

THXE
DATA HANDLER

OWNER'S MANUAL

fhe information in this manual is believed to be
entirely reliable. llowever, no responsibility is
assumed for inaccuracies. The material in this
manual 1s for informational purposes onlyv and is
subject to change without notice,

Third Edition
WESTERN DATA SYSTEMS, C0.1976
A1l Rights Reserved"

Chapter |

TABLE OF CONTENTS

INTRODUCTION: i ittt i ii it nnennns - 1-2
SPECIFICATIONS: ... ottty -3
SYSTEM INFORMATION: ...ivuviruinvnnnon, -4
SYSTEM SPEED: . ..iviiiiiiinneennnann
CRYSTAL OPERATION: .. vviiiiniiiant
I/0 PORT INFORMATION:vvvvunnn. -5
PRE-ASSEMBLY NOTES:0vviiivnennnn 6-8
ASSEMBLY INSTRUCTIONS:c.ivinen.nn 9-13
SYSTEM CHECKOUT: ... viiiinenneneens 14-16
SMOKE ,HEAT,§ ABNORMALITIES: -14
NORMAL CHECKOUT 15-16
TROUBLESHOOTING: ... vviiiiiiiiiinnenns -17
TOUBLESHOOTING CHART:vvevt 18-21
MEMORY MAP -22
THEORY OF OPERATION 23-26
KEYBOARD: e . =23
FUNCTION GENERATOR: veees -23
ADDRESS/DATA ENTRY MODE: Cees -24
SINGLE CYCLE & SINGLE INSTRUCTION -24
CLEAR: ... i i it e =25
RUN/HALT' ooooooooooooooooooo Rk oE oW —25
BUS: ---------------------- BoaomoE s ooy '25
INITIALIZE * & & & 8 § % 8 -26

Chapter 11

12
13

14

TABLE OF CONTENTS

OPERATING INSTRUCTIONS:
TO DEPOSIT DATA:,,........
TO EXAMINE DATA:, ,.,......

PROGRAMMING:,
MEMORY 1 TEST PROGRAM:
8 BIT SUBTRACTION:,
8 BIT MULTIPLICATION:

EE

ASCIT TO HEX:,

HEX TO ASCITI:
0-99 NUMBER GUESSING GAME:

SOFTWARE/INSTRUCTION LISTING:

INSTRUCTION LISTINGS:
COMPONENT LAYOUT DIAGRAM:

ooooooo

ooooooo

ooooooo

oooooo

I.C. LOCATION/PARTS LIST:
DATA HANDLER BLOCK DIAGRAM:
WARRANTY :

SCHEMATICS:

Page
27-32
-27
-29
=30

Introduction

Welcome aboard, you are now one of thousands to
take the big step into the fascinating world of micro-
computing with the DATA HANDLER system.

By deciding to build your own computer you have
an advantage over other computer hobbyist. You have
saved yourself numerious dollars which can go into
later expansion of your system, and after you have
built this unique computer you will have a knowledge
and understanding of microcomputer, and processors.

The DATA HANDLER is a complete microcomputer
system on a single printed circult board, (P.C.B.)
designed around the Mos Technology 6502 Microprocessor.

This complete microcomputer system contains one
thousand words (1K bytes) of random access memory (RAM)
and one four bit parallel input port.

The DATA HANDLER contains a 26 keyboard switch
hardware controlled front panel which will load data,
examine data, perform single cycle and single in-
struction, initialize the system, run and halt the
system all in hexidecimal (base 16) format.

This system contains a complete on board discrete
L.E.D. hexidecimal address and data display which dis-
play the sixteen address bus lines and the eight data
bus lines.

On the DATA HANDLER P.C.B. are three discrete
L.E.D.'s which indicates whether the Data Handler front
panel is in the address or data entry mide and whether
it is halted or running.

:

Introduction . L

The left rear portion of the P.C.B. contains two
etched rows of fifty pads to facilitate the installa-
tion of one, one hundred pin ALTAIR/IMSAI type P.C.B.
edge connector, or suitable connector to allow bus
expansion. (Labeled S$-100 on the P.C.B.).

These pads contain the tri-state buffered data,
address, memory, I/0 (input/output) signals, and
timing signals used by the 8800 ALTAIR/IMSAI type
peripheral boards. These bus lines are pin for pin
compatable, and drive/receiver matched with the 8800
ALTAIR/IMSAI microcomputer peripherals.

These peripheral boards are the least expensive,
most widely available, and offer the greatest variety
in microcomputer peripherals available on the face of
the earth.

The Data Handler is ideally suited as a computer
instructing device due to its easy to understand and
use qualities, yet retains the capabilities for gross
system expansion by the advanced user.

Further, the DATA HANDLER is an excellent choice
as an inexpensive tool for providing computer control
for machinery, video displays, or electronic projects.

Note that the assembled Data Handler requires an
external power source,+5 volts DC at 1.8 amps.
However, a power supply capable of supplying 4 to 6
amps is recommended for future expansion.

Specifications

Uses the Mos Technology 6502 microprocessor.
Directly addresses 65K bytes of memory.

Contains 1K bytes of 500ns RAM on the P.C.B. (user
selectable , address FCO0-TFFF, or FEOO-FFFF and
0000-01FF).

Direct memory access (DMA) circuitry and DMA
acknowledge control lines.

Dual interrupt lines-one maskable, and one non-
maskable.

Variable speed R/C clock, or optional crystal may be
used for frequency stability to .2 mhz.

8800 ALTAIR/IMSAT identical tri-state address and
data bus.

Uses single +5 volts supply @ 1.8 amps.
Discrete L.E.D.'s for address and data display.
Full function hardware controlled front panel.

Keyboard type data and control switches in hexi-
decimal format,

OPTIONAL: High data rate (1200 baud) phase encoded
cassette interface with on board dual 1/0 ports,(one
8 bit latching parallel input port with interrupt
strobe, and one 8 bit latching parallel output port
with a data flag).

System Information

_System_Speed: The maximum operating speed of
the small or expanded DATA HANDLER system is deter-
mined by two factors. 1) C.P.U. speed, and 2) the
memory access time.

The 6502 microprocessor is presently avaliable
in models with operating speeds to 4 mhz (250ns cycle
time). Due to the internal characteristics of the
6502, minimum memory access time (reading stable data
from memory) is to be approximately half the cycle
time. A system operating at 4 mhz needs. a memory
with a 125as access time, 250ns for 2 mhz, 500ns for
1 mhz (supplied in the Data Handler complete kit), and
so on. To double the normal data throughput of the
Data Handler (operate at 2 mhz), a 6502A microprocessor
should be installed, change R65 to a 1K %W, and change
the memory I.C.'s (D1-D8) to 2102A-2.

For general system usage the kit supplied RC
timing network is perfectly adequate. By setting the
50K ohm timing potentiometer (VR1) midway, a normal
system clock speed of approximately 1 mhz will be in
operation with a stability factor + 20%. For time
critical rock hard system stability greater than + 20%
a crystal may be incorporated into the processor tim-
ing.

eration: If crystal frequency stability

is desired for the Data Handler system a user supplied
crystal may be installed in the two mounting holes on
both sides of XL1 on the right rear portion of the P.C.
This XL1 layout was designed to accomidate an AUGAT
8000-D crystal holder, however the crystal may be
soldered directly on the P.C.B. then laid down onto
the adjacent ground plane area, and the can (crystal
case) soldered to the ground plane directly beneath

it with a short piece of resistor lead or other wire.

1/0 Port Infprnmtion

The DATA HANDLER contains one four bit parallel
input port. Access to this port is through the four
pads between I.C. 4A § 5A, these are labelled as A,B,
C,and D. When this input port is addressed by the

"Data Handler as location 7FFE, data present is dis-

played as the least signifigant bits- A is bit O,
b is Bit 1, C is bit 2, and D is bit 3.

These four bits are non latching and havé an
endless number of uses for status checking and device

monitoring as well as receiving data from serial trans-
mitting devices. T -

Notes:

DO NOT ASSEMBLE BEFORE READING COMPLETELY
PRE-ASSEMBLY NOTES:
(READ CAREFULLY)

1.) Assembling of the Data Handler P.C.B. consists
of mounting components to the board. The parts
location iist (see index) contains lettering identi
fying where the components are to be mounted on the
board along with their proper position and directio

We recommend that you mount the components in
groups, such as the integrated circuits, then the
resistors, and then the capacitors. A step by step
assembly procedure is provided for each major group
of components, '

2.) The Data Handler printed circuit board is in-
dustrial grade, double sided, with plated through
holes. This means that in a number of locations,
the foil paths on the top of the board are connecte

to the foil paths on the bottom through holes which!

have plating on the inside.

This plated through technique means you don't
have to solder common foil areas on both sides.
Soldering on the bottom side of the P.C.B. only
normally will be adequate. '

(NOTE: DO NOT USE ACID-CORE SOLDER])

PRE-ASSEMBLY NOTES:

3.) Due to the small foil around the printed circiiit
board holes and the small areas between the foil
traces, you will have to use utmost soldering care
to prevent solder bridges between adjacent foil
areas. Use only a low-wattage soldering iron with
a small tip. Do not use a soldering_gpn. |

Keep the tip of your soldering iron clean _ _
(frequently wipe the tip on a damp clothe or solder
sponge) and lightly coated with solder. '

4.) The Data handler kit contains (8) 16 pin I.C.
sockets, for the 2102 memory, and (1) 40 pin I.C,
socket for the 6502 microprocessor. Sockets may
be used for all the I.C.'s. However, for system
reliability sake they are not recommended.

