L.J. Technical Systems

EMMA II Technical Manual

L.J. Electronics

EMMA II

Technical Manual

Contents

P	ar	t	1	Н	a	rd	V	va	re

	Page
The EMMA II System	3
6502 Microprocessor	7
6522 Versatile Interface Adaptor (VIA)	12
6821 Peripheral Interface Adaptor (PIA)	18
Keyboard/Display	22
2716 Erasable Programmable Read only Memory	
(EPROM)	24
6116 Random Access Memory	26
Cassette Interface	27
EMMA II Address Decoding	29
Data Strobe Generation	32
EMMA II Single Step Function	33
EMMA II Interconnection Details	34
	6502 Microprocessor 6522 Versatile Interface Adaptor (VIA) 6821 Peripheral Interface Adaptor (PIA) Keyboard/Display 2716 Erasable Programmable Read only Memory (EPROM) 6116 Random Access Memory Cassette Interface EMMA II Address Decoding Data Strobe Generation EMMA II Single Step Function

Part 2 Software

13	The Microprocessor Structure	37
14	Data Manipulation	43
15	Arithmetic Unit	44
16	Status Register	46
17	Program Counter	48
18	Addressing Modes	51
19	Stack Processing	56
20	Reset and Interrupts	59
21	Further Arithmetic and Logical Commands	61
22	6522 Versatile Interface Adaptor (VIA)	62
23	6821 Keyboard/Display Interface	80

Appendices

Appendix 1 Pin Connections	84
Appendix 2 Monitor Program	86
Appendix 3 Summary of Single Cycle Execution	102

Introduction

This manual is the technical support for the user manual. It supplies descriptions of chip functions and pin connections associated with EMMA II.

In order to best serve the user, this manual is written in two sections Part 1, and Part 2.

Part 1 is dedicated to hardware description, and Part 2 is dedicated to software, a study of the 6502 instruction set and utilizing the support chips with respect to applying software.

Included in the appendices are a complete listing of the EMMA II monitor program contained in EPROM.

Part 1 EMMA II Hardware

EMMA II shown with MS1A Switched Fault Unit, SA1 Logic Analyzer, PS4 Power Supply and HM203 Oscilloscope

Chapter 1 The EMMA II System

EMMA II is based upon the 6502 microprocessor. To form a computing system various support chips are needed. Layout of the board is shown below.

The figure below shows a block diagram of the EMMA II system. The diagram is in a simple form to display the major areas of the microprocessor system.

The basic microcomputer consists of three main sections:

- 1. Central processor unit
- 2. Memory section
- 3. Input/output interface section

These sections are connected via the bus systems:

- i.e.
- 1. Data bus
- 2. Address bus
- 3. Control bus

Looking at each section in turn, a study will be made of its function in the EMMA II system.

CPU Section

The central processing unit or CPU is the 6502 microprocessor. The 6502 contains an Arithmetic Logic Unit, some Registers and Program Control Counter. The CPU sends out a memory address of the location of the first instruction to be executed. The instruction is read from memory and subsequently executed. After each operation, the Program Control Counter increments to the address of the next memory location, and the cycle continues.

Input/Output Interface Section

This section of EMMA II consists of:-

6522 I/O Port Controller

6821 Keyboard and Cassette Interface.

These enable communication between the microprocessor and the outside world. The 6522 comprises two 8-bit I/O ports and two programmable timers.

Data Bus

The Data Bus is an 8-bit bi-directional path between the microprocessor and the memory and interface circuits. The data bus is tri-state and is capable of driving one standard TTL load and 130pF.

Address Bus

The CPU sends out on the address bus the address of a memory location which is to be read from or written into. The EMMA II system has a 16-bit address bus capable of addressing 64K locations.

Control Bus

The control bus carries signals such as READ/WRITE (R/\overline{W}),02, \overline{NMI} , \overline{IRQ} . These signals are the controlling influence on the microcomputer. For example, to read a memory location, the CPU first sends out the address on the address bus, then a memory read signal on the control line; the memory outputs the data from the address location to the data bus.

Memory Section

The memory section in EMMA II comprises of RAM and EPROM. The memory allocations for EMMA II are shown below:

0000 Reserved EMMA/VISA Monitor; used in conjunction with devices such as the Eprom Programmer, Matrix Printer, etc.

0020 Available as user RAM

00FF

0100 Designated by the 6502 as the system stack

01FF

0200 Available as user RAM

03FF

0900 Decoded for use by the EMMA II input/output ports.

0AFF

0C00 User RAM

OFFF

0EFC-0EFF Interrupt vectors.

0E80-0EFF In use when VISA connected

D800 EMMA II Monitor; cassette routines, useful

DDFF sub-routines

F000 Available for user EPROM expansion

F7FF

FE00 EMMA II Monitor program

FFFF

The RAM and EPROM are explained in more detail further in this manual.

Chapter 2 6502 Microprocessor

As can be seen on the layout diagram on page 3 'IC3' is the 6502 microprocessor. This is a 40-pin I.C., requiring an external crystal to maintain stable operating speed. The EMMA II uses a 1MHz crystal, giving a basic microprocessor cycle time of $1\mu s$.

of the 6502

Internal Architecture The diagram of the internal architecture will be used to discuss the operation of the various pins available outside the chip and in particular those specifically used in the EMMA II Microcomputer System.

With reference to the internal architecture diagram it can be seen where the external pins connect to the structure of the microprocessor. We will examine the external pins in turn.

Address Bus (A₀-A₁₅)

The 16-bit address bus is used to transfer the address generated by the processor to the address inputs of all memory and peripheral interface devices. The address is always provided by the 6502, thus the address bus is unidirectional. The bus lines are TTL compatible, capable of driving one standard TTL load and 130 pF.

• Clock $(\emptyset_0, \emptyset_1, \emptyset_2)$:

The 6502 clock circuits can be driven from a single TTL level square wave, or with the internal oscillator. As explained the **EMMA II** system uses a 1 MHz crystal to control the internal oscillator, giving a stable $1\mu s$ cycle time.

Data Bus (DB₀-DB₇):

The 8-bit data bus is bi-directional, providing a two-way transfer path between the microprocessor and the memory and interface circuits. The data bus is tri-state and is capable of driving one standard TTL load and 130 pF.

Ready (RDY):

This input signal is provided to allow the user to halt the 6502 on all cycles except write cycles. This feature is of use when low speed PROMS are used, or when fast direct memory access (DMA) transfers are to be performed. The ready signal is disabled (held high), on the EMMA II board.

Interrupt Request (IRQ):

When this input is in the low state (logic '0'), the microprocessor is requested to begin an interrupt sequence. The microprocessor will not acknowledge this request until it has completed the current instruction being executed. Then, provided the interrupt mask bit (interrupt disable, within the status register), is not set, the microprocessor will begin an interrupt sequence.

The interrupt sequence is:

- (i) store Program Counter high byte (PCH) on the stack.
- (ii) store Program Counter low byte (PCL) on the stack.
- (iii) store status register contents on the stack.
- (iv) load PCL from address FFFE.
- (v) load PCH from address FFFF.
- (vi) normal program execution sequences now continue from the memory vector held at FFFF and FFFE.

On the EMMA II board, the IRQ input is returned to +, through a $4.7k\Omega$ resistor to facilitate the wired-OR operation.

Non-Maskable Interrupt (NMI)

A negative going transition on this input requests that a non-maskable interrupt sequence is begun by the microprocessor. This is not conditional and will always be actioned following completion of the current instruction. The sequence of steps for a $\overline{\text{NMI}}$ is the same as for $\overline{\text{IRQ}}$, except that the vector address will be loaded to PCL and PCH from locations FFFA and FFFB respectively.

The 6502 has an internal latch which is set by a '1' to '0' transition on the $\overline{\text{NMI}}$ input. Thus a single, short duration, negative going pulse may be used to provide an $\overline{\text{NMI}}$, unlike $\overline{\text{IRQ}}$, which has no latch and requires $\overline{\text{IRQ}}$ to remain low until the interrupt is actioned. $\overline{\text{NMI}}$ will take priority over $\overline{\text{IRQ}}$.

Wired - OR inputs to the $\overline{\text{NMI}}$ are facilitated by a 4.7 k Ω resistor returned to $\pm 5\text{V}$.

Set Overflow Flag (S.O.):

A negative going edge on this input sets the overflow flag within the status register. This facility is not required for any of the current 6500 family circuits and the S.O. input is returned to $\pm 5V$ on the EMMA II board.

SYNC:

This output line identifies those cycles in which the microprocessor is doing a fetch instruction operation. The SYNC line goes high during \emptyset_1 of a fetch operation and stays high for remainder of that cycle

The SYNC signal is used on the EMMA II board for the generation of an interrupt signal required for single step operation.

• RESET (RES):

This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge occurs on the input the microprocessor will immediately begin the reset sequence.

After a system initialization time of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory locations FFFC and FFD. This is the start location for program control (FEE0 in in the EMMA II monitor).

On the EMMA II board, \overline{RES} is held high through a 4.7k Ω resistor; it is pulled low when the push-button reset switch is depressed.

■ Read/Write (R/W):

This output signal is used to control the direction of data transfer between the processor and other memory circuits on the data bus. R/\overline{W} high signifies data transfer into the 6502, R/\overline{W} low signifies data transfer out of the 6502.

Supply Voltages:

The EMMA II requires a 5V regulated supply, able to provide 700mA approximately. The 6502 has a maximum V_{CC} rating of $\pm 7V$.

It is strongly recommended that a fixed 5V d.c. supply should be used for the EMMA II. Some variable supplies generate a short duration positive going spike when switched on, which may damage circuits in the 6500 family.

Chapter 3 6522, Versatile Interface Adaptor (VIA)

Again referring to the layout of the EMMA II 'IC1' the 6522 can be seen as the I/O Port Controller/Timer. A simplified configuration is shown.

6522 pin configuration is as shown.

The internal structure of the 6522 is shown below:

The 6522 provides

- (a) two 8-bit programmable input/output ports.
- (b) two 16-bit programmable timer/counters.
- (c) one 8-bit serial transfer register.

The pin functions are as follows:

• RES (Reset)

The reset input clears all internal registers to logic 0 (except T1 and T2 latches and counters and the Shift Register). This places all peripheral interface lines to the input state, disables the timers, shift register, etc, and disables interrupts from the chip.

(Input Clock):

The input clock is the EMMA system 02 clock and is used to control all data transfers between the system processor and the 6522.

■ R/W (Read/Write)

The direction of the data transfers between the 6522 and the system processor is controlled by the R/\overline{W} line. If R/\overline{W} is low, data will be transferred out of the processor into the selected 6522 register (write operation). If R/\overline{W} is high and the chip is selected, data will be transferred out of the 6522 (read operation).

DB0-DB7 (Data Bus)

The eight bi-directional data bus lines are used to transfer data between the 6522 and the system processor. During read cycles, the contents of the selected 6522 register are placed on the data bus lines and transferred into the processor. During write cycles, these lines are high-impedance inputs and data is transferred from the processor into the selected register. When the 6522 is not being accessed the data bus lines are high-impedance.

CS1, CS2 (Chip Selects)

The two chip select inputs are normally connected to processor address lines either directly or through decoding. The selected 6522 register will be accessed when CS1 is high and CS2 is low.

On the EMMA II board, the address decoding provides CS2 low when memory pages 08 to 0B are selected. CS1 is connected to address line A_9 , thus the 6522 can be accessed on page 09 or 0B.

RS0-RS3 (Register Selects)

The four Register Select inputs permit the system processor to select one of the 16 internal registers of the 6522.

The EMMA II board has the register lines RS0-RS3 connected to address lines A_0 - A_3 respectively. Thus, the memory locations for the 6522 registers are as given in the table overleaf.

Memory Locations for the 6522 Registers

Address	Register	Description
Address	Desig:	Write Read
09x0	ORB/IRB	Output Register "B" Input Register "B"
09x1	ORA/IRA	Output Register "A" Input Register "A"
09x2	DDRB	Data Direction Register "B"
09x3	DDRA	Data Direction Register "A"
00x4	T1C-L	T1 Low-Order Ltches T1 Low-Order Counter
09x5	T1C-H	T1 High-Order Counter
09x6	T1L-L	T1 Low-Order Latches
09x7	T1L-H	T1 High-Order Latches
09x8	T2C-L	T2 Low-order latches T2 Low-order counter
09x9	T2C-H	T2 High-Order Counter
09xA	SR	Shift Register
09xB	ACR	Auxiliary Control Register
09xC	PCR	Peripheral Control Register
09xD	IFR	Interrupt Flag Register
09xE	IER	Interrupt Enable Register
09xF	ORA/IRA	Same as 09x0 Except no "Handshake"

Note: The chip select connections mean that these register locations are duplicated on page 0B. The fact that the register select lines are activated by address lines A_0 - A_3 , regardless of the state of address line A_4 - A_7 , means that the hexadecimal code used for X in the previous listing is unimportant.

IRQ (Interrupt Request)

The Interrupt Request output goes low whenever an internal interrupt flag is set and the corresponding interrupt enable bit is a logic 1. This output is "open-drain" to allow the interrupt request signal to be "wire-or'ed" with other equivalent signals in the system.

PA0-PA7 (Peripheral A Port)

The peripheral A port consists of 8 lines which can be individually programmed to act as inputs or outputs under control of a Data Direction Register. The polarity of output pins is controlled by an Output Register and input data may be latched into an internal register under control of the CA1 line. All of these modes of operation are controlled by the system processor through the internal control registers. These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode. This is illustrated in the following diagram.

PB0-PB7 (Peripheral B Port)

The Peripheral B port consists of eight bi-directional lines which are controlled by an output register and a data direction register in much the same manner as the PA port. In addition, the polarity of the PB7 output signal can be controlled by one of the interval timers while the second timer can be programmed to count pulses on the PB6 pin. Peripheral B lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode. In addition, they are capable of sourcing 1.0mA at 1.5VDC in the output mode to allow the outputs to directly drive Darlington Transistor Circuts. The circuit diagram below displays this.

CA1, CA2 (Peripheral A Control Lines)

The two peripheral A control lines act as interrupt inputs or as handshake outputs. Each line controls an internal interrupt flag with a corresponding interrupt enable bit. In addition, CA1 controls the latching of data on Peripheral A port input lines. CA1 is a high impedance input only while CA2 represents one standard TTL load in the input mode. CA2 will drive one standard TTL load in the output mode.

CB1, CB2 (Peripheral B Control Lines)

The Peripheral B control lines act as interrupt inputs or as handshake outputs. As wth CA1 and CA2, each line controls an interrupt flag with a corresponding interrupt enable bit. In addition, these lines act as a serial port under control of Shift Register. These lines represent one standard TTL load in the input mode and will drive one standard TTL load in the output mode. Unlike PB0-PB7, CB1 and CB2 cannot drive Darlington Transistor Circuits.

Chapter 4 6821 Peripheral Interface Adaptor (PIA)

With reference to the board layout diagram, IC16 (6821) is on the keyboard display section.

The 6821 provides a means of interfacing the keyboard display unit and the cassette interface with the microprocessor.

Pin connections are as shown. Block diagram of the 6821 is as shown.

Pin Functions

DB0-DB7 Data Bus

Are eight bi-directional data bus lines used to transfer data between 6821 and the system processor. The 6821 data bus buffers are tri-state, giving a high impedance loading to the data bus unless a chip transfer is selected.

Enable (E):

This is the only timing pulse supplied to the PIA. Timing of all other signals is referenced to the leading and trailing edges of the E pulse.

Read/Write (R/W):

A low state on the PIA Read/Write line enable the input buffers and data is transferred from the microprocessor to the PIA on the 'E' signal if the device has been selected. A high on the R/W line sets up the PIA for transfer of data to the bus. The PIA output buffers are enabled when the proper address and the enable pulse 'E' are present.

Reset:

The active low RESET used to reset all register bits in the PIA to a (LOW) zero.

Chip Select (CS0, CS1 and CS2):

These three input signals are used to select the PIA. CSØ and CS1 must be high and CS2 must be low for selection of the device. Data transfers are then performed under the control of the enable and read/write signals. The chip select lines must be stable for the duration of the Enable pulse. The device is deselected when any of the chip selects are in the inactive state.

Register Selects (RS0 and RS1):

The two register select lines are used to select the various registers inside the PIA. These two lines are used in conjunction with internal Control Registers to select a particular register that is to be written or read.

The register and chip select lines should be stable for the duration of the Enable pulse while in the read or write cycle.

Interrupt Input (CA1 AND CB1)

These are peripheral input lines, CA1 and CB1 are input only lines that set the interrupt flags of the control registers. The active transition for these signals is also programmed by the two control registers.

Peripheral Control (CA2)

The peripheral control line CA2 can be programmed to act as an interrupt input or as a peripheral control output. As an output, this line is T.T.L. compatible. The function of this signal line is programmed with Control Register A. In **EMMA II** the CA2 line gives indication of data flow via an LED, as a function of the Cassette Interface routine.

Peripheral Control (CB2)

Peripheral control line CB2 may also be programmed to act as an interrupt input or peripheral control output. As an input this line has high input impedance and T.T.L. compatibility. This line is programmed by Control Register B.

• Interrupt Request (IRQA and IRQB):

The active low interrupt request lines (IRQA and IRQB) act to interrupt the MPU either directly or through interrupt priority circuitry.

Each interrupt Request line has two internal interrupt flag bits that can cause the interrupt Request line to go low. Each flag bit is associated with a particular peripheral interrupt line. Also, four interrupt enable bits are provided in the PIA which may be used to inhibit a particular interrupt from a peripheral device. In the EMMA II diagram it can be seen that $\overline{\text{IRQ}}$ A and $\overline{\text{IRQ}}$ B are tied together and form part of the $\overline{\text{IRQ}}$ connectors throughout the board.

Port A (PA0-PA7):

This is used by the monitor program for the seven segment display codes (OUTPUTS).

Port B (PB0-PB7)

This port is mainly used for strobing the keyboard and display and also used as input and output from the cassette.

PB0-PB2 Keyboard Strobe
PB3-PB5 Keyboard Column
PB6 Output to Cassette
PB7 Input from Cassette

Since, on the EMMA II board, the 6821 performs the function of display/keypad interface, and is not likely to perform any other task for most users. Functional detail and characteristics are not included in this section of the manual.

Chapter 5 Keyboard/Display

This section is a supplement to the operations of the 6821 as the interface between the Keyboard/Display and the microprocessor.

A circuit diagram of the keyboard and display is shown opposite on page 21.

The EMMA II Keyboard/Display section comprises sevensegment display and 24 key switches. 'IC7' is a binary decoder; its decoded output is used for key column and display scanning simultaneously.

The method of key detection is as follows:

- The monitor program sends a repeating binary count of 111 to 000 on PB0, PB1, PB2.
- At each step of the count PB5, PB3, PB4 are accessed to see if a key has been pressed. If a key has been pressed a '0' will appear in the appropriate column. With no key pressed, PB5, PB3, PB4 inputs will be '1'.
- The monitor program is able to deduce which key is pressed by assessing the binary count and column on which an '0' appears.
- The monitor program will not read a hex key until a control key has been pressed.

An amount of key debouncing is achieved by counting 111 000 twice before acting upon a key function.

The display uses 8 HDSP-5501 seven segment LED displays (Common Anode). These are strobed continuously by the monitor feeding the 7445 decoder a binary count as explained; the decoder output of the 7445 in turn switches the anode of the displays on to the 5V rail. The seven segment codes for each display are provided via port 'A' of the 6821, this signal is inverted by IC8. Current limitation is provided by resistor packages R7 and R8.

'IC6' is a retriggerable monopulse generator used to detect keyboard scanning via 'PB0'; hence the display is turned 'OFF' when not being strobed. This is a safety feature, to ensure that the displays are not overheated.

Chapter 6 2716 Erasable Programmable Read Only Memory (EPROM)

There are two EPROM sockets on the EMMA II. One is used for the monitor program; the other is available to the user. The 2716 is a 16,384-bit electrically programmable, ultra-violet erasable read-only memory. The 2716 is organized as 2048 eight-bit words.

The 2716 requires only a single 5V power supply with a current required of approximately 100mA. Pin connections for the 2716 are as shown:

The 2048 locations are accessed by an address placed on the eleven lines, A_0 - A_{10} . Data from the accessed location is output on the eight data lines, D_0 - D_7 , if the two control signals 0E and CE are low. Both 0E and CE are high during programming. The decoding on the EMMA II places the monitor EPROM D8 - FF and the user EPROM F0 - F7.

EPROM Erasure

Erasure of the 2716 begins to occur when exposed to light with wave lengths shorter than 4,000 angstroms. Certain types of light contain wave lengths in this range. Although exposure to sunlight or fluorescent light for a relatively long time is required to cause erasure, it is advised to avoid exposure to light for extended periods.

If operated while exposed to ambient light, the minute photoelectric currents generated may cause the EPROM to malfunction. Covering the EPROM 'window' with some opaque material is strongly advised.

Deliberate erasure of the 2716 is accomplished by exposing the device to ultra violet light with a wavelength of 2,537 angstroms. A 12 mW/cm² u-v lamp placed one inch from the 2716 will require approximately 20 minutes for complete erasure. Over-erasure is not thought by EPROM manufacturers to be a problem, but it is advised that erasure times greater than 10 times the necessary period should be avoided. Under-erasure will result in programming error. When erased, all bits are in the '1' state.

