Red. DE 6502 KENNER

c/o0 Willem L. van Pelt
Jacob Jordaensstraat 19
2923 CK Krimpen a.d. IJssel.
The Netherlands.

PATCHES Micro-ADE PART 10

= Py e e 2w e o

BY: S5.T. WOLDRINGH
KLIEVERINK 619
AMSTERDAM. ’
The Netherlands. (Transl. W.L. van Pelt)

After wrttinq nine Darts Patches on Micro-ADE in the uast few vears v
in which tiee a simple:editor/assembler has grown up to a moderately

working program, i’1ll let patching to other peaole.

In the following i*l1l descv;be nhat Nxcro~ADE is able to do in his.
present form. = = 00 L. p

Micro-ADE needs memory addresses from $2000 uo to 66000 The work-
areas he needs ares

- & source area:i<=<i T ¢ TroTens - o . o s

~ a symbol area.-..». .. . « L - .. : Low .

- a cross reference area

- an object area

Choices of larqeness of these areas are free. See vyour .manual., -
Inside software you’'ll find the addresses from $2ER3. R qood rela- -
tionship between the areas of Symbol and XREF is 1/6 th for Symbol

and the rest for XREF. Dependent of the laraeness of the uroqrams toos

be assembled you need between 24K and 48K workspace.

General informations chro-ﬂDE.

-t ==

- A command should be given by the command- letter(s) eventually
followed by other command-infarmation. : i
- A command and a source-line should be ended by a sao (monkey-tail).
This character may not appear elsewhere in the source. It should‘
be the first character of the last line.
— To delete a line just typed (before (CR) is entered) a SHIFT—L nay
be used. .
- Jo delete the last character of a line (before (CR) is entered)
ou may use BS ($5F) or Backslash ($7F). ;
¥o fetch back last typed line you may use CTRL-E,
- Two cassette—-recorders may be connected with Nxcro—RDE.~ Input -
" recorder starts by settina PRI low. Outout-recorder starts by set-
ting PBO low. . : o
- During reading files Micro-ADE puts on 7-seam. leds:

= sync—characters detected
= correct ID found
nn = ID of file to be read during reading

If a file has been read with an undesirable ID. the ID will be
printed. Searching proceed. Micro—-RDE continue searchina if an
error appears. Turnan of tape back to begimmina of file and
starting again is always possible.
- Startaddress is $2000. Micro—-ADE comes with aquestion DATE?, and
expects a 6-char input. After that, Micro-ADE asks NEW?
- Warm—startaddress is $2031. ‘

- RAssembling haopens by enterina X. Micro-ADE follows with PASS—1
and expects the ID('s) of the files to be assembled.
00 - current file
nn -~ file " from taoe
nn, mm - file nn up to and includina mm from taoe
After assembling (PRSS-1) of the given files Micro—ADE aoes in
input-mode again (without mentionina): (CR) starts PASS-2. #A.
new file—ID causes chro-QDE these file('s) to be assembled,
- PRSS-2 starts, after PASS—1 is ended, with a (CR) or by X2616.

— Micro-ADE asks: "PRINT?" Y/N x - = i
"XREF?" Y/N : T
"SAVE ID*® NN or (CR) L o8
Tl el gy oo B s Lo et ARIE e T
PRINT determines whether there w111 be nroduced a 115ting of
the assembled-program or not. PrE s e v
XREF determines-whether there will be taken uo entrxes in= them Foetmeity vy
XREF-table or not. WS RT Bt O
SAVE ID '3 in case of (CR)~ no- ob)ect w:ll be roduced SIS @iy
in case of NN, produce object with ID ot dngEaac
?fte; SAVE - ID-the ID's of the files'toc be assembled should :be'w ERE DA b Tt
ype in. RS - [U= 355

On the end of PASS-2 Micro—-ADE waits for inout for possxblea 937U03 g
fo;lowing ID’s (in case of no orint wanted a °'.° will ~be. !
printed to indicate ID's may be keyed. cans anan R

'W”mﬁi B
no-

o devir e pg e

T puaagegni g T T 2e3iord
Tf%ey 37awd%toe abianl
g 9ty recwted gidanoti d
POUARRY 1o daan adi bris

Next commands-exist: .. ~~2

= [RS T S
¢ e d - M TR

fromew 2 A
Apperid »maq s il 13

Rlockmove cmers L 3@ Leeeip niov belosszze s
Clear Buffer

Delete lines i mga % o 2rol famrndnt [aceraT
DisplaK address + number last line TroomEe T

Fix (change) line

Get . gource file(s) rai -~ - wwas oz

Rppend source fxle(s) S

Insert line(s) .

Get/Reset Form Feed Flag

Choice Line(s)

List

Move line(s)

Number

Load ARSCII-format files

Set /Reset Page Mode

List used memory B

Duplicate file(s)

Save source file(s)

Print Symbol/XREF Tables

Set /Reset Page-per-file/Eject Flaa
Print/Change string

Search Line

Assemble/Execute

Change Lines/screen and Lines/page
Disassemble

NLXXECCHUDIDUAZRAC ARG~ TOTMIMOOWD

i
b o]

Append
Adding of source lines behind the buffer. In case of empty 4
buffer Micro—ADE starts with line 0010. In case of used
buffer Micro-ADE starts with the stonline (with $40). o
- B Blockmove
See Manual
- C Clear
Micro-ADE asks NEW?
Answer Y (CR) or (CR}.

LT

Delete lines
D mn ! delete line nn
D nn, mm t delete lines nn up and until line mm
End line
ghows address + contents of the last line (%$40).
ix
With a Fix—command a line may be edited.
F nn t fix line nn
F rm, mm ! delete lines mn+l uo and untill mam,
fix line mn
With CTRL—E and BS you can change the line. In contrast
with the original 4K Micro-ADE Fix does not Jumu to the
Inse rt-command after {CR).
Get source file(s). -
G 00 : get next file iqnore file—ID s
G nn . : get file nn
6 nn, mm- - 3 get files mn up to and included am.

After files have been read an automatical renumber starts. .

Rppend source files .
Add source files to the source buffer. R

ésgg will- firs? clear: the buffer). Son b e

H nn !) see Get . R

H nn, mm) . B Tam 4w

Insert lines . it

1 : add 11ne5 before 11ne nn S
Stop Insert with @ -(CR) on an emoty ‘line. Thxs lxne wzll‘e
not be taken up in the source. RL s o
Set /Reset Forms-mode - et

This command set/reset (flxu/flon) a. switch,,which deter- ; g,m”
mines whether there will be printed new pages in PASS-2 or

not, :hether there will be a form feed or four line-feeds
or not.

Choice command -

Sets boundaries for SK and VK command.:w K

K ~t.reset K-flag.and boundaries ¢

K nn, nm : set boundar1es from nn until ‘mm ... e
List command L ren el
L nn list llne nn

list lines rm up to and 1nc1ud1ng mo

list all lines in buffer -

List without line numbers

Analogous to L-command, but instead of 11ne numbers sopaces
will be printed. By means of a dummy PRSS-2 the LT-flaag
will be reset.

LT nn)

t¥ nn, mm -) see L—command

L nn, mm
L

Move lines command

Unchanged. See manual.

Renumber command)
Renumber source file, starts with lxnenumber 0010, incre-
ment value is 10.

l.oad ASCII-format files

Loading of files produced with SA-command

0 00 : Load ASCII-file. iagnore ID

0 m : Load ASCII-file, ID = mn
0 nn, mm : Load RSCII- —files nn up to and includina mm
0 FF’ : Load ASCII-file, which file has no ID-record

The O-command always anpend files to be read.

Set /Reset Page—-mode Flag

In Page mode there will be asked for an inout character
by the List of PASS-2, before continuing. Tyoe ESC to re—
set the P-flaa. Change number of lines per paace with Y.

g 'v'

Query command
gxg?s survey of used/free space in source, svmbol and XREF-
able

Reproduce files

R nn ! Reproduce file nn

R nn, mm ! Reproduce files nn up to and included mm

The files happen to be read from inout-tape and written on

output tape.

Save command

Save source file of memory ;

S ! save source f1le w1th last used ID (inoput
or output) - ‘

S m ! save source f1le with ID = nn .

8 nn, mimm, 0000F Save memory from address. manm until address~~ -
0000, with ID = nn SRS

Save with choice-command g ! Gl ,4”:
K nn : ?Sve lines, determined w1th K~coamand¢ IO etk oo il
LI 1) ¢ B-E TP R T S _.,4.A . - “ i
Save RSCII-format file
SA nn 3 save- source'file in RSCII for.at with ID=nnxw s G
Table command -~ - CAGRBT I s Toe T
: print 5ymbol table (name+address) alphabet1cal 0
T1:- t print s{mbol table - (name+address) numaerical . ~A{
T 2 $ print art and current: endaddress symbol table- 35
T3 ! change endaddress symbol table

T 2.nmn ! endaddress becomes nnn
T4 : prxnt symbol + XREF alphabetical s
TS5 rint svmbol + XREF numerlcal v g
Setheset PPF/EJECT—Flag : : -
Has U-flag :been set, :aften: assemblinu of a fxle Mlcro-ﬂDEﬁl ¢

starts on a new page. : R I R L I
Besides there will be started on a new page durxna PQSS—2
if in position 6:the.word EJECT is found. : '-.~ i

Change/Print/Delete Text . « v oo fetm el
gx{httge ‘V—-command parts of tect may be prznted chanqed or “
elete :
General format ((del)=delimiter, e.qg.t "): I R I LR

V (del) {(text- 1)(de1)(del)(text—é)(del) R ST
Choice of a delimiter is free, but should not be taken uo

ingside text—-1 ar text-2. :: ¢ - e e
V {(del) {(text) (del} : pr1nt a11 lxnes wlth text in it soo

V (del? (text) (del) {(del) (del) -
: delete all: texts (text) in source .~ .
V {(del) {(text- 1)(del)(del)(text—Z)(del)

. ¢ change text 1 to text—2
For instance: -

V? LDAIM? . print all LDQIM

Vv’ LDR? ' STR? ¢t chanae all LDA to STQ
V? LDA? : delete all LDQ

Change + Choice-command

Execute V-command on lines determined bv K-command

where command SR
t print address + contents of line nn s

Wn

Execute/nssemble

X : start PASS-!

X ¢ Jump to address mn

Change Line/Page of screen and PRSS—2/XREF

Y nn, nm : number of lines/screen = nn .

number of lines PRASS-2 = mm .

In case of nn or mm = 00 value is unchanoced
Disassemble command
See Micro—-ADE manual.

N <
VS’Q/ <O
S
o S NS
%+ o NP
.a ok 1 a) CJ G‘e\‘\ & ,(\0\\
Micro-AD
v for the
= Y
&

. ot

'0... Q

5502

O™

>b%o,°.

Qb,\gc

Qd\' Copyright @ 1982, -by:

Q(KIM Gebruikers Club Nederland
SRS o) A W ol %<0
AU - \% o 7 <0,°
SN LAY A YN A 0
Q'\r\(\g-..) ’ﬁgfb\\ \X“}‘ G oA O N ’))Y:‘\Q R .(\Q" <
pRNS oo W S N
00‘\q0()‘- 5 ng A o\ N A « <
M. " V.. ¢ 3 PN
Q \ .. Q “ %

“a 0%%'29()., T ASSEMBLER & o o o<
% RS &< NI
> > Q < %

2 0‘6250;.. . N ng\s\\" > ng\%Q’Q\Q‘?‘%
s 5.l DISASSEMBLER [“Rte O &
K QP o0 _{‘:\’ N <TG < N
' Y BIO > N Sh°
A Q° o0 3 \\Q Qr <
% O Wtk 4 \

'y % QQQ‘\. ‘5&@‘&3‘ ,\\\’\ s <

2. % | EDITOR D
'/2‘\ O:S‘ ¢ A\,‘ﬂ 1 (s Q

-+ D &4\:5 o
7, \ 4
NG X4 /2 ™ *
< /'\703 o 070 VLT, O Y o™ \P"“ O
'7,\. &7 7, Qo) * Q,Q (ﬂ/ W™ k:\’ '\’\
AR RN & PR, Y A NSO
o s N
pofo L A o QQQ% Qo ¥ ~\° By Peter Jemmings ©
s B e el SN IS Micro-Ware Ltd
¢ . T2C N0 T Yy Y
A o) o0. ¢ P Q c)Q < < %Q /-"
Z 2N RSN 0\ .. % < o
3 ATH 0 Q. QQ') »/0 2.
[RS _;, 4 <@ S AN v b2 » <9 5o %
7z o “a P, 0%0.' he GQQ’ g% =
w O (RY <~ \q 0'. ’?,Q %b Q ‘_,\3\ e(\}‘\
A 1?» o Q’?/ .\0 . QQ’ ey o a7
e o, Q'Z,_ RN v e fo)

Micro-ADE

for the

3502

ASSEMBLER

DISASSEMBLER -

EDITOR

By Peter R. Jennings

© Copyright, 1977. All rights reserved.
@ Copyright, 1982, KIM Gebruikers Club Nederland.

Micro -Ware Ltd 27 FIRSTBROOKE ROAD, TORONTO, ONTARIO, CANADA. M4E 2L2,

TABLE OF CONTENTS

System Description
System Entry

THE EDITOR

THE

THE

Command Mode

Editor Commands
ADD
CLEAR
DELETE
END
FIX
INSERT
LIST
MOVE
NUMBER
WHERE

Cassette Commands
GET
SAVE
REPRODUCE

Other Commands
BLOCKMOVE
PAGE
EXECUTE

ASSEMBLER
Source Format
Data Format

The
The
The
The
The
Assembler

LABEL

INSTRUCTION

ADDRESS MODE

ARGUMENT

COMMENT

Operating Instructions

Object Format
Symbol Table

The

TABLE Command

Assembler Entry Addresses

DISASSEMBLER
The DISASSEMBLE Command

EXAMPLE PROGRAM

Setting up the Micro-ADE System
The Jump Table

Terminal Devices

Page 17 References

Memory Allocation

CASSETTE CONTROL
Assembling with Manual Cassette Control

INPUT AND OUTPUT ROUTINES

HEX DUMP OF MICRO-ADE

ERROR MESSAGES

MICRO-ADE COMMANDS

o,

O WO O ~

10

11
12
12

13
14
15

16
16
17

18
18
19
19
21
23
24
26
26
28
28
29
30

31
31

33
36
36
37
38
39

40
41

42
51
55

56

~-5-
SYSTEM DESCRIPTION

The Micro-Ade system is designed for use with any 6502 microcomputer and
consist of three major programs as well as a number of utility programs.
The major programs are an assembler, a disassembler, and a text editor.

