Ey.' L.J. Technical Systems E -

EMMA I
User Manual

]
ey

J o e
L. J. ELECTRONICS l

:y.-L.J. Electronics m—

EMMA I

User Manual

© LJ Electronics Ltd Written by LJ Technical Publications Dept.

This publication is copyright and no partofitmay Designed, Typesetand Produced by LJ Publicity
be reproduced without our written permission Dept. 1986, second issue.

Issue Number MP116/E

EMMA Il User Manual

Contents

|_Introduction to EMMA II

Chapter Page
1 EMMA Il Key Functions 5
2 EMMA |l Switch-On &
3 User Memory 15
4 Instruction Addressing Modes 17
5 Writing A Program 19
6 Use Of Input/Output Ports 29
4 Interrupts 35
8 Hardware Timers 43
9 Program Debugging 52

10 Using The Cassette Interface 57

11 Useful Routines/Subroutines 60

|_Appendices

Appendix A 6502 Instruction Set 72

AppendixB Conversion Tables 98

MP116,

F*A"MA Il User Manual

EMMA Il User Manual

Introduction to EMMA i

\ W A

General Description

The EMMA Il User Manual provides an introduction to the LJ EMMA,
an educational microcomputer system, based on a 6502
microprocessor.

Designed to introduce the EMMA system in a straight forward step by
step manner, this manual will make the user familiar with the
instructions used to program the 6502, together with providing an
awareness of system architechture. It also illustrates the many
possibilities for further applications using this expandable system.

The EMMA Il Technical Manual provides the user with the more
detailed information on the system architecture and the software
operation.

As the user becomes familiar with the EMMA it will become evident
that applications controlis a major function of the system.

LJ Electronics provide a wide range of equipment designed for more
advanced studies.These include.

® Arange of Applications Hardware Modules : simple advanced,
digital control.

® VISAExpansion unit - providing Video Interface, ASSEMBLY
language and BASIC language prog ramming, EPROM
programming, Floppy Disk interface.

® 6502 Trouble Shooting System

@® 6502 Development System

@ Robotic Teaching Systems with trouble shooting

EMMA llis a fully assembled and tested microcomputer requiring

only a-+5V, approximately 700mA, regulated d.c. supply to

commence computing.

The system s built around a 6502 microprocessor, and has a
crystal controlled clock operating at 1 MHz.

A monitor program and useful sub-routines are stored ina 2716
EPROM.

User memory is available using a 2k byte RAM.

EMMA Il User Manual

Animportant feature is the Input/Output port (I/0 Port) capability

which is provided by the 6522 Versatile Interface Adaptor (VIA) and o\ 5
includes, amongst other features, two 8-bit programmable I/0 ports. B
Keyboard and display interface is provided by the 6821 Interface C’ Y ;
controller. 51
CeZ-
The 6502 microprocessor is capable of addressing 64K memory. On
the EMMA |l only a limited amount is decoded. The required address
decode is selected by links placed in ani.c. Header. This gives the
user access to modify the address decoding if required. The
arrangement is shown below for the unexpanded EMMA |1,
it e WUT EZ
Wire Link Decode Select e ke &— —

s el
(As viewed from bottom of board)

The hardware of EMMA Il is arranged to allow the easy identification
of sections as shown opposite on page 3.

The cassette interface provides a facility for the rapid retention of
pregrams on a standard cassette recorder. Connection to the
recorder is made via 0.1" pins on EMMA |l and the cassette DIN
inputoutput socket or the external microphone/earphone
connectors.

Communication with EMMA i is through the keyboard/display
although you will soon make use of the I/Q port which is brought out
to 4mm sockets on the left-hand side of the microcomputer board.
These sockets are designated PAO-PB7 and provide the input/output
connections to I/0 Ports A and B respectively. Also available are
4mm sockets for interrupt facilities - these are used extensively in
work associated with Application Modules.

Power supply to the board is made via 4mm sockets, two sockets
being provided for the +5V connection and two for the OV
connection. The provision of two sockets for each line facHitates the
looping of supplies to other system items.

Access to all bus lines and the various control signals are made
through 0.1 printed circuit board (p.c.b.) pins. These are used for
System Diagnosis and Fault Finding exercises.

EMMA Il User Manual

The single step facility on the bottom right hand side of the board is a
Debug Facility, and will be described later in the manual. For normai
use this switch must be in the ‘OFF’ position.

Before switching ON familiarize yourself with the control key

functions.

*ﬁ

“‘EMima 1"

- @ qor AMICAORROCEREOR
Pas @ WO BORT / TimES | r
b [
o © (oomsc) ¢ “ ’ ¢,U
Pay i g R
O . e
Pu, © s s !
Wi N e |
Pa z ¥ X
4 8 _ ??2;-. e fo2 Qm
o) ewirs
Par
. @ ADDRAESS DECOOWG MONITOR EBRDM E_ﬂ; HEYBOARC! DIGOLAY
e m i
~Q - |] ﬂ I i
w0 1
Py © H (u 'hgo std = i L b
gt .‘lr\l
w © : o STAL o o 0O o
0| e Y T lnn Tas R ure
"o o= |la
@ 12 P T 13 & P oy o oy me | e o
Pae Ty
ons @ P)
2 w2 Ej Bl UBER EDRORM:RAM f Y
. @ Rl e E IM L] [elo E | F] cner
lamg ;] e—
|
Pas @ CABSETTE NTERFACE ” ‘ G|R 8|9 1 AiB I _1
an P 1o 16k fus } z
=0 BB = ﬂ nb |- [ajs|s]7] o
s iy
= F"’“ﬂ ﬂl}_ . s|[-! [o]1la]a]
@ D by Cov i (‘L] OFF|
3-. saz
Ju

L . |

=""MA Il User Manual

~hapter 1 EMMA |I Key Functions

'he EMMA 1]
teyboard/display

The EMMA Il keyboard/display unit provides all the necessary
controls for EMMA 1l except for the Address Decode Patching
Header and the Reset Pushbutton.

The keyboard is splitinto two well defined key groupings:

Hexadecimal Keys - These are the matrix of sixteen keys
marked 0 - 9 and A - F. They are used toinput all data, example:
user programs, data tables.

Control Keys - These are the matrix of eight keys marked,
M,G,P.S.L.R,+ and —. These keys have well defined functions
as below,

Control Keys Hexadecimal Keys
| 1
M| L C|ID|E|F
G| R 8|9 A | B
Pl + 4|5/ 6|7
S| - o|1| 2|3

]

=

M key - used to select the memory mode. For example the
seven segment display may show either a memory address
or amemory address and its content. Depression of M will
alternate these modes.

+(plus) and — (minus) - used to increment or decrement the
program entry address. For example if the current address
being displayed is 0020, pressing the + (plus) key will
increment this to 0021. The use of these keys greatly facilitates
program entry and subsequent checking before running a
program.

EMMA Il User Manual

(6]

[(=]

[[w]

Program Run - The G key causes the program to Run

(be executed). In practice having entered a program, G will be
pressed and the start address of the program then keyed in.
Pressing G again will cause the program to be executed.

Program Debug - Key R provides a single step feature and

Key P ameans of inserting a forced break into a user program.
Both these keys are essentially for program debug and are fully
discussed later in this manual.

Program Dump - EMMA |l provides a feature for dumping
programs onto magnetic tape using a conventional cassette
tape recorder. Keys S and L are used to control this feature,
S being for store onto tape, while L loads the microcomputer
memory from tape. Both are discussed later.

These key functions are designated by the microcomputer monitor
program. They may, however, be redesignated temporarily under
user program control. They will assume normal function upon
returning to the monitor program.

We will now follow a switch-on routine and familiarize ourselves with
the actual EMMA Il keyboard/display.

LY
Fain

IMA Il User Manual

apter 2 EMMA [l Switch-on

Connect EMMA Il to the 5V, 3A supply outlet of an LJ Electronics
System Power 90 carefully ensuring that the polarity is correct.

Press the Reset button {bottom right-hand of the microcomputer
board) and notice that the display shows eight decimal points.

FEEREERR

This indicates that the monitor program is running and the
microcomputer is ready to accept information from the keyboard.

Itis also reasonable to assume that the microcomputer system is
operating correctly.

Press the control key ‘M’ (memory key). The display will now

X (K| X X | .

Where * * * * is a 4 digit hexadecimal address between the values
0000 and FFFF.

This display can be modified by depressing the desired sequence of
hexadecimal coding keys.

e.g.press0020

The display now shows:

(T T o T o O |
R My R 1!

EMMA Il User Manual

oo -°

This is the address of the lowest user memory in EMMAII .

Now press the ‘M’ key again. The display will now show the data
stored at the location indicated by illuminating the two right-most .
7-segment displays. Example, if the address part of the display
shows A.0020 then pressing ‘M’ will cause the display to show:

S = EAE

where * * are any two hexadecimal digits. Pressing any of the
hexadecimal coding keys will modify this data.

Nowpress keys A, B, C, D, E and F and observe that some
characters on the display are in capitals and some in lower case.

— 1— 1—

- =l
11 1

l— -
—
|

I
Note:the letter |_I andthenumber 1} aresimilarandcare

must be taken not to misinterpret these two characters.

We refer to the two parts of the display (as used above) as the
Address Field and Data Field respectively.

Example:
O 1 O o O o O | It |12
N T I O N O | O N . it

1
Address Field Data Field

cMMA Il User Manual

Now perform the following operation:
Operation Display COMMENTS
Press Reset « + s s o« . « « Monitorrunning

PressControl =, ¥ ¥ X % | Address field only

key M illuminated and
showing arandom
address.
@® PressHex f00=0 Addressfigldindicates
keys 0020 Myt -, address high byte (00)
address low byte (20)
@® PressHex oo oo o Address modified
keys 0238 ThRME SR e to 0238
@® PressM ARO0Z22E X X Addressfield and
datafield illuminated
Datafield shows
random data stored at
location 0238.
® PressHex R 0238 MS Datafieldshowsdata
keys 45 (45) input to location

0238.

The function of the control keys pius (+) and minus (—) can now be
explored. These increment (increase by one) and decrement
(decrease by one) the displayed address fieild when in the data
mode. They provide a convenient way of sequentially moving
through a series of addresses when entering a program or simply
checking a program already entered without having to continually
use the M control key.

Before we can actually write a program we need to have some
knowiedge of the machine Instruction Set. There is an instruction
setfor the 6502 in Appendix A, since the EMMA Il is based upon

this microprocessor.

However, for convenience, we will reproduce part of aninstruction
that we will be using to form our first simple program.

EMMA Il User Manual

LDA Load Accumulator with Memory LDA
Operation: (M)—A N Z C I DV
N
Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Absolute LDA Oper AD 3 4
J

instructions are as shown, from the instruction set.
We should notice the following:

@ Theoperationis clearly stated as:
“Load accumulator with memory”

Itis also symbolized by: (M) — A which means: “Transfer the
contents of memory M to the accumulator A"

® AMnemonicisgiven:
LDA
meaning: “Load Accumulator”
® Anaddressing mode s given:
Absolute

This indicates that the data is to be found at the absolute address
specified by the two bytes following the Op. Code.

@ Theformatofthe Assembly Language instruction is given:
LDA Oper
where LDA specifies the Operation to be performed andis to
be followed by an operand. In our case the operand is a two byte

absolute address.

Now let's see how we can employ this instruction and othersina
simple program.

10

“MMA IlI User Manual

A Simple Program @ Program Task
Ex amp'e Transfer the contents of memory M1 to memory M2.

All data movements must be made through the accumulator;
hence the TASK is executed by

LOADING the data in memory M1 into the accumulator A.
@ STORING the datatransterred from M1 into memory M2.
Our program, using mnemonics, is

LDA M1
STA M2

If we now assign addresses for M1 and M2 we get

LDA 0080
STA 0081

where 0080 and 0081 are two absolute addresses with the high
byte (00) specified before the low byte (80).

Note: Itis normal to referto addresses high byte first
followed by low byte e.g. 0080 and 0081. However, when
entering a program in memory, the machine requires that
we reverse this order.

Using the STA instruction to store accumulator in memory location
0081 and assigning addresses we get:

0020 LDA 0080
0023 STA 0081
0026 Next instruction op code

EMMA Il User Manual

Our program (using a standard programming sheet) would look like
this:

Standard Programming Form

Programmer: Program Title: 1st Program
Hexadecimal Symbolic Assembler Instructions
ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS
Program
0200 AD 80 00 LDA M1 Address of M1is
0080
0203 8D 81 00 STA M2 Address of M2is
0081
0206 4C 06 02 JMP 0206 Terminates
program
Data
0080 ? Single byte of
unspecified
datatobe
transterredto
memory
0081 0081

You will notice that we have terminaied our program using a Jump
instruction.

Memory locations 0080 can be loaded with data to be transferred
and 0081 with 00 to be written over.

Data Bytes Comments

Address 1 2 3

0080 FF Data (FF) to be transferred
0081 00 Data (00) will be over written

You may notice that we are going to load memory location 0080 and
0081 with FF and 00 respectively. We have deliberately put 00in
0081 so that we will positively know that FF has been transtferred.

We will now try entering an actual program.

12

EMMA Il User Manual

Program Entry

Program Run

RESET EMMA I - Press Reset
Obtain Address Field - Press M Key

Set 1st Address (0200) - Press0,2,0and0
Obtain Data Field - Press M Key
Modify Data Field - SetAD

Increment Program . Press + Key
Modify Data Field - Setto 80
Increment Program - Press + Key

Continue until program is entered.

Now Load Data.