EPROM Programming

When fully erased (or blank) all the bits of a 2716 will be at logic '1'. Therefore programming of a single location (8-bits) is achieved by changing the required bits to logic '0'

The procedure for programming a 2716 EPROM is given below:

- Set up the following voltages: Vpp = +25V
 VCC = +5V
 CE/PGM '0'
- Set up the address location to be programmed om A0 to A10.
- Set up the data to be programmed on D0 to D7.
- Pulse the CEE/PGM pin high for a period of 45 to 55 ms

Notes:

- 1. No pin should be left open circuit
- 2. The CE/PGM pin must not remain high for longer than 55ms
- 3. It is possible to program several 2716 EPROMS in parallel

User EPROM/RAM

As indicated on EMMA II, the user EPROM socket can be used for inserting a 6116 RAM. An alteration to the decode select header is needed. The link from pin 7-10 needs to be placed between 8-9. This enables the NWDS to be used in conjunction with the RAM R/\overline{W} input.

Chapter 7 6116 Random Access Memory (RAM)

The RAM on the EMMA II is provided by a 16384 - bit static RAM type '6116'. This is organized into 2048 eight bit words; the package is fabricated by CMOS Technology, and operates from a 5 volt supply.

The 6116 is compatible with the 5517 RAM. A feature of the 6116 is output enable and chip enable input; that is OE for fast memory access and CS for a minimum standby current mode.

On EMMA II the OE pin is tied to the NRDS line, and CS is chip select from the decoding.

As explained earlier the USER EPROM/RAM socket can be used as a RAM location. Alterations to the Decode Select Header are needed.

Chapter 8 Cassette Interface

The EMMA II uses a computer users tape standard (CUTS) interface for cassette tape recording of programs.

The monitor program in EMMA II controls the routine for saving data on cassette. This routine offers the user two BAUD rates, 300 and 1200 BAUD, (BAUD means bits/sec transmitted). Before sending data to the cassette a 2.4kHz tone is generated and sent preceeding data. This gives a lead in tone of approximately 4 seconds for finding the start of programs on tape, then data is sent.

Format is as follows for data transmissions:

The method of transmission can be seen on the following chart.

Example: A byte at 1200 BAUD of data sent out appears least significant bit first.

Output to cassette is shown below:

The output consists of a simple attentuation and d.c. level control; C15 acts as a filter for spikes that may occur.

Input from cassette consists of a dual operational amplifier stage (358). The potential divider connected to pin3 ensures that both inputs and the output of the first stage will be biased at the mid point of supply voltage (2.5V; with 5V supply; the second amplifier is a non-inverting stage. The circuit diagram is shown below:

LED 1 is activated from CA2 of '6821'; this indicates when transmission of data is occurring.

Chapter 9 EMMA II Address Decoding

In the EMMA II system address lines A_0 - A_{15} are decoded to give the chip select signals required for the memory and I/O circuits.

The circuit diagram for the address decoding.

As can be seen in the diagram, 'IC5' plays an important part in this section.

'IC5' (74139) ia dual 2-4 Decoder/Demodulator. It consists of two independent decoders.

Each of these decoders accepting two inputs and providing four mutually exclusive active 'low' outputs, they also have an active 'low' enable input. Pin names are as below:

A B Address-Input
G Enable Input
Y₀ - Y₃ Active Low Outputs

Truth table for one decoder:

ANTENNA PROPERTY OF THE PROPER	Inputs	and the property of the second		Outpu	uts	
G	Α	В	Y ₀	Y1	Y ₂	Y3
HLLLL	X L H L	X L H H	H L H H	H H L H	H H L L	H H H L

H = High Voltage Level L = Low Voltage Level X = Don't Care

The first decoding stage

The enable for pin 1 of the 2-4 decoder is provided by an AND function of A15, A14, A12 at logic '1'. The outputs of the decoder Y3 to Y0 are enabled for address in the range F8-FF, D8-DF, F0-F7 and D0-D7 respectively, these are selected by inputs at pin 3 and pin 2 (A13, A11). The truth table above shows the order of selection.

In order to maintain compatibility with past EMMA models and previous VISA expansion units, the address lines A $_{13}$, A $_{11}$ have been arranged to give a modified address to the expansion connector. The modified address lines are depicted on the diagram as A13 and A11. A block diagram of this is shown below:

When a monitor program is called for with VISA connected: FE-FF is modified to F6-F7 for VISA address lines. Nothing exists at this address on VISA so there is no clash with the **FMMA II monitor.**

When an address in the range D8-DD is asked for with memory expansion and VISA connected:

D8-DD is modified to the range F0-F5. This has the effect of setting up the data direction buffers in the correct direction.

The logic gating previous to A11', A13' enable these alterations to be made.

The second section of the address decoding: Enable pin 15 is provided by A12, A13, A14, A15 through three 'OR' functions, providing any one of those are '0' the 2-4 decoding is enabled and areas 0C-0F, 00-03, 08-0B, are selected by A11 and A10. A9 selects the 6522 and 6821 interface controllers.

 $\textbf{Decode Select Header} \ \ \text{Of the total addressing capability only a limited amount is decoded}.$ The required address decode is selected by links placed in an IC Header. The EMMA II decode select is shown below:-

It is important to use the correct header to perform the functions specified by the EMMA II manuals. The select header is provided so that the decoding can be easily adapted to different peripheral devices.

Note: If a RAM is used in the user EPROM socket the header link 7-10 needs to be placed from pin 8-9. This enables the NWDS line for the 6116 RAM.

Chapter 10 Data Strobe Generation

The 02 clock signal is shaped and buffered by two inverters as shown below:

This is then gated with the 6502 R/ \overline{W} signal to provide the two data strobes required for the RAM and EPROM. These signals are also supplied to the expansion connector.

Chapter 11 EMMA II Single Step Function

This facility is part of the program debugging facilities. It enables the user to single step through a program and examine the contents of accumulator, X and Y registers

As can be seen above an interrupt can occur on the rising edge of 02 only when both SYNC and CS MONITOR EPROM are high. This signal sets the S.R. latch which resets when Eprom enable goes low again. By using open collecter NAND gates (74LS12) the output can be connected directly to the NMI line.

Chapter 12 EMMA II Interconnection Details

The EMMA II microcomputer is based on a 303mm x 228mm printed circuit board. The system layout has been designed to facilitate teaching. Because of this the principles involved have been to:

- a) Separate the elements into identifiable blocks
- b) Make all control bus, data bus and address lines accessible (and identifiable) on 0.1" spacing connector pins.
- c) Have easy access to the user I/O ports via standard 4mm sockets, and 0.1" connector pins.

The microprocessor and support chip diagram for EMMA II is given overleaf.

Expansion connector pin allocations:

EMMA II Microprocessor System - Circuit Diagram

Part 2 EMMA II Software

This section of the manual describes the programming requirements of the EMMA microcomputer system. It also details the programming requirements and facilities of the 6522 and 6821 Interface Adaptors.

Chapter 13 The Microprocessor Structure

Internal Operation

The processor is split into two distinct sections: Register Section and Control Section. The Register Section implements all the data transfers from external memory together with any data arithmetic/logic operations that may be required. The control section which decodes user program instructions accessed sequentially from external memory. The program operation codes (Op.Codes) enter the processor via the Data Bus and are latched into the Instruction Register for subsequent decoding. All memory addresses are generated by the processor and appear on the Address Bus.

Each program Instruction requires a number of discrete operations to effect it. It is the function of the Timing Control Unit to correctly sequence these. At the beginning of each instruction the unit is reset to zero and advanced at the beginning of each 01 clock pulse until the instruction is completely executed.

The diagram: 'Control Section - Instruction Decode' indicates the scheme. An Op.Code appearing on the data bus is latched into the instruction register. This is eventually decoded together with timing control signals, to provide an appropriate sequence of single-cycle control signals for corresponding registers in the chip register section. The following diagram: 'Register Section - Data Bus Accumulator' indicates the registers involved in transferring data from the data bus to the accumulator. The sequence of events would be determined by the control unit and as dictated by the preceeding Op.Code. For a simple LDA# (Load accumulator - immediate addressing mode) instruction, data appearing on the data bus would be latched into the Data Latch (DL) via the data bus buffer for subsequent transfer to the accumulator via the internal data bus.

Control Section Instruction Decode

Register Section - Data Bus - Accumulator

System Bus Operation (General)

System Bus Operation (Particular)

System Bus Operation

From a test and fault finding point of view we do not need to know the exact flow of data or signals internal to the chip. What is required however is an intimate knowledge of the signals appearing on the external address bus, data bus and control lines for each clock cycle during the execution of any valid program instruction or external control signal. The diagrams, System Bus Operation - General and Particular indicate the relative signal timing.

It should be observed from these diagrams that the Address Bus always contains known data except for a brief period (when it is unstable due to change) at the start of \emptyset_1 clock cycle, while the data bus only becomes stable during the later part of \emptyset_2 and remains so for a very brief period of \emptyset_1 . During the rest of the time the data bus is 'floating'.

All internal data transfers take place during \emptyset_1 and all inter-chip data transfer during \emptyset_2 .

In addition to the registers already mentioned the following may also be involved in any given data transfer/manipulation: Index Register (X and Y), Satck Pointer (S), Arithmetic/Logic Unit (ALU), Program Counter (PC) and the Process Status Register (P).

So far the internal functioning of the processor has been considered as being simply under program control. However, the sequence of program instructions can also be affected by the Interrupt Logic and the Process Status Register. The Interrupt Logic provides an interface between the interrupt lines, Reset ($\overline{\text{RES}}$), Interrupt Request ($\overline{\text{IRQ}}$) and Non Maskable Interrupt ($\overline{\text{NMI}}$) and the processor to ensure correct timing, enabling and sequencing of these inputs to the processor. The processor Status Register controls certain processor operations which may be required as the result of the processor arithmetic and logic operations.

Chapter 14 Data Manipulation

Data Bus

Data is transferred to and from the microprocessor via the 8-bit parallel data bus. The diagram shows how external memory is connected to the internal 8-bit accumulator register by the bi-directional data bus.

Accumulator

All transfers between memory locations must be made through a microprocessor internal register. The accumulator, or an index register, must be used for this purpose.

Consider the following instructions:

Load Accumulator with Memory, LDA

The instruction LDA, causes the microprocessor to transfer data from memory into the accumulator. The symbolic representation for this instruction is $(M) \rightarrow A$, where the arrow is read as "transfer to" and the brackets as "contents of".

Store Accumulator in Memory, STA

The instruction STA, transfers the contents of the accumulator into memory. Symbolically $(A) \rightarrow M$.

Chapter 15 Arithmetic Unit

The 6502 microprocessor has an 8-bit arithmetic unit, capable of performing arithmetic and logical operations on data. The arithmetic unit interconnects with the data bus and the accumulator as shown below:

Since the arithmetic unit handles 8-bit binary numbers, the range is 0 to 255, giving 256 values. If an arithmetic operation gives a result which is larger that 225, then a ninth bit is generated. This bit is termed the 'carry'

ADC Add Memory to Accumulator with Carry

This instruction adds the contents of the memory and the carry to the accumulator, placing the result in the accumulator. Symbolically $A+M+C\to A$. The arithmetic unit can operate in true binary or in binary coded decimal mode as selected by the user. In decimal mode the arithmetic unit will treat the 8-bit numbers as two 4-bit codes, each having a value of 0 to 9. Multiple precision arithmetic can be performed, allowing numbers larger than 255 to be operated upon. Numbers within the microprocessor may be considered as positive or negative, depending upon the value of the most significant bit to represent the sign of the number means that the number range becomes +127 to -128. Within the microprocessor there is a binary digit, termed the overflow flag, which indicates when an error has occured in operations involving signed numbers. The format of signed numbers is indicated in the diagram.

SBC Subtract Memory from Accumulator with Borrow.

This instruction subtracts the value of memory and borrow from the contents of the accumulator, using two's complement arithmetic, and stores the result in the accumulator. Borrow is defined as the complement of the carry. When SBC is used on single precision numbers, the carry must be set before the subtraction is performed. Symbolically this is $A - M - C \rightarrow A$.

Note: Decimal mode addition and subtraction can only be performed using unsigned numbers. In binary arithmetic the carry flag is set by a result greater than 256; in decimal mode the flag is set with result greater than 99.

The arithmetic unit also has the facility to perform logical operations.

AND Memory with Accumulator

This instruction performs a logical AND of each bit of the accumulator with each bit of the selected memory, placing the result in the accumulator. If result is zero, the zero flag sets. If the most significant bit of the result is '1', the negative flag is set. Symbolically; $A \curvearrowright M \rightarrow A$.

ORA Memory with Accumulator

This instruction performs a logical 'OR' of each bit of the accumulator with each bit of the selected memory, placing the result in the accumulator. Symbolically: $A \curvearrowright M \to A$.

EOR Exclusive OR Memory with Accumulator.

This instruction performs the logical Exclusive OR with accumulator and memory, on a bit-by-bit basis, placing the result in the accumulator.

Note: That the EOR instruction may be used to complement data, e.g.

LDA	10101101
EOR	11111111
STA	01010010

Chapter 16 Status Register

The flag signals already mentioned (carry, zero, negative, overflow) are part of an 8-bit register within the microprocessor. This register is termed the processor status register, P. Each bit of the P register represents a totally independent flag:

CARRY Flag (C):

This flag is modified by arithmetic operations, as mentioned earlier. It is used by rotate and shift instructions as a ninth bit. The CARRY bit can be set or reset by the programmer. A SEC instruction will set and a CLC instruction will reset the flag.

ZERO flag (Z):

This flag is set by the microprocessor during any data movement or calculation operation when the 8-bit result is zero.

INTERRUPT DISABLE flag (I):

This flag disables the IRQ input. The I flag is set by the microprocessor during reset and interrupt commands; it can also be set or reset by the programmer, using the SEI or CLI instruction.

DECIMAL MODE flag (D):

This determines whether the arithmetic unit performs true binary or binary coded decimal arithmetic. The programmer can set or reset the flag, using the SED or CLD instruction.

BREAK COMMAND flag (B):

This flag is set only by the microprocessor and is used to determine during an interrupt service sequence whether or not the interrupt was caused by the break instruction or by a $\overline{\text{NMI}}$ or $\overline{\text{IRQ}}$. There are no instructions which can set or reset this bit.

EXPANSION BIT:

This unused flag may appear as a '1' or '0' when the status register is examined. This flag will be used in expanded versions of the 6502.

OVERFLOW flag (V):

When using signed numbers, this flag will indicate when the 7bit result overflows into the sign bit. If not using signed numbers this flag can be ignored. If this flag is set after a signed number add or subtract, the programmer must apply a sign correction routine. The V flag is also used to indicate the state of bit 6 on the data tested with the BIT instruction.

NEGATIVE flag (N):

The N flag takes the state of bit 7 of the resulting value in all data movement and arithmetic operations. Thus, when using signed numbers, the N flag indicates whether data is positive ('0') or negative ('1').

Chapter 17 Program Counter

To work through a sequence of instructions as it automatically executes a program, the microprocessor has to have a register which keeps track of the address of the next location to be accessed. The interconnection of microprocessor registers, including the program counter, is shown below:

The program counter is a 2-byte register, giving an address which can access 65,536 (64K) locations. The lower 8-bits of address are provided by the program counter low register (PCL), the upper 8-bits are provided by the program counter high register (PCH).

The 16-bit address held in the program counter is transmitted to the external memory via the address bus.

Having been initially set to the address at which a program commence, the program counter will increment automatically after each fetch operation. To change the sequence of the program, certain instructions are provided which allow the programmer to modify the contents of the program counter.

JMP Jump to New Location

In this instruction, the data from the memory location accessed next in sequence after the JMP code is loaded into PCL and the data in the next location after that is loaded into PCH.

Example of JMP instruction:

Address	Data	Comments
0024 0025 0026 0937	JMP 37 09 Next instruction	Jump to location 0937 New PCL byte New PCH byte

This method of forming the address from the next two bytes in sequence after the instruction is termed the absolute addressing mode. The jump instruction can also make use of indirect addressing as described later.

Note: that the jump instruction is not conditional on any test; i.e., whenever a jump instruction is accessed in a program the program counter will always be modified.

To allow for conditional modification of the program counter, dependant upon the state of a flag, the 6502 has a number of branch instructions. All branch instructions are relative; i.e.,the program counter contents will be increased or decreased by an amount given as data by the programmer.

BMI Branch on Result Minus

This instruction branches if the N flag is set.

BPL Branch on Result Plus

This instruction is complementary to BMI; i.e., branch occurs when N flag is reset.

BCC Branch On Carry Clear

This instruction branches conditional on the C flag being reset.

BCS Branch on Carry Set

Branch occurs when carry is set.

BEQ Branch on Result Zero

Branch occurs conditional on the Z flag being set.

BNE Branch on Result Not Zero

Branch when Z flag reset.

BVS Branch on Overflow Set

Branch occurs when the V flag is set.

BVC Branch on Overflow Clear

Branch occurs when the V flag is reset.

Note: That a branch is limited to +127 or -128 relative to the current program counter location. Complementary branch instructions are given with the 6502 microprocessor to facilitate branching outside this range. Consider that a branch of several pages is required if the carry is set.

Address	Data	Comments
0031 0032	BCC +3	Branch on carry clear
0033 0034 0035 0036	JMP 43 12 Next instruction	Jump to address 1243 PCL PCH

If carry is not set the jump instruction will be by-passed. If carry is set the jump will modify the program counter to 1243.

Note: that when the branch instruction at address 0031 is to be obeyed, the data at address 0032 will be fetched. The program counter will then hold 0033, therefore the data at 0032 must increment (or decrement) the program counter from 0033. In the example, 0033 + 3 gives address 0036 as the address of the next instruction.

There are two 6502 instruction which are designed only to set flags, prior to testing for a branch instruction.

CMP Compare Memory and Accumulator This instruction subtracts the contents of memory from the contents of the accumulator. Symbolically; A - M. This instruction does not change the accumulator or the memory, it simply sets or resets flags as a result of the subtraction.

Z flag sets if A - M = \emptyset , reset if A - M $\neq \emptyset$

N flag sets if result negative (bit 7 '1')

C flag sets if M is less than, or equal to, A.

BIT Test Bits in Memory with Accumulator

This instruction performs a logical AND between a memory location and the accumulator. Symbolically; $M \land A$. This instruction does not change the accumulator or the memory; it simply sets or resets flags.

N flag takes the value of bit 7 of the memory being tested.

V flag takes the value of bit 6 of the memory being tested.

Z flag sets if the result of the AND is zero.

Full details of the 6502 instruction set are given in the Appendix of the EMMA II User Manual.

Chapter 18 Addressing Modes

The 6502 uses a 16-bit address bus, enabling the microprocessor to access 64K locations. There are a number of methods available to the programmer for forming the address required for use during the execution of an instruction.

These addressing modes fall into two categories, non-indexed and indexed.

To consider first the non-indexed methods.

Implied Addressing

The instruction will consist of a 1-byte operation code, causing an operation internal to the microprocessor. No external memory address is necessary for this type of instruction; e.g.,CLD clear decimal flag.

Immediate Addressing

The instruction will comprise 2-bytes. The first byte will be an operation code, the second byte will be the data to be operated upon.

Address	Data	Comments
0024	A9	This is a load accumulator instruction
0025 ⁻ 0026	FF next instruction	Data FF is loaded to accumulator

Absolute Addressing

Gives a 3-byte instruction. Instruction comprises a 1-byte operation code, followed by a low-byte address, then by a high-byte address.

Address	Data	Comments
0042	AD	This is a load accumulator instruction
0043	03	The accumulator is loaded with the data stored at 0903
0044 0045	09 Next instruction	23 2.2. 2.2 2.2

Zero Page Addressing

Gives 2-byte instructions. 1-byte is given to the operation code, with the second byte being a location on zero page of the memory.

Address	Data	Comments
0E10	A5	This is a load accumulator instruction
0E11	32	The accumulator loads with the data at 0032
0E12	Next instruction	uaia ai 0032

Zero page is a form of absolute addressing but being a 2-byte instruction it takes only 3 machine cycles, unlike absolute addressing which takes 4 machine cycles. Program execution can be made more rapid by locating frequently accessed data on page zero and thus reducing the number of machine cycles.

Relative Addressing

This type of addressing is used only by branch instructions. The instructions are two byte, a 1-byte operation code for a branch being followed by a 1-byte offset which can modify the program counter to a maximum of +127 to -128.

Address	Data	Comments	
0214 0215	30 42	Branch on result minus (N flag = '1' Offset of 42, ie program counter + 42	
0258	counter contain	Next instruction. Note: that the program counter contains 0216 before it is incremented by 42.	

The offset is interpreted as a signed hexadecimal number.

More powerful addressing methods are possible if the microprocessor computes the address using the index register

Absolute Indexed

Absolute indexed addressing is absolute addressing with an index register added to the absolute address.

Address Data	Comments
0231 BD 0232 4C 0233 03	Load accumulator, absolute, X. The accumulator will be loaded with the data held at address (034C + contents of index register X).

Absolute indexed addressing may make use of register X or register Y.

Zero Page Indexed

The operation code is followed by a 1-byte address, to which is added the contents of index register X.