The assembler is used to create machine executable code for the 6502
from a symbolic input source program. Small programs can be created and
tested directly in memory. Larger programs may be written using cassette
tapes for source input and object output.

The disassembler is used to list executable 6502 machine code in the
symbolic assembler source format. Symbols are generated if they are
defined in the symbol table.

The text editor is used to create source programs in the format required
for the assembler. It contains the necessary routines for easy manipula-
tion of text data in memory or from cassette files.

The minimum system configuration for full use of all Micro-ADE features
consists of a 6502 CPU, 8K of random access memory, 2 cassette recorders
with start/stop control, and an ASCII input/output device. It is possible
to use all parts of the system in a restricted way with less memory and
a single manually operated cassette recorder.

Source

I

Cassette data
1 | Micro-ADE
Symbol Object

Table

—6—
SYSTEM ENTRY

Before executing the program, the NMI vector ($17FA, $17FB on the KIM)

may be initialized to return control to the Micro-ADE editor at the
warm-start entry point ($2031 in version 1.0) so that a hardware interrupt
such as the ST-key on the KIM, may be used to break the program.

Initial entry into the Micro-ADE system is made via the cold-start entry
point (Address $2000 in version 1.0). All hexadecimal values be preceded
by a dollar sign throughout this manual. The editor CLEAR command is
automatically executed, and the system will prompt "NEW?". If you respond
with Y or YES, the source workspace will be cleared and formatted for new
data entry. Micro-ADE will indicate this condition by displaying "CLEAR",
and will then issue the ready prompt (-).

KIM
0000 23 2000
2000 D8 G

NEW?YES(r)

CLEAR

(r) will be used to indicate the carriage return throughoutthis manual.
You are now in the editor command mode. Any valid command may be entered.

At this point, if you are using cassette files, the input tape should be
loaded onto cassette 1, and it should be turned on in PLAY position. A
blank tape should be loaded onto cassette 2, and it should be turned on in
RECORD position. Always check your tape recorders for proper operation
before continuing further.

THE EDITOR
EDITOR COMMAND MODE

The editor and command mode for the Micro-ADE system indicates that it is
ready to accept commands by printing a hyphen (-). Commands must begin in
the first column after this prompt. They may be abbreviated to a single
letter, or a single word of any length may be used. The first argument

may begin immediately at the end of the command unless it is a hexadecimal
argument beginning with one of the letters A through F. One or more spaces
must separate these arguments from the GET, SAVE, XEQ, or REPRODUCE command.
The second and third arguments are delimited by commas. Finally, the
command input string must be terminated with a carriage return. The follo-
wing are valid commands:

-L10(r)

-LIST10(r)

-L 0010(r)

-L 10,30(r)

DEL and ctl-E

Command lines may be edited using the DEL (NUL or RUBOUT) key to delete
the last character entered. The ctl-E character also operates in command
mode to allow.you to copy the previously entered command again. For
example, if you have entered "~SAVE A3,2000,3000(r)'", and the operation
has been carried out, you may now type ctl-E to the input prompt, and the
command will be returned to the input buffer. It is possible to delete
parts of the command before typing RETURN to begin execution. This feature
is particularly useful for making multiple copies of a file.

-8-
EDITOR COMMANDS
A The ADD Command

The ADD command is used to add new lines to the end of the source file.
Upon typing ADD to the editor command prompt, Micro-ADE will respond
with the line number of the next new line of source. You may now type
data into workspace, terminating each line with a carriage return.
After each line, Micro-ADE will prompt with the line number of the
next line to be added. When you have completed your final line, and
terminated it with a carriage return, respond to the next new line
prompt with the Micro-ADE end of data character ($40), and a carriage
return.

-ADD(r)

0110: THIS IS A NEW LINE(r)

0120: THIS IS THE NEXT NEW LINE(r)
0130: (r)

C The CLEAR Command

The CLEAR command may be used at any time to delete all the data in the
workspace and format it for new data. Upon typing CLEAR to the command
prompt, Micro-ADE will respond with the question "NEW?". This prevents
the accidental clearing of the workspace by typing error. If you respond
Y or YES to the prompt, the workspace will be cleared of all data and
prepared for new data entry. It is usually a_good idea to clear the
workspace before loading a new file from cassette. When the Micro-ADE
system is entered from the cold-start entry point, the CLEAR command is
automatically executed.

~-CLEAR(r)
NEW?YES(r)
CLEAR

D The DELETE Command

The DELETE command is used to delete one or more consecutive lines of
source. Typing D i causes the editor to delete the line with numper i.
Typing i,j causes the editor to delete the block of lines beginning
with line i and ending with line

e

J. If there are a large number of lines to be deleted, this command may
require several seconds to execute. When the deletion is complete, the
editor ready prompt will be displayed.

-DELETE 20,40(r)

E The END Command

The END command is used to determine how much memory of the allocated
source workspace is remaining. Micro-ADE responds to the END command with
the absolute address and line number of the last line of source.

-END(r)
2FCA 1990

F The FIX Command

The FIX command is used to fix or modify a single line and insert new
lines immediately after it. After typing FIX i, Micro-ADE will print
line i and prompt with the line number. You may now type in a new line,
or you may edit the existing line with the ctl-E and DEL keys.

The ctl-E character causes the editor to copy the existing line from the
current character to the end of the line. A RETURN may then be used to
end the edit sequence. If there is nothing to be changed in the line

you are FIXing, type ctl-E and RETURN to leave the line unchanged.

The DEL keys causes a backspace of the input buffer over the previous
character. Deleted characters may be returned again by use of the ctl-E.

For example, to replace the third character from the end of a line, one
may type ctl-E,DEL,DEL,DEL, the new character, ctl-E, RETURN. The REPEAT
key available on many terminals makes this a very fast method of line
editing.

After you have typed RETURN, Micro-ADE will prompt with a new line number
one higher than the previous one. You may continue to insert new lines
at this point until you have completed your modification of the source.
When you are completely finished

-10-

with your editing, type the end of data character ($40) and a RETURN.
The NUMBER command should be used as soon as possible after inserting
new lines.

-FIX 2500(r)

2500: LINE 2410

2500: (ctl-E)LINE 2410(DEL)(DEL) (DEL)5(ctl-E) (r)
2501: (r)

-L 2500(r)

2500: LINE 2500

I The INSERT Command

The INSERT command is used to insert one to nine new lines between two
existing lines. Upon typing INSERT i, Micro-ADE will respond with a new
line number equal to i-9. You may now enter new data in the space
immediately before line i, terminating each new line with a carriage
return. When you have inserted as many lines as you wish, enter the

end of data character ($40), followed by RETURN. The NUMBER command
should be executed as soon as possible after new lines have been inserted.

If, due to a previous FIX or INSERT, there is not a space of nine lines
at the point where you wish to insert a new line, it is necessary to
renumber before executing the INSERT command.

-INSERT 100(r)

0091: AN INSERTED LINE(r)
0092: AND ONE MORE(r)
0093: (r)

~-NUMBER(r)

L The LIST Command

The LIST command is used to display the file at the terminal as it has
been entered. LIST may have 0,1, or 2 parameters. LIST alone causes
Micro-ADE to list the entire file. L i, causes the editor to list only
line number i, and L i,j causes the editor to list line i and all sub-
sequent lines up to and including line j. The BREAK key may be used
at any time to interrupt the listing procedure and return you to the
command prompt.

-11=

-LIST 300,310(r)
300: THIS IS LINE 300
310: THIS IS LINE 310

M The MOVE Command

The MOVE command is used to change the order of existing lines by moving
one or more of them to another location. If used with two parameters,
MOVE 1i,j, the single line j will be moved to a new position immediately
before line i. If three parameters are used (M i,j,k), the block of

lines beginning with line j and ending with line k will be moved to a new
location immediately before line i.

If a large block of lines is being moved, this command may take a few
seconds to execute. All of the inserted lines will be numbered 0000 after
the move. It is necessary to user the NUMBER command as soon as possible
after a move to renumber the lines in proper sequential order.

-L 10,40(r)
0010: TEN
0020: TWENTY
0030: THIRTY .
0040: FORTY
-MOVE 20,30,40(r)
~LIST 10,40(r)
0010: TEN
0000: THIRTY
0000: FORTY
0020: TWENTY
=N(r}

-12-
N The NUMBER Command

The NUMBER command may be used at any time to renumber all lines in the
workspace in a sequence of tens, starting at line number 0010. This
command should always be used as soon as possible after executing the
INSERT, FIX, or MOVE commands to prevent accidental errors which may
occur from having two lines with the same number.

W The WHERE Command

The WHERE command is used to locate the absolute address of a particular
line. This may be necessary to correct errors caused by a program bug, or
a bad cassette read, if the editor cannot follow the non-ascii characters
created, or if it is necessary to delete a line with the end of file
character in it.

-WHERE 30(r)
210A 0030: THIS IS LINE 30

-13=
CASSETTE COMMANDS
G The GET Command

The GET command is used to load a file into memory from cassette tape. It
must be followed by the hexadecimal identification of the file.

When Micro-ADE receives a GET command it switches on the input cassette
recorder (cassette 1) using the remote input jack. The recorder should
first be prepared in PLAY position with the appropriate cassette loaded
and cued.

Read Status Indicator

As the read operation begins, the right hand digit of the KIM LED display
will show the status of the read. When searching between data files, the
random cassette noise will be displayed as a slowly oscillating set of
random characters. If there is data present, but it is not being loaded,
the display will be less bright and show an 8. When the cassette read
software detects the stream of sync characters at the beginning of the
data block, it will display the "sync locked" pattern (tl).

Finally, as the data is being loaded into memory, it will display the
"data loading" pattern (1t). If the display is motionless or blank when
the GET command is first executed, the cassette recorder is not working
properly. By watching the patterns on the LED it is usually possible to
judge the status of the cassette read operation, and to detect the source
of possible errors.

FALSE ID

If an attempt is made to read a cassette file with an incorrect ID, the
false ID read from the tape will be typed at the terminal for your infor-
mation. Micro-ADE will then ignore the data, and continue to search for
the correct block.

Multiple files

Provision has been made to automatically read multiple files from the same
cassette, provided that they were written with sequential identifiers. The
GET A1,A4(r) will cause Micro-ADE to search for file A1, load it, search
for A2, load it, and so on until A4 has been loaded into memory. If a read
error of any kind occurs during a cassette load, the read routine reverts
to the search operation. This allows you to rewind the cassette and make
a second read attempt. If you are unsure of the reliability of your
cassette, it may be advisable to record two copies of each file. If an

error occurs in

14—

reading the first copy, the routine will automatically revert to the
search operation and read the second copy when it comes to it.

Load 1 file Attempt to load A1 Load files A1, A2
with ID At but A2 is on tape A3 and A4

-GET A1(r) -GET A1(r) -GET A1,A4(r)

- A2 -

As soon as the data has been succesfully loaded into memory, Micro-ADE
will turn off the cassette and return you to the editor command mode.

Since the BREAK key is disabled during cassette read operations it is
necessary to use either the RS- or ST-keys to interrupt the program.
If the NMI has been set up to return to the editor, the ST-key will
return you directly to the editor command mode.

The SAVE Command

The SAVE command is used to write a file to the output cassette
(cassette 2). Before executing the SAVE command, the recorder should be
prepared with a blank cassette properly cued, and left in the RECORD
position. Immediately after the SAVE command has been entered, the
system will turn on the output cassette recorder and print the start
and end addresses of the file at the terminal.

Source Files

Source files may be. saved using the SAVE or S x commands. The S command
without parameters will cause the system to save the resident source

file with the same ID as the last file accessed (presumably the read
operation of the same file before editing). The start address of the saved
file will be the first address of the memory allocated to the source.

The end address will be determined by the location of the end of file
record at the end of the source program. If the SAVE x command is used,
the ID of the saved file will be x, where x may be any two digit hexa-
decimal value.

-15-
Data Files

The general three parameter Form of the SAVE command may be used to save
files of data or source from anywhere in memory. S x,a,b causes the
system to save a block of data from address a to address b-1 with ID = x.
This data file may be loaded again using either the GET command or the
usual KIM cassette load routine at $1873.

-3 77,2000,3000 will save the Micro-ADE program.

=S will save the current source file with its old ID.

-S F7 will save the current source file with ID = F7

The REPRODUCE Command

The REPRODUCE command is used to reproduce a source file from the input
cassette on the output cassette. This is a very handy feature of Micro-
ADE for editing multiple file source.

Entering R x will cause the system to execute a GET x command followed
immideately by a SAVE command. Thus, the file with ID = x will be loaded
from the input cassette player and written to the output cassette player.

Multiple Files

The command R x,y will cause the set of files with the sequential identi-
fication x,x+1,...,y to be copied to the output cassette.

It is important to remember that this command can only be used to repro-
duce source files because the save parameters are generated from the
data, not from the read operation.

-R A1,A9Q will reproduce files A1, A2, ... A9

-16-
OTHER COMMANDS
B The BLOCKMOVE Command

The BLOCKMOVE command may be used to move a page or less of data from
one memory location to another. The command B a,b will cause the
relaocation of the data from address a through a+FF to the new location
b through b+FF. If less than a full page of data is to be moved, a
third parameter, the number of bytes, can be added. B a,b,x will cause
the movement of the block [a,a+x~11 to the new area (b,b+x~1].

