
1

xDebugger

65C02 Debugger

Last update: 10/10/2021

Bob Applegate bob@corshamtech.com

Corsham Technologies, LLC

www.corshamtech.com

1 Introduction

xDebugger is a fairly complete tool for debugging 65C02 programs under the xKIM monitor. It

was written because of a long-standing desire for a better way to debug assembly language code on

either a KIM-1 or a KIM Clone computer system.

Full source code is provided so anyone can make changes, take useful code for other projects, etc.

1.1 Key features

 Load Intel hex files from either the console or an SD Card.

 Examine/modify registers.

 Breakpoints.

 Single-step and step-over execution.

 Disassembler

 Mini assembler

The code is written in plain 6502 instructions so it can work on any 6502-based processor. The

assembler and disassembler support the WDC65C02 instruction set.

1.2 Requirements

 KIM compatible monitor, although similar functions are available in other monitors.

 xKIM monitor v1.8 or later. Some features of xDebugger require subroutines in xKIM.

 For SD related commands, a Corsham Technologies SD Card System.

 At least 6K of RAM starting from C000.

2

2 Command Line
All input to the command line must be in upper case.

The user types a command line and then presses RETURN to execute it. Command line processing

is a bit loose, so there are scenarios where “bad” input is still interpreted without complaints.

When numeric parameters are required they are entered as hexadecimal values. Each valid digit

causes the current value to the shifted left four bits and then the new digit added. There is no range

checking done, so 1234567890 will result in the value 7890. If you set an 8 bit register to a larger

value, only the bottom 8 bits will be used. No input results in a value of zero.

3 Commands

3.1 ? - Help

Provides a very brief bit of help, showing all the commands. There is no context sensitive help, and

no additional help within the debugger.

3.2 A - <addr> - Start miniassembler at address.

The mini assembler makes it easy to enter short test programs or pieces of code for testing. See the

Mini Assembler section for details.

3.3 B – List Breakpoints

List all breakpoints and indicates if breakpoints are active or not.

3.4 BD – Disable Breakpoints

Disables all breakpoints. All breakpoints remain but simply are not active until enabled again.

3.5 BE – Enable Breakpoints

Enables breakpoints.

3.6 BC [<addr>] - Clear Breakpoints

Clears breakponts.

With no parameter, all breakpoints are cleared and breakpoints are disabled. If an address is

supplied then only that one breakpoint is removed and breakpoints remain enabled. There is no

warning if the address does not have a breakpoint.

3

3.7 BS <addr> - Set Breakpoint

Sets breakpoint at specified address. If a breakpoint for that address already exists, it will be used

rather than creating a new one. This also enables breakpoints if they were disabled.

3.8 C – Continue Execution

Continue execution at the current PC and with the registers loaded with their saved values. This is

meant to be used after a breakpoint.

3.9 D – Dissemble at Current PC

Disassembles at current PC.

3.10 D <addr> - Disassemble One Instruction

Disassemble one instruction at the specified address.

3.11 D <addr> <addr> - Disassemble Range

Disassemble between a range of addresses.

3.12 E <addr> - Edit Memory

Edit memory starting at specified address. This will display an address and the current contents. To

change the value enter exactly two hex digits, then it will advance to the next address.

Pressing RETURN will advance to the next location without modifying the current one.

Pressing Backspace will move to the previous location.

Pressing R will ask which address to branch to. Enter a four digit address and the offset to that

address will be placed in the current location.

3.13 H <addr> <addr> - Hexadecimal Dump

Performs a hex dump of the specified address range.

3.14 J <addr> - Jump to Address

Jump to specified address. Register values are loaded with the current values.

3.15 K – Perform SD Card Directory

Perform a directory of the SD card.

4

3.16 L – Load Intel Hex from Console

Load Intel hex file from the console. If the file sets the xKIM AutoRun vector then that address will

be displayed and the Program Counter loaded with the address. This does not automatically run the

program.

3.17 L <filename> - Load Intel Hex from SD File

Load hex file from SD card. If the AutoRun address is set, behavior is the same as for the L

command.