Obtain Address Field - Press M

Set Address (0080) - Press0,0,8and?
Obtain Data Field - Press M

Enter Data - Press FF

Continue for 0081

You should now have entered the whole of the program and the data.
Itis advisable to check this by looking at each loaded location. You
may do this by incrementing or decrementing through the locations
and the respective data.

Now let’s run the program!

Press control key G (G stands for ‘GQ’) - the display should now
show:

where ™ * " * is some random address.

Using the hexadecimal coding keys, modify this random address to
the start address of the program e.g. 0200

Display:

1= (T e m
L I O I D T O O T

Press the gokey, G, again.

EMMA Il User Manual

You will notice that the display has gone blank. To check whether the
program has indeed run successfully we now need to inspect the
memory location into which we transferred the contents of iocation
0080. Remember - the contents of 0080 was FF and should have
beentransferredto 0081.

Symbolically:

(0080) — 0081

where ()indicates contents of
and — transferto.

Toinspect the memory contents, press Reset followed by M, key in
address 0081, press M again and data fieid of display should indicate
FF. Transferring contents of a memary does not destroy it.

Change contents of 0080 and run again and see if your data is
transferred.

14

EMMA Il User Manual

Chapter 3 User Memory

The Concept of
Paging

Within the microcomputer system some memory locations may not
be available to the user, either because they are used for special
purposes or simply because memory devices do not exist at these
addresses. As mentioned earlier the 6502 can address 64K of
memory.

Our major concern at this point is to see what memory locations

are available to us to store our program. You should observe that A opE® [~ r!

available memory spaceis: /A pRC
0020 =25
— = 224 bytes for the user -
00FF /M OKL
0200 ‘
— = 512 bytes forthe user
03FF
0Co00
—~ = 1024 bytes for the user
OFFF
001C]
— = 4 bytes used by the user in conjunction with useful
001F routines etc.

Now is an opportune moment for us to look at the two bytes which
constitute an address.

In common with most 8-bit microprocessors, EMMA Il has an
address capability of 64K (65,536) memory locations. These are
organised into Pages where a page is 256 consecutive memory
locations. With this size of page, there are a possible 256 pagesin
64K of memory.

EMMA Il User Manual

Zero Page

The Stack

Schematically we could show these as:

Each location could have a two-byte unique address, example:

} HIGHBYTE LOWBYTE

where the high byte is the Page Reference Number and the low byte
is the Location on Page

Hence the address 0020(HEX) is:
00 page and 20(HEX) location on that page.

Page 00 and page 01 have instructions which are special to those
pages.

Zero page may be seen as comprising a set of working registers
upon which any instruction will be executed in a shorter time than if
any other page had been used. Since the time saving in executinga
single instruction can be as much as 33.33% itis worthwhile
reserving zero page for essential data that needs to be retrieved at
high speed.

The stack is designated by the microprocessor as page one. Special
instructions exist which operate only on the stack and serve to
transfer and retrieve data ‘pushed’ onto and ‘pulled’ from the stack.
None of these instructions specify a particular location on the stack
-the location of the last data item pushed to the stack is
‘remembered’ in a register termed the Stack Pointer.

16

~“MMA Il User Manual

Chapter 4 Instruction Addressing Modes

17

Each instruction also has an Addressing Mode. The 6502 can
perform 56 different operations, some of which can be executedin
as many as eight different ways so producing 150 variations.

These addressing modes can be summarised as:

@® Implied
implied addressing uses a single byte instruction which operates
on registers whose address is implied by the particular OP. Code
used. These registers are those internal to the microprocessor
-index registers, status register, stack pointer and externalto the
microprocessor (in memory) - the stack and interrupt vector
locations.

® Immediate
Allinstructions inimmediate addressing mode are two bytes
long. The firstis the OP. Code and the second specifies a
constant or literal whichis to be loaded into an internal register
or external memory location.

@ Absolute
You have already met this type of addressing mode. Instructions
require three bytes of which the second two specify the location
of the operand.

@ ZeroPage
Requires two bytes. Zero page is implied in Op. Code and
therefore not specified implicitly. Only the location on zero page
is required.

@ Relative
Requires two bytes. Instructions using this addressing mode are
of the Branch type. They cause the microprocessor to branch to
another part of the user program rather than execute the next
instruction in sequence. The branch is taken upon the resultof a
test periormed on the condition of flags within the status register.
The second byte specifies the extent of the ‘branch’ that is the
amount of program displacement and its direction relative to the
address of the Op. Code of the instruction following the branch
instruction.

® Indexed
The 6502 is equipped with two index registers, Xand Y. The
contents of an index register is added to a base address
specified in the address field to modify that address.

EMMA Il User Manual

The method of addressing enables data tables to be sequentially
accessed by performing increment (or decrement) operations on the
index registers.

Indirect

The concept of indirect addressing enables the address field
following an Op. Code to specify an address whichin turn
specifies the address of the data required.

Indexed X, indirect
This mode adds the contents of the index register X to the zero
page address specifiedimmediately following the Op. Code.

Indirect, indexed Y
This mode adds the contents of the index register Y to the data

base address.

18

19

=MMA |l User Manual

chapter 5 \Writing a Program

rask

low chart

We will now construct a program using more commonly used
instructions and addressing modes, maintaining the principle of:

® Statingthetask
® Constructing aflow chart
@ Andwriting the program.

Move a single byte of data from memory location 0080 to memory
location 0280. Logically:

(0080) — 0280
Note:the brackets mean “contents of".

Input
Data
From 0080

Finish

EMMA Il User Manual

Program

This demands three basic operations to effect the transfer of data.

1,

3.

LOAD data from memory into the accumulator.
(0080) — A

STORE data in accumulator in memory
(A)— 0280

TERMINATE program.

We will now look at each of these steps inturn:

1.

The datais on ZERO PAGE.
00 80
Page Location

Now ask yourself if a LOAD instruction is available which
operates directly on Zero Page (Consult instruction Set
- Appendix A)

The Instruction Set should reveal the following:

Addressing Mode - Zero Page
Mnemanic -LDA

Op Code - A5
Number of bytes -2

We can write the instructionin either:

Symbolic Machine Code:

Operation Operand
(Mnemonic) (Address)
LDA 80

Where 80 is the zero page memory location.

® Hexadecimal Machine Code:

Op Code Operand
(Hexadecimal} (Address)
A5 80

20

FMMA Il User Manual

2. Nowlet'slook fora STORE instruction.
The Instruction Set will reveal:
Addressing Mode - Absolute
Mnemonic-STA
Op. Code -8D
Number of Bytes - 3

We cannot use zero page addressing mode since the datais
stored on page 02.

Again we can write the instruction in two ways.

@® Symbolic Machine Code

Operation Operand
(Mnemaonic) (Address High Byte) (Address Low Byte)
STA 02 80

@® Hexadecimal Machine Code -

Operation Operand
(Mnemeonic) (Address Low Byte) (Address High Byte)
8D 80 02

Note the way the operand has been written. When writing
addresses itis normal to write HIGH BYTE followed by LOW BYTE.
However, we Enter the Hexadecimal Codes into the machine
(6502) LOW BYTE first. If you follow this practice when using the
Standard Programming Form you are less likely to make mistakes
when entering your program using the hexadecimal keyboard.

3. Nowlet'slook at terminating the Program.
If you scan the Instruction Set you will not find an instruction

which you can use directly for this purpose. The 6502 Instruction
Set does not have aninstruction such as Stop, Halt orindeed

Finish.

21

EMMA Il User Manual

Firstlet's consider what would happen if we did not bother, after all
our two instructions will effectively complete the task! Unless we

tell the machine to stop processing when the transfer is complete it
will continue to fetch, sequentially, data from memory. Unfortunately,
this may be either another program or, as is more likely, rubbish (the
memories will always have something in them; they cannot be

‘empty’).

A simple way round the problem is to cause the machine to entera
‘program loop' for which it can escape only by the user pressing the
RESET pushbutton. A JUMP instruction will do this.

The instruction set shows:

Addressing Mode - Absolute
Mnemonic - JMP

Op Code -4C
Number of Bytes -3

We will use this instruction to jump back to itself.

Example:

Jump
to
Jump

I

@ Using symbolic machine code

Operation Operand
(Mnemonic) {Address)
JMP Terminate

Inthe operand field we have used a Label. We can do this using

symbolic notation. The label stands in place of a Program Address.
We cannot enter the program address that we wish to jump back to
because we have not yet allocated memory space for our program.

22

EMMA Il User Manual

23

Itis worthwhile mentioning here that the programmer invents his own
labels for programming convenience. However, a simple guide to
labelling is DO NOT use labels that look like or contain Op Code
Mnemonics. We can now collate our instructions and enter them on
a programming sheet.

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0200 A5 80 LDA 80
0202 8D 80 02 STA 0280
0205 4C 05 02 Term JMP Term

You will notice that we have assigned memory addresses 1o our
program. This has also enabled us to assign a program address to
the label TERM.

Enter the program in EMMA Il and execute. Do not forget to enter
appropriate data in memory locations 0080 and 0280. If you have any
doubts regarding program entry procedure, go back and study the
section on program loading on page 12.

After running your program examine the location 0280 to see if your
data from 0080 has been stored in that location.

If your program has not functioned as expected go back and check
that the program is correctly entered.

EMMA Il User Manual

Example Program

Task

Flow diagram

Assurning you have successfully completed the program letstry a
more complex program.

The foliowing is an example of performing a data block move.

GetData
Item

Store
Dataltem

Is There
More Data?

Yes

Example: Move data from data block addresses 0020-0024 to
addresses 02F0-02F4.

24

=EMMA Il User Manual

Main Program

Symbolic Assembler Instructions

3 LABEL MNEM OPERAND COMMENTS

LDX#

DEX

* LDA

02 STA
BNE

02 JMP

05

20X
02F0,X

Setupdata
pointer

Set up data item
Transferdata

Get next valid
dataitem
FINISH

Hexadecimal
ADDR 1 2
0200 A2 05
0202 CA
0203 B5 20
0205 9D FO
0208 DO F8
020A 4C 0A
Datato be moved:
0020 00
0021 01
0022 02
0023 03
0024 04

Datatobe transferred

Locations for data to be shifted to:

02F0
02F1
02F2
02F3
02F4

Memory space reserved for data

By studying the program you will see that it contains the following
address modes:

® “LDX#05"

@ “DEX"

25

This is animmediate instruction to load "X’ register

with 05. This has the effect of setting up the data
pointer in this program.

‘X’ register.

Animplied instruction to decrement the contents of the

EMMA Il User Manual

Terminating a
Program with a
Reset

@ "LDA20.X" AZEROPAGE instruction;toload accumulator
with the contents of address 0020+ X', where
‘X'is 4. Hence the instruction loads accumulator
with data from 0024.

@® “STAO02F0,X" Anabsoluteinstruction to store accumulator at
address 02F0+ X, which is 02F4. Hence data

from 0024 is stored at 02F4.

@® “BNE" Afterthe decrementinstructionthe BNE instruction is
asking to branchif X is not equal to zero. At this point in
the program X is now 4 and not equal to zero and the
branch istaken back to address 0202. The data F8in
the Hexadecimal region of the program is a negative
number giving the backward displacement of the
branch.

® “JMP" Thisisthe nextinstruction after X reaches zero. The
JMP instruction is the same as in the previous program
and jumps back on itself and terminates the program.

Load the program; Load information to be transferred, and run the
program from 0200.

Inspect reserved space after the program has been run to see if the
data has been transferred.

If the program does not operate correctly, check to see if
your program has been entered correctly.

A better way of terminating the above programis to jump to the
monitor of the machine to effect a reset condition. The location of the

reset condition in the monitor programis FEEO.

After the program has run a row of dots will appear on the display
showing that the program has run and reset.

Toterminate the program change the JMP instruction from
4C 0A 02inthe hexadecimal regionto 4C EOFE.

26

EMMA [l User Manual

A Programming
Model

To be competent at programming with EMMA |1 the user must be
aware of the internal architecture of the 6502 microprocessor. To
help with this, a programming model can be used.

This model is a diagram of all the internal registers of the
microprocessor.

vss [1
rov [] 2
now [2
g]+
nells

wmi [

syne (] 7
vee[] &
a0}
A
az [Jn

2
as]
as [J1a
as [Jrs
a7 (s
as [
a9 [J1s

a0 [s

an [Jz0

6502

0[] Res
29 [] 0z10m
38(] so
37[] eglin
38] ne
5[] Ne
3 [AW
az[] oo

z{] o1

3 []oz2

a0 jo;

8 JDA

28 [os
27{] os

6 [J o7
25(] a1s
24] e
23{] a1a
2 [J a2

21 [] vss

27

15

m
~t
o
o

;

-~
o

I

~
(=]

I

~

PCH

PCL

ey
<
-

S
(2]

~
O b—d o e ©

~

NiV| [B|D|I|Z]|C

Accumulator

Index Register Y

Index Register X

Program Counter

Stack Pointer

Processor Status Register ‘P’

Carry

Zero

Interrupt Disabile
Decimal Mode

Break Command
Forthcoming Feature
Overflow

Negative

EMMA Il User Manual

Status Register ‘P’

The Status register comprises a number of flags some of which are
set orreset by the result of operations involving the arithmetic unit.
The testing of these flags is an important part of any programming
task. Below is a brief description of each flag.

The programmer has control over some of these flags, he can setor
reset them as required by the logic of his program.

The Status flags are:

- setif the most recent operation performed in the arithmetic
unitgave a negative result.

- this flag indicates when the 7-bit result of a signed
number arithmetic operation overflows.

