GGO USER OULNOTES

NO.14

\$2.50

SOFTWARE FEATURES		1
Kim banner program	JIM ZUBER	
Kim disassembler		
CHECK-OUT	ROBERT LARRABEE	
LANGUAGE LAB		12
BASIC		
FOCAL		
TINY BASIC		
FORTH		
XPLØ		
SYM SECTION		18
ACCESSING THE SYM DISPLAYS	A.M. MACKAY	
Wumpus & Music box mods	JIM ADAMS	
AIM SECTION		19
Manual corrections	JODY NELIS	13
	WELLS	
VIDEO & TVT-6		23
POLYMORPHICS VIDEO/KIM INTERFACE	MIKE FIRTH	
TVT-6 NOTES & RAM EXPANSION	MILAN MERHAR	
		or.
CASSETTE STUFF		25
Make a short cassette	TED BEACH	
CASSETTE DIRECTORY PRINTOUT PROGRAM	CHRIS MCCORMACK	
ANNOUNCEMENTS & REVIEWS		27

EDITORIAL

From the feedback I've received concerning From the feedback I've received concerning issue #13, most of you were very happy about the "new" format so things will stay pretty much the same. A good number of comments specifically mentioned their satisfaction with the "language lab" so we may expand on it a bit in future issues. Lots of good stuff in store for you BASIC, FOCAL and TINY BASIC users. Thanks to all of you who responded to my questions on modifying BASIC to skip the initialization messages. As you will soon know, that question and many others will be answered in this issues' BASIC column. Also, thanks to Dick Grabowski of HDE and Bob Kurtz of Micro-Z. we now have a new command for BASIC. Micro-Z, we now have a new command for BASIC.

A number of you have been asking for some terminal-oriented software so we have modified the original APPLE disassembler for the KIM. You'll need more memory, but if you have a terminal you're finding that out anyway.

Those of you with hard copy will no doubt enjoy the BANNER program. The present character set is designed for a 40 column printer but can easily (?) be re-designed for wider terminal widths. When you do come up with a new character set, send it in so the rest of us can enjoy it. Send it in on a cassette to make life easier for us and we'll publish it and/or offer it on cassette, depending on its deaign. There's enough info in the article to enable you to design your own character set and further info can be gotten from the Kilobaud article. ticle.

SUBMITTING ARTICLES

Since all articles will be retyped they need only be readable. Typing it would, of course, guarantee readability. Program listings, on the other hand, may not be retyped so, if at all possible, use white paper and a fresh ribbon on your printer. If there's no way you can generate an original source listing, then a handwritten source listing with MOS memonics, and labels of up to six characters, (don't forget to use labels when referencing zero page locations) will be satisfactory. Comments should be preceded by a semi-Comments should be preceded by a semifactory.

This will make it easy for me to assemble your program for publication. Disassembler output is not very satisfactory except when heavily commented, labeled and all zero page registers identified by name.

Perhaps the best way to submit program source listings would be to send a cassette of the assem-bler source file and I can then assemble it and pler source file and I can then assemble it and run a listing on my Decwriter. I Can assemble source files from either the Micro-ade assembler (Peter Jennings) or the MOS/ARESCO/HDE assemblers. If you send a S.A.S.E.,I'll return your cassettes. It would be wise to dump two copies of the file to cassette just in case.

I can read most of the Hypertape-recorded cassettes I receive once I adjust the azimuth of the cassette head for the highest audio level while reading the program. I think this head adjustment problem has probably accounted for most of the tape interchange problems I've been aware of. The machines I use to make the newsletter cassettes have been adjusted as close as possible and 30 seconds of synch characters precede the program for setting up your equipment. So far, we have not had any cassettes returned, so we must be doing something right. any cassette thing right.

BACK ISSUE AVAILABILITY

"Official" reprints of USER NOTES 1-12 are now available from Mark Kantrowitz, 15 Midway Ct., Rockaway NJ 07866. Prices are \$5.00 for issues 1-6 or 7-12 (1st Class in N America) - \$10.00 for issues 1-12 (1st Class in N America) - \$13.00 for issues 1-12 (overseas) U.S. Funds only.

LET THE RUYER REWARE!!

Those of you who have been around this indus-try for awhile know by now that just 'cuz some-things advertised doesn't mean that it really exists.

I am very interested in hearing about your periences with any of the advertisers in USER

When purchasing hardware or software, it makes alot of sense to purchase the documentation ahead of time to see what you're getting into. The quality of documentation can, prove to be a good indicator of the company's performance in other areas pertaining to that product.

On the other hand, do be reasonable. Don't expect a 60 page manual to accompany a \$5 or \$10 software package. I'm really referring to products of medium or high complexity such as some Assemblers or high-level languages, floppy-diac drives, prom programmers, video boards etc.

For instance, are there detailed instructions for getting the product running on your system? Does the product need some non-standard hardware or software? Are there enough examples to make operation fairly straightforward? What if you have problems? Are there some trouble shooting hints in the manual? How 'bout a phone number to call if you have problems which you can't handle? For items which may cost from several hundred to several thousand dollars, it would be a good idea to call the company with some real or made-up questions just to see what kind of response you get. For instance, are there detailed instructions

Are you treated courteously? Do you get connected to someone who can answer your question? (If the right person doesn't happen to be in the office when you call, don't expect them to return a long distance call.)

It can get pretty lonesome out there when you've got a product that isn't performing and a company that ignores you. It's better to find out in advance how a company treats its customers. If something breaks, how will they back you up?

When you shop around for something big (like a floppy, for example) you should understand that price alone should not be THE determining factor. Other things to consider include: What kind of software comes with it? Will it interface easily with the particular high-level language I will want to use? What kinds of software can be used with it-any optional packages from the manufacturer? Can I interface the floppy system easily to some non-standard hardware I may want to add? How easy will it be to incorporate some improved software which gets released at a later date from the manufacturer?

(RAM based software that is brought in by (RAM based software that is brought in by means of a simple bootstrap program is generally much easier to upgrade than a ROM based operating system). Can the system software be backed-up on an extra disc? What will the manufacturer be offering in the next year or so? Do his plans sound reasonable? What else has he done? Past performance generally indicates future performance. If you're looking for the "cheapest" product-keep in mind that the manufacturer of the "cheapest" product probably can't afford to support his product next year. INVESTIGATE FULLY BEFORE YOU BUY!!!!!

KIMSI USERS

Apparently Forethought Products, makers of KIMSI, have given up any plans to put out a news-letter of KIMSI information. I know there are alot of you out there so how 'bout if we have a section of USER NOTES just for you?

⁶⁵⁰² USER NOTES is published bimonthly by Eric C. Rehnke (POB 33093, N. Royalton, Ohio 44133 (216-237-0755)). Subscription rates for Volume 3 are \$13.00 (US and Canada) and \$19.00 elsewhere. No part of 6502 USER NOTES may be copied for commercial purposes without the express written permission of the publisher. Articles herein may be reprinted by club newsletters as long as proper publication credit is given and the publisher is provided with a copy of the publication.

[@] COPYRIGHT 1979 Eric C. Rehnke

SOFTWARE FEATURES

KIM-1 BANNER

20224 Cohasset #16 Canoga Park, Ca 91306

If your KIM, SYM, or AIM system is hooked up to a printer or teletype get ready to have some fun! In the January 1979 issue of Kilobaud there was an article on page 64 called "Say it with Banner". This program prints out giant characters on your printer. There were three problems with the program:

- It is written in 8080 code.
 It uses octal notation.
 It uses almost 8K of memory.
- I took the general concept of printing large characters and wrote an orginal program that has the following features:

 1. Written in 6502 code.

 2. I/O independent.

 3. Uses HEX notation.

 4. Only uses 2K of memory.

 5. Relocatable data tables.

 6. Easy user modification of character sets.

Let's talk about the I/O configuration first.
Location 2004 and 2005 defines the Input character
routine location for your system. If your terminal
echos your input change 2003 to 4c. The character
output routine location for your system is defined
by locations 2007 and 2008. Your output routine
must do the following:

1. Provide a line feed if necessary.
2. Provide null characters if necessary.

- sary.

 3. Must preserve the X, Y, and accumulator registers.

Text can be stored anywhere in memory and is defined by locations 200C and 200D. The text string can be as long as you want as long as you don't run out of memory. The data tables can be stored anywhere in memory as long as the starting address of the tables is stored in 2009 and 200A. SYM users will want to store the tables right after the program. The print character is defined in location 200B. Use the HEX equivalant of the ASCII character you want. The program is set up to use an @. I will explain later on how to make up your own characters or modify some of the ones I made up. To use the program start at 2000 and GO. You will see a prompt (>>>> Type in the text you want.

0010 2000

printed out. The program treats a carriage return as a space so take note. You terminate the text input with an @. If you typed in all valid characters you will see "@ o k" printed. Get your paper ready and type a carriage return to start the printing. If you type an illegal character you will see "@ o with the illegal character you will see "@ " with the illegal characters sand-wiched between the @ and the . Retype the text using only legal characters. At the end of the printout the program will prompt for more text.

The legal characters are A thru Z, 0 thru 9, space, c/r, and the following characters: * - + : !; ? \$, . My characters are 10 rows by 35 columns.
Obviously this is too big for the AIM printer.
Don't worry, you can make up your own character set to work on the AIM. To create your own character set just follow these simple rules:

1. Always store ff at the end of the tables.
2. The first BYTE should be the HEX equivalent of the ASCII character.
3. The second BYTE should be the HEX number of data Bytes.
4. Carriage returns are defined by EE.
5. Store the configuration of the character in a serial manner.
6. A "print spaces" data Byte is defined by Bit 7 being set to zero and Bits 0 thru 6 set to the number of spaces you want printed. Example: 07 would print 7 spaces.
7. To print a mark (or a character) set Bit 7 to one and Bits 0 thru 6 set to the number of marks. Example: 87 would print 7 @'s.

Maybe this will help you understand a little better. In order to print an "!" (one) that is 15

Maybe this will help you understand a little better. In order to print an "1" (one) that is 15 columns by 7 rows wide, just put this in the tables: 31 0A EE EE EE EE FE EE BF EE EE EE. The 31 is the HEX equivalent of ASCII character one. The 0A is the number of data Bytes. Then I print 2 carriage returns. Hope you enjoy this program. If you want to modify any of my characters you can find their location by storing the character in 0004, then call the find character subroutine. The character's location plus 2 will be stored in 0000 and 0001.

0010	2000				FKIH-1	BANNER PROGRAM	
0015	2000				#WRITT	EN BY JIM ZUBER	12/23/78
0020	2000						
0025	2000					*=\$0	
0030	0000				PNTL	*=*+1	
0035	0001				PNTH	*=*+1	
0040	0002				BUF1	*=*+1	
0045	0003				BUF 2	* = * +1	
0050	0004				TEMP	*=*+1	
0055	0005				TEMPX	* = * +1	
0060	0006				TEMPY	* = * +1	
0065	0007						
0070	0007				#KIM I	/0	
0075	0007				BETCH	=\$1E5A	
0080	0007				OUTCH	=\$1EA0	
0085	0007				CRLF	=\$1E2F	
0090	0007						
0095	0007				EOS	=\$40	FEND OF STRING CHAR
0100	0007						
0105	0007					*=\$2000	
0110	2000	4C	0E	20	STAR	JMP OVER	
0115	2003	4C	2C	21	INV	JMP INPT	FINPUT ROUTINE
0120	2006	4C	34	21	OUTV	JMP OUTC	FOUT VECTOR
0125	2009	00			TBLL	.BYTE \$00	TABLE LOW
0130	200A	30			TBLH	.BYTE 430 22	TABLE HIGH
0135	200B	40			PRCH	.BYTE \$40	PRINT CHAR
0140	200C	00			BUFL	BYTE 100 50	BUFFER LOW
0145	200D	40			BUFH	BYTE \$40 21	BUFFER HIGH
0150	200E						
0155	200E	D8			OVER	CLD	
0160	200F	AO	00			LDY #0	
0165	2011	20	FA	20		JSR INTB	FINPUT TEXT
0170	2014	A9	3E			LDA #/>	#PROMPT CHAR
0175	2016	20	06	20		JSR OUTV	
0180	2019	20	06	20		JSR DUTV	
0185	201C	A9	OD			LDA #SOD	SEND A CR
0190	201E	20	06	20		JSR OUTV	

