computell.

I’A[,“Nt,“NOI.'Nclﬁ’é 2)
| WTHEEI?gEEﬁlmW‘ |

DM i I

o

: 1110

b

U L 2
“ ‘ Ri802
Ll g SAESOUTSS

. The Rockwell AIM-65

For professional learning, designing and work, Rockwell’'s AIM-65
microcomputer gives you an easy, inexpensive headstart! The AlM's
full-size keyboard, true alpha-numeric display and on-board printer
give you all of the peripherals associated with a large development
system, yet AlM is priced lower than the first circuit board would cost
for such a system.

4K AIM-&5 $515.00
AlM Enclosure $43.50
Protects the AIM 85 from damage while maintaining convenient

. access 1o on-board switches and printer.
Power Supply for the AIM 65 by MTU $79.95
This power supply from Micro Technology Unlimited provides the
power and cooling capacity needed to run your AIM at peak efficiency.
AlM BASIC ROM $100.00
Written by microsoft, Rockwell AIM-65 8K BASIC is contained in two
easy-to-install ROM circuits.

AIM-65 Assembler ROM $85.00
Just plug it into the AIM 65 board and your AIM is ready to do all the
busy work of creating 8502 Machine-Language programs.
CompuMart's Complete AIM-65 System. $850.00

Save $28

Includes a 4K AIM 65 with BASIC and Assembler, an MTU power
supply, Sanyo tape recorder and enclosure.

Rockwell Motherboard for the AlM $195.00
Want 1o expand your AIM and keep Rockwell quality? Purchase the
Motherboard from CompuMart.

and

SERVICE

TOLL FREE
ORDERING

FREE
10 DAY
RETURN

and

IMMEDI-
ATE DE-

and

KIM

KIM-1 Microcomputer . $179.00
From MOS Technology. a division of Commodore. This famous sin-
gle board based computer comes to you fully assembled and tested —
simply attach a power supply and you're ready to start computing.
Includes three informative manuals FREE,

Micro Technology Power Supply $35.00
The perfect mate for a small KIM system. Comes fully assembled,
tested, and enclosed in a Bakelite Box.

KIM 1 with power supply $204.00
Save $10 when purchased together!
KIM Enclosure $923.50

Give your KIM-1 a professional appearance and protect it from shorts
and physical damage

Current Loop/IRS-232 Adaptor $24.50
For general interfacing applications. (KIM-1to printer, KIM-1 to
modem, etc.)

Sanyo Cassette Recorder $55.00
Perfect for your KIM. Works great.

Books on KIM. (The following three books are included FREE
when you buy a KIM. You may purchase them separately however),

6502 Programming Manual $9.95
6502 Hardware Manual $9.95
KIM User Manual $9.95
First Book of KIM $8.95

Buy direct from CompuMart and get more than you oay for. u

@270 THIRD STREET, COMP UMARTCAMBRIDGE, MA. 02142‘%\

Toll Free 1-800-343-5504 wite Dept. 37 for | Mass. 617-491 -2700

Free Catalog

August/September, 1980, Issue 3. compute Il

d o
o n

i+ in DOXes a W

ng information B

L]

les tax
® Add local sa
.‘:‘hele applicable L

e and

ND TOTAL —— — i
. [;TAPAYMeNT ENCLOSED (save postad
L]

ing costs)
: honanngK] MONEY ORDER
] CHE RGE LI VISA
[MASTER CHA

. -
® gypiration pate.———

ank Numbef et
> ‘L‘g:\zlsrl)er charge only)—

Account Numbe!.—
m credit car

. 4 purcho
inirm

® e (prinfl—
. Nam! B
:s,gnmure,_/’—

7ip———
tote————
= + notice. All books
okstores ggo
m 5al 3. only. “"f“‘:‘"
uter Stores. off scarborough e
Lenbrook‘;‘ ee0e0®®

GET THE
MOST OUT OF YOUR
6502-BASED COMPUTER.

Sams has three books written especially for the popular 6502-based
microcomputers like the APPLE, PET, ATARI, OSl, SYM, AIM and KIM. If you
own a 6502-based computer—or are thinking about buying one—let
Sams help you get the most out of it. We make graphics, programming,
interfacing and software design simple.

- PROGRAMMING & INTERFACING THE 6502, WITH EXPERIMENTS.

By Marvin De Jong. The more you know about programming and inter-
facing, the more performance you can get out of your microcomputer.
This hands-on guide to ‘6502 presents 80 carefully graded experiments
to help you get the most out of your AIM, KIM or SYM. NO. 21651. $13.95

I 502 SOFTWARE DESIGN

Leo Scanlon—a leading computer expert—simplifies soffware design.
Takes you from fundamentals info more complex.topics. Get more ver
satility out of your computer by learning to program it yourself. IN-
CLUDES 89 TEST PROGRAMS! NO. 21656. $10.50

B COMPUTER GRAPHICS PRIMER

Mitchell Waite—one of the most popular computer authors—brings
computer graphics inte sharp focus. Shows you how to use a 6502-
based computer to create complex drcwin"gs, plans, maps and
schematics on a video screen. NO. 21650. 512.95

2 compute Il

August/September, 1980, Issue 3.

Table of Contents
TheEditor'sNotes Robert C. Lock, 3
The Single-Board 6502 Eric Rehnke, 4
Evaluation: The First Mate/Second Mate Marvin L. Delong, 12
Nuts and Volts No. 3: Address Decoding . . Cene Zumchak, 15
A Simple Inferface for a Stepper Motor . .Marvin L. DeJong, 18
(& i ni Ty Rl SRS S — Gene Zumchak, 21
KBTS o o5 5 swmmmns w5 54 os v o £s Harvey B Herman, 22
SYM-1Home Warning System. AN MacKay, 26
A Digital Cardiotachometer

Implemented With The AIM-65 Manvin L. Delong, 32
Saving Data Matrices With Your SYM-1 George Wells, 36
OSIROMSs:PartT ... 1. R Berger, 40
Book Review: All About OSI Microsoft

Basic-In-ROM Charles L. Stanford, 41
Fast Graphicsonthe OSICIP Charles L Stanford, 42
Modification and Relocation of FOCAL 65-E

Into Erasible PROM William C. Clements, Jr., 48
COSMAC Quickies .. Jess Hillman, 80
The 1802 Instruction Set ...Don McCreary, 52
CAPUTE: The Bug Box Robert Lock, 55

Advertisers Index

Aardvark Technical ServICes vu vs vi v viwiinvs e vr e 47
BB CEIDURES . o cwe s o s s i SRR 2% e .20
Applied Business Computer Co..o nns 35
Beta Computer Devices

Compas MICTOSYSTOMIS . i v wh st o dussisiin i s v 55 et
COMPURIETE &« e v ai wa a2 o

Compute’s Book Corner
Connecticut Microcomputer . . .
Digital Engineering Associates . ..
Electronic Specialists
Enclosures Group
Excert, Inc. . .
Falk-Baker Associates
Forethought Products
Hudson Digital Electronics .
HowardSams Co.o v e i
NUCTOMIGTE: v o crmmmeiss o1 i s s o gt v) i bl sl il 35
Microtech
Microtechnology Unlimited
Michael Allen
NiagaraMicroDesign.
Perry Peripherals
Rehnke Software Enterprises
RNB Enterprises . ..
Skyles Electric Works
SR AR i 000 ot 0o 510 o S s 2 e oo s o e 10

Staff of compute IL.:

Robert C. Lock, Editor/Publisher

Carol Holmquist Lock, Circulation Manager.
Larry Isaacs, Software/Hardware Lab.
Joretta Klepfer, Editorial Assistant.

compute IL. receives continuing assistance from the following
persons:

Harvey B. Herman, University of North Carolina at
Greensboro, Dept. of Chemistry. Editorial Assistance.

Gary Dean, The Design Group, Greensboro, N.C., Art
Direction/Design Consultation.

Jim Butterfield, Toronto. Editorial Assistance.

The following writers contribute on a regular basis as
columnists:

Eric Rehnke, 1067 Jadestone Lane, Corona, CA, 97120.
Associate Editor

Dann McCreary, Box 16435-Y, San Diego, CA, 92116.
Gene Zumchak, 1700 Niagara Street, Buffalo, NY, 14207

Application to mail at controlled circulation postage rate
is pending at Greensboro, North Carolina. Postmaster:
Send change of address to compute II, Post Office Box
5406, Greensboro, NC 27403.

compute IL is published by Small System Services, Inc.,

| 900-902 Spring Garden Street, Greensboro, North Carolina

27403, Telephone: (919) 272-4867. compute II. is published
six times each year on a bimonthly schedule. Subscription
cost for one year is $9.00. compute I is available by
subscription or through retail dealer sales. Subscription
prices higher outside the US. (Sec below)

Address all manuscripts and correspondence to compute I1.
Post Office Box 5406, Greenshoro, N.C. 27403, Materials
(advertising art work, hardware, etc.) should be addressed
to compute II., 900 Spring Garden Street, Greensboro,

N.C. 27403.

Entire contents copyright © 1980 by Small System
Services. Inc. All rights reserved, *“‘compute II. The
Single-Board COMPUTE."’ is a trademark of Small System
Services, Inc.

compute IL. assumes no liability for errors in articles or
advertisernents. Opinions expressed by authors are not
necessarily those of compute TI.

Authors of manuscripts warrant that all materials submitted
to compute II. are original materials with full ownership
rights resident in said authors. By submitting articles o
compute IT. authors acknowledge that such materials, upon
acceptance for publication, become the exclusive property of
Small System Services, Inc. Unsolicited manuscripts not
accepted for publication by compute II. will be returned

if author provides a sclf-addressed, stamped envelope. Program
listings should be provided in printed form as well as machine
readable form. Articles should be furnished as typed copy
with double spacing. Each page of your article should bear
the title of the article, date and name of the author.

Address all articles, circulation
questions and other inquiries to:
compute |l
P.O. Box 5406
Greensboro, NC 27403
(919) 272-4867

August/September, 1980, Issue 3. compute Il

The Editor’'s Notes 7.

IMPORTANT
ANNOUNCEMENT!

COMPUTE and compute Il are merging info one, high quality,
monthly magdzine.

This is the last issue of compute Il. Your next magazine,
COMPUTE!, wil arrive in November.

The Timetable

The merger is effective with the November/December issue of
COMPUTE! In January, we're monthly! Each month you'll
receive the same qudlity of single board information we've
been providing in compute II.

Don’t Despaitr!

New COMPUTE! will contain a healthy Single-Board Computer
Gazette, continuing to provide you with useful, up-to-date
information. We're committed to continuing to provide as
much or more information in two monthly issues as we've
been providing in one bimonthly issue.

OSI Moves Out

New COMPUTE! will have an OS| Gazette for you OSI
owners, with the Single-Board Computer Gazette devoting its
space to KIM, SYM and AlM.

And What About the 1802?

Dann McCreary will contfinue his column, emphasizing the
areas of communication between the 6502 and the 1802,

That's the new COMPUTE! Your subscription will be adjusted to
make sure you get your six issues of computell/COMPUTE!
We'll explain the process in Issue 7 of COMPUTE! (November/
December: the copy you'll receive next fime.) e

compute Il.

August/September, 1980. Issue 3.

The
Single-Board
650 2Eric Rehnke

Well, I finally did it. Got myself an APPLE II to play
with. No, I'm not abandoning KIM. Just wanted to
see what all the hullaballoo was about.

Sure is easier to demonstrate than KIM. Who
wants to see an assembler when they can see some
neat video-arcade like games in action?

...And Ever The Twain Shall Meet

While I was preparing to take an AIM 65 system to
the local computer club for a demo, it became painfully
obvious that I would either have to build a special
version of the sound generator board for my AIM
65/MTU system or, somehow, adapt the sound board
that was built for my KIM-1/HDE system. I decided
to adapt rather than fight with a new board from the
ground up. Luckily, in my MTU card cage, the
bottom row of slots are not used because of the way
the MTU backplane board has been raised to accomo-
date the AIM 65. Also, the spacing between the

card guide on the right hand side of the cage and

the edge connector turned out to be just perfect for
supporting the 4.5"’x6.0°" HDE size card. It was
almost like the cage was designed to accomodate the
standard 4.5"’x6.0"’ size prototyping cards. (Keep
this in mind when you need a quick and cheap proto
board in your MTU system as they can be obtained
for less than $10).

Interestingly, a week later, I needed to adapt an
MTU card (the Visible Memory graphics board) to
my KIM-1/HDE system. Because of the size of the
Visible Memory card it had to be mounted outside
the HDE cage. A cheap 4.5"’x6.0"’ proto board was
installed in the HDE system with ribbon cable to
extend the bus out to a 44-pin card edge connector
which plugged on to the MTU card.

Both transplants are doing fine, thank you. And,
on nights off from doing serious development work,
big KIM can relax with some pleasing graphics as
well as some interesting sound effects.

Here’s how to cross pollinate your own system:

KIM-4/HDE SIGNAL NAME MTU/AIM-65
BACKPLANE BACKPLANE
B ABO A
c ABI1 B
D AB2 C
E AB3 D
F AB4 E
H AB5 F
J AB6 H
K AB7)
L ABS8 K
M ABY €L
N AB10 M
P AB11 N
R AB12 P
S AB13 R
T AB14 s
U AB15 E
8 DB7 8
9 DB6 9
10 DB5 10
11 DB4 1
12 DB3 12
13 DB2 13
14 DB1 14
15 DBO 15
19 +8 18
22 GND 22
7 RES 7
e 02 Y
17 +16 X
w R/W v

Signal Conversion Table
Sound Chip Driver
As promised, here is the low level driver software for
interfacing a 6522 VIA to the General Instruments
AY3-8910 Programmable Sound Generator (PSG).
The explosion routine is included to satisfy yourself
that the interface works correctly. The clock circuit
was duplicated from page 33 of the PSG manual.

The 1 MHZ system clock (.0’1 orﬂZ) could have
been used to save a few dollars but then all example
values given in the documentation would have to be
recalculated. Building the suggested clock input circui-
try seemed to be the easier of the two alternatives
since [had the parts on hand anyway.

The audio output circuitry was duplicated from
page 6 of the PSG manual and used to feed one
of the cheap (under $10) Radio Shack speaker/
amplifiers.

Connections from the 6522 to the PSG are similar
to the scheme presented on page 43 of the PSG
manual except that BC2 (pin 28) is connected to
+5 volts (not PB1), and BDIR (pin 27) is connected
to PB1 (not PB2).

This way, three additional PSG chips can be
connected to the 6522 as my drawing indicated in
issue #3 of COMPUTE (page 104).

I should mention that there was one thing
about the PSG manual that really messed me up
for awhile. All the register numbers and values are

August/September, 1980, Issue 3. compute Il. 5

expressed in octall Once I realized this, programming What kinds of interesting sounds can you come up

the chip went much easier. with? Can you program wind chimes or bells? I’ll
OK. I’ve shown you how to hook up this neat publish any neat sound programs.

chip and even threw in some software to get you

going.

Q10020 2000 FEOUND CHIF DRIVER FPROGRAM

QL-0025 2000 FWRITTEN BY ERIC C. REHNKE

QL=-0030 2000

OL=-0040 2000 FAEDY NEFINITIONS

O1=-00%0 2000

Q100860 2000 TOBAKE = $OB10

QL-007¢ 2000

QlL-0080 2000 ORR =T ORASE

QL0090 2000 DIFE ORASES?2

010100 2000 IR DBASE+3

QL0110 2000 OREGA =L0RASELLS

OL-0120 2000

QL0130 2000 FRYBYT =4$1E3R FRIM HEX T0 ASCII ROUTINE

Q1L=-0140 2000 CRLF 1E2F

01-01%0 2000 OUTSE 1E9E

GL-0160 2000

QL0170 2000 STBRUF = 00

QL0180 2000 FMATINL ITNE ROUTINE

QL0120 2000 Kb 2000

QL0200 2000 3

010210 2000 FARNOKEROUTFUT TH THE SOUND CHIFsokokkkk

010220 2000 §IN ORDER TO SET A SOUND CHIF REGISTER TO

Q1L=-0230 2000 ia FARTICULAR VALUEy ENTER THIS ROUTINE WITH

Q10240 2000 FTHE "X RE i CONTAINING THE SOUND CHIF

QL0250 2000 i R ITSTER MUMEBER AND THE ACCUMULATOR CONTAINING

Q10260 2000 FTHE DATA TO RE LOANED INTO THAT REGISTER.

OL=-0270 2000 i

010280 2000 A8 DUTFUT TAY FEAVE DATA

01-0290 2001 20 10 20 SROLATOCH

Q1-0300 2004 20 246 20 ¢ WRITE

O1=0310 2007 60

Q10320 2008 §

O1-0330 2008 FRAROEINFUT FROM THE SOUND CHIFRRkRo0k

010340 2008 FIN ORDER TO READ THE CONTENTS OF A

010350 2008 SFARTICULAR SOUND CHIP REGISTER: ENTER

0103460 2008 FTHIS ROUTINE WITH THE SOUND CHIP REGISTER -

Q10370 2008 PNUMBER TN THE ‘X7 Fo UFON RETURNy

Q10380 2008 FTHE DESTIRED REGISTE . BE FOUND

Q10390 2008 $IN THE ACCUMULATOR

Q10400 2008 H

QL-0410. 2008 20 10 20 INFUT JSR LATECH

010420 2008 20 35 20 JEROREAD

OL-0430 200E 98 TYA JRESTORE DATA

O1-0440 200F 40 RTSH

QL0450 2010

01-0460 2010 FTHE “LATCHY ROUTINE SIMPLY LATCHES

010470 2010 sTHE SOUND CHIP REGISTER NUME INTO

Q10480 2010 FTHE SOUND CHIFP ADDRESE STER FOR

01-04%0 2010 A SUBRSEQUENT READ DR WRITE. -

010500 2010 #

010510 2010 A% FF LATCH LDa #4FF FMARKE 1T ALL QUTFUTS

Q10520 2012 8D 13 08 5TA IIRA

01-0530 2015 8D 12 08 STé DIRE

6 compute II. August/September, 1980. Issue 3,

BOX 120
ALLAMUCHY, N.J. 07820
inc. 201-362-6574

4

HUDSON DIGITAL ELECTRONICS INC.

ANNOUNCING THREE NEW PRODUCTS

1. 4/8K EPROM CARD

A 4/8K EPROM card, featuring on-board
jumper selection of 2708 or 2716 EPROMS.
Compact, industry standard 4%: x 6%" card
size with on board regulation of all required
voltages. Uses the KIM-4 standard 44-pin
bus. (EPROMS not included)

HDE DM 816-P8 — $165.00

DM 816-P8 — (EPROMS not included)

2. HDE DISK BASIC (Now it’s KIM’s turn)

HDE Disk Basic has been designed so that the 8502 Basic versions for SYM, KIM , TIM and AIM are
subsets, thereby allowing program transfers without any modification in most instances. For
program development we've included and enhanced the editing features available in our text editor,
TED. Other facilities include: ON ERROR GOTO .. ;; IF...THEN ... ELSE; LINE INPUT: PRINT USING;
AUTO line numbering; renumbering; hex value input and much more. Disk capabilities include: SAVE,
LOAD, RUN, LINK, CHAIN and sequential and random input/output. KIM version available now for
HDE Disk based systems — $175.00

3. HDE ‘AID’ - An Advanced Interactive Disassembler

The Advanced Interactive Disassembler, designed by PCS, Progressive Computer Software, is a
resident, two pass disassembler that creates TED compatible source files, with labels assignedtoall
address references. Addresses external to the objectfile limits are defined as equatesin the source.

AID Builds Source Files for All Your Object Programs

The creation of source files of any object program is limited only by the size of the object program,
the symbol table and the user defined source file buffer. AID will save interim source files to disk.
KIM, TIM, SYM and AIM HDE Disk Based versions - $95.00

August/September, 1980 Issue 3 compute Il 7

HDE DISK USER LIBRARY

The HDE Disk User Library has been established for the exchange of user developed programs and
routines. All programs in the library are ‘public domain’ and available to any HDE Disk System user
for a nominal copying charge or on a one-for-one free exchange basis. A list of programs currently
available and other information may be obtained from Progressive Computer Software, 405 Corbin
Road, York, PA 17403. Enclose a self addressed, stamped envelope for a prompt reply.

OTHER HDE PRODUCTS INCLUDE:

® 5" and 8" single and dual drive disk systems e HDE Assembler

e 19” RETMA standard card cage @ Text Output Processing System
® 8K static RAM memory ® Comprehensive Memory Test
@ Prototyping card ® Dynamic Debugging Tool

(disk and cassette versions)

COMING SOON:

£ KM Basad, dual Disk FORTH

mini drive system

for:

e Program development

e Engineering support Dual Channel RS-232C

» Word processing Communications Interface
applications Card

HDE Products Are Available From:

Johnson Computers Progressive Computer Software
Box 523 405 Corbin Road
Medina, Ohio 44256 York, PA 17403
(216) 725-4560 (717) 845-4954
Falk-Baker Associates Perry Peripherals
382 Franklin Avenue P.O. Box 924
Nutley, NJ 07110 Miller Place, NY 11764
(201) 861-2430 (516) 744-6462
LiTdARE ocidias Specializing in KIMS! and overseas sales
20 Sunland Drive A-B Gomputers
Chico, CA 95926 115-B E. Stump Road
(916) 343-5033 Montgomeryville, PA 18936

Specializing in SYM (215) 699-5826

8 compuie Il August/Septermber, 1980. Issue 3

010540 2018 BE IF 08 STX OREGA
Q1-0550 R0LE A9 03 LDA #3 FETROBE IN THE REG ADDRESS
01-0540 2010 80 10 08 STA DRE

01-0570 2020 A9 00 LIA #0

01-0580 2022 BD 10 08 GTA DRE

01-0590 RORS 60 RTS

01-0600 2026

01-0610 20R6 FTHE “WRITE ROUTINE ASSUMES THE
01-0620 2026 SEROPER REGISTER VALUE HAS ALREADY
010630 2026 SSETUR IN THE SOUND CHIF AND LOADS
01-0640 2026 JTHE PROFPER SOUND CHIF REGISTER WITH
010650 2026 STHE CONTENTS OF THE ACCUMULATOR.
01-065% ;

010660 98 WRITE TYA

0104670 BN 1F 08 STA OREGA

0140680 AY 0 LIA %2

010690 8o 10 08 STA ORE

01-0700 Ay 00 LDA #0

01-0710 2031 BD 10 08 $TA ORE

01-0720 2034 60 RTS

0L-0730 R203%

01-0731 2035 FTHE “READY ROUTINE ASSUMES THE FROPER
010732 FEOUND REGISTER CHIF HAS BEEN SELECTED
01-0733 FAND READS THAT REGISTER INTO THE
01-0734 FACCUMULATOR .

