BASIC MICROPROCESSOR APPLICATION
SYSTEM MAQ2/1

EXPERIMENT MANUAL

MP126/A

COHMTENRTS

INTRODUCTIOH

SECTION 1

COMPUTER ARITHMETIC AND NUMBER REPRESENTATION - Pages
Chapter 1.1 Introduction to Digital Technology. 1 -9
Chapter 1.2 Binary Arithmetic. 9 - 18
Chapter 1.3 Computer Arithmetic. 19 - 25
Chapter 1.4 ASCII Codes and Parity. _ 26 - 29
Chapter 1.5 Octal and Hexadecimal Number Systems. 30 - 35
SECTION 2

INTRODUCTION TO MICROCOMPUTERS

Chapter 2.1 Introduction to the Microprocessor. : 1 -9
Chapter 2.2 Microcomputer System Elements. 10 - 17
Chapter 2.3 Introduction to Programming. 18 - 22
Chapter 2.4 The Intruction Set. 23 - 29
SECTION 3

PROGRAMMING THE EMMA MICROCOMPUTER

Chaptér 3.1 Introduction to Emma. 1 -7
Chapter 3.2 Program Entry and Execution. 8 - 15
Chapter 3.3 Using 6502 Instructions. 16 - 25
Chapter 3.4 Writing a Program. 26 - 41
Chapter 3.5 Arithmetic Operations. 42 - 53
Chapter 3.6 Logical Operations.. 54 - 58
Chapter 3.7 Swb-routines. 59 - 62
Chapter 3.8 Stack Processing. 63 - 65
Chapter 3.9 Software Delays. 66 - 73
Chapter 3.10 Interrupts. : 74 - 87
Chapter 3.11 \Using the VIA. | 88 -108
Chapter 3.12 Program Debugging. : 109 -112
Chapter 3.13 Using the Cassette Interface. 113 -114

-1 - N - . MP126/A

SECTIOHN 4 Pages

APPLICATIONS HARDHARE

Chapter 4.1 Using the Application Hardware. 1
Chapter 4.2 Further Application Programs. 16
SECTIOHN 5

APPEMDICES

1 - Conversion Tables

Standard Coding Sheet 1
2 Application Modules 1
3 Emma Monitor Sub-Routines. 1
4 Emma Memory Map. 1
5 Oscilioscopes. ' 1
6 Instruction Set. 1
7 Microcomputer G1ossarj. 1
8 Solutions to Questions. 1

- 15

-2 - | © MPL26/A

Chapter
Chapter
Chapter
Chapter
Chapter

1.1
1.2
1.3
1.4
1.5

SECTION 1

COMPUTER ARITHMET1C AND MUMBER REPRESERTATION

Introduction to Digital Technology'.
Binary Arithmetic

Computer Arithmetic

ASII Codes and Parity

Octal and Hexadecimal Number Systems

rage 1
rage 9
page 15
rage 26
rage 30U

MP126/A

INTROLDUCY ION

The Microprocessor Application manual provides a course of study based
around the L.J. ELECTRONICS Basic Microprocessor Application System MAU2
which comprises the following items of equipment:

1431 Emma Ficrocomputer.
MS3 A/D Converter'
I Sh Switch pad.

MS6 Buftered Loudspeaker.
MS7 ~Strain Gauge.

MS12 1/0 Port Monitor.

PS4 System rPower Y0.

HM203 Dual Trace 0scilloscope.

HZ35 xl Voltage Probe Kit (2 off).

CS1 ., Set of 36 x 4mm Leads’.

YA Emma Cassette Interface - DIN Plug Lead.

Al so required but not part of the set.

CR1 Cassette Recorder - with AUX DIN socket: tape counter and
2 x Cl2 casettes.

This manual considers the EilMA Microcomputer and selected Application
Hardware lModuies to provide an understanding of the basic principles and
practice of microprocessors: especially with "Control™ applications in
mind. It is primarily intended to introduce EMmA (The microcomputer)
which forms the central element of the L.J. ELECIRUNICS Microprocessor
Teaching System.

A basic understanding is gained through graded examples and exercises
using low-level programming techniques - both machine code and assembly
language. 7o explore the considerable capabilities of the miéroprocessor
more fullyl a selection of peripheral items are introduced. and used in
conjunction with EmMmMAI to form an integrated working control system.

The oscilloscope. while not necessarily forming an essential part of a
particular application: is used to permit the examination of waveforms and
so serves as an early introduction to system fault diagnosis. It also
enhances the understanding of system operation.

Programs of even the most ingenious and meticulous programmers do not
always function the first time. To cater for such possibilities the
program debug feature of the EMMA Microcomputer is introduced.

To expedite the saving of programs. the use of a Cassette recorder is
considered. Frogram "dumping" is an important aspect and this facility
utilises the EMMA on-board cassette interface.

Numerous examples are used and exercises set to facilitate the learning
process. To obtain maximum benefit it is strongly suggested that these be
systematically and methodically worked through. Solutions to the exercises
are published in a separate manual. reference nusber MP10L. However a set
of self-test questions are provided at the end of each Chapter with
solutions given in Appendix Y.

Having compieted the course of study detailed in this manual L.J.
ELECTRONICS provide a wide range of equipment for more advanced studies:
these include:

@ lore complex Application Hardware wodules.

L VISA expansion unit - providing ASSEMBLY and BASIC
Tanguage programming.

L] Memory Expansion/EPROM Programming module.

@ Floppy Disc System.

Test and Fault Diagnosis equipment.

@ Robotics equipment.

LOGIC STATES

The inputs and outputs of digital devices are represented by two discrete
voltage levels or states which are often referred to as either "high" or
"Tow" with respect to each other.

é | o—— HIGH STATE

‘VoTtage
Level

- LOW STATE
Voltage Zero Level

We also refer to the high state as a "logical one" (1) and the tow state as
a "Togical zero" (0). Since these devices are used to implement Togical
functions, we use the term "Binary Logic" to describe them. This is the

technology of information processing.

ELECTRONIC REPRESENTATION OF IMFORMATION

Information (data) is encoded using a binary format for processing
purposes, the smallest unit being the binary digit or Bit. A nunber of
bits are grouped together and the resulting sequence of 1's and 0's made to
represent a unique piece of digitally or binary encoded data. A typical
bit sequence would be ‘

1010 1110
8 bits are used to encode the data item.

For machine processing the number of bits grouped together is usualy fixed
and such a group is termed a word. A word can therefore represent any
fixed Tength of bits but it is normal to find standard word lengths of 8,
16 and 32 bits, especially in computing systems. We also define a word
length of 8-bits as a byte and a nibble as being a group of 4-bits. The
term byte is used extensively in the field of micro-processing.

MICROCOWPUTER DATA REPRESENTATICHN

The way in which data is represented in computer systems depends upon who
or what is going to use the encoded information. We have already seen that
"machines" require data presented in a binary format, however to the user
of such machines this presentation is by no means convenient. We therefore
encode data according to whether it will be used internally (within the
machine) or externally (by the machine programmer)}. We will deal with
these two aspects separately:

HICROCOMPUTER INTERMAL DATA REPRESENTATION

Computer systems operate to a strict sequential 1ist of instructions called
a Program. This is witten by a Computer Programmer and designed to
manipulate data. The program will be stored within the system memory and
will perform operations upon data either stored within the system or
obtainable as required from system peripherals*.

*See Glossary of Terms

Both the program, and the data upon which it operates, will need to be
encoded into a binary format for use by the machine. We can, however,
identify two distinct data groups which will require representation -
Mumeric Data and Alphanumeric Data. We will briefly outline these and'then
1ook at them in some detail.

Numeric Data is used to quantify things, for example, how many of these
or those do we have. We then try to process this data by means of
arithmetic or logical operations.

Computer systems excel at this type of processing; they are able to
perform data processing operations both quickly and accurately. However,
numbers must be represented on computer based systems in such a way that
the arithmetic can be performed both easily and accurately.

We will examine the way in whfch numbers that require arithmetic operations
are represented and how the arithmetic is performed later.

Al phanumeric Data comprises characters such as all the letters

of the alphabet (both upper and lower case), numeric synbols, 0 through to
9, together with additional special symbols, such as question marks,
quotes and brackets. We can easily accommodate these within 7-bits which
allow for 128 possible codes. As you way imagine, standard codes have
been devised but by far the most common for use in microprocessors is
termed ASCII (pronounced Ask-ee) Code. ASCII stands for “American
Standard Code for Information Interchange“. '

We will examine ASCII Code in some detail later.

HICROCOMPUTER EXTERMAL DATA REPRESENTATION

Much of the data inpht to a computer'system is generated by human beings,
also much of its output is frequently used by them. We can identify three
formats which are suitable for computer user presentation - Binary, Octal
or Hexadecimal and Symbolic.

We will deal with these in detail later.

Now let us consider in detail the whole problem of data representation and

its manipulation.

DATA REPRESENTATION AMD MANIPULATIOM

Various representations are in use and different methods of manipulation
are available to us. All have advantages and disadvantages. In general,
the designer is faced with a compromise situation and hence no two designs
are exactly the same. However, it is our intention, throughout the rest
of this section to provide you, the reader, with a few tools which will
help you better understand the technology of microprocessors and their
application, '

Direct Binary is used to encode integers or whole numbers.
Let's consider a sequence of 8-bits or a single byte. Each bit is numbered
0 through to 7.

By Bg Bg By By B, By By

R

In any number system the digit position carries a "weighting" and the
binary system is no exception to this. For example, the eighth bit (bit
7) has a greater significance than the first bit (bit 0). We refer to
these particular bits as the most significant bit (MSB) and least
significant bit (LSB), respectively. The weighting represented by the bit
position is evaluated by raising the number system base (2 for binary) to
a power indicated by the bit position, e.g.:

BIT BIT DENARY
POSITION WE IGHT ING EQUIVALENT
0 20 1
1 21 2
2 22 4
3 23 8

If you evaluate the weighting of the remaining bit positions (84 - By)
you should find them to be 16, 32, 64 and 128 respectively. We are now in
a position to decode any direct binary number into its denary equivalent.

® EXAMPLE :

Decode the following single byte direct binary encoded
nurber into its denary equivalent:
Binary Nuwber 0110 1101

T

We will solve by tabulation:

BIT BINARY DENARY DENARY

POSITION VALUE WEIGHTING VALUE

0 (LSB) 1 20 1 x 29 = 1
1 0 21 0x 2! = 0
2 1 22 1y 22 .
3 1 23 1 x 23 = 8
4 0 24 0 x 2% = 0
5 1 25 1x2° = 32
6 1 26 1 x 28 = 64
7 (MSB) 0 27 0 x 27 = 0

Total Denary 109

The denary equivalent of binary 0110 1101 is therefore 109.
e EXERCISE 1.1.1

Decode the following direct binary nurbers into
their denary equivalents:

Ql. 0110 Q2. 1010 3. 1100
Q4. 001 0011 Q5. 0011 0011 Q6. 1001 1111

=) EXERCISE 1.2.2

Determine the maximum denary whole number that can
be encoded by: '

Ql. - A Nibble
Q2. A Byte

We will now encode a denary whole nuaber in direct binary format. An

example is probably the best way of doing this.

-6 -

EXAMPLE:

Encode denary 124 into direct binary.

We proceed by dividing our denary number by 2 and then
successively dividing resultant quotients until zero fis
obtained. For example:

DIVIDEND DIVISOR QUOTIENT REMAINDER BINARY
DIGIT

124 2 62 0 0 (LSB)
62 2 31 0 0
31 2 15 1 1
15 2 7 1 1
7 2 3 1 1
3 2 1 1 1

1 2 0 1 1 (MSB)

You should notice that 7 bits were required and that the binary equivalent
of 124 is 111 1100. Since machines operate on a fixed number of bits,
denary 124 would be represented in a single byte as 0111 1100.

@ EXERCISE 1.1.3

Encode the following denary whole numbers into
their direct binary, single byte equivalent.

Q1. 72 Q2. 36 Q3. 116 Q4. 231

QUESTIONKS

1 Define a bit.
2 Define a byte.
3. What is alphanumeric data?
4 What is the denary equivalent of bit 5 (Bs) in an eight binary
word.
5. Convert the following direct binary numbers into their denary
equivalents.
(a) 1101 (b)) 0011 1001 (c) 1111 0000
6. Convert the following denary numbers into their direct binary
equivalents.
(a) 38 (b) 120 {c) 201

BINARY ARITHWMETIC CHAPTER 1.2

OBJECTIVES OF THE CHAPTER
Having studied this chapter you should:
@® Be able to perform simple binary addition and subtraction.

Understand the concept of signed binary numbers.

@ Be able to calculate the two's complement of a negative binary

numer.

@ Be able to perform binary subtraction by two's complement
addition.

BINARY ARITHMETIC
We will now address ourselves to performing simple

computations on direct binary numbers.

Binary Arithmetic is carried out according to simple rules.
The rules for addition are:

O plus 0 = 0

0 plus 1.=1 ADDITION
L plus 0 = 1

I plus 1 = 0 and CARRY 1

EXAMPLE:

Using these rules we will add together two
4-bit direct Dinary coded numbers:

1001
Plus ~ 0lol
1110 RESULY
1 CARRIES

You may Tike to check this by using denary eauivalents’.
8 FURTHER EXAMPLE:

Per form an addition on the following 8-bit direct
binary coded nurbers: '

0100 1111 and 0101 1100

now:
ulug 1111

rlus 0101 1100
1010 1011 RESULT
1111 CARRIES

Again check using denary equivalents. You will

notice the method is exactly the same as when using
denary numbers.

EXERCISE 1.2.1

Compute the SUiM of the following pairs of
direct binary numbers:

Ql. 0110 and 1001
Q2. 0101 and 1001
Q3. 0100 1001 and 1000 1000
Q4. 0011 1000 and 0110 1111

- 10 =

As with addition, so with subtraction; the rules are:

0 minus 0 =0
1 minus 0 =1 SUBTRACTION
1 minus 1 = 0

0 minus 1 = 1 and BORROW 1

The Borrow is taken from adjacent more significant column.
@ EXAMPLE:

Sub tract 0101 from 1001

1001

Minus 0101
0100 RESULT
1 BORROWS

Again you should check using denary equivalents.
e EXERCISE 1.2.2

Convert the following denary numbers to direct
binary and then perform the subtraction:

QL. (6 ~ 3) Q2. (12 ~ 8) Q3. (24 - 18)

Signed Bimary allows us to represent both positive and negative
nunbers, that is numbers which have both magnitude and

sign. You may already have noticed that the numbers we have

been operating upon are both small (a maximum of 255 for denary numbers
encoded in 8 bits of direct binary) and positively signed.

Let us consider the problem of “signing" our binary numbers. Clearly we

have to encode our "sign" (+ or -} using the binary syrbols 0 and 1 since
these are the only ones available to us. Conventionaily, we assign the

- 11 -

left-most bit to providing the "sign" and the rest of the bits to the
"magnitude" of our encoded nurber. Thus in sigmed binary
notation the format is:

If the sign bit is "0" then positive sign is denoted, and if the sign bit
is "1" then negative sign is denoted. For example:

SIGNED SIGN MAGNITUDE DENARY
BINARY : BIT BITS EQUIVALENT
0110 1001 0 110 1001 + 105

1110 1001 1 110 1001 - 105

If you compute the values of signed binary 0111 1111 and 1111 1111 you
will notice that our range of numbers is now from +127 through zero to
-127 as against O through to 255 in direct binary.

® EXERCISE 1.2.3

Determine the denary representation of the
folTowing signed binary numbers:

Q1. 1011 0000 Q2. 001l 1100
Q3. 1110 0000 Q4. 0101 0011
=) EXERCISE 1.2.4

Encode the following denary nunbers in
signed binary format:

QL. =63 C Q2. +24
Q3. +87 . -8

- 12 =

We sometimes use the term sign-magnitude for this representation and we
will use it to perform simple addition on the denary numbers +6 and -4.

+6 1is represented by 0000 0110
-4 1{s represented by 1000 0100

1000 1010 RESULT
Decoded our Sum is -10, clearly this is incorrect and should be +2. We
must Took for another wethod of representation if computations of this
nature are to take place.

The solution to our problem lies in a representation called two's

complement.

Two*s Complement provides correct‘resm ts when performing binary
arithmetic computations, but first Tet us consider an intermediate step -
one's complement. In this representation, all POSITIVE whole numbers are
represented in signed binary format, thus +4 is 0000 0100 as usual, however
its complement (-4) is represented by 1111 1011 and not 1000 0100 as it is
in signed binary.

We obtained the one’s complement by changjing all 1's to 0's and all
the 0's to 1's for example:

+4 is represented by: 0000 0100
-4 is represented by: 1111 1011

You will notice that the left-most bit can still be reserved to indicate
the sign (0 for positive and 1 for negative).

If we perform simply arithmetic processes of addition and subtration uéing
this method we will find that the method does not always work. However,
this method is used in large computers together with suitable tests, and
corrections are carried out if necessary. Two's complement has evolved
from this representation - it does work and is used almost exclusively in

microcomputer based systems.

- 13 -

In two's complement representation positive numbers are still represented
as for signed binary, but negative numbers are encoded in two's complement
notation. Let's consider the signed denary number +5. In two's
complement +5 is represented as 0000 0101:

Its complement (-5) is obtained by first obtaining the one's complement
and then adding 1 to it, for example:

+5 1is 0000 0101
one's complement is 1111 1010
ADD '1' (to one's complement) 1

1111 1011 RESULT

Where the RESULT is the two's complement of +5 or, we may say, the RESULT
is =5 represented in two's complement notation.

To summarise:

+5 s represented by 0000 0101
-5 is represented by 1111 1011 in two's complement notation

You should notice that the Teft-most bit is still O for positive and 1 for
negative numbers,

We will now check our method and assure ourselves that it does indeed
function correctly. To do this we will perform a number of arithmetic
operations.

) Add +5 to +3:
+5 0000 0101
(Add) +3 0000 0011
0000 1000 RESULT (+8)

111 CARRIES

RESULT CORRECT

B T

= Subtract +5 from +3:
We can do this in either of two ways:
a) Using rules of binary subtraction given on page 1.8

+3 0000 0011

(Subtract) +5 0000 0101
1111 1110 RESULT
I 1111 1 BORROWS

The result is obviously negative since the bit (B7) is set to 1. If we
cannot easily recognise the magnitude {since it is in two's complement
notation) as 2 we can perform a two's complement to find its positive
equivalent.
For example:

1111 1110 RESULT

0000 0G0L 1's comp

Add 1 1
0000 0010 ({+2)

The result 1111 1110 is thus -2 in two's complement notation.
The RESULT is CORRECT.

Now let's do the computation the second way. This time we will change the
sign of the (+5} and ADD rather than subtract.
The +5 must how be two's complemented to give -5.

+5 0000 0101

L's complement 1111 1010
Add 1 1

2's complement 1111 1011

now for the computation:

+3 0000 0011

{add} -5 1111 1011
1111 1110 RESULT
11 CARRIES

The RESULT is the same as before.
YOU WILL SEE LATER THAT THIS IS AN IMPORTANT FINDING.

- 15 =~

e Add -5 to +3:

Again we must represent the negative denary number ({-5) in two's complement
and perform an addition.

+5 0000 0101

l's complement .. 1111 1010
Add 1 1
2's complement 1111 1011 (-5)

now for the computation:

=5 1111 1011

(add) +3 0000 U011
1111 1110 RESULT
11 CARRIES

Clearly the RESULT is negative. Performing a two's complement on 1111 1110
to find the magnitude will indicate a value of -2.

The RESULT is CORRECT.

o S tract -5 from +3

Again we will represent -5 in two's complement which (from previous
example) is 1111 1011 and perform the subtraction:

+3 0000 0011

(Subtract) -5 1111 1011
0000 1000 RESULT
1 1111 BORROWS

You will notice that to perform our computation we required an EXTERNAL

BORROW; that is, we borrowed externally to our 8-bits. If we now ignore
this borrow the RESULT {0Q00C 1000 which is +8) is CORRECT.

- 16 -

Now let's perform the computation a different way. Instead of performing
a subtraction we will perform a two's complement on (-5) and ADD.

-5 1is 1111 1011 in two's complement notation
Complement 0000 0100
Add 1 1

0000 0101 2's complement of -5

How ADD +3 (0000 0011) and the two's compl ement of -5 which is +5
{0000 0101):

+3 0000 0011
(Add) +5 0000 0101
0000 1000 RESULT
111 CARRIES

The RESULT 1s the same, i.e. +8 and is CORRECT.
@ Add -5 to -3:
-5 1is 1111 1011
(Add) -3 1is 1111 1101
1111 1000 RESULT

1 1111 1111 CARRIES

We haVe now generated an EXTERNAL CARRY. If we ignore this the result
(1111 1000 which 1is —8) is CORRECT.

(] Subtract -5 from -3:

Rather than subtract directly we will ADD the two's complement of -5 (+5)
to -3.

-3 s 1111 1101

(Add) +5 is 0000 0101
| 0000 0010 ° RESULT
1111 1 1 CARRIES

Again we have generated an EXTERNAL CARRY and again if we ignore it the
result is CORRECT. :

- 17 -

You should now be convinced that representing negative nurbers in two's
complement does enable us to perform computations using the rules of
binary arithmetic addition only and still get correct results in terms of

both sign and matnitude.
Now let's have some practice!
@ EXERCISE 1.2.5

Using normal binary arithmetic rules and two's complement to represent
negative numbers, perform the following computations after having encoded
gach nunber into 8-bits.

Ql. 18 + 9 Q@. 6+ 2 Q3. 24 + 16
04, 23 - 18 Q5. 15 - 18 6. -23 + 18
Q7. 21 - (+5) Q8. -16 - (-2} Q9. 18 + (-24)

In this chapter we have restricted ourseives to small numbers, in the
next chapter we will investigate the consequences of using larger numbers

for our computation.

QUESTIONS
1. Perform the following binary operations:
{a) 1001 + 0101
(b) 0011 + 0101
(¢} 1111 - Q101
(d} 1001 - 0111

2. What is the range of values (in denary) for an 8-bit signed binary
nurber.

3. What is the two's-complement of -38,

4. Perform the following subtraétion using two's complement addition.
47 + {-22}). '

- 18 -

COMPUTER ARITHHMETIC CHAPTER 1.3

OBJECTIYES OF THIS CHAPTER

Having studied this chapter you should:

@ Understand the use of CARRY AND OVERFLOW flags in microcomputers.

@ Be able to determine whether or not these flags will be set as the

result of a calculation.
@ Understand the use of multiple precision arithmetic.

The nunbers you have been using in previous exercises were deliberately
chosen small. We must now ask ourselves what would happen if larger ones

were used.
Let's try adding together +127 and say +6

+127 0111 1111
+ & 0000 0110
1000 0101 RESULT

The answer appears to be {=5). Clearly this is INCORRECT.
Have we discovered a flaw in two's complement notation arithmetic?

Not really. The problem Ties in the fact that al though the magnitude of
the individual numbers could be encoded in seven bits the result of the
computation required eight bits. The result was a CARRY between bit 6 and
bit 7 {sign bit) which corrupted both the magnitude and the sign. You may
be interested to treat all 8-bits as magnitude and decode as such. The
result would then be correct (+133). .

- 19 -

Technically an OVERFLOW has occurred due to the internal carry.
Problems of this nature must be taken care of in any computing system.

Let us recapitulate:

e So .far all computations have been performed using
a total of 8-bits to encode both sign and
magnitude.

A tacit assumption has been made that a ninth bit
has been available for both external BORROWS and
CARRIES, indeed we even ignored them when decoding
our results.

=] ke have discovered that subtractions can be
per formed . using COMPLEMENT and ADD methods.
We therefore only need the ability to ADD and
not both add and subtract

Carvies and Overflows are an important concept and must be
considered in some detail.

The majority of microprocessors use a fixed bit length of 8-bits (one
byte). They also provide a separate bit for use of the external carry.
We will adopt this format and perform a number of additions specifically
to explore the concept of OVERFLOW.

Qur computations are tabulated overleaf:

- 20 -

DENARY BINARY RESULT BIT
NUMBERS NUMBERS MOVEMENT
CARRY | SIGN | MAGNITUDE c| s
+ 3 0 000 0011
¥ 5 0 000 0101
000 1000 CORRECT
0 NONE
4127 0 111 1111
+ 1 0 000 0001 o
1 000 0000 ERROR
0 1 111 111
+ 0 000 1000
- 1 111 1110 e =
0 000 0110 CORRECT - o
1 1 111
+ 2 0 000 0010
- 8 1 111 1000
1 111 1010 CORRECT
0 NONE
- 2 1 111 1110
- 8 1 111 1000 0 o
1 111 0110 CORRECT o o o
1 1 111
-128 1 000 0600
-1 1 111 1111
0 111 1111 | ERROR e ®
1

- 21 -

Note

o Arithmetic Notation - Two's Complement
e Mbreviations: € = Carry Bit
= Sign Bit

Bg = Most significant Bit of Number
Bit Movement

0 <= @

If we examine the tabie we will notice that ERRORS occurred when results
exceeded +127 and -128. Ohviously such results require more than our
allotted 8-bits. OVERFLOW is said to have occurred.

If we now examine the bit movement, we will find that an OVERFLOW occurs

only when there is a bit movement from

e B — sign Bit
OR
o Sign Bit -= Carry Bit.

If both bit movements occur for the same computation OVERFLOW has not

happehed.

We have already stated that computation in microprocessors is performed in
8-bit registers with a 1-bit device for the external carry. An additional
bit may also be provided to automatically indicate an overfiow condition.

We term these separate bits, STATUS FLAGS.

e EXERCISE 1.3.1

Let us assume we have 8-bit registers for computation purposes and two
status flags, carry (c) and overflow (v). These flags will be set
(contents made equal to logical 'l') when carries or overflow occur.
Perform the following computations and hence determine the status of the
two flags and state whether overflow has occurred.

- 722 -

Q.1 1101 1001 Q.2 0110 1010

Add 0111 1111 Subtract 1010 1111
g.3 0100 1111 Q.4 1001 0000
Add 1100 0001 Subtract 1101 0000

AT1 our computations have been performed in a fixed number of bits. It is
easier for a machine to perform arithmetic calculations if this is so
rather than have a variable bit length. If the number of bits are fixed
we refer to this as being FIXED FORMAT.

Fixed format does present problems in as far as the range of numbers that
can be accommodated (without special provision) is also fixed. Using
Two's Complement representation for negative numbers then the range for an
8-bit register is +127 and -128. Clearly this is insufficient for many
applications. We will now address this problem.

Aultiple Precision Arithmetic is a method which involves using a
two or more byte format to accommodate the required magnitude. If two
bytes were sufficient we would use a high byte and a Tow byte thereby
effectively giving us a 16-bit DOUBLE~-PRECISION format.

High byte Low byte
8-Bits ' 8-Bits

A number would be "stored" as:

NUMBER FORMAT

High Byte | Low Byte

0 0000 0000 | 0000 0000
1 0000 0000 { 0000 0001
-1 111 1111 | 1111 1111

32767 G111l 1111 | 1111 1111

The sign bit is still the left most bit.

- 23 -

A computation would be performed as below:

NUMBER HIGH BYTE LOW BYTE COMMENT

-1 1111 1111 1111 1111
+32767 . 0111 1111 1111 1111

+32766 0111 1111 1111 1110 RESULT
i 1111 1111 1111 111 CARRIES

Two other formats are also used. These are Binary Coded Decimal (BCD) and
Floating point. However, we will not touch on these at this stage, only
to say that BCD gives absolutely accurate results but uses a large amount
of memory. It is normally used for accounting purposes. Floating point
extends the capacity for handling large numbers beyond that of the fixed
format. It also generally makes for ease of programming.

In general it would be true to say that these lTater two formats are more
usefully employed in data processing rather than in control applications
for which the microprocessor is admirably suitable.

In the next chapter we will investigate a weans of encoding alphabetic as
well as numeric characters into a digital format suitable for

microcomputers.

- 28 -

QUESTIONS
1. When does an overflow occgur.

2. Determine whether or not the CARRY and OVERFLOW flags will be sat by
the following calculations.

(a) 120 - 25
{b 83 + 52
(¢) 8 - 23

3. Use double precision arithmetic to perform the following binary
calculations.

(a) 32767 - 255

- 25 -

ASCII CODES AKRD PARITY CHAPTER 1.4

OBJECTIVES OF THIS CHAPTER

Having studied this chapter you should:

Be familiar with the use of ASCII codes to represent alphamuneric

characters.

® Be able to deduce the ASCII code, for any particular character,
from the table given.

Understand the use of parity bits as an aid to error detection.

ASCII Codes we have already mentioned. They arise because we need to
encode alphanumeric data or characters. 7-bits are sufficient for this
purpose, but 8-bits will probably be available. This eighth bit is
sometimes used as a PARITY bit and helps us to perform a check to see
whether data has been corrupted during transmission especially when this
takes place between a peripheral outstation and its centrally situated
microcomputer. There are two methods of implementing a parity check. The
parity bit (bit 7) may be set to make up an even sum of all bits, in which
case it is referred to as EVENS PARITY or set to make up an odd sum to
give 0DDS PARITY.

"EXAMPLE:

1110 0111 EVENS PARITY
1110 0110 0DDS PARITY

The parity bit is the left most bit.

- 26 -

ASCII is a standard coding system and perhaps a table is the best way of

expressing it.

ASCII CODES

COLUMNS

SP

ROWS

10
11

12
13
14
15

o DEL

- 27 -

If you now consider the table you should notice the following:

o The seven bit code (no parity) is represented by By - Bg. Bit six
being the most significant.

o The first four bits (BO - B3) appear in the left-hand vertical
column while the last three bits (B4 - B7) appear in the top three
horizontal rows.

e The basic principle of the table is that it is conceived in binary
form which makes it very suitable for processing information by

computer.

® Direct binary codes 0000 0000 through to 0001 1111 (Dénary 0 - 32)
are devoted to control codes for data communication equipment. We

have not specified these here.

e Bit zero through to bit three (BO - B3) encode in direct binary
the numerals 0 through to 9.

An example in finding an ASCII code for a given character is:

Find the ASCII code.for the character, numera} 5.

Follow through the shading on the table. This will give us the ASCII code
required. Reading both columns and rows will give:

COLUMN 3 ROW 5
B

6 Bs By 83 By By By
0 1 1 c 1 0 1

Therefore the ASCII Code for Numeral 5 is 011 010L.
If a parity bit is to be used then:

001l 0101 (EVEN)
1011 0101 (0DD)

- 28 = .

@ EXERCISE 1.4.1

Ql. Determine the ASCII codes for the following Alphanumeric Characters:
a) 9 b) 5 c) Z
d) A e) a f) 2

Q2. Assign the parity bit for each of the codes determined in Q1. for
Even Parity and 0dd Parity.

So far we have concerned ourselves with data representation within the
machine. In the next chapter we will address ourselves to FXTERNAL
representation.,

QUESTIONS

1. What does ASCII stand for?

2. Determine the ASCII codes for:

(a) Q
(b) 3
(c) +
(d) v

3. Assign the odd parity bit for the codes of 2(a) and {b) and the even
parity bit for 2(c) and (d).

.29 -

OCTAL AND HEXADECIKAL NUKBER SYSTEWS CHAPTER 1.5

OBJECTIVES OF THIS CHAPTER

"Having studied this chapter you should:

Be familiar with octal and hexadecimal number sysﬁem.

Be able to convert denary numbers to octal or hexadecimal

representations and vise versa.

Understand the use of the symbolic representation of data.

We have seen that data is stored within the machine using a sequence of
bits (0's and 1's). These sequences can be output to devices termed Tight
emitting diodes (LED's). These are illuminated to indfcate a 'l' and
extinguished to indicate a '0'. There is some merit in having this
representation available to the user for program debugging but is fairly
time consuming and error prone. More convenient representafions have been
devised which we will consider next.

“0Octal and Hexadecimal are two systems fairly convenient to use. '
They encode a nusber of bits into a unique code and are frequently used at
the machine/human interface.

- 30 -

Three bits are encoded in the OCTAL system to form a svmbol between 0 and
7.

The table below indicates:

BINARY OCTAL

0000
001
010
011
100
101
110
111

~ Y 3T B WP e

A sequence of 8-bits would be encoded as:

00 100 011

or 0435 in Octal.

The subscript 8 denotes the base of the number system used.

The Hexadecimal system is now universally adopted for use in
microprocessor systems since it uses only two symbols to encode 8-bits,
that is. four bits per symbol. The symbols used in the hexadecimal
‘representation are 0 - 9and A - F, sixteen syrbols in all permitting a

nurber system to base 16.

- 31 -

An hexadecimal conversion table related to Decimal, Binary and Octal is

given below:

DECIMAL BINARY HEX OCTAL
0 0000 0 0
1 0001 1 i
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 8 10
9 1001 9 11

10 1010 A 12

11 1011 B 13

12 1100 C 14

13 1101 D 15

14 1110 E 16

15 1111 F 17

A sequence of 8-bits would be encoded as:

0100 1110
4 E

or 4E;e in hexadecimal.

Since the representation is universally accepted it is guite normal to omit
the subscript 16. However, if confusion may result it is better to include

it.

