the datac 1000

VOL.2 NO.1
MARCH 1978

Editor: John Prenis

Subscription rates are $5 for six issues. Send
subscription requests to Datac Engineering,
P O Box 406, Southamnton, Pa. 18966. Send

letters, articles and news to John Prenis,

users’ group

Contributors this issue:
Carmen DiCamillo Edwin R. Morris
Rolland James

John Prenis

161 W. Penn St., Philadelphia, Pa. 19144.
can make us very happy by typing them single
spaced in columns 13.5 cm. (5.3 in.) wide.

You

Copyright (c) January 1978 by DATAC ENGINEERING

Once again I must apologize for a late issue.
This time it was the need to finish the software
for the cassette interface that caused the delay.
I think you will find it worth the wait. A 4K
program that takes 20 minutes to load using paper
tape takes slightly more than a minute to load
from cassette. That's fast!

Those of you who don't feel ready for a video
terminal will be glad to hear that a fellow Datac
user is working on a hex keyboard and display. It
uses next to no hardware, and we hope to have the
details in a forthcoming issue. Another interesting
piece of hardware is the new memory board. 1In case
you've forgotten, it has room for 16K of 2102's,

a 2708, and a PROM programmer.

A slightly revised version of the DATAC 1000
board is now available. To start with, the stand-
up resistors are gone from the switch reagister.

For those of you who are curious about the 6800

or who want to run 6800 software, the new board
will accept either a 6802 or a 6502. A 6800
monitor is now being planned that will combine the
best features of TIM and MIKBUG. With the addition
of some jumpers the board will accomodate 2K

2716 ROMs in place of 2708's, giving 4K of ROM

on board. Also 2114 RAM chips can be substituted
for the 211l1's, giving 4K of on board RAM. It
probably wouldn't be too hard to add these
features to the older boards as well. This is
quite a board, folks.

Many thanks to those of you who sent articles and
proarams. Unfortunately lack of space prevents
us from using any of them this time. Keep up
the good work!

John Prenis

The Cassette Interface, Part Il

by Carmen DiCamillo

In part one of this article we discussed the basic
theory of the cassette interface and its hardware.
Since then, we have made some minor hardware

changes. Change the following jumpers on U-26:
Pin #3 from GND to +5V
Pin #4 from GND to +5V
Pin #22 from GND to +5V
The followingris a‘complete list of U-26 jumpers:
Pin #3 +5V Pin #9 GND Pin #17 GND

4 +5V 10 GND 18 GND

5 GND 11 45V 19 GND

6 GND 13 GND 20 +5v

7 GND 14 +5v 21 GND

8 GND 15 GND 22 +5V

16 GND

Making these jumper changes will adjust the cassette
interface speed, to the clock sveed divided by 28
(U-26), divided by 16 (ACIA divisor), rendering us
the rate 2232 bits per second:’

1.000 MHZ + 28 * 16

2232 bits/sec

We found it advisable to replace R42 with a 20K
resistor. Finallv, it is recommended that the PC
trace coming from pin 14 of U-22 be cut and a
diode be inserted (cathode toward the chip). This

is to prevent a negative voltage beinqg applied to
this pin.

THE SOFTWARE

Table #1 is a listing of DATAC CASSETTE INTERFACE
FIPMWARE ©® .

The Program is written so that it must reside in
pages 2 and 3, however note that all absolute add-
resses are underlined, so it may be relocated by
simply offsetting the absolute addresses. Note
that the program is divided into four parts:
WRITE, READ, TEST WRITE, and TEST READ. We will
discuss each section in detail.