01-0735 2035 §

01-0740 2035 A% 00 READl LDA #0

01-0750 R037 80 13 08 ETA DDRA

010760 2038 A9 01 LIA #1

01-0770 R203C 8D 10 08 STA ORE

01-0780 R203F AL IF 08 LA DREGA FOET DATA
01-07%0 2042 (B TAY

01-0800 2043 A9 00 LIA 40

01-0810 2045 80 10 08 STA ORE

01-0820 2048 60 RTS

01-0830 2049

01-0831 2049 STHE ‘CLEARY RODUTINE ZEROS ALL THE REGISTERS
01-0832 2049 PIN THE SOUND CHIF.

01-083% 2049 ;

01-0840 2049 20 73 20 CLEAR JSR INITS

01-0850 204C A2 00 LDX #0

O1-0860 204E AT 00 pOIT LDA #0

01-0870 2050 20 00 20 JBR OUTFUT

010880 2053 E8 TNX

01-0890 2054 EO0 11 CPX #17

01-0900 2056 DO Fé ENE DOIT

01-0910 2058 00 EREK

01-0920 2059

01-0925 2059 STHE “CHECK DUMFS THE CONTENTS OF
010926 2059 SALL THE SOUND CHIF REGISTERS TO
010927 2059 FTHE SERIAL TERMINAL .

01-0928 2059 i

01-0930 2089 20 73 20 CHECK JSR INITS

010940 20SC 20 2F 1E JBR CRLF

01-0950 205F A2 00 LIX #0

01-0960 2061 20 08 20 BETIT JSR INFUT

01-0970 2064 20 IR 1E JBR PRTEYT

01L-0980 2067 20 9E 1E JBR DUTSF

Q1-0990 206A E8 INX

August/September, 1980. Issue 3.

compute Il

Q011000
011010
Q01-1020
011030
01-1040
011060
01-1061
Q11062
011063
01-1064
0110670
011080
Q1-10%0
011100
011110
Q1-1120
01--1130
011140
150
-1 1460
01-11720
Q01-1180

01-11%0
11200

011230
01-1240
01-1230
01~
01-1270
011280
011290
01-1300
01-1310
01-1320
Q1—-1330
01-1340
Q1-1350
94l)
Q011370
011380
01-13%90
Q1L-1400
01-1410
011420
01-1430

011470
01-1480

01-1490
011500
O1=1510
OL~-1520
01-1330

2068
2060
206F
2072
2073
2073
2073
2073
2073
2073
2073
2078
2078
2074
2070
207E
207E
2O7E
207E
207E
207E
2080
2082
2085
2087
2089
208C
208E
2090
2093
2095
2097
20948
209C
209k
20A1
2063
20A5
2068
2000
20a0
208F
2080
20R0
2080
20R0
2080
20R0
20R0
20RO
20B2
208G
20R8
20R9
20BR
20RD
2000
2000

EO
ne
20
00

Ay
an
Ay
an
40

Av
Az
20
AY
A2
20
AY
AZ
20
AR
A2
20
(£33
a2
20
A?
AZ
20
A7
AR
20
00

a2
ED
20
E8
EO
no
40

11
E2

$SF

FF
12

(019
10

00
Q6
00
07
07
00
10
08
Q0
38
o

Q0

10
0%
00

(o74]
00
00
on
00

00
00
00

Fa
59

LE

08

o8

20

20

20

R

s

20

20

§ THE

CFX
BNE
JER
EBRK

SENLTE?

17
GETLT
CRLLF

ROUTINE
$HER2 WITH PRO-FRY AS

SETS 4P THE
OUTFUTE

FAND WRITES A $00 TO THAT FORT.

¥

INITS

LIvA
STA
LIA
STA
RTS

JEXPLOSTON

EXFLOS LDA

FTHIS SECTION LOADS
FRE F

TWITH

$EFF
DIRE
H0
ORE

SOUND EFFECT

#$0
LOX $é
JEROOUTEUT
LA ke
LIX #7
JGR OUTFUT
LA #410
LOX #8
JEROOUTFUT
LOA 4638
LIDX %12
JER QUTFUT
LIy %410
LI #9
JER OUTEUT
LOA #4610
LY #10
JER OUTFUT
LA #6
LI #13
JER OUTFUT
BRE

IRGT 1é

FLOCATION #2500

L.OAn
LOOF 1L

L.IX
LIA
JER
INX
CRX
RNE
M

« ENII

+0
STRUF » X
OUTEUT

17

LOOFL
CHECK

FHETUF REG &

igAME FOR REG

THE SOUND CHIF

BYTES

FNOW

DIONE

§ DILME

STARTING AT

GET DATA

YETT

THE CONTENTS
OF THE CHIF

7

compute II.

August/September, 1980. Issue 3.

More In Store

Now that we have sound output, it’s only logical
that we should have some sort of analog input. Be-
sides, if we only hook one sound chip to the 6522 we
have plenty of lines left--so let’s use ’em. I happen to
have a NATIONAL ADCO0816 laying around that’s
just waiting to do something.

It’s an 8 bit A/D converter with 16 analog
inputs. The conversion time is around 100 us and it
runs on & single 5 volt supply. Ideal for joysticks
and other analog devices.

Look for it in an upcoming column.

You Got Time?

What about the date? If your micro has need for the
time and date, you’ll be glad to hear that a new 18
pin, GCMOS clock/calendar chip (MSM 5832) has been
introduced by OKI Semiconductor (1333 Lawrence
Expressway, Santa Clara, CA 95051 (408-984-4842))
that can be easily interfaced to a 6522 VIA. In

fact, it was made to interface with micros.

The MSM 5832 chip and necessary crystal
(32.768 KHZ) cost under $15 and is now generally
available. If you can’t find it locally, I got mine
at Concord Computer Components (1973 So. State
College, Anaheim, CA 92806 (714) 937-0637).

More On Communications

If you’'re interested in computer communications,
two magazines recently had articles which will feed
your enthusiasm.

Byte magazine (Junc 1980) had two useful articles
which you will want to read.

The first article (on page 24) showed how to build
a complete modem with pre-aligned filter modules
which eliminates the need for complicated adjust-
ments. The 6860 modem chip was used which is a
perfect match for the new 6551 ACIA chip which is
being manufactured by Rockwell-and Synertek.

Page 140 (of the same issue) presents two methods
of having KIM dial your phone. The first method
uses the conventional relay approach while the
second one uses a D/A converter (just like the one
on the Micro Technology Unlimited D/A board) to
generate and mix the two signals necessary to create
the touch-tone pair.

Doctor Dobbs Journal (June/July 1980) devoted
part of an issue to the subject of networking which
included an update on the PCNET efforts of Dave
Caulkins, several articles on networking and a
deseription of MCALL-C, another communications
protocol.

They also had a directory of phone numbers for
144 computerized bulletin board systems.

Lots of things are happening in this area of
personal computing and commercial computing, as
well. If you're looking for a possible future
career in some area of computing, telecommunica-
tions is a good choice.

HDE Software Bank

Hudson Digital Electronics (Box 120, Allamuchy, N.J.
07820 (201) 362-6574) has just concluded negotiations
which would put Progressive Computer Software
Inc. (405 Carbin Rd., York, PA 17403) in charge

of maintaining the HDE Users Library.

The plan is to offer utility and applications
programs available at a nominal disk copying charge.

Contact HDE and/or Progressive for more details.
6502 High-Level Languages Available
Several high level languages are available from the
good folks at 6502 Program Exchange (2920 Moana,
Reno, NV 89509). For AIM, KIM and SYM
systems, they’re offering FOCAL, TINY BASIC
and XPLO (a compiler) as well as an editor and
assembler.

These people have been around since the beginn-
ing and done much to help the 6502 attain its
present popularity level.

Send $1 for their latest catalog. (@)

k

MORE"
EPROM PROGRAMMER

e 3K RAM EXPANSION SPACE
e OUTPUT PORT EXPANSION

e EPROM SOCKET FOR OFTEN
NEEDED SOFTWARE

e READY TO USE ON BARE

KIM, SYM, AIM

BOARD, SOFTWARE ON KIM
FORMAT TAPE, MANUAL,
LISTINGS, ALL PERSONALITY
KEYS FOR 2708, 2716 (t5
+12V) AND 2716, 2758, TMS
2516 (5V ONLY)-- $169.95
e 2708 EPROM WITH SOFT-
WARE 1S $20.00

T.T.L P.O. Box 2328 Cookeville, TN 38501
Phone: 615-526-7579

= -

— PET,AIM,SYM,KIM OWNERS=

PEDISK!

*Tired of waiting for your cassette?

*Want versatile, inexpensive expansion?

*Want IBM floppy disk compatibility?

THE IBM COMPATIBLE FLOPPY DISK
SYSTEM WITH 5%" or 8” DRIVES

*Want professional, sophisticated file handling?

*Want consistant, reliable operation?
*Want simple, easy-to-use disk syntax?

CRS/PDOS

A NEW SOPHISTICATED DISK

OPERATING SYSTEM

*Want a compatible disk-based Editor/Assembler?

CRS/ASM

NEW PET OWNERS
PEDISK IS AVAILABLE FOR NEW PETS TOO!

AIM,SYM,KIM OWNERS
PEDISK ADAPTOR IS NOW AVAILABLE!

PEDISKPRECEAGE 1 v i o win o it wiosviiniis $799.95
5" DISK SYSTEM, CASE AND POWER SUPPLY
PERISKPACKAGE D! . .. 0 cr vn vin sis oo $895.00
5" DISK SYSTEM, S100 CARD CAGE, CASE AND POWER SUPPLY
PEDISKPACKAGE DA 14« vimess v o s v s ok $495.00
ADDITIONAL 5" DISK DRIVE, CASE AND POWER SUPPLY
PEDISKPACKAGEA .. .\ conuivis v vn g o o s $1495.00

8" DISK SYSTEM, S100 CARD CAGE, CASE AND POWER-SUPPLY

EXS100 DISK CONTROLLER BOARD $49.95
BARE BOARD

EXS100 DISK CONTROLLERKIT. . .0 vo e v v $225.00
AIM,SYM,KIM ADAPTORKIT $25.00
CRS/PDOS SOFTWARE SYSTEM $75.00
SPECIFY OLD OR NEW ROMS, MEMORY SIZE 8K, 16K, 32K
CRS/ASM EDITOR/ASSEMBLER $150.00

*NEED MORE ROM ROOM?

Toolkit and Word Pro II occupy the same rom space
in your PET! No problem for Spacemaker. Simply

install both in the Spacemaker and switch back and
forth. Add User I/O and you can switch under soft-

SRACEMAKER - . (5 o o on vmssivs as o oy o $29.00
USERE wiscn o s i il B S i 8 $12.95
CAELE ASSEMBLY AND SOFTWARE ON COMMODORE OR
PEDISK DISK

BOMIDBIVER . oo o i sl seiommni i $39.00
PORT CONTROL BOARD WITH SOFTWARE LISTING
BOMIAD) i e miesots i gon s omnsesssnstics $9.95

ROM DRIVER SOFTWARE ON COMMODCRE OR PEDISK DISK.
SEE YOUR LOCAL DEALER OR CONTACT:

ware control from the user port. User port occupied-
then get Romdriver, a built-in switch control port.
Spacemaker can grow as your switching problems do.
Don't get caught behind in the ROM RACE.

MICROTECH
P.O. Box 102
Langhorne, PA 19047
215-757-0284

PEDISK, Spacemaker is a trademark of CGRS Microtech
Pet, Kim is a trademark of Commodore

Aim is a trademark of Rockwell

SYM is a trademark of Synertek

Toolkit is a trademark of Palo Alto KS.

12

compute Il.

August/September, 1980. Issue 3.

An Evaluation: vanin L De Jong

The FIRST

MATE/SECOND

MATE By
Micromatie

Ever since I began doing experimental work with 6502
single-board microcomputers, such as the KIM-1,
SYM-1, and the AIM 65, I have looked for a neat and
convenient way for my students and me to bread-
board circuits to be interfaced to the microcomputer.
The FIRST MATE/SECOND MATE combination
by MicroMate, P.O. Box 50111, Indianapolis, IN
46256 will probably end my search. In my opinion,
this system is an excellent way to prototype and
interface circuits to the microcomputer. It will be of
great interest to engineers, technicians and experi-
ters as well to those of us involved in technical
education.

The SECOND MATE is simply a 2%’ by 3%
printed circuit board with a 22/44 pin edge connector
on one side, and a set of 44 printed circuit pads
that duplicate the application and expansion edges on
the KIM-1, SYM-1 or AIM 65. Thus, the SECOND
MATE is transparent to any other devices you may
want to connect to your microcomputer. Finally, the
SECOND MATE has a 40 pin connector that connects
to a 40 pin DIP jumper that connects the SECOND
MATE to the FIRST MATE by a 40-strand ribbon
cable. The DIP jumper is about 6’" long. Thus,
the SECOND MATE is connected to the micro-
computer with the usual 22/44 pin edge connector,
and the FIRST MATE connects to 40 of the 44
lines that are available at these connectors.

The FIRST MATE is a 7% " square printed
circuit board upon which is mounted an SK-10
breadboard, three 40-pin connectors, a position
for a second SK-10 or another protoboard, four
“‘universal’’ connectors for GND, +5V, +V and
a -V supply. An LED indicates when power is applied,
and several filter capacitors are also provided. The
three 40-pin connectors on the FIRST MATE
connect to either the expansion connector, the applica-
tion connector or, if you have a SYM-1, the so-
called AA connector. Suppose you wish to inter-
face a circuit to the expansion connector on your
microcomputer. The 40-pin DIP jumper is then con-
nected to the 40-pin expansion connector on the
FIRST MATE, while the SECOND MATE is plugged
into the expansion port on the microcomputer.

The eight data lines, the sixteen address lines,

and eight control lines are then connected to
labelled locations on the SK-10. Each labelled
location allows up to five wires to be connected.
The control lines are the usual ones, R/W, 027
RES, NMI, IRQ, RDY, SYNC, and one device
select line. (For the SYM-1, the device select is the
18 line. Some minor trace cutting and jumpering
gives the CS8 line or another device select for the
AIM 65.)

If the FIRST MATE/SECOND MATE are con-
nected to the application port, then the eight pins
of Port A and the seven pins of Port B may be
accessed on the SK-10 at labelled positions. Note that
both the SYM-1 and the KIM-1 do not allow a
connection to PB6 at the applications port. If you
want to use the FIRST MATE with an AIM 65
you will probably want to jumper PB6 to the SK-10
as well as the control lines CA1, GA2, CB1, and
CB2 from the VIA. This would be quite simple, but
it would eliminate (or duplicate) some pin functions
for the AA connector on the SYM-1. Connections
can also be made to the expansion port and the
applications port simultancously if two SECOND
MATES and two ribbon cables are purchased.

The geometry of the First MATE was designed
to mount on a SYM-1 with nylon spacers and
screws. The FIRST MATE can probably be placed
on a KIM-1 with no problems. For my AIM 65 I
chose to build a little table consisting of
two 4”7 X 8" pine legs and a 14"’ X 8"
masonite perforated board for a top. This not
only makes a dust cover for the AIM 65, but it
also keeps me from velling at the cat when he
decides to sleep on my microcomputer. If the little
table is made about 8" deep then the printer paper
can be easily seen. The FIRST MATE can be bolted
to the perf-board top. I think it made a neat
system, allowing me to work directly over the micro-
computer when I was breadboarding a circuit.

Clearly the FIRST MATE was designed for the
SYM-1, but with a few simple modifications, some
of which are suggested in the literature supplied
with the FIRST MATE, it can be used with the
AIM 65. No modifications are necessary for operation
with the KIM-1. To put the FIRST MATE to the
test, I breadboarded the simple stepper motor interface
described in this issue. No modifications to the FIRST
MATE were required for this circuit.

Although there are other breadboarding schemes
available (see TERC, 575 Technology Sq., Cam-
bridge, MA 02139 for other possibilities) that are
not being evaluated here because I have little or
no experience with them, I can wholeheartedly
recommend that you examine the MicroMate system
for $87.50. I think it is an excellent approach to
circuit development. I would like to see an AIM 65
version of the system for sale, but the modifications
are quite simple.

August/September, 1980, Issue 3.

compute Il 13

AIM 65 is fully assembled, tested and warranted. With the
addition of a low cost, readily available power supply, it's
ready to start working for you.

AIM 65 features on-board thermal printer and
alphanumeric display, and a terminal-style keyboard. It
has an addressing capability up to 65K bytes, and comes
with a user-dedicated 1K or 4K RAM. Two installed 4K
ROMS hold a powerful Advanced Interface Monitor
program, and three spare sockets are included to expand
on-board ROM or PROM up to 20K bytes.

An Application Connector provides for attaching a TTY
and one or two audio cassette recorders, and gives exter-
nal access to the user-dedicated general purpose I/O lines.

Also included as standard are a comprehensive AIM 65
User's Manual, a handy pocket reference card, an R6500
Hardware Manual, an R6500 Programming Manual and an
AlM 85 schematic.

AlIM 65 is packaged on two compact modules. The
circuit module is 12 inches wide and 10 inches long, the
keyboard module is 12 inches wide and 4 inches long.
They are connected by a detachable cable.

THERMAL PRINTER

Most desired feature on low-cost microcomputer systems . . .
e Wide 20-column printout

e Versatile 5 x 7 dot matrix format

o Complete 64-character ASCII alphanumeric format

e Fast 120 lines per minute

= Quite thermal operation

* Proven reliability

FULL-SIZE ALPHANUMERIC KEYBOARD
Provides compatibility with system terminals . . .
e Standard 54 key, terminal-style layout

e 26 alphabetic characters

e 10 numeric characters

e 22 special characters

e 9 control functions

o 3 user-defined functions

TRUE ALPHANUMERIC DISPLAY

Provides legible and lengthy display . . .

¢ 20 characters wide

* 16-segment characters

* High contrast monolithic characters

+ Complete 64-character ASCI| alphanumeric format

B>~

ENTERPRIS

I NCORPORATED

AI M 65 BY ROCKWELL INTERNATIONAL

PROVEN R6500 MICROCOMPUTER SYSTEM DEVICES
Reliable, high performance NMQS technology . . .

s RB502 Central Processing Unit (CPU), operating at 1
MHz. Has 65K address capability, 13 addressing modes
and true index capability. Simple but powerful 56
instructions.

Read/Write Memory, using R2114 Static RAM devices.
Available in 1K byte and 4K byte versions.

8K Monitor Program Memory, using R2332 Static ROM
devices. Has sockets to accept additional 2332 ROM or
2532 PROM devices, to expand on-board Program
memory up to 20K bytes.

R6532 RAM-Input/Output-Timer (RIOT) combination
device. Multipurpose circuit for AIM 65 Monitor functions.
Two R6522 Versatile Interface Adapter (VIA) devices,
which support AIM 65 and user functions. Each VIA has
two parallel and one serial 8-bit, bidirectional I/O ports,
two 2-bit peripheral handshake control lines and two
fully-programmable 16-bit interval timer/fevent counters.

BUILT-IN EXPANSION CAPABILITY

» 44-Pin Application Connector for peripheral add-ons
s 44-Pin Expansion Connector has full system bus

» Both connectors are KIM-1 compatible

TTY AND AUDIO CASSETTE INTERFACES

Standard interface to low-cost peripherals . . .

* 20 ma. current loop TTY interface

« Interface for two audio cassette recorders

+ Two audio cassette formats: ASCIlI KIM-1 compatible
and binary, blocked file assembler compatible

ROM RESIDENT ADVANCED INTERACTIVE MONITOR
Advanced features found only on larger systems . . .

* Monitor-generated prompts

« Single keystroke commands

s Address independent data entry

s Debug aids
.
.

Error messages
Option and user interface linkage

ADVANCED INTERACTIVE MONITOR COMMANDS
s Major Function Entry
e Instruction Entry and Disassembly
o Display/Alter Registers and Memory

e Manipulate Breakpoints .
e Control Instruction/Trace
e Control Peripheral Devices
e Call User-Defined Functions
e Comprehensive Text Editor

LOW COST PLUG-IN OPTIONS v

* AB5-010—4K Assembler—symbolic, two-pass $79.00
° AB5-020—8K BASIC Interpreter 99.00
e 3K RAM Expansion Kit 50.00

POWER SUPPLY SPECIFICATIONS

o +5VDC *= 5% regulated @ 2.0 amps (max)

e +24 VDC = 15% unregulated @ 2.5 amps (peak)
0.5 amps average

PRICE: $389.00(1k ram

Plus $4.00 UPS (shipped in U.S. must give street address),
$10 parcel post to APO’s, FPQ’s, Alaska, Hawaii. All inter-
national customers write for ordering information.

We manufacture a complete line of high quality expansion

boards. Use reader service card to be added to our mailing

list, or U.S. residents send $1.00 {International send $3.00

U.S)) for airmail delivery of our complete catalog. -

ES

2951 W. Fairmount Avenue
Phoenix AZ. 85017

(602)265-7564

4

compute II.

August/September, 1980. Issue 3.

32 K BYTE MEMORY

RELIABLE AND COST EFFECTIVE RAM FOR

6502 & 6800 BASED MICROCOMPUTERS
AIM 65-*KIM*SYM

PET*$44-BUS

PLUG COMPAT\BLE WITH THE AIM-85/SYM EXPANSION
GTOR USING A RIGHT ANGLE CONNECTOR
(SUPPLIED) MBUMTED ON YHE BACK OF THE MEMORY

MEMORY BOARD EDGE CONNECTOR PLUGS INTO THE
6800 & 44 BUS.

CONNECTS TD PE'I DH KIM USING AN ADAPTOR CABLE.
ITH ON BOARD INVISIBL$

A
TION OF IHE POWER

USES +5V ONLY, SUPPL\EOAFSROM HE]ST

* FULL DOCUMENTATION.
BOARDS ARE GUARANTEED FOR

COMPUTER,
BLED AND TESTED
ONE YEAR AND

PURCHASE PRICE IS FULLY REFUNDABLE IF BOARD IS

RETURNED UNDAMAGED WITHIN 14 DAYS.

ASSEMBLED W\TH 32K RAM __
& WITH 16K RAM
TESTED WITHOUT RAM CHIPS _
HARD T0 GET PARTS (NO RAM CHIPS)
WITH BOARD AND MANUAL
BARE BOARD & MANUAL

PET IN IERFACE KIT—CONNECTS THE 32K RAM BOARD TO
A 8K PET. CONTAINS: INTERFACE CABLE, EOARD
S]’A\HDD FS, PONER SUPPLY MDDIFIFATION KIT AND

i
COMPLETE INSTRUCTIONS.