000000000000000000	0195	2021		CHAR	JER INU	FINPUT STRING
accaecaecaecaecaecaecaecaecaecaecaecaeca	0200 0205	2024	91 02 C9 40		STA (BUF1),Y	AFMD OF STRINGS
000500000500000000000000000000000000000	0210	2028	FO 06		CMP DEDS	JEND OF STRING?
88888 8888	0215	202A	20 10 21		JER INCE	
00000 00000	0220	202D	4C 21 20		JMP CHAR	
0000 0 00000 00000 0000000000000000000	0225	2030	20 FA 20 A0 00	CHEK	JSR INTB	#CMECK CHARS
000000000000000000000000000000000000000	0235	2035	B1 02	LOP3	LDY #Q LDA (BUF1),Y	
0 00000000000000000000000000000000000	0240	2037	C9 40		CMP #EOS	FEND STRING?
	0245	2039	FO 17		BEQ OK	
	0250 0255	203B 203D	85 04 20 C9 20		STA TEMP	AFTUR BULL
66666 66666	0260	2040	C9 FF		JBR FDCH CMP 05FF	FFIND CHAR FIS IT BAD?
55555 5555	0265	2042	DO OB		BNE LOP4	720 II DHD:
85558 5565 5655 85566 5656 5 68556	0270	2044	A5 04		LDA TEMP	
	0275	2046	20 06 20		JSR DUTV	START OVER
66566 66666 6666	0280	2049	4C 00 20		JMP STAR	
68886 68886 68888	0285 0290	204C 204F	20 10 21 4C 33 20	LDP4	JBR INCB JMP LOP3	
2229232884888888888888888888888888888888	0295	2052	A9 4F	DΚ	LDA #'O	PROMPT "OK"
060606666666666666666666666666666666666	0300	2054	20 06 20		JSR OUTV	
	0305	2057	A9 4B		LDA #'K	
	0310	2059 2050	20 06 20 A9 0D		JSR OUTV LDA #\$OD	
000000000000000000000000000000000000000	0320	205E	20 06 20		JSR DUTV	
886666666666666666666666666666666666666	0325	2061	20 03 20		JSR INV	FWAIT FOR KEY
88888888	0330 0335	2064 2067	20 FA 20 A0 00	LOP6	JSR INTB LDY #0	FREADY TO PRINT
88888888 88888888	0340	2067	B1 02	Lur 0	LDA (BUF1),Y	
88888888	0345	206B	C9 40		CMP DEGS	FEND?
80808888888	0350 0355	206D 206F	DO 03 4C 00 20		BNE LOP7 JMP STAR	
222222222 5222222222222222222222222222	0360	2072	85 04	LOP7	STA TEMP	
000000000000000000000000000000000000000	0365	2074	20 C9 20		JSR FDCH	FIND CHAR
	0370 0375	2077 207A	20 BB 20 A9 OD		JSR PNTC LDA #\$OD	FPRINT IT F3 ROWS
	0380	207C	20 06 20		JSR OUTV	70 7.000
000000000000000000000000000000000000000	0385	207F	20 06 20		JBR OUTV	
000000000000000000000000000000000000000	0390 0395	2082 2085	20 06 20 20 10 21		JSR OUTV JSR INCB	JINC BUFFER
86888888888888888888888888888888888888	0400	2088	4C 67 20		JMP LOP6	72.10 20.12.1
8888888	0405	208B				
808888888	0410 0415	208B 208D	AO 00 B1 00	PNTC	LDY #0 LDA (PNTL),Y	∮PRINT CHAR ∮SUBROUTINE
3818886888 38888888	0420	208F	C9 EE		CMP #SEE	FTIME TO CARRIAGE RETURN?
000000000000000000000000000000000000000	0425	2091	DO 08		BNE LP10	ADUTDUT 0.45
000000000000000000000000000000000000000	0430 0435	2093 2095	A9 OD 20 O6 20		LDA #\$OD JSR DUTY	FOUTPUT C/R
	0440	2098	4C BF 20		JMP STOP	
	0445	209B	85 04 29 80	LP10	STA TEMP	#GET DATA #MARK DR SPACE
0	0450 0455	209D 209F	DO OD		AND ##BO BNE MARK	THAN DE SPACE
600000000000000000000000000000000000000	0460	20A1	A4 04		LDY TEMP	#MUST BE SPACE
00000	0465	20A3	A9 20	LP11	LDA #\$20	FOUTPUT SPACE
00000 00000 00000 00000	0470 0475	20A5 20AB	20 06 20 88		JSR DUTV DEY	
88888 88888	0480	20A9	FO 14		BEQ STOP	PANY MORE?
000000000000000000000000000000000000000	0485	20AB	4C A3 20	MARK	JMP LP11	MUST BE
00000000000000000000000000000000000000	0490 0495	20AE 20B0	A5 04 29 7F	MARK	LDA TEMP AND #\$7F	∮MUST BE MARK ∮MASK BIT 7
200000000000000000000000000000000000000	0500	20B2	AB		TAY	
	0505	20B3 20B6	AD 0B 20 20 06 20	LP12	LDA PRCH GET PR JSR DUTV	INT CHAR #OUTPUT MARK
00000000000000000000000000000000000000	0510 0515	2089	88		DEY	7001FOT HARK
0000000000 0000000000000000000000000000	0520	20BA	FO 03		BEQ STOP	ANY HORET
303356000000000000000000000000000000000	0525 0530	20BC 20BF	4C B3 20 CA	STOP	JMP LP12 Dex	#MUST BE #CHECK END
8888 00000 88888 8888 0000 8888	0535	2000	FO 06	5.5.	BEQ LP13	
00000 00000 00000		2000	20 1E 21		JSR INCP	FINC POINTER
88888 88888 88888 88888	0540 0545	20C2 20C5	4C BB 20		JMP PNTC	FGD BACK
00010006000000000000000000000000000000	0550	20C8	60	LP13	RTS	
Მ ᲛᲛ ᲛᲛ Მ Მ ᲛᲛ Მ ᲛᲛᲛᲛᲛᲛᲛᲛᲛᲛᲛᲛᲛᲛᲛᲛ Მ	0555 0560	2009	20 05 21	FDCH	JSR INTP	FIND CHARACTER
	0565		AO 00	LOP1	LDY #0	SUBROUITNE
	0570		B1 00		LDA (PNTL),Y	PPICK UP ILLEGAL?
	0575 0580		C9 FF FO 1B		CMP ##FF BEQ OUT	
	0585		C5 04		CMP TEMP	FRIGHT DNE?
	0590		FO 18		BEQ OUT1	AMILOT NOT DE
	0595		B1 00		INY LDA (PNTL),Y	#MUST NOT BE #BYTE COUNT
		20D9			CLC	
	0610	20DC	65 00		ADC PNTL	SADD TO POINTER
		20DE 20E0	85 00 A9 00		STA PNTL	
	0620	20E2	65 01		ADC PNTH	
	0620 0625	7004			STA PNTH	
	0625 0630	20E4				
	0625 0630 0635	20E4 20E6	20 1E 21		JSR INCP	
	0625 0630 0635 0640 0645	20E4 20E6 20E9 20EC	20 1E 21 20 1E 21 4C CC 20		JSR INCP JSR INCP JMP LOP1	FLOOK AGAIN
	0625 0630 0635 0640 0645	20E4 20E6 20E9	20 1E 21 20 1E 21 4C CC 20	ОИТ	JSR INCP JSR INCP	\$LOOK AGAIN
	0625 0630 0635 0640 0645	20E4 20E6 20E9 20EC	20 1E 21 20 1E 21 4C CC 20	OUT	JSR INCP JSR INCP JMP LOP1	\$LOOK AGAIN
page 2	0625 0630 0635 0640 0645	20E4 20E6 20E9 20EC	20 1E 21 20 1E 21 4C CC 20	OUT	JSR INCP JSR INCP JMP LOP1	\$LOOK AGAIN
page 2	0625 0630 0635 0640 0645	20E4 20E6 20E9 20EC	20 1E 21 20 1E 21 4C CC 20	OUT	JSR INCP JSR INCP JMP LOP1	\$LOOK AGAIN

```
0655
0660
0665
0670
0675
0680
0685
                                           1E 21
00
                                                                                                      INCP
(PNTL),Y
                 20
B1
AA
20
60
                                                                      OUT1
                                                                                            ISR
                                                                                                                                           FLOOK AT DATA
                                                                                           LDA
                                                                                                                                           BYTE IN X
                                           1E 21
                                                                                            JSR
                                                                                                      INCP
                                           0C 20
02
0D 20
03
                                   AD
85
AD
85
60
                                                                                                      BUFL
BUF1
BUFH
                                                                                                                                           #INITIALIZE
                                                                       INTB
                                                                                           LDA
0690
0695
0700
0715
0710
0725
0725
0730
0745
0750
0755
0750
0755
0770
0765
0770
0785
0785
0795
0795
0795
                                                                                           STA
                                                                                           LDA
STA
RTS
                                                                                                      BUF2
                                                                                          LDA TBLL
STA PNTL
LDA TBLH
STA PNTH
RTS
                                           09 20
00
0A 20
01
                                   AD
AD
85
60
                                                                                                                                          JINITIALIZE 
FPOINTER SUB
                                                                      INTP
                                    18
                                                                      INCB
                                                                                           CLC
                                                                                                                                          FINCREMENT
FBUFFER SUD
                                                                                          CLC
LDA BUF1
ADC #$1
STA BUF1
LDA BUF2
ADC #0
                                   A5
69
B5
A5
69
85
60
                                           02
01
02
03
00
03
                                                                                           STA
RTS
                                                                                                      BUF 2
                                                                                          CLC
LDA PNTL
ADC #1
                                   18
45
69
85
45
69
85
                                                                      INCP
                                                                                                                                          INCREMENT.
                                           00
01
                                                                                                                                          POINTER SUB
                                           00
01
00
01
                                                                                          STA PNTL
LDA PNTH
ADC #0
STA PNTH
0805
0810
0815
0820
0825
0830
0835
0840
0845
0850
                 2123
2125
2127
2129
2120
212C
212E
2131
2134
2137
2138
2139
2140
2143
2144
2144
2144
2144
2144
                                    60
                                                                                           RTS
                                   84
20
A4
60
                                           06
5A 1E
06
                                                                      INPT
                                                                                          STY TEMPY
                                                                                                                                          SAVE Y
                                                                                          JSR GETCH
LDY TEMPY
RTS
                                                                                                                                          FRET A CHAR
                                                                   PHA
STX TEMPX
STY TEMPY
CHP $$000
BNE CONT
JSR CRLF
JMP REST
ONT
JSR OUT'
(ESTOR LDX TEM
LDY TEM
PLA
RTS
FINISH .END
 0855
0860
0865
0870
0875
0880
0885
                                   48
86
84
C9
D0
20
4C
20
A6
A6
68
60
                                                                                                                                          SAVE CHAR
                                           05
06
00
06
2F
46
05
06
                                                                                                                                          FAND X AND
                                                                                                                                          FIS IT A C/R?
                                                     1E
21
1E
                                                                                                                                          GET BACK THE REGS AND RETURN OTHERWISE USE KIM DUTPUT.
 0895
0900
0905
0910
0915
0920
                                                                                                                                          #RETORE THE ACC. #AND RETURN
```

```
07 EE
07 85 0A
85 0A
85 0A
85 EE
19 85
19 85
EE A3
19 85
EE A3
65 EE
A3 EE
A3 EE
A3 EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               EE EE
85 OA
A3 EE
85 OA
EE 85
EE 85
EE 85
EE 85
OA
85 OA
85 OA
85 OA
85 EE
85 OA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        20
EE
OA
EE
A35
85
85
04
EE
OA
EE
EE
OA
EE
EE
OA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     A3
OA3
BEE
19
17
45
85
A3
OF
BEE
   2200
                                                                                                                                                                                                                                                                                        EE 0A 85 85 0F 85 0F 85 26
                                                                                                                                                                                                                                                                                                                                          EE 85 EE 0A EE 85 B8 85 02 EE 0A 19 85 0A A3
                                                                                                                                                                                                                                                                                                                                                                                                           EE
EE
A55
85
05
19
13
9F
85
85
08
EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                             EE OF EO OA 855 85 EO A EE E S E A 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      41
85
85
85
22
19
13
19
EE
85
85
85
0A
EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         A3
OF
42
85
01
EEEEE
85
85
465
EE9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           EE 85 28 0A 1 A35 445 E 0A E 25 E 1 E 85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              EE 85 EE 0 3 3 5 3 5 C 0 0 A E 8 5 E 8 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    84
AEO EEB EO EE BEEEB B9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         EE
EE
11
A3
85
85
11
84
85
EE
EE
18
EE
EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      84
11
85
EE
02
21
EE
92
0D
0B
03
1E
85
EE
11
0B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            185
08
43
84
43
11
EE
90
85
85
85
86
87
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              84
08
85
EE
53
EE
09
0C
EE
1E
EE
EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            EE 85 84 84 85 85 85 85 85 85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           EE 11 92 84 A3 EE 81 85 04 EE 55 A3 EE EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          EE 08 11 84 A3 11 08 85 0D EE A3 A3 89 8B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                50 85 92 1B EE 85 EE 69 81 A3 EE EE EE EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         EE 85 92 84 EE EE EE 0E 85 01 19 EE A3 56 88 A3
                                                                                                                   20
EE OA 035
888
ASE EE OA EE S5
85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        A3
EE 11
BE EE 85
O4
OB EE 85
EE 89
8A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     A3
B5
EE
EE
EE
EE
F6
OF
OB
BD
A3
14
EO
51
B1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          23 EEE 4 4 0 8 E E E A 3 B 5 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           A3

08

EE

18

02

11

11

80

93

EE

1C

EE

EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        85
51
84
85
92
85
92
85
94
85
95
18
95
85
85
85
85
85
2200
2210
2220
2230
2240
2250
2260
2270
2280
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   EE 84 85 82 0B EE 54 AE EE EE 18
           2290
2290
22A0
22B0
22C0
22D0
22E0
22F0
                                                                                                                          85 EE 85
88 EE 91
A3 EE 07
A3 EE A3
19 85 EE
EE 85 19
84 EE 84
EE 48 A8
A1 08 A8
11 84 EE
EE 85 EE
EE 85 EE
EE 87 EE
EE A3 EE
EE A3 EE
EE A3 EE
EE B7 EE
EE A3 EE
EE B7 EE
                                                                                                                                                                                                                                                                                                                                                                                                       OD 85
EE 91
OF 85
1F EE
A3 EE
A4 1A
EE 84
EE 84
EE 84
EE 17
EE 13
EE 13
EE 84
EE 84
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                85
86
07
19
87
02
85
EE
01
EE
EE
EE
4F
84
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               85 EE
A3 EE
85 EE
19 85
EE 02
A0 EE
01 84
84 EE
EE 4E
OD 8E
ED 4E
A3 EE
84 EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    EE 91
EE A3
EE A3
85 EE 85
90 2 89
EE 04
84 EE
EE 04
85 EE
86 EE
46 19
86 EE
86 EE
86 EE
86 EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2500
2510
2520
2530
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       EE 8A
EE A3
08 86
08 86
15 86
EE 5A
EE 5A
EE 85
13 85
EE A3
EE EE
85 EE
85 EE
87 EE
           2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2380
2380
                                                                                                                                                                                                                                                                                               08
0A
85
EE
A3
EE
A3
EE
03
A4D
0C
1A
EE
                                                                                                                                                                                                                                                                                                                                                         84
88
EE
49
EE
84
EE
98
4E
18
89
84
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          EE 0A EE 85 A3 BC BA EE 1B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      08
EE
85
85
85
EE
A1
EE
07
84
85
17
A3
0D
EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   84
48
EE 193
ED 4
19
EE 89
A3
84
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         OD
18
OF
85
85
84
OD
84
85
EE
A3
EE
1B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0A EE EE 85 85 EE 9F 0B 84 A3 85 8F A3 06 1B 1B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      07
86
86
86
85
85
85
85
85
85
85
85
85
85
85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              8D EE EE 1C EE 18 OF 0D 16 19 EE 32 85 94
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            EE
58
08
14
12
85
85
85
85
31
04
04
EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 11 92
2C 88
86 03
86 09
89 EE
85 EE
EE 89
EE 85
06 85
EE 85
0D EE
94 0A
85 EE
85 0A
33 30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            92
EE
05
EE
EE
0C
10
EE
EE
A3
94
85
85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            BA
EE
EE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     EE 15 86 86 17 14 15 07 EE 10 19 EE 85 85 85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          07
86
86
88
01
EE
03
EE
19
A3
85
85
94
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         88
85
89
85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               86
85
85
65
66
60
60
60
60
                       23C0
23D0
```

```
3400 85 0A 85 EE 85 0A 85 0A 85 EE 85 0A 85 0A 85 EE 85 0A 8
```

EDITORS NOTE: The disassembler program was originally written for the Apple and appeared in Doctor Dobbs Journal (Sept 76). It has been modified for KIM by Bob Kurtz and your editor. Bob Kurtz wrote the article.

KIM-1 "DISASSEMBLER" PROGRAM

Bob Kurtz Micro-Z Co P O Box 2426 Rolling Hills Ca 90274

PRELIMINARY:

The purpose of the disassembler is to take any program that has been entered into memory in the KIM-1, and to print-out an "object" code and a "source" code listing of this program - to permit analysis and modification, if desired. In a sense, it takes a completed program and reconstructs the assembly language format - or "disassembles" the program.

The following is a sample of the print-out format:

Address	Object Code	Source Code
23BC-	E8	INY
23BD-	A9 53	LDA #53
23BF-	85 01	STA 01
23C1	91 7E	STA (7E),Y
23C3-	4C 64 1C	JMP 1C64

```
DISASSEMBLER PROGRAM FOR THE 6502
WRITTEN BY STEVE WOZNIAK & ALLEN BAUM
FAND PUBLISHED IN DOCTOR DOBBS JOURNAL
0020
            2000
             2000
2000
2000
2000
2000
2000
0030
0040
                                FSEPT 1976
0050
0040
0070
0072
             0000
                                                        PCL
                                                                        *=*+1
                                                       PCL *=*+1
PCH *=*+1
COUNT *=*+1
FORMAT *=*+1
LENGTH *=*+1
LMNEM *=*+1
RMNEM *=*+1
YSAVE *=*+1
             0001
0002
0003
0073
0075
0080
0090
             0004
0100
             0005
0110
             0006
0142
0150
0160
0170
             0007
0008
0008
                                                       #KIM I/O TO FOLLOW
PRTBYT = $1E3B
OUTCH = $1EAO
CRLF = $1E2F
CLEAR = $1C64
OUTSP = $1E9E
             0008
0180
0190
0191
             0008
0008
             0008
0192
              0008
0200
                                                                       #=$2000
JSR DSMBL
JSR OUTSP
JSR OUTSP
0210
0211
             000B
2000
                            20 OF 20
                                                        START
                           20 OF 20
20 9E 1E
20 9E 1E
20 9E 1E
4C 64 1C
A9 OD
0212
0213
0214
            2003
2006
2009
                                                                         JSR OUTSP
                                                                        JMP CLEAR
LDA #13
STA COUNT
            200C
200F
0215
                                                        DSMBL
            2011
0230
                            85 02
```

The Address and Object Code columns are the standard listings for the program under scrutiny. You will notice that the disassembler has arranged the code listing by one, two, or three byte commands and has printed the address column accordingly.

The Source Code columns contain the MOS Tech-nology 650X Mnemonic abbreviations for the command - and the Operand listing. The following is an explanation of the address mode for the various operands:

Operand	Address Mode
blank	Accumulator, Implied
#53	Immediate
01	Zero Page
01,X 01,Y	Zero Page, indexed by X or Y
(7E),Y	Indirect Indexed
(7E,X)	Indexed Indirect
1064	Absolute of Branch
(1C64)	Indirect
1C64,X	Absolute (indexed by X)
1C64.Y	Absolute (indexed by Y)

PROCEDURE:

- Load the starting address of the program to be disassembled into locations 0000 (Low byte) and 0001 (High byte).
- 2. Go to location 2000
- 3. Press "G" on terminal

The "disassembler" will now print-out the first 13 commands of the program under scrutiny. At the end of this print-out, simply press "G" again and the next 13 commands will be printed out. Continuing to press "G" whenever the program stops, will step you through the entire program under investigation.

The program stops after each 13 commands. If you wish to modify this, change the byte in location 2010 from 50D (13 decimal) to any number up to SFF (256 decimal).

If portions of the disassembled program do not appear to make sense, these may be "look-up" tables within the program. As an example, the disassembler can be used to "disassemble" the disassembler program! Addresses \$2000 to \$211A will print out properly since these contain the body of the program commands. However, locations \$211B to \$21F9 contain the tables for all the mnemonics and symbols and will print-out gibberish.

FCOUNT FOR 13 INSTR. DSMBLY.

page 4

```
20 21
20 FC
85 00
84 01
C6 02
                                          DSMBL2 JSR INSTDS
JSR PCADJ
STA PCL
          2013
2016
2019
                                                                                   DISASSEMBLE AND DISPLAY INSTR.
 0240
0250
                               20
20
                                                                                   SUPDATE PCL,H TO NEXT INSTR.
0260
0270
                                                      STY PCH
DEC COUNT
BNE DSMBL2
                                                                                  ;DONE FIRST 19 INSTR?
;YES, LOOP. ELSE DSMBL 20TH.
;PRINT PCL,H
 0280
           201D
0290
0300
                     D0
20
                          F2
E2 20
           201F
           2021
                                          INSTES
                                                      JSR
                                                                                   FGET OPCODE
                                                             (PCL.X)
 0310
           2024
                     A1 00
                                                      LDA
0320
0330
           2026
                     A8
4A
                                                                                   #EVEN/ODD TEST
           2027
                                                      LSR
BCC
                    90
4A
BO
0340
0350
                                                             IEVEN
          2028
                          OB
                                                      LSR A
BCS ERR
                                                                                  FTEST BIT 1.
FXXXXXX11 INSTR. INVALID.
           202A
                          17
0360
          202B
0370
0380
0390
          202D
202F
2031
                     C9
F0
29
                          22
13
07
                                                      CMP #$22
BEG ERR
AND #$7
                                                                                  #10001001 INSTR. INVALID.
#MASK 3 BITS FOR ADDRESS MODE &
#ADD INDEXING OFFSET.
#LSB INTO CARRY FOR
#LEFT/RIGHT TEST BELOW.
#INDEX INTO ADDRESS MODE TABLE.
#F CARRY SET USE LSD FOR
#PRINT FORMAT INDEX
0400
0410
          2033
2035
                     09
4A
                          80
                                                      DRA #$80
                                          IEVEN
                                                      LSR A
0420
0430
0440
          2036
                                                      TAX
LDA MODE,X
                     AA
          2037
203A
                          1B 21
04
0450
          203C
                     44
                                                      LSR A
          203D
                     4A
                                                      LSR A
0460
                                                                                  FIF CARRY CLEAR USE MSD.
0470
0480
0490
          203E
                     4A
          203F
2040
2042
2044
2046
2048
                     4A
29
D0
                                                      LSR
                                                      AND #$F
BNE GETFMT
LDY #$80
LDA #$0
                                                                                   #MASK FOR 4-BIT INDEX
                                          RTHODE AND
                                                                                   ;50 FOR INVALID OF CODES.
;SUBSTITUTE $80 FOR INVALID OP,
;SET PRINT FORMAT INDEX TO 0
0500
0510
0520
                          04
                          80
                                          FRR
                                                     TAX
LDA MODE2,X
                                          GETFMT
0530
0540
0550
                     AA
BD
85
29
                                                                                  #INDEX INTO PRINT FORMAT TABLE.
##SAVE FOR ADDRESS FIELD FORMAT.
##MASK 2-BIT LENGTH. 0=1-BYTE
#1=2-BYTE, 2=3-BYTE.
#OP CODE.
                         5F 21
03
03
                                                      STA FORMAT
AND #$3
STA LENGTH
0560
0570
0580
          204E
                     85
98
29
          2050
2052
                          04
                                                      TYA
AND #$BF
                                                                                   #MASK IT FOR 1XXX1010 TEST.
#SAVE IT.
#OP CODE TO 'A' AGAIN.
                          8F
0590
0600
          2053
          2055
2056
                     AA
98
                                                      TAX
0610
0620
0630
0640
0650
          2057
2059
205B
                     A0 03
E0 8A
F0 0B
                                                      LDY #$3
                                                      CPX ##8A
BEQ MNNDX3
          205D
                                          MNNTX1 LSR A
                                                                                   FORM INDEX INTO MNEMONIC TABLE.
                                                      BCC MNNDX3
                          08
0660
0670
          205E
                     90
          2060
                     4A
4A
                                                      LSR
                                                                                   ;1XXX1010 -> 00101XXX
                                                      LSR A
ORA #$20
                                          MNNDX2 LSR
0680
                                                                                   ;XXXYYY01 -> 00111XXX
;XXXYYY10 -> 00110XXX
;XXXYY100 -> 00100XXX
0690
0700
0710
          2062
2064
2065
                     09 20
                     88
                                                      DEY
                     DO FA
                                                      BNE MNNDX2
                                                                                   *XXXXX000 -> 000XXXXX
0720
0730
0740
          2067
2068
2069
                                                       INY
                                          MNNDX3 DEY
                                                      BNE MNNDX1
                     DO F2
                                                                                   SAVE MNEMONIC TABLE INDEX.
0750
0760
          206B
206C
                     48
B1
                                                      PHA
                                                      LDA
JSR
                                                             (PCL) Y
                                          PROP
                                                      JSR PRBYT
LDX #$1
JSR PRBL2
CPY LENGTH
          206E
2071
2073
                     20 13 21
A2 01
20 F3 20
0770
0780
                                          PROPBL
0790
0800
                                                                                   PRINT INSTR (1 TO 3 BYTES)
                     C4 04
C8
                                                      INY
BCC PROP
          2078
0810
          2079
207B
                     90 F1
A2 03
0820
                                                                                   +CHAR COUNT FOR MNEMONIC PRINT.
                                                      LDX #$3
CPY #$4
BCC PROPBL
                          03
0830
0840
0850
          207D
207F
                     C0
90
                          04
F2
                                                                                   FRECOVER MNEMONIC INDEX.
                                                      PLA
TAY
LDA MNEML,Y
0860
           2081
                     48
0870
0880
           2082
                     AB
B9 79 21
B5 05
                                                      STA LMNEM
LDA MNEMR,Y
STA RMNEM
LDA #$0
                                                                                    FETCH 3-CHAR MNEMONIC
0890
           2086
                                                                                    (PACKED IN TWO BYTES)
0900
0910
          2088
2088
                     B9
85
                          B9 21
06
           208D
208F
                     A9
A0
                                          PRMN1
0920
                          00
                                                       LBY #$5
0930
0940
0950
                                                       ASL RMNEM
ROL LMNEM
                                          PRMN2
                     06 06
26 05
2A
           2091
                                                                                    $SHIFT 5 BITS OF CHAR INTO 'A'.

$(CLEAR CARRY)
           2093
                                                       ROL A
0960
0970
           2095
                                                       DEY
                                                       BNE PRMN2
                     DO F8
0980
           2097
                                                                                    FADD '?' OFFSET.
                                                       ABC #$3F
JSR OUTC
                     69
                           3F
           2099
0990
                                                                                    FOUTPUT A CHAR OR MNEMONIC
           209B
209E
                     20 OB 21
CA
 1000
                                                       DEX
 1010
                                                              PRMN1
                     DO EC
20 F1 20
A2 06
1020
           209F
                                                                                    FOUTPUT 3 BLANKS. FCOUNT FOR 6 PRINT FORMAT BITS.
                                                       JSR
                                                              PRBLNK
           20A1
                                                             *$6
*$3
                                                       LDX
1040
1050
           2044
                     E0 03
                                           PRADR1 CPX
           20A6
                                                                                    FIF X=3 THEN PRINT ADDRESS VAL.
                                                       BNE PRADR3
LDY LENGTH
BEQ PRADR3
 1060
           20AB
           20AA
20AC
                     A4 04
F0 0E
                                                                                    NO PRINT IF LENGTH=0.
 1080
                                           PRADR2 LDA FORMAT
 1090
           20AE
20B0
                     A5 03
C9 E8
                                                                                    #HANDLE REL ADDRESSING MODE
#SPECIAL (PRINT TARGET ADDR)
                                                       CMF #$E8
LDA (PCL),Y
BCS RELADR
                     C9 E8
B1 00
 1100
           20B2
20B4
 1110
                                                                                    ; (NOT DISPLACEMENT)
; (NOT DISPLACEMENT)
; OUTPUT 1- OR 2- BYTE ADDRESS.
; MORE SIGNIFICANT BYTE FIRST.
                           10
1120
                                                        JSR PRBYT
                     20 13 21
88
 1130
           20B6
           20B9
                                                       DEY
 1140
                                                       BNE PRADR2
```