Overlapping blocks

Because of the manner in which the BLOCKMOVE command operates, it is
not possible to move a block to a lower address than its initial
position if the end of the new block will overlap the start of the
old block. To perform this move, it would be necessary to move the
data to an unused page first, and then move it from there to the new
location. It is possible to move overlapping blocks to a higher
address. Remember, however, that if more than one page is to be moved,
the highest page must be moved first or the overlap will write over
some of the unmoved data.

-B 200,3E00 will cause the data from [200,2FF) to
be relocated to !3E00,3EFF!

-B 300,3F00,40 will cause the data from (300,33F1 to
be relocated to !3F00, 3F3F!

P The PAGE Command

The PAGE command may be utilized by users with CRT terminals in order

to break up all output into 16 line blocks. By typing PAGE, the Page
Mode is either set or reset depending upon its status immediately before
the command was entered. When in Page Mode, the system counts the number
of lines which have been displayed (including input lines). When this
number reaches 16, the system will pause and wait for a key to be
pressed. Usually a space or other non-printing character is entered,

and the output continues. This feature is especially useful for long
searches with the LIST command, or for examining the output from the
assembler on a CRT.

-17-

When the system pauses for an input at the 16th line, it is possible
to escape from Page Mode by entering the ESCAPE (ALT-MODE) key. The

system will reset the Page Mode flag and continue the output without
interruption.

-PAGE

X The XECUTE Command

The XECUTE command is used to execute programs directly from the
editor command mode. If no address is entered after an X command,
the system will execute the assembler.

If an address parameter is used with the X command, the system will
JUMP to that address and begin executing the user program. The user
program can return to the editor command mode by executing a JMP to
the restart entry point, or a BRK instruction if the IRQ vector was
not changed. The restart address is $2031 in version 1.0.

~X will execute the assembler

-X 200 will execute a program at $0200.

-18-

THE ASSEMBLER

The Micro-ADE assembler is designed to make programming the 6502

microcomputer as easy as possible. A source program must first be
created using the text editor and following the format described

below. If the program is short, it can reside in the memory space
allocated for source and be executed in memory. If it is long, it
must be broken into segments which are stored on cassette tape.

Upon executing, the assembler translates the source statements you
have written into machine instructions which will execute on the
6502 microcomputer. This is a two step process. During pass one,

the assembler reads the source statements from memory, or in blocks
from the cassette, and generates a symbol table which consists of all
the symbols defined by the user, and their hexadecimal equivalent
addresses or data. This table is stored in memory. During the second
pass, the assembler reads the source statements and references the
symbol table to generate the object code which is machine executable.

The object code is saved in memory or in short blocks on the output
cassette.

Once the program has been assembled, if there were no errors flagged

by the assembler, the user can load the object code to its execution
address and test it for operation.

SOURCE FORMAT

The input data for the assembler is formatted in blocks of variable
length records. Each record contains a two byte hex line number,
followed by O to 64 bytes of data, and terminated by a carriage
return ($0D).

The source data is located in a previously defined area of memory
consisting of at least one 256 byte page. Each block of data consists

of a variable number records and is terminated with an end of file record
consisting of a line number and the end of data character (= $40).

The € character is reserved in the Micro-ADE assembler, and may not

be used except as the end of file indicator.

An initial carriage return is located in the first location gf the
source block. This byte is defined by the editor when executing the
CLEAR command.

The source data format is shown below:

l$ODIﬁIn]0 to 64 data bytesl$OD]anJ data]$OD16]n $4OAL$OQJ
DATA FORMAT '

Egch source statement for the assembler can be divided into five
fields. These are the label, the instruction, the address mode, the
argument, and the comment.

Each field is delimited by a single space ($20), except for the
gddress mode. In many cases, a field may not be present. If so,

}ts absence must be shown by the leaving of a single space. It is
important to remember that since spaces are used as delimiters, the
number of spaces left between eacht field is critical.

The format of each statement is:

LABEL || InsTRUCTTON | ADDRESS MODE | 18 {aRGUMENT |18 [corvENT]
THE LABEL FIELD

Any program statement may be identified with a symbolic label. A label
can contain from one to six alphabetic characters. No special symbols
or numerals may be included in a symbol in this assembler. The label
must always begin in the first column of the record. It is important
to remember that symbols must be unique. That is, any symbol must be
defined only once in a given program. The assembler will flag a
duplicate symbol error if an attempt is made to create two identical
symbols.

If the symbol is used as a label on any line, other than one containing
the define symbol pseudo instruction (x), the symbol will be equated

to the current address as calculated by the assembler for that line.
The define symbol instruction may be used anywhere in a program to
define a symbol in terms of a special address or hexadecimal constant.
If a reference is made to a symbol as an argument at any point in a
program, the assembler will automatically substitute the equivalent
address or hexadecimal constant for the symbol.

Although most symbols may be defined anywhere in a program, symbols
referring to page zero addresses must normally be defined before they
are used in order that the assembler can correctly calculate the
number of bytes required for the instruction on the first pass. If it
is necessary to define a

ADC
AND
"ASL
BCC
BCS
BEQ
BIT

BMI -

BNE
BPL

BRK

BVC
BVS
CcLC
CLD
CLI
CLV
CMP
CPX
CPY

DEC
DEX
DEY
EOR
INC
INX
INY
IMI
JMp
ISR
LDA
LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLA
PLP

“ROL
ROR
RTI
RTS

' SBC

SEC

SED

SEI

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

- > N > N ! — N ~ ~ —~~
= > = < =< > < Y " e
o ¢] 3
%} Ll ©
X XX X X X |- X X
X XX X X X [-Xx X
X | X X XX |
X
X
X X
X
X
Cee X
X
X
X
X
...... X
X
X
X X X X X X | x X
X X X
X X X
X X X X
X
- X
X X X X X X |- x X
XX e X X
X
X
X
X
X X X X X X X X
X X X X X
X X X | X X
X X X , X X
I R X
X X X [X X X X X
X
X
X
A I I N B X
X X X X X
X X X X X
, X
X
X CX X X X X X X
X
X
X
X X X X X X X
X X X
X XX

> XX X XK X

S3Q0W SS3YAAY ANV SNOTLONYLISNI

\ =21~

page zero symbol after its first use, you can use the Z addressing mode
instead of allowing the assembler to automatically update an absolute
addressing mode. See the Address Mode section for further details of this
topic.

It is generally considered good programming practice to define all data
symbols at the beginning of the program. This keeps them together for
easier editing or relocation and prevents the possibility of refeencing
a page zero symbol before it is defined.

Valid symbol usage Invalid symbol usage
DATA LDA X DATA1 LDA X3

TEST = $03 TEST SBCIM $03

SUB # TEST +01 TEST +1 = DAT A

INSTRUCTION FIELD

The second field of each source data record is the instruction field.

It must always be separated from the last character of the label by
exactly one space. If no label is present, the instruction field will
always begin in column two. Instructions consist of three character
mnemonics for 6502 CPU operations. These mnemonics are exactly the

same as the NOS Technology instructions found on the reference card, or

in the Programming Manual with the single exception of the jump indirect
instruction. This is represented for the Micro-ADE assembler as a separate
instruction, JMI, instead of as a JMP with a special address mode. A
complete table of instructions and the valid address modes for each is shown
below.

PSEUDO INSTRUCTIONS

There are three pseudo instructions which may be used in the Micro-ADE
assembler. These are: "ORG", which is used to define the origin address
for the program; "x", define symbol, which is used to define a symbol
directly; and "=", define byte, which is used to define a byte directly.

ORG

The ORG instruction is used to define the origin address for the program
being assembled. It should always be placed at the beginning of any
program. If a label is placed on the ORG statement, it will become part
of the header line printed at the top of each page. Any valid argument
may be used to define

22~

the origin address, and comments may be placed on the line in the usual
way.

Normally, the ORG instruction should only be used once in a program. If
it is necessary to redefine the origin in the middle of a program, the
new origin must be the first statement of a NEW cassette file. The
addresses saved with a cassette object block, which allow it to be
loaded to the correct location, are based upon the ORG statement, and
therefore must be unique for each block generated. One object block is
generated for each source block.

EDITOR ORG $2000 VERSION 1.0 (77.07.01)
] The DEFINE SYMBOL Instruction

The define symbol instruction, %, may be used at any point to define
the label field as equivalent to the following argument field. Once
defined, symbols may be used in any type of instruction as an argument.
The assembler will substitute the hexadecimal value defined for the
symbol. The program address is not altered by a define symbol instruc-
tion. This is the onle type of statement (other than a comment) which
may precede the ORG statement.

ZERO % $0000 defines the symbol ZERO as equivalent to $0000
THREE % ZERO +03 defines THREE as equivalent to $0003
QMARK % '? defines the symbol QMARK as equivalent to $3F

= The DEFINE BYTE Instruction

The define byte instruction, =, is used to directly define a single

byte of memory. It is usually used to construct a data table. The argument
following may be symbolic, hexadecimal, or ASCII.

$33 defines the current byte as $33
2 defines the current byte as $3F

"ot

23

ADDRESS MODE

The address mode consists of zero, one, or two characters immediately
following the instruction field. No space is required before the
address mode field. Since the address mode is often implied directly
by the instruction, it may in some cases be omitted. If no mode is
given, and the instruction is not a relative branch, an implied
registgr operation, or a pseudo instruction, the absoclute mede is
assumed.

The valid address modes are:

A Accumulator addressing. The instruction operates on the
accumulator.

IM Immediate. The operand of the instruction is the argument
following. The argument may be any valid symbolic, hexadeci-

mal, or ASCII constant.

- AX Absolute indexed by X. The operand of the instruction is
the address represented by the argument added to the value of
the X index. If the argument represents a page zero location,
and if a valid page zero instruction exists, the assembler will
automatically substitute the ZX address mode.

ZX The operand of the instruction is the sum of the address repre-
sented by the argument and the value of the X register. The
high byte of the address will be ignored and the effective
address will always be in page zero.

AY Absolute indexed by Y. The operand is the address represented
by the argument plus the value of the Y index. If the argument
is in page zero, and a valid zero page instruction exists, the
ZY mode will be automatically used by the assembler.

7Y Zero page indexed by Y. The address of the argument is added to
the Y index to form the effective address in page zer.

IX Indexed Indirect. The argument address is added tot the X index
which points to a location in page zero. The memory location
pointed to by the page zero address calculated and the subsequent
location is used as the operand for the instruction.

Iy Indirect Indexed. The argument points to an address in page zero.
The contents of that memory location and the subsequent location
are added to the Y register to form the effective address of the
operand.

Dl

Absolute. Absolute indexing is the default mode. The effective
address is given directly by the argument. If the argument is
a page zero location, the assembler will automatically substi-
tute the appropriate zero page address mode.

Z Zero Page. The argument is assumed to be an address in page
zero. The contents of this memory location are the argument for
the operation. If the argument is not a page zero address, the
high byte will be ignored.

Relative. Relative instructions cause a branch to within 128
bytes of the current address. Since this type of instruction
is easily distinguished from all others, the address mode need
not be explicity defined.

Implied. Implied addressing requires no specification because
the operand of the instruction is an internal register and is
defined by the instruction itself.

Indirect. There is no indirect mode in the Micro-ADE assembler.
The JMP indirect instruction is replaced by the JMI instruction
which has an absolute address mode. The JMI instruction sets
the program counter to the contents of the memory location
pointed to by the argument and the subsequent location.

The assembler will flag most common address mode errors. Although
it will not detect illogical use of an-address mode {(e.g. ASLIM),
it will always detect illegal but logical address mode misuse
(e.g. LSRAY).

THE ARGUMENT FIELD

The argument field is used to define the operand for an instruction
or a pseudo instruction. There are three basic types of argument
which may be used with the Micro-ADE assembler. These are symbolic,
hexadecimal, or ASCII.

Symbolic Arguments

Symbolic arguments are symbols defined elsewhere in the program.
The equivalent address or data is substituted for the symbol in the
object code. If the symbol refers to a page zero address, it should
be defined before it is used. If it is not a page zero address, it
may be defined anywhere in the program.

Modified Symbolic Arguments

In order to conserve the memory required for the saving of the symbol
table, or in order to access part of a data table, it is sometimes
necessary to define an argument in terms of a symbol with an offset.
Offsets may be defined by appending a positive or negative value to
the symbol. A single space should be left between the symbol and the
operator (+ or -). The offset itself is a two digit hexadecimal value
between 00 and FF. Itmust be exactly two characters long. For example,
if BUFFER has been defined by a define symbol statement as being
equivalent to address $0100, then BUFFER +03 may be used to represent
address $0103.

If a symbol is referred to by an innediate operation, the low byte of
the symbol is used as the operand. It may be necessary in some cases
to reference the high byte of a symbol in order to set up an indirect
table reference. This may be accomplished by appending a "/" symbol
to the symbol. A single space should be left between the symbol and
the slash. An example of the use of this operation is shown below:

10020: KIM % $1C00 0200 KIM * $1C00

0030: LDAIM KIM 0200 A9 00 LDAIM KIM

0040: STA. NMI 0202 8D FA 17 STA NMI

0050: LDAIM KIM /256 0205 A9 1C LDAIM KTM /256
0060: STA NMI +01 0207 8D FB 17 STA NMI +01

(The 256 shown after the slash is actually a comment.)
Hexadecimal Arguments

Hexadecimal arguments are identified by a dollar sign as the first
character of the argument field. The following hex constant may be one
or two bytes in length. Offsets may not be used with hexadecimal
arguments.

Sample arguments would be: $0100 $0D

Character Arguments

ASCII arguments are identified by a single quotation mark (') as the
first character in the argument field. A single character may be
defined, the hexadecimal value of which, will be used as the operand
for the instruction.

For example: = 'A CMPIM 'Y

Note that the @ character may not be used as an argument in this way

because of its special end of file significance. Use $40 to represent
the @ character if necessary.

26~

THE COMMENT FIELD

The last field of a source statement is the comment field. It may be
of any length provided that the I/0 buffer does not overflow. The
comment is separated from the argument by a single space. If the line
is a comment only, it must begin in column four.

In general, comments may include any printable or non-printing
character with the exception of the end of file character. Comments
may not begin with the symbol modification characters +,-, or /.