Address	Data	Comments
0200 0201	B5 F3	Load accumulator, zero page X The accumulator is loaded with the data held at address (00F3 + X)

Note that this indexing mode cannot change page; i.e., should the modified address generate a carry it will be ignored. For the above example, if index register X contained 15, then the accumulator would be loaded from F3 + 15 = 08.

Indexed Indirect Addressing

Instructions will comprise 2-bytes: a 1-byte operation code followed by a 1-byte zero-page address. This address will be added to the contents of the X register to give the zero page location of the low address byte. The next location will provide the high address byte. This is shown pictorially.

Pictorially:

Whilst this addressing code does provide a method of accessing a 2-byte address using only a 2-byte instruction, it does necessitate devoting part of zero page to address storing. It also takes 6 machine cycles to execute this form of instruction:

Note that the computed address formed will always be on page zero, if a carry is generated during the addition of index register X it is ignored, in similar manner to that mentioned in zero page indexed mode.

Indirect Indexed Addressing

This is an extension of the previous mode, giving a computed address on any memory page.

Pictorially:

This method does permit page crossing, i.e. if LL + Y generates a carry then this will be added to MM.

Indirect Absolute Addressing

This mode applies only to the JUMP instruction, the 2-byte address code, following the operation code gives access to the low byte data address, incrementing by 1, gives the high byte data address.

Pictorially:

Index Register Applications

The primary use of the index registers, X and Y, is as offset registers and counters for computed addresses. Both registers have instructions for increment, decrement, compare with memory, transfer to and from accumulator, load from memory and store in memory. This range of instructions makes the index registers useful for interim storage of data.

Chapter 19 Stack Processing

For most programming operations it is convenient to use known memory locations for the storage of data. However, the precise memory location is not known, only the order in which data may be sequenced being known. This type of programming is called re-entrant coding and is often used in servicing interrupts.

To implement this type of addressing the microprocessor has a separate address generator, termed the stack pointer, S, which is used by the program to access memory.

The stack pointer uses the push down stack concept, for example consider 4 data bytes which are to be stored in sequence, DATA $_1$ DATA $_2$ DATA $_3$ DATA $_4$. The stack pointer will store DATA $_1$, then decrement, store DATA $_2$, then decrement, etc. After 4 store operations we will have

Address	Data
(A)	DATA ₁
(A-1)	DATA ₂
(A-2)	DATA ₃
(A-4)	

Stack Pointer

The data is stored in sequential locations, with the stack pointer always pointing to the next 'empty' location. In recalling the data from stack, the stack pointer will repeatedly increment. Thus, in the example given, DATA $_4$ is accessed first, then DATA $_3$, then DATA $_2$, then DATA $_1$. Leaving the stack pointer pointing to location A.

For the 6502, the stack pointer is an 8-bit register, with most significant address byte set to 01. Thus, the stack uses page 1, with the pointer resetting to FF. Allowing all page 1 for stack operations gives a 256 location stack.

6502 Instructions Which Utilize The Stack Area

A list of the 6502 instructions which utilize the stack can be found overleaf on page 57.

JSR Jump to Subroutine

This instruction changes the program counter contents to the start location of the subroutine, but before this change occurs, the last address accessed is stored on the stack. This permits the microprocessor to return to continue the program when the subroutine has been completed.

To illustrate the JSR instruction:

Program Counter	Memory Contents	
0400 0401 0402	JSR 1E 2F	Subroutine starts at 2F1E
Stack Pointer	Stack Contents	
01FF 01FE	04 02	Return address 0402 is placed on the stack

The JSR instruction takes 6 machine cycles. During the return from subroutine instruction the program counter is incremented causing a return to the next program instruction, i.e. for the above example, the program counter contents of 0402 are restored and then incremented to 0403 before the return from subroutine is completed.

RTS Return from Subroutine

This instruction loads the program counter low and program counter high from the stack to the program counter. The stack pointer will increment twice during this instruction.

The complete sequence for executing a subroutine is:

Address	Data		
0200 0201 0202 0203	JSR 12 03 Next instruction	Address 0312 : : 03XX	Data First Instruction of subroutine RTS

PHA Push Accumulator on Stack

This instruction transfers the current value of the accumulator to the next location on the stack, automatically decrementing the stack to pointer to the next empty location.

The symbolic notation for this operation is A \downarrow . Note that the notation means push onto stack, \uparrow means pull from the stack.

PLA Pull Accumulator from Stack

This instruction increments the stack pointer, then loads the accumulator from this incremented pointer address. Symbolically: A \uparrow .

The stack push and pull instructions enable the programmer to make use of the stack for temporary data storage during programs.

TXS Transfer Index X to Stack Pointer

This instruction transfers the value in the index register X to the stack pointer. Symbolic notation is $X \rightarrow S$.

TSX Transfer Stack Pointer to Index X

This instruction transfers the value in the stack pointer to the index register, X.

Symbolic notation is $S \rightarrow X$.

PHP Push Processor Status on Stack

This instruction transfers the contents of the processor status register to the stack. Symbolically, P \downarrow . Note that the status register contents are automatically saved when an interrupt occurs, but not saved on a jump to subroutine.

PLP Pull Processor Status from the Stack

This instruction increments the stack and transfers the data accessed to the status register.

Chapter 20 Reset and Interrupts

Reset

When a reset signal is applied to the microprocessor it fetches a 2-byte address from pre-determined memory addresses and loads this address into the program counter. The 2-bytes forming the fetched address are termed vectors.

The 6502 fetches its reset vectors from addresses FFFC (PCL) and FFFD (PCH). For the 'EMMA', the monitor program resides at pages FE and FF, thus the reset vectors are within the monitor.

Interrupts

The 6502 can be interrupted during the execution of a program by an external signal. Before responding to an interrupt the microprocessor will complete its current instruction. The current program counter address (2-bytes) and the status register contents are then placed on the stack so that the microprocessor can return to its current program after the interrupt has been serviced.

Two types of interrupt are available with the 6502:

- (i) Non-maskable interrupt, $\overline{\text{NMI}}$, this is an edge sensitive input to the 6502, an internal flag is set whenever the $\overline{\text{NMI}}$ input goes from '1' to '0'. This input cannot be disabled by the microprocessor. The $\overline{\text{NMI}}$ vectors are obtained from FFFA and FFFB.
- (ii) Interrupt request, IRQ this is a level sensitive input to the 6502. An interrupt will occur when the IRQ input is at '0' if the interrupt disable flag (bit 2 of the status register) is reset. The IRQ vectors are obtained from FFFE and FFFF.

If both $\overline{\text{NMI}}$ and $\overline{\text{IRQ}}$ occur the 6502 will give priority to the $\overline{\text{NMI}}$. Peripheral devices may be wire OR'd to the $\overline{\text{NMI}}$ and $\overline{\text{IRQ}}$ lines, but it must be noted that the edge triggering of the $\overline{\text{NMI}}$ does make a difference to the interrupt handling. With the $\overline{\text{IRQ}}$ line, any number of devices may hold this line low. Each device will be serviced before the line goes high, clearing the $\overline{\text{IRQ}}$. Once a device has set the $\overline{\text{NMI}}$ flag, other $1 \rightarrow 0$ edges will be ignored.

All interrupt routines should end with the single byte return from interrupt instruction, RTI, which restores the interrupted program and continues normal execution.

The time taken to initiate interrupts means that only devices with byte transfer rates below about 40kHz should use the interrupt facility.

BRK Break Command

The break command is an instruction which causes an interrupt sequence. Typical use for the break command is in program debugging, where the sequence of instruction execution may be interrupted at any chosen point. When a break command is received by the microprocessor, the contents of the program counter +2 is placed on the stack, and the program counter is loaded with the vectors at FFFE and FFFF. Symbolic notation for this is PC2 \downarrow (FFFE) \rightarrow PCL, (FFFF) \rightarrow PCH. The status register (P) is also pushed onto the stack (at stack pointer +1) when a BREAK occurs. The programmer can examine the BREAK flag within this register to determine whether the interrupt was caused by a software BREAK or a hardware \overline{IRQ} .

Chapter 21 Further Arithmetic and Logical Commands

LSR Logical Shift Right

This instruction shifts either the accumulator or a specified memory contents 1 bit to the right. The high bit of the result is always set to '0', the low bit is shifted into the carry flag.

Effect of LSR command on the status register:

- (i) The shift right does not affect the overflow flag.
- (ii) The N flag is always reset.
- (iii) The Z flag indicates the condition of the result.
- (iv) The carry flag is set equal to bit 0 of the input.

ASL Arithmetic Shift Left

This instruction shifts either the accumulator or a specified memory contents 1 bit to the left. The low bit of the result is always set to '0' the high bit is shifted into the carry flag.

Effect of ASL command on the status register:

- (i) overflow flag not affected.
- (ii) the N flag is set equal to bit 7 of the result (bit 6 of input).
- (iii) the Z flag is set if result equal zero, otherwise reset.
- (iv) the carry flag is set equal to bit 7 of the input.

ROL Rotate Left

This instruction shifts either the accumulator or a specified memory location 1 bit to the left. Input carry is transferred into bit 0, bit 7 is transferred into the carry. As well as affecting the carry flag, this instruction sets N equal to input bit 6, sets Z flag if result is zero.

ROT Rotate Right

As for ROL, but shift is to the right, with carry to result bit 7, bit 0 into carry.

INC Increment Memory by One

This instruction adds 1 to the addressed memory location. Symbolic notation $M+1 \rightarrow M$.

DEC Decrement Memory by One

This instruction subtracts 1, in 2's complement from, from the contents of the addessed memory location.

Chapter 22 6522, Versatile Interface Adaptor (VIA)

This device has been explained to some extent already in the user manual. This section endeavours to look at it in more detail.

This device contains two 8-bit buffer registers which access port A and port B on the 'EMMA' board. In addition, the 6522 provides two powerful interval timers a serial to parallel/parallel to serial shift register and data latching on the peripheral ports.

A complete block diagram of the 6522 is given below:

The register select lines, RS0, RS1, RS2, RS3, are connected to the lower 4-bits of the address bus. The code selected for these determine the 6522 register with which the microprocessor will communicate. The decoding for the chip select signal, CS1, CS2, place the 6522 on page 09 of the 'EMMA' memory map.

PERIPHERAL PORTS, (PA₀-PA₇), (PB₀-PB₇)

The peripheral ports each comprise eight lines which can be individually programmed to act as an input or an output under control of a data direction register. With '0' loaded into a bit of the data direction register, the corresponding bit of the port will act as an input. A '1' causes the bit of the port to act as an output.

Address	Register Function
0900	Data Register, B
0901	Data Register, A
0902	Data Direction Register, B.
0903	Data Direction Register, A.

Each peripheral pin is also controlled by a bit in the Output Register (ORA, ORB) and an Input Register (IRA, IRB). When the pin is programmed as an output, the voltage on the pin is controlled by the corresponding bit of the Output Register. A '1' in the Output Register will cause the output to go high, and a '0' causes the output to go low; this my be written into the Output Register bits corresponding to pins which are programmed as inputs. In this case, however, the output signal is unaffected.

Reading a peripheral port causes the contents of the Input Register (IRA, IRB) to be transferred onto the Data Bus. With input latching disabled, IRA will always reflect the levels on the PA pins. With input latching enabled, IRA will reflect the levels on the PA pins at the time the latching occurred (via CA1).

The IRB register operates in a similar way to the IRA register. However, for pins programmed as outputs there is a difference. When reading IRA, the level on the pin determines whether a 0 or a 1 is sensed. When reading IRB, however, the bit stored in the output register, ORB, is the bit sensed.

Thus, for outputs which have large loading effects and which pull an output "1" down or which pull an output "0" up, reading IRA may result in reading a "0" when a "1" was actually programmed, and reading a "1" when a "0" was programmed. Reading IRB, on the other hand, will read the "1" or "0" level actually programmed, no matter what the loading on the pin. The following diagrams illustrate the formats of the port registers.

The input latching modes are selected by programming of the Auxiliary Control Register.

Output Register B (ORB) Input Register B (IRB)

Output Register A (ORA) Input Register A (IRA)

Data Direction Registers (DDRB, DDRA)

Handshake Control of Data Transfer

The 6522 allows positive control of data transfers between the system processor and peripheral devices through the operation of "handshake" lines. Port A lines (CA1, CA2) handshake data on both a read and a write operation while the Port B lines (CB1, CB2) handshake on a write operation only.

Read Handshakes

Positive control of data transfers from peripheral devices into the system processor can be accomplished very effectively using Read Handshaking. In this case, the peripheral device must generate the equivalent of a "Data Ready" signal to the peripheral port. This signal normally interrupts the processor, which then reads the data, causing generation of a "Data Taken" signal. The peripheral device responds by making new data available. This process continues until the data transfer is complete.

In the 6522, automatic "Read" Handshaking is possible on the Peripheral A port only. The CA1 interrupt input pin accepts the "Data Ready" signal will set an internal flag which may interrupt the processor or which may be polled under program control. The "Data Taken" signal can either be a pulse or a level which is set low by the system processor and is cleared by the "Data Ready" signal. These options are shown below which illustrates the normal Read Handshaking sequence.

Write Handshake

The sequence of operation which allows handshaking data from the system processor to a peripheral device is very similar to that described for READ Handshaking. However, for Write Handshaking, the 6522 generates the "Data Ready" signal and the peripheral device must respond with the "Data Taken" signal. This can be accomplished on both the PA port and the PB port on the 6522. CA2 or CB2 act as a "Data Ready" output in either the handshake mode or pulse mode and CA1 or CB1 accept the "Data Taken" signal from the peripheral device, setting the interrupt flag and clearing the "Data Ready" output. This sequence is shown in the timing diagram below.

Selection of operating modes for CA1, CA2, CB1 and CB2 is accomplished by the Peripheral Control Register (PCR).

The mode of operation of the "handshake" control lines is determined by the programming of the Peripheral Control Register. Detail of this control register is given below.

Peripheral Control Register (PCR)

Timer Operation

Interval Timer T1 consists of two 8-bit latches and a 16-bit counter. The latches are used to store data which is to be loaded into the counter. After loading, the counter decrements at 02 clock rate. Upon reaching zero, an interrupt flag will be set, and IRQ will go low if the interrupt is enabled. The timer will then disable any further interrupts, or will continue to decrement. In addition, the timer may be programmed to invert the output signal on a peripheral pin each time it "times-out". Each of these modes is discussed separately below.

The T1 counter and latches are depicted below:

(A) T1 Counter Registers

(B) T1 Latch Registers

Two bits are provided in the Auxiliary Control Register (bits 6 and 7) to allow selection of the T1 operating modes. The four possible modes are depicted overleaf.

Note: The processor does not write directly into the low order counter (TIC-L). Instead, this half of the counter is loaded automatically from the low order latch when the processor writes into the high order counter. In fact, it may not be necessary to write to the low order counter in some applications since the timing operation is triggered by writing to the high order counter.

Auxiliary Control Register

Timer 1 One-Shot Mode

The interval timer one-shot mode allows generation of a single interrupt for each timer load operation. As with any interval timer, the delay between the "write TIC-H" operation and generation of the processor interrupt is a direct function of the data loaded into the timing counter. In addition to generating a single interrupt, Timer 1 can be programmed to produce a single negative pulse on the PB7 peripheral pin. With the output enabled (ACR7=1) a "write TIC-H" operation will cause PB7 to go low. PB7 will return high when Timer 1 times out. The result is a single programmable width pulse.

In the one-shot mode, writing into the high order latch has no effect on the operation of Timer 1. However, it will be necessary to ensure that the low latch contains the proper data before initiating the count-down with a "write TIC-H" operation. When the processor writes into the high order counter, the T1 interrupt flag will be cleared, the contents of the low order latch will be transferred into the low order counter, and the timer will begin to decrement at system clock rate. If the PB7 output is enabled, this signal will go low on the phase two following the write operation. When the counter reaches zero, the T1 interrupt flag will be set, the IRQ pin will go low (interrupt enabled), and the signal on PB7 will go high. At this time the counter will continue to decrement at system clock rate. This allows the system processor to read the contents of the counter to determine the time since interrupt. However, the T1 interrupt flag cannot be set again unless it has been cleared as described in this section.

Timing for the 6522 interval timer one-shot modes is shown below:

Timer 1 Free-Run Mode

The most important advantage associated with the latches in T1 is the ability to produce a continuous series of evenly spaced interrupts unaffected by variations in the processor interrupt response time. This is accomplished in the "free-running" mode.

In the free-running mode, the interrupt flag is set and the signal on PB7 is inverted each time the counter reaches zero. However, instead of continuing to decrement from zero after a time-out, the timer automatically transfers the contents of the latch into the counter (16 bits) and continues to decrement from there. The interrupt flag can be cleared by writing TIC-H, by reading TIC-L, or by writing directly into the flag as described later. However, it is not necessary to rewrite the timer to enable setting the interrupt flag on the next time-out.

All interval timers in the 6522 are "re-triggerable". Rewriting the counter will always re-initialize the time-out period. In fact, the time-out can be prevented completely if the processor continues to rewrite the timer before it reaches zero. Timer 1 will operate in this manner if the processor writes into the high order counter (TIC-H). However, by loading the latches only, the processor can access the timer during each down counting operation without affecting the time-out in process. Instead, the data loaded into the latches will determine the length of the next time-out period. This capability is particularly valuable in the free running mode with the output enabled. In this mode, the signal on PB7 is inverted and the interrupt flag is set with each timeout. By responding to the interrupts with new data for the latches, the processor can determine the period of the next half cycle during each half cycle of the output signal on PB7. In this manner, very complex waveforms can be generated. Timing for the free-running mode is shown:

Note: A precaution to take in the use of PB7 as the timer output concerns the Data Direction Register contents for PB7. Both DDRB bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer output. If one is 1 and the other is 0, then PB7 functions as a normal output pin controlled by ORB bit 7.

Timer 2 Operation

Timer 2 operates as an interval timer (in the "one-shot" mode only), or as a counter for counting negative pulses on the PB6 peripheral pin. A simple control bit is provided in the Auxiliary Control Register to select between these two modes. This timer consists of a 'write-only' low order latch (T2L-L), a 'read only' low-order counter and a read/write high order counter. The counter registers act as a 16-bit counter which decrements at 02 rate. The diagram below illustrates T2 counter Registers.

Timer 2 Low-Order Latch/Counter

Timer 2 High-Order Latch/Counter

Timer 2 One-Shot Mode

As an interval timer, T2 operates in the "oneshot" mode similar to Timer 1. In this mode, T2 provides a single interrupt for each "write T2C-H" operation, After timing out, the counter will continue to decrement. However, setting of the interrupt flag will be disabled after initial time-out so that it will not be set by the counter continuing to decrement through zero. The processor must rewrite T2C-H to enable setting of the interrupt flag. The interrupt flag is cleared by reading T2C-L or by writing T2C-H.

Timer 2 Pulse Counting Mode

In the pulse counting mode, T2 serves primarily to count a predetermined number of negative-going pulses on PB6. This is accomplished by first loading a number into T2. Writing into T2C-H clears the interrupt flag and allows the counter to decrement each time a pulse is applied to PB6. The interrupt flag will be set when T2 reaches zero. At this time the counter will continue to decrement with each pulse on PB6. However, it is necessary to rewrite T2C-H to allow the interrupt flag to set on subsequent down-counting operations. Timing for this mode is shown below. The pulse must be low on the leading edge of \emptyset 2.

Shift Register Operation

The Shift Register (SR) performs serial data transfers into and out of the CB2 pin under control of an internal modulo-8 counter. Shift pulses can be applied to the CB1 pin from an external source or, with the proper mode selection, shift pulses generated internally will appear on the CB1 pin for controlling external devices.

The control bits which select the various shift register operating modes are located in the Auxiliary Control Register. Figure below illustrates the configuration of the SR data bits and the SR control bits of the ACR.

SR and ACR Control Bits

Auxiliary Control Register

Operation of the Various Shift Register Modes

SR Disabled (000)

The 000 mode is used to disable the Shift Register. In this mode the microprocessor can write or read the SR but the shifting operation is disabled and operation of CB1 and CB2 is controlled by the appropriate bits in the Peripheral Control Register (PCR). In this mode the SR Interrupt Flag is disabled (held to logic 0).

Shift in Under Control of T2 (001)

In the 001 mode the shifting rate is controlled by the low order 8 bits of T2. Shift pulses are generated on the CB1 pin to control shifting in from external devices. The time between transitions of the output clock is a function of the system clock period and the contents of the low order T2 latch (N).

The shifting operation is triggered by writing or reading the shift register. Data is shifted first into the low order bit of SR and is then shifted into the next higher order bit of the shift register on the negative edge of each clock pulse. The input data should change before the positive going edge of the CB1 clock pulse. This data is shifted into the shift register during the 02 clock cycle following the positive going edge of the CB1 clock pulse. After 8 CB1 clock pulses the shift register interrupt flag will be set and IRQ will go low.

Shift in Under Control of 62 (010)

In mode 010, the shift rate is a direct function of the system clock frequency. CB1 becomes an output which generates shift pulses for controlling external devices. Timer 2 operates an independant interval timer and has no effect on SR. The shifting operation is triggered by reading or writing the Shift Register. Data is shifted first into bit 0 and is then shifted into the next higher order bit of the shift register on the trailing edge of each 02 clock pulse. After 8 clock pulses, the shift register interrupt flag will be set, and the output clock pulses on CB1 will stop.

