmmeeeedd back to the
storage cell ’area’, saw that it had
’56’ in it (it has poor recall, doesn’t
’56’ on the screen.

it!) and obliged by printing the

1 . 9 W H I L E T H E A L O G R I T H M (program) is on
the screen type,

renum 1000,5 /R/
type

LIST /R/
The same lines are there, but now they have the numeration of 1000, 1005,
1010, 1015. Try several other RENUM formats. Is there an upper limit to
the sequence number that we may type after the comma? If so, what is it?

RECAP*****

ROM chips are Read Only Memory chips and can
not be erased.

RAM chips are Random Access Memory chips and
may be programmed by the user. They are
erased when the computer is turned off or
if the user types NEW.

RUN is the command that causes the computer
to process a program.

LIST will display the program on the screen.
AUTO will print, automatically, line numbers

on the screen.
RUN/STOP will stop the AUTO command and also

the RUNning of a program.
NEW clears the computer’s memory and prepares

it for a program.
RENUM is the command that renumbers the lines

of an algorithm (program).

prob16ms

Using the format found in 1 . 8 write programs to solve the following.

1. Find the area of a rectangle with a height of 19 and width of 20.

2. Find the area of a rectangle with height = 14.67, width = 35.67.

3. Find the area of a square with a side of 16.

4. Find the area of a square with a side of 15.008.

5. Find the area of a square with a side of 1.0809.

C103

The area of a triangle is
area = base X height

2
In COMAL, this would read

area:=base*height/2
6. Find the area of a triangle with base = 4 and height of 6.
7. Find the area of a triangle with base = 4.02 and height = 8.

The area of a circle is
area = pi X radius X radius

In COMAL, this would read
area:=pi*radiusT2

Where pi takes on the value (for now) of 3.14.
So the formula to use is

area:=3.14*radius*radius
By the way

radius = diameter/2.
8. Find the area of a circle with a radius of 6.
9. Find the area of a circle with a radius of 10.
10. Find the area of a circle with a diameter of 40.

answers:
1. 380
2. 523.2789
3. 256
4. 225.240064
5. 1.16834481
6. 12
7. 16.08
8. 113.04
9. 314
10. 1256

r. in

CHAPTER TWO
mathemat ical opera-bions

ob j d.v© s

At the completion of "the chapter the student will be able to:
1. Take a mathematical expression and rewrite it in accordance with

the proper rules, for the computer to calculate;
2. State, in the proper order, the sequence in which the computer

will operate on mathematical expressions;
3. Know that in such expressions as xtytz, COMAL calculates xty

— the result being q— and then calculates qtz;
4. Express whole numbers in scientific notation;
5. Express decimals in scientific notation;
6. Take a number expressed in scientific notation and rewrite it

as a whole number and/or a decimal; and,
7. Use parentheses, when appropriate, to combine expressions of

more than one term.

C123

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
0 SETTING MONITOR COLORS o
m --------------------- m
a a
1 THE SCREEN. While pressing down the CTRL key, tap the "Y" 1
c key and then any number from 1 - 8 to select a color. c
0 o
m THE BORDER. While pressing down the CTRL key, tap the “X" m
a key and then any number from 1 - 8 to select a color. a
1 1
c THE CURSOR. While pressing down the CTRL key, tapping any c
0 number from 1 - 8 will change the color of the cursor. o
m m
a Pressing the CTRL key and tapping the letter "Z" will make a
1 these choices the default colors should the computer 1
c be reset by using the RUN/STOP and RESTORE keys. c
0 o
m For non-color monitors, the best combination of BORDER, m
a SCREEN and CURSOR is to press the CTRL key and tap "W”. a
1 1
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

2 . 1 C O N S I D E R T H E M A T H E M A T I C A L
statement

6*5 - 2
Is the answer 30 - 2 = 28 or

6*3 = 18?
In other words, is the 2 subtracted from the 5 BEFORE multiplying, or do
we multiply FIRST and THEN subtract the 2?

2 . 2 T H E R U L E S C O V E R I N G the order in which
mathematical operations are performed are very specific.

In table form they are:

operation function
order performed

0 remove parentheses first

1 exponents (t)
2 multiplication (*) OR division (/),

in order, from left to right

ri3:i

3 addition (+) OR subtraction (-),
in order, from left to right

The reason for putting "remove parentheses first" as 0, is that once
having located an arithmetic expression enclosed by parentheses, then the
order of procedure within those parentheses follows the sequence of 1, 2
and 3.
Study these two expressions

Ea3 6*5 - 2
Cb3 6*(5 - 2)

First, though, observe the between the 6 and (5-2). In algebra the
expression 6(5 - 2) is understood to be six times the quantity (5 - 2).
The computer, being literal, cannot read 6(5 - 2) the same way. There
must be a between the 6 and the "(" for the computer to understand
that we are multiplying!
In Ca3 the computer scans the statement and seeing that there are no
parentheses, proceeds to operation order 1. Finding no exponential
notation (t) it then goes to operation order 2. This tells it to
multiply and divide in the order of left to right. 6*5 becomes 30. The
computer stores that value.
The computer now looks for operation order 3, and finding a sign,
subtracts 2 from 30 and ends with the final total of 28.
In Cb3 the computer, finding a parentheses, handles that part of the
statement first. While inside the parentheses, the computer looks for
exponents (T), multiplication (*), division (/) and then, finally,
addition (+) and sutraction (-) operands. It finds subtraction only, and
so it does 5 - 2 and stores the resultant of 3. Having removed the
parentheses the expression now is

6*3
The answer, of course, is 6*3 = 18.
Work out the following before studying the explanations.

Cc3 6*5-2+(4+9)*(3+2)-(5-2)-2T3

step
1 6*5-2+(4+9)*(3+2)-(5-2)-8
2 6*5-2+ 13 * 5 3 -8

l 143

3 30-2+ 65 3 - 8

4 28 93 90 82
In step 4, the computer subtracts 2 from 30 to get 28, adds 65 for 93,
subtracts 3 for 90 and, finally, subtracts 8 for the answer of 82.

CdH 3+2*((4-10)-2*5 + (4*3+8))-26

step
1 3t2*(-6 -2*5 + (12+8)-26
2 3T2*(-6 -2*5 + 20)- 26
3 3t2*(-6 -10 + 20) - 26
4 3t2*(4) - 26
5 3t2*4-26
6 9*4-26
7 36-26
8 10 — which is the answer.

2 . 3 T H E R O L E O F order from left to right also
applies to exponential notation.

312 means 3*3 and 3*3 = 9. 2T3 means 2*2*2 and 2*2*2 = 8. However, what
about 213+2?
To make certain that the left to right order is followed, we rewrite
21312 as

(2T3)T2 this gives—
8T2 which equals 64.

Remember, in COMAL, the order of operation for expressions like this is
3T2T3 =
(3+2)13 =
(3*3)13 =
9 T 3 =

r. 153

9*9*9 - 729

2 . 4 S U P P O S E W E W A N T E D to divide 30 by 2 + 4
— how would we write this for the computer?

Would we write
print 30/2+4 , or
print 30/(2+4)?

If we did these on the computer, we would find the first answer to be 19
and the second to be 5. As pointed out earlier, the computer is literal
and has a certain order to follow. In the first expression, the computer
would divide 30 by 2 and THEN add 4 to the result. In the second, the
computer would have added the 2 and 4 (for 6) because IT DOES PARENTHESES
FIRST (!) then it would have divided the 6 into the 30.

2 . 5 G A L C O L A T E T H I S O N the computer
2+29

We should have a readout of 536870912.
And this

2+30
The readout is now 1.07374182e+09.
If we multiplied the answer by hand of 2+29 (536870912) by 2 — to get
2+30, it would be

1073741824
instead of

1.07374182e+09
As we can see, the numerals D O match --except that the 4 on the end is
missing.
Beyond a certain length (and count to see what that is) the computer will
give numeric answers in exponential notation. In this instance the "e"
stands for a base of 10; the M+09" means to find the decimal and count 9
places to the right --and add 0's if we run out of numerals. So

1.07374182e+.09
would give

1073741820 as the answer to 2+30.

n 16 J

We know the actual answer is 1073741824, so the best the computer can do
is approximate answers beyond 9 digits. Considering the size of the
computers we are working with, this is a staggering accomplishment! In
this calculation, the answer is only off 4 units in 1 billion 73 million
plus!!! Let's not quibble!
= = = Do this one on the computer

2t(-6)
We need the parentheses around the "-6" because the computer, remember,
does things literally. The expression 2t-6 would make no sense to it.
The answer should be

.015625
By the way, 2t(-6) means 1/2t6 or 1/(2*2*2*2*2*2) or 1/64.
= = = 1/128 = 1/217 = l/(2*2*2*2*2*2*2) = 2t(-7). Do that on the
computer. Here we get an answer that reads

7.8125e-03
"e”, again, stands for base 10. The "-03" means to start at the decimal
and count three places TO THE LEFT(!), placing 0's where needed. So the
final answer here is

.0078125
If we were to do this out by hand, the answer would be .0078125 also!
= = = Express 88456900211 in scientific notation.
The first thing to do is to rewrite this as

8.8456900211
then count the number of digits after the decimal point --which, in this
instance, is 10. The final answer would be

8.8456900211e+10
= = = Express .000308551 in scientific notation.
Again, the first thing to do is to rewrite this as

0003.08551
(Note that the decimal goes after the first non-zero digit!) Next, count
the number of digits it takes to get back to the beginning of the number
--in this case it is 4. The final answer would be

3.08551e-04

C173

= = = Rewrite 890.05673 in scientific notation.
Rewriting and moving the decimal —

8.9005673
But this time, the decimal is only TWO places from the 8, so the final
answer is

8.9005673e+02
= = = Write a statement for the computer to calculate the answer to

6 + 4 8(5-2) 27
-------------------------- + ------------

5 2 + 6 7 + 2
Please observe, carefully, how parentheses are used so that in the first
fraction, the ENTIRE numerator is divided by 5; that 8 and not JUST the 2
divides into 8(5 - 2) in the second fraction; and, for the third
fraction, 27 is divided by 9 and not JUST the 7!.
A first step

(6 + 4)/5 - 8*(5 - 2)/(2 + 6) + 27/(7 + 2)
The second step calls for putting PRINT before the expression

print (6 + 4)/5 - 8*(5 - 2)/(2 + 6) + 27/(7 + 2)
The answer is 2.

RECAP

EXPRESSIONS inside of parentheses are handled
first by the computer.

T, *, /, + and - are evaluated in mathemati
cal expressions — and in that order.

"e" represents the base 10.
THE number following "e" is the exponent.

E183

prob 1 ems

First, solve the following without the aid of the computer.
Then do them on the computer (do not combine the numbers, type
they appear). If the answers do not agree, check the work and
way they were entered into the computer.

1. 3+2+2
2. 4(3 + 4)
3. 6(2 + 1)

9

4. 6(3) - 2(4 + 1) + 3+2
5. 6(3) 2(4) •+ 2 4+3

9 10 2+3

6. 17 + 7 3 + 9 2+5
3 + 5 2 + 4 4+2

7. 2(6(3+!)) 14(3-1) 6+3
8 2+2 9

8. 4((3)(5)) + (2+3)(3-1) - 6

9. 3((4 - 1) (18 - 5)) (2+4)(6)(3
(10 - 7) (6 + 7) 3+2 + 3

10. 7(4 + 9) (6 - 1) 3(2)(6) 15
13(5) 214 + 2 5 4

11. Express in scientific notation 86711100053
12. Express in scientific notation 4967.3569013

them in as
then the

r. 193

.016853113. Express in scientific notation
14. Rewrite 3.194624701e+.04
15. Rewrite 4.00561e-05

answers
1. 81 2. 28 3.
6. -1 7. 23 8.
11. 8.6711100053e+10 12.
13. 1.6831e-02 14.
15. .0000400561

2 4. 17 5. 9
70 9. -13 10. 16
4.9673569013e+03
31946.24701

C20:i

CHAPTER THREE
int.roduct.ion o ipuco ̂ :ramm ing

ot> j e c t iv© s

At the completion of the chapter the student will be able to:

1. Write a program statement with the unknown variable on the left;
2. Assign values to variables within a program paradigm;
3. Use / / t o write documentation within a program;
4. Insert lines within a program that has already been written;
5. Use the function DEL to remove a line or lines from a program;
6. Edit (on the screen) existing programs with the CURSOR keys; and,
7. Translate arithmetic formulas into algorithms understood by

the computer.

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c
0
m
a
1

THE VALUE OF PI

There are many features built into the COMAL 80 cartridge.

c
0
m
a
1

c c
0 One of them is the value of pi. Instead of having to sup- o
m ply 3.14, 22/7 or 3.1416 --to list some of the common m
a ones, COMAL has programmed it as the constant 3.14159266. a
1 1
c Therefore, in problems with pi as part of a formula, COMAL c
o will substitute that value in its place automatically. o
m m
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C 213

3 . 1 D E S I G N I N G A S O L U T I O N to a problem and
being able to program a computer to accept it and produce

a solution, or a series of possible solutions for varying sets of
parameters, is the essential strength of modern computer technology. In
this chapter we shall introduce some elementary techniques of
programming, using the information we already know.

3 . 2 E V E R Y P R O G R A M H A S variables. When we
were solving for the area of a rectangle in chapter one,

we used the formula,
area = width*height

That particular formula has three variables: area; width; and, height.
If we know any two, we can solve for the third.
In COMAL, variable names do not have to be abbreviated to a single
letter, two letters, or a letter and a number; instead, we may have up to
78 characters as the name of a variable. This is very helpful. If we
can use the full name of the variable, it will assist us in following the
program design, as well as helping in locating errors.
In an equation, variables exist on both sides. It is essential in
computer programming that the unknown variable be ON THE LEFT SIDE of the
equation. For example, if we know the HEIGHT and the WIDTH of a
rectangle and want to find the AREA, then this statement I s n o t
v a l i d .

1000 width*height:=area
The unknown, area, is on the right side of the equation. The computer is
not designed to handle this, even though we could on paper.
The proper way to write the statement is

1000 area:=width*height
If the width and area are known, the height could be found by writing

1000 height:=area/width
3 . 3 I N P R O G R A M M I N G , T H E R E are rules we

must follow. Most are an extension of just plain common
sense. For example, if we are going to use the formula for a rectangle
to find its area, then we must first tell the computer what the values
are for the width and the height b e f o r e we ask it to compute the
area. Certainly, this is logical.
Let's assign the value of 6 to the width and 13 to the height. We now
have

C221

width = 6

height = 13

We know area = width*height. We want the computer to multiply the width
times the height and give us an answer for the area. We are now in a
position to write our program.
First, type

auto 1000 /R/
After we tap RETURN, 1000 appears on the screen with the cursor flashing
two spaces to the right of the last "0."
Before the computer can calculate the area it must know the values for
the width and the height. So, on line 1000 type

1000 width:=6 /R/
After tapping RETURN, the next program line number — 1010— appears.
Type

1010 height:=13 /R/
Now that the computer has been told what the values are, it can calculate
the area. So, on line 1020, enter

1020 area:=width*height /R/
To get the value for area printed on the screen, we must use the verb
"print"; therefore, on 1030 type

1030 print area
The final program now looks like this

1000 width:=6
1010 height:=13
1020 area:=width*height
1030 print area

After tapping the RUN/STOP key to end the auto mode, type RUN and tap
RETURN. The result (78) will be printed on the screen.

3 . 4 I F S O M E O N E W A L K E D into the room and
looked at the program, what meaning would it have?

Very little, actually. What does the number represent?
All programs should be documented (i1) --and do not be stingy on
documentation. Time has a way of making things more and more hazy. To
be sure, this is an elementary program and remembering what it was about

C 233

would not be difficult. But as programs become more and more involved,
the details of what we were designing in any given section have a way of
slipping by.

COMAL provides a nice way for the
user to put in remarks --or notes, so
that they do not interfere with the
actual program. By using two slashes
/ / next to a line number, we can
enter a note or remark. When the
computer is running the program, it
will ignore any lines that begin with

First, clear the screen by tapping
the SHIFT and CLR HOME keys
simultaneously. Then display the
program by typing L I S T .
Generally, remarks are put at the
beginning of a program or at the
beginning of sub-sequences within a
program (as they get longer and
longer). Because 1000 is the first
line, we will need to put it before

that. To do this type 9 9 0 . BEFORE tapping the RETURN key, complete
the line as follows:

990 // program to find the area of a rectangle /R/
Now, LIST the program again. We will see that the computer has put in
990 before line 1000. We can always insert lines like this. If we have
left something out, all we have to do is type a number just before the
line we want it to precede, and the computer will do the rest! This is
why we allow the default value of 10 between each line. And,
remember (!), in COMAL we can RENUM the lines at any time!! — and with any
sequence.

f iooo PRUJT *Thta W t* certify 3

[1010 Pftttff if «fOO

l 1010 ffUMT 'to author j
11030 Pftitn 'he send sou.*

/ / m m "^l.oo"

Let’s do just that. Type
renum 1000,1
LIST. (Note

Type
renum 1000,5

Then
LIST

/R /

the line numbers.)

/ R /

again.
The program now reads

1241

1000 // finding area of rectangle
1005 width*. =6
1010 height:=13
1015 area:=width*height
1020 PRINT area

Suppose, we wanted to do away with (delete) line 1005. How would we do
it? Again, in COMAL, this is very simple. Type

del 1005 /R/
LIST the program and we see that line 1005 is gone. Now, put it back
once more by typing

1005 width:=6 /R/
What if the width was 7, instead of 6. That correction is also made
quite easily. Using the CURSOR keys along with the SHIFT key, move the
cursor so that it is directly over the "6" on line 1005. Type

7 /R/
It’s that simple! RUN the program again and now the answer is 91.
We can replace as many characters as we wish by using the cursor keys.
This is called on-screen editing, a very useful tool that Commodore has
built into its computers.
The problems at the end of this chapter are quite simple. Use them as an
opportunity to practice LISTing, DELeting, inserting lines and changing
values by using the cursor keys. Don’t think the technique has been
mastered until these routines have been done dozens of times. We will
use these skills throughout the rest of the book --time and time again!

3 . 5 IDE L E T I N G I S N O T restricted to DELeting
just one line at a time. If, in the program on the

screen, we wished to delete lines 1005, 1010 and 1015, we would type
DEL 1005 - 1015 /R/

3 . 6 H E R E A R E T W O more examples to demonstrate
how to write simple programs.

(Don’t forget to clearscreen /R/, and type NEW /R/ before copying each of
the following programs!)
= ==== In a triangle we are given the length of the base as 4 and the
area as 25. Write a program to find the height.
First, the formula for the area of a triangle is

C 253

area = base*height
2

We must get the height on the left side of the equation. Simple algebra
gives us the next step.

2*area = base*height
Switching sides, we have

base*height = 2*area
Dividing both sides by BASE gives

base*height = 2*area
base base

Cancelling "base" on the left side of the equation, now gives
height = 2*area

base
We now can write our program. First, we <clearscreen>, and then type

new /R/
then

auto 1000 /R/
1000 // program to find height of triangle /R/
1010 area:=25 /R/
1020 base:=4 /R/
1030 height:=2*area/base /R/
1040 print height /R/

(the answer: 12.5)

===== Write a program to find the radius of a circle whose area is 189.
(Don’t forget CLEARSCREEN, NEW and AUTO 1000.)
The formula for the area of a circle is

area = pi*(radius)T2
radiusf2 = area/pi

C26H

To find the radius only, we must take the square root of both sides, so
we now have

radiust2 = (area/pi

radius = (area/pi) f. 5

1000 // program to find radius of circle /R/
1010 area:=189 /R/
1020 radius:=(area/pi)t.5 /R/
1030 print radius /R/

(answer: 7.75632443)

RECAP

ONLY one variable can be on the left side of
an equation in a computer statement.

VARIABLES can be assigned values within the
program.

THE double "//" is used to enter comments in
a program.

DEL is a system word that is used to delete
lines or a line from a program.

ON the screen editing is accomplished by use
of the cursor key.

problems

Write programs to solve the following. Be certain to include a statement
of documentation in each (//).

1. Rectangle. Width = 6; height = 12. Find area.
2. Rectangle. Area = 48; width = 6. Find height.

C273

3. Triangle. Base 4; height = 7. Find area.
4. Triangle. Area = 12;; height = 9. Find base.
5. Circle. Radius = 10. Find area.
6. Circle. Area = 74. Find radius.
7. Circle. Area = 212. Find diameter.
8. Circle. Radius — 10. Find the circumference

The formula for the circumference of a circle is

circumference = 2*pi*radius
9. Circle. Area = 97.08. Find the circumference.

From a previous discussion, we know the radius of
a circle, given the area, is

radius = (area/pi)T.5
if

circumference = 2*pi*radius
then, substituting, we have

circumference = 2*pi*((area/pi)T.5)

10. Circle. Circumference = 42.34. Find the radius.
11. Circle. Circumference = 56.038. Find the area.

The formula for the area of a trapezoid is

area = height*(basel + base2)
2

12. Trapezoid. basel = 10; base2 = 20; height = 6. Find area.
13. Trapezoid. area = 166; height = 14. Find the sum of the two bases.

C 283

I" Hint: let
sumbases = (basel + base2)

and solve for sumbases.3
14. Trapezoid. area = 231; height = 19; basel = 4. Find base2.

CHint: put in the givens and work out formula by hand first.3

The algebraic formulas to convert temperatures from one
measurement to another are

Celsius = 5(fahrenheit - 32)
9

and
fahrenheit = 9(Celsius) + 32

5

15. In Celsius, what is 77 degrees fahrenheit?
16. In fahrenheit, what is -40 degrees Celsius?

answers:
1. 72 9. 34.9276862
2. 8 10. 6.73862029
3. 14 11. 249.893747
4. 2.66666667 12. 90
5. 314.159216 13. 23.7142857
6. 4.85334231 14. 20.3157895
7. 16.4294487 15. 25
8. 62.8318531 16. -40

C 293

CHAPTER FOUR
computer management “b & cclr̂n ± . s^ ^ ^ sĵ

ob j ̂cc-b d_ vo s

At the completion of the chapter the student will be able to:

1. Format a disc by using the command
pass "nO:<identifier>,86"

2. Store files on a disc as a program with
save "<file name>"

3. List the files on a disc to the monitor by typing
cat

4. Over-write a previous program stored on a disc by
save "@0:<file name>"

5. Take a program off a disc and put it into the computer with
load n<file name>"

6. Take a program off a disc and have the computer RUN it with
chain "<file name>"

7. Run a program on a printer or get a copy of a program with
select output "lp:"

i- 30-i

comalcomalcomalcomalcomalccSmalcomalcomalcomalcomalcomalcomalcomal
c c
0 RENUM FUNCTION KEY o
m ----------------- m
a a
1 Another method built into the COMAL 80 cartridge for renum- 1
c bering lines in an alogorithm (program) is defined by the c
0 d? 1 key. o
m m
a By tapping the dfr 1 key and then the RETURN key, all of the a
1 lines in the program will be renumbered automatically. 1
c c
0 The lines will start with o
m m
a 0010 a
1 0020 1
c et cetera c
0 o
m The USER must employ the command specified in chapter three m
a to get any other line number and/or sequence interval. a
1 1
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

4 - 1. E A C H T I M E W E completed one of the problems
at the end of Chapter Three, we had to type NEW before

starting the next. Once we typed NEW, the program was erased from the
computer's memory and there was no way to recall it. There is a way to
SAVE programs so they can be looked at later — or, can be recalled to be
MERGEd as part of a future program.
The fastest method of saving and recalling programs is to put them on a
floppy disc. But before we can do that the disc must be prepared --"made
ready." This is called FORMATTING a disc.
Turn on the disc drive and carefully(!) insert a floppy disc. Close the
cover. Type the following command putting some identification name in
place of the words FILE NAME — do not include the symbols — "<"
found immediately before and after the words "file name." Use any number
you wish in place of the "86"; just be certain it contains two digits.
(Leave no spaces inside the quotation marks.)

pass "n0:<file name>,86" /R/
Wait a few seconds until the drive has stopped running, the red light is
out and the green one comes on.
To view what is on the disc, type

cat /R/
(From now on, the reminder to tap RETURN — /R/— will be left out. Every
time a line is completed, always finish it by tapping the RETURN key.)
O A T is an abbreviation of "catalogue. " Typing CAT will automatically

i: 311

recall and list, on the screen, all programs^hat are on the disc. If we
wish to get a hard copy (a list printed on paper) there is a command for
that. It will be covered later in the chapter.
When we typed "cat" the only listing on the screen was the identification
of the disc. Because we have not saved any programs, there was a
statement that read

"664 blocks free."
This means we have 664 blocks of space left on the disc to store
programs. Each program uses up blocks of space; and the longer the
program, the more blocks required.
If this is the first computer language studied, another outstanding
characteristic of COMAL cannot be fully appreciated.

No matter where we are in developing (writing) a
program, we can call for a CAT listing W I T H O U T
E R A S I N G the program we are working oni ! !

Never forget, COMAL was written for the programmer!! And it's these
seemingly small features that make it such an outstanding language.
I ? A S S is a command that among other things, formats a disc. After
formatting, a disc can accept and store programs. P A S S may also be
used in VALIDATING and DUPLICATING discs, as well as RENAMING or COPYING
FILES. In this introductory text, we shall restrict our discussion of
PASS to FORMATTING and VALIDATING discs. (For a further discussion on
PASS, see Len Lindsay’s, THE COMAL HANDBOOK.)

4 . 2 T O D E M O N S T R A T E H O W to store programs on
a disc, enter the following.

<clearscreen>
new
auto 1000
1000 // program to find base2 of a trapezoid
1010
1020 area:=231
1030 height:=19
1040 basel:=4
1050
1060 // formula for base2 of a trapezoid
1070
1080 base2:=2*area/height - basel
1090
1100 print base2

RUN the program to make certain it works. The answer should be
20.3157895.
There are two basic methods for storing programs on the disc. The first

C 32.J

uses the command A V E jĝjfche second uses the command L I S T . Each
serves a different purpose.' For this program we will use SAVE. (LIST
will be covered in a later chapter.)
Before saving a program, we need to
give it a name. Again, common sense
should prevail. We should stay away
from esoteric or obscure codes and
names (unless, of course, we have
written a program that will change
lead to gold). Since we are dealing
with trapezoids, let’s give the
program that name. (When storing
programs relating to the problems at
the end of each chapter, it would seem
logical to use names such as, chl-prl;
ch9-prll; and so forth.)
Type

save "trapezoidbase"
After the computer has stopped running,

G A T
(Don’t type NEW!.) The screen should read (after the heading)

1 "trapezoidbase" prg
663 blocks left

This is our first program to disc. It took up one block of space, and
there are 663 blocks left for storage.
Now, type

LIST
And we will see that our program has not been erased!
Type

NEW
This has erased the program from the memory of the computer. Type

LIST
and see that this is so. Clear the screen by pressing the SHIFT and
CLR/HOME keys simultaneously.

4 . 3 T H E N E X T S T E E is to retrieve the program
from the disc. There are four commands we can use to do

this: LOAD; CHAIN; RUN; and, MERGE. We will deal with the first three

[33-'l

for now.
When calling for a program on a disc, we must type it exactly as it
appears in the CATalogue. If it is misspelled, then we must do the same;
if has a space or two inside the name, we must do the same; and, if it
uses symbols --such as punctuation-- we must do the same. If we are not
sure how the program was stored, we can type

CAT
and have it listed on the screen. If there are too many program names to
fit on the screen and they are going by too fast to read, tap the
S P A C E B A R - This will stop the listing. To continue the
listing, tap the S3?A C E B A R again. Check the spelling and type
the command.
To retrieve the program on trapezoids, type

load "trapezoidbase"
When the flashing cursor appears on the monitor, type

LIST
And there is our program! We can RUN it if we wish or even make changes
by typing in new lines, or by using the on-screen editing feature of the
cursor.
Suppose, for that matter, we do wish to alter the program by changing the
area to 619.5. Must it be saved under another name? We could if we
wished to. But we can save in under the same name too.
First, use the cursor controls and go to line 1020 and change the 231 to
619.5. Tap the RETURN key, use the down CRSR key to get to the bottom of
the listing, and type

RUN
The answer should be. 61.2105263.
To store the new program with the same name as the old, type

save "@0:trapezoidbase"
The is next to the letter "P" and the "0" is a zero. This command
over-writes the old program with any changes we have made or lines we
might have added or deleted.
There is another advantage to this command too. Suppose we must
interrupt our work before finishing a program. We can save the program
as it is; then when we come back and have the opportunity to finish, this
command cam be used again — and as many times as we want, for that
matter— to update our previous work.
There may be times when we wish to take a program from the disc and run

r. 343

it without taking the time to type in the word RUN. COMAL has added this
advantage too.
First, type

NEW
to clear the present TRAPEZOIDBASE program from the computer's memory.
Clear the screen. Type LIST to make certain the memory is clear.
Two commands to take a program from the disc and have it RUN
automatically, are

C H A I N and R O N
Type either of the following statements

chain "trapezoidbase"
run "trapezoidbase"

The program is not listed but the answer is — 61.2105263.
The computer, recognizing the command CHAIN or the command RUN, searched
the disc, loaded the program into its memory and ran it. It then printed
the answer on the screen. If we wish to see the program lines we can do
so by typing LIST.

4 . 4 UI? U N T I L N O W , before we ran a program, we
had to clear the screen first. We did this by tapping

the CLR/HOME key while pressing the SHIFT key.
COMAL has two commands which can be incorporated into programs to do this
for us. Here, we shall introduce one of them. It is

PAGE
If PAGE is output to the screen, it will clear the screen. By putting
PAGE on the first line of an algorithm (program), the screen will be
cleared before anything else is done.
For the program on the trapezoidbase, type

990 page
or, if using the :fr 1 key for RENUMbering, type

1 page
then, either type

renum 1000 or, tap f 1
LIST

C353

to make certain everything is o.k. Then type
RUN

The program will be executed --and note that the screen is cleared first,
before the answer is printed.
PAGE can be used as many times as wanted in a program. Any time we wish
to clear the screen, we can incorporate the command PAGE in the algorithm
design.
Because we have added a line to the program, we need to reSAVE the
program by typing

save "@0:trapezoidbase"

4 . 5 T H E R E I S O N E more output statement we should
consider. The output to a printer --called, getting a

"hard copy."
The first thing, of course, is that we must be connected to a printer via
the serial port on the back of the disc drive. Another factor to keep in
mind is that some printers will "lock up" if there is a PAGE command in
the program (others will execute a form feed --or page eject). If your
printer does either, then delete PAGE or edit the line by putting "//"
before the command.
Now, having taken care of that and with the program listed on the screen,
type

990 select output "lp:"
"lp" stands for Line Rrinter. RENUM the program by typing

RENUM 1000
If connected to a printer, RUN this program and get a "hard-copy" answer
to the problem.
Another advantage of hard copies is the assistance it provides in
debugging programs for errors. When we want to find errors, we often
want just a copy of the program rather than a printout of the results.
One method of getting this is to type

LIST "LP:"
d_ “blnou.'b sl n u m b o . That is, type the printer

command outside of the program proper.
When the RETURN key is tapped, the printer will type a copy of the
progam. If the program has been RUN, typing LIST immediately after, will
also give a printed copy of the program. Once a program has been RUN and
LISTed, an output to the screen can be had by typing RUN again.

C363

To get a printout of the directory (CATALOGUE of programs SAVEd on the
disc), type

select output "lp: "
cat

(Be certain there is no current program in the computer before doing it.)

RECAP

COMMAND WHAT IT DOES

pass "nO:<file name>,86" to format a disc to
get it ready to ac
cept and save files

cat lists file names on
a disc.

save "<file name>" stores files on a
disc as a prg.

save "@0:<file name)" over-writes a pre
vious prg stored on
the disc

load "<file name>" takes prg file off
disc and puts it
into the computer

chain
run "

"<file name>"
and

<file name>"
takes prg file off
the disc and puts
it into the compu
ter and then RUNs
it

select output '‘lp: " chooses the printer
as the output loca
tion

page clears the screen

problems

Enter the following program

C 373

1000 page
1010
1020 // program to find volume of a rectangular solid
1030
1040 width:=6.453
1050 length:=10.157
1060 height:=13.166
1070 volume:=width*length*height
1080 print volume

1. RUN the program.
2. Use the cursor to change LENGTH in line 1050 to 8.979. RUN the

program.
3. DELete line 1020.

DELete line 1060, 1070 and 1080 with one command.
Type

1011 // program to find height of rectangular solid
1051 volume:=629.84
1052 height:=volume/(width*length)
1053 print height

RENUMber the program to start at 2100 with each succeeding line
increased by 3. (Last line should be 2124.)
RUN the program.

4. Replace line 2100 with a print command to
RUN the program on a printer.

5. LIST the program on a printer.
6. RUN and LIST problem 7, chapter 3 on a printer
7. Make a hard copy of problem 10, chapter 3.
8. Make a hard copy of problem 13, chapter 3.
9. Make a hard copy of problem 14, chapter 3.

10. Make a hard copy of problem 16, chapter 3.
answers:
1. 862.940731
2. 762.857618
3. 10.8702768

£3811

C H A P T E R F I V E

list and edit, commands

ob o ̂ ciz, d-va s

At the completion of the chapter the student will be able to:
1. Use the command LIST to bring up on the screen*.

1.1 All lines in a program;
1.2 Any single line in a program;
1.3 A series of lines beginning with a given line number and

ending with another line number;
1.4 All lines from the beginning of a program and ending with

another specified line; and,
1.5 All lines beginning with a specified line through to the

last line of a program.

2. Use the command EDIT to bring up on the screen:
2.1 All lines in a program, one at a time;
2.2 Any single line in a program;
2.3 A series of lines, one at a time, beginning with a given

line number and ending with another specified line;
2.4 All lines, one at a time, from the beginning of a program

and ending with another specified line; and,
2.5 All lines, one at a time, beginning with a specified line

through to the last line of a program.

3. State the advantages of EDIT over LIST when debugging or cor
recting programs.

I 393

comalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c
0
m
a
1
G
0
m
a
1
c
0
m
a
1
c
0
m
a
1
c
0
m
a
1

BLANK LINES IN AN ALGORITHM

COMAL allows the use of blank lines. Ib fa
cilitates tracing programs. To be sure, it
is only "cosmetic" as far as the actual
program is concerned; but we must not ig
nore our obligation to the USER. To il
lustrate :

1000 page
1010
1020 // an illustration

HARD COPY TO A PRINTER

Another way to get a printed
is ACTUALLY ON THE SCREEN(!)
be the results from RUNning
the program itself, is to

copy of what
--whether it

a program, or

press down the CTRL key
and tap the letter "P".

c
0
m
a
1
c
0
m
a
1
c
0
m
a
1
c
0
m
a
1
c
0
m
a
1

comalcomalcomalcomalcomalcomalcomalcomalcomalcomal

5 - 1 B Y N O W , A S with all beginners, we have made
error after error after error in typing. Using the

CURSOR key along with the SHIFT keys to correct these errors is generally
acceptable for short programs, but it becomes more and more unwieldly as
programs become 24 lines or longer in length.
In this chapter we shall discuss two COMAL functions that will assist us
in debugging and making corrections in our programs.
Before we begin, enter the following algorithm (program),
mathematical error in 1130, but type that line just as
(Don’t forget NEW, LIST, AUTO 1000.)

There is a
it appears.

1000 page
1010
1020 // program to find area and perimeter of rectangle
1030
1040 width:=10
1050 height:=8
1060
1070 // formula for perimeter
1080
1090 perimeter:=2*width + 2*height
1100

C403

1110 // formula for area
1120
1130 area:=width/height
1140
1150 print perimeter
1160
1170 print area

RUN the program to be certain it is operating. The printout should be 36
and 1.25.
There are many reasons to call up on the screen a certain line or lines.
Perhaps the program RUNs and though there are no mechanical program
errors, the output just "doesn't make sense." For example, in the above
program, the AREA is 1.25. Now, common sense tells us there is something
"wrong" --the answer doesn't "jive" with the result we have for the
perimeter. Still, the program ran and there were no error messages.
Perhaps we made a typing error in the formula for the AREA. We need to
check what we did.
One way to see that particular line is to LIST the whole program. This
would work as long as the program is 24 lines or less in length because
it would "fit" entirely on the screen. But if it longer than that then
we will have to tap the RUN/STOP key when the line we want scrolls on to
the monitor --hardly an efficient manner to get what we would like!
Even with the program off the screen (as ours is because of the PAGE
command) we could type (and please do so)

LIST 1130
Immediately, the following line appears

1130 area:=width/height
The error in logic is obvious. We have DIVIDED height into width instead
of MULTIPLYING the two together. The computer did what WE told it to but
we didn't want the computer to divide, we wanted it to MULTIPLY. The
error is ours!
We can take the cursor to the "/", type tap RETURN — and the
correction is made. RUNning the program again gives the correct area
— 80.
Still, we might argue, how would we know that the area was defined on
line 1130! The truth is --and particulary so, as programs become longer
and longer-- we don't.
There are several ways to handle this. We could have typed

list 1100 - 1150
if we had a "feeling" the line we were looking for was in that range.