16K X 1 DYNAMIC RAM

THE MK4116-3 IS A 16,384 BIT HIGH SPEED

NMOS, DYNAMIC RAM. THEY ARE EQUIVALENT

T0 THE MDSTEK TEXAS INSTRUMENTS, OR

MOTORDLA 4116-3.

* 200 NSEC ACCESS TIME, 375 NSEC CYCLE
TIME.

* 16 PINTTL COMPATIBLE.

w BURNED IN AND FULLY TEST!

* PARTS REPLACEMENT GUARANIEEB FOR

850 EACH IN QUANTITIES OF 8

| Biveres assiaid 5 = A]
6502 & 6800
64K BYTE RAM AND CONTROLLER SET

MAKE 64K BYTE MEMORY FOR YOUR 6800 OR
6502, THIS CH\P SET INCLUDES:
1BKX1, 200 NSEC RAMS.
MEMORY CONTROLLER.
MEMORY ADDRESS
MULTVPLEXEHAND COUNTER.
+ DATA AND D\PPLICAT\BN SHEETS. PARTS
TESTED AND GUAR
5285, ID I’Ell SET

COMPUTER DEVICES

1230 W.COLLINS AVE.
ORANGE, CA 92668
(714) 633:7280

residents piease add 6% sales tax. Mastercharge
& Ve T accebiad, Pleass allow 14 days for checks o
clear bank. Phone arders welcome. Shipping charges
will be added to all shipments.

ALL ASSEMBLED BOARDS AND MEM-
ORY CHIPS CARRY A FULL ONE VElR
REPLACEMENT WARANTY.

FEATURES

@ PLUGS DIRECTLY INTO AND
COVERS UPPER HALF OF KIM-1.
EXPANSION FINGERS CARRIED
THROUGH FOR FURTHER
EXPANSION.

® |/O-POWERFUL 6522 VIA
PROVIDED.

{VERSATILE INTERFACE
ADAPTER)

16 BI-DIRECTIONAL I/O LINES
4 INTERRUPT/HANDSHAKE
LINES

2 INTERVAL TIMERS

SHIFT REGISTER FOR SERIAL-
PARALLEL/PARALLEL-SERIAL
OPERATIONS.

® RAM-SOCKETS PROVIDED FOR
4K RAM CONTIGUOUS WITH KIM

(LowlI POWER MOSTEK 4118
1KX8’s)
® COMPLETE DOCUMENTATION

APPLICATIONS
PROM, RAM AND I/O EXPANSION ON ONE BOARD HAVING MANY INDUS-
TRIAL/HOME APPLICATIONS FOR DATA ACQUISITION, PROCESS CONTROL,
AUTOMATIC CONTROL OF FURNACE, SOLAR HEAT, LIGHTING, APPLI-

ANCES, ETC. ...

PA RESIDENTS INCLUDE 6% STATE SALES TAX

EPROM-SOCKETS PROVIDED FOR
8K EPRO
(INTEL 2716 2KX8's)

BLOCK SELECT SWITCHES FOR
EPROM.

EPROM USABLE IN ANY ONE OF
FOUR 8K BLOCKS FROM 8000H.

AUTOMATIC RESET ON POWER-
UP AND SWITCH SELECTABLE
INTERRUPT VECTORS.
PERMITS UNATTENDED
OPERATION.

LOW POWER CONSUMPTION-
5V AT 300 Ma, FULLY LOADED
BUFFERED ADDRESS LINES

HIGH QUALITY PC BOARD,
SOLDER MASK

ASSEMBLED AND TESTED

DIGITAL ENGINEERING ASSOCIATES

P.0.BOX207 @ BETHLEHEM, PA 18016

EX3WIN 3L3TdINOD IHL S1 SIHL

$139.95

LIMITED TIME 1K RAM FREE ! i

* KIM IS A REGISTERED TRADEMARK OF MOS TECHNOLOGY, INC.

August/September, 1980, issue 3,

compute IL 15

Nuts And Volis

No.3
Address Decoding

Gene Zumachak

An important consideration in microprocessor system
design is address decoding. Address lines are decoded
from the highest order lines to subdivide memory space
into smaller blocks. For example, the top three lines,
can be used to divide memory into eight 8K blocks; the
top four lines, into sixteen 4K blocks; the high six
lines, into sixty-four 1K blocks; etc. There are
numerous ways to do the decoding in hardware. If
addresses need to be changed often, then dip switches
and open collector Exclusive NOR (compare) gates can
be used to compare any number of address lines with
the selected polarity of that address line. The open
collector outputs are wire-ORed together. If any gate
is false the output will go low. An additional EX-NOR
gate can be wired as an inverted to give a low true out-
put. Figure 1. shows this method used to generate the
1K select for $1000 (000100). If the address decoding
is to be permanent, a single 3 to 8 decoder like a
741.8138 can be used to give one, or several 1K, 2K,
4K, or 8K selects. Figure 2. shows a 74L5138 wired
to give a select for $1000. Sull another method is (o
use a 4-bit magnitude comparator chip, like the
741.S85. These can be used with switches on one of the
word inputs, and also can be cascaded to compare
longer words.

For 6502 systems, some users use @2 as an input
to address decoders. This transfers the strobe action
required for writing from the write input to the chip
select. It also means than “‘reads’ will be gated with
(2. The user can get away with this only because
the hold time requirement for the 6502 on a read
operation is so short. As mentioned in the first column,
if 02 is seriously delayed via the address decode paths,
the strobing action could occur after the write data
has already gone away. In general, it is not the best
practice to ‘‘gate’” write data with the strobing signal.

For ROM selects, it is desireable to gate in the
R/W signal, so that the ROM select can never go true
for a write operation. In the AIM, for example, ROM
sclects are generated from a 2 to 4 decoder. Ironically,
this decoder has a gate input that was grounded
instead of using the inverted R/W signal. If a write
operation is attempted to ROM area, both the ROM
and 6502 will attempt to drive the bus. Fortunately,
most chips are designed to take momentary shorting
and it is most unlikely that any harm will come to
the 6502 or ROM. Still, it is careless design not to
consider that writes may be attempted to rcad-only
space.

¥

+

o
1 A
- =
e
= :
T
I a2
F
i

=

7418266 (2)

0N01 DO0XX XXXX XXXX

Fig. 1. 1K Select Using EX-NOR

T4LS138

YT

|

$1000

Al0 — | A

Fig. 2 1K Select Using 3 to 8 Decoder

A9
ag
a7 et oy
a6
As
A4 ol
A3

74LS30 74LS138&

PORT

O~
0O—
o—
i
lo— SELECTS

a2 e P—

*

s Al —/™1 B
Ks

1K Select

KS* ROM Select
R/W

Fig. 3. Stealing Port Selects.

Stealing Addresses -
What does one do when a few addresses are needed
for I/O ports? Is it necessary to waste a large chunk
of space for a few addresses? Clearly, more address
lines can be decoded so that decoding is complete.

I8 August/September, 1980. Issue 3.

Still, it is questionable whether that helps much,
since if the remaining space is to be used, it will have
to be decoded to exclude those addresses. If you have
space set aside for ROM, however, and if you won’t
need every last word, then it is possible to steal a few
addresses for I/O without having to waste any other
spacc. Suppose we have a 1K select at $1000 which
we will use for ROM. The circuit of figure 3. steals
the top eight addresses of a 1K select. The ROM will
respond only to 1016 addresses. The top cight
addresses generate eight I/O selects with a 741.5138.

When designing 6502 controllers from scratch,
the address stealing method illustrated can be used
to extract [/O addresses from zero page. Rarely is all,
or even half, of zero page needed for scratch pad.
Putting I/O in zero page not only can considerably
cut program length, but also speed up execution
time. In some of my early controller designs, I used
a pair of 256 x 4 RAM chips, and decoded addresses
so that the RAM straddled pages zero and one. The
low half of page zero was thus available for I/O.
Special 6502 Address Considerations
All 6502 systems have two address decoding needs in
common. First of all, a select must respond to the
very highest addresses where the reset and interrupt
vectors are located. (It is too bad that one of the
unused pins on the 6502 could not have been used
for an open drain vector select. This would have
allowed the user to wire-OR this select with his own
ROM area for response to the reset and interrupts.)
The other consideration, of course, is that all 6502
systems nced RAM in zero page and page one (for
stack).

Interestingly, the KIM, SYM, and AIM use three
different methods for interrupt response.The unex-
panded KIM avoids the interrupt vector problem by
not decoding the top three address lines so that
every 8K block is the same. Thus the unexpanded
KIM responds to $FFFC at $1FFC. If a KIM is
expanded, its address decoder must be enabled only
in the lowest 8K block. The interrupt vector area
must be decoded with an open collector decoder and
wire-ORed to KIM's K7 select ($1C00-$1FFF). The
SYM causes the response to the reset vector to be
ROM at $8FFC, but the response to the interrupt
vectors to be the system RAM at $A600. How does it
perform this magic?

The SYM's reset lines go as usual, to the VIA
port chips. All I/O lines on the VIA port chips come
up in a high state at rest. The CAZ2 line of one of
the VIAs is inverted to give a low-true Power On
Reset signal which is cffectively wire-ORed to the
monitor ROM. Thus upon power up, the SYM finds
the reset addresses at $8FFC and $8FFD, not
because of decoding, but because the monitor ROM
is held fast enabled by the POR line. One of the first
things the reset program does is to resct the POR
line. This line also inhibits normal address decoding.

After POR is reset, normal address decoding takes
place, and response to the interrupt vectors will be to
the system RAM area (which is preloaded with
default interrupt vectors at reset time).

The AIM’s solution is the simplest. It merely
puts its BK monitor in the highest 8K block of
memory. Thus the reset and vector sclect is the nor-
mal ROM select.

The KIM, SYM, and AIM can all be used as
the basis for dedicated controllers. In such an ap-
plication, it is usually desireable for Reset to cause
the user’s controller program to begin. For either the
KIM or SYM this is no problem. The KIM will re-
quire external decoding of the reset vector space. The
decode can be wire-ORed to the controller’'s ROM.
The SYM allows the POR signal to be alternatively
jumpered to any of the on board ROM sockets. The
AIM, unfortunately, will require that some cutting
be done to the board, and further decoding tacked
on, so that monitor programs can still be used,
without the monitor responding to the topmost vector
addresses. For any of the three systems mentioned,
when using them in a controller application, some in-
put condition should be defined which will cause the
program to enter the board’s normal monitor pro-
grams.

Summary

Address decoding uses the highest address lines to
subdivide memory space into smaller chunks. Selects
are used to enable RAM, ROM and [/O. Address
selects can use 2 as an input, thus including the
strobing action requircd for writing in the select.
ROM selects should include the R/W signal so that
they will not respond to write operations. Address
stealing can be used to obtain port selects from
ROM area without wasting a large chunk of memory
spacc. Similary, I/O addresses may be stolen [rom
zero page RAM area, Various methods can be used
to respond to the Reset and interrupt vectors at the
top of memory space. A particularly versatile method
is the Power On Reset used on the SYM.

T welcome any comments or criticisms you may
have of the material in this column. I invite your
suggestions for topics for future columns. However,
time and space do not allow major design projects for
the column.

August/September, 1280. Issue 3.

compute Il.

EXCERT, INCORPORATED

* %k %k

AIM-65

SPECIAL
A65-4AB AIM-65 w/4K RAM

Assembler & BASIC ROM

%k &k ok
$595
SPARE PARTS (When Available)
A65-P Printer $50
A65-D Complete Display Bd. $85
w/Exchange of Old Bd. $50
A65-K Keyboard $30

ACCESSORIES

P/N QTY 1-9
A65-1 AIM-65 w/1K RAM $375
A65-4 AIM-65 w/4K RAM $450
A65-A Assembler ROM $85
A65-B BASIC ROM $100
P/NO. QTY 1-9

Power Supplies
(fully AIM-65 Compatible)

PRS3 +5V at 3A, +24V at 1A w/mtg hardware,
[eT0] s (R IR O $65
PRS4 +5V at 2A, +24V at .5A w/mtg hardware,
COLALBTO. oo oo sinimsie ms b pcs wts min vin-s $50

From The Enclosure Group

ENC1 AIM-65 case w/space for PRG3/PRS4$45
ENCIA AIM-65 case w/space for PRS3/PRS4 and one
expansionboard. $49

Cases with Power Supplies

ENC3 ENCI1 w/PRS3 mounted inside $115
ENC3A ENC1A w/PRS3 mounted inside....... $119
ENC4 ENCI1 w/PRS4 mounted inside. $100
ENC4A ENCI1A w/PRS4 mounted inside. $104

From The Computerist, Inc.

MCP1 Mother Plust™ - Dual 44 pin mother card takes
MEBI, VIB1, PTCI1, fully buffered, 5 expansion
slots underneath the AIM.............. $80
Memory Plus'™m . 8K RAM, 8K PROM sockets,
6522 1/O chip and programmer for 5V
EPROMS (w/cables $215).......... $200
Proto Plustm - Prototype card same size as
KIMil MEBL, VIBL. .. 0onme s o ne us $40
Video Plustm - Video bd w/128 char, 128 user
char, up to 4K display RAM, light pen and
ASCII keyboard interfaces w/cables. . . . $245

MEB1

PTC1

VIB1

P/NO.

From Seawell Marketing, Inc.

MCP2 Little Buffered Mother™-Single 44 pin (KIM-4
style) mother card takes MEB2, PGR2, PTC2
and PI02. Has on board 5V regulator for
AIM-65, 4 expansion slots. Routes A&E signals
to duplicates on sides w/4K RAM $199

QTY 1-9

MEB2 SEA 16™.16K static RAM bd takes 2114L
w/regulators and address switches
L e e . e R et $325
PGR2 Prommer™-Programmer for 5V EPROMS
w/ROM firmware, regulators, 4 textool
sockets, up to 8§ EPROMS simultanously, can
execute after programming $299
P02 Parallel /O Bd w/4-6522’s $260
PTC2 Proto/Blank™.Prototype card that fits MCP2
.................................. $49
PTC2A Proto/Pop™-w/regulator, decoders, switches
.................................. $99

From Optimal Technology

ADC1 A/D: 8 channels; D/A: 2 channels. Requires
+12v to %15 volts @ 100 ma and 2 1/0 ports

fromiser 6522 s st R SER $115.00
Miscellaneous
TPT2 Approved Thermal Paper Tape
B ILGB TOME it sismmiis s e o5 s i $10
MEM6 6/2114 RAMChips $45
CLOSE-OUT!

From Beta Computer

MEB3 32K Dynamic Memory Card w/on bd DC to
DC converters (5V only .8A max)

SYSTEMS

We specialize in assembled and tested systems made from the above items. Normally, the price
will be the total of the items, plus $5 for shipping, insurance and handling. Please call or write for

exact prices or if questions arise.

Higher quantities quoted upon request.
COD’s accepted.

Add $5 for shipping, insurance, and handling.

Minnesota residents add 4% sales tax.

Mail Check or Money Order To:
EXCERT, INC.

Educational Computer Division
P.O. BOX 8600

WHITE BEAR LAKE, MN, 55110
612-426-4114

1. August/September, 1980. Issue 3.

A Simple
Interface For A
Stepper Motor

Marvin L. De JOR% ‘
Department of Mathematics-Physics
The School of the Ozarks

The circuit shown in Figure 1 and the programs given
in Listing 1 allow you to drive a stepper motor with
your 6502 based microcomputer. Why run a stepper
motor? Perhaps to drive a solar panel to follow the
sun, homebrew your own x-y plotter, run a pump at a
preselected rate, or turn your robot’s head. Whatever
your application may be, here is some information to
get you started working with stepper motors. You will
want to get additional information from the following
companies:

AIRPAX

North American Philips Controls Corp.

Chesire Industrial Park

Cheshire, CONN 06410

(203) 272-0301

Dana Industrial

11901 Burke St.

Santa Fe Springs, CA 90670

(213) 698-2595

You can get a nice Stepper Motor Handbook from
AIRPAX, and the specification sheet for the Stepper
Motor IC Driver SAA1027 also is available from AIR-
PAX. The circuit we used made use of this inte-
grated circuit driver and an AIRPAX 82701 stepper
motor. The circuit was breadboarded on a FIRST
MATE/SECOND MATE system from MicroMate.

The circuit of Figure 1 consists of a 7406 inverter
with high voltage open-collector outputs. Two pins
of the Port B application port on the computer
drive the 7406 which in turn controls the trigger
(T) input and the rotation direcn (R) input on the
stepper motor IC driver. The driver chip controls
the stepper motor.

Listing 1 gives several subroutines that may be
used to control the motor. The instructions in the
INITIALIZE routine should be used near the beginn-
ing of any program to drive the stepper motor.

These instructions place the proper logic levels on

the T and R pins. In Listing 1 the initilization
instructions are part of a short program from $0300
to $0328 that will run the stepper motor at a con-
stant rate. The rate used in this program is about 200
steps/second, near the maximum rate for this particu-
lar motor. Since each step for the 82701 is a 7.5

step, the rotation rate is 250 rpm.

The INITIALIZE and MOTOR RUN routines
call two subroutines, TRIGGER and either CW or
CCW. Calling subroutine TRIGGER produces one
step on the stepper motor. If the TRIGGER call is
preceded by a subroutine call for CW, then the motor
will turn clockwise (CW). If CCW (for counterclock-

1z2v (O Py * .
1 amp 100
1K 150
2 13 1 watt
S
15 14
PBO 7406 T
1K B 4
SAA1027 MOTOR
3 vellow black
7406 R Q4 | 1L
Q3 9 gray red
02 8 yellow FYYTYT\ black
Q| s gray =i
82701
5 12 0.1 mf

g; GROUND

Figure 1. Stepper motor interface. The SAA1027 is a special driver integrated circuit. The 7406 will also require five volts for its

OWN POWEr,

August/September, 1980. Issue 3

compute II.

wise) is called, then the motor will turn counter-
clockwise. The MOTOR RUN routine is an infinite
loop, and is listed here to show how to make the
motor run. Note that we have used the T1 timer on
the 6522 VIA to control the time between steps.
Subroutine MOVE can be used to turn the step-
per motor a prescribed number of steps, cither CW or
CCW depending on which subroutine is called. The
number of steps is stored in location STEPS at
address $0000. Again, the T1 timer on the 6522
VIA is used to produce the necessary delay between

steps. The stepper motor is not capable of turning
as fast as the computer can toggle the T input,
hence either a timer delay or a delay loop must be
used to wait.

Be sure to get all the information about various
motors and drivers before you get started with your
project. Quite obviously, different projects will
demand different motors; larger, smaller, geared,
linear actuators, etc. Then build something spectacular
and let us hear about it.

Listing 1. Driver Routines for the Stepper Motor Interface.

0300 A9 03 INITIALIZE LDA $03
0302 8D 02 AQ STA PBDD
0305 A9 00 LDA $00
0307 8D 00 AQ STA PBD

030A A9 40 MOTOR RUN LDA $40

030C 8D 0B AQ STA ACR
030F A9 86 LDA $86
0311 8D 04 AD STA T1LL
0314 A9 13 MORE LDA $13
0316 8D 05 A0 STA T1LH
0319 2C 0D A0 LOAF BIT IFR
031C 50 FB BVC LOAF
031E 20 07 04 JSR CW

0321 20 00 04

JSR TRIGGER

Set up Port B to make pins PBO and PB1
output pins.

Pull driver pins T and R to logic one
through the 7406 inverter.

Put the T1 timer in its free-running

mode by setting bit six to logic one.

Set up the T1 timer to time out every

5 milliseconds giving 200 steps/sec.
($1386 + 2 = 5000)

Now the timer is loaded and running.
Has the timer timed out?

No. Then loaf here.

Subroutine CW will result in motor
running clockwise, CCW turns it counter-

0324 AD 04 AQ LDA T1iGL clockwise. Subroutine TRIGGER produces
0327 18 CLC one step of the motor.
0328 90 EA BCC MORE Clear the interrupt flag, then return

to make another step.
0400 EE 00 A0 TRIGGER INC PBD Pulse the T input of the stepper motor
0403 CE 00 A0 DEC PBD driver.
0406 60 RTS
0407 A9 02 Ccw LDA $02 Bring the R input to logic zero for
0409 0D 00 A0 ORA PBD clockwise (CW) rotation, by making
040C 8D 00 A0 STA PBD PB1 logic one.
040F 60 RTS
0410 A9 FD CCwW LDA $FD Bring the R input to logic one for
0412 2D 00 AQ AND PBD counterclockwise (CCW) rotation, by
0415 8D 00 AQ STA PBD making PB1 logic zero. ’
0418 60 RTS
0500 A9 00 MOVE LDA $00 Set up T1 for the one-shot mode
0502 8D 0B A0 STA ACR by clearing the 6522 ACR.
0505 20 10 04 JSR CCW Motor will turn counterclockwise.
0508 A9 87 LDA $87 Timer will wait 5 milliseconds between
050A 8D 04 AO STA TiLL steps.
050D A9 13 AGAIN LDA $13
050F 8D 05 A0 STA TiLH Timer is now loaded and running.
0512 2C 0D A0 WAIT BIT IFR Has it timed out?
0515 50 FB BVC WAIT No. Then wait here.
0517 20 00 04 JSR TRIGGER Here the motor turns one step.
051A C6 00 DEG STEPS Decrement the step counter.
051C DO EF BNE AGAIN Has it reached zero?
051E 60 RTS Yes. Then turn is complete.