-this is a break command flag. Itis set by the
microprocessor when an interruptis caused by a break

command.

@ -when this flag is set any arithmetic operations will be
performed in binary coded decimal. With this flag cleared the
arithmetic unit operates in true binary.

[1] -istheinterrupt disable flag. When this fiag is set the IRQ
input will not interrupt the microprocessor.

- setif the operation in the arithmetic unit gave a zero result.

-isacarry input to the arithmetic unit. If set, it will apply a *1
to the least significant bit of an arithmetic operation.

28

SMMA Il User Manual

Chapter 6 Use of Input/Output Ports

The next stage in using the EMMA Il is to utilise its facilities such as
the /O ports.

The I/Q ports are contained in chip 6522 on the EMMA |l board which
is referred to as a Versatile Interface Adaptor (VIA). As its name
implies, itis versatile in as far as it is capable of numerous functions.
ltis also aninterface because it provides a means of connecting
EMMA Il to the outside world. The 6522 is physically connected
between the 6502 (microprocessor chip) and external devices such
as applications hardware modules.

The component parts of the I/O port which we will initially consider
are two ports designated Port A and Port B. Schematically the
appropriate architecture is:

vss [1 o] ca1 Data
"o {2 n) cae Bus <& > DRA K B>PortA
patr]2 3 [] nse
paz [o a7{] Rs1

wils 36] ns2
pas [s 1s[] RS2
eas []7 4[] RES
pas [o 13{]oo ‘
paz [9 2] o > DDRA
rao [Jao 6522 n{jo2

Pt [30[]o3 Address

pez (12 23() pa Address
ves s siDes Decode

Bus

PB4 (|14 27[] oe

res [J1s 2oy
pas [0] «2 ‘ > DDRB
re? ({17 24[] cs1
cs1 [Jue 23{] €%
c8z [J1s 22[) W
vee (2o 21{] ma

L__—_>| ©ORs Port B

29

EMMA Il User Manual

PortInitialisation

The VIA is far more comprehensive than depicted opposite but we
will consider this subsequently.

The data registers hold the data which is being transferred from the
microprocessor to some outside peripheral device or from some
outside peripheral device to the microprocessor, that is to say they
are bidirectional. Needless to say data cannot pass through them in
both directions simultaneously. They have to be setto operate inthe
required direction. An important feature of this particular VIA is
that each of the eight bits of both ports can be directionally set
independantly. It is the function of the data direction registers to
accomplish this.

The setting up of the ports is termed initialisation and must be done
by the programmer before the portis used.

The data direction registers are both eight bit registers with each bit
being associated with a corresponding bitin the data register. For
example, if bit 6 of data direction register Port B is set to logical one,
then bit 6 of data register Port B will be set to ‘output’ while logical
zero will setitto ‘input’.

The diagram below indicates:

DDRB Set to
Bit-6 Logical ‘1"
Control

Microprocessor —m—q DRB L Peripheral
Bit-6 Device
DDRB Setto Data
Bit-6 Logica 0’ Flow
v Control
Microprocessor =k gf:ss =} Peripheral Device

30

EMMA |l User Manual

31

The blocks in the diagram are fully addressable and are identifiable
asbelow:

Label Designation Address
DRB Port B, Data Register 0900
DRA Port A, Data Register 0901
DDRB Port B, Data Direction Register 0902
DDRA Port A, Data Direction Register 0903

Each of these registers can be separately addressed and
simply appear to the microprocessor as a memory location.

We will now write a program which will initialise Port B so that bits
B0-B3 are configured asinput and bits B4-B7 as output.

Set bits 0-3
of PB.DDR
To Logical ‘0°

Set Bits 4-7
of PB.DDR
To Logical '1’

We can perform our setting of the data direction register simply by
loading the DDRB with FO and using the instructions:

LDA# FO
STADDRB

where:

FsetsbitsB4-B7to1's
Oclearsbits B0-B3to0's

Simply DDRB is the label for the address of Port B - Data Direction
Register. In hexadecimal notation this is 0900.

EMMA Il User Manual

Using the Data
Registers

Using thel/O Port
with 170 Monitor

Once the ports have been initialised the data registers can be used.
We will consider the Data Registers as being ‘transparent’, that s,
any data appearing at the registerin the correct direction (as
determined by the DDR) will pass through it. 1/O Ports are covered in
more detail in the EMMA Il Technical Manual.

The control of any system configuration is the responsibility of the
microprocessor and its program. The data registers therefore appear
to the microprocessor as memory locations, data can be 'stored’ to
them or ‘loaded’ from them.

® Considerthe program to transfer data to the I/O port

@ Take a standard programming form and assemble a program
which transfers data from memory 0020 to Port A,

@ Connectthe I/O port monitor to Port A, and set the |/O monitor
to READ.

Connection Diagram:

170 Monitor EMMA 1l

o7 @ @ PA7

Note:

Means ‘connect’ ALL ports DO, D1,
D2 etc, up to and including D7

1
1
|

32

“MMA Il User Manual

33

Flow chart for this procedure is:

‘Al

Initialise Port

Load Acc’ with
(0020)

Store Acc’ at
Port’A’

‘ Stop)

The program listing is:

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0200 A8 FF LDA# FF Load accumulator
with FF

0202 8D 03 09 STA 0903 Stores acc at DDRA

0205 A5 20 LDA 20 Load acc with
contents of 0020

0207 8D 01 09 STA 0901 Storesaccat DRA

020A 4C O0A 02 JMP 020A Terminates program

Load your program into EMMA IL. Also load memory 0020 with AA.

RUN program and observe results.

EMMA Il User Manual

’ Exercise Write a program which READS data from a peripheral device and
stores in memory 0020. Keep connection of I/O port monitor to
Port A and switch its mode selector switch to WRITE.

34

EMMA Il Uéer Manual

Chapter 7 Interrupts

Interrupts

Interrupt Request
(IRQ)

35

Aninterrupt allows the program currently being run on the
microprocessor to be interrupted (it's execution temporarily
suspended), so that a more important task can be attended to.

There are four possible conditions which may interrupt the
microprocessor; these are considered in turn.

IRQ Vectors OEFE Low byte
QEFE High byte

Thisis a level sensitive input to the 6502. When a logical '0'is
sensed atthe IRQ pin (the bar means enabted low), the processor
will complete its current operation. It will then ‘read’ the Interrupt
Disable Flag (flag | in status register) and, if clear, willimplement an
interrupt sequence of operations.

Store Program Counter high byte (PCH) on the stack

Store Program Counter low byte (PCL) on the stack

Store status register contents on the stack

Load PCL from address 0EFE

Load PCH from address OEFF

SetInterrupt Disable Flag (flag | in status register).

Program execution now continues from the memory VECTOR
held at QEFE and QEFF

if the Interrupt Disable Flagis set when the [RQ line goes low, the
interrupt will be ignored.

QEFE Low byte
IRQ Vectors
QEFF High byte

If only one device were connected to the IRQ line it would be
serviced by whatis known at an ‘interrupt service routine'. This
routine would effectively be the final sequence of instructions
above, namely program execution now continues from the memory
VECTOR held at 0EFF and 0EFE. However, itis more likely thata
number of devices would be connected to the same IRQline, each
capable of bringing it low. A software routine would then have to
determine which device had caused the interrupt before it could
execute an appropriale set of instructions to service that particular
device. Various methods are available not least of which is termed
Polling.

EMMA Il User Manual

Polling

Non Maskable
Interrupt (NMI)

This is a technique whereby all devices connected to the {RQline are
‘polled’ or interrogated to determine whether they are asking for
service. Since two or more devices may be requesting an interrupt,
the polling may be performed to some order of priority.

Once an interrupt service routine is being executed itis possible for
the programmer to allow a further interrupt to take place since the
interrupt disable flag is under his control. In this way a number of
interrupts may be in a state of being serviced at any one time.

Atthe end of an interrupt service routine the instruction, Return From
Interrupt (RTI) must be used.

A further point to note is that if any other registers such as the
accumulator, X or Y hold data, at the instant of interrupt, which needs
to be remembered, these must be pushed to the stack at the star of
the routine and pulled from the stack prior to RTI.

One last point-it is important that before executing the RT1, the
Device Interrupt Flag which pulled the iRQlowis setsince RT! will
have the effect of clearing the Interrupt Disable Flag when the status
register is restored; eg., the flag must have been clear to allow the
interrupt in the first place. f this action is not taken then a series of
interrupts will be attempted although the device has, in fact, been
serviced!

QEFC Low byte
NMI Vectors

OEFD High byte

Thisis an edge sensitive input to the 6502. When alogical 1" to
logical ‘0’ transition takes place at the NMi pin, the

microprocessor will complete its current operation and setan

internal flag such that no matter what state the interrupt disable flag is
in, the microprocessor performs the interrupt sequence outlined
under IRQ. The only exception is that the memory vectors are taken
from QEFC and OEFD.

Thefhfli, through the way it has been implemented, has priority over
the IRQ at alltimes.

Itis possible to connect more than one device to the NMI, butifa
subsequent interrupt occurs while servicing the first, it willbe
ignored. Further, it will not be serviced when the initial service routine
is completed. The implications are that multiple interrupt lines
connected to the NMI require careful servicing.

36

“MMA Il User Manual

Break Command
(BRK)

RESET (RES)

“-ogramming
interrupt Service
Routines

Task

37

The break command is a software interrupt. Itis primarily used to
cause the microprocessor to go to a halt condition during program
debugging but can equally be used in other useful ways.

The break command sequence is similar to the hardware interrupt
IRQ except that it cannot be masked by the interrupt disable flag.
Alsowhen the break command is ‘fetched’ the Break Command Flag
(flag B in status register) is set, this enables the programmer to
check whether the interrupt was caused by the software BRK or the
hardware IRQ. Both use the same memory vectors OEFE and OEFF.

This is an edge sensitive input to the 6502 when a logical ‘0" to logical
‘1’ transition takes place at the RES pin, the microprocessor will
begina ‘reset’ sequence.

Itis used to reset or start the microprocessor from a power-down
condition. With RES held low, read/write operations are inhibited. In
the case of EMMA II, RES is held high via a 4.7k resistor; it is pulled
low when the reset pushbutton is depressed. Depression of the reset
pushbutton and then its release will start the reset sequence. Aftera
system initialisation period of six ciock cycles, the interrupt disable
flag will be set and the microprocessor will load the program counter
with the reset vectors FEEOD.

We will now design a program which will demonstrate the use of
interrupt service routines.

Our program will repeatedly increment the VIA User Port Aand the
number of times a full count is achieved will be indicated at VIA User
Port B. The program will include a time waste sub-routine so that
Port A can be easily cbserved on the /O Port Monitor.

The program is in four parts:

@® Main Program

@ Interrupt Service Routine

@ Time Waste Sub-Routine

@ Interrupt Vector Loading

We will look at each part separately.

The first function is to draw up a flow chart of the task.

EMMA Il User Manual

Main program

Flow chart
Initialise
Ports
AandB
Set Ports
to
Zero
1 Interrupt Service Routine
Interrupt
Time
Waste
Count No of
Times PA has
reached full
count
increase
By 1 Count
onPortA
Return

Hexadecimal

Symbolic Assembler instructions

ACDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0200
0202
0205

0208
020A
020D

0210
0213

0216

A9 FF
8D 02 09
8D 03 09

AS 00
8D 00 09
8D 01 09

EE 01 09 NEXT
20 80 02

4C 10 02

LDA#
STA
STA

LDA#
STA
STA

INC
JSR

JMP

FF
DDRB
DDRA

0c
DRB
DRA

DRA
0280

NEXT

Initialise ports
AandBto
output

SetDRA
and DRB1iozero

Timewaste
subroutine
Continue count

38

EMMA |l User Manual

Interrupt Service
Routine

39

Enter the main program starting at 0200. Examination of the main
program is shown below:

Initialisation of Ports ‘A’ and ‘B’ is done by setting the data direction
registers (DDRA) to FF, giving all 1's; hence output conditions exists.
Setting of the ports to zero is done by loading (DRA) direction
registers to ‘00". Thenincrementing of port ‘A’ begins at 0210. Atime
waste routine is needed to give the LED displays time to illuminate
and time for you to see the count. As can be seen the instruction at
0213 is to jump to subroutine at 0280. The time waste routine needs

- tobe entered as shown below:

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0280 A9 FF LDA# FF
0282 8D 20 00 STA 0020
0285 A9 FF LOOP2 LDA# FF
0287 8D 2t 00 STA 0021
028A CE 21 00 LOOP1DEC 0021
028D DO FB BNE LOOP1
028F CE 20 00 DEC 0020
0292 DO Ft BNE LOOP2
0294 60 RTS

Time Waste Sub-Routine

Examination of this program shows that it consists of two loops
counting down from FF in each case.

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0250 EE 00 09 INC DRB Increase by 1 count
atPortB

0253 40 RTI Continue counting at
PortA

EMMA Il User Manual

Interrupt Vector
Loadings

The interrupt vectors (start address of the interrupt service routines)
are located at:

BEFC Low byte NMI Vector
BEFD high byte
QEFE low byte IRQ Vector
QEFF high byte

These locations must be loaded with the start address (interrupt
vectors) of its interrupt service routine (0250). Hence:

Hexadecimal Symbolic Assembier Instructions
ADDR t 2 3 LABEL MNEM OPERAND COMMENTS
QEFC 50 NMi Vectors
QEFD 02
OEFE 50 IRQ Vectors
QEFF 02

Also enter the interrupt service routine as can be seen above.