C4i:i

(In this case it was.) The computer would list on the screen
1100
1110 formula for area
1120
1130 area := width/height
1140
1150 print perimeter

We could still make the correction, with the help of the CURSOR key, on
line 1130.
If we had typed

list -1100
the computer would put on the screen all lines FROM THE BEGINNING of the
program which in this instance is 1000, through to line 1100.
On the other hand, if we had typed

list 1100-
the computer would list on the screen all lines from 1100 THROUGH TO THE
END of the program which, in this algorithm, would have been from 1100
through 1170.

5 . 2 C O M A L H A S P R O V I D E D another convenience
for the programmer that is even better than LIST when

corrections are to be made. It is the EDIT command.
If, to follow the above discussion on LIST, we want to look at and
possibly correct line 1130 we would type

edit 1130
This time when the line is listed on the screen, instead of the CURSOR
being the line, it is the first character AFTER the
line number. All we have to do is move the CURSOR through the line, make
the correction, tap RETURN, --and the work is done!
If we are not certain where the line for the AREA is located we can type

edit 1100-1150
1100 will appear on the screen with the cursor one space past the last
digit in the line number.
This line has no error, so we tap RETURN and 1110 appears(M). No error
again, tap RETURN. 1120, no error, tap RETURN. (Remember, we fixed the
error the first time around when we covered the LIST command. If we
hadn't, we could now move the cursor over on 1130 and make the
correction.) Tap RETURN (no error on 1140) and RETURN once more to get
1150. One more RETURN takes us out of the sequence. Certainly, EDIT is

r. 42:*

a great time saver and a very convenient command for the programmer!
EDIT can also be used the same way as LIST.
Enter the following

edit
This will start us at the first line of our program and each time we tap
RETURN, the next line will appear. We can do the whole program this way.
If we wish to stop before then, we can do so by tapping the RUN/STOP key.

edit -1100
This command will list the lines, one at a time after each RETURN,
starting at the first line of the program through 1100.

edit 1100-
This command will list the lines, one at a time after each RETURN,
starting at 1100 through the last line of the program.

RECAP

COMMAND WHAT IT DOES

list lists all lines in a program;
if the program is longer than
24 lines, the lines will scroll
on and then off the screen.

list 1130 will list only one line --and,
in this particular command-
just line 1130.

list 100-200 will list all lines beginning
at 100 and ending at 200.

list -900 will list all lines starting at
1, or starting at the beginning
line of the actual program, if
the first number is greater
than 1 --through line 900.

list 900- will list all lines starting at
900 through 9999 -or through to
the end of the program, if its
ending line is less than 9999.

C 43-1

RECAP*****

COMMAND WHAT IT DOES

edit lists all lines, one at a time
after each RETURN, and places
the CURSOR at the first posi
tion in the line.

edit 1130 will list only one line --and,
in this command-- just line
1130, with the CURSOR at the
first position in the line.

edit 100-200 will list all lines, one at a
time, beginning with 100 and
ending at 200; again, the CUR
SOR will be at the first posi
tion in each line as it appears

edit -900 will list all lines, one at a
time, starting at the beginning
of the actual program, through
line 900; again, with the CUR
SOR at the first position in
each line as it appears.

edit 900- will list all lines, one at a
time, starting at 900 through
the end of the actual program;
again, with the CURSOR at the
first position in each line.

PX*o1d 1 ems

There are errors in lines 1090, 1130, 1170 and 1220 in the following
program. Enter the program in the computer exactly as below. Do not
change them during typing. Any practice now will pay rich dividends in
the future. After typing the program, use EDIT to debug and make
corrections.

L443

new
auto 1000
1000 page
1010
1020 // program on a rectangle
1030
1040 width:=6
1050 length:=14
1060
1070 // formula for area
1080
1090 area:=width/length
1100
1110 // formula for half the perimeter
1120
1130 halfperimeter:=width + width
1140
1150 // formula for total perimeter
1160
1170 perimeter:=2*width*2*lenth
1180
1190 // formula to get side of a square with
1200 // the same area as a rectangle
1210
1220 sideofsquare:=(area)t1/2
1230
1240 print area
1250
1260 print halfperimeter
1270
1280 print perimeter
1290
1300 print sideofsquare

answers:
area = 84
halfperimeter = 20
perimeter = 40
sideofsquare = 9.16515139

i: 45 3

C H A P T E R S I X
in-troductrion -to $-trings

objectives

At the completion of the chapter the student will be able to:

1. Enter the proper format to the computer to print Strings;

2. Use the trailing punctuation and to get the desired
printout;

3. Move text forward and backward by using, in proper sequence,
the SHIFT key and the INST/DEL keys; and,

4. Employ the ZONE function to enhance the results put on the
screen or to a printer.

comalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c
o
m
a

ERASING
c
o
m
a

1 Any portion of a program line --to its end— 1
c can be erased by using the CTRL key and c
0 the letter "K." o
m m
a Place the CURSOR over the first character a
1 to be erased; while pressing down on the 1
c CTRL key, tap the letter "K." The balance c
o of the line will be erased and the CURSOR o
m will remain so corrections can be typed. m
a a
comalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C463

6 . 1 T H E P R I N T O U T S T O this point have
consisted only of numbers. Areas and perimeters of

rectangles were given as numbers with no identification before or after
the figure. This, of course, is not satisfactory; it doesn't give enough
of a printout to make sense to another person without a great deal of
work on their part — which, as we look at it, defeats one major strength
of a computer.
In the last chapter, the area of one rectangle was 84 and its perimeter
was 40. A printout similar to the following would have been better:

rectangle: 6 by 14
area = 84
perimeter = 40

The words "rectangle", "by", "area" and "perimeter" are called Strings.
There are specific rules for getting the computer to print them.

6 . 2 C L E A R T H E S C R E E N and type NEW. Now,
type

print comal
The computer does not oblige; instead we get an error message that reads

comal: unknown variable
Yet, by the previous discussion, "comal" is a String. Type

print "comal"
The computer does oblige this time and prints "comal."
Hence, our first observation: To get the computer to print Strings, we
MUST USE QUOTATION MARKS around what we want printed.
Type

print 6
The computer does.
Type

print /
The computer responds with

expression expected, not "/"

T 473

To the computer, any non-numeral is a String and if it is to be printed,
it must be enclosed in quotation marks.
Enter the following program into the computer

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180

page
// program for area & perimeter of rectangle
width:=12.5
height:=10.6
// formula for area
area:=width*height
// formula for perimeter
perimeter:=2*width + 2*height
print area
print perimeter

RUN the program. The answers should
be 132.5 and 46.2. But what these
represent is known only to us — unless
someone takes the program and figures
out what is going on.
(Before going further, SAVE the
program in case we make a mistake and
need to start over again.)
LIST the program to screen. Look at
line 1150. It says

1150 PRINT area
This is the place where we want to put
in a String identifying the area of
the rectangle. Type

edit 1150
The line appears on the bottom of the
screen (if the program is still listed
on the monitor), with the cursor above the "P". Move the cursor over
the first letter of the word "area." Using the SHIFT key (keep
depressed) tap the INST/DEL key to open up several spaces. When this
done, and keeping the cursor right where it is, type — complete with
quotation marks a . n d the spaces before and AFTER the " = " sign—

to
it
is

the

148:1

"area
The line should now read

1150 PRINT "area = ";area
If the second "area" is not next to the semicolon, move the cursor so
that it is over the "a" and then by tapping the INST/DEL key
— w d . t h o u t depressing the SHIFT key-- bring it back so that it is
juxtaposed (adjacent) to the semicolon. RUN the program. We should have

area = 132.5
46.2

This is better! Now type
edit 1170

The screen will display
1170 PRINT perimeter

Again, move the cursor key to the first letter of "perimeter" and while
pressing the SHIFT key and tapping the INST/DEL key, open up several
spaces. Keeping the cursor right where it is type

"perimeter =
If the second "perimeter" is not juxtaposed to the semicolon, move the
cursor over to the "p" and by tapping INST/DEL, bring it back.
RUN the program. The screen now reads

area = 132.5
perimeter = 46.2

Perhaps it would look better if there were a space between the two lines.
We can accomplish this quite simply by inserting a line in the program
between the two requested printouts. In this program type

1155 print
LIST it to see that it is there. After doing that, RUN it. The printout
now shows

area = 132.5
perimeter = 46.2

And it does look better!

€> - 3 T H E U S E O F the semicolon after a PRINT
statement is called TRAILING PUNCTUATION. It tells the

computer that what ever is to be printed next — WHETHER IT BE A STRING OR

1493

A VARIABLE-- is to be printed o n o e>i? slc3 o after the end of the
expression or variable which precedes the semicolon. In this instance it
told the computer, "After you print 'area = ’, print the numeric value of
the variable, area." The computer did just that.
There was no trailing punctuation after the d_ s.t> 1 & AREA so the
computer shifted or "returned the carriage" (as in a typewriter). When
it fell into line 1155 the PRINT command there "returned the carriage"
once more. At 1170, it did the same as it did on 1150.
It is essential to master trailing punctuation. And the very best way to
learn it, is to experiment with it often.
Type

edit 1150 - 1170
On 1150 and 1170 change the ";" to commas. After the changes, RUN the
program. The printout will be

area = 132.5
perimeter = 46.2

If the two different printouts are compared, it will be noted that the
132.5 and the 46.2 are CLOSER to the two Strings. In fact, if we hadn’t
put the space after the "=" sign in the String request, the 132.5 and
46.2 would have been immediately adjacent to the "=" signs. (Try it.)
This is the essential difference between the two. The ";" allows one
space before printing out the next character, whereas the "," allows no
spaces.

3 . 4 T H E R E I S A N O T H E R advantage in using
commas as trailing punctuation. It allows . us to use

another function to enhance the appearance of the output. It is called

ZONE.
In most other computer languages, it is a tedious and time-consuming task
to get a balanced printout. But, in COMAL, the simple use of ZONE with
commas as trailing punctuation (the ";" overrides the ZONE command) we
can easily design the printout so that it works just the same on the
printer as it does on the screen (something unheard of in some other
languages!I).
Add the following lines to the program

1135 print "rectangle:";width;"by";height
1136 print
1137 zone 14

C503

RUN the program. The printout is
rectangle: 12.5 by 10.6
area = 132.5
perimeter = 46.2

If we wish to move the 132.5 and 46.2 over farther then we can simply
increase the value of ZONE.
In line 1135 we do not need to leave a space inside of the quotation
marks for either "rectangle:" or the word "by" because the trailing
punctuation, does that automatically. Wd_dl-fcln. and h © i g H t
are not in quotes because they are variables and have been assigned
values in lines 1040 and 1050.
The first ";" after the String "rectangle", (line 1135). assures us that
the value of the variable wdLd-fcln will be printed immediately after
it. The ";" after wd_d-kln keeps the String "by" on the same line as
does the next "; " after "by" does for the variable ~ki& ±. ggln“fc..
The on line 1136 will cause a blank to be created between the
print statement on line 1135 and the print command on line 1150.
A further comment on Z O N E is in order. The numeric value after ZONE
determines the placement of the output. The position of the first
character in the output can be determined by counting the number of
spaces from the first character in the StS-tac-ing that precedes it.
Now, the String

"perimeter = "
contains 12 spaces, so we cannot call for a ZONE value less than 13 (one
more than the number of spaces in the String); because the computer
cannot handle the command, the printout becomes most irregular.
If we wish to line up the decimals in the printout, then we can add
another line --1156, which will read

1156 zone 15
RUN the program.
With the changes and insertions we have made, it is time to

renum 1000
SAVE the program.
Unless we put in another ZONE command, the last one entered will cause
all further output to be calculated with the same parameters. Our last
ZONE command was

C513

ZONE 15
All printouts requested after that, will be ruled by THAT command. If we
wish to align other parts of the program differently, we will have to put
in another ZONE value on another line. There is no restriction on the
number of times ZONE can be placed in a program.

RECAP*****

TO GET ENTER

A $tring to Enclose the $tring in quota-
print tion marks

A space be- Use a PRINT statement on a
tween lines separate program line
in printout

Printouts on Use trailing punctuation,
one line either ";" or ","

Formatted Use the ZONE command
printouts

problems

Go back to the problems in Chapter Three and redo them. This time put in
the PAGE command, documentation (//) and have the printouts labeled
with $trings.
SAVE each problem to disc. Give consideration to the SAVE identification
name being --say

chap 6 prob 1
and so forth.
For problems 1 and 2, add the perimeter; for 5, 6 and 7, add the
circumference.

C 523

A typical printout (problem 5) might be;
circle*,
radius =
area =
circum =

10

314.159266
62.8318531

answers
1. area = 72 perimeter = 36
2. height = 8 perimeter = 28
3. area = 14
4. base = 2.66666667
5. area = 314.159266 circumference
6. radius = 4.85334231 circumference
7. diameter = 16.4294487 circumference
8. circumference = 62.8318531
9. circumference = 34.9276862

10. radius = 6.73862029
11. area = 249.893748
12. area = 90
13. sumbases = 23.7142857
14. base2 = 20.3157895
15. Celsius = 25
16. fahrenheit = -40

C533

C H A P T E R S E V E N

more ma-bhemat,ical operations

ob j ©c*tiv© s

At the completion of the chapter the student will be able to:
1. Identify the following as either functions or operators:

abs; div; mod; sqr; int; and, rnd
2. Use the appropriate command to find the absolute value of a

number;
3. Use the proper command to divide two numbers so that the answer

is an integer;
4. Use the proper command to determine if the divisor is a factor

of the dividend;
5. Use the appropriate command to find the square root of a number;
6. Write a correct expression to round numbers off to the nearest

whole number, tenth, hundredths and thousandths;
7. Use the proper command to generate random numbers between

0 and 1;
8. Use the proper command to generate random numbers within any

specified range; and,
9. "Seed" the computer with the command RANDOMIZE to generate a

true random number.

C 543

CURSOR MOVEMENT

comalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c
o

------------------------- m
a

To move the CURSOR forward one word tap the 1
letter "F" while pressing the CTRL key. c

o
To move the CURSOR back one word press the m

c
0
m
a
1
c
0
m
a
1

the CTRL key and tap the letter "B* a
1

comalcomalcomalcomalcomalcomalcomalcomalcomalcomal

T . 1 I N T H I S O H A F T E R , we will
following commands and operators:

cover the

abs
div
mod
sqr
int
rnd

T „ 2 T H E A B S O L U T E V A L U E of a number (real or
integer) is THAT number with a positive value. The

absolute value of 6, is 6; the absolute value of -6, is 6.
To be sure, the use of this function is rather limited except in advanced
mathematics. If we were comparing a range of test scores to the class
average, we might not want the differences of the scores BELOW the
average to be listed as negative values --particularly so, if we had a
chart similar to the following.

average = 60
test points above points below
scores average average

72 12
85 25
50 10
90 30
45 15

L 553

The statement appears as
abs(-5.66)

Here, the answer is 5.66. The ‘'-5.66*' is the ARGUMENT of the function.
In COMAL, the argument also may be a functional expression. For example

abs(8 - 10)
is valid.

abs(8 - 10) =
abs(-2) =
2

The argument may contain variables also.
abs(score - average)

In the chart above, the third score was 50 (average = 60). The computer
would substitute those values.

abs(score - average) =
abs(50 - 60) =
abs(-10) =
10

If we put all these scores in a program with a loop (loops will be
introduced starting with Chapter Nine), we could read each score, have
the computer make the appropriate substitutions EACH TIME AROUND, and
then get a printout similar to that of the chart.
Another ARGUMENT that can be used is

abs(int(num))
We haven’t discussed integer (int) yet, but note that the ARGUMENT of ABS
— int(num)-- is a function AND another argument. We will come back to
this later.

T - 3 D I V I S A N operator and, as such, returns an
INTEGER answer to a division problem.

13 div 4
will return 3 only. The remainder, 1/4 or .25, is ignored. It’s very
useful when we wish only whole number answers in particular applications.
Division by 0 (zero) is not allowed.

r56D

T - -4 M O O I S A N operator and, as such, returns an
answer that is only the REMAINDER in a division problem.

13 mod 4
will return 1 from the "1" in 1/4. (13/4 = 3 1/4 .)

14 mod 4
will return 2 from the "2“ in 2/4. (14/4 = 3 2/4 .)
MOD is a extremely useful operator. For example, if we wish to know
whether the divisor --say, 5 (as an example), will "go into" the dividend
— say, 15, evenly (the MOD operator would return a value of 0 if such
were the case) then

15 mod 5
would be THE method for determining that.

15/5 = 3 0/5
In this case the returned value IS 0, so we can conclude, with certainty,
5 is, indeed, a factor of 15.
Here is a direct program to illustrate the principle.

1000 page
1010
1020 dividend:=15
1030 divisor:=5
1040 remainder:=dividend MOD divisor
1050
1060 PRINT "remainder =";remainder

RCJNning the program gives
remainder = 0

And we now know that 5 is a factor of 15.
When we use MOD later in our studies, it will be used as part of a more
sophisticated program.
Again, as in DIV, division by 0 results in an error.

T . 5 V E R Y O F T E N T H E R E is a need to find the
square root of a number. Certainly, this function would

have been useful for problems 6 - 9 in Chapters 3 and 6. It is written
as

sqr(num)

i- 57U

where "num" is the argument.
The argument can never be negative; if it is, the computer will return an
error message.

sqr(16)
will return the positive root of 4.

sqr(-16)
will return the error message

ARGUMENT ERROR.
The ARGUMENT can also be a variable. Consider this simple program.

1000 number:=15
1010 result:=sqr(number)
1020 print "the square rooot o f n u m b e r r e s u l t

RUNning the program gives
the square root of 15 = 3.87298335

* 7 . 6 I N P R O G R A M M I N G , T H E integer (int)
function is used over and over. Getting answers to the

nearest penny or rounding answers to the nearest thousandths or tenths,
are but two examples. And again, the argument of INT can be a real
number, an integer, a variable or an mathematical function.
As a real number

int(6.89)
will return 6.
It might be argued that .89 is greater than one-half, so

int(6.89)
should return a 7. But keep in mind that in using the INT function,
ANYTHING AFTER THE DECIMAL --.89 in this instance— is
T R U N C A T E D , or CUT OFF from the whole number.
The returned value is always - - A L W A Y S - - THE SMALLER NUMBER 1 ! Hence

int(121.99999999)
returns 121.

int(0.9876)

r-583

returns 0.
int(-2.50)

will return -3!!
Why minus three?
Recall the number line; it looks, in part, like this:

-4 -3 - 2 - 1 0 1
T

-2.50
2 3 4

T
2.50

Note that +2.50 (indicated by the RIGHT-SIDE arrow) lies between 2 and 3.
Because

int(2.50)
TRUNCATES the .50, and leaves the S M A L L E R value
3-- the answer is 2.

— between 2 and

However, -2.50 (indicated by the LEFT-SIDE arrow), lies
-2. -3 is S M A L L E R (less than) -2; hence, when

between -3 and

-2.50
is TRUNCATED

int(-2.50)
it will give the value of the SMALLER NUMBER which, in this example, is
-3! !
T . T T H E R E I S A method for rounding off real numbers

to take into account the value of decimals .5 or greater.
With this, numbers like 2.89 can be rounded to 3.00.
In T . 6 we observed that the argument for the function INT could be a
mathematical expression. With that in mind, suppose, in a calculation
involving money we were to take $16.78943 and express it to the nearest
penny ($16.79).
As it now stands ($16.78943) is foolish. How would we read it? --As,
sixteen dollars and seventy-eight nine-four-three cents!1. What would
that mean!
The first thing to do is to write $16.78943 as the ARGUMENT for an INT
function.

int(16.78943)
If we did nothing further, the computer would return 16. But we want it

C 593

to be 16.79 (the "9" is greater than 4 so the 78 cents should round to
.79) .
The next thing to do is to multiply the argument by 100. Remember,
pennies are two places after the decimal --which is the hundredths place.

int(16.78943*100)
This gives

int(1678.943)
If we stop here, the computer would return 1678 --certainly, not the
correct answer!
Our next step is to add .5.

int(1678.943 + .5)
Which gives

int(1679.443)
If we stop here, the computer would return 1679 --still not the correct
answer.
However, if we divide by 100! ...

int(1679.443)/100
then we would have

1679/100 =
16.79!!

All of these steps, of course, are combined into one initial statement
int(16.78943*100 + .5)/100

Here is an elementary program to illustrate the principle.
1000 page
1010
1020 // weight in pounds
1030
1040 weight:=6.7993
1050
1060 // price per pound
1070
1080 price:=1.29
1090
1100 // total cost
1110 totcost:=weight*price
1120 print "$",int(totcost*100 +.5)/100

C60:J

At line 1110, totcost = 8.771097. But because of the ARGUMENT for INT in
line 1120, the printout is $8.77. Take note that in the ARGUMENT of the
function INT (totcost*100 + .5) we have used a VARIABLE (totcost) A N D
a MATHEMATICAL EXPRESSION (*100 + .5).
Onefurther comment on line 1120.
The use of a comma (,) as trailing punctuation assures us that the value
of the INT function will be juxtaposed (placed) IMMEDIATELY after the
$tring, $ — which, as it should be, is ENCLOSED in QU0TAT00N marks so
that the computer will print it as such.
Before concluding our discussion, let’s look at this from another
perspective. What would happen if the $16.78 943 had been $16.78 343 — a
"3" instead of the "9" after the .78? Would it, had we applied the same
procedures, have rounded out to $16.78, seeing that 3 is less than 5?
Consider

int(16.78343*100 +.5)/100
Multiplying by 100 would give

int(1678.343 + .5)/100
Adding the .5

int(1678.843)/100
Thus giving

1678/100 =
16.78

If we want answers to the nearest tenth, then we would mulitply by 10,
add .5 and divide the result by 10. If we want an answer to the nearest
thousandths (.001), then we would multiply by 1000, add .5 and divide the
result by 1000.

,7r . 8 T H E U S E O F random (rnd) numbers pervades a good
deal of computer programming.

By random, we mean the selection of a number without regard to any
specifio pattern or prejudice --i.e, any given number in a range of
numbers has as much chance of showing up as any other number.
For example, if we want a random number from 1 through 6 (the values on
the faces of a die!), 4 could just as easily appear as — say, 1.
If we wanted to survey 10 high school Juniors how would we pick them?
Choose the officers? This would not be a random selection. Arrange them
alphabetically and pick every fifth student from that list? Again, this

C613

would not be a random selection.
One thing we could do is go to a book that has a TABLE OF RANDOM NUMBERS.
We could take the first 10 numbers from that table, and if none are
higher than the total membership of the class (in which case we choose
the eleventh number, the twelfth, et cetera, until we get the ten
numbers), we would count down the alphabetical list and choose the
students by the position that the numbers indicated.
Say the first three numbers in the table are 71, 49, 3. Having arranged
the class alphabetically, we would survey the seventh-first student, the
forty-ninth student, and the third student.
When we generate a random number on the computer we have two choices

or
1. generate decimal numbers => 0 but < 1
2. generate whole numbers (positive and/or negative)

To generate a random number => 0 and < 1, type the following
print rnd

Do that a few times and note the printout. Here are some typical
outputs:

.877953646

.088050889

.525670939

.628792926

.498504036
If, on the other hand, we want whole numbers as a printout, then we have
to specify the range from which we wish the computer to generate them.
If we would like to simulate the throwing of a die, the random expression
would be

print rnd(1,6)
The 1 and the 6 are inclusive.
Do that a few times. Here is a typical printout for six "throws":

4, 6, 5, 1, 1, 2
Because we are working with microcomputers, they need to be "seeded" when
dealing with random numbers. This way we do not get the same random
number sequence from program to program. If we did --that is, have the
same random number sequence generated from one program to the next-- then
we have the contradiction of a PREDETERMINED FINITE SEQUENCE OF RANDOM

r. 6 2J

NUMBERS!
To deal with this, we use the command

randomize
Using the TIME function built into the computer (which works on "jiffies"
— 60 jiffies in 1 second) RANDOMIZE initializes ("seeds") the first
random number. Then when we call for the random number, we get a true
one.
This program will print one "throw" of a pair of dice.

1000 page
1010
1020 // seeding the random number generator
1030
1040 randomize
1050
1060 // a pair of dice
1070
1070 diel *• =rnd(1,6)
1080 die2:=rnd(1,6)
1090
1100 dice:=diel + die2
1110
1120 print dice

When RUN, the program will generate a number from 2 through 12 --perhaps,
the first time, a 10.
RUN the program several times, noting the printouts.
The beginning and ending numbers in the range can differ in value. If we
wish to generate random numbers from 39 to 72, we enter

print rnd(39,72)

Quite straight forward!

for 117 through 209
print rnd(117,209)

DICE:= RND(1,6) + RND(1,6)

DICE:= D iel + DIE2

L63H

RECAP

COMMAND WHAT IT DOES

abs returns the + value of an integer or
real number

div returns the integer value of a di
vision operation

mod returns the remainder of a division
operation

sqr returns the square root value of a
positive number

int returns the truncated lower value of
a number

rnd generates a random number, decimal
or integer

randomize "seeds" the computer so that it will
generate a true random number

probl©ms

Work the following by hand first. After that check the work on
computer.

1. Determine the absolute value of the following.

1.1) 6.8403 1.2) 0.401 1.3) -14.6 1.4) -0.001
1.5) -1/3 1.6) (-2)13 1.7) -8/2 1.8) 2 T (- 2)

d i v -

2.1) 16 div 4 2.2) 18 div (-8) 2.3) 14.2 div 3

the

i:: 641

2.4) .0463 div 5 2.5) -17.109 div .3 2.6) -5 div .1 (why?)

m o d

3.1) 14 mod (-3) 3.2) 256 mod 16 3.3) 1 mod 9
3.4) 19 mod 4 3.5) -6.01 mod 2 (why?)

S CL 27

4.1) sqr(16) 4.2) sqr(25) 4.3) sqr(-49)
4.4) sqr ((- 2) t*2) 4.5) sqr(32/2) 4.6) sqr(4t4)

±.

5.1) int(6.991) 5.2) int(-0.991) 5.3) int(7.89*10+.5)/10
5.4) int(2*3.1) 5.5) int(84.635*100+.5)/100
5.6) int(-19.07499*100+.5)/100 5.7) int(-19.5)

6. Write the range for the following:

6.1) rnd 6.2) rnd(16,21) 6.3) rnd(48,49)
6.4) rnd(18.2,26 .2) 6.5) rnd(101,263)
6.6) 6*rnd(1,6) 6.7) rnd(-4, -1) 6.8) rnd(-1,-4)
6.9) rnd(1,6) + rnd(1,6)

stn s w o jc s

1.1 6
1.2 0.401
1.3 14.6
1.4 0.001
1.5 .333333333
1.6 8
1.7 4
1.8 .25

£ 653

2.1 42.2 -2
2.3 4
2.4 0
2.5 -57
2.6 -49 (Computer limitation when changing .1 to binary notation)

3.1 2
3.2 0
3.3 1
3.4 3
3.5 -9.99999978e-.03 (Which is -.00999999978. MOD, of course, should

give a single digit answer; however, as the com
puter works in binary notation, these errors
"work" their way in, in unusual commands.)

4.1 4
4.2 5
4.3 error message: argument error
4.4 2
4.5. 4
4.6 16

5.1 6
5.2 -1
5.3 7.9
5.4 6
5.5 84.64
5.6 -19.07
5.7 -20

6.1 .0 through .999999999
6.2 16 through 21-
6.3 48 or 49; (48 through 49)
6.4 18.2 through 26.2
6.5 101 through 263
6.6 6 through 36
6.7 -4 through -1
6.8 0 or -1. If, in the ARGUMENT for RND, the lowest number is not

put first, the printout will not be consistent. There
is an incorrect ARGUMENT here; -4 is lower than -1.

6.9 2 through 12

£663

CHAPTER EIGHT
more on $t,rings

obj©cbives

At the completion of the chapter the student will be able to:
1. Demonstrate the proper way to write a String variable;
2. DIMension a String variable;
3. Use two methods to get an output for the Strings of two

or more String variables;
4. Output, using ASCII values, any letter of the alphabet;
5. Generate letters of the alphabet using a combination of

CHR$ and (RND) statements; and,
6. Define and explain cslnjc-Sfe.

comalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c
o
m
a

RUNning a program
c
o
m
a

1 After entering a program into the computer 1
c it may be RUN by tapping the :fr T key. It c
o eliminates the need of typing RUN and tap- o
m ping the RETURN key. m
a a
comalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C 673

8 _ I I N P R E V I O U S C H A P T E R S we have stored
numbers in the computer’s memory bank. We gave those

numbers, variable names such as "width", "area", "radius", et cetera. We
also can store Strings in the same manner. But in doing so, we must
attach to the name of the variable we use to represent the String, the $
symbol. Hence

name:="roselyn"
would be correct. Instead, it must be

name$: = "roselyn"
8 . 2 I N A D D I T I O N , T H O U G H optional in COMAL

through 40 characters, it is a good practice to DIMension
all String variables. Most other languages (Pascal, e. g.) require
DIMensioning regardless of the length of the String variable(s)!
Strings are made up of CHARACTERS.
The word "COMAL" has five characters;
hence, if it were set to a String
variable, that variable would have to
be DIMensioned to at least 5. This
program should help in understanding
the concept.
1000 page
1010
1020 // demonstration of String

DIMensioning
1030
1040 dim firsts of 7, seconds of 3
1050 dim thirds of 8, fourths of 20
1060
1070 firsts:="loretta"
1080 seconds:="has"
1090 thirds:="earrings"
1100
1110 fourth$:=firstS + " " + seconds

+ " " + thirds
1120
1130 print fourths

RUNning the program gives
loretta has earrings

In line 1110 the " + " is n o t to be construed to mean ADDITION, as in
arithmetic; rather, it simply means (when used in Strings) "to join to"
or "put next to".
IT IS IMPORTANT to note how String variable names are DIMensioned. Look
at line 1040. d i m . is the system-reserved word that alerts the
computer to what we want to do. Once d i m has been typed, succeeding
String variable names to be dimensioned can be put on the same lines as

C 683

long as they are separated by commas. To be sure, what we typed on lines
1040 and 1050 could have been put on one line; however, not only does it
"look" better to use two, but the program would be easier to debug,
should there be errors.
Fourths, which we DIMensioned at 20, MUST HAVE A DIMension VALUE that
i n c l u d e s the total number of characters in FIRSTS plus SECONDS
plus THIRDS string two for the spaces used between firsts and
seconds, AND between seconds and thirds.
If we had DIMensioned fourths at 18, then

loretta has earrings
would become

loretta has earrin
The String variable, fourths, may be DIMensioned at a larger value --say,
23. This will not cause havoc with the program, and it does save making
tedious counts to determine minimum values. Be generous — but not
foolish.
8 . 3 W E C A N A V O I D the use of spaces, " ", when

joining strings together. (They are used, by the way, to
keep the words in the sentence separated.) We do this by including the
spaces WITHIN the strings themselves. Here is a program for "loretta has
earrings", that does just that. Make a careful comparison between the
two algorithms --particularly, line 1080.

1000 page
1010
1020 // demonstration of spaces within Strings
1030
1040 dim firsts of 7, seconds of 5
1050 dim thirds of 8, fourths of 24
1060
1070 first$:="loretta"
1080 second$:=" has "
1090 third$:="earrings"
1100
1110 fourths:=first$ + seconds + thirds
1120
1130 print fourths

RUNning
loretta has earrings

In line 1080 we put a space b e f o r e and a f t e r the word h a s
--and, inside the quotation marks!! Always remember:

INSIDE OF QUOTATION MARKS, THE COMPUTER
COUNTS A SPACE AS A CHARACTER!!!

r:693

at 5 in line 1040.Therefore, we DIMensioned " H a s
Fourth$ was DIMensioned at 24, even though 20 would have been sufficient.

8 . 4 1 1ST T H E A S C I I code,* the chr$ value (CHR$
represents CHARACTER STRING) for the letter "a" is 65 and

for "z" it is 90. The rest of the alphabet lies between those two
values.
If we

print chr$(65), the computer will return
a

print chr$(90), the computer will return
z

print chr$(78), the computer will return
n

If we wish the computer to generate letters RANDOMly (rnd), then the
statement would be

print chr$(rnd(65,90))
Observe that the ARGUMENT for CHR$ is r n d (6 5 , 9 0) and, in turn,
the ARGUMENT for RND is 6 5 , 9 0 .
As in programs calling for a numeric printout, precede the statement with
RANDOMIZE in order to "seed" the random generator.

RECAP

TO print String variables, they must first be
DIMensioned.

SPACES count as characters inside of quotes.
THE + sign, when used with Strings, means

"join to" or "put next to".
CHRS stands for CHARACTER STRING.

C703

p r * o b 1 e m s

1. Write programs to print these sentences:
1.1 i like computers
1.2 yea I yea I football team I
1.3 go, warriors, go

2. Write a program to generate, at random, any of the first three
letters of the alphabet.

3. Write a program to generate, at random, any of the last three
letters of the alphabet.

4. Write a program and put on three distinct lines, the following:
print chr$(rnd(77,79));

Keep RUNning the program until the printout is
m o n

Count how many times it takes.
5. Do problem 4 three times and take an average of the number

of times it takes.
6. Put on four distinct program lines the following:

print chr$(rnd(82,85));
Keep RUNning it until the printout is

lO U. -fc s
Count how many times it takes.

Notation:
4. Mathematically, it would be once in 27 times.
5. Like 4, it should'be 27.
6. Mathematically, it would be once in 256 times.

C713

CHAPTER NINE
f our / endf or 1 ocz>̂>

ob j q C3 “t, :L v e s

At the completion of the chapter the student will be able to*.
1. Write and save a personal logo in such a way that it can

be MERGEd with each new program written;
3. Write multi-line FOR/ENDFOR loops that call for complex

instructions;
4. Write ONE-LINER FOR loops for single statement instructions;
5. Write and embed a ONE-LINER FOR time-delay loop in a program;
6. Use the visual technique for diagnosing possible errors in

programming sequences having system-forced indentation;
7. Explain the NULL statement in COMAL; and,
8. Write time-delay loops of varying lengths, from 1/4 second

up to 5 seconds.

comalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c
0
m
a
1
c
0
m
a
1
c
o
m

DELETING PROGRAMS FROM THE DISC

In a one disc drive system, the drive is la
beled 0; if two drives are used, the other
is known as 1.
To erase a file off the disc — say, it has
the name RECTANGLE, enter this command

delete "0 : rectangle

c
0
m
a
1
c
0
m
a
1
c
o
m

comalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C 723

Q . 1 B E F O R E A D I S C U S S I O N of the for/endfor
loop, there is another housekeeping item we need to look

at.
Every algorithm should identify:

the programmer;
the name of the program; and,
the date written.

It would be time consuming to type this every time a program was written.
With the use of the save command LIST and load command MERGE, this task
can be accomplished quite easily.
Heading styles will vary with the programmer. The following is a guide.
Type

9000 // select output "lp:"
9010
9020 // ******************************
9030 // * leary, j. wm / 1 sept 1986 *
9040 // ******************************
9050 // * chap 9 prob 1 *
9060 // ******************************
9070

Having double-checked for accuracy, enter
list "title.1"

Now, before we begin a new program, we can type
merge "title.1"

The command will send the computer to the disc, recover the
file, and place it in the computer’s memory. Further, it will ignore the
9000-9070 line numbering and, instead, give line numbers beginning with
0010. Before doing more on the program, a

renum 1000
would be in order, if that is to be our first line in the algorithm.
If we do a CAT listing (do so) we will note our program is saved as

o eg. instead of p r g .
The command

list
in

list "title.1
places the algorithm on the disc as a SEQuential file. Because of the

C 733

way COMAL is designed, we easily can take SEQuential files off a disc and
put (merge) them into any program. To remind us that this (or any
program, for that matter) is a seq file, we attach the ".1" to its name.
(Another way to take sequential files off a disc is to use the command
ENTER. We will cover this in another chapter.)
The reason line 9000 is "//" is to allow running the programs on the
monitor until all bugs in the algorithm have been worked out. Once we
have the desired output then we can remove the "//" and RUN and LIST the
program on the printer. If we are NOT going to include a copy of the
program along with the output, then we can replace all of the / /s with
p i r i n t , and have the logo appear before the final output.
Though we have put in a specific date and an identification of a
particular problem, it is easy enough — with the use of the CURSOR
key(s)-- to make the necessary changes. Having a date and an
identification already centered, will help putting in the new ones.

9 . 2 T O T H I S IPO I N T , we have had to EDIT a
program to change the values of any variable(s) in order

to have the computer run a program with different numbers. Certainly,
this is most unsatisfactory; and if that is the only way computers could
be made to function, the market would have dried up long ago. The very
strength of computers is their ability to do repetitive work tirelessly
and in a short period of time.
If we have a K N O W N number of variables then, most often, the
f o r / e n d f o r loop is the best way to write a program to process
that data.
FOR loops may be multi-line or one line (not infrequently called,
"one-liner fors").