CASSETTE WRITE CASSETTE READ

0200 A2 FF 9A 20 94 02 20 CA 0208 00 00 00 00 00 00 00 00
0208 02 20 Q9F 02 A5 04 20 55 02E0 A2 FF 9A 20 94 02 A2 07
g;lg 02 D8 A0 00 84 05 A5 00 02E8 20 2C_03 €9 BA DO F7 CA
02%0 ig %g gg A; 0L 20 35 02 02F0 DO F6 20 2C_03 C9 BA FO
i y E5 00 AA A5 03 028 F9 20 39 03 C5 04 DO ES
922 E5 01 DO IF BA FO 56 20 0300 20 36 03 85 00 20 36 36_03
330 25 02 Bl 00 20 AA 02 20 ‘0308 85 OL 20 36_03 85 06 FO
0238 55_02 E6 00 DO 02 E6 01 0310 3A A0 00 84 05 20 36_03
0240 CA DO EF A5 05 20 55 02 0318 20 AA 02 91 00 C8 C4 06
og&s AE 09 _02 A2 FF 8A 4C 2F 0320 DO F3 20 3603 C5 05 DO
85;2 %? o 48 48 A9 0328 1p_4c_E6_Q2 [AD 00 _14_GA)
: 20_02 20 0330 [90_FA_AD_ 0! 14 60 [20 2
0260 B2 02 A9 05 85 07 68 48 0338 03 29 55 85 07 20 2c GF
0266 20 71_02 20 B2 B2 _02 68 60 0340 29 55 0A 05 07 60 4cC 46
0270 2A C6 07 FD 0B 2A 90 04 0348 03 Er EA EA EA 4C BF_02
0278 29 TE BO F4 09 01 90 FO 035020 94 02 20 94_072 20 19
gggg 60 I8 FO FD 03581 03 20 90 03 4C 56_03 EA
Jes 0360| 20 94 02 20 2603 C9 BA
;: 0 A9 FF 8 00| 0368{D0 F9 20 70 03 4C 60 03
0:28 i: A9 ID 8D 06 60 A2 0370 A9 01 8 01 6E A0 FF AD
20 17F A9 BA_ 20 12 CA_DOj 0378{00 6E 49 01 8D 00 6E A2
0235 [FA_60 fT8 48 65 05 85 05 0380| FF cA Do FD B8 DO FO 60
8;33 ai 60 J48 AD 00 14 29 0388

21 O _¥9 68 8D 01 14 60 0390| AO FF A2 FF CA DO FD 88
02C0 EA EA EA EA EA E

= A EA 18 0398[DO F8 60

0200

ALIGNMENT

We will begin our venture by making the necessary
adjustments, that is the recorder volume adjustment,
and if you installed a trimmer vot in place of R46
and 47 we will indicate how to adjust it.

First make sure you have your cassette recorder, a
good blank cassette tape, cables connected from
recorder to the Datac 1000 card, a VOM or oscillo-
scope and a sveaker connected to PA@ of the 6530
(the "music" setup).

Load in the parts of the program that are boxed in,
then check to make sure it is loaded correctly.
(The boxed in portions of the program are the parts
necessary for testing.)

We will now proceed to make a test tape. If vou
followed our suggestion and replaced R46 and R47
with a trimmer pot, you can now adjust it.

setting the reset vector with the starting
for the test write proaram (0350 per
1953 per EPROM), then reset and run.

Beain by
location
listing,

The ACIA
character,
pin #6 of

should be writing a burst of the same
If yvou have a scope, you can look at
the ACIA, and see the output.

The trimmer that replaces R46 and R47 can now be
adjusted. Connect a scove or a meter to the cassette
output jack and adjust the trimmer so that you
get a peak output of approximately 500 mV on the
scope or an averadgde DC reading on your meter of
250 mv. (Note: most recorders provide automatic
gain control (AGC) so there is no need to adjust
the volume control for recording.)

*

You may now make a recording of the test pattern.
Record the test pattern for about two minutes,
then stop the recorder and microprocessor.

We will now proceed to adjust the volume control of
the recorder for data reading.

Rewind the cassette. Set the reset vector with

the starting location of the test read vprogram,
(0360 per listing, 1960 for EPROM), reset, then run.
Start your cassette recorder playing the test tape
and turn the volume control all the way down.

You may now begin turning up the volume control
very slowly. As you start to get into the correct
range, you will start to get an occasional beep
frem your "music" speaker. You should attempt

to get the most consistent tone possible by in-

creasing or decreasing the volume control.