DO F2

1150

20BA

```
06 03
90 0E
BD 6C 21
20 0B 21
BD 72 21
FO 03
                                        PRADR3 ASL FORMAT
BCC PRADR4
LDA CHAR1-1,X
                                                                                FTEST NEXT PRINT FORMAT BIT.
1160
          20BC
                                                                               FIF O, DONT PRINT
FOURTH 1 OR 2 CHARS,
FOUTPUT 1 OR 2 CHARS,
FOUTPUT 1 OR 2 CHARS IS O,
FOURTH FROM CHARS IS O,
FOURTH FROM THE CHARS IS O,
1170
1180
1190
          20BE
20C0
         20C3
20C6
20C9
                                                    JSR
                                                          OUTC
1200
1210
                                                    LDA CHAR2-1,X
BEQ PRADR4
                   20 OB 21
CA
          20CB
20CE
1220
                                                    JSR OUTC
1230
                                        PRADR4 DEX
1240
1250
1260
                    DO D5
          20CF
                                                    BNE PRADRI
          2001
                                                                               FRETURN IF DONE 6 FORMAT BITS.

FPCL, H + DISPL + 1 TO 'A', 'Y'.
                    60
20 FF 20
                                        RELADR JSR PCADJ3
          20D2
         20D5
20D6
1270
                                                    TAX
1280
1290
                    E8
D0 01
                                                    INX
                                                                               ; +1 TO 'X','Y'.
          20D7
                                                    BNE PRNTYX
                    C8
98
1300
          20D9
                                       PRNTYX TYA
PRNTAX JSR PRBYT
PRNTX TXA
JMP PRBYT
1310
          20DA
20DB
                                                                               FRINT TARGET ADDRESS OF BRANCH
1320
                    20 13 21
1330
          20DE
                                                                               AND RETURN
                   4C 13 21
20 2F 1E
A5 01
1340
1350
          20DF
                                                                               FOUTPUT CARRIAGE RETURN.
          20E2
20E5
                                        PRPC
                                                    JSR CRLF
1360
                                                    LDA PCH
                    A6 00
20 DB 20
A9 2D
1370
          20E7
                                                    LDX PCL
JSR PRNTAX
                                                                               FOUTPUT PCL.+H
1380
1390
         20E9
20EC
                                                    LDA #'-
JSR OUTC
1400
1410
1420
         20EE
20F1
20F3
                                                                               #OUTPUT '-'
                    20 0B 21
A2 03
                                        PRBLNK LDX #$3
PRBL2 LDA #'
PRBL3 JSR OUTC
                                                                                BLANK COUNT
                    A9 20
1420
1430
1440
1450
1460
1470
1480
1490
         20F5
20F8
                                                                               FOUTPUT A BLANK
                    20 OB 21
                    CA
         20F9
20FB
20FC
                                                                               $LOOP UNTIL COUNT =0
                    DO F8
                                                    BNE PRBL 2
                    60
A5 04
38
                                        RTS
PCADJ LDA LENGTH
PCADJ2 SEC
                                                                               FO=1-BYTE, 1=2-BYTE, 2=3-BYTE.
          20FE
                                        PCADJ3 LDY PCH
TAX
         20FF
2101
                    A4 01
AA
                                                                               FTEST DISPL SIGN (FOR RELFBRANCH). EXTEND NEG
                    10 01
                                                    BPL PCADJ4
1510
         2102
1520
         2104
                    88
                                                    DEY
                                                                               BY DECREMENTING PCH.
         2105
2107
2109
                    65 00
90 01
C8
                                        PCADJ4 ADC PCL
BCC RTS1
INY
1530
1540
1550
                                                                               #PCL+LENGTH (OR DISPL) +1 TO 'A'. #CARRY INTO 'Y' (PCH)
                   60
84 07
20 A0 1E
A4 07
60
84 07
20 3B 1E
A4 07
1560
1561
1562
         210A
210B
210B
                                        RTS1
OUTC
                                                    RTS
STY
                                                    STY YSAVE
JSR OUTCH
1563
1564
1565
        LDY YSAVE
                                                    RTS
                                                   STY YSAVE
                                        PRBYT
1566
1567
                                                    JSR
LDY
                                                           YSAVE
1568
1570
1580
1590
1600
1610
1610
                                        THE TABLES FOLLOW---
                                        MODE
                                                  .BYTE $40,$2,$45,$3,$D0,$8,$40,$9,$30
                    02
45
1610
1610
                    03
D0
08
40
09
30
1610
1610
1610
         2121
2122
         2123
2124
2124
2125
1610
1620
1630
1630
                                        fXXXXXXZO INSTRUCTIONS.
    .RYTE $22,$45,$33,$D0,$8,$40,$9,$40,$2,$45
                    22
45
1630
1630
                    33
D0
08
40
09
1630
          2128
1630
1630
         2129
212A
         212B
212C
212D
1630
1630
1630
                    02
45
1640
1650
1660
         212E
212E
212E
                                        1660
         2130
2131
2132
1660
                    08
40
09
40
02
45
83
80
08
1660
1660
         2133
2134
2135
1660
1660
1660
         2136
2137
2138
1660
1660
1670
                                                    .BYTE $8,$40,$9,$0,$22,$44,$33,$D0,$80,$44
1670
1670
1670
         2139
213A
213B
                    40
09
00
                   22
44
33
D0
          213C
213D
1670
1670
          213E
213F
1670
          2140
2141
1670
```

page 6

```
.BYTE $0,$11,$22,$44,$33,$D0,$8C,$44,$9A,$10
         2142
2143
2144
2145
1680
1680
                   11
1680
         2146
2147
2148
1680
1680
                   DO
1680
         2149
214A
214B
214C
1680
1680
1680
1690
                   10
22
                                                  .BYTE $22,$44,$33,$D0,$8,$40,$9,$10,$22,$44
         214D
214E
                   44
33
1690
1690
1690
         214F
         2150
2151
2152
1690
1690
1690
                   08
                   40
09
1690
         2153
2154
1690
1700
1700
1700
         2155
                                                 .BYTE $33,$D0,$8,$40,$9,$62
         2156
2157
                   33
D0
         2158
                   08
1700
1700
         2159
215A
                   40
09
1700
         215B
                   62
                                      FYYXXXZ01 INSTRUCTIONS
1710
1720
         215C
215C
                                                 .BYTE $13,$78,$A9
1720
1720
1720
1730
1740
1750
         215D
215E
215F
2160
                                      MODE2 .BYTE $0
.BYTE $21
.BYTE $01
.BYTE $02
                                                                            FERR
                    00
                   21
01
                                                                            FIMM
FZ-PAG
         2161
2162
                                                                            FABS
                                                 .BYTE $02
.BYTE $0
.BYTE $80
.BYTE $59
.BYTE $4D
.BYTE $11
.BYTE $12
.BYTE $6
1770
1780
1790
         2163
2164
2165
                                                                            FIMPL
                   00
                                                                            FACC
F(Z-PAG,X)
F(Z-PAG),Y
                   80
59
         2165
2166
2167
2168
2169
216A
1800
                    4D
                                                                            Z-PAG.X
1810
1820
                                                                            FABS . Y
1830
                    06
                                                  .BYTE $4A
.BYTE $5
 1840
                   4A
05
                                                                            F(ABS)
         216B
216C
216D
216E
                                                                            FZ-PAG.Y
 1850
                   1D
2C
29
                                      1860
1870
1870
         216F
1870
                   20
         2170
2171
2172
2173
1870
1870
1870
                   23
28
                    41
59
 1890
                                       CHAR2 .BYTE $59,$0,$58,$00,$0,$0
          2174
2175
2176
 1890
                    00
 1890
1890
                    58
00
          2177
2178
2179
 1890
 1890
                    00
                                        $XXXXX000 INSTRUCTIONS
                                       MNEML .BYTE $10,$84,$10,$23,$50,$88,$18,$41,$90
          2179
217A
217B
 1910
                    1 C
 1910
1910
                    BA
1C
          217B
217C
217D
217E
217F
2180
 1910
1910
1910
1910
1910
                    5D
                    8B
1F
A1
9D
          2181
          2182
2183
2184
                                                  .BYTE $BA,$1D,$23,$9D,$8B,$1D,$A1,$0,$29,$19
 1920
                    BA
 1920
1920
                    1D
23
          2185
2186
2187
2188
  1920
 1920
1920
                    BB
                    10
  1920
                    A1
                    00
29
19
 1920
1920
          2189
218A
           218B
218C
  1920
  1930
1930
1930
                                                  .BYTE $AE,$69,$A8,$19,$23,$24,$53,$18,$23
                    AE
          218D
218E
218F
2190
                    69
AB
  1930
1930
                    19
23
  1930
1930
           2191
2192
                    24
53
                    1B
23
24
53
  1930
           2193
  1930
           2194
          2195
2196
2197
  1940
1940
                                                   .RYTE $24.$53.$19.$A1.$0
  1940
1940
                    19
          2198
2199
                     A1
00
  1940
```

```
*XXXYY100 INSTRUCTIONS.
1950
                                              .BYTE $1A,$5B,$5B,$A5,$69,$24,$24
1960
1960
        219A
219B
                 1A
5B
5B
A5
69
24
        219C
219D
219E
219F
1960
1960
1960
1960
1960
1962
        21A0
21A1
                                   #1XXX1010 INSTRUCTIONS
                                              .BYTE $AE, $AE, $AB, $AD, $29, $0, $70, $0
1963
         21A1
                 AE
         21A2
                  AE
1963
1963
         21A3
                  AB
1963
1963
         21A4
                  AD
         21A5
                  00
1963
1963
         21A6
21A7
                  7C
1963
1964
         21A8
21A9
                  00
                                    *XXXYYY10 INSTRUCTIONS
                                              .BYTE $15,$9C,$6D,$9C,$A5,$69,$29,$53
1965
1965
         21A9
21AA
                  15
90
        21AB
21AC
21AD
21AE
1965
1965
                  6D
                 9C
A5
1965
1965
1965
1965
         21AF
21B0
                  29
53
                                    ;XXXYY01 INSTRUCTIONS.
1970
1980
         21B1
21B1
                                              .BYTE $84,$13,$34,$11,$A5,$69,$23,$A0
                  84
         21B2
21B3
                  13
34
 1980
1980
1980
1980
         21B4
21B5
                  11
A5
1980
1980
1980
1980
         21B6
                  69
         21B7
21B8
21B9
                  23
                  AO
                                    ;XXXXX000 INSTRUCTIONS.
MNEMR .BYTE $D8,862,$5A,$48,$26,$62,$94,$88
2000
2000
         21B9
21BA
                  D8
                  62
5A
         21BB
21BC
21BD
2000
2000
                  26
2000
 2000
         21BE
2000
2000
         21BF
21C0
                                              .BYTE $54,$44,$C8,$54,$68,$44,$E8,$94,$0,$B4
         21C1
21C2
 2010
                  54
 2010
2010
2010
         21C3
21C4
                  CB
2010
2010
         21C5
21C6
                  68
44
         21C7
21C8
21C9
21CA
2010
2010
                  E8
                  94
 2010
 2010
                                              .BYTE $8,$84,$74,$84,$28,$6E,$74,$F4,$CC,$4A
 2020
2020
         21CB
21CC
                  08
                  84
74
         21CD
21CE
 2020
 2020
                  B4
28
 2020
         21CF
 2020
         21D0
         21D1
 2020
 2020
         21D2
 2020
         21D3
                  CC
         21D4
21D5
                  4A
72
F2
 2020
 2030
                                               .BYTE $72,$F2,$A4,$8A
         21D6
21D7
21D8
21D9
21D9
 2030
2030
2030
                  A4
BA
                                    FXXXYY100 INSTRUCTIONS.
 2040
2050
                                               .BYTE $0,$AA,$A2,$A2,$74,$74,$74,$72
                   00
 2050
         21DA
21DB
21DC
                   AA
 2050
2050
                  A2
A2
 2050
2050
          21DD
21DE
                  74
74
74
72
 2050
2050
          21DF
21E0
 2060
2070
          21E1
21E1
                                    ;1XXX1010 INSTRUCTIONS.
                                               .BYTE $44,$68,$B2,$32,$B2,$0,$22,$0
                   44
 2070
2070
2070
2070
          21E2
21E3
21E4
                   68
B2
32
 2070
          21E5
          21E6
21E7
21E8
 2070
2070
                   00
                   22
 2070
                   00
 2080
2090
          21E9
21E9
                                    *XXXYYY10 INSTRUCTIONS.
                   1A
                                               .BYTE $1A,$1A,$26,$26,$72,$72,$88,$C8
 2090
2090
          21EA
21EB
21EC
                   1A
26
 2090
                   26
72
 2090
          21ED
 2090
2090
          21EE
21EF
                   72
88
          21F0
```

2090

C8

21F1		#XXXYY'	YO1 INS	TRUCTION	S.		
21F1	C4		. BYTE	\$C4, \$CA,	\$26,\$48	\$44,\$44	,\$A2,\$C8
21F2	CA						
21F3	26						
21F4	48						
21F5	44						
21F6	44						
21F7	A2						
21F8	C8						
21F9		FINISH	.END				
	21F1 21F2 21F3 21F4 21F5 21F6 21F7 21F8	21F1 C4 21F2 CA 21F3 26 21F4 48 21F5 44 21F6 44 21F7 A2 21F8 C8	21F1 C4 21F2 CA 21F3 26 21F3 46 21F5 44 21F5 44 21F6 44 21F7 A2 21F8 CB	21F1 C4 .BYTE 21F2 CA .BYTE 21F3 26 21F4 48 21F5 44 21F6 44 21F7 A2 21F8 C8	21F1 C4 .BYTE \$C4,\$CA, 21F2 CA .BYTE \$C4,\$CA, 21F3 26 .21F4 48 .21F5 44 .21F6 44 .21F7 A2 .21F8 CB .BYTE \$C4,\$CA, 21F8 CB .BYTE \$C4,\$CA,	21F1 C4 .BYTE \$C4,\$CA,\$26,\$48: 21F3 26 21F4 48 21F5 44 21F6 44 21F7 A2 21F8 C8	21F1 C4 .BYTE \$C4,\$CA,\$26,\$48,\$44,\$44 21F2 CA .BYTE \$C4,\$CA,\$26,\$48,\$44,\$44 21F3 26 21F4 48 21F5 44 21F6 44 21F7 A2 21F8 CB

CHECK-OUT

by Robert D. Larrabee 18801 Woodway Drive Derwood, MD 20855

Did you ever want to check-out a new program without having to continually hit the plus key of the program. The program of the plus have you could back-up a byte or two? Did you ever want to add some material in the middle of a program without having to reenter all of the succeeding bytes? If you ever did, program CHECK-OUT is for you!

Load this program into the stack page, push the PC key to enter the starting address (0100), and then push the GO key. The display will show address 0000 and the contents of that memory location. Then push the B key to start automatically scanning through memory twoard the Back of the program, or the F key to start scanning toward the Front of the program. The keys 1 through 9 control the scan speed. The zero key stops the scan at the displayed address. The A key stops the scan at the displayed address. The A key stops the scan one position beyond the currently displayed address, while the E key stops the scan one position previous to the currently displayed address. If the scan speed is set to 9 (the fastest possible), the A and E keys are equivalent to an immediate one step forward or backward. Because the plus key was there, it was given its normal function.

If, in scanning a program, an error is found, stop the scan at the error (by pushing the zero key at the error, or stepping there with the A, E, or plus keys). The push the DA key, and you will enter the KIM monitor in data mode. The corrected data can then be immediately entered from the keyboard, and you can then return to program CHECK-OUT by pushing the ST key.

If you wish to make a large jump in address, and scanning there at speed 9 would take too long, push the AD key to enter the KIM monitor in address mode. The new address of interest can then be immediately entered from the keyboard, and you can then return to program CHECK-OUT by pushing the ST key.

The C key Creates spaces for additional bytes in a program by moving the program material down from the displayed address one unit each time the C key is depressed. The byte displayed and all following bytes are moved down and the created space at the displayed address is filled with zeros. The D key Deletes the displayed byte by moving up all the following program material one unit each time the D key is depressed. Neither the C or D key effects the portion of the program before the displayed address. The table below shows what address program CHECK-OUT considers to be the end of the program. Notice that this depends on the page currently being displayed when the C or D key is depressed. If desired, these ending locations can be changed by entering appropriate new address information at the locations indicated in the last two columns of the table.

When attempting to do something program CHECK-OUT considers illegal (for example, modifying some of its own instructions on page 1), the display will go blank for as long as the illegal key is depressed, and then all will return to the previous conditions when the illegal key is released.