5.) The side with the name Data Handler is the side
on which all the components are to be loaded.
(component side) &

6.) On all I.C.'s facing the rear of the P.C,B., pin
1 is left rear pin (denoted by the clipped pad on
the P.C.B.). The microprocessor (E7), and the
option (E12, and E16) face to the left with pin I '
located on the front left row of pins (denoted by
clipped pad on the P.C.B.). -

7.) I.C. B7 is the only one mounted with pin number
one to the right rear facing toward the keyboard
switches.

Pre Assembly Notes

8.) When installing the*L.E.D.'s be absolutely sure
of their polarity before installation. (see fig.3)
Test them first if necessary, but be sure. The
plastic base of the L.E.D. contains a small notch
or flat area, this denotes the cathode of the L.E.D.
as the lead closest to the flat area.

{OoaH D b 550 .. |
Q[RED:RED;BROWNJ

AW,
FIG 3

CATHODE

9.) The cathode is to be connected to ground on all
of the L.E.D.'s. On M4 thru M27 the cathodes face
the front of the P.C.B., on M1, M2, and M3 they
face toward the keyboard.

When inserting the static sensitive 6502 micro-
Erocessor into its socket, it is best done with one
and wrapped around a cold water pipe while the

other hand gently inserts the I.C, into its socket,
Avoid handling this I.C. until actual insertion time

‘ *(Light emitting diodes.)

1

B2

-0

Assembly Instruction

/

With the P.C.B. component side up (see pre-
assembly note 5). Insert and solder pins 1 and
9 of the memory I.C. sockets (D1 thru D8) on the
P.clB. .

.0

solder the corner pins

Insert the microprocessor socket and tack _
(1 and”21) onto the P.C.B..

DO NOT INSTALL THE MEMORY I.C.'s OR THE MICRO-

.() Refering to the component layout diagram,
open one package of I.C.'s at a time, and tack
solder the corner pins on all the I.C.'s except B7
onto the P,.C.B..

.() Install I.C. B7 according to pre-assembly note

.() Check all I.C."s and sockets for alignment, ful
insertion, bent under pins, and orientation (is B7
correct?).

.() With all the I.C.'s being correct, go back and
finish soldering all the I.C. pins. Make sure of
good clean solder joints, and lack of solder bridg

.() With all the I.C. sockets being correctly orien
tated, solder all the pins as in step 6.

.() Again refering to your component layout diagra
open the package of resistors and install them by
groups in the following manner on the P.C.B.. :
Install the 4.7K ohm (yellow-violet-red) resistors
in R1-R24 and solder in place.

ASSEMBLY INSTRUCTIONS

9. () Insert R26-R51 (220 ohm, d-red-
solder into place. (M, redrred-brown) and

10.0) Insgft R54-R64 (1K ohm, brown-black-red) and
solder into place.

11.(0) Again refering to the components layout dia-
gram insert and solder the remaining resistors
along with the 50K ohm potentiometer (VR1)

12.0) With the resistors properly in place, mount
the capacitors being careful to observe proper
polarity on the electrolytics C20, and C21.
(Plus on the P.C.B. shoud correspond with the

plus end on the capacitor). (Refer to component
layout).

13.0) Double check the placement, polarity, align-
ment, etc. of the capacitors, and solder them into
place. Trim (if needed) the excess lead length
from these components from the underside of the
board at this time.

4. () Insert the data L.E.D.'s M20 thru M27 (back
row of 8 red L.E.D.'s) with the cathode {see pre-
assembly notes). Toward the front edge of the
P.C.B, (the long edge with numbers 1 thru 11 along
it). Mount them all about 1/4" off surface of the
P.C.B.. First solder one lead in place, then
after making sure of their alignment and uniformit:
solder the other lead. ‘

ASSEMBLY INSTRUCTIONS

15.0) Install the row of 16 red address L.E.D.'s

M4_thru M19 using the procedure previously des-
cribed (step 14) for the data L.E.D.'s (cathodes
toward the front edge of the P,C.B.). Also mount
about 1/4" off the P.C.B., and solder into place.

16.(0) Install the red address L,E.D, M2 and red

data L.E.D. M3 (located just to the left of the
keyboard). Mount them flush with the P.C.B. with

their cathodes towards the keyboard, and solder
into place.

17.0) Insert the yellow L.E.D. (M1) in .its place

directly below M2, Mount it with the cathode to-

ward the keyboard and it also flush with the P.C.B.

with alignment being correct solder it into place
making sure to produce good solder joints.

18.() Install any user provided P.C.B., edge connector
(Altair bus type), crystal, connectors for the I1/0 |

ports or what have you at this time and sclder in-

to place. Turn the P.C.B, over and ensure that all.

component leads are clipped and properly soldered.

18.() The P.C.B., without the switches installed, may

be cleaned of any flux, dirt etc. at this time.
At this point be careful not to let this sludge

accumulate in the microprocessor or memory sockets. |

There are special chemicals available for cleaning

P.C.B."'s, (freon TF, flux solvent, M.E.K. ETC.) but

they should be used with proper ventilation. If
the keyboard switches are already installed be ex-

tremely careful about keeping this flux remover off
of them. It could result in destroying the switches,

It is recommended that you remove the switches be-
fore the board is cleaned.

11

ASSEMBLY INSTRUCTIONS

20.0) Install the 26 keyboard switches one at a
time soldering them from the bottom side when
alignment, placement, and registration are ver-
ified with the component layocut diagram.

21.0) At this time insert the Data Handler P.C.B.
into the top track of the Data Handler P.C,B,

case.

22.0) Connect and solder the wires from the user
supplied power supply (plus 5 volts D.C. produc-
ing a minimum of 1.8 amps). The Data Handler
requires only a plus 5 volts for power, however,
consult the system expansion section (7) for
other power configurations.

23, () Turn power to the Data Handler on at this
time and quickly look around the P,C.B. and check
for smoke, excessive heat or any abnormality.

If any abnormality is found proceed immediately
to smoke, heat, and abnormalities in the system
checkout section.

24. () I1f a D.C. volt meter is available check for
the plus 5 volts at pin 8 on the microprocessor
socket and ground (0 volts) at pin 1. If a meter
is not available wait an extra moment to ensure
that an abnormality will not suddenly pop up
later on.

12

ASSEMBLY INSTRUCTIONS

25.(0) All steps being valid up to now, turn off the
5 volt supply to the Data Handler and install the
memory I.C.'s into their sockets, TInstall the
microprocessor into its socket (read how in the
pre-assembly notes) being careful to use the cor-
rect pin number 1 for the registration.

26. () Ready to turn on the power? wait, once more

check that the memory I.C.'s and the microprocessor §

are properly in place according to the component
layout diagram.

27.() O0.K. turn the power on and proceed to the
system check out section.

~_ OO

Notes:

13

System Checkout

Smoke. Heat. & Abnormalities:

0,K., here you are with a problem, so lets be quick. |

None of the I.C.'s after 15 seconds (with power on),

should be too hot to hold your finger on, so touch each |

one and remember which ones burned your finger. Turn
the power off and check the hot (or smokey) I.C. for

proper pin registration, alignment, solder blobs, a cut

lead resting on the I.C. pins, etc. If I.G. B7 is hot
“hances are it's installed backwards.
ire hot check the polarity of the power supply to the
P.C.B., the polarity is either backwards (plus 5 volts
ls connected to gound on the P.C.B.), or the plus §

volts is not actually plus 5 volts,
>ly exhibited the smoke or abnormalities, chances are
that there is a direct short on the P.C.B., this is

>asiest found with an ohm meter (look for solder blobs, 5

lead touching under the P.C.B., etc).

- Consult the troubleshooting section for further
information.

14

If all the I.C.'s

If your power sup- |

SYSTEM CHECKOUT

Normal Checkout:

i1.() With the HT (halt) button pressed, turn on the power
supply to the Data Handler. The Data Handler will come
up with a random address on the 16 address L.E.D.'s and
random data on the 8 data L.E.D.'s. Either the addr or
data L.E.D. (closest to the keyboard) will be on but
not both, and the run L.E.D. (yellow L.E.D,) should not
be on. This run L,E.D. indicates that the Data. Handler
is halted when not 1it and running when it is on.

2.() Press the AD (address) switch, then the DA (data)
switch, Ensure that the associated L.E.D. changes '
with each particular keystroke.

) Press CL (clear), the 16 address and 8 data
L.E.D.'s should go off.
)

Press AD, now press the 1 key. The address 0
L.E.D. should come on and stay on. This should be
the only row L.E.D. on. Press the 2 key, the 1 should
have shifted left into the next set of four digits and
was replaced by the 2 entry. Sequentially enter the
rest of the 16 keys. Ensure that the proper key data
is entered into the right most set of four L.E.D.'s
each time a key is pressed, verify that this keyswitch
data is only entered once per keystroke.

5.0) Press DA and sequentially enter all the 16 in-
dividual keys as in the previous step. Ensure that
they enter the correct data row L,E.D.'s and shift
left with each single keystroke.

15

SYSTEM CHECKOUT

Normal Checkout:
%

6.0) Enter all F's into both the address and data
rows of L.E.D.'s. All the data and address (24
total} L.E.D.'s should now be on. This test in-
dicates dead or weak L.E.D.'s,

7.0) With the Data Handler halted (press HT), press
AD, press the 1 key. The address 0 L.E.D. (right
most L.E.D. in the row) should come on. Press (de-
posit). The address row of L.E.D.'s should incre-

ment by one (base 16) each and every time DP is
pressed.

8.() Duplicate test 7, however, press the EX (examine]
keyswitch in place of the DP keyswitch. The address
row of L.E.D.'s should increment bv one (base 16) '
and only one each time EX is pressed

9.() Jump to the operating instructions section (sec
11)and become familiar with the correct procedures
for operating your Data Handler. The loop program
at the end of section 6 will verify proper system

operation.