3

DISKS

(write for quantity prices)

SCOTCH 8" Disks 10/$31.00
SCOTCH 5.25" Disks 10/ 31.50
Verbatim 5.25" Disks 10/ 2450
Diskette Storage Pages 10/ 395
Disk Library Cases 8"-295 5 -215
BASF 5.25" Disks 10/ 25.00
BASF 8" Disks

10/ 27.00

+= EDUCATIONAL DISCOUNTS ***
Buy 2 computers, get 1 FREE

ATARI—INTRODUCTORY SPECIAL

Atari 400, Atari 800, all Atari Modules 20% OFF

CBM Full Size Graphics Keyboard $ 74
CBM WardPro I-for 8K PET 25
CBM WardPro 11-16 or 32K, 2040, Printer 88
CBM WordPro [11-32K, 2040, Printer 178
VISICALC for PET (GBM/Personal Software) $128
CBM Assembler/Editor (disk) 89
"CBM General Ledger, A/P, A/R NEW! 270
Programmers Taolkit-PET ROM Utilities $ 4490
PET Switch 2290
Dust Cover for PET 780
|EEE-Parallel Printer Interface for PET 7900

149.00

|EEE-RS232 Printer Interface for PET

20 compute I August/September, 198C. Issue 3.
B502 74510 @ 69550 @ 655 100 @ 615 | Commodore CBM- frics 531 Cenlronics 737 Proport
= portional Spacing Printer $845
65024 840 10 @ 79550 @ 735100 @ 690 | pET SPECIALS NEC Spinwriter-parallel 2450
B520PIA 5.5 10@ 490 50@ 445 100@ 415 _Up to 5235 free s
6522VIA 745 10@ 695 50@ 645 100@ 600 merchandise IR | oy 5000 with 4K RAM $ 238
6532 790 10 @ 74050 @ 7.00 100 @ 660 Q@ with purchase of one of “.\ SYM BAS-1 BASIC in ROM 85
21141450 47520@ 445100@ 415 | & following CBMPET ¢ .
b o5 g R A D e oG items: e SYM RAE-1/2 Assembler in ROM 85
e 19'00 10 @ 1700 | 5032 32K-80 column CRT $1795 235 MDT 1000 Synertek pevelopmem System 1345
2716 EPROM 00, 5 @18 2 KTM-2/80 Synertek Video Board 349
4116-200 ns RAM 700 g @ 625 | 8016 16K-B0 column CRT 1485 205 AL 4
#550 RAM (PET 8K 1270 | 8050 Dual Disk Drive-950.000 bytes 1695 220 | KIM-1 {add $34 for power supply) 159
(! CBM Modem-IEEE Interface 395 50 | Seawell Motherboard-4K RAM 195
il 90| cBM Voice Synthesizer 395 50 | Seawell 16K Static RAM-KIM, SYM, AIM 320
S-100 Wire Wrap 285 10 @ 265 | N full size graphics keyboard 785 100 | 5-100 Static RAM kit SALE 198
$-100 Solder Tail 23510 @ 215 | 16N full size graphics keyboard 985 135 | | eedex Video 100 127 Monitor 129
32N full size graphics keyboard 1295 170
CASSETTES—AGFA PE-611 PREMIUM 168 full size business keyboard Sos fgs | 20 219 Tesmital (eknasn) n
High output, low noise, 5 screw housing, labels 328 full size business keyboard 1295 170
e Tt 2040 Dual Disk Drive-343,000 bytes 1295 170 [KL-4M Four Voice Music Board for PET $34.90
.20 10/6.45 50/29.50 100/57.00 2022 Tractor Feed Printer 795 100 | Visible Music Monitor (4 Voice) for PET 2990
¢ : 2023 Pressure Feed Printer 695 90 | SPECIAL—KL-4M with Visible Music Monitor 59.90
Gfu h‘w 30 50]34‘0_'0 JOU/GS.‘UU' st C2N External Cassette Deck 95 12
Aliolheklengihs duatishi, WINEHOnpNGe 2L, Used 8K PETS (imited quantities) 495 MIGRATHELLD for PET by Michael Riley $9.05

Machine language version—you can’t win at Level 5,

PAPER MATE 60 Command PET Word Processor ~ $29.85
Full-featured version by Michael Riley

A P Products 15% OFF

All Book and Software Prices are Discounted

PET Personal Computer Guide (Osborne) 31275
PET and the IEEE-488 Bus (Osborne) 1275
6502 Assembly Language (Osborne) 945
Programming the 6502 (Zaks) 10.45
6502 Applications Book {Zaks) 10.45
Programming a Microcomputer. 8502 775

6502 Software Bookhook (Scelbi) 945

[Montgomeryville, PA 18936

115 E. Stump Road
215-699-5826

DISK DRIVE WOES? PRINTER INTERACTION?
MEMORY LOSS? ERRATIC OPERATION?
DON'T BLAME THE SOFTWARE!

9 3 :
1801 150-2

Power Line Spikes, Surges & Hash could be the culprit!
Floppies, printers, memory & processor often interact!

Qur unique ISOLATORS eliminate equipment interaction
AND curb damaging Power Line Spikes, Surges and Hash.
*|SOLATOR {1SO-14) 3 filter isolated 3-prong sockets;
integral Surge/Spike Suppression; 1875 W Maximum load,

1 KW load any socket $56.95
*ISOLATOR (1S0-2) 2 filter isolated 3-prong socket banks;
(6 sockets total); integral Spike/Surge Suppression;

1875 W Max load, 1 KW either bank $56.95
*SUPER ISOLATOR (180-3), similar to ISO-1A

except double filtering & Suppression $85.95
*ISOLATOR (1S0-4), similar to 1ISO-1A except

unit has 6 individually filtered sockets $96.95
*ISOLATOR (1S0-5), similar to 1SO-2 except

unit has 3 socket banks, 9 sockets total $79.95

“CIRCUIT BREAKER, any model (add-CB) Add $ 7.00
*CKT BRKR/SWITCH/PILOT any model
(-cBS) Add $14.00

—_

PHONE ORDERS 1-617-656-1532
=7 Electronic Specialists, Inc.

171 South Main Sireel, Nalick, Mass. 01760

Dept. C

A B Computers

WRITE FOR CATALOG

Add $1 per order for shipping. We pay balance

of UPS surface charges on all prepaid orders,

e e vhe e s e v e e i e sie e e it e tolet e tofotokoeteokole ke

K A s T
I 1 Y I
M M M M

END FRUSTRATION!!

FROM CASSETTE FAILURES
PERRY PERIPHERALS HAS
THE HDE SOLUTION
OMNIDISK SYSTEMS (5" and 8”)
ACCLAIMED HDE SOFTWARE
® Assembler, Dynamic Debugging Tool.
Text Output Processor, Comprehensive
Memory Test
® Coming Soon—HDE BASIC
PERRY PERIPHERALS S-100 PACKAGE
Adds Omnidisk (5”) to
Your KIM/S-100 System
@ Construction Manual—No Parts
® FODS & TED Diskette
® $20. +52. postage & handling. (NY residents
add 7% tax) (specify for 1 or 2 drive system)
Place your order with:
PERRY PERIPHERALS
P.O. Box 924
Miller Place, N.Y. 11764

{(516) 744-6462
Your Full-Line HDE Distributor/Exporter
et v e e i ke sk et e st e it ekl ool

ek A At
ST TR

34 o9 e e A e Ar e e A e e s e e o ko stk okl ook ook
IR ETSIT IR TR TPLLTITERTRE SPIE R TEREE TS 3

August/September, 198C. Issus 3.

compute II. 21

GET rich QUICK

Gene Zumchak

Actually, it was never my intention to get rich. It’s
Jjust that I've dropped out of the working world for
several months to concentrate on writing a book, and
T was starting to miss having a little income. Last
summer I read Don Lancaster’s ‘‘Incredible Secret
Money Machine’” which is a very entertaining
dissertation on going into business for yourself. A
couple of his ideas are keep it small, and sell it
cheap. It occurred to me that selling some blank PC
boards might fit those qualifications. So I asked
mysclf, what does everyone need? My most useful
accessory is my EPROM programmer. I don’t need
it that often, but it’s indispensible when I do. With
2708’s dropping down to the $7 level, and five volt
only 2716’s dipping below $20, it would seem that no
one should be without an EPROM programmer.

In small quantities 1 have to pay a little over §6
for a blank board. I figured if I offered the board for
$19, I’d make $10 on every one I sold. If I sold a
modest fifteen a month, that would make a $150
dent in my office overhecad of almost §400. I certain-
ly wouldn’t get rich, but it would help a litte. It
seerned simple enough.

I should have known better. You just can’t drop
a blank PC board into an envelope and mail it. You
need a parts list, schematic, software, circuit descrip-
tion, software description, etc. I already had much of
that material, but it required updating, and I ended
up doing most of it over from scratch. Before I was
finished, I had over 20 pages of documentation, and
about $1500 of my time invested. I'll need to sell 150
boards just to pay for my lost time. That is, that’s
how many I'd have to sell IF I made the $10 a board
that I had planned on.

After my ad came out, the inquiries came
“pouring’’ in. Unfortunately, the material I send out
1s over an ounce and it’s costing me $.28 to mail it
first class. Then there’s the cost of the printed
material. In all, it costs over $.50 for every inquiry.
If one in twenty (a very high return), results in an
order, then it will cost me $10 in mailings to get that
order. Well, there goes that $10 profit. Of course, I
failed to account for the $10 of my time I spend pro-
cessing the info requests. Then there’s the cost of
placing the ad. With a litde bit of luck, I'll only lose

two or three dollars on every board I sell. Make that
five. T forgot to account for some of my overhead.
Boy am I dumb.

It sort of looks like, the fewer boards I sell, the
better off I am. I guess I should consider myself very
fortunate that I've sold only three boards. It does
make me wonder, though, how all you non-
customers out there program your EPROMs. Maybe
you all bought programmers last year. I guess others
are waiting for the price to drop.

The very saddest part of this situation is that
like other forms of gambling, you don’t know how to
stop. I reason, I already have $1500 sunk into this, I
might as well stick it out a little longer. There’s real-
ly no hope for me.

Actually, I have been selling KIM accessories
for years, so I really ought to know better. For my
several thousand hours already invested, I'm only a
thousand dollars in the hole. At least I can take com-
fort in knowing that my lack of success is not at-
tributable to poor quality or design. My customers
(both of them) are just thrilled with my work.

If nothing else, I've developed a great deal of
respect for those others who are building and selling
hardware, and actually making a living at it. If you
have designed and built something for yourself that
you think the rest of the world could use, forget it
quickly, before it’s too late. Take a cold shower. If
you're thinking of saving a little money by designing
and building something yoursell, save yourself the
misry. Someone else has already done it. Just to
duplicate my hardware and soltware eflorts on a sim-
ple project like the Programmer would take at least
$500 of your time. You're farther ahead using your
spare time to sell hamburgers at minimum wage and
buying yourself a really nice programmer. But then
there’s not that satisfaction of doing it yourself.

Actually, the programmer project was the good
news. I haven’t even told you about the other board,
the EPROM Emulator. But that will have to wait. |
have to go. There's a couple of gentlemen in white
coats at my door. I don’t believe it. At last, some <
customers. ()

22

compute II.

August/September, 1980 Issue 3.

KIM-1 TIDBITS

Honvey B, Herman

Chemistry Departiment
University of North Carolina at
Creensboro

Greenslooro, NC 27412

This article is the second in what I hope is a
continuing series on the KIM. My intention is to share
with others programs which should make KIM easier
to use. The reader will please note that the machine
language programs have been documented with the
excellent Macro Assembler and Text Editor (ASSM/
TED) from Eastern House software (see my review
in COMPUTE #1, p100). When I started messing with
KIM several years ago, my programs were mostly
hand assembled. This task has been made much easier
by using ASSM/TED.

The first program is an implementation of a KIM
real-time clock (sometimes called a tick counter).
I have whimsically referred to it as a ‘jeffrey counter’
after a former student of mine. Every 100 milli-+~

seconds a location-in page zero is incremented. By
pecking at this location one can time external
events up to about 25 seconds. We have used it to

tell when to take readings from an analog-to-

digital converter. The clock can be started, stopped
or read under program control. A source listing of
the program is shown in figure 1. An example of a
BASIC program which uses the tick counter is shown
in figure 2.

In order for this program to work one external
connection needs to be made. The counter is interrupt
driven and requires PB7 on the application connec-
tor (A - 15) to be connected directly to IRQ (E - 4).
The program sets PB7 as an input line and initializes
the TRQ vectors at $17FE/$17FF to point to the clock
service routine. For convenience I have modified
KIM Microsoft BASIC to execute a preamble which,
among other things, sets up these vectors before
jumping to the normal start of BASIC.

The second program is an enhancement to KIM
Microsoft BASIC. Support is added for a terminal
(e.g. ASR 33 Teletype) which used the X - ON/X
- OFF protocol to start and stop a paper tape reader.
Over the years I had accumulated a number of pro-
grams on paper tape which [wanted to use with
KIM BASIC. As supplied the BASIC software did
not read paper tapes reliably and I had no
desire to key in long programs again. [waded
through a dissassembly of BASIC and found two calls
to a subroutine which could be called ‘‘input a line”’.

0100 3
0110 JINTERRUPT SERVICE ROUTINE FOR REAL-TIME CLOCK
0120 7<TICK COUNTER)e ENHANCEMENT TO KIM MICROSOFT
0130 5BASIC. 1/10 SEC PER TIC.
0140 3
0150 JHARVEY B. HERMAN
0160 5
0170 ;REQUIRES CONNECTION OF 1RQ TO PBT7.
0180 #SET ALL PB PINS AS INPUT. SET ORIGINAL COUNT
0190 ;AND DIVIDE RATE(/1024) OF 6530 TIMER.
0200 3 START TICKING-POKE S891,0:POKE 5903.96
0210 sDISABLE IRQ(OTHER WAYS POSSIBLE).
0220 ;STOP TICKING-POKE 569498
0230 3READ TICK COUNTER-PEEK(224)
0240 ;RESET STOPS CLOCK.
06250 3
0260 TICK +DE SEOQ 3FREE LOCATION PAGE ZERD
0270 COUNT -DE $62 31710 SEC.
0280 CLKKTE «DE $170F 3DIVIDE BY 1024CINT. EN.)
0290 IRQL «DE S17FE 3KIM IRQ INTERRUPT
0300 IRQH «DE $17FF 3 VECTORS
0310 3
0320 sINITIALIZATION ROUTINE
0330 3 SET UP VECTORS AND ZERJ TICK COUNTER
0340 ;LOCATE ANYWHERE CONVENIENT
0350 +BA $4368
0360 ;OTHER CODE ABOVE IN MY VERSION
4368- AS DA 0370 LDA #INTER
436A= 8D FE 17 0380 STA 1RQL
436D~ A9 02 0390 LDA #H,INTER
436F= 8D FF 17 0400 STA IRQH
4372= A9 00 6410 LDA #00
4374=- 85 EO 0420 STA *TICK
0430 ;O0THER CODE BELOW IN MY VERSION
Q440 5
0450' s INTERRUPT HERE ON TIMEOQUT
0460 «BA 52DA
02DA- 48 0470 INTER PHA
02DB~ EA 0480 NOP JHIDE MY IGNJQRANCE
02DC- E6 EO 0490 INC ®*TICK
02DE- A9 62 0500 LDA #COUNT
02E0- 8D OF 17 0510 STA CLKKTE
02E3- 68 0520 PLA
02E4~- 40 0530 RTI
0540 +EN

August/September, 1980, Issue 3.

compute Il.

23

' Skyles Electric Works

M

Presenting the Skyles MacroTeA

The Software Development System

For the Serious Programmer

Text Editor

To help you write your program, MacraTeA includes a

powerful text editor with 34 command functions:
AUTO Numbers lines sutomatically
NUMBER Automatically renumbers lines
FORMAT Outputs text file in easy-ta-read columns.
COPY Copies a line or group of lines to a new
location
MOVE Moves z line ar group of lines to a new
location.
DELETE Deletes a line or group of lines
CLEAR Clears the text file
PRINT Prints a fine or group of lines 1o
the PET sereen,

PUT Savesa linc or group of lines of text on
the tape (o disc)

GET Loads a previously saved line or group of lines
of text fram the tape (or dise)

DUPLICATE Copies text file moduies frem one tape
recarder to the other. Stops an specitic
modules to affow changes before it is dupl
cated. This command makes an unlimited
tength program ltext file) practical,

HARD Prints out text file on printer.
ASSEMBLE Assembles text file with or without a listing,

Assembly may be specified for the object cade
(pragram 1o be recarded or placed in RAM
memory

PASS Does second pass of assembly. Another
command that makes unlis d length text
files (source code] practical

RUN Runs (executes) a previously assembled
program.

SYMBOLS Frints out the symbol table (label file)

SET Gives complete control of the size and location
of the text file (source file), label file (symbat
tabie) and relocatable buffer.

DISK Gives complete access to the eleven DOS
commands;
PUT GET NEW INITIALIZE
DIRECTORY COPY DUPLICATE
SCRATCH VALIDATE RENAME
ERROR REPORT

EDIT Offers unbelievably powerful search and replace
capability. Many large computer assemblers
lack this sophistication

FIND Searches text file for defined strings. Optionally
prints themn and counts them; i e.
counts number of characters in text file,

MANUSCRIPT Eliminates line numbers on PRINT and HARD
command. Makes MacroTes a true and power-
ful Text Editor

BREAK Breaks 1o the Monitor partion of MacroTea
A return to Text Editor without loss of text

is possible
USER Improves or tailors MacroTea's Text Editor

to user's needs; “Do-it-yourself”’ cammand

Truly, there is simply no other system of this magnitude at anywhere near

this price.

(With any Skyles Memory Expansion System,$375.00

Calitornia residents’ please add 6% or 6 5. saies tax as required

VIiSA, MASTERCHARGE ORDERS CALL (800) 538-3083 (except California residents)
CALIFORNIA ORDERS PLEASE CALL (408) 257-9140

Fast...Fast Assembler

Briefly, the pseudo-ops are:

® BA Commands the assembler to begin placing assembled
code where indicsted

® CE Commands the assembler (o continue assembly uniess
certain serious errors oucur. All errors are printed out

® LS Commands the assembler 10 Start listing source (text
file} from this paint on

® LC Commands the assembler ta stop list source (taxt file)
from this point in the program.

® CT Commands the assembler 10 continue that source
program Itext file} on tape

® 0S Commands the assembler 1o store the abject code in
memary

OC Commends the assembler ta not store object code in
memory.

® MC Commands the assembler to storo abject code at laca-
tion different from the location in which it is assembling
object code.

e SE Commands the assembler to store an external address.

® DS Commands the sssembler to set aside a block of storage

® BY Commands the assembler to store data

® SI Commands the assembler 1o store an internal address

® DE Commands the assembler to calculate an external label
expression.

® DI Commands the assembler to calculate an internal label
expression.

® EN Informs the assembler that this is the end of the
prbgram

® E4 Commands the assembler to eject ta top of page on
printer copy.

® SET A directive nat a pseudo-op, directs the assemblers to

redefine the valuz of a label.

Macro Assembler

The macro pseudo-ops include

MD This is a macro beginning instruction definition.

ME This is end of a macro instruction de ion

EC Do net output macro-generated code in source
fisting.

ES Do output maere-generated code in source
listing,

Conditional Assembler

...this command The conditional assembly pseudo-ops are:

1EQ If the Iabel expression is equal to zero,
assemble this black of source code (text file).

INE 1 the label expression is not equal to 2ero,
assernble this block of source code (text file).

IPL If the label expression is positive, assemble this
block of source code,

M H the label expression is negative, assemble

this block of source code.
This is the end of a block of source code.

$395.00 "

Enhanced Monitor

... By having 16 powerful commands:
Autematic MacroTeA cold start from Monitor.
Automatic MacroTeA warm start fram Monitor.

Loads from tape object code program

@ on oD

Saves 1o tape object code between locations

specified.

Disassembles object code back to source listing,

™M Dispiays in memory abject code starting at selected
location. The normal PET screen edit may be used
1o change the object code,

R Displays in register. Contents may be changed using
PET screen edit capabilities

H Hunts memary for a particular group of objact
codes

w Allows you 1o walk through the program one step
at 3 time.

B Breakpoint to occur after specified number of
passes past specified address,

a Start on specified address, Quit if STOP key or
breakpoint occurs

T Transfers s program or part of a pragram from one
memory area to another,

[Go!! Runs machine language program starting at
selected focation.

X Exits back 10 BASIC.

Display memory and decoded ASCII characters

Pack (fill) memary with specitied byte

What are the other
unigue features of the
MacroTeA?

® Labels up to 10 characters in length

50 different symbols to choose from for each character

10" ditferent labels possible

® Create executable object code in memory or
store on tape

Text editor may be used for composing letters,
manuscripts, etc,

Text may be loaded and stored from tape or disc

Powerful two-cassette duplicator function

String search capability .

Macros may be nested 32 deep

25 Assembler psuedo-ops
5 Conditional assembler psuedo-ops

40 Errar codes to pinpaint problems
16 Error cades related ta Macros

Warm-start button

Enhanced monitor with 16 commands

Skyles Electric Works

231 E South Whisman Road
Mountain View, CA 94041
(415) 965-1735

J

24

compute Il

August/September. 1980. Issue 3.

The change I made was to send out an X - ON
character (with added code in page 2) before jumping
to this subroutine. My paper tape reader will begin
reading upon receipt of this character.

It was necessary to make one further change in
order for KIM to punch BASIC program tapes that
would read back properly. The tape reader must
stop after carriage return while BASIC “digests”’

a line. Therefore the X - OFF character (stop
reading) must be included in the data stream. 1
found a call to BASIC’s output routine immediately
after loading the accumulator with *“CR™" (hex 0D).
I changed this to a jump to code, again in page 2,
which outputs X - OFF and CR before continuing
as before. Later when the teletype reads the X - OFF
character on tape it shuts off but does not stop

immediately and reads one additional character (CR).

Return sets the BASIC interpreter off and running.
In a short time, after digesting the line, BASIC

sends the X - ON character asking for more data.
Only one caveat - remember to type control/0 before
and after reading tapes so the teletype will only single
space.

I hope these additional programs will be found
useful. As always, if you have any questions I will
be happy to respond if you include a SASE.

