COMPUSER Volume 1 Nr 2 March 1988

A description of the DOS65 Disc format, Andrew Gregory
COMPUSER Volume 2 Nr 1 January 1989

Junior DOS65 Erik vd Broek

Directory sort routine DOS65, Andrew Gregory

COMPUSER . COMPUSER
International computing Exchanging computer knowledge

A DESCRIPTION OF THE DOS65 DISC FORMAT.

INTRODUCTION.

. The DOS65 operating has an efficient file manager which has a lot of
nice features. In particular, it allows filenames of ug,to fourteen
letters in length, it draws distinction between ASCII. iles and binary
files and between command and data files, it allows directories of |
almost unlimited size and it re-uses the space occupied by deleted files
so that discs never regulre compacting. These features require a disc
format more complicated than is usual on an eight bit machine. This is

the subject of this article.

DOS65 uses sectors of 256 bytes on single density (also called FM,
Frquenc§,modulated) or double density (MFM, Modified FM) discs. Single
density discs have ten sectors per track on each side. Double density
discs have sixteen or eighteen, the latter being known as ‘extra
density’ on DOS65 machines. The sectors are labelled from one ugwards.
The numbering covers both sides, so for example sector 17 on a. ouble
sided double density disc 1is actuallg sector 1 on the second side.
Tracks are labelled from 0 to 39 or 79, depending on whether the disc
has 40 or 80 tracks. An individual sector is referred to by it's .
track-sector address or tsa'. The DOS65 sector read and vrite routines
use wyhat is termed 'physical addre551ng' because the actual sector
specified is read or written to. But the file read and write routines
use what is termed "logical addre551n%'. The physical sector is obtained
from the logical sector in_ a look-up table which has been constructed so
that the number of physical sectors_between adjacent logical sectors is
a constant for that disc known as the skew. This speeds up the disc
access time by glVIDQ DOS65 time to prepare itself to read a sector
after reading the previous one without the disc having to make a

complete revolution.

There are several types of sector on the disc. Each will be considered
individually.

THE SYSTEM SECTOR.

The system sector resides at track 0 sector 1 side O on every disc.
Amongst other things it contains the look-up table which relates logical
and physical addressing and it tells DOS65 which sectors on the disc have
been used. The names and functions of the various locations are listed

below. You will find their addresses in your dvar.MAC file.

s.stab - (32 bytes). The look-up which relates logical and physical
addressing. Each entry is greater then the previous one by the
“skew' with which the disc is formatted. (Usuwally 2 or 3).

s.mode - (1 bﬁte). This gives information about the contents of the
look-up table. Bit 7 is '1' if there is no table, in which
case logical and physical address1ng_are the same. This would
pgobab1¥ be so for a silicon disc. Bit 6 is '1' if there is a
side ofiset, mean;ng'that the table only covers one side. In
this event when finding a ph551ca1 sector on the second side
the number of sectors per side must be subtracted before the
look—gp and then added on afterwards. The remaining bits are
unused.

s.mtrk - (1 byte). The number of tracks formatted. (40 or 80).
s.mcil - (1 byte). The number of sectors per track. (Total of both sides).

s.msec - (1 b¥te). The number of sectors per track per side. If this is
half of the value contained in s.mcil the disc is double

sided, if it is equal the disc is single sided.
s.bpat - (4 bytes). A bitmap pattern. Always $ff,Sff,Sff,Sff.

s.acnt - (1 byte). The allocation count, the number of sectors represented

by each bit in the bit map table, s.bmap.

a7

COMPUSER . COMPUSER
International computing Exchanging computer knowledge

s.sht - (1 byte). The shift factor map per physical track, It contains the
number of times a track number has to be multiplied by two to
find the corresponding address in the bit map table, s.bmap.

s.tbas - (1 byte). Lowest track number on which tsl sectors can be
written.

s.tbam - (1 byte). The tsl bit map of the first bitmap byte.

s.dbas - (1 byte). Lowest track number on which data sectors can be
written.

s.boot - (2 bytes). Logical tsl sector of the boot file. (Found by I/065
during booting).

s.dir - (14 bytes). Track sector addresses of sub-directories. They are
zero for sub-directories which have not been created.

s.name - (24 bytes). Disc name.
s.cdat - (4 bytes). Creation date of the disc.
s.mdat - (4 bytes). Date of last modification of the disc.

s.bmap - (Rest of sector) . A ‘bitmap' of the disc usage. Each bit
represents s.acnt sectors. If a bit is a "1' then the sectors
which it represents are unallocated.