- 32 -

It is convenient to have a method of conversion rather than have to rely
upon a "look-up" table. The following may help:

& Decimal to Uctal

85 OCTAL

10

85 divided by 8
10 divided by 8
1 divided by 8

10 remainder 5

i

n

1l remainder 2

n

0 remainder 1

1MUS 8395 (decimal) = 1264 (Octal)

Octal to becimal

1 3 7
7x8 = 7x 1 = 7
3x8 = 3x 8 = 2
1x 8 = 1x64 = 64
95
Thus 137, (gctal) = 95 (decimal).
@ Decimal to Hexadecimal
90, (j ==~ HEXADEC IMAL

[

90 divided by 16 5 remainder A

5 divided by 16

i

0 remainder 5

54 (Hexadecimail)

Thus 90 (decimal)

- 33

] Hexadecimal to Decimal

AF e DEC IMAL
1 A F
Fox 169 = F x 1 = 15
A ox 161 = A x 16 = 160
1 x 162 = 1 x16%= 256
431

Thus 1AF) ¢ (Hexadecimal) = 43ljg (decimal)

EXERCISE 1.5.1

Convert the following:

QL. 125,5 68y4, 2519 into:
a) Straight Binary (8-bits)
b} Octal

¢} Hexadecimal

Qz. .,.6210’ ~9410, -3210, into:

a) Two's Complement (8-bit)
b) Octal
¢) Hexadecimal

Q3. 1BA, 39F, 21C, into:

a) Decimal
b) Binary

Syebolic is a representation which is extremely user friendly

since data is presented in symbolic form. For example, alphabetic
characters are presented as sudh rather than a sequence of binary digits
displayed on LED's, or as coded in Octal or Hexadecimal.

A suitable means of display is required such as a Cathode Ray Tube (CRT)
Monitor or Printer. On most single board micro-processors provision for
such display methods may not be availabie in which case communication with
the microcomputer will almost undoubtedly be in hexadecimal.

- 34 -

QUESTTIONS

1.

Convert the following denary numbers into octal:

Convert the following hexadecimal numbers to denary:
(a) 13F

(b) 20C

- 35 -

Chapter
Chapter
Chapter
Chapter

SECTION 2
INTRODUCTION TO MICROCOMPUTERS

2.1 ‘Introduction to the Microprocessor
2.2 Microcomputer System Elements.

2.3 Introduction to Programming

2.4 The Instruction Set

Page 1
Page 10
Page 19
Page 23

" MP126/A

INTRODUCTION TO THE MICROCPROCESSOR CHAPTER 2.1

OBJECTIVES OF THIS CHAPTER
Having studied this chapter you should;

Understand how the microprocessor fits into the architecturre of
a microcomputer system. ‘

Understand the function of the basic operational elements of a

microprocessor.

Understand how the microprocessor communicates with other devices

in the system.

SYSTEM ARCHITECTURE

We have already looked fairly deeply at thé way data is represented both
internally and externally to the microcomputer. In this chapter we are
going to consider how the microprocessor fits into the architecture of a
typical microprocessor system such as Emma.

Typical System Architecture

CLOCK = XTAL

< DATA. BUS ' >
ﬂ . O 1/0 BUS
: 1/0 i:wmwﬂﬁ?' 1/0
MPU EPROM RAM PORT DEVICES
CONTROL

ADDRESS BUS

%

< CONTROL BUS >

-1 -

n_n N~
% (I

With the exception of the /0 Devices each of the component parts shown
above can be identified upon the Emma microcomputer board. We will first
examine the microprocessor followed by the other system components in the
next chapter.

A TYPICAL MICROPROCESSOR

We are going to relate our typical microprocessor to that used in Emma.
The various manufacturers of microprocessors configure their devices
differently but the principles remain the same.

First we will pose the question "What is a microprocessor?” As a start it
may be helpful if we could define what a Process is. One definition would
be that a process is a series of operations which take place in a definite
manner and a device capable of performing sequential operations in the
manner defined would be referred to as a Processor. If the processor was
physicaily very small as distinct to its complexity, we may well refer to
it as a Microprocessor. In modern technological terms a microprocessor
is all this. Additionaﬁy it 1s understood to be an Electronic Device
contained within a small package known as an Integrated Circuit
(I.C.}. Integrated circuits are not confined sol ely to microprocessors
and many electronic circuits are packaged in this way.

These integrated circuits are then used as electronic circuit building
blocks and when appropriately connected together form a Targer electronic
system. An example of a system configured in this way 1s the Emma
microcomputer which you are using.

The appearance of a typical microprocessor is shown overleaf You will
easily be able to identify the one used in Emma by Tooking for the number
6502 marked on top of one of the larger IC's.

We also understand a microprocessor to be a device which performs
arithmetic and logic operations on digitally encoded data. These
operations are executed in sequence and as dictated by a Program of
Instructions stored within Memory'. 1he memory will torm part of a
complete system but will not necessarily be included in the microprocessor

package.

The enormous power of the microprocessor lies in the speed at which it can
execute these simpie but humanly tedious operations and in the infinite
variety of sequences which can be defined by the program of instructions.

If we Took at our system architecture: the microprocessor unit (MrU)
appears as a single entity. Indeed it does comprise a single I.C. We can.
however. identify. by function. a number of operational devices within the
IC: although we cannot see them. It is these devices which we will now
consider and a block diagram may help us to focus our thoughts.

F:N

B55 183 W[

b

REGISTER SECTION I CONTROL SECTION =

INCEX »
= I ez
IASEC K. o
RESISTER L
. N e ot
W Ko
] <"; PSIRT C:D
SEITE "
iy ¢
4 sttt
< % ECTE
Ay
K ~]
4 4]
ACLLATER <1 ltl):};?t
2 BB i
= 4
S = 248 4
= = =]
L. 3
N B =~
koo puocesson 11723 Qe
- TafS, 7 ol
BHE SRR et
"
K1 19%4F Cary A
Lt LIt
| < (1) (“;_‘ 1
* b o0
cafn gy J® oy RIH
BLFFER T -
L] 4 1 s
IRFTREIIGY
RESTSTR
f? SATR ES
- ot
aziatst B
3. ki

IATERNAL ARCHITECTURE OF A RICROPROCESSOR The diagram is. in fact.
that of the microprocessor used in Emma - the 6502. manufactured by

Rockwell International’

The Accumulator (A) is a general purpose register which has two basic
functions: ' N

It acts as a primary stdrage element when data is moved fr‘om one memory
location to another. Indeed all data transfers between memory locations
will normally take place via the accumulator. These data transfers require
a means to convey them and this is the function of the Data Bus. The
diagram below indicates:

) DATA_BUS _ (B-BIT PARALLEL) 1

ACCUMULATOR 1 Memory
A M

The accumulator also serves as a temporary storage element for intermediate
results of arithmetic and logical operations. For example we may wish to
per form an addition on two dbytes of data. We can move the first byte into

the accumulator. add to it the second byte. and Teave the result in the

accumulator.

To perform these functions the accumulator works closely with the
Arithmetic Logic Unit (ALU).

The Arithmetic Logié,Unit (ALU)} performs simple arithmetic
calcutations and logical operations. This is the function of the ALU and.
as can be seen from the diagram overleaf., data transfers can take place
directly between the accumulator and the arithmetic Togic unit.

1 DATA__5US Y

ARITHMETIC ACCUMULATOR MEMOR Y
LOGIC UNIT 7 N A M
ALY :

The arithmetic logic unit comprises many parts and performs all the
necessary operations to implement two's complement arithmetic. Togical
operations such as ANDing two bytes of data and testing the results of
‘these and al so many more functions.

A1l these operations and many more are under the control of a Timing

Control Unit.

The Control Umit (CU)keeps track of each specific cycle of operation
which takes place within a data transfer or manipuiation’. Each
instruction., for example when adding two bytes of data together will
require a number of cycles of operations to completely execute the
requested instruction. It is the function of the timing control wit to
provide these timing pulses. T0 will mark the first cycle at the beginning
of each instruction. T1 the second cycle and Tn the last cycle to complete
the instruction. The control unit derives its accurate timing from a

system clock.

The Clock Generator is a device which. produces two continuous waveforms
whose frequency is accurately controlied by means of a quartz crystal
(X1AL) which is external to the 6502 chip. The crystal maintains a
Trequency of lkWHz and the combination effectively acts as the 'heart beat'
for the microcomputer system providing all timing reference points. We
refer to the clock as being 'two phase' (#1 and $2) and non-overlapping.

An exaggerated diagram of the waveforms is as shown bhelow.

T CLOCK CYCLE

AN
S

It will be noted that @1 and @, are not at logic 1 (High) at the same time.
That is they are not allowed to overlap. The events which take place
within the microprocessor {or microcomputer system) depend upon whether wl

or @, is at logic one.

The Instruction Decode/Instruction Register works closely with the
Control Unit. The block diagram for the microprocessor can be seen to be
split roughly into two parts; a 'control' side and a 'register' side. Data
is processed in the register side and the sequence of operations performed
for each instruction (such as ADD two bytes of data togéther) by the
elements on the control side. However, the overall sequence of
instructions that the microprocessor may be called upon to ohey are
dictated by the program of instructions. The data representing the program
is latched into the INSTRUCTION REGISTER and then decoded by the
INSTRUCTION DECODE circuitry, this, along with the timing control output,
to generate Contrel Signals FOR EACH OF THE VARIOUS REGISTERS. These
control signals may also be influenced by external incoming signals such as
those produced by external devices interrupting the actua1‘processing
functions. These would appear via the Interrupt Logic Circuitry but
others, such as the Ready {(RDY) signal, way also hold up processing for
various reasons.

The Pvogram Counter (PC) is simply a register which holds the address
in memory of the next data item which the microprocessor will call for.

The counter is incremented each time an instruction, or data upon which the
instruction may operate, is feiched from the system memory.

The program counter may be modified, other than simply incremented, by
events which may occur - through execution of the program.

Index Registers (X} and (Y)/Stack Pointer (S) are simple ®it
latches which store data that is to be used in calculating addresses in
data memory. We will discuss these in more detail when actually writing

programs to run on Emma.

The Process Status Register (P} is a register which consists of

eight individual latches. These may-be set or cleared either under program
control, or automatically by the microprocessor. The contents of these
latches reflect the current Status of the microprocessor and may be
inspected by the programmer under program control.

w7 -

DATA AND ADDRESS BUSES are simply a group of electrically conducting
paths grouped together by function. Data, in the form of a memory address
or data to be operated upon, is pressed along these. The data bus is
typically an 81t parallel bus while the address bus is typically a 18bit
parallel bus. It is normal to symbolise these buses as follows:

8-BIT BI-DIRECTIONAL @ }
16-BIT UNI-DIRECTIONAL i>

The data bus is normally bi-directional (data can pass in either direction)
since data will be required to pass both into and out of the
microprocessor.

The address bus is normally uni-directional {(data passes in one direction
only)} since all addresses will be generated by the microprocessor.

Buffers are devices which "buffer” or isolate the microprocessor internal
buses from the buses external to it. In the case of the 6502 they provide
TTL compatible bus drivers delivering sufficient capacity for 1 standard
TTL load and at least 130 pF.

The address bus buffers also provide latches which hold the addresses when
used in accessing peripheral devices such as RAM, ROM and 1/0.

The data bus has been.seen to be bi-directional and as it connects together
a number of devices all capable of feeding data on to it, conflict can
exist. This is overcome by making the buffers enter a high impedance state
(third state other than high and Tow) when not transferring data.

QUESTIONS

1. What is the accumulator andwhat is its purpose.
2. What is the ALU used for.

3. hat is stored in the program counter?

4. Is the data bus unidirectional or bidirectional.

5. Why is it necessary to have a third: high impedence state other than
logic 'l' or '0') on some devices.

HICROCOMPUTER SYSTER ELEMENTS CHAPTER 2.2

OBJECTIVES OF THIS CHAPTER
Having studied this chapter you should:

& Be familiar with the different types of memory device used in a
microcomputer.

Understand the function of the monitor program.

Be familiar with the use of input/output ports for communication

with external devices.

Understand how the microcomputer execute a single instruction.

A TYPICAL MICROCOMPUTER SYSTEHM

As we did with the microprocessor, we will relate our discussion to the
Emma microcomputer. However, the devices used are common to
microcomputers in general and hence generally applicable,

We have suggested that in general the microprocessing unit does not possess
any program or data storage capacity. Also, it has limited capability to
converse directly with the outside world in the shape of peripherals
(printers, visual display units, control devices etc.). We will deal with
each of these in turn. B

Memory Devices are simply registers. We have already familiarised
~ourselves with the term 'register' as being a device capable of storing a
binary word. If a number of registers are grouped together, each capable
of being individually addressed and holding a single byte, we have the
concept of a memory device. In practical terms these devices may contain
1024 (1K) or 2048 (2K) or wore of memory locations. If the device is only
capable of being READ (we can only look at the daﬁa already stored) it is
known as a Read Only Memory or ROM.

- 10 -

If, on the other hand, we can WRITE (input data) into the device under
prograin control as well as READ it, we refer to it as a Random

Access Memory or RAM.

Both devices are, in fact, random access in the sense that we can access
any desired memory location. We do not have to start at the first and work
our way through until we arrive at the one we wish to either read (ROM) or

read/write (RAM).

A simple ROM Device can only be written into once; there is no way in which
the data stored can be erased. The Eprom however is a device which can be
erased and then used again - it is both an erasable (E) and reprogrammable

(P), ROM.

There is another feature of these devices which is of importance. ROM
devices are non-volatile, that is when the supply is removed from the
system the data contained within them remains; it is not lost. RAM
devices lose their data upon loss of supply unless special provision is
made to maintain the data, for example, provide a back-up battery. We would
refer to such memory as battery-backed RAM. It should be noted that
under conditions of 'back-up' the system cannot be used in an operational

sense.

We may ask why use both ROM and RAM within a system. Al1 microprocessors
require a program which will operate automatically when the mchine is
switched on and/or when a reset button is pressed. This program is termed
the Monitor. It is designed by the system manufacturer and must not be
lost when the system supply is removed. It must be stored in non-volatile
memory. Monitors have various features in common:

e They permit the system user to address any
memory location and display its contents.

@ They permit the user to modify the data
stored in any addressed memory location.

@ They permit the system user's program to take

control of the microprocessor and to return
control back to the monitor as required.

- 11 -

Various other features may be present.
For example, the Emma monitor provides.

facilities for the loading or storing of programs

from or to magnetic tape via a cassette tape

recorder. It also provides a means of debugging user
programs by allowing the operator to run a program

and inspect automatically the content of important
registers such as the accumulator and status register
etc. In addition to all this, the EMMA monitor allows

the programmer to make use of some of its program

routines and hence simplify his program.

A schematic organisation of the individual memory functions is as shown in

the diagram below:

\‘\c“ <%
g

00 01 02 03 04 05 06 G/ 08

LOW BYTE
ADDRESS

Each location stores effectively 8-bits of encoded data and has a unique
address encoded in hexadecimal for programming convenience.

A 2K EPROM would have 2048 locations starting at address 0000 and ending at
address Q/FF, We will return to the topic of memory addressing later.

INPUT/OUTPUT PORTS are referred to as I/0 devices.

Their function is

to act as an jmput or output route for transferring data to or from
microprocessor and application devices such as keypads, transistorised
drive circuits for electromechanical devices (solenoids, stepper motors,

relays etc.) and displays of various sorts.

-12 -

I/0 ports generally appear to the microprocessor as memory locations of §-
bits. Each bit can usually be set under program control to act as either
an input port or an output port. Other features may well be available.
For example the 6522 1/0 port used in the Emma system comprises two 8-bit
programmable I/C ports, two programmable timers and means whereby data can
be input or output in a serial mode. It is a powerful device in its own
right. We will look more deeply at 1/0 ports later.

Peripheral Device is a general term used to describe machines which are
not physically part of a computer system, but may act in conjunction with
it. They are used typically to display data either on a visual display
unit or printer or store data on a disc or magnetic tape. The matrix
printer and the cassette recorder which you will use with Emma are
examples. Some of these devices may use an /0 port to communicate with
the microprocessor (as when using the matrix printer) or a special
interface as used for the cassette recorder. The display monitor used with
the Emma-Yisa combination uses a dedicated Cathode Ray Tube Controller

(CRTC}.

We have now completed a brief look at the various components which go to
make up a microcomputer system. More complete details are to be found in
the Emma User and Techmical Manuals and you are encouraged to
consult these.

We will now address ourselves to how these components operate within the
concept of a microcomputer system.

MICROCOMPUTER SYSTEM OPERATION

We have already intimated that a microcomputer is capable of performing
extremely complex functions by means of a series of simple operations.
Control of the microcomputer system is largely the fesponsibi]ity of the
microprocessor. This causes the system to perform the desired operations
Dy reading the first instruction of a program, and then ‘'executing' that
instruction. The microprocessor will then 'fetch' the next instruction
from memory, decode {interpret) it and then execute it. It will repeat
these 'fetch/execute' cycles for each instruction until the program is
terminated. lLet us look at this in more detail.

- 13 -

A program instruction will usually. but not always. comprise two paris:

oP. CODE OPERAND

The term Op. Code is short for 'Operation Code'. It is a single
byte which specifies the type of operation which is to be performed.
These codes are determined by the manufacturer of the microprocessor
and are Tisted in the Imstruction Set (see Appendix 7)7or the

particular microprocessor in use.

The Operand may comprise either one or two bytes. If it is a
single byte it may be data which is to be directly operated upon or
it may specify the address of the data which is to be operated upon.
Where two bytes are used for the operand. they specify an absolute

address for data.

Let us consider a particular instruction which occurs frequently in any

program of instructions:
Load Accumulator with Memory (LDA}.

The instruction performs the operation - Transfer the contents of a
specifed memory into the accumulator. We can specify this operation
symbolically as (i)-- Al where () means "contents of". and -- means

“transter to".

The specified Op. Code for this instruction is AD(HEX) (encoded in

hexadecimal }.
Let us assume the following:

@ The data we wish to transrver into
the accumulator is FF(HEX).

The data is located at absoltte
address U360(HEX).

- 14 -

=) the program is to commence at absolute
address OQUZ0(HEX).

Our program is to be stored in RAM and can be tabulated as:

ADURESS CONTENTS COMMENT S

{(HEX) {HEX) (BINARY)

G020 Al 101U 1101 Or. Code

00Z1 60 0110 UO0U low byte of address
0022 U3 00GU V0Ll high byte of address
u23 Or. Code of next instruction

(360 ¢F 1111 1111 data to be transferred

Let us now see how the microcomputer would operate to effect this
instruction. Under Monitor control. we wouid start the running ot the
program by pressing an appropriate control pushbutton or key. 1lhis would
be detected and the user asked to provide the start address of the program
to be run. Unce accepted. system control would automaticaily be passed
from the konitor to the User program. We can best describe how our first
instruction is executed by means of the table overieaf.

15

1 linING DATA ON DATA ON

CONTROL ADDRESS DATA BUS COMMENTS

CYCLE (tn)

TU P.C. (0.¢. Code fetch OP. Code.

[P+ 1 ADL . Decode 0P Code.

retch low order
address byte.

T, PC + 2 ADH Fetch high order address
byte.

Ty : AUH. ADL | DATA Fetch bata.

Ty PC + 3 NEXT 'OP. CODE| . LUAD Accumulator with
Data.

FET1CH next op. code. -

all instructions performed by the processor can be tabuiated in this way
and are in fact dene so. You will find them under the heading 'Summary of
Single Cycle Executions' in the Emma Technical Manual.

The important points fo notice from the table are:

Y The instruction takes a definite

known time to execute.

The data appearing on both the address
and data buses for any clock cycle is

Known .

- 16 =

QUESTIONS

I.

(a)

(b}

6.

What do the following abbreviations stand for?

R AR

ROM

EPROM

Which of the above are suitable for:

Writing to?

Handom access?

How does the microcomputer access 1/0 ports?

What is an Up Code?

What is meant by (i) — A?

What is the next operation performed by the processor

compietion of an instruction.

- 17 -

after the

INTRODUCTION TO PROGRAMMING ‘ CHAPTER 2.3

OBJECTIVES OF THIS CHAPTER
Having studied this chapter you should:

@ Understand the basic difference between high level and Jow level
programming language.

Be able to construct a flow chart to perform a simple task.

INTRODUCTION

We have already defined a program as a series of instructions which the
microprocessor can execute and hence perform some task. It 1s the format
of such instructions to which we will now address ourselves,

PROGRAMMING LEVELS

The operations which we require the microprocessor to perform are
expressed using binary codes. If we write our program directiy in a
binary format we are said to be writing a 'Machine Code Program'. These
programs are at the lTowest level possible, are extremely friendly to the
machine {do not need machine translation) and require a minimum amount of
memory. The timing of any instruction can also be accurately determined.
They do, however, require of the programmer an intimate knowledge of the

- particular microprocessor for which he is writing the program. High level
programs overcome this problem but at the premium of vastly increased
memory fequirements_and an inability to predict accurately instruction
timing. They are, however, extremely friendly to the programmer .

- 18 -

Programs are also written in 'Languages' and we frequently refer to high
and Tow level languages. We will tabulate a few of the more frequently

used languages.

LOW LEVEL LANGUAGES INPUT

MACHINE CODE BINARY, HEXADEC IMAL
ASSEMBLE LANGUAGE MNEMONICS

HIGH LEVEL LANGUAGES APPLICATIONS

BASIC ALL PURPOSE. BEGINNERS

FORTRAN COMPLEX MATHEMATICAL OPERATIONS
ALGOL ENGINEERING ORIENTATED

COBOL BUSINESS ORIENTATED

A1l the High Level Languages are written in English-like statements. For
example in Basic the single statement:

LETP = T + W
would be machine interpreted as add the value of W to the value of T and
assign P to the result. In a low-Tevel language this would involve a
program of numerous instructions. However, before the machine could
actually understand this statement and perform the necessary function it
would have to transiate it using a separate program which would be either a
Compiler or an Interpreter. Either of these would have to be resident
within the machine and obviously require memory space - this is Just one
of the overheads of high-level language use.

PROGRAM STRUCTURE -

- Obviously most tasks performed by human beings can be performed in many
different ways. Also, there is not always one particular way which is
‘best'.. Programming is no exception to this. However, some thought to
the stﬁucture of a program will prevent much wasted time when it is being

given its first trial run.
- 19 -

A well structured program will be one where the total task is broken down
into a number of smaller self-contained tasks. The nugber of entry and
exit points within the sub-task should be small. ideally one entry one
exit. The nearer we get to this ideal. the easier it will be to isolate a
particular part of a program and ‘debug' it when it has failed to operate
or pertorm in the way that we expected that it should.

To help us to this end a good programmer will construct a FLUW CHART.

THE FLOHW CHART

The Flow-Chart represents a program in schematic form. 1t has no reference
to the assemble language of a particular wachine or higher-level language.
It simply helps to break large programs down into small modutes which can

be more easily worked upon.

Kecognised symols are used for flow-chart construction. frequently drawn
by means ot a template. Tlhe most common are outlined below:

: COMMENTS
PROCESS e — ==~ (IF NECESSARY)

SUBROUTINE

I
OFF PAGE
| MKFONNECTOR L CONNECTOR

/ INPUT/0UTPU

- 20 -

A typical example of fetching say five items from a peripheral device and
storing in memory would be:

GET
% DATA

|

STORE IN
MEMORY

- 21 =

[he diagram should be self-expianatory. After each item is 'got' a check
is made to see whether the correct numder has bDeen fetched. if not. the
*Get"' routine is repeatad by looping back in our chart.

Before we can actually write a program we need to have some knowledge of
the machine Imstruction Set. We will consider this using that for the
6502 since EMMA is based upon this microprocessor.

QUESTIONS

1. What are the disadvantages of writing programs in machine code.

2. Shouid a high level or Tow level ianguage be used if the timing of

the program is critical.

- 22 -

THE INSTRUCTION SET CHAPTER 2.4

OBJECTIVES OF THIS CHAPTER
Having studied this chapter you should:

@ Have some familiarity with the manufacturer's instrruction set

for the processor we are going to use.

@ Be aware that instructions can have several hexadecimal codes
each relating to different addressing mode.

@ Understand that some bits of the status register may be changed
‘when an instruction is executed.

THE INSTRUCTION SET

The instruction set for EMMA is to be found in Appendix 7, at the rear of
this manual. However, for convenience, we will reproduce part of an
instruction that we will be using to form our first simple program.

LDA LDA Load accumulator with memory , _ LDA

Operation: M —=» A N Z ¢ I D V

A
Addressing Assenble Language Op No No
Mode Form Code Bytes Cycles
A solute LDA Oper AD 3 4

.23 -

We should notice the following:
& The operation is clearly stated as:

"Load accumulator with memory"

It is also symbolised by: M — A
which means: “franster the contents of memory M to the Accumulator
AL,
] A memonic is given:
LDA

meaning: “Load Accumuiator”.

] An addressing mode is given:

& solute

This indicates that the data is to be found at the absolute address
specified by the two bytes foilowing the Op. Code.
e The format of the Assemble Language instruction is given:

LDA Oper

where LDA specifies the Uperation to be performed and is to be
followed by an operand. In our case the operand is a two byte
abso]uteraddress.

- 24 -

These

< D e OON =
]

a. A code is given in hexadecimal for the mnemonic LDA. This is
AD

b. The total number of bytes are specified which make up the
instruction i.e.

1st 2nd 3rd
OP. CODE L.OW BYTE HIGH BYTE

Ahsolute Address

¢. The total number of machine cycles which the instruction will
require are specified. This is
4 cycles.

Note: EMMA operates at a frequency of 1 MHz (1,000,000 cycles/sec).
The time taken to execute this particular instruction is
therefore:

4 X 1 = 4fASEC
1,000,000

An incredibly short time !l

We have already mentioned the use of 'flags'. For examplie, when we
did our Two's Complement arithmetic in Chapter 1.2 we found the need
to detect a register 'overfiow'. We provided a separate bit and set
it to 'l' if an overflow occurred. Our instruction set indicates
the effect of the instruction upon the flags. There are effectively
6 individual flags which form the Status Register.

are assigned as below:

Negative Result
Zero Result

Carry
Interrupt Disable
Decimal Mode
Over {1 ow

= 2725 -

A tick (/) beneath a flag designation indicates that the instruction when
executed may change the flag.

A dash (-) indicates that the instruction has no effect upon the flag.

A complete summary of the notation used prefaces the instruction set in
Appendix 7.

Now let's see how we can employ this instruction and others in a simple

progran.
A STMPLE PROGRAM EXAMPLE

We will first specify the task, construct a flow chart and then write a

program.

TASK
Transfer the contents of memory M, to memory M,.

=) FLOW CHART
This is so simple that a skilled programmer would not normally take
the trouble! In fact, you may like to try this yourself first. The
flow chart may Took like this.

GET DATA

FROM
MEMORY M1

i

TRANSFER IT
T0
MEMORY M2

- 26 -

You will notice that this flow chart only breaks the task down, it does not
specify what the data is or what the memories are. It could apply to
almost any simple task not necessarily to be performed on a microcomputer.

©

PROGRAM
We will write our program in machine code and therefore a commitment

to a specific machine must be made. We will write the program to run
on EMMA,

We have previously stated that all data movements must be made through the
accumulator. We will therefore execute our task by:

LOADING the data in memory MLl into the accumulator A.
STORING the data transferred from M1 into memory M2.

Qur program, using maemonics, is:

LDA Ml
STA M2

If we now assign addresses for M1 and M2 we get:

LDA Q080
STA 0081

where 0080 and 0081 are two absolute addresses with the high byte
(00) specified before the Tow byte (80).

Note: It is normal to refer to addresses high byte first followed
by Tow byte e.g. 0080 and 0081. However, when placing in memory as
an Operand, the machine requires that we reverse this order.

Assigning addresses to our program we get:

0020 LDA 0080
0023 STA 0081
0026 next instruction op. code

Look up the instruction set (Appendix 7) and see if you can determine
what addressing mode we have used for the store instruction.
- 27 -

If you turn to Appendix 1 you will also find a blank programming sheet.
Reproduce this and in future use it to record your programs.

Our program {(using a standard programming sheet) would look like this:

STANDARD PROGRAMMING FORM

PROGRAMMER: You and me PROGRAM TITLE: 15t Program

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0020 AD. 80 00 LDA M1 Address of M1 is 0080

0023 8b. 81 00 STA M2 Address of M2 is 0081
0026 ¢ 26 00 JMP 0026 Terminates Program
0080 ? , Single byte of

unspecified data to
be transferred to
0081 : memory 008]

You will notice that we have terminated our program using a Jump
instruction.

[T you do not understand everything we have justl done Do Hot Worry
You will soon confidently be writing programs and Rumning them
on EMMA.

~Now Tet's get down to something more exciting! We are going to introduce
you to EMMA.

- 28 -

QUESTIONS

1. Use the Instruction Set (Appendix 7) to determine the Op Codes for the

following mnemonic instructions:
{a) LDA Zero Page

(b} BEQ

(c) ?HA

(d) STA Absolute

2. If an instruction requires three machine cycles how long does it take to

execute.

3. What is meant by a tick (¥) beneath one of the status flags for a
particular instruction in the Instruction Set.

- 29 -

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

SECTION 3

PROGRAMMING THE EMMA MICROCOMPUTER

Introduction to Emma
Program Entry and Execution
Using 6502 Instructions
Writing a Program
Arithmetic Operation
Logical Operations

Sub -Routines

Stack Processing

Software Delays

Interrupts

Using the VIA

Program Debugging

Using the Cassette Interface

Page
Page
Page
Page
Page
Page
Page
Page

‘Page
- Page
- Page

L

8
16
26
42
54
59
63
66
74
88

Page 109
Page 113

MP126/A

INTRODUCTION TO EMHMA CHAPTER 3.1

OBJECTIVES OF THIS CHAPTER
Having studied this chapter you should:

) Be famiiar with general layout and features of the EMMA

microcomputer.

Understand the memory map of the EMMA microcomputer system.

GEMERAL DESCRIPTIOM

EMMA is a fully assenbled and tested microcomputer requiring only a 5V.,
700 mA., regulated d.c. supply to commence computing.

The system is built around the powerful 6502 microprocessor, having a
crystal controlled clock operating at 1 MHz. Operation is provided by a
monitor program. The monitor is stored in a 2716 EPROM and the user
program in 2K of RAM provided by 1 x 6116 integrated circuit.

An important feature is the Input/Qutput port (I/0 Port) facilities. These
are provided by the 6522 Versatile Interface Adapter (VIA) which includes
among other features, two 8-hit programmable I/0 ports. Keyboard/Display
interface is provided by the 6821 integrated circuit.

Of the total addressing capabiTity only a limited amount is decoded. The
required address decode is selected by links placed in an i.c. Header.
Since other decode arrangements are possible it is important that the
correct Header s used. The arrangement is shown below for the unexpanded

FMMA II:

@

The cassette interface provides for rapid retention of programs on a
standard cassette recorder. Connection to the recorder is made via the DIN
input/output socket, or external microphone/earphone connectors.

The layout of the EMMA microcomputer is given on page 3.

Communication with EMMA is through the keyboard/display interface al though
you will soon make usc of the I/0 port which is brought out on 4mm sockets
on the left-hand side of the microcomputer board. These sockets are
designated PAO-PA7 and PBO-PB7 and provide the input/output connections to
[/0 Ports A and B respectively. Also available are 4mm sockets for
interrupt facilities - these are used extensively in work associated with

Application Modules.

Power supply to the board is made via 4mm sockets, two sockets being
provided for the +5Y connection and two for the OV connection. The
provision of two sockets for each line facilitate the looping of supplies

to other system jtems.

Access to all bus lines and various control signals is made through 0.1"
printed circuit board {(p.c.b.) pins. Again these will be used extensively
during Fault Simulation and Diagnosis.

A 3-way 0.1" p.c.b. plug gives access to the cassette interface.

The single step facility considered in Chapter 3.12 of this manual must be
switched to the OFF position for normal operation.

©
!

13820

HO1)AINNC Y
ROISNYYX]

L @myngm
Wi @y
agpajm

Qo)<
i3
sio|aln

AP0 FOETORADN

WY AINOYR RS

WODDT HOLINOW

BIOVAETINI TLIISTOUD

DNIOTOD20 BE3INGOY

EHOTRIT IR DA

HERMLE £ LEOct T

W

WL VININGT,,

o

0-0

g
©

Q0000000000000

H

[«]
le

8 03 5 2 3 |
o
B R -)

“
-]
o

- N & - Wt 3 ~]
. < < o
i & & & & 4 & 4

3
a,

THE HMEMORY MAP

You may remember we mentioned that certain locations, namely 0000 to 0CLF
were reserved. There are other Tocations too which are not directly
available to the user. This is common to all microcomputers. To help us
find our way through the memory system we have what is termed a Memory
Map.

A Memory Map is a listing of addresses which define the boundaries of the
memory address space occupied by a program or series of programs. An
unexpanded EMMA Memory Map is included.in the Appendix.

USER HMEMORY
Our major concern with the Memory Map at this point is to see what memory
locations are available to us to store our programs. You should observe

that available memory space is:

0020 = 224 Bytes for user
O0FF

0200 L. = 512 Bytes for user
03FF |

0c00 L = 1024 Bytes for ﬁser
OFFF

4 Bytes used in conjunction with useful sub-routines 001C - 001F

Now is an opportune moment for us to look at the two bytes which constitute

an address:

THE COMNCEPT OF PAGING

In common with most 8-bit microprocessors, EMMA has an address capability
of 64K (65,536) memory locations. These are organised into Pages where a
page is 256 consecutive memory locations. With this size of page, there
are a possible 256 pages in 64K of memory.

Schematically we would show these as:

‘\\iﬁi\\\\q
~Jd
/// >N
00 f 4 FC

02 03

Each Tocation would have a two-hyte unique address, e.q.