Notes:

16

Before consulting the troubleshooting chart to
olve a particular problem, do the following;

A} Give your Data Handler a complete visual in-
pection and ensure that all the 1.C.'s are properly
rientated and that the ones in the sockets are in-
erted sufficiently without bent-under, or out of
ocket pins.

B) Check for solder bridges, cut leads laying on
r under the P,C.B.,, and any solder flakes- that can
0ssibly cause a short to the Data Handler. '

C) If steps A and B failed to cure the problem list
11 visible symptoms and proceed to the troubleshoot-
ng chart. Remember it is virtually impossible to
roubleshoot a problem without proper knowledge of

he symptoms.

Part numbers-Refer fo I.C., locations (C3 is an

.C. location not capacitor C3 unless stated other-
rise.

17

Troubleshooting Chart

Symptom

Probable Cause

1.

No lights,(L.E.D.'s).

. Major short on the

P.C,B,.

Power supply dead.
check the +5 volts.
L,E.D.'s installed
backwards.

2.

Lights (L.E.D.'s)
dim.,

Insufficient voltage
from power supply.
Insufficient current
from power supply,
1.5 amps min.)
Tri-state bus buffers
bucking one onother. :
Either the front panell.
buffers (C3-C6) shouldf:
be on or the C.P.,U,. .
buffers (E3,E4,E5,D9,
D10} but not both,.
5-100 bus is shorted.

5.

Run L.E.D, not on or
won't go off.

. Microprocessor clock

not running.

B9 not switching on
switch contact.

Run L.E,D. is dead.

18

Symptom

Probable Cause

. Address and data

L.E.D,'s both on or

One or both L.E.D.'s
are dead or installed
backwards.

won't switch off. 2. Al not switching.
3. B10 not driving the
L.E.D.'s.
() 1. The Data Handler is not
5. CL won't clear the in the halted mode.
address and data 2. C11 not functioning
L.E.D,'s, properly.
1. One or more dead L.E.D.
(do test 6)
2. D1-D8 not fully in
6. Incorrect data en- sockets,
tered from front 3. Front panel buffers
panel. (C3-C6) not providing
drive or shorted.
4. B6 is dead check strobe
line 2 of 6.
1. Capacitor C14 is leaky.
7. A keystroke enters 2. Sticky keyswitch.
more than one char- 3, Function generator (A2,
acter. A3,8 B1l) functioning
improperly.
19

Symptom

Probable Cause

Not able to enter
any address or data
digits,

e,

. A6,A7, debounce cir-

LU0 I SN]
. .

cuitry is dead.

B6 is dead.

A8-A-11 one or all
indicate a false key
closure.

4. Stuck keyswitch.
F—
1. Check the orientation
_ of B7 (see pre-assemb
9. Unable to enter any note 7).
data. 2. Improper procedure

(Read operating in-
struction].

more than one 16.

10. ‘EX or DP increment §1.

A 7({A) runs too fast
(increase R53).

2. Keyswitch sticky.

1. Clock speed is too
fast.

2. Memory 1.C. failure.

11. Data Handler looses|3. Interrupt line from
~ running sequence. inputport continuously

held l1low.

4. Memory I1.C. in back-

wards.

20

Troubleshooting

Symptom

Probable Cause

1. The 6502 (I.C.E7) in-
12. C,P,U, won't run stalled backwards.
at all. 2. VR1 broken or not in-
stalled.
Notes:

21

Memory Map

¥' "fhe Data Handler contains one thousand words

byte) of random access memory (ram) on the P.C.B..
memory select feature allows for four pages of :
mamory (FCOO-FFFF) in the very top of the address

' a fge® by putting a wire jumper from hole "T'" to hole

", or two pages in the top (FEOO-FFFF) and two
iges in the bottom (0000-01FF) by placing the wire
ium er from hole "S" to hole "T'". The cassette in-
grface and full use of the Data Handler require the
twe bottom pages of memory (jumper "S" to "T").

When additional ram memory is used in the Data
Handler system, it is recommended that this memory
be located begining at address 0000 to fully utilize
the stack function of the processor.

The address locations 7F00 thru 7FFF are decoded
on the Data Handler P.C.B. as the 1/0 device code
area. (The area in memory designated for input and
output devices). It is recommended that memory not
be decoded to this address area.

IO~

Notes:

22

THEORY OF OPERATION

The following is a detailed theory of operation of

the complete Data Handler and its associated circuitry.]

Refer to the schematic diagrams and the block diagram
while reading this section.

Keyboard:

. The complete keyboard control is accomplished with
the 10 control keyswitches, and the 16 data/address
entry keyswitches (3 of 6). The set of data/address
keyswitches are hardware hex encoded by A8 thru A-11
(2 of 6) and "switch sensed" by B6 (2 of 6). 1.C. B6
sends a ''switch sensed'" strobe line signal to the one
shot keyswitch debounce circuitry made up of A7, and
A6 (1 of 6) which then is decoded by DiZ (1 of 6) as
being a strobe pulse from one of the 16 possible key-
switches,

Function Generator:
The strobe pulse from the debounce circuitry act-

ivates a four pulse function generator formed from B1,
AZ, and A3 (2 of 6) and is mode decoded (address mode

or data mode) by A4 and the second half of Al (2 of 6).

These four address pulses or 2 data pulses then latch
(B7 for data and B2-BS5 for address) the hexadecimal
encoded data presently being displayed thru A8-A-11
(2 of 6) by any-one of the 16 possible keyswitches.

23

Theory Of Operation

Address/Data Entry Mode:

Two ‘control keyswitches (3 of 6) control the
entry mode of the front panel. The entry mode is ¥
selected by either the DA (data) or AD (address)
switches. This switch information sets or resets
the RS latch formed from the first half of Al (2 of &)
and decodes the function generator pulses as being
either address or data loading pulses. The state of
this RS latch is displayed on L.E.D.'s M2 and M3
(2 of 6) and can be changed at anytime.

Single Cycle & Single Instruction:

The SC (single cycle) and SI (single instruction)
control keyswitches are debounced by A7 and A6 (1 of ¢
and decoded by half of I.C. D12 (1 of 6). The debounc
keystroke pulse from the SI (single instruction) key-
switch sets the D15 (1 of 6) flip-flop which in turn:
allows the RDY line on the 6502 microprocessor to go't
the high state. This enables the Data Handler to rum
until the D15 (1 of 6) flip-flop receives a sync puls¢
(start of new instruction) from the 6502 at which time
D15 (1 of 6) resets and thru D13 (1 of 6) halts syster
operation. The SC (single cycle) keyswitch is debount
and wired to RDY in the same way as is the single in-
struction, however it allows the Data Handler to run oi
from the start of a # cycle to the start of the next |
cycle in which D14 (1 of 6) is reset and system opera:
tion is halted. '

ot
H

24

Theory Of Operation

Clear:-

The CL (clear) switch accomplishes two functions
when it is actuated.

(1) It resets the RS latch Cl1 (1 of 6) which gives
control of the S-100 bus to the front panel.

(2) It clears the front panel data (B7) and address
(B2-B5) 1latches.

The CL, as is INT, HT, RN, AD, and DA swithces are
not debounced since they are primarily function cir-
cuitry of the Data Handler front panel.

Run/Halt :

The RN (run) and HT (halt) keyswitches enable us to
11timately control the operation of the Data Handler.

[hese swithces either set or reset run latch B9 (1 of 6I

vhich in turn will halt operation of the C.P.U.. The

state of this run latch is displayed by L.E.D. M1 (1 of |
) which when 1it indicates that the C.P.U. is running. °
further more when the run mode this run latch (B9) dis-

ibles the debounce circuitry to kill any spurious ocil- |

lations which might lead to system noise.
Bus:
The S-100 bus is a UNI-directional bus which is the

>ulk work of the Data Handler. 1t is driven/received
vith tri-state buffers by both the front panel and the

502 microprocessor. This bus drives the discreet L.E.D,

lisplay and connects the 1/0 ports, memory, 6502, front
ranel, and edge connector pads together. .

25

THEORY OF OPERATION

Initialize:

The INT (initialize) keyswitch serves to accomplish
two functions: '

(1) it acts as an override to reset both the single
instruction and single cycle circuitry.

(2) it pulls the reset line low on the_6§02.mic¥oj
processor (4 of 6) which initiates the initialization
procedure for the Data Handler (see the operating in-
structions for further information)

m

Notes:

26

OPERATING INSTRUCTIONS

To Deposit Data:

PRESS HT--Halt the Data Handler* (disregard if already

halted). :

PRESS CL--Clear the internal mode and the data holding
registers.

PRESS AD--To switch the loading to the address lines
(address L.E.D,'s).

KEY IN THE DESIRED ADDRESS TO BE MODIFIED,.

PRESS DA--To switch the loading to the data lines
(data L.E.D.'s).

KEY IN THE DESIRED DATA TO BE LOADED IN THE PRESENT

DISPLAYED ADDRESS. '

PRESS DP--This will deposit the data currently on the

data lines into the address that is currently]

on the address lines.

After making the deposit into memory the Data

Handler will automatically increment to the next addres

location, so that only the data needs to be altered
and deposit pressed again for loading subsequent in-
structions.

NOTE* Due to the design of the 6502 mp, it is
possible on power up for the Data Handler to enter
an internal lock up mode that will not respond to
halt. When this happens simply press INT while the
HT switch is held down.

27

Operating Instructions

The Data Handler hardware controlled keyboard
is composed of 26 keyboard switches which are di-
vided into one group of ten, and one group of six-
teen. The group of ten contains the function switches,

DP (DEPOSIT)

EX (EXAMINE)

CL (CLEAR)

AD (ADDRESS)

DA (DATA)

ST (SINGLE INSTRUCTION)
SC (SINGLE CYCLE)

HT (PROCESSOR HALT)

RN (PROCESSOR RUN)

INT (INITIALIZE)

The group of sixteen switches contains 0 thru f
(hexidecimal) for data and address loading.