Program CHECK-OUT does nothing in the way of changing branch instruction addresses when creating or deleting spaces. If this feature is desired, I invite you to write a routine to perform this address manipulation. Change the branch instruction at location OlDI in program CHECK-OUT to branch to your routine, and then return to address 0104 in program CHECK-OUT at the end of your

Page of current	Address taken as the end of	Location of within progr	
address	the program	High	Low
0	OOEE	-	0187
1	not allowed	-	-
2-16	O3FF	0193	0195
17	17E6	-	0199
above 17	not allowed	-	-

STORAGE AREA

ODEF 00 ODFO 01 ODFO 01 ODFO 01 ODFO 00 ODF2 FF ODFO 00 ODF5 05 ODF6 00 ODF7 00 ODF8 FF ODF9 00 ODFA FA ODFB 00 ODFC 01 ODFD 00 ODFC 01 ODFD 00 ODFF 00	PCL PCH PREG SPUSER ADH SS RD MODE LC INH POINTH TEMP1 TEMP2	program counter, low program counter, high status register stack pointer current address, low current address, high scan speed (0-9) read disable (disable if not zero) mode of operation (stop scan if ze loop counter for display loop data position for display pointer address, low pointer address, high temporary storage register #1 temporary storage register #2 not used	this program		
	MAIN PRO	OGRAM STARTS HERE	CPU is in The		
0100 A9 00 ENTRY 0102 85 FB 0104 A5 FA START 0106 85 F3 0108 A5 FB 010A 85 F4 010C A2 FF 010E 9A 010F 86 FB 0111 A2 04	LDA #00 STA POINTH LDA POINTL STA ADL LDA POINTH STA ADH LDX #FF TXS STX LC LDX #04 STX 17FA	initial entry into program set initial value of POINTL get pointer address, low store pointer address, low in ADL get pointer address, high store pointer address, high in ADH initial value of SPUSER and LC initialize stack pointer to #FF initialize loop counter to #FF value for interrupt vector, low initialize interrupt vector, low initialize interrupt vector, low	\$00F1 = \$00		
0116 A2 01 0118 8E FB 17	LDX #01 STX 17FB	value for interrupt vector, high initialize interrupt vector, high		page	

SYM-1, 6502-BASED MICROCOMPUTER

- . FULLY ASSEMBLED AND COMPLETELY INTEGRATED SYSTEM that's ready-to-use
- . ALL LSI IC'S ARE IN SOCKETS
- . 28 DOUBLE-FUNCTION KEYPAD INCLUDING UP TO 24 "SPECIAL" **FUNCTIONS**
- EASY-TO-VIEW 6-DIGIT HEX LED DISPLAY
- KIM-1* HARDWARE COMPATIBILITY

The powerful 6502 8-Bit MICROPROCESSOR whose advanced architectural features have made it one of the largest selling "micras" on the market today

- THREE ON-BOARD PROGRAMMABLE INTERVAL TIMERS available to the user, expandable to five on-board.
- 4K BYTE ROM RESIDENT MONITOR and Operating Programs.
- Single 5 Volt pawer supply is all that is required.
- 1K BYTES OF 2114 STATIC RAM anboard with sockets provided for immediate expansion to 4K bytes onboard, with total memory expansion to 65, 536 bytes.
- USER PROM/ROM: The system is equipped with 3 PROM/ROM expansion sockets far 2316/2332 ROMs or 2716 EPROMs
- ENHANCED SOFTWARE with simplified user interface
- STANDARD INTERFACES INCLUDE:
- —Audio Cassette Recorder Interface with Remote Cantrol (Two modes: 135 Baud KIM-1* compatible, Hi-Speed 1500 Baud)
- -Full duplex 20mA Teletype Interface
- -System Expansion Bus Interface
- -TV Cantroller Board Interface
- -CRT Compatible Interface (RS-232)
- APPLICATION PORT: 15 Bi-directional TTL Lines for user applications with expansion capability for added lines
- EXPANSION PORT FOR ADD-ON MODULES (51 I/O Lines included in the basic system)
- SEPARATE POWER SUPPLY cannector for easy disconnect of the d-c
- AUDIBLE RESPONSE KEYPAD

Synertek has enhanced KIM-1* software as well as the hardware. The software has simplified the user interface. The basic SYM-1 system is programmed in machine language. Monitar status is easily accessible, and the monitor gives the keypad user the same full functional capability of the TTY user. The SYM-1 has everything the KIM-1* has to affer, plus so much more that we cannot begin to tell you here. So, if you want to know more, the SYM-1 User Manual is available, separately.

SYM-1 Complete w/manuals

SYM-1 User Manual Only

7.00

SYM-1 Expansion Kit

Expansion includes 3K of 2114 RAM chips and 1-6522 I/O chip. SYM-1 Manuals: The well organized documentation package is complete and easy-to-understand

SYM-1 CAN GROW AS YOU GROW. Its the system to BUILD-ON, Expansion features that are soon to be offered:

BAS-1 8K Basic ROM (Microsoft) 349.00

KTM-2 TV Interface Board *We do honor Synertek discount coupons

QUALITY EXPANSION BOARDS DESIGNED SPECIFICALLY FOR KIM-1, SYM-1 & AIM 65

These boards are set up far use with a regulated power supply such as the one below, but, provisions have been made so that you can add onboard regulators for use with an unregulated power supply. But, because af unreliability, we do not recommend the use of onboard regulators. All I.C.'s are socketed for ease of maintenance. All boards carry full 90-day warranty.

All products that we manufacture are designed to meet or exceed industrial standards. All components are first quality and meet full manufacturer's specifications. All this and an extended burn in is done to reduce the normal percentage of field failures by up to 75%. To you, this means the chance of incanvenience and lost time due to a failure is very rare; but, if it should happen, we guarantee a turn-around time of less than forty-eight hours for repair.

Our money back guarantee: If, for any reason you wish to return any board that you have purchased directly from us within ten (10) days after receipt, complete, i charge per board. in original condition, and in ariginal shipping carton; we will give you a complete credit ar refund less a \$10.00 restocking

VAK-1 8-SLOT MOTHERBOARD

This motherboard uses the KIM-4* bus structure. It provides eight (8) expansion board sockets with rigid card cage. Separate jacks for audio cassette, TTY and power supply are provided. Fully buffered bus.

VAK-1 Motherboard \$129.00

VAK-2/4 16K STATIC RAM BOARD

This board using 2114 RAMs is configured in two (2) separately addressable 8K blocks with individual write-protect switch VAK-2 16K RAM Board with only \$239.00

8K of RAM (½ populated)
VAK-3 Complete set of chips to
expand above board to 16K \$175.00 VAK-4 Fully populated 16K RAM \$379.00

VAK-5 2708 EPROM PROGRAMMER

This board requires a +5 VDC and +12 VDC, but has a DC to DC

multiplyer so there is no need far an additional power supply. All resident in on-board ROM, and has a zero-insertion VAK-5 2708 EPROM Programmer \$269.00

VAK-6 EPROM BOARD

This board will hold 8K af 2708 or 2758, or 16K of 2716 or 2516 PROMs. EPROMs not included.

VAK-6 EPROM Board \$129.00

VAK-7 COMPLETE FLOPPY-DISK SYSTEM (May '79)

VAK-8 PROTYPING BOARD

This board allows you to create your own interfaces to plug into the motherboard. Etched circuitry is provided for regulators, address and data bus drivers; with a large area for either wire-wrapped or soldered

VAK-8 Protyping Board

\$49.00

POWER SUPPLIES

ALL POWER SUPPLIES are totally enclosed with grounded enclosures for safety, AC power cord, and carry a full 2-year warranty.

FULL SYSTEM POWER SUPPLY

This power supply will handle a microcomputer and up to 65K of our RAM. ADDITIONAL FEATURES ARE: Over voltage Protection volts, fused, AC on/off switch. Equivalent to units selling for \$225.00 or more.
Provides +5 VDC @ 10 Amps & ±12 VDC @ 1 Amp \$125.00

VAK-EPS Power Supply

KIM-1* Custom P.S. provides 5 VDC @ 1.2 Amps

and +12 VDC @ .1 Amps KCP-1 Power Supply

\$41.50

SYM-1 Custom P.S. provides 5 VDC @ 1.4 Amps VCP-1 Power Supply

\$41.50

2967 W. Fairmount Avenue Phoenix AZ 85017 (602)265-7564

DISPLAY/KEYBOARD-DECODE LOOP

011B A9 80 011D 80 47 17 0120 20 19 1F 0123 D0 04 0125 85 F6 0127 F0 43 0129 A5 F6 0128 D0 3F 012D E6 F6 012B E6 F6 012B E0 37 0134 F0 32 0134 F0 32 0136 AA 0137 38 0138 E9 0A 013A 10 06 013C 49 FF 013E 85 F5 0140 10 2A	LOOP1 AGAIN ONE ERROR	LDA #80 STA 1747 JSR SCAND BNE ONE STA RD BEQ DONE LDA RD BNE DONE INC RD JSR GETKEY CMP #00 BCR MZERO TAX SEC #00 BPL TWO EOR #FF STA SS BPL DONE	value to store in the timer start timer activate display branch if any key is depressed enable the reading of the keyboard unconditional branch to end of loop get value of read disable branch to end of loop if RD not zero set read disable to #01 read keyboard is the zero key depressed? branch if the zero key is depressed store keycode in X register required by next instruction subtract #0A from keycode branch if keycode is not speed control compute new value of speed in SS unconditional branch to end of loop
0142 8A 0143 C9 12 0145 F0 36 0147 10 23 0149 C9 10 014B D0 03 014D 4C 7C 1C 0150 29 0A 0152 C9 0A 0154 F0 14 0156 A4 FB 0158 88 0159 F0 D4 015B A5 F7 015D F0 D2 015F 10 CE	TWO KIM THREE	TXA CMP #12 BEQ PLUS BPL DONE CMP #10 BNE THREE JMP 1C7C AND #0A CMP #0A BEQ MODE LDY POINTH DEY LDA MODE BEQ FOUR	return keycode to accumulator is the plus key depressed? branch if plus key depressed ignore unused keys is the AD key depressed? branch if AD key not depressed enter the KIM monitor result not #0A for C, D, & DA keys result is #0A for A, B, E, & F keys branch if key is A, B, E, or F load page number into Y register decrement page number in Y register blank display if page number = l load mode into Y register branch if mode is zero blank display if mode not zero
0161 8A 0162 C9 11 0164 F0 E7 0166 D0 1C 0168 A2 00 016A 86 F7 016C AD 47 17 016F F0 AF 0171 E6 FB 0173 A5 FB 0175 C5 F5 0177 90 A2 0179 A6 F7 0178 F0 04 0170 8A 017E 20 D6 01 0181 4C 04 01	FIVE	TXA CMP HI BEQ KIM BNE MOVE LDX MODE LDA 1747 BEQ AGAIN INC LC LDA LC CMP SS BCC LOOPI LDX MODE LDX MODE	return keycode to accumulator is the DA key depressed? enter the KIM monitor if DA key branch if C or D key depressed the new value of mode store the new value of mode test the clock display again if not time add one to loop counter get new value of loop counter compare to total number desired do another loop if necessary get value of mode return to START if mode is zero put mode in accumulator set up next POINTL and POINTH end of display/keyboard loop

ROUTINE TO SERVICE THE C AND D KEYS

		MODITINE TO SERVE	CE THE C AND D REIS
0184 86 FC 0186 A0 EE 0188 A5 F4 018A F0 0E 018C C9 17 018E F0 08 0190 B0 90 0192 A9 03 0194 A0 FF 0196 A0 02 0198 A0 E6 0196 B0 FB 0196 A0 07 0100 B1 FA 01A2 AA 01A3 98 01A4 91 FA 01A6 20 EE 01A9 A5 CE 01AB C9 01A	SIX SEVEN LOOP2	STX TEMP1 LDY #EE LDA ADH BEQ SEVEN CMP #17 BEG SIX BCS ERROR LDA #03 LDY #FF BMI SEVEN LDY #E6 STY POINTL STA POINTL, Y TAX TYA JSR SUB LDA TEMP1 CMP #00 BEQ DKEY LDA POINTL, Y INY STA POINTL, Y INY	store keycode in TEMP1 location of useful end of page zero put page number in accumulator branch if page zero is page number equal to 17? branch if page number is 17 blank display if page number > 17 end page in unexpanded KIM system RAM location of end of page unconditional jump location of useful end of page 17 store end of page location in POINTL store end page number in POINTH value needed for (indirect),Y addressing LDA with byte at the end of the last page store byte in the X register bring #00 to accumulator put zero in end of page location decrement POINTL/POINTH get keycode from TEMP1 which key (C or D) is depressed? branch if D key is depressed get byte at pointed location increment Y register to unity store byte in next larger address decrement Y register to zero set accumulator to zero
01B4 88 01B5 98	DKEY	DEY	store byte in next larger address decrement Y register to zero

SUBROUTINE TO STEP POINTL AND POINTH 01D6 A0 00 NEXT LDY #00 possible new value of mode 01D8 29 01 AND #01 is least significant digit ze	01CB / 01CD (01CF 9 01D1 / 01D4 E 01D5 E	CMP POINTL has f BCC LOOP2 if no	
01D8 29 01 AND #01 is least significant digit ze		SUBROUTINE TO STEP PO	NINTL AND POINTH
OIDC 84 F7 STY MODE A and E keys require nonzero of the second of the se	01D8 2 01DA 0 01DC 8 01DE 8	AND #01 is le BNE EIGHT F and STY MODE A and IGHT DEY decre TXA bring	east significant digit zero? B keys require nonzero mode E keys require zero mode ment Y register to #FF mode to accumulator

bring mode to accumulator in which direction is the scan? branch if E or F key depressed bring #FF to accumulator is POINTL equal to #FF? branch if not equal to #FF increment POINTL to new value increment POINTL to new value return AND #04 BNE SUB TYA 01E2 D0 0A 01E4 98 01E5 C5 FA ADD CMP POINTL 01E7 DC 02 01E9 E6 FB 01EB E6 FA BNE NINE INC POINTH INC POINTL NINE OTED 60 OTEE C6 FA RTS DEC POINTL decrement POINTL to new value needed for next instruction is POINTL equal to #FF? branch if not equal to #FF 01F0 A9 FF LDA #FF CMP POINTL BNE RETURN DEC POINTH 01F2 C5 FA 01F4 D0 02 01F6 C6 FB decrement POINTH to new value RETURN RTS 01F8 60

RESERVED FOR STACK

01F9 to 01FF

LANGUAGE LAB

basic

BASIC MOD & PROGRAMMING HINT

> by Heinz Joachim Schilling, DJ1XK Im Grun 15 D-7750 Konstanz 16 W Germany

Two days ago my copy of 6502 User Notes arrived, and because of new format and content I must say: Congratulations !!! You have arranged it into several sections, so it is quite easy to find an object of special personal interest. In my case it is BASIC.

You rised a BASIC question, and I have the solution. The problem of re-loading programs comes from a programming error of the Microsoft people. They did not realize that

1. the ID = \$00 or \$FF are only operable if the tape was not saved with an ID of \$00 or \$FF.

2. loading to a changed address using \$FF in \$17F9 is not possible with their tapes as they use \$FF in \$17F9 during save!

You have to change the LDA \$FF into LDA \$FE at \$274, the \$FE is at \$2744, and that's all! You should have a look into the listing of the KIM-loader to see that ID=\$FF only comes into operation after the compare between the \$17F9-ID and the tape-ID, in our case the compare matches and the tape-ID, in our case the compare matches and the tape is loaded to the same location as it is saved.

You are right that the BREAK-Test should include the 30 as an opcode. $% \label{eq:condition}$

The KIM BASIC hint regarding inputting only a 'return' is good, and I have another one!

In every case you try to use the cursor control codes in PRINT-statements with a semi-colon at the end you run into trouble: after 72 chars (or any other number you inputted at the cold start) the BASIC thinks the line would be complete you inserts a CR-LF, and off you are. This is true in all sorts of games (3 cushion billiard, life and so on). But the solution is so easy: add a simple POKE, and everything will run:
1000 PRINT CHR\$(9);:POKE 22,1:REM CURSOR RIGHT THE POKE goes to the memory cell which holds the

The POKE goes to the memory cell which holds the position in the line. The storage of the 1 let

the BASIC think it was at the beginning of the line and so the inclusion of the unwanted CR-LF is

Besides, I have made a little program with subroutines of HYPERTAPE and LOAD in the same form as they are used in the Micro Ade Assembler, that means with optical control of the loading. You can see on the 7-segment-display three different states: SYNC, Loading and seeking (that means if your load was with a fault and the loader looks for another ID). This little program has routines for calling these subroutines, and it can start BASIC and can start other programs at a specific address. I use the loader and save-subs from BASIC too, and so my BASIC is in the memory in 3 minutes instead of 18! Besides, I have made a disassembler printout of BASIC to allow easier corrections to BASIC. I think it would be possible to PROM the BASIC with trig functions, but this would be only possible in 9K, and you would have to change something in the coldstart routine. You must only make a little correction to the "Want SIN..." routine and take the first address after the PROM as beginning of free memory to \$78, \$79, e.g. the Want Sin prompting will be deleted.

The renumbering program on page 12 seems to be good, but I want to make one in assembler which could be loaded to my spare memory at \$0400 and must not be deleted at the end of the operation.

I just remember another little correction to my BASIC: I changed the location \$243A to \$E5 which allows the use of the DEL key at my terminal instead of the underline to delete a wrong char-

The most important thing during work with BASIC for nay corrections: a disassembler printout!!!

Then it is very easy to follow the flow through the interpreter and make little changes.

BASIC OUTPUT PAGING MOD

by Dick Grabowsky HDE, Inc. Box 120 Allamuchy NJ 07820

Marvin Dejong asks where to look to make Basic list 16 lines, rather than scoot the program past his eyes so quickly he can't see it.

Microsoft Basic does not use the KIM CRLF routine. Rather, it outputs a CR (OD) and line feed (OA) followed by a number of nulls as defined

in LOC \$15. These characters are all transfered to the KIM OUTCH routine. In 9-digit Microsoft Basic, the call to KIM OUTCH is located at \$2A51. To limit output, we can intercept this call, count the number of times the CR or LF character pass through our intercept, then halt further output until the operator inputs some character from the keyboard.

The following routine does this by counting the line-feed characters and stopping output until a line-feed is entered via the keyboard. As a bonus, let's add an ability to stop output (i.e. terminate the process) when we've found what we want, or have seen enough. The routine maybe placed anywhere in memory that will not be overwritten by Basic or Basic programs/data.

	; is it a line feed?
	;no, then output
INC COUNTR	;yes, incr the counter
LDA COUNTR	; and check to see if
CMP LNCNT	;it ='s preset line count
BEQ LINC2	
LDA #\$OA	;else, reload line feed
JMP \$1EA0	; (KIM OUTCH)
I DA #0	
CMP #\$OA	;line feed?
BEQ LINC1	yes, continue listing
CMP #\$OD	; return?
BNE LINC3	;no, ignore
IMP SO	;else, jump to "warm start"
0.112 VO	, , ,
	CMP LNCNT BEQ LINC2 LDA #\$0A JMP \$1EAO LDA #0 STA COUNTR JSR \$1E5A CMP #\$0A BEQ LINC1 CMP #\$0D

COUNTR *=*=1 ; line feed counter LNCNT *=*=1 ; line count

To use the routine, set the address of "LINCNT" at \$2A52, \$2A53. Preset the values of "COUNTR" to zero and "LNCNT" to the desired number of lines (use HEX). All output will then be limited to the number of lines defined by LNCNT. Since Basic does not use zero page locations from \$DD up, \$DD and \$DE may be good locations to put "COUNTR" and "LNCNT" since this can be done before loading Basic from tape.