THE DIRECTORY SECTORS.

The first root (@) directorﬁ sector is found at track 0 sector 3. The
track sector addresses of the sub-directories A to G are given at the
location s.dir in the system sector. If they are zero the sub-directory
does not exist. Each directory sector contalns 15 entries. Starting at
the f1rst.b¥te of the sector each has a 14 letter filename (with unused
letters filled with zeros) followed by the logical track sector address
(tsa) of the first track sector list_sector of that file. Bytes 240 and
241 of the sector contain the logical track sector address of the next
directory sector if there is one, otherwise both bytes are zero.
éflb%td7 of the first byte of a filename is a 'l' then the file has been
eleted.

THE TRACK SECTOR LIST SECTORS.

. Every file has at least one track sector list (tsl) sector associated
with it. The tsl sectors list the logical track sector addresses of the
data sectors in the correct order. In addition, the first tsl sector
g1v§slinformat1on about the file. The structure of the first sector is
as follows:

ftsl - (2 bytes). logical tsa of next tsl sector. (zero if none).
btsl - (2 bgtes). Backward link to previous logical tsl sector.
Both zero for first tsl.
flmo - (1 byte). File mode. As shown by the 'CAT' command.
Bit 7 - '1' if file can be read. |,
Bit 6 - '1' if file can be overwritten.
Bit 5 - '1' if file can be deleted.
Bit 4 - '1' if mode x (not in use yet).
Bit 3 - '1' if a command file.
Bit 2 - '1' if file executable.
Bit 1 and 0. File type: %00 Default. !
1 Ascii =
%10 Binary b*
%11 Tokens Ye”

COMPUSER COMPUSER

International computing Exchanging computer knowledge
dblk - (1 byte). Directory sector number.
dpos - (1 byte). Position in sector. (0 to 15).
stad - (2 bytes). Load address of a file of default type. (BOOT

for example). Note the load addresses of binary files are
given in the data sectors.

rnad - (2 bytes). Run address of a file of default tgpe. Note the
run address of binary files is given in the data sectors.

flln - (2 bytes). Length of file.

vers - (1 byte). Version number of file. (Incremented each time
file is updated).

credat - (3 bytes). Creation date of file.
moddat - (3 bytes). Date of last modification of file.

The remaining bytes ($20 onwards) are logical tsa's of data sectors.
Subsequent tsl sectors contain:

ftsl - logical tsa of next tsl sector. Zero if none.
btsl - logical tsa of previous tsl sector.
All the following bytes contain the tsa's of data sectors.

DATA SECTORS.

Data sectors are entirelg.filled by data, the{ contain no information
about the structure of the disc. When a file of type default, a or ¢ is
loaded into memory each of the sectors is loaded one after another in
the order given by the TSL sectors. . L

_ A binary file can be loaded in two different ways. If it is loaded
with the command 'load filename xxxx' where the load address Xxxx is
%;ven it will load sector by sector in exactly the same wag as the other

ile tgpes. But data loaded in this wai is not executable because mixed
with the 6502 code are what I shall call ‘“information blocks' of five or
eight bgtes which give the load and execute addresses. There is always
one at the beginning of a file preceding the data. A hexadecimal listing
is:

02 rL rH 01 1L 1H nL nH XX XX XX ...

Where XX XX XX ... are bytes of actual binary data. The 02 is a code
which indicates that the following bytes are the low and high run
address. It begins one of the information blocks in a 6502 code file.
The 01 code occurs in every comglete information block. Following it are
four bytes. The first two are the load address of the next part of the
file and the second two are the number of b{tes to be loaded before the
next information block is encountered. A file maK.be load at many
different places in memor¥ as a consequence of this scheme. The
information block does not define the length of a file, so 1t 1s not
uncommon for a file to end:

02 rL rH

_When binary files are loaded with the load command without an address
being specified or when they are loaded as commands the information blocks
will cause the different parts of the file to be loaded at the correct

places in memory.