10 REM EXAMPLE PROGRAM TO PRINT A NUMBER
20 REM ONCE EVERY 10 SECONDS

30 POKE 5903,98: REM START CLOCK

40 FORI = 1 TO 10

50 POKE 224,0: REM ZERO CLOCK

60 IF PEEK (224) <100 THEN 60

70 PRINT I,

80 NEXT 1

90 POKE 5894,98: REM STOP CLOCK

100 END

0100 ;
0110 $X=-0N/X-OFF ENHANCEMENT TO
0120 sKIM MIGROSOFT BASIC
0130 5 SERIAL NUMBER 9011
0140
0150 SHARVEY Be HERMAN
0160 3
0170 3SENDS X-ON(HEX 11) TO TERMINAL BEFORE JUMPING TO
0160 ;"INPUT A LINE". TERMINALS WITH THIS FEATURE WILL
0190 5AUTOMATICALLY START READING PAPER TAPE. WHEN AN
0200 ;X-OFF(HEX 13) 1S READ, THE TAPE READER CONTROL
0210 3WILL TURN OFF AND THE READER WILL COAST AND
0220 TRANSMIT ONE EXTRA CHARACTER-
0230
0240 3PUNCHES PAPER TAPE(BY LIST) WITH X-OFF/CR/LF/
0250 iNULL(S) AS END OF LINE FORMAT-
0260
0270 ;NULL(S) CORRECTION(NECESSARY FOR EARLY VERSIONS
0260 JOF BASIC).
0290 5
0300 OUTCH .DE S1EAQ FKIM QUTPUT ROUTINE
0310 INPUT -DE $2426 3BASIC "INPUT A LINE"
0320 QUTPUT +DE $2A3A 3BASIC DUTPUT ROUTINE
0330 LDAD «DE $29D1 FINSTRUCTION LDA #00
0340 3
0350 3 INTERCEPT CALLS TO "INPUT A LINE"
0360 .BA 52351
2351- 20 €8 02 0370 JSR XON
0380 «BA S2AB6
2AB6- 4C C8 02 0390 JMP KON
0400 ;QUTPUT X-ON CHARACTER
0410 «BA $2C8
02C8~ A9 11 D420 XON LDA #$11 $X=0N
02CA- 20 A0 1E 0430 JSR OUTCH JOUT TO TERMINAL
02CD- 4C 26 24 0440 JMP INPUT 3INPUT A LINE
0450 3 INTERCEPT CALLS TO OQUTPUT CR
0460 «BA $29C3
29C3- 20 DO 02 0470 JSR XOFF
0480 ;OUTPUT X=-OFF/CR CHARACTERS
0490 «BA $2D0
02D0= A9 13 0500 XOFF LDA #$13 IX-0FF
02D2- 20 3A 2A 0510 JSR OUTPUT 3BASIC OUTPUT ROUTINE
02D5- A9 0D 0520 LDA #80D JCR
62D7- 4C 3a 2A 0530 JMP QUTPUT
0540 3CORRECT NULL(S) ERROR IN EARLY VERSION
0550 ;OF BASIC. A WAS DESTROYED BY OUTPUT AND MUST
0560 3BE LOADED AGAIN WITH ZERD.
0570 -BA $29D7
29D7- DO F8 0580 BNE LDAD
0590 » EN

August/September, 1980, Issue 3. compute 1.

25

FACTORY PRICING

IN STOCK! IMMEDIATE DELIVERY!
R
OGY MPS 6500 °
L
chN
ALL PLUS

@ MPS 6550 RAM for PET
® MPS 6530-0C02, -O03 for KIM-1
® MANUALS
@ KIM-1 MICROCOMPUTER
@ KIM-3 8K STATIC RAM MEMORY BOARD
® KIM-4 MOTHERBOARD
® KIM PROMMER
© KIM-1 & 4 Compatable Eprom Programmer

® KIMATH

Chips with Listing
® KIMEX-1 EXPANSION BOARD

KIM-1 Plugable PROM, Ram and |I/O Board
® RS-232 ADAPTER

For KIM-1
® POWER SUPPLIES

STANDARD MICROSYSTEMS

* UART's * FLOPPY DISC DATA HANDLER
*BAUD RATE GENERATORS *CRT CONTROLLERS

FALK-BAKER
ASSOCIATES

382 FRANKLIN AVE @ NUTLEY, NEW JERSEY O7110
(2010) 6612430

WRITE, CALL, OR RETURN OUR COUPON FOR CATALOGUE AND PRICE LISTS.

26 compute Il. August/September, 1980. Issue 3.

0010 3 B3I R B B 3 GE 3 5 3 3 3F 36 9 3 R 3 K B R
- ODQD 3 B3 3R AR N R R R R R
0030 3 EE = *
0040 5 it HOME WARNING SYSTEM bid i
0050 i el FOR SYM-1 COMPUTER bl T
ome wLm
0070 ; tliah BY A. M. MACKAY ot o
u 0080 H ExH 600 SIXTH AVE. WEST HRHE
ooso0 s bl OWEN SOUNDs» ONTARIO EEE
o100 5 BRCE CANADA N4K 5E7 bl
0 11 U ,\ * 8 *
0120 ; HHBFRERFFEARF R R HF AR AR RRLR X RE LR
s em 0130 ; SRR H AR AR A F R R AR AR RR RN
0140
0150
0160 ; * #% ¥ DEFINITIONS * EE
gr70 .
A‘ M MOCKQ\/ 0180 STATUS «DE 5ACO0
6GO Sixth Avenue West 0190 OUTVEC .DE $A663
Owen Sound, Ontario 0200
NAK 5E7 g210 * % % INITIATE ® % %
0220
If you have a C.R.T. hooked up to 0230 START LDA #SF0 3SET DDRB
your SYM-1, this program and a cou- 0240 LDA STATUS#2 : FOR INPUT
le Gt dolls th f‘ ¢ I 1et v 0250 LDA #500 sTURN OFF
preof dotar worty oliparisawl LICtyol g sl STA STATUS i SPEAKER
experiment with a home warning 0270
system, and may help you learn a bit g280 * = % SENSOR POLL ROUTINE = * *
about your computer. 0290 3
@nee the harilivare SHowain 0300 CLEAR JMP 0K SPRINT "ALL O.Ke" MESSAGE
figures 1 to 3 is connected, load the 0310 POLL LDA STATUS :L.ODK AT' SENSORS
d hit “RUN START”’ if 0320 AND #$0F 3 IF ONE 15 ON
program anc i .. 0330 BNE TEST! H GO TO TEST!
you have an assembler or G 200 CR if 340 JMP POLL SELSE GO TO POLL
you don’t. Then as long as the old 0350
homestead is devoid of marauders, 0360 3 * % % SIGNAL PROCESSING ROUTINE * * *
catastrophes and other unthinkables 630 N
1l stesdil a setlvtell 0380 TESTI JSR POSIT 3POSITION MESSAGE ON SCREEN
YPUESCRCCH WL Steat iy Dt qUISLyte S8 190 LDA STATUS ;LOOK AT SENSORS
you that everything is O.K. However, gu4p0 AND #3501 iMASK OFF ALL BUT 1ST
if one or more of the sensors detects any 0410 BEQ TEST2 $NOT ON? GO TO TEST2
of the aforementioned nasties, a siren 0420 JSR SPACE ;0N? PROCESS SIGNAL
sounds and a message flashes on the 3433 =) tgﬁ #281 " sé;IDEE(HFDRH MES§AGE ¢l
: il dloca. 0440 ¥ TABI, 3GET CHARACTERS
S.Crccnfti]mg ngIUt © nature andioca” g,5q JSR QUTVEG 3WRITE ON CRT
tion of the problem(s).) 0460 INK SNEXT CHARACTER
The program starts by clearing the ga7g CMP #8500 JLAST ONE?
screen and displaying the 0480 BNE MESS! 3NO? GET NEXT
“EVERYTHING IS O.K.”’ message. 0490 TEsST2 LDA STATUS 3YES? TEST FOR
Tt then polls the sensors, onc at a time, 0503 AND #3502 # SENSCR #2
beginning with PB0. As soon as it finds o LS s . ETC.
2 il he “0.K." 0520 JSR SPACE
an active sensor, it clears the K. 0530 LDX #0
message and displays the correct warn- ps40 MESS2 LDA TABZ.X
ing, then checks the remaining sensors. 0550 JSR OUTVEC
When all sensors have been checked gggg éNX %
= 3 = I MP #%
and messages have bef:n dlspldye‘d ﬁ{r 0580 Lit iniuE
all active sensors, the siren sounds once 0590 TEST3 LDA STATUS STEST FOR
and the pc_)llmg process is repeated. 0600 AND #$04 ; SENSOR #3
The warnings and the siren will con- 0610 BEQ TEST4 ; ETC.
tinue until all the sensors are turned 0620 JSR SPACE
off, at which time the 063g LR *083
“EVERYTHING IS O.K.”” message 0540 MESS3 LD TABI. s
: 0650 JSR OUTVEC
re-appears and polling of the sensors 0660 INX
resumes. 0670 CMP #500
For this experiment four switches 0680 BNE MESS3

are used as input sensors. In practice, 0690 TEST4 LDA STATUS JTEST FOR

August/September, 1980. Issue 3.

compute Il. 27

Mounted on the SYM-1*, the FIRST MATE pro-
vides ready access to address, data and control
busses, and up to 35 bits of I/0 plus control lines.
Designed to serve the interfacing/prototyping
needs of students, hobbiests and practicing
engineers, the FIRST MATE interfaces to the

*SYM-1 is a product of Synertek Systems Corp.

LET THE FIRST MATE EASE YOUR
MICROCOMPUTER APPLICATIONS/TRAINING
EXPERIMENTATION

Add 29% for shipping to continental U.S.A. Others add 10%. Indiana residents add 4% sales tax.
KIM-1 is a product of MOS Technology ~ AIM-65 is a product of Rockwell International

SYM-1 Expansion (E), Application (A) and

Auxiliary Application (AA) connectors via one

to three SECOND MATEs and 40-conductor

ribbon cables. The 1/0 and bus lines are available

at the onboard socket strip. Space is provided

for up to three additional socket strips. The

FIRST MATE is electrically compatible with the

KIM-1* and AIM-65* microcomputers.

Available from MicroMate, P.O. Box 50111,

Indianapolis, IN 46256.

MM-1 The FIRST MATE plus one SECOND MATE
and one 40-conductor ribbon cable . .$87.50

MM-2 Additional SECOND MATE $15.00

MM-3 Additional 40-conductor ribbon cable $10.00

ColorMate by MicroMate
@ available 3rd gtr. 1980 @ KIM, SYM, AIM compatible
@ based on Motorola 6847 video display generator
@ applications range from two-page alphanumeric/semi-graphic
terminal to full graphics mode ® write for free details.

COMPUTE’S BOOK CORNER

We Now Have One of the
Best Collections of 6502
Resource Materials Around:

Best of The PET Gazette
§10.00

Collected PET User Notes

Volume 1, Issues 2 - 7
§9.00

$1.50
$§10.00

Volume 2, Issue 1

All 7 issues

6502 User Notes
Volume 1, Issues 1-6
Volume 2, Issues 1-6
Volume 3, Issues 1-5
All 17 Issues
MC/VISA Accepted

Add $2.00 shipping & handling
COMPUTE, P.O. Box 5119, Greensboro, NC 27403

$ 6.00
$ 6.00
$10.00

$20.00

SOFTWARE

MACHINE LANGUAGE PROGRAUS FORI *AIM *5v *KIM *BET #ADDLE 4051 & ANV 3502 S¥STE

6502)

« SLPPORTS 27

-

4 STIRAGE AND RETRIEVAL PROG
KEVED BY ANY FIZLD » SOAT
ENTDRY, EMPLOYEZ DATA, ETC o

(NTERPRETER
17H a

1, FOLI0 PROGRAS T SS THAN 1K+ DOES
Shiic, cp/wr, CEASIEY DISKS » WITH L WANUAL, 2ROGRAUMER
COUUENTED SOURCE LISTING
FOLIO PROGRAMS:
B FILE CABINET .

CNLY TAKES 320 BYTES » WENU ORIVEN o
CHEICE OF REPGRT FOAWATS ® USE FOR WAl

w

B BUDGET rer nouseeot uncer_pLaniing = PRINTS A 12 WaNTE ACCOUNTING 417
Un 70 25 SXPENSE TR INZOUE ITENS WITH MONTHY TOTALS AND BALARGE o NEWD ORIuEY e
£X507 75 CHANGE | TEM NAVES DR AMOUNTS » REGUIRES 54 GR 72 CRARALTER LINE TSRMIvAL

® CHECKBOOK
CODE_NuNEER FOR UP TO
STATEWENT Wi Th ALNRIN
RHD TOTALS EKECKS WITH SEiE

ENTER CHECKS A5 YOU WOULD IN YOUA CHEGK
ATEGOR | E: S "FO3a","uEDL 3

0ICALY, ETC,
DATES 0R IN NUMERICAL OR
- FOR SELZCTED DATES o PRINTS COX

[EACH FOLIC 4PRLICATION PROGRAM COMES WITK TWE FOLIQ USER'S WANLAL, APPLISATICN
BRAGRAM $10.01

\ SACTRAN USER-S MANUAL, ANE A HEX DUMB OF FOLID AND THE
OTHER 6502 PROGRAMS’——\
[B TEA 115 €01705/455eUsLER » CHARACTER ORIENTED ZDITOR » SINGLE PASS
SEY 1O CONSEAVE Au « 1E SACHI w CLOSELY uf

 uAY 3% USED SEPARATELY T© CO SES 4DS MKE

« COMES VITH USER'S VANUAL AND COMMENTED SOURCE LISTING

B DISASSEMBLER

L& GENERATED SY TEA (AAOVE} ® OR DISPLAYS A

DISPLAYS SYMEOLIC

5 Aud DPERANDS ROV SYM3OL
u GG 1 e

A LUZ '« GREAT FOR EBUSG

IATRTNETEORE S WiTH USERYS MANUAL AND SOMMENTED SOURCE LISTIN i v

H ROBOT 9 CoNTROL RORDT, PLOTTER 0% CAT
CLURSGR » USER OEFINE MNES ® COMES ¥iTH SRT ROUTIRES

55,00

WITH USER'S MANUAL AN

B MUSIC urcescrive srosnaumins Lassusce sor THE CREATI
SeukD Couscs 1 710: Hor

ALL DROGRAMS WORK 1N & 4X SYST
USER EXTENSIDN, RELOCATION, A

-
"
H
0

UALS CONTAIN INSTAUCT!ONS FOR UDDIFICATID
UT & QUTEUT INTERFACING FOR 5507 PROGRAMUER
S — 3.8

5025 KIMBARE: CHICAGY, ILLINGIS 63837

4 "HYPE
WICHAEL ALLEN

28 compute IL August/September, 1980, Issue 3.

any sensor that will put out 5V under 0700 AND #5308 ; SENSOR #4
the appropriate conditions will do the 0710 BNE LAST 4 ETC.
job, and the program can be extended b720 appREe e
to handle any reasonable number of LIt Lagi sl o) b
0740 LDX #0
SEHIOES. 0750 MESS4 LDA TAB4,X
The program as written uses PB0 0760 JSR OUTVEC
to PB3 of U29 as inputs, and PB7 with 0770 INX
its buffer as the speaker output. Figure 0780 Chp #3500)
1 shows how to hook up buffer B7 for gggg Egg ?fgi;
this application. Although it looks com- 0810 MESSX LDA STATUS STEST FOR
plicated, changing B7 is easy. All you 0820 AND #$0F 5 ANY SENSORS
have (o do is remove one jumper wire 0830 BE@ AGAIN 51F NONE. BACK TO POLL
o e e e 0850 Uk posiT positiow
1 5 OK 3
I-ﬁ)wfzﬁrfflf)l;o7u pl{;lefer, you can _for_%et P Y LB #0 3 MESSAGE
about buffer B7 and construct a similar 08706 ALLOK LDA TABS.X iDISPLAY
speaker system externally. Again, in 0880 JSR OUTVEC J “EVERYTHING O.K."
real life, PB7 would be connected to a 0890 INX 3 MESSAGE
large amplifier and speaker. 0900 CMP #3500
Figure 2 shows how to attach the 0910 BNE ALLOK =
speakc.r, and ﬁgx.}re 3 shows one way to ggig ;?2 ;iggus ;Tuzgh‘gi;ﬁ AND
use switches as simulated sensors. The 0940 JMP POLL 3 RESUME POLLING
speaker volume control, VR1, is op- 0950
tional, but it’s a good idea to use it 0960 « % * SIREN ROUTINE * % *
because without it the siren can shatter 0970) ~
yourwﬁyg[eﬁh_ 0980 SIREN LDA STATUS FANY SENSOR
The messages should, of course e i e
5 S ? 1000 STA *3CB 3IF YES» STORE IT
be changed to suit your particular ap- 1010 BNE SCREAM 3 AND START ALARM
plication. If you have an assembler 1020 JMP CLEAR JELSE POLL AGAIN
such as RAE, this is easy. If not, you 1030 SCREAM LDA #3568 JFREQUENCY CONSTANT
will have to get an ASCII code table 1040 STA *$CA i AT LOCATION $CA
and substitute the message code as re- 1050 YLOOP LDY #3507 ;DELAY,CONSTA“_’T
2 : 1060 SHRIEK JSR SPKR 3TOGGLE SPEAKER
quired. The messages shown in the 1070 DEY
listing are for a 64x16 screen, so if 1080 BNE SHRIEK
yours is different, change the number 1090 INC *$CA 3 INCREMENT
of ““0A’”’s and ““20°"’s to suit your re- 1100 LDA *3CA 5 FREGe CONSTANT
quirements. 1110 CMP #SBO FHIGHEST CONST.= $B0
Sound is produced by toggling the 1120 BNE YLOOP :
speaker on and off, with a delay bet- pat sl e
4 1140 AND #S$0F i SENSOR
ween the toggles. The length of the 1150 CMP *S$CB 3 CHANGE?
delay determines the frequency. The : }f”g Egg g?}??ﬁ? :$SE7K§}E$ aéggN GOING
siren sound. is produced. by shertening iEd AND BE0F s CENEORE BT
the delay sllght.lyl each time the speaker 1190 BEQ@ SCREEN $NO? PRINT O.K. MESSAGE
toggles, thus giving a steadily increas- 1200 JMP POLL IYES? PROCESS AGAIN
ing frequency. For more information 1210 SCREEN JMP CLEAR
on sirens and other experiments read i220
Rodnay Zak’s ‘6502 Application Bae Lo o e SRR e
Book’ published by Sybex e
: : 1250 SPKR LDA #380 FJRESET
This program uses the SYM-1 as a 1260 STA STATUS+2 : DDRB AND
dedicated con troller, so it can’t be used 1270 STA STATUS H TOGGLE SPEAKER
for other purposes while the program is 1280 JSR DELAY JWALT AND
running. If you want the warning izgg IS—E?X gi_is_us 4 Toggki\:
: : 3
;}’\fi\(}l’i‘ll vf\;?rl.lz]lt?lgervvt};llll: yoILuse your_ 1310 JSR DELAY JWAIT AGAIN
i B b3y mAleW Lo 1320 RTS
gram using interrupts must be written. 1330 DELAY LDX *$5CA ;CHANGE
But that’s another ballgame. 1340 XLOOP INX 3 FREQUENCY
1350 CPX #3%00
1360 BNE XLOOP
1370 RTS

1380 POSIT LDX #0

August/Septernber, 1980, Issue 3, compute I 29
1390 MOVE LDA TAB6.X sPOSITION
1400 JSR OUTVEC ;i MESSAGE .
1410 INX 2 ’ ON Parts List For SYM-1 Home Warning
1420 CMP #3500 H SCREEN System.
1430 BNE MOVE R4 100K Resistor
1440 RTS R17 10 Ohm Resistor
1450 SPACE LDX #0 JPOSITION R18 1K Resistor
1460 RIGHT LDA TAB7.X ¢ WARNING VR1 100 Ohm Potentiometer (Optional)
1470 JSR OUTVEC 3 MESSAGES C1 0.01 UF Capacitor
1480 INX CR4 Diode, 1N4148, 1N914 Or Equivalent
1490 CMP #300 SW1-4 Any SPDT Switches
1500 BNE RIGHT SPKI 8 Ohm Speaker, RS 40 -247 Or
1510 RTS Equivalent
1520 3
1530 ; * R ¥ MESSAGES % * »
1540
1550 TABI «BY “L [[WATER IN BASEMENT 1 1 1° $00
1560 TAB2 «BY *+ + + DOG NEEDS TO GO GUT + + +* 800
1570 TAB3 «BY “# # # THIEF IN WINE CELLAR # # #" 300
1580 TAB4 «BY “* * * MILKMAN IN WIFE"S BEDROOM *
1590 «BY % ® #2450 (
l600 TABS 'BY PUHSRHRAFERERFRFER RS ERERERERERRR
1él0 eBY ‘“#¥ws%xxs (D $0A 50A
1620 «BY ‘% #* % S5YM-]| HOME WARNING SYSTEM *
1630 «BY °* % ¥¢ 30D 304 $0A
1640 BY > > > > EVERYTHING 1S QO.K. < *
1650 sBY *< < <” $0D $0A $0A “wxnenex-
1660 'BY PUHBRRFHBFHEF AR A XA AR ER AR 2 500
1670 TAB6 «BY $0C $0D $0A $0A $0A 30A 300
1680 TAB7 -BY $0D $0A $0A 320 $20 $20 $20 520
1650 «BY $20 $20 300
1700 +EN
/7
Ren
=
Pad 7 5
Y Fedry] |
A7 Pin AA-A
Pad 8
{Pin Ak-z2) it
pa7 Rz - Rig
Pad A 1k
a Pin Al-i6 Mot
?
FIGURE 1
Pad 12 - Wz
. Changes to Buffer B7 OH
= See P. 4-12 & 4-13 PB1
Sym-1 Reference Manual
Pin AA-15 M3
[H Ty
Pin AA-22
oﬁnigjg_—_mﬁwdo_
P83
Y\VR1 (optional)
Volume Control Sk
Ground ”il_
Pin AA-A
FIGURE 3

FIGURE 2
Speaker Connections

Switch (sensor) Connections
SPK1

30

compute Il

August/Septemiber, 1980. Issue 3

MICROCOMPUTER MEASUREMENT and

PETMOD

BE

PET INTERFACE

RS-232
PRINTER

SENSORS
() e TEMPERATURE
® LIGHT LEVEL

KIMMOD

[AIM16

KIM INTERFACE MODULE

ANALOG INPUT

gc@

=
TRS-80 MOD
TRS-80 INTERFACE [XPANDR1
=
L
il EXPANDER
APMOD MODULE

APPLE INTERFACE

The world we live in is full of variables we
want to measure. These include weight,
temperature, pressure, humidity, speed and
fluid level. These variables are continuous
and their values may be represented by a
voltage. This voltage is the analog of the
physical variable. A device which converts
a physical, mechanical or chemical quanti-
ty to a voltage is called a sensor.

Computers do not understand volt-
ages: They understand bits. Bits are digital
signals. A device which converts voltages
to bits is an analog-to-digital converter.

POWER o PRESSURE
MODULE e
o o HUMIDITY
] S [: MANMOD1 :| ACCELERATION
fiaimanimaninsai] o SOUND
[issmunsmonnmuni] ® ETC’__
MANIFOLD
MUOULE REMOTES
o APPLIANCES
o LIGHTS
* MOTORS
X-10 o PUMPS
Moo ® ALARMS
o HI-FIS
v & TELEVISIONS
o HEATERS
CONTROLLER o FANS
o ETC...

Our AIM 16 (Analog Input Module) is a 16
input analog-to-digital converter.

The goal of Connecticut microCompu-
ter in designing the uUMAC SYSTEMS is
to produce easy to use, low cost data
acquisition and control modules for small
computers. These acquisition and control
modules will include digital input sensing
(e.g. switches), analog input sensing (e.g.
temperature, humidity), digital output con-
trol (e.g. lamps, motors, alarms), and
analog output control (e.g. X-Y plotters, or
oscilloscopes).