3.18 R [<name> <value>] - Display or Set Registers

Without any argument, display the registers and also disassembles the instruction at the current PC.

To modify a register, the name must be A, X, Y, SP, PC of F and the register will be loaded with the

value.

3.19 S – Single Step

Execute the instruction pointer to by the PC register with all registers loaded with their proper

values. Stops at the next instruction. It properly handles instructions that cause changes in program

flow (JSR, JMP, branches).

3.20 SO – Step Over

Exactly the same as S except that if the current instruction is a JSR, it will stop at the instruction

following the JSR and not step into the subroutine.

3.21 Q - Quit

Quit back to xKIM. It also restores IRQ and NMI vectors to what they were when xDebugger

started running.

4 Mini Assembler
The mini assembler is not a complete assembler by any means but it does allow the user to enter

65C02 code for testing. It is started with the first addres to be used and then prompts with the

current address, a colon, and then a space. Mnemonics can be typed in there.

4.1 Recognized Mnemonics

ADC, AND, ASL, BBR0, BBR1, BBR1 BBR2, BBR3, BBR4, BBR5, BBR6, BBR7, BBS0, BBS1,

BBS2, BBS3, BBS4, BBS5, BBS6, BBS7, BCC, BCS, BEQ, BIT, BMI, BNE, BPL, BRA, BRK,

BVC, BVS, CLC, CLD, CLI, CLV, CMP, CPX, CPY, DEC, DEX, DEY, EOR, INC, INX, INY,

JMP, JSR, LDA, LDX, LDY, LSR, NOP, ORA, PHA, PHP, PHX, PHY, PLA, PLP, PLX, PLY,

RMB0, RMB1, RMB2, RMB3, RMB4, RMB5, RMB6, RMB7, ROL, ROR, RTI, RTS, SBC, SEC,

5

SED, SEI, SMB0, SMB1, SMB2, SMB3, SMB4, SMB5, SMB6, SMB7, STA, STP, STX, STY,

STZ, TAX, TAY, TRB, TSB, TSX, TXA, TXS, TYA, WAI

4.2 Syntax

The syntax follows normal assembler syntax except there are no labels. The assembler displays the

address and the user enters the mnemonic from the list above, followed by any additional

arguments. All input is in upper case and all input values are in hex.
ROL A Accmulator

LDA #42 Immediate

PHA Implied

LDA 1234 Absolute

BCC 1234 Relative uses the target address

LDA 42 Zero page

JMP (1234) Indirect

LDA 1234,X Absolute indexed with X

LDA 1234,Y Absolute indexed with Y

LDA (12,X) Zero page indexed indirect

LDA 12,X Zero page indexed with X

LDA 12,Y Zero page indexed with Y

LDA (12) Zero page indirect

LDA (12),Y Zero Page Indexed Indirect with Y

JMP (1234,X) Absolute Indexed Indirect with X

The WDC65C02 has several instructions with two parameters which all follow the same general

format:

BBC0 12,0300

BBS7 5,402

Notice that the bit number is at the end of and part of the mnemonic. It is followed by at least one

space, the zero page address to test, a comma, and then the target address. There are alternate ways

to express these mnemonics but this is the one supported.

4.3 Usage

The user simply enters the instruction, presses Return and the assemblet will show the resulting

code followed by a prompt for the next instruction. User input is in bold:

DBG> A 200

0200: LDA #0

0200: A9 00

0202: INC A

0202: 1A

0203: CMP #4

0203: C9 04

0205: BNE 202

0205: D0 FB

0207: NOP

0207: EA

0208:

An empty line exits the assembler.

6

4.4 Weirdness

The assembler does not check much too closely, so it is possible to get unexpected results:

DBG> A 300

0300: LDA Interpreted this as page zero addressing mode

0300: A5 00

0302: JMPPP 1234 Bad mnemonic is not recognized

0302: 4C 34 12

0305: LDX #1234 Value too large is truncated

0305: A2 34

0307:

5 Under The Hood
The best source of details for how the debugger works will be the source code, but this gives some

high level overview. The disassembler is written in pure 6502 code so it can run on any varient of

the 6502, but since it was primarily developed on a KIM Clone witch has a WDC65C02 processor,

the debugger provides full support for it.