COMPUSER) COMPUSER
International Computing Exchanging Computer Knowledge

JUNIOR — DOSG65
By : Erik van den Broek, Holland.

It is realy rather easy to implement the DOS65 (as far as I know todays best key-
board-driven-65XX(X) - geratlng system), once you have build a JUNIOR equiped with a
VDU-card. You_ _wouldn't say so 1f you glance at the drawing below, but if you look
better you will see that it is all rather straightforward in fact.

Features:
- switch-selection between: 1) bit-by-bit, pin-by-pin compatible (VDU)Junior
2) simultanious Junior/DOS65 operation
. 3) bit-by-bit, pin-by-pin compatible DOS65
- no chan?e in PCB's .
- all JUNIOR software remains the same ({even cassette)
- easy debugging

Reguirements for the Junior-with-Interface-and-VYDU-card-owner:

DC-card (incl. parts) . + f 120,=
- DOS65 V2.01 hardware-manual / operating-manual / floppy * + f 65,=
- 2764 I/065 EPROM * :f 25,=
- switch, 2 ways, 3 positions [8=
- 6522, for timing and keyboard . * f 15;=3
- 6116, for storage of DOS65 variables (=garbage-ranm) + f 8,=
- 56 K RAM (= 7 IC's 6264) +f 60,=
- 74LS00; 74LS04 (2);_74LS20; 74LS133; 74LsS138; 74LS157 + f 8,=
- Extra (do it yourself)print, connector, sockets, etc. = f 15,=
- Floppy-drive %SHUGART-compatlble (is not IBM-comp.)) + f 450,= ?
pessimistic estimation: + f 834,=

This seems very costly, but it is grobably the first time you see an amount which
doesn't express what it only costs if, 1f, if, but what it costs if you're
unlucky, and do not have yet angthin but JUNIOR with VDU and keyboard. And you do
get an’ astonishing good ~computer, because of all _the software like full-screen-
edit?r (;¥ogdprocessor), macro-assembler, communication programs (f.i. modem-proto-
cols), a ree.

The heart of the matter is to replace (switchable) the (small)RAM's, EPROMs, VIA
and PIA in the address-area $0000 - $1FFF by 1 RAM IC 6264. This means that you can
debug these extensions with your old JUNIOR-monitor and tracer. In the JUNIOR there
is a ROM (=82LS23) to select the direction of data (from or to the processor-board)
in this area. With only RAM, this direction (belng the status of the busbuffer) is
selected by the R/W signal. A digital switch (=LS157) selects now between ROM- and
R/WgSlgnal. Only while you are putting this (digital)switch in place, the machine
is dead.

Notes:

- The 74LS157 serves, to direct the databusbuffers in DOS65-mode with the R/W-
signal instead of the grom51gnals Y1l and Y2. .

- To reconnect the 82523: remove from socket, bend pin 1 & 2 sideways and connect
discretely with 74LS157 pin 2 & 5 respectively. Remove pull-up R's 34 & 35 and
reconnect them between mains and those pins 2" & 5. .

- 0f both 2764 and 6116, oan half the memorg is used (you don't notice).

- Pin-connections of the 6264 (pin 1 until 28): NC;Al12;A7;A6;A5;A4;A3;A2;A1;A0;D0;
D1;D2;GND;D3:;D4;D5;D6;D7;CS1 (low);A10;0E(low) ;A11;A9;A8;CS2;WE(Llow) ;+

- ali cﬁlp—select. inputs of the 6264's (=pin 26), EXEPT ONE (namely the 'lowest'),
are connected with +5 Volts. . i |

- Pin 7 of the 74LS138 carries the same signal as pin 6 of the 74LS20, but 1t may
be a good idea to_use two extra cards: one for memory and one for EPROM 6116,
6522 and address-selection. The signal must then be represented on both cards.

- To describe here, where to ﬁut_what, is a waste of effort, because there may be
as many types of JUNIORS (physically as well as 'mentally’) as there are JUNIORs.
Some hints that may help however: the switch, 74LS00 and 74LS157 can _best be EUt
as near as_possible to the motherboard. There are three wires then from the
motherboard/interface-unit to the card(s) on the bus: 1) to gin 26 of one 6264 2)
to pin 22 of the 2764 (=OE not) 3) from pin 6 of the 74LS20 to the switch (if you
generate this 51%na1.ver¥ near the motherboard yet once more, you don't need this
wire). It 1is mo wise to wuse bus-connections for these wires, even though some
pins there remain probably unused forever. Some da¥ you forget your bus has lost
compatibility and implement a card intended or the new ELEKTOR-65K-bus (no
incompat. problem there but for two pins (16A/16C)).