Connectors

The AIM 16 requires connections to its
input port (analog inputs) and its output
port (computer interface). The ICON (Input
CONnector) is a 20 pin, solder eyelet, edge
connector for connecting inputs to each of
the AIM16's 16 channels. The OCON
(Output CONnector) is a 20 pin, solder
eyelet edge connector for connecting the
computer's input and output ports to the
AIM16.

The MANMOD1 (MANifold MODule)
replaces the ICON. It has screw terminals
and barrier strips for all 16 inputs for
connecting pots, joysticks, voltage
sources, etc.

CABLE A24 (24 inchinterconnect cable)
has an interface connector on one end
and an OCON equivalent on the other. This
cable provides connections between the
uMACSYSTEMS computer interfaces and
the AIM 16 or XPANDR1 and between the
XPANDR1 and up to eight AIM 16s.

Analog Input Module |

The AIM 16 is a 16 channel analog to digital
converter designed to work with most
microcomputers. The AIM16 is connected
to the host computer through the compu-
ter's 8 bit input port and 8 bit output

port, or through one of the UMAG SYS-
TEMS special interfaces.

The input voltage range is 0 to 5.12
volts. The input voltage is converted to a
count between 0 and 255 (00 and FF hex).
Resolution is 20 millivolts per count. Ac-
curacy is 0.5% =+ 1 bit. Conversion time
is less than 100 microseconds per channel.
All 16 channels can be scanned in less than
1.5 milliseconds.

Power requirements are 12 volts DC at
60 ma,

The POW1 is the power module for the
AIM16. One POW1 supplies enough power
for one AIM16, one MANMOD1, sixteen sen-
sors, one XPANDR1 and one computer in-
terface. The POW1 comes in an American
version (POW1a) for 110 VAC and in a
European version (POW1e) for 230 VAC.

TEMPSENS

This module provides two temperature
probes for use by the AIM18. This
module should be used with the MANMOD1
for ease of hookup. The MANMOD1 will
support up to 18 probes (eight TEMP-
SENS modules).

Resolution for each probe is 1°F.

XPANDR1

The XPANDR1 allows up to eight Input/

Output modules to be connected to a com-

puter at one time. The XPANDR1 is
connected to the computer in place of the
AIM16. Up to eight AIM16 modules are
then connected to each of the eight

ports provided using a CABLE A24 for
each module. Power for the XPANDR1

is derived from the AIM16 connected

to the first port.

August/September, 1980, Issue 3.

compute Il.

3

CONTROL for PET, Apple, KIM, and AIM ﬁﬁgnﬂ@@j

Computer Interfaces
and Sets

For your convenience the AIM16 comes as
part of a number of sets. The minimum
configuration for a usable system is the
AIM16, one POW1, one ICON and one
OCON. The AIM16 Starter Set 2 includes
a MANMOD?1 in place of the ICON. Both
of these sets require that you have a
hardware knowledge of your computer
and of computer interfacing.

For simple plug compatible systems
we also offer computer interfaces and sets
for several home computers.

INTRODUCING
SUPER X-10 MODULE

Open a door or window and turn on a

light, tape recorder, alarm!

Control lab equipment. CLOSE THE
LOOP on the real world.

AN INEXPENSIVE CONTROL
SOLUTION FOR

HOME SECURITY
ENERGY CONSERVATION
GREENHOUSES
ENVIRONMENTAL CONTROL
INDUSTRIAL CONTROL
LABORATORIES

SUPER X-10 MOD SPECS
1. Remote controller
Controls up to 256 different remote
devices by sending signals over the
house wiring to remote modules. Uses
BSR remote modules available all over
the USA (Sears, Radio Shack, etc.).
Does not require BSR control module.
Does not use sonic link.
Clock/calendar
Time of day - hours, minutes, seconds
Date - month, day - automatically cor-
rects for 28,29,30 and 31 day months.
Day of the week.
Digital inputsfoutputs
8 inputs - TTL levels or switch closures.
Can be used as triggers for stored
sequences.
8 outputs - TTL levels

>

@

REMo ,

< a

*

LS

PLUS: CLOCK, CALENDAR,
REMOTE SEQUENCE TRIGGERS

4. Computer interfaces
5-100: Requires one 8-bit input port and
one 8-bit output port.
Requires cable assembly.
PET, APPLE, TRS-80, KIM, SYM, AIMB5:
Plug-in sets available - no cable assembly
required.
Other: same as $-100

. Self-contained module in metal case with
its own power supply. Physical size
approximately 5X6X2.

Price (until April 30, 1980): $199.00 (S-100),
$249.00 (other)
All prices and specifications subject to

change without notice. Our 30-day money
back guarantee applies.

a

AIM16 (16 channel-8 bit Analog

Input Module) 179.00
POW1a (POWer module-110 VAC) 14.95
POW1ie (POWer module-230 VAC) 24.95
ICON (Input CONnector) 9.95
OCON (Output CONnector) 9.95
MANMOD1 (MANifold MODule) 59.95
CABLE A24 (24 inch interconnect

cable) 19.95

XPANDRT1 (allows up to 8 Input or

Output modules to be connected to a
computer at one time) 59
TEMPSENS2P1 (two temperature probes,
-10°F to 160°F) 49.95
LIGHTSENS1P1 (light level probe) 59.95

The following sets include one AIM16,
one POW1, one OCON and one ICON.
AIM16 Starter Set 1a (110 VAC) 189.00
AIM16 Starter Set 1e (230 VAC) 199.00

The following sets include one AIM18,

one POW1, one OCON and one MANMODH.
AIM16 Starter Set 2a (110 VAC) 239.00
AIM16 Starter Set 2e (230 VAC) 249.00

The following modules plug into their
respective computers and, when used
with a CABLE A24, eliminate the need for
custom wiring of the computer interface.

PETMOD (Commodore PET) 49.95
KIMMOD (KIM, SYM, AIM65) 39.95
APMOD (APPLE II) 59.95
TRS-80 MOD (Radio Shack TRS-80) 59.95

QUANTITY] DESCRIPTION PRICE | TOTAL
[F]SYSTEMS i —
Order Form : %] i
CONNECTICUT microCOMPUTER, Inc. i
150 POCONO ROAD —_— —1
BROOKFIELD, CONNECTICUT 06804
TEL: (203) 775-9659 TWX: 710-456-0052
- SUETS)TAL
e U ehe MARMODA, pre GABLE ArAegs shoiny—asdpor o D
A24 and one computer interface module Foreign orders add 10% for AIR postage
PETSET1a (Commodore PET - add 7% sales tax
110 VAC) 295.00 TOTAL ENCLOSED
PETSET1e (Commodore PET -
230 VAC) 305.00
KIMSET1a (KIM, SYM, AIM85 - NAME
110 VAC) 285.00 COMPANY.
KIMSET1e (KIM, SYM, AIM65 - ADDRESS £
230 VAC) 3 295.00
APSET1a(APPLEII- 110 VAC) 295.00
APSET1e (APPLE Il - 230 VAC) 30500 Y
TRS-80 SET1a (Radio Shack TRS-80 - STATE ziP
110VAC) 285.00 yg0 O M O date
TRS-80 SET1e (Radio Shack TRS-80 -
230 VAC) 305.00 Card number

32

compute Il

August/September, 1980. Issue 3.

A Digital

Cardiotachometer

Marvin L. De Jong
Department of
Mathematics-Physics
The School of the Ozarks
Pt. Lookout, MO 65726

Implemented WithThe AIM 65

The circuit shown in Figure 1 and the computer pro-
gram given in the listing may be used to measure the
pulse (heartbeat) rate of a person and display this result
(in heartbeats per minute) on the AIM 65 display. A
modified version of a PASCO Photo-Plethysmograph
(PASCO Scientific, 1933 Republic Avenue, San
Leandro, CA 94577) was used to detect the pulses. You
might be able to build your own photo-plethysmo-
graph using suitable infared photodiodes and photo-
transistors (such as the Fairchild FPA106 array) for

a lot less money, but be prepared to do some experi-
mentation. The voltage fluctuation from the plethys-
mograph is amplified by an instrumentation amplifier.
We used an Analog Devices (Route 1, Industrial Park,
P.O. Box 280, Norwood, MA 02062) AD521. The
negative pulses from the AD521 are fed to a 5535 timer
that acts as a Schmitt trigger circuit, producing a
well-defined square pulse at the clock input of the
741.S74. The LED will turn off when a pulse is
detected. In the circuit of Figure 1, the 2000

ohm potentiometer on the AD521 controls the gain,
and it should be adjusted so that heartbeats cause the
LED to flash. An osciolloscope is very useful for
making circuit adjustments.

The time interval between two successive pulses to
the clock input of the 741574 is measured by the
computer, and this result is converted to heartbeats
per minute. The T1 timer on the 6522 on the AIM 65
microcomputer is used to produce a train of pulses
that are fed to one input of the 74LS00 NAND gate.
the period of these pulses is 100 microseconds. The
leading edge of the heartbeat pulse at the clock input
of the 74LS74 flips the) output to logic one, gating the
pulses from PB7 onto PB6 where the T2 counter/timer
on the 6522 counts them. They are counted until the
leading edge of the next heartbeat pulse flops the Q
output to logic zero, closing the gate. Thus, the
computer contains the number of 100 microsecond
pulses that occurred between two heartbeats. Since { =
1/T where f is the frequency of the heartbeats and T is
the time interval between beats, then f = 10°/N where
N is the number of pulses counted by the T2 counter/
timer. Changing the units to pulses per minute gives
f =60X 10/N.

We first describe the machine language subrou-
tine called by the BASIC program. The instructions
from $0E00 to $0E30 merely initialize the various
6522 registers. For example, T1 must produce a pulse
train on PB7 and T2 must count pulses. A positive

transition on CB1 must set a flag, while reading
Port B produces a one microsecond pulse on CB2,
clearing the flip-flop. Starting with the instruction

at $0E30, the D-input of the flip-flop is set at logic
one. Since the flip-flop was previously cleared, its out-
put is currently at logic zero on the Q pin. The first
heartbeat pulse reaching the flip-flop clock input sets
the Q output to logic one. This transition is also de-
tected by the instructions at $0E37 through $0E39,
and as soon as it occurs, the program begins to
watch the pulse count on T2,

Before switching the D-input of the flip-flop to
logic zero in order to turn the gate off when the next
heartbeat pulse arrives, the T2 counter is watched to
allow approximately one-half a heartbeat period to
elapse. It waits 0.0244 s to be exact (you may wish to
decrease the value of the byte at $0E44). The reason
for waiting lies in the fact that the waveshape of the
heartbeat pulse (at lease mine) has a secondary peek
that can trigger the flip-flop if the gain is set a bit
too high. So, we wait until this secondary pulse has
been completed before catching the next heartbeat
pulse. Bringing the D-input to logic zero allows the
next clock pulse to switch Q to logic zero, closing the
gate. The number of counts in T2 is obtained, and if
T2 counted through zero, producing an interrupt
(IRQ) request, the number of interrupts (counts ex-
ceeding 65536) are also obtained.

The BASIC program calls the machine language
subroutine which then measures the number of 100
microsecond intervals between heartbeats. The BASIC
program merely converts this number to a fre-
quency and displays the result. Finally, it returns to
measure another heartbeat period. Note that because
of various time delays in processing the data, only
every other heartbeat interval is measured.

I would not recommend that a novice experi-
menter with very little test equipment attempt to build
this circuit. A number of adjustments are necessary
and things like fluorescent lights can cause problems
with the plethysmograph, in particular they can pro-
duce a 120 cycle modulation that triggers the circuit.
The circuit does make a nice electronics project, and I
am sure that improvements are possible. Of course, the
circuit and the program are meant to be used for
instructional purposes rather than in actual
medical applications.

Besides being useful in teaching some simple bio-
medical instrumentation, this program and circuit

August/September, 1980. Issue 3, compute Il

cCOMPas

224 S.E. 16th Street

microsystems ol |

DAIM

DAIM is a complete disk operating system for the ROCKWELL INTERNATIONAL

AlM 65. The DAIM system includes a controller board {(with 4K operating system in
EPROM) which plugs into the ROCKWELL expansion motherboard, packaged power
supply capable of driving two 5 1/4 inch floppy drives and one or two disk drives mounted
in a unique, smoked plastic enclosure. DAIM is completely compatible in both disk format
and operating system functions with the SYSTEM 66. Commands are provided to
load/save source and object files, initialize a disk, list a file, list a disk directory, rename
files, delete and recover files and compress a disk to recover unused space. Everything is
complete — plug it in and you're ready to go! DAIM provides the ideal way to turn your
AIM 65 into a complete 6500 development system. Also available are CSB 20
(EPROM/RAM) and CSB 10 (EPROM programmer) which may be used in conjunction
with the DAIM to provide enhanced functional capability. Base price of $850 includes
controller board with all software in EPROM, power supply and one disk drive. Now you
know why we say —

There is nothing like a

Dn 'm Phone 515-232-8187

34

compute Il August/September, 1980. Issue 3.

might be useful for experiments on factors that

alter the heartbeat rate. What about that last cup of
coffee you drank? Can you exert control over your
pulse rate with your mind? What is the cause of

the statistical fluctuation in heartbeat rates when
a person is simply relaxed? What happened to your
heartbeat rate when that pretty girl walked by?

DIGITAL CARDIOTACHOMETER PROGRAM
10 POKE 04,00; POKE 05,14

20 Y = USR(0)

30 X = 65536"PEEK(51) + 256* PEEK(50) + PEEK(49)

40 R = 600000/X
50 R=INT(R + .5)

60 PRINT R; “PULSES/MIN"

Initialize PCR on the 6522. CB 2 in output
pulse mode. Transition on CBI sets flag.
Initialize DDRB so PB0 and PB7 arc output

Set PBO and PB7 to logic one.

Make D-input on flip-flop logic zero.

Set up ACR so T'1 is in free-running mode
and T2 counts pulses.

Set up IER so T2 produces interrupts when
it counts through zero.

Set period of pulse train from PB7 to be
100 microseconds.

Start pulse train from PB7.

Clear interrupt counter.

This location contains number of interrupts.
Initialize the T2 counter to count down
from $FFFF.

Set D-input to logic one. Next pulse from
plethysmograph will start timing.

Check flag to see if timing has started.
Mask all except bit four of the TFR.

Loop here until a pulse starts the timing.
Clear PCR 1o prevent clearing the 74LS74.

Read the timer. Wait here until about
one-half the pulse period has passed
before setting D-input to logic zero

at the next pulse.

Read the flag register. Has the next
pulse occurred?

No. Then wait here.

Yes. Then count the pulses that have
occurred (from PB7 to PB6).

Low order byte of PB7 pulse count.

Get middle byte of PB7 pulse count.

PLSHI, PLSMI, and PLSLO are read by the
BASIC program.

70 GO TO 20

80 END

0E00 A9 BO START LDA $BO
0E02 8D 0C A0 STA PCR
0E05 A9 81 LDA $81
0E07 8D 02 A0 STA DDRB pins.
0EOA 8D 00 A0 STA PBD
0EOD CE 00 AOQ DEC PBD
0E10 A9 EO LDA $EO
0E12 8D 0B A0 STA AGR
0E15 A9 A0 LDA $A0
0E17 8D OE A0 STA IER
0E1A A9 30 LDA $30
0E1C 8D 06 A0 STA TiLL
OEIF A9 00 LDA $00
0E21 8D 05 A0 STA T1LH
0E24 A9 00 LDA $00
0FE26 85 33 STA PLSHI
0E28 A9 FF LDA $FF
0E2A 8D 08 A0 STA T2LL
0E2D 8D 09 A0 STA T2CH
0E30 EE 00 A0 INC PBD
0E33 58 GLI

0E34 AD 0D A0 WAIT LDA IFR
0E37 29 10 AND $10
0E39 FO F9 BEQ WAIT
0E3B A9 00 LDA $00
0E3D 8D 0C A0 STA PCR
0E40 AD 09 A0 LOAF LDA T2CH
0E43 C9 F4 CMP $F4
0E45 BO F9 BCS LOAF
0E47 CE 00 A0 DEC PBD
0E4A AD 0D AQ LOITER LDA IFR
0E4D 29 10 AND §$10
0E4F FO F9 BEQ LOITER
0E51 A9 FF LDA $FF
0E53 38 SEC

0E54 ED 08 A0 SBC T2CL
0E57 85 31 STA PLSLO
0E539 A9 FF LDA $FF
0E3B ED 09 A0 SBC T2CH
OE5E 85 32 STA PLSMI
0E60 78 SEI

0E61 4C D1 CO JMP BASIC

Return to BASIC program.

INTERRUPT ROUTINE: SET IRQ VECTOR TO $0E65

0E65 48 INTRPT PHA

0E66 A9 FF LDA $FF
0E68 8D 09 A0 STA T2CH
0E6B 38 SEC

0E6C D8 CLD

OE6D A9 00 LDA $00
OE6F 65 33 ADC PLSHI
0E71 85 33 STA PLSHI
OE73 68 PLA

0E74 40 RTI

Save accumulator on the stack.
Restart T2 by reloading it.

Now increment the interrupt counter, PLSHI

Result into PLSHI.
Recall accumulator contents.
Return to the machine language subroutinc.

August/September, 1980, Issue 3.

compute Il

Figure 1.
Interface circuit for the digital cardiotachometer.
'V
2 +12v
:
|
|
|
120K < 470 }

ANALOG DEVICES
AD521 INSTRUMEN-
TATION AMPLIFIER

e
\
|
I
\
\
|
l
|
|

FPT-120

|
|
|
s

PASCO SCIENTIFIC

MODEL 8160 PHOTO- APPLICATION
PLETHYSMOGRAFPH CONNECTOR PIN
(modified) PBO

19 [cap> U

O +5V

220 14

Rl

LED

1l 2
35 ck
74LS74

741500

5 o1 2
3

FLOPPY CONTROLLER BOARD

® .5 Volts only

® 4 single/double sided drives, 8 heads

® Single or double density under software control
® Dynamic allocation of files

FP-950 controller board $475

ADOS operating systern on a 2532 EPROM $100

Disk drive with power supply and case s/sided $375
dfsided $460

@® 35,40 or 77 track side

® |ndependent motor ON/OFF control for 4 drives

® Powerful ADOS operating system have all necessary

basic, editor, assembler and monitor.

VIDEO CONTROLLER BOARD

® 80,64 or 40 character by 25 lines

® 2K bytes of software on board fully interfaced to
AIM-65 with full cursor control

® Reverse video on character basis

CRT-80 video controller $295

® 2K refresh RAM not on address space of CPU with
no wait states whem updating.

® Combined and separated video outputs

® Buffered sector and block transfer modes for fast transfer

commands and file management. Full interface to AIM.65

® Upper/lower case ASCII plus 128 semigraphic characters

AIM-65
COMPLETE SYSTEM UPGRADING

MEMORY BOARDS

® +5 Volts only

@ Totally transparent refresh, no cycle stealing
MB-16K 16 K bytes board $305

MB-32K 32 K bytes board $375

MB-48K 48 K bytes board $445

MB-64K 64 K bytes board $515

® Memory selectable in 4k blocks by switches
® Bank selection

EXPANSION MOTHER BOARD

® Enabled in 4K increments by switches

® Straight extended from the expansion connector on the
AlM-65

@ Fully buffered

® 6 slots

® Supports DMA

EMB-6 expansion board $195

OEM discounts @ All boards fully assembled and tested

® All boards are compatible with the EXORciser bus.

APPLIED BUSINESS COMPUTER CO.

707 S. State College., Suite G.
Fullerton, Ca. 92631 Tel. (714) 871-1411

36

compute I

August/September, 1980. Issue 3.

Saving Data
Matrices With
Your SYM-1

Ceorge Wells

This article describes a machine-language program
that enables BASIC data matrices to be saved on
cassette tape and loaded back into the computer at a
later time. There have already been several attempts to
perform this function, but most of them suffer in one
or'more of the following ways:
1. They will not allow the BASIC program to be
modified.
2. They will not allow the BASIC data to be
loaded into a different program.
3. They will not allow selected data to be saved
on tape.
4. They will not allow string data to be saved on
tape.
5. They are clumsy to use, requiring PEEKing
and POKEing.
The program described here overcomes all of these
problems. It will run only on a SYM-1 with the new
MONITOR 1.1 ROM and will require extensive
modification to enable it to run on other machines.
Functional Description Of Program
After the machine-language program is in memory and
BASIC is running, all that is required to save a matrix
is a statement of the form:
MATRIX (1,2,3) = USR (SAV,ID)
Where MATRIX (1,2,3) is any kind of matrix
(numeric, integer or string) of any size with any
number of dimensions, SAV is a previously defined
variable pointing to the SAVE.MAT machine-
language program and ID is a variable in the range
of 0 to 127 which is the tape ID file number. This
statement can be entered as a direct command after
a program has been run or it can be used anywhere
in a program, even in a loop. If you want to save the
entire MATRIX, then use the same subscripts that
were used to DIMension and the MATRIX. You can
save a portion of the MATRIX by making the last
subscript a smaller number than its DIMension.
SAV and ID cannot be matrix variables.
To load a matrix back into the computer use
a similar statement of the form:
MATRIX (1,2,3) = USR (LOA,ID)
Where LOA is a previously defined simple variable
pointing to the LOAD.MAT machine-language pro-
gram and the other variables are the same ones used
to save the MATRIX.
If you have implemented a second cassette con-

trol for your SYM-1 (see MICRO 18:5) then the
proper cassette will be turned on for a LOAd or a
SAVe operation and you can write programs that in
effect handle a very large data base by partitioning
it into smaller chunks that are read in from one
recorder, operated on and read out to the other
recorder automatically.

Description Of Program Implementation

Step 1: Deposit and Verify the OBJECT LISTING.

If you have only 4K of RAM, do this at 0EE6
and then change all of the 1F’s to OF’s.
This can be done easily with .M 1F,EE6-FFF
(CR) followed by 11 sets of OFG (no (CR)’s).
Do another verify (.V EE6-FFF) which should
give a checksum of 8747,

Step 2: Jump to BASIC (J 0) and use 7910 for
the size or 3814 if you have 4K of RAM.

Step 3: Enter a program such as:

100 SAV = &‘“1F07" (or SAV = &‘‘0F07" for 4K)
110 POKE 42544,10: REM LONG TAPE DELAY
120 FORI = 0 TO 10

130 A%(I) = I

140 A(T) = SQR(T)

150 A$(I) = CHRS$(I +65)

160 NEXT I

150 A%(10) = USR(SAV,1)

180 A(10) = USR(SAV,2)

190 A$(10) = USR(SAV,3)

Step 4: Rewind a tape and start it in record mode.