When in Basic, the routine can be used to limit output to a specific number of lines by "poke" ing the values of "COUNTR" and "LNCNT" as appropri-

One additional note, 9 digit Basic sets the base address for programs at locations \$4148 and \$414A to 41 and 40, respectively. To gain room above Basic for additional software, changing these locations to the address values desired will do the trick. By the way, to check on the authors of Microsoft Basic, enter an "A" in response to the "memory size?" question.

0010:

RENUMBER ADDENDUM AND SOME MODS

by Harvey Herman
Dept. of Chemistry
Univ. of North Carolina
Greensboro, NC 27412

I recently sent you a BASIC renumbering program for KIM Microsoft 8K BASIC. In the accompanying letter I noted one restriction about the number of digits in the new line number. Sean McKenah has written me about one further restriction. He notes that numbers after THEN in an assignment, for example, will always be renumbered. Thus, the 2 in 10 IF A = 1 THEN X=2 could be inadvertently changed. He suggests using variables in assignments after THEN (X = V, where V = 2) to avoid the problem.

I also mentioned another renumbering program I use which utilizes a paper tape punch. This program does not have the above problem. If readers are interested in this program I will send it to them on receipt of a SASE and extra loose stamp.

I wrote you recently about the question you posed to your readers about Microsoft BASIC. It is possible to automate the "Y" answer in an initialization routine and I documented the procedure. A further point-4146 can be changed to 4E or 41 if "N" or "A" is the desired response.

In reply to a question posed to me in a private letter I have figured out how to skip all 3 initialization questions and their accompaning mes-

1.	To size m	emory au	tomatical	1 v	change-	
	Locations	From	To			
	4089	20	4 C	JMP	\$40CD	
	40BA	18	CD			
	40BB	2 A	40			

2.	To keep	72	as	term	inal wi	idth	
	410A			20	4 C	JMP	\$4136
	410B			18	36		
	410C			2A	41		

3. To answer "Y" to trig functions question and skip message
413A 20 4C JMP \$4145
413B 18 45
413C 2A 41

4145 C0 A9 LDA #'Y or 'N or 'A 4146 00 59 or 4E or 41

AUTOMATIC LINE NUMBER ENTRY PROMPT FOR BASIC . Sean McKenna

0.010:	
0010:	Sean McKenna
0020:	64 Fairview Ave.
0030:	Piedmont, CA 94610
0040:	January, 1979
0050:	
0060:	
0061:	NUMBER REVISED VERSION
3362:	
0070:	An automatic line numbering input routine
0030:	for 9 digit KIN SASIC. From command BASIC
0090:	enter # nnnn+ii(sp)CR to begin automatic
3130:	line number sequencing with nnnn. Each
3113:	line will be incremented by ii. To return
0120:	to command BASIC enter CR after line number.
0130:	On delete the line number will be repeated
3140:	on the next line of the terminal. Don't
0150:	forget the space after the increment number
0160:	or you may get no increment at all or a
3170:	strange one. Because of the decimal add
0130:	the highest line number possible with the
0190:	program is 9999 and 99 is the highest
0200:	increment
3210:	
0211:	Initialization: SEQFLG and TIMNUM must be
0212:	initialized to \$00 before using the routine

```
0230: 0200
0240: 0200
0250: 0200
                                            NUMBER ORG
                                                                       $0200
                                            INCR *
SEQFLG *
                                                                       $00E5
$00E6
            0200
                                            TIMNUM
                                                                       $00E7
 0260:
            0200
                                            HI
LO
 0270:
                                                                       SOOES
                                                                       $00E9
$001B
                                            BASBUF
 0290: 0200
0300: 0200
0310: 0200
                                            PACKT
                                                                       S1A00
                                                                       $17E9
                                            Set input and output to your routines.
Input should echo to output and preserve X.
Output should preserve X and ACC.
INPUT * $1000
OUTPUT * $1017
 0320:
0330:
0340:
0350: 0200
 0360: 0200
0370:
                                               Enter here from KIM BASIC INPUT call
TART BIT TINNUM If not time to output a line number
BPL INP Then branch to input call
INO LDA HI Otherwise output a 4 digit line number to
 0380:
0390: 0200 24 E7
0400: 0202 10 14
0410: 0204 A5 E8
0420: 0206 20 6A 02
                                            START
                                                          LDA
JSR
                                                                       HI Otherwise output a 4 digit line number t
OUTNUM the BASIC input buffer and users display
                                            LINO
            0209 A5 E9
020B 20 6A
020E A9 00
 0430:
                                                          LDA
                                                                       LO
 0440: 020B 20
0450: 020E A9
                                   02
                                                                       OUTNUM
                                                           LDAIM $00
                                                                                     and clear the TIMNUM flag
                                                          STAZ TIMNUM
LDAIM $20
                                                                     $20 Output a space
0450: 0210 85 E7
0470: 0212 85 E7
0470: 0212 A9 20
0480: 0214 20 17 10
0490: 0217 60
0500: 0218 20 00 10 INP
                                                          JSR
                                                           RTS
                                                                                    and return to basic
                                                                       INPUT Get user input
                                                           JSR
0500: 0218 20 00
0510: 021B C9 40
0520: 021D D0 0B
0530: 021F 24 E6
0540: 0221 10 46
0550: 0223 A9 FF
0560: 0225 85 E7
0570: 0227 A9 40
0580: 0226 00
0590: 0226 C9 00
0600: 0226 D0 3B
0610: 0226 24 E6
0620: 0230 30 24
0630: 0232 A5 1B
                                                          CMPIM $40
BNE CRQ If delete input
BIT SECFLG and sequence flag is set
                                                           BPL
                                                                       RETURN
                                                           LDAIM SFF
STAZ TIMNUM
                                                                                     then set TIMNUM flag
                                                           LDAIM $40
                                                                                   restore delete
                                                          RTS
CMPIM $0D
                                            CRQ
                                                                                    If CR
                                                                      SECFLG and sequence flag is set
ENDSEQ go see what to do
                                                           BNE
                                                           BMI
 0630: 0232 A5
0640: 0234 C9
0650: 0236 D0
                                                                       BASBUF otherwise look at BASBUF
$23 did he input a #?
CRRET If not return with a CR
                                                           LDA
                                                          LDA BASEUF otherwise look at BASEUF CMPIM $23 did he input a $7. BNE CRRET. If not return with a CR LDAIM $FF STAZ SEPILO If yes set sequence flag LDAIM $0D Output a CR
                              23
2F
0650: 0236 D0 2F

0660: 0238 A9 FF

0670: 0238 A5 E6

0680: 023C A9 0D

0690: 023E 20 17 10

0700: 0241 A9 0A

0710: 0243 20 17 10

0711: 0246 A2 00

0712: 0248 BE E9 17

0713: 024B 86 E8
                                                           JSR OUTPUT
LDAIM $0A
                                                                                       and LF
                                                                       OUTPUT
                                                           JSR
                                                           JSR GOILS
LDXIM $00
STX SAVX
                                                                                     Clear HI, LO and SAVX
                                                           STX
                                                                       HT
 0713: 024B 86
0714: 024D 86
0720: 024F 20
0730: 0252 A2
0740: 0254 F0
0750: 0256 E0
0760: 0258 30
                              E9
90 02
00
                                                                       LO
SETNUM and go set up HI,LO and INCR
                                                           STX
                                                           JSR
                                            SETLNO LDXIM $00
                                             BEQ LINO
ENDSEQ CPXIM $08
                                                                                     send the first line number and return
                                                           BMI CLRSEQ clear SEQFLG if not enough in buffer
                              09
 0770: 025A 20 C5
0780: 025D A9 FF
0790: 025F 85 E7
                                                           JSR INCLN otherwise add increment to line number LDAIN 3FF and set the TIMNUM flag
                                    02
                                            STAZ TIMNUM
BMI CRRET and returns with CR in ACC
CLRSEQ LDAIM $00
 0790: 025F 85
0800: 0261 30
0810: 0263 A9
0820: 0265 85
0830: 0267 A9
0840: 0269 60
                              04
                                            STAZ SEON
CRRET LDAIM SOD
RETURN RTS
                                                                       SEOFLG
  0850:
 0860:
0870: 026A 48
                                               SUBROUTINES FOLLOW
                                            OUTNUM PHA
LSRA
LSRA
                                                                                      Puts hex byte in ACC in BASIC buffer as
0870: 026A 48
0880: 026B 4A
0890: 026C 4A
0900: 026E 4A
0910: 026E 4A
0910: 026F 20 7D 02
0930: 0275 20
0950: 0276 20 7D 02
0960: 0276 20 7D 02
0960: 0270 20
0980: 0270 20
0980: 0270 20
0980: 0270 20
0980: 0270 20
0980: 0270 20
0980: 0270 20
0980: 0271 29
070: 0281 18
                                                                                     2 ACII decimal digits and ehoes to user
                                                           LSRA
                                                           LSRA
                                                           JSR
JSR
                                                                       HXTAS
PNUM
                                                           PLA
JSR
                                                                        HXTAS
                                                           JSR
                                                                        PHUM
                                                           RTS
ANDIM SOF
                                             HXTAS
                                                                                     Changes hex character to ASCII
                                                           CMPIM $0A
CLC
BMI HXI
  1000: 0281 18
1010: 0282 30 02
1020: 0284 69 07
                                                           ADCIM $07
 1030: 0286 69 30
1040: 0288 60
1050: 0289 20 17
1060: 028C 95 1B
1070: 028E E8
                                             HXI
                                                           ADCIM $30
                                                           RTS
JSR OUTPUT Line number to buffer and output
                              17 10
                                             PNUM
                                                           STAAX BASBUF
                                                           INX
  1080: 028F 60
  1090: 0290 E8
1100: 0291 B5 1B
                                                                                      Gets base line number and increment from
                                             SETNUM INX
                                                           LDAAX BASBUF buffer and places in HI,LO, and INCR
  1110: 0293 C9 20
1120: 0295 F0 F9
                                                           CMPIM $20
                                                                       SETNUM Ignore spaces
```

1130:	0297	C9	2B			CMPIM	\$2B	If plus sign (+) then go get increment
1140:	0299	F0	18			BEQ	GETINC	
1150:	029B	20	00	1A		JSR	PACKT	Otherwise convert to ASCII and store
1160:	029E	A5	E9			LDA	LO	
1170:	02A0	A0	04			LDYIM	\$04	Into HI and LO
1180:	02A2	AO			ROT	ASLA		
1190:	02A3	26	E8			ROL	HI	
1200:	02A5	88				DEY		
1210:	02A6	D0	FA			BNE	ROT	
1220:	02A8	0D	E9	17		ORA	SAVX	
1230:	02AB	85	E9			STA	LO	
1240:	02AD	8C	E9	17		STY	SAVX	
1250:	02B0	4C	90	02		JMP	SETNUM	And go look for next one
1260:	02B3	E8			GETINC	INX		
1270:	02B4	35	18				BASBUF	Get increment number
1280:	02B6	C9	20			CMPIM		
1290:	02B8	F0	05			BEQ	GOTIT	If blank done
1300:	02BA	20	00	1A		JER	PACKT	Convert to ASCII and leave it in SAVX
1310:	02BD	F0	F4			BEC	GETINC	Go get next one
1320:	023F	AD	E9	17	GOTIT	LDA	SAVX	,,
1330:	02C2	35	E5			STAZ	INCR	put it in INCR and return
1340:	02C4	60				RTS		•
1350:	02C5	A5	E5		INCLN	LDAZ	INCR	Add increment amount to line number
1360:	02C7	18				CLC		
1370:	02C3	F8				SED		
1330:	02C9	65	E9			ADC	LO	would sell the source code for a
1330:	02CB	85	E9			STA	LO	bucks).
1400:	02CD	A5	E8			LDA	HI	
1410:	02CF	69	00			ADCIM		The "real-time clock" is ac
1420:						STA	HI	counter and not a time of day cl
1430:	02D3	DB				CLD		useful in games etc.
1440:	02D4	60				RTS		PRODUCT ANNOUNCEMENT

A NEW COMMAND FOR BASIC

Dick Grabowski HDE INC.

To implement the "GET" command in KIM BASIC by Microsoft, change the following:

at location \$2AEA-\$2AEC enter AO 00 A2 1A

The "GET" command allows terminal input and test of a single character without the need to enter the "RETURN" key. One example is in terminal use where you want to hold some material on the screen until the user signals completion:

1000 PRINT:PRINT "ENTER SPACE WHEN READY";:GET A\$:
IF A\$\(\sigma^n\)" THEN 1000

This will repeat the prompt "ENTER SPACE WHEN READY" until a space is entered, then fall through to the next program step. Of course, many other

GET A ---returns the numeric value 0-9 GET A\$---returns the alpha value A-Z

EDITORS ADDITION—BOD KUTLZ OF Micro-Z mentioned that he got the "GET" command working by changing location \$2AEE from \$DO to \$FO.

The GET command will simplify the user interface considerably.

PRODUCT REVIEW

by the editor

Review of Harvey Hermans Basic Enhancement Package as mentioned in Issue #13 p. 12.

Besides what I mentioned in issue #13 you also get a method for using KIMs ST key for stopping the program in a controlled manner, the ability to append Basic programs and subroutines from cassette tape, and a fix for a bug in Basics cassette save routine (also see Herr Schillings letter in the Basic section of this issue for the same fix).

For 15 bucks you get five pages of info. Four pages of explanations and sample printouts of the Basic mods and the fifth page is a hexdump of the mods.

There's no doubt that this is a useful package of info for the Basic user. My only complaints are that the price is a little steep (\$7.50 would have been more like it) and the source codes for the mods is not included (Mr. Herman indicated he

source code for an additional 15

time clock" is actually a "tick" a time of day clock. Could be etc.

PRODUCT ANNOUNCEMENT

Bob Kurtz of Micro-Z has announced that he is Bob Kurtz of Micro-Z has announced that he is making available his Basic mods which add hypertape and most importantly the ability to save and load Basic data as well as programs. (This is one of the shortcomings of the 6502 version of Microsoft Basic. It's hard to believe that this ability wouldn't be part of the original program specs.) The ability to save data is a very important one as it enables one to maintain and update data files of such things as income info for tax time, scores for the plant bowling league, handicaps for the local golf course, maintaining your check book, etc etc.

The package also includes a 60 + page Basic manual which explains each command in detail and includes many programmed examples. I have the manual and can attest to its completeness. The only thing this manual doesn't include is any

Zero-page usage data as was found in the Basic documentation included with the Basic from Johnson Computer.

Anyhow, Micro-Z is asking \$35 for their Basic enhancement package and this uncludes the man-ual. Contact Micro-Z Co, Box 2426, Rolling Hills, Ca 90274.

BASIC 'USR' FUNCTION INFO

C. Kingston 6 Surrey Close White Plains NY 10607

White Plains NY 1000/

Microsoft BASIC users should note that "AYINT"
does not work as described in the instructions for
Microsoft BASIC (at least in my version of it.)
The USR argument is returned to \$00B1(HI) and
\$00B2(LO), and not to Y and A. After having some
problems with the USR statement, I wrote to Microsoft and they repsonded with the above information
(apparently not having had this brought to their
attention before according to their letter). You
should check your version out to see what it does,
as newer ones may have this changed either in the
program or the instructions. This is applicable
for the KB-9 version. I cannot verify that the
following work, but Microsoft wrote that the return is to AB(LO) and AC(HI) in KB-6, and B4(LO)
and B5(HI) in the ROM version. I would check the
HI-LO arrangement carefully, since they had them
reversed for the KB-9 version; they work as stated
above in my BASIC. above in my BASIC.

FROM THE EDITOR: The 'USR' function in Microsoft Basic is a kluge at best. Does anyone know where the 'USR' routine is located in Basic so we can make it work right. Tiny Basic has a much better machine language interface.

Do you know who you can dwith your KIM?

If not, we have a few suggestions . . .

Two books, whose programs are now available on computer program tapes, will give you numerous suggestions and complete directions for some unique and fun applications for your KIM.

THE FIRST BOOK OF KIM (by Jim Butterfield, Stan Ockers, and Eric Rehnke) is the book all KIM users have been waiting for. In it, you'll find a beginner's guide to the MOS Technology KIM-1 microcomputer as well as an assortment of games and puzzles including Card Dealer, Chess Clock, Horse Race, Lunar Lander, and Music Box. The authors go into detail on how you can expand your KIM from the basic small-but-powerful KIM-1 system to a huge-and-super-powerful machine. Also featured are diagnostic and utility programs for testing both the computer and external equipment (such as cassette recorders), expanding memory, and controlling analog devices. (#5119-0, \$9-95) Now available are easy-to-use computer program tapes that feature the 28 recreational and 13 utility programs found in THE FIRST BOOK OF KIM. Tape 1 (#W0700) and Tape 2 (#00800) have 14 recreational programs each, and Tape 3 (#00900) has 13 diagnostic and utility programs. All three tapes are \$9-95 each.

HOW TO BUILD A COMPUTER-CONTROLLED ROBOT (by Tod Loofbourrow.) "Finally someone has written a book on robot building with microprocessor/microcomputers and a good one at that!...a gold mine of useful information on interfacing microcomputers to the real world — and beyond." Computer Dealer. You'll experience the thrill of creating an intelligence other than human when you see how "Mike" grows from totally under your control, to seeing and feeling his environment, to responding to voice commands. This book details that creation by giving step-by-step directions for building a robot that is controlled by a KIM-1. (#5681-8, \$7.95). The five complete control programs for a robot are clearly documented in the book and are available on a computer program tape. (#00100, \$14.95)

Books and Tapes are available at your local computer store!

Hayden Book Company, Inc. 50 Essex Street, Rochelle Park, NJ 07662

focal

Lots of neat mods are in store for FOCAL. We're going to add a cassette save & load facility, a Basic-like data statement, output to KIM's seven segment display, the ability to handle arrays of strings, an improved print command, a machine language subroutine call and a few minor fixits and speed-up mods.

Before we do all this, however, we need some room. The present size of the Aresco V3D is about 6K so let's stretch it out to an even 8K and give ourselves a little breathing room. If you examine the listings (love them listings!), you'll notice that the user program must start right after Focal because of line number 00.00 at \$35EB.

(One problem: all these mods pertain to V3D which is distributed by Aresco and not necessarily to FCL-65E which is distributed by 6502 Program Exchange. The symbolic addressing info might pertain to FCL-65E but since I don't have a listing of FCL-65E, I can't be sure. FCL-65E might be an updated version of V3D but I can't be sure).