We now require a connection diagram.

EMMA

40

FMMA Il User Manual

Main program

41

The arrangement is such that Port A will provide a binary countup to
15 (Denary) which will be indicated on the LED s of the I/O Port
Monitor. D5 will also indicate the status of the Interrupt Line and

D6 and D7 will indicate the number of interrupts. This connection will
firstly be taken to the NM! and secondly to the IRQ.

@ Runthe main program from 0200 and observe the /O Port
Monitor,

We have already stated that the NMl interrupt is enabled low and on
the negative edge (transition from high to low). You should observe
this at the instant when Port B is incremented immediately following
the reset of Port Ato zero from a full count of 15 (denary).

@ Now consider the Interrupt Request IRQ. This signal differs from
the NMI in that the NMI is negative edge enabled while the IRQis
level (low) enabled. We will keep to the same basic program
except that some modifications will be necessary due to the
difference in the interrupt enabling signals. We will present the
programs and then discuss the modifications.

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0200 A9 FF LDA# FF Initialise Ports
0202 8D 0z 08 STA DDRB AandBto
0205 8D 03 09 STA DDRA output

0208 A9 00 LDA# @0 Resets PortB
020A 8D 00 09 STA DRB to zero

0200 A9 10 LDA# 10 Sets Port A
020F 8D 01 09 STA DRA bit 4 to *high’
0212 58

0213 EE 01 09 NEXT INC DRA

0216 20 80 02 JSR 0280 Timewaste SR
0219 4C 13 02 JMP NEXT

EMMA [l User Manual

Exercise

interrupt Service Routine:

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0250 A8 10 LDA# 10 Resets
0252 0D 01 09 ORA DRA Port A
0255 8D 01 09 STA DRA bit4
0258 EE 00 09 INC DRB

0258 40 RTI

The Time Waste Sub-Routine and the interrupt Vectors remain
unchanged.

The program will require that the IRQ signalis obtained from
Port A, bit 4 rather than bit 3 as in previous exercise.
Now let's consider the modifications to the program.

If Port Ais set originally to zero, an interrupt will be enabled
immediately the Interrupt Flag in the microprocessor Status
Register is cleared. Obviously this must be disallowed since we
have not yet started counting! Bit 4 (connected to interrupt IRQ)
is thus set high by storing 10 to DRA.

When Port Ais incremented it will now start counting at 10 (Hex)
ratherthan 00 (Hex). When F (HEX) is reached (this will
represent a denary count of 15 on Bits 0-3 at Port A) a further
increment should cause an interrupt (to increment Port B) and
reset Bits 0 - 3 at Port A to zero. The actual output at Port A will go
from 1F to 20, so causing the required interrupt (bit 4 goes low).

Before leaving the interrupt routine we must set Bit 4 high
otherwise upon return we willimmediately break to interrupt and
continue to do so without further counts at Port A taking place.
The setting of bit 4 has been done by loading the accumulator
with 10, performing a logical OR on the accumuiator with the
actual output of Port A, and storing the resultback to Port A.

Change the interconnections between the I/O Port Monitor and
EMMA II, enter the new program (not forgetting the Time Waste and
Interrupt Vectors if the machine has been switched off) and run the
program.

You should observe thatthe effect is exactly the same as before.

42

EMMA Il User Manual

Chapter 8 Hardware Timers (VIA)

13

In the previous programs we used a time waste sub-routine as
shown below:

Hexadecimal Symbelic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0260 A9 FF LDA# FF

0262 8D FE 00 STA 0OFE

0265 A9 FF LOCP2 LDA# FF

0267 8D FF 00 STA 00FF Time Waste
026A CE FF 00 LOOP1DEC OQOFF subroutine
026D DO FB BNE LOOP1

026F CE FE 00 DEC O0OFE

0272 DO F1 BNE LOOP2

0274 60 RTS

Thisis not a particularly efficient way to use the microprocessor
since during a software generated time waste the processor is
unable to perform any other work. In control systems many such
time wastes are required and hence the processor could be very
inefficiently used. A better solution to this time waste/efficiency
problem is to use hardware timers. These can be triggered off by the
microprocessor and configured to interrupt the processor upon time
out. Meanwhile the microprocessor can be performing other

useful functions.

The Versatile Interface Adaptor (6522) has two timers which can be
programmed to count out predetermined periods. They can be
programmed to interrupt the microprocessor upon count out or the
microprocessor can be programmed to read the timer atintervals
and take appropriate action when the timer has timed out.

EMMA Il User Manual

Simplified
Architecture 6522
Interval Timers

IFR
IER ——= |RQ
Data [TIL-H TIL-L
Bus » TIC-H TIC-L
Address IAddress|
T2L-
Bus Decode e i
!_ T2C-H T2C-L
ACR
PCR

Each of the blocks in the diagram are fully addressable and are
identifiable as shown below:

Label Designation Address
T1C-L Timer 1 low-order latch (WRITE) 0904
Timer 1 low-order counter (READ)
T1C-H Timer 1 high-order counter (WRITE) 09cs
TiL-L Timer 1 low-order latch (WRITE) 0906
TiL-H Timer 1 high-order latch (WRITE) 0907
T2C-L Timer 2 low-order fatch (WRITE) 0908
Timer 2 low-order counter (READ)
T2C-H Timer 2 high-order counter (WRITE) 0809
ACR Auxiliary Control Register 0s0B
IFR Interrupt Flag Register 090D
IER Interrupt Enable Register 0S0E
PCR Peripherai Control Register 090C

44

EMMA [l User Manual

You should observe that there is a slight difference between the two
timers.

We will now look at each of the registers, considering timer 1 only.

Auxilia ry Control Two bits 6 and 7 of the Auxiliary Control Register determine the four
Reaister (ACR operating modes of Timer 1. Each mode will affect both the Interrupt
g (] Flag Register (bit 6 in particular) and bit 7 of output Port B. The four

modes are outlined in the table below and are selected when the
appropriate code is written into bits 6 and 7 of ACR.

Mode | ACR | BitNo | Operation Port8
7 6 Bit7
0 0 One-shot Mode. A
1 single interrupt occurs | DISABLED
upon time-out of
timer 1
0 1 Free Run Mode. Upon
time-out the counteris
2 automatically reloaded

and anew time-out DISABLED
period begins. An
interrupt occurs upon
eachtime-out,

1 0 As for Mode 1 Goes low for duration
3 of timed period.
4 1 1 As for Mode 2 Qutputinverted upen
eachtime-out
producing a square

wave of equal mark/
space ratio. Unless
counteris re-loaded
from latches creating
anewtime period.

Interrupt Flag

Register (IFR) Bit 6 of the Interrupt Flag Register is set upon time-out of Timer 1.
This bitis cleared by either reading Timer 1, low-order counter
(T1C-L), by writing Timer 1, high-order counter (T1C-H) or by writing
a‘'1'directly to the flag.

45

EMMA Il User Manual

Interrupt Enable
Register (IER)

Latches/Counters

Bit 6 of the Interrupt Enable Register corresponds to bit 6 of the
Interrupt Flag Register. A ‘1" inthis bit will enable the interrupt while
a ‘0" will disable. However, bits in this register are under program
control as follows:

Withbit7 at'0’, a “1" in bit 6 will CLEAR interrupt enable, while a
‘0" willleave it unaffected.

With bit 7 at'1’, a ‘1" in bit 6 will SET interrupt enable, while a ‘0" will
leave it unaffected.

Note: bothIFRandIER are 8-bitregisters and provide flags for
other modes of operation of the VIA as well as for Timer 1.

Two 8-bit latches designated low-order and high-order respectively
are provided for Timer 1. Associated with these are two 8-bit
counters, also designated low-order and high-order respectively.
The latches are used to store data whichistobe loaded into the
counter. After loading, the counter is decremented at phase 2 (02)
clock rate (1 micro second). Upon reaching zero, an interrupt flag (bit
6 of IFR) is set and the IRQ line will go low if the interrupt is enabled
(bit6 of IER setto *1'). Furtherinterrupts will be disabled by the timer
unless programmed to automatically transfer the contents of the
latches into the counter and begin to decrement again.

46

EMMA Il User Manual

Programming
Hardware Timer 1

Task We will write a simpie program which, with minor modifications, will
demonstrate each of the modes of operation of the timers.

Flow Chart
Initialise
Ports
AsndB
SetPorts
1o
Zero
4 Interrupt Service Routine
} Interrupt
Time
Waste
Count No of
Times PA has
reached full
count
Increase
By 1 Count
onPortA
Return

The program is effectively in four parts:

Main Program

Interrupt Service Routine
Time Waste Sub-Routine
Interrupt Vector Loadings

EMMA Il User Manual

Main Program The main programis designed to initialise the microprocessor
interrupt flags, the VIA interrupt flags, the VIA mode of operation and
finally to set Timer 1 time interval.

The programis:
Hexadecimal Symbolic Assembler Instructions
ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS
0200 58 CLI Enabies Processor
IRQ .
0201 A9 CoO LDA# CO Enables VIAIRQ
0203 8D OE 09 STA IER
0206 A9 -° LDA ° Sets mode oftimer 1
0208 8D 0B 0§ STA ACR operation
0208 A9 FF LDA# FF Sets
020D 8D 04 09 STA TIC-L Timer 1
0210 A9 FF LDA# FF time
0212 8D 05 09 STA TIC-H interval
0215 4C 15 02 WAIT JMP WAIT Program End
* Mode of operation Codes. (Enter C0 for the present).
Code Operation PB7
00 Single Shot Disabled
40 Free Run Disabled
80 Single Shot Enabled
Co Free Run Enabled
Interrupt Service
Routine The interrupt service routine is designed to initialise Port A bits 0-6 to

output, increment this port to a full count on bits 0-6, reset the VIA
interrupt flag and then return from interrupt.

48

FMMA Il User Manual

The programis:

Hexadecimal Symbolic Assembiler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0250 A9 FF LDA# FF Initiali e PortA,
g252 8D 03 09 STA ODRA bits @-7 to output
0255 Ag 00 LDA# 00 Sets PortA
0257 8D 01 09 STA DRA to zero

025A EE 01 09 REP INC DRA

0250 20 80 02 JSR 0280 Time waste SR
0260 A9 7F LDA# 7F Tests DRAfor
0262 CD 01 08 CMP DRA full count
|o265 DO F3 BNE REP

0267 A9 40 LDA# 40 Clears VIA_
0269 8D 0D 08 STA IFR Timer 11RQflag
026C 40 RTI

Time Waste

Sub-Routine The time waste subroutine is simply included to allow the I/O Port

Monitor to be used to monitor Port A, bits 0-6. It is a straight forward
double-loop routine which you will be familiar with.

The program is:

Hexadecimal Symbolic Assembler Instructions

ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS

0280 A9 FF LDA# FF
0282 85 20 STA 20
0284 A3 FF LOOP2 LDA# FF
0286 85 21 STA 21
0288 Cé6 21 LOOP1 DEC 2%
028A DO FC BNE LOOP1
028C C6 20 DEC 20
028E DO F4 BNE LOOP2
0290 60 RTS

49

EMMA Il User Manual

Interrupt Vector
Loadings

The VIA Timer 1 causes an interrupt request (IRQ) at the ViAand
hence the microprocessor itself (the VIA iRQ output pin is connected
on the printed circuit board, to the microprocessor [RQinput pin)
breaks to locations OEFE and OEFF.

Hence OEFE and OEFF must be loaded with the start address of the
Interrupt Service Routine.

OEFE - Low Byte
OEFF - High Byte

(Inthis instance, the start address, and hence the vectors of the
interrupt service routine are 0250.) These must be loaded before the
programis run.

Now let's enter these four components of our TIMER 1 program. But
first let's decide on our mode of operation, {(see * on Main Program).

@ Mode 1 (Code00)
The program will operate to increment Port Abits 0-6to a single
full count only.

® Mode?2(Code40)
The program will operate to increment Port A, bits 0-6 reset
Port Ato zero and continue to increment. The microprocessor
will continue this operation repeatedly.

@ Mode 3(Code 80)
The program will operate as in Mode 1 above, butbit7 of PortB
will also be enabled. PB7 will be pulsed low for the duration of the
Timer 1 time interval (approx, 0.6 second).

@® Mode 4 (Code CO)
The program will operate as in Mode 2 above but bit 7 of Port B
will also be enabled. PB7 will generate a continuous
square wave.

Load into EMMA Il the four components of the program and run the
program for each of the mode of operation codes. Observe results.

With the Timer 1 program entered and with mode 4 selected, change
the main program such that the microprocessor iRQis disabled
(change location 0200 from CLI, op. code, to SEI, op. code 78).
Observe results. Note that a similar result can be obtained by
disabling the interrupt at the VIA (ioad IER with 80)

50

EMMA |l User Manual

51

Run the program in mode 1 but enter No Operations (op. code EA) at
memory locations 0267-026B inclusive. This will show the
importance of clearing a Device Interrupt Flag before returning from
interrupt. Although Timer 1 is in a single-shot mode, the VIA interrupt
request line IRQ will only be cleared (taken high) if the counters are
reloaded. Since mode 1 does not do this, the Timer 1 interrupt flag
(bit6inIFR), must be cleared. Ifthis is not done, the microprocessor
will continue to be interrupted upon return from each interrupt
although the timer itself is not producing interrupts.

The Timer 2 is slightly different from Timer 1. You will find technical
details of this timer in the EMIMA Il Technical Manual.