- O0f course the 'D' and 'R' signal-inputs on both (old) cards, should not be con-
nected anymore with either +5 Volts or mass.

* Contact your editor Willem L. van Pelt.
22

JUNIOR .DOS 65
D (PN 12 IC6 STANDARBOARD)
-::lTO IZT‘ - RI{PINTL IC17 INTEREACEBOARD]
(PIH 8 1IC13 1F BOARD) sz :
AW ® . J> 1 Q._/!
e -|-- .H_" = | 7LLS1S7
“‘, 7¢L8138 ré [‘ \ Jjna va e~
vee B = s b ; ::):
wo—Ha TS ok slioe volz
w HEae e |lRE | EL
o 7]g i oles N racf||]e3s
= / i : 2 I IO roWeS § H
m L ; BT \
— % A 7/na \
=7 : 3 .
— /////I////////% - % § 20] 22
= é Z sz 3eLsmo é I § arz fCE D 2
— 7z o711 "2 nmls—uc H1
- é Z §\\\\\\\\\\\\\\\\\\ alf b
= % 7 N |} HTEN
A | mn TE
%//////////////////////////////////m%//////////////;/ ST
% N e EY N
/ \ A nl PN N
vy | N g e N
-) é ‘§ é ‘; A8 FeR 2 Lne §
D0 “s s § Z u(?sv §
,_—"_g- s :: i § V% . vac §
'IIZ'ILLS!O "_' § % 2 ‘E‘o by '\\ §
A" § % %E : :__:. §
% § % %E 6116 gl% §
Z \ ;// o R T\
. \l B Bl
% N . 7]t bl
RAM RIW é § % a2
1
. : N | ey
% ; N P
% 23 [Ho—2 \ 7 /37: N '
. == B FNS
é///////////////////////////////// —:D'*—-jﬁ] § sv“@-:icsq i z: E KEYBOARD
- § i
3 sy T
DI
2l R Fr
42 25 142 s o
<RES ELE] e87}12— po7
BE W :2' ﬁ “"T:;ca’
il car

7 Some sigaal

N1 . NL =74LS00
T4Im10 = 1 4/6 7eLS0C

Herman Zon dag

WRITE
(PIN T ICTTICT2)

READ
(PIN13 IC 11 1IC12
I.F. BOARD!

COMPUSER

International Computing

COMPUSER

Exchanging Computer Knowledge

ttl "tp DOS65 Directory sort utility v0O. 10 %s
| pag 66
Ifile dirsort.MAC

Jlast modified
; program
;function

; uusage

3

sby

3
3
3
2
l
3
3
3

DOS65 routines
lib
opt
;main workspace

secmem

n

wh e wr

org
ndirs res
subd res
ndrive res
tmp res
a0 res
al res
az res
3
s2 res
s3 res
a4 res
s5 res
cbp res

res
curdir res
H

org

Jmp

fdirsec res
fdirtk res

8th April 1988

DIRSORT

put a directory in alpabetical order

DIRSORT dir:

Andrew Gregory .
35 Stafford Road ;

S

idcup

Kent

Dald 6PU
England

and variables

dvar. mac

1L

is

$20

zero page workspace

$80

PENNNRON NNNPRPRERE

$

1000

begin
;absolute workspace

1
1

;give help reply

Tec
help Jsr

Begin phe

number of directories loaded
sub~dir
workspace

work space
address pointers to filenames

first sector

$C8, $C5, $CC, $DO
print
"Directory sort utility VO.10\r’

* Syntax
‘Options :
Example

: DIRSORT dir:\r’

-Y Do rnot ask for permission\r’

: DIRSORT O:A/\r’

"Sorts subdirectory A on drive 07,0
"By A.P.Gregory’,0

print
"Illegal -options\r’.0

save Tlags

page %d"