9 . 3 M O L T I — L I N E F O R S have a general format
similar to

FOR controlvariable:=start TO end DO
PRINT instruction 1
PRINT instruction 2

ENDFOR
= = = EXAMPLE. Print a name and address four times, leaving a space
between each complete entry. One program might look like this

1000 for address:=1 to 4 do
1010 print "heather blaire"
1020 print "630 kimlin drive"
1030 print "glendale, ca. 91206"
1040 print
1050 endfor address

t 743

After LISTing the program, it would be shown on the monitor as
1000 FOR address:=1 TO 4 DO
1010 PRINT "heather blaire"
1020 PRINT "630 kimlin drive"
1030 PRINT "glendale, ca. 91206"
1040 PRINT
1050 ENDFOR address

The SYSTEM WORDS are capitalized. But more important to the programmer
is the INDENTATION used in the loop. If the identation is not "closed"
--that is, the "F" in FOR of line 1000 does not have the "E" in ENDFOR in
the same relative position, then the programmer knows there is an error!!
Later, when we deal with more complex programming techniques, this
becomes an indispensible v i s u a l debugging assist. And please note,
this is system-forced!!
The control variable "address" in line 1000 is not "sacred." We just as
easily could have used

for gumball:=l to 4 do
The PRINT in line 1040 "kicks" the printer down one line after printing
the previous three. This is what gives the spacing between the four
adddresses when the program is RUN.
= = = PROBLEM. Print the numbers from 10 through 99.

1000 for numbers:=10 to 99 do
1010 print numbers;
1020 endfor numbers

The trailing punctuation (;) in line 1010 prints the numbers across on
the line (with a space between them) instead of straight down one column.
A partial printout would be

10 11 12 13 14 15 16
Replace the semicolon with a comma.
The numbers still are printed across the line, but in this instance there
is no spacing between each one.

101112131415161718
Add this line to the program

990 zone 6
B E F O R E we RUN the program, we first must be certain there is a
COMMA on line 1010. (Remember? The semicolon overrides the ZONE
function.) RUN the program and note the printout.
It will be

C753

11 12 13 14 15 16
Though we could put the ZONE statement inside the loop, putting it just
before accomplishes the same thing --and it does make it easier to debug.
Unless we change the ZONE statement, anything that is printed after it
will always have the same formatted printout. As noted earlier (Chapter
6), we can change the ZONE value within a program as often as we wish.
Experiment with different values for ZONE.

9 . 4 W E A L S O O A N increment the control variable
by a £ > T E E value. Here is an example.

1000 zone 6
1010 for numbers:=10 to 99 step 2 do
1020 print numbers,
1030 endfor numbers

The printout begins as
10 12 14 16 18 20

The S T E E 2 causes the computer to add 2 to the preceding number.
The. last number to be printed is 9 8!! Though the control variable
asked for 10 to 99, 9 8 + 2 is 100 which, being larger than 99, cannot be
executed. (1, by the way, is the default value of STEP.)
Control variable parameters do not have to be integers — nor do STEP
values. The following could be put in line 1010 above

for numbers:=1.04 to 33.56 step .91 do
The printout begins as

1.04 1.95 2.86 3.77 4.68 5.59
STEP may also be negative. In so, then the START value must be larger
than the END value.

1010 for numbers:=76 to 54 step -1 do
The printout begins as

76 75 74 73

9 . 5 O N E - L I N E R . E O R S are just that, one line in
length.

Some examples (type these and RUN them)
1000 for blanko:=l to 39 do print " ",

another

C 763

1000 for dashes: =1 to 39 do print
another

1000 for pause:=1 to 1000 do null
In one-line FORS, the E N D F O R statement must be L E F T O F F .
Any time we do not have a complex set of instructions for the END/ENDFOR
loop to execute, always use a ONE-LINER FOR.
Throughout this course we will use variations of the last example

1000 for pause:=1 to 1000 do null
time and again in writing programs. It is called a time-delay loop.
COMAL recognizes NULL. Actually, nothing is done by the computer. We
might vizualize the computer, when it reaches this line, as having to
stop (pause) and count to 1000, by ones, before it can go on to the next
line. (Remember the old hide-and-seek games we played as kids! When
"it" we covered our eyes with our arms while leaning against a telephone
pole or building, counted to 100 as fast as we could --faster than a
computer does, even now?— then shouted something like, " . . . 99, 100!
Here I come, ready or not!!")
It takes about one second for the computer to "count" to a thousand. 1
to 500 takes approximately one-half second.
Later on, we will find many uses for a time-delay loop, and one-liner
fors is an excellent way to execute them.

RECAP

COMMAND WHAT IT DOES

merge takes a SEQuential file off the
disc, renumbers the lines and puts
it into the computer's memory.

for/endfor used when a known set of complex
loop data is to be processed.

step determines the amount the control
variable is to increased each time
a loop is executed.

null used in time-delay loops.

C77:i

pr*oblems

For the following problems use only FOR/ENDFOR or ONE-LINER FOR loops.
1. Write a three-line cheer for a football team, with one space between

each line. Print the cheer three times, with 2 blank lines between
each printout.

2. Write the numbers from 1 to 10 with increments of .25:
2.1 In a row; and,
2.2 In a column.

3. Write the numbers from 9 to 4 with decrements of .25:
3.1 In a row; and,
3.2 In a column.

4. Print a line of 40 "*"s.
5. Print a 40-character line that alternates between a and a blank

space.
6. Using the CHR$ codes (see chapter 8 for help) print the alphabet:

6.1 On a line with a space between each letter;
6.2 On a line with no space between the letters;
6.3 On a line with 5 spaces between each letter; and,
6.4 In a column.

7. Write a program to produce the following printout:
a has ascii code 65
b has ascii code 66
c has ascii code 67
d has ascii code 68
(and so forth to)

y has ascii code 89
z has ascii code 90

Use a ONE-LINER FOR time-delay loop of 1/2 second inside the
FOR loop.

8. Throw a pair of dice 96 times and have the printout in columns
--with 4 spaces between each column.

C 783

9. Starting with E --chr$(69)— and ending with £>, --chr$(83) —
have the computer select, at random, any 25 letters and print
them in one row with a space between each.

10. Starting at 391 and ending at 617 select, at random, 50 numbers
and have the computer print them in columns with appropriate
spacing, so they can be read easily.

FOR dembones

d i e l : =

die2:=

PRINT

:=1 To 4 Do

2 i

d»el*) die2.
ENDFOR dembones

t 793

CHAPTER TEN
counting and summing

ot> j ect iv© s

At the completion of the chapter the student will be able to:
1. Include a counting statement in a program;
2. Include a summation statement in a program;

. 3. Explain why it is important to initialize a counting
and a summation statement outside of a loop;

4. State what the "computerese" for
: +

is in a counting statement;
5. Show, with a series of mathematical statements, the pro

gression of a summation statement in a program; and,
6. Write a program to strike an average of several numbers;

comalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
o RUNNING PROGRAMS DIRECTLY FROM CAT LISTING o
m
a

m
a

1 After listing the directory to the screen by 1
c the CAT command, any program (prg) can be c
o RUN by moving the CURSOR to the beginning o
m of the listing and then tapping the f7 key. m
a a
comalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C80::i

1 0 . 1 T H E R E A R E T I M E S when it seems every
program we work on has a counting and/or summation

loop. And it is not too far off to say that counting and summing are
almost as generic to computing as letters are to the alphabet.
In COMAL, the counting loop reads

count:+1
Notice the absence of spacing in the statement.
The word "count" is not a reserved or system word. Any of the following
are valid counting loops.

kount:+1
countdice:+1
kounthens:+1
counteggs:+1
gumballs:+1

One thing that is v e r y i m p o r t a n t in COMAL is the absolute
necessity of initializing the count variable — i.e., it must be set to
zero (or another value, if it is appropriate) b e f o r e the count loop
is embedded in the program. Failure to do this results either in an
error message or "funny" answers.
Here is a program to illustrate a counting loop.

1000 count:=0
1010 //
1020 for dye:=l to 15 do
1030 die:=rnd(1,6)
1040 count:+l
1050 print die;
1060 endfor dye
1070 //
1080 print "# of times die tossed =";count

(In order to avoid "turmoil" and program breakdown, the variable d y e
in line 1020, is SPELLED DIFFERENTLY than the variable "die" in 1030. We
must do this or the computer becomes confused because it cannot keep the
two variables separated --and chaos becomes the order of the day!)
We already know from line 1020 that the program is going to loop 15
times; hence, the count loop in 1040 is superfluous, to be sure.
However, at this stage of our programming knowledge, the only loop we
have at our disposal is the FOR/ENDFOR one.
Note that the COUNT statement was initialized to 0 in line 1000 AND
OUTSIDE THE LOOP!! In line 1040

51813

count:+1
is the counting statement.
It might help us to grasp what is happening if we imagined THE ENTIRE
STATEMENT, including the line number

1040 count:+l
as a TURNSTILE. As the computer,
starting at line 1000, progresses
through the program, it falls through
from line to line. When it falls
through line 1040 it "clicks" the
TURNSTILE one turn. Because line
1040 is within the for/endfor loop,
the computer will "click" through 15
times (in this program). As it does,
COUNT is incremented by 1. each time.
Indeed, as the computer "clicks"
through the TURNSTILE (line 1040),
the

: +
is "computerese" for

"whatever value COUNT
has, increment (add) -- "
and in this instance, ". . . add 1."

Because, on line 1040 we set (initialized) COUNT to 0, the first time
through the TURNSTILE, COUNT is 0 and the statement

count:+1
becomes

0:+l = 1
So COUNT, then, is 1 the first time through. On the second trip

count:+1
becomes

1:+1 = 2
Counting loops can DECREMENT as well as INCREMENT and situations arise
when programs need to be written this way.
NEVER INITIALIZE A COUNTING VARIABLE WITHIN A LOOP! Always initialize
O U T S I D E the loop; otherwise, every time the computer falls through

-823

The following program demonstrates this error.
1000 page
1010
1020 randomize
1030
1040 sumnums:=0
1050
1060 for errordemo:=l to 10 do
1070
1080 count: =0
1090 nums:=rnd(54,76)
1100 count:+1
1110
1120 sumnums:+nums
1130
1140 endfor errordemo
1150
1160 averageofnums:=sumnums/count
1170
1180 print "average =";averageofnums

that line, it will set the counter back to 0.

Because
1 0 8 0 count. : = O

is W I T H I N the for/endfor loop, each time the computer falls through
line 1080, "count" is set back to 0; therefore, at the end of the 10th
loop, COUNT will only be 1 . And the average taken in line 1160 will be
the total sum divided by 1 --not 10!

1 0 . 2 I N T H E P R E C E D I N G program, line 1120 is
a SUMMATION STATEMENT. The format is similar to

counting statements, but instead of incrementing by 1 it increments by a
variable amount.
Like COUNT, summation statements also must be initialized and, again,
O U T S I D E the loop (except for those "delightful" detours we will
confront later in the text). See line 1040 in the above program.
Summation statements, as can be seen from line 1120 above, take the form

sumnums:+<variable>
As in COUNT, there are no "sacred" words. Any of the following are
valid.

sumdie:+diel
sumnumbers:+integers
sumeggs:+eggs

C 833

This program illustrates a summation statement.
1000 page
1010
1020 randomize
1030
1040 sumdie:=0
1050
1060 for dye:=l to 6 do
1070
1080 die:=rnd(1,6)
1090
1100 sumdie:+die
1110 print die;
1120
1130 endfor dye
1140
1150 print "sum of die tosses =";sumdie

For the sake of illustration, let's assume the 6 tosses of the die came
out to be

4 4 1 6 3 3
On the 6 trips through line 1100, this is how it would be processed by
the computer.

trip die summation

1 4 0 : +4 4
2 4 4:+4 = 8
3 1 8 : +1 = 9
4 6 9: +6 = 15
5 3 15: +3 = 18
6 3 17: +3 = 21

And the printout for line 1150
sum of die tosses = 21

There are times when we may wish to set up a summation loop that
DECREMENTS by a variable, until 0 or another predetermined value has been
reached.

1 0 . 3 I F W E W I S H E D to add the values of the six
"tosses" of the die in the preceding program and take

t 843

an average-per-toss, we could add a count statement to the algorithm.
1000 page
1010
1020 countdie:=0
1030 totaldie:=0
1040
1050 randomize
1060
1070 for dye:=l to 6 do
1080
1090 die:=rnd(1,6)
1100 totaldie:+die
1110 countdie:+l
1120 print die;
1130
1140 endfor dye
1150
1160 print "sum of die =";totaldie
1170
1180 ave:=totaldie/countdie
1190
1200 print “ave value of each throw =";ave

The loop lies between lines 1070 and 1140. The count statement is on
line 1110 and was initialized at 1020; line 1100 is the summation
statement which was initialized on line 1030.
Line 1090 generates the value of each “toss" of the die; line 1120 prints
that value — in a row, because of the trailing punctuation. Outside of
the loop, the average (ave) is struck by dividing the sum (totaldie) by
the number of tosses (countdie). (ave value of each throw = 3.5)
After entering the program, RUN it four or five times. If the program is
not clear, be certain not to go on until the chapter has been studied
again.

RECAP*****

COUNT statements take the general form
count:+1

SUMMATION statements take the general form
sum:+<variable>

BOTH must be initialized first.

1:853

prob1ems

(The student should understand that the use of a count statement inside
of a for/endfor loop is superfluous for the following problems.
Generally, when such a loop is started at 1, the ending value (the
BEGINNING value if the loop decrements to 1) would be the same as the
final value of an included count statement. However, because the chapter
is addressing only COUNTING and SUMMATION STATEMENTS, this becomes the
primary objective.)
Use a FOR/ENDFOR loop in each of the following exercises.
1. Toss a die 10 times. Have the printout show the value of each toss,

the sum of the tosses and the average value per toss.
2. Throw a pair of dice 20 times. Have the printout show the value of

each throw, the sum of the throws and the average value per throw.
3. Throw a pair of dice 100 times. Have the printout in ten columns.

Print the value of the sum and the average value per throw. Use
another ZONE value to line up the sum and average.

4. Generate 50 random numbers from 103 through 341. Print their values
in five columns. Print the sum of the numbers and their average.
Use ZONE to align all printouts.

5. Generate 30 random numbers >0 and <1. Line up their values in
columns. Print the sum of the numbers and their average. Use
ZONE to align all printouts.

l 86 3

CHAPTER ELEVEN
t>d_rist dLo <3 d_ s d_ on s : if/-bhen/els©

obj©cbives

At the completion of the chapter the student will be able to:
1. Write down and illustrate, mathematically, the five relational

comparative symbols;
2. Write a program where the predefined constants for Boolean vari

ables of 0 and 1, represent FALSE and TRUE, respectively
3. Write an IF/THEN/ELSE program where the variable is evaluated

by Boolean logic, and the predefined constant is generated
by a random statement;
Write programs involving the following five I F structures:
11.1 IF ... THEN .. .
11.2 IF ... THEN ... ENDIF
11.3 IF ... THEN ... ELSE ... ENDIF
11.4 IF ... THEN ... ELIF ... ENDIF
11.5 IF ... THEN ... ELIF ... ELSE ... ENDIF
and,
Write a program with any of the five I F structures embedded
within a FOR/ENDFOR loop.

1873

comalcomalcomalcomalcomalcoraalcomalcomalcomalcomal
c c
0 EDITING WITH THE f 5 KEY o
m -------------------- m
a a
1 Tapping "the if: 5 key places the computer in 1
c the EDIT mode. c
0 o
m After tapping f5, tapping the RETURN key m
a will list, line by line, the entire pro- a
1 gram. 1
c c
0 To get a specific line or lines, enter o
m them immediately after tapping if: 5. Tap m
a the RETURN key. a
1 1
coma1coma1coma1coma1coma1coma1coma1coma1coma1coma1

1 1 . 1 I N C H A P T E R O N E we introduced relational
comparisons --or inequalities, as they are known.

> meaning, greater than
< meaning, less than
<> meaning, not equal to

At this point we will expand those to include the following complete
table.

statement illustration translation

> 6>4 6 greater than 4
=> 4=>4 4 equal to o r greater than 4

6=>4 6 equal to o r greater than 4
< 4<6 4 less than 6

=< 4=<4 4 equal to CO JO less than 4
4=<6 4 equal to o r less than 6

<> 406 4 not equal to 6
604 6 not equal to 4

We will begin using these in programs.

1 1 . 2 A T Y P I C A L F O R M of a binary decision is
IF <condition> THEN
statement(s)

ELSE
statement(s)

ENDIF

(Note the system-forced indentation — a debugging aid— and^ the
capitalization of the system words.)
Here is an elementary program to illustrate the IF/THEN/ELSE/ENDIF
paradigm.

1000 PAGE
1010
1020 RANDOMIZE
1030
1040 die:=RND(1,6)
1050
1060 IF die =< 3 THEN
1070 PRINT "you tossed a";die
1080 PRINT "you win $5"
1090 ELSE
1100 PRINT "you lose $6"
1110 ENDIF

If, in line 1040, we "throw" a 1 or 2 or 3 then the c o n d i t i o n in
line 1060 is true — and lines 1070 and 1080 will be executed. Lines 1090
and 1100 will be ignored, and line 1110 will terminate the sequence.
On the other hand, if we "throw" a 4 or 5 or 6 then the
c o n d i t i o n in line 1060 is FALSE — a n d lines 1070 and 1080
will be ignored. Lines 1090 and 1100 will be executed and, again, line
1110 will terminate the sequence.

1 1 . 3 B O O L E A N V A R I A B L E S A R E named after
the 19th century mathematician George Boole. He had a

great deal to do with developing the principles of mathematical logic.
Boolean variables deal with the logic concept of FALSE and TRUE. In
COMAL, F A L S E has the predefined constant that is always equal to 0.
T R U E is also predefined and is any value <> 0 --and 1 is the accepted
value to use.
In the previous program on tossing a die, if the condition was met then,
explicitly, it was TRUE; and the statements associated with that truth
(lines 1070 - 1080) were executed, and the sequence was terminated. If
the condition was no-fc, met then, explicity, it was FALSE; and the
statements associated with it (lines 1090 and 1100) were executed, and
the sequence terminated.
Consider these lines taken out of another program.

1050 paint:=rnd(0,1)
1060 IF paint THEN
1070 PRINT "buy white paint"
1080 PRINT "paint kitchen wall"
1090 ELSE
1100 PRINT "kitchen walls ok, go to beach"
1110 ENDIF

r: 8 9 3

The random number generated in line 1050 will be either 0 or 1.
FALSE is predefined as 0.
TRUE is predefined as 1.

Rewriting the program as the computer "sees" it—
1050 paint:=rnd(0,1)
1060 IF paint comes out to be 1 THEN (I will)
1070 "buy white paint" (and)
1080 "paint kitchen wall"
1110 ENDIF

(It skips over lines 1090 and 1100.)

The other condition would be--
1050 paint:=rnd(0,1)
1060 If paint comes out to be 0 THEN
1090 (instead, I find the)
1100 "kitchen walls ok, go to beach"
1110 ENDIF

(It skips over lines 1070 and 1080.)
What we are saying is, that the IF condition is implicitly - t r u e and
the ELSE is the contravention of that --hence, f a l s e .

1 1 . 4 W E A R E N O T restricted to one ELIF. There may
be a multiple set of them. Very often, when this

condition exists, another statement C A S E can be used (which we will
study in a later chapter).
To illustrate, let's write a program for tossing a die

1000 page
1010
1020 randomize
1030
1040 die:=rnd(1,6)
1050
1060 if die=l then
1070 print "1 was thrown"
1080 elif die=2 then
1090 print "2 was thrown"
1100 elif die=3 then

C903

1110 print "3 was thrown"
1120 elif die=4 then
1130 print "4 was thrown"
1140 elif die=5 then
1150 print "5 was thrown"
1160 elif die=6 then
1170 print "6 was thrown"
1180 else
1190 print "check your program"
1200 endif

When LISTed, the program appears on the screen as
1000 PAGE
1010
1020 RANDOMIZE
1030
1040 die:=RND(1,6)
1050
1060 IF die=l THEN
1070 PRINT "1 was thrown"
1080 ELIF die=2 THEN
1090 PRINT "2 was thrown"
1100 ELIF die=3 THEN
1110 PRINT "3 was thrown"
1120 ELIF die=4 THEN
1130 PRINT "4 was thrown"
1140 ELIF die=5 THEN
1150 PRINT "5 was thrown"
1160 ELIF die=6 THEN
1170 PRINT "6 was thrown"
1180 ELSE
1190 PRINT "check your program"
1200 ENDIF

All the conditions are T R U E except line 1180. It would seem, we
really do not need line 1180 or line 1190. After all, a die has only six
faces and one of them has to show up on any given toss. On the other
hand, suppose we had made an error in writing the algorithm. What if we
had written, by chance, the random number as

rnd(1,7)
or

rnd(0,6)
Lines 1180 and 1190 would have "caught" the error — goooooooood
programming technique!!-- if, in the first instance, the "7" had been
generated or, in the second instance, the "0" had been generated.

1 1 . 5 W E A L S O O A N have one-line binary decision
statements.

C 913

They take the general form of
if die<>6 then count:+1

LISTed, it appears as
IF die<>6 THEN count:+l

There is no ENDIF with a one-line IF/THEN.

1 1 . 6 S I N G L E — O R M U L T I — line binary decision
statements can be embedded within FOR/ENDFOR loops.

Here is an example.
1000 PAGE
1010
1020 // initializing two count statements
1030
1040 count:=0
1050 count7:=0
1060
1070 RANDOMIZE
1080
1090 FOR dye:=1 to 10 DO
1100
1110 diel:=rnd(1,6)
1120 die2:=rnd(l,6)
1130 dice:=diel+die2
1140 PRINT dice;
1150
1160 IF dice<>7 THEN
1170 count*.+1
1180 ELSE
1190 count7:+l
1200 ENDIF
1210
1220 ENDFOR dye
1230
1240 PRINT "# of throws not equal to 7 =";count
1250 PRINT
1260 PRINT "# of throws equal to 7 =";count7

Type in the program and after studying it, RUN it a few times.
By the way, a one-line IF/THEN may call, as multi-line ones do, for print
statements of even PROCEDURES --something we also will be studying later.
An example of the former would be

IF dice=7 THEN PRINT dice;
This is one way of getting just the 7s printed --or any other sequence of
numbers we might wish.

L9211

p a r o b l © m
Generate 20 random numbers from 341 through 619. Print only the odd
ones. Count how many there are, sum them and take an average per number.

1000 page
1010
1020 // program to generate 20 rnd #s
1030
1040 // initializing variables
1050
1060 countodd:=0
1070 sumodd:=0
1080
1090 randomize
1100
1110 for figures:=1 to 20 do
1120
1130 numbers:=rnd(341,619)
1140
1150 if numbers mod 2 <> 0 then
1160 print numbers;
1170 sumodd:+numbers
1180 countodd:+l
1190 endif
1200
1210 endfor figures
1220
1230 average:=sumodd/countodd
1240
1250 print " number of odd integers =";countodd
1260 print
1270 print " total of odd integers =";sumodd
1280 print
1290 print '’average of odd integers ="; average

Some comments:

Line 1140 MOD gives the remainder of a division problem.
If we divide --say, 316 by 2, the answer is 158
and no remainder, because 2 "goes evenly" into
316. If, on the other hand, we divide — say 437
by 2, the answer is 218 1/2; a remainder of 1.
Therefore, stating—
IF numbers mod 2 NOT EQUAL TO 0 THEN
CIF numbers MOD 2 <> 0 THEN3
Is a good method for determining if an integer is
even or odd. If there is a remainder, it is odd; if
there is no remainder, then it is even.

This same logic can be extended to any other condition we might want.
For example, if we want to know if an integer is divisible by 7, then the

C 933

following statement would do it.
if integer mod 7 = 0 then print "7 is a factor of";integer

If there IS a remainder, it means the integer was NOT divisible by 7.

RECAP

BOOLEAN variables are pre-defined.
0 = false
1 = true

There are five structures for IF/THEN
IF/THEN
IF/THEN/ENDIF
IF/THEN/ELSE/ENDIF
IF/THEN/ELIF/ENDIF
IF/THEN/ELIF/ELSE/ENDIF

prob1ems

For the first four problems use the predefined values for the Boolean
variables --and RND to generate them-- then write a program:

1. For the variable "rain"
If true, then

it is raining
put shovel away

If false, then
get the shovel
dig a 6x6x6 foot hole

2. For the variable "test"
If true, then

study like mad
computer test tomorrow

If false, then
look at tv
snow day tomorrow

C943

3. For the variable "girlfriend"
If true, then

buy flowers
you get father's car

If false, then
buy audio tape
girlfriend fickle

4. For the variable "boyfriend"
If true, then

put on long earrings
he1s taking me out

If false, then
call up bill
he likes long earrings

5. Throw a pair of dice 100 times. If a 7 comes up, print it;
otherwise, print a period.
Count the number of 71s.
The final printout should be:

the number of 7s tossed = —
6. Redo 5 and put a printout on the screen so that it is in

eight columns. Have the same final printout.
7. Throw a pair of dice 100 times. Print them in columns.

Count the number of times a 1, a 7 or an 8 appears.
Have the final printout show the results for each number.

8. Throw a pair of dice 100 times. Print only the tosses equal to
or greater than 8. The other printout should be a blank space.
Put the printout in columns. Have the final statement tell how
many of each number.

9. Throw a pair of dice 20 times. Add the face value of all throws
=>7. Use a count statement inside the IF/THEN loop.
The final printout should read

number of tosses => 7 —
sum of tosses => 7 --

ave of these tosses = --

L953

1 0 .
Use ZONE to get a "decent" print format.

The third
It must read

Redo 9 with the same first two final printouts,
printout, however, must have an integer answer.

ave of the tosses was —
OR

ave of the tosses was about —
(HINT: Consider use of MOD and INT.)

11. Generate 17 random numbers between 119 and 231. Print them in
columns. Add them. Strike an integer average (as in 10).
Final printout should reflect mature programming skills.

12. Generate 42 random numbers between 213 and 695. Print, in columns,
only those divisible by 3. Add them and strike an actual average.
The final printout should be complete.
(HINT: IF <variable> MOD 3 = ?? THEN)

13. Throw a pair of dice 10 times. Have the printout in the form of
throw shows total

1 6 6
2 9 15
3 11 26
4

and so forth
14. Throw a pair of dice 100 times. Count the number of 2's, 3’s,

4’s 12Js tossed. Have the final printout reflect the
total for each of the eleven numbers.

15. Throw a pair of dice 100 times.
Sum the value of the dice for 8 or less.
Sum the value of the dice for 9 or more.
Have the final printout compare the sums.

16. Generate 20 random numbers from 601 through 918.
Add the odd ones and compare that with the sum of the even ones.
Be certain to print the numbers in columns across the screen.

C 96 J

CHAPTER TWELVE
binary numbering s y s ~t om

ob o ©c-bives

At the completion of the chapter the student will be able to:
1. Define the acronym ASCII;
2. Define the acronym BIT;
3. Tell how many bits make a byte;
4. Write out the numerical progression for a single byte;
5. Write integers in binary code; and,
6. Change binary code into integers;

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
0 PROGRAM SCROLLING o
m ---------- m
a a
1 As programs become longer and longer, it becomes a problem 1
c to follow them on the screen after issuing a LISTing com- c
0 mand. o
m m
a The listing can be stopped and started by tapping the SPACE a
1 BAR. The SPACE BAR, in effect, becomes a switch, alter- 1
c nately stopping and starting the scrolling of the lines. c
o o
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C 973

1 2 . 1 T Y P E T H E F O L L O W I N G command.

use dansk
Tap the RETURN key.
Having done that, type "h" and then tap the RETURN key. The following
will appear on the screen

h: ukendt saetning eller procedure
Because we do not have a command of Danish, the message following "h:"
has no meaning — it fails to c o m m u n i c a t e .
Type

use english
Tap the RETURN key.
Once more, type "h" and then tap the RETURN key. The following will
appear on the screen

h: unknown statement or procedure
The message now has been s u c c o s s f u l l y communicated! 1 Why?
Because we have a mastery of English. We have read the same message
twice, but we only were able to t r a n s l a t e one of them.
The same is true for the computer. In order for it to process our
typed-in messages, these commands first must be handled by the Central
Processing Unit. The CPU then “t. jtr stm s l a t e s our messages into
binary code which, in turn, is directed to and handled by, the rest of
the computer. Once the computer has completed the task(s) we have
assigned, the results are sent back through the CPU which
“fc r a n s 1 ^ s this back into English and outputs the results to
the screen and/or the printer.
It is a historic fact that language has been a barrier to the development
of many Asian countries. Because they had no alphabet and used, instead,
"pictures" for each word, communication and, in particular, communication
of ideas, was severely hampered.
If computers were developed around a language using String alphabets or
"word" pictures, they would be so cumbersome as to be totally ineffective
--especially in view of the horrendous investment of capital it would
take to make them, as measured against the value of their output.
Therefore, the engineers employed a numeric language --and a language
with a base two, instead of the base ten we use.

(10 units = 10
10 tens = 100

C983

10 hundreds 1 0 0 0)

In a further stroke of genius, they used 0 and 1 as the two numbers. By
doing this, electronic "toggling" could be employed. Either a circuit
was closed or open — 0 or 1; hence, ' b i n a r y ' d i g i t s . Each
binary digit is called a toiL-fc. — an acronym for B i n a r y digiT; 8 bits
make a - Each byte represents a character. The character may
be a space, a letter, a number, a punctuation mark, a command or even a
special manufacturer-designed symbol.

1 2 . 2 I T S O O N B E C A M E apparent that there needed
to be some standard agreement among manufactures of

computers, as to what the values of these bytes would represent. Unless
there was, then one manufacturer might assign the letter "A" a 65,
another, 13 and a third 112. To avoid this possibility, a code was
developed. It was named the American Standard Code for Information
Interchange — or, A S C I I (as-kee*), as it is "affectionately"
called. Most of the computer systems in the world use it.
In ASCII, the value of an "a" is 65, the value of "z" is 90, the value of
"5", 53, and the value of "+", 43 — to name a few.
So, when the computer is asked to store an "a", it stores a "65" because
it is easier to do so. When the CPU, in turn, reprocesses a 65, it
outputs an "a" --either to the screen or to the printer. And because it
can arrive at 65 very quickly (due to binary digit processing) it makes,
not only what otherwise would be an impossible task possible, but it does
so with singular dispatch!

1 2 - 3 I N O R D E R T O make provision for all the
numerals, letters, symbols and commands, it takes a

combination of eight (8) bits. In binary notation the scale appears as
128 64 32 16 8 4 2 1

C993

32
5
2 =
6
2 = 64
7
2 = 128

With this scale — 128, 64, 32, 16, 8, 4, 2 ,1— we can write the numeric
value of any ASCII code we choose, from 0 through 255. However, before
doing so, we must be able to either TURN OFF or TURN ON each of the 8
bits — and, in any sequence! The engineers have so designed the
computers that this is done by the CPU. All we have to do is type — say,
the letter "a" and the CPU will turn on (or off) the appropriate bits.
Remembering, the binary digits are 0 and 1 ("off" and "on"), the
eight-bit byte for the letter "a" would look like this

128 64 32 16 8 4 2 1
T f T T t- T t f

bits: off/on— 0 1 0 0 0 0 0 1
T t

64 +1= 65
The ASCII code for "j" is 74. Through the electronic "toggling" — done,
by the way, with electrical impules, 74 is

bits:
128 64

T T
off/on— 0 1

f
64

32 16 8 4 2 1
f f T T f T
0 0 1 0 1 0

t +
+8 +2 : 74

By sending the appropriate signal, the CPU "switched" ON the bits for 64,
8 and 2. These were added, and the proper storage of the letter "j" was
completed. Because of the speed of electricity, this is accomplished,
for all practical purposes, immediately.
"Z" has the ASCII code of 90.

128 64 32 16 8 4 2 1
T t T t t f t t

bits: off/on— 0 1 0 1 1 0 1 0
t T t t

64 +16+8 +2 = 90
The plus symbol (+) is 43.

128 64 32 16 8 4 2 1
-r t + t + + + +

bits: off/on— 0 0 1 0 1 0 1 1
+ + f +

32 +8 +2+1= 43

C10Q3

The "$" is 36.
128 64 32 16 8 4 2 1t t T t T t t t

off/on— 0 0 1 0 0 1 0 0
T t-

32 +4 = 36
of the "3" is 51 •

128 64 32 16 8 4 2 1
T t t t T t t +

off/on— 0 0 1 1 0 0 1 0
1 1

32+16 +2+1= 5]
table of some of the :more common

CHAR CODE CHAR CODE

i 33 > 62" 34 ? 63
35 @ 64
$ 36 a 65
% 37 b 66
& 38 c 67i 39 d 68
(40 e 69
) 41 f 70
* 42 g 71
+ 43 h 72
* 44 i 73
- 45 j 74
. 46 k 75
/ 47 1 76
0 48 m 77
1 49 n 78
2 50 o 79
3 51 P 80
4 52 q 81
5 53 r 82
6 54 s 83
7 55 t 84
8 56 u 85
9 57 V 86
: 58 w 87
t 59 X 88
< 60 y 89
~ 61 z 90

= === = = problem
Write, in binary code, the ASCII value for the letter "w.

C1013

A look a-t the table tells us that the ASCII Code for "w" is 87;
therefore, we write the chart as follows.

128 64 32 16 8 4 2 1
t t t t t t t t

bits: off /on— 0 1 0 1 0 1 1 1
64 +16 +4+2+1= 87

And the binary code becomes
0 1 0 1 0 1 1 1

=== = = = problem
What character does the binary code

0 0 1 0 0 1 1 1

represent?
Working in reverse of the above procedure we have

0 0 1 0 0 1 1 1
+ + f + + t + +

128 64 32 16 8 4 2 1t t t .t. t
32 +4+2+1= 39

A look at the table shows us that ASCII Code 39 represents the apostrophe
C)•
1 2 . 4 W H A T , T H E N , I S the COMAL statement to get

these characters as an output?
From our experience in earlier chapters we probably know it is

chr$
Type the following and note the printout on the screen (indicated in
parentheses here).

print chr$(42) — (*)
print chr$(81) — (q)
print chr$(38) — (&)
print chr$(35) — (#)
print chr$(62) — (>)

To demonstrate further, type this command.
print chr$(67),chr$(79),chr$(77),chr$(65),chr$(76)

H 1023

Tap the RETURN key and the word
comal

will be printed on the screen.
The following program will allow us to see what some of the characters
are for ASCII codes not listed in the table. Be certain to type it
exactly as it appears. In line 1060, PRINT CHR$(144) makes certain that
the cursor remains black in the printout (some of the ASCII Codes cause
the cursor to change color and, as a consequence, the printout to the
screen cannot be read).

1000 page
1010
1020 // a look at ascii codes from 0 - 255
1030
1040 for looky:=0 to 255 do
1050 print "ascii”;looky;" ";"char is"; chr$(looky)
1060 print chr$(144)
1070 for pause:=1 to 200 do null
1080 endfor looky

Two of the more interesting Codes were chr$(19) and chr$(147). Run them
as separate PRINT commands and note what they do.
Here are some ASCII codes and the action they provide.

R$ code Action
5 white characters
13 return
17 cursor down
18 reverse on
19 home
28 red
29 cursor right
30 green
31 blue
129 orange
144 black
146 reverse off
149 brown
150 light red
151 dark grey
152 grey
153 light green
154 light blue
155 light grey
156 purple
157 cursor left
158 yellow
159 cyan

We can add additional interest to our programs by incorporating them into

11033

the algorithm. If, in throwing a pair of dice, we wish the 7’s to be
printed in --say, red and in reverse, this program would do it.
(N<z>-fc^ the commas immediately after the chr$ statements.) The
CHR$(146),CHR$(144) turns "off" the reverse and changes the red to black
for the ".".

1000 page
1010
1020 randomize
1030
1040 for dyce:=l to 100 do
1050
1060 diel:=rnd(1,6)
1070 die2:=rnd(1,6)
1080 dice*. =diel+die2
1090
1100 if dice=7 then
1110 print chr$(18),chr$(28),dice;
1120 else
1130 print chr$(146),chr$(144),".";
1140 endif
1150
1160 endfor dyce

RECAP

1 bit equals a binary number — 0 or 1.
0 is an "off" position; 1, an "on" position.
It takes 8 bits to make a byte.
A byte is a letter, number, symbol, command,
punctuation mark or manufacturer-desiigned
symbol.

The ASCII code is a standard for most of the
computer-generated commands used by world
wide manufacturers of computer systems.

"fc> ZL Q m s

For problems 1 - 7 , identify the chr$ code number and the character or
command output that would occur in a --PRINT CHR$()-- statement.

1. 1 0 0 1 1 1 0 0

C 1043

2 . 0 0 0 1 0 0 1 0

3. 0 0 1 0 0 1 1 1
4. 0 1 0 1 1 1 1 0
5. 1 0 0 0 0 0 0 1
6 . 1 0 0 1 0 1 1 1
7. 0 0 1 1 1 1 1 1

For problems 8 - 1 4 -take the given numbers and write them in binary code.

8. 127
9. 254
10. 5
11. 40
12. 209
13. 191
14. 172
15. Throw a pair of dice 100 times. If a 7 is tossed, print it in

reverse green; otherwise, print a " . " in blue. Have the final
printout tell, in reverse brown, how many 7's were thrown.

16. Generate 50 random integers from 413 through 719. If the integer
is divisible by 3 print it in reverse orange; otherwise, print a
blank space (" "). Tell, in reverse cyan, how many were divis
ible by 3 and, in reverse light blue, how many integers were not
divisible by 3.