ASSEMBLER OPERATING INSTRUCTIONS

Once you hace prepared a source program in the prescribed format
shown above, you may execute the assembler to check for errors and
prepare the object code for execution.

Enter the assembler from the editor command mode by typing X or XEQ.
Micro-ADE will respond "PASS 1", and request an input file ID.

X
PASS 1
ID=

If the source has been saved on cassette, and is not resident in
memory, enter the ID of the cassette file. If several blocks are
saved sequentially on cassette with sequential identification, they
can be read as a group by entering the first ID, a comma, and the
last ID. Micro-ADE will then read each block, assemble it, increment
ID, read the next block, and so on until the last block of records
has been assembled. If the source is resident in memory, enter the
ID= 00. This will cause the assembler to skip the cassette read

step and proceed directly to the first pass of the assembly.

Resident Source Single Cassette File Four Files with
ID A1,A2,A3,A4

X -X ~X

PASS 1 PASS 1 PASS 1

ID= 00 ID= A1 ID= A1,A4

Note that since ID= 00 is used to indicate a resident file, a source
file should never be saved with this ID.

-27-
PASS 1

As each block 1is assembled through pass one, errors detected by the
assembler will be flagged, and the offending source line printed.
When the assembler has completed the block, it will again prompt for
an ID. If there are more blocks of source to be read, enter the ID
of the next block. If this was the last file, respond with a RETURN
to signify the end of the source program. The symbol table has now
been compiled. Micro-ADE will proceed to pass two.

PASS 2

Immediately, the assembler will prompt "PRINT?". If you wish to have
a listing of the program printed at your terminal, respond with a
Y or YES. If not, respond with N or a RETURN.

The assembler will now ask for a "SAVE ID=". If you wish the object code
generated to be saved on cassette enter a valid ID (01 to FF). After

the code has been assembled, the object will be automatically written

to the output cassette with the appropriate adresses for a direct load
‘for execution. If you do not wish to save the object code at this time,
respond with a carriage return.

If there are multiple input files, the ID of the output object block
will be incremented each time a new input file is read. The resulting
group of object blocks may then be loaded using the GET x,y command in
the editor.

The assembler is now ready to execute pass two. It will prompt for
the input ID once again. This should now be entered exactly as for
pass one. Remember to rewind the input cassette first.

Examples continued from above.

ID=(r) ID=(r) ID=(r)

PASS 2 PASS 2 PASS 2
PRINT?YES(r) PRINT?(r) PRINT?2NO(r)
SAVE ID=(r) SAVE ID=23(r) SAVE ID=A1(r)
ID= 00(r) ID= 00(r) ID= A1,A4(r')

(A listing will be printed)

Error flags will be printed with the offending source statement regard-
less of the response given to the PRINT query.

<

-28- ' A »

At the end of the assembly you will be returned to the editor command
mode. If any errors were flagged, they should be corrected in the
source file, and the program reassembled before attempting execution.

If no errors were detected during both passes of the assembler, rewind
the output cassette, and place it on the input cassette player. Then,
load the object code from cassette using the GET command. If the source
was in a single block, you may move the object code to its execution
address using the BLOCKMOVE command.

OBJECT FORMAT

The object code generated by the assembler is stored in an area of

memory allocated to it. This allows you to write programs which are larger
than the available memory when the source, and even the assembler are

in the system. Each time a new source block is read, the object code
pointers are reset and the new object code is written over the old object.
For this reason, the object code must be saved in short blocks corres-
ponding to each cassette load. This operation is carried out automati-
cally by the assembler if you are using automatic cassette control.

The object saved on cassette is ready to be loaded using either the
KIM cassette load program, or the Micro-ADE GET command.

If only a single source file was used, the entire object program will

be resident in the object memory area. If it was ORGed for execution

at that address, you may execute the program immediately. Otherwise,

you can use the BLOCKMOVE command to move it to its execution address.
This is also a convenient way to write short patches to existing programs
using the assembler.

THE SYMBOL TABLE

The symbols defined by the assembler, and their two byte hexadecimal
equivalents are stored in a reserved area of memory called the symbol
table. The symbol table is also used by the disassembler to label
addresses and symbolically define arguments.

The symbols are saved in a packed ASCII format which aloows three
characters to be packed into two bytes. This is accomplished by stripping
each character of the three most significant bits leaving only the five
low order bits which

4

» -29-

define the character itself. It is because of this packing operation
that only the characters A through Z are allowed in symbols. Each

six character symbol requires four bytes for the symbol, plus the two
following bytes for the hexadecimal equivalent value. Using this
scheme, more than 170 symbols can be packed into 1K of symbol area.

The symbol table may be listed at the terminal in either alphabetical

or address order. The table in alphabetical order can be used to

avoid duplication when defining new symbols, or as a reference when
defining symbols external to another program. The symbol table in address
order is useful when defining overlays or looking for unused areas of
page zero for expansion of a program.

T The TABLE Command

The command T, or T@ will cause Micro-ADE to print the symbol table
in alphabetical order. The starting and ending addresses of the table
are also given for your information.

TABLE 1

The command T1 will cause the printing of the symbol table in address
order.

TABLE 2

The command T2 is used to determine the starting and ending addresses
of the symbol table. This is useful for determining how close the
table is to overflowing, or for determining the exact table location
for saving it on cassette.

TABLE 3

If you have saved the symbol table on cassette at the time of assembling
a program, it is easy to reload it again if you wish to use the
disassembler. Once the table has been loaded using the GET command, it
is necessary to set the end of symbol table parameter so that the
disassembler will search the table correctly. This may be accomplished
with the T3, a command, where a is the new address of the end of the
table. The previous address of the end of the table will be printed.

=30~
ASSEMBLER ENTRY ADDRESSES

It is possible to execute the assembler from addresses other than the
normal start address in order to recover from a user error, or to use
the assembler in a non-standard way. These are described below.

BAD CASSETTE READ

If a cassette will not read properly, return to the editor using the
NMI (ST-key on KIM). Very often, there will be a single bad byte
which has caused a checksum error. This may be corrected using the
editor. Once done, you may save the clean copy, and resume the
assembly from the point where you left off, by executing IDAS

($2608 in version 1.0). The assembler will prompt for an ID. Since
the source is now resident, Yespond with 00, and continue the
assembly as usual. This method may be used in pass one or pass two.

ADDITION TO SYMBOL TABLE

If you wish to add to an earlier symbol table, rather than creat a
new one, you may execute OLDST ($2601) without resetting the symbol
table parameter. The assembler will operate normally. This method
is useful for assembling small patches or new programs which
reference a large earlier program without having to define a large
number of external symbols.

CONTINUE ENTRY

If an error occured during an assembly which caused a break in
execution, you may wish to continue from the point where you left off
in order ro check the source for syntaxs errors, etc. (The object
code generated will not be executable). The assembler will continue
from a BREAK with the next source statement if ERRTRY ($266C) is
executed.

PASS 2 ONLY

If you have previously assembled a program, and the symbol table was

saved, you may reassemble the second pass only in order to print a listing.
Load the symbol table manually, remembering to reset the end of table
address, and execute PASTWO ($26E6). This is only possible if no

changes have been made to the source program.

PRINT ONE BLOCK ONLY

If you wish to list only one section of a long multi-file program, this
can be accomplished as follows. When prompted for the ID, hit the
BREAK key. Then, execute PASTWO ($26E6) and change your response to

the "PRINT?" prompt. Respond to the ID prompt with the correct next
file. This method may be used to set or reset the print flag.

THE DISASSEMBLER

A useful program for debugging or modifying programs when the source
listing is not available is a disassembler. The disassembler reads
object code and interprets it into 6502 assembler instructions where
possible. The symbol table is searched for addresses and arguments in
order that lines may be labelled and arguments interpreted symbolically.

Z The DISASSEMBLE Command

The Z command is used to execute the disassembler. There are three
modes of use. Z a,b will cause a disassembly of the data from address

a to address b without a pause. If you are using a CRT, it is more
convenient to disassemble a fixed number of lines at a time. Z a will
disassemble from address a, until 16 lines heve been displayed. The
system will then pause for a keyboard input. The space bar will cause
the program to continue. Typing RETURN will cause the program to return
to the command mode. If you now type the command Z, without parameters,
the disassembler will resume disassembly from where if left off.

Symbols

If the program you are disassembling is the last one assembled, the
symbol table willl already be initialized, and the disassembly listing
will have all symbols interpreted. If not, you will have to create a
new symbel table. If the symbol table was saved from the assembly of
& program, you can reload it with the GET command. The table end
address must then be defined using the T3 command.

If you wish to create a new symbol table, use the assembler to do so.

Symbols may be defined using the define symbol (%) pseudo instruction.
Only one pass of the assembler is required. Use the BREAK key to exit

from the assembler at pass two.

If the disassembler runs slowly and interprets symbols with unusual
names, the end of the symbol table has not been initialized properly.
Type X to the command prompt, then BREAK to return. The assembler
will initialize the table, and the disassembler will now operate
correctly.

Relocation
A disassembler can make the relocation of most programs very easy.

Three byte instructions stand out clearly from the code. Change the
high byte for each of these instructions and you

-32-

have done most of the work. Then, look carefully through the code for
indirect operations. Find out where the page zero addresses used have been
defined and meke the necessary changes. Further changes are usually not
necessary, but if they are, it may be necessary to single step through

some of the code to detect unusual programming tricks that the author
has used.

Patches

If you wish to change a single subroutine, address, or a special character,
an easy way to locate most references to it is to define it as a symbol
with a highly visible name, such as XXXXXX. Then, disassemble the entire
program. The occurences will be easily seen.

EXAMPLE OF A DISASSEMBLY

-7 2DF0, 2E29

2DF0 84 FL OUTCH STYZ YTMP
2DF2 86 FS STXZ XTMP
2DF4 C9 OD CMPIM $000D
2DF6 DO 1E BNE NOCR
2DF8 A6 63 LDX7Z PMODE
2DFA DO 13 BNE NOPG
2DFC E6 6L INCZ COUNTL
2DFE DO OF BNE NOPG
2E00 20 2B 2E JSR INCH
2E03 C9 1B CMPIM $001B
2E05 DO Oh BNE ON
2EQ7 A9 FF LDAIM $00FF
2E09 85 63 STAZ PMODE
2EOB A2 FO ON LDXIM GANG
2EOD 86 64 STXZ COUNTL
2EOF A9 OD NOPG LDAIM $000D
2E11 20 16 2E JSR NOCR
2E1L A9 0OA LDAIM $000A
2E16 20 AQ 2E NOCR JSR OUTPUT
2E19 2C 40 17 BRKTST BIT $1740
2E1C 10 05 BPL BREAK
2E1E A6 F5 LDXZ XTMP
2E20 Al Fh LDYZ YTMP
2E22 60 RTS

2E23 2C Lo 17 BREAK BIT $1740
2E26 10 FB BPL BREAK

2E28 4C 31 20 JIMP RESTRT

-33-
EXAMPLE PROGRAM

KIM
29FF 20 F2
00F2 04 FF. set up the
O0F3 0D 17FA NMI vector
17FA 00 31.
17FB 1C 20.
17FC 00 2000
2000 D8 G execute from $2000
NEW?Y
Respond Y to clear workspace
CLEAR
-ADD
ADD new data
0000: SHORT MESSAGE PROGRAM Input for a
0010: EXAMPL ORG $0200 program

0020: INDCT x $0066
0030: QUTCH x S2DFO PRINT CHAR

0040: LDAIN MESSG line 0010 -delete
0050: STA INDCT was used to backspace
0060: LDAIM MESSG /256 over a typing error
0070: STS INDCT +01

0080: LDYIM $00 note spacing of label,
0090: LOOP LDAIY INDCT instruction, and

0100: JSR OQUTCH argument

0110: INY

0120: BNE LOOP
0130: CPYIM 02
0140: JIMP $S2031
0150: MESSG = 'H

0160: = 'I
0170: € € end of data input
-X lexecute the assembler to check for syntax
errors
PASS 1
I1D=00
ID= 00 --resident source
YOOk XX xxx XE2X0040 LDAIN MESSG Adress mode!
XXNNX XX XXX *¥X07X0070 STS INDCT +01 Instruction!
ID= =
a carriage return indicated the last tape
PASS 2
PRINT? NO not worth printing yet
SAVE 1D= a carriage return indicated-no save
1D=00 00 - resident source
xx X xxxxx {E2> 0040
0040: 0200 00 00 0O LDAIN MESSG
xR XX XXXxx*X07)0070
0070: 0207 00 00 0O STS INDCT +01
YOO okxxxx (A8 0130
0130: 0214 00 00 0O CPYIM 02 frgument!
ID= §

a carriage return indicated the end

~-FIX 40

0080: LDAIN MESSG Fix line 40.
88:? QLD““ MESSG Use ctl-E and 7 deletes, type M, ctl-E.
: : No need to insert more lines - & to =nd fix

-F70

0070: STS INDCT +01 Fix line 70

gg;? es'“ INDCT «+01 Type to STA, then use ctl-E to tiig end.

-F 130

0130: CPYIM 02 Fix 1i

0130: CPYIM @2 1x line 130.

0131: @

-X Execute assembler again.

PASS 1

ID=00

ID=

PASS 2

PRINT? Y Print a listing this time.

SAVE ID=

ID=00

EXAMPL MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 01

0000: SHORT MESSAGE PROGRAM

0010: 0200 EXAMPL ORG $0200

0020: 0200 INDCT $0066

0030: 0200 OUTCH @ $2DF0 PRINT CHAR

0040: 0200 A9 17 LDAIM MESSG

0050: 0202 85 66 STA INDCT

0060: 0204 A9 02 LDAIM MESSG /256

0070: 0206 85 67 STA INDCT 401

0080: 0208 A0 00 LDYIM $00

0090: 020A B1 66 Loop LDAIY INDCT

0100: 020C 20 FO 2D JSR OUTCH

0110: O20F C8 INY

0120: 0210 DO F8 BNE LOOP

0130: 0212 CO 02 CPYIM $02 Listing

0140: 0214 4C 31 20 JMP $2031 1ooks

0M150: 0217 u8 MESSG = '‘H oK.