Shift In Under Control of External CB1 Clock (011)

In mode 011 CB1 becomes an input. This allows an external device to load the shift register at its own pace. The shift register counter will interrupt the processor each time 8 bits have been shifted in. However, the shift register counter does not stop the shifting operation it acts simply as a pulse counter. Reading or writing the Shift Register resets the interrupt flag and initialise the SR counter to count another 8 pulses.

Note that the data is shifted during the first system clock cycle following the positive-going edge of the CB1 shift pulse. For this reason, data must be held stable during the first full cycle following CB1 going high.

Shift Out Free Running At T2 Rate (100)

Mode 100 is very similar to mode 101 in which the shifting rate is set by T2. However, in mode 100 the SR counter does not stop the shifting operation. Since the Shift Register bit 7 (SR7) is recirculated back into bit 0, the 8 bits loaded into the shift register will be clocked onto CB2 repetitively. In this mode the shift register counter is disabled.

Shift Out Under Control of T2 (101)

In mode 101 the shift rate is controlled by T2 (as in the previous mode). However, with each read and write of the shift register the SR Counter is reset and 8 bits are shifted onto CB2. At the same time, 8 shift pulses are generated on CB1 to control shifting in external devices. After the 8 shift pulses, the shifting is disabled, the SR Interrupt Flag is set and CB2 remains at the last data level.

Shift Out Under Control of T2 (110)

In mode 110, the shift rate is controlled by the 02 system clock.

Shift Out Under Control Of External CB1 Clock (111)

In mode 111 shifting is controlled by a pulse applied to the CB1 pin by an external device. The SR counter sets the SR Interrupt flag each time it counts 8 pulses but it does not disable the shifting function. Each time the microprocessor writes or reads the shift register, the SR Interrupt flag is reset and the SR counter is initialised to begin counting the next 8 shift pulses on pin CB1. After 8 shift pulses, the interrupt flag is set. The microprocessor can then load the shift register with the next byte of data.

Interrupt Operation

Controlling interrupts within the 6522 involves three principal operations. These are flagging the interrupts, enabling interrupts and signalling to the processor that an active interrupt exists within the chip. Interrupt flags are set by an interrupting condition which exists within the chip or on inputs to the chip. These flags normally remain set until the interrupt has been serviced. To determine the source of an interrupt, the microprocessor must examine these flags in order from highest to lowest priority. This is accomplished by reading the flag register into the processor accumulator, shifting this register either right or left and then using conditional branch instructions to detect an active interrupt.

Associated with each interrupt flag is an interrupt enable bit. This can be set or cleared by the processor to enable interruption of the processor from the corresponding interrupt flag. If an interrupt flag is set to a logic 1 by an interrupting condition, and the corresponding interrupt enable bit is set to a 1, the Interrupt Request Output (\overline{IRQ}) will go low. \overline{IRQ} is an "open-collector" output which can be 'wired-or-ed' with other devices in the system to interrupt the processor.

Within the 6522, all the interrupt flags are contained in the Interrupt Flag Register (IFR). In addition, bit 7 of this register will be read as a logic 1 when an interrupt exists within the chip. This allows very convenient polling of several devices within a system to locate the source of an interrupt. The Interrupt Flag Register (IFR) and Interrupt Enable Register (IER) are depicted below:

Interrupt Flag Register (IFR)

Interrupt Enable Register (IER)

The IFR may be read directly by the processor. In addition, individual flag bits may be cleared by writing a "1" into the appropriate bit of the IFR. When the proper chip select and register signals are applied to the chip, the contents of this register are placed on the data bus. Bit 7 indicates the status of the IRQ output. This bit corresponds to the logic function: IRQ = IFR6 \times IER6 + IFR5 \times IER5 + IFR4 \times IER4 \times IFR3 \times IER3 + IFR2 \times IER2 + IFR1 \times IER1 + IFR0 \times IER0. Note: X = logic AND, + = Logic OR.

The IFR bit 7 is not a flag. Therefore, this bit is not directly cleared by writing a logic 1 into it. It can only be cleared by clearing all the flags in the register or by disabling all the active interrupts.

For each interrupt flag in IFR, there is a corresponding bit in the Interrupt Enable Register. The system processor can set or clear interrupts without affecting others. This is accomplished by writing to address 1110 (IER address). If bit 7 of the data placed on the system data bus during this write operation is a 0, each 1 in bits 6 through 0 clears the corresponding bit in the Interrupt Enable Register. For each zero in bits 6 through 0, the corresponding bit is unaffected.

Setting selected bits in the Interrupt Enable Register is accomplished by writing to the same address with bit 7 in the data word set to a logic 1. In this case, each 1 in bits 6 through 0 will set the corresponding bit. For each zero, the corresponding bit will be unaffected. This individual control of the setting and clearing operations allows very convenient control of the interrupts during system operation.

In addition to setting and clearing IER bits, the processor can read the contents of this register by placing the proper address on the register select and chip select inputs with the R/W line high. Bit 7 will be read as a logic 0.

Chapter 23 6821 Keyboard and Display Interface

The functional configuration of the 6821 is programmed by the MPU during system initialisation. The 6821 is dedicated on the **EMMA II** board for the function of keyboard and display interfacing. It is similar to the 6522 in some functions, in that it contains two 8-bit Bidirectional I/O Ports. The ports are set up to function as explained in the hardware section. Internal block diagram of the 6821 is shown below.

As seen on the block diagram the 6821 contains:

- Peripheral register that loads either input or output data. When used for output this register is latched, and when used for input is unlatched.
- Two data direction registers (DDRA, DDRB); the bits in these registers determine whether the corresponding data register bits are inputs (0) or outputs (1).
- Control registers that hold the status signals required for handshaking, and other bits that select operating conditions within the 6821.
- Two control lines that are configured by the control registers.

The 6821 occupies four memory addresses as selected by **EMMA II** address decoding and the register select lines. Since there are six registers (2 peripheral, 2 data direction, 2 control) in the 6821 the Data Direction registers and Peripheral registers for each port share an address. Thus a further bit is required to address these individually. When a port is addressed bit 2 of the associated control register determines whether the Data Direction register or the Peripheral register is accessed.

The sharing of an external address means:

- A program must change the bit in the control register in order to use the register that is not currently being addressed.
- The programmer must be aware of the contents of the control register in order to know which register is being addressed.
- RESET clears the control register and thus addresses the data direction register.

Addressing The 6821 Internal Registers

Address Lines	Control F B CRA 2	_	
0 A 0 0 0 A 0 0 0 A 0 1 0 A 0 2 0 A 0 2 0 A 0 3 X = Either 0 or 1	1 0 X X X X	X X X 1 0 X	Peripheral Register A Data Direction Register Control Register A Peripheral Register B Data Direction Register B Control Register B

The table shown gives the addresses of the various registers in the 6821. Control register format is shown opposite on page 82.

Appendix 1 Pin Allocations

7'

Appendix 2 Monitor Program

				1.		#EMF3I	R5-EMMA2 MONITOR+CASSETTE ROU
TINES							
				22		: +USEI	FUL ROUTINES.14/6/84,NC.R12/9
/84							
				3		ORG I	FEØØ
FEØØ	AØ	06		4	QUAD:	LDY#	Ø6
	85	00		5		LDA	ØØ, X
		6F	les les	6		JSR	DHEXTD
	CA	****		7		DEX	
	88			8		DEY	
	88			9		DEY	
FEØA	10	L. A.		10		BPL	F6 (FEØ2)
	86	1A		11	DISPLAY:	STX	16
	38	T. 124		12	A./ J. GOT L PT T N	SEC	**
		Chica		13	NEWSCAN:	LDX#	ØF
	A2	ØF				TXA	Ø1°
	8A	/··A ····y		14	NEXT:		1'A'''7
	29	07		15		AND#	07
	A8	214 ATL	7% A	16		TAY	Ph A Ph Ph
	an	02	ØA	17		STA	ØAØ2
	89	10	00	18		LDA	ØØ1Ø, Y
	aD	00	ØA	19		STA	ØAØØ
	CB			20		INY	
	DØ	FA		21		BNE	FA (FE1B)
	80	00	ØA	22		STY	ØAØØ
	AD	(9,5	ØA	23		LDA	ØAØ2
FE27	85	19		24		STA	19
FE29	29	38		25		#CINA	38
FEZB	49	38		26		EOR#	38
FE2D	FØ	09		27		BEO	Ø9 (FE38)
FEZF	18			28		CLC	
FE3Ø	A5	19		29		LDA	19
FE32	49	1.83		30		EOR#	18
FE34	29	1 =		31		AND#	1F
	85	ØD		32		STA	ØD
	CA			33		DEX	
FE39		D6		34		BPL	NEXT (FE11)
FE3B		ØE		35		LDX	ØE
FE3D	10	ØA		36		BPL	OUT (FE49)
FESF	90	04		37		BCC	Ø4 (FE45)
FE41	84	ØF		38		STY	ØF
FE43	BØ	CA		39		BCS	NEWSCAN (FEØF)
FE45	A6	ØF		40		LDX	ØF
FE47	30	C5		41		BMI	NEWSCAN-Ø1 (FEØE)
FE49	C6	ØF		42	OUT:	DEC	ØF
FE4B	A6	1A		43	tur sur 1 H	LDX	1A
FE4D	A5	ØD		44		LDA	άĎ
FE4F	C9	10		45		CMP#	10
FE51	60	1. (2.)		46		RTS	sh Wer
		(2)(2)	(7)()	47	INIT2:	STA	ØAØ2
FE52	an	02	ØA		J. 1 M. J. 1 J. S. B	LDA#	Ø4
FE55	A9	04	CNA	48		STA	Ø4Ø1
FE57	SD	01	ØA	49			
FE5A	BD	W.3	ØA	50		STA	ØAØ3

```
FE5D 60
                   51
                                     RTS
FESE A1 00
                                           (00,X)
                   52
                        MHEXTD:
                                     LDA
FE60 A0 06
                   53
                                     LDY#
                                            06
FE62 DØ ØB
                   54
                                     BNE
                                            DHEXTD (FE6F)
FE64 AØ Ø3
                   55
                        QHEXTD1:
                                     LDY#
FE66 B5 00
                   56
                        QHEXTD2:
                                     LDA
                                            ØØ,X
FE68 20 6F FE
                   57
                                     JSR
                                            DHEXTD
FE6B 88
                   58
                                     DEY
FE&C 88
                   59
                                     DEY
FE6D B5 Ø1
                   60
                                     LDA
                                            Ø1,X
FE6F C8
                   61
                         DHEXTD:
                                     INY
FE7Ø 48
                   62
                                     PHA
FE71 20 7A FE
                   63
                                     JSR
                                             HEXTD
FE74 88
                   64
                                     DEY
FE75 68
                   65
                                     PLA
FE76 4A
                   66
                                     LSRA
FE77 4A
                   67
                                     LSRA
FE78 4A
                   68
                                     LSRA
FE79 4A
                   69
                                     LSRA
                                     STY
FE7A 84 1A
                   70
                        HEXTD:
                                            14
FE7C 29 ØF
                   71
                                     AND#
                                            ØF
FEZE A8
                   72
                                     TAY
FE7F B9 EA FF
                                             FONT, Y
                   73
                                     LDA
FE82 A4 1A
                   74
                                     LDY
FE84 99
         10 00
                   75
                                     STA
                                            0010,Y
FE87 60
                   76
                                     RTS
FE88 20 64 FE
                   77
                        QDATFET:
                                     JSR
                                             QHEXTD1
FE88 20 0C FE
                   78
                                     JSR
                                             DISPLAY
FE8E BØ 2Ø
                   79
                                     BCS
                                             RETURN (FEBØ)
FE90 A0 04
                   80
                                     LDY#
                                            04
FE92 ØA
                   81
                                     ASLA
FE93 ØA
                   82
                                     ASLA
FE94 ØA
                   83
                                     ASLA
FE95 ØA
                   84
                                     ASLA
FE96 ØA
                   85
                                     ASLA
FE97 36 00
                   86
                                     ROL
                                            00,X
FE99 36 Ø1
                   87
                                     ROL
                                            Ø1,X
FE9B 88
                                     DEY
                   88
FE9C DØ F8
                   89
                                     BNE
                                            F8 (FE96)
FEGE FØ E8
                   90
                                     BEQ
                                            QDATFET (FE88)
FEAØ F6 Ø6
                   91
                        COM16:
                                     INC
                                            Ø6,X
FEA2 DØ Ø2
                   92
                                     BNE
                                            Ø2 (FEA6)
FEA4 F6 Ø7
                   93
                                     INC
                                            Ø7,X
FEA6 B5 07
                                            Ø7,X
                   94
                        NOINC:
                                     LDA
FEA8 D5 Ø9
                                           Ø9,X
                   95
                                     CMP
FEAA DØ Ø4
                   96
                                     BNE
                                            RETURN (FEBØ)
FEAC B5
        06
                   97
                                     LDA
                                            Ø6,X
                                           Ø8,X
FEAE D5 Ø8
                   98
                                     CMP
FEBØ 60
                   99
                        RETURN:
                                     RTS
FEB1 4C ØØ DC
                 100
                        PUTBYTE:
                                     JMP
                                            PUT
FEB4 AD Ø3 ØA
                 101
                                     L.DA
                                           ØAØ3
                                                            RTI CHECK
FEB7 AA
                 102
                                     TAX
FEB8 29 Ø3
                  103
                                     #CNA
                                            03
```

```
BEQ 07 (FEC3)
FEBA FØ Ø7
                 104
                                                        RELOAD REGIS
                                  LDA
                                        ØA
FEBC A5 ØA
                 105
TERS
                 106
                                  L.DX
                                        ØB
FEBE A6 ØB
FECØ A4 ØC
                                  LDY
                                        ØC
                 107
FEC2 40
                 108
                                  RTI
FEC3 8A
                 109
                                  TXA
                                        02
FEC4 Ø9 Ø2
                 110
                                  ORA#
                                        ØAØ3
                                  STA
FEC6 8D 03 0A
                 111
                 112
                                        02
FEC9 A2 Ø2
                                  L.DX#
                                        VECSET
FECB 20 D2 FE
                                  JSR
                 113
FECE A9 Ø1
                 114
                                  L.DA#
                                        Ø 1
FEDØ DØ 62
                 115
                                  BNE
                                        62 (FF34)
FED2 A9 B3
                                  L.DA#
                                       B3
                 116 VECSET:
                                        ØEFA, X
FED4 9D FA ØE
                 117
                                  STA
                                  LDA# FF
FED7 A9 FF
                 118
                                  STA
                                        ØEFB,X
FED9 9D FB ØE
                 119
FEDC 60
                 120
                                  RTS
                                  JMP
                                        GET
                       GETBYTE:
                 121
FEDD 4C 9A DC
                                        F803
FEEØ AE Ø3 F8
                                  L.DX
                 122
                       RST:
                 123
                                  BNE
                                        RESET (FEF3)
FEE3 DØ ØE
                                  DEX
                 124
FEE5 CA
                                       ØAØØ
                125
                                  STX
FEE6 8E 00 0A
                                  JSR
                                        INIT1
FEE9 20 83 FF
                 126
FEEC 4C 00 F8
                 127
                                  JMP
                                        F800
                                  NOP
FEEF EA
                 128
                                  NOP
FEFØ EA
                 129
                 130
                                  NOP
FEF1 EA
                                  NOP
FEF2 EA
                131
                                  LDY# 80
 FEF3 AØ 8Ø
                132 RESET:
                133
                                  LDX# 09
FEF5 A2 09
                                  STY
                                        ØE,X
 FEF7 94 ØE
                 134
 FEF9 CA
                                  DEX
                 135
                                       FB (FEF7)
                                  BPL
 FEFA 10 FB
                 136
 FEFC 9A
                 137
                                  TXS
                 138
                                  STX
                                        ØAØØ
 FEFD BE 00 0A
 FF00 20 83 FF
                 139
                                  JSR
                                         INIT1
                                  CLD
 FFØ3 D8
                 140
                                        DISPLAY
                 141 RESTART:
                                  JSR
 FFØ4 20 0C FE
                                       EA (FEF3)
 FFØ7 90 EA
                                  BCC
                 142
                     SEARCH:
                                        07
 FFØ9 29 Ø7
                 143
                                  #CNA
                                  CMP#
                                        (2)4
 FFØB C9 Ø4
                 144
                                         FETADD (FF34)
                                  BCC
 FFØD 9Ø 25
                 145
                                         LOAD (FF80)
                                  BEO
 FFØF FØ 6F
                 146
                 147
                                  CMP#
                                        Ø65
 FF11 C9 Ø6
                                        UP (FF1E)
                                  BEO
 FF13 FØ Ø9
                 148
                                         DOWN (FF26)
                                  BCS
                 149
 FF15 BØ ØF
                                        9B (FEB4)
                                  BNE
 FF17 DØ 9B
                 150
                                                        ; SET FLAG & I
                                   JSR
                                         SET
 FF19 20 EF DD
                 151
NT VECTORS
                                  BNE
                                       7B (FF99)
 FF1C DØ 7B
                 152
                                       ØØ, X
                       UP:
                                   INC
 FF1E F6 00
                 153
                                  BNE
                                        ØC (FF2E)
                 154
 FF20 D0 0C
```

FF22	F6	Ø 1		155		INC	Ø1,X
FF24	BØ	08		156		BCS	08 (FF2E)
FF26	B5	00		157	DOWN:	LDA	ØØ, X
FF28	DØ	02		158	ANY SHIFT Y II	BNE	02 (FF2C)
FF2A	D6	Ø1		159		DEC	Ø1,X
FF2C	D6	00		160		DEC	ØØ,X
FF2E	20	64	FE	161		JSR	
FF31	40	45	FF	162			OHEXTD1 MODIFY
FF34	84		rr			JMP	
FF36		16		163	FETADD:	STY	16
	84	1.7		164		STY	17
FF38	90	45		165		BCC	4F (FF89)
FF3A	88			166		TXA	
FF3B	ØA			167		ASLA	
FF3C	AA			168		TAX	
FF3D	EA			169		NOP	
FF3E	20	88	FE	170		JSR	QDATFET
FF41	EØ	02		171		CPX#	02
FF43	BØ	15		172		BCS	15 (FF5A)
FF45	20	SE	FE	173	MODIFY:	JSR	MHEXTD
FF48	20	ØC	FE	174		JSR	DISPLAY
FF4B	BØ	BC		175		BCS	SEARCH (FFØ9)
FF4D	A1	(2) (2)		176		LDA	(ØØ,X)
FF4F	ØA			177		ASLA	,
FF5Ø	ØA			178		ASLA	
FF51	ØA			179		ASLA	
FF52	ØA			180		ASLA	
FF53	Ø5	ØD				ORA	ØD
	81			181			
FF55	4C	00	p p	182		STA	(ØØ,X)
FF57		45	E.E.	183		JMP	MODIFY
FF5A	DØ	03	CA CB	184	(") (") -	BNE	Ø3 (FF5F)
FF5C	6C	02	00	185	GO:	JMP	(ØØØ2)
FF5F	EØ	04		186		CPX#	Ø4
FF61	FØ	B6	V1. V1.	187	Jan, tops you, post, post	BEQ	B6 (FF19)
FF63	20	80	aa	188	STORE:	JSR	BAUDE 1
FF66	A1	06		189		LDA	(Ø6,X)
FF68	20	B1	FE	190		JSR	PUTBYTE
FF6B			FE	191		JSR	COM16
FF6E	DØ	F6		192		BNE	F6 (FF66)
FF7Ø	AD	Ø1	ØA	193		LDA	ØAØ1
FF73	29	20		194		#(INA	20
FF75	DØ	F9		195		BNE	F9 (FF7Ø)
FF77	49	00		196		LDA#	00
FF79	80	02	ØA	197		STA	ØAØ2
FF7C	FØ	20		198		BEQ	2C (FFAA)
FF7E	EA			199		NOP	
FF7F	EA			200		NOP	
FF80	4C	CD	DD	201	LOAD:	JMP	LOADE
FF83	E8			202	INIT1:	INX	
FF84	A9	47		203		LDA#	47
FF86	4C	52	FE	204		JMP	INIT2
FF89	AØ	80		205		LDY#	80
FF8B	84	15		206		STY	15
FF8D	AA	m tur		207		TAX	
FF8E	BD	95	E:. E:.	208		LDA	CHAR, X

```
STA 10
FF91 85 1Ø
                209
FF93 90 A5
                 210
                                  BCC A5 (FF3A)
FF95 F7 BD F3 F1
                211 CHAR:
                                  DAB
                                      F7 BD F3 F1
FF99 A1 00
                212 POINT:
                                 LDA
                                      (ØØ,X)
FF9B FØ Ø6
                213
                                  BEQ
                                       Ø6 (FFA3)
                                  STA
                                       18
FF9D 85 18
                214
                                  L.DA#
                                        00
FF9F A9 00
                215
FFA1 FØ Ø2
                216
                                  BEO
                                       Ø2 (FFA5)
FFA3 A5 18
                217
                                  LDA
                                       18
FFA5 81 00
                218
                                  STA
                                       (ØØ,X)
                                      MHEXTD
RESTART
FFA7 20 5E FE
                219
                                  JSR
                                  JMP
FFAA 4C Ø4 FF
                220 WAYOUT:
                                  JMP
                                      (ØEFC)
FFAD 60 FC ØE
                 221
FFBØ 6C FE ØE
                222
                                  JMP
                                      (ØEFE)
                 223 BREAK:
                                  STA
                                      00
 FFB3 85 ØA
                                      ØB
                 224
                                  STX
FFB5 86 ØB
 FFB7 84 ØC
                225
                                  STY
                                        ØC
FFB9 68
                226
                                  PLA
                                  PHA
 FFBA 48
                227
                                        ØD
FFBB 85 ØD
                228
                                  STA
FFBD A2 ØD
                 229
                                 L.DX#
                                        ØD
                                 L.DA#
                                        F. F.
FFBF A9 FF
                230
FFC1 85 ØE
                231
                                  STA
                                        ØE
FFC3 20 00 FE
                                       QUAD
                 232
                                  JSR
FFC6 BA
                 233
                                  TSX
 FFC7 86 13
                 234
                                  STX
                                        1.3
 FFC9 C8
                 235
                                  INY
FFCA 84 12
                                  STY
                236
                                      12
FFCC D8
                237
                                  CLD
FFCD 68
                238
                                  PLA
FFCE 29 10
                239
                                  AND#
                                        1.0
FFDØ 4A
                240
                                  LSRA
FFD1 4A
                241
                                 LSRA
FFD2 4A
                242
                                 LSRA
FFD3 85 1B
                243
                                  STA
                                        18
                244
FFD5 38
                                 SEC
FFD6 68
                245
                                  PLA
FFD7 E5 1B
                246
                                  SBC
                                       18
FFD9 85 11
                247
                                  STA
                                        1.1
FFDB 48
                248
                                  PHA
FFDC 68
                249
                                  PLA
FFDD 68
                 250
                                  PLA
FFDE E9 00
                251
                                  SBC#
                                        00
FFEØ 85 10
                252
                                  STA
                                        1 (2)
FFE2 48
                253
                                  PHA
FFE3 9A
                254
                                  TXS
FFE4 A2 13
                 255
                                  L.DX#
                                       13
                                                ; DISPLAY&CONT
FFE6 4C FA DD
                                  JMP
                                        BRKCON
INUE
FFE9 EA
                 257
                                 NOP
FFEA 3F 06 5B 4F 66 6D 7D 07 7F 6F 77 7C 39 5E 79 71
                258 FONT: DAB 3F Ø6 5B 4F 66 6D 7D Ø7 7F 6F
77 7C 39 5E 79 71
```