17. Throw a pair of dice 100 times. Print the 7’s in blue and the 11's
in red. The rest of the printout should be a ".". Count the num
ber of 7’s and 11*s. The summary printout is to tell how many 7’s
and 11*s in reverse blue and red, respectively. (Use CTRL Y to get
a white screen and CTRL 1 for a black cursor.)

C105H

CHAPTER THIRTEEN
log ic operators

ob jec-t s

At the completion of the chapter the student will be able to:
1. Explain the logic operator AND;
2. Explain the logic operator OR;
3. Explain the logic operator NOT;
4. Write a program using AND; and,
5. Write a program using OR.

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
0 SCAN o
m --- m
a a
1 As programs become longer, the number of program-structural 1
c errors tend to increase. RUNning a program is one method c
0 of discovering them. But this has many built-in frustra- o
m tions. m
a a
1 After typing in a program --and before RUNning it, type the 1
c command SCAN and then tap the RETURN key. The computer c
0 will do a prepass of the program and print an error mes- o
m sage for the first structure error found. Once corrected,
a SCAN can be used again for the balance of the program.
1
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C 1063

g (0 rH

3 - 3 . 1 COMAL
operators

SUFFORTS T H R E E logic

AND
OR
NOT

(There is an extension of the first, AND, to AND THEN; and the second,
OR, to OR ELSE. Their application is not within the scope of this
introductory text.)

1 3 . 2 T H E S Y N T A X F O R AND is
<condition> AND <condition>

Where <condition> is a numerical expression.
The root here is Boolean — FALSE being 0; TRUE being 1. In order for the
syntax to be TRUE (1) <condition>s must be met. If EITHER one
is not true, then the statement is FALSE. An illustration with a pair of
dice might help.
= = = = problem
Throw a pair of dice 100 times. If an even number is tossed and the
number is greater than 5, print it; otherwise, print a Count the
number of times this happens.

1000 page
1010
1020 // program to get # of dice >5 and even
1030
1040 count:=0
1050
1060 randomize
1070
1080 for dyce:=l to 100 do
1090
1100 diel:=rnd(1,6)
1110 die2:=rnd(1,6)
1120 dice:=diel+die2
1130
1140 if dice>5 A N D dice mod 2=0 then
1150 print dice;
1160 count:+1
1170 else
1180 print ".";
1190 endif
1200
1210 endfor dyce
1220 print
1230 print "# of dice >5 and even =M;count

11011

L I N E 1 1 4 O . If a 4, as an example, is tossed then
dice>5

is false AND THE E L S E CONDITION OF THE IF/THEN IS EXECUTED.
If a 7 is tossed, the first part of the logic statement is TRUE and the
computer now evaluates the second portion of the logic operator

and dice mod 2=0
Because 7 mod 2 will give a remainder of 1, it is not true and, again,
the E L S E is executed. Only 6, 8, 10 and 12 will satisfy both
conditions as set forth in 1140.

1 3 . 3 T H E S Y N T A X E O R OR is
<condition> OR <condition>

Where <condition> is a numerical expression.
In this instance only one of the two <condition>s has to be true in order
for the statement to be a "1". B o * t h . must be wrong to be FALSE (0).
==== = = problem
Throw a pair of dice 100 times. If an even number is tossed oar the
number >5, print it; otherwise, print a Count the number of times
this happens.

1000 page
1010
1020 // program to # of dice >5 or even
1030
1040 count:=0
1050
1060 randomize
1070
1080 for dyce:=l to 100 do
1090
1100 diel:=rnd(1,6)
1110 die2:=rnd(1,6)
1120 dice:=diel+die2
1130
1140 if dice>5 O R dice mod 2=0 then
1150 print dice;
1160 count:+1
1170 else
1180 print ".";
1190 endif
1200
1210 endfor dyce
1220 print
1230 print "# of dice >5 or even =";count

C 1083

L I N E 1 1 4 0 . If a 4, as an example, is tossed then
dice>5

is false and the second part of the expression is evaluated by the
computer.

or dice mod 2=0
Well, 4 mod 2 does = 0, so the T H E N part of the IF/THEN is executed
and the ELSE is ignored.
If a 5 is tossed then

dice>5
is false and the second part of the expression is now evaluated,

or dice mod 2=0
Here, 5 mod 2 returns a remainder of 1 and because this part is s l3.s <=>
FALSE, the E L S E is executed. In fact, EVERY toss of the dice, except
3 and 5, satisfies LINE 1140. Whereas, in the first program the number
of tosses meeting the requirements of Line 1140, was generally in the
40’s, this program has a count often running in the high 80’s.

1 3 . 4 T H E S Y N T A X E O R NOT is
NOT <condition>

We will deal with this logic operator in the chapter on WHILE - DO loops.
However, we should note here that N O T is the opposite of the
<condition>.

NOT true is FALSE.
NOT false is TRUE.

RECAP*****

LOGIC OPERATORS
AND Both <condition>s must be met before the

computer will evaluate them as TRUE.
OR If either <condition> is met the compu

ter will accept the statement as TRUE.
NOT NOT false is TRUE; NOT true is false.

H 1093

prob Jl ems

1. Throw a pair of dice 100 times. Print the 2's and 12's and count
each. For the others, print a ".". The final printout should
state how many 2's and 12,s.

2. Throw a pair of dice 100 times. Print those tosses >4 and <11.
Print a "." for the others. Count how many tosses fall into the
specified range. Sum those tosses and take an average.

3. Throw a pair of dice 100 times. Print those tosses >2 and <6 or
= 11. Print a reverse purple space for the others. Sum the tosses
that fit the requirements. Take an average to the NEAREST WHOLE
NUMBER.

4. Generate 100 random numbers in the sequence 319 - 947. Print only
those divisible 7 or 17. The final printout should state how many
numbers there were.

5. Generate 100 random numbers from the sequence 247 - 851. Print
those numbers > 436 and divisible by 3. Total them and take an
average to the nearest thousandths (.001).

6. Generate 100 random numbers from 1011 - 6319. Print, IN FOUR
COLUMNS only those > 2090 and < 3106 or > 4791 and < 6147. Count
how many and take an average to the nearest whole number.

7. Generate 50 random numbers from 209 - 817. After each random num
ber is generated, throw a pair of dice. If random numbers > 351
and < 743 can be divided evenly by the total of the dice just
thrown, then print the random number and the dice. Have the
printout read

number dice dividend

300 6 50
516 4 129
660 11 66

i f AMD is NOT OR OR OR is N O T AND

•Wien O R AN 0 AND are NOT AND OR OR

C 1103

c l i a p t e r f o u r t e e n

read dat a

objectives

At the completion of the chapter the student will be able to:

1. Name and demonstrate each of three methods of specifying data
within any given program;

2. Name the three "married commands" and their "children";
3. State the factors that determine when READ .. DATA is embedded

in a FOR-DO loop;
4. Write programs that have one, two or more numeric variables

after a READ statement;
5. Write programs that have mixed variables in the READ statement

— i. e., numeric and $tring; and,
6. Write a program that embeds a READ statement in a FOR-DO loop,

along with an embedded IF-THEN statement.

£1113

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalconial
c c
0 ENDING MESSAGES o
m ------ m
a a
1 After RUNning a program, the computer prints a message like 1
c c
0 end at 1340 o
m m
a Customized messages can be incorporated by a final program a
1 line similar to 1
c c
0 1340 end "random problem finished" o
m m
a To eliminate an ending message altogether, type a
1 1
c 1340 end "" c
o o
m No space(s) are needed within the quotation marks. m
a a
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

1 4 . 1 T H E R E A R E T H R E E main methods for
entering data into a program:

The first is to specify the data within the program itself. We did this
when we wrote programs to calculate the areas of several polygons.

width:=10
height:=8

This is very limited, because we have the frustration of having to EDIT
the program each time we change the values for another polygon.
The second is by use of the INPUT statement. We will study this in the
next chapter.
A third method is by using READ .. DATA statements — which is the thrust
of this chapter.

1 4 . 2 C O M A L H A S M A N Y "married commands"
— "married" in the sense that if we use one, the other

must be there also. A F O R requires a D O ; an I F necessitates the
T H E N . These "married commands" are inseparable. Where one goes, so
does the other. T h e y n e v e r* yr & 2. a l o ! I I
If we write a program with "Mr." FOR, then "Ms." DO must be there also
— no exceptions!! If we write a program with "Mr." IF, "Ms." THEN must
be there also --no exceptions!!
On occasion, the FOR-DO’s will bring along their "child" ENDFOR. The
IF-THEN’s have several children — "ELSE", "ELIF" and "ENDIF." (The ELIF’s
are identical siblings --it is not certain how many there are, but as

C1123

many as eleven of them have been seen!)
The third "married command" we will meet is

"Mr." and "Ms." READ-DATA
They too are inseparable. If one is in the program, <z>~t,1rx&xr
mui s - t & s lILs <=> ! The RE AD-DAT A* s have no children. They are,
however, "foster parents" to RESTORE. Once in awhile they will bring this
child along to an algorithm. We will meet their "foster child" in a
later chapter.

3L 4 . 3 P E R H A P S T H E B E S T way to introduce the
READ - DATA concept is through a simple program. In

this instance, we will embed the READ statement in a FOR-DO loop, which
is a common practice w h e n d_“t d_ s k n o w n e x a c t l y
h o w m a n y ~ t o m s a r e i n - b H e D A T A l i n e I
The DATA line for this program will contain THREE SETS of two numbers
each. The first number in the set will refer to the WIDTH of a
rectangle; the second, to the HEIGHT. The program will calculate the
area of the three rectangles by calling out, one at a time, the two
measurements. Right away, we can see that this will save a great deal of
time just in EDITing procedures alone.

1000 page
1010
1020 // getting area of rectangles
1030 // using read-data statements
1040
1050 for rectangle:=1 to 3 do
1060
1070 read width, height
1080
1090 area:=width*height
1100 print "the area of rectangle";rectangle;"is";area
1110 print
1120
1130 endfor rectangle
1140
1150 data 8,12,6,9,7,11
1160
1170 end "end rectangle program"

LINE COMMENT

1050 The beginning of the FOR-DO loop where the variable,
"rectangle", takes on the value of 1, 2 or 3 on each
successive trip through the loop.

1070 "Mr." READ of the READ-DATA’s.
In this instance, we have asked READ to come up with two

H1133

values — one for the variable, WIDTH; the other, for the
variable, HEIGHT.
As soon as the computer sees READ and gets the instruction
of what is wanted, it i.mm©dia.“bely seeks out the
D A T A line! ! It skips over every other line in the pro
gram to find that DATA line. When the computer finds it,
it assigns WIDTH the value of 8 and HEIGHT the value of 12.
The next time through the loop, the computer will skip over
the 8 and the 12 — it’s as though they were erased— and
assigns 6 to the WIDTH and 9 to the HEIGHT.
On the last trip, the third, WIDTH will be 7 and HEIGHT
will be 11.
This logic is built into the computer. There is nothing
we have to do — it's all part of the ROM design!

1090 Inside the computer, on the first trip, it looks like
area:=8*12

The second trip
area:=6*9

The third trip
area:=7*11

1100 This line assigns the values and appears like the final
printout shown below.

1110 "Kicks" the computer down one space for each printout.
1130 Closes the FOR-DO loop.
1150 "Ms." DATA of the READ-DATAs.

Note that the DATA line is outside of the loop. We could
have put it before line 1050 if we had wanted.

The final printout is—
the area of rectangle 1 is 96
the area of rectangle 2 is 54
the area of rectangle 3 is 77

We can vary the printout so that it looks better cosmetically. With the
previous program in the computer's memory, type the following lines.
(Double check the typing --particularly, the line numbers!)

C1143

1015 zone 9
1041
1042 print "width","height","area"
1043 print "---- " , "-------------"
1044
1100 print width,height,area

Renum 1000. RUN.
As important as the program design is, it is just as important to have an
intelligent printout. Brilliant, innovative programming techniques are
nice but the user, the person who is to benefit from the program, must be
able to make sense of the final results. Anything that the programmer
can do to help make the results more easily understood and helpful is
more than just "nice", it is essential.
1 4 . 4 I T S H O U L D B E understood that READ

statements are not restricted to two variables — nor
just numerics, for that matter. We could as easily have written a
program to call for one piece of data, three pieces of data, or more
--and we can mix the data types (Strings and numerics)!
A salesman is selling Garbanzo Buttons. His sales for five consecutive
days are 10, 21, 18, 31 and 11 buttons. Here is a program that will
print the daily sales and the cumulative sales for the week.

1000 page
1010
1020 // record of garbanzo button salesman
1030
1040 zone 7
1050
1060 // print table headings
1070
1080 print "day","sales","cum sales"
1090 print "-- ","-----","---------"
1100
1110 // initialize variable cumsales
1120
1130 cumsales:=0
1140
1150 for day:=l to 5 do
1160 read sales
1170
1180 cumsales:+sales
1190
1200 print day,sales,cumsales
1210
1220 endfor day
1230
1240 data 10,21,18,31,11
1250
1260 end ""

£1153

To make the point once more: READ statements are embedded in FOR-DO
loops when t h e e x a c t n u m b e r o:fr D A T A zL“fc,^mjs
a r e k n o w n -
Run the above program. Remember, the DATA line could have been anywhere
— though the accepted convention is to put them last. Because the READ
line is INSIDE the loop, we can pick up the five values in the data line.

1 4 . 5 D A T A L I N E S A L S O do not have to be
exclusively numeric. They may include Strings.

Remember that String variables have to have the "$" tagged on the end of
the variable name.
Make the following changes in the Garbanzo Button salesman algorithm
(program). First, list it; then retype the lines as given below
(starting at the flashing cursor).

1160 read dae$,sales
We do not want a conflict in variables. If we type daY$ instead of daES,
then the computer becomes confused and there will be the error message,
"WRONG TYPE".

1200 print dae$,sales,cumsales
1240 data "mon",10,"tue",21,"wed",18,"thu",31,"fri",11

The Strings in DATA lines must have quotation marks. (Leave a set off
and note the error message printed on the screen.) Now, line 1140 asks
the computer to READ a String first (dae$) and a numeric value second
(sales). Hence, the D A T A line must contain variables d_rr -tliatr
o r d e r 1
On the first trip, the computer assigns "mon" to DAES and 10 to SALES.
LINE 1200 prints

mon 10 10
The final printout will be

day sales cum sales

mon 10 10
tue 21 31
wed 18 49
thu 31 80
f ri 11 91

= = = = problem
Among its work force, a company employs Joe, Ted and Lou.
$28 per hour; Ted, $18 per hour; and, Lou, $8 per hour.

Joe is paid
Time over 40

H 1163

hours returns time-and-a-half pay. One week, respectively, they worked
21, 60 and 80 hours. Write a program showing their pay for the week.
The final printout should be

wrkr hrs rate reg 1 1/2 total
name wrkd p/hr pay pay pay

joe 21 28 588 0 588
ted 60 10 400 300 700
lou 80 8 320 480 780

One solution is given below, but work a personal solution before studying
the given answer.
After working out the first solution, change the order of the names so
that they are listed as: TED; JOE; and, LOU. With these changes, the
TOTAL/PAY for Joe remains correct but he will have an amount under the "1
1/2 pay." column. (We can fix this in the program by adding line 1125 to
reinitialize some variable to 0.)
(Another reminder: The following solution does not have the heading,
PAGE, nor some of the "cosmetic" programming lines. These, of course,
are things to be added to the program.)

1000 ZONE 6
1010
1020 PRINT "wrkr","hrs","rate","reg","1 1/2","total"
1030 PRINT "name","wrkd","p/hr","pay","pay"," pay "
1040 PRINT "--- ","----","-----------------","----"
1050 PRINT
1060 FOR people:=1 TO 3 DO
1070
1080 READ name$,hours,pay
1090
1100 IF hours=<40 THEN
1110 earnings:=hours*pay
1120 wagesreg:=earnings
1125 wageover:=0
1130 ELSE
1140 wageover:=(hours-40)*(pay+pay/2)
1150 wagesreg:=40*pay
1160 earnings:=wageover+wagesreg
1170 ENDIF
1180
1190 PRINT name$,hours,pay,wagesreg,wageover,earnings
1200
1210 ENDFOR people
1220
1230 DATA "joe",21,28,"ted",60,10,"lou",80,8

C1173

LINE COMMENT
1020 The choice of column headings is arbitrary; the completeness

of the printout is the choice of the programmer.
1030 The second line so the column headings will be complete.
1050 "Kicks" the printer down one space for "cosmetic" reasons.
1060 The beginning of the FOR-DO loop
1080 The R E AH) statement. On the first trip of the loop

"joe" is assigned to the String variable, name$
21 is assigned to HOURS
28 is assigned to PAY

1100 We need an IF-THEN statement because hours worked and pay are
critical. One rate of pay for 40 hours or less and another
for more than 40 hours. Hence, this is a classical BINARY
decision — which is easily handled by IF-THEN statements.

1110-20 Pay for up to 40 hours. We are going to call for WAGESREG as
a printout on line 1190; therefore, we take the earnings and
assign it WAGESREG.
As we note, JOE has less than 41 hours, so he is the only
one taken care of in this TRUE condition of the IF-THEN.

1140 Only hours over 40 get time and a-half, hence we subtract 40
from the total hours. Pay is increased by 1/2 again (+pay/2)

1150 We must figure out regular wages for those who have more than
40 hours, because they are dealt with only after E L S E .

1160 Total earnings for these people includes overtime also.
1170 Ends the IF-THEN statements.
1190 PRINT statement for the various variables all separated by

commas, so the ZONE 6 in line 1000 will dictate the format.
1210 Ends the FOR-DO loop.

t: 1183

RECAP

READ statements to take information out of a

DATA line must be embedded in a loop.
READ variables may be numeric and/or String
READ statements may contain one or more vari

ables .
DATA lines may contain numeric and/or String

data

problems

For the following problems write programs to reproduce and complete the
following tables.

1. Print the volume of five cubes, complete with their dimensions.

volumes of cubes

cube width depth height volume
1 6 4 8
2 7 9 11
3 16.01 8.02 9.65
4 2.03 3.01 7.59
5 86.54 91.73 72.04

C 1193

2. Print the area and circumference of the 5 circles.
circles

radius
circle 1 2.63
circle 2 13.21
circle 3 4.005
circle 4 128
circle 5 17.96

circum

3. Print the area, perimeter and altitude of an equilateral triangle.
If the side is SIDE, then the following formulas hold.

perimeter = 3*side
altitude = (side*sqr(3))/2
area = ((side12)*sqr(3))/4

equilateral triangles

areaside perim altde
4
8
16.41
30.09
45.87

4. A Garbanzo Button salesman sells the following buttons.
day sold cum

mon 18 18
tue 23
wed 19
thu 37
fri 45

r: 1 2 0 3

5. He sells the buttons for $3 each. Add two more columns, one to
show $ income and the other for cumulative $ income.

day sold cum $inc $cum

mon 18
tue 23
wed 19
thu 37
fri 45

.6. His commission is $2 per button. Add a sixth column to the chart
in problem 5 which will give the commission for each day.

7. People who work for the Jose Maldez Coffee Pickin’ Corporation get
$6 per sack of beans picked. If they pick more than 2 sacks a day,
they get 50% more per sack for those above the minimum of 2. The
following is a partial list of workers and the sacks picked for one
day.

wrkr sacks base xtra total
name pickd wage wage wages

jose 2
jack 4
jill 5
john 3
joan 7

8. To increase production an additional bonus of $2/sack is given only
for sacks turned in above 5. The next day the tally sheet showed

wrkr sacks base xtra bons total
name pickd wage wage wage wages

jose 4
jack 6
jill 8
john 5
joan 9

C121D

9. The cost of phone calls (per minute) vary according to distance.
If the call is up to 200 miles, the cost is .13; 201 - 500 miles,
.18; and, from 501, .22.
The following phone calls were placed. Compute the costs.

name dist time

mark 186 12
mary 205 18
merv 750 25
matt 400 41
myra 850 36

10. A furniture store is having a SELLATHON. There is a 20% discount
if the item purchased costs $500 or less and a 40% discount if it
costs more. The state sales tax is 5% and is figured on the cost
of the furniture after the discount. Items for sale and their
cost are given in the table. (The first line is completed as an
example.)

furn orig perc new amt final
item cost disc cost tax cost
sofa 500 .20 400 20 420
bed 800
table 100
stool 200
clock 900

11. Curtain rods are made 1 meter in length. Any variance in length
is to be dealt with by the workers, as follows
a. If they are within + or -1 centimeter of the specified length

they are to--
"certify o.k."

b. If they are from 2 through 10 centimeters too short they
are to--

"weld on piece"
"polish joint"

c. If they are too long they are to—

C122H

"cut off piece"
"buff the end"

d. If the rods are > 10 centimeters too short they are:
"reject rod"

Design an algorithm that will take the lengths of the rods — from
the following DATA line-- and place them in a chart:

length disposition

90 weld on piece; polish joint
85 reject rod
99 certify o.k.

et cetera.
DATA 90,85,99,110,105,100,101,89,107,102
12. Redo problem number 1 so the results are integer answers
13. Redo problem number 2 so the results are integer answers
14. Redo problem number 3 so the results are integer answers

answer’s

1. Volumes =
192
693
1239.06193
46.377177
571876.158

2. Area and circumference =
21.7300822
548.220799
50.3912247
51471.854
1013.35715

16.5247774
83.0008779
25.1641571
804.24772
112.84008

C 12311

3. perimeter, altitude and area
12 3. 46410162 6.92820323
24 6.!92820323 27.7128129
49. 23 14 .2114769 116.605168
90. 27 26 .0587044 392.053208
137. 61 39 .7245853 911.083364
cum totals are

18
41
60
97
142

cum $inc $cum
18 54 54
41 69 123
60 57 180
97 111 291
142 135 426

6. The 3rd, 4th and 5th columns are as shown in 5; the 6th column is
com
36
46
38
74
90

base xtra total
wage wage wages

12 0 12
12 18 30
12 27 39
12 9 21
12 45 57
base xtra bons total
wage wage wage wages

12 18 0 30
12 36 2 50
12 54 6 72
12 27 0 39
12 63 8 83

C1243

cost

1.56
3.24
5.50
7.38
7.92

perc new amt final
disc cost tax cost

to o 400 20 420
.40 480 24 504

to o 80 4 84
.20 160 8 168
.40 540 27 567

length disposition

90 weld on piece: polish joint
85 reject rod
99 certify o.k.
110 cut off piece; buff the end
105 cut off piece; buff the end
100 certify o.k.
101 certify o.k.
89 reject rod
107 cut off piece; buff the rod
102 cut off piece; buff the rod

£ 1253

CHAPTER FIFTEEN
input. — numeirics and Strings

obj ectiv©s

At the completion of the chapter the student will be able to:

1. Write programs calling for various types of I N F U T
statements:

1.1 Numeric;
1.2 Multiple numerics in the same statement;
1.3 String;
1.4 Multiple Strings in the same statement; and,
1.5 Mixed numeric and Strings in the same statement.

2. Write a program which uses a numeric INPUT variable to specify
the length of a FOR-DO loop;

3. Embed an INPUT statement in a FOR-DO loop;
4. Write a program to control where, on the screen, a Users

response to an INPUT request is to be placed;
5. Write a program to control the length on an INPUT request; and,
6. Define what is meant by PROTECTED FIELD for an INPUT statement.

l 12611

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
0 VERIFY o
m - m
a a
1 VERIFY is a command that can be used after a SAVE command. 1
c c
0 save "trapezoidbase" o
m m
a followed by a
1 1
c verify "trapezoidbase" c
0 o
m will yield an error message if the program saved to the m
a disc ("trapezoidbase", here) differs in ANY respect from a
1 the same program in the computer. 1
c c
o As programs become longer and more complex this one command o
m assumes more and more importance. m
a a
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

± 5 . 1 1 1ST P O T I S O N E of the three main means of
entering data into a program. Of the three, I N 3 P U T

is the one the user has the most control over.
It is, however, subject to more errors than the other two. In fact, if
it is at all possible, READ - DATA should be used in place of INPUT. Not
only is the information readily available for review, but misinformation
is not as likely to occur.
Nevertheless, INPUT is a powerful command and can be used by the
programmer to control the progress or termination of a program.
1 5 . 2 W E W I L L B E G I N with INPUTting numerics and

demonstrate this in a very elementary program.
1000 // simple example of input statement
1010
1020 // finding area of rectangle
1030
1040 print "give me dimensions of a rectangle"
1045 print
1050
1060 input "length? ":length
1070
1080 input "height? ":height
1090
1100 // formula for area
1110
1120 area:=length*height
1130
1135 print
1140 print "area of the rectangle is";area

E 1273

line commentary

1040 This is a PRINT statement that helps the user to know
what the outcome will be. If is often called a prompt.
— AT ALL TIMES, THE PROGRAMMER SHOULD GIVE AS MANY
PROMPTS AS POSSIBLE-

1045 "Kicks" the printer down one space so that there will
be a separation between the print prompt and the print
coming up in line 1060.

1060 The first I N P U T statement. Please note that the
word LENGTH is enclosed in quotation marks, so it will be
printed on the screen. The question mark is included
as another helpful prompt for the user.
Also observe the space before the last quotation mark.
Again, this is helpful to the user. When he types in a
value it will be printed with a space between his re
sponse and the String "length? "
Note the use of the colon (:) to separate the variable
from the prompt.

1080 The second INPUT statement.
1100 The area can be calculated by taking the value of the vari-

bles we entered (INPUT).
Enter the program into the computer and RUN it several times with
different INPUT values.

I S . 3 W E M A Y C A L L for more than one variable after
the INPUT statement.

A line like
input "give measures of cube " :length, depth, height

is valid.
In this instance the variables are separated by commas. (Don’t forget
the space after the last letter of the prompt.) When the program is RUN,
we type in one value a n d o d_“b l n o Ino s p a c e
"fc> SL3C b e f o r e on-fc. o n i _ n s “tlrao s o cc o n d o r ,
d_ ~fz w o w d_ s h * w o <z;an “t»SLp> R E T U R N In either
case the cursor will stay on the same line as the prompt. RETURN will
give us question marks after the first two values entered --tapping the
space bar does not.

1 5 . 4 W E A L S O M A Y INPUT $trings. But remember,

C 1283

the variable must have the $ tagged on the end of it
and they must be DIMensioned. Enter the following four-line program.

1000 dim name$ of 20
1010 input “what is your name? ":name$
1020 print
1030 print "you said your name was";name$

Like numeric INPUTs, we can have more than one $tring variable for the
INPUT statement. Remember to DIMension each one.
1 5 . 5 N U M E R I C A N D S T R I N G variables may be

mixed in an INPUT statement.
1000 dim name$ of 20
1010 input "please give age and name: age,name$
1020 print
1030 print "your age is";age
1040 print
1050 print "your name is";name$

Though we had two variables on the. same line — numeric and String (in
that order)— we chose to put the results on two separate lines with a
space (line 1040 print) between them.

N U M E R I C I N R U T S C A N be used as a
control variable in a FOR-DO loop. Consider this

1000 total:=0
1010
1020 input "how many numbers do you want to add? ":num
1030
1040 for add:=l to num do
1050
1060 input "enter a number":figure
1070 total:+figure
1080
1090 print "the total now is ";total
1100
1110 endfor add

Enter the program and RUN it a few times. Change the value of N U M .

1 5 . T 9 (W E) C A N R U T the cursor anywhere on the
screen with the CURSOR command. The lines are numbered

1-25 with the top line as line 1. The columns are from 1 thru 40. To
place the cursor at position 9 of line 5 (we) would use the following:

CURSOR 5,9
"So far so good. But there is more. What if (we) want to move the
cursor to line 8 but stay in the same column (position)? And (we) don't

1 5 . 6
program.

C1293

know what position that is? COMAL can handle it. If (we) specify a row
or position of 0 that means keep the current value. So the way to move
to line 8 without changing position would be:

CURSOR 8,0
"The cursor positioning is also expanded to the INPUT and PRINT
statements via the AT keyword. This is very useful. INPUT AT is nice
when used with a screen layout for data input. For example:

INPUT AT 10,1:"name: name$
"This prints the prompt "name: " starting at row 10 column 1 and then
waits for a reply to be assigned to the variable NAME$. Also, the COMAL
Cartridge provides a protected INPUT FIELD for every INPUT statement. . .
. Keys that don’t make any sense as a reply to an INPUT request are
simply ignored — or even redefined. For example, CURSOR DOWN has no
meaning to an INPUT request, so it is ignored. So is CURSOR UP, REVERSE
ON and REVERSE OFF. In BASIC and most other programming languages it
takes lines and lines of code to set up a protected INPUT field. In
COMAL (we) get it automatically.
"While waiting for a reply to an INPUT request, COMAL ignores irrelevant
keys (like CURSOR UP) and redefines HOME to mean go back to the first
position in the INPUT FIELD. CLEAR SCREEN is redefined to mean clear
only the current INPUT field, and then go back to the first position in
that field. This is very nice. (We) can now have impressive programs
with no extra work whatsoever.
"Also, keep in mind that COMAL will set up a protected INPUT field that
goes from the current cursor position to the end of that line -- unless
(we) specify otherwise. This is important. If (we) use this default
INPUT field length, (we) cannot continue a reply from the end of one line
to the next line. To do that (we) MUST specify the field length! And
how do (we) do that . . . ?
"Easy! (We) do it with an INPUT AT statement — and (we) just saw one
just above. But, in addition to specifying the line and position after
the AT, (we) can also specify the field length. Now this can be used
when (we) know how many characters to expect, or when (we) want to
automatically limit the reply. For example:

INPUT AT 5,1,7:"Phone: phone
INPUT AT 10,1,10:"Name: ”:name$

"The first example can be used to prompt for a local phone number (which
is always 7 digits) with the prompt "Phone: " starting at line 5 position
1. The second example requests the users name, and limits it
automatically to 10 characters. If the user tries to type past the
limit, all extra keys are overprinted on the final position of the field.
"One more special note: if (we) specify an INPUT field length of 0,
COMAL will only accept the RETURN key as a reply (perfect for that HIT
RETURN TO CONTINUE place in (our) program) (1)."

11303

RECAP

INPUTs can be numeric or String.
INPUT requests can be single or multiple.
INPUT requests can be both numeric and String

on the same line.
BOTH the placement on the screen and the

length of the reply can be specified in
the program on the INPUT line.

cot> 3_ ems

<=5 <=> mm entary on >̂3C*ot> 1 ems

As noted in the chapter, READ .. DATA is preferred to INPUT. Go back to
the previous chapter and rewrite the programs for problems 2 , 3 ,
9 , 1 0 sincfl 1 1 . Remove the READ . . DATA lines and in their
place use INPUT — this will include both String as well as numeric
INPUTs.
For problem 2, we will be asking for an INPUT value for the radius; the
INPUT line may look like this

INPUT "what is radius? ":radius
If we use this INPUT statement, then the two formulas will be

area:=pi*radiusT2
circum:=2*pi*radius

in our program.
Because we have not covered A R R A Y S as yet, we cannot reproduce the
completed tables EXACTLY AS SHOWN in the previous chapter. When using
INPUT we would have to STORE the values --this we can do in ARRAYS-- but
having no method for doing that at present, the best we can do is to get
a printout one line at a time.

C 1313

Here is one possible program for problem 5 to use as a guide.

line

1040

1100

1110

1120

1130
1140

1000 dim day$ of 3
1010
1020 page
1030
1040 cumsold:=0;cumincome:=0
1050
1060 zone 7
1070
1080 for button:=1 to 5 do
1090
1100 input at 10,1,3: "what day? ":day$
1110 input at 11,1,3:"how many sold? ":sold
1120 cumsold:+sold
1130 income:=soId*3
1140 cumincome:+income
1150 page
1160 print "day","sold","cum","$inc","$cum"
1170 print "-- " , "----","---","----","----"
1180 print
1190 print day$,sold,cumsold,income,cumincome
1200
1210 endfor button
1220 end ""
commentary

Note that - t w o variables are initialized on the
same line! They are separated by a semi-colon.
The use of

input at 10,1,4
will ask for the INPUT 10 lines DOWN the screen
and starting at the LEFT EDGE of the screen.
The "3" restricts the input to no more than 3 characters;
this way, if we forget and try to type "monday", only
the "mon" will be printed. This will keep the printout
uniform.
The "11" assures us that the next request for an INPUT
will be o n e l i n e t > ® l o w the previous request.
"3" restricts the INPUT for the number sold.
Summation statement for the third column.
Formula to get the amount requested for the fourth column.
Summation statement for the fifth column.

C 1323

1150 Clears screen to avoid a possible overprint problem should
an input have less digits than a current printout.

1160-80 Because we are not able to store the INPUT values, we must
check our figures with the answers, line by line, as they
are printed on the screen.
Therefore, it will help to print the headings after the
INPUT values are processed by the program. This is why
they are put within the FOR-DO loop and, as a conse-
squence, are reproduced five different times.

1190 Prints the variables.

For problems 1 - 5 put the column headings inside the FOR-DO loop (as
shown in the sample program above); i.e., do not request them as an INPUT
statement.

1. Do problem 2, Chapter 14 as an INPUT program for everything but
the three column headings.

2. Do problem 6, Chapter 14 as an INPUT program for everything but
the six column headings.

3. Do problem 9, Chapter 14 as an INPUT program for everything but
the four column headings.

4. Do problem 10, Chapter 14 as an INPUT program for everything but
the six column headings..

5. Do problem 11, Chapter 14 as an INPUT program for everything but
the two column headings.

6. Write a program employing two INPUT statements. The first is to
give the upper limit of a FOR-DO loop; the second is to be em
bedded in the loop and request the INPUT of the following real
numbers *•

34.1, 45.6, 110.003, 17.0, .0106, 1.0005, 78.96
The running printout on the screen is to read

you entered ---
the sum is now ---

7. Write a program that will convert an INPUT of feet into miles.
8. Write a program that will convert an INPUT of miles into feet

and inches.
9. Write a program that will convert an INPUT of money less than $1,

£ 1333

into how many quarters, dimes, nickels and pennies are needed.
(Hint: use INT function.)

(Example:)
amount = 93 cents
quarters 3
dimes 1
nickles 1
pennies 3

10. Write a program that will accept the INPUT of an area and
will give, centered to the screen

10.1 The length of the side of a square needed to equal
that area; and,

10.1 The length of the radius of a circle needed to
equal that area.

The printout should take the form
area side radius
25 5 2.82094792

1. Lindsay, Len, COMAL TODAY, #6, COMAL Users Group, Madison, WI.

C 1343

C53rL3Lp"fc s i x t e e n
r*ep©a.-b — until

objectives

At the completion of the chapter the student will be able to:

1. Name the four "married commands" in COMAL;
2. Explain why the body of a REPEAT-UNTIL statement is executed

at least once;
3. State the difference between "+" between two Strings as

opposed to the "+" between two numbers; and,
4. Write a program containing a REPEAT-UNTIL statement where

the UNTIL evaluation (for true) is a numeric or a String.

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
0 SPECIFYING PLACEMENT OF M E R G E o
m ---------------------------------- m
a a
1 A SEQuential file can be MERGEd into an existing program 1
c in the computer by specifying the beginning line number c
0 and subsequent line numbers. The command is similar to o
m m
a merge 1000,5 "title.1" a
1 1
c where the "1000" and the "5" can be any numbers the pro- c
0 grammer wishes, and "title.1" is any sequential file. o
m m
a Be careful not to pick numbers that will overwrite exist- a
1 ing program lines. 1
c c
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C 1353

1 3 - 1 W E W I L L N O W introduce a fourth "married1'
command:

* Mac- . * and * Ms . * RE EE AT — UNT I L
As the other couples, these too are inseparable! Where one goes, the
other must also!!
The general format is

REPEAT
statement 1
statement 2
et cetera

UNTIL (some true condition is met)
The classic program illustrating a REPEAT..UNTIL loop is having the
computer generate a number and then we try to guess what it is.

1000 PAGE 1010
1020 number:=RND(1,100)
1030
1040 REPEAT
1050
1060 . INPUT "what number do I have? ":guess
1070 IF guess>number THEN PRINT "too high"
1080 IF guess<number THEN PRINT "too low"
1090
1100 UNTIL guess=number 1110
1120 PRINT "you got it!"
1130 END "end of number game"

The statements inside the REPEAT-UNTIL loop are c o n t i n u a l l y
executed until the condition that is set up after UNTIL becomes true.
In this program, the loop executes the INPUT each time and also one of
the IF-THEN statements. When GUESS does = NUMBER, the condition
established in 1100 is met A N D the program falls through to 1120 and
then 1130.
As can be seen, a REPEAT-UNTIL loop m u s t Tz>& e x e c u t e d
a-fc 1 €3 sl s~fcr o n c e because the condition is checked A F T E R
the execution of the body.
= = = = problem
Write a program to print, at random, the first three letters of the
alphabet until the order is "abc". Keep a count of how many times it
takes.

C 1363

1000 DIM letl$ OF 1, let2$ OF 1, let3$ OF 1, alph$ OF 3
1010
1020 PAGE
1030
1040 count:=0
1050
1060 REPEAT
1070 count:+l
1080 letl$:=CHR$(RND(65,67))
1090 let2$:=CHR$(RND(65,67))
1100 let3$:=CHR$(RND(65,67))
1110 alph$:=letl$+let2$+let3$
1120 PRINT count;alph$
1130 UNTIL alph$="abc"
1140
1150 END "finished with letter program"

line commentary

1000 DIMensioning all Strings
1040 Inititalize the counting loop
1070 Counting loop
1080 The first three letters of the alphabet have chr$

codes of 65, 66 and 67.
This line generates one of those three values.