If you are unable to get "beeps" from your speaker,
then load in the following program and start it:

0010* 20 03 70 beep (1970 for EPROM)
0013* 4C 10 00
FFFC 10 00 2 ‘

This program should produce a constant tone from
your "music speaker"; if it doés not, then you

may have misloaded the test read and write programs
or there is a problem with your board. 1If a constant
tone is produced, then the reason why the test

read program did not work with your test tape is
that your cassette recorder is probably inverting
the output (about half of the recorders we tested
are in this category). To fix this problem, cut
the trace from Ul3 pin 13 to pin 2 of the ACIA and
reconnect that trace to Ul3 pin 10, This fix just
switches the input to the ACIA from the O output of
the flip flop to the Q output.

Now repeat the volume adjustment procedure.

WRITING A PROGRAM

Assuming you have a program stored in memory, we
will now write it on to tape. Begin by writing
beginning and ending addresses of the program vou
wish to store on tape in the following location:

Address 0000 11 (LSB)_ ;

0001 pp (MSB) starting address

0002 11 (LSB)_ :

0003 pp (MSB)~ ending address
Then select an identification number (any number
from 00 to FF). Note: you may not use BA. Enter
that.
Address 0004 ID #
Location 0005, 0006, and 0007 are reserved for

temp storage and may not be used. Enter starting
address of the cassette write program (0200 per
listing or 1800 for EPROM) into the reset vector,
turn your cassette recorder into into its record
mode (wait to make sure the tape leader passes),
touch the reset then run pads and you are off.

The address and data lights may flicker, and when
the "write" is completed either all the address
LEDs will be on or the address LEDs will be on in
the pattern 7EF7.

READING A PROGRAM

Now that you have a program recorded on cassette

tape, and you have adjusted the recorder volume
control, you can read it back into your computer's
memory.

To do this, you must enter the ID number of the
program into location 0004, set the reset vector to
the starting address of the read program (per listing
02E0, 18E0 for EPROM) reset, then run, set your re-
corder to play.

Some LEDs may flicker. If the read was successful
the address LEDs will all be lit or display 7EF7.
If there was a checksum error the LEDs will display
194F.

If the read resulted in a checksum error or an
incorrect display, it is most likely that the problem
is due to a misadjusted volume control, which may

be corrected by moving the volume control either up
or down and repeating the read procedure until the
read is successful.

WHICH CASSETTE TAPE?

Which type of cassette tape is best? We have found
using the higher quality audio cassette tape the
most reliable, although the cheap (5 for $1.00)
tapes will (most of the time) work, it may be
difficult to adjust the volume control.

A WORD OR TWO ON OUR CASSETTE EPROM

on and off one of the parallel I/0 lines, thereby

We have available a 2708 EPROM with our cassette affording you motor control for your cassette re-
interface program "burned" into it. However, we corder.
have added some extra "goodies" to the software.
The EPROM contains some useful subroutines, such The EPROM can be used with or without a terminal,
as a random number generator, a beep subroutine, and is available from Datac for $49.00 post paid.
and for those of you who have terminals we have P

FEEDBACK

written a complete cassette monitor program (in
the same EPROM) which permits you to communicate) ‘ o o
through your terminal in plain language and direct We would appreciate hearing your likes and dislikes
the cassette programs. The monitor enables you to auto- about our system and also reports on the performance
matically load in more than one file. It also turns of cassette recorders and tapes that you are using.

The DATAC Connection

72 PIN CARD EDGE CONNECTOR

All of the signals required for system expansion the connector starts out with the letter A on the
are provided on the 72 pin card edge connector. This left side and letters follow to R on the right. Rev 1

connector has 36 pins on either side of the board boards have the numbers 1 and 72 printed in copper

on 0.156 inch centers. The pin numbering for this on the top side of the board. Don't let this fool

connector has pin 1 on the solder side to the left you. The pin numbering system and signal names are
and numbers across to 36. On the component side shown in figure 1.