FFFA	AD	E.E.	E Ø	FE BØ	"" "			
				259	VECTORS:	DAB	AD FF EØ FE BØ	por por
				260		ORG	DCØØ	; CASSETTE ROU
TINES.	. 24	14/8	34			Sur 1 Sur	are her his	1 100 1 1 100 100 1 1 1 1 1 1 1 1 1 1 1
DCØØ				261	PUT:	STA	1B	
DCØ2	84			262	t sur i n	TXA	di Au'	
DCØ3	48			263		PHA		
DCØ4	AD	(2) 1	ØA	264		LDA	ØAØ1	
DCØ7	29	20	Way 1 1	265		AND#	20	
DCØ9	DØ	44		266		BNE		
DCQB	A9	75		267		LDAL		
DCØD	80	FE	CA CC	268		STA	INT	
DC1Ø	A9	DC	V.) (269			ØEFE	
DC12	80	FF	CN E:			LDAH	INT	
DC15	A9	40	K) [::.	270	1 1Fm V AV	STA	ØEFF	
			CA CO	271	HEAD:	LDA#	40	
	8D	ØB		272		STA	Ø9ØB	
		Ø1	ØA	273		LDA	ØAØ1 '	
DC1D	09	30		274		ORA#	30	
DC1F		F7	/% A	275		AND#	F 7	
DC21	ab	Ø 1.	K) (A)	276		STA	ØAØ1	
DC24	78	27% 27%		277		SEI		
DC25	29	02		278		AND#	02	
DC27	40			279		LSRA		
DC38	A8			280		TAY		
DC29	B9	73	DC	281		LDA	DATA, Y	
DCSC	85	1E		282		STA	1E	
DC2E	A2	CØ		283		LDX#	CØ	
DC3Ø	8E	ØE	09	284		STX	090E	
DC33	A9	CE		285		L.DA#	CE	
DC35	ab	04	09	286		STA	0904	
DC38	85	ØC		287		STA	ØC	
DC3A	A9	00		288		#ACL_	00	
DC3C	an	05	09	289		STA	0905	
DC3F	58			290		CLI		
	A9	55		291		LDA#	55	
DC42	85	1 C		292		STA	1 C	
DC44	A9	60		293	BACK4:	LDA#	60	
DC46	85	1 F		294		STA	1F	
DC48	A5	1 F		295		LDA	1F	
DC4A		FC		296		BNE	FC (DC48)	
DC4C	CA			297		DEX		
DC4D	DØ	F5		298		BNE	BACK4 (DC44)	
DC4F	A9	04		299	SEND:	LDA#	04	
DC51	85	ØC		300		STA	ØC	
DC53	A2	09		3Ø1		L.DX#	Ø9	
DC55	DØ	04		302		BNE	Ø4 (DC5B)	
DC57	46	1B		303	NEXTC:	LSR	1.B	
DC59	BØ	1.1.		304		BCS	HIGH (DC&C)	
DC5B	49	66		3Ø5		LDA#	66	; 1.2KHZ
DC5D	85	1C		306	CON2:	STA	1.C	
DC5F	A5	1E		307		L.DA	1E	
DC61	85	1,5		308		STA	1F	
DC63	A5	1F		309		LDA	1.F	
DC65	DØ	FC		310		BNE	FC (DC63)	

```
DC67 CA
               311
                                DEX
                                     END1 (DC70)
DC68 30 06
               312
                                BMI
              313
DC6A DØ EB
                                BNE
                                      NEXTC (DC57)
                                                    ; 2.4KHZ
                   HIGH:
DC6C A9 55
               314
                                LDA# 55
                                BNE CON2 (DC5D)
DC6E DØ ED
               315
DC7Ø 68
                   END1:
               316
                                PLA
               317
                                TAX
DC71 AA
DC72 60
                                RTS
               318
               319 DATA:
320 INT:
DC73 10 04
                                DAB 10 04
DC75 48
                                PHA
                                LDA Ø9Ø4
DC76 AD Ø4 Ø9
               321
DC79 A5 1C
               322
                                LDA 1C
DC7B 6A
               323
                                RORA
DC7C 66 1C
               324
                                ROR
                                     1.C
                                     ØAØ2
DC7E 8D 02 0A
               325
                                STA
DC81 C6 ØB
                                DEC
                                      ØB
               326
DC83 DØ 11
               327
                                BNE
                                      RET (DC96)
DC85 C6 ØC
               328
                                DEC
                                      ØC
DC87 DØ ØD
               329
                                BNE
                                     RET (DC96)
DC89 AD Ø1 ØA
               330
                                LDA ØAØ1
DC8C 29 C7
                                AND# C7
               331
DCSE SD Ø1 ØA
                                      ØAØ1
               332
                                STA
                                LDA# 40
DC91 A9 40
               333
                                STA Ø9ØE
DC93 8D ØE Ø9
               334
               335 RET:
                                DEC 1F
DC96 C6 1F
                                PLA
DC98 68
               336
DC99 40
               337
                                RTI
               338 GET:
DC9A 8A
                                TXA
                                                     ; FEDD
               339
                                PHA
DC9B 48
DC9C A9 Ø3
               340
                                LDA#
                                      03
                                STA
                                      0904
DC9E 8D Ø4 Ø9
               341
                                      08
DCA1 A9 Ø8
               342
                                L.DA#
DCA3 85 1D
               343
                                STA
                                      1 D
               344
                                LDA# ØØ
DCA5 A9 00
DCA7 8D 02 0A
               345
                                STA
                                      ØAØ2
DCAA 85 1C
                                STA
                                      1 C
               346
                                LDA# 40
DCAC A9 40
                347
                                STA
                                      Ø9ØB
DCAE 8D ØB Ø9
                348
DCB1 20 50 DD
               349
                                JSR
                                      EDGE
               350
                                LDA ØAØ1
DCB4 AD Ø1 ØA
DCB7 29 30
               351
                                AND# 30
DCB9 DØ 14
                                      BACK1 (DCCF)
               352
                                BNE
               353 HSEARCH:
DCBB AØ Ø6
                                LDY#
                                      06
                    YES:
                                      TIMER
DCBD 20 41 DD
               354
                                JSR
                                      09
DCCØ EØ Ø9
               355
                                CPX#
DCC2 90 F7
               356
                                BCC
                                      HSEARCH (DCBB)
DCC4 EØ 11
                                CPX#
               357
                                      11
DCC6 BØ F3
               358
                                BCS
                                      HSEARCH (DCBB)
DCC8 C6 ØB
               359
                                DEC
                                      ØB
                                      YES (DCBD)
DCCA DØ F1
               360
                                BNE
DCCC 88
               361
                                DEY
                                      YES (DCBD)
DCCD DØ EE
               362
                                BNE
                                     TIMER
DCCF 20 41 DD
               363 BACK1:
                               JSR
                                CPX#
                                     17
DCD2 EØ 17
               364
```

```
DCD4 90 F9 365
                                                                       BCC
                                                                                        BACK1 (DCCF)
DCD6 85 1C 366
                                                                       STA 1C
                                                                        LDA ØAØ1
DCD8 AD Ø1 ØA 367
                                                                       AND# F7
ORA# 30
DCDB 29 F7
DCDD 09 30
                                 368
                                369
37Ø
                                                                        ORA#
                                                                                        3Ø
ØAØ1
 DCDF 8D Ø1 ØA
                                                                        STA
 DCE2 29 Ø2
                                  371
                                                                       AND# Ø2
DCE4 DØ Ø3 372
DCE6 20 20 DD 373
                                                                       BNE Ø3 (DCE9)
JSR WAIT
 DCE9 20 50 DD 374 CON1:
                                                                                        EDGE
                                                                      JSR

        DCEC A2 ØØ
        375
        LDX#
        CDX#
        CDXP
        CDXP

                                                                                                                       EDGE COUNTER
DCEC A2 ØØ
DCEE AØ 21
                                                                       LDX# 00
LDY# 21
                                 375
                                                                                                                       ; TIME COUNTER
                                                                                        ØAØ2
                                                                       AND# 80
CMP 1B
                                                                                                              ; NEW EDGE?
                                                                       BEQ NO (DCFC)
                                                                        STA 1B
                                                                       BNE BACK2 (DCFØ)
                                                                                        02
                                                                       ROR 1F
                                                                                        ØAØ1
Ø2
                                                                       BNE Ø3 (DDØE)
                                                                                        WAIT1
                                                                       DEC 1D
BNE CON1 (DCE9)
DD10 D0 D7 393
DD12 8A 394
DD13 D0 0A 395
DD15 20 50 DD 396
DD18 20 41 DD 397 SBIT:
DD18 E0 12 398
DD1D B0 F9 399
DD1F 68 400 SKIP:
DD20 AA 401
                                                                     TXA
                                                                    BNE SKIP (DD1F)
JSR EDGE
JSR TIMER
CPX# 12
                                                                       BCS SBIT (DD18)
                                                                       PLA
                                                                       TAX
DD2F DØ FD 4Ø9 BNE FD (DD2
DD31 A9 ØD 41Ø LDA# ØD
DD33 BD Ø5 Ø9 411 STA Ø9Ø5
DD36 AD Ø4 Ø9 412 WAIT1: LDA Ø9Ø4
                                                                        BNE FD (DD2E)
                                                                       LDA# ØD
 DD39 AD ØD Ø9 413 BACK3:
                                                                        LDA Ø9ØD
                                 414
 DD3C 29 40
                                                                         AND# 40
 DD3E FØ F9
                                                                         BEQ BACK3 (DD39)
                                416 RTS
417 TIMER: LDX# ØØ
418 TIME: INX
 DD40 60
 DD41 A2 ØØ
DD43 E8
```

```
DD44 AD 02 0A
                              LDA
              419
                                   ØAØ2
DD47 29 80
              420
                              AND# 8Ø
DD49 C5 1B
              421
                              CMP
                                   1B
DD4B FØ F6
              422
                                   TIME (DD43)
                              BEQ
              423
                                   1B
DD4D 85 1B
                              STA
              424
DD4F 60
                              RTS
DD50 AD 02 0A
              425 EDGE:
                                   ØAØ2
                            LDA
DD53 29 80
              426
                                   80
                            #UNA
              427
DD55 C5 1C
                            CMP
                                   10
DD57 DØ F7
              428
                                   EDGE (DD5Ø)
                            BNE
DD59 AD 02 0A
              429 EDGE1:
                                   ØAØ2
                            LDA
DD5C 29 80
                            AND# 8Ø
CMP 1C
              430
DDSE C5 1C
              431
DD60 F0 F7
              432
                                   EDGE1 (DD59)
DD62 85 1B
              433
                             STA
DD64 60
              434
                             RTS
              435 BAUD:
DD65 AD Ø1 ØA
                             L.DA
                                   ØAØ1
DD68 Ø9 Ø2
              436
                             ORA# Ø2
                             STA
DD6A 8D Ø1 ØA
              437
                                   ØAØ1
DD6D 20 EC E2
              438
                            JSR
DD70 A2 08
              439
                            LDX# Ø8
STX 1B
              440
441 BACK:
DD72 86 1B
DD74 BD 84 DD
                                   MESS, X
                             LDA
DD77 20 5D E0
                                  EØ5D
                             JSR
DD7A C6 1B
              443
                                 1B
                             DEC
                            LDX 1B
              444
DD7C A6 1B
DD7E 10 F4
              445
                                   BACK (DD74)
                             JSR
DD80 20 EC E2
            446
                                   EZEC
DD83 60
              447
                             RTS
DD84 44 55 41 42 20 30 30 32 31
              448
                                   'DUAB 0021'
                  MESS:
                             DAB
                            ROR
                                  10
                                                ; "T"
DD8D 66 10
              449
                   BAUDE1:
DD8F A2 Ø8
              450
                             LDX# Ø8
DD91 20 88 FE
             451
                             JSR QDATFET
DD94 20 A7 DD
              452
                             JSR
                                   BAUDE
DD97 Ø6 1Ø
              453
                             ASL
                                   10
DD99 20 64 FE
              454
                             JSR
                                   QHEXTD1
DD9C A2 Ø4
              455
                             L.DX#
                                   04
              456 N1:
                            LDA
DD9E B5 Ø5
                                   Ø5,X
DDAØ 20 B1 FE
              457
                             JSR
                                   PUTBYTE
DDA3 CA
              458
                            DEX
              459
DDA4 DØ F8
                            BNE
                                   N1 (DD9E)
DDA6 60
              460
                             RTS
                 BAUDE:
B1:
                                   Ø8
DDA7 AØ Ø8
              461
                            LDY#
DDA9 B9 C5 DD
              462
                                   MESSE, Y
                             LDA
                                   0010,Y
DDAC 99 10 00
              463
                             STA
DDAF 88
              464
                             DEY
              465
DDBØ 10 F7
                            BPL
                                  B1 (DDA9)
DDB2 20 ØC FE
              466
                             JSR
                                   DISPLAY
DDB5 A8
              467
                             TAY
DDB6 AD Ø1 ØA
              468
                             LDA
                                   ØAØ1
DDB9 09 02
              469
                             ORA#
                                   02
```

```
CPY#
                                      01
DDBB CØ Ø1
               470
                                      Ø2 (DDC1)
DDBD.FØ Ø2
               471
                                BEO
DDBF 49 Ø2
                                EOR#
                                      02
               472
                                STA
                                      ØAØ1
DDC1 8D Ø1 ØA
               473
               474
                                RTS
DDC4 60
DDC5 7C 77 3E 5E 40 00 00 00
                                     7C 77 3E 5E 40 00 00 00
                               DAB
               475
                    MESSE:
DDCD 20 A7 DD
                               JSR
                                     BAUDE
               476
                     LOADE:
                                LDX# Ø4
DDDØ A2 Ø4
               477
             478 B2:
                                      GETBYTE
DDD2 20 DD FE
                                JSR
DDD5 95 Ø5
             479
                                STA
                                    Ø5,X
                                DEX
DDD7 CA
              480
DDD8 DØ F8
                                BNE B2 (DDD2)
              481
             482 B3:
                                JSR GETBYTE
DDDA 20 DD FE
DDDD 81 Ø6 483
                                STA (Ø6,X)
             484
                                    COM16
DDDF 20 A0 FE
                                JSR
                                      B3 (DDDA)
              485
                                BNE
DDE2 DØ F6
DDE4 4C F3 FE
                                      RESET
                                JMP
             486
                                LDX# 1A
JSR E29F
DDE7 A2 1A
              487
                                                     S KEY PATCH
DDE9 20 9F E2
                                                    FROM VISA
             488
DDEC 4C 07 E4
             489
                                JMP
                                      E407
                                                   ;SET FLAG &
;INT VECTORS
DDEF AD Ø3 ØA
               490
                    SET:
                                LDA
                                      ØAØ3
                                      01
                                ORA#
DDF2 Ø9 Ø1
               491
DDF4 8D Ø3 ØA
              492
                                STA
                                      ØAØ3
DDF7 4C D2 FE
                                    VECSET
QUAD
               493
                                JMP
                                                     BRK PATCH
DDFA 20 00 FE
               494
                     BRKCON:
                                JSR
                                      RESTART+03
               495
                                JMP
DDFD 4C Ø7 FF
               496
                                ; NEW KEYBOARD ROUTINES.
               497
                                ORG D800
                   KDISPC:
                                    INIT
D800 20 E3 D8
               498
                                JSR
                                      Ø6 (D8ØB)
                                BNE
D803 D0 06
               499
D8Ø5 2Ø E3 D8
               500
                     KDISP:
                                JSR
                                      INIT
                               JSR
                                      FEØC
D808 20 0C FE
               501
                     KEY:
                                     CONVERT (D82F)
              502
                               BCS
D8ØB BØ 22
DBØD 38
              503
                                SEC
                                LDA#
                                      08
D80E A9 08
              504
                                SBC
                                      ØA
D810 E5 0A
               505
D813 BD 91 ØE 5Ø7 BA2:
D816 9D 9Ø ØE 5Ø8
                                TAX
                                LDA
                                      ØE91,X
                                      ØE9Ø, X
                                STA
D819 B5 11
                                LDA
                                      11,X
               509
              510
D81B 95 10
                                STA
                                      10,X
D81D E8
               511
                                INX
                                      Ø7
D81E EØ Ø7
                                CPX#
               512
               513
D820 90 F1
                                BCC
                                      BA2 (D813)
                                LDY
                                      ØD
D822 A4 ØD
               514
D824 8C 97 ØE
               515
                                STY
                                      ØE97
D827 B9 EA FF
               516
                                LDA
                                      FFEA, Y
D82A 85 17
               517
                                STA
                                      17
               518
                                JMP
                                      KEY
D82C 4C Ø8 D8
D82F A2 ØØ
                    CONVERT:
                                L.DX#
                                      00
               519
               520
D831 AØ Ø7
                                LDY#
                                      07
                                LDA
D833 B9 8F ØE
              521 BA3:
                                      ØE8F,Y
               522
                                ASLA
D836 ØA
```

D837 D838 D839 D83A D83D D83F D840 D841 D842 D844 D844	ØA 19 95 E8 88 10 A4	90 1C EF 0B 0A	ØE	523 524 525 526 527 528 529 530 531 532 533 534		ASLA ASLA ORA STA INX DEY DEY BPL LDX LDY RTS	ØE9Ø, 1C,X BA3 ØB ØA	Y (D833)
D849	A9	00		535	DISP8:	LDA#	00	
D84B		06		536	80% NO 2015, DOM.	BEQ		853)
D84D		1B		537	DISP:	LDA	1B	
D84F		10		538		STA LDA#	100	
D851 D853		Ø2		539 54Ø		STA	ØC	
D855		ØB		541		STX	ØB	
D857		00		542		LDX#	00	
D859		11		543		STX	11	
D85B		06		544		LDY#	06	
D85D	B5	10		545	BA5:	LDA	1C,X	
D85F	20		FE	546		JSR	FE6F	
D862		ØC		547		CFY	ØC	mi / m s
D864		05		548		BEQ DEY	Ø5 (D)	86B)
D866 D867	88			549 550		DEY		
D868				551		INX		
D869		F2		552		BNE	BAS	(D85D)
D86B		00		553		LDY#	00	
D86D	A6	ØC		554		LDX	ØC	
D86F	B5	10		555	BA7:	LDA	10,X	
D871		3F		556		CMP#	3F	
D873	DØ	07		557		BNE		(D87C)
D875	94	10		558		STY	10,X	
D877	E8	, rag, 1109		559		INX	07	
D878 D87A	EØ	Ø7		56Ø 561		CPX# BNE	BA7	(D86F)
D87C	A6	ØB		562	END:	LDX	ØB	3 A.7 Su.7 Su.7 (7
D87E	20	ØC	FE	563	I 1 '4 A./ 11	JSR	FEØC	
D881	60		-	564		RTS		
D882	18			565	ADD:	CLC		
D883	65	ØA		566		ADC	ØA	
D885	85	ØA		567		STA	ØA	
D887	A5	ØB		568		LDA	ØB	
D889	69	ØØ		569		ADC#	00	
D88B	85	ØB	T\ A	570		STA	ØB Anne	
D88D	4C	AF	DA	571 572		JMP	ADDP	
D890	Δ=	ØB		573	MU10:	I LDA	ØB	
D892		CID.		574	t Plant als Wolf M	PHA	Arr Aur	
D893	A5			575		LDA	ØA	
D895		ØC		576		LDY	ØC	