1090 Same as 1060.
1100 Same as 1060.
1110 alph$ is replaced by the letters generated at random

in lines 1080-1100.
The "+" sign means "join to" here — not add, in the sense
of 6 + 5.

1120 As count increases on each trip through, its value is
printed first and is followed by a l p l n . 3 .

1130 Until "abc" is generated, the body of the loop is FALSE.
When it is generated, U N T I L will evaluate it TRUE and
the program will fall through to line 1140 and line 1150.

1150 Our message, instead of END AT 1150
Enter the program into the computer. Change the condition on 1130 to
"ccc" or "cac" --or some other statement.
We can nest (embed) this program in a FOR-DO loop and run it — say, 10
times. We could then take an average of how many times the random

£ 1373

letters have to be generated in order to get the desired output.
= = = =Let,s restate the problem.
Write a program to print, at random, the first three letters of the
alphabet until the order is "abc". Run the program 10 times, and strike
an average for the ten runs.

1000 DIM letl$ OF l,let2$ OF 1,let3$ OF l,alph$ OF 3
1010
1020 total: =0
1030
1040 FOR letters:=1 TO 10 DO
1050
1060 PAGE
1070
1080 count:=0
1090
1100 REPEAT
1110 count:+l
1120 letl$:=CHR$(RND(65,67))
1130 let2$:=CHR$(RND(65,67))
1140 let3$:=CHR$(RND(65,67))
1150 word$:=letl$+let2$+let3$
1160 PRINT count;word$
1170 UNTIL wordS^'abc"
1180
1190 total:+count
1200
1210 ENDFOR LETTERS
1220
1230 PRINT "ave # of throws= ";total/10
1240
1250 END "finished with letter program"

line commentary

1000 All input $trings should be DIMensioned
1020 TOTAL is initialized OUTSIDE(1) the loop, so that it

will accumulate the value of the COUNT statement found
in line 1080 — which, as we note, is i n s i d ©
the REPEAT - UNTIL loop.

1040 The beginning of the FOR-DO loop, which will make 10 trips.
1060 Every time a new "trip" is made within the FOR-DO loop

— and there are 10 of them— this will clear the screen
for the new printout.

1080 We must set the COUNT back to 0, after it has been accum
ulating inside of REPEAT-UNTIL. If we do not, then COUNT
will increase in value just as TOTAL does. Note that

C 1383

COUNT is set back to 0 INSIDE the FOR-DO loop, but OUT
SIDE the REPEAT-UNTIL loop.

1120-1150 See the discussion on the previous program for comments
on these lines.

1190 TOTAL summation loop. After "abc" is generated, then the
value of COUNT in line 1110 is added to TOTAL <z>xr&
it — count— is set back to 0 in line 1080.

1210 The termination of the FOR-DO loop.
1230 Gives the average number of throws to get "abc" over a ten-

run trial.
1250 See earlier comments.

Enter the program and RUN it. Try different letters on line 1170. Will
the average increase or decrease if we RUN the program more times (line
1040)? To that end—
EDIT line 1000. Insert

let4$ of 1
and change word$ to read

word$ of 4
Add line 1145

1145 let4$:=chr$(rnd(65,67))
change 1170 to read

1170 until word$="abcc"
or any other combination of four letters. How much does a fourth letter
add to the average?
= = = = problem
Throw a pair of dice until die2 is 2 more than diel. Note how many
throws.

1000 PAGE
1010
1020 RANDOMIZE
1030
1040 count:=0
1050
1060 REPEAT
1070
1080 diel= RND(1,6)

C 1393

1090 die2:=RND(1,6)
1110
1120 count:+1
1130
1140 PRINT "throw";count;"die1 =";diel;"die2 =";die2
1150
1160 UNTIL die2=diel+2
1170 PRINT
1180 PRINT "number of throws =";count

Run the program a few times and then take time out to study the algorithm
in detail. It is direct and there should be no difficulty in following
it.

RECAP

A REPEAT-UNTIL loop is executed at least once
"+" in Strings means "join to"
A REPEAT-UNTIL loop terminates when the UNTIL

evaluates a <condition> as TRUE

pr*ob Jl ©ms

All problems should have a printout to the screen.

1. Throw a pair of dice until 11 is generated.
2. Throw a pair of dice until diel and die2 are the same.
3. Throw a pair of dice until diel = 5 and die2 = 3.
4. Throw a pair of dice until their cumulative sum is equal to or

greater than 100. Tell how many throws it took.
5. Generate letters of the alphabet until a "q" is printed.

Tell how many letters were generated BEFORE it appeared.
6. Run the previous problem 10 times and strike an average.

C 1403

7. Generate the letters g h . 1 until "hig"appears. Note how
many times before it happens.

8. Do the previous problem (7), but run it in a FOR-DO loop 25
times. Strike an average. Be certain to clear the screen
before each new run of letters.

9. Generate the first five letters of the alphabet. Generate the
last five letters of the alphabet. Print them until Maz" ap
pears. How many times?

10. Throw a pair of dice until a 7 or an 11 is thrown. How
many times?

11. Do problem ten 25 times and strike an average.
12. (Print the following in two columns, one headed "JACK" and the

other "JILL." Be certain to round off to the nearest penny.
See earlier chapter for discussion and help.)
If Jack earns 5% (compounded annually) on $5000 and Jill earns
7% (compounded annually) on $4000, in how many years will Jill
have more money than Jack?
(The answer is 12 years.)

C 1413

cHapter seven-teen
loops

obj©ctives

At the completion of the chapter the student will be able to:
1. Name the original developer of COMAL;
2. Write a random expression to simulate the "flipping" of a coin;
3. Write a program which involves the "flipping" of a coin a

given number of times, and for a given number of "games";
4. Write a program which involves NESTED FOR-DO loops;
5. Write a random expression that will generate numbers greater

than zero (0), but less than one (1); and,
6. Use the CURSOR command to place a printout anywhere on the

screen.

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
0 LISTing WITH F6 o
m -------- m
a a
1 The current program in memory can be LISTed to the screen 1
c by pressing the SHIFT key, tapping f5 and following that c
o with a RETURN. o
m m
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

1 T . 1 AS WE HAVE progressed through these chapters
we have introduced here and there, some of the powerful

built-in features of the COMAL cartridge. Some of the commands we might
have wished we had had earlier. On the other hand, too much too soon
would have led to much confusion; further, our appreciation of these fea

C 1423

tures is enhanced because we worked
with the more traditional approaches
to programming. In other languages
(Pascal, COBOL, FORTRAN, et cetera) we
will be "stuck" with the "old ways" of
having to do everything for ourselves.
In the development of COMAL, the needs
of the programmer were first! Indeed,
it was Borge Christensen’s frustration
with BASIC in the late 60’s that led
him to develop COMAL. Introduced to
the Danish educational program in the
early 70’s, it has since been refined
and enhanced to the point where it has
been adopted by several European
school systems and, from all
indications, might soon take its place
in the American schools.

1 7 . 2 A C T U A L L Y , W E A L R E A D Y have been
using nested (embedded) loops. In the last chapter we

nested a REPEAT-UNTIL loop within a FOR-DO loop (problem 6). In this
chapter we will nest FOR-DOs within FOR-DOs.
Consider this request. We would like to make three copies of a table of
squares from 1 through 10.
One method is to write a simple FOR-DO loop and print the table; having
done that once, we could RUN it again a second time and then a third. Or
better still, we can write a program similar to the following.

(Beginning now, we will follow the accepted practice of leav
ing off program lines in our discusions. If a particular line
is important, we will identify it so that it can be referred to
in the commentary.)

PAGE
FOR table:=1 TO 3 DO
ZONE 5
FOR nums:=1 TO 10 DO
PRINT nums,nums*nums
ENDFOR nums
PRINT
PRINT

ENDFOR table
The inside (nested) loop - - F O R n u u n s — will print the numbers 1
through 10 and their squares. The two PRINT statements after the ENDFOR
nums, assures there will be two spaces between each table. After the
first table is completed the computer leaves the loop, falls through the

C 1433

two PRINT lines, and then starts a second trip through the F O R
■ t a b l e : = 1 -fco 3 IDO . Because the OUTSIDE loop calls for
three trips, the INSIDE loop will do its task three times.

I T . 3 C O I N F L I P P I N G I S another task computers
can simulate.

Since coins have but two sides, we can use the random statement
coin:=rnd(1,2)

If a "1" is generated, we will call it "heads"; if a "2", "tails."
To "flip" a coin 100 times and count the number of heads and tails, we
could use a program similar to

countheads:=0
counttails:=0
page
randomize
for f1ip:=1 to 100 do
coin:=rnd(1,2)
if coin=l then
print "h";
countheads:+1
else
print "t";
counttails:+1

endif
endfor flip
print
print "# of heads: ";countheads
print "# of tails: counttails

We have nested the IF-THEN within the FOR-DO. To run this program — say,
10 times, all we have to do is nest THE ABOVE program in another FOR-DO.
Type

for tymes:=l to 10 do
and give it a line number smaller than

countheads:= 0
This is important because (remember an earlier program) we must set the
counters back to 0 after they have finished their task and, in this

C 1443

instance, counting the number of heads and tails in the FIRST 100 FLIPS.
After the last line number, type

endfor tymes
RUN the program and note that it will do the task 10 separate times.
With the addition of an appropriate summation statement — say

totalheads:+countheads
(don’t forget to inititalize it also!) we can strike an average of the
number of heads thrown, per 100 flips, for the ten times. We would
expect it to approximate 50, of course.
If we make the outside loop REPEAT-UNTIL, we could continue the 100 flips
per trial until, on one of the trials the heads were equal to 50 — or any
other number we might wish. With another counting loop like

trial:+1
we could determine how many trials (of 100 flips/trial) it took for that
to happen. The algorithm would be similar to the following one.

trial:=0
REPEAT
countheads:=0
counttails: =0
PAGE
FOR flip:=1 TO 100 DO
coin:=RND(1,2)
IF coin=l THEN
PRINT "h";
countheads:+1

ELSE
PRINT "t";
counttails+1
ENDIF

ENDFOR flip
PRINT
PRINT "# of heads: countheads
PRINT M# of tails: " ;counttails
trial:+1
for pause:=1 to 750 do null

UNTIL countheads=50
PRINT
PRINT "# of runs before exactly 50 heads: trial

E 1453

1 . T . 4 T E D W I L L I A M S W A S the last major league
baseball player to hit for a .400 batting average (.407

in 1941). He played for the Boston Red Sox. (In fact, at the very
height of his playing ability, he served 5 years in the armed forces
— first in WWII and then in Korea. There are many who believe if he had
remained an active player, he would have set hitting records that might
never have been broken.)
We are to write a program to simulate "The Splender Splinter" — as they
called him— coming to bat 4 official times per game for 10 games, and to
determine how many hits he would get with this batting average.
First, recall that the statement

hits:=rnd
will generate numbers between .000000000 through .999999999
If he had a batting average of .407, then any random number generated up
through .407 would be one that can be counted as a "hit". In other
words, random numbers generated from

.000000000 through .407000000
are "hits".
Hence, a program sequence like

IF hits=<.407 THEN
counthits:+1
PRINT "hit";

ELSE
PRINT

ENDIF
would be valid.
He comes to bat four times, so we add to the above

counthits:=0
FOR atbats:=l TO 4 DO
hits:=RND
IF hits=<.407 THEN
counthits:+1
PRINT "hit";

ELSE
PRINT "...";

ENDIF
ENDFOR atbats

Now, we want "Thumpin' Theodore" (another of his names) to play in 10

C 1463

games; and while we are at it, we might just
batting average for those games.

as well figure out his

PAGE
totalhits:=0
FOR games:=1 TO 10 DO
counthits:=0
FOR atbats:=l TO 4 DO
hits:=RND
IF hits=<.407 THEN
counthits:+1
PRINT "hit";

ELSE
PRINT " 0 ";

ENDIF
ENDFOR atbats
PRINT "number of hits=";counthits

-£- PRINT
totalhits:+counthits

-££- FOR pause:=1 TO 500 DO null
ENDFOR games
batave:=totalhits/40
PRINT
PRINT "total number of hits ted had:";totalhits
PRINT
PRINT "his batting average was:";batave
PRINT
END "end ted williams at bat"

-£- Provides a space between each "game" played.
-££- A time delay loop so that we can "look over" each game

before the next one is printed.

1 7 . 5 T H E R E A R E O T H E R interesting things we
can do with nested FOR-DO loops. Enter the following

program. After RUNning it a time or two, go back and change some of the
control variables. Try some different PRINT statements.

// triangle
page

C1473

for star:=l to 10 do
-£- for triangle:= 1 to s “t a r do
-££- print

endfor triangle
print
endfor star
end "triangle terminated"

Note the use of the variable "star" FROM the first loop!
The comma is used to eliminate spacing between the *'s.

If the program has been typed correctly, the printout will be
*
**

As the variable ej-betar is assigned to the nested FOR-DO loop, it
becomes

FOR triangle:=1 TO 1 DO
FOR triangle:=1 TO 2 DO

FOR triangle:=1 TO 9 DO
FOR triangle:=1 TO 10 DO

To move the triangle so that it is away from the left edge of the screen
add, immediately after

FOR star:= 1 TO 10 DO
this line

CURSOR star,10
The CURSOR command has two numbers after it separated by a comma. The
first number always refers to the R O W POSITION, the second, always to
the C O L U M N POSITION.
By adding

C 1483

CURSOR star,10
to this particular program, the triangle starts at the first row (STAR =
1 the first time around) and the 10th column; the second time around,
STAR is 2, but the column remains at 10; and so forth.
To move the triangle DOWN as well as over, then type something like this

CURSOR star+8,10
An interesting printout is

CURSOR star,star
or

CURSOR star+5,star+5
RUN the program and "play around" with different combinations of variable
and CURSOR calls. That's how to learn new things — and the computer
doesn't "chew" us out if we make an error.

RECAP*****

BORG Christensen was the developer of COMAL.
RND(1,2) simulates the flipping of a coin.
RND generates numbers => 0 and <1
CURSOR X,Y will place a printout in row X and

column Y

probloms

Write programs that will produce the following print outs.
********** 2. * 3. *****
********* ** *****
******** *** *****
******* **** *****
****** ***** *****
***** ***** *****
**** **** *****
*** *** *****
** ** *****
* * *****

E 1493

6. *

*** ******************

(Hint: consider three nested loops.)

7. Place problem 2 centered to the screen. (Hint: Use the cursor
command.)

8. Place problem 1 so that it ends in the lower left corner
of the screen.

9. Rewrite problem 5 so that it starts with five rows of stars
and ends with only one row of stars; put it in the lower
right hand corner of the screen.

10. Center the following to the bottom of the screen.
*

**

11. Redo the Ted Williams problem and have him play 102 games.

Give the total number of hits and the final batting average
for the 102 games.

12. Modify problem 11 so that it tells in how many games he had
four hits, three hits, two hits, one hit and no hits.

The printout should be

C 1503

4 hits in games
3 hits in -- games
2 hits in -- games
1 hit i n --games
0 hits in -- games

13. Flip a coin. When 50 heads are flipped, stop the game and
tell how many flips it took.

14. Do problem number 13 for 10 games. Strike an average of the
number of flips per game it took to get the 50 heads

15. Flip a coin 100 times for 25 games. Strike an average of the
number of heads that were flipped per game, for the 25 games.

16. Throw a pair of dice 10 times. Do this for 20 games. Count
the total number of 7's that were thrown and the average num
ber of 7’s per game.

17. Throw a pair of dice 20 times. Do this for 25 games. Count
the total number of SNAKE EYES that were thrown and the aver
age per game.

18. Throw a pair of dice until 7 appears three times in a row. Do
this for 5 games and strike an average of how many throws it
takes per game.

19. Flip a coin until heads appears five times in a row. Do this
ten times and strike an average per game.

20. Throw a pair dice. Continue throwing them until the number that
occurred on the first throw comes up again. (If for example, a
9 is tossed the first time, then keep throwing until a 9 appears
again.) Count the number of throws. Do this 15 times. (The
first number on each game will probably be different — but for
that game keep throwing until that particular number comes up.)
Strike an average of how many times it takes to match the first
number.

C1513

© it o d_ ©en
win. il© — do

ob j©o"b iv© s

At the completion of the chapter the student will be able to*.

1. Embed a W H I L E — D O in a program to provide a terminus value
for the variable in a FOR-DO loop;

. 2. Define E O D and explain how it works;
3. Use a WHILE-DO loop to do the work of a FOR-DO loop; and,
4. Name the five “married commands" and their "children."

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
0 RENAMING A FILE ON THE DISC o
m ------------------------- m
a a
1 The command for giving a new name to a file already on the 1
c disc, takes the general format of c
0 o
m rename Cold file name>,<new file name> m
a a
1 rename "chap 8 pr 6","chap 9 pr 6" 1
c c
o Both files must be on the same disc. o
m m
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

1 8 . 1 A F O R — D O L O O T ? is terminated after the last
number in the variable sequence has been reached.

A REPEAT-UNTIL loop terminates when the condition evaluated by the UNTIL
line is satisfied. As observed earlier, this loop is ALWAYS EXECUTED at
least ONCE.

C1523

In Chapter 11 we made the observation that a FOR-DO loop can be used in
READ-DATA statements IF the EXACT NUMBER of data items are known. This
is seldom the case. And even if it were, when there is a large number of
DATA items, there is an increasing chance of human error creeping in.

1 3 . 2 W H I L E - IDO d. ss the answer. (They have a
"child" ENDWHILE, who appears at the end of multi-line

statements.) So, "MR." AND "MS.” WHILE-DO become our fifth "married
command. Where one goes, the other must be alsol
Let’s illustrate one usage of the loop in a simple program.

// illustrate while-do
PAGE
ZONE 6
countnums:=0
sumnums: =0
PRINT "nums","sqre","cube"
PRINT

-£- WHILE NOT EOD DO
READ integers
countnums *• +1

ENDWHILE
—££ - RESTORE
-£££- FOR table: =1 TO c o u n t n u m s DO

READ integers
PRINT integers,integersT2,integers!3

ENDFOR table
DATA 12,13,45,73,54,27

E O D — end of data— is a SYSTEMS FUNCTION word. In this
particular context, the line
W H I L E N O T E O D D O

says, in the vernacular
"I WILL KEEP READING DATA (NUMBERS IN THIS PROGRAM)
UNTIL I FIND THERE ARE NO MORE, AT WHICH TIME I WILL
QUIT MY TASK! O.K.?"

For those with a BASIC background, this does
away with the need of E L A G data items! !

E 1533

-££- R E S T O R E is also a systems function word. ONCE
the DATA has been READ in a program, it must be
RESTOREd so that it can be READ again! And the com
mand RESTORE must precede the READ statement; in
this instance, just before the FOR-DO loop that
contains another READ statement.

-£££- The WHILE-DO has a counter called COUNTNUMS. We
took the final value of the COUNTNUMS and attached
it as the ENDING VALUE of the E O R — D O loop.
After all, the computer can do things with an accuracy
we cannot match. Even though this program has a DATA
line easily counted, the point of the illustration is
what counts. (No pun.)

The final printout is
nums sqre cube
12 144 1728
13 169 2197
45 2025 91125
73 5329 389017
54 2916 157464
27 729 19683

Now, the previous 27-line program, could have been written with only 15
lines by using a WHILE - DO loop!!

// illustrating a while-do loop
PAGE
ZONE 6
PRINT"nums","sqre","cube"
PRINT
WHILE NOT EOD DO
READ nums
PRINT nums,numst2,numst3

ENDWHILE
DATA 12,13,45,73,54,27

The printout would be the same.
nums sqre cube
12 144 1728
13 169 2197
45 2025 91125
73 5329 389017
54 2916 157464

H 1543

It is apparent by now that WHILE - DO takes the form of
WHILE <conditions> DO
<statement>
<statements>

ENDWHILE
There is also a simple one-line version of the WHILE - DO loop that is of
use in calling out PROCEDURES. We will be studying those in a later
chapter. It takes the form

WHILE <condition> DO <statement>
It must not have an ENDWHILE attached to it.

± B T H E R E A R E
the WHILE-DO loop:

T W O distinct advantages found in

1. In problems involving READ/DATA we do not have to
count how many items are in the DATA line; and,

2. If the condition stated in the WHILE portion of
the loop is NOT MET, then the loop is ignored —
in other words, the loop does NOT have to be ex
ecuted even once.

= ==== = problem
Jack, Jill, John and Joan are salespersons for Garbanzo Buttons, Inc.
During one day they had sales of 42, 38, 78 and 59 buttons, respectively.
Write a program to summarize this and to give the grand total of their
sales.

// garbanzo button sales
page
totalbuttons:=0
zone 9
print "person","# sold"
print "----- " , "------"
print
while not eod do
read name$,sales
totalbuttons:+sales
print name$,sales
print

£1553

endwhile
print
print "total sales for day";totalbuttons
data "jack",42,"jill",38,"john",78,"joan",59

RUN the program and study the results. The printout is
person # sold

jack 42
jill 38
john 78
joan 59
total sales for

RECAP

WHILE - DO loops often may be used in place
of FOR - DO loops when READ/DATA state
ments are used to solve a problem.

IF the <condition> associated with the WHILE
portion of the loop is not met, the loop
will NOT BE executed; instead, the compu
ter will fall through to the next line.

prob1ems

In the following, put what is GIVEN in a DATA line. Then, using
WHILE-DO as the primary structure

1. Do problem to Chapter 14.
2. Do problem 3, Chapter 14.
3. Do problem 7, Chapter 14.
4. Do problem 10, Chapter 14

complete them.
(Answer to nearest hundredths.
(Answer to nearest thousandths.)

(Determine the discounts and enter

a

C 156 J

them as the third item after the price of the furniture.)
DATA sofa,500,.20,

5. Do problem 11, Chapter 14.
6. For the following DATA lines (for “cosmetic" reasons, put

each DATA statement on a separate DATA line in the program)
count the numbers, give their sum and finally the average
--both as an integer and to the nearest tenth.

DATA 6,4,5,18,32
DATA 42,15,16,49,-10
DATA 37,-14,-79,-46,82
DATA 73,85,47,62,91

(ANS: NUMBER = 20; SUM = 515; INTEGER AVE. = 25;
AVE. TO NEAREST TENTH = 25.8)

7. HEATHER has had a good week in selling garbanzo buttons. Her
sales are

mon $ 75
tue $108
wed $ 92
thu $112
fri $309

Prepare the following table
heather’s sales

day mon tue wed thu fri
amt 75 108 92 112 309
cum 75 183 275 387 696

(Hint: One solution to this problem is to use RESTORE and two count
statements — say, count and kount within two IF/THEN/ELSE/ENDIFs,
respectively (these, to get “amt" and “cum" printed). This is a
challenging problem without a knowledge of ARRAYS; however, it can be
done.
Remember, RESTORE allows the data to be reREAD by the computer.)

£ 1573

cliapter* nineteen
case — of

objectives

At the completion of the chapter the student will be able to:

1. Write into a program the C3s l s & — o f structure with
the control expression being either numeric or $tring;

. 2. State the provision in CASE - OF for trapping errors; and,
3. Embed CASE - OF in a FOR-DO loop to get multiple printouts.

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
0 DISPLAY o
m -- m
a a
1 DISPLAY will put a program on the screen or a printer WITH- 1
c OUT any line numbers. c
0 o
m DISPLAY displays all lines m
a DISPLAY ”LP:” displays all lines on a printer a
1 DISPLAY -500 displays lines 0-500 1
c DISPLAY 8000- displays lines 8000-9999 c
o DISPLAY 1000-1500 displays lines 1000-1500 o
m m
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C 1583

1 9 . 1 V E R Y O F T E N C A S E is a better choice than
a series of ELIFsf in an IF - THEN structure.

Its general format is
CASE <control expression> OF
WHEN <expression list>

< statements >
OTHERWISE

<statements>
ENDCASE

19.2 ENTER THE FOLLOWING program.

randomize
diel:=rnd(1,6)
case diel of
when 1
print

when 2
"no fun"

print
when 3

"lost shoe"
print

when 4
"burned tree

print
when 5

"close door"
print

when 6
"oh, my!"

print "glue stixs"
otherwise
print "something wrong"

endcase
LIST the program and carefully study the indentation and what system
reserved words are capitalized. RUN it a few times.
If we had to write this same program using IF - THEN, we would see how
awkward and time consuming it would be. CASE is a more direct way of
handling problems of this type. There are no one-liners for CASE - OF.
Note also, that 9 M r * a n d 9 M s 9 C s s q — O f always have
their "children" (one or more W H E N s and — always— E N D C A S E)
with them. (That's why they don't get invited to many parties ... they
are forever dragging their children along.)
1 9 . 3 A D D T H E S E T W O lines to the above program.

for trials:=1 to 10 do (put this in as the first line)
endfor trials (put this in as the last line)

C 1593

RUN the program again and note the printouts.
After the random number is generated for diel, the computer checks each
of the W H E N cases in the structure. If a 5 were generated, it would
ignore the first four WHENs and print what it found in

when 5
print "oh, my!"

Having done that, it would exit from the program.

1 9 . 4 T H E C O N T R O L , E X P R E S S I O N also can
be a $tring.

// demonstrates CASE with String control
randomize
letter$: =chrS(md(65,90)
case letters of
when "a","e","i","o","u","y"
print letters," is a vowel"

when "b","c","d","f"
print letters," is a consonant"
when "g","h","j","k"
print letters," is a consonant"
when "1","m","n","p"
print letters," is a consonant"

when "q","r","s","t"
print letters," is a consonant"

when "v","w","x","z"
print letters," is a consonant"
otherwise
print "check program, error somewhere"

endcase
We broke up the rest of the alphabet for cosmetic reasons. If we had
wished, we could have listed the balance of the letters with the second
"when". And don't overlook the strength of the "otherwise" statement.
It is a nice trap to catch errors.
RUN the program a few times. Add a FOR-DO loop, as we did in the
previous algorithm.

C1603

RECAP

THE general structure of CASE - OF is
CASE <control expression> OF
WHEN Expression values>

<statements>
OTHERWISE

< statements >
ENDCASE

THE <control expression> is numeric or $tring

• 1 ems

1. Write a program where the user enters a number and the program
prints out what day of the week it represents.
For an input use,

repeat
input "what day number do you want? number
until number=>l

The OTHERWISE should catch a "foolish" input like 6.3 or 456.
2. Do the same for the number of the months of the year (1 = Jan

uary , 8 = August).
3. The birthstones for the months are

January garnet
february amethyst

march aquamarine
april diamond

may emerald
June pearl
july ruby

august peridot
September sapphire

October opal
november topaz
december turquoise

Using a $tring input as the control expression, write CASE - OF
that will give the birthstone for an input of the month.

E 1613

4. Throw a pair of dice. If it comes up
2 or 12, print: "snake eyes in the box cars --you lose"
3, 4 or 5 print: "low mish mash — it's a push"
6, 7 or 8 print: "you win!"
9, 10 or 11 print: "high mish mash — you lose."

5. A still popular game is BRICK, PAPER and SCISSORS. It has led
to more than one sore wrist (the "winner" getting to slap the
"loser" on the wrist with two fingers!!).
BRICK (a clenched fist) breaks the SCISSORS (two fingers) which,
in turn, cuts the PAPER (an open hand). The PAPER wraps the
BRICK.
Write a program to handle the six possibilities: SS; BB; PP;
SB; SP; and, PB. The user INPUTS one of his choices (P, B
or S) and the computer generates its choice from a random
notation.
Print the winner and tell exactly why. Some of the printouts
might be

paper covers brick; you are winner
brick breaks scissors; computer wins
no winner; both the same

(Hint: Make paper = 1; scissors = 2; brick = 3. Have the in
put from the player a String, even though he will type a 1 or 2
or 3. Have the computer input generated by a CHR$ random expres
sion. Chr$(49) = 1; Chr$(50) = 2; Chr$(51) =3.)

11623

otr twenty
procedur*© s

olz> j actives

At the completion of the chapter the student will be able to:

1. Define what M G S means;
2. Write a program employing M C £ > PROCedure names;
3. MERGE seq files into a program;
4. LIST to disc, with the appropriate tag, "1", to distinguish prg

from seq files;
5. Write a time-delay PROCedure that can be MERGED into any program;
6. Write a CLEARSCREEN PROCedure in one of two ways

Either embedding the PAGE command, or
PRINT CHR$(147);

7. Write a PROCedure that will make a variable LOCAL to that
particular PROCedure;

8. Know how to rewrite within a PROCedure, the GLOBAL variable
Z O N E so that it is applicable only to that PROCedure;

9. Put at any place on the screen, through the use of the
CURSOR command, any given character; and,

10. Use the CURSOR command to print a variety of designs and se
quences on the screen — including the tracing of outlines, with
and without step erasures.

C 1633

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
o LIST, EDIT, DISPLAY FOR PROCEDURES o
m ---------------------------------- m
a a
1
c
0
m
a
1
c
0
m
a
1
c

PROCEDURES may be LISTed, EDITed or DISPLAYed by calling
-them by the name assigned. For PROC sample, it would be:

list sample

edit sample

display sample

will list all
named SAMPLE

lines in the PROCedure

edits lines, one at a time,
PROCedure named SAMPLE

for the

displays all lines in the PROCedure
named SAMPLE, but without line numbers

1
c
0
m
a
1
c
0
m
a
1
c

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

20.1 THE DISTINCT ADVANTAGE of
structured programming languages is the facility of

being able to break a complex program into small parts. Whenever a
routine that is embedded in a PROCedure is needed in the algorithm (no
matter how many times), it can be "called" by the MAIN CONTROL SEQUENCE
(M C S) or even from w i - b l i i n a PROCedure itself! We will
demonstrate this by a ridiculously simple program — a program that would
never use PROCedure calls; however, because it will be so direct, we can
concentrate on the principle of what is being discussed.

2 0 . 2 F I R S T , L E T * S R E W R I T E our logo to be
// select output "lp:"

// * <your logo> *
// * <identification> *

/ / ..
// .. main control sequence ..
/ / ..

Re-LIST the logo with the overwrite command
list "@0:title.1"

Now, with the logo still in the computer, add these lines
numl:=8
num2:=3
page
add

C 1643

subtract
multiply
divide
powers
page
review
end "end introduction to procedures"

Do not RUN!

2 0 . 3 C E R T A I N L Y , T H E F I R S T two lines need
no explanation. We have assigned the value of 8 to the

variable, numl and 3 to the variable, num2.
As the computer falls into the third line — page— the screen will be
cleared. When this task is completed, it will return to the M C S and
fall through to the next line — add. Because "add" (unlike PAGE) is not
a system-reserved word, the computer assumes we are issuing a PROCedure
call! Therefore, it will seek throughout the algorithm for a PROCedure
named "add" (PROC add). (If there is no PROC add, an error message will
be generated to the screen.) When found, it will execute what ever
commands are there. The computer will continue to do this for each
succeeding line, until it falls through the last PROCedure call — or
until it arrives at the system-reserved word E N D .
OBSERVE ! ! ! ! There are no special commands or programming
techniques we have to write to make the computer do this! It's all part
of the COMAL 80 CARTRIDGE!! — it's built in! FURTHER, it makes little
difference w i n ® nr ̂ the PROCedures are located in the program. And
even though we are "calling" them in a specific order, they d o n o h
have to be entered into the algorithm in that order!

2 0 . 4 N E X T , C O N T I N U E W I T H the program in
the computer, by adding the following PROCedures.

proc add
print "the sum of ",numl," and ",num2," = ",numl + num2
print
pause

endproc add

proc subtract
print nun 1," - ",num2," = ",numl-num2
print
pause

endproc subtract
proc multiply
print numl," X ",num2," = ",numl*num2
print
pause

endproc multiply

C165H

numl/num2
proc divide
print numl,M divided by ",num2,M = ",
print
pause

endproc divide
proc powers
print numl," raised to '^nun^,11 = ", numltnum2
print
pause

endproc powers
proc review
add
subtract
multiply
divide
powers
endproc review
proc pause
for wait:=l to 1000 do null

endproc pause
RENUM. RUN the program. If the lines have been entered correctly, this
is what happens.

£ screen is cleared!
the sum of 8 and 3 = 11

£1 second pause!
£1 second pause!
£ 1 second pause!

8 - 3 = 5
8 X 3 = 24

£ 1 second pause!
8 divided by 3 = 2.66666667
8 raised to 3 = 512

£ 1 second pause!
£ screen is cleared!

And then the sequence is repeated again; only this time,
not cleared after the last printout.

the screen is

2 0 . 5 O B S E R V E T W O T H I N G S in the program.
1. PAUSE is a PROCedure call made from WITHIN ANOTHER

PROCedure!
2. The last PROCedure — PROC review— calls five

other PROCedures; ones, which we know, already
have been executed before!

£166!

2 0 . 6 V E R Y O F T E N , V A R I A B L E S within a
PROCedure are used elsewhere in the program. DICE, is

a good example. We can make variables within a PROCedure LOCAL to that
PROCedure, so the computer will not take the value of the variable from
there and use it elsewhere. To do this, the programming technique
employs the system word C L O S E D and is written as follows.

PROC tally CLOSED
diel:=RND(1,6)
die2:=RND(1,6)
dice:=diel+die2
IF dice>6 THEN
PRINT dice;
PRINT "you win"

ELSE
PRINT dice;
PRINT "you lose"
ENDIF

ENDPROC tally
The variable, DICE, can be used again in another
without causing any difficulties. The jargon is:
other parts of the program."

part of the program
"It is unknown to

There are, however, global variables that will "push" right through the
"walls" of a PROCedure. Z O N E is one of them. If we have a ZONE
command outside of a PROCedure, and it would force an awkward output for
the commands within that PROCedure, then ZONE can be redefined within
that sequence. Here is an illustration.

proc stars closed
£ oldzone:=zone
££ zone 3

for x:=l to 40 do print "*",
£££ zone oldzone

endproc stars

£ "oldzone" has been given the current value of ZONE
££ a new value (3) has been given to zone
£££ after printing the "*"s, ZONE has been returned to

its original value.

20 . T A T T H I S I P O I N T we should note the

E 1673

following:
1. Most of what is to be presented is for output

to the screen;
2. A few printers might get "hung up" if we try to

print graphics; and,
3. Some printers will become "hung up" or will eject a

whole sheet if PAGE is "called" for.
(By the way, we might choose to make a PROCedure call for PAGE. It can
take either one of these two forms:

proc clearscreen
page
endproc clearscreen

or
proc clearscreen
print chr$(147)
endproc clearscreen

This means we can use the direct command PAGE and/or, if we prefer, a
PROCedure call throughout the algorithm.)

The best way to handle those hard copy RUNs is to
/ / PAGE or, if we are using a PROCedure call,
/ / that. Now, if we are using the latter ap
proach, it does not mean we also have to DELete
or even / / PROC clearscreen. Even though
there is not a "call" for a PROCedure in the
M C S (or the "call" has been / /) , it will cause
no program breakdown.
We could have a hundred PROCedure sequences in a
program — and we do not have to call for one of
them. As long as they are not "called", the com
puter will ignore them and the program will RUN
just as though they were not there.

2 0 . 8 F O R T H E B A L A N C E of the chapter — and
by using screen graphics— we will be strengthening

our grasp on PROCedures and learning, at the same time, how to control
the C U R S O R command. Every exercise is important (sequentially) and
none should be skipped or treated casually.
When each is completed, the algorithm itself should be printed --don’t,
unless specifically stated, try to RUN the program on the printer — all
we will want is a hard copy of the program listing. The best way to do
this, is to make certain the program is in the computer’s memory and then
W I T H O U T A F R O G R A M L I N E type

list "lp:"

C 1683

Further, each progression is going to be presented as an assignment.
Because of our development to this point, detailed discussion will be
limited. Instructions will be given, but a great deal of its execution
will be left to the programmer.
And remember, there is no one way — no ONE "correct" alogorithm-- for the
programs. Just be consistent and use PROCedures liberally.
(It should be understood here, the following introduction to PROCedure
structures and techniques is basic. An exhaustive discussion is beyond
the scope of this introductory text.)

20.9 1. MESSAGE FLASHO.
MERGE the logo.
Establish a

proc messagel
as follows

proc messagel
print "********************
print "* *"
print "* put in a message *"
print "* *"
jp y ̂

endproc messsagel

Establish a
proc message2

(Don’t forget the advantage of using the AUTO command.)
It is to have a different message but the box dimensions
are to be identical.
Establish a

proc signoff
The same size box.
Put a closing message in it.

Now, write a MGS so that messagel and message2 "blink" off and on. If
the design of the PROCedures is correct, the box should appear "fixed,"
and only the message will change. Be certain to PAUSE between each
message. Finally, use PROC signoff. The MCS could be like

C 1693

page
message1
pause
page
message2
pause
page
signoff
page
end ""

Vary -the M C S sequence to produce a variety of effects. (This is a
good way to further understanding.)