-

I-INPUT £=INPUT
O-OUTPUT 0-OUTPUT

g gsw 33:53 8 36 } +7.5 to 10V RAW
35 DC POWER BUS
5 o L 0 34 HOLD U3s-4 1
D g2 U4-8 0 -
E S0 U6-38 I 2
E iﬁii 8 31 UNASSIGNED
J AB13 o gg (RESERVED)
K ABl12 0 e
i A 0 27 +12V BUS
M AB9 fo}
N AB1O 0 26 -5V BUS
P ABl1 o 25 READY U37-3 0
R FIELD @ U9-15 0 24 SYSBUSIN Ul2-6 o]
23 +5V BUS
S FIELD 2 U9-14 0
3 22 GROUND
T 4 U9-13 o £ e
COMPONENT 4] = L0
OR TOP v S 83_}% 8 SOLDER OR 20 SYSBUSOUT Ul2-3 - o)
N BOTTOM 19 FIELD E U9-7 o]
SIDE OF W FIELD A U9-10 o)
PC BOARD b:¢ FIELD C U9-9 o SIDE OF 18 NMI U6-6 I
Y GROUND PC BOARD 17 D7 v2-12 1/0
z] BUS 16 D6 U2-4 1/0
A 15 D5 U2-15 1/0
A +5V BUS
B 14 D4 U2-1 1/0
B g1 ouT U6-3 0
G 1RO 13 D3 Ul-12 1/0
¢ IRQ U6-4 I
D RST 12 D2 Ul-4 1/0
D RST U6-40 3
E +12V BUS 11 D1 Ul-15 1/0
F 10 Do Ul-1 1/0
H UNASSIGNED g ig?UND E
% (RESERVED) 2 e 4
57 6 ABS o]
M 5 AB4 o)
N -12V BUS g 2:; 8
P } +7.5-10V RAW 2 AR p
R) DC POWER BUS : = o
=
FIGURE 1A DATAC 1000 SYSTEM BUS FIGURE 1B DATAC 1000 SYSTEM BUS
TOPSIDE BOTTOM SIDE
rPowdR
o
36
o
>
A/
D
o

40 PIN RIBBON CONNECTOR

The 40 pin ribbon connector is provided to
interface the DATAC 1000 I/O lines to the rest of
the world. It is designed to take a standard
header with 0.025 square pins on 0.1 inch spacing
in two rows (spaced 0.1 inch) of 20. The pins are
numbered starting in the lower left hand corner of
the board from left to right alternating between
the rows. The pin numbering is shown in Figure 2
along with the signal assignments.

Please note that this numbering system is not
the same as the one used in earlier issues of the

newsletter.

FIGURE 2

RIBBON CABLE CONNECTOR -

Dot on board
\-)o
PB3 (22) 1 2 GROUND
PAF (2) 34 PAL (40)

u30 PA2 (39) 5(6 PA3 (38)

6530/ pag (37) 718 | pas (36) 250
PA6 (35) sl10] »pa7 (34 6530
UNASSIGNED ok 12 RS232 OQUT PIN 3 for

Terminal Pin 2 RS232 1N |13]| 14 | rppy oyp- ~ terminal
RTS (5) 15 16 TTY IN-

uzs CRX (3) 17118 | crx (4) U23

6850 { BED (23 1920 | &Ts (24) } 6850
CAI (40) 211 22 CA2 (39)

PAS (2) 23| 24 | pa1 (3
PA2 (4) 251 26 PA3 (5)
PA4 (6) 27] 28 PAS (7)

usl PA6 (8) 29030 pa7 (9) usl

6820 | ppg (10) 3132] 1 (11) §840
PB2 (12) 33| 34 PB3 (13)

PB4 (14) 35] 36 PB5 (15)
PB6 (16) 37138 | “pB7 (17
CB1l (18) 391 40 CB2 (19)
POWER
POWER
JACK

Showing pin

numbering, signals, and orientation.

Numbers shown

in parenthesis () are IC pin numbers.

Overspeed Clocks

by John Prenis

The original RC values for the Datac board were
selected to give it a clock rate of 750 Khtz. A
comparison of 1 Mhtz. crystal and RC clocked boards,
however, made it appear that the RC equipped boards
were faster. Here is a program you can use to tell
if your board is speeding.