D897 20 AC D8 577 D89A 20 AC D8 578 D89D 18 D89A 20 AC D8 578 D89D 18 D89E 65 0A 580 D80A 85 0A 581 D80A 85 0A 581 D80A 85 0A 581 D80A 85 0A 581 D80A 85 0B 583 D80A 85 0B 584 D80A 85 0C 586 D80A 85 0A 588 D80A 85 0A 596 D80B 85 0A 595 D80A 85 0A 595 D80A 85 0A 595 D80A 85 0A 595 D80A 85 0A 596 D80A 86 0A	11007	20	AC	DB	577		JSR	SHIFT	
Description									
D89E 45			Luter	had (and				,	
Deadle			ØA					ØA -	
D8A2 68 582 PLA D8A3 65 0B 583 ADC 0B D8A7 98 584 STA 0B D8A8 85 0C 586 ADC 0C D8A8 85 0C 586 ADC 0A D8A8 85 0C 586 ADC 0C D8A8 85 0C 587 STA 0C D8A8 85 0C 589 RBCL 0B D8B3 86 0C 690 RTS RTS D8B3 18 593 NEXT2: CLC D8B4 85 0A 594 DBC ADC 0A D8B5 85 0A 595 ADC 0A 0A D8B6 85 0A 597 LDA 0B									
Dead									
Dear			ØB					ØB	
D8A7 98 585 TYA D8A8 65 0C 586 STA QC D8AC 26 0B 587 ROL QC D8AC 26 0B 589 ROL QC D8B0 26 0C 590 ROL QC D8B3 A0 4 592 MU16: LDY# Ø4 D8B5 18 593 NEXT2: CLC CLC DBB6 A5 ØA 594 LDA ØA ADC ØA ØA DBB6 A5 ØA 595 ADC ØA ØA DBB6 A5 ØA 596 STA ØA ADC ØB ØA ADC ØB ØB ØB ADC ØB <								ØB	
D8A8 65 ØC 586 ADC ØC D8AA 85 OC S87 D8AC ØA D8BAC ØA D8BAC ØA D8BAC ØA D8BAC ØA D8BAC ØA D8BAC ØA ØA D8BAC ØA ØA D8BAC ØA ØA D8BAC ØA S94 MU16: LDY# ØA D8BAC ØA D8AC ØA DAC ØA DBAC ØA DBAC ØA WA DBAC ØA WA DBAC ØA WA							TYA		
DBAC 06 ØA 588 SHIFT: ASL ØA DBAE 26 ØB 589 ROL ØB DBB2 60 590 ROL ØC DBB3 60 591 RTS DBB5 18 593 NEXT2: CLC DBB6 A5 ØA 595 ADC ØA DBB6 A5 ØA 595 ADC ØA DBB6 A5 ØA 596 STA ØA DBB6 A5 ØA 596 STA ØA DBB6 A5 ØB 597 LDA ØB DBB6 A5 ØB 597 LDA ØB DBC2 A5 ØC 600 LDA ØC DBC2 A5 ØC 600 DEV DEV DBC2 A5 ØC 602 RESET1: LDA# ØC DBC2 A9 ØØ 606 RESET1: LDA# ØA DBC2 A9 ØØ 606 RESET1:		65	ØC		586		ADC	ØC	
DBAE 26	DBAA	85	ØC		587		STA	ØC	
D880 26	DBAC	06	ØA		588	SHIFT:	ASL	ØA	
DBB2 60	DBAE	26	ØB		589				
DBB3 A0 04 592 MU16: LDY# 04 DBB5 18 593 NEXT2: CLC DBB6 A5 0A 594 LDA 0A DBB8 65 0A 595 ADC 0A DBB8 65 0A 596 STA 0A DBB6 A5 0B 597 LDA 0B DBC A5 0B 597 LDA 0B DBC A5 0B 598 ADC 0B DBC A5 0C 600 LDA 0C DBC4 65 0C 601 ADC 0C DBC4 65 0C 602 STA 0C DBC8 88 603 DEY DBC8 B6 60 605 BNE NEXT2 (DBB5) DBC8 B7 00 EA 604 BNE NEXT2 (DBB5) DBC8 B7 00 EA 607 STA 0B DBC9 B7 00 EA 607 STA 0B DBC9 B7 00 EA 608 STA 0C DBC9 B7 00 EA 607 STA 0B DBD9 B7 00 EA 608 STA 0C DBD9 B7 00 EA 608 STA 0C DBD9 B7 00 EA 601 CLEAR: LDY# 07 DBD7 A9 00 612 LDA# 00 DBD9 B8 615 DEY DBD9 B8 615 DEY DBD9 B8 615 DEY DBB1 A0 03 622 ZERO: LDY# 03 DBE9 B4 0E 621 STY 0E DBE9 B4 0E 622 ZERO: LDY# 03 DBF5 P9 1C 00 624 C2: STA 0C DBF5 P9 1C 00 624 C2: STA 0E90,Y DBFF B8 60 C2 DEY DBFF B8 60 C2 DEX DEX DEX DEX DEX	DSBØ	26	ØC					ØC	
DBB5 18	D8B2	60							
DBB6	D8B3	AØ	04					04	
DBBB 65 0A 595	D8B5	18				NEXT2:			
D8BA 85 0A 596 D8BC A5 0B 597 D8BE 65 0B 598 D8C0 85 0B 599 D8C2 A5 0C 600 D8C4 65 0C 601 D8C6 85 0C 602 D8C7 D8 60 603 D8C9 D0 EA 604 D8C8 86 60 D8C8 85 0A 607 D8C8 85 0A 607 D8C8 85 0A 607 D8C8 85 0A 607 D8C9 D0 EA 608 D8C9 D0 EA 609 D8C1 A9 00 609 D8C2 A9 00 600 D8C3 A5 0C 609 D8C4 60 607 D8C5 A5 0C 609 D8C6 A7 00 610 D8C6 B5 0A 607 D8D7 A9 00 611 D8D7 A9 00 612 D8D7 A9 00 613 D8D7 A9 00 614 D8D7 A9 00 615 D8D7 A9 00 614 D8D7 A9 00 615 D8D8 86 615 D8C9 99 00 614 D8D8 86 60 617 D8D8 86 60 617 D8E3 84 0A 618 D8D7 A9 00 618 D8D7 A9 00 619 D8D7 A0 619 D8D7 A0 619 D8D7 A0 610 D8D7 A0 610 D8D7 A0 611 D8D7 A0 612 D8D8 A0 615 D8C9 D8C9 99 00 614 D8C9 A0 617 D8C9 A0 618 D8C9 A0 618 D8C9 A0 619 D8C9	D886								
D8BC A5 ØB 597									
D8BE 65 0B 598 ADC 0B D8C0 85 0B 599 STA 0B D8C2 A5 0C 600 ADC 0C D8C4 65 0C 601 ADC 0C D8C6 85 0C 602 STA 0C D8C8 88 603 DEY D8C9 D0 EA 604 BNE NEXT2 (D8B5) D8C0 A9 00 606 RESET1: LDA# 0D D8C8 85 0A 607 STA 0C D8D0 85 0B 608 STA 0C D8D1 A0 07 611 CLEAR: LDY# 07 D8D7 A9 00 613 C1: STA 0E90,Y D8D6 88 615 DEY D8D6 88 615 DEY D8D7 A9 00 616 STA 0E90,Y D8D8 80 617 DEY D8D8 80 618 INIT: STY 0A D8D8 84 0A 618 INIT: STY 0A D8E5 86 0B 619 STY 0E D8E7 A0 FF 620 LDY# 63 D8E7 A0 FF 620 LDY# 63 D8E7 A0 03 622 ZERO: LDY# 03 D8E7 A9 00 624 C2: STA 0E90,Y D8F2 99 90 0E 625 STA 0E90,Y D8F2 99 90 0E 626 STA 0E90,Y D8F2 99 90 0E 627 DEY D8F3 99 94 0E 626 STA 0E90,Y D8F5 99 94 0E 626 STA 0E90,Y D8F5 99 94 0E 626 STA 0E90,Y D8F7 99 90 0E 627 STA 0E90,Y D8F7 99 90 0E 628 STA 0E90,Y D8F7 99 90 0E 629 STA 0E90,Y D8F7 99 90 0E 629 STA 0E90,Y D8F7 99 90 0E 625 STA 0E90,Y D8F7 99 90 0E 626 STA 0E90,Y D8F7 99 90 0E 627 DEY D8F7 99 90 0E 628 BPL C2 (D8EF) D8F8 60 BFF 628 BPL C2 (D8EF)									
D8CØ 85 ØB 579 STA ØB D8C2 A5 ØC 6ØØ LDA ØC D8C4 65 ØC 6ØØ STA ØC D8C6 85 ØC 6ØØ DEY D8C9 DØ EA 6ØØ DEY D8C9 DØ EA 6ØØ RESET1: LDA# ØØ D8C6 85 ØA 6Ø7 STA ØC D8C6 85 ØA 6Ø7 STA ØA D8DØ 85 ØB 6Ø8 STA ØC D8C6 85 ØA 6Ø7 STA ØA D8DØ 85 ØC 6Ø9 STA ØC D8DØ 99 1Ø ØØ 612 LDA# ØØ D8DØ 99 90 ØE 614 STA ØE9Ø,Y D8DØ 88 615 DEY D8DØ 88 615 DEY D8EØ 1Ø F7 616 BPL C1 (D8D9) D8EØ 86 ØB 617 RTS D8EØ 86 ØB 619 STY ØE D8EØ 86 ØB 619 STY ØE D8EØ 86 ØB 619 STY ØE D8EØ 86 ØB 620 STA ØØ1C,Y D8EØ 87 ØØ 622 ZERO: LDY# Ø3 D8EØ 99 90 ØE 625 STA ØE9Ø,Y D8FØ 99 90 ØE 626 STA ØE9Ø,Y D8FØ 90 90 F4 628 BPL C2 (D8EF) D8FØ 90 ØF4,Y D8FØ 90 PF4 628 BPL C2 (D8EF)									
D8C2 A5 ØC 600 LDA ØC D8C4 65 ØC 601 ADC ØC D8C6 85 ØC 602 STA ØC D8C8 88 603 DEY D8C9 DØ EA 605 RTS D8CC A9 ØØ 606 RESET1: LDA# ØØ D8CE 85 ØA 607 STA ØC D8D0 85 ØB 608 STA ØC D8D1 85 ØC 609 STA ØC D8D2 85 ØC 609 STA ØC D8D2 85 ØC 609 STA ØC D8D3 A0 Ø7 611 CLEAR: LDY# Ø7 D8D5 A0 Ø7 611 CLEAR: LDA# ØØ D8D5 A0 Ø7 611 CLEAR: LDA# ØØ D8D9 99 10 ØØ 612 LDA# ØØ D8D9 99 10 ØØ 613 C1: STA ØØ10,Y D8D7 A9 ØØ 614 STA ØE90,Y D8D6 88 615 DEY D8E0 10 F7 616 BPL C1 (D8D9) D8E2 60 617 RTS D8E3 84 ØA 618 INIT: STY ØA D8E5 86 ØB 619 D8E7 A0 FF 620 STX ØB D8E7 A0 FF 620 STX ØB D8E8 A0 Ø3 622 ZERO: LDY# Ø3 D8E6 A9 ØØ 623 LDA# ØØ D8E7 99 90 ØE 625 STA ØE90,Y D8F2 99 90 ØE 625 STA ØE90,Y D8F3 99 94 ØE 626 STA ØE90,Y D8F3 99 94 ØE 627 DEY D8F8 88 BPL C2 (D8EF) D8F8 60 629 RTS									
D8C4 45 ØC 6Ø1 ADC ØC D8C8 88 6Ø2 6Ø3 DEY D8C9 DØ EA 6Ø4 BNE NEXT2 (D8B5) D8C6 85 ØA 6Ø5 RTS D8CC A9 ØØ 6Ø6 RESET1: LDA# ØØ D8C8 85 ØA 6Ø7 STA ØB D8D0 85 ØB 6Ø8 STA ØC D8D1 85 ØC 6Ø9 STA ØC D8D2 85 ØC 6Ø9 STA ØC D8D3 AØ Ø7 611 CLEAR: LDY# Ø7 D8D5 AØ Ø7 611 CLEAR: LDY# Ø7 D8D7 A9 ØØ 612 LDA# ØØ D8D9 99 1Ø ØØ 613 C1: STA ØØ1Ø, Y D8D6 88 615 DEY D8E0 1Ø F7 616 BPL C1 (D8D9) D8E2 6Ø 617 RTS D8E3 84 ØA 618 INIT: STY ØA D8E5 86 ØB 619 D8E7 AØ FF 62Ø LDY# FF D8E8 AØ Ø3 622 ZERO: LDY# Ø3 D8E6 99 90 ØE 624 D8E7 99 90 ØE 625 STA ØE9Ø, Y D8E7 99 90 ØE 625 STA ØE9Ø, Y D8E8 88 627 DEY D8E8 88 627 DEY D8E8 88 627 DEY									
D8C6 85 ØC 6Ø2 STA ØC D8C8 88 6Ø3 DEY D8C9 DØ EA 6Ø4 BNE NEXT2 (D8B5) D8C6 A9 ØØ 6Ø5 RTS D8CC A9 ØØ 6Ø6 RESET1: LDA# ØØ D8C8 85 ØA 6Ø7 STA ØA D8D0 85 ØB 6Ø8 STA ØB D8D2 85 ØC 6Ø9 STA ØC D8D4 6Ø 61Ø RTS D8D5 AØ Ø7 611 CLEAR: LDY# Ø7 D8D7 A9 ØØ 612 LDA# ØØ D8D9 99 1Ø ØØ 613 C1: STA ØØ1Ø,Y D8D7 A9 ØØ 613 C1: STA ØØ1Ø,Y D8DF 88 615 DEY D8EØ 1Ø F7 616 BPL C1 (D8D9) D8E2 6Ø 617 RTS D8E3 84 ØA 618 INIT: STY ØA D8E5 86 ØB 619 STX ØB D8E7 AØ FF 62Ø LDY# FF D8E8 AØ Ø3 622 ZERO: LDY# Ø3 D8EP 99 1C ØØ 624 C2: STA ØØ1C,Y D8F2 99 90 ØE 625 STA ØE9Ø,Y D8F2 99 90 ØE 626 D8F8 88 627 DEY D8F8 88 627 DEY D8F9 10 F4 628 BPL C2 (D8EF) D8F9 10 F4 628 BPL C2 (D8EF)									
D8C8 88 603 DEY D8C9 D0 EA 604 BNE NEXT2 (D8B5) D8C8 60 605 RTS D8CC A9 00 606 RESET1: LDA# 00 D8CE 85 0A 607 STA 0A D8D0 85 0B 608 STA 0B D8D2 85 0C 609 STA 0C D8D4 60 610 RTS D8D5 A0 07 611 CLEAR: LDY# 07 D8D7 A9 00 612 LDA# 00 D8D9 99 10 00 613 C1: STA 0610, Y D8DC 99 90 0E 614 STA 0E90, Y D8DF 88 615 DEY D8E0 10 F7 616 BPL C1 (D8D9) D8E2 60 617 RTS D8E3 84 0A 618 INIT: STY 0A D8E5 86 0B 619 D8E7 A0 FF 620 LDY# FF D8E8 A0 03 622 ZERO: LDY# 03 D8ED A9 00 623 LDA# 00 D8E7 99 1C 00 624 C2: STA 0E90, Y D8E5 88 00 D8E7 99 1C 00 624 C2: STA 0E90, Y D8E5 88 627 DEY D8E8 88 627 D8E9 88 627 D8F8 88 627 D8F9 10 F4 628 BPL C2 (D8EF) D8F8 60									
D8C9 DØ EA 604 BNE RTS D8CB 60 605 RTS D8CC A9 00 606 RESET1: LDA# 00 D8CE 85 0A 607 STA 0A D8D0 85 0B 608 STA 0B D8D2 85 0C 609 STA 0C D8D5 A0 07 611 CLEAR: LDY# 07 D8D7 A9 00 613 C1: STA 0E90, Y D8D6 99 90 0E 614 STA 0E90, Y D8D6 10 F7 616 BPL C1 (D8D9) D8E0 10 F7 616 BPL C1 (D8D9) D8E2 60 617 RTS D8E3 84 0A 618 INIT: STY 0A D8E5 86 0B 619 STX 0B D8E7 A0 FF 620 LDY# FF D8E8 A0 03 622 ZERO: LDY# 03 D8E6 99 1C 00 624 C2: STA 001C, Y D8F2 99 90 0E 625 D8F2 99 90 0E 626 D8F3 88 627 DEY D8F8 88 627 DEY D8F8 88 627 DEY			ØC					K)L	
D8CB 60 605 RTS D8CC A9 00 606 RESET1: LDA# 00 D8CE 85 0A 607 STA 0A D8D0 85 0B 608 STA 0C D8D2 85 0C 609 STA 0C D8D4 60 610 RTS D8D5 A0 07 611 CLEAR: LDY# 07 D8D7 A9 00 612 LDA# 00 D8D9 99 10 00 613 C1: STA 0010,Y D8DC 99 90 0E 614 STA 0E90,Y D8D6 88 615 DEY D8E0 10 F7 616 BPL C1 (D8D9) D8E2 60 617 RTS D8E3 84 0A 618 INIT: STY 0A D8E5 86 0B 619 STX 0B D8E7 A0 FF 620 STY 0E D8E8 A0 03 622 ZERO: LDY# 00 D8E6 99 1C 00 624 C2: STA 001C,Y D8E7 99 90 0E 625 D8E8 99 94 0E 626 D8E9 88 B8 627 D8E8 88 B8 627 D8E9 10 F4 628 BPL C2 (D8EF) D8F8 88 D8F9 10 F4 628 BPL C2 (D8EF)								MEVTO (NODE	
D8CC A9 00 606 RESET1: LDA# 00 D8CE 85 0A 607 STA 0A D8D0 85 0B 608 STA 0B D8D2 85 0C 609 STA 0C D8D4 60 610 RTS D8D5 A0 07 611 CLEAR: LDY# 07 LDA# 00 D8D9 99 10 00 612 LDA# 00 D8D9 99 10 00 613 C1: STA 0E90,Y D8DF 88 615 DEY D8E0 10 F7 616 BPL C1 (D8D9) D8E2 60 617 RTS D8E3 84 0A 618 INIT: STY 0A D8E5 86 0B 619 D8E7 A0 FF 620 LDY# FF D8E9 A0 03 622 ZERO: LDY# 03 LDA# 00 D8E5 99 1C 00 624 C2: STA 001C,Y D8F2 99 90 0E 625 STA 0E90,Y D8F5 99 94 0E 626 STA 0E94,Y D8F8 88 627 DEY D8F8 88 627 DEY D8F8 88 627 D8F9 10 F4 628 BPL C2 (D8EF)			EA					MEXIZ (DOD	,,
DBCE 85 0A 607 STA 0A DBD0 85 0B 608 STA 0B DBD2 85 0C 609 STA 0C DBD4 60 610 RTS DBD5 A0 07 611 CLEAR: LDY# 07 DBD7 A9 00 612 LDA# 00 DBD9 99 10 00 613 C1: STA 0E90,Y DBDC 99 90 0E 614 DEY DBD6 88 615 DEY DBE0 10 F7 616 BPL C1 (DBD9) DBE2 60 617 RTS DBE3 84 0A 618 INIT: STY 0A DBE5 86 0B 619 STX 0B DBE7 A0 FF 620 LDY# FF DBE8 A0 03 622 ZERO: LDY# 03 DBEB A0 03 622 ZERO: LDY# 03 DBEF 99 1C 00 624 C2: STA 001C,Y DBF5 99 94 0E 626 DBF5 99 94 0E 626 DBF6 88 627 DBF7 10 F4 628 BPL C2 (DBEF) DBF8 60 629 RTS			/'W /''A			mmc comment.		(2) (2)	
D8DØ 85 ØB 6Ø8 STA ØB D8DØ 85 ØC 6Ø9 STA ØC D8DA 6Ø 61Ø RTS D8D5 AØ Ø7 611 CLEAR: LDY# Ø7 D8D7 A9 ØØ 612 LDA# ØØ D8D9 99 1Ø ØØ 613 C1: STA ØØ1Ø,Y D8DC 99 9Ø ØE 614 STA ØE9Ø,Y D8DØ 1Ø F7 616 BPL C1 (D8D9) D8EØ 1Ø F7 616 BPL C1 (D8D9) D8EØ 84 ØA 618 INIT: STY ØA D8E5 86 ØB 619 STX ØB D8E7 AØ FF 62Ø LDY# FF D8E9 84 ØE 621 STY ØE D8EB AØ ØØ 622 ZERO: LDY# Ø3 D8ED A9 ØØ 623 LDA# ØØ D8EF 99 1C ØØ 624 C2: STA ØØ1C,Y D8F2 99 90 ØE 625 STA ØE9Ø,Y D8F5 99 94 ØE 626 STA ØE9Ø,Y D8F8 88 627 DEY D8F8 88 627 DEY D8F8 6Ø 629 RTS						KEDE 1 1 :			
D8D2 85 ØC 609 RTS D8D4 60 610 RTS D8D5 A0 Ø7 611 CLEAR: LDY# Ø7 D8D7 A9 Ø0 612 LDA# Ø0 D8D9 99 10 Ø0 613 C1: STA Ø010,Y D8DC 99 90 ØE 614 STA ØE90,Y D8D6 88 615 DEY D8E0 10 F7 616 BPL C1 (D8D9) D8E2 60 617 RTS D8E3 84 ØA 618 INIT: STY ØA D8E5 86 ØB 619 D8E7 A0 FF 620 LDY# FF D8E9 84 ØE 621 STY ØE D8E8 A0 Ø3 622 ZERO: LDY# Ø3 D8ED A9 Ø0 623 LDA# Ø0 D8E7 99 1C Ø0 624 C2: STA Ø01C,Y D8F2 99 90 ØE 625 D8F3 99 94 ØE 626 D8F8 88 627 DEY D8F8 88 627 D8F8 88 627 D8F8 60 629 RTS									
D8D4 60 610 RTS D8D5 A0 07 611 CLEAR: LDY# 07 D8D7 A9 00 612 LDA# 00 D8D9 99 10 00 613 C1: STA 0010,Y D8DC 99 90 0E 614 STA 0E90,Y D8DF 88 615 DEY D8E0 10 F7 616 BPL C1 (D8D9) D8E2 60 617 RTS D8E3 84 0A 618 INIT: STY 0A D8E5 86 0B 619 STX 0B D8E7 A0 FF 620 LDY# FF D8E9 84 0E 621 STY 0E D8EB A0 03 622 ZERO: LDY# 03 D8ED A9 00 623 LDA# 00 D8EF 99 1C 00 624 C2: STA 001C,Y D8F2 99 90 0E 625 STA 0E90,Y D8F3 88 627 DEY D8F8 88 627 DEY D8F8 60 629 RTS									
D8D5 AØ Ø7 611 CLEAR: LDY# Ø7 D8D7 A9 ØØ 612 LDA# ØØ D8D9 99 1Ø ØØ 613 C1: STA ØØ1Ø,Y D8DC 99 9Ø ØE 614 DEY D8DF 88 615 DEY D8EØ 1Ø F7 616 BPL C1 (D8D9) D8E2 6Ø 617 RTS D8E3 84 ØA 618 INIT: STY ØA D8E5 86 ØB 619 STX ØB D8E7 AØ FF 62Ø LDY# FF D8E9 84 ØE 621 STY ØE D8EB AØ Ø3 622 ZERO: LDY# Ø3 D8ED A9 ØØ 624 C2: STA ØØ1C,Y D8F2 99 90 ØE 625 STA ØE9Ø,Y D8F5 99 94 ØE 626 STA ØE9Ø,Y D8F8 88 627 DEY D8F8 88 627 DEY D8F8 6Ø 629 RTS			K.) ()					Work state	
DBD7 A9 ØØ 612 DBD9 99 10 ØØ 613 C1: STA ØØ1Ø,Y DBDC 99 9Ø ØE 614 DBDF 88 615 DBEØ 10 F7 616 DBEØ 10 F7 616 DBEØ 84 ØA 618 INIT: STY ØA DBEØ 84 ØA 618 INIT: STY ØA DBEØ 84 ØE 620 DBEØ 84 ØE 621 DBEØ AØ ØØ 622 ZERO: LDY# ØØ DBEF 99 1C ØØ 624 C2: STA ØØ1C,Y DBFØ 99 94 ØE 625 DBFØ 99 94 ØE 626 DBFØ 88 627 DBFØ 88 627 DBFØ 10 F4 628 DBFØ 10 F4 629 DBFØ			(7) 7			CLEAR:		07	
D8D9 99 10 00 613 C1: STA 0010,Y D8DC 99 90 0E 614 STA 0E90,Y D8DF 88 615 DEY D8E0 10 F7 616 BPL C1 (D8D9) D8E2 60 617 RTS D8E3 84 0A 618 INIT: STY 0A D8E5 86 0B 619 STX 0B D8E7 A0 FF 620 LDY# FF D8E9 84 0E 621 STY 0E D8EB A0 03 622 ZERO: LDY# 03 D8EF 99 1C 00 624 C2: STA 001C,Y D8F2 99 90 0E 625 STA 0E90,Y D8F5 99 94 0E 626 STA 0E94,Y D8F8 88 627 DEY D8F8 88 627 DEY D8F8 60 629 RTS									
DBDC 99 90 ØE 614 DBDF 88 615 DBEØ 10 F7 616 DBEZ 60 617 DBEZ 60 617 DBEZ 84 ØA 618 INIT: STY ØA DBE5 86 ØB 619 DBE7 AØ FF 620 DBE9 84 ØE 621 DBEB AØ Ø3 622 ZERO: LDY# Ø3 DBED A9 ØØ 623 DBED A9 ØØ 624 DBFZ 99 90 ØE 625 DBFZ 99 90 ØE 625 DBFZ 99 94 ØE 626 DBFZ 99 94 ØE 626 DBFZ 99 94 ØE 627 DBFZ 99 94 ØE 626 DBFZ 99 94 ØE 627 DBFZ 99 94 ØE 628 DBFZ 99 94 ØE 629				(2)(2)		C1:			
D8DF 88 615 DEY D8EØ 10 F7 616 BPL C1 (D8D9) D8E2 60 617 RTS D8E3 84 ØA 618 INIT: STY ØA D8E5 86 ØB 619 STX ØB D8E7 AØ FF 62Ø LDY# FF D8E9 84 ØE 621 STY ØE D8EB AØ Ø3 622 ZERO: LDY# Ø3 D8ED A9 ØØ 623 LDA# ØØ D8EF 99 1C ØØ 624 C2: STA ØØ1C,Y D8F2 99 90 ØE 625 STA ØE9Ø,Y D8F5 99 94 ØE 626 STA ØE94,Y D8F8 88 627 DEY D8F9 1Ø F4 628 BPL C2 (D8EF) D8FB 6Ø 629 RTS									
D8EØ 10 F7 616 BPL C1 (D8D9) D8E2 60 617 RTS D8E3 84 ØA 618 INIT: STY ØA D8E5 86 ØB 619 STX ØB D8E7 AØ FF 620 LDY# FF D8E9 84 ØE 621 STY ØE D8EB AØ Ø3 622 ZERO: LDY# Ø3 D8ED A9 ØØ 623 LDA# ØØ D8EF 99 1C ØØ 624 C2: STA ØØ1C,Y D8F2 99 90 ØE 625 STA ØE9Ø,Y D8F5 99 94 ØE 626 STA ØE94,Y D8F8 88 627 DEY D8F8 60 629 RTS							DEY		
D8E2 60 617 RTS D8E3 84 ØA 618 INIT: STY ØA D8E5 86 ØB 619 STX ØB D8E7 AØ FF 62Ø LDY# FF D8E9 84 ØE 621 STY ØE D8EB AØ Ø3 622 ZERO: LDY# Ø3 D8ED A9 ØØ 623 LDA# ØØ D8EF 99 1C ØØ 624 C2: STA ØØ1C,Y D8F2 99 90 ØE 625 STA ØE9Ø,Y D8F5 99 94 ØE 626 STA ØE94,Y D8F8 88 627 DEY D8F8 60 629 RTS			F7					C1 (D8D9)	
D8E3 84 ØA 618 INIT: STY ØA D8E5 86 ØB 619 STX ØB D8E7 AØ FF 62Ø LDY# FF D8E9 84 ØE 621 STY ØE D8EB AØ Ø3 622 ZERO: LDY# Ø3 D8ED A9 ØØ 623 LDA# ØØ D8EF 99 1C ØØ 624 C2: STA ØØ1C,Y D8F2 99 90 ØE 625 STA ØE9Ø,Y D8F5 99 94 ØE 626 STA ØE94,Y D8F8 88 627 DEY D8F8 6Ø 629 RTS							RTS		
D8E7 A0 FF 620 LDY# FF D8E9 84 ØE 621 STY ØE D8EB A0 Ø3 622 ZERO: LDY# Ø3 D8ED A9 Ø0 623 LDA# Ø0 D8EF 99 1C Ø0 624 C2: STA Ø01C,Y D8F2 99 90 ØE 625 STA ØE90,Y D8F5 99 94 ØE 626 STA ØE94,Y D8F8 88 627 DEY D8F9 10 F4 628 BFL C2 (D8EF) D8FB 60 629 RTS			ØA			INIT:	STY	ØA	
D8E7 AØ FF 62Ø LDY# FF D8E9 84 ØE 621 STY ØE D8EB AØ Ø3 622 ZERO: LDY# Ø3 D8ED A9 ØØ 623 LDA# ØØ D8EF 99 1C ØØ 624 C2: STA ØØ1C,Y D8F2 99 90 ØE 625 STA ØE9Ø,Y D8F5 99 94 ØE 626 STA ØE94,Y D8F8 88 627 DEY D8F9 1Ø F4 628 BFL C2 (D8EF) D8FB 6Ø 629 RTS			ØB		619		STX	ØB	
D8E9 84 ØE 621 STY ØE D8EB AØ Ø3 622 ZERO: LDY# Ø3 D8ED A9 ØØ 623 LDA# ØØ D8EF 99 1C ØØ 624 C2: STA ØØ1C,Y D8F2 99 90 ØE 625 STA ØE9Ø,Y D8F5 99 94 ØE 626 STA ØE94,Y D8F8 88 627 DEY D8F9 1Ø F4 628 BPL C2 (D8EF) D8FB 6Ø 629 RTS	D8E7	AØ	E.E.		620		L.DY#		
D8ED A9 00 623 LDA# 00 D8EF 99 1C 00 624 C2: STA 001C,Y D8F2 99 90 0E 625 STA 0E90,Y D8F5 99 94 0E 626 STA 0E94,Y D8F8 88 627 DEY D8F9 10 F4 628 BPL C2 (D8EF) D8FB 60 629 RTS			ØE		621				
D8EF 99 1C 00 624 C2: STA 001C,Y D8F2 99 90 0E 625 STA 0E90,Y D8F5 99 94 0E 626 STA 0E94,Y D8F8 88 627 DEY D8F9 10 F4 628 BFL C2 (D8EF) D8FB 60 629 RTS	DSEB	AØ	03		622	ZERO:			
D8F2 99 90 ØE 625 STA ØE9Ø,Y D8F5 99 94 ØE 626 STA ØE94,Y D8F8 88 627 DEY D8F9 10 F4 628 BPL C2 (D8EF) D8FB 60 629 RTS	DBED	49	00						
D8F5 99 94 ØE 626 STA ØE94,Y D8F8 88 627 DEY D8F9 1Ø F4 628 BPL C2 (D8EF) D8F8 6Ø 629 RTS	DSEF	99	1C			C2:			
D8F8 88 627 DEY D8F9 10 F4 628 BPL C2 (D8EF) D8F8 60 629 RTS									
D8F9 10 F4 628 BPL C2 (D8EF) D8F8 60 629 RTS				ØE				KIE 74, Y	
D8FB 60 629 RTS								(m, m)	
AU 100 1 000 100 THE								Ca (Dath)	
DRLC OC LU QE OSO MOLL: OHL (ALLE)				//L		MIII T		(MEEA)	
	DBLC	, 6C	F- F-1	ØE.	650	MUL I	C) I'II''	/ KJ E I'' P" /	

```
631
                                     ; HEX-DEC-HEX CONVERSION ROUTINE.
                  632
                                    ORG
                                          D900
D900 20 D5 D8
                 633
                        ENT:
                                    JSR
                                            CLEAR
                                           F6
D903 A9 F6
                 634
                                    L.DA#
D905 85
                 635
        10
                                           10
                                    STA
D907 85
         1B
                 636
                                    STA
                                           1B
D909 20
        ØC FE
                 637
                                    JSR
                                           FEØC
D90C A5
        1B
                 638
                        CONT:
                                    LDA
                                           13
D9ØE 49 F6
                 639
                                    EOR#
                                         F6
D910 F0
        58
                 640
                                    BEQ
                                           HEX (D96A)
D912 D8
                 641
                        DECIMAL:
                                    CLD
D913 A2 Ø5
                 642
                                           05
                                    LDX#
D915 A9 9Ø
                 643
                                    LDAL
                                           MU10
D917 8D FA ØE
                 644
                                    STA
                                           ØEFA
D91A A9 D8
                 645
                                    LDAH
                                           MU10
D91C 8D FB ØE
                 646
                        CONH1:
                                    STA
                                           ØEFB
                 647
D91F 20 D5 D8
                                    JSR
                                            CLEAR
D922 8A
                 648
                                    TXA
D923 A8
                 649
                                    TAY
D924 A5
        18
                 650
                                    LDA
                                           13
D926 85
        10
                 651
                                    STA
                                           1.0
D928 20 00 D8
                 652
                                    JSR
                                           KDISPC
D92B A5 ØD
                 653
                                    LDA
                                           ØD
D92D C9 14
                 654
                                    CMP#
                                          14
D92F FØ 46
                 655
                                    BEQ
                                           FIN (D977)
D931 20 CC D8
                 656
                                    JSR
                                            RESET1
D934 A2 Ø2
                 657
                                    LDX#
                                         02
D936 20 FC D8
                 658
                        NEXT1:
                                    JSR
                                           MULT
D939 B5 1C
                 659
                                    LDA
                                           1C, X
D93B 48
                 660
                                    PHA
D93C 4A
                 661
                                    LSRA
D93D 4A
                 662
                                    LSRA
D93E 4A
                 663
                                    LSRA
D93F 4A
                 664
                                    LSRA
D94Ø 18
                 665
                                    CLC
D941 69 00
                 666
                                    ADC#
                                           00
D943 20 82 D8
                 667
                                    JSR
                                           ADD
D946 20 FC D8
                 668
                                    JSR
                                            MULT
D949 68
                 669
                                    FLA
D94A 29 ØF
                 670
                                    #CINA
                                           ØF:
D94C 18
                 671
                                    CLC
D94D 69
        00
                 672
                                    ADC#
                                           00
D94F 2Ø 82 D8
                 673
                                    JSR
                                           ADD
D952 CA
                                    DEX
                 674
D953 10 E1
                 675
                                    BPL
                                            NEXT1 (D936)
D955 A2 Ø2
                 676
                                    LDX#
                                           02
D957 B5
        ØA
                 677
                        BA6:
                                    LDA
                                           ØA,X
D959 95 1C
                                    STA
                 678
                                           1C, X
D95B CA
                 679
                                    DEX
D95C 10 F9
                 680
                                    BPL
                                           BA6 (D957)
D95E A5 1B
                 681
                                    LDA
                                           1B
D960 49 28
                 682
                                    EOR#
                                           28
D962 85 1B
                 683
                                    STA
                                           1B
D964 20 4D D8
                 684
                                    JSR
                                           DISF
```

```
JMP CONT
D967 4C ØC D9
            685
             686 HEX:
                              SED
D96A F8
                              LDX# Ø4
D96B A2 Ø4
              687
                              LDAL MU16
              688
D96D A9 B3
                                   ØEFA
              689
690
                              STA
D96F 8D FA ØE
                             LDAH MU16
D972 A9 D8
              691
                             JMP
                                   CONH1
D974 4C 1C D9
              692 FIN:
693 COM:
                                  FEF3
                             JMP
D977 4C F3 FE
                             DAB DE F6
D97A DE F6
                              ; REL1-BRANCH&RELOCATOR
              694
                              ORG D980
              695
                              CLD
              696
D980 D8
                              JSR CLEAR
             697 RESTARTB:
D981 20 D5 D8
                                   ZERO
              698
                              JSR
D984 20 EB D8
                              LDA# F1
D987 A9 F1
              699
                              STA 10
D989 85 10
              700
                              LDX# 1C
              701
D98B A2 1C
                              JSR
                                   FE88
            702
D98D 20 88 FE
                              LDA# F8
D990 A9 F8
             703
             704
                              STA 10
D992 85 10
                              LDX# 1E
              705
D994 A2 1E
             706
                              JSR FE88
D996 20 88 FE
                                   CLEAR
                              JSR
D999 20 D5 D8
              707
                              LDA
                                    1 C
              708
D99C A5 1C
                              SBC# 7E
D99E E9 7E
              709
                                   10
                              STA
              710
D9AØ 85 1C
                                    Ø3 (D9A7)
                              BCS
             711
D9A2 BØ Ø3
             712
713
                              DEC
D9A4 C6 1D
                              SEC
D9A6 38
                                  1E
                              LDA
             714
D9A7 A5 1E
           715
                                   1.0
                              SBC
D9A9 E5 1C
                              TAX
              716
D9AB AA
                              LDA 1F
            717
D9AC A5 1F
                              SBC 1D
              718
D9AE E5 1D
                                   ERROR (D9C5)
                              BNE
              719
D9BØ DØ 13
                              TXA
              720
D9B2 8A
D9B3 49 8Ø
              721
                              EOR# 80
                              JSR
                                    FE60
D9B5 20 60 FE 722
                                    BF
D9B8 A9 BF 723
D9BA 85 10 724
                              LDA#
                             STA
                                    1.0
                    CB1:
              724
D9BA 85 10
                                    FEØC
                              JSR
D9BC 20 0C FE
             725
                              CMP# 14
D9BF C9 14
               726
                              BNE RESTARTB (D981)
D9C1 DØ BE
               727
                              BEQ
                                    END2 (DA1Ø)
               728
D9C3 FØ 4B
                              LDA# F9
              729 ERROR:
D9C5 A9 F9
                             BNE CB1 (D9BA)
              730
 D9C7 DØ F1
                              RELOCATOR ROUTINE.
               731
                             JSR RESET1
              732 RELOC:
 D9C9 20 CC D8
                              JSR ZERO
JSR CLEAR
 D9CC 20 EB D8
               733
 D9CF 20 D5 D8
               734
                              LDA# F1
                                                  1"F"
 D9D2 A9 F1
               735
                             STA 10
LDX# 1C
              736
737
 D9D4 85 10
 D9D6 A2 1C
                              JSR FE88
 D9D8 20 88 FE 738
```

```
HITH
                                           F8
                                    LDA#
D9DB A9 F8
                 739
                                    STA
                                           10
                 740
D9DD 85 10
                                          1E
                                    LDX#
                        ERR:
                . 741
D9DF A2 1E
                                          FE88
                                    JSR
                 742
D9E1 20 88 FE
                                          16
                                    L.DX#
                 743
D9E4 A2 16
                                    JSR
                                           FEA6
                 744
D9E6 20 A6 FE
                                           ERR (D9DF)
                                    BCS
                 745
D9E9 BØ F4
                                                           ; "D"
                                           DE
                                    LDA#
                 746
D9EB A9 DE
                                           10
                                    STA
                 747
D9ED 85 10
                                           ØA
                                    L.DX#
                 748
D9EF A2 ØA
                                    JSR
                                           FE88
                 749
D9F1 20 88 FE
                                           16
                                    LDX#
                  750
D9F4 A2 16
                                           1D
                                    LDA
                  751
D9F6 A5 1D
                                           ØB
                                    CMP
                  752
D9F8 C5 ØB
                                    BNE
                                           Ø4 (DAØØ)
                  753
D9FA DØ Ø4
                                           1.0
                                    LDA
                  754
D9FC A5 1C
                                           ØA
                                    CMP
                  755
D9FE C5 ØA
                                           DEC (DA13)
                                    BCS
DAØØ BØ 11
                  756
                                    LDA
                                          (Ø6,X)
                  757
                        R1:
DAØ2 A1 Ø6
                                          (ØA),Y
                                    STA
                  758
DAØ4 91 ØA
                                     INY
                  759
DAØ6 C8
                                    BNE
                                           Ø2 (DAØB)
DAØ7 DØ Ø2
                  760
                                           ØB
                                     INC
                  761
DAØ9 E6 ØB
                                           FEAØ
                                     JSR
DAØB 20 A0 FE
                  762
                                           R1 (DAØ2)
                                     BNE
DAØE DØ F2
                  763
                                     JMP
                                           FEF3
DA10 4C F3 FE
                      END2:
                  764
                                     SEC
                  765
                        DEC:
DA13 38
                                     LDA
                                           15
DA14 A5 1E
                  766
                                           10
                                     SBC
         10
                  767
DA16 E5
                                           1.0
DA18 85 1A
                                     STA
                  768
                                     LDA
                                           1F
DA1A A5 1F
                  769
                                     SBC
                                           1D
                  770
 DAIC E5 1D
                                     STA
                                           1B
                  771
 DA1E 85 1B
                                     CLC
                  772
 DA20 18
                                           1A
                                     LDA
 DA21 A5 1A
                  773
                                           ØA
                                     ADC
                  774
 DA23 65 ØA
                                            00
                  775
                                     STA
 DA25 85 ØA
                                     LDA
                                            18
                  776
 DA27 A5 1B
                                     ADC
                                            ØB
 DA29 65 ØB
                  777
                                            ØB
                                     STA
 DA2B 85 ØB
                  778
                                     CPY#
                                            00
                  779
                         CON:
 DA2D CØ ØØ
                                            Ø2 (DA33)
                                     BNE
 DAZF DØ Ø2
                  780
                                     DEC
                                            ØB
 DA31 C6 ØB
                  781
                                     DEY
                  782
 DA33 88
                                           1E
                                     LDA
                  783
 DA34 A5 1E
                                            Ø2 (DA3A)
                                     BNE
                  784
 DA36 DØ Ø2
                                           1F
                                     DEC
 DA38 C6 1F
                  785
                                           1. E
                                     DEC
 DAJA C6 1E
                  786
                                           (Ø8,X)
                                     LDA
 DA3C A1 Ø8
                  787
                                           (ØA),Y
                                     STA
 DA3E 91 ØA
                  788
                                           FEA6
                                     JSR
 DA40 20 A6 FE
                  789
                                            CON (DA2D)
                   790
                                     BNE
 DA43 DØ E8
                                     BEO
                                            END2 (DA10)
                   791
 DA45 FØ C9
```