Extend V3D FOCAL to 8K by moving \$35EB through \$360A to \$3FED-\$3FFF. This moves the line 0.0 startup message to the top of the 8K block that will be used by FOCAL. Some zero page pointers must also be changed to allow for the above mod.

```
        change:
        TEXTBEG
        $002F
        FROM
        $EB
        TO
        $E0

        PBADR
        $0031
        FROM
        $35
        TO
        $1F

        VARBEG
        $0031
        FROM
        $03
        TO
        $1F

        VARBEG
        $0032
        FROM
        $0A
        TO
        $1F

        VARST
        $003F
        FROM
        $0A
        TO
        $1F

        VAREND
        $0041
        FROM
        $0A
        TO
        $1F

        VAREND
        $0042
        FROM
        $36
        TO
        $3F

        VAREND
        $0042
        FROM
        $36
        TO
        $5F

        PDLIST
        $0053
        NO
        CHANGE
        $5F
```

This is the FOCAL pushdown stack and should be set to some convenient page up out of the way of FOCAL programs. \$5F assumes a 16K system.

Another thing that must be improved is the way FOCAL sets up zero-page. Actually, it doesn't. I really can't understand why the implementers overlooked this problem. Oh well...it's easy to fix. At \$3F00 add the following zero page intialization routine. \$3F00 will become the new cold start address.

Ok now, we have stretched out FOCAL to 8K and added a Z page initialization routine. What next? We'll start adding mods from \$35EB-\$3EFF.

More next time.....

tiny basic

Oops! In issue #13, I left out the mod that must be made to the IL at \$0A26. Here it is:

OA26 1E NX NX on REM instead of NS.

In the next issue, we'll be presenting a very comprehensive string capability for TB as well as a cassette save and load ability. (I ran out of room in this issue). Must be a good number of Tiny Basic users out there. Have you done anything neat with TB? Let us know.

forth

Nothing new to report here except that by issue #15 or #16 I hope to be announcing availability of FORTH for KIM. Preliminary versions are actually operational at this point, but documentation has to be written and other details have to be worked out. This version of FORTH was written to conform to the implementation info presented in the Caltech FORTH manual. A complete source listing will be available.

Beware - just because it's called FORTH don't mean it really is. Before you purchase any package called "FORTH" make sure it conforms to the "international standard" presented in #13.

xplo

Ready for something new? Take a look at XPLO. This is a block structured compiling language that is quite a bit different from BASIC or FOCAL and more along the lines of a subset of ALGOL or PAS-CAL. An article on XPLO appeared in Kilobaud (Feb 79 p. 24) which should enlighten you on the ins and outs of this new addition to the 6502 users arsenal.

I purchased XPLO from the 6502 Program Exchange, 2920 Moana, Reno NV 89509. Get their catalog for \$1. Lots of good software from this group Check them out.

Here's a sample HILO program written in XPLO to give you an idea what it looks like.

```
'CODE' CRLF=9,RANDOM=1,INPUT=10,TEXT=12;
'INTEGER' GUESS,NUMBER,INCORRECT,TRY;
'PROCEDURE' MAKEANUMBER;
'BEGIN'
NUMBER:=RANDOM(100);
'END';
'PROCEDURE'
                     INPUTGUESS;
GUESS:=INPUT(0);
'PROCEDURE'
                    TESTGUESS;
'BEGIN'
'IF' NUMBER=GUESS 'THEN'
     'BEGIN'
TEXT(O, CORRECT!!*);
          TRY:=1;
     'END'
      'ELSE'
          'IF' NUMBER<GUESS 'THEN'
TEXT(0, TOO HIGH )
          'ELSE' TEXT(0, TOO LOW");
CRLF(0);
 BEGIN'
INCORRECT:=0;
TRY:=INCORRECT;
MAKEANUMBER;
 WHILE' TRY=INCORRECT 'DO'
                BEGIN
                          TEXT(0. GUESS .);
                          INFUTGUESS;
TESTGUESS;
                'END';
'END'
```

The 6502 Program Exchange also offers a very powerful text editor which is based on the DEC TECO editor. TEC65 is a line oriented (no line numbers) and allows for some very complex editing editing macros. For instance, you could conceivably convert an assembly source file from one assembler format to another. TEC65 includes a cassette operating system which lets you save and load text files.

I've had this editing language running on my machine and am quite impressed with its power.

Check it out!

ACCESSING THE SYM DISPLAYS

A. M. Mackay 600 Sixth Avenue West Owen Sound, Ontario

I got my new SYM-1 a couple of weeks ago, and I love it. But there's a lot of work to be done-it's not that similar to KIM.

Outputting on the display is a lot differentinstead of using F9, FA and FB, you have to treat each 7-segment display as a unit, and get it into DISBUF at A640 (left display) through A645 (right display). But since DISBUF is in write-protected RAM, you have to call ACCESS at 8B86 first to unwrite the RAM.

I've enclosed a little SYM-1 program to output the characters, and shown the segment coding. The program as written will display squirrely characters as indicated. Any character can be displayed by changing the coding in 021A through 021F, using the indicated coding, and others can be found starting at location 8C29 in the monitor.

This program may help novices like myself to get the feel of SYM. I haven't had time to figure out the counter yet.

Maybe some bright USER can come up with a way to hook up Don Lancaster's TVT 6 5/8 to a SYM.

Sorry that Jack Cowan had trouble with his Solid State 4K board. Mine worked the first time with my KIM (no bad chips), and when I plugged it into my SYM, after changing the addresses, it also worked perfectly.

ACCESS	=	\$888	6		
DISBUF	=	\$A64	0-45		
SCAND	=	\$890	16		
0200 A2	05			LDX	@ 05
0200 20	86	8 B	GETCH	JSR	ACCESS
0205 BD	14	02		LDA	TABLE, X
0208 9D	40	A6		STA	DISBUF, X
020B CA				DEX	
020C 10	F 7			BPL	GETCH
020E 20	06	89	DISPL	JSR	SCAND
0211 4C	0E	02		JMP	DISPL
0214 79			TABLE	BYT	E 'ESCAPE'
0215 6D					
0216 39					
0217 77					40
0218 73					01
0219 79				2	0 602
Blank =	00,	Deci	mal =	80	100*
SEGMENT	CODE	:			08
3D 🖸		OT		37 N	
76 H				64	l
76 H 1E J				37 D 64 52 D3 49 50 E	j
38 F 73 F 3E U				D3 F	J.
73 P				49 =	ď
3E 😃				5C 2	3
					_

Other character codes start at Mon. address \$8029. To change display change coding in table 0214-0219.

SYM NOTES & KIM-4 COMPATIBILITY

C. Kingston 6 Surrey Close White Plains NY 10607

I note that some information on the SYM is being included in the 'USER NOTES'. The SYM looked like a reasonable way to improve a KIM based system so I looked into this. The Synertck liturature states that the SYM is usable with any KIM based motherboard. To check, I wrote Synertck and asked specifically if it would work with the KIM-4. They replied that it would. So I got one and tried it, and can report that it does not work with the KIM-4. The trouble was tracked down to the fact that the KIM-4 data buffers are enabled at the wrong times. Thus the KIM-4 has to be altered for proper decoding. After cooling down page 18

somewhat about this development, I looked into the problem and came up with a solution, but not an optimal one.

The following alteration will result in the KIM-4 being enabled for all addresses below \$8000, and disabled for all above (and including) \$8000, and disabled for all above (and including) \$8000. Since the SYM in its full glory will utilize almost all of the addresses above \$8000, this scheme makes sense. However, if you want to fit in some RAM in the unused high memory positions, you will have to resort to more extensive surgery on the KIM-4. The mod here requires that the lower IK of memory be on the KIM-4, which makes the RAM on the SYM unnecessary. A simple change will disable the low IK (\$0000-\$03FF) on the KIM-4 and allow its use on the SYM. However, since this makes filling in the rest of the first 8K somewhat awkward, I prefer to ignore the SYM RAM (which should be removed, especially if either set of RAM's on the same address can be write protected.)

First of all, you will have to remove chip U5 of the KIM-4 (the 7423) and replace it with a socket. Since you will in all probability destroy U5 in this process, be sure you get another 7423 before starting. Note that some pins make their connection at the top of the board only. If a tiny bit of solder is placed on these pins at the base before putting the socket on the board, it will melt and make contact if you heat the pin adequately. Replacing the 7423 into the socket will leave the KIM-4 in its original state for the KIM.

Now you will connect a 16 pin dip header to a 14 pin socket using the following connections:

6	PIN	(TOP)	14 PIN	(BOT
	4		9	
	6		12	
	7		8	
	8	GND	7	GND
	9		3	
	10		2	
	12		1	
	16	VCC	14	VCC

Now connect pins 10 and 11 together on the 14 pin socket, and do the same with pins 13 and 14. Be sure to use covered wire as they will have to cross over each other. I made my connections about 1 inch long so that the 14 pin socket sets just above the 16 pin dip header. Using solid hookup wire makes for a fairly firm package. Being careful to observe the location of pin 1, put a 7400 (or 74LS00) into the 14 pin socket. Now plug the converter into the socket for U5 in place of the 7423. The KIM-4 is now enabled for the lower 32K and disabled for the top 32K. The SYM should now work when plugged in, but not the KIM.

To disable the KIM-4 for the first 1K, do not connect pins 13 and 14 on the 14 pin socket together. Instead, run a connection from KO on the applications connector (pin A-B) to pin 13 of the 14 pin socket. Note that there is an unused nand gate in the 4700 that can be used for additional coding if desired. (The info in this paragraph has not actually been tried yet).

Having made the above conversion, I was then in a position to determine whether or not KIM programs that use TTY or CRT I/O could be successfully transferred and used after changing the I/O vectors and/or JSR's. This led to the next problem. Transferring programs to the SYM system from the KIM system sounds, easy since SYM has a KIM format tape input program. But it ain't easy. First of all, as noted in the Feb ('79) MICRO, the SYM stops when it detects a '2P', thinking it is the end of file marker. Those '2P' bytes that are not EOF's have to be changed to something else before transfer, and then changed back afterwards. (I intend writing a short program that will do this in the near future.) The next problem is that SYM will not read tapes made with Hypertape; you must muse the KIM monitor speed. I suppose that a program could be written to read Hypertape, and wonder why Synertek didn't make theirs flexible enough to do this. (If I read the monitor proram correctly — and this is not easy to do because of all the branches and jumps it uses — the number of pulses required per bit is programmed into the monitor and cannot be changed.)

In performance. In quality. In availability. OEMs, educators, engineers, hobbyists, students, industrial users: Our Versattle Interface Module, SYM-1, is a fullyassembled, tested and warranted microcomputer board that's a true single-board computer, complete with keyboard and display. All you do is provide a +5V power supply and SYM-1 gives you the rest-and that includes fast delivery and superior quality.

Key features include:

- · Hardware compatibility with KIM-1 (MOS Technology) products.
- · Standard interfaces include audio cassette with remote control; both 8 bytes/second (KIM) and 185 bytes/second (SYM-1) cassette formats; TTY and RS232; system expansion bus; TV/KB expansion board interface; four I/O buffers; and an oscilloscope single-line display.

To place your order now, contact your local area distributor or dealer.

OEM Distributors

Kierulff Electronics Sterling Electronics (Seattle only) Zeus Components Century/Bell Hallmark Intermark Electronics Quality Components

Technico General Radio Western Microtechnology Future Electronics Alliance Electronics Arrow Electronics

Personal Computer Dealers Newman Computer Exchange Ann Arbor, Michigan

- 28 double-function keypad with audio response.4K byte ROM resident SUPERMON monitor including over 30 standard monitor functions and user expandable.
- Three ROM/EPROM expansion sockets for up to 24K bytes total program size.
- 1K bytes 2114 static RAM, expandable to 4K bytes on-board and more off-board.
- 50 I/O lines expandable to 70.
- Single +5V power requirements.
- Priced attractively in single unit quantities; available without keyboard/display, with OEM discounts for larger quantities.

Synertek Systems Corporation.

150-160 S. Wolfe Road, Sunnyvale, California 94086 (408) 988-5690.

Technico Columbia, Maryland Computerland Mayfield Heights, Ohio RNB Enterprises King of Prussia, Pennsylvania Computer Shop Cambridge, Massachusetts Computer Cash Anchorage, Alaska

Ancrona Culver City, California General Radio Camden, New Jersey Advanced Computer Products Santa Ana, California Computer Components Van Nuys, California Alltronics. San Jose, California

I finally managed to transfer Tiny Basic to the SYM system, and after changing the I/O vectors, found that it worked. One point that I noted was that the SYM monitor converts lower case input into upper case, but this looks like it would not be too hard to get around.

Another point of difference in the KIM and SYM. I have found the KIM tape I/O to be extremely reliable and not critical in the recorder used or the settings used. For the short bit that I have used the SYM, I have found it to be extremely sensitive to the recorder volume and tone settings, particularly for the high speed format. It was thoughtful of Synertek to provide a visual means of setting the volume and tone controls for proper reading of the tape (using a sync tape). I guess one must decide which is better - fast tape I/O but critical settings, or slower but surer tape I/O.

ADDENDUM

Since writing the above I have noted another problem in using the SYM with the KIM-4. KIM outputs KI,2,3,4 are wire-or'd together on the KIM-4 and pulled up with a resistor (R2). The equivalent lines on the SYM are not open collector lines and probably should not be wire or'd. No harm came to the 74LS138 on the SYM during the short time I used it without noticing this (at least no noticeable harm). These four lines can be separated on the KIM-4 by cutting the traces between them (where the connectors are soldered to the KIM-4 board). K4 (A-F) can be disconnected from R2 by removing the through plating where the line transfers to the bottom of the board. A four position dip switch could be hooked up to connect or disconnect the lines.

WUMPUS & MUSIC BOX MODS FOR SYM

Jim Adams 17272 Dorset Southfield, Mi 48075

SYM Users: Make the following modifications to Stan Ockers' WUMPUS program in The First Book Of KIM to use it on your machine.

LOC	FROM	TO							
35C	E 7	29							
35D	1F	8 C							
365	E 7	29							
366	1 F	8 C							
376	14	47	ASCII	G	(GO	key)	to	pitch	Gas
2A6	06	04							
2A7	17	A 4							
2E1	E7	29							
2 E 2	1F	8 C							

Replace 200 thru 257 with

200 84 DE 85 DD 20 86 8B AO 05 B1 DD 49 80 C9 80 F0 210 1F 99 40 A6 88 10 F2 A2 0A 86 DB A9 52 8D 1F A4 220 20 20 66 89 2C 06 A4 10 F8 C6 DB DO EF E6 DD DO D7 230 66

Replace 258 thru 271 with 258 20 AF 88 C9 47 F0 05 20 75 82 B0 F4 60

FROM

Make the following modifications to Jim But terfield's MUSIC BOX program in The First Book Of KIM to play music on your on board speaker.

TO

OD	OD	BF	20B	
20	20	8 D	20C	
A 5	A 5	43	20D	
89	89	1 7	20E	
60	60	00	219	
06 ATTENTION "VIM" AND "AIM-65" USERS!!	06	A 7	24C	
08 THE SAN FERNANDO VALLEY KIM-1 USERS	8 0	2 7	255	
02 CLUB IS EXPANDING ITS MEMBERSHIP TO	02	42	270	
A4 INCLIDE THESE TWO NEW HIMD EXCITING MICROCOMPUTER SYSTEMS WE MEET AT 7:3 PM ON THE SECOND WEDNESSET BY OF THE MONTH AT 28224 COHRSSET BY CONNOR PRIKE OR 91386 CRUL JIM ZUBER AT (213	A 4	17	271	0.0
341-1610 IF YOU HAVE RWY QUESTIONS.				

Jody Nelis K3J2D 132 Autumn Drive Trafford Pa 15085

I have had a Rockwell AIM 65 for three weeks now and I can only say one thing: Fantastic ma-chine!!!

The AIM is following a one year session with a KIM-1. The 8K monitor in the AIM takes care of a lot of the things that the KIM monitor needed additional software to handle.

The text editor is slick especially for we typists who make a lot of mistakes. Entering a program in unemonics is a step up from all Hex Op Codes.

The user's guide shipped with the AIM was hurridly put together since it held up shipment of the hardware. To help others who may have an AIM 65, I'm passing along several items that I believe to be incorrect in the user's guide (October 1978 is-

- Page 2-19 A step is missing in the program entry for this example. Between the "AND #OF" and the "BRK" there should be a "STA #41".
- Page 2-25 At the top of the page, the display reg-ister format should read: PC P A X Y S
- Page 3-20 There is a problem with the form given for the (indirect),Y addressing mode. See the separate sheet that discusses that subject.
- Page 3-23 Under using the K command:

 1. Type K. AIM 65 will repsond with:

 (K)**
 - Enter the starting address in hexadecimal. AIM 65 will respond with: <K>*=0300

 - Type return. AIM 65 will respond with: / Specify the number of instructions..
- Page 9-11 The syn test pattern program has multiple errors in it. This is liable to have a lot of people wearing out VRI or spending a lot of time trouble-shooting an OK tape recorder. I have included a corrected program disassembled from the AIM 65 on separate sheet.
- Page 11-3 The Olivetti type no. 295933R35 thermal paper that is refered to can't be located in the Pittsburgh area using that number. In fact all of the Olivetti Dealers I talked to were unable to come up with any 2½ inch wide paper at all. I have found that Texas Instruments #TP-27225 thermal paper is the right size and price (3 rolls for \$3.69) and is available anywhere that TI calculators are sold. I haven't tried the SEARS paper yet but the catalog at least says it exists. In a pinch, Radio Shack sells 3 smaller rolls for \$2.79 that will work also (Cat. No. 65-706).
- Page A-1 There is a problem with the form given for the (indirect),Y addressing mode. See the separate sheet that discusses that subject.
- Page K-10 The disassembly listing on this page and the next have been interchanged.

Hopefully these corrections will aid any other new AIM owners get aquainted with their machine.

more ...

pag

KIM BUS EXPANSION!

AIMTM, VIMTM, (SYM)TM, KIMTM OWNERS (and any other KIMTM bus users) buy the best 8K board available anywhere:

GRAND OPENING SPECIAL!

HDE 8K RAM-\$169! 3 for \$465!

Industrial/commercial grade quality: 100 hour high temp burnin: low power: KIM bus compatible pin for pin: super quality & reliability at below S-100 prices (COMMERICALLY rated S-100 boards cost 25-75% more). When you expand your system, expand with the bus optimized for 8 bit CPU's, the Commodore/Mos Technology 22/44 pin KIM bus, now supported by Synertek, MTU, Rockwell International, Problem Solver Systems, HDE, the Computerist, RNB, and others!

KIM-1 computer \$179.00: KIM-4 Motherboard \$119: power supply for KIM-1 alone—\$45: enclosure for KiM-1 alone \$29: HDE prototype board with regulator, heatsink, switch address & decoding logic included \$49.50: book "The First Book of KIM" \$9.95: book "Programming a Microcomputer: 6502" \$8.95: SPECIAL PACKAGE DEAL; KIM-1, power supply, BOTH books listed above, ALL for

HDE FILE ORIENTED DISK SYSTEM (FODS) FOR KIM BUS COMPUTERS Make your KIM (or relative) the best 6502 development system available at any price. Expand with HDE's full size floppy system with FODS/Editor/Assembler. 2 pass assembler, powerful editor compatible with ARESCO files KIM bus interface card: fast 6502 controller handles data transfer at maximum IBM single density speed for excellent reliability: power supply for 4 drives: patches to Johnson Computer/Microsoft BAŞIC. 45 day delivery. Single drive—\$1995 dual drive \$2750

Shipping extra unless order prepaid with cashier's check ALL

items assembled, tested, guaranteed at least 90 days.