The Data Handler information display is comprised
of 27 discrete L.E.D.'s (light emitting diodes), 26
red and one yellow. This display is divided into a
row (bottom row) of 16 L.E.D.'s which represent in hex
format the current address, and the top row of 8 re-
present the current data. The M.S,B, (most signifigant
bit) of each row is the left most L.E.D..

In the group of three L.E.D.'s to the left of the
keyboard, the top one labeled data indicates that the
keyboard switches 0 thru F will be displayed on the
data L.,E.D.'s. Pressing the AD function switch will
change the loading to the address L.E.D.'s. The bottom
yellow L.E.D. indicaties that the DATA HANDLER is free
runnigg when it is on, and in the halted mode when it
is off.

28

Operating Instructions

The Data Handler has a deposit lock out when in |
the examine mode to prevent inadvertant depositing of |

data. To switch from the examine mode to the deposit]
mode or vise versa the Data Nandler must be exercised .

through one complete 1nstruction ress SI once} be-
ore the desired mode can be selecte

To Examine Data

PRESS HT~-Ha1t the Data Handler (dlsregard if already

halted).

PRESS EX--Put the internal registers in the examine
mode.

PRESS AD--To place the keyboard entry on the address
lines.

Load the address to be examined onto the address

lines, and the data L.E.D.'s will then display the
data in that location of memory.

When in the examine mode, each time the EX func-

tion switch is pressed the next address and its data |

will be displayed.

Depositing and examining data will not affect the

PC counter of the 6502 microprocessor, in that the
Data Handler can be halted, data examined and or de-
posited without disturbing the existing running pro-
gram sequence.

29

Operating Instructions

Single Instruction :

PRESS HT--Halt the Data Handler (disregard if already
halted).

PRESS SI--The Data Handler will execute the next in-
struction and stop. Each time the SI switch
is pressed the Data Handler will execute the
next instruction and stop.

Single Cycle:
PRESS HT--Halt the Data Handler (disregard if already
halted).

PRESS SC--The Data Handler will execute one cycle of
the next instruction and stop.

Using the SI and SC modes to '"walk' through a
newly loaded or newly written program can save count-
less hours in the debuging of software, in that _
branches, jumps, all steps of the program are dis-
played and executed under full control of the op-
erator.

Hnitialize:

When the INT switch is pressed the 6502 MP will
begin the initialize process which consist of 6 cycles
in which it will dump its present address on the stack
and load its program counter (PC) from its initialize
vector locations. The Data Handler will then begin
executing at that memory location when run is pressed.

30

Operating Instructions

To demonstrate this let's load a small loop
program.

Deposit the following data starting at address
location FCOO0 by using the format discussed for
lepositing data.

ADDRESS DATA INSTRICTION
FEQQ------=-~=n-~- EA==--=cmcmmmoeae NOP
) BA=-=-==-c-mmmoo- NOP
02--==--=-=mm"n- AC- == mmmmmm e JMP
e 00-=---=====--=--- LOY¥ ORDER ADDRESS
08---=----smnon- Fl-m-m-ommmmmones HIGH ORDER ADDRESS

In the halt condition, to instruct the Data
{andler to run the above program you would simply
load the low order address of your program starting
location into the first location of the initialize
vector (FFFC), and the high order address into the
second location of the initialize vector (FFFD),
shown below.

DO

e e

HIGH ORDER| [LOW ORDER
ADDRESS ADDRESS

SO WE LOAD;
ADDRESS ~ DATA,

FFFC----00 (LOW ORDER ADDRESS)
FFFD----FE (HIGH ORDER ADDRESS)

31

Operating Instructions

To get the Data Handler to begin execution of
our loop program press INT, begin pressing SC and
watch the Data Handler step through the initialize
process (6 steps). It will step to the initialize
vectors (FFFC, and FFFD) and arrive at its new start-
ing address FEOO which should be displayed on the
address display.

If your address is displaying O0FE you loaded
your low and high order address backwards, if so
go back and try again. If you arrive at the correct
address (FE00), continue to single cycle through
your loop. If you are convinced that it is looping
properly you can discontinue "walking" through and
let it free run by pressing RN. The Data Handler is
now executing your loop program.

You will notice that the Data Handler con-
tinuously displays the exact data that we loaded in
our loop program. Excellent! It's running our pro-
gram exactly as we wrote it. We instructed it to
perform two NOP's (EA, no operations) and then JMP
{(4C, jump to a new starting location) to begin execu-
tion of new data, which as we planned it turned out
to be the same program we left.

Very cleaver is this program, this could be the
basis for some sort of keyboard monitor or other pro-
gram that looped while waiting for an interrupt from
an external device (p0551b1y connected onto our B in-
put port).

32

System Expansion

) The Data Handler address, data, and control
lines exit the P.C.B. by way of two rows of fifty

gads on the rear left portion of the Data Handler
oC.Bno '

These bus lines are pin for pin compatable,
and drlyer/receiver matched with the 8800 ALTAIR/
IMSAT microcomputer peripherals.

Limited system expansion may be achieved with
the addition of a 100 pin connector on the bus line
pads on the left rear portion of the Data Handler
P.C.B. and the installation of any particular 8800
ALTAIR/IMSAI type of peripheral board which fits
the individual need. -

Larger system expansion may be accomplished
with the use of an ALTAIR type mother board or a
suitable card cage set-up mounted next to the Data
Handler P,C.B., with the bus lines connected to the
mother board with ribbon cable.

Another excellent choice of system expansion
would be the hard wire mounting of an Altair ex-
pander board directly perpindicular below the Data
Handler P.C.B.. This would enable the use of more
than one peripheral board.

The Data Handler may be used with a power
supply greater than +5 volts D.C. when it is con-
figured in such a manner as to incorporate the moun-
ting of a +5 volt 5A regulator on the underside of

the P.C.B.. The left rear part of the P.C.B. directly ;

adjacent to the bus line pads, is laid out to accept a

10-3 78H0S, or LM 323, (+5 volts @ amps) type regulator,

33

System Expansion

This regulator configuration is ideal when used
with an Altair type (+8 volts) power supply to pro-
vide power for peripheral boards of the 8800 Altair/
IMSAI type. Note that these peripherals were designed
to be powered by +8 volts with regulators dropping the
veltage to +5 volts on each individual board.
However, jumpers may be used in place of these re-
gulators and a +5 volt power supply may be incorporated.

The Data Handler L.E.D. displays are driven
directly from the address and data bus lines. When
the system is expanded to a large degree it is sug-
gested that a video type peripheral be added, or that
tha L.E.D.'s be buffered, or seven segment displays
added to prevent over loading of these bus lines.

Notes:

34

Programming

The writing of programs or programming as it's
called by those with the ability, is nothing more
than a logical plan for the computer to follow.

This logical plan or program as we call it, consists
of a sequence of instructions that the Data Handler .
understands and must obey precisely as it is written.

Without a program to run in, the Data Handler is .
lost, useless, and aimlessly searching. Our job
(and privilege) is to take this mysterious little
friend into our care and give it guidance and a direc-
tion in life (the kit builders are morally obligated
since they brought it into the world). '

The only problem we face is that at this stage
of the game our Data Handler can't speak or under-
stand a word of our language and we as newcomers (with
little or no computer experience) don't exactly know
how to communicate with him. This situation is com-.
parable to being in Tia Juana Mexico, (minus the flies,,
and tacos) for the first time. - o

L

We are in a foreign land that speaks a foreign 'y

language, and for those of you out there wondering, = -
1'11 tell you what this language is. It is called
machine language or machine code (as it's called by

the advanced programmers). Very cleaver the way these

machines have a language named for them (yes! they are

machines). o

L]

35

0.K. since our Data Handler does'nt have the
ability to learn our language we had better learn
to communicate with it in machine language. So,
once again just like in Tia Juana we reach for our
translation guide which in this case happens to be
our instruction listings which can be found in sec-
tion 14 of our owner's manual. '

This instruction listing gives us a brief ex-
Elanation of what the different 55 instructions do.
or a very complete explanation purchase and read
a copy of the Mos Technology 6502 programming manual).

Take a moment to read and understand these Dif-
ferent instructions. It is with this instruction set
that you'll command your Data Handler. If anyone of
these seem unclear as to end result or location, try
1t and watch (through the single cycle procedure)
exactly where the Data Handler steps to or loads data

from. Alright- now that we feel that we have a relativel

good understanding of the instruction set lets continue
on .

Programs as I stated before are nothing more than

a sequential series of instructions from our instruction

set. ~This sequential series can begin anywhere in the

address space that we have memory available to store it,i

so0 the Data Handler will aiways increments to the next
higher address for its next instruction.

36

An example of this would be if we started the Data
Handler in our loop program (see under operating in-
structions). This program starts at address FEQO, so
using the procedure described in the operating instruc-
tions let's load this program and secondly load our pro-
gram address into the initialization address locations
(FFFC for the lower half of the location and FFFD for the
upper half) Press INT and press SI twice- this will put
the Data Handler at the start of our loop program (FEOO0)

Our first instruction instructs the Data Handler
to perform a NOP, so we have instructed it in its own
language by loading that memory location with EA.
Anything short of exactly that data will not give your
computer the proper instruction. '

You will notice from the instruction set write up,
that under No. bytes it has a 1, that means it needs
only one byte of data (one memory location) to give it
this instruction. After performing this instruction
(no operation) the Data Handler will immediately go to
the next instruction in our program. As I mentioned
before it will increment the address and perform the
next instruction which as it turns out happens to be
another NOP (at address location FEQ1). :

When the Data Handler increments to FE02Z it is
instructed to perform a jump (4C), this instruction is
a 3 No. bytes instruction and the computer is going to
jump to and begin program execution at the address
specified by the two following bytes of data stored in
the two following locations (FEO3 and FEQ4).