Step 5: RUN the program.

Step 6: When BASIC responds with OK, type NEW
and enter a second program such as:

100 LOA = & “1EE6” (or LOA = &‘‘Q0EE6”
for 4K)

110 A%(10) = USR(LOA,1)

120 A(10) = USR(LOA,2)

130 A$(10) = USR (LOA,3)

140 FORI = 0 TO 10

150 PRINT A%(I), A(I), A§(I)

160 NEXT I

Step 7: Rewind the tape and start it in play mode.

Step 8: RUN the program. After all the matrices
are read in from tape they will be printed on
the terminal.

Step 9: In case the computer has trouble reading a file,
rewind the tape and restart it in play mode. If
you want to abort the tape read process, hold
the BREAK key on the terminal down until the
tape stops. You can CONTinue from this point
if you want to; however, the matrix that couldn’t
be read in will be cleared to zeroes or nulls.

SYM-PLICITY

ENGINEERED SPECIFICALLY FOR MADE OF HIGH IMPACT STRENGTH
THE SYM-1 MICRO COMPUTER THERMOFORMED PLASTIC
® Easy Access for @ Kydex 100*
Adjustments ® Durable
@ Room for Expansion @ Molded-In Golor
® Protects Vital Components ® Non-Conductive
EASILY ASSEMBLED AVAILABLE FROM STOCK
@ Absolutely No @ Allow Two to Three Weeks for
Alteration of SYM-1 Required Processing and Delivery
® All Fasteners Provided @ No COD’s Please
@ Goes Together in Minutes ® Dealer Inquiries Invited

ATTRACTIVE FUNCTIONAL PACKAGE
® Professional Appearance
® Popular “Data Blue” Color
@ Improves Man/Machine Interface

TO ORDER: 1.Fillin this Coupon (Print or Type Please)
2. Attach Check or Money Order and Mail to:

NAME

STREET enclosures

CITY group

STATE RS PE S Z.Z; ?rl:'::lss:se f:alifnrnia 94108
Please Ship Prepaid SSE 1-1(s) ’

@ $36.75 each
California Residents Please Pay
$39.14 (Includes Sales Tax)

* TM Rohm & Haas Patent Applied For

38

compute Il

August/September, 1980 Issue 3.

Description Of
Program Operation
“The program stores two copies of each
file on tape to provide an automatic
back-up in case of error during loading.
Between files, the tape delay is set to its
minimum possible value (about 1.5
seconds) and set back to its default
value (about 6 seconds) at the end of
the routine. You can change these
values if you have special require-
ments. Also, you can set the tape delay
to a larger value at the beginning of
tapc operations to automatically move
the tape off its leader, as in the
first sample program above at line 110.
For numeric and integer matrices,
the elements themselves are stored
directly on tape with no manipulation
since they are already in contiguous
order. The start and stop addresses
are determined from ‘foot-prints’”’ on
page zero left over from the normal
matrix interpretation done by BASIC.
For string matrices the procedure
is considerably more complex. About
one half of the total code is involved
in the special requirements of strings
since they are not stored together in
one place. The best we can do is re-
arrange things until all the string infor-
mation is contained in two separate
files which can be stored on tape. The
first of these files consists of three
bytes per string. The first byte is the
length of the string and the last two are
a pointer or address to where the
ASCII characters making up the string
are stored. This first file is already
in contiguous order but before it can be
used the second file must be created
since the first file contains pointers
to the second file. The second file is
created by going through all the string
pointers (in reverse order) and copying
each string into unused memory
space using two of the BASIC inter-
preter routines which leave the strings
themselves in one continuous block.
When the first file is stored it is given
an ID greater than 127 (most signifi-
cant bit is set) so the load routine can
distinguish it from the second file.
The routines determine when a
string matrix is being operated on by
pulling six bytes off the stack and
branching on the condition of a zero
which indicates a non-string matrix.
These six bytes plus one more are

*AZZEMBLY LISTIMG:

poio ID
0020 MAT.START
0020 MAT.STARTE .
0040 MAT.CUR.EL .
00S0 MAT. EMDE
0050 EL.S12E
0070 CUR.STRING
D030 HEW.STR.PN
0030 HEW.STRING
0100 KER.STRING
0110 ACCESS
0120 IHJISV
0130 F1
0140 DIG
0150 P1
0160 P2
0170 P3
0130 TRPDEL
0190 TRPE.LELAY
0200 J.SAYET
J.LOADT

023n
0240

1EEE- 20 2E 1F 0250 LORD.MAT

1EES- BE 0Een

1EERA- B3 0

1EEB- 55 0

1EEC- &2

1EED~ &3

1EEE- &8

1EEF- FO 0B

1EF1- 20 €2 1F

1EF4- 2

1EF7-

1EF9- 2

1EFC- LORD. MATE

1EFE-

1F 00—

1F02- 0

1F 05~ LOAL. HAT?

1F0E- &

1F07- SAVE. MAT

1F OA=

LF 0B~

LFOC-

1F 0D~ &3

1FDE-

1FOF-

1F10-

1F1E~

1F15-

1F17-

1F1R- 20 3E IF 0570

1F1D- AS &F 0S80 SAYE. MATS

1FIF- 29 TF 0530

1F21- 50 4E RS 0EOD

1F24- 20 EC 1F 0610 SAYE.MAT?

tF27— A% 04 2

1Fgs— 3D 20 As

1FEc- &3

INIT. PARME

1FSF— RS 00 0310 ORD.STRING

1F61— 85 57 0920

1F&3- RO 00 0930 ORD.ETR.1

{F&5- E1 EF 0940

LEQ
ISR
EEG
3R

JER
LIA
FAND
2TA
JER
L

=]
o

ITA
PLA
RTS

JER
TYA
ORA
ETH
3TA
LIA
ETR
3TA
LIA
ETA
3TA
LIA
ETA
CLC
AIC
£TA
ETR
LDA
ATR
RIC
TR
ETH
RTS

LIA
ETR
Lo
LIA

COPY OF
POINTER
7u COFY OF
£33 FOINTER
E6D coPY OF
378
3EF CURRENT
333 POIMTER
S0
FD42F

3
CARRY

Fa

*MAT. STARTC
+MAT. ETART+1
Pa+1

+MAT. STARTC+1
*MAT.CUR. EL
SCUR. ZTRING

*EL.SIZE
F3

*MAT .
*MAT.
*CUE.
=0

P2+1
*MAT.

EMDC:
CUR.EL+1
STRING+1

ENDIC+1

w0
SMAT .
=0
CCUR .

CUR.EL+1

STRIMGS 5 %

GET LOCATION OF ETRING
TRANTFER STRIMNG TO MEW LOCATION
TYETEM MOMITOR RAM UMPROTECT
ZET MERNZ
MIDOLE OF MOMITOR FILL ROUTINE
FIRST DISIT OF DISPLAY

TAFE 1D

TO FIRST ELEMENT OF MATRIX
+MAT. START

TO MATRIX CURREMT ELEMEMT

END OF MATRIX FDOR AEBORT

MUMEBER OF BYTET PER ELEMENT

STRING TO EBE
TO MEW STRIMG

TRANZFERRED

OF LENGTH=A

ERERAK

THFE ID FARAMETER
THPE ITHRT ADDREZ:
THFE ITOF AODDRESS + 1
TAPE DELAY LOCATIOM
4 TAPE DELAY DEFAULT “ALLUE
Ei JUMF WECTOR TO EAVE TAFPE
EASIC JumP WECTOR TO LOAD TAPE
INIT.PARME INITIALIZE THPE FARAMETERS
FOR FIRST FILE
THROW AWAY 7 STACK BYTES
& MOWs 1 LATER
LOAD. MATE ERANCH 1F HOT STRING MATRIR
LOADT.HE GET STRIMG POIMTER FILE
{ID MUST BE > 127>
ORD.ETREING RESERYE STRIMG FREE SPACE
LOAD.MAT? BRAMCH IF ALL STRIMGS MNULL
? STR.PARMET SET UP STRING PARAMETERE
+1D 1D MUST BE < 188
#HBFF
+ID
LOADT.HE GET LAST FILE
THROW FWAY LAST STACK BYTE
RETURM TO BAEIC
IMNIT.PARMS INITIALIZE TRPE PARAMETERE
FOR FIRST FILE
THROW AWAY 7 STACK BYTES
& MOWs 1 LATER
SAYE. MATE BRANCH IF MOT STRING MATRIX
ORD. STRING PUT MATRIX ETRIMNGS IM ORDER
ZAVYE.MAT? ERAMCH IF ALL STRIMNGS MULL
SAVET.2.HS SAYE 2 COPIES OF POINTERS
WITH ID » 187
STR.PARMS SET UP STRING PRARAMETERS
+IT MAKE ID ¢ 128
“+57F
F1
TAVET.2.HS SAVE & COPIES OF LAST FILE
“TAPE. DELAY RESTORE TAPE DELAY DEFAULT
TAPDEL
THROW AWAY LAST STACK BYTE
RACCESS
PARZES ID TO PARM 1 EUT
#E20 MAKE ID » 127
P
«IT ALES0 SAVE COPY FOR STRIMGS
*MAT. START PASS MATRIX START TO PARM 2

30 ZAVE COPY TO ORDER
TRINGE

LCULATE PARM 3
SAYE COFY TO ORDER

ETRINGS

ADD ELEMENT SIZE TO IMCLUDE
CURREMT ELEMENT
SAYE COFY FOR RBORT

PROPAGATE CARREY

CLEAR MOM-MULL STRING FLAG

LEMGTH OF CURRENT STRING

August/Septernber, 1980. Issue 3

39

normally used to pass pertinent infor-
mation to the calling routine. How-
ever, as they are used here, we don’t
want the calling routine to store the
returned value in the specified matrix,
so we simply discard the seven stack
bytes. In fact, under normal condi-
tions, it is not possible to specify

e
D4

: ; i 1F7E- 51 BF

a string variable in a USR statement, iFz0- a5 34
; 32~ C

but by pulling seven bytes off the stack, }233_ Iq? BE

we avoid the type mismatch (TM)
error test (which fortunately is done
after returning from USR) and return
one level deeper which causes the

BASIC interpreter to go on to the next co
statement. o

If an attempt is made to store a 20
string matrix that consists entirely of £
null strings, then only the first file is
stored since there will be nothing in the 8z
second file. Special tests are made in e e
both the save and load routines to s
handle this case. Also, it is necessary EE
to use the end of the last non-null
string as the end of the second file S
since to use the pointer of a null k
string would result in a meaningless =

4B FE

tape stop address. Special tests are used
to perform this function.

It 1s a good idea to eliminate
DATA statements from a program
after they are used to initialize a
matrix that is stored on tape since
they will only take up memory in
future runs. If during the ordering of
strings the memory is actually used up,
a OM (out of memory) error will
oceur.

No record is kept on the tape of
the name of the matrix or its size and
no tests are performed to verify these
things. However, if the file does not
have the correct number of bytes in it,
it will fail the normal tape error
tests. The intention is to provide a
means for a program or operator to
save and retrieve data conveniently,
but the task of remembering the size
of the matrix or portion of matrix
remains with the program or operator.
Unlike the usual BASIC command for
LOADIng programs, if you don’t know
how big the matrix is that is on a
tape, it can be very difficult to load
it, so be organized in your use of these
routines and they will serve you well.

feiot
0o o

S MO E T
Mo MW M &m

m o

Sl

compute II.
0350 EBE2 ORD.ETR.Z
0360 LDX «MAT.CUR.EL+1
037 EHE ORD.ETR.2
0930
a0 LI +CUR.ZITRING
1000 ETH #MAT.CUR.EL
1010 LD »Cl TRING+L
1020 .
1020 ORD.ETR.Z
1040
1050
1080 LDA +MEW.ZTR.PN
1070 STA (CUR.STRINGY 5 ¥
1080 LDA +MNEW.STR.PH+1
1030 Ny
1100 ITA (CUR.ITRIMG? oY
1110 DRT.STR.3 LDA +CUR, STRIMG
1120 SEC
1130 SBC #EL.ZIZE
1140 3TA +CUR.STRING
1150
11va
1130 ORD.ZTR.4
EME ORD.STR.1
CHP «MAT.STARTC
BCS ORD.ETR.1
LIA *MAT.CUR.EL+1
RTS
1260 ITR.FARME LDA eHEW.STR.PM
1zvn iTA P2
1250 LDA eHEW.STR.PN+1
1230 STH Pa+1
1200 LDY #0
1310 LOA CMAT.CUR.EL) oY
1320 cLe
1320 IHY
1340 ADC CMAT.CUR.ELD » 7
1350 ETH P2
1380 Iy
1370 LIA (MAT.CUR.EL»sY
1220 RADC =0
1330 STH P2E+1
1400 RTE
1410
1420 ks YET.HZ

1720
1730
1740
1750
17EN

0 SAYET.Z2.HE JER A

3
TAPDEL
1}

IMJIEY
FEORT
“EFF

P1

' agR0
J.LOADT
LOADT. HE
DI

*1D
LDADT . HE

SMAT.
{ *BFE
; SEFF
SMAT. ENDC+1
{ *MAT.EMDC
AEORT. 4
AEORT. 4 TER
STH P
STY F3+1
MR F1L
<EM

ERANCH IF LEMBGTH = 0 cMNULL>
BRANCH IF MOM-HULL STRING
ALREADY FOUND

COFY FOIMTER TO LAST HOM-
HULL STRIMG

GET MEW LOCATION FOR STRING
TRANSFER TO NEW LOCATION
Poy4qomi

COPY MEW STRING POINTER

GET HERT ETRIMiz POINTER
<WORKING FROM LAST TO
FIRST 20 ZUBTRAC

FROPAZATE EORROW
TEET FOR ALL ETRINGS DOME

Z IF ALL STRINSS MHULL

ITART OF 3TRINGE TO FPRRM 2

END OF STRINGS TO PRRM 2

ADD LENGTH OF LAST NOM-HULL
STRING TO IT: FOINTER TO
END OF STRIMGE

SRAYE 2 COFIES IN HI-SPEED
MODE WITH MIMIMUM DELAY
EETWEEN THEM

JUMP THROUSH BATIC WECTOR

TEZT FOR BREAK

BET AMY FILE FROM TAFE

JUMP THROUGH EBAZIC VECTOR

REFEAT IF BAD LOAD

SET ID

REPEAT IF WROMG ID
DIZCARD EXTRA STACK EBYTES

CLEFRR ABORTED MATRIX
ZET UP FOR MONITOR FILL

SUBTRACT ONE FROM EHD

FILL AMDI RETURMN @

40

compute Il.

August/September, 1980. Issue 3

Part 1 of a series:

OSI ROMs

T. R Berger

There seems to be some curiosity about OSI’s non-
BASIC ROMs, i.e. ones above address $F800. The
schematic for the C1, 2, 4, and 8 shows a 2K ROM
(type 2316B). Disassembly shows that the C1 ha} the
full 8 pages of this ROM addressed in memory loca-
tions $F800 to $FF00, but the C2, 4, and 8 have only
3 pages of this 8 page ROM appearing in memory.
Actually, there is only one 2K ROM used in all these
machines! (The old CG2’s without polled keyboard and
the C3 with serial monitor or hard disk are exceptions
which we will ignore.)

The C2, 4, and 8 have special address selecting
circuitry which allows the computer to choose and
address any 3 of the 8 pages in this 2K ROM. The
C1 does not contain this special circuitry (pre-
sumably to cut costs) so that all 8 pages of the ROM
appear in memory whether or not they are needed. The
C1 uses 4 of the 8 pages and the remaining 4 pages
fall where they will, misaddressed and unrunable.
Since the C1 is the only machine with all 8 pages, let
us use C1 addresses to describe the various pages of
this ROM.

The page in which a segment of code appears in
the C1 is not necessarily the page in which the code
is written to run. For example, Cold Start for ROM
BASIC C2, 4, and 8 computers was written to run in
page $FF but appears in page $FB in the C1. In par-
ticular, in the C1 at $FB43 we see JSR $FFB8.

The requested subroutine now appears at address
$FBBS in the C1 and $FFB8 is actually the third
byte of a jump instruction. If the computer is asked
to run this code, this subroutine jump will send the
computer to limbo. Thus the code (with minor
exceptions of no importance) in page $FB of the C1
will not run.

Table 1 gives a summary of the various functions
of this ROM. The first column gives the C1 page
number, the second column gives the model numbers
of Challengers which use the given page of code
(c.g. 4 means C4); the third column gives the type
of machine (i.e. ROM BASIC or Disk); the fourth
column gives the function of the page; and finally,
the fifth column tells in which page the code was
written to run.

C1 owners with a disassembler may read the code
which all of us run. The rest of us will have to
make do with the pages we actually use. However,
not much is missed since the code is highly redun-
dant. Commercial computer users know that the most
costly facet of computing is software development. OSI
can sell its computers at low cost because of a
policy minimizing software development costs. That is,
if a program is written for one machine, and by

patching existing code it will run on another (even
though at less than peak efficiency) then, by all
means, patch. Thus the C1 code in these ROMs is
just patched versions of the code written for the

C2, 4, and 8. If this ROM were rewritten carefully,
it would easily fit into 1K and run on all machines.
But the larger ROMs come much more cheaply than
rewriting the code. MORAL: Hardware is cheap, soft-
ware is expensive. Businessmen know this; we do too
when we vell ‘software ripoff!’

Since C1 run pages diffcr only in patches and
relocation (with precious little relocation) from C2, 4,
and 8 run pages, it is necessary to only under-
stand about half of this ROM in order to under-
stand it all. The fundamental pages are listed in
Table 2. When the code was patched to run on the
C1, every effort was made not to move addresses. For
example, where the machine monitor for the C2, 4,
and 8 resets a P1A not available on the C1, (C1
addresses $FA04 to $FAOB), the corresponding code
for the C1 is filled with NOP instructions (C1
addresses $FE04 to $FEQB).

I am writing a series of articles on the OS65D
operating system. The first article, on the Kernel,
should appear in the next issue. At least one later
article in this series will be devoted to this ROM.

In particular, much more detail on these ROMs will
appear in the near future. If you have urgent ques-
tions, you may send a stamped self-addressed envelope
to me at:

Tom Berger

10670 Hollywood Blvd.

Coon Rapids, MN. 55433

—
TABLE 1

C1P PAGE MACHINE TYPE FUNCTION RUN
PAGE

$r8 2,48 DISK BOOT $FF

$§F9 2,4,8 ALL KEYBOARD $FD

SFA 2,4.8 ALL MONITOR $FE

$rB 2,48 ROM BOOT $FF

BASIC

§FC 1 DISK BOOT $FC

$FD 1 ALL KEYBOARD $FD

S$FE 1 ALL MONITOR §FE

$rF 1 ALL BOOT $FF

August/September, 1980. Issue 3.

compute Il 4

ALL ABOUT OSI
MICROSOFT
BASIC-IN-ROM,
VERSION 1.0
REV 3.2

by Edward H. Carlson

Published by the author

3872 Raleigh Drive

Okemos, Ml, 48864

822 x 11 inches Soft-cover, 60 Pages,
§8.95

[Review by Charles L. Stonford

This book would almost certainly have saved me
from many very frustrating hours of pouring through
OST’s so-called ‘‘Manuals’’ and several of the
general texts on BASIC during the first months [
owned my C1P. Would you believe, I discovered
how to use the immediate mode by accident, in
about the fifth week? Mr. Carlson covers the subject
very nicely on the first page of his new book.
Granted, BASIC is BASIC, to a very large
degree. It’s not too hard to convert from one com-
puter’s BASIC to another’s. Most commands and
functions act alike. But there are significant dif-
ferences in some areas; I can never remember the ex-
act result of some of the functions I seldom use, such
as TAB and INPUT. So every encounter with those
commands in a published program requires some
searching in the files. This reference book ends that.
Mr. Carlson states in the introduction that he is
presenting OSI BASIC on two levels; pure BASIC,
and then the underlying principles of program code
storage, pointers, flags, and the way programs really
work. He succeeds admirably in the first, with only
minor exceptions. Each of the commands,
statements, functions, and operators is listed and
discussed in detail. Many examples and suggestions
are included, and useful combinations of functions
are presented. In particular, I learned some things
about the USR function I could only guess at before
(and I use it heavily). A very few of the functions
covered could have stood a heavier treatment. WAIT
I,J,K and the Boolean Operators AND, OR, and
NOT are, as is usual, glossed over, apparently under
the theory that everyone understands Boolean
Algebra. It is very elementary, but many hobbyists
haven’t yet seen its usefulness, and may never until
more of its advantages arc more thoroughly pointed

out and explored. Be assured, though, that these are
minor faults - the coverage of BASIC is very
thorough. This manual, together with a more
generalized text (such as Basic BASIC) should meet
any programmer’s needs.

Mr. Carlson’s treatment of his second task is
not quile so successlul, although still very thought-
provoking and useful. He has caused some con-
siderable loss of sleep, while I explore the machine
codes his lists and tables point out. There is an ex-
tremely well annotated memory map for pages $00
through $03, as well as a listing of the Monitor
ROM from $FE00 to $FFFF. The ROM listing is
for the G2-4P, but differences in the C1P ROM are
called out in a separate list. I think most OSI owners
have figured out by now that the BASIC ROMs are
identical for all models, with only the Monitor
ROMs being different.

Other useful discussions are presented on the
format and programming of both BASIC and
Machine Language tapes, floating point numbers,
and the way the program stores variables. Less suc-
cessful sections cover the source code and two’s com-
plement binary numbers. The only section that fails
badly, however, is the one on OSI’s Big Bug. I refer,
of course, to the String Array Garbage Collection
glitch. The author presents what might appear to be
a really simple solution. It does, in fact, work. But
it’s virtually impossible to overlay on an existing pro-
gram which uses a lot of concatenated string arrays.
There are more effective solutions to this bug.

All in all, I think that any of several sections of*
this very well presented manual are worth the pur-
chase price. I recommend it to the hobbyist and to
the serious programmer alike. (@}

42

compute Il

August/September. 198C. Issue 3

Fast Graphics
On The OSI CIP

Charles L. Stanford

I am sure that almost without exception, O8I C1P and
Superboard II owners get a major part of their cotnpu-
ter fun from games. The relative ease of graphics
programming using the game symbols in the Character
Generator ROM allows even the novice BASIC
programmer a lot of freedom for creating exciting and
fastmoving figures. However, even OSI’s very fast
BASIC still leaves a lot to be desired when more
than a few dozen screen locations are changed, result-
ing in distracting image changes and in slow execution
of commands.