HIGH BYTE LOW BYTE

where the high byte is the Page Reference Humber and the Tow byte is

the Location on Page.
Hence the address 0020(HEX)is:
20(HEX)location on page 00.

- Page 00 and page Ol have instructions which are special to those pages.

ZERO PAGE

Zero page may be seen as comprising a set of working registers upon which
any instruction will be executed in a shorter time than if any other page
had been used. Since the time saving in executing a single instruction
can be as much as 33.33% it is worthwhile reserving zero page for essential
data that needs to be retrieved at high speed.

THE STACK

The stack is designated by the microprocessor as page one. Special
instructions exist which operate only on the stack and serve to transfer
and retrieve data 'pushed' onto and 'pulled' from the stack. None of these
instructions specify a particular location on the stack - the location of
the last data item pushed to the stack is 'remembered’ in a register termed
the STACK POINTER. We will meet the stack and it's pointer again during

programming exercises.

THE STATUS REGISTER

le have already referred to the status register as comprising a number of
'flags' which inform the programmer of the status of the machine after each
instruction is executed. The programmer.has control over some of these
flags, he can set or reset them as reqguired by the logic of his program.

QUESTIONS

1. How lﬁuch RAM is included in the system?

| 2. How much RAM is available for user programs?

3. How many 'paaes'are contained in 1K of memory?

- 4. What are the advantages of using Zero page instructions?

5. What is page 01 of the EMMA memory used for?

PROGRAM EMTRY AND EXECUTION - CHAPTER 3.2

OBJECTIVES OF THIS CHAPTER

) Having studied this chapter you should:
=) Understand the functions of the EMMA control keys.
@ Be able to modify the data stored at an address location.

Be able to load and run a simple program.

EfMMA KEY FUHCTIOMS

The EMIMA keyboard/display unit provides all the necessary controls for
EMMA except for the Address Decode Patching header and the Reset
Pushbutton.

The keyboard is split into two well defined key groupings:

e Hexadecfma? Keys - These are the matrix of sixteen keys marked 0 - 9

and A - F. They are used to input all data e.g. user programs, data
tables.

Control Keys - These are the matrix of eight kevs marked,

M,G,P,S,L,R,+ and -. These keys have well defined functions as
helow:

Program Entry - Programs are entered into EMMA using hexadecimal codes.
- Control of program entry is by means of the following keys:

e M Key - used to sel éct the memory mode. For examplie the seven
sagment display may show either a wmemory address or a memory address and

its contents. Depression of M will alternate these modes.

o * (plus) and - (minus) - used to increment or decrement the current
program entry address. For example if the current address being displayed
is 0020, pressing the + (plus) key will increment this to 0021. The use of
these keys greatly facilitates program entry and subsequent checking before

running program.

Program Run - The G key causes the program to Run (be executed). In
practice having entered a program, G will be pressed and the start address
of the program then keyed in. Pressing G again will cause the program to

be executed.

Program Debug - Key R provides a single step feature and key P a means
of inserting a forced break into a user program. Both these keys are
~essentially for program debug and are discussed more fully in Chapter 3.12
Program Debug).

Program Dump - EMMA provides a feature for dumping programs onto
magnetic tape using a conventional cassette tape recorder. Keys S and L
are used to control this feature, Sbeing for store onto tape, while L
Toads the microcomputer memory from tape. Both are discussed in Chapter
3.13 (Using the cassette interface).

These key functions are designated by the microcomputer monitor program.
They may, however, be redesignated under user program control without
destroying their normal function.

We will now follow a switch-on routine and familiarise ourselves with the
actual EMMA Keyboard/Display.

EMMA SUITCH-ON

Connect EMHMA to the 5V, 3 ampere supply outlet of System Power 90,
carefully ensuring that the polarity is correct.

Switch on the supply.

Press the Reset button (bottom right-hand of the microcomputer board) and
notice that the display shows eight decimal points:

DISPLAY

This indicates that the monitor program is running and the microcomputer is
ready to accept information from the keyboard.

It is also reasonable to assume that the microcomputer system is operating

correctly.
FAMILIARISATION

Press the control key 'M' (memory key}. The display will now indicate:

BIEIEIEAEN

where * * * % 45 3 4 digit hexadecimal address between the values 0000
and FFFF.

This-address can be modified by depressing the desired sequence of
hexadecimal coding keys.

e.g. press 0 0 2 0

The display now shows:

This is the address of the Towest user memory in EMMA.

- 10 -

Now press the 'M' key again. The display will now show the data stored at
the location indicated by illuminating the two right-most 7-segment
displays. Example, if the address part of the display shows A.0020 then
pressing 'M' will cause the display to show:

KK

where * * are any two hexadecimal digits. Pressing any of the

hexadecimal coding keys will modify this data.
Now press keys A, B, C, B, E and F and cbserve that some characters on the

display are in capitals and some in lower case:

o

1

BT

.

{E

1

Note: the 1etter‘E:]'and the number E; are similar and care must be taken
not to misiﬁterpret these two characters.

We refer to the two parts of the display (as used above) as the Address
Field and Data Field respectively.

Example:
i My b | L} e
L T PO I O N o 1]

Address Field Data Field

- 11 =

Memory Modication

Now perform the following operation:

OPERATION DISPLAY COMMENTS
Press Reset 6 o & o o o Monitor running
Press control = Address field only illuminated
key M 'm‘ex X X X ° and showing a random address.
Press Hex o Address field indicates
LI T I T | i
Keys 0020 I R SR R address high byte (00)
address low byte (20}
Press Hex R e Address modified to (0238
Keys 0238 ' l'=t'= 211D
Press M Address field and data field
::L ::: E == M ¥ illuminated. Data field shows
random data stored at
lTocation 0238.
Press Hex _ _ _ _ _ Data field shows data (45)
PN T I R T B a7 . .
Keys 45 Tttt I v input to Tocation 0238.

The function of the control keys plus (+) and minus (-) can now be
explored. These increment (increase by one) and decrement (decrease by
one) the displayed address field when in the data mode. They provide a
convenient way of sequentially moving through a series of addresses when
entering a progrm or simply checking a program already entered without
having to continually use the M control key.

We will now try entering an actual program.

PROGRAM LOADIMG

We have already written a simple program which is designed to transfer the
contents of one memory location to another. We will repeat this for

convenience.

PROGRAM BYTES

ADDRESS 1 2 3 COMMENTS

0020 AD 80 00 (M1) = A

0023 8D 81 00 (A) = M2

0026 4c 26 00 Terminates Program
DATA BYTES COMMENTS

ADDRESS I\ 2 3

0080 FF Data (FF) to be transferred
0081 00 Data (00) will be over written

You may notice that we are going to load memory location 0080 and 0081 with
FF and 00 respectively. We have deliberately put 00 in 0081 so that we
will positively know that FF has been transferred.

- 13 -

The program once entered into the machine would appear schematically in
sequential locations as:

AD 80 00 8D 81 00 4C 26 00 FF 00 CODED MEMORIES
0o 0 0 0 0 0 0 0 O 0 0 MSB

o 0 0 0 0 0 0 0 0 0 0 ADDRESSES

2 2 2 2 2 2 2 2 2 8 8

o 1 2 3 4 5 6 7 8 0 1 1.SB

Now Load this program!

e RESET EMMA - Press RESET

o Ubtain Address Field - Press M key

e Set lst Address {0020) . - Press 0, 0, 2 and 0.
o (btain Data Field - Press M key

e Modify Data Field - - Set to AD

o Increment Program - Press + key

e Modify Data Field ' - Set to 80

e Increment Program - Press + key

Continue until program is entered.
Now Load Data.
e (btain Address Field - Press M
o Set Address {(0080) - Press 0, 0, 8 and O

Etc. Continue for 0081

You should now have entered the whole of the program and the data. It is
prudent to check this by looking at each loaded Tocation. You may do this
by incrementing or decrementing through the program and data memory.

Now Tet's RUN the program!

- 14 -

PROGRAM RUN

Press control key G {G stands for GG) - the display should now show:
i / S
T N N O

where * * * % {5 some random address.

Using the hexadecimal coding keys, modify this random address to the start
address of the program e.g. 0020

Display:

Press the go key, G, again.

You will notice that the display has gone blank. To check whether the
program has indeed run successfully we now need to inspect the memory
Tocation into which we transferred the contents of location 0080. Remenb er
- contents of 0080 was FF and should have been transferred to 0081.

Symbolically:
(0080) ————p= 0081
where () indicates contents of

and ———g=transfer to.

Inspect the memory contents, press Reset followed by M, key in address
0081, press M again and data field of display should indicate FF.

Now 1inspect location 0080. You will notice that it still contains FF.
Transferring contents of a memory does not destroy it.

You may not understand what you have been doing,_but you should have
familiarity with EMMA and its Keyboard/Disptay. In the next chapter we
will Took at program writing in wore detail. In the meanthTe you may feel
sufficiently confident to]oad other data and transfer to different |

locations. TRY 1

- 15 -

USING 6502 INSTRUCTIONS

CHAPTER 3.3

OBJECTIVES OF THIS CHAPTER

Having studied this chapter you should:

Understand the various addressing modes which are available.

Understand how to calculate the data for a relative branch

instruction.

Understand the function of each of the flags in the processor

status register (P register).

INTRODUCTION

In this chapter we wf11 concentrate on the 6502 instruction set, paying
special attention to the different addressing modes available for some

instructions.

Firstly we will classify the instructions into functional groups.

CLASSIFICATION OF INSTRUCTIONS

LDA
LDX
LDY
TAX

TAY

ADC

Data Transfer Imstructions

Load Accumulator with Memory STA
Load X Register with Memory STX
Load Y Register with Memory STY
Transfer Accumulator to X TXA
Register ‘
Transfer Accumulator to Y TYA
Register

Store Accumulator in Memory.
Store X in Memory

Store Y Register in Memory
Transfer X Register to
Accumulator ,
Transfer Y Register to

~ AccumuTator

Arithmetic Operation Instructions

Add Memory to Accumulator SBC
with Carry

- 16 -

Subtract Memory from
Accumulator with Borrow

AND
EOR

DEC
DEX
OEY
ASL
ROL

CHp
BIT

BCC
BEQ
BMI
BVC

CLC
CLD
CLI
CLY

JMP
JSR
BRK

PHA
PHP
TXS

NCP

Logic Operation Instructions

AND Memory with Accumulator ORA OR Memory with Accumulator
EXCLUSIYE=OR Memory with .
Accumulator

Shift And Modify Instructions

Decrement Memory by One INC Increment Memory by One
Decrement X Register by One INX Increment X Register by One
Decrement Y Register by One INY Increment Y Register by One.
Shift Left One Bit LSR Shift Right One Bit

Rotate Left One Bit ROR Rotate Right One Bit

Test Instructions

Compare Memory and CPX Compare Memory and X Register
Accumul ator ‘ CPY Compare Memory and Y Register

Test Bits in Memory with
Accumul ator

Branch Instructions

8ranch on Cary Clear BCS 8ranch on Carry Set
Branch on Result Zero BNE Branch on Result Not Zero
Branch on Result Minus BPL Branch on Result plus
Branch on Overflow Clear 8YS Branch on Overflow Set

Modify Processor Status Register Instructions

Clear Carry Flag SEC Set Carry Flag
Clear Decimal Mode SED Set Decimal Mode
Clear Interrupt Flag SEI Set Interrupt Flag

Clear Overflow Flag

Jump Instructions

| Jump to New Location RTS Return from Sub-routine

Jump Sub-routine RTI Return from Interrupt Routine
Jump to Interrupt Routine

Stack Operation Instructioﬁs

Push Accumulator on Stack "PLA Pull Accumulator from Stack
Push P Register on Stack. PLP Pull P Register from Stack
Transfer X Register to Stack TSX Transfer Stack Pointer to X

Pointer Register

Do Nothing Iastruction

No Operation

- 17 -

There are other ways in which we ¢an describe an instruction, for example:

° Mnemonic - LDA

) Logical Expression - M= A

) Operation Code - AD

) Spoken Language - Load the accumulator A with
Statement a data byte from memory M.

INSTRUCTION ADDRESSING MODES

Each instruction also has an Addressing Mode. The 6502 can perform 56
different operations, some of which can be executed in as many as eight
different ways so producing 150 variations.

These addressing modes can be summarised as:

Implied addressing uses a single byte instruction which operates on
registers whose address is implied by the particular OP. Code used.
These registers are those internal to the microprocessor - index
registers, status register, stack pointer and external to the
microprocessor (in memory) - the stack and interrupt vector
locations.

e Immediate
A1l instructions in immediate addressing mode are two bytes long.

The first is the OP. Code and the second specifies a constant or
literal which is to be loaded into an internal register or external

memory location.

) Absolute

You have already met this type of addressing mode. Instructions
require three bytes of which the second two specify the location of
the operand. |

- 18 -

Zero Page

Requires two bytes. Zero page is implied in Op. Code and therefore
not specified implicitly. Only location on zero page is required.

Relative

Requires two bytes. Instructions using this addressing mode are of
the Branch type. They cause the microprocessor to branch to another
part of the user program rather than execute the next instruction in
sequence. The branch is taken upon the result of a test performed
on the condition of flags within the status register. The second
byte specifies the extent of the 'branch' that is the amount of
program displacement and its direction relative to the address of
the Op. Code of the instruction following the branch instruction.

Example:

BRANCH PROGRAM | PROGRAM (BYTES)
VALLUE ADDRESS |1 2
XXXX OP.CODE 04
(XXXX) +2 [next sequential Op. Code
+1 +3 '
+2 +4
+3 +5
+4 ' +6 | Op. code of Instruction
executed if Test demands
a 'branch’,

The 'opranch' illustrated is a 'forward' branch. Reverse branches

can also be made.

- 19 -

Example:

BRANCH PROGRAM | PROGRAM (BYTES)

YALUE ADDRESS |1 2
-4
-3
Y ~2 | Op. Code of Instruction executed
if test demands branch
-3 1 (XXXX) -1
-2 -l XXXX Op. Code FC

{XXXX) +2 | next sequential Op. Code.

Note: Branch relative values are specified in Two's Complement,
thus FC is 'branch back' four places.

If the branch is not taken the next sequential instruction is

executed,

Indexed

The 6502 is equipted with two index register, X and Y. The contents
of an index register is added to a base address specified in the
address field to modify that address.

Example:

PROGRAM PROGRAM (BYTES)
ADDRESS 1 2 3
XXXX Op. Code 60 00

(- ! i

BASE ADDRESS

(0060)+X | DATA

Remenber: -Address low bytes precede'high bytes in address field.

- 20 -

The method of addressing enables data tables to be sequentially
accessed by performing increment (or decrement) operations on the
index registers.

Indirect

The concept of indirect addressing enables the address field
following an Op. Code to specify an address of an address of data.
An example will best indicate:

PROGRAM PROGRAM (BYTES)
ADDRESS 1 2 3
XXXX Op. Code 60 02
0260 80 {1ow byte)

0261 03 (high byte)

0380 DATA

The example indicates a pure indirect address mode and is only
applicable in the 6502 to the JUMP instruction. However, two other
modes of indirect addressing are possible but operating off zero
page only and not an absolute address. -

Indexed X, indirect

This mode adds the contents of the index register X to the zero page
address specified immediately following the Op. Code.

- 2] -

PROGRAM PROGRAM (BYTES)
ADDRESS 1 4 3

XXXX Op. code 60
00(60+X) | 9A (low byte)

00(61+X) | 03 (high byte)

039A DATA

The mode is only applicable to the X-Register and is shown logically
in the instruction set as: (Indirect, X).

Indirect, indexed Y

This mode adds the contents of the index register Y to the data base

address.

Example:

PROGRAM ' PROGRAM (BYTES)

ADDRESS 1 2 3
XXXX Op. code 60

0060 9A (Tow byte)

0061 03 (high byte)

{039A) +Y| DATA

This mode is only applicable to the Y-Register and is shown
logically in the instruction set as {Indirect), Y.

- 20 .

STATUS FLAGS

We mentioned in Chapter 3 that the Status register comprised a number of
flags some of which are set or reset by the result of operations involving
the arithmetic unit. The testing of these flags is an important part of
any programming task. Below is a brief description of each flag:

The Status flags are:

@ N

B
D
=) I
e JA
@ C

set if the most recent operation performed in the
arithmetic unit gave a negative result.

this flag indicates when the 7-bit result of a signed
nurber arithmetic operation overfiows.

this is a break command flag. It is set by the
microprocessor when an interrupt is caused by a break

command.

when this flag is set any arithmetic operations will be
performed in binary coded decimal. With this flag
cleared the arithmetic unit operates in true binary

is the interrupt disable flag. When this flag is set
the IRQ input will not interrupt the microprocessor.

set if the operation in the arithmetic unit gave a zero

resul £.

is a carry input to the arithmetic unit. If set, it
will apply a '1' to the least significant bit of the
arithmetic operation. An overfiow from an 8-Hit
arithmetic operation sets the carry flag.

- 23 =

A PROGRAMHING MODEL

Finally we present a programming nmodel of all the internal registers of
the microprocessor. '

B 807
A ACCUMULATOR

7 0
Y INDEX REGISTER Y
X INDEX REGISTER X

ts] 9
PCH pCL PROGRAM COUNTER
C1 S STACK POINTER:

NV BID{I|Z}C PROCESSOR STATUS REGISTER, "P"

. CARRY

besneee ZERO

INTERRUPT DISABLE

DECIMAL MODE

BREAK COMMAND

FORTHCOMING FEATURE

QVERFLOW

' NEGATIVE

- 2% -

QUESTIONS
1. How many bytes does a zero page instruction require.
2. How many bytes does an absolute instruction require.

3. Use the manufacturer's instruction set {see Appendix7) to obtain the
hexadecimal codes for the following instructione:

(a) LDA Zero Page
(b) STA fMbsolute
(¢) STX Msolute
{d) BEQ

(e} ADC AMbsolute, X

4. If there is a branch instruction at 0030 what data must be
inserted at 0031 to cause the program to jump to:

(a) 0040
(b} 0020
if the branch is taken.

5. What is the function of the following page in the status register.

- 25 -

HRITING A PROGRAR _ CHAPTER 3.4

OBJECTIVES OF VYH1IS CHAPTER
Having studied this chapter you should:

Be able to write a simple program for the EMBMA
microcomputer to transfer a plock of data from one area of memory to

another.

Understand the concept of indexed addreessing and its uses.

@ e able to calculate the data for positive and negative! relative

branch instructions.
INTRUDUCT ION

We will now construct a few programs which will use the more commonly used
instructions and addressing modes.

The object of a program is to perform a task. A good programmer will
attempt to write his program so that not only is the task performed but
that it is done efficiently '1’n terms of program execution time and memory
requirement. He will also keep in mind the structure of the program so
that program testing is more easily carried out. Finally he will maintain
good documentation in terms of flow-charts and annotated programs which
make for easier future wodification.

We will now construct a series of simple programs. ror eaci we will:

) state the task
consiruct the flow-chart

8 write the program

OQur first program will use jus*l: three instructions: - LUAL STA and Jmp

- 26 -

PROGRAM - DATA MOVE
© TASK

Move a single byte of data from memory location 0080 to memory
lTocation 0280. Logically:

(0080) =esis 0280

NMote: the brackets mean "the contents of".

@ FLOW~CHART

INPUT
DATA
FROM 0080
OUTPUT
DATA
TO 0280

.MWFEKESH -~

@ PROGRAM
This demands three basic operations to effect the transfer of data.

1. LOAD data into accumuiator fr'om memory
- {0080) = A

2. STORE data in accumutator in memory
(A) et 0280

3. TERMINATE program.

- 27 -

We will now look at each of these steps in turn:

1. The data is on ZERO PAGE.
00 80
Page Location

Now ask yourself if a LOAD instruction is available which
operates directly on Zero Page (Consult Instruction Set -
Appendix).

The Instruction Set should reveal the following:

Addressing Mode - Zero Page
Mnemonic - LDA

Op. Code - Ab

Number of Bytes - 2

We can write the instruction in eithevr:

o Symbolic Machine Code -

OPERATION OPERAND
{Mnemonic) (Address)

LDA 80

where 80 is the Zero Page memory location.

° Hexadecimal Machine (Code -

OP. CODE OPERAND
{Hexadecimal) (Address)

A5 ' 80

- 78 -

2. Now Tet's look for a STROBE instruction.

The Instruction Set will reveal:

Addressing Mode - fbsolute
Mnemonic - STA

Op. Code - 8D
Number of Bytes - 3

We cannot use zero page addressing mode since the data is stored

on page 02.
Again we can write the instruction in two ways.

e Symbolic Machine Code -

OPERATION
{MNEMONIC)

OPERAND

(ADDRESS HIGH BYTE)

(ADDRESS LOW BYTE)

STA 02 80
e Hexadecimal Machine Code -
OPERATION OPERRAND
(ADDRESS LOW BYTE) (ADDRESS HIGH BYTE)
80 80 02

Hote the way the operand has been written. When writing -
addresses it is normal to write HIGH BYTE followed by LOW BYTE. However,

we Enter the Hexadecimal Codes into the machine (6502)
LOW BYTE first. If you follow this practice when using the Standard
Programming Form you are Tess likely to make mistakes when entering

your program using the hexadecimal keyboard.

- 29 -

Now let's look at terminating the Program. If you scan the Instruction
Set you will not find an instruction which you can use directly for this
purpose. The 6502 Instruction Set does not have an instruction such as
Stop, Halt or indeed Finish.

First let's consider what would happen if we did not bother, after all our
two instructions will effectively complete the task! Unless we tell the
machine to stop processing when the transfer is complete it will continue
to fetch, sequentially, data from memory. Unfortunately, this may be
either another program or, as is more likely, rubbish (the memories will
always have something in them; they cannot be 'empty').

A simple way round the probiem is to cause the machine to enter a 'program
Toop' out of which it can only get by the user pressing the RESET

pushbutton. A JUMP instruction will do this:

The Instruction Set shows:'

Addressing Mode - _Pbsolute
Mnemonic - JMP

Op. Code - ac
Number of Bytes - 3

We will use this instruction to jump back to itself.

Example:

JUMP

10
JUmMP

- 30 -

Using Machine Code -

OPERATION QPERAND
(Mnemonic) (Address)
JHP TERMINATE

In the Operand field we have used a Label We can do this using symbolic
notation. The label stands in place of a Program Address. We cannot
enter the program address that we wish to Jjump back to because we have not
yet allocated memory space for our program.

It is worthwhile mentioning here that the programmer invents his own labels
for programming convenience. However, a simple guide to labelling is BO NOT

use Tabels that look like or contain Operaation Code lnemomics.

We can now collate our instructions and enter them on a programming sheet.

Example:

-HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTION

ADDR 1 2 3 LABEL MMEM OPERAND GOMMENTS

0200 A5 80 LDA 80
0202 8D 80 02 STA 02 80
0205 4C 05 02 TERM JMP TERM

You will notice that we have assigned memory addresses (shown shaded) to our
program. This has also enabled us to assign a program address to the label

TERM.

- 31 -

One final comment regarding the sequence in which the programming would
normaily be done.

) Construct Flow Chart. Annotate.

) Write the Symbolic Assembler Instruction,
using labels if necessary. Annotate.

Encode the hexadecimal machine code program.

) Assign memory space to program and any associated data.
e Assign addresses to any labels used.
@ EXERCISE 3.4.1

Enter the program in EMMA and execute. Do not forget to enter appropriate
data in memory locations 008C and 0280. If you have any doubts regarding
program entry procedure, go back and study Chapter 3.2 again.

PROGRAM - DATA BLOCK MOVE, MK1

& TASK - Move a block of data bytes from and to the
memory locations shown helow:

MEMORY ADDRESS MEMORY ADDRESS
FROM DATA T0

0020 01 02F0

0021 02 02F 1

0022 03 02F2

0023 .04 02F3

0024 05 02F4

Logically: (0020 - ‘0024) e 02F0 - 02F4

- 32 .

@ FLOW-CHART

INPUT 1ST
BYTE

|

1

QUTPUT
CURRENT
BYTE

INPUT
NEXT
BYTE

) PROGRAM ~ The same three basic instructions are required as for
Program 1, except that we now require to Test to see if the
last byte moved was in fact the last byte in the data block. It is
this part of the program that we shall concern ourselves with.

What we require is some mechanism for counting the bytes transferred.
A convenient way of doing this is by using the X-register, setting
it to zero and then incrementing by one each time a byte is
transferred. If we compare the X-register contents with the numnber
of bytes to be transferred, and use this test to determine whether to
terminate the program or input another byte, we will have achieved

our objective.

We will redraw our flow-chart to help us decide what instructions to

use.

- 33 -

SET
X-REGISTER
TO ZEROD

INPUT 1ST
BYTE

!

%

QuUTPUT
CURRENT
BYTE

INCREMENT
{-REGISTER

V.

COMPARE
{X) with 05

_TERO YES

[NO

,mh?iﬁf§EMﬁ

INPUT
NEXT
- BYTE

- 34 -

Now to find suitable instructions.'

® Set X-register to zero.
LDX# 00 (Immediate)
o Increment X-register
INX {Implied)
o Compare X-register contents with 05
CPX# 05 (Immediate)
® Branch if zero flag set
BEQ BRANCH OFFSET {(Relative)
o Input data
LDA OPER, X (Zero page Indexed)
o Output Data
STA OPER, X (Absolute Indexed)

The LDA and STA instructions are INDEXED by value in X-register. The
difference between the 2-byte and the 3-byte instructions is that data to be
transferred is on ZERO PAGE. A zero page instruction can be used.

We will now collate these instructions and other§ necessary to complete our
task.

SYMBOLIC ASSEMBLER INSTRUCTIONS
LABEL MNEM OPERAND COMMENTS
-LDX# 0 Set byte count
: LDA 20,X : 20 is location of lst byte
TRANS STA 02 FO,X Byte Transfer ‘
INX Increment byte count
CPXi# 05 Bytes _
BEQ ' FIN Transferred?
LDA 20,X Next byte
: JMP TRANS Go to TRANS
FIN JMP FIN END of PROGRAM

- 35 -

We will now encode these into hexadecimal machine code and enter on a coding
sheet. We will also assign our program to memory space 0200 onwards.

PROGRAMMER: USER PROGRAM TITLE: DATA BLOCK MOVE, MK1

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR I 2 3 LABEL MNEM OPERAND COMMENTS

0020 01 ”

0021 02

0022 03 —

0023 04 Data to be transferred

0024 05 .

0200 A2 00 LDX# 00 Initialise Data Table
pointer

0202 B5 20 L.DA 20, X

0204 9 FO 02 TRANS STA 02 FO,X

0207 E8 INX Move up data table

0208 EO 05 : CPX# 05 table end?

020A FO 05 BEQ FIN

021C B85 20 LDA 20,X Get next Byte

021E ac 04 Q2 JMP TRANS Go to transfer next byte

0221 4 21 02 FIN JMP FIN Terminate

02F0 |] |

02F1 Memory space

02F2 ' — Reserved for Transferred Data.

02F3 ‘

02F4 ' J

LABELS

0204 assigned to TRANS
0221 assigned to FIN

- 36 -

® EXERCISE 3.4.2

Enter the program and associated data and prove program performs required
task.

REVIEW

We have now used the following addressing modes:

o Immediate
® Zero page
o Zero page, Indexed

e Arsolute
o Msolute, Indexed
® Impl ied

® Relative

We have also used the following classifications of instructions:

o Data Transfer L.DA
o Shift and Modify INX
° Test Instructions CMP
® Branch Instructions BEQ
® Jump Instructions JMP

You should now aim to check all the'coding we have used and thoroughly
understand the addressing modes and why we used them before going any
further.,

PROGRAM - DATA BLOCK MOVE, MKII
Both the task and initial flow-chart are the same as for Programs

.= Data Block Move, MKI. The difference is in the vay we
implement the 'Al1 Bytes Moved?' part of the program.

« 37 -

Consider:

DECREMENT
K-REGISTER

You should notice that there is no compare instruction. 1o implement this
we will load the X-register so that the last data byte is transferred first
and then descend the table by decrementing the X-register. A disassenbled
listing of the required modifications compared to the original fis:

ORIGINAL PROGRAM | HODIFIED PROGRAM
LOX# 00 LDX# 05
NG DEX

CEX# Ob

BEQ FIN - BEQ FIN

L

You will notice that the compare instruction has been made redundant making
the program more efficient - less time to execute! less program storage

space required.

- 38 -

EXERCISE 3.4.3

Re-write completely: Program - Data Block Move, MKI, incorporating the
modi fications of:
Program - Data Block Move, MKII,
Encode the program load EMMA and RUN.

The technique used above is a very useful one for sequentially accessing
data tables.

@ EXERCISE 3.4.4

Modify: Program - Data Block Move, MKII, to extend the length of the data
table to 10 items.

PROGRAM - DATA BLOCK MOVE, MKIII.

We can further modify our Data Block Move Program to make it even more

efficient. Here is a listing.

LDX# 05
NEXT LDA 20,X

STA 02F0,X

DEX

TXA NEXT
FIN JMP FIN

The program is based upon the original data tabie of 5 items.
Two important points should be observed:

® The branch is now backwards not forwards.
This has enabled us to remove the 'jump back for the
next byte' instruction.

o The LDA 20,X instruction at 021B could have been

redundant if instead of Jjumping back to 0204 we had
gone further to 0202.

- 39 -

Having written a program it does pay to check
for redundant instructions or more efficient

ways of implementation.

Before asking you to encode these Tatest modifications Tet us refresh your
memory on relative branching. The retative branch is specified as a Two's
Complement hexadecimal nunber and hence a sign is incorporated:

] Megative sign - Branch back
Positive sign - B8ranch forward.

We need to branch back relative to the current contents of the program
counter after the relative branch has been fetched. For our present program
this would mean branching back eight places. Now -8 (Decimal) is equal to
F8 (HEX) therefore the branch instruction should be BEQ F8.

EXERCISE 3.4.5

Encode the program: Data Block Move, MKIII
Load EMMA and RUN. Check!!

In our next chapter we will Took at a few more programming techniques.

- 40 -

QUESTIONS

l. The contents of which memory location are loaded into the accumulator
by the instruction LDA 20, X if the X register = 87

2. What is the Tocation of the next instruction to be executed if the
following branch instruction is taken.

Address
0210 BEQ F3
0212
._3. What is meant by:
| (0220 ~ 0224) - 0300 - 0304

4, If the data asssociated with a branch instruction is negative, is the
branch forwards or backwards.

5. What is the hexadecimal equivalent of 10 {(decimal)}?

- 41 -

ARITHMETIC INSTRUCTIONS CHAAPTER 3.5

ORBJECTIVES OF THIS CHAPTER
Having studied this chapter you should:

=) Understand the arithmetic instruction available on the 6502

microcomputer.

Be able to write programs to perform addition or subtraction in

binary or decimal wodes.

Ce able to write programs to perform double precision addition or

subtraction in binary or decimal rodes..

IRTRODUCTION

In the previous chapter we introduced you to a few programming instructions
and most of the addressing modes. We also devised a program to sequentially
access a data table. We are now going to extend our knowledge by looking at

a few more operations and programming techniques.

ARITHHETIC OPERATIONS

The 6502 has two arithmetic operation instructions - Add with carry, ADC and
Subtract with carry, SBC. However, it can peform it's arithmetic operations
in Binary Coded Decimal (BCD) or in true Binary. The actual method used is

determined by the D-Flag in the status register:

® 0 - Set (made equal to 'L') then B,C,D.
@ D - Reset {made equal to 'C') then True Binary

- 47 -

de must also take account of the Carry Flag. When performing
single precision arithmetic operations:

e Addition - Reset Carry Flag
o Subtraction - Set Carry Flag

We will discuss the reasons for this later.

SINGLE PRECISION ADDITIOH

® TASK

Add +9{Base 10) to +15(Base 10) and express result in 8.C.D.

@ FLOW CHART
TAKE

ADD
B

|

DISPLAY
RESULT

@ PROGRAM

a) Instruction selection.

The instruction we are looking for is an ADD. The one we have

available is the ADD with CARRY (ADC). Since we are performing
single precision arithmetic we must CLEAR (reset) the carry flag.

- 43 -

required to SET the decimal mode flag. We must instruct the
microprocessor to perform these operations BEFORE the actual

arithmetic takes place.

How: SED Set decimal mode
CLC Clear carry flag

You will notice that neither of these two operations are suggested by
the flow-chart. We constructed the flow-chart in a general way
and hence applicable to any machine. We could have written it

at a different Tevel and made it particular to the 6502 in which case

we would have included them.

A second point to notice is the order in which these two
instructions have been written - it is wise to set/clear flags
required for a particular operation immediately prior to carrying

out the operation.

Now Tet's carry on to do the arithmetic:

LDA A LOAD A into Accumulator
~ADC B ADD B to Accumulator
STA M STORE A + B in memory M

We will terminate our program at this stage rather than display

resytt.

JHP FINISH

We will now allocate memory space to our program and associated

data:

Program - start at location 0200

Data - A in location 0050
B in location 0051
M in Tocation 0052

Now tet's transfer all this to a Standard Programming Form.
- 44 -

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR i 2 3 LABEL MNEM OPERAND COMMENTS

0200 SED
CLe
LDA A
ADC B
STA M

FINISH JMP FINISH

0050 A
0051
0052 M

You will notice that we have not committed ourselves to any particular
addressing mode and that we have made extensive use of labels. In the
second stage which follows we select our addressing modes:

b) Addressing Modes

MNEMONIC COMMENTS ADDRESS MODE
SED Only one mode available IMPLIED
CLC
LDA Eight modes available but since data (A)

is on zero page and no indexing required. ZERO PAGE
ADC As for LDA ZERO PAGE
STA Similar comments to LDA . ZERO PAGE
JMP . No requirement for indirect addressing ABSOLUTE

- 45 -

c) Instruction Code Allocation

We will allocate our codes and enter, for purposes of clarity only,
on another programming sheet.