1 Minute Time Delay

Special Registers
0001 reserve for outer loop counter

0002 " " middle " 1t

0003 " . inner " \

PFEC* 10 00

0010 A9 78 2 A=78

0012 85 01 3 (Z201)=A
0014 A9 C8 2 OTR A=(C8

0016 85 02 3 (z02)=A
0018 A9 FA 2 MID A=FA

001A 85 03 3 (z03)=A
001cC EA - 2 INR J+1

001D c6 03 5 (Z203)-1
001F DO FB 3 if#0,7:INR
0021 c6 02 5 (202)-1
0023 DO F3 3 if#0,3j:MID
0025 c6 01 5 (201)-1
0027 DO EB 3 if#0,3:0TR
0029 4C 29 00 j rope

This program consists of three nested loops
and the whole thing takes a total of 59988004 cycles.
On a board with a 1 Mhtz. crystal, it takes 59.9 :
seconds. On a board with an RC clock it should take
80 seconds. When I ran it on my board, it took only
45 seconds, meaning that my board was running at
1.25 Mhtz. Most 6502's can run at 2 Mhtz. or more,
so this would not be a problem except that the 6530
and 20 will not work reliably much past 1 Mhtz.
Several other boards have been measured and found
to be overspeed, so this may explain some of the
early problems encountered with these I/0 chips.
Removing the 18K clock resistor R8 from my board,
and trying other values, I found that with a 33K
resistor the program ran in 57 seconds (1.05 Mhtz.),
with 39K 92 seconds (.65 Mhtz.), with 43K 100 seconds
(.6 Mhtz.). Component tolerances probably cause
considerable variation. Of course, if you want to
be sure, you can always install a crystal.

Personal Finances

Edwin R. Morris

Foreword

If, in your financial accounting, you make a practice
of dividing your assets into several accounts, e,g,, Tithes,
Taxes, Toggery, etc,, this program can help in the chore, It
operates in the decimal mode, there is no need to translate
financial figures to hexadecimal,

The program operates elther as an accounting machine
(a/c) or an adding machine (adm), Ae an a/c, it will accept
input data for old balance, income, and expense and calculate
the new balance, It can be directed to accumulate the new
balances in a grand total, or it can be directed to omit
adding the balance of any individual account to the grand
total,

As an adm, it will accept positive or negative numbers
as input, without requiring that negative numbers be
complemented,

Register 0000 is loaded by the operator, and its
contents set the mode in which the program operates,

Reserved registers:

0000 3Set by operator for program direction:
=00 for accounting operation; =01 for skip grand

totaly =AA for adding machine use,

The following data registers are in groups of 4 to
. accomodate 4 pairs of digits, In each case, the lowest
numbered register contains the least significant pair of digits,
the next higher numbered register the next higher pair of
digits, etc. The maximum capacity of the machine is
3999,999,99, The decimal point is always assumed to be between
the second and third lowest digits,

0001
0002
0003
0004

0005
0006
0007
0008

0011
0012
0013
0014

0015
0016
0017
0018

0021
0022
0023
0024

0031
0032
0033
0034

Aegisters for old balance for accounts,

Registers for grand total,

Income for accounts, or
positive figures for input to adding machine,

Adding machine total,

Expense for accounts, or
negative figures for input to adding machine,

New balance for accounts,

(This part of the

36 00
F8

37*% A0 00
39 A2 00
3B E8

42 A2 00
Ly E8 EA
46 o4 14
48 EO O4
LA DO F8
4C A2 FF
4E GA EA
50 A0 00
52 A2 00
54 EB EA
56 94 00
58 94 10
5A 94 20
5¢ 94 30
SE EO O4
60 DO F2
62 A9 6A
64 8D FC
0067 Lec 67

3¢ 9% o4
3E EO O4
L0 DO F9

]

83

7

program sets the data registers to zero,)

rel

rel

nxt

re2

fd=1

Y=00

X=00

X+1

(ZO4+X)=y
fl: X=-04
1£/0,J ret
X=00

X+

(214X)=Y
£1:1X=-04
1£/0, 3 rel
X=FF

ps=X

Y=00

X=00

X+

200+X)=y
Z10+X)=y
Z20+X)=Y
(Z230+X)=Y
£1:X-04
if /o, j re2
A=6A

(FFFC)=A
Jump rope

Decimal mode

Reset counter
Increment counter
Reset grand total
Test counter

when count is 4 go on
Reset counter
Increment counter
leset adm total

Test counter

When count is 4 go on

Stack pointer to FF

deset counter
Increment counter
Reset old balance
Reset income
Reset expense
Reset new balance