37

If you did not store the proper data don't expect|
the Data Handler to jump to the address you wanted in-.
stead you can be certain that it will jump to and begirf
program execution at the address location specified by

the data in the two following bytes. :

Load and examine the running sequence of some of

the simpler sample programs in this software section of

the manual and with a little bit of practice program-
ming will become relativelv easv.

Notes:

38

MEMORY 1 TEST PROGRAM

This program is designed to test individual 256
word blocks of memory, this is written to reside in
the top block of memory (FF00;¢-FFFFjg) which for
obvious reasons should not be tested without reloca-
tion of the memory test program 1.

FFFC-00

FEFD-FF

FFO0-AD,10,FF LDA ABS, PROGRAM
03-8D,16,FF STA ABS, FORMATTING
06-AD,OF ,FF LDA ABS.
09-8D,15,FF STA ABS.
0C-A9,XX LDA 1MM, ~ TESTING
0E-8D,XX,BLOCK STA ABS. LOOP
11-EA — NOP
12-EA NOP
13-EA NOP
14-CD,XX,XX CMP ABS. |
17-D0,13 BNE TEST FOR EQf
19-EE,0D,FF INC ABS. INC. DATA
1C-C9,00 CMP 1MM, TEST OVER FLC
1E-F0,03 BEQ |
20-4C,0C,FF JMP ABS,
23-EE,OF ,FF INC ARS, INC. ADDRESS
26-EE,15,FF INC ABS.
29-4C,0C,FF JMP ABS.
2C-8D,33,FF STA ABS DUMP RAD DAT
2F-EA NOP
30-4C,2F,FF JMP ABS. BAD LOOP
33-XX

39

MEMORY 1 TEST PROGRAM

Load the memory block address to be tested into
memory location FF10y¢ (EXAMPLE: FCy
to FCFF). Press INT then press RN. ¢
running conditions A5,A6, and A7 will slowly increment .

If a data error is encountered in the '
test, the Data Handler will enter the bad loop which
is easily seen as A6 and A7 continuously off,

off and on.

For the following data examine these locations.

FFOD-CORRECT DATA

FF33-BAD DATA

FFOF-LO ADR. OF BAD DATA

FF10-HIGH ADR,

To execute the above program press INT and then

press RN,

X= DON'T CARE.

OF BAD DATA

40

6 Will test FCO0O
Under normal

8 BIT SUBTRACTION

This program will perform an 8 Bit subtraction
and store the result if negative in memory location
0002, or if the result is a positive value in the
following location(0003).

LOAD THE FOLLOWING DATA

0000-MINUEND
0001-SUBTRAHEND

0002-00
0003-00

FFOO-D8
FF01-38
FFOZ2-A5
FF04-ES
FF06-10
FF08-E9
FFOA-49
FFOC-85
FFOE-DO
FE10-85
FF12-EA
FF13-4C

FFFEC-00
FFED-FF

START

03 PS:
DONE LOOGP:
12 FF

CLD
SEC
LDA
SBC
BPL
SBC
EOR
STA
BNE
STA
NOP
JMP

SO

initialize the C.P.U.
internal registers

Z load the minuend

Z sub. the subtrahend
PS

1

I invert neg. result

Z 02 store neg. result
DONE LOCP

Z store pos. result

done

DONE LOGP

41

8 BIT MULTIPLICATION

ASCII TO HEX

- This program will multiply two Hexidecimal (base 16) |
encoded numbers and store the lower half of the result

i i i i i i wil
in memory location 0002, and the upper half in memory This ASCII to hexidecimal conversion program 1

. 8l assume at its start that the ASCIT number to be converted
location 0003. is present in the accumulator, and at its end thi ?egF
il equivilent is in its place in the accumulator. ?-
LOAD THE FOLLOWING DATA [guestion mark) indicates a non-equivilent character.
00-MULTIPLICAND : Ascgé - EEX 35 = 05 41 = 0A
03-00 32 = 02 37 = 07 43 = 0C
_ 33 = 03 38 = 08 4=
00-18 START CLC initialize the C.P.U 34 =04 39209 e o oop
g%-ig 00 CLD internal registers '
- LDA Z load multiplicand
- PRI FFOO-D8 START CLD
gg_ég 01 01 Bg§ Z load multiplier Hiro1-B8 CLV initialize the C.P.U.
: A) int 1 registers
07-F0 08 BEQ 02 brangh to store] ;Eg%-%g 30 ggg I sigtgzzi 30 ®
gg:gg gg ggg 201 multiplicand Airos-30 oOF BMI 01 non-hex (less 30)
0D-E6 03 - INC Z u half 1 Lror-eo on S i
OF-D0 ES ANE 01 pper half result H1F09-30 0A BMI 02 hex numeric value
11-85 02 02: STA Z lower half result {0100 5 oA oM 1
13-4C 16 FE JMP DONE LOOP done] FFOF-30 05 BMI 01 non-hex
16-EA DONE LOOP: NOP Hrei1-co 10 CMP 1
17-4C 16 FE JMP jump on self Hrr13-10 o1 BPL 01 non-hex (greater 46)
FC-00 : Prri15-60 02: RTS return from sub.
Do FE MiF16-A9 3F 01: LDA 1 load ? (3F)
Frri8-60 RTS return from sub.

First press INT, then press run, press HT and
then press EX.

The answer will be in address locations 0002,
and 0003 respectively. - :

42
43

HEX TO ASCII

This Hexidecimal to ASCII conversion
program assumes at its start that the Hex
character to be converted is present in
the accumulator, and at its end the ASCII
equivilent is in the accumulator. This
program is the exact opposite of the ASCII
to hex conversion program on the opposite

page.

FE0C-38
FE01-C9
FEQ3-10
FE05-69
FE07-60
FE08-69
FEOA-DO

0A
30

06
FG

START

VA
01:

SEC

CMP 1
BPL 01
ADC 1
RTS

ADC I
BNE 02

44

set carry bit

hex numeric
add 30

return from sub.

add 06
all branch

0 to 29 Number Guessing Game

The 0 to 99 number guessing game is a simple game
yrogram that takes a few minutes to load and play.
&he Data Handler randomly generates a number which the

layer tries to guess by loading his guess number (0-99)

?nto memory location FC10. The

to correctly guess the randomly generated number is six.

average number of tries

Try it and see if vou can beat the average number of

puesses,

FYFC-00
FFFD-FE

FEOG-F8
01-A9,0F
03-8D, FC,FF
06-69,01
08-AA
09-4C,06,FC
0C- B8
0D-18
0E-8A
OF-E9,GUESS
11-F0,2D
13-10,08B
15-30,69

FE 20-EA
21-4C,20,FE

FE40-A2,00
42-8D,FC,FF
45-4C, 45 ,FE

FES0-EA
81-4C,80,FE

SED __
LDA 1MM
STA ABS
ADC 1MM
TAX |

G TORE NEW INT LOC.

JMP ____|
CLV
CLC
TXA
SBC 1MM
BEQ
BPL
BM1

NOP|

s RANDOM NUMBER GEN.

CLEAR OV FLAG
CLEAR CARRY FLAG

. mw h

CALCULATE DIFFERENCE

BRANCH TO CORRECT
BRANCH TO LOW
"BRANCH TO HIGH

LOW GUESS

NOP |

LDA 1MM
STA ABS
JMP

CORRECT GUESS

NOP .
JMg——HIGH GUESS

45

Load the preceding program data into the associated |
memory locations (using the procedure described in the Da
Handler manual) press INT and RN. The Data Handler will |
enter a portion of the program which generates a random
decimal number. Press HT (halt the Data Handler), press |
(to switch control to the front panel), press ADR, now en
the memory address location (FC10) in which we will place

our guess number.

With FC10 on the address lights press DA, now enter .
your guess onto the data lights (the program will accept |
only decimal number between 0 and 99 for the guess), |
With your guess number on the data lights press DP, Press
INT and RN, or to observe the Data Handler calcuTating the
results of your guess press INT, and then the Data Handler
may be walked through the program (by repeatedly pressing
SC or SI). =

The Data Handler will ultimately end up in one of th
loops, the low guess (your guess was low) is most easily !
seen with the address light A5 on continuously, the high
guess (your guess was high) is most easily seen with the

address light A7 on continuously. The correct guess (your
guess was 100% absolutely correct) is most easily seen witi

the address light A6 on continuously.

If you correctly guessed the computers random number?

in 5 or less tries you have done it above the average.
If not try again.

To restart the game press INT. This vectors the
Data Handler back into the random number generator to
await your first guess.

46

A 7

SOFTWARE
“W/"’—f‘! |

CONSULT THE MOS TECHNOLOGY 6502 PROGRAM-
MING MANUAL FOR USE OF THE FOLLOWING IN-
STRUCTION LIST AND FURTHER INFORMATION.

INSTRUCTION LIST
ALPHABETIC BY MNEMONIC
WITH OP CODES, EXECHTION CYCLES
AND MEMORY REQUIREMENTS.