				792		CHEC	KSUM ROUTINE.		
				793		ORG :	DA5Ø		
DA50	20	D5	DB	794		JSR	CLEAR		
DA53	20	EB	DB	795		JSR	ZERO		
	A9			796		LDA#	F 1		
	85	1.0		797		STA	10		
	A2	1E		798		LDX#	1E		
DASC	20		FE	799		JSR	FE88		
DASF	20	D5	Ba	800		JSR	CLEAR		
	A9	B7	for sur	801		LDA#	E7		
	85	10		802		STA	10		
DA66	A2	10		803		LDX#	10		
DA68	20		FE	804		JSR	FE88		
DA6B	20	CC	DB	805		JSR	RESET1		
	A2	00	Aut Suit	806		LDX#	00		
	40	8E	nΔ	807		JMP	DECC		
	18	See/ Sees	A-/ 1"1	808	ADDS:	CLC	And been bood band		
DA74		1E		809	1 1 407 407 607 8		(1E,X)		
DA76		ØA		810		ADC	ØA		
DA78		ØA		811		STA	ØA		
DA7A		06		812		BCC	Ø6 (DA82)		
DA7C		ØB		813		INC	ØB		
	DØ	02		814		BNE	Ø2 (DA82)		
DASØ		ØC		815		INC	ØC		
DA82		1E		816	INC:	INC	1 E	. TNC	ADDRESS
	DØ	02		817	in 1 Time is	BNE	02 (DA88)	9	T I BUT BUT I V BIGG YOUT VOOT
DA86	E6	1F		818		INC	15		
	A5	10		819	CMP:	LDA	10		
DASA		1 D		820	3077 77 11	ORA	iD		
DASC		ØB		821		BEQ	ENDS (DA99)		
	A5	10		822	DECC:	LDA	10	: DEC	BYTES
	DØ	02		823		BNE	Ø2 (DA94)	,	
DA92		1 D		824		DEC	1 D		
DA94		10		825		DEC	10		
DA96			DA	826		JMP	ADDS		
DA99				827	ENDS:	LDA#	B9		
DA9B				828	hand to And Sand II	STA	10		
DAPD	A5			829		LDA	ØA		
DA9F	85	10		830		STA	ic		
DAA1	A5	ØB		831		LDA	ØB		
DAA3	85	1 D		832		STA	1 D		
DAA5	A5	ØC		833		LDA	ØC		
DAAZ	85	1E		834		STA	1E		
DAA9	20	51	DB	835		JSR	DISP+Ø4		
DAAC	40	07		836		JMP	FFØ7		
DAAF	A5	ØC		837	ADDP:	L.DA	ØC		
DABI	69	00		838		ADC#	00		
DAB3	85	ØC		839		STA	ØC ·		
DAB5	60			840		RTS			

