

Corsham Technologies, LLC

www.corshamtech.com

617 Stokes Road, Suite 4-299

Medford, NJ 08055

SS-50C 1 MB RAM Board

Introduction

One of the really cool things about the SWTPC 6809 CPU board is the ability to

extend the 64K memory map to a full megabyte by use of Dynamic Address

Translation (DAT). I’m not convinced many people actually had more than 64K back

when SWTPC was making their CPU board, but when I designed the Corsham Tech

6809 one of the features added was 128K of RAM.

It seemed natural that people with either our CPU board or the original SWTPC

board would want to use the extended memory scheme, so it didn’t take long for us

to design this 1 MB board.

There were no existing memory boards to model the design after so this was done

based on looking at the CPU board schematics and the crude description of how DAT

worked. A number of customers have confirmed this board works well in OS/9

systems, as well as our XMEMTEST extended memory test program.

Features

• Fully compatible with the DAT design.

• Supports A16-A19.

• If not all four extended address bits are desired, any of them can be ignored.

• Each of the sixteen 64K memory banks can be enabled/disabled via switches.

• RAM chips are static. No refresh logic.

 - 2 -

Address Bit Enables

SW3 on the lower left corner of the board select which of the four extended address

bits to honor. These are not enable/disable per-se, they select which of the four

extended address lines are used in determining if the on-board RAM is to be used.

We strongly suggest having all four of these switches ON/ENABLEd.

Bank Select

Switches

SW1 and

SW2 select which banks this

board responds to. Notice that if a bank is enabled then

the entire 64K in that bank is available. Of course, the

configuration of the DAT registers on the CPU board

determines

which of the

sixteen 4K

blocks in each bank is mapped to the main memory map, and where in memory it is

mapped.

Dynamic Address Translation

This section was pulled from our 6809 CPU board manual. It’s not really important to

understand how DAT works unless you are writing your own programs using the

extended memory, but DAT is not straightforward so it seemed that including the

documentation here too might be helpful to some.

You don’t really need to read this section unless you plan on writing software that

uses the extended memory, in which case it’s good to understand how SWTPC

mapped 1 MB of address space into a processor with only 64K of address space.

They did this with Dynamic Address Translation, or DAT. DAT uses 16 RAM

locations to map a 16 bit address from the processor into a 20 bit address space.

The top four address lines (A12 to A15) are used as address select lines to 16 bytes

of memory. The lower 4 bits of each address map to A12 through A15. The upper 4

bits are A16 to A19.

Offset 0000

Offset 1000

Offset 1800 At address F800

At address F000 if SW3 is set

to 4K, not present in 2K

Lower 4K is never mapped

to memory

 - 3 -

The top page of memory (FF00 to FFFF) is always mapped to the top 256 bytes of

the EPROM. When SBUG starts, it loads up the DAT registers to map 56K of memory

from 0000 to DFFF.

Addresses FFF0 to FFFF are the write-only DAT registers. If you read those locations

you’ll get the contents of EPROM, not the DAT registers. Each register maps one 4K

block of memory:

Address Block Default value

FFF0 0xxx 0F

FFF1 1xxx 0E

FFF2 2xxx 0D

FFF3 3xxx 0C

FFF4 4xxx 0B

FFF5 5xxx 0A

FFF6 6xxx 09

FFF7 7xxx 08

FFF8 8xxx 07

FFF9 9xxx 06

FFFA Axxx 05

FFFB Bxxx 04

FFFC Cxxx 03

FFFD Dxxx 02

FFFE Exxx 01

FFFF F000 00

That’s as clear as mud, right? Okay, the value written into the registers is the

inverse of the value for the lower 4 bits, and the true value for the upper 4 bits. Still

not clear, I know, so let’s take an example:

FFF0 0xxx 0F

The value 00001111 (binary) is written into the register. When the upper four bits

of the address (A12 to A15) are 0000, the entry above is used. The inverse of the

lower four bits of DAT register at FFF0 is 0000 (since it has 00001111). So the

values for A12 to A15 put onto the bus will be 0000.

So how do we use that? Well, let’s assume you want to load and use two programs

that are both start at address 0000 hex. You can select bank 0’s memory by writing

0F to FFF0 and load the first program.

Now there are multiple ways to put another block of memory at address 0xxx. You

can map another block from bank zero, such as moving the memory currently at

 - 4 -

8000 down to 0000 by writing 07 hex to FFF0. The inverse of 7 (0111) is 8 (1000),

so now when any address with 0000 as the top four bits is selected, the top four bits

put onto the address bus will be 1000.

Another way is to use bank 1 so that all of bank 0’s memory remains in place. To do

this, put the value 0001 in the top 4 bits by writing 1F to FFF0. Now bank 1 will be

selected for all 0xxx addresses.

Load up your second program to 0000 and you’re set! To select the initial program

again, write 0F to FFF0.

Revision History

Version Changes

1 Initial release.

2 Fixed a few minor problems.

Parts List

Part Number Description

PCB 1 Printed Circuit Board (Corsham Tech)

J1 5 Molex 09-52-3101

C1 1 4.7uf, 25v electrolytic capacitor

C2, C3, C4, C5 4 .1 uf disc capacitor

R1, R2 2 680 ohm ¼ watt

R3, R4, R5, R6 4 10K

SW1, SW2 2 8 position DIP switch

SW3 1 4 position DIP switch

U1 1 7805 5 VDC regulator

U2 1 74159 decoder

U3 1 74LS04N inverter

U4, U5 2 HM628512 512K static RAM

 1 24 pin wide IC socket for U2

 1 14 pin IC socket for U3

 2 32 pin IC sockets for U4 and U5