RS S BRI,

47

=]
) VERGESRIIRERCIIRINARAEONAEY §
=]
$3 . :"""‘:"ﬂ"" z
O T o Zoco Page g
ii Ly e I Poge, X - I T
-
x = erem s TEE zeo o v m : i/0 REGISTERS
l% “ T R N S -~ Lk Mu:: X g |1_5 7 0
. e Apsolww. ¥tz ™o ¥ O L___
s oY TIL| e, v s ' A | accumuiaton
I .‘- iy f iod - S L ———————————
l MR R BIRIRIAY ' Relative o li__ __________ ’ 0
............ L NN NN NN ienct, X) r)
§ , PEOGEE RN g fiedicec, & L ¥ —I INDEX REGISTER Y
. “ l "f > L ---------- —
’i ce 2 o '-"'- Absclute fndiract % "_‘ ___________ 7 o
-
1 2 b L X —I INDEX REGISTER X
2 VAV DDD »y e 16 7 0
S PREERIEE FEERS AT 3 ; |
= e - i PCH l PCL I PROGRAM COUNTER
............... e Acoumutator o . s o
. “ W mma | immediste my M 8 e -
!) Zeo Pope > r
[2 PPN woom CRC LT Zoro Poge, X ‘n; L o1 H STACK POINTER
N LY. . 1! WM 1 Lte-eeeaaaa]
: - * - re Zoro Page, Y S z .
1 » Absoluts Niv| |s]|pfi1]|z]c PROCESSOA STAYUS REGISTER, ‘P
...... Frye . L DASEO . X g
........ - - LI ' | L"‘—'"CARHV
,,,,,,,, . a o aa | Aol ¥ 2 ZERO
. aa srww mo Implied = . INTERRUPT DISABLE
oo et oo ; | L S
{Indirsct, X} _ £
. . e > - ‘: o 5 - FORTHCOMING FEATURE
..... -] .
........ . ”-) ndsaect OVERFLOW
L R . R g NEGATIVE
Q’ * Solid line indicates currently avarlable features
i Milmmwmdlmly
2

ADC

Add memory 1o accumularor with carry

ADC

Operation: A+ M+ C=+ A, C NBECIDV
(Ref: 2.2.1) ==
Addressing Assembly Language [+ 4 No. No.
Hode Form COLE Bytes Cycles
Immediate ADC # Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC COper, % 75 2 4
Absolute ADC Oper 6D 3 &
Absolute, X ADC Oper, X 0 3 4%
Absolute, Y ADC Oper, Y 79 3 4%
(Indirect, X) ADC {Oper, X} 61 2]
(Indirect), ¥ ADC (Oper), Y 71 2 5%
* Add 1 if page boundary is crossed.
A“D “AND" memory with accumulator ‘“D
Logical AND to the accumulator
Operation: AN M+ A NECIDYV
(Ref: 2.2.3.0) I -
Addressing Assembly Language op No. No.
Mode Form CODE | Bytes | Cycles
Immediate AND # Oper | 9 2 2
Zero Page AND Oper 25 i 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper Fa] 3 4
Absolute, X AND Oper, X 3D 3 4%
Absolute, ¥ AND Oper, Y 39 3 L
(Indirect, X) AND (Oper, X) 21 2 &
(Indirect), Y AND (Oper), Y 31 2 5

* Add 1 1i page boundary is crossed.

m ASL Skift Left One Bit (Memory or Accumulaior) m
Opsration: € + EEHEEB +f NdCipyVw
A -
(Ref: 10.2)
Addressing Assawbly Language oP Wo, No.
Hode Form CODE Bytes Cycles
Accumuistor ASL A A 1 2
Zero Page ASL Oper 6 H 5
Zero Fage, X ASL Oper, X 16 2 6
Absolute ASL Oper e 3 &
Absolute, X ASL Oper, X 1E 3 7
Operation: Branch oo ¢ = g Negcinvw
(Ref: 4.1.1.3
Addressing Aspembly Language or No No.
Kode Form CODE | Bytes | Cycles
Relative BCC Oper 59 2 2%

* 4dd 1 if branch occuts to same page.

* Add 2 if branch occurs to different page.

BCS

BCS Branch on carry ret

Operation: Branch em € = 1 Na2CIDV
(Ref: 4.1.1.4)
Addreasing Aszembly lLanguage oF Ho. Ho.
HMode Form CODE | Bytes | Cycles
Relative BCS Oper B8 F3 Fa
* Add 1 if branch cccurs to mase page.
% Add 2 4f branch occure to next page.
'm BEQ Branich on result zevo 'm
Operation: Branch on & = i Kacibv
(Ref: 4,1.1.%) o
Addresaing Assembly Language op Mo, No.
Mode Form CODE | Bytes | Cyclea
Reistive BEQ Oper] 2 i*

Add 1 Af branch occurs to same page.

* Add 2 1f branch occurs to next page.

Operation: A A M, H? + N, }ls - ¥

BEIT Test bits in memory with accumuilaior

BT

Bit 6 and 7 are transferred to the ststus register. H 2 C I DV
1f the reault of AAM is zero then I = 1, othervise H.,J-——ﬁ Hy
z=-9 (Ref: 4.2.1.1)
Addreaning Assembly Language OpP Ne. No.
Mode Form CODE | Bytes Cycles
Zero Page BIT Oper 24 2
Absolute BIT Oper c k| 4

BMI Branch on rexult minus '"'
Operation: Branch on N = 1 N&ECIDV
(Ref: 4.1.1.1) T
Addressing Assembly Language OF No. Ne.
Mode Form CODE | Bytes | Cycles
Relative BMI COper W 2 2%

* Add 1 if branch occurs to same pege.

* Add 2 1f branch occurs to different page.

.“E BNE Branch on resuli not zero ."!
Jpevacrion: Branch on Z = 0 NZ2ZCiDuV

(Ref: 4.1.1.6)

Addressing Assembly Langusage oP No. Mo,
Hode Form CODE Bytes Cycles
Relative BNE Oper '] 2 Fid

* Add 1 4f branch occurs to came page.

* Add 2 if branch occurs to different page.

'Pl BPL Branch on result plus .Pl

Operation: Branch on W = @ H2CI1nDw

(Ref: &.1.1.2)

Addressing l Assembly Langusge QF Mo, Ne.
Hode . Form CODE Bytes Cyvcles
Relative BPL Oper 19 2 2

* Add 1 Lf branch occurs to same page.
* Add 2 if branch occurs to different page.

BRK BRK. Force Break BRK , Cic

: CLC Clear carry flag ac
Operstion: Forced Intevrupt FPC + P+ NECIDV | Operation: @ + C Kecipy
_——-1 — - 1
(Ref: 9.11) [(Ref: 3.0.2) — ———
Addressing Assembly Language op Ho. No. I Addresaing As
¥ode Form CODE | Bytes | Cycles Mode ""’1‘;0;"“““ cg:: ’::.“ c,u:'
i . cles
Implied BRX [] 1 7 3 Implied ' cLe 18 . 2

1. A BEX commend cannot be masked by eetting L.

.vc BVC Branch on overflow clear 'VC Ep."?.“m. P * CLD Clear decimal mode cw
Operation: Branch on V = 0 NReCIDV : NECIDYV

(Ref: 4.1.1.8) T 7777 (Ref: 3.3.2) ————g -
i Addressd
Addressing Assembly Language oF Ho. No. Mode o “-m]';anmm“ op Ho. No.
Kode Form CODE | Bytes | Cycles CODE | Bytes | Cycles
Implied
Relative BVC Oper 56 2 rid CI.II D& 1 2
* add 1 if branch occurs to same page.
* add 2 if branch occurs to different page.
(l.l CLI Clear interrupt disable bit cu
Operation: @ + 1
] NECIoDVW
m BYS Branch on overflow ret "s 3 (Rt ¢
: _ Ref: 3.2, -———--
Operation: Branch on V = 1 NeECIDVY 2.2)
®ef: 4001y ! Addressing Assembly Language op No. No.
Hode Form CODE | Bytes | Cycles
Addressing Assembly Language oP Ho. No.
Mode Fors CODE | Bytes | Cycles Implied CLI 58 1 2
Relative BVS Oper bl] 2 2

* Add 1 1if branch occurs to same page.
* Add 2 if branch occurs to different page.

v

CLV Clear overflow flag

Operation: ¢ + ¥ NRECIDV
————— [}
(Ref: 3.6.1)
Addressing Assembly Language or No. No.
Mode Form CODE | Bytes | Cycles
Implied cLv B8 1 2
m' CMP Compare -y aridd acc lat Cﬂ?
Operation: A - M NECIDV
V-
{Ref: 4,2.1) .
Assembly Language oP No. " Wo.
M:::::tﬂg : {'om # CODE Bytes Cycles
Immedinte CMP #Oper c9 2]
Zero Page CHP Oper] 2 3
Zerc Page, X P Oper, X DS 2 4
Absolute CMP Oper cb 3 &
Absolute, X CMP Oper, X DD 3 4
Absolute, Y P Oper, Y 09 k| o
(Indirect, X) CMP (Oper, X) [} 2 .6
{Indirece), ¥ CMP (Oper), Y pl 2 5%
* Add 1 1f page boundary is croased.
m CPX Compere Memary and Index X m
NBCIDV
Operation X - M
-
(Ref: 7.8)
Asgembly Language oP No. o,
M:;;:'m. : ,FOI'I ¥ CODE | Bytes Cycles
Immedinte CPX # Oper Ed 2 2
Zero Page CPX Oper Eé4 2 k]
Absolute CPX Oper EC k] L)

CPY

Operation: ¥ ~ M

CPY Compare memory and index ¥

WacIioDy
VA=
(Ref: 7.9)
Addressing Assembly Language oP Ko. No.
Hode Form CODE | Bytes | Cycles
Immediste CPY #Oper cé 2 2
Zero Page CPY Oper [2 3
Absolute CPY Oper cc k} &

DEC

Operation: H -~ 1 + M

DEC Decrement memory by one

nacipyv
(-
(Ref: 10.7)
Addrassing Assembly Language op Ne. Ho.
Mode Form CODE | Bytes | Cycles
Zero Page DEC Oper Cé 2 5
Zero Page, X DEC Oper, X Dé 2 6
Absolute DEC Oper CE E| [
Abmsolute, X DEC Oper, X DE 3 7
Du DEX Decrement index X by one m
Operation: X - 1 + X F3aCcIDV
(Ref: 7.6) Y=
Addressing Assembly Language OP No. No.
Mode Form CODE | Bytes | Cycle
Implied DEX CA 1 2