EMMA Il User Manual

Chapter 9 Program Debugging

Single Step Mode

RESET

SINGLE
STEP

ON OFF

Ifthe program does not operate when RUN itis more likely to be your
program than the hardware that is at fauit! When this happens, as
surely it will, you will appreciate the care (or lack of) that you took in
firstly constructing your flow chart and secondly providing adequate
comments on your assembly listing. Assuming you have metthese
documentation requirements then you may proceed to use one or
cther of the debug features provided by the EMMA Il monitor.

This causes the microprocessor to be interrupted after each
instruction has been executed, enabling the user to inspect various
internal registers. The contents of these registers indicate the result
of the last operation performed by the microprocessor.

To use the single step facility.
® Switchsingle step switchto 'ON’

® PressReset
® Press[R]key

@® SetSTART address
® Press[El key. This will cause the first instruction to be executed.

The display will now show the contents of the:

ACCUMULATOR, X-REGISTER, Y-REGISTER and the
STATUS REGISTER

Two hexadecimal digits will be devoted to each and displayed
on the EMMA i keyboard as follows:

¥ [[[[¥ ¥ [% [X]
N SE— N

Acc X h Status

52

FMMA Il User Manual

83

@ Press the [R]key.

The display will now show the contents of the Program Counter
and the Stack Pointer. Four hexadecimal digits being devoted
to each. The program counter gives the address of the next
instruction to be executed.

X

X

K

X

X [K| X | XK

e

A s

~——
Program Counter

“
Stack Pointer

If you now press [R]again the next instruction will be executed

and the display will a
and STATUS. Press

o

n show the current contents of Acc. X. Y

againtogive PC and SP.

Repeatedly pressing @will thus step the program through
instruction by instruction, allowing you to inspect each of the
processor registers after every instruction.

To return to the normal program RUN mode, the single step switch
must be returned to ‘OFF". Press the |G| key twice and the program
will run normally from its start address.

As an example of single step function enter the following program:

Hexadecimal Symbolic Assembler Instructions
ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS
0200 A2 05 LDX# 05
0202 A0 06 LDY# 06
0204 A8 07 LDA# 07
0206 4C 00 02 JMP 0200

Set the machine single step mode as explained earlier, and setthe
start address for 0200. Upon the next press of [R] you will see the first
instruction has been carried out.

The display will show:

*

X

1
|]

i

X | K| K| XK

EMMA Il User Manual

05 has beenloaded into the X register

Press[E again:

AEIEIEIEIE

&

Note that the program counter is at 0202.

Press[R]again, and the instruction at address 0202 is carried out.

The display will show this:

XX D= |05 X)X

M § e

Press [E] again the program counter shifts to 0204.

Press[R]and the instruction load accumulator is carried out and can

be seen onthe display as:

EEEEREE:

o 2 &

b
Acc X Y Status

Press IE] again, and the program counter is displayed, shifted to
0206.

Press@ again; the jump instruction is carried out. Note that the
registers Acc, X, Y still contain the data previously entered.

Press [E] and the program counter displays the address 0200
indicating that the jump instruction has been carried out.

Obviously this program is a simple operation to show how data is
manipulated. The single step facility is of great benefit when fault
findingin a program.

54

EMMA Il User Manual

Breakpoint Mode

55

The single step mode can be a time consuming process especially if
the program is large. The following procedure allows the program to
be ‘inspected’ at set pointsin the program.

A break point will interrupt the microprocessor, enabling the user to
inspect the state of the internal registers at any point within the
program.

Assume that the user suspects that there are problems occuring
within a particular part of his program, the breakpoint mode can be

used.

0200 A2 05 LDX# 05
0202 A0 06 LDY# 06
0204 A9 07 LDA# 07
0206 4C 00 02 JMP 0200

Using the previous program we wish to insert a break command at
location 0204. Now the break command code is 00 and it is this that
must replace A9 at 0204.

Now:

Press[P|key Thedisplay willread:P.* * * *
SetP. 0204 using hexadecimal keys.

Press P. The display now shows that 00 (Break command code)
has been loaded into location 0204 .

@ Notethat pressing[P]again (twice) restores the data A9 LDA
and pressing [El again (twice) re-introduces the break
command.

@ With display showing P.0204 00, press[G]and setdisplay to
G.0200where 0200 is the start of the program.

® PressG

The program will now RUN to address 0204 and break tothe
monitor subroutine used for the single step mode. The display
will now show: Acc. X, ¥ and STATUS.

Inthisexample **0506**

EMMA Il User Manual

@ PressP. Thedisplay will now show:
PROGRAM COUNTER AND STACK POINTER.

Inthisexample 0204 * * * *

@® PressPtwice.
The break command is removed and the LDA code is restored.

@® PressR.
The program continues to RUN from location 0204.

56

EFMMA Il User Manual

Chapter 10 Using the Cassette Interface

CASSETTE INTERFACE
R18 R1S
T p —
B RO jp — 1
., s o —F
R22 R23
Cie

R25
D oY) D ¢] 1c17
R24 ciE ATy
(o]

R
Q. =
R28
LED, c17 %

57

A cassette interface is provided on the 'EMMA |1 to aliow the use of
a normal commercial cassette recorder for the storage of
programs. Itis recommended that good quality tapes are used and
that the tape head is kept clean with the occasional use of a head
cleaning tape. Short duration tapes will be less likely to stretch with
repeated use and for this reason C120 cassette tapes are not
recommended.

Connection to the recorder is best facilitated by the hi-fi DIN
connector. If the recorder does not have a DIN facility, then
connection can be made via external microphone and ear-phone
jack sockets. The cassette connectoronthe 'EMMA II' is a 3-way
pcb plug on the left of the cassette interface block.

Load GRD Record

SN LN

White Spot

EMMA PCB 0.1" Pins
Viewed from top

Care must be taken to insert the P.C.B. connector correctly i.e. white
side towards the white spotonthe P.C.B.

Pin connections for the lead are:

GRD (Screen)

Viewed from rear
Standard 5-pin DIN plug

NC - Not connected

EMMA Il User Manual

Program Save on .
Cassette
L]

Press save key
The display asks for FROM' address F * * * *

Press[S]again.

The display willask for ' TO addresst* * * *
Enter last address of program +1

Press|S|again and the display will ask for abaud (speed of
transmission) rate. BAUD -

Pressing the ‘1" key selects 1200 baud

Pressing the '0" key selects 300 baud

Do not select this until the cassette is running.

Press RECORD and PLAY on the cassette recorder.

Select BAUD RATE; a header intone is recorded for approx 4
sec (2.4kHz) followed by data. During thistime LED 1is
illuminated. ’

When the last address is reached LED 1 is extinguished and the
last address appears on the display.

Press STOP on recorder.

Summary

L]

Press|S|enter start address

Press|S|enterlast address +1

Press

Startrecorder

Press @ or to selectbaud rate and initiate data transfer.

58

EMMA Il User Manual

Program Load from
Cassette

Summary

59

The EMMA Il interface is tolerant of the amplitude of the cassette
output and it is generally acceptable to have the volume and tone

controls set to approximately mid-position.

e RESET the microprocessor

e PRESS[L]Thedisplay will show: BAUD

e Find the program header tone, either with tape counter, or by
listening for the 2.4KHz tone.

e During the headertone selectbaudratei.e.
[1] = 1200 baud

[0] = 300baud
e Asthedataisloaded LED 1isilluminated.

e Whenthe program has loaded the row of dots will reappear on
the display.

e Stopthe recorder and runthe program in the normal way.

Note: The baud rate must be the same as the recorded program
when loading.

» Press|{L]“BAUD-" displayed.
e Startrecorder.

e During headertone press[1]or[0]to select appropriate baud
rate.

e Wait for row of dots on display and then stop the recorder.

NB Itis important when saving a program to fabel the tape
containing your program for future reference.

- Title

- Start Address

- Baud Rate

- Tape Counter Location
- Checksum

A ‘Checksum’ is formed by adding alf the data bytes and arriving
at atotal. This figure can be used to check if data has been corrupted
during transmission. Refer to checksum routine page 61.

EMMA Il User Manual

Chapter 11 Useful Routines/Subroutines

User Routines Includedin the monitor program of EMMA |l are sub-routines that
perform functions to assist the programmer. This section of the
manual will explain how to use these routines.

Hexadecimal to Decimal/Decimal to Hexadecimal

Routine Start Address = D300

A mode signal 'H’ will appear indicating thatthe routine is in
HEX--»DEC mode. The 'H'is asking for a HEX numberupto 4
digits to be entered. After a HEX number has been entered
pressing|P]"PROCESS", will change the state of the dispiay to
decimal and display 'D’ in the mode character location and the
decimal equivalent of the HEX number on the right of the display.

e.g.H F5
D 245

Branch Offset Calculator

Routine Start Address = D980

This sub-routine does branch calculations for the programmer.
Example:

Run the program from D980; the mode digit displays 'F’ asking
fora "FROM" address to be entered.

e.g. Enter 0045 as “FROM" address by pressing [P]'Process’
The mode character 't’ will appear asking fora “TO" address.
For this example enter 0060.

Press E] again and the mode character wili display a '0’
meaning thatitis in the offset mode and display a two digit
offset, '19'in this exampie.

If the branch is out of range, the mode character will show ‘E’
meaning ERROR.

In both of these cases pressing [E| (Re-Run) will re-run
the program.

i.e. Return to the “FROM” situation for the next calculation. By
pressing| L |the monitor program runs and a reset situation
exists.

60

~“4MA |l User Manual

61

Relocator

Routine Start Address = DSC9

This program is designed to move blocks of program to new
address locations. To use this program run from “D9C9". The
mode digit means “F" asking for start address of block to be
moved for an example enter 0245 as start address. Pressing

E] “PROCESS" the mode digit will display ‘t’ indicating the need
for anend address 1 of the block to be moved, for this example
enter 0260.

To relocate do NOT overlap the shift block and the new block
location (ie will corrupt if overlapped).

Pressing [E} key again the command will be ‘d’ asking fora
destination address, for the example enter 0800.

By pressing the [E] key the program will now transfer data from
0245 - 025F to anew address 0800; and return to the moniter
program (arow of dots will appear on the display.)

Checksum Routine

Routine Start Address = DAS0

A checksumis done by adding a group of data bytes (e.g. a
program) together and forming a total to be used for comparison;
for example after transmission etc a bit could be corrupted hence
the program would have a different checksum. To use this
routine:

Go from DA5S0
The mode character displays 'F asking for the start address of
the biock to be checksummed.

Enter address.
Press[P]the mode displays ‘N’ asking for the number of bytes.

Enter number of bytes.

Press @

The mode character will display ‘C’ indicating a checksum and
the checksum appears on the right of the display.

By pressing @the program returns to the monitor and areset
condition.

EMMA Il User Manual

Useful Subroutines @ DatainsertRoutine

Routine Start Address = D805

This routine can be used in a program to ask the user to insert
data to be used as a function of the program. To utilise the
program the 'Y’ register needs to be set to the number of
characters of the data. The start address of the sub-routine is
D805. For example enter the small program.

0200 A0 05 LDY # 05 Numberofcharacters
0202 20 05 D8 JSR D805 ‘Insert' subroutine
0205 4C EO FE JMP FEEO Reset

Run the program from 0200.

The display will show G 0200.

Now you can enter data up to 5 HEX characters. The displayed
characters will shift left as this is being loaded. For this example,
enter 01234, By pressing PROCESS key [E the programis
executed. The data has been converted into a 4 byte code and
stored at 001C - 001F by examination.

From the example the routine uses both the X and the Y
registers, which are restored on exit.

Display 8

Routine Start Address = D848

This routine transfers data from 001C - 001F to the display buffer
in seven segmentform. Zero suppression is also performed.

For example load locations 001C - 001F with the following:

001C 67
001D 45
001E 23
001F 01

Run from D849 and the displayed data willbe 1234567

62

EMMA |l User Manual

63

Display

Routine Start Address = D84D

This routine is similarto 'DISPLAY 8'; the only difference is the
data transferred for display is from 1C - 1E. Digit 1 of the display
is cleared and digit 0 is loaded from 1B. 1B can be loadedto give
asymbol or letter as a code of information. The datain our
example will display length L at 7500.

0018 38 Sevensegmentcode for ‘L’
001C 00
001D 75 Data(7500)
001E 00
Run from D84D.
The display will read L 7500

Multiply By 10

Routine Start Address = D83D

This routine multiplies the 3 byte number in 0A - 0C by

10 1 and stores the resultin HEX back in 0A - 0C. Care
must be taken to ensure that the menitor program does not
corrupt the answer. (i.e. if the monitor uses 0A - 0C)

Multiply by 16

Routine Start Address = D8B3

This routine multiplies the 3 byte number in 0A - 0C by 161 and
stores the resultat 0A - 0C.

Display Memory Contents

Routine Start Address = FEOC

This routine displays seven segment codes stored at:

0010 -0017. If the contents of 000E is less than 80 the display is
scanned once and returns from the sub-routine. If the contents of
000E are greater than 80 the display is continuously scanned
until a key is operated, at which point the accumulator

and location 000D are loaded with the hex value of the key and a
return from subroutine is performed.

EMMA Il User Manual

To show how this sub-routine can be used enter the following
program which loads the contents of 0020 to 0027 into

0010to 0017 and thendisplays them.

Hexadecimal Symbolic Assembler Instructions
ADDR 1 2 3 LABEL MNEM OPERAND COMMENTS
0300 A9 80 LDA #80
0302 85 OE STA OE
0304 A2 Q0 LDX #00
0306 B5 20 LDA 20X
0308 85 10 STA 10X
030A EB INX
030B EO 08 CPX #08
030D DO F7 BNE °
030F 20 OC FE JSR FEOC
0312 8D 00 02 STA 0200
0315 4C EO FE JMP FEEO

Then calculate the data to display a message and load this into

locations 0020 to 0027.