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0200 8 SED
18 cLC
A5 50 LA A
65 51 CADC B
85 62 STA M
ac j FINISH JMP FINISH
0050 A
0051

0052 M

d) Program Address and Label Allocation

This is the final stage and again for clarity we use a separate
program sheet.

HEXADEC IMAL ‘ SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR i 2 3 LABEL MNEM OPERAND COMMENT S

0200 F8 SED

0201 18 cLC

0202 A5 50 LDA 10050

0204 65 51 ADC 0051

0206 85 52 STA 0052

0208 4 08 02 ' JMP 0208

0050 09

0051 15 .
0052 * * Result (24) in BCD

o 46 -

We have used three separate programming sheets to complete our program. In
practice we would forget the first stage and combine stages b), ¢) and d).

@ EXERCISE 3.5.1.

Enter the program and RUN. Inspect memory location 0052
and CHECK result.

Our task 1s only partly complete since we set out to DISPLAY the result and
not just leave it in a memory location. So, Tet's complete our Task:

The EMMA Monitor Program has a part program built into it which will
display the contents of the accumulator. Such programs we refer to as
Subroutines. All we need to do is to specify the start address of
appropriate subroutines. " These are:

o FE60 - this converts the contents of the
accumulator into seven segment codes.

° FEOC - this displays the converted contents
' of the accumulator on the two-most right hand
seven segment displays on the EMMA
keyboard/display unit.

We will discuss the finer details of subroutines later; 1let's just use the
facility to complete our task.

Since the subroutines display the contents of the accumulator we can delete
the STA 0052 instruction and modify our program accordingly also calling
for our subroutines:

- 47 -

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR 1 2 3 LABEL MNEM OPERAND. COMMENTS
0200 F8 SED
0201 18 CLC
2. AE 50 ‘ LDA 0050
4 65 51 ADC 0051
) 20 60 FE JSR FEBD Convert subroutine
9 20 0C FE JSR FEOC Display subroutine
0050 09
0051 15

You should notice that we have deleted:

The STA instruction and its associate memory location.
If we had wished to save the result as well as display it
we would have left both these.

We have deleted the program 'terminate' instruction. We do not
need this since the display suwb-routine (FEOC) continudusly 1o0ps
back upon itself to 'refresh' the display. To get out of this loop
you will have to'press the machine Reset

o= 48 -

] EXERCISE 3.5.2

Experiment by changing the two numbers to be added together. Remember you
are in Decimal Mode.

EXERCISE 3.5.3

Modify the program to clear the decimal mode flag and again experiment
with various numbers. Remerber the numbers will now be entered and
displayed in hexadecimal.

EXERCISE 3.5.4

What is the maximum result in both modes above that-can be displayed

without error?

@ EXERCISE 3.5.5.

Modify the program to perform single precision subtraction of two
nurbers.

You should have discovered that relatively small numbers only can be
handled in single precision arithmetic. If larger numbers are to be
manipulated we use multiple precision, that is, we use two or more bytes
to represent our number.

MULTIPLE PRECISION ADDITION

TASK

Add +782(Base 10} to 324(Base 10) and display result in B.C.D.

- 49 -

FLOW CHART

An identical flow-chart to that drawn for Single Precision Addition could

he used. However, we will enlarge on this:

SET
DECIMAL MODE
AND
CLEAR CARRY
% | TAKE
TAKE A
A (HIGH BYTE)
(LOW BYTE) ?
[o
A (HIGH BYTE)
ADD TO
A (LOW BYTE) B (HIGH BYTE)
70 |
B (LOW BYTE) %
% ~ STORE
STORE ?ﬁSELT
RESULT HB
IN M g %
DISPLAY SUB~ROUTINE
M, g e
AND CALL
MuB |

- 50 -

We will now write out the complete program:

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS
ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS
0200 F8 SED
0201 18 cLC
0202 A5 50 LDA 0050 (ALB)
0204 65 52 ADC 0052 (BLB)
0206 85 54 STA 0054 ML3
0208 A5 51 LDA 0051 (AHB)
020A . 65 53 ADC 0053 (BHB)
020C 85 55 STA 0055 MHB
020E A2 54 LDX# 54 INDEX for result
Base Address {Low Byte)
0210 20 64 FE JSR FE64 Convert subroutine
0213 20 OC FE JSR FEOC Display sibroutine
0050 82 ALB
0051 07 0782 AHB
0052 24 BLB
0053 03 0324 BHB
0054 RESULT L8
0055 RESULT HB

You should notice the following points:

@

The addition has been performed in two parts -

Tow bytes followed by high bytes

The results are displtayed from memory locations
(0000+X) and (0000+X+1), low byte and high byte
respectively.

- Bl =

@

The seven segment display subroutine is different to that used in
previous exercises which displayed the accumulator contents.

The program clears the carry for the lTow byte aadition but not for
the high byte addition. Cbviously any carry that is produced
resulting from the low byte addition must be added in when the high

byte addition is performed.

The answer is presented prefaced by a . The seven segment code for
. is stored in 0010 and is not cleared by either of the subroutines.
You may like to try inserting the two instructions as shown below:

STA 0055
LDA# 00
STA 10

LDA# 54

— insertion

This modification will delete the . by storing 00 in location 0010.

Alternatively, the code ED will display S {for SUM}. Details of the

seven segment codes are to be found in Appendix 3.

You will find more details regarding these sub-routines in Appendix 3
and details of the coding required for the seven segment display in
the Emma User Manual

EXERCISE 3.5.6

Re-write the program to perform a Double Precision subtraction.

EXERCISE 3.5.7

What are the largest results that can be obtained without error?

- 52 -

QUESTIONS

Use the programs we have written in this chapter to perform the following
calculations.
1. 48(Base 16) 16{Base 16)
2. 46(Base 16) 54(Base 16)
3. 47(Base 16) 20{Base 16)

4. 99(Base 10) 43{(Base 10)

5. 3459(Base 10) 1078(Baase 10)

-~ 53 -

LOGICAL OPERATIONS CHAPTER 3.6

OBJECTIYES OF THIS CHAPTER
Having studied this chapter you should:

& Understand the logical operations available for the 6502

microprocessor.

Be able to perform AND OR and exclusive OR operations on two &it

binary nurbers.

LOGICAL OPERATIOHNS

Logical operations can be demonstrated by means of a Truth Table. A truth
table can be defined as a 1ist of all the possible input combinations and the
resul ting output for each combination. For examwple, the truth table for a
logical AND on two 1-bit inputs would be:

INPUT | OUTPUT
A B Z
0 0 0
0 1 0
1 0 0
1 1 H

The 6502 will perform this operation on ftwo-8-bit inputs. It will also
perform an OR-operation and an Exclusive OR. The truth tables are

~below:

OR:

THPUT JOUTPUT
A B Z
0 0 0
0 1 1
1 0 1
1 1 1

EXCLUSIVE OR:

INPUT OUTPUT
A B Z
U 0 0
0 1 1
1 0 1
1 1 Q

We will now demonstrate how these logical functions are performed.

LOGICAL AND

One of the most useful functions of the AND instruction is to 'mask out'
setected bits of a byte. For example, let's assume that we wish to zero the
four most significant bits of the byte 1011 1010 and leave the result in the
accumulator. Clearly the result we would expect is 0000 1010.

The AND dinstruction is symbolised by:

AN M — A

where //\\ means 'logical AND'.

- 5% -

The following program will illustrate:

LDA# 1011 1010
AND# 0000 1111

clear M.S. Nibble

JSR FE6O
JSR FEUC

Display Subroutine

EXERCISE 3.6.1

Encode the two binary numbers (into hexadecimal). Use a coding sheet and
complete the program for loading into EWMMA. Note we have used immediate

addressing for LDA and AND as signified by #.

LOGICAL OR

The logical OR allows us to set particular Dits within a byte without
changing any of the others bits.

The OK instruction is symbolised by:

AV M — A

where \/ means ‘logical OR'. ’
Suppose we wish to SET bit 7 of the byte 0101 1010 without changing bits 0O

--- 6. The following program will illustrate:

LDA# 0101 1010
OKRA# 100U 0000

Set bit 7

JSR FEOU

Display sub-routine
JSKR FEQOC .

@ EXERCISE 3.6.2

Encode bytes to be' OR'ed and complete Program and test.

- 56 -

LOGICAL EXCLUSIVE OR

The logical Exclusive OR can be used to compare bits or to compl ement

bits.

The Exclusive OR is symbolised by:
AN M — A

where ;Y?g means ‘logical Exclusive OR'.

The following programs will illustrate:

LDA# 1010 0111 Gompl ement
EOR# 1111 1111 :
JSR FEBO
JSR FEOC

Display suw-routine

LUA# 1010 0111
EOR# 1010 0111

Compare

ISR FE6O
JSR FEQC

Display suw -routine

When using the EOR to compare two bytes the Z flag can be tested to decide
result. Example

1]

Z flag 1 for NON Comparison

0 for COMPARISON.

L flag

- 57 -

QUESTIONS

Given the following binary nurbers

=
i

Per form the

1. A
2. A
3. D
4. €

1111 0oo0
0iul 1100
0000 0110
1111 1111

following logical operations

- 58 -

SUBROUT IHES CHAPTER 3.7

OBJECTIVES OF THIS CHAPTER
Having studied this chapter you should:

® Understand the use of subroutines as an aid to programming.

Be aware that it may be necessary to save certain registers before
calling a suwroutine. '

SUB=-ROUT IRES

We have already used sub-routines to encode a byte into a seven-segment
display code and actually illuminate the display. These sub-routines
proved rather useful and were built into the EMHMA Momnitor. By
'‘calling' for thesel much program writing time was saved.

~ A stb-routine is therefore a short program which performs a specific
function and one that we may wish to use many times during a program run.
Schematically our subroutine can be seen as below.

MAIN
PROGRAM

JOR

SUG
ROUTINE

RTS

A SUBROUTINE CALL

. 59 -

A 'swb-routine is initiated by the instruction Jump to Sub-routine
{dSR). which effectively interupts the main program and saves the address
to which the microprocessor should return after the sth-routine.

To return from the subroutine a Return from Sub-Routine {RTS) must be
used.

The advantages of suw -routine are that since the same routine can be called
numerous times during the execution of a main program a significant saving
in memory can be realised. Also the sb-routine can form a part of a
Tibrary of such routines which a program designer can integrate into his
program. thus saving considerably on design time.

Sub -routine can also be 'called' within Sw-routine; the diagram

illustrates:

1ST

ZND

 MAIN

 PROGRAM
} \%\\\

\‘x

3RD

NESTED SUBROUTINE CALLS

There are precautions that we need to take when implementing Sub-routine
calls. ror example. the sub-routinebeing called may use some.of the
microprocessor special purpose registers such as the Index Registers (X and
Y) and alter the Status register. If the program originating the sub-
routine call is also using these then their contents must be saved before
actually calling the sw-routine.The contents of affected registers could
be stored in some memory. but speciallinstructions are avaitable to 'push'
the contents of these registers onto the Stack and retrieve them by
‘putling' from the stack upon completion of the sub-routine

S - 60 -

Schematically this can be illustrated as below:

. MAIN PROGRAM

CONTENTS OF REGISTER
WHICH MAY BE REQUIRED

¢ DURING EXECUTION OF SUB-
ROUTINE SAVED BY 'PUSHING'
TO STACK.

— SUB-ROUTINE CALL

__ SUB-ROUTINE EXECUTED
/

Cl

, MAIN PROGRAM RETURN
RTS ADDRESS AUTOMATICALLY
: "PULLED' FROM STACK

CONTENTS OF REGISTERS
SAVED RESTORED BY PULLING
FROM STACK

CONTINUE MAIN
PROGRAM

In the next chapter we will consider the stack in more detail.

QUESTIONS

1. What is the JSR instruction used for?

2. What is the RTS instruction used for?

3. What is the hex code for:

(a) JSR

(b) RTS

- 62 =

STACK PROCESSING . CHAPTER 3.8

OBJECTIVES OF THIS CHAPTER
having studied this chapter you should:
@ Under stand the data storage facility provided by the stack.

& Understand the use of the stack pointer.

STACK PROCESSInG

AlT the programs so far written have used known memory locations. You may
also have noticed that page 0l has been avoided although: in fact:. it has
bDeen used automaticaily when sub-routines have been called. Why avoid page
01?7 Well. page 01 is dedicated to what is known as the Stack and associated
with it is a special purpose registm*ca]led‘thé Stack Pointer.

ihe faciiity provided by the stack allows the storage of data in memory where
the precise memory location is not known. What will pe known. however. is
the order in which the data has been stored. This type of programming is
termed re-entrant coding and is often used in servicing interrupts.

The stack pointer is used by the program to access data placed on the stack.
It usés the push down stack concept:! that is the last data put on the stack
is the first taken off. The data is always stored in sequential locations
and the stack pointer is always pointing towards the next ‘empty' memory
location. In recalling data from the stack: the stack pointer is simply
incremented repeatedly and automatically.

- 63—

In the 6502 microprocessor chip as used in EMMA, the stack pointer

is an 8-bit register with the most significant address byte set at 0l. Thus
the stack uses page Ol, with the stack pointer resetting to FF. The method
allows the whole of page 01 to form a stack of 256 locations.

Various instructions use the stack, such as JSR - Jump to Sub-Routine.

When a JSR is implemented, the return address in the main program is stored
on the stack and the start address of the sub-routine written into the
program control counter, for example:

Program Control Counter Memory Contents

0300 JSR Op. Code
0301 207" Sub-Routine
0302 Oo}iat 0020
0303 XX

Stack Pointer Stack Contents
OiFF 03 | Return address
OIFE 02} 0302
OLlFD XX

The JSR instruction takes 6 machine cycles. During the return from sub-
routine instruction, the program counter has restored to it 0302 and is then
incremented to 0303 before the return from sub-routine is completed.

Other instructions which involve the stack allow the programmer to push the
accumulator (or Status Register) on to, or pull from, the stack, or transfer
data between X-Register and stack or stack and X-Register.

The instructions allow temporary storage of data before servicing a jump to
sub-routine or interrupt service routine.

Note: the status register is automatically saved on the stack when
servicing an interrupt.{a point covered in the next section
on interrupts) but not when implementing a Jump to Sub-routine.

- 64 -

@ EXERCISE 3.8.1

Write a program which will load the accumulator with BO(HEX): load X-register
with 60(HEX) transfer X-Reg to Stack Pointer and then ‘push’' the accumulator
and 'transfer' the X-register to the Stack. Terminate your program. Reset
and examine the contents of 0160 amd 015F. Are they what you would expect?

@ EXERCISE 3.8.2

Extend your program to change the contents of the various registers (for
verification purposes) and then restore the original values by pulling the

stack. How can you examine these registers to verify that the stack has
indeed been ‘pulled'?

QUESTIONS
1. How many memory iocations are available on the stack?
2. What is the stack pointer?

3. Examine the 6502 manufacturer's instruction set and determine the
instructions which:

(a) Are used for 'pushing' data on to the stack.

(b) Are used for ‘pulling’ data from the stack.

- 65 -

SOFTHARE TIME DELAYS CHAPTER 3.9

OBJECTIVES OF THIS CHAPTER

Having studied this chapter you should;

Understand how to use instructions to "waste time" within the

program.

= Be able to write a program for a single or double nested loop time

delay.

SOFTHARE TIME DELAYS

Time delays can be implemented by means of software (programs) or hardware
(integrated circuits). Frequently we require the microprocessor to output
signals at precise intervals of time and this will invariably mean that
'time' has to be wasted by the microprocessor. We will explore a technique
which we will be using a 1ot in future chapters, that is, the 'Time Waste

Routine'.

Let us consider the flow chart given overleaf:

- 66 -

Time waste toutine Flow Chart:
FROM MAIN PROGRAM

i

LOAD
X-REGISTER
TIME WASTES

YES
CONTINUE MAIN PROGRAM

The maximum value of time waste that we can obtain with this particular flow-
chart is proportional to the maximum value that can be stored in the

8-bit x-register. This value is of course FF(HEX). (Actually OO(HEX) is the
maximum value: since the 1st DEC will cause X-Reg. contents to be FF(HEX).

A suitable program coding would be:

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDK 3 2 3 LABEL MNEM OPERAND COMMENT S

AZ FF LDX# FF
CA LooP DEX
PO rD BNE L.0oP

We can also determine the exact time that this program will take from the
time we start to execute the first instruction to the instant the last
instruction is executed. We obtain the individual times for the execution
of each instruction from the instruction set. If you care to check you
will find these to be:

Instruction No. of Cycles
LDX# 2
DEX 2 |
BNE 2 {or 3 if branch occurs to same page and is taken).

you will notice that we have quoted 'No. of cycles’. These refer to the
number of 'clock' cycles taken by the microprocessor. Mow:. since the
EMMA uses a 1 MegaHertz (MHz) clock frequency. the cycle or periodic time
will be 1/frequency. that is one cycle is equivalent to one micro-second (

pmS).
We can now compute the time taken:
Instruction Time (uS)
LOX# 2
Program executed DEX 1275 2 Branch taken
when taking ioop | BNE 3 255 times
DEX Z last time through
BNE 2
Total Time Taken 1281 ﬁ;Sec
Cor 1,281 milli-sec {(m$)

Longer times can be achieved by means of 'nested loops'. The flow chart
for a douwle nested Toop time waste is given overieaf:

- 68 - -

FROM MAIN PROGRAM

i

LOAD
MEMORY

CONTINVE MAIN PROGRAM

- HY -

You may notice that instead of using the X-Register we have used memory
locations. You will find instructions that will pertorm these decrement of

memory .

EXERCISE 3.9.1.

a) Study carefully the flow-chart for the doudle nested loop and wite a
suitable program.

b) Analyse your program and determine the maximum and minimum time delay
that your program will permit.

In our next chapter we are going to investigate the 1/0 Ports in some
detail’. FHowever. before we do this we will give you a simple routine
without explanation that will enable us to demonstrate our time waste

routines.

What we are going to do is cause a 1ight emitting diode (LED) to flash at a
regular rate and as determined by the time waste. We will need to connect

to the I/0 port 4-mm terminals marked PAO - PA7 and down the lett-hand side
of the EM#MA microcomputer: the I/U Port Monitor. The connections required
are as below:

@) OPAo

CONNECT
! 186G

I/0 MONITOR EMMA

- 0 -

Apart from making sure you have connected a supply {(link across from
EMMA) to the I/0 Port Monitor you need only to make the single
connection shown between PA7 (EMwA) and D7 (I/0 Port Monitor). You will
also have to make sure you have put the I/0 Port bonitor READ/WRITE slide
switch into the READ position.

Now load the foilowing program and RUN:

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR 1 2 3 LABEL MNEM OPERAND COMMENT S

0200 A9 FF LDA# FF

0202 8D 03 09 STA PA DDR Port

0205 A9 00 LDA# 00 Initialisation and
0207 8 0l 09 STA PA DR incrementation’.
020A EE 0l 09 NEXY INC PA DR

020D A2 FF : - LDX# Fr

020r CA Loop DEX ~F . Time waste'

0216 L0 FD _ BNE Loop

0212 4C OA 02 JMP NEXT Repeat Port Inc.

You need not worry about the Initialisation part of the program. we will
return to this later. What you should be aware of is that by altering the
value placed in location 020E (shown shaded). the rate at which the LED
flashes can be changed. Exampie:Change FF to 50. Does the flashing rate
increase? |

-7 -

It is interesting to note that we can re-arrange this program to appear
as a Main Program and the time waste as a Sub-Routine, Example:

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0020 A2 FF LDX# FF Time waste
0022 CA LOOP DEX

0023 DO FD BNE LOOP Sub ~Routine
0025 60 RTS

0200 A9 FF LDA# FF]

0202 8 03 09 STA PA DDR

0205 A9 00 LDA# 00 Main Program
0207 80 01 09 STA PA DR |-

020A EE 01 09 INC PA DR

0200 20 20 00 JSR 0020

0210 4 OA 02 Jmp 0204

You will notice that the Time Delay Sub-Routine has been put onto zero
page with the Main Program still on page 02.

& EXERCISE 3.9.2.

Assuming you did program a double nested time waste routine; use this as
a su-routine to replace the time waste in the program above.

You may have already noticed that the time delays obtained at PA7 are
considerab]y more than those calculated. If you move the connection from
PA7 to PA6 you will find that the frequency has increased, in fact it has
doubled. The time delays calculated were for the periodic time at PAO. e
will come back to this in Chapter 3.11 when we will be making accurate
measurements using the I/0 Ports and an oscilloscope.

- 72 -

QUESTIONS

1. How many machine cycles are required to execute the instruction LDA
absolute?

2. Calculate the time taken to execute the follwoing program:

LDA# 65
STA 20
DEC- 20
BNE FC

- 73 -

INTERRUPITS CHAPTER 3.10

OBJECTIVES OF THIS CHAPTER
Having studied this chapter you should:

Understand the four different conditions which can interrupt the

microprocessor.

Understand the sequence of events which occurs when the processor
is interrupted by an interrupt request (IRQ) or a non-maskable

interrupt (NMI)

) Know where to store IRQ or NMI vectors.

Understand the function of interrupt service routines.

INTERRUPTS

Interrupts is a concept which allows the program currently being run on
the microprocessor to be interrupted (it's execution temporarily suspended):

so that a more important task can be attended to.

There are four possible conditions which may interrupt the microprocessor:

~ these are considered in turn’.

INTERRUPT REQUEST (IRQ)

This is a level sensitive input to the 6502 When a iogical '0' is sensed
at the fﬁa pin (the bar = means enabled Tow). the processor will complete
it's current operation. It will then 'read’ the Interrupt Disable Flag
(flag 1 in status register) and. if clear, will implement an interrupt
sequence of operations. These are shown overleaf;

=74 -

o Store Program Counter high byte (PCH) on the stack.

° Store Program counter low byte (PCL} on the stack.

® Store status register contents on the stack

e Load PCL from address FFFE.

o Load PCH from address FFFF.

° Set Interrupt Disable Flag {flag 1 in status register).

® Program execution sequencies now continue from the memory

VECTORs held at FFiF and FFFE.

If the Interrupt Disable Flag is set when the IRQ 1ine goes low, the
interrupt will be ignored.

If only one device were connected to the IRQ line it would be serviced by
what is known as an 'interrupt service routine'. This routine would
effectively be the final sequence of instructions above, namely "Program
execution sequencies now continue from the memory VECTOR held at FFFF and
FFFE". However, it is more likely that a number of devices would be
connected to the same IRQ 1ine, each capable of bringing it low. A software
routine would then have to determine which device had caused the interrupt
before it could execute an appropriate set of instructions to service that
particular device. Various methods are available not least of which is
termed Polling

This is a technique whereby all devices connected to the TRQ line are
‘polled’ or interrogated to determine whether they are asking for service.
Since two or more devices may be requesting an interrupt, the polling may
be performed to some order of priority

Once an interrupt service routine is being executed it is possible for the
programmer to allow a further interrupt to take place since the interrupt
disable flag is under his control. In this way a number of interrupts may
be in a state of being serviced at any one time. |

At the end of an interrupt service routine the instruction, Return From
Interrupt (RTI) must be used.

A further point to note is that if any other registers such as the
accumu1atok, X or Y hold data at the instant of interrupt which needs to be
remenbered, these must be pushed to the stack at the start of the routine
and pulled from the stack prior to RTI. ' '

- 75 -

One ltast point, it is important that before executing the RTI, the
Device Interrupt Flag which pulled the TRG Tow is set since RTI

will have the effect of clearing the Interrupt Disabie Flag when the
status register is restored, e.g., the flag must have been ¢lear to ailéw
the interrupt in the first place. If this action is not taken then a
series of interrupts will be attempted although the device has, in fact,
been serviced! An example of this is considered in Chépter 3.11 when using
the VIA Timer 1.

NOM MASKABLE INTERRUPT (MMI}

This is an edge sensitive input to the 6502. When a logical 'l' to logical
'0' transition takes place at the NMI pin, the microprocessor will complete
it's current operation and set an internal flag such that no matter what
state the interrupt disable flag is in, the microprocessor performs the
interrupt sequence outlined under IRQ. The only exception is that the
memory vectors are taken from FFFB and FFFA.

The‘ﬁﬁﬁ through the way it has been 1mp1emented has priority over the
IRQ at all times.

It 1s possiblie to connect more than one device to the NMI, but if a

. subsequent interrupt occurs while servicing the first, it will be ignored.

Further, it will not be serviced when the initial service routine is

completed. The implications are that multiple 1nterrupt lines connected
to the WMI require careful servicing.

BREAK COMMAND (BRK)

The break command is a software interrupt. It is primarily used to cause
the microprocessor to go to a halt condition dur1ng program debugg1ng but
can equally be used in other useful ways.

The interrupt sequence is similar to the hardware interrupt IRQ except
“that it cannot be masked by the interrupt disable flag. Also when the
break command is 'fetched' the Break Command Flag (flag B in status
register) is set,'this enables the programmer to check whether the
interrupt was caused by the software BRK or the hardware IRQ. Both use the

same memory vectors FFFE and FFFF.
' =76 -

RESET {RES)

This is an edge sensitive input to the 6502 when a logical '0' to logical
‘1" transition takes place at the RES pin, the microprocessor will begin a

'reset’' sequence,

It is used to reset or start the microprocessor from a power down
condition. With RES held low, read/write operations are inhibited. In
the case of EMMA, RES is held high via a 4K7 resistor, it is pulled low
when the reset pushbutton is depressed. Depression of the reset
pushbutton and then it's release will start the reset sequence. After a
system initialisation period of six clock cycles, the interrupt disable
flag will be set and the microprocessor will load the program counter with
the reset vectors at memory locations FFFC {low byte) and FFFD (high
byte).

A software 'reset' can be used to terminate a program by jumping to the
reset vectors (FEED).

We have stated the mechanism for interrupts and where the various interrupt
pectors are to be found. The vectors are effectively start addresses for
the rest of the interrupt routines which you, the programmer, will decide.
Let's take a look at the disassembled listing for the monitor (see Appendix
Disassembled Listing). On page APDL/4 you will notice that locations FFFE
and FFFF contain BO and FF respectively. FFBO are the TRQ vectors. If we
now turn to page APDL/3 we will find: '

FFBO 6C JMP (FEOE)

the IRQ vectors point towards a Jump instruction and the op. code 6C
indicates an ‘indjrect absolute’ address mode. You may not be too
familiar, as yet, with this mode of addressing, so let's see how it
operates.

The 2-byte address code, following the operation code gives access to

the low byte data address. Incrementing by 1, gives the high byte data
address.

- 77 -

Pictorially:

MEMORY MEMORY CONTENTS COMMENTS

FFFE BO IRQ VECTORS

FFFF FF

FFBO 6C OP. CODE

FFB1 FE . DATA ADDRESS LOW BYTE

FFB? 0E DATA ADDRESS HIGH BYTE

QFEFE LB LOW BYTE Start Address of

OEFF HB HIGH BYTE Interrupt Service Routine.

HBLB OP. CODE INTERRUPT SERVICE ROUTINE FIRST
INSTRUCTION).

Locations OEFE (Low byte) and OFEFF (High byte) must therefore be loaded
with the start address of the programmer's interrupt service routine

® EXERCISE 3.10.1

Determine the locations for the start address of a NMI. Hint, upon taking
the NMI pin of the microprocessor low, the processor loads the program
control counter from addresses FFFA and FFFB, low and high byte
respectively.

PROGRAMMING INTERRUPT SERVICE ROUTINES

We will now design a program which will demonstrate the use of interrupt
service routines.

Qur program will PEpeated1y increment the VIA User Port A and the nunber
of times a full count is achieved will be indicated at VIA User Port B.

The program will include a time waste swb-routine so that Port A can be

easily observed on the I/0 Port Monitor.

- 78

© rLOW-CHART:

IRITIALISE
FORTS
A AND B
SET PORTS
10
TERQ Interruot Service koutine
f IKTZRRUPT
[,
TIME
WASTE
COUNT NO. OF
TIMES PA HAS
REATHKED FULL
LOUNT
INCREASE
BY 1
Sonr o RETURN

S

© PROGRAN

ihe program is in four parts:

‘e Main Program

e Interrupt Service Routine "
® Time Waste Sub-Koutine
° Interrupt Vector Loading

We will look at each part separately:

WMain rProgram

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS
ADDK 1 2 3 LABEL MNEM OPERAND COMMENTS
0200 AY FF LDA# FF] Initialise rorts
0202 80 02 09 STA DORB o A and B to
0205 80 03 09 STA DDRA output’.
0208 AY 00 LOA# 00] Set DRA
020A 8b Vl#] 09 STA DKB 5 and BRE to
020D 8D 01 09 STA DRA | zero.
0210 EE 01 09 NEXT INC DRA
0213 20 80 02 JSR 0280 Time waste Sub-routine
0216 4G 10 02 Jmp NEXT Continue count

Interrupt Service

Routine

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS
ADDK 1 2 3 LABEL MNER OPEKAND COMMENTS
0250 EE 00 09 INC DRB Increase by 1 count
at Port B.
0253 40 RT1 - Continue counting at
' Port A.

- 80 -

Time Waste Sup-Routine

HEXADEC TiMAL SYMBOL IC ASSEMBLER INSTRUCTIONS

ADDR 1 4 3 LABEL MNEM UPERAND COMMENTS

0280 AY FF LOA# FF
0282 8D 20 OO SIA 0020
0285 AS FF LOOP 2 LDA# FF
0287 8 21 00 sta oozl
0288 CE 21 00 Loop 1 DEC 002l
0280 DO FB BNE LOOP 1
028F CE 20 00 DEC 0020
0292 DO Fl BNE LOOP 2
0294 60 RTS

Interrupt Vector Loadings

The interrupt vectors {start address of the interrupt service routines)

are located at:

QEFC low byte
OEFD high byte

vl Vector

OEFE low byte
OEFF high byte

IRQ Vector

These Jocations must be loaded with the start address {interrupt vectors)

of the 1nterruﬁt service routine (025U). Hence:

- 81 -

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIUNS

ADDR L2 3 LABEL MNEI OPERAND COMMENTS

OEFC 50 NMI VECTURS
0EFD 02
OEFE 50 IRQ VECTORS
UEFF 02

We now require a connection diagram:

I/0 PORT
MONITOR

Don 't forget the supply connections to
both the I/0 Port Monitor and EMMA

The arrangement is such that Port A will provide a binary count up to 16
(Denary) which will be indicated on the LED's of the I/0 Port Wonitor. Db
will also indicate the status of the Interrupt Line and D6 and D7 will |
indicate the nunber of interrupts. This connection will firstiy be taken

to the NMl and secondly to the IRQ.
- 87 -

e EXEKCISE 3.10.2.

e Connect the I/0 Port lonitor to
EMMA as shown in the diagram with
interrupt connection to NmI.

° Load the whole of the program

° Run program from 0200 and observe
the 1/0 Port Monitor'.

We have already stated that the NmI interrupt is enabled low and on the
negative edge {transition from high to Tow). You should observe this at the
instant when Port B is incremented immediately following the reset of Port
A to zero from a full count of 16 (denary).

We will now consider the Interrupt Request IRQ. This signal differs from
the NMI in that the AMI is negative edge enabled while the IRQ is level
_{low) enabled. We will keep to the same basic program except that some
modifications will be necessary due to the difference in the interrupt
enabling signals. We will present the programs and then discuss the
modifications.

s 83 -

Main Program:

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR 1 2 3 LABEL MINEM OPERAND COMMENTS

(200 AY FF _ LDA# Fr Initialises Ports
0202 80 02 09 STA DDRE A and B to

06205 60 03 09 STA DDRA output’

0208 AY 0O LDA# 00 Resets Port B
0Z20A 80 0o - 09 STA UkB to zero.

020D A9 10 LDA# 10 Sets rort A

G20F s 01 09 STA DRA bit 4 to 'high'
0212 58 CLI 58 Enables IRQ flag
0213 EE 01 09 NEXT INC DRA

0216 20 80 02 JSR 0280 Timewaste S.KR.
021 40 13 02 JiP NEXT

Interrupt Service Routine:

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR 1 2 3 LABEL MNEM OPERAND COMMENT S

0250 A9 10 LDA# 10 Resets
0252 G0 Ol Q9 ORA DRA port A
0255 8D U1 09 STA DRA . bit 4"
6268 EE 00 0Y ING DRB

0258 40 ' RTI

- 84 -

The Time Waste Sub-Routine and the Interrupt Vectors remain unchanged.

The program will require that the IRQ signal is obtained from Port A, bit
4 rather than bit 3 as in previous exercise.

@

EXERCISE 3.10.3.

Change the interconnections between the I/0 Port Monitor and FMMA, enter
the new program (not forgetting the Time Waste and Interrupt Vectors if
the machine has been switched off) and run the program.

You should observe that the effect is exactly the same as before.

Now let's consider the modifications to the program.

@

If Port A is set originally to zero, an interrupt will be enabled
immediately the Interrupt Flag in the microprocessor Status Register
is cleared. (bviously this must be disallowed since we have not yet
started counting! Bit 4 (connected to interrupt IRQ) is thus set
high by storing 10 to DRA.