5.1 Interrupts

When it starts, the debugger saves the current NMI and IRQ vectors and installs its own ISR

instead. Single stepping and breakpoints use the BRK instruction to gain control. Upon exit, the

debugger restores the original vectors.

Can someone debug an ISR with the debugger? Maybe, but it’ll be tricky and I have not personally

done it so there are some thoughts but definitely not guaranteed to work. If NMI is used then it

should work, but using IRQ takes some care. The new interrupt handler must save the current IRQ

vector, and if the interrupt was not caused by the device, then the handler needs to call the saved

IRQ vector. It will be tricky to make this all work.

5.2 Breakpoints and Single Stepping

Breakpoints and single stepping are done with the BRK instruction. When a breakpoint is set, the

address of the breakpoint is saved along with the original opcode. A BRK is loaded and the entry is

marked as in-use. If the breakpoint is hit while code is running, the ISR puts back the original

instruction, then disassembles the instruction and displays register contents.

Single stepping is much more involved because the address of the next instruction must be

determined so the BRK can be placed there. For instructions where there is no chance of a flow

change, the determination is easy. For JMPs and JSRs, the target must be calculated. For any

conditional branch, it must be determined if the branch will take place or not.

5.3 Disassembler

The disassembler is not at all elegant but gets the job done. It uses several tables for the decoding,

mostly because trying to write elegant code to decoder the WDC65C02 instrution set is a mess, and

it is much easier to understand the table approach. If you only use a plain 6502 or a 65C02 from

7

another manufacturer, feel free to modify the disassembler. You will also need to change the code

in the Step subroutine as it knows about instructions.

5.4 XKIM Reliance

Since the xKIM monitor provided a number of useful commands already, it made no sense re-

coding the same commands in the debugger, so hooks were added in xKIM to provide access to its

internal subroutines. For example, Edit, Hexdump, hex file loading and disk directory commands.

Those functions were added to xKIM in version 1.8 so any earlier versions will not support

xDebugger.

If you are not using xKIM then the easiest thing to do is grab xKIM sources and pull out the

subroutines you need from there.

5.5 Supporting Other Processors

There are several varients of the 6502 processor, and the debugger can be tweaked for them. There

are two main places where changes need to be made. The disassembler (dis.asm) is the main area.

If you wanted to support just an original 6502 without the WDC extensions then changing the

addmodeTbl table will be sufficient. Changes must also be made in the Step subroutine

(disassem.asm).

For adding new opcodes there is a table called MNEMS which needs to be updated. Fortunately

there is a small C++ program called mnem.cpp which can generate that table for you. Add opcodes

in the file, compile, run, and paste the output into your version of the dis.asm file.

If you were to make changes, my suggestion would be to add a meaningful label name which

selects the logic for your processor. Ie, do not delete what is there, just add new code that is

conditionally assembled as needed.

6 Examples

6.1 Loading and Stepping

DBG> L

Waiting for file, or ESC to exit...

:00000001FF0225C904D0FBEAEAC6 File uploaded via terminal emulator

 Success!