PLAINSMAN MICRO SYSTEMS (div. 5C Corporation)
P.O. Box 1712, Auburn, Al. 38830: (205)745-7735
3803 Pepperell Parkway, Opelika
(1-800-833-8724) Continental U.S. except Al.

Dealers for OSI, COMMODORE, COMPUCOLOR,

Visa:

ALTOS

engar bag

HUDSON DIGITAL ELECTRONICS, INC.

BOX 120, ALLAMUCHY, N.J. 07820 • 201-362-6574

KIM-1 PRODUCTS FROM HDE, INC.

DM-816-M8 8K STATIC RAM MEMORY

This is the finest memory board available for the KIM-1 at any price. Commercial/Industrial quality. All boards are continuously operated and tested for a minimum of 100 hours prior to release. Full 6 month parts labor warranty

DM-816-DI1 8" FLEXIBLE DISK SYSTEM

Available in single and dual drive versions. Includes interface card, power-supply, Sykes controller and drive, cables and manual. File Oriented Disk System software with HDE text editor.

DM-816-MD1 5" FLEXIBLE DISK SYSTEM

Single and dual drive versions include interface/controller, power supply, Shugart drive, cables and manual. Advanced version of FODS software with HDE text editor. Latest addition to HDE peripheral product line

DM-816-CC15 MOTHER BOARD

A professional mother board for the KIM-1, All KIM-1 functions remoted, includes power on reset, 15 connectors. Provision for Centronics printer interface. Card cage and cabinet configurations available.

DM-816-UB1 PROTOTYPE CARD

Designed for ease of special applications development. Handles up to 40 pin dips.

HDE ASSEMBLER

An advanced, two pass assembler using 6502 cross-assembler mnemonics. Free form, line oriented entry. Directives include: .OPTION, .BYTE, .WORD, .FILE, .OFFSET, .END. Output options include: LIST, NOLIST, SYMBOLS, NOSYMBOLS, GENERATE, NOGENERATE, ERRORS, NOERRORS, TAB, NOTAB. Assemble from single or multiple source files. Place source, object and symbol table anywhere in memory. Automatic paging with header and page number. User's manual. Approximately 4K. Loads at 2000 or E000. Specify on order.

HDE TEXT OUTPUT PROCESSING SYSTEM (TOPS)

A comprehensive output processor, including left, right and full justification, variable page length, page numbering (Arabic or U/C and L/C Roman), page titling, string constants, leading and trailing edge tabbing, field sequence modification, selective repeat, selective page output and much more. Over 30 commands to format and control output of letters, documents, manuscripts. User's manual. Approximately 4K. Loads at 2100 or E100. Specify on order.

HDE DYNAMIC DEBUGGING TOOL (DDT)

Built in assembler/disassembler coupled with program controlled single step and dynamic breakpoint entry/deletion facilitates rapid isolation, identification and correction of programs under development. Keystrokes minimized with single letter, unshifted commands and optional arguments. User's manual. Approximately 2K. Loads at 2000 or E000. Specify on order.

HDE COMPREHENSIVE MEMORY TEST (CMT)

Eight separate diagnostic routines test for a variety of memory problems. Each diagnostic, the sequence of execution, the number of passes and halt/continue on error is selected by the user on call-up. Tests include pattern entry and recall, walking bit, data-address interaction, access time and cross talk, simulated cassette load, slow leaks. Suitable for static and dynamic ram. User's manual. Approximately 3K. Loads at 2000 or E000. Specify on order.

HDE TEXT EDITOR (TED)

Complete, line oriented text editor accepts upper or lower case commands. Functions include line edit, line move, line delete, block delete, resequence, append, list, print, locate, set, scratch, automatic/semi-automatic line numbering, lastcommand recall, job command. This editor is supplied with all HDE Disk Systems. User's Manual. Approximately 4K. Loads at 2000 or E000. Specify on order.

ALL PROGRAMS ARE AVAILABLE FOR LOCATIONS OTHER THAN THOSE SPECIFIED AT ADDITIONAL CHARGE.

	Disk-Note A	Cassette-Note B	Manual Only	Note C
HDE Assembler	\$ 75.00	\$ 80.00	\$ 5.00	\$25.00
HDE Text Output Processing System (TOPS)	135.00	142.50	10.00	15.00
HDE Dynamic Debugging Tool (DDT)	65.00	68.50	5.00	5.00
HDE Comprehensive Memory Test (CMT)	65.00	68.50	3.00	5.00
HDE Text Editor (TED)	N/C	50.00	5.00	15.00
Note A. Media charge \$8.00 additional per or	rder. Save by o	ombining orders.		
Note B. Cassette versions available 2nd qtr. 1	1979.			
Note C. Additional charge for object assemble	ed to other tha	in specified location	IS.	

ORDER DIRECT OR FROM THESE FINE DEALERS:

PLAINSMAN MICROSYSTEMS JOHNSON COMPUTER Box 523 Medina, Ohio 44256 216-725-4560 Box 1712 Auburn, Ala. 36830

P.O. Box 43 Audubon, Pa. 19407 800-633-8724 215-631-9052

ARESCO

AIM 65 User's Guide October 1978 edition page 9-11

Corrected SYN test pattern program

END

/03 0300 20 JSR F21D 0303 20 JSR F24A 0306 4C JMP 0303

<K>*=0310
/11
0310 A2 LDX #00
0312 A9 LDA #CE
0314 20 JSR EF7B
0317 20 JSR EDEA 031A A2 LDX #00 031C A9 LDA #D9 031E 20 JSR EF7B 0321 20 JSR EE29 0324 C9 CMP #16 0326 F0 BEQ 0321 0328 D0 BNE 0310

CONTRADICTIONS & CONFUSION IN THE TABLES OF ADDRESSING MODE FORMATS FOR USE WITH THE AIM 65 MNEMONIC ENTRY MODE

On the AIM 65 Summary Card:

The operand format given for the (indirect),Y addressing mode is incorrect. Both the (HH,Y and the (HH,Y) formats, when entered, end up being decoded as an (indirect,X) opcode. Needless to say, this bombs a program badly!!

In the AIM 65 User's Guide on page A-1:

The same comments as above apply.

In the AIM 65 User's Guide on page 3-20:

One of the operand formats given for the (indirect),Y addressing mode is correct here. The (HH)Y works fine. The (HH,Y) format given here is no good as noted above.

SUMMARY:

The (HH)y operand format on page 3-20 is the only one given that runs properly. By experimentation, I have also found that (HH),Y also works and should be listed as the alternate for those who like it longer but correctly written.

I also noted that all three of the sources of information on the mnemonic instruction operand listed above have an addressing mode listed as (absolute indirect). I'm no expert on the 6502, but I know of no such addressing mode!!

(EDITORS NOTE: What about JUMP INDIRECT?)

VIDEO & TVT-6

by Mike Firth 104 N St Mary Dallas Tx 75214

I am using a Polymorphics Video Interface with my KIM-1. My purpose here is to describe what I did to make it work (besides spend money), which was simpler (except for my mistakes) than I thought it would be. Some of what I have to say will be applicable to using an \$100 memory board, since the VDM is memory mapped.

I selected the Polymorphics board because, at the time, it was the only display that would give me both upper and lower case (which I needed for editing) along with graphics. I felt for my purposes, graphics would be more useful than the reversed background offered on other S100 boards. (Besides I have worked on terminals with white background and the glare bothers me.) I also wanted to have the option of displaying control characters, which SWTC and other TVT's usually

SOFTWARE AVAILABLE FOR F-8, 8080, 6800, 8085, Z-80, 6502, KIM-1, 1802, 2650.

EPROM type is selected by a personality module which plugs into the front of the programmer. Power requirements are 115 VAC, 50/60 HZ at 15 watts. It is supplied with a 36 inch ribbon cable for connecting to microcomputer. Requires 1 ½ 1/O ports. Priced at \$145 with one set of software, personality. sonality modules are shown below.

Part No.	Programs	Price
PM-0	TMS 2708	\$15.00
PM-1	2704, 2708	15.00
PM-2	2732	25.00
PM-3	TMS 2716	15.00
PM-4	TMS 2532	25.00
DAA 5	THE 2514 2714 2750	15.00

Optimal Technology, Inc. Blue Wood 127, Earlysville, VA 22936

Phone 804-973-5482

don't. I wanted software control.

The graphics on the Polymorphics board consists of using the lower six bits of the word to each control one small square fitted in three rows of two each that fill all the space taken by a letter. That means the graphics fit edge to edge. One letter character (111111) fills a portion of the block, like typing capitals on top of each other, thus E.

One problem with the graphics is that some strange early decision decided that having bit 7 (most significant bit) set (=1) would be ASCII character, while unset (=0) would be graphics. One could add and remove the bit with software, but I am going to invert the data line to the video board so tests, et.al. are easier.

Any \$100 board provides many control lines because of the way the 8080 accesses memory and I/O. The 8080 requires separate data in and data out buslines and also must allow for I/O Ports that are activated with address lines and an a PINT line. That also means that there has to be a control for memory read and another for memory write, which there is. Also, since the 8080 is an early device, really odd blips can appear on the address lines while the CPU is internally working, so there are timing restrictions.

We are fortunate because the address lines stay valid for the entire clock cycle and because the data lines are bi-directional. Since the video board has both in and out buffered, we can just tie the appropriate lines (eg. bit 7 in and bit 7 out) together.

The RAM R/W line from the KIM turns out to be the only line we need to control the access to the video board. IF WE ARE WILLING TO ADD A COUPLE OF JUMPERS ON THE BOARD AND CUT TWO TRACES, we don't need any chips off the board. (What I am about to describe can be done off the board, sort of.) All of the changes take place in a one inch square area on the board.

We take advantage of an unused gate in IC9, a 74LS00, and we cut a trace to take advantage of another gate originally used as an invertor. The other trace to cut is the one that controls the data bus from the board to the computer. As wired, it is always connected, except during a write, when it goes tristate. By installing a jumper, it will be tristate except when the video board is actually addressed.

(Editors Note: The I.C. numbers and the pinout refer to an early model of Polymorphics VTI-64 Video Board. I have the Rev 'F' version and had to do some transposing of I.C. numbers and pinouts, but got everything working OK.)

As shown on the circuit, BS- goes low when the proper lK of memory is addressed. This is inverted through IC9A, then is usually NANDed with 8080 memory write to control the data buffers into the board. We are going to replace MWR+.

We bring in the KIM RAM R/W line on pin 47 to IC9C as usual. But if this is all we did, the inverted signal would messup the video display EVERY TIME WE DID A WRITE OPERATION ANYPLACE. So, we cut the trace to pin 5 if IC9 and run a jumper from pin 11 to pin 5 of IC9 (arn't we intimate). This insures that pin 6 is low only during access to this block. We then install a jumper from IC9 pin 6 to IC8 pin 3, which controls the tristate (and is next to IC9).

MODS TO POLYMORPHIC YT1-64

Two more jumpers remain. One goes from pin 4 of IC9 to pin 1, carrying the RAM R/W signal to the unused gate in IC9 to use it as an invertor. The output of IC9D (pin 3) is jumpered to IC9B (pin 9) to replace the 8080 MWR+ mentioned earlier. Also, pin 2 of IC9 has to be jumpered to +5 (better practice) or to pin 1.

And that is that. Connect the video board to a monitor, plug everything in and wait. The Polymorphics manual suggests aid for the board. If you get a good stable display, write a program that will load a regularly varying bit pattern into successive locations. If the display shows the same character repeated 2 times, or four times, you probably have miswired something and lost a data line or two (I did, two lines were on the wrong pins on the S100 connector). If you can't access a part of the screen, or the program writes over some areas and doesn't touch others, then an address line is buggy. You should note that even if you only have 16 lines 32 characters long (512 characters), the video board takes up IK of memory, since it is A5 that is ignored. This save rewriting some software if you add the other 32 later.

With KIM, you can use the monitor to load (and read) any location one-by-one. KIM accesses the memory periodically, which you will note as a line on the screen which disappears if you access elsewhere.

TVT-6 NOTES & RAM EXPANSION

by Milan Merhar 697 Boylston St Brookline Ma 02146

More TVT-6 stuff and another way to fill the lower 4K hole in KIM.

I read the letter in #13 re the TVT-6 and I thought 1'd pass along some comments.

My cassette copy of the TVT-6 programs from PAIA were very corrupt. Obviously, they were keyed in, not checked, and recorded. Check the programs against the listings before running.

One listing error for the cursor routine: the contents of \$0185 should be \$03 rather than \$01.

Dennis Chaput's problems with the cursor routine not working can be traced to Don Lancaster's cryptic note at the end of the cursor program listing: "To protect page entry, load 00F3 04, to enable page entry, load 00F3 00".

This initializes the accumulator to 04 or 00 via KIM's monitor at run time and therefore Does Nothing!

Obviously, Lancaster meant to initialize 00F1 to 04 or "initialize the status byte to disable interrupts" to protect the page and initialize 00F1 to 00 or "enable interrupts" to access the cursor routine normally.

Also note that "Erase to end" and "Sparehook" comments are reversed in the cursor program commentary. ASCII 13 is "erase to end of line", ASGII 12 is "space".

If you're running Tiny Basic or the TVT-6 from low memory, you usually want to expand memory at low addresses rather than start all over again at 2000 hex and up. Most suggestions to squeeze 4K of RAM into the lowest memory space involves fancy bussing of individual chip selects to each lK of RAM to be added. There's an easier way!

Set your commercially available 4K memory board to fill addresses 0000 hex to 0FFF hex and move KIM's 1K RAM to addresses 1000 hex to 13FF hex.

This gives 5K of contiguous RAM for use with Tiny Basic at 0200 hex or such.

The mod requires a jumper wire and one 1000 ohm resistor to be added.

Please note that "page zero" and the stack are now physically in the 4K RAM board which must be present for the monitor to function. Incorporating this mod to the mods for the TVT-6 gives something like this:

The SPDT switch selects whether the KIM 1K RAM is at 0000 hex to 03FF hex (with the 4K RAM removed!) or at 1000 hex to 13FF hex (with the 4K RAM present)

The DPDT switch is for normal use with the TVT-6 out of its socket.

The TVT-6 can be wired up to the 4K board as discussed by Michael Allen in #13 or can work out of KIM's 1K RAM at 1200 hex to 13FF hex. Patches are simple: The SCAN routines work is written: the cursor is changed by adding 10 hex to the contents of these locations: 0106, 010A, 016E, 0185, 01AO, 01C7, 01DC.

If you are using Tiny Basic, move the cursor routine to 1100 hex and Tiny Basic can have 14K for user programs from 0B00 hex to 10FF hex. Make sure to initialize Tiny's program space pointers to keep from overwriting your cursor program & display memory in a normal "cold start". INTERFACING TO THE TVT-II

by John M. Rensberger 1920 NW Milford Way Seattle Wa 98177

The KIM-1 TTY input and output interface nicely and simply with the CT 1024 TV Typewriter II. However, discovering how to effect this was not easy. MOS Technology supplies no information in their otherwise very extensive literature.

I finally discovered, after 50 hours of searching for a problem in the serial interface and UART of the TVT II, that there is no parity bit, the 8th bit is a 1, and the polarity of the signal as it comes from the transistor interface of Rick Simpson (July User Notes Vol 1) is inverted with respect to the R\$232 input requirements of the TVT II serial interface.

Therefore, users attempting to make this interface should use or beware of the following con-

- Omit the inverter in Simpson's circuit.
- cuit.
 Program the serial interface of the
 TVT II for NO parity, bit 8=1.

- I used neither ground nor the -5 volt option on Simpson's circuit. (EPITORS NOTE: I didn't undexatand this one).
 Lower the resistence of the RS232 input of the TVT serial interface by replacing R-19 (1K) with a 300

Knowing the correct bit pattern and that the polarity from the KIM system is correct without inversion should make the interfacing task very simple for anyone wishing to use a TV typewriter as a terminal.

Cary and Lisa Rensberger (ages 14 and 16) have completed a machine language program for KIM that will work with either TVT II or TTY. They would be delighted to hear from users who would like a TIC-TAC-TOE game (700 bytes) in exchange for any other game (listing or KIM compatible tape

SSETTE stuff

Ted Beach - K4MKX 5112 Williamsburg Blvd. Arlington Va 22207

Regarding your search for Cl5 tapes, I gave up on that idea long ago. Instead, what I started to do originally was buy "cassette repair kits" sold by Lafayette Radio for about 69 cents each. These are tape housings with a leader from spool to spool. I then spliced in my required length of tape which I cut off of a good quality 60 tape. Radio Shack and Lafayette both have inexpensive (about \$4.00) cassette splicing machines.

That drill got a bit expensive, so I started buying "El Cheapo" drugstore tapes (three C30's for \$1.29) and discarding the tape from the housings. Works real neat. Now I record the desired number of programs or subroutines on my good C60 tape, run off another foot or so of tape, then clip the tape in the center of the middle opening (where the pressure pads are). Then I pull both ends of the tape out and splice the end coming from the takeup spool to the leader going to the supply spool of El Cheapo cassette (tape already discarded).

A pencil stuck in the hub of the supply spool will quickly rewind the tape into its new housing. At the end, cut the tape from the original leader, splice it onto the leader of the takeup spool of the new housing and reconnect the free end of the C60 tape to its takeup leader. You will eventually run out of takeup leader on your "good" tape, but what the heck - tape is cheap!

As an alternative, you can allow a foot or so of the beginning of the original tape to be used as a leader (mark it with a marker pen and don't start recording until this part is on the takeup spool). This way you can get amximum use from the good tape by sacrificing a foot of it to begin with. When you're through, you will have another empty cassette housing to use, with full length leaders. CASSETTE DIRECTORY PRINTOUT PROGRAM

Chris McCormack ...prints your tape direct- 116 Milburn Lane ory on your TTY or terminal East Hills, NY 11577

This program is an expansion of the directory program, written by Jim Butterfield. The advantage of this program is that it will search a whole tape, and output the ID, starting address, and ending address of any program found. Because all of the branches are (EXC 0037) relative, the program is completely relocatable. Program start is at address 005F.