When Port A is incremented it will now start counting at 10 (Hex)
rather than 00 (Hex). When F {HEX) is reached (this will represent
a denary count of 16 on Bits 0 - 3 at Port A), one further increment
should break to interrupt (to increment Port B) and reset Bits 0 - 3
at Port A to zero. The actual output at Port A will go from IF %o
20, so causing the required interrupt (bit 4 goes low).

Before Teaving the interrupt routine we must set Bit 4 high otherwise
upon return we will immediately break to interrupt and continue to do
so without further counts at Port A taking place. The setting of bit
4 has been done by loading the accumulator with 10, performing a
logical OR on the accumulator with the .actual output of Port A, and
storing the result back to Port A. ‘

- 85 -

EXAMPLE:

0001 0000
0001 1111

Port A being incremented

next increment 16 ——s 0 (Denary)
0010 0000 on bits 0 - 3.
Bit 4 goes low causing interrupt.

0010 0000 OR operation on Port A output
0001 0000 with 10 (HEX) sets Bit 4

0011 0000 Result of OR operation
prevents recurring interrupts

@ EXERCISE 3.10.4

Draw a neat timing diagram for each of the Bits PAG-7, PBO-]
and the IRQ signal. Label the break to interrupt point.

EXERCISE 3.10.5.

Using the previous program for IRQ, expiore the results of the following
modifications separately:

i} change contents of location 020E to 00
i1} change contents of location 0212 to 78
iii) replace interrupt service routine with that used during the NMI

exercise.

Explain, in detail, why the changes gave the results they did;

- 86 -

QUESTIONS

1.

Wwhat is '‘rolling'.

wWhere are the

Where are the

Which has the

7

IRQ vectors stored?
NMI vectors stored?

higher priority Nml or IRQ?

- 87 -

THE VERSATILE INTERFACE ADAPTER {YIA) 6522 CHAPTER 3.11

OBJECTIVES OF THIS CHAPTER

Having studied this chapter you should:

Understand the I/0 port facilities offered by the VIA.

5] Be able to program individual bits of the two 81t ports to input

or output as required.

Understand the operation of the two 1&it timers incorporated in
the VIA.

Be able to program the timers to operate in any of the available

modes.

INTRODUCTION

The I/0 ports are contained in chip 6522 on the main EMMA board
“and is referred to as a Versatile Interface Adapter VIA. As its name
implies, it is versatile in as far as it is capable of numerous funct1ons.
It is also an interface because it provides a means of connecting
EMMA to the outside world i.e. it is physically connected between
the 6502 (microprocessor chip) and external devices such as applications

hardware modules.

- 88 -

The component parts of the I/0 port which we will initially consider are
the two ports designated rort A and rort B\

architecture is:

™~ DRA

DATA -
BUS <<Z§i

ADDRESS

BUS

ADDRESS
DECODE

-

<

::i::> DORA

j:i::> DDRB

mmb\:> DRB

P
Y

D

Shematically the appropriate

PORT
E§:> A

PORT
B

The VIA is tar more comprehensive than depicted above but we will consider

this swbsequently’.

The blocks in the diagram are fully addressable and are identifiable as

below:
T
LABEL DESIGNATION - ADDRESS
DRS port B: data Register 0900
DRA Port A. data Register 0901
DORB rort B. data direction Register 0902
DDRA vort A. data direction Register 0903

Each of these registers can be separately addressed and simply appear to

the microprocessor as a memory location.

- 8y -

The data registers hold the data which is being transferred from the
microprocessor 10 some outside peripheral device or from some outside
peripheral device to the microprocessor: that is to say they are bi-
directional. Needless to say data cannot pass through them in both
directions simultaneousiy. They have to be set to operate in the required
direction. An important feature of this particular VIA is that each of the
eight bits of both ports can be directionally set independently. It is the
function of the data direction registers to accomplish this.

The setting up of the ports is termed initialisation and must be done by

the programmer before the port is used.

PORT THITIALISATIORN

the data direction registers are both eight bit registers with each bit
being associated with a corresponding bit in the data register. For
exampie: if bit 6 of data direction register Port B is set to logical one;
then bit 6 of data register Port B will be set to ‘output' while a logical

zero will set it to ‘input'.

The diagram shown below:
DDRB SET T0
BIT-6 LOGICAL 'T°
% CONTROL
| DRB
MICROPROCESSOR _— BIT-6 = PERIPHERAL:
DEVICE
BIT-6 | LOGICAL '0' FLOW
% CONTROL
DRB 7 ' .
MICROPROCESSOR iy BIT-6 ey PERIPHERAL DEVICE -

- 90 -

Considering ail 8-bitsl it we load Port B: data direction register with
1111 000U then the Port B! data register will be set for inputs and
outputs as shown below:

11 (1] 1]0}{0 0|0 oors

e
MICROPROCESSOR-{
b

AT S Y R W N
XIX|IX XXX XX s
!] 1 /N !
iy
—eza— | PERIPHERAL
. - DATA - &= [DEVICE

Gaviously this is not the only combination that can be configured. It
should be appreciated at this stage that these registers are clieared to
Togic ‘0' on RESET. This places all peripheral interface lines to the
input state. They are also 'pulled-up' to logic 'l'. This is a safety
feature since most devices are ‘enab1ed Tow'l

We will now write the program which will initialise Port B so that bits
BO-B3 are configured as input and bits B4-B7 as output.

SET BITS 0-3
OF PB.DDR

T0 LOGICAL ‘O

\

SET BITS 4-7
0F PB.DDR

TO LOGICAL '1

o 9l -

We can perform our setting of the data direction register simply by
loading the DDRB with FO and using the instructions:

LDA# FO
STA DDRB
where:

F sets bits B4 -B7 to 1's
0 clears bits 80 - B3 to Q0's

Simply DDRB is the label for the address of Port B - Data Direction
Register. In hexadecimal notation this is 0900 (see table on page 89).
] EXERCISE 3.11.1

Write I/0 port initialisation routines to effect the following:

al | PB bits 0 ~ 2 output, 3 - 7 input.

b} PA bits 1, 2, 3 and 5 as output, rest as input.

Define any address labels used.

USING THE DATA REGISTERSj

Once the ports have been initialised the data registers can be used. It
is possible to 'latch' data being input but for our immediate purposes we
will consider the Data Registers as being 'transparent', that is, any data
appearing at the register in the correct direction {(as determined by the

- DDR) will pass through it.

The control of any system configuration is the responsibility of the
VmiCPOPPOCGSSOF and its program. The data registers therefore appear to
the microprocessor as mémory locations, data can be 'stored' to them or
“loaded' from them. The following examples will explain.

- 92 -

e EXAMPLE

Transfer 8-bits from memory location 0020 via DRA to a peripheral device
connected to Port Al bits U - 7.

LDA# FF Initialises Port A
STA DORA ALL bits to output

LDA 0020 Effects data
STA DRA transfer

LABELS: DDRA 0903
DRA 0901

@ EXERCISE 3.11.2

a) Use a standard programming form and assemble the program above
which transfers data from memory 0020 to Port A.

b) Connect the I/0 port monitor to Port Al and switch monitor to READ.

Connection Diagram:

Note: [Jo means 'connect' ALL Ports
Do, D1, B2 etc., up to
N9 and including D7

- 93 .

c) Load your program into EWMA. Also load memory 0020 with
any known data other than FF (can you see why?).

d) RUN program and observe results
- EXERCISE 3.11.3

Write a program which READS data from a peripheral device and stores
in memory 0020°. Keep connection of I/0 port monitor to Port A and
switch its mode selector switch to WRITE.

HAVEFORM GENERATION

The generation of waveforms is an important aspect of engineering system
design’. Frequently. waveshapes of various forms are required such as
square wave: triangular wave. sawtooth and ramps generally. The
microprocessor is eminently suitable for producing such.

We will now consider producing a square wave at each of the bits of one of
the output ports. We can easily accomplish this by simp]y incrementing
repetitively the output port.

FLOW CHART

Flow chart: INITIALISE
PORT A

|

SET PORT

A - 0

a4

!

INCREMENT

The program is:
' PORT A

|

- 94 -

1he program is:

HEXADEC IMAL

SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR 1 Z 3 LABEL MNEM UPERAND COMMENT S

4200 A9 FF LDA# FF Initialises Port A
g202 80, 03 0y STA DDRA to output

0205 AY 00 LDA# 00 Sets Port A

0207 80 01 04 STA DRA 0 zero

020A EE 01 09 REPT ENC DRA Repeatedly

020D - 4Q DA 02 JiP REPT Increments Port A

You may now need to familiarise yourself with the oscilloscope before
proceeding further. If this is so refer to the Appendix 5 {oscilloscopes)

®

a)

b))

EXERCISE 301104

Enter the program on EMMA to repeatedly increment the output port

and observe each bit on the oscilloscope.

I3
e

Using the model below: record the waveform of all the bits relative

to each other and clearly marking the periodic time for each.

Model:

-PA

PA

PA

Periodic Time

£

T

CALCULATION OF PERIOD TIHE

You should have gbserved that the periodic time doubles from one bit to the
next. more significant one. You should also be in a position to actually
predict or work out accurately the periodic times and hence frequencies

obtained at each bit.

rFor example:-

periodic Time (1) = 1

f

where f = frequency in Hertz
time for one complete cycie in seconds.

The time can be predicted by calculating the number of machine
cycles from the start of one increment through to the beginning of

the next increment and multiplying by 2.

EXAMPLE:

Program
INC {Absolute) 6 machine cycles
JMpP (Absolute) 3 machine cycles.

Total machine nuwber of machine cycles is 9 with 1 s/machine cycle.
Therefore there are 9 s between increments at Port Abit 0. Now

considering the waveform generqted at bit 0.

" Perijodic Time

PULSES

PRt

Py
P

| . |
2 3 _ 4 n

It should be observed that the periodic time (T) is twice the interval

- INCREMENTS

of time elapsing between two successive increments.
- Y6 =

For bit,. periodic time is therefore:

2X9us = 18 us
and frequency = 1 = 5,556 x 10% Hertz
18/u s

This is the highest 'software' frequency that we can generate. We can
however generate iower frequencies by inserting time wastes between
increments. In fact this is exactly what we did in Chapter 3.9 °. We can
also obtain accurate frequencies by the use of the Instruction: MO
Uperation (NOP) as a means of fine 'adjustment’ to a time waste
routine’

@ EXERCISE 3.11.5%.

Use the NOP instruction only to modify the square wave generation program

to produce a frequency of 337334 x 103 Hertz.
® EXERCISE 3.11.6"

Design a program which will produce an output squarewave at Port Abit O of
1 KHertz exactly. '

PULSE GENERATION

Frequently we require to generate a 'pulse' of known duration. as for
exampie when we use the Analogue to (Hgital Converter (A/L). We can easily
effect this simply by setting a particular bit on one of the ports and then
timing an interval before clearing the set bit. The fiow chart overleaf
will effect this technique:

gg”?m

?

CLEAR
PORT A, B

0

TIME WASTE PULSE
SUB-ROUTINE [DURATION

|

CLEAR B

0
B0 = 0

The flow chart assumes that we may be using the I/0 port for any other
data transfer at the time we need to 'pulse' bit 0. If this is not
the case we can simply INCREMENT the port to SET BO and then either
DECREMENT or INCREMEN] again to clear 80.

The effect of a program which has been written to this flow-chart will be
to produce a pulse as below:

Pulse

logic ‘it ¢

PROGRAM
- START

- 98 -

@ EXERCISE 3.11.7

a) Redraw the flow-chart such that the pulse
occurs approximately 0.5 seconds after the
start of the program execution and that the
pul se 1asts for a period of 2 milli-seconds approximately.

b) Write the program to effect a) above and test
using the 1/0 Port Monitor.

® EXERCISE 3.11.8
Modify the program so that the pulse is repeated every 0.5 seconds.

e EXERCISE 3.11.9

Change experimentally the time waste values to give a mark-space
ratio of approximately 0.5:1 at a repetitive pulse rate of 2000 Hz
approximately.

HARDHARE TIMERS

So far, time delays have been produced by software routines. This is not
particularly an efficient way to use the microprocessor since during a
software generated time waste the processor is unable to perform any other
work. In control systems many such time wastes are required and hence the
processor could be very inefficiently used. A better solution to this
time waste/efficiency problem is to use hardware timers. These can be
triggered off by the microprocessor and configured to interrupt . the
processor upon time out. In the meanwhile the microprocessor can be
performing other useful functions.

~ The Versati]e-lnterface Adapter (6522) has two timers which can be

- programmed to count out predetermined periods. They can be programmed to
interrupt the microprocessor upon count out or the microprocessor can be
programmed to read the timer at intervals and take appropriate action when
the timer has timed out. ‘

- 99 -

Simplified Architecture

6522 Interval Timers

DATA

!

BUS

ADDRESS

aus

Each of the blocks in the diagram ar
identifiable as shown overleaf.

ADDRESS
PECODE

IFR
1ER
TIL-H TIL-L
TIC-H TiC-L
T2L-L
T2C-H T2C-L
ACR
PCR

- 100 -

e fully addressable and are

IRQ

LABEL DESIGNATION ADDRESS
rIc-L Timer 1 Tow-order latch (WRITE) 4504
Timer 1 low-order Counter READ)
TIC-H limer 1 High Order Counter (WRITE) 0905
TIL-L Timer 1 low-order latch (WRITE) 0906
TIL=H Timer 1 High-order latch (WRITE) 0907
[2¢-L Timer 2 low-order latch (WRITE) 0908
Timer 2 low-order Counter (READ)
T2C -H Timer 2 High-Order Counter (WRITE) U909y
ACR Auxiljary Control Register 0908
IFR Interrupt Flag Register 0y0D
IER Interrupt Enable Register 090E
PCR 090C

Peripheral Control Register

You should observe that there is a slight difference between the two

timers.

We will now look at each of the registers: considering timer 1 only.

AUXILIARY CONTROL REGISTER (ACR)

Two Dits (bits & and 7) of the Auxiliary Control Register determine the

four operating modes of Timer 1.
flag Register (bit 6 in particular) and bit 7 of output Port B.
modes are outlined in the table below and are selected when the appropriate

code is written into bits 6 and 7 of ACR.

- 101 -

tach mode will affect both the Interrupt
The four

MODE | ACR [Bit No' OPERATION PURT B
/ 6 BIT 7

U 0 One=shot Mode. A
1 single interrupt occurs DISABLED
upon time-out of
Timer 1.

U 1 Free Run Mode. Upon
time-out the counter is
2 automatically reloaded
and new time-out period DISABLED
begins. An interrupt
occurs upon each time-out'.

1] As for Mode | Goes low for duration
3 of timed period.
4 1 1 As for rMode 2 Output inverted upon

each time-out producing '
a square wave of equal
mark/space ratio’

Unless counter is re-
loaded from latches
creating a new time
period.

INTERRUPT FLAG REGISTER {IFR)

Bit 6 of the Interrupt Flag Register is set upbn time-out of limer 1. 1his
bit is cleared by either reading Timer 1. low-order Counter (TIC~L): by
writing Timer 1 high-order counter (TIC-H) or by writing a '1' directiy

to the flag.

INTERRUPT EMABLE REGISTER {IER)

Bit 6 of the Intérrupt Enanle Register corresponds to bit 6 of the
Interrupt Flag Register. A 'l' in this bit will enable the interrupt
white a "0' will disable. However: bits in this register are under

program control as follows:
- 102 -

Withbit 7 at '0'. a "1" in bit 6 will CLEAR interrupt enablel while a '0'
will leave unattected.

With pit 7 at '1',a 'Ll in bit 6 will SET interrupt enable. while a 'U*

will Teave unaffected.

Hote: both IFR and lER are 8-bit registers and provide flags for
other modes of operation of the YIA as well as for Timer 1.

LATCHES/COUNTERS

Two 8-Dit latches designated low-order and high-order respectively are
provided for Timer 1. Associated with these are two 8-bit counters! also
designated low-order and high-order respectively. The latches are used to
store data which is to bpe loaded into the counter. After loading: the
counter is decremented at phase 2 (QZ) clock rate (1 micro second).

Upon reaching zero: an interrupt flag (bit 6 of 1FR) is set and the IRQ
Tine will go low if the interrupt is enabled (bit 6 of IER set

to '1'). Further interrupts will be disabled by the timer wnless
programmed to automatically transfer the contents of the latches into the
counter and begin to decrement again.

Now 1et's design a few programs which will enable us to apply these
hardware timers. ‘
#ROGRAMMING HARDHARE TIHER 1

We will write a simple program which. with minor modifications? will
demonstrate each of the modes of operation of the timers.

The program is effectively in four parts:

e Main Program

e Interrupt Service Routine
e Time Waste Sub-Routine
e Interrupt Vector ioadings

- 103 -

a)

Main Program

The main program is designed to initialise the microprocessor interrupt
flags: the VIA interrupt flags. the VIA mode of operation and finally to
set Timer 1 time interval.

The program is:

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCT IUNS
ADDR 1 2 3 LABEL MNEM UrPERAND COMMENT S
U200 58 CLI nables Processor IRQ
20l - AY Co LDA# Cy Enables VIA IRQ
0203 8L O 09 STA IER :
0200 Ag = LDA# ® Sets Wode of
Timer 1
0208 8 0B 09 STA - ACR Uperation
0208 A9 FF LDA# FF Sets
uzub 1] 04 0y STA TIC-L Timer 1
0210 AY FF LDA# FE time
0212 80 05 (9 STA . TIC-H interval
0215 40 15 02 WAIT Jip WAIT rrogram End

Mode of operation Codes. (Enter C§ for the present).

Code Operation PB7

0o Single Shot Disabled
40 Free Run Disabled
80 Single Shot - Enab1ed
Co Free Run Enabled

- 104 -

b) Interrupt Service Routine
The interrupt service routine is designed to initialise Port Abits U - 6

to output.: increment this port to a full count on bits 0 - 6. reset the
VIA interrupt flag and then return from interrupt.

the program is:

HEXADEC IMAL SYMBOLIC ASSEMBLER INSTRUCTIONS
ADDR 1 2 3 LABEL pNEM OPERAND COMMENTS
U250 AY FF LDA# FF Initialises Port Al
0es2 80 03 09y STA DDRA pits -7 to output.
0255 AY @Y LDA# @ Sets Port A
(257 8 01 09 STA DRA to Zero.
UZ5A £k 01 09 REP INC DRA
025D 20 80 02 JSR 0280 Time Waste S.R.
0260 AY ¥ LDA# ir Tests DRA for
0262 ¢h 01 Q9 Ciwp (RA full count.
0265 DO F3 BNE REP
0267 A% 40 LDA# 40 Clears VIA
0269 8D 0D 09 STA IFR Timer 1 IRQ flag.
026C 40 RTI

c) Time Waste Sub-Routine
The time waste sub-routine is simply included to allow the 1/0 Port
Monitor to be used to monitor Port A. bits 0 - 6. It is a straight

torward douscle-loop routine which you will be familiar with.

The program is:

HEXABEC IMAL SYMBOLLIC ASSEMBLER INSTRUCTIONS
ADDR 1 2z 3 LABEL MNEM UPERAND COMMENTS
0280 A9 FF LDA# FF
0g82 85 20 ' STA 20
V284 AY Fr Loor 2 LDAg Fr
0286 g 21 STA 21
0288 Co 21 Loor 1 DEC 21l
028A Do G BNE Loor 1
028C 6 20 BEC 20
028E DO F4 BNE LOOP 2
0290 60 R1S
d) Interrupt Vector Loadings

The VIA Timer 1 causes an Interrupt request (IRQ) at the VIA and hence the
micropﬁocessor itsel ¥ {the YIA IRD output pin is connected on the prinﬁed
circuit board. to the microprocessor IRG input pin). The microprocessor
IRG breaks to memory locations FFFE and FFFF and hence to OEFE and OEFF
(see section on Interrupts Chapter 3.10). memory locations OEFE and UEFF
must theretore be loaded with the interrupt vectors for the interrupt
service routine. In this instance. the start address. and hence the
vectors of the interrupt service routine are 0250. These must be loaded
before the program is run.

Now let's enter these four components of our TIMER 1 program. But first
let's decide on our mode of operation: (see * on Main Program).

- 106 -

@ Mode 1 (Code 0O)
The program will operate to increment Port A
bits U-6 to a single full count only’

& Mode 2 (Code 40)
the program will operate to increment Port &4
bits 0-6. reset Port A to zero and continue to increment’
The microprocessor will continue this operation
repeatedly’

Mode 3 (Code 80)

The program will operate as in Mode 1 above: but bit 7

of Port B will also be enabled. PB7 will be pulsed iow for the
duration of the Timer 1 time interval (approx. 0.6 second).

@ Mode 4 {Code CO)
The program will operate as in Mode 2 above but bit 7
of Port B will also be enabled. 7 wili generate a
continuous square wave.

@ EXERCISE 3.11.10

Load into EWMMA the four components of the program and run the
program for each of the mode of operation codes. (bserve results,

) EXERCISE 3.11.11

With the Timer 1 program entered and with mode 4 selected. change the main
program such that the microprocessor IRQ flag is disenabled (change
Tocation 0200 from CLI. op. code. to Stl. op. code 78). (bserve results.
Note that a similar result can be obtained by disenabling the interrupt at
the VIA (load IER with 80)

- 107 -

EXERCISE 3.11.12

Run the program in mode 1 but enter No Operations (op. code EA) at memory
Tocations 0267-0268 inclusive. This will show the importance of clearing a
Device Interrupt flag before returning from interrupt. Although

Timer 1 is in a single-shot mode, the VIA interrupt request line IRQ will
only be cleared (taken high) if the counters are reloaded. Since mode 1
does not do this, the Timer 1 interrupt flag (bit 6 in IFR), must be
cleared. If this is not done, the microprocessor will continue to be
interrupted upon return from each interrupt although the timer itself is
not producing interrupts.

The Timer 2 is slightly different from Timer 1. You will find technical
details of this timer in the EMMA TECHNICAL MANUAL.

There are also other features belonging to the VIA which we have not yet
mentioned. These cover important aspects concerning the control of

peripheral devices. We will deal with these via a Technical Specification
in the 'TECHNICAL MANUAL' associated with EMMA. '

QUESTIONS

1. What is the address of Port B data register?

2. If we store 6F at Tocation 0903, which bits of Port A are set to
input.

3. Which do IER and IFR stand for?

4. What is the address of Timer 2 highorder counter (T2CH)?

-~ 108 -

PROGRAM DEBUGGING CHAPTER 312

OBJECTINES OF THIS CHAPTER
Having studied this chapter you should:

Be able to use tne single-step facility to help identify program

faul ts.

@ ke able to use the break-point facility to interrupt the
micrdﬁrocessor and enable the internal registers to be examined
at a point in the program where a fault is suspected.

INTRODUCTION

We have already suggested that even the best programmers' programs do not
always operate the first time. . If the program does not operate when RUN
it is more likely to be your program than the hardware that is at fault!
when this happens. as surely it will. you will appreciate the care (or '
lack of) that you took in firstly constructing your flow=chart and
secondly providing adequate comments on your assembly listing. Assuming
you have met these documentation requirements then you may proceed to use
"~ one or other of the debug features provided by the EMMA monitor.

SIKGLE STEP MODE

This causes the microprocessor to be interrupted after each instruction
has been executed. enabling the user to inspect various internal
registers. The contents of these registers indicate the result of the

Tast operation performed by the mitroprocessor;

- 109 -

Once loaded the single step switch may be put to 'ON' and the following
sequence performed:

o Press RESET

® Presskey.

lle|le|e|e

ety

® Set START address

This will cause thefirst instruction %o be executed.

The display will now show the contents of the:
ACCUMULATOR, X-REGISTER, Y-REGISTER and the STATUS REGISTER.

Two hexadecimal digits' will be devoted to each and displayed on the
EMMA Keyboard/Display as follows:

ACC X Y STATUS

o Press the[R]key.

The display will now show the contents of the Program Counter
and the Stack Pointer. Four hexadecimal digits

being devoted to each. The program counter gives the address of the

next instruction to be executed. | '

Y o

PROGRAM COUNTER STACK POINTER

- 110 -

I¥ you now pr‘essagain the next instruction will be executed and
the display will again show the current contents of ACC. X. Y and

STATUS, Press again to give P.C. and S.v.

Repeatedly pr'essingwin thus step the program through instruction by
instruction. allowing you to inspect each of the processor reqisters after

every instruction’

1o return to the normal program RUN mode. the single step switch must be
return to OF. Press thekey twice and the 'pr'ogram will run normally

from its start address.

The single step mode can be a time consuming proéess especially if the
program is large. The following procedure allows the program to be
‘inspected' at set points in the program.

BREAK POILNT MODE

Assuming the user suspects that problems are occuring in a particular part

of his program.

A break point will interrupt the microprocessor. enabling him to inspect
the state of the internal registers at any point within the program.

Now assume that we wish to insert a Break Command at a point in
a program where it will jump to a sub-routine: e.qg.

P ROGRAM UOEA KXXX
00EC 20 20 00
OOEF XXXX

- 111 -

We wish to insert a break command at location OO0EC. Now the break command
code is 00 and it is this that must replace 20 at OQEC.

Now:

& PressKey
The display will read: P . * % * %

) Set P . 0 0 E C wusing hexadecimal keys.

The display now shows that 00 (Break command code) has
been loaded into location OQEC e.g. Display.
P O O EC . 0 O

routine code) and ssingagain (twice) re-introduces the break

command.

= With disptay showing P . 0 0 E C 0 0, press G and
set display to:
h . ¥ * & % yhare _
® % & % g the start address of your program.

The program will now RUN to address 00EC and break to the monitor
sth-routine used for the single step mode. The display will now

show:
Acc, X, Y and STATUS.

The display will now show:
PROGRAM COUNTER and STACK POINTER.

The break command is removed and the jump to sub-routine code is
restored. The display indicates: ' ‘
P . 00EC 1 2 O

Pr'e'ss

The program continues to RUN from location OOQEC.
- 112 -

. (RED)

USING THE CASSETTE INTERFACE CHAPTER 3.13

OBJECTIVES OF THIS CHAPTER
Having studied this chapter you should:
@ Be able to save a program stored in memory, on cassette tape.

® Be able to load a program from a cassette into the microcomputer
memory .

IHTRODUCTIOM

A cassette interface is provided on the 'Emma' which allows the use of a
normal commercial cassette recorder for the storage of programs. It is
recommended that good quality tapes are used and that the tape head is
kept clean with the occasional use of a head cleaning tape. Short
duration tapes will be less 1ikely to stretch with repeated use and for
this reason C120 cassette tapes are not recommended.

Connection to the recorder is best facilitated by the hi-fi DIN connector.
[f the recorder does not have a DIN facility, then connection can be made
via external microphone and ear-phone jack sockets. The cassette
connector on the 'Emma' is a 3-way p.c.b. plug towards the bottom right of
the cassette interface block. Connections are:

- GRD {SCREEN)} LOAD GRD RECORD

/

N.C T
. & 0 L)
‘RECCRD — _LOAD _ /
(BLUE) ' WHITE
VIEWED FROM REAR SPOT
STANDARD 5-PIN DIN PLUG EMMA PCB 0.1" PINS

M.C. - Not connected VIEWED FROM TOP

Note: no damage will be done if connections to input and output are
initially reversed in trying the 3-way p.c.b. socket both ways round

before cbtaining correct operation.
- 113 -

PROGRAM SAVE ON CASSETIE

©
©
L
L

Press save key
Enter start address of program to be ioaded.

PreSsE again.

Enter last program address +1. (this must include all program data.
it will not matter if this address is: in fact. greater than last

address +1).

Fress|S
Switch the recorder to RECORD.

Select baud rate KEY 1 = 1200 Baud; KEY 0 = 300 Baud.

A lead in tone is recorded followed by data.

The disptay goes blank. wntil the finish address reappears;
indicating that the program is loaded.

Wait 3 to 4 seconds. During this time a 2.4 kliz tone is recorded.

Press STOP.

Return to the start of the recording. #laying through the recording the
2.4kHz tone should be interspersed with a 1.2 kHz tone during the program

store.

It will be easier to find programs on tape if a recorder with a

count facility is used.

PROGRAM LOAD FROM CASSETTE

The EMMA 11 intertace is tolerant of thé amplitude of the
cassette output and it is generaliy acceptabie to have the volume and tone
controls set to approximately mid-position.

®

RESET the microprocessor.

Press (Load Key).

The display will ask for baud rate.

Find the program lead-in tonel either with tape counter. or by
Tistening for the 2.4 kHz tone.

During the lead-in tone. select baud rate 0 = 300; 1 = 1200.
When the program has loaded the row of dots will reappear on the
display.

Stop the recorder and run the program in the normal way.

- 114 -

APPLICATION HARDHARE

Chapter 4.1 Using the Application Hardware Page 1
Chapter 4.2 Further Application Program Page 16

MP126/A

USING THE APPLICATION HARDHWARE CHAPTER 4.1

OBJECTIVYES OF THIS CHAPTER
Having studied this chapter you should:

Understand the operation the applications hardware which form
part of the Microprocessor Applications System MAQOZ.

Be able to use these modules in conjunction with the Emma

microcomputer.

INTRODUCTION

Emma is a microprocessor most suited to control applications,

that is, the driving of output devices. The Emma microcomputer

system range comprises numerous output devices which we term Application
Hardware. You have already used some of these devices, for example, the

1/0 Port Monitor is such a device.

Specifications and circuit diagrams of the modules used are inciuded in

Appendix 2 (Application Modules).

In the following programs where a time waste routine is required we will
use a standard time-waste sub-routine to be loaded at the top of pagé 03
-and c¢alling for programmer entered time wastes from locations 0020, 21 and
22. However, for convenience, there are instances where we will relocate

or modify this.

TIME WASTE ROUTINE (STANDARD)

@308 AS5,20 LDA 2@
85,23 STA 23
#304 A5,21 LA 21
85,24 STA 24
@308 A5,22 LDA 22
85,25 STA 25
g30C C6,25 DEC 25
Dg,FC BNE @3DC (FC)
6,24 DEC 24
ng,F4 BNE ¢#3p8 (F4)
6,23 DEC 23
Dg,EC BNE §¥3D4 (EC)
#3€8 60 RTS

TIME WASTE (MEMORIES)

0920 | ~ COARSE
21 [Programmer Set == INTERMEDIATE
22 | = FINE
23 Decremented
24 ,
Memor fes
25 J

THE INPUT/0UTPUT (1/0) PORT HONITOR

The 1/0 Port Monitor allows the user to read from or write to, an 8-bit
input/output port. You have already used the module to monitor the output
ports of the 6522 VIA. '

Each light emitting diode (LED) is fully buffered to permit operation from
the logic levels output at the VIA.

The monitor has a read/write selector switch. In the READ position the
LED's indicate the logic levels present on the output port. In the WRITE

position, the code set up on the switches opposite each LED drive socket
(D.-D)'will be available for connection to input a port. The LED's
will Also indicate the code set.

- 2w

PROGRAMMING THE 1/0 PORT HORITOR

The 1/0 Port has already been used by you 1n'demonstrating various modes
of operation of the microprocessor and the VIA. We think you will agree
that you already have a fair understanding of the module - what you really
need is some more programming experience. The following exercise should

provide this:
=) EXERCISE 4.1.1

Write a program such that the LED's of the I/0 Port Monitor will be
illuminated one LED at a time and so that they appeér to move continuously
from left to right. Example: first LED DO’ followed by LED Dl’ DZ’
D3 wﬁw07 and back to DO continuously. You c¢an approach the problem

by using a data table, one entry for each 'pattern'. However, we suggest
you consider the flow-chart given overleaf and use the instruction set to

find suitable instructions to implement it.

INITIALISE

PORT A
DRA = Q
CARRY FLAG
C = 1

Iy

%

ROTATE ONE BIT
A LEFT, ROL

TIME
WASTE

o | ol o 9{@ o | o | o | a | 1/0 PORT MONITOR

0'0 0 '1 010 70 0 | EMMA PORT A

PA PA,

—g= 'BIT' movement

THE SWITCH PAD MODULE

He will come back to the 1/0 Port Monftor when we have considered the
Switch Pad Module.

The Switch Pad Module allows the user to key data to an 1/0 Port enabled
to input and is simply 8 push-to-make switches, each switch being in
series with a 470%) register.

The inputs can be taken to voltage levels as required, depending on
whether the outputs are required to be *1' or '0' when the switches are in
the open position.

PROGRAMMING THE SWITCH PAD HODULE

As with the 1/0 Port Monitor, the Switch Pad is also very simple to use.
Again we will pose a problem which will use the module and extend your

programming expertise.
e EXERCISE 4.1.2

. Draw up a flow-chart which will read data presented by the Switch
Pad to Port B and output the same data at Port A. Use the I/0 Port
Monitor to receive the data input from the Switch Pad.

. Design a program based upon your flow-chart to effect the data
transfer required.

L EXERCISE 4.1.3,

. Draw a flow-chart which will read data presented by the Switch Pad
to Port A, bits PAy-PA; and output the same data also to Port A
but to bits PA4fPA7, Use the 1/0 Port to monitor output.

e Design your program, enter and test.

This exercise should indicate the versatility of a single output port to
accommodate both inputs and outputs simultaneously.

You may consider, when designing your program, to use the new instruction
'Shift Left One Bit' (ASL}.

THE BUFFERED LOUD-SPEAKER HKODULE

The Buffered Loud-Speaker Module provides a means of obtaining an audible
output from the square waves generated at any of the output port bits.