COMPUSER COMPUSER

International Computing Exchanging Computer Knowledge
bes 4.b if error
sty cbp
sta chp+l command string address
Jsr sync printer spooler would i
& —interfere by changing rweoln
lda udrive default is U:
Jsr separ set fdrive and subd
ldy H-1 skip spaces
S iny
1da [cbol, v get char from string
beg beginz default if none
cmp #13 CR?
bea beginz
cmp #32 Space
beq 3.b B
‘First character is a ’0°, 17, 2, *U’, 'S, o~ W
cme #3
bee F number
;755’ ’U, or sw;
Jer louoch upper case
ldx #2 search table for it
1 cmp drtab, x
bea e
dex
bpl 1.b
bmi 12.4TF illegal
2 lda sdrive, x
Jsr separ separate drive and dir
jsr ckcolon
bne 12.f
Jsr cklast
bre 12.T if error
begin2 Jjmp beginl proceed
drtab fice * SUW?
separ pha
and #%11
sta fdrive
sta rckive
pla
lsra get sub—dir
lsra
sta subd
rts
ckecolon iny
lda [cbel,y
cmp F#7'x rothing else will do
rts
cklast iny
1da [copl,y
beq G
cm #13
beq 1.F
cme #32
1 rts
;illegal directory
12 Jsr print
fco "Illecal drive/ directory specification\r’,0
13 Jsr seter
exit plp
rts retun to DOS65

sbe #'0
bmi 12.b error

< 1

COMPUSER COMPUSER

International Computing Exchanging Computer Knowledge
sta nadrive drive number
sta fdrive needed by dirinit
Jer ckcolon check next is colon
bre 12.b
iny next char 8, A..G
1dx #O
stx subd @ is default sub—dir
1lca [ebel,y
beq beginl default is ©
P #13 CR?
bea beginl
cmpe #32 Space
beq beginl
==} #'©
bea beginl
Jer loupch Upper case Y saved
cmp #'H
bcs 121.°f error
sbe # A2
pbmi 124 error
sta subd
iny
lda [cbel, ¥
cmo %/
bea 1.f
dey / not compulsory

I Jsr cklast check no more
beqg beginl
121 Jmo 1Z2.b
beginl lda opt -Y option?
bmi 1. F
Jer print
fce ’Sort directory ’,0
lda farive print dr:dir/
cle
adc #0
Jsr out
lda 2
Jsr out
lda subd
bre 2o
lda #E
bre S
cle
adc #’A-1
S Jsr out
Jsr print
fco Y (y/N¥)? 7,0
Jsr bufin
Jsk loupch
cmp #*Y
bre exitl
1 Jsr dirinit open directory
bcs doserr
lda #0
sta ndirs
1lda #secmem
sta curdir next dir sec
lda subd @ directory?
beg 20.f if yes
asla multiply by 2
cle
adc #s.dir-2 get directory pos
tay
1da [Frwooinl, ¥
tax track
iny
lda [Frwooinl, y sector
beg exitl if non—existent
tay
Jme 7

a =

COMPUSER :
International Computing

exiti

doserr

S

Fur ws
=0
o

ooP

e

Nus

Jmp
Jsr
Jmp
1dx
1dy

stx
aty

lda
cmpo
bcs
Jer
bcs
inc
Jsr
beq
inc
Jmp
Jsr
feo
Jme
lda
cme
bec
Jsr
T
Jsr
Jsr
lda
Jsr

exit

ermes
exit

H#dirOtk
#dirQOsc

Tdirtk

fdirsec

rectory loading loop

print

COMPUSER
Exchanging Computer Knowledge

error

first directory trk
first directory sector

max 32 sectors
loads sec, sets rwpoin

get X and Y of next sector
last if sector O

?xx* pirectory too big\r’,0

exit

print

’Please wait..