0000	D8			TOP	CLD	
0001	A 9	07			LDA	#\$07
0003	8 D	42	17		STA	SBD
0006	20	41	1 A	SYN	JSR	RDBIT
0009	46	F9			LSR	INH
OOOB	0.5	F9			ORA	INH

page 25

000D	85	F9			STA	
OOOF	C 9	16		TST	CMP	#'SYN
0011	DO	F3			BNE	
0013	20	24	1 A		JSR	RDCHT
0016	C 6	F9				INH
0018	10	F5			BPL	
001A	C9	2A			CMP	#'*
001C	DO	F1			BNE	TST
001E	A 2	FD			LDX	#\$FD
0020	20	F 3	19	RD	JSR	RDBYT
0023	95	FC			STA	POINTH+1,X
0025	E8				INX	
0026	30	F8			BMI	RD
0028	A 2	02		MORE	LDX	#\$02
002A	20	24	1 A	SECOND	JSR	
002D	C9	2F			CMP	#'/
002F	FO	09			BEQ	OUT
0031	CA				DEX	
0032	D0	F6			BNE	SECOND
0034	20	EA	19		JSR	INCVEB
0037	4C	28	00		JMP	MORE
0037	4C		OO NOTE:	MUST BE C	JMP	MORE ED IF RELOCATED)
0037 003A	4C A5	(1		MUST BE C	JMP HANGI LDA	MORE ED IF RELOCATED) INH
		F9		MUST BE C	JMP HANGI LDA	MORE ED IF RELOCATED)
003A	A 5	F9	NOTE:	MUST BE C	JMP HANGI LDA	MORE ED IF RELOCATED) INH PRTBYT OUTSP
003A 003C	A 5	F9 3B	NOTE:	MUST BE C	JMP HANGI LDA JSR JSR JSR	MORE ED IF RELOCATED) INH PRIBYT OUTSP OUTSP
003A 003C 003F	A 5 2 0 2 0	F 9 3B 9E 9E	NOTE: 1E 1E	MUST BE C	JMP HANGI LDA JSR JSR JSR JSR	MORE ED IF RELOCATED) INH PRIBYT OUTSP OUTSP
003A 003C 003F 0042	A 5 2 0 2 0 2 0	F 9 3B 9E 9E	NOTE: 1E 1E 1E	MUST BE C	JMP HANGI LDA JSR JSR JSR JSR CLC	MORE ED IF RELOCATED) INH PRTBYT OUTSP OUTSP PRTPNT
003A 003C 003F 0042 0045	A 5 20 20 20 20	F9 3B 9E 9E	NOTE: 1E 1E 1E	MUST BE C	JMP LDA JSR JSR JSR JSR JSR CLC LDA	MORE D IF RELOCATED) INH PRIBYT OUTSP OUTSP PRIPNT VEB+1
003A 003C 003F 0042 0045 0048	A 5 20 20 20 20 18	F9 3B 9E 9E	NOTE: 1E 1E 1E 1E	MUST BE C	JMP HANGI LDA JSR JSR JSR CLC LDA ADC	MORE ED IF RELOCATED) INH PRTBYT OUTSP OUTSP PRTPNT VEB+1 POINTL
003A 003C 003F 0042 0045 0048	A 5 20 20 20 20 18 AD	(1 F9 3B 9E 9E 1E	NOTE: 1E 1E 1E 1E 1E	MUST BE C	JMP HANGI LDA JSR JSR JSR CLC LDA ADC STA	MORE ED IF RELOCATED) INH PRIBYT OUTSP OUTSP PRIPNT VEB+1 POINTL
003A 003C 003F 0042 0045 0048 0049	A 5 20 20 20 20 18 AD 65 85 AD	(1 F9 3B 9E 9E 1E ED FA EE	NOTE: 1E 1E 1E 1E	MUST BE C	JMP HANGI LDA JSR JSR JSR CLC LDA ADC STA LDA	MORE ED IF RELOCATED) INH PRIBYT OUTSP OUTSP PRIPNT VEB+1 POINTL POINTL VEB+2
003A 003C 003F 0042 0045 0048 0049 004C 004E 0050	A 5 20 20 20 20 18 AD 65 AD 65	(1 F9 3B 9E 9E 1E ED FA FA EE FB	NOTE: 1E 1E 1E 1E 1E	MUST BE C OUT	JMP HANGI LDA JSR JSR JSR CLC LDA ADC STA LDA ADC	MORE ED IF RELOCATED) INH PRIBYT OUTSP OUTSP PRIPNT VEB+1 POINTL POINTL VEB+2 POINTH
003A 003C 003F 0042 0045 0048 0049 004C 0050 0053	A 5 20 20 20 20 18 AD 65 85 AD 65 85	(1 F9 3B 9E 1E ED FA EE FB FB	NOTE: 1E 1E 1E 1E 1E	MUST BE C OUT	JMP HANGI JSR JSR JSR CLC LDA ADC STA LDA ADC STA	MORE ED IF RELOCATED) INH PRIBYT OUTSP PRIPNT VEB+1 POINTL POINTL VEB+2 POINTH
003A 003C 003F 0042 0045 0048 004C 004C 0050 0053 0055	A 5 20 20 20 20 18 AD 65 85 AD 65 85	F9 3B 9E 9E 1E ED FA FA EE FB FB	NOTE: 1E 1E 1E 1E 17	MUST BE C	JMP HANGI LDA JSR JSR JSR CLC LDA ADC STA LDA ADC STA LDA	MORE ED IF RELOCATED) INH PRIBYT OUTSP OUTSP PRIPNT VEB+1 POINTL VEB+2 POINTH POINTH #'-
003A 003C 003F 0042 0045 0048 0049 004C 0050 0053 0055 0057	A 5 20 20 20 20 18 AD 65 85 AD 65 85 AP	F9 3B 9E 1E ED FA EE FB FB 2D AO	NOTE: 1E 1E 1E 1E 17 17	MUST BE C	JMP HANGI LDA JSR JSR JSR CLC LDA ADC STA LDA ADC STA LDA JSR	MORE ED IF RELOCATED) INH PRIBYT OUTSP OUTSP PRIENT VEB+1 POINTL POINTL VEB+2 POINTH POINTH POINTH #'- OUTCH
003A 003C 003F 0042 0045 0048 0049 004C 0050 0053 0055 0057	A 5 20 20 20 20 18 AD 65 85 AD 65 85 AD 20 20	(1) F9 3B 9E 1E ED FA EE FB 2D AO 1E	NOTE: 1E 1E 1E 1E 17 17	OUT	JMP HANGI LDA JSR JSR JSR CLC LDA ADC STA ADC STA ADC STA ADC STA ADC STA ADC STA	MORE ED IF RELOCATED) INH PRIBYT OUTSP OUTSP PRIPNT VEB+1 POINTL POINTL VEB+2 POINTH POINTH #'- OUTCH PRIPNT
003A 003C 003F 0045 0048 0049 004C 0050 0053 0055 0057 005C	A 5 20 20 20 20 18 AD 65 85 AD 65 85 AD 20 20	(1 F9 3B 9E 9E 1E ED FA FA EE FB 2D AO 1E 2F	1E 1E 1E 1E 1F 17 17	MUST BE COUT	JMP HANGI LDA JSR JSR JSR CLC LDA ADC STA ADC STA LDA ADC STA JSR JSR JSR	MORE ED IF RELOCATED) INH PRIBYT OUTSP OUTSP PRIPNT VEB+1 POINTL POINTL POINTL POINTH POINTH #'- OUTCH PRIPNT
003A 003C 0042 0045 0048 0049 0050 0055 0057 0057 0056 0056	A 5 2 0 2 0 2 0 2 0 1 8 A D 6 5 5 A D 6 5 5 A 9 2 0 2 0 2 0 2 0 2 0 2 0 0 2 0 0	(1 F9 3B 9E 9E 1E ED FA FA EE FB 2D AO 1E 2F 32	NOTE: 1E 1E 1E 1E 17 17	OUT	JMP HANGI LDA JSR JSR CLDA ADC STA ADC STA LDA JSR JSR LDA JSR JSR	MORE ED IF RELOCATED) INH PRIBYT OUTSP OUTSP PRIPNT VEB+1 POINTL POINTL POINTL POINTH POINTH #'- OUTCH PRIPNT CRLF
003A 003C 003F 0045 0048 0049 004C 0050 0053 0055 0057 005C	A 5 20 20 20 20 18 AD 65 85 AD 65 85 AD 20 20	(1 F9 3B 9E 9E 1E ED FA FA EE FB 2D AO 1E 2F 32	1E 1E 1E 1E 1F 17 17	OUT	JMP HANGI LDA JSR JSR JSR CLC LDA ADC STA ADC STA LDA ADC STA JSR JSR JSR	MORE ED IF RELOCATED) INH PRIBYT OUTSP OUTSP PRIPNT VEB+1 POINTL POINTL VEB+2 POINTH POINTH #'- OUTCH PRIPNT CRLF INTVEB

ZIPTAPE CASSETTE INTERFACE

(a review)

Wanna be able to load BASIC in 13 seconds? That's right - 13 seconds for an 8K load (about 12 times faster than HYPERTAPE).(600 bytes/sec).

As you can tell, I'm pretty enthusiastic about the cassette interface from Lew Edwards. So far, this system has proved 100% reliable at 4800 baud. I use a Sankyo ST-50 cassette recorder.

This interface consists of a 2"x2" p.c. board using a single IC (needs 5 v. @ 10 ma.) and 346 bytes of driver software. It uses 3 bits (PAO, PA1, and PA2) of KIM's I/O, and from \$0200 to \$02A8 and \$0300 to \$03B2 of KIM's memory.

The documentation, which includes a full source listing of the driver software as well as a schematic of the hardware, comes with enough information to enable the user to get this system running on ANY 6502 system that has 3 bits of a 6530, 6532, 6520 or 6522 available for use.

This system can be operated at 2400 or 3600 baud if your recorder can't handle the full 4800 baud speed.

For \$26.50 you get an assembled interface board, a cassette of the software, and full documentation from Lew Edwards, 1451 Hamilton Ave., Trenton, N.J. 08629.

If you just can't swing a floppy-disc, Ziptape will ease the pain. -FR/C

CASSETTE AVAILABILITY

Are you looking for some high-quality short and medium length cassettes? AB Computers (POB 104, Perkasie, PA 18944 (215)257-8195) has some which come in 5-screw housings and use AGFA tape.

We use these cassettes for software distribution here at USER NOTES and have been quite satisfied with them. Here's the price list:

> C10 (5min/side) 10/\$6.25 C30 (15min/side) 10/\$8.00 plastic housings 10/\$1.00

EDITORIAL (continued from inside the cover)

Things we'd like to know: What boards have you used successfully in the KIMSI? What mods did you have to perform to get other boards operational? Has anyone figured out a way of modifying the KIMSI so that the special I/O port of the memory map is moved down into KIMS' 4K "black hole" (\$0400 \$13FF)?

MANUFACTURERS

Need some ideas for new products? The 44 pin KIMBUS is gaining in popularity now that Rockwell and Synertek have entered the marketplace with products intended to be used with the KIM-4. There's always room in the RAM board market, how 'bout a low-cost dynamic RAM board which can take advantage of the super low-cost 4116 which are being offered for the TRS-80 and APPLE machines. I've seen a set of eight going for as low as \$80.00. That's 16K!!! A good 64x16 or 80x24 video board is desperately needed.

How 'bout an EPROM board that can also program the 2708 or 2716. (At this point, the hobbyist is money ahead by sticking to the 2708, as low as \$5.00, unless he really needs the single voltage &f the Intel 2716.) A combination serial/parallel board using the 6522 and maybe the new Synertek 6551 ACIA would be very popular (2P+2S?).

BASIC INCOMPATIBILITY

Microsoft has written versions of BASIC to run on all major 6502 machines (KIM, APPLE, PET and OST.) Although, for the most part, a program written for one machine can be run on another machine if they are typed in, a memory image cannot be transferred from one type of machine to another (PET to KIM, for example). The reason? First of all, when you type a BASIC program into your computer (with Microsoft BASIC, anyway) the program is compressed by changing BASIC commands into

CONTINUED ON NEXT PAGE

KIM SOFTWARE ON CASSETTE

We know that you have better things to do with your time than punching her code into your machine. Because of this, we have made some of the longer programs available on KIM cassette.

These cassettes are original dumps, not copies, made with top quality 5-screw housing cassettes. Thirty seconds of sync characters precede the program to enable you to tune up your recorder or Pli.

Are you AIN & SYM owners interested in having some of these programs available for your machines?

6502 USER NOTES, POB 33093, N. ROYALTON OHIO page $26 \ensuremath{^{\circ}}$

OUR PRESENT OFFERINGS INCLUDE:

PAYMENT MUST BE IN U.S. FUNDS. OVERSEAS CUSTOMERS--include \$1.00 extra per cassette for extra postage. "tokens". For example, if you type in 100 PRINT "HI", BASIC would store two bytes for the address, and one byte for PRINT. "HI" would be stored without change. Using one byte "tokens" lets you get a larger BASIC program into smaller areas and could even help them run faster. Only one problem: Each different version of BASIC uses its own unique 'token' identifiers. (Does anyone know why this is so?)

The only way to transfer BASIC programs from one type of 6502 machine to another is to "LIST" the program out to the other computer. In other words, instead of listing the BASIC program to your printer, the output would be "vectored" to a new output routine which would talk to your object computer. The object computer would also be running BASIC and it would expect its "input" from the first computer instead of its own keyboard. Tricky, bub?

The PET, for example, is set up to list a program to a device on its IEEE bus so if I wanted to tran fer some BASIC programs from the PET to the KIM, I would hook the KIM up to the PET's IEEE bus and "list" the program to the KIM. Don't forget, KIM needs to have BASIC running and modified so that its input comes from the IEEE bus so that its interface instead of the terminal.

Such a PET to KIM BASIC interface is on my list of projects so it may get done in my life-

32K RAM FOR AROUND \$200

Those of you that are running KIM-4, or compatible, motherboards will be happy to hear that I now have in my hot little hands an article on how to build a 32K dynamic RAM board using the 4116 devices which are being used to expand the APPLE computer. (You've seen them in all the mags for \$80 - \$100 per 16K.) The RAM card contains its own built-in, invisible refresh circuit and can be built on a 4.5x6 size Vector wire wrap card.

According to the author -"In eight months of constant use with a KIM-1 and KIM-4, no problems of any kind have been encountered with the unit. A second unit, built at the end of 1978, also works well."

Sorry, you'll have to wait for the next issue for this one.

announcements

and reviews

PRODUCT ANNOUNCEMENT

Tiny Editor/Assembler and Robot

If you only have 4K of expansion and want to If you only have 4K of expansion and want to assemble programs, (once you start assembling your programs, you'll never go back to hand assembly!) You may want more into on this tiny editor/assembler package. The flyer didn't mention what type of 1/0 device was supported or where the package was assembled to operate from, but the ROBOT language supports the TVT-6 and needs RAM expansion starting from \$0.400 so the assembler requirements. from \$0400 so the assembler requirements

The single pass assembler overlays the editor in RAM and, except for the zero page references, seems to conform to the MOS definitions.

The price is \$23.00 for the user manual, commented source listing (\$20.00 without the cassette).

ROBOT is actually an interactive robot control language. The robot that is controlled is currently the cursor on the TVT-6 video board but it looks as if the user could modify this to con-

trol a "real" robot or a standard memory mapped video output device. ROBOT needs memory from \$0200-\$0540 and a TVT-6. I have this package and will be reassembling it to run an my system as soon as I get some time (fat chance!). This looks to be a very interesting package.

Several articles on an 8080 version have been published in Doctor Dobbs Journal.

ROBOT sells for \$8,00 and includes a user manual, commented source listing and a cassette (\$5.00 without the cassette). It's worth \$5.00 just to see how it works!

Contact Michael Allen, 6025 Kimbark, Chicago 771 60637

PRODUCT REVIEW of the HDE DISC SYSTEM by the editor

A number of you have asked for details about the HDE full size disc system.

The system is based around the SYKES 8" drive with the 6502 based intelligent controller.

This drive is soft sectored, IBM compatible, and single density which lets you store about a quarter megabyte of data on a disc.

The system software, called FODS (File Oriented Disc System), manages sequential files on the disc much the same way files are written on magnetic tape - one after another. When a file is deleted, from a sequentially managed file system, the space that the file occupied is not immediately reallocated, as in some disc operating systems. As it turns out, this can be an advantage as well as a disadvantage since deleted files on the FODS system can be recovered after the file has been deleted. (This has saved my sanity more than once!) Of course when you want to recover some of the disc space taken up by a number of these deleted files, you can simply re-pack or compress the disc and all the active files will be shifted down until there are no deleted files hanging around using up space. The system software, called FODS (File Ori-

FODS has this ability to repack a disc.

When saving and loading in FODS you work with named files, not track and sector data or I.D. bytes. This makes life alot easier. I've seen some disc systems where you have to specify track and sector info and/or I.D. bytes. What a pain that can be!

If you just want to save a source file temporarily, you can do that on what's known as "scratch-pada". There are two of these on a disc, "scratch-pade A" and "scratch-pad B", each of these temporary disc files can hold up to 16K or if "B" is not used, "A" can hold one file up to 32K in length. The only files that can be temporarily saved on scratch pad are files that have been built using the system text editor.

Being a dyed in the wool assembly language programmer, I really appreciate the FODS text editor! This line oriented editor is upwards compatible with the MOS/ARESCO editor but includes about everything you could aske for in a line editor. There is a full and semi-automatic line numbering feature, lines can be edited while they are being entered or recalled and edited later, strings can be located and substituted, the line numbers can be resequenced, the file size can be found, the hex address of a line can be known and comments can be appended to an assembly file after it has been found correct. Oops! I forgot to say lines can also be moved around and deleted. This isn't the complete list of FODS editor commands, just the ones that immediately come to mind.

Another very powerful feature of the system is the ability to actually execute a file containing a string of commands. For example, the newsletter mailing list is now being stored on disc. When I want to make labels, I would normally have to load each letter file and run the labels printing program. But with FODS, I can build up a "JOB" file of commands and execute it.

BOX 120 ALLAMUCHY, N.J. 07820 201-362-6574

HUDSON DIGITAL ELECTRONICS INC.

ANNOUNCING: **COMPUTER PROGRAMS FOR THE KIM-1** HDE ASSEMBLER

An advanced, two pass assembler using 6502 cross-assembler mnemonics. Free form, line oriented entry. Directives include: .OPTION, .BYTE, .WORD, .FILE, .OFFSET, .END. Output options include LIST, NOLIST, SYMBOL TABLE, NO SYMBOL TABLE, GENERATE, NOGENERATE, ERRORS, NOERRORS, TAB, NOTAB. Assemble using single or multiple files. Place source, object and symbol table anywhere in memory. Automatic paging, with header and page number. Approximately 4K, Loads at E000 or 2000.

HDE TEXT OUTPUT PROCESSING SYSTEM (TOPS)

A comprehensive output processor, including left, right and full justification, variable page length, page numbering (Arabic, capital and lower case Roman), page titling, leading and trailing edge tabbing, field sequence modification, selective repeat, selective page output, etc. More than 30 commands to format and control output of letters, documents, manuscripts and textual material of all types. Approximately 4K. Loads at E100 or 2100.

HDE DYNAMIC DEBUGGING TOOL (DDT)

Built-in assembler/disassembler coupled with single step and dynamic breakpoint entry/deletion facilitates rapid isolation, correlation and test of programs. Keystrokes minimized with single letter, unshifted commands, and optional arguments. Approximately 2K. Loads at E000 or 2000.

WATCH FOR PRODUCT ANNOUNCEMENTS THIS YEAR TO INCLUDE:

- Dual Channel RS-232 interface with auto answer
- Eprom card, eprom programmer
- NEC, Diablo printer interface.

All HDE memory and interface cards are KIM-4 compatible in a 41/2" X 61/2" format with on-board 5 volt regulation and address selection switches. Complex circuits are socketed for ease of maintenance. All products include a 90 day full parts and labor warranty, except memory boards which are 6 months, and computer programs which have a limited warranty.

ORDER DIRECT OR FROM THESE FINE DEALERS:

Box 523 Medina, Ohio 44256 216-725-4560

JOHNSON COMPUTER | PLAINSMAN MICROSYSTEMS Box 1712 Auburn, Ala, 36830 800-633-8724

ARESCO P.O. Box 43 Audubon, Pa. 19407 215-631-9052