The programming technique introduced below provides a means of generating
a sequence of steps (or de1ays between steps) that is proportional to some
input data.

We will write a program to increment Port A, with a time delay between
increments, that is proportional to data input via the switch pad. The
switch pad will input to Port B.

The switch pad will be configured so that a logic 'l' is output for a
pushbutton depressed.

The buffered loud-speaker can be connected to any of the bits of Port A.

FLOW CHART:
SET PORT A
= QUTPUT

SET PORT B

= INPUT

~. YES
B = 0? -

< PORT

NO

SET MEMORY
M = SWITCH PAD

|

INCREMENT
PORT A !

A

!

| | DECREMENT
M

PROGRAM:

HEXADECIMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

LDA# FE Set Port A = Output -
STA DDRA
LDA# 00 Set Port B = [nput
STA DORB
WALT LDX DRB Wait for key(s)
BEQ WAIT to be depressed
INC DRA Pulse Loud-Speaker
TONE DEX Produce interval
BNE TONE between Loud-Speaker
pulses
WALT New Key(s)?
© EXERCISE 4.1.4
P Convert the Symbolic Assembler Instructions into Hexadecimal
Coding.
® Input program and execute. A suitably audible tone will be
produced at PA3,
e Does the 'organ' perform as you may have expected from the

program?

THE STRAIN GAUGE HKODULE

The Strain Gauge module gives an analogue output voltage proportional to
the Toad placed on the weighing disc. It will be necessary to convert
this voltage through the A/D Converter module for digital input to

Emma user ports. We will also need to calibrate it.

Before using the strain gauge we must first connect the system power 90 to
provide a plus or minus 5V supply. This connection will also be required
for other modules used later. The diagram below explains

CALIBRATION of the strain gauge module is required simply because
it an analogue device. It may also require zeroing before use.

The following exercise goes through this procedure together with a method

for calibration.

® EXERCISE 4.1.5

® Connect up the system power 90.
P Connect up the strain gauge module. Wait 10 minutes for warm up.
8 Connect a suitable analogue or digital voltmeter to the output and

'0' volt line. Zero output. Note: You may find the use of a
digital instrument difficult to use for this type of measurement.

Why?

e Progressively load the loading pltatform and plot a calibration
curve of output voltage/input weight., File your curve for future

reference.

NOTE: It is jmportant that weights are placed on the loading
platform centrally.

We will use the module as an application hardware moduie with
Emma when we have considered the Analogue to Digital Converter.

THE ANALOGUE TO DIGITAL CONVERTER MODULE

The Analogue to Digital Converter Module is versatile in as far as it is'
capable of converting analogue signals to digital and digital to analogue.
We thekefore have to provide an input to set the device mode of operation
e.g. A =D (usually written A/D) or D=» A {usually written D/A). The
input SELECT performs this function:

SELECT INPUT MODE OF OPERATION
LogIc '1' - A/D
LOGIC '0' D/A

The architecture of the device requires that in the A/D mode, a counter is
first set to zero and then incremented until it 'compares' with the
analogue input.’

The CONVERT COMMAND input performs this function:

CONVERT COMMAND OPERATION
goes ‘low' Resets counter to zero
goes 'high' starts incrementing counter

~The STATUS of the device is also given:

i

STATUS QUTPUT - DEVICE STATUS
~goes ‘high’ Counter set to zero
goes 'low' Counter stopped at D = A

e 10 -

To summarise:

CONVERT] HIGH
I\
COMMAND LOW
:,‘. i
! |
| | | |
STATUS - ; HIGH
P | LOM
l I
I
| ! |
COUNTER COUNT COUNT
ZERCED STARTED COMPLETED
We must also calibrate the Analogue to Digital Converter. MWe
will do this as an exercise.
" @ EXERCISE 4.1.6.
e Connect up the strain gauge, A/D and 1/0 Port Monitor as below:

STRAIN GAUGE A/D CONVERTER 1/0 PORT MONITOR
1.P. O LSB
0.P. O
MSB

:

+5V

CONVERT
COMMAND

STATUS

ov
SWITCH PAD

Depress swich and release.to effect 'weigh'.

- 11 =

Following a similar procedure as for the strain gauge, calibrate the
A/D, record and file for reference.

Having gained some familfarity with both the strain gauge and the A/D
converter we will write a program in assembly language which will monitor
the output of the strain gauge via the A/D converter and store it in a
memory location in Emma when a 'start weigh' command is given.

@ Flow Chart - see page 13

Py Program - see page 14
® Connection Diagram
PA,
=
S G. o= A/D 8
v PA,
T STATUS EMMA
C.COMAND |'5g
SWI PAD bl PB1
oV a0 o P8
o
8 Bus, 8-bits wide
%l

e Signal direction

DEPRESS SW. PAD Key for 'weigh command'.

Comments:

The connection diagram indicates that bits PAO«PA7 are all set to

INPUT, PBO and PB2 are set to INPUT and PBj is set to OUTPUT. We
are not interested in the other bits of Port B. ‘

- The Convert Command must be held low for a finite time to allow
the counter to reset.

- 172 =

INITIALISE
PORT A

!

INITIALISE
PORT B

i

,,_f.'pB'”-.r A
< DEPRESSED e
7 NO

YES

COMMAND
A/D
CONVERT

J

?

i READ
STATUS

READ
STRAIN GAUGE
OUTPUT

- 13 =

Again we will just do an assembler listing for you.

HEXADECIMAL SYMBOLIC ASSEMBLER INSTRUCTIONS

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

LDA# 00 Sets Port A
STA DDRA to input
LDA# 02 Sets Port B
By - INpPUT
By - OUTPUT
STA DDRB B, - INPUT

MONSP LDA DRB
AND# 04 Monitors Switch Pad

BNE MONSP

LDA¥ 02

STA DRB

LDA# 00 Takes convert command
STA ORB > low for finite period
JSR wRERAK

LDA# 02

STA pDRB 4

MONST LDA DRB

AND# 01 Monitors STATUS
BNE MONST
LDA - DRA
STA MEMORY
FIN JMP FIN

- 14 =

At the moment, we are producing the machine code program by 'hand'. Later
you will be using an ASSEMBLER to do this work - assemblers have many
features but, at this stage, you will appreciate that their use eliminates
much tedious work and errors that may occur during this stage.
Incidentally, the program we have written is referred to as a Source
Program. You are going to convert this into an Object

Program by ‘hand assembly'.

2 EXERCISE 4.1.7.

@ Produce an Object Program for EMMA using the Source Program given.

Note: The pfogram uses a time delay sub-routine to hold the
convert command low for the finite period. You will need
to write this delay routine and enter a suitable address.

Run the program and check that the required 'weight' is stored in
the memory location you have chosen,

FURTHER APPLICATION PROGRAWMS CHAPTER 4.2

Detailed specifications of each module are included in Appendix
(Application Modules).

PROGRAMS USING I/0 PORT MOMITOR, D/A AND OSCILLOSCOPE
Exercise 4.2.1

Write a program to increment port A and then decrement port B repeatedly.
Ob serve PA? and PB7 on your dual beam oscilloscope.

Exercise 4.2.2

Write a program to output a table of nine values (00, 01, 02, 04, 08, 10,
20, 40, 80) to the 1/0 poft monitor. Arrange the program so that the time
delay between outputs is progressively increased and then decreased so
sweeping the frequency at which the display sequence is generated.

'Exercise 4.2.3

Write a program to produce a repeating 8bit incrementing count at Port A.
Connect to port A your A/D converter and observe, on the oscilloscope, that
the D/A output is a sawtooth waveform.

Exercise 4.2.4

Write a program to produce a triangular waveform at the D/A output.
Include a 'time waste' routine in each increment/decrement Toop to enable
the wave frequency to be varied.

Exercise 4.2.5

Write a program to produce a sinusoidal waveform at the D/A output. The
program will be most easily accomplished by storing a look-up table of

sine values.
- 16 -

Exercise 4.2.6

Hrite a program to cause the A/D converter to perform a conversion every
0.5. seconds, reading the converted values into consecutive memory
tocations. The program is to cease conversions when 256 locations (1 page
of memory) has been Toaded. A variable resistor may be used to provide an
anatogue input which varies from OV to +5V.

The converted values may be observed by inspection of the memory
Tocations.

Exercise 4.2.7.

Extend the program of 4.2.6 to cause the microcomputer to select the D/A
function. of the A/D converter module and output the stored digital values
repeatedly. The output can be observed on an osci1los¢0pe.

The combined programs of 4.2.6 and 4.2.7 provide a storage oscilloscope
facility for an event occuring over 128 seconds. Reduction of delay
between conversion will reduce the total time of the stored event.
PROGRAHS'USING THE SHITCH PAD AND BUFFERED LOUDSPEAKER

S Exercise 4.2.8

Connect the Switch Pad Module to Port B PB0 to PB, and connect the

Toudspeaker to any bit of Port A. Write a program to give a correct
musical scale on operation of the individual switches.

The following frequencies give a suitable scale:

500 Hz
561 Hz
629 Hz
667 Hz
749. Hz
840 Mz
943 Hz
1000 Hz

- 17 -

& Exercise 4.2.9

Write a program to cause the computer to play a tune according to data
stored by the user,

PROGRAMS USING THE STRAIH GAUGE
& Exercise 4.2.10

Connect the Strain Gauge, A/D Converter, Switch Pad and Emma Microcomputer
as shown in Chapter 4.1 page 12. Write a program to read the A/D
Converter output and display this on the microcomputers 7-segment

displays.

Note: The Appendix (Useful Emma Monitor Sub-routines) provides
information on sub-routines which may be of use.

- Exercise 4.2.11

Using the program above, weigh ten small coins or washers and calculate
the average weight. Write a program to indentify the number of these
coins or washers placed on the platform and display this number on the
7-segment displays.

- 18 -

TITLE

Conversion Tables
Standard Coding Sheet

Application Modules

Emma Monitor Sub-Routines.

Emma Memory Map.

~ Oscilloscopes.
Instruction Set.
Micfocomputer G1ossary;

Solutions to Questions.

|

APPENDICES

PAGE REF:

MP126/A

APPENDIX 1

CONVERSION TABLES

STANDARD CODING SHEET

HEXADECIMAL COMVERSION TABLE

* 6o + 2 3 4 5 6 7 8 9 A B C B E F
0 c 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 83 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
9 | 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 1é6-167 168 169 170 171 172 173 174 175
B {176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
€ | 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

* Hexadecimal values

= Alal -

RELATIVE BRANCH TABLES

FORWARD RELATIVE BRANCH

* g 1 2 3 4 5 6 7 8 9 A B C D E F
c 1 ¢ 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 B3 B4 55 hs B7 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 19
80 81 82 83 84 85 8 87 83 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
112 113 114 115 116 117 118 119 120 121 122 123 124 125 127 128

* Forward Relative Branch Values.

BACKWARD RELATIVE BRANCH

* o 1 2 3 4 5 6 7 8 9 A B8 ¢ B E F
128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113
112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97
A 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
8 ‘ B0 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
64 63 62 61 60 59 B8 57 56 55 54 53 52 51 50 49
ag 47 46 45 44 43 42 41 40 39 33 37 36 35 34 33
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
F 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1

* Backward Relative Branch Value

- Alaz “@

EMMA Program Sheet Na:

Programmer: Program Title:

Hexadecimal Symbolic Comménts

! Addr 1 2 3 Label| MNEM! Operand

VISA Program Sheet No.

Prograrmmer: Program Title:
Assembled/Disassembled

Address | OP Code | MNEM Operand | Comments

/Label /Label '

APPENDIX 2

APPLICATION MODULES

This Appendix provides lay-out and schematic diagrams together with
relevant data of application modules included in the Microprocessor
Application System MAOZ.

- AZei i

¢-990% L-990%

9a oL [T 71 w117
(a6 | e 39 €21 6 | g 9
0| v 5 wlelq] ¢
Q| z |1 | & e | z |t | €
1804 [470 T 0-t | A7u 14904 | 470 | 0-1 | A/4
731 . P31
'suolpyzuvel Burmoioy sey z g1 -9909 3] B N
LQ °L 10 s{40d Joy pajeadas sp yindupy sacqe y) .
Y
%022 _
il Y -990% A0
| %022 m m 1 0 :
Mlllu.l}l...lil.w : g ; i \ o
T I T o
i I gt <
m § m |
I (el
2y ! P ASe
071 . |
131
g,
&, av3y
d/1
ASe & 80

EFRE-T

(00 430d) WYHDVIO 1INJ9D Y0LINOW 071 | .

1/0_MONITOR

1/0_MONITOR LAYOUT

_A23 -

Switch Pad Circuit Diagram.

SWITCH PAD

= A204 -

BUFFERED LOUDSPEAKER

This module incorporates a 1%", 0.2W., Loudspeaker. The buffer amplifier
is designed to operate from a logic or sinusoidal input.

Specification:

"Logic (assume 5Y logic) - current drawn from 'l' 50 A,
 current sunk into '0' 400 A.

Sine - input resistance 400 k

power gain 45dB
bandwidth 50Hz - 20kHz
current drawn from 58 supply 200mA

= AZGS -

INPUT] e

1uF
1

LT0R
R

+5v; m“

*5V

6

$\1

T

5

cz
C100uF 16Y
+1:ﬂ

i

1008
(s

]

154
R2

(sa0w

Wy

TuF 50V
}EB

oV

BUFFERED LOUDSPEAKER CIRCUIT

BUFFERED LOUDSPEAKER

EAD cao

386
Ot () D
R;ﬁ:::b) R2

VOLUME

= A206 =

STRAIN GAUGE SPECIFICATION

The Strain Gauge module is based on a cantilever beam with four thin«film
deposited strain gauges. Bonded to this beam is a 1" aluminium disc which
is used as a weighing platform.

The strain gauge bridge output is then amplified through a 7600

comnutating auto-zero amplifier to give approximately 250mV change in
output voltage for a 10p piece placed on the weighing platform.

d AZc? -

AG~

AG - emmmpee g3
uogL 3
3+ <3 £¥E
ugoL :
AG+ e 8y
Wi 9
{1 < 02z
A emms sy
O
AS-
S99 A
v
@ Al
'y Ly
AS
INdLNo - 78
w]) %001
Elvsdl | A1 "=l ¢ 1 4 1] A—
T Q.r\m — I3 "
0S9¢L N WY3g
S 1 300Y39
IYH1S
pord- a8,
o3
== ug0t
A 13 ASs
AGe

WYYOVIO 1iNJY1] 39AVD NIVYLS

il A208 =

LNOAYT 30NvVY NIVHIS

0¥3Z 135 m 72

39NVD NIVYLS

- A2.9 -

A/D Converter
Setting-Up

° Provide +0V analogue signal to input and adjust preset
(Right-hand potentiometer) to give 00,cy on 1/0 Port Monitor.

P Provide +5V analogue signal to input and adjust preset
{Left-hand potentiometer) to give FFHEX on 1/0 Port Monitor.

e Repeat zero and sensitivity séttings until both are correct.

A-D CONVERTER

ANALOGUE
p

D-A
CONVERTER

COMPARATOR

(ﬁ;) ~ 531
0 c1
:g) - !
CLoCK [m €3 €2
2 4011 i (C—B-I

CONTROL
LOGIC - @ COUNTER

YA

_%_m%«:?

CONVERT
COMMAND

A-D CONVERTER LAY-QUT

- A2.10 -

AS-
9) uool

2T :
8 Ul

£3
< T 7z =

¥ %)
91
£y WE
€31 . : | e
i
PL-10Y AS- | LY b
g ONYHHNGD 14IANO] Sey 6 e
0L 8 >
6 AG 9¢ £ pe
XLz ? W '
. < C o0 _
€31 00YNL Y o LI] me 23313 K
98- 1104 £31 A3 ‘ Mm =
B el -1i0% Y n
N . £y ASe
v Z
/0 SN1YLS) 7 3 . - 1dLN0 ¥-0
1 P p .
y dw.mlTun_lIu —(dIl In90TYNY
NL-Y ‘ :
%002 1y
7y

WV4OVIO 1INJY¥13 - ¥3LY3ANCT G7Y

APPENDIX 3

EMMA MONITOR SUB-ROUTINES

USER ROUTIMNES

Incliuded in the monitor program of EMMA II are sub-routines that perform
functions to assist the programmer. This section of the manual wil]

explain how to use these routines.

8 HEXADECIMAL TO DECIMAL/DECIMAL TO HEXADECIMAL
Routine Start Address = D900.
A mode signé] 'H' will appear indicating that the routine is in HEX
DEC mode. The 'H' is asking for a HEX number up to 4 digits to be
entered. After a HEX number has been entered. Pressing |P
"PROCESS", will change the state of the display to decimal and
disptay ‘D' in the mode character location and the decimal equivalent
of the HEX nurber on the right of the display.

- e.g. | H F5
245

BRANCH OFFSET CALCULATOR
Routine Start Address = D980
This sub-routine does branch calculations for the programmer.

Example:

Run the program from D980; the mode digit displays 'F' asking for a
"FROM" address to be entered.

e.g. Enter 0045 as "FROM" address by .pressing
'Process' the mode character 't' will appear asking for a
"TQ" address.

For this example enter 0060,

Pressing Egjagain and the nmde-chéracter,wilT display a
0" meaning that it is in the offset mode and displaying a

two digit offset, '19' in this example.

- A3'1 -

If the branch is out of range, the mode character will show 'E’
meaning ERROR.

In both of these cases pressing {R| (Re=Run) will re-run the

program.
i.e. Return to the "FROM" situation for the next
calculation. By pressing } L | the monitor program runs
and a reset situation exists.

RELOCATOR

Routinee Start Address = D9C9

This program is designed to move blocks of program to new address
Yocations. To use this program run from "D9C9". The mode digit
means “F" asking for start address of block to be moved for an
example enter 0245 as start address. Pressing | P! "PROCESS" the
mode digit will display 't' indicating the need for an end address +1
of the block to be moved, for this example enter 0260.

Pressing | P| key again the command will be 'd' asking
for a destination address, for the example enter 0800.

By pressing the | P | the program will now transfer data
from 0245. - 025F to a new address 0800; and return to the
monitor program and a row of dots will appear on the

display.

® CHECKSUM ROUTINE
Routine Start Address = DASO
A checksum is done by adding a group of data bytes -(e.g. a program)
together and forming a total to be used for comparison; for example
after transmission etc a bit could be corrupted hence the program
would have a different checksum. To use this'routine:, |

Go from DA5Q0 ‘ 7
The mode'character displays 'F' asking for an'address of start of
block to be checksumed.

Enter address. _
Press {P| the mode displays =y asking for the number of bytes.
Enter number of byteg ' ' |

- A3.2 -

Press
The mode character will display 'C' indicating a checksum and the checksum

appears on the right of the display.

By pressing 'O' the program returns to the monitor and a reset condition.

USEFUL SUBROUTINES

DATA INSERT ROUTINE

Routine Start Address = D805

This routine can be used in a program to ask the user to insert data
to be used as a function of the program. To utilise the program the
'Y' register needs to be set to the number of characters of the data.
The start address of the sub-routine is D805. For example enter the

small progranm.

0200 A0 05 LDY #05 Nurber of characters
0202 20 05 D8 JSR D805 "Insert’' subroutine
0205 4c EQ FE JMP FEEO Reset.

Run the program from 0200.

The display will show G 0200.

Now you can enter data up to § HEX characters. The displayed
characters will shift lTeft as this is beiﬁg loaded. For this example
enter 01234. By pressing PROCESS key | P| the program is

executed. The data has been converted into a 4 byte code

and stored at 001C - 001F by examination.

1C.= 34
1D = 12
1E = 00
1IF = 00

From the example during the routine .'X' is used and restored on exit
'Y' is used and restored on exit.

@ DISPLAY 8
Routine Start Address = DB49 _
This routine transfers data from 001C - 001F to the display buffer

in seven segment form. Zero suppression is also performed. For
example load locations 001C - 00IF with the following:

- A3.3 - : . .

001C 67
001D 45
Q0LE 23
001F 01

Run from D849 and the data will be displayed {1 23456 7

DISPLAY .
Routine Start Address = D84D
This routine is similar to 'DISPLAY 8', the only difference is the

data transferred for display is from 1C - 1E. Digit I of the
display is cleared and digit 0 is loaded from 1B. 1B can be loaded
to give a symbol or letter as a code of information. For example;
to display Tength 'L’ at 7500 1oad:

o0lB 38 Seven segment code for 'L

001C- 00
001D 75 Data (7500}
001E QO

Run from D84D
The display will read L 7500

] MULTIPLY BY 10
Routine Start Address = D89D
This routine multiplies the 3 byte number in 0A - OC by 1Obased 10
and stores the result in HEX back in OA - OC. Care must be taken
to ensure the monitor program does not corrupt the answer. -(i.e.
if the monitor uses 0A - OC)

= A3.4 -

MULTIPLY BY 16

Routine Start Address = D8B3

This routine muitiplies the 3 byte number in 0A - OC by 1610 and
stores the result at OA - OC. This routine starts at D8B3. By
modifying the program above at:

0211 20 90 D8 JSR D890
To 0211 20 B3 D8 JSR- D8B3

The result of the calculation will be displayed.

DISPLAY MEMORY COMTENTS
Routine Start Address = FEOC
Displays seven segment codes stored at:

0010 - 0017
If the contents of OO0OE is Tess than 80 the display is scanned once
and returns from the sub-routine. If the contents of O0OE is
greater than 80 the display is continuously scanned.

To show how this operation is done this sub-routine can be used:

HEXADEC IMAL _ SYMBOLIC COMMENTS
ADDR 1 2 3 LABEL MNEM OPERAND
0300 A9 80 LDA #80
0302 85 OE STA O
0304 A2 00 LDX #00
0306 85 20 * LDA 20,X
0308 95 10 STA 10,X
030A E8 INX |
0308 EO 08 CPX #80
0300 DO F7 BNE ¥
030F 20 OC FE JSR FEOC-
0312 8D 00 02 STA 0200
0316 4C E0 FE . JMP FEEQ

-~ A3.5 -

The program loads the contents of 0020 to 0027 into 0010 to 0017
and then displays them.

The code required to illuminate each segment are shown below:

SEGMENT CODE

01
02
04
08
10
20
40
d.p. 80

8 = D O O T o

HRITE 4 CHARACTERS
Boutine Start Address = FEOQO

Displays contents of (0000 + X - 3} (0000 + X - 2) (0000 + X - 1) and
(0000 + X), from Teft to right, on the display.

For example: Load Ol into location 002D, 23 into location 002E, 45 into
tocation 002F, 67 into location 0030. ‘

Load the following simple program starting at location 0300:-

0300 A2,30 LDX#30
0302 20,00,FF JSR FEQO

Run the program from 0300, i.e. press 'G', 0300, ‘G'.

The display will show the contents of locations 002D to 0030 inclusive.
This subroutine drops through to subroutine FEOC to display the
information. ' '

NOTE: The subroutine uses the accumulator, X register and Y register, so
if information in these registers is needed, then it must be stored

el sewhere before entering the subroutine.

- A3.6 =

DISPLAY MEMORY COMTENTS
Routine Start Address = FLEHE

Converts the contents of the indirect address formed from locations (0000
+ X) and {00CO + X + 1) into seven segment codes, and stores them in
locations 0016 and 0017. Jumping to subroutine FEOC will cause the
information to be displayed on the right hand side of the dispiay.

Load the following program starting at 0300:-

0300 A2,00 LDA#Q0
0302 8A TXA

0303 95,10 * STA 10,X clears
0305 E8 INX Tocations
0306 E0,08 CPX#08 0010-0017
0308 00,F9 BNE *

030A A9,80 LDA#80

030C 85,0E STA OF

030E A2,20 LDX#20

0310 20,5E,FE JSR FESE

0313 20,0C,FE JSR FEOC

Load 0020 with 30 and 0021 with 00. Load location 30 with AB.

Run the program from 0300, the display will show B on the right-hand two
digits. The subroutine starting at FESE uses the numbers stored in 0020
and 0021 (X = 20) to form an indirect address {in this case 0030) and then
converts the contents of this location into seven segment codes and stores
them at 0016 and 0017. Jumping to the subroutine at FEOC displays these
characters.

The subroutine uses the accumulator and Y register.

- A3.7 -

DISPLAY ACCUMULATOR COMTENTS
Routine Start Address = FE&0

Converts the contents of the accumulator into seven sequent codes and
stores them in locations 0016 and 0017. To display the contents of these
Tocations, jump to subroutine FEOC on returning from the subroutine at

FE6O.

To show how these subroutines can be used, load the following program:-

0300 AZ,00 LDX#00

0302 8A TXA

0303 95,10 * STA 10,X clears
0305 E8 INX locations
0306 EO0,08 CPX#08 0010-0017
0308 DO,F9 BNE * |
030A A9,80 LDA#80

030C 85,0E STA Ot

030E A5,30 LDA 0030

0310 20,60,FE JSR FE60

0313 20,0C,FE JSR FEOC

In this program the contents of 0030 are loaded into the accumulator. On
jumping to subroutine FE60, this information is converted into seven
segment codes and stored at 0016 and 0017. Jumping to subroutine FEOC
displays this information on the right of the display.

The subroutine uses the accumulator and Y register.

- A3.8 -

DISPLAY 4 CHARACTERS
Routine Start Address = FE64

Converts the contents of locations (0000 + X + 1) and {0000 + X} into
seven segment codes and stores them at locations 0011, 0012, 0013 and 0014
respectively. Jumping to subroutine FEOC will display this information.on
the 1eft hand centre of the display.

To show how this subroutine can be used, load the following program

starting at 0300:-

0300 A2,00 LDX#00
0302 B8A TXA

0303 95,10 * STA 10,X
0305 E8 THX

0306 £0,08 CPA#08
0308 DO,F9 BME *
030A A9,80 LDA#80
030¢C 85,0% STA OE
030E A2,30 LDXi#30
0310 20,64,FE JSR FE64
0313 20,0C,FE JSR FEQC

Load location 0030 with 23 and 0031 with 01. Run the program and 0123 will
be displayed.

The program displays the contents of Tocations 0030 and 0031 by first
jumping to the subroutine at FE64. This converts the information into
seven segment codes and stores these at location 0011, 0012,0013 and 0014
The program then jumps to the subroutine at FEOC to d1sp1ay the
information.

The subroutine uses the accumulator and Y régister.

- A3.9 -

READ HEXADECIMAL KEYS
Routine Start Address = FEB8

Shifts data entered on the keyboard hexadecimal keys into memory locations
(0000 + X + 1) and (0000 + X), the stbroutine then jumps to the
subroutines starting at addresses FE64 and FEOC to display the information
in the second, third, fourth and fifth digit positions (from the left

side of the display). When a command key is pressed the subroutine is
exited with the value of the command key stored in the accumulator and at
address 000D. Also on exiting the subroutine, the information which has
been entered will be stored in locations (0000 + X + 1) and (0000 + X), in
this case 0031 and 0030.

lL.oad the following program:-

0300 A2,00 LDX#00
8A TXA
95,10 * STA 10,X
E8 INX
E0,08 CPX#08
DO,F9 BNE *
A2,30 LDX#30
95,00 ~ STA 00,X
95,01 STA 0L,X
20,88, FE JSR FES8
4¢,13,03 ok JMP Hx

Run the program from 0300 and enter hexadecimal information via the
keyboard. MNotice that the information enters the display. Press a
command key and note that the display goes blank. Press RESET and then
examine memory locations 0030 and 0031, these will contain the last four

digits entered via the keyboard.

The subroutine uses the accumulator and the Y register.

Key values are:

M10 L14 000 404 808 ¢OC.
G11 R15 10L 505 909 0O
P12 +16 202 606 AOA FEOF

S13 -17 303 707 BOB FOF

- A3.10 -

OUTPUT DATA THROUGH THE CASSETTE INTERFACE {T0 TAPE)
Routine Start Address = FEB1

This subroutine takes an 8-bit parallel code from the accumulator and
outputs this byte as a serial code through the cassette interface.

The following program illustrates the use of subroutine FEBI:-

0300 A2,00 LDX#00
0302 BD,00,02 * LDA 0200,X
0305 20,B1,FE JSR FEBI
0308 E8 INX

0309 DO,F7 BNE *
030B 4C,EQ0,FE JMP FEEQ

Press reset before running the program and the program will output all of
page 02 through the cassette interface.

If required, the following program can be run to store AA and 55 in
alternate locations on page 02. The program given above can then be used
to store this data on tape.

0350 A2,00 LDX#00
0352 A9,AA LDA#AA
0354 85,20 STA 20
0356 A5,20 LDA 20
0368 49,FF EOR#FF
0354 85,20 STA 20
035C 90,00,02 STA 0200,X
035F E8 INX

0360 DO,F4 BNE F4
0362 4C,EO,FE JMP FEEQ

The subroutine at address FEBI uses the accumulator and Y register.

- A3.11 -

IMPUT DATA THROUGH THE CASSETTE INTERFACE (FROM TAPE)
Routine Start Address = FEOO

Loads a byte from tape into the accumulator. In loading this byte, the
subroutine takes a serial 8-bit code from the cassette interface and

converts it to a parallel code, placing this paralﬁe? byte in the

accumulator.

The following program illustrates the use of this subroutine:-

0300 AZ2,00 L.DX#00
0302 20,DD,FE JSR FEDD
0305 90,00,02 STA 0200,X
0308 &8 IHX

0309 DO,F7 BNE F7
0308 4C,FE,EC JMP FEEQ

This program loads 256 bytes of data from the tape and stores it on page
02.

If the program given in the TO TAPE routine is run first, then the FROM
TAPE routine can be used to read the data back from the tape.

The subroutine uses the accumulator and Y register.

- A3.12 -

APPENDIX 4

EMMA MEMORY MAP

The memory map for an unexpanded EMMA is as follows:

Q01F

0000

0020

QOQFF

Giag

01FF

0200

03FF

0900

DAF £

VAUQ

DAFE

0Ceou

OFFF

0800

DBFF

FOOQQ

F1EE

FEUO

FFFF

iB

i%

Reserved by the EMMA/VISA Monitor; used in conjunction with
devices such as the £prom Programmer, Matrix Printer etc.

Available as user RAM.
Designated by the 6502 as the system stack.

Available as user RAM.

Decoded for use by the EMMA IX input/output ports.
Decoded for use by the keyboard/display interface.

User RAM QEFC-0EFF interrupt vectors.
QEBQ-0EFF in use when VISA connected.

EMMA 11 Monitor; cassette routines, useful sub=-routines.
Available for user EPROM expansion.

EMMA II monitor program.

“?.‘ A4¢1 i

DETAILED SYSTEM HMEMORY HMAPS

The following sheets expand on the system memory map.

EMMA/VISA USER I1/0 PORT {(VIA)

The VIA has four Register Select inputs which decode to 16 internal registers
uniquely addressable by the User. The System Address Decode Hardware places
these Registers at memory locations as below:

ADORESS REGISTER | DESCRIPTION
DESIG. WRITE READ
Boxg ORB/IRB Qutput Register "B" Input Register "B"
#9x1 ORA/IRA Qutput Register "A" Input Register “A"
39x2 DDRB Data Direction Register "8"
$9x3 DDRA Data Direction Register "A"
@#9x4 TiC-L Tl Lomerder Latches Tl Low-Order Counter
@9x5 T1C-H T1 High-Order Counter
g9x6 T1L-L Tl Low-Order Latches
@9x7 TiL-H T1 High-Order Latches
@9x8 T2C-L T2 Low-Order Latches T2 Low-Order Counter
@9x9 - T2C-H T2 High-Order Counter '
POxXA SR Shift Register
@9xB ACR Auxiliary Control Register
g9xC PCR Peripheral Control Register
@9xD [FR Interrupt Flag Register
PIxE [ER Interrupt Enable Register
P9xF ORA/IRA Same as @9x¢ except no "Handshake"

- Ad,2 -

EMMA KEYBOARD/DISPLAY

CONTROL REGISTER
BIT
ADDRESS LIMES
CRA CRB
BIT 2 BIT 2
0AQO H X Peripheral Register A.
0AQCD Q X Data Direction Register A.
0AO01L X X Control Register A.
CAOD2Z2 X 1 Peripheral Register B.
0AQ02 . X 0 Data Direction Register B.
0AQ3 X X Control Register B.
X = EITHER QO or 1

The table shown gives the addresses of the various registers in the 6821.

: HEXADECIMAL.7-SEGMENT CODE CONYERSION FONT

Memory location FFEA-FFF9 contain seven-segment codes equivalent to hexadecimal

@-F consecutively.

NON-HMASKABLE INTERRUPT VYECTORS

Processor fetches NMI Vectors from memory-TocatiOns FFFA=FFFB. Jump to (FFAD)
that is 0EFC and GEED (EMMA). | | |

- A4.3 -

INTERRUPT REQUEST VECTORS

Processor fetches ?ﬁa Vectors from memory locations FFFF-FFFF. Jump to (FFB@)
that is @EFE and JEFF.

SYSTEM RESET VECTORS

Processor fetches RES Vectors from memory Jocations FFFCmFFFD. Jump to FEEQ
(EMMA) and F8@0 (VISA). '

- A& -

APPENDIX 5

OSCILLOSCOPES

INTRODUCTION

An oscilloscope will probably be your main test instrument and as such
should be treated with respect. A1so, take the trouble to read the
manufacturer's manual which will set out the operational details particular
to the oscilloscope you may be using. This appendix will consider
oscilloscopes in more general terms.