The codes required to illuminate each segment are shown below:

Segment Code

01
02
04
08
10
20
40
80

o "~o oo oo

o

Run the program and observe that the message is displayed.

Operate one of the keys and note that control is returned to the
monitor program. Examine location 0200 which will contain the hex
value of the key used to exit the subroutine.

Write 4 Characters
Routine Start Address = FEQO

Displays contents of (0000 + X — 3) (0000 + X — 2) (0000 + X — 1)
and (0000 + X), from left to right, on the display.

Forexample: Load 01 into location 002D, 23 into location 002E, 45
into location 002F, 67 into location 0030.

64

~*4MA Il User Manual

65

Load the following simple program starting at location 0300:-

0300 A2,30 LOX#
0302 20,00FE JSR FEOQO

Runthe program from 0300, i.e. press ‘'G’, 0300, ‘G".

The display will show the contents of locations 0020 to 6030
inclusive. This subroutine drops through to subroutine FEOC to
display the information.

Note: The subroutine uses the accumulator, X registerand Y
register, so if information in these registers is needed, then it mustbe
stored elsewhere before entering the subroutine.

Display Memory Contents
Routine Start Address = FESE

Converts the contents of the indirect address formed from locations
{0000 + X) and (0000 + X + 1) into seven segment codes, and
stores them in locations 0016 and 0017. Jumping to subroutine
FEOC will cause the information to be displayed on the right hand
side of the display.

Load the following program starting at 0300:

0300 A2,00 LDX#00

0302 8A TXA

0303 95,10 * STA 10X clears
0305 EB8 INX locations
0306 EO0,08 CPX#08 0010-0017
0308 DO,F8 BNE °

030A A9,80 LDA#80

030C 85,0E STA OE

030E A2,20 LDX#20

0310 20,5E,FE JSR FESE

0313 20,0C,FE JSR FEQC

Load 0020 with 30 and 0021 with 00. Load location 30 with AB.

Run the program from 0300; the display will show AB on the two
righthand digits. The subroutine starting at FESE uses the numbers
stored in 0020 and 0021 (X = 20) to form an indirect address (in this
case 0030) and then converts the contents of this location into seven
segment codes and stores them at 0016 and 0017. Jumpingto the
subroutine at FEQC displays these characters.

The subroutine uses the accumulator and Y register.

EMMA Il User Manual

Display Accumulator Contents
Routine Start Address = FEB0

Converts the contents of the accumulator into seven segment codes
and stores them in focations 0016 and 0017. To display the contents
of these locations, jump to subroutine FEOC on returning from the
subroutine at FE60.

To show how these subroutines can be used, load the following
program:-

0300 A2,00 LDX#00

0302 B8A TXA

0303 95,10 STA 10, X clears
0305 EB INX locations
0306 EO0,08 CPX#08 0010-0017
0308 DO,F9 BNE*

030A A9,80 LDA#80

030C 85,0E STA 0OE

030E A5,30 LDX 0030

0310 20,60,FE JSR FE60

0313 20,0CFE JSR FEOC

Inthis program the contents of 0030 are loaded into the accumulator.
On jumping to subroutine FEB0Q, this information is converted into
seven segment codes and stored at 0016 and 0017. Jumping to
subroutine FEOC displays this information on the right of the display.

The subroutine uses the accumulator and Y register.

66

EMMA Il User Manual

67

Display 4 Characters
Routine Start Address = FE64

Converts the contents of locations (0000 + X + 1) and (0000 + X)
into seven segment codes and stores them at locations 0011,0012,
0013 and 0014 respectively. Jumping to subroutine FEOC will display
this information on the left hand centre of the display.

To show how this subroutine can be used, load the foliowing
program starting at 0300:

0300 A2,00 LDX#00
0302 &gA TXA

0303 95,10 * STA 10X
0305 E8 INX

0306 E0,08 CPX#08
0308 DO,F9 BNE *
030A A9.80 LDA#80
030C 85,0E STA OE
030E A230 LDX#30
0310 20.64.FE JSR FE64
0313 20,0C,FE JSR FEOC

Load location 0030 with 23 and 0031 with 01. Run the program and
0123 willbe displayed.

The program displays the contents of locations 0030 and 0031 by
firstjumping to the subroutine at FE64. This converts the information
into seven segment codes and stores these at location 0011, 0012,
0013 and 0014. The program then jumps to the subroutine at FEOC
to display the information.

The subroutine uses the accumulator and Y register.

EMMA il User Manual

Read Hexadecimal Keys
Routine Start Address = FES88

Shifts data entered on the keyboard hexadecimal keys into memory
locations (0000 + X + 1) and (0000 + X), the subroutine then jumps
to the subroutines starting at addresses FE64 and FEOC to display
the information in the second, third, fourth and fifth digit positions
(from the left side of the display). When a command key is pressed
the subroutine is exited with the value of the command key stored in
the accurmnulator and at address 000D. Also, on exiting the
subroutine, the information which has been entered will be stored in
locations(0000 + X + 1) and (0000 + X): in this case.0031 and 0030.

Load the following program:-

0300 A2,00 LDX#00
8A TXA
95,10 * S8TA10,X
E8 INX
EQ.08 CPX#08
DO,F9 BNE "
A2,30 LDA#30
95,00 STA00.X
95,01 STA01,X
20,88,FE JSR FEB8
4C,13,03 T OIMP T

Run the program from 0300 and enter hexadecimal information via
the keyboard. Notice that the information enters the display. Press a
command key and note that the display goes blank. Press RESET
and then examine memory locations 0030 and 0031; these will
contain the last four digits entered via the keyboard.

The subroutine uses the accumulator and the Y register.

Keyvalues are:

M 10 L 14 0 00 4 04 8 08 C 0OC
G 11 R 15 1 01 5 05 0 09 D 0D
P 12 + 16 2 02 6 06 A O0A E OE
§ 13 - 17 3 03 7 07 B OB F OF

68

FMMA Il User Manual

69

Output Data Through The Cassette Interface (To Tape)
Routine Start Address = FEB1

This subroutine takes an 8-bit parallel code from the accumulator
and outputs this byte as a serial code through the cassette interface.

The following program iliustrates the use of subroutine FEB1 -

0300
0302
0305
0308
0309
0308

A2,00
BD,00,02
20,B1,FE
E8

DO,F7
4C,EO,FE

LDX#00
*LDA 0200.X
JSR FEB1
INX

BNE*

JMP FEEO

Press reset before running the program and the program will output
all of page 02 through the cassette interface.

If required, the following program can be run to store AAand 55in
alternate locations on page 02. The program given above can then
be used to store this data on tape.

0350
0352
0354
0356
0358
035A
03sC
035F
0360
0362

A2,00
A9,AA
85,20
A5,20
49,FF
85,20
§D,00,02
E8

DO,F4
4C,EO,FE

LDX#00
LDA#AA
STA 20
LDA 20
EOR#FF
STA 20
STA 0200,X
INX

BNE F4
JMP FEEO

The subroutine at address FEB1 uses the accumulatorand Y

register,

EMMA Il User Manual

Input Data Through the Cassette Interface (from tape)
Routine Start Address = FEDD

Loads a byte from tape into the accumulator. in loading this byte, the
subroutine takes a serial 8-bit code from the cassette interface and
converts it to a parallel code, placing this paralle! byte in the
accumulator.

The following program illustrates the use of this subroutine:-

0300 A2,00 LOX#00
0302 20.DD,FE JSR FEDD
0305 9D,00,02 STA 0200,X
0308 E8 INX

0309 DO,F7 BNE F7
0308 4C,FE,EO JMP FEEO

This program loads 256 bytes of data from the tape and storesiton
page 02.

If the program giveninthe TO TAPE routine is run first, then the
FROM TAPE routine can be used to read the data back from the
tape.

The subroutine uses the accumulator and Y register.

70

EMMA |l User Manual

Appendix A 6502 Instruction Set

The following notation applies to this summary:

X >
<

<t a1 >+ Snvz

Ik T U

%000
mr I
m .

Accumulator

Index Registers
Memory

Processor Status Register
Stack Pointer

Change

No Change

Add

Logical AND

Subtract

Logical Exclusive Or
Transfer from Stack
Transfer to Stack
Transferto

Transfer from

Logical OR

Program Counter
Program Counter High
Program Counter Low
Operand

Immediate Addressing Mode

72

FMMA Il User Manual

73

ADC Add memory to accumulator with carry ADC
Operation: A+ M+ C—A,C N ZCI DYV
doNE N - e
Addressing Mode Assembly Language | Op No ot No of
Form Code Bytes Cycles
Immediate ADC # Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper.X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 70 3 4*
Absolute, Y ADC Oper, Y 79 3 4*
(Indirect, X) ADC (Oper. X 61 2 6
(Indirect), Y ADC (Operl.Y 71 2 5*
* Add 1if page boundary is crossed.
AND “AND" memory with accumulator AND
Logical AND to the accumulator
Operation: AAM — A N Z C DV
N
Addressing Mode Assembly Language | Op No of Noof
Form Code Bytes Cycles
Immediate AND # Oper 29 2 2
Zero Page AND Oper 25 2 3
ZeroPage, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X 3D 3 a*
Absolute, Y AND Oper, Y 39 3 4*
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect}, Y AND (Oper),Y 31 2 g*
* Add 1 if page boundary is crossed.
ASL ASL Shift Left One Bit (Memory or Accumulator) ASL
Operation: C{ 7 [6[51a3[2]11@le®@ NZCIlDV
v Y- - -
Addressing Mode AssemblyLanguage | Op No of No of
Form Code Bytes Cycles
Accumulator ASLA A 1 2
Zero Page ASL Oper 26 2 5
ZeroPage, X ASL Oper, X 16 2 6
Absolute ASL Oper [%]3 3 6
Absolute, X ASL Oper, X 1E 3 7

EMMA Il User Manual

BCC

BCC Branch on Carry Clear

Operation: Branchon C = @

BCC

N Z C 1 DV

Addressing Mode Assembly Language | Op Noot Noof
Form Code Bytes Cycles
Relative BCC Oper %] 2 2*
* Add 1 if branch occurs 10 same page
" Add 2 if branch occurs to different page
BCS BCS Branch on Carry Set BCS
Operation: Branchon C = 1 N Z C I DV
Addressing Mode Assembly Language Op No of No of
Form Code Bytes Cycles
Relative BCS Oper B@ 2 2%
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page
BEQ BEQ Branch on Result Zero BEQ

Operation: Branchon Z = 1

N Z C I DV

Addressing Mode

AssemblyLanguage | Op No of Noof
Form Code Bytes Cycles
Relative BEQ Oper F& 2 2*
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page
BIT BIT Test Bits in Memory with Accumulator BIT

Operation: AAM, M7 — N, M6 = V

N Z C DV

Bit6and 7 are transferred to the status register. MW - - - M6
If the result of AA M is zero then Z = 1, otherwise
Z=0

Addressing Mode Assembiy Language § Op No of Noof

Form Code Bytes Cycles

Zero Page BIT Oper 24 2 3

Absolute BIT Oper 2C 3 4

74

:MMA Il User Manual

BMI Branch on result minus

Operation: Branchon N = 1

N ZCLlI DV

BMI

Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Relative BMI Oper 3@ 2 2Y
* Add 1 if branch occurs 10 same page
* Add 2 if branch occurs to different page
BNE Branch on result not zero BNE

BNE

Operation: BranchonZ =0

N ZCI DV

Addressing Mode Assembly Language Cp Noof No of
Form Code Bytes Cycles
Relative BNE Oper [b]%] 2 2"
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page
BPL BPL Branch on resuit plus BPL
Operation: BranchonN = @ N 2 C 1 DV
Addressing Mode Assembly Language | Op Noof No of
Form Code Bytes Cycles
Relative BPL Oper 12 2 2%
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page
BRK BRK Force Break BRK
Operation:Forced InterruptPC+2 | P | N Z C1 DV
. mow F = o=
Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Implied BRK [%1%] 1 7

* A BRK command cannot be masked by settng |.

EMMA [l User Manual

BVC

Operation: BranchonV = 0

BVC Branch on Overfiow Clear
N 2 € B ¥

BvVC

Addressing Mode Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Relative BVC Oper 5@ 2 2*
* Add 1 if branch occurs 1o same page
* Add 2 if branch occurs to different page.
BVS BVS Branch on Overflow Set BVS
Operation: BranchonV = 1 N Z C I DV
Addressing Mode AssemblyLanguage | Op No of No of
Form Code Bytes Cycles
Relative BVS Oper 70 2 z*>
* Add 1 if branch occurs to same page
* Add 2 if branch occurs to different page.
CLC

CLC

Operation: @ — C

CLC Clear Carry Flag

N Z C I DV
(%] .