. Test counter

When count is 4 go on

To restart at 006A

Avaits operator's actio:

Operator touches Halt, and reads grand total if it is
If operator wants to use the program for an adm,

desired,

he sets the value AA in register 0000,
number (if positive, in registers 0011, 0012, 0013

He then loads a

1f negative, in registers 0021, 0022, 0023, & 002k, and
touches Reset, Run,

load numbers as above,

He again touches Halt, and continues t:
When there are no more numbers to be

added, he extracts the total from registers 0015, 0016,
0017, & 0018,

He then loads 00 in register 0000, 42 in
register FFFC, and touches reset, run, This resets the adm

total and returns to this same spot in the program,
If operator wants the program for an a/c, instead of an

adm, he loads the account data as explained in the Foreword,

then touches Reset, Run,
(The next part of the program makes account.calculations)

006A A0 18
6C A9 00
6E 85 C7
70 A9 75
72 85 CA
74 A9 10
76 85 CB
78 A9 30
7A 85 D5
7D 20 CO
80 A0 38
82 A9 30

EA
00

Y=18
A=00
(207)=A
A=75
(2CA)=A
A=10
(2CB)=a
A=30
(2D5)=A
Jisubroutine
Y=38
A=30

Loads operand fc=0

Changes subroutine

" "

" "
Adds income to account
Loads operand fc=1

& 60143

LOW COST TERMINAL

* The DATAC 200 is a completely assembled and tested video terminal ready to hook up to

your TV set or video monitor.

The following options are available:

terminal of your TV set)

Modem card

Please add $5.00 for shipping.

It provides you with 16
alphanumeric display and has the following features:

screen clear, cursor home, a parallel input to the cursor allowing positioning of cursor
anywhere on screen, 2 pages of memory, RS232 interface.

Optional 64 character by 16 line Video card

Availability is stock.

For further information, please contact Datac Fngineecring
P O Rox 406
Southampton, Pa.

The DATAC 200 terminal complete with keyboard, video display card,
card, power supplies and attractive cabinet is available completely assembled for $340.00.

18966

lines of 32 characters per line of
cursor controls (up, down,

left, right),

serial convertor

Video modulator (used to permit you to connect this terminal dircctly to the antenna
$15.00

8y 85cC7 (207)=A Changes subroutine
86 A9 F5 A=F5
88 85 CA (ZCA)=A " "
8A A9 20 A=20
8c 85 CB (2CB)=A i "
8E 20 CO 00 Jisubroutine Subtracts expense fr acct
91 A9 AA EA A=AA
9% €5 00 £1: A-(200) Test for adm
25 FO 1 if 0, J:add To adding nachine
98 A9 A0 A=AO0
QA 8D FC FF (FFFC)=A To restart at 00AO
009D 4C 9D 00 Jump rope Avaits operator's action

(1f the programVis in the adm mode, the above jump rope is
skipped, Next pause is at program step 0067,)

If program is in a/c mode, operator touches Halt; extracts
new balance for account from registers 0031, 0032, 0033, &
0034, If no error is detected, and (0000)=00, operator
touches Reset, Run, The program then adds new balance to
grand total, and returns operator to program step 0067,

If an error is detected, and the new balance(containing an
error) should not be added to the grand total, load 01 into
register 0000 and touch leset, Run, This will return oper-
ator to program step 0067, where correct data for the same
account can be entered again,