The front panel of the oscilloscope is generally divided inte sections:

Tube Control comprises an ON/FF switch, beam intensity and focus
control. You may also find a trim control to adjust the horizontal
deflection relative to the X-axis of the graticule.

Input Control comprises two sub-sections (dual trace) each of
which will possess:

® Sensitivity selector switch - this allows a suitable deflection in
the Y-direction to be obtained for a range of inputs.

o Signal coupling selector - allows selection of-A.C. or D.C. input
and also provides a means of grounding the oscilloscope input

without grounding the input signal.

o Trace position potentiometer - allows the trace to be moved
vertically upwards or downwards on the screen.

e An input connection, usually provided by a BNC socket.

= A5.1 -

Finally, a means of trace control will be proﬁided which is common to both
inputs:

o Input selection - usually a switch which permits selection of either

a single or dual beam.

Input Trigger Selection - allows the trigger control to operate from
either input as selected.

® Display mode selection - when used in the dual mode selection of
beam sweep mode must be made. In the 'alternative' position first
one input 1s swept across the screen followed by the second. The
alternation is continuously repeated.

In the chop mode, the beam is switched or 'chopped' at a high frequency
{50-100 XHz) between inputs and for a single sweep of the screen, 1In
general, the alternative mode would be used for high frequency signals
(sweep speeds>1 ms/division) and the 'chop' mode for low frequency

signals.
Time Base Control is quite comprehensive and comprising:

o Sweep time selector - a rotary switch which sets the rate at which
the beam is swept across the screen. Associaated with this is a
means of varying the sweep rate of any given settihg. Normally this
control would be set to its calibrate position when the sweep times
as selected should be those actually obtained.

e Trigger Source Selector - usually a slide switch which allows the
following trigger sources:

a) Internal - the trigger source is taken from the selected signal
vertical amplifier. This would be the normal mode of operation.

b} Line - this presents a useful trigger source for 'looking at'
small signals which are related in frequency to the A.C. Tower
Tine frequency. The trigger source is taken from the
oscillocope power transformer.

= AS»Z s

c) External - used when the start of the sweep must be related to
some external event. Associated with this mode will be a BNC
socket to input the external trigger signal.

Trigger level and Slope - slope control allows the trigger to be
effected on a rising slope (+) or falling siope (-). Trigger level
can be associated with this in that the Tevel to which the signal
must rise or fall can be set.

® Time base Magnification - usually a switch which expands the
horizontal deflection by a set factor, commonly times five {x5).

e Trace Position - allows the trace to be moved horizontally across

the screen.,

X-Y Control - converts one of the vertical amplifiers into a
horizontal amplifier thus allowing two input signals to drive the
beam in the vertical and horizontal directions respectively.

Finally, some means of calibration of vertical amplifiers may be provided.
This usually takes the form of a square wave form of at some fixed voltage

level and frequency.:

OBTAINING A TRACE

You will probably find that upon switching the oscilloscope ON, no trace
appears. There may be numerous reasons for this, but simply "twiddling
the knobs' at random is not a particularly good approach to 'finding a
trace'. A much more logical approach should be used which will prove less

frustrating.

PS Set sensitivity selector switch to maximum input veltage. This will
ensure that any further lower setting is a deliberate action on your
part and may prevent damage to the oscilloscope.

® Set signal coupling selector to 'ground' position - this ensures
that stray inputs at the oscilloscope input cannot affect the beam
of deflection. '

= A503 -

Trace position potentiometer - rotate to control position. This
will ensure that trace will appear at the centre of the screen,

Sweep time selector - set to approximately middle of range.

@

o | Trigger source selector - set to 'internal’.
o Trigger level control - set to 'automatic'.
° Intensity control - set to mid-position.

You are now in a position to switch ON. A few seconds should be allowed
before appeaarance of trace sine although most of thecircuitry is solid
state the cathode ray tube relies upon thermionic emission for its
operation. You should now have a trace which you can adjust for both
intensity and focus to obtain a good sharp trace across the screen.

USE OF PROBES

Probes are more than connecting leads between equipment under test and the
oscilloscope. They allow the best possible signal to be fed to the
oscilloscope and also present the least load to the circuitry being tested.
The most common probes in use are X1, X10 and X100 passive probes. The
%10 {times one ten) probe, for example, indicates that the signal

appearing at the oscilloscope input is 1/10 that appearing at the probe
tip, i.e., the signal at the point in the circuit being tested is
attenuated by the probe. This means that the volts/cm selected on the
sensitivity switch must be multiplied by 10 when computing the actual
voltage measured.

We have already stated that the probe hrovides the better signal as
distinct from using a 'piece of wire'. However, it must be adjusted fo
the oscilloscope to which it is being connected.

Note: The HAMEG X1 probe is matched to the HAMEG 203 ost11}oscope and no
adjustment is provided. '

Where adjustment is provided, the object is to compensate the probe to
give the best frequency response when connected to the particular
oscilloscope in use. The method is as follows:

® Connect the probe outlet to the particular channel that it will be
used with and the probe tip to the oscilloscope calibration output.

Set the vertical volts/cm and the horizontal time/cm controls so
that the square waveform generated by the calibration output fills
most of the screen.

Use a 'trimmer' tool to adjust the probe such that the corners of
the displayed square wave are the best obtainable. Typical
waveforms are as shown below: ‘

a) too much gain at higher frequencies

b) attenuation at higher frequencies

c) flat frequency response.

of the above ¢) is the waveform required

i ASOS hid

You may find that the actual response is:

d)
This suggests that the resistive element forming part of the probe is open

circuit, in which case the probe differentiates the input to give the

display shown.

Now lets Jook at another use for the probe. The input impedance of a
typical mid~-frequency oscilloscope can be represented as a paralliel

resistor/capacitor combination, e.g.

VERTICAL AMPLIFIER
0SCILLOSCOPE

%

INPUT

Ma

If the input of the bsci11osc0pe is connected to a logic circuit the
1M resistor may present very 1ittle problem but the capacitance may
load the circuit under test such that changes in timing may result in

malfunctioning.
A X10 orobe can alleviate this problem.

The probe plus oscilloscope can be represented as the diagram below:

hid A5a6 il

PROBE 0SCILLOSCOPE

A .. A

fﬁ_ L N N
A :

C frm—— n
R1 M
IMQ R2

In matching the probe to the oscilloscope what you in fact did was to trim
€, such that time constants ClRl = CZRZ'

1

Now, at low frequencies (say D.C.) the combination presents 10 M to the
test piece and the oscilloscope sees only 1/10 of the actual signal
measured. As the freguency increases the oscilloscope still sees 1/10 of
the measured signal and will do so for all frequencies. However, as
frequency increases the impedance of the combination will decrease from
its D.C. value but its capacitive loading will always be less than
approximately 2.3pF

- A5.7 -

APPENDIX 6

6502 INSTRUCTION SET

- AB.1 -

6502 INSTRUCTION CODES

The following notation applies to this summary:

A Accumulator

X,Y Index Registers

M Memory

P _ Processor Status Register
S Stack Pointer

v Change

- No Change

+ Add

A lLogical AND

- Subtract

¥ : Logical Exclusive Or
t Transfer from Stack
t | Transfer to Stack

- Transfer to

- Transfer to

v Logical OR

PC Program counter.

PCH _ Program Counter High
PCL Program Counter Low
OPER Oper and |
Immediate Addressing Mode

- AB.2 -

ADC Add memory to accumulator with cavryvy ADC

Operation: A + M + C —=A, C NZCIDYV
SIS S
Addressing Assembly Language op No.of No.of
Mode Form CODE Bytes Cycles
Immediate ADC # Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 70 3 4
Absolute, Y ADC Oper, Y 79 3 g
(Indirect, X) ADC {(Oper, X) 61 2 6
(Indirect), Y ABC (Oper),Y 71 2 5%
* Add 1 if page boundary is crossed.
AND “AND® memory with accumulator AND
Logical AND to the accumulator
Operation: AAM=A NZCIDV
N
Addressing Assembly Language op No.of No.of
Mode Form COOE Bytes Cycles
Immediate AND # Oper 29 2 2
Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X o 3D 3 4*
Absolute, Y AND Oper, Y 39 3 4
(Indirect, X) AND {Oper, X) 21 . 2 6
{Indirect), Y AND {Qper), ¥ 31 2 5%
* Add 1 if page boundary is crossed.
ASL ~ ASL Shift Left One Bit {Memory or Accumulator) ASL
Operation: C<|7[6|5{4{3}2]1 [«@ NZCIDYV
, VA
Addressing Asserbly language Op No.of No.of
Mode Form CODE Bytes Cycles
Accumul ator ASL A @A 1 2
Zero Page ASL Oper g6 2 5
Zero Page, X ASL COper, X 16 2 6
Absoiute ASL Oper GE 3 6
Absolute, X ASL Oper, X 1£ 3 7

- A6.3 -

BCC BCC Branch om Carvy Clear BCC

Operation: Branch on C = ¢ NZCIDY
Addressing Asserbly Language 0P No.of No.of
Mode Form CODE By tes Cycles
Relative BCC Oper 9a 2 2%

* Add 1 if branch occurs to same page..
* Add 2 if branch occurs to different page.

BCS BCS Branch on Carry Set BCS
Operation: Branch on C = 1 WZCIDV
Addressing Assemhly Language 0P No.of No.of
Mode Form CODE Bytes Cycies
Relative BCS Oper B@ 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

BEQ BEQ Bramch on Result Zero BEQ

Operation: Branch on Z = 1 . NZCIDYV
Addressing Assembly Language op No.of No.of 4
Mode ‘ Form CODE Bytes | Cycles
Relative BEQ Oper Fg 2 2%

* Add 1 if branch occurs to same ﬁage.
* Add 2 if branch occurs to different page.

BIT BIT Test Bits in Memory with Accumulator BIT
Operation: AAM, Ml—=N, M6 -V
Bit 6 and 7 are transferred to the status register. N ZCI DYV
If the result of A M is zero then Z = 1, otherwise M7 o « = M6
Z=4
Addressing Assembly Language apP No.of No.of
Mo de Form CODE Bytes Cycles
Zero Page -BIT Oper 24 2 -3
Absolute BIT Oper 2C 3 4

- A6-4 =

BHI BMI Branch on result minus BMI
Operation: branch on N =1 NZCIDV
Addressing Assembly Language 0P No.of No.of
Mode Form CODE Bytes Cycles
Retative BMI Oper 39 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BNE BNE Branch on result not zero BNE
Operation: Branch on Z = 0 MZICIDYV
Addressing Assembly Language 0P " No.of No.of
Mode Form CODE Bytes Cycles
Retative BNE Oper 09 2 2*
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BPL _ BPL Branch on result plus BPL
Operation: Branch on N = ¢ NZCIDY
Addressing Asserbly Language 0P No.of No.of
Mode Form CODE By tes Cycles
Relative BPL Oper 19 2 2*
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BRK BRK Force Break BRK
Operation: Forced Interrupts PC + 2 { P } NZCIDY
_ I
Addressing Assenbly Language ~Op No.of No.of
Mode Form ‘ CODE Bytes Cycles
Implied BRK a9 L 7

* A BRK command cannot be mgsked by setting I.

- A605 =

BYC Branch on Overflow (lear

BYC

BYC
Operation: Branch on V = 0 NZCIDYV
Addressing Assembly Language opP No.of No.of
Mode Form CODE Bytes Cycles
Relative BVC Oper Ea3 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BYS BYS Branch on Overflow Set BYS
Operation: Branch on V = 1 NZCIDYVY
Addressing Assenbly Language op No.of No.of
Mode Form COBE Bytes Cycles
Relative BYS Oper 7@ 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
cLC CLC Clear Carry Flag CLC
Operation: @ —C NZcIov
S
Addressing Assembly Language oP No.of No.of
Mode Form CODE Bytes Cycles
Implied CLe 18 1 2
cLD CLD Clear Decimal Mode CLD
Operation: @ -0D NZCIDYV
I
| Addressing Assenbly Laﬁguage iy No.of No.of
Mode ' Form CODE Bytes Cycles
Impl ied cLD D8 1 2

- AG.O -

CLI CLI Clear Intervupt Disable Bit CLI

Operation: @ =1 NZCIDYV
S S
Addressing Assembly Lanquage op No.of No.of
Mode Form CODE | Bytes Cycies
Implied CLI 58 ,o1 2
CLY CLY Clear Overflow Flag CLY
Operation: @V NZCIDY
e e = (]
Addressing Assembly lLanguage opP No.of No.of
Mode Form CODE Bytes Cycles
Imp1ied cLY B8 1 2
cup cup Co@pare Memory and Accumulator CHP
Operation: A - M. NZCIODYVY
S - - -
Addressing Assenbly Language 0P | MNo.of No.of
Mode Form CODE Bytes Cycles
Immediate CMP #QOper c9 2 2
Zero Page CMP Oper €5 2 3
Zero Page, X CMP Oper D5 2 4
Absolute CMP Oper) 3 4
Absolute, X CMP Oper, X DD 3 4
Absolute, Y CMP . Oper, Y D9 3 4%
{Indirect, X} CMP (Oper, X) : cl 2 5
(Indirect), Y CMP (Oper), Y 01 2 5%
* Add 1 if page boundary is crossed.
cPX CPX Compare Memovy and Index X . CPX
Operation: X = M NZC1DV
' A - -
Addressing Assembly Language‘ oP No.of No.of
Mode Form - CODE Bytes Cycles
Immediaté CPX #Oper EQ 2 2
Zero Page CPX Oper £d 2 3
Absolute CPX Oper ecC 3 4

- A6.7 -

cPyY

cPy CPY Compare Memory and Index Y
Operation: Y - M NZCIDYV
S -
Addressing Assembly Language 0P No.of No.of
Mode Form CODE Bytes Cycleas
Immediate CPY #@per cy 2 2
Zero Page CPY Oper Cé4 2 3
Afbsolute CPY Oper cC 3 4
DEC DEC Decrementi Memory by One DEC
Operation: M - 1..M NZCIODY
A a e e
Addressing Assembly Language op No.of No.of
Mode Form CODE By tes Cycles
Zero Page DEC Oper Cé 2 5
Zero Page, X DEC Oper, X D6 2 6
Absolute DEC Oper CE 3 6
Absotute, X DEC Oper, X_ OE 3 7
DEX DEX Decrement Index X by One DEX
Operation: X = 1—=X NZCTIDYV
' S e e e
Addressing Assemly language 0P No.of No.of
Mode Form Cooe Bytes Cycles
Implied DEX CA 1 2
DEY DEY Decrement Index Y by One DEY
Operation: Y = l—=Y NZCIDV
VAV
Addressing Assembly Language op No.of No.of
Mode Form CODE Bytes Cycles
Implied DEY 88 1 2

- A6.8 -

EOR EOR "Exclusive~-0Or"” Memory with Accumulator EOR

Operation: A4 M= A NZCIDV
. VAV AR
Addressing Assembly Language opP No.of No.of
Mode Form CODE Bytes Cycles
Immediate EOR #0per 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 Z 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4
Absolute, Y ECR Oper, Y 59 3 4*
(Indirect, X) £EOR- {Oper, X) 41 2 6
{(Indirect),Y EOR (Oper), Y 51 2 5

* Add 1 if page boundary is crossed.

INC INC Increment Memory by One INC
Operation: M+ 1 =M NZCIDV
, Ve = -
Addressing Assembly lLanguage 0P No.of No.of
Mode Form : CODE Bytes Cycles
Zero Page - INC Oper ' ' £6 2 5
Zero Page, X INC Qper, X Fé 2 6
Absolute I[NC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
INX INX Increment Index X by One INX
Operation: X + 1 =X NZCIOV
WAV G
Addressing Assembly bLanguage op No.of No.of
Mode Form CODE Bytes Cycles
Implied INX , £8 1 2
INY INY Increment Index Y by One INY
Operation: Y + L= Y NZCIDYV
AV
Addressing Assembly Language 0P No.of No.of
Mode Form CODE Bytes Cycles
Impl fed INY | c8 1 2

- AB.9 -

JMp JHP Jump to New Location JHP
Operation: (PC + 1) — PCL NZCIDYV
(PC +2)—=pPCH L.
Addressing Assembly lLanguage oP No.of Mo.of
Mode Form CODE Bytes Cycles
Absolute JMP - Qper 4c 3 3
Indirect JHMP (Oper) 6C 3 5
JSR JSR Jump to Mew Location Saving Return Address JSR
Operation: PC + 2}, {PC + 1) == PCL NZCIDYV
(PC + 2} =-PCH aaLLLl
Addressing Assenbly Language opP No.of No.of
Mode Form CODE Bytes Cycles
Absolute JSR Oper 20 3 6
LDA LDA Load Accumulator with Memory LDA
Cperation: M —=A NZCIlDVY
, e - o
Addressing Assenbly tLanguage op No.of No.of
Mode Form CODE Bytes Cycles
Immediate LDA #0Oper AS 2 2
Zero Page LDA Oper A5 2 3
Zero Page, X LDA Oper, X B5 2 4
Absolute LDA Oper AD 3 4
Absolute, X LDA Oper, X 8D 3 4x
Absolute, Y LDA Oper, Y 89 3 4*
(Indirect, X) LDA (Oper, X) Al 2 6
{Indirect), Y LDA {Oper), Y 81 2 5%
Add 1 if page boundary is crossed.
LDX LOX Load Index X With Memory LDX
Operation: M ==X ' NZCIDY
) S - -
Addressing Assembly Lanquage op No.of No.of
Mo de Form CODE By tes Cycles
Immediate LDX #Oper A2 2 2
Zero Page DX Oper AD 2 3
Zero Page, Y LOX Oper, Y 86 2 4
Absolute LDX. Oper AE 3 4
Absolute, Y LDX Oper, Y BE 3 4%

* Add 1 if page boundary is crossed

Nl A6'10 =

LSR

NOP

ORA

LDY LDY Load Index Y Hith Memory LDY
Operation; M —=Y ‘ NZCIDYV
S =
Addressing Assembly Language 0P Mo.of No.of
Mode Form CODE Bytes Cycles
Immediate LDY #Oper AQ 2 2
Zero Page LDY Oper Ad 2 3
Zero Page, X LDY Oper, X 84 2 4
Absolute LDY Oper AC 3 4
Absolute, X LDY Oper, X BC 3 4=
* Add 1 when page boundary is crossed
LSR Shift Right One Bit (memory or accumulator) LSR
Operation: @<|7/6]5(4[3]2] 1] 0[«C NZCILDY
) v/ - - -
Addressing Asssembly Language op Mo.of No.of
Mode Form CODE Bytes Cycles
Accumul aator LSR A 4A 1 2
Zero Page LSR QOper 46 2 5
Zero Page, X LSR Qper, X 56 2 6
Absolute LSR Oper 4E 3 6
Absolute, X LSR Oper, X 5E 3 7
| NOP No Operation NOP
Operation: No Operation (2 cycles) NZCIDYV
Addressing Assembly Language QP No.of No.of
Mode Form CODE Bytes Cycles
Implied NOP EA 1 2
ORA "0R" Memory With Accumulator ORA
Operation: AV M ==A NZCIDYV
, S S e e L
 Addressing Assembly lLanguage oP Mo.of No.of
Mode Form 1 Co0t Bytes Cycles
Immediate ORA #0per @9 2 2
Zero Page ORA Oper @5 2 3
Zero Page, X ORA Oper, X 15 2 4
Absolute CRA Oper @0 3 4
Absolute, X ORA Oper, X 10 3 4%
Absolute, Y ORA Oper, Y 19 3 4%
(Indirect, X) ORA (Oper, X) @1 2 6
(Indirect), Y ORA {Oper),Y 11 2 5%

PHA PHA Push Accumulator on Stack PHA

Operation: A} NZCIDYV
Addressing Assembly Language 0P No.of No.of
Mode Form CODE Bytes Cycles
[mplied . PHA 48 1 3
PHP PHP Push Processor Status om Stack PHP
Operation: P} NZCTIDYVY
Addressing Assembly Language QP No.of No.of
Mode Form CODE Bytes Cycles
Implied PHP @8 1 3
PLA PLA Pull Accumulator from Stack PLA
Operation: A ¢ NZCIDYV
VAV A
Addressing Assembly Language 0P No.of No.of
Mode Form C0oDE Bytes Cycles
Implied PLA | 68 1 4
PLP PLP Pull Processor Status from Stack PLP
Operation: P NZCI DY
From Stack
Addressing Assenbly oP No.of No.of
Mode rorm CODE Bytes Cycles
Implied PLP 28 Lo 4
ROL ROL Rotate One Bit Left (memory ov accumulator) ROL
Operation:i 765432!10% NZCIOYV
, VAVEVANISEE
Addressing Assembly Language op No.of No.of
Mode Form CODE Bytes Cycles
Accumul ator ROL A- 2A 1 2
Zero Page ROL Oper 26 2 5
Zero Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3€ 3 7

- AG.12 -

ROR ROR Rotate One Bit Right {memory or accumulator) ROR

Operation: L»-;Q;»-Lﬂs[i\su 3?3[Az| l[@]m} NzZcl1ov

V- - =
Addressing Assembly Language QP No.of No.of
Mode Form COCE Bytes Cycles
Accumul ator ROR A 6A I 2
Zero Page ROR Oper 66 2 5
Zero Page, X ROR Oper, X 76 2 6
AAbsolute ROR Oper 6E 3 6
Absolute, X ROR Oper, X 7€ 3 7
RTI RTI Return from Interrupt RT1
Cperation: P¢ PC ¢ NZCI DYV
From Stack
Addressing Assesbly Language op No.of No.of
Mode Form CoDE Bytes Cycles
Imp1 fed RT1 a9 1 6
RTS RTS Return from Sub-Routine RTS
Operation: PCt, PC + 1 = PC NZCI OV
Addressing Assembly Language op No.of No.of
Mode , Form COBE Bytes Cycles
Implied RTS 60 1 6
SBC SBC Subtract Memory from Accumulator with Borrow SBC
Operation: A = M = C —=A NZCIDYV
Note: T = Borrow : ' oSS -
Addressing Assembly lLanguage 0P No.of No.of
Mode Form CODE Bytes Cycles
Immediate ' SBC #Oper E9 2 2
Zero Page SBC Oper E5 2 3
Zero Page, X SBC Oper, X F5 2 4
Absolute S8C Oper £D 3 4
Absolute, X SBC Oper, X FD 3 ax
Absolute, Y S8C Oper, Y F9 3 a*
(Indirect, X} SBC (Oper, X) £1 2 6
(Indirect), Y SBC (Oper), Y Fl 2 5%

* Add 1 when page boundary is crossed.
il A6013 b

SEC SEC Set Carvy Flag SEC
Operation: 1-=C MZCIDY
U
Addressing Assembly lLanguage 0P No.of No.of
Mode Form CORE Bytes Cycles
Implied SEC 38 1 2
SED SED Set Decimal Mode SED
@peration: 1= MzCc1oy
- - ==] -
Addressing Asserbly Language 0P No.of No.of
Mo de Form CODE Bytes Cycles
Implied SED F8 1 2
SEI SEI Set Interrupt Disable Status SE1
Operation: 1 — I NZCILDYV
R
Addressing Assembly tLanguage 0P No . of Mo.of
Mode Form CODE By tes Cycies
Impl ied SE I 78 1 2
STA STA Store Accumulator in Memory STA
Operation: A= M NZCIDYV
Addressing Assembly bLanguage op No.of No.of
Mode Form CCDE By tes Cycles
Zero Page STA Oper 85 2 3
Zero Page, X STA Oper, X 35 2 4
Absolute STA Oper 8D 3 4
Absolute, X STA Oper, X 9D 3 5
Absolute, Y STA Oper, Y 99 3 5
(Indirect, X) STA (Oper, X) 81 2 6
(Indirect), Y STA (Oper}), Y 91 2 6

i 1“\6-14 -

STX STX Store Index X in Memory STX

Operation: X =M NZCIDYV
Addressing Assembly Language opP Mo.of No.of
Mode Form CODE By tes Cycles
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y 96 2 4
Absolute STX Oper 8E 3 4
STY STY Store Index Y in Memory STY
Operation: Y = M NZCTDV
Addressing Assenbly Language OP No.of No.of
Mode Form CODE Bytes Cycles
Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X 94 2 4
Absolute STY Oper 8C 3 4
TAX TAX Transfer Accumulator to Index X TAX
Operation: A = X NZCIDYV
N
Addressing Assembly lLanguage oP No.of No.of
Mode Form COoDE Bytes Cycles
Imp1 fed TAX Y I 2
TAY TAY Transfer Accumulator to Index Y TAY
Operation: A —=Y NZCI OV i
A
Addressing Assenbly Language 0P No.of No.of
Mode Form CONE Bytes Cycles
Impl ied TAY A8 1 o2
TSX TSX Tranmsfer Stack Pointer to Index X TSX
Operation: § —= X NZCILDYV
: VARV R
Addressing Assembly Language op ~ No.of No.of
Mode Form ' ' CODE Bytes Cycles
Implied TSX - BA i1 2

- Ab.1b -

TXA

TXA Transfer Index X to Accumulatoy

TXA

TXS

Operation: X —= A N-ZC 1DV
S
Addressing Assembly Language Qp No.of No.of
Mode CODE - Bytes Cycles
Implied 8A 2
TXS Transfer Index X to Stack Pointer TXS
Operation: X —= S NZCIDyV
Addressing Assembly lLanguage oP No.of No.of
Mode CO0E Bytes Cycles
[mplied 9A 2
TYA TYA Transfer Index Y to Accumulator TYA
Operation: Y - A NZCIDy
S - e o -
Addressing Assembly Language oP No.of No.of
Mode CODE Bytes Cycles
Impl ed 98 2

- AB.16 -

ACCUMULATOR

IMMEDIATE

ZERO PAGE

ZERO PAGE, X

ZERO PAGE,Y

ARSOLUTE

ABSOLUTE , X

ABSOLUTE,Y

IMPLIED

RELATIVE

(INDIRECT,X)

(INDIRECT,Y)

ABSOLUTE INDIRECT

ADC
AND
ASL
BCC
BCS
BEQ
0IT
BML
BHE
8PL
BRK
BVC
BYS
CLC
CLD
CLI
cLy
CiP
CPX
cPY
OEC
DEX
DEY
EOR
INC
INX
INY
JMP
JSR
LDA
LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLA
PLP
ROL
ROR
RTI
RTS
SBC
SEC
SED
SE1

STA

STX
STY

0A

4A

2A
6A

29

€9
£0
€O

49

A9
AQ

09

E9

65
25
06

24

€5
£4
c4
Co

45
£6

A5
Ab
A4

05

26

66

E5

85
86
84

75
35
16

D5

D6

55

Fo

BS

84
56

15

36
76

94

B6

96

6D

0E

2C

Ch
EC
cC
CE

4D
EE
4c
AD

AC
4

Qb

2E
6E

£D

80

8E
8C

70

1E

DD
DE
50

FE

BD

BC
5E

10

3E
7t

FD

90

79

D9

59

B9
B

19

F9

99

cO

18

58
B8

CA

£E8
c8

EA

. 48

08
68
28

40
60

38
F8
78

90
BO
FO

30
DO
10

50
70

¢l

61

41

Al

0l

£l

81

71

D1

51

81

11

Fl

91

6C

- A6.17 - | |

LOZYIANT FINTOSHY

(R“LOFYIANT)

(X *103410NT)

IATLVIRY

GIITANT

AA
A8
98

BA
8A
9A

ROALNTOSAY

¥ EINTosay

4L0Tosey

AfADvd oydz

X anvd oudz

d9vd 03Iz

ALVIAINWI

HOLYTNWNOOV

TAX
TAY

TYA
TSX
T XA

TXS

- A6.18 -

BRK

ORA - {Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page
ASL. - Zero Page
Future Expansion
PHP

ORA - Immediate
ASL - Accumulator
Future Expansion
Future Expansion
CRA - Absolute
ASL - Absolute
Future Expansion
BPL

ORA - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
CRA - Zero Page,X
ASL - Zero Page,X
Future Expansion
CLC :
ORA - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ORA - Absolute,X
ASL - Absolute,X
Future E£xpansion
JSR

AHD - (Indirect,X)
Future Expansion
Future Expansion
BIT = Zero Page
AND - Zero Page
ROL = Zero Page
Future Expansion
PLP

AND - Immediate
ROL - Accumulator
Future Expansion
BIT - Absolute
AND -~ Absolute
ROL = Absolute
Future Expansion

NUMERICAL LISTING

BMI

AND - {Indirect,X)
Future Expansion
Future Expansion
Future Expansion
AND - Zero Page,X
ROL - Zero Page,X
Future Expansion
SEC

AND - Absolute,Y
Future Expansion
Future £xpansion
Future Expansion
AND - Absolute,X
ROL = Absolute,X
Future Expansion
RTI

£0R - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page
LSR = Zero Page’
Future Expansion
PHA

ECR - Immediate
LSR = Accumulattor
Future Expansion
JMP - Absolute
EOR - Absolute
LSR - Absolute
Future Expansion
BVC ‘

EOR - (Indirect},X
Future £xpansion
Future Expansion
Future Expansion
EOR - Zero Page,X
LSR - Zero Page,X
Future Expansion
CLI

EOR - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR - Absolute,X
LSR = Absolute,X
Future Expansion

- A6.19 -

RTS

ADC -(Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page
ROR - Zero Page
Future £xpansion
PLA

ABC - Immediate
ROR - Accumulator
Future Expansion
JMP = Indirect
ADC - Absolute
RPOR - Absolute
Future Expansion
BVS

ADC - (Indirect),Y
Future Expansion
Future Expansicn
Future Expansion
ADC -~ Zero Page,X
ROR = Zero Page,X
Future Expansion
SEl

ADC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ADC - Absolute,X
ROR - Absolute,X
Future Expansion
Future Expansion
STA - {Indirect,X)
Future Expansion
Future Expansion
STY = Zero Page
STA - Zero Page
STX - Zero Page
Future Expansion
DEY

Future Expansion
TXA

Future Expansion
STY - Absolute
STA - Absolute
STX - Absolute
Future Expansion

9%
91
92
93

95
96
97
98
99
9A
9B
9C
9D
9E
9F
AY
Al
A2
A3

A5
Ab
A7
A8
A9
AA
AB

AD
AE
AF
B¢
81
B2
B3
B4
85
B6
B7
88
B9
BA
8B
- BC
8D
BE
BF

i

] LI T B |

BCC

STA - (Indirect),Y
Future £xpansion
Future Expansion
STY - Zero Page,X
STA = Zero Page,X
STX = Zero Page,Y

- Future £xpansion

LI B T |

TYA

STA - Absolute,Y
TXS

Future Expansion
Future Expansion
STA - Absolute,X
Future Expansion
Future Expansion
LDY - Immediate
LDA - (Indirect,X)
LBX ~ Immediate
Future Expansion
LDY - Zero Page
LDA - Zero Page
LDX - Zero Page
Future Expansion
TAY

LDA - Immediate

TAX

- Future Expansion

[T T I

LDY - Absolute

LDA - Absolute

LDX - Absolute
Future Expansion
BCS

LDA - (Indirect),Y
Future Expansion
Future Expansion
LOY - Zero Page,X

- LDA - Zero Page,X

N S R |

LDX - Zero Page,Y
Future Expansion
CLy _ '

LDA - Absolute,Y

- TSX

i 0 1 4

Future Expansion
LDY - Absolute,X
LDA - Absolute,X
LDX - Absolute,Y
Future Expansion

- CPY - Immediate

LI T B 1

E 2 8 8 3

CMP - {Indirect,X)
Future Expansion
future Expansion
CPY - Zero Page
CHMP -~ Zero Page
DEC - Zero Page
Future Expansion
INY

CMP - Immediate
DEX

Future Expansion
CPY - Absolute

- CMP - Absolute

DEC - Absolute
Future Expansion
BNE

CMP - {Indirect),Y
Future Expansion
Future Expansion

- Future Expansion

]

[I T |

¢ ¢ 5 & 3 3 3

LI T T A A

CMP - Zero Page,X
OEC - Zero Page,X
Future Expansion
CLD

CMP - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
CMP - Absolute,X
DEC - Absolute,X
Future Expansion
CPX - Immediate
SBC - (Indirect,X)
Future Expansion
Future Expansion
CPX - Zero Psge
SBC - Zero Page
INC - Zero Page
Future Expansion
INX :
SBC - Immediate
NGP

Future Expansion
CPX - Absolute
SBC - Absolute
INC ~ Absolute
Future Expansion

= Ab6.20 -

F@
Fl
F2
F3
Fd
F5
Fé
F7
F8
F9
FA
FB
FC
FD
FE
FF

L I T T T T T T S H

§

BEQ

SBC - {Indirect),.
Future Expansion
Future Expansion
Future Expansion
SBC - Zero Page,X
INC =~ Zero Page,X
Future Expansion
SED

SBC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
SBC - Absolute,X
INC - Absolute,Y
Future Expansion

MICROPROCESSOR INSTRUCTION SET ALPHABETICAL SEQUENCE

ADC Add Memory to Accumulator with Carry
AND "AND" Memroy with Accumulator
ASL Shift Left One Bit {Memory to Accumulator)
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Result Zero
BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus
BNE Branch on Result not Zero
BPL Branch on Result Plus
- BRK Force Break
BYC Branch on QOverflow Clear
BYS Branch on Overflow Set
CLC- Clear Carry Flag
CLD Clear Decimal Mode
CLI Clear Interrupt Disable Bit
CLV Clear Overflow Flag
CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y
DEC Decrement Memroy by One
DEX Decrement Index X by One
DEY Decrement Index Y by Cne
EOR "Exclusive Or" Memory with Accumulator
INC Increment Memory by One
INX Increment Index X by One
INY Increment Index Y by One
JMP Jump to New Location
JSR Jump to Mew Location Saving Return Address
LDA Load Accumulator with Memory
LDX Load Index X with Memory
LOY Load Index Y with Memory
LSR Shift Right One Bit (Memory or Accumulator)
NOP No Operation : :
ORA "OR" Memory with Accumulator
PHA Push Accumulator to Stack
PHP Push Processor Status to Stack
PLA - Pull Accumulator from Stack
PLP Pull Processor Status from STack
ROL Rotate One B8it Left (Memory or Accumulator)
ROR Rotate One Bit Right (Memory or Accumulaotr)
RTI Return fro Interrupt
RTS Return fron Subroutine
SBC Subtract Memory from Accumulator with Borrow
SEC Set Carry Flag
SED Set Decimal Mode
SEI Set Interrupt Disable Status
STA Store Accumulator in Memory
STX Store Index X in Memory
STY Store Index Y in Memory
TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer STack Pointer to Index X
TXA Transfer Index X to Accumulator -
TXS Transfer Index X to Stack Pointer
TYA Transfer Index Y to Accumulator

- Ab.21 -

MICROPROCESSOR INSTRUCTION SET - ALPHABETIC SEQUENCE

INSTRUCTION ADDRESSING MODES AND RELATED EXECUTION TIMES (in clock cycles)

ABSOLUTE INDIRECT

ACCUMULATOR
IMMEDTATE
ZERO PAGE
ZERD PAGE, X
ZERO PAGE, Y
ABSOLUTE
ABSOLUTE, X
ABSOLUTE, Y
IMPLIED
RELATIVE
(INDIRECT, X)
(INDIRECT, Y)

ADC
AND
ASL | 2
BCC
BCS
BEQ
BIT 3 4
BMI
BNE
BPL
BRK
BYC
BVS
CLC
CLD
CL1
CLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR 12 3| 4 4 | 4 | g 6 | 5%
ING 5 6
INX
CINY
JHP
JSR
LOA
LDX
LDY
LSR | 2
NOP
ORA 2
PHA
PHP
PLA
pLP

[ASEAN
o
N
b3
9
oy Oh
ol
%

4* 4%

W
o W g Y
~a

2%x*
2**
PR¥

Z2r*®
atd
2%

Yk
FHk

NN

L 6 | 5%

N NN
(%3 VST WO PN
o T NI N
)
™ PO [R*EaS]

Gk | 4 6 | 5*
4*
4%

SRR
T W L
o B
Y
[N NS)
1)

a | g% 6 | 5%

W
Lo
e

I o W

* Add one cycle if indexing across page boundary.
**% Add one cycle if branch is taken. Add one if branching operation

crosses page boundary.