Addressing Mode AssemblyLanguage | Op No of No of
Form Code Bytes. Cycles
Implied CLC 18 1 2
CLD CLD Clear Decimal Mode CLD
Operation: @ — D N Z C | DV
-
Addressing Mode AssemblyLanguage { Op No of No ot
Form Code Bytes Cycles
Implied CLD D8 1 2

76

FMMA Il User Manual

CLi CLIClear Interrupt Disable Bit CL!
Operation: @ — | NZC BV
o o w0 m e
Addressing Mode Assembly Language Op No of No of
Form Code Bytes Cycles
Imptied CL! 58 1 2
—
CcLv CLV Clear Overtlow Flag CLy
Operation: @ — V N Z C I DV
B,
Addressing Mode Assembly Language { Op No of Noof
Form Code Bytes Cycles
Implied CLv B8 1 2
CMP CMP Compare Memory and Accumulator CMP
Operation: A-M N ZC I DV
NN A
Addressing Mode Assembly Language | Op No of Noof
Form Code Bytes Cycles
Immediate CMP # Oper ca 2 2
Zero Page CMP Oper C5 2 3
ZeroPage, X CMP Oper.X D5 2 4
Absolute CMP Oper cD 3 4
Absolute, X CMP Oper, X 0D 3 4*
Absolute, Y CMP Oper, Y D9 3 4*
{Indirect, X) CMP (Oper, X) C1 2 6
(Indirect), Y CMP (Oper).Y D1 2 5

* Add 1 if page boundary is crossed.

EMMA Il User Manual

CPX CPX Compare Memory and index X CPX
Operation: X-M N Z C I DV
N Y
Addressing Mode AssemblyLanguage | Op No of No of
Form Code Bytes Cycles
Immediate CPX #0per E@ 2 2
Zero Page CPX Oper E4 2 3
Absolute CPX Oper EC 3 4
CPY CPY Compare Memory and index Y CPY
Operation: Y - M N Z C I DV
v v -
Addressing Mode Assembly Language | Op No of No of
Form Cede Bytes Cycles
Immediate CPY #0Oper Cco 2 2
ZeroPage CPY Oper C4 2 3
Absolute CPY Oper GG 3 4
DEC DEC Decrement Memory by One DEC
Operation: M-1— M N ZC1lI DV
A
Addressing Mode AssemblyLanguage | Op Noof No of
Form Code Bytes Cycles
Zero Page DEC Oper (ol} 2 5
ZeroPage, X DEC Oper, X D6 2 6
Absolute DEC Oper CE 3 5
Absolute, X DEC Oper, X DE 3 7
DEX DEX Decrement Index X by One DEX
Operation: X-1— X N Z C1I DV
Y
Addressing Mode Assembly Language | Op No of Noof
Form Code Bytes Cycles
Implied DEX CA 1 2

78

EMMA |l User Manual

DEY DEY Decrement Index Y by One DEY
Operation: Y-1 =Y N2 E D Vv
v ovo- - - -
Addressing Mode AssemblyLlanguage | Op Noof No of
Form Code Bytes Cycles
Implied DEY 88 1 2
EOR “Exclusive-Or” Memory with Accumulator EOR
Operation: A ¥ M—sA N Z C I DV
Y
Addressing Mode AssemblyLanguage | Op No of No of
Form Code Bytes Cycles
Immediate EOR # Oper 49 2 2
Zero Page ECR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4*
Absolute, Y EOR Oper. Y 59 3 4
{Indirect, X) EOR (Oper, X} 41 2 6
{Indirect), Y ECR (Oper).Y 51 2 ok
* Add 1 if page boundary is crossed.
INC INC Increment Memory by One INC
Operation: M+ 1—> M N Z C D V
v ovo- - - -
Addressing Mode Assembly Language Op No of Noof
Form Code Bytes Cycles
Zero Page INC Oper EE 2 5
Zero Page, X INC Oper, X F6 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7

79

EMMA Il User Manual

INX

INXIncrement Index X by One

Operation: X+ 1 = X

/

v

INX

N Z C 1 DV

Addressing Mode Assembly Language | Op No of Noof
Form Code Bytes Cycles
Implied INX £8 1 2
INY INY Increment Index Y by One INY
Operation: Y +1 =Y N g ¢ P N
v v - - -
Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Implied . INY ce 1 2
JMP JMP Jump to New Location JMP
Operation: (PC + 1) — PCL N 2 C 1l DV
(PC+2)— PCH S
Addressing Mode Assembly Language | Op No of Noof
Form Code Bytes Cycles
Absolute JMP Oper ac 3 3
Indirect JMP (Oper) 6C 3 5
JSR Jump to New Location Saving Return Address JSR
Operation: PC+ 2}, (PC+ 1)— PCL N Z C I DV
(PC +2)— PCH woow s m e W
Addressing Mode Assembly Language Op No of No of
Form Code Bytes Cycles
Absolute JSR Oper 20 3 6

80

~IMA Il User Manual

LDA Load Accumulator with Memory LDA
Operation: M — A N Z C I DV
T e
Addressing Mode AssembiyLanguage | Op No of Noof
Form Code Byles Cycles
Immediate LDA # Oper A9 2 2
Zero Page LDA Oper A5 2 3
Zero Page, X LDA Oper.X B5 2 4
Absolute LDA Oper AD 3 4
Absolute, X LDA Oper. X BD 3 4*
Absolute, Y LDA Oper,Y B3 3 4*
(Indirect, X) LDA ({Oper, X) Al 2 6
(Indirecy), Y LDA (Oper) Y B1 2 5=
* Add 1if page boundary is crossed.
LDX LDX Load Index X with Memory LDX
Operation: M — X N Z C 1 DV
v vo- - - -
Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Immediate LDX # Oper A2 2 2
Zero Page LOX Oper AB 2 3
ZeroPage, Y LOX Oper. Y B6 2 4
Absolute LOX Oper AE 3 <
Absolute, Y LBX Oper Y BE 3 4
* Add 1 if page boundary is crossed.
LDY LDY Load Index Y with Memory LoY
Operation: M — Y N Z C I DV
Y
Addressing Mode Assembly Language | Op No of Noof
Form Code 8ytes Cycles
Immediate LDY # Oper AQ 2 2
Zero Page LDY Oper Ad 2 3
Zero Page, X LDY Oper, X B4 2 4
Absolute LDY Oper AC 3 4
Absolute, X LDY Oper, X BC 3 4*

* Add 1 if page boundary is crossed.

EMMA Il User Manual

LSR L'SR Shift Right One Bit (memory or accumulator) LSR
Operation:@ {7[6]5[4]3[2]1]0] +C NZCl1Dyv
‘-" \/ » = i
Addressing Mode Assembly Language | Op No of Noof
Form Code Bytes Cycles
Accumulator LSRA 4A 1 2
Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper. X 56 2 6
Absolute LSR Oper 4E 3 3]
Absolute, X LSR Oper, X 5E] 7
NOP NOP No Operation NOP
Operation: No Operation (2 cycles) N Z C 1| D V
Addressing Mode AssemblyLanguage | Op No of No of
Form Code Bytes Cycles
Implied NOP EA 1 2
ORA ORA “OR” Memory with Accumulator ORA
Operation: AVM — A N Z C I DV
A
Addressing Mode Assembly Language Op Noof Noof
Form Code Bytes Cycles
Immediate ORA # Oper @29 2 Z
Zero Page ORA Oper @5 2 3
Zero Page, X ORA Oper, X 15 2 4
Absolute ORA Oper @D 3 4
Absolute, X ORA OQper. X 1D 3 4*
Absolute, Y ORA Oper, Y 19 3 4*
(Indirect, X) ORA (Oper, X) 21 2 6
(Indirect), Y ORA (Operl.Y 1 2 5*
PHA PHA Push Accumulator on Stack PHA

Operation: A |

N Z C I DV

Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Implied PHA 48 1 3

82

EMMA Il User Manual

PHP

Operation: P |

PHP Push Processor Status on Stack

N Z C I DV

PHP

Addressing Mode Assembly Language | Op Noof No of
Form Code Bytes Cycles
Implied PHP 28 1 3
PLA PLA Pull Accumulator from Stack PLA
Operation: A 1 N Z C 1 DV
A
Addressing Mode Assembly Language | Op No of No of
fForm Code Bytes Cycles
Implied PLA 68 1 4
PLP PLP Pull Processor Status from Stack PLP
Operation: P 1 N ZClIl DYV
From Stack
Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Implied PLP 28 1 4
ROL ROL Rotate °"ﬁ Bitkeft (memory or accumulator) ROL
or
Operation:{[7 16 15]4] 3[2[1]0{CM N Z C I DV
N R
Addressing Mode Assembly Language Op No of No of
Form Code Bytes Cycles
Accumulator ROLA 2A 1 2
Zero Page ROL Oper 26 2]
ZeroPage, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 74

83

EMMA Il User Manual

ROR ROR Rotate one Bit Right (memory or accumulator) ROR
Mor A
Operation:w716]5|4f3i2l1f@]j N ZCI DV
N N
Addressing Mode Assembly Language [Op No of Noof
Form Code Bytes Cycles
Accumulator RORA 6A 1 2
Zero Page ROR Oper 66 2 5
Zero Page, X ROR Oper. X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute, X ROR Oper, X 7E 3 7
RTI RTIReturn from Interrupt RTI
Operation: P 1 PC 1 N ZC1lI DV
From Stack
Addressing Mode Assembly Language [Op No of No of
Form Code Bytes Cycles
Implied RTI a0 1 6
RTS RTS Return from Sub-routine RTS
Operation: PC t,PC+1—PC N Z C I DV
Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Implied RTS 62 1 6
SBC SBC Subtract Memory from Accumulator with Borrow SBC
Operation: A-M-C— A N Z C I DV
Note: C = Borrow A
Addressing Mode Assembly Language Op No of No of
Form Code Bytes Cycles
Immediate SBC # Oper £9 2 2
Zero Page SB8C Oper E5 2 3
Zero Page, X SBC Oper,X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 4*
Absolute, Y SBC Oper,Y F9 3 4*
(Indirect, X) SBC (Oper, X) E1 2 8
(Indirect), Y SBC (Oper).Y F1 2 B¢

* Add 1 if page boundary is crossed.

84

~MMA |l User Manual

85

SEC SEC SetCarry Flag SEC
Operation: 1 = C N Z C | DV
e 5] & = o=
Addressing Mode AssemblyLanguage | Op No of No of
Form Code Bytes Cycles
Implied SEC 38 1 2
SED SED Set Decimal Mode SED
QOperation: 1 — D N Z C I DV
T
Addressing Mode AssemblyLanguage | Op No of No of
Form Code Bytes Cycles
Implied SED F8 1 2
SEI SEl Set Interrupt Disable Status SEI
Operation: 1 — | N Z C 1t DV
s o5 ow J & o=
Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Implied SEl 78 1 2
STA STA Store Accumulator in Memory STA
Operation: A— M N Z C1lI DV
Addressing Mode Assembly Language | Op Noof Noof
Form Code Bytes Cycles
Zero Page STA Oper 85 2 3
Zero Page, X STA Oper, X 95 2 4
Absolute STA Oper 8D 3 4
Absolute, X STA Oper, X SD 3 5
Absolute, Y STAOper, Y 29 3 5
(Indirect, X) STA(Oper, X) 81 2 6
{Indirect), Y STA (Open.,Y 91 2 B

EMMA Il User Manual

STX

Operation: X — M

STX Store Index X in Memory

STX

N Z C 1 DV

Addressing Mode Assembly Language Op No ot No of
Farm Code Byles Cycles
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y 96 2 4
Absolute STX Oper BE 3 4
STY STY Store Index Y in Memory STY

Operation: Y — M

NZC I DV

Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X 94 2 4
Absolute STY Oper 8C 3 4
TAX TAX Transfer Accumulator to Index X TAX
Operation: A— X NZ CI DV
Y
Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Implied TAX AA 1 2
TAY TAY Transfer Accumulator to Index Y TAY
Operation: A— Y N Z C 1 DV
vV ovo- - -
Addressing Mode Assembly Language Cp Noof No of
Form Code Bytes Cycles
Implied TAY A8 1 2

86

EMMA |l User Manual

TSX TSX Transfer Stack Pointer to Index X TSX
Operation: S — X N Z C I DV
v 4 - - - -
Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Implied TSX BA 1 2
TXA TXA Transter Index X to Accumulator TXA
Operation: X — A N Z2 C I DV
N
Addressing Mode Assembly Language | Op Noof No of
Form Code Bytes Cycles
Imphed TXA 8A 1 2
TXS TXS Transfer index X to Stack Pointer TXS
Operation: X— S N Z C I DV
Addressing Mode Assembly Language | Op No of No of
Form Code Bytes Cycles
Implied TXS 9A 1 2
TYA TYA Transfer Index Y to Accumulator TYA
Operation: Y — A N Z C Il DV
Y
Addressing Mode Assemblylanguage | Op No of No of
Farm Code Bytes Cycles
Implied TYA a8 1 2

87

EMMA Il User Manual Summary of Addressing Modes

3

= 5
2lelolel®l x> ols| 2
S| 9O D229 o | 5l g2
ElS|&I&|&| 33|38 /2|8|8|2
=°°°°OOO=‘6.=.=O
S| E|l5|5/5/818/8|2|5|8|/T|34
<|E|N|N|N|2|<|<|E|c|E|E|x

ADC 69 |65 |75 6D | 7D | 79 61 |71

AND 29 |25 |35 2D 3D | 39 21 |31

ASL |0A 06 | 16 OE |1E

BCC 90

BCS B8O

BEQ FO

BIT 24 2C

BMI 30

BNE DO

BPL 10

BRK 00

BVC 50

BVS 70

cLC 18

CLD D8

CLI 58

CLV B8

CMP co|cs|Ds cD| DD| D9 c1|D1

CPX E0 | E4 EC

CPY co|ca cC

DEC C6 | D6 CE|DE

DEX CA

DEY | 88

EOR 49 | 45 |55 4D | 5D | 59 41 | 51

INC E6 | F6 EE|FE

INX ES

INY cs

JMP 4C 6C

88

EMMA Il User Manual

E"