0“ DEY Decrement! index Y by one m m INX Incremens Index X by one m

Operation: X + 1 ~ X

: N I
Opecation: ¥ - 1+ ¥ _ NECLIDV . _ J:C oV
(Ref: T7.7) S (Ref: 7.4)
Addressing Assembly Language op
Addressing Assembly Language op No. No. : Mode ;orm guag CODE !ll:;. Cy::.u
Hode) Form CODE | Bytes | Cycles Y "
Tmplied INX
Implied DEY 86 1 2 E8 1 2
: "' INY Incremen
EOR EOR “Exclusive—Or" memory with accumulator Eon Y) t Index Y by one “
Operation: Y + 1 - ¥ N3Cl1lpDV
Operation: A ¥ H » A Nac1iopv ;
-———] Raf: 7.5 -0
(Ref: 2.2.3.2) ‘Y - ()
; Addressing Assembly Language or .
Addressing Assembly Language oP | No. Mode Form 8 cooe '::. c,::;.
Mode Form CODE | Bywes | Cycles
Impliad Ny cs 1 2
Immediate EOR #Oper 49 2 2 _
Zerc Page ECR Oper 45 2 3
Zero Fage, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4= : '
ute, oper, JRP IMP Jump 10 new locerion JMP
Absolute, Y EQR Oper, Y 59 3 4% . - B oL -
eration: +
(Indirect, X) EOR (Oper, X) a1 2 6 : op e ven nacIpv
(Indirect),Y EOR (Oper}, Y 51 2 5% (Ref: 4.0.2) T~~~
% pdd 1 Lf page boundary is crossed. Addressing Aspembly Language oP Mo. No.
) Mode Fora CODE | Bytes { Cycles
I“(INC increment memory by one m Absolute M Oper 4c 3 3
Indirect
Operation: M + 1 + M NEaCIDV ; JMP (Oper) 6C 3 5
: V-
(Ref: 10.86)
Addressing Asgembly Language oF No. No.
Mode Form CODE | Bytes | Cycles
Zero Fage INC Oper Eb 2 5
Zero Page, X INC Oper, X Fé 2 &
Absolute INC Oper EE 3]
Absolute, X INC Oper, X FE 3 7

* Add 1 when page boundary is croseed.

‘s. ISR Jump 1o mew location saving return address m : - m' LDY Load index Y with memory DY
Operacion: PC + 2 4, (PC + 1) + FCL NZCIDV 1 Operation: M + Y NICcIDV
(fC+2)+PCH e ' i -
(Ref: 8.1) 3 _ {Ref: 7.1)
Mdressing Assembly Language op No. No. Addressing Assembly Language op No. No.
Mode Form CODE | Bytes | Cyclas Mode Form CODE | Bytes Cycles
Absolute JSR Oper 20 3 [Immediate LDY #Oper AR 2 2
P — ' : Zero Page LDY Oper " 2 3
_ Zero Page, X LDY Oper, X B& 2 4
lbl LDA Load accumuiator with memory IDA : Absolute LDY Oper AC k-)
Operation: M + A NB2CIDVY X Absolute, X LDY Oper, X BC 3 I
-
{Ref: 2.1.1) * Add 1 when page boundary is cr d.
Addressing Aswembly Language oF No. Bo. N
Mode Form CODE | Bytes | Cycles m
LSR Shift right one bit (memory or accumlator) LSR
Immediate LDA # Oper A9 2 2 Operation: § = Eanau - NacIDVW
Zaxo Page LDA Oper AS 2 3 R
Zero Page, X LDA Oper, X BS 2 & (Ref: 10.1)
- Abeolute LDA Oper AD k] & Addressing Assembly Language op No. No.
Absolute, X LDA Oper, X BD 3 4 Hode Form CODE | Bytes | Cycles
Absolute, Y LDA Oper, Y BS 3 b)
(1ndirect, X) LDA (Oper, X) Al 2 6 Accumulator LSR A LYY 1 2
(Indirect), ¥ LDA (Oper), Y 51 2 5w Zero Fage LSR Oper 46 2 5
N Zero Page, X LSR Oper, X 56 2 []
* Add 1 1f page boundary is crossed. Abeolute LSk Oper 4E 3 6
Absolute, X LSR Oper, X 5E 3 7
I.Dx LDX Load index X with memory I.Dx
Operation: M + X HNacibpy
) VA -
(Ref: ?'0.) { "0? NOFP No operation m
F Opsration: No Operation (2 cycles) NécClDV
Addressing Assembly Language op No. No.
Mode Form CODE | Bytes | Cycles | o . -
Addressing hssembly Language OF No Ho.
Iem rdiate LDX # Oper A2 2 2 Mode Form CODE | Bytes | Cycles
lero FPage LDX Oper Ab 2 3
Zero Page, Y LDX Oper, Y B6 2 4 Implied NOP EA 1 2
Absolute LDX Oper AE 3 4
Absolute, Y LDX Oper, Y BE 3 i*

ORA

ORA "OR' memory with accumulator

ORA

PLA

PLA Pull accumulator from stack

Operation: A + NEC1DV
(Ref: 8.6) I
Addressing Asgembly Langusge oF No. No.
Mode Form CODE | Bytes { Cycles
Implied PLA 68 1 4

PLP

Operation: P +

PLP Pull processor status from stack

PLP

Operation: A VH = A NaCcIDV
(Ref: 2.2.3.1) -
Addressing Assembly Language oP No, No.
Mode Form CODE | Bytes | Cycles
Tamediate ORA #0per #5 2 2
Zero Page ORA Oper #5 b k!
Zero Page, X ORA Oper, X 15 Fi 4
Absclute ORA Oper L] 3 4
Absolute, X ORA Oper, X 1D 3 an
Absolute, Y ORA Oper, Y 19 3 L*
(Indirect, X) ORA (Oper, X) [31 H 6
(Indirect), Y ORA (Oper), Y il 2 5
% Add 1 on page crossing
m‘ PHA Pusk accumuiafor on stack P“A
Operation: A + i HNECIDY
(net: 85 77
Addressing Assembly Language oP No. No.
Hode Form CODE | Bytees | Cyclee
Teplied PHA 48 1 k)
PHP . PHP Push processor status on stack ’“P
Operation: P+ NaC1DV
(Ref: 6.11) T TTTTT
Addressing hssembly Language op Ho. No.
Mode Form CODE | Bytes | Cycles

Implied

HECIiDV
F 5 k
(Ref: 8.12) rom Stac
Addressing Assembly Langusge oP No. No.
Hode Form CODE | Bytes Cycles
Implied PLP 28 1 &
ROL ‘ROL Rotate one bit left { v or accumularor) ROL
Operation: | [7T6]5]4]3] z -~ [T +> NZCIDV
YA —==
(Ref: 10.3)
Addressing Assembly Language or No. No.
Mode Form CODE | Bytes | Cycles
Accumulator ROL A A 1 2
Zero Page ROL Oper 26 2 5
Zerc Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7

“l BTl Return from interrupi “l) SK SEC Set carry flag m

: ration: 1 + ¢
Operation: Pt BCt NE2CIDV Operat ion mts 30 :::::I
(Ref: 9.6) From Stack
) Addressing Assembly Language oP Ko. No.
Addressin Aspembly Language op No. No.
Mode ¢ Form CODE | Bytes | Cycles Hode Form CODE | Bytes | Cycles
lmplied RTI o 1 6 Implied SEC 38 1 2
RTS RTS Return from subroutine RTS SED SED S SED
Operation: PCt, PC + l-3 PC Ka2CIbuv Operation: 1 + D NECIDV
(Ref: 8.2 ~ 77777 _————1
(Raf: 3.3.1)
Addressing Assembly Language oP No. Ho. . Addressin
1 g Assembly Language op Mo. ¥o.
Mode Foim CODE | Bytes Cyclae Yora Bytes | Cycles
Tmplied RTS [T 1 6 Implisd — ” 1 2
sx SBC Subtract memory from accumulaior with borrow m i
Operation: A - M - C + A N&CIDV ' SEl 851 Set tn + disabie 3 SEl
: C= t 2.2. S —=
Mote: C = Borrow (Ref: 2.2.2) oparation: 1+ 1 NacCiDV
—_— 1 ——
dddressing Assesbly Language oF Ma. ~ ¥No. (Ref: 3.2.1)
Hode Form - CODE | Bytes | Cycle
: Addressing Assembly Language o Mo. No.
Tmmedi SBC 9 2 2 Mode Form CODE | Byctes | Cycls
ate # Opar
Zero Page SBC Oper E5 K 3 Implied SEI 78 1 2
Zero Page, X SBC Oper, X 5 2 4 -
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 L1
Absolute, Y SBC Oper, Y L+] 3 L
(Indirect, X) SBC (Oper, X) El 2 6
{Indirect), ¥ SBC (Oper), Y Fl 2 5%

* Add 1 when page boundary is crossed.