;save sorted directory

Ar?,0
Obliterate all irwalid names

disable "C

;Note - surplus directory sectors are rot freed.
;DOS65 does not provide a mechanism for doing this.

sloop

sloopl

lda
sta
1dx
1dy
lda
Jsr
bcs
inc
Jsr
bre
Jmp

H
doserrl Jjmp

H#secmem
curdir
fdirtk
fdirsec
curdir
svsec
dosetrr1
curdir
ndts
sloopl
exit

dosett

;simple shell sort routine.
;Compare each pair and interchange if wrong way round.
srepeat until in order.

sort

ue

sortl

-

sortS

lda
Jsr
lda
ora
bre
rts

lda
sta
Jsr
lda
bre
rts

1ldx
stx

ndirs
mulls
s2

s2
sortl

save sector

next memory
set track-sector
unless end

s2 is rumber of filenames

retu-n if empty dir

in order flag
if further sorting needed

set w s4 to last number+1

da 3

COMPUSER ;
International Computing

2ort3

ue

wi

sort2

1

ladx
stx
Jmg

lda
ldx
ey
Jsr
lda
1dx
1ty
Jer

Jsr
bce
lda
sta
Jsr

dec
bre
lda
beqg
dec
lda
sec
sbc
sta
lda
sbc
sta
Jmp
rts

a32+1
s4d+1
sort2

.
1t
P
=
—

s5+1
sort3

COMPUSER
Exchanging Computer Knowledge

address of s4 into al

address of s5 into a2

rcompare them

branch if in order
set flag

swap them

higher in list

if reached top

s5 one above s4

;routine to compare names at [a2] and

;[(al] and set carry flag if interchange
;is needed.
comazal 1ldy

P W

H

1da
beq
lda
beg

lda
and
sta
pla
cme
bce
bre
iny
lda
and
bre
clc
rts

sec
rts

sroutine to
sweazal ldy
1

lda
pha
lda
sta
pla
sta
dey
oL
rts

#O
[a1]l,y
3T
[a2],y¥
G f
[a1]l,y
#37F
tmp
tmp

2. F
4.T

[a2],y
H#37F
5B

lower entry zero?
do not swap if so
one above [al]
swap if zero

ignore bit 7

if lower entry higher
if not same

no swap if zero

interchange names [a2] and [a1]

#15
(a2],y

=
(az2],y

[(a1l,v
1.b

;fill all invalid filenames with zeros

Zero

Jer

s2s3set

<L <

COMPUSER

International Computing

Jmp
zloop Jar
ldy
lda
bmi
bre
1 tya
ldy
sta
dey
bl
zloop2 inc
bre
inc
zloopl dec
bre
dec
bre
Ps

N

zloopl

entaddr

COMPUSER
Exchanging Computer Knowledge

if deleted
if valid

fill with O’s

;Drepare for scan through directory memory.

s2s3set lda
sta
sta
s2set lda
Jsr
inc
inc
rts

s3
s3+1
ndirs
mulls
s2
s2+1

zero s3

max entries in s2

‘routine to multiply A by 15 (A(50)

;answer in s2

1ldx
stx
asla
asla
clec
adc
sta
asl
rol
cle
adc
sta
lda
adc
sta
rts

52
#0
s2+1

by
by

by
by

by

o BN

15

ldivide by 15. Answer is page, remainder*16 pos.

entaddr lda
ldx
1dy

sentry point to
entadl stx
sta
tya
pha
ldx
lda
tay
i asl
rol
rola
cmp
bec
sbc
pha

tya

o

s3+1
s3
#0

put answer in al+y (¥ even)
a0

al+1

store low part
and high part

16 bits

a4 5

D

COMPUSER

International Computing

1w

rola
tay
pla
dex
bre
asla
asla
asla
asla
sta
tya
clc
adc
sta
pla
tax
lda
sta
1lda
sta
rts

COMPUSER
Exchanging Computer Knowledge

a0 offset in page
page number

Heecmem add start address
al+1

a0
al, x
al+1
al+l, x

Make X=track and Y=sector of next directory.
;set Z if hone

;Note rwooin must be set up.
8]

ndts

Jicly:
lda
tax
iny
lda
tay
rks

#24.
[rwpoinl, ¥ track of next dir

[rwpoinl, y
sector of next dir

gsubroutines to load and save logical sector Y track X at page A
;system sector must be loaded.

; save
ldsec

; save
svsec

HH
rwset

Jer
Jsr
rts

Jsr
Jer
rts
sta
1da
sta

lda
rts

rwset
readsect reads logical sector
C=1 if error
rwset
writsect
rwooin+1 set page address and
#O prepare for read/writesect
rwpoin
narive drive numbet

< S