(If in a/é mode, the next part of program adds account
balance to grand total, If in adm mode, it adds the input

to adm total,) Y
00A0 A5 00 A=(200)
A2 DO OF 1£/0, j:skp To avoid grand total
A A9 O4 A=0k
A6 85 CB EZCB%-A Changes sutroutine
A8 85 D5 2D5)=A = "
AA A0 18 Y=18 Loads operand fc=0
AC A9 75 75 :))
AE 85 CA (ZCA)=A Changes subtroutine
BO 20 CO 00 jisutroutine Adds acct to gnd total
B3 4C 4C 00« |skp Jinxt ¥
B6 A9 14e—add A=1L
00B8 4C A6 00
SUBROUTINE
00CO A2 00 X=00 resets counter
C2 EB8 EA<a— re3 X+1 Increments counter
c4 84 C8 (zc8)=Y Sets fc for step 00C8
c6 B5 BS A=(Z04+X) Set by program
C8 B5 EA See steps 00C4 & 00CS
CA EAEA Atfcx(z00+X) Set by program
cC BO 02 if fe=1, jicar
CE AO 18 [Y=18
DO 90 car if fc=0, Jincr
D2 A0 38 Y=38
Dy 959 ner (2R +X)=A Set by program
D6 EO O4 f1: X-04 Test counter
D8 DO BB— 1£/0, jire3 When count is 4 go on
00DA 60 Jiret from subroutine,

Good Programming Practices

by John Prenis
from the Datac 1000 Tutorial Manual

This time we'll continue our discussion of
programming structures with a look at loops.

Another structure of great importance is the
loop with a conditional exit, often called a "do-
while" or "do-until" loop. Here is a simple loop
in TLC:

LOOP
DO:THIS:THING
EXIT IF N=0

POOL

Each time the routine DO:THIS:THING is executed,

N is checked. If it is not zero, the program goes
to the statement following LOOP. As soon as the
routine causes N to be zero, the program goes to

the next statement after POOL ("LOOP" spelled back-
wards). Once again, the use of indentation and

of special words helps to make the program clearer.
Here is a similar loop in 6502 machine language:

1030 20 HE) A call DO:THIS:THING
1033 A5 09 load accumulator with N
1035 DO F9 if N#O0,

1037 program continues

go to A

The last "structure" we'll consider is a simple
sequence of instructions with no loops or branches.
We'll call this a linear structure.

Actual experience has shown that these structures
alone are sufficient for all applications. From
the programmer's point of view there are several ad-
vantages to using a limited set of control structures.
A small set of structures is quickly learned.
he is familiar with their workings, the programmer
can use them with confidence and a minimum of errors.
The programmer is also relieved of the constant need
to verify the correctness of non-standard control
structures.

There are some disadvantages. The structured
solution is not always obvious. However it is
usually worth the extra effort to find one.
Structured programs take up more memory and seldom
run as fast as "optimized" programs. These dis-
advantages are outweighed by the ease with which
structured programs are debugged and maintained.

Because

The full benefits of structured programming
are obtained chiefly throuth the use of a high
level language designed with structured programming
in mind. However the principles are also useful in
machine language programming. We have already seen
how the necessary structures can be carried out in
machine language. We cannot do without the go-to
on the machine language level, but by imposing
restrictions on its use, we can keep it from getting
us into trouble.

1. Go-to's should be used to jump forward only.

2. Go-to's should be used only within a mod-
ule, never between modules.

3. Whenever possible, go-to's should go to
the exit of the module in which they are
used.

There are two main exceptions to these rules.
When a program is written in the form of a big
loop that is continuously executed as long as the
machine is turned on, it is all right to use a back-
ward go-to to close the loop. The other exception
is the use of a go-to to "stretch" a branch that
must go more than 127 bytes forward or 128 bytes
backward.

These guidelines are not intended as hard and
fast rules. You will probably run into situations
where a judicious use of the go-to can make your code
more straight forward. The important thing is to
be aware of what you are doing.

Although top-down design, modular programming,
apd structured programming are independent tech-
niques, you may have noticed that they work together
very nicely. People who get tired of saying
"top-down-structured-modular-programming” all in
one breath tend to lump them all together under the
name structured programming. I look forward to the
day when we won't need any special names. We'll

just think of them as good everyday programming
practices.

) The ideas just discussed don't begin to ex-
haust the area of good programming practices. Here
are some more:

The very first step in writing a program is to
define in as much detail as possible exactly what
the program should do. Include samples of input
and output if possible. Details of how the pro-
gram will do its job should be left til later -
the first thing to settle is how the program will
look to the outside world.

Think before you program. Consider alternatives.
Professional programmers spend far more time thinking
than they do in writing code.