2 0 . 1 0 2 . A L P H A B E T .
MERGE the logo.
Enter the following M O 3

onealpha
onealpha
onealpha
end " "

Establish a PROCedure onealpha
proc onealpha
print "i"

endproc onealpha
RUN the program

We should get a letter that is similiar to I .
Establish a PROCedure fivealpha

proc fivealpha
print M1111M
endproc fivealpha

In the M C S add FIVEALPHA just before END.
Go back to PROC onealpha and change the “i" to "1"
RUN. We should get a letter that is similar to "L."

Do the following letters, adding any ALPHA PROCedures to the existing
program as may be necessary. (Remember, even though there may be some
alpha PROCedures we do not use, as long as they are not called for in the
M C S , our algorithm will be unaffected.) Use capital format for the
letter design.

C , E , F , G , H , M , 1ST , Q , U , V , Y , Z .

C 1703

For each letter, change "alpha" to the letter being designed. RUN
LIST the programs on the printer for the letters G, M, V, Y, Z.
follows is the alogorithm for "Q."

// ** main control sequence **
PAGE
qend ""
PROC q
fiveqs
twoqs
twoqs
twoqs
fiveqs
tailq
tailqq
ENDPROC q
PROC fiveqs
print "qqqqq"

ENDPROC fiveqa
PROC twoqs
print "q q"
ENDPROC twoqs
PROC tailq
print " q"

ENDPROC tailq
RPOC tailqq
print " q"

ENDPROC tailqq

2 0 . 1 1 3 . R U N N I N G o * s .
Merge the logo.
Define a PROCedure OROW which will print a ROW of 30 o*s
cross the screen. Base the PROCedure on the following
pseudocode.

procedure orow
initialize count
repeat
print an "o"
increment the count

until count is at the limit
end procedure orow

Translate the above pseudocode into COMAL.

and
What

H 1713

Call for PAUSE from inside the PROCedure. Change the inter
val to 1 to 150; this slows the printing of the o's.
RUN on the screen. Print a hard copy of the program listing.

20.12 4. SLASH o ’ js .
Design a PROCedure SLASHO which will print a row of 18 o's on
a diagonal. The diagonal is to start at the upper left corner
and continue towards the lower right. Call for PAUSE to slow
down the printout.

Here is one solution. PAGE will be called from a PROCedure to illustrate
its use. (PROGRAMS FOR THE BALANCE OF THIS CHAPTER ARE IN THEA N S W E R S .)

// ** main control sequence **
clearscreen
slasho
END "slasho finished"
PROC slasho

-£- count:=1
REPEAT
pause

-££- CURSOR count,count+1
PRINT "o",
COUNT:+l

—£££ - UNTIL count=19
ENDPROC slasho
PROC clearscreen
PAGE

ENDPROC clearscreen
PROC pause
FOR wait:=1 TO 150 DO NULL

ENDPROC pause

If we initialize COUNT at 0, then we are going to have diffi
culty at the line

CURSOR count,count+1
The first parameter after CURSOR (count) is the ROW indicator
for placing the cursor. There is no zero row, the first is 1.
If we initialized count at 0, the first two times through the
REPEAT loop would give ROW as being 0 and 1. The beginning
printout for this would be

£172:

o o
o
o
o
o

Therefore, we initialize COUNT at 1, to avoid the problem.
-££- As we move the CURSOR positioning, the COUNT+1 becomes one

greater than COUNT. Translated, it means
row 1 column 2
row 2 column 3
row 3 column 4
and so forth

(CURSOR count,count
would have been just as valid.)

- ££- If we want 18 o's and COUNT is initialized at 1, then we need
to terminate the loop at 19 to get those 18 o's.

A L T E R the program so that the diagonal of o's runs up
the screen from lower left to upper right. To do this,
make four changes in the present program and add one line.

CHANGES
1. Initialize COUNT to 19.
2. Change the CURSOR line to

CURSOR count,0
3. Change count:+l to count:-1
4. Make the UNTIL read

UNTIL count=1
A D D

1. Just after SLASHO in the M G S add
CURSOR 21,1

The reason for this is to place the END message at the
bottom of the screen. If we don't put that in, this
message will overprint the tail end of the o's. We
will be at the top of the screen after printing the

C 1733

last o, — that's where the CURSOR is— and that's
where the computer will place the END message from
the M G S .

T <=> s “t, our understanding of what is happening, take
the comma away from the line

PRINT "o",
and see what the printout is. It is important to go no further until
this is clearly understood!
You see, in the cursor command

CURSOR count,0
as count is decremented (or incremented, in other programs) the R O W
where the cursor is, changes --the column will stay the same, because of
the 0. HOWEVER, in the line

PRINT "o",
there is a comma. A comma is a T R A I L I N G punctuation command and
says

"In the next PRINT command, place what is to be
printed immediately after this."

This means T H E C U R S O R H A S A L R E A D Y M O V E D
O V E R O N E P L A C E to make room for the next character.
Therefore, as the ROW changes position (in this instance uxjp the screen)
the CURSOR continues to move one more place to the right to make room for
the next character(s) to be printed.
Take away the comma and the column will stay the same. That's why the
o's went up the left edge of the screen when we removed it.
By the way, to keep the ROWS the same, use the command

CURSOR 0,count
in this program, that is — because we may have a different command
instead of COUNT in another program.
Run both programs on the screen; make hard copies of the algorithms.

20.13 5. BLANK o .
Design a program which moves an o across the screen 35 times
and blanks out each previous o as it does. The effect, then,
is of a sprite "walking" across the screen.
Merge the logo.

C 1743

(This will not be mentioned again.)
Initialize count at 2 and continue it through 37.
Add

cursor 0,count
to the program just before

print "o",
We will also need to add (somewhere) these two lines

cursor 0,count-1
print " ",

Be^certain to increment COUNT by 1. Why is count initialized at 2?
Erase the last <z> after a two-second pause? (Try it; then see 20.14 for
help.)

// ** main control sequence **
PAGE
orow
END ,,M
PROC orow
count:=2
REPEAT
pause
CURSOR 0,count
PRINT Mo",
CURSOR 0,count-1
PRINT " ",
count:+1

UNTIL count=37
ENDPROC orow
PROC pause
FOR wait:=1 TO 100 DO NULL

ENDPROC pause

20.14 6. BACK BLANKo.
Design an algorithm similar to BLANKo which, when RUN, will
move the <z> from the right of the screen (position 37) to
the left of the screen (position 2). Again, it must erase
the last <z> before printing another. Also, erase the end
ing <z> after a two-second pause.
Having done that, combine this algorithm with the previous
(20.13). In this way, the <z> will move across the screen
left to right and then move right to left — and then vanish!

£ 1753

One PROCedure to effect the final erasure is
PROC erase
FOR delay:=1 TO 2000 DO NULL
CURSOR 0,3
PRINT " "

ENDPROC erase

20.15 7. LETTER TRACING
Design another algorithm which, when RUN, will trace an o
on the screen moving in the form of the letter Z. To help,
here is an algorithm for the letter J — and being erased as
it is traced.

// ** main control sequence **
PAGE
downo
backo
erase
END "letter j complete"
PROC downo
count:=2
REPEAT
pause
CURSOR count,15
PRINT "o"
CURSOR count-1,15
PRINT " "
count:+1

UNTIL count=12
ENDPROC downo
PROC backo
kount:=15
REPEAT
pause
CURSOR 11,kount
PRINT " ",
CURSOR 11,kount-1
PRINT "o",
kount:-1

UNTIL kount=9
ENDPROC backo
PROC erase
FOR wait:=1 TO 2000 DO NULL
PRINT " "

ENDPROC erase

C 1763

PROC pause
FOR wait:=1 TO 100 DO NULL

ENDPROC pause
Design algorithms for the following upper-case letters — first tracing
the letter and then tracing the letter but erasing as it goes.

C , L , O , I? , S , V
(FOR E, start at the bottom of the stem.)

20.16 Q . CHOP TREES - CLEAR
STUMPS

For this particular program make certain the keyboard is in
upper-case letters.
Define a PROCedure trees which will display 600 "trees" next
to each other on the screen.
(The "tree" will be found as an on-board graphic. SHIFT X
will print it. It’s actually the "club" graphic found in
a deck of cards.)
RUN this on the screen to make certain it works. The PAUSE
PROCedure inside of the REPEAT-UNTIL loop should be cut to
— 1 to 25. Once this is working, define another PROCedure
CH0PD0WN, which will overprint each "tree" with the letter
O .

CURSOR 1,1
will place the cursor in the upper left corner of the screen.
Put this cursor command inside PROCedure chopdown, but just
before the REPEAT - UNTIL loop.
Once there

PRINT "o"
will overprint the "trees" to effect the CHOPDOWN simulation
and suggest a "stump."
"Stumps," of course, have to be cleared. Home the cursor a-
gain (CURSOR 1,1) within another PROCedure. Call it

PROCedure clearstumps
In it, use the print command

print " ",

C 1773

Design another program that will "plant" the trees start
ing at 1,1 but will cut them down in REVERSE order.
Instead of using a REPEAT-UNTIL loop inside of the PROCedure
chopdown, use nested loops
The first could read

FOR kount:=15 TO 1 step -1 DO
The second is to use the variable COUNT
The CURSOR command will be

cursor kount,count
FINALLY, instead of removing all the stumps, design the
PROCedure CLEARSTUMPS so that only 75 trees are removed
At random.
Here is one line to help,

column:=RND(1,40)
Remember, there are 40 columns to a screen.
RUN each of the tree programs on the screen and save to disc.
(It might be interesting to fill the "hole" where a stump
is removed — say, with a blue square.)

RECAP

THE order of the PROCedure calls has no bear
ing on the order in which the PROCedures
are placed in the algorithm.

ZONE is a global variable.
VARIABLES may be kept local to a PROCedure by

attaching the word "CLOSED" to the PROCe
dure name.

IN the CURSOR command,
CURSOR X,Y

X specifies the ROW and Y the COLUMN

C 1783

prob1ems

1. Write a program that will produce the following
ooooooooooo
ooooooooo
ooooooo
ooooo
ooo
o

2. Write a program that will trace a box about in the middle of the
screen — 9 x 9 is a good size, and will have a series of numbers
being printed out, as though it were a one-arm-bandit type of ma
chine. The numbers should run after the box is traced. (Hint:
use rnd(abc,xyz) and embed it in a REPEAT-UNTIL LOOP.)

3. The same as problem 2, but be certain the concluding number, af
ter the "spin", is 100. (The CURSOR command will place the spin
ning numbers in the middle of the box.)

4. Trace the following numbers on the screen. Put all three in the
same program. When an integer appears on the screen, have it
stay about 3 seconds, disappear, then trace the next — and so
forth.

4 , 5 , 9

5. Trace a good size plus sign (+) on the screen. Have it
5.1) remain whole; and then next,
5.2) erase itself as it goes.

6. Trace a good-sized box-shaped moving van on the screen. Put in
some wheels after it is drawn.

7. O N E — A R M B A N D I T „ Draw three boxes across the screen
in one line. 9 x 9 is a good size.
Generate, by use of five distinct variables, five random numbers
— each that start and end in three digits. However, at the end
of each of these spins, the first is to have a final value of 100,
the second, 200 ... the fifth, 500.
The random numbers that are to "spin" in the middle of the three
boxes, are to be placed in any given box by random choice also.
At the conclusion of the pulling of the A B M (represented by
tapping f7) there will be one number in each box. They can be
any combination of 100, 200, 300, 400 or 500. Any of these five
values can appear 0 to 3 times. O N E --and only one— possi
bility could be

C 1793

********* ********* *********

C08T.1

er* twenty — on
a r r a y s

<z> t> ject iv© s

At the completion of the chapter the student will be able to:

1. DIMension a numeric array;
2. Explain the role of subscripts in an array;
3. Explain the difference between the NAME of the array and its

subscripted name;
4. Write a program which uses a subscript in a variable or numeric

function;
5. Use the proper verbs to store the values of an array;
6. Write a program that can call out certain of the stored values

in an array;
7. Write a program that uses a summation statement employing

an array notation; and,
8. Write a program using more than one array and be able to mani

pulate the data in the arrays in accordance with specified
outputs.

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
o SCAN BY f8 o
m --------- m
a a
1 The very useful command, SCAN, can be activated by tapping 1
c the f 8 key + RETURN. c
o o
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

[1813

2 1 . 1 C O N S I D E R A T Y E I C A L classroom
occurrence.

The teacher has recorded the following examination grades (understand,
the list is kept brief for ease of illustration.)

65, 43, 82, 98, 86, 73, 91, 63, 90, 79
What he would like is the following information:

The class average;
The number of grades above the average;
The number of grades below the average;
How much each grade is above the average;
How much each grade is below the average; and,
How many grades are in each 10-point interval.

In terms of actual printout
Class average = 77
Number of grades above average = 6
Number of grades below average = 4
EXAM POINTS POINTS
GRADE ABOVE BELOW
65 12
43 34
82 5
98 21
86 9
73 4
91 14
63 14
90 13
79 2
GRADE NUMBER
INTERVAL OF GRADES
40 - 49 1
50 - 59 0
60 - 69 2
70 - 79 2
80 - 89 2
90 - 99 3

Based on what we now know, we could write such a program — but it would

C 1823

take 45 to 50 program lines; further, once having written it, the data
would be difficult to use (manipulate) again without additional
"fiddling" around with RESTORE lines and other rather tedious programming
routines.

2 1 . 2 T H E R E 1 3 A better way to achieve the same
results without having to resort to such a lengthy

program. The simpler method is through the use of A R R A Y S -
ARRAYS are often called subscripted variables.
We might say (and the following discussion will center on the first five
test scores only)

GRADES 1 = 65
GRADES 2 = 43
GRADES 3 = 82
GRADES 4 = 98
GRADES 5 = 86

The 1, 2, 3, 4 and 5 are subscripts.
Valid as they are in mathematics, the computer is not capable of
recognizing variables written in that manner — even if the system had the
physical features to allow typing .subscripts. Instead, the computer
requires us to write them as

grades(l) = 65
grades(2) = 43
grades(3) = 82
grades(4) = 98
grades(5) = 86

We call these an array GRADES. The 1, 2, 3, 4 and 5 are subscripts.
Together, they are SUBSCRIPTED VARIABLES — in COMAL, simply an
A R R A Y .
So we say

Then

grades(l) is
grades(2) is
grades(3) is
grades(4) is
grades(5) is

grades sub 1
grades sub 2
grades sub 3
grades sub 4
grades sub 5

grades sub 1 = 65
grades sub 2 = 43
grades sub 3 = 82

C 1833

grades sub 4 = 98
grades sub 5 = 86

We can, for conceptual purposes, visualize the array GRADE as looking
like this inside the computer:

ARRAY GRADES
1 2 3 4 5

65 43 82 98 86

— with each entry of the array GRADES being put into separate C E L L i S .
Once the data is "placed" into the CELLS it can be retrieved, used and
"put back," again and again and again.
The importance and inherent power of ARRAYS cannot be overemphasized.
Look at it this way, if we have a journey of some distance to make we can

--walk use elementary computer skills
— ride a bike use computer skills, such as looping
— drive a car use above skills combined with ARRAYS

2 1 . 3 O U R F I R S T T A S K is to place these five
grades in the cells of an array GRADES. But before we

can do that, we must take care of some "housekeeping tasks" first.
Unless we "tell" the computer we are going to use an ARRAY, all our
programming will come to naught. And after saying, we must also state
how many STORAGE CELLS we wish to set aside for the DATA.
Here is a statement that does both of these tasks.

DIM grades(5)
D I M is short for DIMensioning; in effect

DIM grades
can be translated as

"Computer, make provisions for an array called GRADES."
The "(5)" —

"...and in these provisions, allow for 5 STORAGE CELLS."
The name "GRADES" is, of course, quite arbitrary. We could just as
easily have named the array TESTSCORES or TESTRESULTS. What is important
(!i) is, once having named the array, the only way to get the computer to

C 1843

go back and retrieve the data in those storage cells, is to use the SAME
NAME of the array!!
Placing these five test scores into the CELLS is easily accomplished with
the following algorithm.

DIM grades(5)
-£- FOR scores:=1 TO 5 DO
-££- READ grades(scores)

ENDFOR scores
DATA 65,43,82,98,86

-££-

"scores" is just the name of the variable for the FOR
DO loop. Like "grades," it does have some relevance
to what we are doing.
R E A D is the key word here. It’s THE verb that does
the "work" of placing into the CELLS each of the test
results as the variable SCORES assumes values of 1, 2,
3, 4 and 5.
Note, also, the way the line is written.

READ grades(scores)
The "grades(scores)" continues the ARRAY format found
in the DIM grades(5) line.
READ, of course, finds the DATA line and — when SCORES
has the value of "1", places 65 into that STORAGE. CELL
in the array GRADES.

2 1 . 4 A D D T H E S E L I N E S to the program.
print grades(2)
print grades(3)
print grades(4)
print grades(1+4)

When we RUN the program, our printout is
43
82
98
86

The first three are straight forward,
print grades(2)

C 1853

tells the computer to find an array named GRADES, go into cell 2 and
whatever is there, print it on the screen. We could put that in a loop
and have the "43" printed as many times as we wished — and WITHOUT HAVING
TO USE THE RESTORE statement!!! It’s the last line that is significant.

print grades(1+4)
Unlike specifying a simple variable, the subscript may, in itself, be a
variable expession or even a numerical expression! Hence

print grades(1+4) becomes
print grades(5)

And in CELL 5, the value is 86.
One further example.

print grades(6*4 - 100/5)
becomes, print grades(24 - 100/5)
becomes, print grades(24 - 20)
becomes, print grades(4)
which is, 98

At first, it may seem somewhat esoteric to specify subscripts as a
function of a variable. But do not be too quick to dismiss the idea.
There are times when it is very handy.

2 1 . 5 W E W I L L N O W write a program to sum the
grades. Because of the small number of scores, we will

us a FOR-DO loop instead of the WHILE-DO. In actual practice the latter
is preferred and we will illustrate its use in the next section.

DIM grades(6)
-££- sumgrades:=0

-£££-
FOR scores:=1 TO 5 DO
READ grades(scores)
sumgrades:+grades(scores)

ENDFOR scores
--££££- grades(6):=sumgrades
-£££££- PRINT grades(6)

DATA 65,43,82,98,86

-£- We have allowed for an extra CELL in the array

C 1863

-££- Initializing the variable SUMGRADES

-£££- The summation statement — note the use of the array
notation: GRADES(SCORES)

-££££- After getting the sum of the grades (see, -£££-), it
was placed in STORAGE CELL 6 of the array GRADES

-£££££- The PRINT statement to retrieve the sum of the scores
placed there.
The sum is 374.

Once we place the sum into CELL 6 we can use it as many times as we wish,
and for any purpose.
A further note: It is good programming practice to allow for a few more
STORAGE CELLS than absolutely required. In longer programs, there may be
an unforseen need to use this facility which ARRAYS provide. But don’t
be too foolish about it. A good number for this problem would have been
7 — or perhaps, 8.
Remember this, when we ask the computer to set aside the CELLS, it is
using up space to do so. And it is space we cannot use later even though
several STORAGE CELLS may remain empty. The computer is "loyal." If we
want 400 BOXES, 400 we will get and nothing, BUT NOTHING, will cause the
computer to give those up. So, add a few in the DIM statement — but not
too manyl

2 1 . 6 S U P P O S E (A N D F O P large numbers of test
scores it is not unusual to do the following for

statistical purposes) we wish to sum the odd-position scores in the DATA
statement. (When this is done, the even-positioned scores are also added
and the two distinct totals are then subjected to statistical analysis.)
Enter the following program and spend what time is necessary studying it,
so that it is fully understood.

// ** main control sequence **
clearscreen
setvariables
storedata
oddscores
printgradesum
END " "
// ** ©nd main control sequence **
PROC setvariables

oddgradesum:=0
scores:=0

ENDPROC setvariables

C 1873

-£-
PROC storedata

DIM grades(8)
WHILE NOT EOD DO

-££- scores*.+1
-£££- READ grades(scores)

ENDWHILE
ENDPROC storedata
PROC oddscores

-££££- FOR sumodd:=1 TO scores STEP 2 DO
-£££££ - oddgradesum *. +grades (sumodd)

ENDFOR sumodd
ENDPROC oddscores
PROC printgradesum

PRINT "sum of the odd grades =";oddgradesum
ENDPROC printgradesum
DATA 65,43,82,98,86

(The answer is 233.)
0 + 65 (65)

65 + 82 (147)
147 + 86 (233)

-*- Some programmers prefer to initialize variables
within the PROCEDURES using them. This is under
standable, particularly if some of the variables
are going to be used in a CLOSED procedure. In
this particular program there are no such proce
dures .

-£- We set aside two extra cells.
-££- We must increment SCORES to provide for separate

storage cells for the ARRAY "grades.”
-£££- The array GRADES where values from the DATA line

are placed in cells 1 through 5, successively.
-££££- By specifying STEP 2, then the variable SUMODD

takes the values 1, 3 and 5 on the first, second
and third trips.

-£££££- The summation loop for the odd grade scores.
Now, the fact we used

C 1883

grades(SUMODD)
instead of

grades(SCORES)
to manipulate the same DATA scores, should cause no difficulty PROVIDING
we remember that T H E N A M E O F T H E A R R A Y I S T H E
I M P O R T A N T T H I N G . The name of the variable to facilitate
"getting around" the loop, is of no consequence.
If SCORES equals 3 and SUMODD equals 3, then the following three
expressions will produce the same results in this program — and that is, 82.

print grades(SCORES)
print grades(SUMODD)
print grades(3)

Consider the subscripts as "names" to help us keep the different routines
clear in our thinking and in the algorithm.
We said, "The name of the variable to facilitate getting around' the
loop, is of no consequence." This is not a precise statement. We know
we can use variables for subscripts. A more correct observation would
be:

As long as we placed (READ) the values GRADES(SCORES)
into the CELLS, calling them out by GRADES(SUMODD)
or GRADES (MARK) or GRADES (NUMBERS) is not going to
change what was originally placed into the STORAGE
CELLS.

Here is a simple program to illustrate this point. In this instance, the
grade results are INPUT by the user, and then stored in an array called
GRADES. The assumption, of course, is that the user knows how many
grades are to be entered.

sumgrades:=0
count:=0
input "how many grades? ":number
dim grades(number+4)
// ** main control sequence **
clearscreen
enter
recall
total

£ 1893

results

-££-

end "sample grade program"
// ** ©nd main control sequence **
PROC enter

FOR entry:=1 TO number DO
PRINT "enter grades";entry

-£££- INPUT grades(entry)
ENDFOR entry

ENDPROC enter
PROC recall

PRINT "the grades you entered were";
FOR show:=l TO number DO

PRINT grades(show);
ENDFOR show

ENDPROC recall
PROC total

FOR add:=l TO number DO
sumgrades:+grades(add)
count:+1

ENDFOR add
ENDPROC total
PROC results

averagegrades:=sumgrades/count
PRINT
PRINT "number of grades entered";count
PRINT
PRINT "sum of the grades";sumgrades
PRINT
PRINT "the class average";averagegrades

ENDPROC results

-£- DIM can't be done until after the input of variable NUMBER
Subscripts can be a function. We allowed 4 extra cells.

-££- FOR-DO with a variable as a terminator! We've done this
before!

-£££- I N 3 P U T grades (entry) has the same effect as
R E A D grades (entry)

The balance of the algorithm (program) is direct. Enter it into the
computer, RUN it a few times and then take time to study it in depth.

H1903

21.7 A C L A S S I C P R O B L E M is to throw a pair
of dice a given number of times and count how often

each value appears.
We could write this as a series of eleven (11) IF-THEN statements (there
is no 1 value for a pair of dice); or, we could use CASE-OF; or, for that
matter, any two or three other approaches. The simplest, however, is to
employ an ARRAY structure.
Enter the following. (PROCEDURE structure is set aside for this
illustration.)

page
-£- dim dice(14)

randomize
zone 4
for throw:=1 to 100 do
diel:=rnd(l,6)
die2:=rnd(l,6)
cube:=diel+die2
print cube;

-££- dice(cube):+1
endfor throw
zone 7
print
print

“£££- for results:=2 to 12 do
print results, "was rolled",dice(results),"times"
endfor results

“£> A couple of extra STORAGE CELLS are set aside.
-££- An array summation statement!

When — say, CUBE is a 6, then the array statement
dice(cube):+1 — becomes
dice(6):+1
and the value stored in BOX 6 of the array DICE is in
cremented by 1. If there is no value there, then it

C 1913

becomes 1 (0+1). If, on the other hand, dice(6) had
had the value of 7, then this amount in the CELL would
would been increased to 8 (7+1).
This holds for all the CELLS in the array called DICE

-£££- The FOR-DO loop to retrieve the results stored in the
array DICE. The lowest number we can roll is a 2.

One thing we can study with a program like this is to compare the results
we get with those expected from mathematical probability. For example,
how many times out of 100 should we expect a ”7”?.
Mathematically, it should be 16+. Any number thrown on the first die can
be combined with one number on the second, to get a 7. That being so,
the probability on the first die is

1 out of 1 — or 1/1
The second die is

1 out of 6 — or 1/6
1 1 1
- X - = - X 100 = 16.6666667
1 6 6

Run the program and note how close it is to the mathematical probability.

2 1 . © G I V E N T H E F O L L O W I N G two sets of
integers.

8 13 51 19 22
44 79 36 1 85

Store these integers in two separate arrays and then print them out in
the sequence

85 22 1 19 36 51 79 13 44 8
page
dim first(7)
dim second(7)
for toprow:=1 to 5 do
read first(toprow)
endfor toprow
for bottomrow:=l to 5
read second(bottomrow)
endfor bottomrow

C 1923

to
to

for results:=5 to 1 step -1 do
print second(results);
print first(results);
endfor results
data 8,13,51,19,22
data 44,79,36,1,85

As the value of RESULTS is introduced into the array nota
tion, the computer goes to that CELL, picks out the value
placed there and then prints it to the screen.
On the first loop both arrays read

second(5) and first(5)
The two values — printed in that order— are 85 and 22.
The trailing punctuation (;) assures the printouts will be
on one line.
The second trip through the loop gives

second(4) and first(4)
and so forth.

RECAP*****

ALL arrays must be DIMensioned.
READ or INPUT are the verbs used to place the

data into the array cells.
SUMNUMS:+ARRAYNAME(SUBSCRIPT) is the form of

the summation statement for an array.
ARRAYNAME(SUBSCRIPT):+1 is the form of the

count statement for an array.

11933

prob1ems

1. Take the following Computer test grades and calculate their
average. Tell home many grades were above and below the
average. (78, 84, 96, 92, 91, 88, 99, 89, 95, 98)

2. In the previous problem, print the point difference of the
scores from the average.

3. Put the following integers into two different arrays.
- 15, 12, 14, 28, 17, 21, 31, 19

- 21, 00 32, 11, 25, 24, oCM 15
Have the printout in 3 rows — the third row to be the product
of the first two.

row 1 row 2 product
15 21 315
12 18 216

et cetera
4. Store these values.

18, 21, 13, 25, 27, 11, 19, 28, 22, 10
Sum the odd-positioned values; sum the even-positioned values.
Have the following printout.

odd even
18 21
13 25
27 11
19 28
22 10

99 95 difference = 4
5. Roll a pair of dice 100 times. Print a table showing the num

ber of times each even value was thrown.
6. Do the same as problem 5, but print the results for the odd

values.
7. Throw the dice 100 times. Instead of counting the number of

times each value appeared, store the FACE VALUE of the dice.
Thus, if 6 three's were thrown, the printout would be 18.

total face value of the 2s = ---

C 1943

total face value of the 3s

total face value of the 12s = ---
8. Sum the face values for all the throws in problem 7 and take

an average/throw. How much does the average differ from 7?

#
T m 9 JO u

t t u H i7H 8
4

1__
_

C 1953

dnap-fcer twenty-two
arrays

objectiv©s

At the completion of the chapter the student will be able to:

1. DIMension a String array properly, by specifying the correct
number of CELLS to be set aside and making allowance for the
number of characters in the String;

2. State what will happen to the output String if the DIMension
statement is incorrect;

3. Write a program involving two or more String arrays;
4. DIMension two or more String arrays on the same program line;
5. Center the printout to the screen by using the PRINT AT

command;
6. Combine a String array and a numeric array in one program; and,
7. READ, in one program line, any combination of String and/or

numeric array.

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
0 TOGGLING REVERSE PRINTING o
m ------------------------ m
a a
1 Pressing the <CTRL> key and then 9 or 0 toggles reverse on 1
c and off for the characters printed to the screen. c
o o
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C 1963

2 2 . 1 . $ T R I N G A R R A Y S A R E a logical extension
of numeric arrays. Actually, the essential difference

is the use of the $ tagged to the end of the variable name and THE
SPECIFICATION OF HOW MANY CHARACTERS TO ALLOW FOR EACH $TRING. We will
illustrate with a simple program.

PROBLEM: Store the following five names in an array
and then print them out in reverse order: zedekiah,
selah, rahab, hezekiah, balaam. Print the results
in the middle of the screen.

// illustrating a simple String array
page

-£- row:= 8
-££- dim name$(7) of 12

for storenames:=1 to 5 do
read name$(storenames)
endfor storenames

-£££- for recall:=5 to 1 step -1 do
row:+1

-££££- print at row,15:name$(recall)
endfor recall
data "zedekiah","selah","rahab","hezekiah","balaam"

-£££££- cursor 21,1
end "end String illustration"

-£- Because we want to print the results in the middle of the
screen, we will use the command PRINT AT. Doing that we
will need to initialize a variable (R O W in this
instance) to something other than 0 — 8, here.

-££- Two extra cells are provided.
The 12 limits the length of each name to 12 characters; if
more letters are entered the name(s) will be truncated.

-£££- Reverse order, because we want the names to be printed so.
-££££- Here is the PRINT AT. The first time around BALAAM will

be printed on the screen at row 9, column 15. The next
time through, HEZEKIAH, will be printed at row 10, column
15 and so on.
(Just a review of a command introduced earlier.)

C1973

-£££££- This line is optional; it may be left out of program.

2 2 . 2 W E C A N C O M B I N E String arrays as we did
numeric ones. Consider this problem.

Store the following nouns, verbs and objects in three arrays.
Print ten sentences by using random selections from each
array. (If a sentence appears more than once, could it be
true?)
NOUNS. loretta, beth, doug, shawn, dallas
VERBS. salutes, kisses, pets, kicks, phones
OBJECTS. frogs, dolls, toys, worms, computers

// illustrating three arrays in one program
DIM noun$(5) OF 10,verb$(5) OF 10,object$(5) OF 10
// ** main control sequence **
clearscreen
propernouns
sillyverbs
foolishobjects
sillysentences
END M M
// ** end main control sequence **
PROC propernouns

FOR name:=l TO 5 DO
-££- READ noun$(name)

ENDFOR name
ENDPROC propernouns
PROC sillyverbs

FOR action:=1 TO 5 DO
-££- READ verb$(action)

ENDFOR action
ENDPROC sillyverbs
PROC foolishobjects

FOR goal:=1 TO 5 DO
-££- READ object$(goal)

ENDFOR goal
ENDPROC foolishobjects
PROC sillysentences

FOR sentences:=1 TO 10 DO
RANDOMIZE

-£££- word:=RND(1,5)

C198:

PRINT noun$(word);
-£££- word2:=RND(1,5)

PRINT verb$(word2);
-£££- word3:=RND(1,5)

PRINT objects(word3)
PRINT

ENDFOR sentences
ENDPROC sillysentences
DATA "loretta", "beth" , "doug" , "shawn" , "dallas"
DATA "salutes","kisses","pets","kicks","phones"
DATA "frogs","dolls","toys","worms","computers"

-£- We can DIMension more than one array in a line
— each, however, must be separated by a comma.

-££- Storing the nouns, verbs and objects in three dif
ferent arrays. Note how the DATA lines are written
to make certain there is no conflict in storage.

-£££- We use three different random notations. If we had
used but one, then whatever was generated would be
in the same relative position for each word. This
way the nouns, the verbs and the objects will be more
randomly chosen. It will minimize sentence redundancy.

2 2 . 3 A N D , O F C O U R S E , we can combine numeric
and String arrays. Because this chapter is an

extension of the previous, let’s introduce the idea through another
problem.

PROBLEM. Personnel of the Garbanzo Company, Limited turn in
the following sales for one week.

john 296
pete 312
mary 408
alma 471
bilj 388

Store the information in two arrays. Retrieve it and create the
following table.

sales amount cum
person sold total
john 296 296
pete 312 608
mary 408 1016
alma 471 1487
bilj 388 1875

Center it to the screen.

C 1993

// combining String and numeric arrays
cumtotal:=0
row:=8
dim name$(6) of 5,button(6)
zone 9
// ** main control sequence **
clearscreen
salesperson
sales
table
end ""
// ** ©nd main control sequence **

-£-
-££-

print at 6,9:"sales","amount"," cum"
print at 7,9:"person"," sold","total"
print
proc salespersons
for person:=1 to 5 do
read name$(person)

endfor person
endproc salespersons
proc sales
for garbanzo:=1 to 5 do
read button(garbanzo)
endfor garbanzo

endproc sales

-£££-

proc table
for results:=1 to 5 do
cumtotal:=+button(results)
row:+1
print at row,9:name$(results),button(results),cumtotal

endfor results
endproc table
data "john","pete","mary","alma","bilj"
data 296,312,408,471,388

-£- Row 6 will be about the upper limit to center the
table.

-££- Specifying row 7 is important, otherwise this line
will print over the previous one.

-£££- Because of the statement in the previous line—

£ 2003

row:+1
— printing will start at row 10, thus leaving a
blank between the heading and the column printouts.
As RESULTS changes in value from 1 through 5, the
various names and button sales totals will be called
out of their respective C E L L S and printed.
The CUMTOTAL summation statement was written two lines
ago, and is called out here to PRINT its running tally.

As straight forward as this algorithm is, it really is not a "good" one.
If, in the real world, the names of the sales people had to be written in
one DATA line and their sales on another (in respective order) all sorts
of errors and inconveniences would occur. Imagine having to make double
entries for 50 or 100 sales people!
Let’s make some simple changes that will not be difficult to understand.

1. Delete both of the present DATA lines.
2. Enter this DATA line:

"john",296,"pete",312,"mary",408,"alma",471,"bilj",388
Now, this makes more sense. It is far more logical to
enter the name of the sales person and put immediately
after, the number of garbanzo buttons sold.
With this type of entry the operator’s errors will be re
duced to a minimum.

Of course, this means we will have to change the line(s) call
ing for the READ statement.

3. Delete, in the MAIN CONTROL SEQUENCE, the line calling for
the procedure SALES.

The M O 3 will now read:
clearscreen
salesperson
table
end " "

4. Delete the five program lines in the SALES procedure sequence.
(Use the command— DEL SALES.)

5. In PROC SALESPERSON, rewrite the line
read name$(person)

to

£ 2013

read name$(person),button(person)
RUN the program and study the algorithm to determine what has happened

RECAP*****

STRING arrays must be DIMensioned for the
number of cells to be set aside and for
the length of each String to be entered.

NUMERIC and/or String arrays may be DIMen
sioned on the same program line.

PRINT AT allows printing at any place on the
screen by specifying row and column.

prob1©ms

1. Store the following towns in an array:
dunmore, beard, slatyfork, green bank, frost, hillsboro,
woodrow, frank, durbin, cass, arbovale, stillington,
minnehaha, watoga, buckeye, marlinton, campbelltown,
showshoe, seebert, droop, denmar, lobelia, huntersville

Print the list in reverse order AND only the first four letters
of each town.

2. Six sales persons for the Garbanzo Buttons, Limited factory are
jack 361 buttons sold
john 234 buttons sold
bilj 512 buttons sold
mary 635 buttons sold
alma 489 buttons sold
pete 609 buttons sold

Their target sales for the week was 3000 buttons.
Complete the following table. Put a sentence below the table
showing by how much they exceeded or came short of the target.
Have the computer do all the work! Center to the screen.

£ 2023

sales -target: 3000 buttons

person sold left
jack 361 2639
john 234 2405

and so forth
3. Create 15 single-spaced sentences at random from these words:

— pete, mary, jack, John, beth
— runs, walks, speaks, yells, whispers
— without, on, to, into, with
--shoes, toe nails, trees, elbows, teeth

4. Modify problem 2 so that there is no DATA line, but everything is
stored in the arrays by INPUT statements. (The last sentence is
still to be printed.)

5. Put the alphabet into an array. Print the alphabet in reverse,
starting with the letter z and skipping every other letter.
(z x v t). Print it in 2 columns and centered to the
screen.

1 2 3 4 5
pete mary jock john be+h

1 1 3 4 5
funs walte spate yelts whispes

1 2 3 4 5
Without on to into W’dh

1 Z 3 4 5
Shoes toenails trees elbows te«*h

C 2033

dnapter* twenty — three
•two — dimensional arrays

oho jec*t iv© s

At the completion of the chapter the student will be able to:

1. State how two-dimensional arrays place data in CELLs;
2. Properly DIMension multi-dimensional arrays;
3. State how the positioning of a CELL is determined;
4. Write an expression that will perform an arithmetic compu

tation on any series of pre-determined CELLs;
5. Draw a chart to show how CELLs are identified; and,
6. Write a program that will total rows and columns of data

through the use of one- and two-dimensional arrays.