0160: 0218 49 = 'I

ID= _
Execute Program

-X 200 at $0200.

HI HIt g- g-%LI n-1 M-HEPs g- %i%TiEp M-% M-): p-L*L1 C'C&TPC) g-

-M 140,120 Program failed.
Rearrange lines.

-N

Number lines.

1120, 150)
0120: INY
0130: CPYIM $02 List corrected - 35 -
0140: BNE LOOP
0150: JMP $2031 section of source.
~X
PASS 1
I1D=00
D= Execute assembler again.
PASS 2
PRINT?
SAVE ID= BO Save object with ID = BO
I1D=00
ID=
-X 200 Execute program.
HI Success!
~-S E1
3600 3713 Save source as El.
-2 200
Disassemble from address 0200.
0200 A9 17 EXAMPL LDAIM $0017
0202 B85 66 STAZ INDCT
0204 A9 02 LDAIM $0002
0206 85 67 STAZ 80067
0208 A0 00 LDYIM $0000
- 020A B1 66 LOOP LDAIY INDCT
020C 20 FO 2D JSR OUTCH
020F C8 INY
0210 CO 02 CPYIM $0002
0212 DO F6 BNE LoopP
0214 u4C 31 20 JMP $2031
0217 48 MESSG PHA Even tables can
0218 49 20 EORIM $0020 look like program
021A 48 PHA sometimes.
021B 49 F4 EORIM $0OFX
021D AO 0O LDYIM $0000
~T Print the symbol table.
SYMBOL TABLE 3000 301E
EXAMPL 0200 INDCT 0066 LOOP 020A MESSG 0217
QUTCH 2DFO
-2T1
SYMBOL TABLE 3000 301E
INDCT 0066 EXAMPL 0200 LOOP 020A MESSG 0217
QUTCH 2DFO

-36- ‘ »

SETTING UP THE MICRO-ADE SYSTEM

Once you have loaded Micro-ADE into your system, there are a number of
parameters which may have to be initialized before you can use the
program.

The JUMP Table

The following subroutines are external to Micro-ADE and must be defined
for each system.

Address Routine KIM TIM or JOLT Other

2E94 PACKT 4C 00 1A 4C A9 2E 4C A9 2E
2E9T7 READ 4C AC 2E JMP to your own cassette read

2E9A WRITE 4C 32 2F JMP to your own cassette write

2EQD INPUT 4C 5A 1E 4C E9 T2 ASCII input
2EAQ OUTPUT 4C AO 1E 4C C6 T2 ASCII output
PACKT

PACKT is a KIM subroutine which is used to pack two ASCII characters
into a hexadecimal byte. It is called twice, with the ASCII input in
the accumulator each time. After the second call, the hex byte is re-
turned in the accumulator and in location SAVX. If the ASCII character
is a valid hexadecimal value, the Z-flag is set before returning. If
not, the Z-flag is reset. The X register must be preserved. Many systems
will already have such a routine in their operating system which may be
used. If not, the routine below can be used. Since the CREAD and CWRITE
routines cannot be used by systems other than KIMs, this area of memory
is available for patches and expansion. Alternations must be made to
the editor, because SAVX is accessed directly by some operations.

READ

This is a subroutine which is used to input the source and data files
from cassette tape. The routine will read a file with a hexadecimal
identification passed in ID ($0062). The address to which the data is
written is part of the file itself. When a succesful read is completed,
the subroutine returns. No registers need be saved.

WRITE

This is a subroutine which is used to output source or object files

to cassette tape. The program saves a file with identification ID ($0062)
as it exists in memory from address SAL, SAH ($17F5, $17F8) and writes
the startaddress SALX, SAHX ($0061, $0062) onto the tape for disposition
when loading.

The CREAD and CWRITE routines also turn on the cassette recorders using
the PIA on the KIM. If these routines are not used, the initialization -
of the cassette control at address $2043 should be replaced with 8 NOPs.

] -37-

READ and WRITE may be replaced with calls to any mass storage device
capable of storing the data and reloading it in the required format.
Paper tape, floppy disk or other media may easily be used. A disk
oriented version of Micro-ADE is currently being developed.

INPUT

The INPUT subroutine polls a keyboard device and return with ASCII
data in the accumulator. Mark, space, even, or odd parity may be used.
No registers. need be saved. A line feed is sent to the output routine
each time a carriage return is entered. Otherwise, all echoing is
assumed to be external to the Micro-ADE system.

OuTPUT

The OUTPUT subroutine prints the ASCI| character passed in the
accumulator on a display device. The data is passed with bit 7 equal
to zero. No padding is provided for carriage returns. A line feed is
automatically sent with each carriage return.

TERMINAL DEVICES

It seems that every terminal available today has one or two non-
standard features. In order to allow each user to adapt the Micro-ADE
package to his own hardware, we have provided the source listing for
all of the key 1/0 functions. The comments will allow you to change
the backspace character, remove printing control character, or
unnecessary rub-outs of nonprinting control characters, change the
delete function, use your own BREAK test, or completely modify the
line input buffer to suit your own taste. .

.

End of File Character

If you wish to change the end of file character from to something
else, such as ctl-D, the locations to change are: $201F, $20E3, $2134,
$215D, $23B0, $247C, $249D, and $24FO0.

Page length
The assembler currently prints a form feed character ($0C) to start a
new page. This character is located at address $29FE. |t may be

replaced with a return ($0D) or a null ($00).

The number of 1ines per assmbler page is specified as 58 by the $C8
at address $2A36. This byte may be changed to suit your printer.

The number of lines per disassembly for a CRT is specified as 16 by
the $F0 at address $2308.

he number of lines per page in PAGE MODE is specified as 16 by the
FO at $2EO08.

- 38 -

Page 17 References

Since version 1.0 of Micro-ADE is set up to use KIM manitor
routines, it was necessary to pass some parameters in page 17
locations. The cross reference table below will enable yopy %o

replace all of these addresses with the equivalent fer your
~ system, ‘

SYMBOL ADDRESS REFERENCES FUNCTION '

SAVX 17E9 206F 2091 2096 used by PACKT

SAL 17F5 21C6 21EE 26C3 used by CWRITE

SAH 17F6 21D0 21F3 26C9 used by CWRITE

EAL 17F7 21CB 26D0 used by CWRITE

EAH 17F8 21D5 26D7 used by CWRITE

IRQ 1TFE 203B 2678 change to your IRQ
17FF 2040 267D or FFFE, FFFF

PIA 1702 2045 cassette control
1703 2048 PIA port

The PACKT Subroutine

0010: 2EA9 PACKT ORG $2EA9 77.06.29

0020:

0030: 2EA9 SAVX b $0065 TEMPORARY DATA
0031:

0040: 2EA9 C9 u7 CMPIM $47 TOO HIGH?
0050: 2EAB BO 1B BCS RET

0060: 2EAD C9 30 CMPIM $30 TOO LOW?

0070: 2EAF 90 17 BCC RET

0080: 2EBt1 C9 40 CMPIM $40 LETTER?

0090: 2EB3 90 02 BCC N

0100: 2EBS 69 08 ADCIM 308 MAKE IT HIGHER!
0110: 2EBT7 29 OF N ANDIM $OF REMOVE GARBAGE
0120: 2EB9 A8 TAY HIDE HEX DIGIT
0130: 2EBA A5 65 LDA SAVX GET FIRST HALF
0140: 2EBC OA ASLA SHIFT

0150: 2EBD OA ASLA IT

0160: 2EBE 0OA ASLA OVER

0170: 2EBF OA ASLA TO LEFT

0180: 2ECO 84 65 STY SAVX SAVE IT

0190: 2EC2 05 65 ORA SAVX PUT THEM TOGETHER
0200: 2ECY 85 65 STA SAVX SAVE WHOLE BYTE
0210: 2EC6 A0 00 LDYIM $00 CLEAR Z

0220: 2EC8 60 RET RTS RETURN

0370:

0380: PATCHES TO EDITOR

0390: 206F ORG $206F

Q400: 206F 85 65 STA SAVX

0410: 2071 EA NOP

0420:

0430: 2091 ORG $2091

O440: 2091 05 65 ORA SAVX

ous0: 2093 EA NOP

0460: 2094 85 18 STA Lo

0470: 2096 84 65 STY SAVX

o480: 2798 EA NOP

14

S

- 39 -

MEMORY ALLOCATION

The Micro-ADE system (version 1.0) uses the following areas of
memory: '

Page O 0010 to 0064 data
00F0 to OOQFF temporary data
Page 1 0100 to 0140 input buffer
O1EQ0 to OIFF stack
Page 17 17E9 to 17FF see above
Page 20-2F 2000 to 2FFF Micro-ADE program

The program from $2000 to $2FFF 1is pure code. Once
initialized, it may be executed in protected memory, or placed

in ROM. The program will not change any data in this area
during execution. ‘

MEMORY ALLOCATION TABLE

The areas of memory to be used for the various files associated
with the Micro-ADE system are allocated by a table at address
$2EAS3. In this case, $3600 to $3FFF has been allocated as the
source, $3000 to $35FF has been allocated as the symbol table,
and $0200 upward has been allocated for object code.

Address Definition Allocation

2EA3 SOURCM = $35 SOURCE =1

2EAY SOURCE = $36 First page of source code.
2EAS SOURCF = $40 Last page of source +1.

2EAD SYMBOL = $30 First page of symbol table.
2EAT SYMF = $36 Last page of symbol table +1.
2EAS8 OBJECT = $02 First page of object code.

The amount of memory allocated to each file will depend upon
the memory available in your system as well as your persongl
programming style. The allocation shown above has proven to be
ideal for writing programs of up to 400 bytes without the usg
of cassettes, and of up to 3K without overflowing the symb?
table, The object allocation should always be approximately
one fifth the size of the source area to prevent the
possibility of overflow.

o s 4

- 40 -

CASSETTE CONTROL

Micro-ADE is designed to be used with two com v

puter c¢entrelled
cassette recorders. Cassette 1 {s used for input tz*the
System, and cassette 2 is used for output from the system,
These cassettes are turned on and off by the computer using the

REMOTE input jack available on most recorders. The schematic

for a simple interface between the KIM-1 PIA ort and
cassette recorders is shown below. P the

+5V
? 0
7404 5v,2000 /VV\
— .1 330 1 >
PB2 7 &T o
or | v~ FEATY REMOTE
PB3 <> :
Cassette Control Interface
(1 for each recorder)
PB2 controls Cassette 1 Parts List

PB3 controls Cassette 2 1 7404 IC ,

2 5V,200n spst reed relays
2 100, 1W resistors

2 330Q,.5W resistors

2 .1uF, 100V capacitors
2 spst switches
2 LEDs
o

ptional

=

i

)

- 41 -

ASSEMBLING WITH MANUAL CASSETTE CONTROL

Although the assembler is designed to operate most efficiently
using two computer controlled cassette recorders, it is

possible to use the system with as little as as one manuvally
operated recorder.

The patches shown below will cause the system to print "R% when
it is ready to read from a cassette, and "W", when it is ready
to write to a cassette. It will then wait for a RETURK to
indicate that the cassette recorder has been started. When the
read or write operation is complete, Micro-ADE will type <*X",
and pause once again to allow you turn the recorder off. In
addition to the patches below, the editor program should have

the following code replaced with 8 NOP instructions: Address
2043: A9 0OC 8D 03 17 8D 02 17.

2EAF A9 52 CREAD LDAIM 'R
2EB1 20 FO 2D JSR OUTCH
2EB4 20 2B 2E JSR INCH
2F2A ORG $2F2A
2F2A A9 58 OKRD LDAIM 'X
2F2C 20 FO 2D JSR OUTCH
2F2F 20 2B 2E JSR INCH
2F35 ORG $2F35
2F35 A9 57 CWRITE LDAIM 'W
2F37 20 FO 2D JSR OUTCH
2F3A 20 2B 2E JSR INCH
2F98 ORG $2F98
2F98 20 8C 1E JSR INIT
2F9B A9 58 LDAIM 'X
2F9D 20 FO 2D JSR OUTCH
2FAQ 4C 2B 2E JMP INCH

[0 MICRO~-WARE ASSEMBLER 65XX-1.0 PAG- 01

0010G:

00620:

0030:

0040;

0050: A ,
'0060: llllllllllllﬂllllllllkl&l&llﬂutll!&lﬂi
0070: ' ®aRe® INPUT AND OUTPUT ROUTINES #w##ug
0080: RE%%% FOR THE MICRO-ADE SYSTEM #x#an
0090: lIlllllll!lllllllllll!léﬂ!llll!ll..’p,.
0100: ' S
0110 : i '
‘3}58: 2DCS - I0 ORG ~ $2DC5 77.06.24

0140: 2DCS BLO " $0010 POINTER TO WORKSPACE
0150: 2DCS N ® $0015 LINE NUMBER

0160: 2DCS - SALX # $0060 FILE EXECUTION ADDRESS
0170: 2DCS " SAHX * $0061 :

0180: 2DCS . ID * $0062 FILE ID

" 90: 2DC5 " PMODE #* $0063 PAGE MODE FLAG

0200: 2DCS COUNTL * $0064 LINE COUNT

0210: : A

0220: 2DCS GANG » $00F0 CWRITE PULSER

0230: 2DCS TIC * $00F1 CWRITE TIMER

02u40: 2DCS COUNT * $00F2 CWRITE COUNTER

0250: 2DCS T™P * $00F3 TEMPORARY STORAGE
0260: 2DCS YTMP * $00F Y " "

0270: 2DC5 XTMP i $00F5 " "

0280: 2DCS TRIB . $00FE CYCLE COUNTER

0290:

0300: 2DCS BUFFER % $0100 INPUT/OUTPUT BUFFER
0310:

0320: 2DCS RESTRT #* $20317 EDITOR WARM ENTRY ADDRESS
0330:

0340:

0350: KIM ROM AND PIA ADDRESSES

0360: '

0370: 2DC5 SBD . $1742 PIA LOCATION

3180: 2DCS CHKL " $17ET7 CHECKSUM

u390: 2DCS CHKH ® $17E8 ~

ou400: 2DCS VEB * $17EC VOLATILE EXECUTION BLOCK
0410: 2DC5 SAL . $17FS TAPE START ADDRESS
0420: 2DCS SAH » $17F6

0430: 2DC5 EAL * $17FT TAPE END ADDRESS
ouyo0: 2DCH EAH had $17F8 :

0450: 2DCS INTVEB # $1932 INIT VEB SUBROUTINE
0460: 2DCS CHKT ® $194C CHECK SUM SUBROUTINE -,
o470: 2DCS5 INCVEB ® $19EA INCREMENT VEB SUB
0480: 2DCS RDBYT # $19F3 READ BYTE SUBROUTINE
0490: 2DCS : RDCHT * $1A24 READ CHAR SUBROUTINE
0500: 2DCS ' RDBIT * $1A41 READ BIT SUBROUTINE
0510: 2DC5 INIT . $1E8C ' RESET ALL PIAS

0520: o :

0530:

05%40:

0550:

0560: | o

0876 :
0520:
065460:
0600
GRI0:
0620
0630:
0549
0650
0660:
267
- G680:
- 0690:
- 0T709:
- 0710:
' 0720:
0730:
0740
0750:

760:
0770:
0780:
0790:

0800: .