Make extensive use of subroutines as pro-
cedures. Your program will be reduced to little
more than a series of subroutine calls. Give each
call an English name and you have a program that is
brief, easy to read, and easy to understand. The
details are hidden away on a lower level, as top-down
design requires. The logical structure of the pro-
gram becomes clearer. The program also becomes
easier to debug. By using dummy routines, you can
test the main program even before the subroutines
are written.

Avoid tricks. It's tempting to show how
clever you are by taking advantage of quirks in
the processor's instruction set or by writing code
that modifies itself. Don't do it. Always use
the most straightforward method. Tricks are difficult
to explain, hard to debug, almost impossible to
document.

Avoid byte squeezing. A common amusement of

programmers is to see who can write the shortest

. or the fastest program to do such-and-such. This
is OK for fun, but keep it out of your serious work.
The only time it's justified is when your program
is just a few bytes too long to fit into memory, or
when a real-time program is just a little bit too
slow. Consider buying more memory or a faster
processor.

Save results in memory, not the accumulator.
When carrying results from one routine to the next
in the accumulator, you must be very careful about
what each routine exvects to find in the accumulator
and what it leaves. Changes become difficult.
When you store intermediate results in memory, you
know where they are and what they are. You have
greater freedom because they are available to all
routines at any time.

Don't be stingy with working registers.
Give each variable its own. Trying to save two
variables in the place at different times makes
it difficult to remember which is where when, and
you may get B when you really wanted A.

Build debugging techniques into your programs.
One good idea is to store intermediate results
in places where they can be examined later. Another
is to leave no-ops in your programs where break-
points can be inserted. When the program reaches
one of these, it jumps to a routine that tells you
just what the program has been doing lately. A
good place to put them is at the end of each module.
When you are done checking a module, you turn the
breakpoint instruction back into a no-op. The
extra instructions can be removed later if necessary.

Check your program by hand before running it.
You do this by sitting down with the program and
following its instructions exactly, step by step,
as the computer would. It's embarrassing how often
this roots out a+mistake that would have caused the
program to fail. Single stepping through your pro-
gram before running it is a good idea too.

from the top down. You want
main program is working correctly
subroutines.

Debug programs
to .be sure that the
before checking the

Consider all the possible conditions your
routines will face. What happens if the data is
bad, or out of range, or missing? What happens
if the user hits the wrong key or when some smart
alec types a negative number when asked for a
positive one? Failure to keep such things in mind
can result in a program that seems to run all right,
but which later blows up unexpectedly when presented
with something the programmer didn't forsee.

Don't patch. Sometimes you need to insert a
few extra lines into a program. The simple way is
to use a go-to to jump to some part of mermory
where there is room, put the extra instructions there
and then use another go-to to jump back into the pro-
gram. After this is done a few times, the program
becomes an incomprehensible jumble. If you are
using procedures properly, there'is no need for this.
Just rewrite the procedure and relocate it to a
section of memory where there is room for it.
(Don't forget to change the call from the main pro-
gram.)

Start over if you have to. Salvaging a poor
program can cost far more effort than simply re-
writing it. Besides, you'll do a much better job
the second time around.

Document your program when you have it working
It is a rare program that will not have to be
changed or updated someday, and you will certainly
not remember how today's program works a month
from now. Describe briefly what the program does.
Use comments to tell you what the program is
doing (not what the processor is doing). Make
the logical structure of the program clear by
skipping lines, indenting , or circling blocks of
code with a pencil. Make a list of what variables
are stored in what registers. Tell what the pro-
gram expects as input, what it delivers as output,
and what it does in case of error. You'll find the
time well spent.

BIBLIOGRAPHY

Ledgard, Henry
Programming Proverbs
1975

Hayden Book Co.

Karp, Tony
"TLC- A New Systems Language"

Proceedings, uPIEE-77 Workshop on Bench
Programming of Microprocessors

Jones, Bill
"Structured Programming"
Kilobaud, vol. 1, no. 5 May 1977

Chamork, Glen
"Structured BASIC is Better!"

Kilobaud, vol. 1, no. 1 January 1977

DATAC ENGINEERING

P.0. BOX 406
SOUTHAMPTON, PA. 189686

FIRST CLASS