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
0 LONG VARIABLE NAMES o
m ---------------- m
a a
1 COMAL allows up to 78 characters for naming variables. This 1
c is a tremendous help, but it can be confusing because the c
0 names run together. To assist the programmer, COMAL al- o
m lows the use of an apostrophe (') in the variable name to m
a separate the words. Thus, the variable a
1 1
c totalofcolumns c
0 o
m can be written as m
a a
1 total * of * columns 1
c c
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C 2043

2 3 . 1 I N T H E P R E V I O U S two chapters we assigned
single variables — numeric and/or $trings— into

individual CELLS. And we did this in a linear way. For example, if we
had a DATA line that read

DATA 65,36,19,18,27,44
we put 65 into CELL 1; 36 into CELL 2; 19 into CELL 3; and so forth.
Thus, if the array had been assigned the name GRADES then

print grades(5)
would put 27 on the screen.
This is fine until there is a need to store and process data that cannot
be handled conveniently in a linear manner. Suppose the response to a
questionnaire concerning the Junior/Senior prom was as follows.

QUESTION: Do you believe the Junior/Senior prom
should include the Sophomore class?
YES NO UND

JUNIORS 9 93 24
SENIORS 35 81 27

How do we store this information — how do we place it into CELLS, so it
can be processed?
As far as the numbers (the vote results) are concerned, we have two
R O W S .

ROW 1: 9 93 24
ROW 2: 35 81 27

Or, considered from another perspective, we have three C O L U M N S .
column 1 column 2 column 3

9 93 24
35 81 27

In multi-dimensional arrays, the computer stores DATA by R O W S and
C O L U M N S .
For the vote results on the Junior/Senior prom

9 is in ROW 1 COLUMN 1
93 is in ROW 1 COLUMN 2
24 is in ROW 1 COLUMN 3

C 2053

35 is in ROW 2 COLUMN 1
81 is in ROW 2 COLUMN 2
27 is in ROW 2 COLUMN 3

After the vote results have been stored properly (we'll discuss how to do
that shortly) we can get a printout of — say, these four numbers— 9, 93,
81 and 27 as follows.

print votes(1,1) would give 9
print votes(l,2) would give 93
print votes(2,2) would give 81
print votes(2,3) would give 27

The first number inside of the parentheses refers to the R O W where the
vote is stored; the second number to the C O L U M N . Together, the ROW
and COLUMN pinpoints the CELL where the vote can be located.
Using the same array, consider this important property.

print votes(1,1) + votes(2,3).
9 + 27 = 36

In processing numeric data, we make use of this constantly.
Do the following problems for this matrix.

16 14 21 23 31
61 12 32 13 41
11 24 21 33 41

(This matrix has 3 rows and 5 columns.)
print tally(2,2) + tally(3,4)
print tally(1,5) - tally(3,3)
print tally(3,l)*tally(l,5)
print tally(3,4)/tally(3,1)
print tally(2,1)-tally(2,5)+tally(5,5,)

(The answers, in mixed order, are 10, 3, 1, 343, 45.)

2 3 . 2 A G A I N , A 3 W I T H linear arrays, before we
can place the data into CELLS, the array has to be

DIMensioned. And, quite logically, the DIM statement will have to
specify the number of ROWS and the number of COLUMNS — and in that order.
For the results of the Prom Survey, the DIM statement would be

dim votes(2,3)
The "2" because thre are two ROWs — juniors (1) and seniors (2). The "3"
because there are three COLUMNS — Yes (1), no (2) and und (3).
Having done this, we can take the results and place them into individual

C 2063

CELLs. We can visualize the "storage" area inside the computer as

col col col
1 2 3

cell cell cell
row 1

1,1 1,2 1,3
cell cell cell

row 2
2,1 2,2 2,3

Here is the algorithm to place the data in the proper storage CELLS.
1000 dim votes(2,3)
1010
1020 for row:=l to 2 do
1030
1040 for column:=1 to 3 do
1050 read votes(row,column)
1060 endfor column
1070
1080 endfor row
1090
1100 data 9,93,24,35,81,27

When we enter it and then LIST, it will look like
1000 DIM votes(2,3)
1010
1020 FOR row:=1 TO 2 DO
1030
1040 FOR column:=1 TO 3 DO
1050 READ votes(row,column)
1060 ENDFOR column
1070
1080 ENDFOR row
1090
1100 DATA 9,93,24,35,81,27

(Remember, this is a partial algorithm of a larger program. The usual
logo, main control sequence and other "housekeeping" parts are not
included here — though they would be in our final program.)
Now, let’s follow in some detail the process.

1000 Sets aside six storage CELLS (2*3 = 6)
1020 On ROW first trip, R O W = 1.

(falls through to)

C 2073

1040 On COLUMN first trip, C O L U M N = 1
(falls through to)

1050 The READ searches out the DATA line and places
the "9" in CELL 1,1.

(goes back to 1040 for trip 2)
1050 The READ searches out the DATA line and places

the "93" in CELL 1,2.
(goes back to 1040 for trip 3)

1050 The READ searches out the DATA line and places
the "24“ in CELL 1,3.

(GOES BACK TO 1020 FOR R O W TRIP 2 i i)
(falls through to)

1040 On COLUMN first trip C O L U M N = 1
(falls through to)

1050 The READ searches out the DATA line and places
the "35" in CELL 2,1.

(goes back to 1040 for trip 2)
1050 The READ searches out the DATA line and places

the "81" in CELL 2,2.
(goes back to 1040 for trip 3)

1050 The READ searches out the DATA line and places
the "27" in CELL 2,3.

After completing these three rounds in the FOR-DO loop, it will
finished its task for R0W:=1 to 2 and COLUMN:=1 to 3.
Add the following lines.

1200 print votes(2,3)
1210 print votes(1,3)
1220 print votes(2,1)
1230 print votes(2,4)

Your printouts will be
27
24
35
index out of range

have

C2083

There is no CELL 2,4 — hence, the error message.
Now, delete 1200 - 1230.

2 3 . 3 T H E Q U E S T I O N N A I R E
which we have stored, were

R E S U L T S

yes no und
juniors 9 93 24
seniors 35 81 27

We would like to total the results.
First, we want the totals for "yes", "no" and the "und" votes. The
following lines will give us this. (Do the necessary "housekeeping"
tasks to provide room for these lines. Line numbers will not be given
here so we can arrange the algorithm to our liking.)

sumyesl:=0
sumno2:=0
sumund3:=0
// *****

for row:=l to 2 do
sumyesl:+votes(row,1)
endfor row
print sumyesl
for row:=l to 2 do
sumno2:+votes(row,2)
endfor row
print sumno2
for row:=1 to 2 do
sumund3:+votes(row,3)

endfor row
print sumund3

By fixing the COLUMN to 1 or 2 or 3 in each of the FOR-DO loops, we are
assured that as ROW changes from 1 to 2, the COLUMN will remain the same.
So, in the first loop, only the two totals — 9 and 35— will be added,
because they are in COLUMN 1. The same is true for the "no" COLUMN
(which is 2) and for the "und" COLUMN (which is 3).
At the end of each of the loops, we asked for the respective sums to be
printed. This was for illustration purposes only. More work would have
to be done to place them under the correct columns — either through the
use of trailing punctuation or ZONE. It's not important because, we will
agree, this is an awkward and cumbersome way to get the totals. (Imagine
if we had 14 columns to add!) But it will help us to understand what can

£ 2093

be done to get the results we need.
We must get the computer to do more of the work --and we can!
Before making changes in the algorithm, SAVE it as is. Should we get
into difficulty, we can reLOAD and start again.
Delete the following lines and loops.

sumyesl:=0
sumno2:=0
sumund3:=0

FOR-DO row loop where COLUMN was 1
FOR-DO row loop where COLUMN was 2
FOR-DO row loop where COLUMN was 3

The sum of the columns is linear, i. e., there is only one line of sums.
This being so, we can store the sums in another array that is linear in
nature. Go back to the DIM line and change it by adding
— total9 of'col(3), so that it now reads

dim votes(2,3),tot9 of’col(3)
Add the following to the end of your present algorithm.

for row:=l to 2 do
for column:=1 to 3 do
tot’of1 col(column):+votes(row,column)
endfor column
endfor row

This nested loop routine goes back into the CELLs where the votes have
been stored, and gets them "back out again." As they are brought out
— each column in turn ("yes", "no" and "und")— are added, and the final
totals are stored in the CELLs of the one dimensional (linear) array,
TOT’OF’COL.
When we have need of them we can get the totals at any time. We may
verify they are there by adding, temporarily, these lines and RUNning the
program.

for column:=1 to 3 do
print totcol(column);
endfor column

2 3 . 4
sum.

A N O T H E R T O T A L W E would like is the
number of Juniors and Seniors who voted. The is a ROW

C 2103

Having followed the logic of this discussion, it is not difficult to see
that we can get this quite easily by adding one more line to the
TOT’OF'COL subroutine.

for row:=l to 2 do
for column:=1 to 3 do
tot1 of’col(column):+votes(row,column)
TOT’ROW(ROW):+VOTES(ROW,COLUMN)
endfor column
endfor row

We also need to change the DIM line to read
dim votes(2,3),tot9 of’col(3),tot1 row(2)

The total for the ROWs are now stored in the linear array TOT’ROW.
To verify this, add the following to the program

for row:=l to 2 do
print tot * row(row)
endfor row

and RUN the program.
The figures are not printed in the proper place --as yet.
Delete the last two temporary sub-routines.
When the algorithm is completed, the table will look like this.

yes no und tot
juniors 9 93 24 126
seniors 35 81 27 143
totals 44 174 51 269

One version of a final algorithm (minus the logo) is
// junior-senior prom vote
DIM votes(2,3),tot * of'col(3),tot'row
total9 votes'cast:=0
count:=0
// we will use count:=0 to
// print jrs. & srs. later
// ** main control sequence **

£2113

PAGE
storevotes
sumroweo1umns
totalvotes
printtable
CURSOR 22,1
END "end prom survey"
// ** end main control sequence **
PROC storevotes
FOR row:=1 to 2 DO
FOR column:=1 to 3 DO
READ votes(row,column)
ENDFOR column

ENDFOR row
ENDPROC storevotes
PROC sumrowcolumns
FOR row:=l to 2 DO
FOR column:=1 to 3 DO
tot'of9 col(column):+votes(row,column)
tot * row(row):+vote s(row,column)
ENDFOR column

ENDFOR row
ENDPROC sumrowcolumns
PROC totalvotes
FOR row:=1 to 2 DO
FOR column:=1 to 3 DO
total'votes’cast:+votes(row,column)

ENDFOR column
ENDFOR row

ENDPROC totalvotes
PROC printtable
ZONE 8
PRINT " ","yes","no","und","total"
// the space " ", was needed
// otherwise, "yes" ends up
// over the word "juniors"
PRINT

L2123

FOR row:=l to 2 DO
count:+1
IF count=l THEN PRINT "juniors”,
IF count=2 THEN PRINT "seniors",
FOR column:=1 to 3 DO
PRINT votes(row,column),

ENDFOR column
PRINT tot * row(row)
// no trailing punctuation in
// the above print command so
// the ZONE command is "kicked"
PRINT

ENDFOR row
PRINT " ",
// the " ", so the first
// column doesn’t end up under
// the word "seniors"
PRINT
PRINT "totals",
FOR column:=1 to 3 DO
PRINT tot’of’col(column),

ENDFOR column
PRINT total’votes’cast

ENDPROC printtable
DATA 9,93,24,35,81,27

Though the program looks long and involved, in reality it is direct.
Through the use of trailing punctuation the various Strings can be put in
their proper place -- and so can the row and column totals. Some will
observe that more could have been accomplished in PROC STOREVOTES.
Quite frankly, that is true. But the programmer must never lose sight of
the user --or, for that matter, debugging. Considering the power of the
program, it is a small price to pay by adding two or even three more
PROCEDURES.
The skills introduced through the detailed discussion of this problem
will be further strengthened in the exercises to follow.

12133

2 3.5 B E F O R E L E A V I N G T H I S chapter, we
should modify the previous algorithm to show how INPUT

can work in place of READ - DATA.
Actually, in "the real world" we would prefer to enter the results of a
questionnaire by INPUT anyway. Typing a program and then having to enter
a DATA line is not convenient to the user.
First, type

list totalvotes
The computer will go into the program and list to the screen all the
lines in the

procedure totalvotes
This procedure, you will remember and will note on the screen, contained
the line

read votes(rows,columns)
We want to replace that line with an INPUT statement. However, it would
be well to add some other lines so that the user will know exactly what
numbers he should type in. Therefore, we will put in some prompts.
The next thing to do is to DEL the line which now reads

read votes(rows,columns)
After that, restructure the procedure totalvotes to be as follows.

PROC storevotes
FOR rows:=1 TO 2 DO
FOR columns:1 TO 3 DO

IF rows=l THEN PRINT "enter senior";
IF rows=2 THEN PRINT "enter junior";
IF columns=l THEN PRINT "yes votes",
IF columns=2 THEN PRINT "no votes",
IF columns=3 THEN PRINT"und votes",
INPUT votes(rows,columns)

ENDFOR columns
ENDFOR ROWS

ENDPROC storevotes
The value of the prompts will become evident when the program is run.
Type in the numbers as they are requested.
RUN the program.

C2143

RECAP

MULTI-DEMENSIONAL arrays are DIMensioned by
ROWs and COLUMNS.

READ and INPUT are the two verbs used to store
data in a the cells of a multi-dimensional
array.

pr*ob lems

1. The results of a survey on the question:
Do you feel we should have a yearbook
that primarily features Seniors?

was—
yes no und

fr 89 26 31
sp 52 73 12
jr 17 90 23
sr 96 11 12

Write a program to sum the rows and columns and tallies the
total number of votes cast.

2. The table below represents the totals of sales made by four
sales people during one week. Write a program to reproduce
the table, complete with all totals.

mon tue wed thu f ri sat

alma 48 40 73 120 100 90
bil j 75 130 90 40 110 85
mary 50 72 140 125 106 92
joan 108 75 92 152 91 87

3. Given 12 "?" marks in a DATA line. Write a program to have
the following three printouts.

t 2153

????
????
????

??????
??????

??
??
??
??
??
??

4. Given the following two arrays:
14 12 26 35 41 21 62 53
45 51 81 17 54 15 18 71

Write a program that will store these two 2 by 4 arrays and
then will add them together — corresponding element plus cor
responding element— and will print out all three arrays.

5. Go back to problem 1 and make the necessary changes in the al
gorithm so that data can be entered as INPUT. Put in the pro
gram prompts.

C 2163

clnap*t©r* twenty-f our
sor-bing

ob j©o-b s

At the completion of the chapter the student will be able to:

1. Write a program using the method of "seeding" a minimum num
ber and a maximum number, to print the largest and smallest
numbers in a list;

2. Write a program to print the largest and smallest numbers in
a list, without resorting to "seeding"; and,

3. Use a simple sort to order a list of items.

comalcomalcomalcomalcomaicomalcomalcomalcomalcomalcomalcomalcomal
c c
o OOPS! I MADE A LINE ENTRY ERROR!! om ------------------------------- m
a a
1 If a program line is correct but typed with odd gaps in it, 1
c put the CURSOR at any position on the program line and c
o tap the letter "A" while depressing the CTRL key. This o
m is particularly helpful for program lines that are more m
a than one line in length. a
1 1
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

2 4 . 1 Q U I T E O F T E N I T is necessary (or of
interest) to find the smallest and largest number in a

given list. It may be that a company would like to know the name of the
salesman who had the most sales for a given period of time; a teacher may
wish to know what the top and bottom scores were on an examination; or, a
person may wish to know the highest and lowest temperatures for a month
at a particular vacatation spot.

C2173

2 4 . 22 4 . 2 W E S H A L L I N T R O D U C E two methods for
arriving at an answer. The first is the simpler of the

two, but it does call for an input on our part. The input will be a
result of a visual scanning of the data to see what is the general range
of the numbers.
The second method will need no such visual scanning --it is a tick more
difficult to understand, but should be well within our grasp by this
time.

2 4 . 3 M E T H O D O N E . G I V E N the following
series of integers

6, 8, 19, 2, 4, 12
It is obvious that 2 is the smallest and 19 is the largest. But how can
we write a program to that end?
Because we are dealing with a DATA line and must read each item in it, we
will use the WHILE-DO loop. The next thing we will incorporate is a
predefined minimum and a predefined maximum. Both of these will be done
O U T S I D E of the loop. After having done that, we will be in a
position to make comparisons within the loop.

-£-

// finding smallest and largest numbers
page
minnum:=999

-££- maxnum:=-999
while not eod do

-££'£-
-££££-

read num
if num<minnum then minnum:=num
if num>maxnum then maxnum:=num
endwhile
print "smallest number is";minnum
print
print "largest number is";maxnum
data 6,8,19,2,4,12
end "search ended"

By setting MINNUM (i.e, minimum number) to 999, which is
very large, then the first number read WILL BE smaller!
And, of course, we are looking for the smallest number.
A visual scan of the data indicated we only needed to set

t 2183

MINNUM to 99, seeing there were no three-digit numbers.
If there had been a four-digit number we would have set
MINNUM:=99999.

-££- The same argument holds for MAXNUM — only in reverse.
-£££- Let’s follow this through by inserting, for each item in

the DATA line, the actual numbers:
if nunKminum then minnum:=num

for the
6 if 6 < 999 then minnum (replaced by) 6
8 if 8 < 6 (it isn't, so go no further)
19 if 19 < 6 (it isn't, so go no further)
2 if 2 < 6 then minnum (replaced by) 2
4 if 4 < 2 (it isn't, so go no further)
12 if 12 < 2 (it isn't, so go no further)

MINNUM, then, is 2
The changes MINNUM went through were
999, 6, 6, 6, 2, 2, 2

-££££- The same general discussion holds for MAXNUM.
The changes MAXNUM will go through are
-999, 6, 8, 19, 19, 19, 19
Observe that in the first READ of the DATA (6), this num
ber is both MINNUM and MAXNUM — which makes sense, for
6 is both larger than -999 and smaller than 999.

2 4 . 4 M E T H O D T W O . G I V E N the same series of
integers

6, 8, 19, 2, 4, 12
How can we write a program without "seeding" MINNUM to 999 and MAXNUM to
-999?
Consider

// finding smallest and largest numbers

C 2193

page

-££-
-££-

-£-

read num
minnum:=num
maxnum:=num
while not eod do
read num
if num<minnum then minnum:=num
if num>maxnum then maxnum:=num
endwhile
print "smallest number is";minnum
print
print "largest number is";maxnum
data 6,8,19,2,4,12
end "search ended"

This is only ONE R E A I D statement. It will READ only the
first number in the DATA line — which is 6. This means
that MINNUM = 6 and MAXNUM = 6 in the following two lines.
Having read the first number in the DATA line, there will
be only five left: 8, 19, 2, 4 and 12.
The basic principle is the same for both of these lines,
so this time let's do the second one step by step

-££-
-££-

-£-

if num>maxnum then maxnum:=num
for the

8 if 8 > 6 then maxnum (replaced by) 8
19 if 19 > 8 then maxnum (replaced by) 19
2 if 2 > 19 (it isn't, so go no further)
4 if 4 > 19 (it isn't, so go no further)

12 if 12 > 19 (it isn't, so fo no further)
MAXNUM then is 19.
The changes MAXNUM went through were
6, 8, 19, 19, 19, 19

£2203

The same general discussion holds for MINNUM.
The changes MINNUM will go through are
6 , 6 , 6 , 2 , 2 , 2

As we can see, this second method is not that much more difficult than
the first. It does have the additional advantage of not having to scan
the data line in order to "seed" artificial minimum and maximum numbers.
In fact, if there were several hundred pieces of data, the scan could be
fruitless — not to mention time consuming. Let the computer do the work.
One doesn’t buy a car and then push it around by hand — or walk to town
instead of driving.

2 4 . 5 F I N D I N G T H E F I R S T and last name
(alphabetically) in a list, is a natural extension of

determining the largest and smallest numbers in an array of numbers.
From Chapter Twelve we know the computer "sees" Strings as numerics. "A"
is 65, "C" is 67 and "Z" is 90 — to name three. It is this property that
will allow us to write a program to find the first and last name in an
array of names.
For example, in the list

bill, heather, stefanie, john, alfred, george
"alfred" is the first name and "stefanie" is the last. In terms of CHR$
numbers, the computer "sees" the first letter in the above as

bill, heather, stefanie, john, alfred, george
1 + t t t t
66 72 83 74 65 71

Therefore, when we ask for the first name, the computer has little
difficulty in locating "alfred" because the value assigned to "a", 65, is
the smallest number in the list; the argument for "stefanie" being the
last name since 83 is the largest number, is the same.
If there were two or more names in a list starting with the same letter,
the computer would then look at the next letter in determining which has
the lesser value (or the greater, if that is what is wanted). Consider

joel, joan, jody, josh
The computer would "see" these names as

j o e i, j o a n, j o d y, j o s h
74 79 69 76, 74 79 65 78, 74 79 68 89, 74 79 83 72
each has the first two letters as 74 and 79, the computer will

have to go to the third letter before it can determine which is first
name and which is last. In this list, respectively, it is "joan"

C 2213

(because the third letter, "a”, has the lowest value of any third letter)
and "josh" (because the third letter, "s", has the highest value of any
third letter).
The algorithm for such a program is

// finding first and last name in a list
page
read name$
firstname$:=name$
lastname$:=name$
while not eod do
read name$
if name$<firstname$ then firstname$:=name$
if name$>lastname$ then lastname$:=names$
endwhile
print "first name on list is";firstname$
print
print "last name on list is";lastname$
data "jack","george","zelda","henry","albert","bill","mary"
end " "

A modification of this algorithm will allow us to use it as an INPUT
program. This is more nearly what we would like in the "real world"
anyway.

// input names
// finding the first and last names on a list
page
input "how many names? ":howmany
dim name$ of howmany
input "enter name 1? name$
firstname$:=name$
lastname$:=name$

-£- for names:=2 to howmany
-££- print "enter name names,

input name$

C2223

if name$<firstname$ then firstname$:=name$
if name$>lastname$ then lastname$:=name$
endfor names
print "first name on list is";firstname$
print
print "last name on list is";lastname$
end " "

Because we already have had one name entered, then the
loop must start at one greater — hence

2 to howmany
with "howmany" as the ending control variable in the
FOR-DO loop.

-££- Because, in a previous line, we stated
"enter name 1? "

we add the variable "name" from the FOR/DO loop in
order to get the following output

enter name 2?
enter name 3?

et cetera
Enter the program and RUN it. For the first two or three times, use
inputs of 3 or 5 names — then try one of 15 names.

2 4 . 6 T H I S I S F I N E for finding (alphabetically)
the first and last names; but, in reality, what we

really want is a program to order an entire list of names.
This is called sorting.
There are all sorts of sorts: bubblesort; insertion sort; quicksort;
merge sort; block sort; collating sort; tag sort; shakersort; and,
selection sort — to name a few
The primary goal of a sort is to order data as quickly as possible. (In
fact, the esoteric, unspoken, "shangri-la", goal of programmers is to
write an algorithm that will be able to take an infinite list of items
and order it instantly! None of them will admit to it, but it is there,
nevertheless.) To that (secret, but unconfessed) end, a great deal of
time and effort has been expended in refining the many sorting algorithms

C223H

available — in hopes of developing that O N E program which will solve
d_-t a l l i
The truth is, each has their strengths and their weaknesses. Highly
refined sort algorithms are so long they do not work well for limited
data; simpler programs are not efficient for long lists of data.
Studying the many different sorts is best left to an advanced text. This
chapter will introduce the basic concepts behind a sort through the use
of an elementary, but quite efficient one — the SELECTION SORT.
A SELECTION SORT does just that — selects. It will search an array for
the first item, then it will look for the next and so forth, until the
array is ordered in the manner the programmer originally defined. (This
may mean, for example, the programmer wishes the items to be listed in
ascending or reverse alphabetical order — or, perhaps, in some other
manner.)
The first thing we will need to do is store the items in an array; having
done that, we then can exchange them from cell to cell, until they are
ordered according to the specified criteria.
For purposes of illustration, we will order the following five names in
ascending order.

ted, lou, bob, zed, jon
With but five names, the final order can easily be seen to be

bob, jon, lou, ted, zed
As we have done before, let’s begin with the algorithm. This time, we
will list program line numbers to facilitate the explanation.

1000 PAGE
1010
1020 DIM name$(5) OF 3,temp$ OF 3
1030
1040 FOR lyst:=l TO 5 DO READ name$(lyst)
1050
1060 FOR begin:=1 TO 4 DO
1070
1080 smaller:=begin
1090
1100 FOR swap:=begin TO 5 DO
1110
1120 IF name$(swap)<name$(smaller) THEN smaller:=swap
1130
1140 ENDFOR swap
1150
1160 exchange
1170
1180 ENDFOR begin
1190
1200 PROC exchange

C 2243

1210
1220 temp$: =name$(begin)
1230 name$(begin):=name$(smaller)
1240 name$(smaller):=temp$
1250
1260 ENDPROC exchange
1270
1280 FOR sorted:=1 TO 5 DO PRINT name$(sorted)
1290
1300 DATA "ted","lou","bob","zed","jon"
1310
1320 end " "

LINE(S) COMMENTARY

1020 We must DIMension the array, NAME$. Because we are going
to work with 5 names, we will set aside 5 cells.
In PROCEDURE EXCHANGE, we will be using TEMP$, it too must
be DIMensioned for the maximum length of any name. In this
illustration we have purposely kept all names to 3 letters.
Note the array NAME$ is DIMensioned for 3 characters.

1040 This is one-liner FOR-DO loop to place the 5 names in 5
cells (1 through 5) of the array.

1060 This loop begins the selection and exchange process. If we
are to order five names, then placing four of them in pro
per sequence automatically takes care of the fifth one!

1080 The role this statement plays will be seen soon.
1100-40 We initialize the variable

swap
in the FOR-DO loop at

begin
because, once we exchange "bob" from its present position
in cell 3 to cell 1, we are NO LONGER interested in cell
1 but, instead, want to put the next name (jon) in cell 2.
The variable

begin
will change in value from 1 to 2 to 3 to 4 on successive
trips of the outside loop --therefore the nested loop will
have the appropriate beginning value on each of its trips.

C225H

1120 This line is the first of two very essential pieces of
logic. We shall follow it in some detail
But before we do, note the use of the subscript SMALLER
in the second part of the IF portion of the IF-THEN state
ment. We set SMALLER equal to BEGIN on line 1050. This
means that when "bob" (as the first example)' is placed in
cell 1, the succeeding values of SMALLER will continue to
be one larger than each name whose position has been moved.
This is so, because BEGIN in the outer loop takes on values
one greater than on the previous trip. With SMALLER being
replaced with the new values of BEGIN each time around the
outer FOR-DO loop, there will be no mixup in where to place
each succeeding name.

Here is a detailed run of line 1120 for the first trip of the outer loop.

* *
* IF name$(swap)<name$(smaller) THEN smaller:=swap ** *
**

1. IF name$(1) < name$(1) THEN smaller:=swap
IF ted < ted THEN (not so — no action)

2. IF name$(2) < name$(1) THEN smaller:=swap
IF lou < ted THEN smaller:=2

3. IF name$(3) < name$(2) THEN smaller:=swap
IF bob < lou THEN smaller:=3

4. IF name$(4) < name$(3) THEN smaller:=swap
IF zed < bob THEN (not so --no action)

5. IF name$(5) < name$(3) THEN smaller:=swap
IF jon < bob THEN (not so — no action)

12261

* *
* At the conclusion of the first run the variables *
* SMALLER and BEGIN have these values: *
* *
* smaller=3 ** *
* begin=l ** *

At this point, the computer falls into line 1160
exchange

Of course, we recognize this as a PROCEDURE call.
PROC exchange
temp$:=name$(begin) temp$:=name$(1) temp$ = ted
name$(begin):=name$(smaller) name$(1):=name$(3) name$(l) = bob
name$(smaller):=temp$ name$(3):=temp$ name$(3) = ted

ENDPROC exchange
At the conclusion of the EXCHANGE, "ted" has been placed in CELL 3 and
"bob" in CELL 1. The computer, after having completed PROCEDURE
EXCHANGE, returns to line 1080, falls through to 1090 and begins a second
trip through the FOR begin-DO loop. Now BEGIN equals 2 and because of
line 1080, so does SMALLER. The selection process begins again, only
this time the names in the array NAME$ have been re-ordered to read

bob, lou, ted, zed, jon.
Here is the run for the second trip of the outer loop,

begin = 2
smaller = 2

**
* *
* IF name$(swap)<name$(smaller) THEN smaller:=swap *
* * **

1. IF name$(2) < name$(2) THEN smaller:=swap
IF lou < lou THEN (not so --no action)

2. IF name$(3) < name$(2) THEN smaller:=swap
IF ted < lou THEN (not so — no action)

C 2273

3. IF name$(4) < name$(2)
IF zed < lou

THEN smaller:=swap
THEN (not so --no action)

4. IF name$(5) < name$(2)
IF jon < lou

THEN smal1er:=swap
THEN smaller:=5

* * ****** * ** * ** ***** * ****** * **** * ** ** * * * ******* ** * * * *
* *
* At the conclusion of the first run the variables *
* SMALLER and BEGIN have these values: *
* *
* smaller=5 *
* *
* begin = 2 ** ***

At this point, the computer falls into line 1160
exchange

again.
PROC exchange

temp$:=name$(begin) temp$:=name$(2)
name$(begin):=name$(smaller) name$(2):=name$(5)
name$(smaller):=temp$ name$(5):=temp$

ENDPROC exchange
At the conclusion of the EXCHANGE, “jon" has been placed in CELL 2 and
"lou" in CELL 5. Once more the computer returns to line 1080, falls
through to 1100 and begins a third trip through the FOR begin-DO loop.
BEGIN is now 3 as is SMALLER. The selection process begins again, only
this time the items in the array NAME$, have been re-ordered to read

bob, jon, ted, zed, lou
Because of the speed with which a computer works, lists of moderate
length can be ordered fairly quickly. But, because a SELECTION SORT must
evaluate each item (less one) E V E R Y T I M E , it doesn’t take much
to realize that this sort is not efficient for long lists. Still, it is
a sort and if time is not a critical factor, its simplicity makes it
quite useful.
After the fourth trip, the computer falls into line

temp$ = lou
name$(2) = jon
name$(5) = ted

C 2283

1280 A one-liner FOR-DO loop to print the names that have been
rearranged in the CELLs in alphabetical order.

RECAP

THE better method for determining the largest
and smallest -or, first and last items is
to make comparisons after having READ the
first item outside of the program loop.

THE role of sorts is to order an entire list.

prob1ems

1. Find the smallest and largest numbers in the following list
84, 375, 83, 569, 106, 215, 314, 806, 800, 303

2. Find the smallest and largest numbers in the following list
4.77, 3.03, 8.765, 7.653, 1.18, 0.314, 0.194, 7.77, 9.936

3. Take the same numbers in problem 2 and print the following
their sum;
their average;
the largest number; and,
the smallest number.

(ANSWERS: SUM = 43.612; AVERAGE = 4.84577778; SMALLEST = 0.194;
LARGEST =9.936)

4. Generate 10 random numbers between 164 and 219 and print them
to the screen. Determine which is the largest and the smallest.
(A FOR-DO may be the best bet here.)

5. Generate 10 random numbers between 23 and 98 and print them to
the screen. Determine their average. Tell how much the largest
and then the smallest number differs from that average.

6. Order the following names in:

E 2293

6.1 Ascending order; and,
6.2 Reverse alphabetical order.

jack, george, alfred, heather, beth, may, albert, zelda,
zelga, henry, alf, john, josh, mary, vada, winnie-goo

7. Place the months of the year (in their present order) in a data
line and then arrange them alphabetically.

8. Go back to Chapter 22, problem 1 and enter the names of the
towns as they appear. Print their complete names in alphabeti
cal order.

9. Generate, at random, 20 three-letter nonsense words and store
them in an array. Print the "words" to the screen as they are
generated. Then print them in alphabetical order.
(Hint: Use a nested loop. This loop will be from 1:=3. Inside
that loop include the line

print chr$(rnd(65,90),
Make the outside loop 1:=20.)

SUN MON TUE WED THU FRl SAT

p a s s l MON SON TUE WED THU FR1 SAT

p o s s e IY\0N Fft\ TOE WED THU SUN SAT

poss 3 MOtvl FRl SAT WED THU SUN TUE

pass 4. MON F R \ SAT SON THU W e d TOE

pass 5 MOM FW SAT SON THU TUE WED

C 2303

chapter ■bwen'by' —f iv©
±n-broduc*tion "to if: d_ IL o s

ob j ©c-biv©s

At the completion of the chapter the student will be able to:

1. Define the relationship between a record and a file;
2. Tell the difference between a sequential and a random file;
3. State, in proper order, the six steps to be followed

in writing a file;
4. Write a sequential file to enter data;
5. Write a program to retrieve data placed in a sequential file
6. Use either a FOR-DO or REPEAT-UNTIL loop in a file program;
7. Write a random file to enter data;
8. Write a program to retrieve data placed in a random file:

8.1 All the data;
8.2 Any specific item in the file; and,
8.3 Specific items that contain a common

sub-$tring of the larger $tring.
and,

9. Use either a FOR-DO or REPEAT-UNTIL loop in a random file
program.

E 2313

comalcomalcomalcomalcomalcomalcoraalcomalcomalcomalcomalcomalcomal
c c
0 CHANGING COMPUTER FROM COMAL TO BASIC o
m ------------------------------------- m
a a
1 To run programs in BASIC, the COMAL cartridge has to be 1
c "turned off" first. To do this, type c
0 o
m basic + <RETURN> m
a a
1 Once the BASIC heading appears on the screen, programs in 1
c that language can be used. c
0 o
m To return to COMAL, type m
a a
1 sys 50000 + <RETURN> 1
c c
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

2 5 . 1 W E S H A L L C O N S I D E R , in a most cursory
manner, two types of files.

1. sequential
2. random.

Files, to merit usefulness, need to be of a substantive nature. Creating
a file --say, for 10 names or 8 pieces of information, though of some
limited value, is not really worthy of the effort — much like buying a
computer system (complete with a printer) just for the purpose of
balancing a home checking book, doesn’t justify the investment of a
thousand dollars.
Though file development is not "horrendously difficult", the longer the
file and the more substantial it is — the more need there is for memory
space and the more appreciable the problems become in handling data input
and retrieval. Writing and developing files is rather a unique
discipline in itself; still, with a little work, the technique can be
mastered and we can end up designing files that fits our particular
demands.
We will introduce and explain the principles of files through the
creation of some very elementary ones.
2 5 . 2 A R E C O R D I S an element of a F I L E — much
cards,

like
or 12th grade is

the JACK OF
an element

CLUBS is an element
of HIGH SCHOOL.

of a deck of

RECORDS may contain a single iteml of information (a letter of the
alphabet, a question mark, et cetera) or a "whole lot of things.

2 5 . 3 F I L E S A R E A compilation of RECORDS. The
HIGH SCHOOL F I L E is a compilation of 9th grade,

C 2323

10 th grade, 11th grade and 12th grade.
If, to talk with a student in the 11th grade, we had to start with the
first student (alphabetically) in the 9th grade and "walk past" each
student in the 9th grade, the 10th grade and partially through the 11th
grade until we "retrieved" the 11th grade student we wanted to talk with,
the F I L E , HIGH SCHOOL, would be called

S E Q U E N T I A L
If, on the other hand, we can go directly to that student (by-passing the
9th grade, the 10th grade and the rest of the students in the 11th grade)
then F I L E , HIGH SCHOOL, would be called

R A N D O M
2 5 . 4 T H E R E A R E S I X steps we must attend to in

the developing of a file.
S T E F 1 --- C R E A T E A F I L E .

In some languages there must be a separate statement
for creating a file. COMAL does not require this.

S T E F 2 --- O F E N T H E F I L E .
When, in COMAL, we OPEN a file, it is also "created."
What we are doing is "reserving" a place within the
computer; that is, we are informing the computer we
are going to create a file and we want space reserved
for this activity.
The mechanical statement is
O F E N F I L E T ,
"OPEN FILE" is a system command and will initiate the
necessary action to set aside space for a file.
The "7" is the channel number. It can be any number
from 1 through 255.

S T E F 3 --- N A M E T H E F I L E .
The file must have a name --and, it seems obvious, the
name should be relevant to what the file is about. If
the file concerns birthdays, then the above state
ment should be added to, to read
OPEN FILE 7, "BIRTHDAYS",
The commas are essential.

S T E F 4 --- W R I T E T O A F I L E .

£ 2333

Having established the protocol to begin a file, the next
logical thing to do is to put data into the file. This is
called W R I T I N G T O A F I L E .
The statement can now be completed to read
OPEN FILE 7, "BIRTHDAYS", WRITE
(If the file is to contain Strings then, of course, it must
be DIMensioned.)

DIM name$ of 20
OPEN FILE 7, "BIRTHDAYS", WRITE

S T E F 5 --- R E A D F R O M A F I L E .
Having placed data into a file, we certainly want to be
able to take it out — printing either to the screen or
to a printer.
To do this, the following statement is typed
OPEN FILE 7, "BIRTHDAYS", READ
If the file contains Strings, then it must be Dimensioned.