0810:
0820:
08320:
0840:
0850:
0860:
6879
3880
3890:
0900:
0G10:
0920:
0930:
QGUD:
9c0:
LM
0979:
0950
0990:
1000:
1010:
1020:
1030:
1040:
. 1050:
196G:
~ID=702

‘QOO10:

002C:

003C:

ooucC:
0050
"005C:

2nCcs
2DC7

2DC9

.2bccC

2DCD
2DCE
2DCF
2DDO
2DD1
2bD2
2DD5S

2DD6

2DD8
2DDA
2bDB
2DDD
2DDF
2DE1

2DE3
2DES

2DET
2DE9

2LEB

MICRO-WARE ASSEMBLER 65YX-1.0 FAGE ¢7 ' -43.

AS
A6

20
8A

Cc9
18
30
69
69
DO

A9
DO

A9
DO

20

LLLLILL INPUT AND OUTPUT Pourruas:-i'**'*"v
SUBROUTINE TO PRINT THE CU?RENT LINE NUMBER

16 NOUT LDA N +01 GET HI N
15 . LDX N GET LO N...PRINT THEM
- SUB TO PRINT 2 HEX BYTES “Af ;fv* et
~ FIRST BYTE IS IN A SN NS .
~ SECOND BYTE IS IN X ; o A
cD 2D stax JSR = HEXOUT PRINT AGCCUMULATOR = =
. TXA " GET BYTE IN X ... PRINT IT.
SUBROUTINE TO PRINT 1 HEX BYTE
INPUT IS IN ACCUMULATOR
HEXOUT PHA SAVE INPUT
LSRA GET
LSRA UPPER
LSRA NYBBLE
LSRA
D8 2D JSR HEX PRINT UPPER NYBBLE
PLA GET INPUT BACK
OF ANDIM $0OF GET LOWER NYBBLE
SUBROUTINE TO PRINT 1 HEX CHARACTER
INPUT CHAR IS IN ACCUMULATCR
0A HEX CMPIM $0A LETTER OR NUMBER?
CLC CALCULATE ASCII
02 BMI HEXA IF IT IS A NUMBER!
07 ADCIM $07 ADD 7 TO LETTER
30 HEXA . ADCIM $30 AND 20 TO BOTH
oD BNE OUTCH THEN PRINT IT
SUBROUTINE TO PRINT A BACKSPACE
IF YOUR TERMINAL CAN'T-CHANGE THE 5F TO
ANOTHER CHARACTER TO INDICATE DELETES
SF BACKSP LDAIM $5F BACKSPACE CHARACTER
09 " BNE - OUTCH PRINT IT
SUBROUTINE TO PRINT CARRIAGE RETURN R
~ AND LINE FEED R -
OD -~ CRLF LDAIM $0D GET CR CHARACTER
s BNE QUTCH AND PRINT IT
fsuanourrus 10 PRIN* 2 HEX BYTES
| FOLLOWED IMMEDIATEDLY BY A SPACE
c9 2D stsp Jsaa. HEXAX PRINT st BYTES

10 o

0670:

0080:

0090:

~2DEE

0100

0110:
0120:
0130:
"0140:
. 0150:
'0160:
"0170:

-0180:.

-0190:
10200:

- 02103

0220:

0230:

0240:

£°50:
"0L260:
0270:
0280:
0290:
0300:
0310:
0320:
0330:
0340:
0350:
0360:
0370:
0380:
0390:
0u400:
0410:
0420:
0430:
“*40:
u450:
0u460:
o470:
0480:
0u90:
0500:
0510:

0520:

0530:

0580

0550:
0560:

0570:

Q580:
0590:
0600:
0610:

0620:

_2DFO
. 2DF2

2DF Y

2DF6

2DF8
' 2DFA

2DFC
2DFE

2EQ00
2E03

2E05

2EQ7
2E09

2EOB

2EOD’

2EOF
2E11

2E 4
2E16

2E19
2E1C

2E1E
2E20
2E22

2E23
2E26
2E28

2E2B
2E2D
2E2F
2E32

.2E34

2E36
2E38

A9

84
86
c9
DO

DO
DO
20
c9
DO
A9
85

A2
86

A9
20

A9
20

2C
10

A6
A4
60
2C

4c

86

20
29
C9
DO

A9

A6

20

Fu
F5

oD
1E

13

6u

OF

2B
1B

o4

FF
63

FO
6u

OA
16

oD
AO

40
05

F5
Fi

40
FB
31

FS

Fi
9D
TF

:JUBROUPTNV T PRINT A PACE

;OUTSP

2E |

2E

2E

17

17
20

2E

oD

07

OA

o

MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 02

LDATM * ﬂﬁf LOAD SPACE IN [

SUBROUTIN” TO PRINT AN ASCII CHARACTER
INPUT CHARACTER IS IN THE ACCUMULATOR .

OUTCH

~ _CMPIM $OD
_BNE . NOCR SKIP LF IF, NOT |

STY YTMP HIDE Y
STX = XTMP AND X s
IS THIS A cnnarnce RETURN°

“',':7_& - e i :

LDX PMODE CHECK PAGE MODE FLAG
BNE NOPG @ SKIP IF NOT ON . :
INC COUNTL ADD 1 TO LINES PRINTED

. BNE ,NNOPG ~ 'SKIP IF NOT END OF SCREEN

ON

NOPG

NOCR

- JSR INCH = PAUSE UNTIL INPUT OF ANY KEY

CMPIM $1B WAS ESCAPE KEY ENTERED?

- BNE ON° IF NOT CONTINUE IN PAGE MODE
LDAIM S$FF TURN OFF PAGE MODE

- STA PMODE
LDXIM $FO RESET LINE COUNTER

STX COUNTL TO -16

LDAIM $0A "PRINT A LINE FEED
JSR NOCR (REMOVE IF YOUR TERMINAL HAS AUTO

LDAIM $0D THIS WAS A CR, REMEMBER
JSR OUTPUT SO PRINT IT

ROUTINE TO TEST FOR BREAK DURING I/0

BRKTST BIT $1780 TEST INPUT PORT OF PIA

BPL BREAK IF BIT 7=0

LDX . XTMP SEEK HIDDEN X
LDY YTMP AND HIDDEN Y

RTS ~AND ITS ALL OVER
BREAK BIT $1740 WAIT UNTIL KEY |
'BPL BREAK IS RELEASED
‘ JMP RESTRT THEN GO TO EDITOR }
ROUTINE TO INPUT AN ASCII CHARACTER .

INCH

RETURNS IT IN ACCUMULATOR i}

STX XTMP HIDE X

- STY YTMP AND Y

JSR INPUT CALL USER INPUT ROUTINE
ANDIM $T7F STRIP PARITY BIT - :
CMPIM $0D WAS ‘INPUT -A RETURN

BNE ~* NOCRIN IF NQT ITS oK .

~,PR¥NT A LF HITH CR INPUT

LDAIM $0A

v

10 MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 0" ’ . - 45 -

0530: 2E3A 20 AO 2E JSR OUTPUT SKIP THIS [F AUTO LF ON TERMINAL
0640: 2E3D A9 OD LDAIM $0D REPLACE CR AGAIN FOR RTS
gggo: 2E3F DO DS8. NOCRIN BNE BRKTST RETURN VIA BREAK TEST

0:

1D=03

0010: : :

0020: SUBROUTINE TO FILL BUFFER FROM

10030: KEYBOARD INPUT :

0040: . re

0050: 2E41 A0 00 BUFIN LDYIM $00 RESET BUFFER COUNTER

- 0060: 2E43-20 2B 2E INB JSR INCH GET CHARACTER INPUT

- 0070: 2E46 C9 7F CMPIM $7F WAS IT A DELETE?

8838: 2E48 DO 07 BNE ONIN IF NOT, CARRY ON

0100: 2E4A 20 E3 2D JSR ~ BACKSP PRINT A BACKSPACE
- 0110: 2E4D 88 : : DEY BACK UP IN BUFFER
. 0120: 2EU4E 10 F3 BPL INB - AND GET IT RIGHT THIS TIME

o;gg: 2E50 00 : BRK ERROR--BACKED UP TOO FAR!

0150: 2ES1 C9 SC ONIN CMPIM $5C - (BACKSLASH) WILL

0160: 2ES53 DO 06 BNE OKB DELETE WHOLE LINE

0170: 2ES5 20 ET 2D JSR CRLF PRINT RETURN AND LF

0180: 2E58 4C 41 2E JMP BUFIN AND START OVER

0190:

0200: 2E5B C9 05 OKB CMPIM $05 WAS IT A CTL~-E?

0210: 2E5D FO 11 BEQ OVR YES--GO TO OVR FUNCTION

0220: 2ES5F 99 00 01 STAAY BUFFER JUST AN ORDINARY CHARACTER TO SA\

0230:

0240: 2E62 C9 OD CMPIM $0D WAS THIS THE END?

0250: 2E64 FO 09 BEQ ENDBU YES, SO GET OUT OF HERE

06260: 2E66 C8 INY INCREMENT PGINTER _

0270: 2E67 CO.3A CPYIM $3A ALLOW ONLY 58 CHARS +6 PROMPT=6H4

0280: 2E69 30 D8 BMI INB STILL SOME ROOM FOR MORE

0290: 2E6B A9 OD LDAIM $0D FORCE CR TO END LINE

0300: 2E6D DO EC BNE 0KB PRINT IT AND PUT IN BUFFER

0310: 2E6F 60 ENDBU RTS ALL DUNE

0320: ,

330: 2E70 20 E3 2D OVR JSR BACKSP CANCEL THE CTi. CHAR (THIS MAY NO1T
0340: NECES3ARY ON SOME TERMINALS)
0350: 2E73 B9 00 01 OVX LDAAY BUFFER GET CHARACTER IN BUFFER
'0360: 276 C9 OD , CMPIM $0D IS (T [HE END?

'0370: 2E78 FO C9 : "BEQ INB IF SO.-GC GET NEW ADDITION

- 0380: 2E7A 20 FO 2D , JSR OUTCH snow‘higx¥HA5A§:c;2R

0390: 2E7D C8 INY “ON TO C

0330: 2E7E CO 3A CPYIM $3A BUT DON'T GET CARRIED ANAY' BUFFI
0410: 2EB80 DO F1 BNE ovX KEEP GOING - | LI
0420: 2E82 FO BF BEQ INB LET HIM FIX IT UP

0ou30: . :
S ou40: . SUBROUTINE TO PRINT THE BUFFER

0u450: o :

0460: 2EB4 AO 00 PRBUF LDYIM $00. RESET THE: PO’NT&R

0470: 2E86 B9 00 01 PRNTB LDAAY BUFFER GET A CHARACTER
O480: 2E89 u8 PHA ~ HIDE 'IT TEMPORARILY

'Q490: 2E8A 20 FO 2D JSR OUTCH PRINT IT " .

- 0500: 2E8D 68 PLA SEEK IT BacK

‘0510: 2EBE C8 o - INY POINT TO NEXT CHARACTER

-0520: 2EB8F C9 0D ' CMPIM $0D - WAS THAT THE'END OF THE BUFFER?

I0

0530:
0540
0550:
0560:
0570:
0580:
0590:
0600;
0610:
0620:;
"0630:
0640:
0650:
0660:
0670:
0680:
0690:
0700:
0710:
- "20:
0730:
OT740:
0750:
0760:
0770:
0780:
0790:
0800:
0810:
0820:
0830:
0840:
0850:
I1Db=04

0010:
0020:
0030:

40:
00U50:
0060:
0070:
0080:
0090:
0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
0200:
0210:
0220:
0230:

2E91
2EQ3

{

2E94
2E97
2E9A
2E9D
2EAO

2EA3
2EAY
2EAS

2EA6
2EAT

2EA8

2EA9 20 CD 2D
2EAC 20 EE 2D

MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 05

DO
60

4C
uc
4c
uc

4c

30
36

02

00
AF
35
SA

AO

1A
2E
2F
1E

1E

BNE PRNTB NO, THERE MUST BE MORE
RTS YES, SO RETURN

LA A B XN R N AN E Y Y Y YY]

.R®R%® USER SPECIFIED ADDRESSES #%#ws

RRER RARBERRRE RREREE NN

PACKT JMP $1A00 A KIM SUBROUTINE‘}O PACK ASCII %ﬁ

READ JMP CREAD THE CASSETTE READ SUBROUTINE

WRITE JMP CWRITE THE CASSETTE WRITE SUBROUTINE

INPUT JMP $1E5A THE KEYBOARD INPUT ROUTINE
OUTPUT JMP $1EAQ0 THE PRINTER OUTPUT ROUTINE

DEFINITION GF SOURCE LOCATION

SOURCM = $35 SOURCE -~ 1
SOURCE = $36 SOURCE AREA OF MEMORY STARTS HERE
SOURCF = $40 AND ENDS JUST BELOW HERE

DEFINITION OF SYMBOL TABLE LOCATION

$30 SYMBOL TABLE STARTS HERE
$36 AND JUST BELOW HERE

SYMBOL
SYMF

DEFINITION OF OBJECT LOCATION
OBJECT = $02 THE OBJECT WILL BE ASSEMBLED TO H

HEERERRERRERERRERBERAERN RS RERABRRRREERRRRRRRRRER

#x#m® K TM CASSETTE READ AND WRITE ROUTINES ®&nu#
I I I I I O e e A R T R R A R R T L

CASSETTE READ ERROR (INCORRECT ID)

ERID JSR HEXOUT PRINT THE WRONG ID,
‘ JSR OUTSP SPACE AND THEN START OVER

#as&% CASSETTE READ SUBROUTINE %uexs

VERY SIMILAR TO THE READ ROUTINE

IN THE KIM ROM.