- A6022 -

MICROPROCESSOR INSTRUCTION SET - ALPHABETIC SEQUENCE

INSTRUCTIOM ADDRESSING MODES AND RELATED EXECUTION TIMES (in clock cycles)

ABSOLUTE INDIRECT

ACCUMULATOR
IMMEDIATE
ZERO PAGE
ZERO PAGE, X
ZERC PAGE, Y
ABSOLUTE
ABSOLUTE, X
ABSOLUTE, Y
TMPLIED
RELATIVE
(INDIRECT, X)
(INDIRECT, Y)

ROL
ROR
RTI
RTS
SBC 2 3 4 4 | 4 | 4 | & | 5%
SEC
SED
SEI
STA

™ N

(&2}

(=)

<y Oh
~J

[ea N =)

N NN

STY
TAX
- TAY
TSX
TXA
TXS
TYA

Moo MMMNND

* Add one cycle if indexing across page boundary.
** Add one cycle if branch is taken. Add one additional if branching

operation croses page boundary.

e A6023 -

APPENDIX 7

MICROCOMPUTER GLOSSARY

A

Ab solute Address
The unique address of a memory location as distinct from a

relative address which may not be determined until required by
the program execution.

Access Time
The time interval between when a stable memory address is set up

on an address bus to when the data in that memory appears stable
on the data bus.

Accumulator
A register associated with the arithmetic/logic unit of a
microprocessor. It is used as an intermediate data memory during
data movements and arithmetic/logical operations.

Address
A unique identifier given to a memory location or a device
register which allows access to that memory/register only by a
microprocessor.

Address Field
The portion of a microcomputer instruction which specifies either
the address of the operand or data necessary to derive that

address.

Addressing Modes
- See memory addressing modes.

= A7.1 -

Al gorithm
A statement of procedure used to soive a problem or perform a
task. Algorithms are implemented on microcomputers by a series

of instructions.

Arithmetic-Logic Unit (ALU)
A part of a microprocessor identified by function which executes
arithmetic and 1ogical operations.

Architecture
The organisational structure of a microcomputing system.
Generally, applied specifically to the microprocessor or
input/output interface devices.

ASCII Code
The acronym for American Standard Code for Information

Interchange. Used extensively for data transmission.

Assembler
A computer program which changes a symbolic assembly language
source program into an executable object (binary coded) program.

Assenbly lLanguage
A human-orientated symbolic mmemonic source language used by a
microcomputer programmer to encode programs.

Assenbly Listing
A printed 1isting of a machine code program assembled by an
assembler and from an assenbly language program.

Basic
A programming language. Acronym for Beginner's A11mPurpose
Symbolic Instruction Code.

- A7.2 -

Baud
A unit of serial data transmission rate. It approximates to the
number of bits transmitted per second but includes ‘start' and

'stop’ bits.

Benchmark
A point of reference. A program written in a given language may
be used as a benchmark or means whereby the relative performance
of two or more systems can be compared.

Bi-Directional
Generally refers to bus structures where data or control signals

can be transmitted in both directions. As opposed to uni-
directional.

Binary Nunber System
A number system whose base is 2 and expresses all its quantities

using two symbols only e.qg. 0 and 1.

Bi-Stable Latch _
A simple flip-flop which can be enabled so as to store a logical
one or logical zero. Commonly used in memory or register
circuits to store individual bits.

Bit
A binary digit. The smallest unit of data in a microcomputer
system. '

Bit Parallel
A means whereby all bits of a group of bits may be simul taneously
transferred from one point to another using a group (bus) of
wires. One wire for each bit.

Bit Serial
A means whereby a group of bits are transferred from one point to
another, bit by bit and using a single wire. The transmission
takes place to a strict format.

- A7.3 =

B1ock

A data group of consecutive words, bytes, characters or bits

which are usually handled as a singLe entity.

Block Diagram

A chart which outlines the functional relationship between
identifiable parts of the hardware of a system

Branch Instruction

An instruction which, when executed, may cause a program to

branch (jump) to an instruction other than the next sequential one
normally executed. The branch may be conditional upon the status
of a register or unconditional. Synonymous with Jump.

Break Point

A point in a program at which the program execution can be halted
to allow inspection of registers, input of data or generally
check program operation. Frequently used in program debug
routines.

Bus
A common communication path between two or more devices within a
system. Usually defined by function.

8us Driver
A device which amplifies a bus signal to ensure a sufficiently
strong signal is received at destination.

Byte)
A set of binary digits (Bits), usually eight, which are operated
upon as a single entity. A computer word may comprise a number of
bytes. ‘

C

Carry

The transfer of a value from one lower order bit position to the
next higher order bit position when the number system base is
exceeded at the lower order bit position.

- A7-4 -

Character
A symbol belonging to a set of alphabetic, numeric and/or graphic
symbols. Each character is represented in the computer memory by

a unique binary code.

Chip
An integrated electronic circuit.

Clock
A device which generates regular timing pulses to which all
operations of a system can be synchronised.

Cobol
A programming 1anguage.‘ Acronym for Common Business - Oriented
Language. Characterised by a high degree of machine
independence.

Code
A system of characters which may be used to represent information
and capable of being understood by a microcomputer.

Compiler
A program used to convert another program written in a high level
Tanguage such as COBOL into an assembly or machine language
program. :

CMOS

Abreviated for "Complementary Metal Oxide Semi-Conductor".
These semi-conductor devices are characterised by low power
dissipation, moderate speed of operation and high density of
integration.

Conditional Jump
See Branch Instruction

Configuration
The arrangement of hardware and/or software making up a system.

- A7.5 -

Control Character
A character whose occurrence may initiate, modify or halt an

operation.

Counter
A device such as a register or a memory location which can be
used to record a nunber of events. Counters are usually
incremented, decremented, set to a value or cleared.

Crosstalk
Undesirable electrical signals between adjacent channels of a

data transmission system.

Crovbar
A protective circuit used on power supply systems to reduce the
output voltage to ground when an over voltage condition occurs.

Current Loop
A communication method whereby the presence or absence of a
current is used to represent transmitted data. 20 milli-amperes

is typical.

Cycle Time
The time period required by a micro-processor to read from or
write to a system memory. It is often used to measure a
microprocessor performance.

D

Daisy Chain
A method of propogating signals along a bus system. Devices not
requesting a daisy-chained signal respond by passing the signal
on. The first device requesting the signal responds by breaking
the signal continuity. The system permits device priorities
according to electrical position along the chain.

Data Acquisition
The function of obtaining data from external sources, converting
into binary format for processing by a microcomputer system.

= A706 -

Data Buffer Register
A temporary storage device which allows transmission of data
between devices capable of handling data at different rates.

Data Pointer
A register holding the memory address of data to be used by an
instruction. The register 'points' to the memory location of

data.

Data Reduction
The process of transforming masses of raw text or experimental
data into a useful or more readily understood form.

Debug
To eliminate programming mistakes.

Debug Programs
Programs which help a programmer to find errors in his programs.

Decoder
A logic device which converts data from one number system into
another.

Decrement
To reduce a numerical constant by one.

Device

A unit of hardware capable of performing a given function.

Device Register
An addressable register used to store status, control information

or data for transfer to or from a device.
Diagnostic Programs

Programs which check the operation of specific system hardware
for correct operation.

= A7.7 -

Diode Transistor Logic (DTL)
A family of integrated circuit logic using both diodes and
transistors. They are characterised by medium speed, low power
dissipation, high drive capability and low cost.

Disc Storage
A method of bulk storage of data and programs onto a disc of
magnetic material. It js characterised by the ability to
randomly access portions of selected data.

Dual-in-line (DIL)
Most common method of packaging integrated circuits. Circuit
leads or pins extend symmetrically outwards and downwards from
opposite ends of the rectangular package.

Dynamic Memory
A type of semi-conductor memory in which the presence or absence
of a capacitive charge represents the state of a binary storage
element. The charge must be periodically refreshed.

E

Editor
A program which manipulates text material and so facilitates the
preparation of source programs. |

Enable
A single condition which permits a specific processing event to
take place.

Encode

A process whereby individual characters are represented in a
coded format. Usually consisting of binary numbers.

Exclusive OR function
A logical operation in which the result is logicaliy true only
when one input is true and false when both inputs are true or
-false.

- A7.8 -

Execute

External

Fetch

Firmware

To run a program or perform a specific computer instruction.

Device
A unit of processing equipment external to that of the

microprocessing unit.

The action of obtaining an instruction from a stored program and
decoding that instrugtion. Also refers to that portion of a
computer's instruction cycle when that action is performed.

A computer program (software) that is implemented in hardware,
such as a ROM.

Fixed-point Arithmetic

Arithmetic in which the decimal point that separates the integer
and fractional portions of numerical expressions is either
explicitly stated for all expressions or is fixed with respect to
the first or last digit of each expression.

Flag
Usually a single binary bit used to give an indication of state
or condition. Flags can be implemented by both software or
hardware. '

Flip-Flop

A logical device which has two stable states.

Floating-point Arithmetic .

Arithmetic in which the decimal point is defined as a power of
ten and all exponents are equalised prior to any operations.

= A?ng =

Flow-chart
A graphical representation of the processing steps performed by a
computer program or a sequence of logical steps performed by

hardware.

Format
Orderly structured arrangement of data elements (bits, character,
bytes or fields) which form a larger entity.

Fortran
A computer high-level language. 3cience oriented. Derived from

FORmula TRANslator.

Fusible Link
A type of programmable read-only memory integrated circuit whose
memory is formed by 'burning' open by means of a current to form
a logical '0'.

Gate
A Togic element which has two or more inputs and one output. The
output state is dependent upon the logic states of the inputs.
It is generaly described by means of a truth table.

General Register
An internal addressable register which is used for temporary
storage. Example the accumulator, index register.

H

Handshaking
The sequencing of signals-for communication between assynchronous
system devices. '

Hard copy
A printed output as opposed to a volatile display on a Yideo
terminal.

- A7.10 -

Hardware
Physical equipment forming a computer system.

Hard-wire logic
A group of logic circuits permanently interconnected to perform a
specific function.

Hexadecimal
A number system to base sixteen. Used to encode four binary
digits.

High Level Language
A computer Tanguage which uses symbols conveniently read by the
programmer. Examples BASIC, FORTRAN, COBOL.

I

Immediate Addressing
A method of addressing an instruction in which the operand is
inherent in the instruction or in the memory location immediately
following.

Immediate Data
Data which follows immediately an instruction in memory.

Indexed Addressing
A method of addressing in which the address part of an
instruction is modified by the contents of an index register.

Index Register .
A register which contains a quantity which may be used to modi fy
memory address.

Indirect addressing
A means of addressing in which the address of the operand is
specified by an auxiliary register or memory location specified
by the instruction rather than by bits in the instruction itself.

= A?Ill -

Input/Output (I/0)
General term for the equipment used to communicate with a
computer CPY; or the data invoived in that communication.

Integrated Circuit (IC)
A solid-state microcircuit consisting of interconnected active
and passive semiconductor devices diffused into a single silicon

chip.

Instruction
A set of bits that defines a computer operation, and is a basic
comnand understood by the CPU. It may move data, do arithmetic
and logic functions, control I/0 devices, or make decisions as to
which instruction to execute next.

Instruction cycle.
The process of fetching an instruction from memory and executing

.itl

Instruction Length
The number of words needed to store an 1nstructfon. It is one
word in most computers, but some will use multiple words to form
one instruction. Multiple-word instructions have different
instruction execution times depending on‘the length of the
instruction.

Instruction set.
The set of general-purpose instructions available with a given
computer., In general, different machines have different
instruction sets. '

Instruction time
The time required to fetch an instruction from memory and then
execute it.

Interpreter
A program which fetches and executes ‘instructions' (pseudo-
instructions) written in a higher-level language. The higher-
Tevel language program i's a pseudo-program. Contrast with
compiler. '

- A7.12 -

Interrupt latency
The delay between an interrupt request and acknowledgement of the

request.

Interrupt request
A signal to the computer that temporarily suspends the normal
sequence of a routine and transfers control to a special routine.
Operation can be resumed from this point later. AMility to
handle interrupts is very useful in communication applications
where it allows the microprocessor to service many channels.

Interrupt mask
A mechanism which allows the program to specify whether or not

interrupt requests will be accepted.

Interrupt service routine
A routine (program) to properly store away on the stack the
present status of the machine in order to respond to an interrupt
request; perform the 'real work’ required by the interrupt;
restore the saved status of the machine; and then resume the
operation of the interrupted program. ‘

Interrupt vector
Typically, two memory locations assigned to an interrupting -
device and containing the starting address and processor status

word for its service routine.

I/0 Interface
The control electronics required to interface an 1/0 device to a

computer CPU. The power and use of a CPU is very closely
associated with the range of I/0 devices which can be connected
to it. One cannot usually simply plug them into the CPU. The
I/0 control electronics will do the matchmaking. The complexity
and cost of the control electronics are very much determined by
both the hardware and software I/0 architecture of the CPU.

- A7.13 -

I/0 Port

Jump

L

A connection to a CPY which is confiqured {or programmed) to
provide a data path between the CPU and the external devices,
such as keyboard, display, reader, etc. An I/0 port of a
microprocessor may be an input port or an ocutput port, or it may
be bi-directional.

A departure from the normal one-step incrementing of the program
counter. By forcing a new value (address) into the program.
counter the next instruction can be fetched from an arbitrary
location (either further ahead or back).

Large-scale integration (LSI)

Library

Loop

"

High density integrated circuits for complex Togic functions. LSI
circuits can range up to several thousand transistor type
circuits per mm? of silicon chip.

A collection of standard or frequently used routines and

‘subroutines.

. A self-contained series of instructions in which the last

instruction can cause repetition of the series until a terminal
condition is reached. Branch instructions are used to test the
conditions in the loop to determine if the loop should be
continued or terminated. '

Machine cycle

The basic CPU cycle. In one machine cycle an address may be sent
to memory and one word (data or instruction)} read or written, or,
in one machine cycle a fetched instruction can be executed..

- A7.14 -

Machine Language

The numeric form of specifying instructions ready for loading
into memory and execution by the machine. This is the lowest-
level language in which to write programs. The value of every
bit of every instruction in the program must be specified (e.g.
by giving a string of binary, octal, or hexadecimal digits for
the contents of each work in memory).

Macro (macroinstruction)

A symbolic source language statement which is expanded by the
assembler into one or more machine language instructions,
relieving the programmer of having to write out frequently
occurring instruction sequences.

Medium-scale integration {MSI)

Memory

A medium-density integrated circuit, containing logic functions

more complex than small-scale integration but less complex than

large-scale integration. Most 4-bit counters, latches, and data
mul tiplexers are considered MSI devices.

That part of a computer which holds data and instructions. Each
instruction or data is assigned a unique address which is used by
the CPU when fetching or storing the information.

Memory address register

The CPU register which holds the address of the memory location
being accessed.

Memory addressing modes

The method of specifying the memory location of an operand.
Common addressing modes are: direct, immediate, relative,
indexed, and indirect. These modes are important factors in
program efficiency.

Memory cycle

The operations reguired for addressing, reading, writing and/or
reading and writing data in memory.

- A7.15 -

Memory Map

A 1isting of addresses or symholic representations of addresses
which define the boundaries of the memory address space occupied
by a program or a series of programs. Memory maps can be
produced by a highlevel Tanguage such as FORTRAN.

Microcomputer

A computer whose processing unit is a microprocessor. A
microcomputer is an entire system with microprocessor, memory and
input-output controllers. .

Microprocessor

Mnemonic

Moni tor

A single LSI circuit which performs the functions of a CPU. Some
characteristics of a microprocessor include small size, inclusion
in a single integrated circuit or a set of integrated circuits,

and low cost.

code

Computer instructions written in brief, easy-to-learn, symbolic
or abbreviated form. Mnemonic code is also recognisable by the
assenbly program. For example, ADD, SUB, CLR and MOV are
mnemonic codes for instructions which will be executed as machine

code.

A program, typically part of a larger Qpefating system, which
provides a uniform method of program timing, scheduling, and
handiing of input/output tasks.

Monolithic integrated circuit

An electronic circuit formed within a single small chip of
crystalline semiconductor material, usually silicon. Typically,
the chip is contained in a plastic or ceramic package.
Electrical connections to package leads are made by fine wire
which is welded to metal pads on the chip and to the package
1eads.

= A7-16 =

N
Nesting

Nibble

A programming technique in which a segment of a larger program is
executed iteratively {looping) until a specific data condition is
detected, or until a predetermined number of interactions has

been performed. The nesting level is the number of times nesting

can be repeated.

A sequence of 4 bits operated upon as a unit. Also see byte.

Nonvolatile memory

0

A type of computer system memory offering preservation of data
storage during power loss or system shutdown. Magnetic core
read/write memory systems are typically nonvolatile, and,
therefore, do not require reloading to restore programs and data

when system power 1is applied.

Object program

The binary form of a source program produced by an assembler or a
compiler. The object program is composed of machine-coded
instructions that the computer can execute.

Online system

Operand

A system of I/0 devices in which the operation of such devices is
under the control of the CPU and in which information reflecting
current activity is introduced into the data processin§ or
controlling system as soon as it occurs.

Any of the gquantities arising out of or resulting from the
execution of a computer instruction. An operand can be an
argument, a result of computation, a constant, a parameter, the
address of any of these quantities, or the next instruction to be

executed.

- A7.17 -

Operating System

A structured set of sofiware routine whose function is to control
the execution sequence of programs running on a computer,
supervise the input/output activities of these programs, and
support the development of new programs through such functions as
assembly, compilation, editing and debugging.

Operation code {op-code)

Overflow

Page

That part of a computer instruction word which designates the
function performed by a given instruction. For example the op-
code for the arithmetic instruction Addition {with carry) is ADC.

‘A condition occurring in a computer when the results of a

mathematical operation produce a result which has a magnitude
exceeding the capacity of the computer's word size.

A natural grouping of memory locations by higher-order address
bits. In an 8-bit microprocessor, 28 = 256 consecutive bytes
often may constitute a page. Then words on the same page differ

in the lower-order 8 address bits.

Parity check

A method of checking the correctness of binary data after that
data has been transferred from or to storage. An additional bit,
called the parity bit, is appended to the binary word or

. Character to be transferred. The parity bit is the single-digit

sum of all the binary digits in the word or character, and its
logical state can be assigned to represent either an even or an
odd nunber of 1's making up the binary word. Parity is checked
in the same manner in which it is generated.

- A7.18 -

Peripheral device

Pointer

Polling

Port

A general term designating various kinds of machine which operate
in combination or conjunction with a computer but are not
physically part of the computer. Peripheral devices typically
display computer data, store data from the computer and return
the data to the computer on demand, prepare data for human use,
or acquire data from a source and convert it to a form usable by
a computer. Peripheral devices include printers, keyboards,
graphic display terminals, paper-tape reader/punches, analog-
digital converters, discs and tape drives.

Registers in the CPU which contain memory addresses. See program
counter and data pointer.

A process in which a number of peripheral devices, remote
stations, or nodes in a computer network are interrogated one at
a time to determine if service is required.

An input or output route for transferring data or information to
or from a sytem.

Position-independent code (PIC)

Machine-coded programs using only relative addressing, permitting
the programs to reside in any portion of system memory.

Power-fail circuit

A logic circuit that protects an operating program if primary
power fails. A typical power-fail circuit informs the computer
when power failure is imminent, initiating a routine that saves
all volatile data, After power has been restored, the circuit
initiates a routine that restores the data and restarts computer
operation. J

= A?wlg -

Priority
The sequence in which various entries and tasks are processed or
peripheral devices are serviced. Priorities are based on
analysis of codes associated with an entry or task, or the
positional assignment of a peripheral device within a group of
devices.

Processor status work (PSW)
A special-purpose CPU register which contains the status of the
most recent instruction execution result, trap bit, and interrupt
priority.

Program ,
A complete sequence of computer instructions necessary to solve a
specific problem, perform a specific action, or respond to
external stimuli in a prescribéd manner.

Program Counter
A CPU register which specifies the address of the next instruction
to be fetched and executed. Normally it is incremented
automatically each time an instruction is fetched.

Programmable read-only memory (PROM)
A read-only memory which can be programmed after manufacture by
external equipment. PROMs are generally integrated circuits,
with each memory cell connected to assert a logic 1. The fusible
link connecting a cell can be disconnected (burned open) to
produce a logic O.

Push-down stacks
Dedicated consecutive temporary storage registers in a computer,
- sometimes part of system memory structured so that the data items
retrieved are the most recent items stored on the stack.

R

Random-access memory RAM)
A computer memory structured so that the time required to access
any data item stored in memory is the same as for any other item.

- A7.20 -

Read-write cycle

Read Time

The sequence of operations required to read and write {restore)
memory data.

A computation or process by a computer using inputs derived from
time-initiated events; the output resulting from the computation

or processing can have an effect on and/or predict trends
concerning those events.

Real-time clock

A timing device used by a computer to derive elapsed time between
events and to control processing of time-initiated event data.

Re-entrant code

Register

Relative

The instructions forming a single copy of a program or subroutine
which is shared by two or more programs, as opposed to the
conventional method of embedding a copy of a subroutine within
each program. Characteristically, re-entrant routines are
composed completely of instructions and constants which are not
subject to modification during execution.

A temporary storage unit which can be implemented as a hardware
device or as a software structure and used to store déta for
manipulation and/or processing reference. Typically, a register
consists of a single computer word or a portion of a word.

address

An address of a machine instruction which is referred to as
origin address. For example, consider the relative address 15
which is transiated into the absolute address origin R + 15
where R is typically, the contents of the PC register. Relative
addressing allows the generation of position-independent code.

Rg]ocatabie

ObJject programs that can reside in any part of system memory. The
actual starting address is established at load time by adding a
relocation offset to the starting address. Relocatable code is
typically composed of position-independent code.

= A7021 b

Resident software
Assenbler and editor programs incorporated with a prototyping
system to aid in user program writing and development; see

software.

Response time
The time between the initiation of an operation from a computer
terminal and the receipt of results.at the terminal. Response
time inciudes transmission of data to the computer processing,
file, access and transmission of results to the terminal.

ROM read-only memory (fixed memory)
Is any type of memory which cannot be readily re-written; ROM
requires a masking operation during production to permanently
record program or data patterns in it. The information is stored
on a permanent basis and used repetitively. Such storage 1is
useful for programs or tables of data that remain fixed and is
usually randomly accessible.

Routine
Usually refers to a stbprogram, i.e. the task performed by the

routine is less complex. A program may include routines; see

progranm.

Run time
The time required to complete a single, continuous execution of an
object program.

S
Sratch-pad memory
RAM or registers which are used to store temporary intermediate

results {data) or memory addresses {(pointers}).

Semi -conduc tor memory
A memory with storage elements formed by integrated semiconductor
devices, as opposed to a memory composed of ferrite cores.
Semiconduc tor read/write memories are characteriéed by low-cost,
wide speed ranges, and data volatility. Semiconductor read-only
memories are non-volatile. ‘ '

- A7.22 -

Serial I/0
A method of data transfer between a computer and a peripheral
device in which data is transmitted for input to the computer {or
output to the device) bit by bit over a singie circuit.

Serial memory (serial access memory)
Any type of memory in which the time required to read from or
write into the memory is dependent on the location in the memory.
This type of memory has to wait while non-desired memory locations
are accessed. Examples are paper tape, disc, magnetic tape, CCD
etc, In a random-access memory, access time is constant.

Service routine
A set of instructions to perform a programmed operation,
typically in response to an interrupt. '

Shift register
A register in which binary data bits are moved as a contiguous
group a prescribed number of positions to the right or to the

teft.

Single-operand instruction
An instruction containing a reference to one register, memory

location, or device.

Small~scale integration
The earliest form of integrated circuit technology, a typical SSI
circuit contains 1-4 logic circuits.

Software
Programs which control the operation of computer hardware.
Operating systems, executives, monitors, compilers, editors,
utility routines and user programs are considered software.

' Software documentation

Program 1isting and/or technical manuals describing the operation
and use of programs.

- A7.23 -

Sort
A function performed by a program, usually part of a utility
package; items in a data file are arranged or re-arranged in a
logical sequence designated by a key word or field in each item in

the file.

Source program
A program, in either hard copy or stored form, written in
Tanguage {source language) other than machine language which
requires translation by the assembler, compiler, or interpreter
progranm. |

Stack pointer
The counter, or register, used to address a stack in the memory;

see stack.

Stand-alone system
A microcomputer software development system which runs on a
microcomputer without connection to another computer or a
 time sharing system. This system includes an assembler, editor,
and debugging aids. It may include some of the features of a
prototyping kit.

Static memory
A type of semiconductor read/write random-access memory which
does not require periodic refresh cycles.

Subroutine
A subprogram (group of instructions) reached from more than one
place in a main program. The process of passing control from the

~main program to a sibroutine 1s a subroutine call, and the

mechanism is a subroutine linkage. Often data or data addresses
are made available by the main program to the subroutine. The
process of returning control from subroutine to main program is
subroutine return. The linkage automatically returns control to
the original position in the main program or to another
subroutine: see nesting.

- A7.24 -

Synchronous operation

Syntax

I

Use of a common timing source {clock) to time circuits or data
transfer operations {contrast with asynchronous operation).

Formal structure. The rules governing sentence structure in a
language, or statement structure in a language such as assembdly
Tanguage or FORTRAN.

Truth Table

v
Variable

VYector

Volatile

Word

A Tisting which presents all possible input and output states of
a logic function. '

A symbol or mnemonic whose value changes from the execution of
one program to another or during execution of a single program.

See interrupt vector

memory
Refers to a read/writé memory whose content is irretrievably lost

when operating power is removed. Virtually all types of
read/write semiconductor memories are votatile.

A set of binary bits handled by the computer as the primary unit
of information. The length of a computer word is determined by
the hardware design. Typically, each system memory location
contains one word. ‘

= A?-ZS =

Word length
The number of bits in the computer word. The longer the word
length, the greater the precision (number of significant digits).
In general, the longer the word length, the richer the
instruction set, and the more varied the addressing mode.

Write
The process of storing data in a memory.

- A7.26 -

APPENDIX 8

SOLUTIONS TO QUESTIONS

SOLUTIONS TO QUESTIONS

1.

4,

1|

CHAPTER 1.1

A binary digit. The smallest unit of data in a microcomputer
system, '

A group of binary digits (bits), usually eight, which are operated
on as a single entity. A computer word may comprise a number of
bytes.

Data comprising alphabetic and numeric characters.

32

(a} 13,. (b) 57, (c) 240

(a) 0010 0110 (b) 01111000 (c) 11001001

CHAPTER 1.2

(a) 1110, (b} 1000. {c} 1010, (d) 0010
+127 to -127
11011010

1 00011001 = 25

CHAPTER 1.3

An overflow occurs during a calculation if there is a carry from

bit 6 to the sign bit or from the sign bit to the carry bit.

-A8.1-

(a)

NO OVERFLOW

¢ = 0 NO OVERFLOW

0111 1111 1111 1111

+120 01111000
- 25 11100111
1 01011111
va=y_ ¢=1
(b)
+83 01010011
+52 00110100
0 10000111
v=1 ¢=0 OVERFLOW
(c)
+ 8 00001000
=23 11101001
0 11110001
v =0
3. +32767
=255

1111 1111 0000 0001

1 0111 1111 0000 0000

= 32512

CHAPTER 1.4
1. American Standard Code

1010001
0101011

(a)
(c)

2.

u

B S e e]

(a)
(b)
{c)
(d)

0dd parity bit
0dd parity bit
Even parity bit

n

th

1}

Even parity bit

for Information Interchange.

0110011
1110110

(b)
(d)

~A8 . 2~

3.

CHAPTER 2.1

1'

1.

CHAPTER 1.5

(a) 26, (b) 357,
(a) 83,¢ (b) B3yg
(a) 319, (b) 528,

The accumulator is a general purpose register used for
temporary storage of data during data transfer or during
arithmetic or logical operations. '

The Arithmetic Logic Unit (ALU) is used to perform
arithmetic and logical operations.

The address of the next instruction.
Bidirectional.
Devices which can output data on to the data bus have a

high impedancestate so that they do not corrupt data on
the bus when it is being used by other devices.

CHAPTER 2.2

(a} Random Access Memory.
(b) Read Onty Memory.,
(c) Eraseadble Programmable Read Only Memory.

(a) RAM
(b) A1l three.

I/0 port is allocated a unique address and is accessed in
the same way as an ordinary memory tocation.

~A8. 3~

Operation codes {Op Codes) are determined by the
manufacturer of the microprocessor and each consists of
one byte which specifies the operation to be performed.
There may be one or two further bytes associated with the
op code specifying data or an address location.

Transfer the contents of memory location M into the

accumulator.

The microprocessor fetches the next op code {instruction)

to be executed.

CHAPTER 2.3

(a) A code is used rather than a written statement.

(b) The programmer must have an intimate knowledge of the
microprocessor for which. the program is being written

{c) A lot of instructions are required to perform a
simple task.

A Tow level language because we can accurately predict the
timing of programs written in this way.

CHAPTER 2.4

{a) A5
(b} FO
(c} 48
80
4}‘5.

Execution of the instruction may change this flag in the
status register,

—A8, 4=

1. 2046 Bytes

2, 1784 "Bytes

4. Less memory space is required and instructions are
executed in a shorter period of time.

5. The system stack.

CHAPTER 3.3

1 2
2 3
3. {a} A9
(b} 8D
{c} 8E
(d} FO
(e} 7D
4, (a) 0D
(b) ED
5. {a) The result of the last operation in the arithmetic

unit was negative.
(b) The result of the last operation over flowed.
(¢} The result of the last operation was zero.
CHAPTER 3.4

1. 0028

2. 0205

-AB.5=-

3. Transfer the contents of locations 0224 - 0224 to location

0300 - Q304,
4. Backwards.
50 F60

CHAPTER 3.5

1, 3216

2. F216 (= -14,4)

3. 7416

4, 56

5. 2381

CHAPTER 3.6

1. 0101

2. 1111 0110

3. 1010 0011

4, 0101 1110

CHAPTER 3.7

L. Jump to sub-routine.
2, "Return from sub-routine.

3. {a) 20
(b) 60 |
=A§.e;

CHAPTER 3.8
1. 256 Bytes.

2. An 8-bit register which holds the address of the next
'emnty' location in the stack.

3. (a) PHA , PHP

(b) PLA , PLP

1. 4 Cycles.

2. 813 }xs.

CHAPTER 3.10

1. A technique by which each device, which can interrupt the
processor, is interrogated to determine the interrupting

device.
2. FFFF and FFFE
3, FFFB and FFFA

4. NML has higher priority than IRQ.

CHAPTER 3.11

1. 0900

2. PB7 and PB4

3. Interrupt Enable Register and Interrupt Flag Régister.

4, 0809

~A8., 7

-