STA

STA Store accumulator in memaory

Operation: A+ M N2CclIbDV
(Ref: 2.1
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes Cycles
Zero Page STA Oper 8BS 2 3
Zero Page, X STA Oper, X 95 2 &
Absolute STA Oper 8D 3 4
Absolute, X STA Oper, X 9D 3 5
Absolute, Y STA Oper, Y 99 3 5
(Indirect, X} STA {Cper, X) Bl 2 [
(Indirect), Y STA (Oper), Y 91 2 L]
m STX Store index X in memory m
Operation: X + M wEaCcIiIDyv
Ref: .20
Addressing Asgsembly Language OF No. No.
Hode Form CODE | Bytes | Cycles
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y 96 ? 4
Absolute STX Oper BE 3 &
m- STY Store index Y in memory s"
Oper tion: Y » M NECIDYV
(Ref: 7.3)
Addressing Assembly Language opP No. No.
Mode Form CODE | Bytes | Cycles
Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X 94 2 4
Absolute STY Oper 8c 3 4

TAX

Oparation:

A+ X

TAX Transfor sccumulator 1 index X

TAX

TAY

Opsracion:

TYA

Operation:

HaciDy
(Refi 7.11) S
Addressing Assembly Language op Ho, No.
Mode Form CODE | Bytes | Cyclee
Implied TAX AA 1 2
TAY Transfer accumulator to index ¥ 'AY
A+Y N&2CIDV
S -
{Ref: 7.13)
Addressing Assenbly Language oP . No. No.
Mode Form CODE | Bytes | Cycles
Implied TAY AB 1 F]
TYA Transfer index Y to accumulator YA
Y+a : K3aclpv
(Ref: 7.14) I
Addressing Assembly Language oP Ko. No.
Hode Form . CODE | Bytes | Cycles
Implied TYA 98 1 2

15X

Operation:

TSX Transfer stack pointer to index X

TSX

S -+ X NaCIDV
-
(Ref: B8.9)
Addressing Assembly Language oF Fo. ¥o.
Mode Form CODE | Bytes | Cycles
Implied TSX BA 1 2

TXA

Operation:

TXA Transfer index X to accurnulator

Operation:

X+ A NBaCIDV
(Ref: 7.12) A kit
Addressing Assembly Language oF No. No.
Mode Form CODE | Bytes | Cycles
Implied” XA 8A 1 2
TXS Transfer index X to stack pointer “s
X~+S KBC1IDV
(Ref: 8.8y ~ -~ 7777
Addreseing Assembly Language oP Ho. KNo.
Hode Form : CODE | Bytes | Cycles
Implied . TS 9A 1 H

.
21
92
@3
[
#5
#6
7
#8
29
#A
éB
fc
#D
9E
#F
18
11
12
13
14
15
16
17
18
19

1B
ic
1D
1E
1F

BRK

ORA - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ORA - Zero Fage
ASL - Zero Page
Future Expansion
PHF |

ORA - Immediate
ASL - Accumulator
Future Expansion
Future Expansion
ORA ~ Absolute
ASL - Absolute
Future Expansion
BPL

ORA - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
ORA - Zerc Page,X
ASL - Zero Page, X
Future Expansion
CLC

ORA - Absolute,Y
Future Expansion
Future Expansion

Future Expansion
ORA - Absolute,X
ASL - Absolute,X
Future Expansion

20
21
22
23
24
25
26
27

.28

29
ZA
2B
2C
D
2E
F
39
31
32
EE]

35
36
7
38
39
k1

3D

3F

JSR

AND - (Indirect,X)
Future Expansion
Future Expansion
BIT ~ Zero Page
AND - Zero Page
ROL - Zero Page
Future Expansion
FLP

AND - lmmediate
ROL - Accumulator
Future Expansion
BIT - Abeolute
AND - Absolute
ROL -~ Absolute
Future Expansion
EMI

AND - (Indirect},Y
Future Expaneion
Future Expsnsion
Future Expansion
AND - Zero Page,X
ROL - Zero Page,X
Future Expansion
SEC

AND - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
AND - Absolute,X
ROL - Absclute,X
Future Expansion

a9
4l
42
43
4
45
L1}
LY
48
&9
4A
4B
4C
4D
4E
4F

51
52
53
54
55
56
57
58
59
5A
5B
5C
50
SE
5F

RT1

EOR = (Indireot X)
Future Expsnsion
Future Expansion
Future Expangion
EOR - Zero Page
LSR - Zero Page
Future Expansion
PHA

EOR - Immediate
LSR - Accumulator
Future Expansion
JMP -~ Absolute
EOR - Absolute
LSR - Absclute
Future Expansion
BVC

EOR - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page,X

- LSR - Zero Page,X

Future Expansion
CLI

EOR ~ Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR - Absclute,X
LSR - Absclute,X
Future Expansion

13
74
15
T4
1
18
19
A
78
7c
1]
TE
TF

~ RTS

= ADC - (Indirect,X}

= Future Expansion
= Future Expansion
~ Future Expansion
~ ADC - Zlero Page
= Future Expansion
~ Future Expansion
-~ PLA

- ADC ~ Immediate
~ Future Expansion
- Future Expansion
= JMP -~ Indirect

= ADC - Absolute

- Future Expansion

- Future Expansion

- BVS

- ADC - (Indirect),Y

~ Future Expansion
- Future Expansion
- Future Expansion

- ADC - Zero Fage.,X

= Future Expansion
-~ Future Expsnsion
~ SEI

- ADC = Absolute,Y
- Future Expansion
= Future Expansion
- Future Expansion
- ADC - Absolute,X
- Future Expansion

- Future Expansion

8¢
81
82
83
B4
85
B6
87
88
89

)]
BC
8D
BE
BF
99
91
92
93
94
95
96
87
98
99
9A
9B
SC
9D
SE
9F

Future Expansion
STA - (Indirect,X)
Future Expansion
Future Expansion
STY - Zero Page
STA ~ Zero Page
STX - Zero Page
Future Expansion
DEY

Future Expansion
TXA

Future Expansion
STY - Absolute
STA - Absolute
STX - Absolute
Future Expansion
BCC

STA - {(Indirect),Y
Future Expansion
Future Expansion
STY - Zero Page,X
STA - Zero Page,X
STX - Zero Page,Y
Future Expanaion
TYA

STA - Absolute,Y
TXS

Future Expaneion
Future Expansion
STA - Absolute,X
Future Expansion
Future Expansion

cErbRER

A
A7

AS

EELmRBEEEL

B2
B3

B5

B7
B8

REBEFE

BF

LDY - Immediate
LDA - (Indirect,X)
LDX - Immediate
Future Expansion
LDY - Zero Page
LDA ~ Zeroc Page
LDX - lerc Page
Future Expansion
TAY

LDA - Immediate
TAX

Future Expansion
LDY - Absolute
Lﬂk = Absolute
LDX - Absolute
Future Expansicn
BCS

LDA - {Indirect),Y
Future Expansion
Future Expansion
LDY -~ Zerc Page,X
LDA - Zexo Page,X
LDX - Zeroc Page,Y
Future Expansion
cLy

LDA - Absolute,Y
T8X

Future Expansion
LDY - Absclute,X
LDA - Absolute, X
LDbX - Abeolute,Y
Future Expansion

co
1
c2
¢
Cé
cs
o] 3
¢
c8
8]
CA
CB
cC
cD
CE
CF

Dl
D2
D3

D5

D7
D8

DA
DB

oD
DE
DF

CPY - lmmediate
CMP - (Indirect,X)
Future Expansion
Future Expansion
CPY - Zero Fage
CMF - Zero Page
DEC - Zero Page
Future Expansion
INY

CMP - Immediste
DEX

Future Expansion
CFY - Absolute
CHMP - Absolute
DEC - Absolute
Future Expansion
BNE

CMP ~ {Indirect),Y
Future Expansion
Future Expansion
Future Expansion
CMP - Zero Page,X
DEC - Zero Page,X
Future Expansion
CLD

CHMP -~ Absolute,Y
Future Expansion
Future Expansion
Future Expansion
CMP - Absolute,X
DEC - Absclute X

Future Expansion

El
E2
E3
E4
ES
E6
E?
E8
E9

EB
EC

EE
EF
F@
Fl
F2
F3
Fi
F5
Fé
F?
F§
F9
FA

FC
FD
FE
FF

CPX - Immediate
SBC - {Indirect, X)
Future Expansion
Future Expansion
CPX - lero Page
SBC - Zero Page
INC - Zero Page
Future Expansion
INX

SBC - Immediate
HOP

Future Expansion
CPX - Absolute
SBC ~ Absolute
INC - Absolute
Future Expansion
BEQ

SBC - (lndirect),Y
Future Expansion
Future Expansion
Future Expansion
SBC - Zero Page,X
INC - Zero Page,.X
Future Expansion
SED

SBC - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
SBC - Absolute,X
INC - Absolute X

Future Expansion

The following notation applies to this summary:

A ~Accumulator
X, Y Index Registers
M Memory
P Processor Status Register
S Stéck Register
4 Change
. No Change
+ Add
A Logical AND
- Subtract
v Logical Exclusive Or
+ . Transfer from Stack
+ Transfer to Stack
> Transfer to
+ Transfer to
Logical OR
PC Program Counter
PCH - Program Counter High
PCL Program Counter Low
OPER OPERAND
IMMEDIATE ADDRESSING MODE

Note: At the top of each table is located in parentheses a
reference number (Ref: XX) which directs the user to
that Section in the MCS6500 Microcomputer Family
Programming Manual in which the instruction is defined

and discussed.

.

r—r Warranty [

Kits:

Western Data Systems hereby warrants all Data
Handler kits that, 1) during the first thirty (30)
days of ownership all components supplied by W.D.S.
to be free from defects in materials and workman-
ship, and 2) in the event of component failure or
malfunction said components will be repaired or re-
placed free of charge at the descretion of W.D.S.
when returned to the factory postage paid.

Any returned Data Handler kits which have been
fully owner assembled and require factory repair due
to normal use and service within the first thirty
(30) days of ownership, will be repaired to operat-
ing order for a nominal shipping and handling charge
of $10.00.

Assembled Units:

During the first three (3) months of ownership,
any factory assembled units, that we determine, under
conditions ol normal use and service, fail to perform:
according to our published specification, will be re-

placed or rcpaired, at no charge to you at the W.D.S.
factory.

The above warranty applies to the original pur-
chaser only and does not cover damage by use of acid-
core solder, incorrect assembly, misuse, fire, floods
or acts of God. 1If W.DB.S. or a representative there
of determines that your Data Handler system needs re-
pair due to said conditions, a charge greater than
the nominal amount may be required.