THE LED DISPLAY OF INCOMING DATA ADAPTED
FROM VUTAPE, A PROGRAM BY JIM BUTTERFIELD
FROM THE KIM-1 USER NOTES.

2EAF AD 02 17 CREAD LDA $1702 TURN ON CASSETTE #1 BY

2EB2 29 FB
2EB4 8D 02 17

ANDIM S$FB CHANGING BIT 2 TO
STA $1702 ZERO IN PIA PORT B

L

0240:
0250:
0260:
0270:
0280:
0290:
0300:
0310:
0320:
0330:
0340:
0350:
0360:
0370:
0380:
0390:
0400:
o410:
0420:
~"30:
L .40:
o441
ouso:
0u460:
0470:
0480:
oug1:
0490:
0500:
0510:
0511:
0520:
0530:
0540:
0550:
0560:
0570:
0571:
ceT2:
. .30:
0590:
060G:
0610:
0611:
0620:
0630:
0640:.
0650:
0651:
U660:
0670:
0680:
0690:
0691:
0700:
0710:

2EBY
2EB9

2EBC

2EBD
2EBF
2EC2

2ECS
2ECT

2ECA

2ECD
2ECF
2ED1
2ED3

2ED6
2ED8

2EDA
2EDD
2EEO
2EE?2

2EEY
2EET
2EE9

2EEB
2EEE
2EF1
2EF Y
2EFT
2EFA

2EFD
2EFF
2F02
2F 04

2F 06
2F 09
2F 0B
2F0C

2F OE .

2F 11
2F 14
2F17

2F 1A
2F1D

MICRO-AAKE ASSEMHLER 065XX-1.0 PAGE un - 47 -
AQ TF LDAIM $7F TURN ON THE KIM LED DISPLAY
3b 41 17 STA $17417 BY SETTING THE DD REG
D8 CiD JUST TO MAKE SURE
A9 8D LDATM $8D SET UP VESB
8D EC 17 STA VEB TO SAVE DATA
20 32 19 JSR INTVEB (IN KIM ROM)

A9 13 LDAIM $13 TURN ON INPUT PORT FROM CASSETTE HA
8D 42 17 STA SBD o
20 41 1A SYNC JSR RDBIT START READING A BIT AT A TIME
U6 F3 LSRZ TMP SHIFT IT INTO TMP
05 F3 ORAZ TMP
85 F3 STAZ TMP AND SAVE IT
8D 40 17 STA $1740 PLACE IT ON THE LED
C9 16 "TST CMPIM $16 IS IT A SYNC CHARACTER?

DO FO BNE SYNC IF NOT, KEEP TRYING
20 24 1A JSR RDCHT 1IN SYNC, READ A CHARACTER
8D 40 17 STA $1740 DISPLAY IT ON LED
C9 2a CMPIM $2A IS IT THE START OF DATA?

DO F2 BNE TST IF NOT, LOOP AGAIN
20 F3 19 JSR RDBYT READ THE TAPE ID
C5 62 CMP ID IS THIS THE RIGHT TAPE?

DO BE BNE ERID PRINT IT IF WRONG

20 F3 19 JSR RDBYT READ THE START ADDRESS
20 4C 19 JSR CHKT INCLUDE IT IN CHECKSUM
8D ED 17 STA VEB +01 AND SAVE IT IN VEB
20 F3 19 JSR RDBYT READ THE HI PART OF ADDRESS
20 4C 19 JSR CHKT INCLUDE IN SUM

8D EE 17 STA VEB +02 SET IT UP IN VEB

A2 02 LOADIT LDXIM $02 START TO LOAD DATA AS

20 24 1A READIT JSR RDCHT ASCII CHARACTERS

C9 2F CMPIM '/ END OF DATA SYMBOL

FO 14 BEQ ENDRD SO WIND IT UP

20 94 2E JSR PACKT PACK THE ASCIT INTO HEX
DO BF BNE SYNC ERROR IN CHARACTER READ NOT = HEX
CA DEX COUNT TO TWO .
DO F1 BNE READIT READ SECOND HALF >
20 4C 19 JSR CHKT ADD TO CHECKSUM

20 EC 17 JSR VESB STORE VIA VEB

20 EA 19 JSR INCVEB INCREMENT STORE ADDRESS
4C FD 2E JMP LOADTIT AND READ NEXT BYTE

20 F3 19 ENDRD JSR RDBYT READ CHECKSUM FROM TAPE
CD E7 17 CMP CHKL COMPARE TO CALCULATED

10

0720:
0730:
07u40:
0750:
0751:
0760:
0770:
0780:
0790:
0791:
ID=05

0010:
0020:
0030:
0040:
0050:
0060:
2070:

80:
0090:
0100:
3110:
0120:
2130:
3140
2150:
0160
2170:
2180:
2190:
Q200:
0210:
0220:
0230:
Q240:
¢250:
J260:

70:
¢280:
1290:
0300:
3310:
3320:
Q330:
4340:
@350:
3360:
2370:
3380:
@390:
ouN0:
2%810:
Qu20:
04%30:
ouu0:

Q450:

ou60:

2F20
2F22
2F25
2F28

2F2A
2F2D
2F 2F
2F 32

2F 35
2F 38
2F 3A

2F 3D
2F3F
2F 42

2F 45
2F U7

2F 49
2F 4B

2F 4E

2F50
2F52

2F55
257

2F5A
2F5C

2F5F
2F61
2F 64U
2F66

2F 69
2F6C
2F6F
2F72
2F75
2F78
2F78B
2FTE

2F 80

MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 07

DO
20
CD
DO

AD
09
8D
4c

AD
29
8D

A9
20

A9
85

A9
8D

A2

A9
20

A9
20

AS
20

AS
20
AS
20

20
20
20
AD
CD
AD

90
A9

A8
F3
E8
AO

02
o4
02
8C

02
F7
02

AD
EC
32

27
FO

BF
43

FO

16
A3

2A
Ccé6

62
B2

60
AF
61
AF

EC
AF
EA
ED
F7
EE
F8
£9

2F

19
17
17

17
1E

17

17

17
19

17

2F

2F

2F

2F
2F

17
2F
19
17
17
17
17

OKRD

BNE
JSR
CcMP
BNE

LDA
ORAIM
STA
JMP

SYNC AND START OVER TF WRONG
RDBYT GET SECOND HALF OF SUM
CHKH AND DO THE SAME

SYNC WITH IT

$1702 TURN OFF CASSETTE

$0u4 BY SETTING BIT 2

$1702 OF THE PORT

INIT RETURN VIA INIT (RESET ALL PORTS.

#uu%® KIM CASSETTE WRITE SUBROUTINE ##sus

ADAPTED FROM
AS PUBLISHED

- CWRITE

DUMPTA

SUPERTAPE BY JIM BUTTERFTELD
IN KIM-1 USER NOTES (V I,N 2)

LDA $1702 TURN ON CASSETTE #2

ANDIM $F7 BY SETTING BIT 3 = O

STA $1702 1IN PIA PORT B

LDAIM $AD SET UP

STA VEB VEB FOR SAVE

JSR INTVEB

LDAIM $27 SET FLAG

STAZ GANG FOR SBD LATER

LDAIM $BF TURN ON

STA $1743 OUTPUT TO CASSETTE

LDXIM $FO SEND 240 SYNC PULSES (OPTIMUM ¢ D
ON RECORDER START/STOP TIME)

LDAIM $16 SYNC CHARACTER

JSR HIC OUTPUT X TIMES

LDAIM $2A SEND START OF DATA CHAR

JSR OUTCHT

LDA ID GET ID

JSR OUTBT AND SEND AS A BYTE

LDAZ SALX SEND EXECUTION ADDRESS

JSR OUTBTC WITH CHECKSUM CALCULATION

LDAZ SAHX HI PART TOO

JSR OUTBTC -

JSR VEB GET A BYTE OF MEMORY

JSR OUTBTC SEND AND CHECKSUM IT

JSR INCVEB POINT TO NEXT BYTE

LDA VEB +01 CHECK FOR END

CMP EAL AGAINST EAL

LDA VEB +02 AND

SBC EAH EAH -

BCC DUMPTA AGAIN IF NOT END

LDAIM $2F

SEND END OF DATA CHAR

L0 MICRO-WARE ASSEMBLER 65%XX-1.0 PAGE 0S8 - 49

-

0470: 2F82 20 C6 2F JSR OUTCHT AS CHAR

0480

0490: 2F85 AD ET 17 LDA - CHKL SEND

0500: 2F88 20 B2 2F JSR OUTBT CHECKSUM

0510: 2F8B AD E8 17 LDA CHKH LO AND

0520: 2F8E 20 B2 2F JSR OUTBT HI

0530: 2F91 ‘A2 02 LDXIM $02 AND SEND 2

0540: 2F93 A9 OU LDAIM $04 EOT CHARS

0550: 2F95 20 A3 2F JSR HIC

0560: ‘

0570: 2F98 AD 02 17 LDA $1702 TURN OFF CASSETTE
0580: 2F9B 09 08 ORAIM $08 BY SETTING BIT 3
0590: 2F9D 8D 02 17 . STA $1702 OF THE CONTROL PORT
32?8: 2FAQ 4C 8C 1E JMP INIT RESET ALL PORTS
'gggg: : " SUBROUTINE TO SEND X CHARACTERS TO TAPE
0640: 2FA3 86 F1 HIC STXZ TIC SAVE THE COUNT
0650: 2FAS 48 ‘HICA PHA AND THE CHARACTER
0£60: 2FA6 20 C6 2F JSR OUTCHT SEND THE CHAR

L 70: 2FA9 68 PLA AND GET IT BACK
0680: 2FAA C6 F1 DECZ TIC TO SEND AGAIN

0690: 2FAC DO F7 BNE HICA UNTIL COUNT = O
0700: 2FAE 60 RTS

0710:

g;gg: SUB TO SEND CHARACTER WITH CHECKSUM CALCULATION

8;20: 2FAF 20 4C 19 OUTBTC JSR CHKT ADD CHAR TO SUM
0: .

8328: -SUB TO SEND BYTE AS TWO ASCII CHARS
0780: 2FB2 48 OUTBT PHA SAVE BYTE

0790: 2FB3 4aA LSRA GET

0800: 2F34 ua LSRA UPPER

0810: 2FBS 4A LSRA NYBBLE

0820: 2FB6 uaA LSRA

0830: 2FB7 20 BB 2F JSR HEXT AND SEND IT

0840: 2FBA 68 PLA RETURN BYTE

0R50:

¢ 50: SUBROUTINE TO SEND ONE HEX CHAR AS ASCII
0870:

0880: 2FBB 29 OF HEXT ANDIM $0OF CLEAN UP DATA

03890: 2FBD C9 0aA : CMPIM $0A CHANGE TO ASCII
0900: 2FBF 18 CLC BY ADDING

0910: 2FCO 30 02 BMI HEXAT

0920: 2FC2 69 07 ADCIM $07 37 TO A...F

0930: 2FC4 69 30 HEXAT ADCIM $30 AND 30 TO 0...9 .
ID=06

0010:

0020: SUBROUTINE TO SEND ONE 8 BIT BYTE

0030:

0040: 2FC6 AO 08 OUTCHT LDYIM $08 EIGHT BIT COUNT
0050;: 2FC8 84 F2 STYZ COUNT

0060: 2FCA AOQ 02 TRY LDYIM $02 START AT

0070: 2FCC B4 FE STYZ TRIB 3600 HERTZ

0080: 2FCE BE FC 2F ZON LDXAY NPUL NUMBER OF HALF CYCLES

0090: 2FD1 48 PHA SAVE THE CHAR

10 MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 09

01006:
0116: 2FD2 2C 47 17 7Z0NA BIT $1747 WAIT FOR FEND OF CYCLE
g:gg: 2FD5 10 FB BPL ZONA IN TIGHT LOOP
O140: 2FD7 B9 FD 2F LDAAY TIMG SET UP TIMER
g:go: 2FDA 8D 44 17 STA $1744 FOR THIS PULSE

0: .
0170: 2FDD A5 FO +.DAZ GANG CHANGE STATE
0180: 2FDF 49 80 EORIM ¢80 OF OUTPUT
0190: 2FE1 8D 42 17 STA $1742 PORT o
0200;
0210: 2FEY4 85 FO i STAZ GANG AND SAVE STATE
0220: 2FE6 CA DEX DONE ALL CYCLES?
8538: 2FE7 DO EQ BNE ZONA NO-THEN SEND ANOTHER
0250: 2FE9 68 PLA RETRIEVE BYTE
0260: 2FEA C6 FE DECZ TRIB ONE MORE GONE
0270: 2FEC FG 0S5 BEQ SETZ THE LAST ONE, TOO
Qggg: 2FEE 30 07 : BMI ROUT EVEN THE LAST ONE WENT
v300: 2FFGC 4A LSRA ANOTHER BIT TO THE CARRY
0310: 2FF1 90 DB BCC ZON IF IT IS NOT SET
0320: 2FF3 AO 00 SETZ LDYIM $00 SWITCH TO 2400 HZ
0330: 2FFS FO D7 BEQ ZON ALWAYS
0340:
0350: 2FFT C6 F2 ROUT DECZ COUNT ONE BIT SENT
0360: 2FF9 DO CF BNE TRY BUT MORE TO GO
0370: 2FFB 60 RTS ALL OVER, GO HOME
0380:
0390: TIMING TABL
0400: : .
0410: 2FFC 02 NPUL = $02 TWO PULSES
0u20: 2FFD C3 TIMG = $C3 THE RIGHT TIME
0430: 2FFE 03 = $03 3 PULSES
o440: 2FFF TE = $7€E AND ENOUGH TIME
0450:
0u460: IF YOUR RECORDER CANNOT HANDLE THIS SPEED,
Ou70: YOU CAN SLOW DOWN BY CHANGING NPUL AND NPUL+0Z2
~"80: TO ONE OF THE FOLLOWING: 03 oy
L<490: 06 09
0500: (THIS IS THE KIM ROM SPEED) ocC 12