5 5
glelels|al %% AR
S| 5| 9 & &S| e|g| ol ==l e
EiIB|&|ISI&I22|3|3|2/8|8]|3
31 8l olololQ|lOlOoi=|RIE]|E| 0O
SIE|5| 5151818/ 8 2|c|B8|2|4
<|E|N|IN|(N|T |2 |2 |E|c|=|=]|<

JSR 20

LDA A9 | A5 | B5 AD|BD| B9 A1 | B1

LDX A2 | A6 B6 | AE BE

LDY A0 | A4 | B4 AC|BC

LSR 4A 46 | 56 4E | 5E

NOP EA

ORA 09 ({05 |15 oD{1D |19 01} 14

PHA 48

PHP 08

PLA 68

PLP : 28

AOL 2A 26 | 36 2E | 3E

ROR B6A 66 | 76 6E | 7E

RTI 40

RTS 60

SBC E9 |E5 | F5 ED|FD|F9 E1 | F1

SEC 38

SED F8

SEIl 78

STA 85 (95 8D |9D |99 81 |91

STX 86 96 | 8E

STY 84 |94 8C

TAX AA

TAY A8

TYA 98

TSX BA

TXA 8A

TXS 9A

39

EMMA Il User Manual

Numerical Listing

00
21
82
e3

g5
06
o7
es

A
B
ec
8D
oE
oF
10
1

12
13
14
15

16
17
18
19
1A
18
1C
1D
1E
1F
20
21

22

23

24
25
26
27

28
29

2B
2D

2E
2F

BRK

ORA - (Indirect, X}
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page
ASL - Zero Page
Future Expansion
PHP

ORA - Immediate
ASL - Accumulator
Future Expansion
Future Expansion
ORA - Absolute
ASL - Absolute
Future Expansion
BPL

ORA - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Page, X
ASL - Zero Page, X

- Future Expansion

CLC

ORA Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ORA - Absolute, X
ASL - Absolute, X
Future Expansion
JSR

AND - (Indirect,X)
Future Expansion
Future Expansion
BIT - Zero Page
AND - Zero Page
ROL - Zero Page
Future Expansion
PLP

AND - Immediate
ROL - Accumulator
Future Expansion
BIT - Absolute
AND - Absolute
ROL - Absolute
Future Expansion

30
31
32
33
34
35
36
37
38
39
3A
3B

5F

BMI
AND - (Indirect,X)
Future Expansion

- Future Expansion
- Future Expansion

AND - Zero Page, X
ROL - Zero Page, X
Future Expansion
SEC

AND - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
AND - Absolute, X
ROL - Absolute, X
Future Expansion
RTI

EOR - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page
LSR - Zero Page
Future Expansion
PHA

EOR - Immediate
LSR - Accumulator
Future Expansion
JMP - Absolute
EOR - Absolute
LSR - Absolute
Future Expansion
BVC

EOR - (Indirect),X
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page, X
LSR-Zero Page, X
Future Expansion
CLl

EOR - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR - Absolute,X
LSR - Absolute, X
Future Expansion

80

mi

91

‘MMA [l User Manual

60
61

62
63
64
65
66
67
68
69
6A

6C
6D
6E
6F
70
71

72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
8o
81

82

85
86
87
88
89
BA
8B
8C

8D .

8E
8F

RTS

ADC - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page
ROR - Zero Page
Future Expansion
PLA

ADC - Immediate

- ROR-Accumulator

Future Expansion
JMP - Indirect

ADC - Absolute
ROR - Absolute
Future Expansion
BVS

ADC - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page, X
ROR - Zero Page X

- Future Expansion

SEl

ADC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ADC - Absolute, X
ROR - Absolute, X
Future Expansion
Future Expansion
STA- (Indirect,X)
Future Expansion
Future Expansion
STY - Zero Page
STA-ZeroPage
STX-Zero Page
Future Expansion
DEY

Future Expansion
TXA

Future Expansion
STY - Absolute
STA - Absolute
STX - Absolute
Future Expansion

9@
91
92
93
94
95
96
97
98
99
9A
98

BCC

STA - (Indirect,Y)
Future Expansion
Future Expansion
STY - Zero Page, X
STA-Zero Page, X
STX-ZeroPage,Y
Future Expansion
TYA

STA- Absolute,Y
TXS

Future Expansion
Future Expansion
STA- Absolute, X
Future Expansion
Future Expansion
LDY - Immediate
LDA - (Indirect,X)
LDX - Immediate
Future Expansion
LDY - Zero Page
LDA - Zero Page
LDX - Zero Page
Future Expansion
TAY

LDA - immediate
TAX

Future Expansion
LDY - Absoliute
LDA - Absolute
LDX- Absolute
Future Expansion
BCS

LDA - (indirect),Y
Future Expansion
Future Expansion
LDY - Zero Page, X
LDA - ZeroPage,X
LDX-ZeroPage,Y
Future Expansion
CLvV

LDA - Absolute,Y
TSX

Future Expansion
LDY - Absolute, X
LDA - Absolute, X
LDX - Absolute,Y

EF - Future Expansion

EMMA |l User Manual

- CPY - Immediate

CMP - (Indirect,X)
Future Expansion
Future Expansion
CPY -Zero Page
CMP - Zero Page

- DEC-ZeroPage

Future Expansion
INY

CMP - Immediate
DEX

Future Expansion
CPY - Absolute
CMP - Absolute
DEC - Absolute
Future Expansion
BNE

CMP - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
CMP - Zero Page, X
DEC - Zero Page, X
Future Expansion
CLD

CMP- Absolute,Y
Future Expansion
Future Expansion
Future Expansion
CMP - Absolute, X
DEC - Absolute, X
Future Expansion
CPX- Immediate
SBC - (Indirect, X)
Future Expansion
Future Expansion
CPX-ZeroPage
SBC-Zero Page
INC - Zero Page
Future Expansion
INX

SBC - Immediate
NOP

Future Expansion
CPX- Absolute
SBC - Absolute
INC - Absolute
Future Expansion

F@
F1

F2
F3

F4
F5
F6
F7

F8

F9
FA
FB
FC
FD
FE
FF

BEQ

SBC - (Indirect),Y
Future Expansion
Future Expansion

- Future Expansion

SBC - Zero Page, X
INC - Zero Page, X

- Future Expansion

SED

- SBC-Absolute,Y

Future Expansion
Future Expansion
Future Expansion
SBC - Absolute, X
INC - Absolute,Y

Future Expansion

92

ml

‘MMA |l User Manual

Jphabetical List

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMmI
BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLI
CLv
cmpP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
JMP
JSR
LDA
LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLA
PLP
ROL
ROR
RTI
RTS
SBC
SEC
SED
SEI

Add Memory to Accumulator with Carry
‘AND’ Memory with Accumulator

Shift Left One Bit (Memory to Accumulator)
Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with Accumulator
Branch on Result Minus

Branch on Result not Zero

Branch on Result Plus

Force Break

Branch on Overfliow Clear

Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X

Compare Memory and Index Y

Decrement Memory by One

Decrement Index X by One

Decrement Index Y by One

‘Exclusive Or’ Memory with Accumulator
Increment Memory by One

Increment Index X by One

Increment Index Y by One

Jumpto New Location

Jump to New Location Saving Return Address
Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift Right One Bit (Memory or Accumulator)
No Operation

‘OR’ Memory with Accumulator

Push Accumulator to Stack

Push Processor Status to Stack

Pull Accumulator from Stack

Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

EMMA Il User Manual

Store Accumulator in Memory
Store Index X in Memory

Store Index Y in Memory
Transfer Accumulator to Index X
Transfer Accumulatorto Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer index X to Stack Pointer
Transfer Index X to Accumulator

94

EMMA Il User Manual

Yo

Instruction Addressing Modes and Related Execution Times (in clock cycles)

Accumulator

Immediate

Zero Page,Y

Absolute,X

Implied

Relative

(Indirect,Y)

Absolute Indirect

ADC
AND
ASL
BCC
BCS
BEQ
BIT

BMI

BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLI

CLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR
INC

INX

INY

JMP

[NV

0OwWww

W ©Zero Page

@ & | ZeroPage,X

D

@ & & Absolute

"wl«la-h

Db

D b

*

4t

* % | Absolute,Y

4*

[N I AC I AC I V)

2"*
2“'
2**

2*i
2**
2&*

21"
2**

@ @ | (Indirect,X)

o
*

*

5!

5*

EMMA Il User Manual

Instruction Addressing Modes and Related Execution Times (in clock cycles)

Absolute Indirect

Accumulator
Immediate
Zero Page
Zero Page,X
Zero Page,Y
Absolute
Absolute, X
Absolute,Y
Implied
Relative
(Indirect,X)
(Indirect,Y)

JSR
LDA 2
LDX
LDY 2
LSR |2
NOP
ORA 2
PHA
PHP
PLA
PLP
ROL
ROR
RTI
RTS 6
SBC 2 |3 |4 4 |4 |4 6 |5°
SEC
SED
SEI
STA 3
STX 3 4 |4
STY 3

TAX
TAY
TSX
TXA
TXS
TYA

*Add one cycle if indexing across page boundary,
""Add one cycle if branch is taken. Add one additional if branching operation crosses page boundary.

96

W ww
N
Lo) TN - N . N -)]
B
*
EoN N
*
(o))
o
*

(o]
N

4 6 |5"

(o]
N
-
FS

*

b ww

N o
[S2006)]
(o208}
a o

~

NN

N

AV AS B\ I \G I AN 8]

(22}

EMMA Il User Manual

7

EMMA Il User Manual

Appendix B Conversion Table Etc

Hexadecimal
Conversion Table

Forward Relative
Branch

Backward Relative
Branch

Example Program
Sheet

98

99

:MMA Il User Manual

Hexadecimal Conversion Table

*|0 1 2 3 45 6 7 8 89 A B C D E F

cf 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61! 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 718
5 B0 81 82 B3 B4 B85 BS 87 83 89 90 91 92 93 94 85
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112113 114115116 117 118 119 120 121 122 123 124 126 126 127
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
c 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 238
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

*Hexadecimal values

Forward Relative Branch

* 01t 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 I

2 32 33 34 35 36 37 3B 39 40 41 42 43 44 45 46 47

3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

5 80 81 82 83 B4 85 86 87 88 89 90 91 92 93 84 95

6 96 97 98 99 100101 102 103 104 105 106 107 108 108 110 111
7 112113 114115116 117 118 119 120 121 122 123 124 125126 127

*Forward Relative Branch Values

EMMA Il User Manual

Backward Relative Branch

74

8

]

A B C D E

E

A 96
B 80
C 64
D] 48
E 32
F 16

95
79

63
47

31
15

94
78

62
46

30
14

93
77

61
45

29
13

92
76

60
44

28
12

9
75

59
43

27
1

90
74

58
42

26
10

89
73

57
41

88
72

56
40

87
7

55
39

86
70

54
38

22

85
69

53
37

84
68

52
38

20

83
67

51
35

8 128 127 126 125 124 123 122 121120 118 118 117 116 115 114 113
9 112111 110 109 108 107 106 105 104 103 102 101 100 99 98 97

82
66

50
34

81
65

49
33

*Backward Relative Branch Value

100

101

EMMA Il User Manual

Programmer:

EMMA Program Sheet No:

Program Title:

Hexadecimal

Symbolic

Comments

-

Addr

Label

MNEM

Operand

9.' L.J. Technical Systems

L.J. Technical Systems Ltd. L.J. Technical Systems Inc.
Francis Way 19 Power Drive

Bowthorpe Industrial Estate Hauppauge

Norwich, NR5 9JA. England. N.Y.11788. USA.

Telephone: (0603) 748001 Telephone: 1800237 348
Telex: 975504 InN.Y. 516234 2100

Fax: (0603) 746 340 Fax: 516 234 2656

Designed, Typeset and Produced by LJ Technical Systems Publicity Department ©) 1987.

Distributor

L.J. Technical Systems

L.J. Technical Systems Ltd.

Francis Way

Bowthorpe Industrial Estate

Norwich, NR5 9JA. England.

~ phone: (0603) 748001
1x: 975504

Fax: (0603) 746 340

Designad, Typeset and Produced by LJ Techni

L.J. Technical SystemsInc.

19 Power Drive
Hauppauge

N.Y.11788. USA.
Telephone: 1800237 348
InN.Y.516234 2100

Fax: 516234 2656
Publicity Department) 1987.

Distributor

g.' L.J. Technical Systems

L.J. Technical Systems Ltd. L.J. Technical SystemsInc.
Francis Way 19 Power Drive

Bowthorpe Industrial Estate Hauppauge

Norwich, NR5 SJA. Engiand. N.Y.11788. USA.

Telephone: (0603) 748001 Telephone: 1800237 348
Telex: 975504 InN.Y. 5162342100

Fax: (0603) 746 340 Fax: 516 234 2656

Designed, Typeset and Produced by LJ Technical Systems Publicity Department © 1987.

Distributor

g.' L.J. Technical Systems

L.J. Technical Systems Ltd. L.J. Technical Systemsinc.
Francis Way 19 Power Drive

Bowthorpe Industrial Estate Hauppauge

Norwich, NR5 9JA. England. N.Y.11788. USA.

Telephone: (0603) 748001 Telephone: 1800237 348
Telex: 975504 InN.Y. 5162342100

Fax: (0603) 746 340 Fax: 516 234 2656

Designed, Typeset and Produced by LJ Technical Systems Publicity Department ©) 1987.

Distributor

	0-14
	15-26
	27-44
	45-60
	61-82
	83-94
	95-rear