DIM name$ of 20
OPEN FILE 7, "BIRTHDAYS", READ

S T E F B --- C L O S I N G A F I L E .
Once the file has been OPENed, it is important to advise
the computer when we are finished with either entering
data or reading the data.
C L O S E is a housekeeping task, that keeps the file
in order, protecting it for future use.

2 5 . 5 S E Q U E N T I A L F I L E S A R E just that
— sequential. In order to read --say, the fifth

record, the computer must read the first four. Once it has located the
fifth, it will print it to the screen or to a printer --whatever we have
specified.
To clarify the file concept, we shall create (WRITE) a file and then take
the data and (READ) the file — printing it to screen. Enter the
following program BUT BEFORE RUNNING OR SAVING IT, BE CERTAIN TO WAIT
UNTIL THE INSTRUCTIONS ARE GIVEN!!

// sequential file
// sample String file

C 2343

dim letters of 1
open file 7, "alpha”, write
for recnum*. =1 to 10 do
letter$:=chr$(rnd(65,90))
write file 7: letters
endfor recnum
close

If the program was typed correctly it will look like this when LISTed.
// sequential file
// sample String file
DIM letters OF 1
OPEN FILE 7, "alpha", WRITE
FOR recnum:=1 to 10 DO

letters:=CHR$(RND(65,90))
WRITE FILE 7: letters

ENDFOR recnum
CLOSE

R E A D C A R E F U L L Y !
1. SAVE the file first. Use

SAVE "alpha file"
By SAVEing it, it will be placed on the disk as a PRG,
instead of a SEQ file. This means we can recall it
and make changes to the program if we wish — or just
have it for study and/or reference.
2. RUN the file.
In this particular program, ten letters will be gener
ated at random from the alphabet and stored in RECORD
NUMBERS 1 through 10 (recnum). Further, the FILE will
be created and placed on the disk.

Now that the file has been created, the next thing we want is to be able
to get the information (READ) out. This will call for the following
program.

// sequential file
// READing information in ALPHA file
dim letters of 1
open file 7, "alpha", r'ead.
for recnum:=1 to 10 do

: 2351

read file 7: letter$

print letter$;
endfor recnum
close

W A I T !!
Before RUNning, SAVE the program.

save "getalphafile"
And for the same reasons as given previously.
RUN the program.

If we are not certain how many entries there are in the file, we can
alter our program to be

// sequential file
// READing information in ALPHA file
dim letters of 1
open file 7, “alpha", read
R E F E A T
read file 7: letterS
print letterS;
U N T I L E O F (T)
close

E O F is a system command in the same sense as E O D - It means END OF
FILE.
In fact, any COMAL logic is just as applicable here to FILE programs as
to other aspects of programming.
Type NEW, and then LOAD “getalphafile".
Make the necessary changes to the two lines in the program (replace them
with REPEAT and UNTIL E0F(7)). RUN this program again.
Note the printout is the same as for the original READ file program. In
fact if we RUN this several times, we will continue to get the same
printout. The author had

d u a d g m q x c g
Logically, this is so because in the WRITE file we generated 10 letters
and STORDED THEM AS 10 RECORDS. Having stored (FILEd) them, they are not
going to change!

£2363

At this point type N E W again. Load “alpha file" from the disk. And
on the line which reads

OPEN FILE 7, “alpha", WRITE
type

OPEN FILE 7, "@0:alpha", WRITE
Don’t do anything more as yet!
Now, when it is time, the — @0:— will allow the original “alpha" file to
be over-written. So, at this point, type

save “@0:alpha file"
Here, also, the — @0:— will over-write our “alpha" save statement on the
disk. (There is no point in “cluttering" our disk with repetitive
files.)
R U N n i n g the "@0:alpha" (please do) will create another 10 random
letters to be stored.
Type NEW and LOAD the "getalphaf ile". RUN it and note there is a
different output.

2 5 . 6 H E R E I S A N O T H E R simple program. Copy it
to the computer.

// another sequential file
// storing a name
dim name$ of 40
open file 2, "name", write
input "type your name":name$
print file 2: name$
close

SAVE the program first, call it
SAVE "name$ file"

Then RUN it. When asked for your name, type it in and tap RETURN.
To retrieve, type (after the "NEW" command),

// read sequential file, "name"
// name file
dim name$ of 40
open file 2, "name", read
input file 2, names$

£ 2373

print name$
close

R U N this, and the name entered, will be retrieved to screen.
Let’s modify this a bit, so we can type in the names of five students
sitting in this computer class.

// sequential file to
// list 5 student names
dim name$ of 40
open file 2, "@0:name", write
for recnum:=1 to 5 do
input "type the names ":name$
print file 2, name$
endfor recnum
close

And a small program to retrieve them.
// sequential file to
// print names of students
dim name$ of 40
open file 2, "name",read
for recnum:=1 to 5 do
input file 2: name$
print name$
endfor recnum
close

2 5 . 7 A N E X P A N S I O N O F this basic concept can
lead to a file containing several bits of information

in the same record.
We shall create a file of the starting five basketball players for a high
school. In the record we would like

1. jersey number
2. name
3. height
4. shooting percentage

We will call them, respectively,
1. jrsynum$
2. name$
3. tall$
4. shotp$

Because we know exactly how many there are, we can enter them as DATA

t 2383

line items.
// Basketball player file
dim jrsynum$ of 2,name$ of 20,tall$ of 7,shotp$ of 3
open file 3,"teamplayer",write
for rec:=l to 5 do
read jrsynum$,name$,tall$,shotp$
write file 3:)rsynum$,name$,tall$,shotp$
endfor rec
close
data "11","ted short","6ftllin","80%"
data "15","bob tall","7ft3in","74%"
data "21","lou taller","7ft8in","87%"
data "32","sam shorter","6ft3in","92%"
data "41","ray tallest","7ftllin","98%"

And, to retrieve them
// basketball player file
page
dim jrsynum$ of 2,name$ of 20,tall$ of 7, shotp$ of 3
open file 3,"teamplayer",write
for rec:=l to 5 do
read file 3:jrsynum$,name$,tall$,shotp$
print jrsynum$;name$,tall$,shotp$
endfor rec
close

Remember, even though we only may want one line of data, the whole file
(in a sequential file) must be read before that information can be found
and printed.
Delete the line that calls for

print j rsynum$;name$;tal1$;shotp$
and in its place, using AUTO increments of 1, add

if jrsynum$="21" then
print name$;shotp$
elif jrsynum$="41" then
print name$;shotp$
endif

RUN the program and note the printout.

C 2393

2 5 . 8 A RANDOM F X L E would be extremely useful
for a school librarian. If a student wanted books on a

certain subject, the librarian — through the use of a computer— could
call out all the books that contained that word in their title. And,
with further ramification of the library file system when it is first
installed (and kept up to date as new books are accessioned) could list
other titles that addressed the subject matter in question. This is why
files are so powerful — but, also, why they take a great deal of work
when designed to accept information, and to search the file for the
purpose of retrieving information. A SEQUENTIAL FILE for a 50,000-volume
library would make tedious work of even the simplest of tasks. A RANDOM
FILE, on the other hand, is the tool for the job.

2 5 . 9 T H E L I N E T O open a random file takes the
format of

OPEN FILE 4, "STUDENT LIBRARY",RANDOM 45
We recognize the first part as being the same as required for a
sequential file, namely:

OPEN FILE 4, "STUDENT LIBRARY",
The next part

RANDOM
is the COMAL command for setting up a RANDOM FILE for both W R I T E i n g
to, or R E A D i n g from a FILE.
The

45
indicates the size of each entry. The longest title (+ 2) would be the
guide for entry length. (Keep in mind though, provisions for the size of
the entries must be increased if --say, the author and the Dewey number
are included in each record. We will talk to that in a bit.)
Commercial library programs that already exist for the purpose of shelf
lists and the daily checkout of titles (complete with provisions for
entering the due date and name of the borrower) have designs that allow
for entries on a do-as-you-can time basis. The following illustrations
are for demonstrating the essential characteristics of a random file, and
do not pretend to offer the sophistication needed for the typical school
library. Indeed, the space provisions required, exceed the memory
capacity of many micro-computers.
Enter the following program.

// mini random file demonstration
// using library books

C 2403

-£-
input "number of books in data lines? ":number
dim title$ of 45

-££- open file 5, "books", random 45
for num:=1 to number do

-£££- read title$
-££££- W R I T E file 5,num:title$

endfor num
close

Before SAVEing this, enter the following titles as DATA statements — one
to a program line.

Understanding Pascal
Computer Studies with Comal
Basic for Students with Applications
Pascal
Okidata Personal Printer User’s Manual
Structured Programming with Comal
The Amazing Adventures of Captain Comal
Using Basic
Introduction to Pascal
Comal 80
Commodore 64 Programmer’s Reference Guide
Pascal A Considerate Approach
Beginning Comal
The Comal Handbopk
Easy Script, Commodore 64
Computers First Book of VIC

SAVE the program first, before RUNning it. This way we can retrieve it
if there are any errors.
When we list the CAT (or DIR), note the file is saved as a R E L FILE.
RANDOM files are saved as RELATIVE files.

C 2413

-££-

We are making provision for 45 bytes of information
in the name of each title.
This, of course, would be for the longest name. If
a name "gets out of hand", then a meaningful abbre
viation is certainly called for.
In general, integers are counted as 2 bytes, real
numbers as 4 bytes, and Strings (including the spaces
between each String) two more than the actual number
of characters.
At this point, however, 45 is a generous allowance.
For hundreds of titles, space allocation becomes quite
critical.
Note there is no comma after RANDOM. The name of the file
is BOOKS.

-£££ - The READ is not the same as in sequential files; here
it is to get the information put on the DATA lines.

-££££- W R I T E is the command to put the information into the
file. Also observe that each entry is preceded by an
integer — specified by "num" from the variable of the
FOR-DO loop.

2 S . l O H A V I N G C R E A T E D T H E file "BOOKS",
let’s write a program to retrieve the entire file to

the screen.
Enter the following. Be certain to SAVE it first, before RUNning

// mini random file demonstration
// getting a printout of library books
input "number of books ";number
dim title$ of 45

-£- open file 5,"books",random 45
-££ - for num*. =1 to number do

-£££ -
input file 5 , num*. title$
print num;titles
endfor num

5=2423

close

-£-

-££-

When the computer "sees" this command, it goes to the
disk, searches for the file "books" and opens it up
for retrieval of information — or to add more to it
if that is what the user wants to do.
We could change the varibles in the FOR-DO loop to
start at a number other than one.

-£££- It prints both the record (num) number and the title.

2 5 . 1 1 I F A S T U D E N T wanted to know what books
there were on COMAL, the librarian could step over to

the computer, enter a program similar to the following and get the
selected list.

-£-

page
// limited library file
// getting title of books containing "COMAL"
input "how many records to search? ": number
dim title$ of 45, wordintitle$ of 15
count:=0
open file 5, "books",random 45
repeat
count:+1

-££-
input file 5,num:title$
searchtitle("comal",title$)
until count=number
close
end "end search for titles"

-£££- proc searchtitle(wordintitle$,bookname$)
-££££- if wordintitle$ in bookname$ then

print
print count;booknames$
endif
endproc searchtitle

) |c :>fc :>fc 3>fc

C 2433

-£- A FOR-DO could be used just as well.

-££- We recognize this as a PROCEDURE call. We have not studied
about parameters listed in parentheses after a procedure
name.
What we have is parameter passing. There is a great deal
of power in this, but a discussion will have to be left
to an advanced text.
Meanwhile, note the statement format in terms of how it
is entered.

-£££- If we put the two lines one above the other, we have

searchtitle("comal" ,title$)
T f

proc searchtitle(wordintitle$,bookname$)

-££££- Here WORDINTITLE$ corresponds to "comal,, and BOOKNAME$
corresponds to "title$".
What this command does, is to say, "If you find COMAL in
any of the names of the books (title$) then print out
the number (count) of the book and its title (bookname$).

After this is RUN, we will get the following titles to the screen.
2. computer studies with comal
6. structured programming with comal
7. the amazing adventures of captain comal

10. comal 80
13. beginning comal
14. the comal handbook

2 5 . 1 2 I F T H E P R O G R A M in 25.10 listed the
entire file to screen, and the program in 25.11

printed the names of the books containing the word "COMAL in their title,
then it is apparent each record had to be searched --just like in a
sequential file.
To gain direct access to an entry in the random file "books", a program
similar to the following could be used.

£ 2443

page

// limited library file
// getting a specific book by entry number
input "what book entry do you want? number
dim title$ of 45
open file 5,"books",random 45
input file 5,number:title$
print
print number;title$
close
cursor 21,1
end "end search for book name"

If we enter "13" to the inquiry,
what book entry do you wish?

The title,
13. BEGINNING COMAL

will be put on the screen.
In a library system containing thousands of book, we can modify the above
program to accept a title entry and return the Dewey catalog number.

25.13 C E R T A I N L Y , T H I S I S , as stated earlier, only a
cursory discussion on files. And in terms of the example of a

school library, it must be evident a great deal more elegance is needed
in the programs to make the file of any real value. Book titles should
contain the DEWEY number. Searching a whole library for books on COMAL
is not sensible. Major divisions of a book cataloging system would be
recorded on separate discs. For example, if computer languages are
listed in the 500’s, then a disc with just those listings makes sense.

C 2453

RECAP

SEQUENTIAL files must be searched one record
at a time, beginning with first record.

RANDOM files may be accessed in any order.
ALL files must be OPENed to either WRITE to

or READ from them.
AFTER WRITEing to or READing from a file it

must be CLOSEd.

prob1ems

PROBLEMS FOR SEQUENTIAL FILES

1. Create a file to store 15 letters selected randomly from the
alphabet. Print the letters in sequence as filed and then
in reverse sequence.

2. Create a file to store 20 random numbers from 20 through 80.
2.1 Print a table of two rows.
2.2 Print the numbers in the first row and

a running sum in the second.
3. Create a file to store the names of ten teachers --and retrieve

the list.
4. Create a file to store your school schedule (or your morning rou

tine on Sunday). Retrieve it.
5. From the file in problem (4), print only your 4th and 7th period

data (or what you do from 9-10 and 11 -12 on Sunday).
7. Get the roster of a football team. Place 11 junior and/or

senior players in a file. Have the following data in the file:
grade as a non-string item
name as a String
weight as a non-string item
position as a String item.

112463

7.1 List the entire file.
7.2 List those in grade 12
7.3 List those who weigh more than 150 pounds.

PROBLEM FOR A RANDOM FILE

8. Create a RANDOM file of 25 entries. The subject matter is left to
you — a record filey tape file, birthday file with dates, boy/girl
friend file with phone numbers, or something else that lends itself
to being filed.
Write four programs to-

8.1 Create the file;
8.2 Get the entire file printed;
8.3 Get selected printouts that reflect some one word

common to several items; and,
8.4 Get a specific file by entry number.

t 2473

chapter “bwen-by-six
-fcrhe grapHic tur-bl©

obj ©cb iv©s

At the completion of the chapter the student will be able to:

1. Move the turtle forward, backwards, at a right angle — either
to the left or to the right;

. 2. Move the turtle at any angle;
3. Hide the turtle and recover the turtle;
4. Change the colors of the border, the background and the

pencolor;
5. Write a program to produce a polygon of any number of sides;
6. Write a program to produce any portion of a circle and at

any place on the screen;
7. Paint (fill); and,
8. Write a program to create an abstract "painting."

comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c c
0 TURTLE SIZE o
m ---------- m
a a
1 The turtle can be set to 11 different sizes. The command 1
c for this is c
0 o
m turtlesize(<size>) m
a a
1 <size> runs from 0 (smallest) through 10 (default size). 1
c c
comalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomalcomal

C 2483

2 6 . 1 O B ’ T H E : E L E V E N packages the COMAL 80
cartridge has, the TURTLE is a great deal of “fun" and

interest. Access to this package is by one of two methods.
1. Type USE TURTLE, or
2. Tap the dE 3 key.

A triangular "turtle" appears and is "sitting" in the middle of the
screen (which is its HOME position) facing north.
The turtle draws lines. And to make it do so, we have to give it
commands.
We shall start with ten commands. After we have demonstrated how they
work, take time to produce more pictures. With the background we now
have, we know there must be an easier way to get these same pictures
without having so many individual commands. However, time spent on these
fundamentals will pay off when we introduce some programming techniques
later.
Turtle Graphics (or LOGO) is another discipline which can be studied in
great detail. The purpose of this chapter is to introduce the subject.
For further in-depth study, a good tutorial is recommended.

2 6 . 2 T O G E T T H E : turtle to move forward, we will
tell it to do just that. (Enter these commands. Be

certain to + <RETURN> after each entry.)
FORWARD(40)

It will also move backwards.
BACK(50)

It will turn a 90 degree angle — either right or left.
RIGHT(90)

and then,
FORWARD(10)
LEFT(90)

and then,
FORWARD(50)
LEFT(90)

and then,
FORWARD(10)

£ 2493

To hide the turtle so that we may see our final figure clearly, type just
that.

HIDETURTLE
The turtle disappears, and we have a narrow rectangle.
To clear the screen, type

CLEAR
Then, to get the turtle back to its HOME position, type

penup
home
showturtle

and we are ready to start another picture.
When TURTLE is first loaded, the is down — i. e. , when the turtle
is moved, it will draw a line. If we want to move the turtle and not
draw a line, then we must give the command

penup
To start drawing again, don’t forget to issue the command

pendown.
Because we cleared the screen after we hid the turtle (hideturtle) we
must give the command

showturtle

2 6 . 3 T H E R E A R E S O M E abbreviations for these
commands which will ease the typing chores a bit.

FORWARD = FD
BACK = BK
RIGHT = RT
LEFT = LT
PENDOWN = PD
PENUP = PU
HIDETURTLE - HT

C250:

SHOWTURTLE ST
CLEARSCREEN = CS

Now, take these commands and create several pictures. Be certain to
employ as many of them as possible. By the way, we are not restricted
only to 90 degree angles. We can issue commands of any angle from 0
through 360 degrees.

RIGHT(72)
LEFT(105)
LEFT(84)

are valid commands.

2 6 . 4 I N D R A W I N G P O L Y G O N S an essential
concept is the sum of the exterior angles. No matter

how many sides a polygon has, the sum of the exterior angles is
a l w a y s e q u a l *to 3 6 0 d e g r e e s .
Study this figure of a regular polygon (equal sides and equal interior
angles) of 5 sides — a pentagon.

Therefore, when drawing polygons, the angle specified for the turtle to
turn is the value of <z>na EXTERIOR ANGLE.
Enter these two lines (after typing NEW and tapping f3).

C 2513

fd(50)
rt(72)

Now, rather than type them four more times, take the CURSOR up to the
f d (S O) command and tap RETURN. Do the same for the (T 2) .
Repeat the procedure until the pentagon is drawn. (3n.-fc will remove the
turtle.)
If it is a regular pentagon, then why does the shape look distorted? It
is because of the pixels that make up the screen. They are not actually
square. The "up-and-down" dimension is greater than the "right-and-left"
dimension. To demonstrate this even further, type these two lines (don't
forget NEW and f3) — which should give one side of a square-- and employ
the same technique (using the CURSOR) as above, with

fd(50)
rt(90)

We should have ended up with a square, 50 units on a side. Well, we did
— but the left-and-right pixel dimension is "skinnier" so we ended up
with a rectangular square (a contradiction in terms, of course). To get
a "square" on the screen, enter this (remember, NEW and f3).

fd(37)
rt(90)
fd(50)
rt(90)
fd(37)
rt(90)
fd(50)
ht

In addition to pixel dimensions, the distortion present in the monitor
tube also contributes to making a square somewhat rectangular in shape.
CLEAR the screen, HOME the turtle, and show (ST) it.

2 6 . 5 T H E T U R T L E A L S O can draw arcs and
circles. To draw a circle from any current position

that the turtle is in, type
arcl(60,360)

Again, the circle is not a "circle", looking more like an ellipse because
of the pixels.
The first number in the parentheses is the length of the radius; the
second, the size of the angle. If we had wanted a semi-circle, we would
have made the second number 180.
Without clearing the screen, take the cursor up to the first figure (the
radius) and put in different values. If we specify enough, the resulting
figure looks either like we are peering into a tunnel or taking a skew
look at the outside of a cone --depending on what "trick" our eyes play.

C252:i

If we want the circles drawn to the right instead of to the left, then
issue the command

arcr(60,360)
If we wish to specify a circle or arc be drawn at a position different
from where the turtle currently is, then we issue the following command.

arc(<centerX>,<centerY>,<radius>,<start angle>,<size>)
Before analyzing the parameters of the command, let’s lay out the monitor
screen in terms of the pixel location values.

-159,99 159,99
+---------------------- +

*
0,0

+---------------------- +
-159,-99 159,-99

If, in using the above command, we want to draw a circle of radius 60 in
the middle of the screen, the command would be

arc(0,0,30,0,360)
Enter the command and run it. Change the value of the radius until
several concentric circles are drawn.
Without clearing the screen, move the center of the circle to the left by
typing

arc(-50,0,30,0,360)
Again, change the value of the radius several times.
Now move the center to the right.

arc(50,0,30,0,360)
And up on the Y-axis, but in the middle of the X-axis,

arc(0,50,30,0,360)
And, finally down the Y-axis, but still in the middle of the X-axis,

arc(0,-50,30,0,360)
The S T A R T A N G L E can be anything we wish. "0" starts at 3

C 2533

o’clock; 90 at 12 o’clock, and so on. S I Z E , refers to how much of
an arc we wish drawn. 360 is a full circle; 180, half a circle (180/360
= 1/2); and 60 = 1/6 of a circle.
Experiment with these three commands until they are mastered.

2 6 . 6 C O L O R I S P O S S I B L E with three other
commands. We can choose from 16 different colors.

colour numb<

black 0
white 1
red 2
cyan 3
purple 4
green 5
blue 6
yellow 7
orange 8
brown 9
pink 10
dark grey 11
medium grey 12
light green 13
light blue 14
light grey 15

BACKGROUND (BG) can be selected by typing that word or its abbreviation,
plus a color number in parentheses; the edge around the screen, by typing
B0RDER(#) --the being a number from 0 through 15.
The lines can also be in color. The command for this is PENCOLOR(tf).
Enter the following program.

use turtle
clear
home
st
pencolor(1)
arc(0,0,30,0,360)
ht
fill(40,0)
(When the picture is complete, tap £3 .)

This introduces the FILL command. It will fill the screen until it
reaches the edge of the screen or encounters the edge of a drawing. And
it will use the color of the pencolor --which in this instance is white.
Repeat the above program and change the pencolor to some other number.

12543

2 © . T W E A R E N O W ready to expand into some simple
programming.

use turtle
// ** main control sequence **
fullscreen
colors
arcleft
home
arcright
paint
end
proc colors
border(3)
bg(13)
pencolor(8)
endproc colors
proc arcleft
for circle:=5 to 35 step 5 do
arcl(circle,360)
endfor circle
endproc arcleft
proc arcright
for circle:=5 to 35 step 5 do
arcr(circle,360)
endfor circle
endproc arcright
proc paint
ht
pencolor (4)
fill (100,0)
endproc paint

RUN the program. F U L L S C R E E N allows us to see the turtle while
it is working. When it is finished, the picture will disappear and the
program will come back on the screen. To get back to the picture, tap
± 5.
Tapping f 1 will bring back the program listing. Experiment with the
program, putting in different numbers. Change the 360 to 180, or 120 or
some other value. Change the values of the colors.
Here is a program to draw a 10-sided figure — a decagon. Remember, each
angle to be turned must be 36 degrees (360/10)).

use turtle
// a decagon

C 2553

fullscreen
for sides:=1 to 10 do
fd(25)
rt(36)
endfor sides
ht
pencolor(1)
fill(10,0)
end " "

When the cursor starts to flash, tap :£: 5 and when finished with looking
at the drawing, f 1 .
It takes a good deal of space on the disc, but we can save our screen
drawings by using the command

savescreen("hrg.decagon")
We place the "hrg." so we will recognize it in a listing of the DIR as
being a graphic.
LOADSCREEN("HRG. DECAGON") will take it off the disc, and

E R I N T S C R E E N (” H R G . D E C A G O N ,B)
coupled with

E R I N T S C R E E N (“ L P : 8 0 “)
will make a hard copy.
Here is an interesting drawing.

use turtle
fullscreen
for sides:=100 to 1 step -1 do
fd(sides-10)
rt(sides+10)
endfor sides
ht

and three more
use turtle
// nested loop
fullscreen
for lines:=1 to 10 do
for arcs:=l to 5 do
arcl(5*arcs,180)
arcr(8*arcs,180)

i:: 2563

endfor arcs
endfor lines
ht

use turtle
// nested loops
fullscreen
count:=0
for radius:=0 to 99 step 9 do
count:+1
for circles:=1 to 3 do
pencolor(0+count)
arc(0,0,radius,90-radius,360)

endfor circles
endfor radius
ht

use turtle
// fiddling around
bg(7)
fullscreen
for lines:=1 to 15 do
for arcs:=l to 20 do
fd(10)
rt(40 + lines)
endfor arcs
penco1or(0+1ines)
arcl(2*lines,360)

endfor lines
ht

Experiment with different programs and with differing functions.

E 2573

RECAP*****

THE command FULLSCREEN allows the programmer
to observe the TURTLE creating a drawing.

TAPPING f5 will bring the completed drawing
back to the screen.

TO return to the program listing, tap fl.

prob 1 ©ms

1. Using the samples in the chapter, write programs to produce and
paint the following polygons.

1.1 hexagon
1.2 octogon
1.3 duodecagon (12 sides)
1.4 triangle

2. Create an abstract design.
3. Create a design exclusively of

arcl
arcr
arc

commands.
4. Write a program that will accept as an INPUT, the number of sides

wanted for a polygon. (Hint: Remember, the value of the angle
to turn the TURTLE is 360 divided by the number of sides.) Make
fd = 50.
Put in a ten-second delay before the picture leaves the screen.
Use the FILL command in several places and with different colors.

C 2583

C H A P T E R T W E N T Y — S E V E N
for f ur-bli©r study

comalcomalcomalcomalcomalcomalcomalcomalcomalcomal
c
0
m
a
1
c
0
m
a
1
c
0
m
a
1
c
0
m
a
1
c
o
m
a

SIZE

Returns the amount of free memory left in
terms of bytes and, at the same time, the
the number of bytes used in the data and
the program.

It is a direct command. It can be used at
any time but not in a program. Type

size
and tap the RETURN key. The screen will
return the following format

prog data
02937 00541

free
27236

(This printout is at the conclusion of the
author's solution to problem number 7 in
chapter 20.)

c
0
m
a
1
c
0
m
a
1
c
0
m
a
1
c
0
m
a
1
c
o
m
a

comalcomalcomalcomalcomalcomalcomalcomalcomalcomal

2 7 . 1 H A V I N G C O M P L E T E D T H I S introductory
text we are now in a position to do some in-depth study

of COMAL. COMAL is a professional language in every sense of the word.
With our present foundation from which to build, we can benefit from the
many excellent tutorials which are in print.

C 2593

Because new material is always being published, it would be well to
contact

COMAL Users Group
USA, Limited

6041 Monona Drive
Madison, WI 53716
(Ph: 608 222-4432)

for an up-dated list of what is currently available.

2 7 . 2 T H E R E A R E T W O reference manuals which are
indispensible

THE C O M A L H A N D B O O K
Second Edition

by: Len Lindsay
publisher: Reston Publishing Company

(c, 1984)
and

C O M A L for the Commodore 64
by: Bason & Hojsholt-Poulsen

publisher: Tekst & tryk, Denmark
(c, 1985)

Both are available from COMAL Users Group — though the former is
sometimes seen in local bookstores.

2 7 . 3 X N P R E P A R I N G T H I S text, the author
consulted four other publications, each of which merits

a place in a computer library. This list also serves as a bibliographic
listing.

Christensen, Borge. "Beginning Comal". Chichester,
West Sussex, England: Ellis Horwood Limited, 1985.

COMAL TODAY (A bi-monthly magazine). COMAL Users Group,
USA, Limited: Madison, WI 53716, 1984-1985.

C 2603

Kelley, John. "Foundations in Computer Studies with
COMAL". 2nd edition. Dublin, Ireland: Cahill
Printers Limited, 1984.

Atherton, Roy. "Structured Programming with COMAL".
Chichester, West Sussex, England: Ellis Horwood
Limited, 1982.

C 2613

I N D E X
ABS 55,56
Absolute value 55,56
Algorithm 9
Alphabetical listing 22Iff
AND 107,109
Array 181ff

cells 184ff
columns 205ff
counting in, 193
DIM 184ff
DIM, multi 206,207
INPUT 190
rows 205ff
summation line 186,187
summation, columns 206ff
summation, rows 206ff
two-dimensional 204ff

ASCII
code 79, 99ff
table 101

AUTO 5

BASIC 232
Binary decision 87ff

digits 99
ELIF 90ff
ELSE 90ff

Binary notation 99ff
BIT 99
Bits off/on lOOff
Boole, George 89
Boolean

false 89,90
true 89,90*
variables 89,90

Border color 13
BYTE 99

description 104
CASE 158ff
CASE-OF 158ff
CAT (or DIR) 31
Cells, array 184ff,205ff
Central processing unit 2,98
CHAIN 33,35
CHR$ 70,102ff,137

table 103
Christensen, Borge 143
Clearscreen 6
CLOSED variable 167,168

CLOSEing file 234
CLR/HOME key 3
Coin Flipping 144ff
Color chart, CURSOR 254
Colors
border 13
cursor 13,254
default 13
screen 13

Columns, Arrays 205ff
arrays, summation 206ff

COMAL 1
COMAL HANDBOOK, THE 32
COMAL TO BASIC 232
COMAL TODAY 134
Comment lines 24
Count, array 193

initializing 81
statements 81-83

CPU 98
CRSR key 2
CURSOR 2
back one word 55
color 13,254
chart 254
control 173ff
forward one word 55
positioning 129,130

DANSK 1
DATA 113 ff
Decisions, binary 87ff
Default colors 13
DEL 25
DELETEing 25,72
DIM 184,206-207

arrays 184
multi-arrays 206,207
strings 68ff

DIMensioning arrays 184
multi-arrays 206,207

DIR (or CAT) 31
DISC

CHAIN 33
DELETEing programs 72
formatting 31
initializing 31
LOAD 33
MERGE 33PAQC qo
RENAMEing file 152

C2623

DISPLAY 158procedures 164
DIV 56
division 13,14
EDIT 42ff

procedures 164
ELIF 91
ELSE 90ff
End of file 236
ENDIF 90ff
Ending messages 112
ENDWHILE 153ff
EOD 153ff
EOF 236
Exponent 13,14
fl key

renum 31
turtle 255,258

f 3 key
turtle 249

f5 key
list 88
with turtle 255,258

f6 key 142
f7 key 67,80
f8 key 181
file

CLOSEing 234
create 233
EOF 236
name 233
open 233
RANDOM 233, 244ff
READ 234
RENAMEing, disc 152
WRITE 233,234

files 231ff
RANDOM 233,240ff
sequential 232ff

FILL 254
FOR-ENDFOR

loop 72ff
multi-line 74
one-liner 74

Global variable 168
Greater than (>) 88
Heading logo 73
IF-THEN-ELSE 87ff
Inequalities 88
Initializing count 81

INPUT 126ff
array 190
at 130
numerics 126ff
strings 126ff

INST/DEL key 3
INT 58,59
Integer function 58,59
Less than (<) 88
Lindsay, Len 129,130
Line errors, correcting 217
Line printer 36
LIST 33, 40ff
procedures 164
sequential file 73
with f6 142

LOAD 33
Logic operator AND 106
operator NOT 106,109
operator OR 106

Logo heading 73
Loops, nested 142ff
LP 36
Main control sequence 164ff
Mathematical operations 13,14
Mathematics

addition 13,14
division 13,14
exponents 13,14
multiplication 13,14
operations 13ff
paratheses 13,14
PI 21
rules of order 13-15
scientific 16ff
subtraction 13,14

Maximum number in a list 217ff
MCS 164ff
MERGE 73,135

from disc 33
seq files 135

Messages, ending 112
Minimuum number in a list 218ff
MOD 57
Multi-line FOR-DO’s 74
Multiplication 13,14
Name, files 233
Nested loops 142ff
NEW 6
NOT 106

C263H

NOT EOD 153f f
Not equal to (<>) 88
NOLL 77
Numerics, INPUT 126ff
One-liner FOR-DO 74,76
OPEN, file 233
Operands 4
OR 106,109
OTHERWISE 160ff
Overwriting program 34
PAGE 35
Paint (see Fill)
Parameter passing 243,244
Parentheses 13,14
PASS 32
PI 21
Pixel value graph 253
Postioning

CURSOR 129,130
INPUT 130

PRINT 5,50,52
AT 200
comma 50
for spacing 50
semicolon command 49,50

Printer
command 36
copy 40

Procedure
parameter passing 243,244

Procedures 163ff
DISPLAY 164
EDIT 164
LIST 164

Program 9
blank lines 40
overwriting 34
SAVE 33ff
scrolling 97

RAM 2
RANDOM

access memory 2
coin flipping 149
file 233,240ff
file, READ 240
file, size of entry 240
file, WRITE 240-242

RANDOMIZE 63
READ 113ff
READ-DATA 113ff

array 214
READ, files 234

Read only memory 2
READ, random file 240
Record, files 232

sequential file 232
RENUM 5,24
REPEAT 136ff
REPEAT-UNTIL 135ff

for files 236
Replace with 7
RESTORE 154
RESTORE key 3
RETURN key 3
Reverse on/off 196
RND 61-63
ROM 2
Rounding real numbers 59-61
Rows, arrays 205ff
Rows, arrays summation 206ff
RUN 7

f7 67
turtle with f3
with f7 80

RUN/STOP key 3
SAVE 33ff
SCAN 106
with f8 181

Scientific notation 16ff
Screen color 13
Scrolling program lines 97
Selection sort 223ff
Sequential file 232ff

CLOSE 234
create 233
LIST 73
MERGE 73
OPEN 233
READ 234
Record 232
WRITE 233

SHIFT key 2
Sort, selection 223ff
Sorting 217ff
Spacing with PRINT 50
SQR 57,58
Square root 57,58
STEP 76,77
STRING 46ff
arrays 196ff
DIM 68
dimensioning 68ff
INPUT 126ff
with + sign 68

Structures, procedures 167
Subscripted variables 183ff

l 2643

subtraction 13,14 Summation
arrays 186-187,209ff
loops 83-84,186-187,209ff

Trailing punctuation
comma 50ff
semicolon 49ff

Truncation 58,59
Turtle 248ff

arc 252,253
angles 249ff
background color 254
circle 253
fl key
f5 key
FILL 254
FULLSCREEN
HIDE 250
move 249ff
pendown 250
penup 250
size 248

Two-dimensional arrays 204ff
UNTIL 136ff
Variable
CLOSED 167,168
dynamic 7
global 168
static 7

Variables, subscripted 183ff
Variables, use of apostrophe 204
VERIFY 127
WHILE 152ff
WHILE-DO 152ff
WHILE-DO ENDWHILE 153ff
WHILE NOT EOD 153
Williams, Ted 146ff
WRITE, files 233,234
WRITE, RANDOM files 240-242
ZONE 50
ZONE and semicolon 75

C 2653

Other COMAL books available from COMAL Users Group, U.S.A., Limited include:
T E X T BOOKS
Beginning COMAL by Borge Christensen
An informal text book for the beginner. Upper Elementary or Junior High level. Written by a
Danish professor, the founder of COMAL.
Foundations in Computer Studies With COMAL by John Kelly
A text book for the beginner. Junior High or High School level. Written by an Irish
professor.
Starting With COMAL by Ingvar Gratte
A text book for the beginner. Junior High or High School level. Written by a Swedish
professor.
Structured Programming With COMAL by Roy Atherton
A text book for intermediate programming. High School level. Written by a British
professor.

REFEREN CE BOOKS
COMAL Handbook by Len Lindsay
A detailed reference book for Commodore 64 and PET COMAL. Junior High or High School level.
Written by the Editor of COMAL Today magazine.
Commodore 64 Graphics With COMAL by Len Lindsay
A detailed reference book for the graphics and sprites in Commodore 64 COMAL version 0.14.

Junior High or High School level. Written by the Editor of COMAL Today magazine.

T U T O RIAL BOOKS
Cartridge Tutorial Binder by Frank Bason & Leo Hojsholt
A good overview of using the COMAL 2.0 Cartridge. Upper Elementary through High School
level. Written by an American and a Dane for Commodore Denmark.
COMAL Workbook by Gordon Shigley
Provides a nice introduction to COMAL version 0.14 when used together with the Tutorial

Disk. Upper Elementary through High School level.

ADVANCED BOOKS
COMAL 2.0 Packages by Jesse Knight
Complete instructions on how to make your own packages for COMAL 2.0. Comes with a disk.

Packages Library volume 1 by David stidoiph
A collection of 17 packages ready to use with the COMAL 2.0 Cartridge. Comes with a disk
that includes the source code for most of the packages as well as a smooth scrolling editor.

This was brought to you

from the archives of

http://retro-commodore.eu

http://www.retro-commodore.eu