ID=

N
(o

b b b d b b b b b b bk wk
moOT>ONONNLEW

PPN NN
OCO0O0O0O00O0O0O0D000

® 20 00 00 00 s

QST ST RTINS RN TNT YN Y.N

LA L L L L L L) L D)

. TMOOEP»O0®EIOT

00000000000 T 4o e% oe es

Hex Damp ot Micro-ADE

60 01 02 03 04 05 G6 07 08 09 0OA 0B OC

D8 20 E7 2D A9 FF 85
F4 23 A9 OD 20 2F 24

63 A0 63 20 94 27

2
91 10 20 0D 25 AS 11 C

D

1

9

3
0 28 24 FO 06 AO
D AS 2E DO F2 AO
27 20 ET7 2D A2 FF 9A D8 58 A9 O4 8D FE
8D FF 17 A9 OC 8D G3 17 8D 02 17 A9 2D
20 41 2E A9 00 A2 06 95 19 CA DO FB 85

01 C9 41 30 03 E8 DO F6 CA A9 00 85 18

E9 17 E8 BD 00 01 C9 0D 23 C9 20 FO
FO 1B 20 94 2E DO 15 AS AC O4 QA 26
FA OD E9 17 85 18 8C E9 4C 72 20 00
AS 18 99 1A 00 A5 19 99 00 68 E6 17
B8 C6 17 DO 08 AS 1A 85 AS 1D 85 1E
C9 41 DO 2C 20 96 24 20 23 20 E6 23

20 88 24 20
90 EE 20 2F
20 C9 49 DO

16 E9 00
01 20 41 24 A5 15 CS 1A 01 00 20 88
48 AS 16 48 20 B2 24 68 16 68 85 15

20 2F 24 A9

N

F—

n

®

>

"

b

"

w

™

m

Vo)

—

o)

™

0
ENT=NOO~WRNM == aam
WODAOVNIOM S E0 DO O

-

n

24 A5 15 85 1A 85 1B AS 85 1D 85 1E
C9 4E DO 19 20 Fu 23 20 2U 30 18 C9
C9 OD DO F3 20 3F 24 20 24 4C 57 21
06 20 A0 23 4C 31 20 C9 DO 03 4C 00
DO 09 20 67 23 20 AO 23 H4C -1B 21 C9 57
UF 24 A5 11 A6 10 20 EB 2D 4C F4 20 C9
20 A6 21 u4C 31 20 A6 17 EO 02 FO 18 20
00 85 1B AD A4 2E 85 1E AS 10 69 06 85
69 00 85 1F AS 1B 8D F5 17 A5 1C 8D F7
8D F6 17 A5 1F 8D F8 17 AS 1E A6 1B 20
1F A6 1C 20 EB 2D C6 62 AS 1A FO 02 85
17 85 60 AD F6 17 85 61 4C 9A 2E C9 4D
A4 22 A5 1A 85 18 A5 1D 85 19 20 4F 24
1B 85 1A AS 1E 85 1D A5 10 85 12 A5 11
4F 24 FO 01 00 A5 15 CS5 1A DO 28 A5 16

10 AS 13 85 11 20 B2 24 A9 00 20 2F 24

20 76 24 A6 17 EO 02 DO 19 A9 O1 18 F8
1A A5 1D 69 00 85 1D D8 A5 1C C5 1A AS
BO 18 A2 FB B5 20 95 1F EB DO F9 C6 17
1A 85 1B A5 1D 85 1E 4C 71 21 A5 1A 48
AS 18 85 1A A5 19 85 1D 20 4F 24 68 85
1A 4C 17 22 C9 58 DO 10 A5 1D 05 1A DO
25 A5 1D 85 1B 6C 1A 00 C9 50 DO OC AS
85 63 A9 FO 85 64 DO 26 C9 47 DO 11 A5
20 97 2E E6 62 AS 1B CS5 62 BO F5 90 11
10 20 96 2% A5 11 A6 10 20 EB 2D 20 CS
20 C9 5A DO 36 A6 17 DO 06 A5 1A 05 1D
1A 85 3D A5 1D 85 3E A9 FO 85 18 20 7A
DO OD E6 18 30 F5 20 2B 2E C9 OD DO EA
3D C5 1B A5 3E E5 1E 90 E2 BO C3 C9 54
14 25 C9 52 DO 18 A5 1B 85 27 A5 1A 85
2E 20 AC 21 E6 1A A5 27 CS 1A BO EE 90
DO 14 A4 1C A6 1B A5 1D 86 1D 85 1B 88
1D 98 DO F8 FO B7 00 20 4F 24 A5 1D 05
A9 99 85 1E 85 1B 20 FB 24 85 16 20 FB
A5 1B C5 15 A5 1E E5 16 90 15 20 €5 2D
FO 2D 20 EE 2D 20 DE 24 48 20 84 2E 68
20 4F 24 10 33 60 A0 02 C8 B1 10 €9 OD
46 DO FS5 60 84 14 AS 10 85 12 AS 11 85
B1 10 A0 00 91 10 20 OD 25 AD A5 2E C5
AS 12 85 10 A5 13 85 11 A0 02 A5 1B DI
1E F1 10 BO C1 60 A5 10 38 E9 01 85 10
00 85 11 60 A9 FF 85 10 AD A3 2E 85 11

Convright, 1977. Micro-Ware Limited.

OEEN=OM= N =D
IO O 00O o> I Dwnw

NOOPOES
ownooOwm
MBI OO =OVEV EP=PWONTTIRLE>=S®ON
VoM £0 OOV = V=1 YU = ON TN OOV &

DI s et T I \)
ONO=wWwOO0&E>

2400:

2U1G:
2U20:
2430:
2440
2450:
2460:
2470:
2480:
2490:
2UAO:
2U4BG:
2U4C0:
24D0:
2U4EOQ:
2UF0:
2500:
2510:
2520:
2530:
2540:
2550:
2560:
2570:
2580:
2590:
25A0:
25B0:
25CO0:
25D0:
25E0:
25F0:
2600:
2610:
2620:
2630:
2640;
2650:
2660:
2670:
2680:
2690:
26A0:
26BO:
26CO0:
26D0:
26EOQ:
26FO0:
2700:
2710:
2720:
2730:
2740:
2750:
2760:
2770:
2780:
2790:
2TAO:
27BO:
27C0:
27D0:
27TEO:
2T7FO:

¢

15
AOQ
20
oD
10
Fu
20
20
2F
20
60
99
96
DO
20
40
2E
02
2D
AS

HA

00> NN~ T
~NOonovvnNm

&=
(¢}

01

MNE=DEPOOTIOTION=N
COOPXPOOVOOVO—-TD

06

oo
o

2D

DOLNDTN=D

SO =DV D—=2 O —~O
O=OVIWwWOOOD o=\

4o

BS

RXPAMOOVNNEOEASNTI >
ENOVIVIO =D~ OV\O\>\\0

20

WORWNONONN T
- O\ TIO = 7 OOV NO

F9

NONOVOPNEZWOWS
O>»O0OVIOWVOVOD OO0

F3

»OONOONWO>»OUND>
NIV OAODWTNIO =0 E0

4¢c

20

NEON=2»00
= Yo VoL Yo Xolo1)

27

28006
2810:
2820:
2830:
2840
2850:
2860:
2870:
2880:
2890:
28A0:
288B0:
28C0:
28D0:
28E0Q:
28F0:
2900:
2910:
2920:
2930:
2940:
2950:
2960:
2970:
2980:
2990:
29A0:
29BO:
29CO0:
29D0:
29E0:
29F0:
2A00:
2A10:
2A20:
2A30:
2A40:
2A50:
2A60:
2A70:
2A80:
2A90:
2AAOQ:
2ABO:
2ACO:
2ADO0O:
2AEOQ:
2AFO:
2B0O:
2B10;
2B20:
2830:
2Bu0:
2BS0:
2B60:
2B70:
2B880:
2B90:
2BAO:
2BBOG:
2BCO:
2BDO:
2BEG:
2BFO:

89

O &=WP0W
O = OW &

O Oowhn
oW O

30

8
81
99

u3

= O&ETNND~
OO0 OWMO =™

EEESNNNNTINM @D SN~
EL£EWWOONVOAWOOVWO =N

63

EE20WNNDENW
EEE L0000 ®

85

ESsEEENaONTINNN ENNIO
COOOOP=MNID=WONWO

OO OWWN =0 m

DO EDV OO
sSSP0
OEOOO®®>»OVW®W

00

MOEIPEN=I2ODE2N0 OW> NN
B IOOANMITAONNOWAND =0 TIhOW

Cc8

n
o

OCOOHAMNIEQPTING =

WOWOOV =2 OVOWOO
e ESWNNNEOOOVRP PO L

C O=00MXYOPWONMOINOUO

N
N

94

20

oOsENESTNTION!
OEVOVN~=VOMOAIMPMOO P IWIDWP

W = L2 I 48 - oW

nNON
NN

N
-
N

S0 45 20 00 50 40 00 00 60 00 60 20 00 00 00 o

NRINVNNNN NN

TN NT

MO OW» OO
OCO0O0O00O000O0O00

.

01

M OW =N\
WD = “T) 'TICD 32 O

20

NS WESNNONSFPOMNa T T
OO0O»XOVD=VOVT O EWW=NID

c8

-t \) ot b ()b bt DY
O OVVVWNO P OO

E8

POPMNVONIO
OTIONmROT D =
PO0=-NODOND
ODOVNO O OMD =

2 NOMVNEZWN O
TOPOENOO®~=ONON

FO

A8

FF

28

CO=OMBOION I = s >N
OVODMOWNEQC»ONO

63

D8

O DOTOMITINN IE =t ot b 0 2 Tt b
NONETIORORAOOWNINOONWN>>

1C

26

3B

68

9E

DY

07

23

6F

A4y

A8

E2

F6

EDITOR ERROR MESSAGES

INSERTION OVERFLOW. An attempt has been made to insert 10
lines in a 9 line space.

ATTEMPT TO MOVE BEYOND THE END OF FILE. An illegal line
number has been used in the MOVE command.

SOURCE FILE LIMIT EXCEEDED. An attempt has been made to
store data beyond the allocated source file,

COMMAND SYNTAX ERROR. The command entered cannot be
recognized. '

COMMAND PARAMETER SYNTAX ERROR. An illegal character has
been used in a command parameter.

ATTEMPT TO MOVE BEGINNING OF FILE. The command executed
did not operate properly because of a syntax error in the
file. Check the first one or two lines of the file for
duplication after this error is flagged. '

ASSEMBLER ERROR MESSAGES

INSTRUCTION SYNTAX ERROR. The instruction field does not
contain a valid instruction or pseudo instruction.

ILLEGAL ADDRESS MODE. The address mode used is not wvalid
with this instruction.

DUPLICATE SYMBOL. An attempt has been made to redefine a
symbol.

SYMBOL TABLE OVERFLOW. Too many symbols have been defined.

UNDEFINED SYMBOL. A symbol which has not been defined has
been used as an argument.

ADDRESS MODE SYNTAX ERROR. . The address mode field does not
contain a valid address mode.

BRANCH OUT OF RANGE. A relative branch has been attempted
beyond the legal range. ,

If Micro-ADE is relocated, the error numbers may change.

Micro-ADE COMMANDS

EDITOR COMMANDS

A ADD new lines to current source file.

C CLEAR and format the workspace.

L LIST all lines at the terminal.

Li LIST line 1 at the tarminal.

Li,jJ LIST lines { through j§ at the terminal.

Ii INSERT new lines before line 1.

Di DELETE line 1i.

Di,j DELETE lines i1 through j.

Fi FIX line i. Print it and prompt for edit.

Mi,j MOVE line j to immediately before line 1.

Mi,j,k MOVE lines j through k to immediately before line i.
N NUMBER all lines in increments of 10.

Wi WHERE. Print the absolute address of line 1.

E END. Print the absolute address and number of the last line.

CASSETTE COMMANDS

G x GET file with ID = x from Cassette 1.

G x,y GET a group of files with TD = x, x+1, ... ,y.

S SAVE a source file with the last used ID.

S x SAVE a source file with ID = x.

S x,a,b SAVE a data block from address a to b-1 with ID = x.

R x REPRODUCE a source file with ID = «x.

R x,y REPRODUCE a group of source files with ID = x,x+1,...y.

OPERATING COMMANDS

P Set or reset PAGE MODE.

X EXECUTE the assembler.

X EXECUTE address a.

T Print the symbol TABLE in alphabetical order.

T1 Print the symbol TABLE in address order.

T2 Print the symbol TABLE start and end addresses.

T3,a Set the symbol TABLE end address to a.

B a,b BLOCKMOVE 256 bytes from address a to address b.

B a,b,x BLOCKMOVE x bytes from address a to address b.

Z a,b DISASSEMBLE continuously from address a to address b.
Z a DISASSEMBLE 16 lines from address a.

Z DISASSEMBLE 16 lines from last address disassembled.

Where a and b are hexadecimal addresses, i1,j, and k are decfmal line
numbers, and x and y are 1 byte hexadecimal constaants.