Auto-run address and PC set to 0200

DBG> R

0200 A9 00 LDA #00 PC:0200 A:4C X:FF Y:FF SP:01 Flags:N----I--

DBG> S

0202 1A INC A PC:0202 A:00 X:FF Y:FF SP:01 Flags:-----IZ-

DBG> S

0203 C9 04 CMP #04 PC:0203 A:01 X:FF Y:FF SP:01 Flags:-----I--

DBG> S

8

0205 D0 FB BNE 0202 PC:0205 A:01 X:FF Y:FF SP:01 Flags:N----I--

DBG> S

0202 1A INC A PC:0202 A:01 X:FF Y:FF SP:01 Flags:N----I--

DBG> S

0203 C9 04 CMP #04 PC:0203 A:02 X:FF Y:FF SP:01 Flags:-----I--

DBG> S

0205 D0 FB BNE 0202 PC:0205 A:02 X:FF Y:FF SP:01 Flags:N----I--

DBG> S

0202 1A INC A PC:0202 A:02 X:FF Y:FF SP:01 Flags:N----I--

DBG> S

0203 C9 04 CMP #04 PC:0203 A:03 X:FF Y:FF SP:01 Flags:-----I--

DBG> S

0205 D0 FB BNE 0202 PC:0205 A:03 X:FF Y:FF SP:01 Flags:N----I--

DBG> S

0202 1A INC A PC:0202 A:03 X:FF Y:FF SP:01 Flags:N----I--

DBG> S

0203 C9 04 CMP #04 PC:0203 A:04 X:FF Y:FF SP:01 Flags:-----I--

DBG> S

0205 D0 FB BNE 0202 PC:0205 A:04 X:FF Y:FF SP:01 Flags:-----IZC

DBG> S

0207 EA NOP PC:0207 A:04 X:FF Y:FF SP:01 Flags:-----IZC

DBG>

6.2 Editing
DBG> E 300

0300 00 A2 LDX #3

0301 02 03

0302 E3 CA DEX

0303 FF 10 BPL

0304 00 Relative offset to: 0302 FD Pressed R key for branch calculator

0305 FF EA

0306 00 . Non-hex input stops edit mode

DBG>

DBG> E 303

0303 10

0304 FD . Offset calculated from before

DBG>

6.3 Disassembler
DBG> D 200 208

0200 A9 00 LDA #00

0202 1A INC A

0203 C9 04 CMP #04

0205 D0 FB BNE 0202

0207 EA NOP

0208 EA NOP

6.4 Breakpoints
DBG> B

Breakpoints:

Breakpoints are disabled

DBG> BS 205

9

DBG> B

Breakpoints: 0205

Breakpoints are enabled

DBG> J 200

0205 D0 FB BNE 0202 PC:0205 A:01 X:FF Y:FF SP:01 Flags:N----I--

DBG>

Breakpoints can cause some weird side effects, such as this:

DBG> J 200

0205 D0 FB BNE 0202 PC:0205 A:01 X:FF Y:FF SP:01 Flags:N----I--

DBG> C

0205 D0 FB BNE 0202 PC:0205 A:01 X:FF Y:FF SP:01 Flags:N----I--

DBG> C

0205 D0 FB BNE 0202 PC:0205 A:01 X:FF Y:FF SP:01 Flags:N----I--

DBG> C

0205 D0 FB BNE 0202 PC:0205 A:01 X:FF Y:FF SP:01 Flags:N----I--

DBG>

Why is the value of A not changing? Because when the C command is executed, breakpoints are

enabled again, and immediately breaks at address 0205. Ideally the breakpoint will not be active

again until after the instruction at 205 executes but there is no way to do this is software.

Instead, after a breakpoint, either delete that breakpoint or single-step over the instruction and then

do a Continue:

DBG> J 200

0205 D0 FB BNE 0202 PC:0205 A:01 X:FF Y:FF SP:01 Flags:N----I--

DBG> S

0202 1A INC A PC:0202 A:01 X:FF Y:FF SP:01 Flags:N----I--

DBG> C

0205 D0 FB BNE 0202 PC:0205 A:02 X:FF Y:FF SP:01 Flags:N----I--

DBG> S

0202 1A INC A PC:0202 A:02 X:FF Y:FF SP:01 Flags:N----I--

DBG> C

0205 D0 FB BNE 0202 PC:0205 A:03 X:FF Y:FF SP:01 Flags:N----I--

DBG> S

0202 1A INC A PC:0202 A:03 X:FF Y:FF SP:01 Flags:N----I--

DBG> C

0205 D0 FB BNE 0202 PC:0205 A:04 X:FF Y:FF SP:01 Flags:-----IZC

DBG> S

0207 EA NOP PC:0207 A:04 X:FF Y:FF SP:01 Flags:-----IZC

DBG>

7 Resources

7.1 xDebugger Sources

https://github.com/CorshamTech/xDbg

10

7.2 xKIM Sources

https://github.com/CorshamTech/xKIM

7.3 Corsham Technologies, LLC SD Card System

https://www.corshamtech.com/product/sd-card-system/