Appendix 3 Summary of Single Cycle Execution

This section contains an outline of the data on both the address bus and the data bus for each cycle of the various processor instructions. It tells the system designer exactly what to expect while single cycling through a program.

Note that the processor will not stop in any cycle where R/\overline{W} is a 0 (write cycle). Instead, it will go right into the next read cycle and stop there. For this reason, some instructions may appear to be shorter than indicated here.

All instructions begin with T0 and the fetch of the OP CODE and continue through the required number of cycles until the next T0 and the fetch of the next OP CODE.

Definitions of some of the terms used in this appendix are given below:

Op Code

The first byte of the instruction containing the operator and mode of address.

Base Address

The address in indexed addressing modes which specifies the location in memory to which indexing is referenced. The high order of byte of the base address (AB08 to AB15) is BAH (Base Address High) and the low order byte of the base address (AB00 to AB07) is BAL (Base Address Low).

Effective Address

The destination in memory in which data is to be found. The effective address may be loaded directly as in the case of Page Zero and Absolute Addressing or may be calculated as in Indexing operations. The high order byte of the effective address (AB08 to AB15) is ADH and the low order byte of the effective address (AB00-AB07) is ADL.

Indirect Address

The address found in the operand of instructions utilizing (indirect), Y which contains the low order byte of the base address. IAH and IAL represent the high and low order bytes.

JUMP ADDRESS The value to be loaded into Program Counter as a result of a Jump instruction.

A.1

Single Byte Instructions

ASL	DEX	NOP	TAX	TYA
CLC	DEY	ROL	TAY	
CLD	INX	SEC	TSX	
CLI	INY	SED	TXA	
CLV	LSR	SEI	TXS	

These single byte instructions require two cycles to execute. During the second cycle the address of the next instruction in program sequence will be placed on the address bus. However, the OP CODE which appears on the data bus during the second cycle will be ignored. This same instruction will be fetched on the following cycle at which time it will be decoded and executed. The ASL, ROL and LSR instructions apply to the accumulator mode of address.

A.2

Internal Execution on Memory Data

ADC	CMP	EOR	LDY
AND	CPX	LDA	ORA
BIT	CPY	LDX	SBC

The instructions listed above will execute by performing operations inside the microprocessor using data fetched from the effective address. This total operation requires three steps. The first step (one cycle) is the OP CODE fetch. The second (zero to four cycles) is the calculation of an effective address. The final step is the fetching of the data from the effective address. Execution of the instruction takes place during the fetching and decoding of the next instruction.

A.2.1

Immediate Addressing (2 cycles)

Tn	Address bus	Data Bus	R/W	Comments
TØ	PC	OPCODE	1	Fetch OP CODE
T1	PC+1	Data	1	Fetch Data
TØ	PC+2	OPCODE	1	Next instruction

A.2.2

Zero Page Addressing (3 cycles)

Tn	Address bus	Data Bus	R/W	Comments
TØ	PC	OP CODE	1	Fetch OP CODE
T1	PC+1	ADL	1	Fetch effective address
T2	00,ADL	Data	1	Fetch Data
TO	PC+2	OPCODE	1	Next instruction

A.2.3	Ab	solute Addressing	(4 cycles)		
	Tn T0 T1 T2	Address bus PC PC + 1 PC + 2	Data Bus OP CODE ADL ADH	R/W 1 1 1	Comments Fetch OP CODE Fetch Data Fetch high order effective address Byte
	T3 T0	ADH, ADL PC+3	Data OP CODE	1 1	Fetch Data Next instruction
A.2.4	Inc	lirect, X Addressin	g (6 cycles)		
	Tn TØ T1	Address bus PC PC + 1	Data Bus OP CODE BAL	R/W 1 1	Comments Fetch OP CODE Fetch Page Zero Base Address
	T2	00,BAL	Data discard	1	
	ТЗ	00,BAL + X	ADL	1	Fetch low order byte of effective address
	T4	00,BAL + X + 1	ADH	1	Fetch high order byte of effective address
	T5 T0	ADH,ADL PC+2	Data OP CODE	1	Fetch Data Next instruction
A.2.5	Ab	solute, X Absolute	e, Y Addressin	g (4 or 5	5 cycles)
	Tn TØ T1	Address bus PC PC + 1	Data Bus OP CODE BAL	R/W 1 1	Comments Fetch OP CODE Fetch low order byte of Base Address
	T2	PC+2	ВАН	1	Fetch high order byte of Base Address
	ТЗ	ADL: BAL + Index Register ADH: BAH + C	Data*	1	Fetch data (no page crossing) Carry is 0 or 1 as required from previous add operation
	T4	ADL: BAL + Index Register	Data	1	Fetch data from next page
	TØ		OP CODE	1	Next instruction

^{*} If the page boundary is crossed in the indexing operation, the data fetched in T3 is ignored. If page boundary is not crossed, the T4 cycle is bypassed.

A.2.6

Zero Page, X or Zero Page, Y Addressing Modes (4 cycles)

Tn TØ	Addresss Bus PC	Data Bus OP CODE	R/W	Comments Fetch OP CODE
T1	PC+1	BAL	1	Fetch Page Zero Base Address
T2	00, BAL	Data (Discarded)	1	
ТЗ	00, BAL + Index Register	Data	1	Fetch Data (no page crossing)
TØ	PC+2	OP CODE	1	Next instruction

A.2.7

Indirect, Y Addressing Mode (5 or 6 cycles)

Tn TØ T1	Address Bus PC PC + 1	Data Bus OP CODE IAL	R/W 1 1	Comments Fetch OP CODE Fetch Page Zero
T2	00, IAL	BAL	1	Indirect Address Fetch low order byte of Base Address
ТЗ	00, IAL + 1	BAH	1	Fetch high order byte
T4	ADL: BAL + Y	Data*	1	of Base Address Fetch Data from same page
	ADH: BAH + C			Carry is 0 or 1 as required from previous add operation
T5*	ADL: BAL + Y ADH: BAH + 1	Data	1	Fetch Data from next page
TØ	PC+2	OPCODE	1	Next instruction

^{*} If page boundry is crossed in indexing operation, the data fetch in T4 is ignored. If page boundary is not crossed, the T5 cycle is bypassed.

A.3

Store Operations

STA

STY

The specific steps taken in the Store Operations are very similar to those taken in the previous group (Internal execution on memory data). However, in the Store Operation, the fetch of data is replaced by a WRITE ($R/\overline{W}=0$) cycle. No overlapping occurs and no shortening of the instruction time occurs on indexing operations.

A.3.1	Zei	o Page Addressing	g (3 cycles)		
	Tn TØ T1	Address Bus PC PC + 1	Data Bus OP CODE ADL	R/W 1 1	Comments Fetch OP CODE Fetch Zero Page Effective Address
	T2	00, ADL	Data	0	Write internal register to memory
	TØ	PC+2	OP CODE	1	Next instruction
A.3.2	Ab	solute Addressing	(4 cycles)		
	Tn TØ T1	Address Bus PC PC + 1	Data Bus OP CODE ADL	R/W 1 1	Comments Fetch OP CODE Fetch low order byte of Effective Address
	T2	PC+2	ADH	1	Fetch high order byte of Effective Address
	ТЗ	ADH, ADL	Data	0	Write internal register to memory
	TØ	PC+3	OP CODE	1	Next instruction
A.3.3	Inc	lirect, X Addressin	g (6 cycles)		
	Tn TØ T1	Address Bus PC PC + 1	Data Bus OP CODE BAL	R/W 1 1	Comments Fetch OP CODE Fetch Page Zero Base Address
	T2	00, BAL	Data (Discarded)	1	
	ТЗ	00, BAL + X	ADL	1	Fetch low order byte of Effective Address
	T4	00, BAL X + 1	ADH	1	Fetch high order byte of Effective Address
	T5	ADH, ADL	Data	0	Write internal register to memory
	TØ	PC+2	OPCODE	1	Next instruction

A.3.4 Absolute, X or Absolute, Y addressing (5 cycles)					ycles)
	Tn TØ T1	Address Bus PC PC + 1	Data Bus OP CODE BAL	R/W 1 1	Comments Fetch OP CODE Fetch low order byte of Base Address
	T2	PC+2	ВАН	1	Fetch high order byte of Base Address
	Т3	ADL: BAL + Index Register ADH: BAH + C	Data (Discarded)	1	
	T4	ADH, ADL	Data	0	Write internal register to memory
	TØ	PC+3	OPCODE	1	Next Instruction
A.3.5		o Page, X or Zero F			
	Tn	Address Bus	Data Bus	R/W	Comments
	TO	PC	OPCODE	1	Fetch OP CODE
	T1	PC+1	BAL	1	Fetch Page Zero Base Address
	T2	00, BAL	Data (Discarded)	1	
	T3	ADL:BAL + index	Data	0	Write internal register to memory
	ТО	register PC+2	OPCODE	1	Next instruction
A.3.6	Ind	irect, Y Addressing	Mode (6 cycl	es)	
	Tn	Address Bus	Data Bus	R/W	Comments
	TO	PC	OP CODE	1	Fetch OP CODE
	T1	PC+1	IAL	1	Fetch Page Zero Indirect Address
	T2	00, IAL	BAL	1	Fetch low order byte of Base Address
	ТЗ	00,IAL+1	ВАН	1	Fetch high order byte of Base Address
	T4	ADL: BAL + Y	Data (Discarded)	1	
		ADH: BAH			
	T5	ADH, ADL	Data	0	Write Internal Register to memory
	ТО	PC+2	OPCODE	1	Next Instruction

A.4

Read -- Modify -- Write Operations

ASL LSR DEC ROL INC ROR

The -- Read -- Write operations involve the loading of operands from the operand address, modification of the operand and the resulting modified data being stored in the original location.

Note: the ROR instruction will be available on MCS650X microprocessors after June 1976

A.4.1

Zero Page Addressing (5 cycles)

TØ	Address Bus PC PC + 1	Data Bus OP CODE ADL	R/W 1 1	Comments Fetch OP CODE Fetch Page Zero Effective Address
	00, ADL 00, ADL	Data Data	1 0	Fetch Data
T4	00, ADL	Modified Data	0	Write modified Data back to memory
TØ	PC+2	OPCODE	1	Next instruction

A.4.2

Absolute Addressing (6 cycles)

Tn TØ T1	Address Bus PC PC + 1	Data Bus OP CODE ADL	R/W 1 1	Comments Fetch OP CODE Fetch low order byte of Effective Address
T2	PC+2	ADH	1	Fetch high order byte of Effective Address
ТЗ	ADH, ADL	Data	1	
T4	ADH, ADL	Data	0	
T5	ADH, ADL	Modified Data	0	Write modified Data back into memory
TØ	PC+3	OPCODE	1	Next instruction

A.4.3	Zer	o Page, X Address	ing (6 cycles)		
	Tn TØ T1	Address Bus PC PC + 1	Data Bus OP CODE BAL	R/W 1 1	Comments Fetch OP CODE Fetch Page Zero Base Address
	T2	00, BAL	Data (Discarded)	1	
	ТЗ	ADL: BAL + X (without carry)	Data	1	Fetch Data
	T4		Data	0	
	T5	ADL: BAL + X (without carry)	Modified Data	0	Write modified Data back into memory
	TØ	PC+2	OPCODE	1	Next instruction
A.4.4	Ab	solute, X Addressi	ng (7 cycles)		
	Tn TØ T1	Address Bus PC PC + 1	Data Bus OP CODE BAL	R/W 1 1	Comments Fetch OP CODE Fetch low order byte of Base Address
	T2	PC+2	BAH	1	Fetch high order byte of Base Address
	ТЗ	ADL: BAL + X ADH: BAH + C	Data (Discarded)	1	
	T4	ADL: BAL + X ADH: BAH + C	Data	1	Fetch Data
	T5 T6	ADH, ADL ADH, ADL	Data Modifed	0	Write modified Data
	10	ADH, ADL	Data	O	back into memory
	TØ	PC+3	OPCODE	1	New instruction
A.5	Mi	scellaneous Opera	tions		
	BC BC BE	S BVC PLA			

JMP

JSR

PHA

RTI

RTS

BMI

BNE

BPL

A.5.1	Pus	h Operation - PHP	, PHA (3 cycles	s)	
	Tn T0 T1	Address Bus PC PC + 1	Data Bus OP CODE OP CODE	R/W 1 1	Comments Fetch OP CODE
	T2	Stack pointer*	(Discarded) Data	0	Write Internal Register into Stack
	TØ	PC+1	OP CODE	1	Next instruction
	*Subsequently	referred to as 'Stac	ck Ptr.'		
A.5.2	Pul	l Operations - PLP	, PLA (4 cycles	;)	
	Tn T0 T1	Address Bus PC PC+1	Data Bus OP CODE OP CODE (Discarded)	R/W 1 1	Comments Fetch OP CODE
	T2	Stack Ptr	Data (Discarded)		
	T3 T0	Stack Ptr + 1 PC + 1	Data OP CODE	1	Fetch Data from Stack Next Instruction
A.5.3	Jui	mp to Subroutine	- JSR (6 cycles	s)	
	Tn T0 T1	Address Bus PC PC + 1	Data Bus OP CODE ADL	R/W 1 1	Comments Fetch OP CODE Fetch low order byte of Subroutine Address
	T2	Stack Ptr	Data (Discarded)	1	
	Т3	Stack Ptr	PCH	0	Push high order byte of program counter to stack
	Т4	Stack Ptr - 1	PCL	0	Push low order byte of program counter to stack
	T5	PC+2	ADH	1	Fetch high order byte of Subroutine Address
	ТØ	Subroutine Address (ADH, ADL)	OP CODE	1	Next instruction

A.5.4

Break Operation - (Hardware Interrupt) - BRK (7 cycles)

Tn TØ	Address Bus PC	Data Bus OP CODE	R/W 1	Comments Fetch BRK OP CODE (or force BRK)
T1	PC + 1 (PC on hardware interrupt)	Data (Discarded)	1	,
T2	Stack Ptr	PCH	0	Push high order byte of program counter to stack
ТЗ	Stack Ptr - 1	PCL	0	Push low order byte of program counter to stack
T4	Stack Ptr - 2	P	0	Push Status Register to stack
T5	FFFE (NMI-FFFA) (RES-FFFC)	ADL	1	Fetch low order byte of interrupt vector
T6	FFFF (RES-FFFD)	ADH	1	Fetch high order byte of Interrupt Vector
TØ	Interrupt Vector (ADH, ADL)	OPCODE	1	Next instruction

A.5.5

Return from Interrupt - RTI (6 cycles)

Tn	Address Bus	Data Bus	R/W	Comments
TØ	PC	OPCODE	1	Fetch OP CODE
T1	PC+1	Data	1	
		(Discarded)		
T2	Stack Ptr	Data	1	
		(Discarded)		
T3	Stack Ptr + 1	Data	1	Pull P from Stack
T4	Stack Ptr + 2	Data	1	Pull PCL from Stack
T5	Stack Ptr + 3	Data	1	Pull PCH from Stack
TØ	PCH, PCL	OPCODE	1	Next instruction

A.5.6

A.5.6.1

Jump Operation-JMP

Absolute Addressing Mode (3 cycles)

Tn	Address Bus	Data Bus	R/W	Comments
TØ	PC	OPCODE	1	Fetch OP CODE
T1	PC+1	ADL	1	Fetch low order byte of Jump Address
T2	PC+2	ADH	1	Fetch high order byte of Jump Address
TØ	ADH, ADL	OPCODE	1	Next instruction

A.5.6.2	Inc	lirect Addressing N	Mode (5 cycles)	
	Tn	Address Bus	Data Bus	R/W	Comments
	TØ	PC	OP CODE	1	Fetch OP CODE
	T1	PC+1	IAL	1	Fetch low order byte of Indirect Address
	T2	PC+2	IAH	1	Fetch high order byte of Indirect Address
	ТЗ	IAH, IAL	ADL	1	Fetch low order byte of Jump Address
	T4	IAH, IAL + 1	ADH	1	Fetch high order byte of Jump Address
	TØ	ADH, ADL	OP CODE	1	Next instruction
A.5.7	Re	turn from Subrout	ine - RTS (6 cy	cles)	
	Tn	Address Bus	Data Bus	R/W	Comments
	TØ	PC	OPCODE	1	Fetch OP CODE
	T1	PC+1	Data (Discarded)	1	
	T2	Stack Ptr	Data	1	
			(Discarded)		
	T3	Stack Ptr + 1	PCL	1	Pull PCL from Stack
	T4	Stack Ptr + 2	PCH	1	Pull PCH from Stack
	T5		Data	1	
		Stack)	(Discarded)		
	TØ		OP CODE	1	Next instruction
A.5.8			CC, BCS, BEQ	вмі, в	NE, BPL, BVC, BVS,
	(2,	3, or 4 cycles)			
	Tn	Address Bus	Data Bus	R/W	Comments
		anch Not Taken			
		PC	Op Code	1	Fetch OP CODE
		PC+1		1	Fetch Branch Offset
		PC+2	Next Op Cod	е	
		anch Taken			
		PC	Op Code		
		PC+1	Offset		Discoud
		PC+2	Next Op Cod	е	Discard New Branch
	10	PC+2+OFF	Op Code		New Branch
		anch Taken Crossii PC	ng Page Bound Op Code	dary	
	T1		Offset		
		PC+2	Op Code		Discard
	T3		Op Code		Discard
	10	(W/OC)			
	TØ				Next Instruction

L.J. Technical Systems

L.J.Technical Systems Ltd.

Francis Way,

Bowthorpe Industrial Estate, Norwich. NR5 9JA. England. Telephone: (0603) 748001

Telex: 975504

Fax: (0603) 746340

L.J.Technical Systems Inc.

19, Power Drive

Hauppauge, N.Y. 11788 U.S.A.

Telephone: (516) 234 2100

Fax: (516) 234 2656

Designed, Typeset and Produced By LJ Publications Dept. © 1990

Distributor

Issue Number MP117/E