This article will present a “‘cookbook’” version of a
machine language graphics subroutine. The BASIC
user with little or no background in Machine or
Assembly language programming will be able to use
the material presented here to “‘plug in’” his own
graphics. The more advanced programmer will be able
to adapt the concepts shown to complicated, inter-
active graphics games and simulations.

The use of graphics in games

While many exciting and worthwhile games are played
without graphics (such as most versions of Starwars,
Star Trek, Quest, etc.), most family fun games revolve
around the manipulation of graphics figures or objects
on the screen. Six Gun Shootout, Tank, Lunar
Lander, and many others are ‘‘made’ by their
graphics interactions. But a game like Six Gun written
solely in BASIC is slowed down so badly by the time
required to POKE two gunfighters and a few cacti that
it looses a lot of its Oomph! Even a near-instantaneous
screen routine (instead of scrolling) only helps a little
when 50 or 100 or more POKE’s are needed every time
a move is made.

The method presented in this article does have a
few limitations, mainly in the opportunity for typing
errors when entering the many DATA statements, and
in the need to carefully plan and structure each and
every character before starting to enter the program.
But the results are really worth it. Every program
I’ve written since devising this method has had to be
slowed down with time delay loops, which is sure better
than the alternative.

The USR Function

The OSI Graphics Reference Manual and the BASIC
in ROM Manual are ridiculously brief in describing
the use of the USR function. On the other hand,
there isn’t that much knowledge needed for an elemen-
tary application such as this one. In general, you will
need to be capable of converting Hex numbers to
Decimal quickly and accurately; the only other require-

ment is to be able to write a fairly structured
BASIC program.

When the USR function is called by a line such as
10 X = USR (X), the program goes to the machine
language program subroutine pointed to by the data at
memory locations $000A and $000B (Decimal #11 and
#12). The 6502 processor needs a 16 bit address to
jump to a subroutine. But each memory location only
has 8 bits. So the processor reads the eight lower
(right-most) bits of the address from the lower of two
adjacent memory addresses, and the eight higher
(left-most) bits from the higher. Thus, a machine
language routine at address $0222 would be called if
memory locations $000A and $000B held $22 and $02
respectively. These numbers would be inserted in these
two RAM locations by a line in BASIC such as 20
POKE 11,34 : POKE 12,2. Note that the Hex num-
bers have to be converted to their Decimal equiva-
lents for BASIC. As you can see, many machine pro-
grams starting at as many different memory locations
could be called, merely by changing the data at $000A
and $000B before calling the USR function. I’ll de-
scribe how to write and insert the actual machine
language subroutines a bit later in this article.

After a machine language subroutine is called, it
acts very similarly to a BASIC program, in that each
instruction is executed in order until 2 RETURN is
encountered. It then returns to the next instruction
after the JUMP. The RETURN in machine language
is the RTS instruction, which is Hex $60 (or Dec
#96).

The advantage of all this is, of course, based in the
fact that machine language is somewhere around 1000
times faster than BASIC for most equivalent functions.
This feature is particularly useful for graphics
programming.

Machine language programming

Writing programs in machine language, especially
without the use of an Assembler, is a bit tedious. But
the end result is often worth the effort. In this case,
vou, the reader, will use the program itself exactly

as presented here, only changing a table which will
hold whichever graphics figures needed for your par-
ticular game.

The action of the subroutine is quite simple. After
a Screen Clear (note that the first eight lines of
Listing 1 are as shown in my previous article in
Compute IT Number 1), a series of graphics characters
and their locations relative to a fixed point are read
from memory and written to the TV screen.

The routine makes use of one of the 6502 pro-
cessor’s more efficient addressing modes, Zero Page.
Line 023A uses the instruction LDA-0,Y, which
loads the accumulator with the data residing at a mem-
ory location equal to the value of the address
pointed to by FE (lo byte) and FF (hi byte) plus the
contents of the Y register. These two memory locations
at the top of Zero page were chosen as they are easy to

August/September, 1980. lssue 3.

compute Il

SET LO BYTE OF
FIGURE START
LOC INIO $§256

A= $20
(BLANK CHAR)

LOAD X WITH
OFFSET OF “—
CHAR LOC

STORE CHAR IN
VIDEQ RAM
AT ADDR + X

Figure 1.

Flow chart

[y

remember, and are not used for any other purpose by
BASIC or the Monitor. Since the Y register is an
cight-bit register, only screen locations between the
base address and the base address plus 255 can be
called.

Looking at the flow chart (Figure 1), you can see
that the first data loaded is the lo byte, then the hi
byte, of the screen location. This information is in the
table for this particular game, and is deposited within
the program to give a start location on the screen
for the first graphics figure. Next, the offset of the
first character is loaded into the X register, and a
check is made to see if the figure is ended. I have
selected $FE (254) as a signal that part of the figure
is completed, and $FF (255) for the end of the routine.
If this data is neither, a graphics symbol will be loaded
into the accumulator. This symbol is then deposited in-
to the video refresh memory at the location pre-
viously loaded plus the offset in the X register.

This may all sound a bit complicated, but that
doesn’t make any difference to you, the programmer.
The program will take care of itself if the proper data
is presented from the symbol table in the correct
sequence.

Developing the screen image
The screen image is developed by following five easy
steps, starting with a copy of the C1P Screen Grid.
Being a railroad fan, I chose to enact the ‘‘Great
Train Collision’’ as a demonstration program. As you
can see from Figure 2a, the OSI graphics symbols
allow for a very reasonable steam locomotive with ten-
der. After you have drawn whatever figures you need
for your game to your satisfaction, enter the screen
offsets of all locations, starting at a fixed point at
the upper left corner of each figure, as shown in
Figure 2b. Finally, write in the character generator
code as shown in Figure 2c. The last step is to enter
the data into a table as shown in Listing 2. Note
that each figure is preceded by a screen address (lo
byte first), and ends in either FE or FF. The last
figure in the table must be FF (255) which causes the
subroutine to return to BASIC.
Converting the Machine Language to BASIC
There are several methods of entering machine or
assembly language programs through the use of BASIC
programs, including direct entry through the monitor.
There are also several ways to save combination
BASIC-machine language programs to tape (see
Daniel Schwartz’ article in Compute IT issue 1).
However, I prefer the somewhat tedious but easy to
debug and modify DATA-POKE method. This is hard
to enter error-free, and causes a significant delay
on program initiation, but it has the advantage of being
more readily understandable, and allows your routines
to be changed easily.

You can see that lines 100 through 145 in Listing
3 enter the machine language subroutine into memory,
while lines 148 through 199 are the table of offsets
and characters for the figures. This is to allow the
use of this sequence with other graphics figures of your
own choosing. Note also that the subroutine is
inserted into RAM at $0222 (#546) in page 2. The
page 2 memory from $0222 to $02FA is not used by
BASIC, and is thus a good free place for this use..
However, make sure your figures don’t extend above
$02FA. If so, you’ll have to locate the table in the
top of RAM, necessitating memory protection at Cold
Start. The subroutine can still reside at $0222.
Animating the Figures
Once the graphics subroutine and the figure table are
in RAM, the animation routines can be written in
BASIC. The addresses needed to animate the demon-
stration figures are as follows:

HEX DEC DESCRIPTION

000A 11 Pointer to the starting address

000B 12 of the USR subroutine.

00FE 254 Pointer to the starting address of

00FF 255 the first graphics figure to be called. =

0222 546 Actual starting address of the USR
subroutine, including screen clear.

0238 568 Actual starting address of the USR
subroutine without screen clear.

0260 608 Actual starting address of the first

44 compute II. August/September, 1980. lssue 3.
$¢222 AP 09 546 169 0@ LDY-IMM)
7 g224 A9 20 548 169 32 LDA=IMM s2¢

@226 99 @@ D3 550 153 @ 211 STA=Y

@229 99 @@ D2 553 153 ¢ 219 STA-Y

g22c 99 @@ DI 556 153 ¢ 299 STA-Y

@22F 99 @@ DY 559 153 ¢ 208 STA-Y

0232 C8 562 209 INY

@233 D@ Fl 563 208 241 BNE $¢226

@235 EA EA EA 565 234 234 234 NOP NOP NOP

@238 AP @0 568 169 @ LOY-IM $pp

a23A Bl FE 576 177 254 LDA-@,Y LDA Lo Byte Ser Loc
g23c 8D 56 @2 572 141 86 2 STA-ABS

@23F of:] 575 209 INY

024@ Bl FE 576 177 254 LDA-@,Y LDA Hi Byte Scr Loc
g242 8D 57 @2 578 141 87 2 STA-ABS

@245 C8 581 200 INY

@246 B1 TE 582 177 254 LDA-@,Y LDA w/ Char Offset
@248 AA 584 179 TAX A to X Register
@269 8 - 585 200 INY

@24A EP FE 586 224 254 CPX-TMM X=254?End Figure
g24c FQ EC 588 240 236 BEQ Branch to @234

@24E E@ FF 59¢ 224 255 CPX-IMM X=2557End Routine
@250 FQ @8 592 248 8 BEQ Branch to §25A

@252 Bl FE 594 177 254 LDA-(,Y Load Character

g254 C8 596 20¢ INY

@255 9D 44 DI 597 157 68 209 STA-ABS,X Char. to Screen
$258 D@ EC 600 208 236 BNE Get another Character
g254 60 EA EA 62 96 234 234 RTS NOP NOP End Routine, Return
#25D EA HA EA 685 234 234 234 NOP NOP NOP

Listing 1. Machine Language Subroutine

0261 609 graphics figure. These locations
hold the video RAM reference address,
Lo byte first, for the figure.
029D 669 Actual starting address of the second
029E 670 graphics figure. Also hold the

video RAM starting address for this figure.

It is important to remember that the last two locations
will vary depending on the location in RAM chosen
to store the table, and according to the length of the
figures in the table. The first four sets of addresses
will remain the same for all programs.

In the demonstration program, memory location
#12 always holds a #2, but the data in location
#11 is changed back and forth between #34 and #56;

this alternately inserts and omits the screen clear
routine at the beginning of the machine language sub-
routine. If your program only has one figure, or if you
end all figures but the last with #254, location #11
would stay at #34. Either method works equally well;
chose the alternative which provides easiest animation
in BASIC.

Note that if each figure ends with a #254, the
data at memory location #254 will not change. But
ending the first or any intermediate figure with #255
terminates the subroutine (see flow chart), and the only
way to reach the next or subsequent figures is to change
the pointer at #254 and #255.

August/September, 1980, Issue 3.

compute Ii. 45

As previously mentioned, the first two numbers
in the table at the beginning of each figure are the
video RAM address of the upper left hand corner of
the figure: Since the video RAM of the C1P contains
four pages of 256 bytes each, starting at $D000, the
first number in the table at the start of each figure
can vary from 0 to 233 (remember, 254 and 255 are
signals), and the second can be $D0 through $D3
(#208 through #211). By POKEing different numbers
into these locations, the figures can be made to move
around the screen. It’s better to use the actual first
location of each figure in the original DATA state-
ments, to avoid a jerk at the start of the program.
After that, any desired location can be POKE'd
into these addresses.

In lines 25 and 35 of Listing 2, variables A
and B are established as the low bytes of the screen
locations for the two figures. Then, in the subroutine
starting at line 30, they are POKE’d to 608 and
669 respectively, and then incremented and decre-
mented and POKE’d again to move the characters
across the screen toward each other. To make the

demonstration program more realistic, the engines
are moved across the screen on different lines, and
then reappear on a collision course. This is done by
line 35, which changes A and B and also changes
the hi byte of the right locomotive to #209 from 210,
moving it higher on the screen. Variable C determines
how far across the screen each figure will move.
Finally, the routines at lines 200 to 399 give a
rough representation of an explosion at the point of
collision. I leave to the reader the exercise of adding
this to the machine language table. It’s not that hard!
Summary
In order, the steps for creating your own program
using fast machine language graphics are as follows:
1. Draw a representation of your selected characters,
using the characters in the Graphics Reference Manual
as elements.
2. In an equivalent number of spaces, enter the off-
sets of the screen address, starting at a point above
and to the left of the figures. If the number of the
offset exceeds 253, just split the figure into two or more
parts and treat each as a separate entity. They can be

Figure 2. Graphics development

2a
|
] 1 3 4 5 8 2 3 4 5 7
32 33 34 35 36 37 38 39 49 32 33 34 35 36 37 38 39 49
64 65 €6 67 68 69 9 71, 72 64 65 66 67 68 €9 k') |72
96 97 98 a9 192 164 96 98 191 | 192 | 193 | 194
2b
!
* 2 167 | 157 | 161 167 165 161 | 156 | 165 2
165 161 161 161 161 155 176 l6l 16l 16l 16l 178 155 161 161 16l 161 167
166 161 161 161 lel 128 161 161 161 161 161l 161 128 161 161 16l 161 168
176 224 225 226 226 226 226 226 226 224 225 178
2¢

46

compute II.

August/September, 1980, Issue 3.

recombined in the BASIC program.

3, Likewise, enter the graphics character codes in the
equivalent spaces on the grid.

4. Create a table which starts with the screen location
of the figure (lo byte first, then hi byte); contains,
alternately, the offset and code of each character;

and ends in #254 or 255. If the figure ends in 254,
the subroutine will continue with the next figure in the
table. A #255 terminates the subroutine and returns
to BASIC.

5. Note the starting addresses of each figure, for later
use in creating the animation in BASIC.

6. Convert both the subroutine and the table into
DATA statements. Note that if the table goes past
memory location #608 + 144 (#752), it will be
necessary to move all or part of it to another location
in RAM, such as top of memory.

7. Finally, enter the DATA statements and their
POKE loops into an appropriate location in your
BASIC program, in a manner similar to lines 100-199
of Listing 2. Then procede with animation as in

lines 25-99.

8. Decbugging hints: always save to tape as you go
(a program crash is more likely in machine language,
and all that tough typing will be lost); insert a BREAK
after DATA loops, then use the Monitor to verify

the machine language program entry, by single
stepping starting at address $0222; insert timing
loops at lines 22, 27, 32, and 37 to slow down action
if there is a Bug in BASIC.

Some additional notes

Another interesting program [’ve written using this
method is Six Gun Shootout. It has two gunfighters
(one facing the other) and three cacti. After each
shot, the cacti change locations at random. The pro-
gram ran very slowly when written solely with BASIC
POKE’s to the screen, but is as fast as you would
ever want with machine language graphics. I'll cover
this program in a later article, together with instruc-
tions for attaching simple up-down-shoot joysticks to
save wear and tear on the keyboard.

Listing 2. Graphics Table

g26f 9B DL 668 155 269 @282 46 Al
g262 g1 g2 61p 1 2 g28c 47 Al
p264 g3 A7 612 3 167 @2BE 48 Al
#266 g4 9D 614 4 157 p20p 6f B
#268 g5 AL 616 5 161 p292 61 Ef
@26 g8 A7 618 8 167 p294 62 E2
g26C 2@ AS 62f 32 165 §296 63 E2
B26E 21 Al 622 33 16l g298 66 E2
g279 22 Al 624 34 16l 292 68 E2
g272 23 21 626 35 161 g29C FT

g274 24 21 628 36 161 g29D 83 D1
g276 25 9B 639 37 155 P29F @@ ns
g278 26 Bf 632 38 176 g2al 43 AL
g278 27 Al 634 39 161 g2a3 g4 sC
g27c 28 Al 636 4f 161 g2As g5 A7
P27E 40 A6 638 64 166 paat g7 g2
g28¢ 41 Al 64¢ 65 16l fg2m9 20 AL
£282 42 Al 642 66 161 g2aB 21 Al
@284 43 Al 644 67 161 g2ap 22 B2
@286 44 Al 646 68 161 #2AF 23 9B
p288 45 eg 648 69 128 21 24 Al

65¢ 74 16l g2B3 25 Al 691 37 161

652 71 161 g2B5 26 Al 693 38 16l

654 72 1el #2B7 27 Al 695 39 1lel

656 96 176 g2B9 " 28 A7 697 4@ 167

658 97 224 §2BB 40 Al 699 64 161

668 98 225 g2BD 41 A1 g1 65 161

662 99 226 @2BF 42 Al 763 66 161

664 12 226 g2c1 43 8f 795 67 128

666 194 226 #2C3 44 AL 747 68 161
668 255 #2C5 45 AL 749 69 161

669 131 2@9 #2C7 46 AL 711 78 161

671 g 165 g2C9 47 Al 713 71 161
673 3 1el F2CB 48 A8 715 72 168

675 4 156 #2CD 68 E2 717 96 226

677 5 1lés B2CF 62 E2 719 98 226
679 7 2 #2p1 65 E2 721 1p1 226
681 32 161 g2D3 66 Ef 723 1p2 224
683 33 161 #2p5 67 EL 725 1$3 225
685 34 178
687 35 155 g2D2 FF 729 255

689 36 161 @

August/September, 1980. Issue 3. compute Il

47

-0 O

ESCAPE FROM MARS

STARFIGHTER $5.95

ALIEN INVADER 6.95 {7.95 for color and sound)

TIME TREK $9.95

oSl SOFTWARE FOR OSI osI

We Have Over 100 High Quality Programs For Ohio Scientific Systems

ADVENTURES AND GAMES TEXT EDITORS FOR ALL SYSTEMS!!

These programs allow the editing of basic
program lines. All allow for insertion, deletion,
and correction in the middle of already entered
lines. No more retyping.

C1P CURSOR CONTROL (Text Editor) $9.95

Adventures - These interactive fantasies will fit
in 8Kl You give your computer plain english
commands as you try to survive.

You awaken in a spaceship on Mars. You're in
trouble but exploring the nearby Martian city Takes 166 bytes of RAM and adds, besides text

may save you editing, one key instant screen clear.
DEATHSHIP C2P/CAP CURSOR $9.95

Takes 366 BYTES to add PET like cursor
functions. Enter or correct copy from any location
on the screen

SUPERDISK $24.95 for 5° $26.95 for 8"
Has a text editor for 65D plus a great new
BEXEC*, a renumberer, search, a variable table
maker and Diskvu - lots of utility for the money,

This is a cruise you won't forget - if you survive it!]

Adventures $14.95 Tape or 5% Disk
$15.95 8~ Disk

Realtime space war with realistic weapons and a
working instrument panel.
We also have 25 data sheets available such as:

IMPLEMENTING THE SECRET SOUND PORT ON
THE C1P $4.00

HOW TO DO HIGH SPEED GRAPHICS IN BASIC
$4.00

Rows of marching munching monsters march on
earth.

A real time Startrek with good graphics
BATTLEPAC $17.95

For the battlebuff. Contains Seawolfe, Starfighter,
Bomber and Battlefleet.

*

And lots, lots. lots more!

HOW TO READ A LINE OF MICROSOFT $1.00

JOYSTICK INSTRUCTIONS AND PLANS FOR
CIF $3.00

SAVING DATA ON TAPE $4.00

THE AARDVARK JOURNAL
A tuterial bimonthly journal of how to articles
00

Our $1.00 catalog contains a free program listing, programming hints, lists of PEEK and POKE locations and other stuff that OSI
torgot to mention and lots mare programs like Modem Drivers, Terminal Programs, and Business Stuff.

Aardvark Technical Services 1690 Bolton, Walled Lake, M| 48088 (313) 624-6316

0
S
I

Good News For
OSI Readers

As you may have read by now, the Editor's Notes in this
issue announce the merger of COMPUTE and compute Il into
one, high quality, monthly magazine.

Given the range of OS| products, we've decided to move
you out of the Single-Board Computer Gazette, in the new
COMPUTE!, and establish an OSI Gazette.

We expect to be assisted in this endeavor by your
contfinued input. Artficles and programming notes should be
addressed fo;

The Editor, COMPUTE!,

P.O. Box 5406,

Greensboro, NC 27403

ATTN: OSl Gazeite

Given your input, we'll have a healthy, OSI Gazette.

Robert Lock

48

compute Il.

Modification

and Relocation

of FOCAL 65-E
Into Erasible
Prom

William C. Clements, Jr.

Dept. of Chemical & Metallurgical
Engineerin

The University of Alabama

P. O. Box 2662

University, Alabbama 35486

After using FOCAL for awhile, I became interested
in storing the machine code in EPROM. Not only
would this eliminate much of the waiting for tapes
to load, but more important, it would free over 5K
of user RAM for other purposes such as storing
more FOCAL source code and variables, or for
graphics routines.

The relocation of FOGAL and execution of it from
PROM is not as straightforward as for some other
programs, because the machine code is self-modifying
in several places. Also, there are multitudes of data
bytes used for address pointers scattered through the
program, and these are in such a form that the
ordinary kind of relocation routine would not convert
them. Thanks to the excellent documentation supplied
with FOCAL, 1 was successful in relocating it in a
“‘clean’’, non self-modifying form. The code, together
with an initialization routine that sets up page zero
and other RAM locations used for user statements
and to make the code ‘‘clean”’, fits neatly into three
2716’s with plenty of room left over for other
modifications such as tape load and save, ‘‘user”’
function, etc., which I have added to my version of
FOCAL as well.! The modifications which follow
are concerned with cleaning the code up for storage
in PROM, and pertain to FOCAL 65-E for the
KIM-1, obtained from the 6502 Program Exchange
in Reno, Nevada.

The first order of business in preparing FOCAL
for PROM is to get rid of the self-modifying
parts. The three places I found where FOCAL
modifies itself in the main code are at locs.
$2348-2353, $282C-283D, and $3408-3414. A fourth
place occurs in page zero, where it doesn’t
matter since page zero is always RAM in 6502

systems. The other places are easily fixed. I
borrowed a few locations from an obscure corner
of KIM’s on-board RAM to do it; neither KIM nor
FOCAL seems to mind. The changes are as follows:
2348 was 8C 52 23 change to 8C DE 17 STY DJADR
234F was 8C 53 23 change to 8C DF 17 STY DJADR + 1
2351 was 4C 00 00 change to 4C DD 17 JMP $17DD
282C was 8C 3C 28 change to 8C DB 17 STY DJADRI1
2835 was 8D 3D 28 change to 8D DC 17 STA DJADRI +1
283B was 6C 00 00 change to 4C DA 17 JMP $17DA
3408 was 8E 12 34 change to 8E E1 17 STX MOVI11
340C was 8C 14 34 change to 8C E3 17 STY MOV22 +1
3411 was B5 00 change to 4C E0 17 JMP MOVIT
3413 was 95 00 change to EA NOP
Additional code needed in page 17 is:
17DA 6C 00 00 JMP (0000)
17DD 4C 00 00 JTMP 0000
17E0 B5 00 MOVIT LDA(X) 00
17E2 95 00 STA(X) 00
17E4 4C 15 34 TMP 3415

The address overwriting now occurs in page 17 RAM
instead of in the main code, which can now be safely
put into PROM.

Before doing so, however, we must relocate it.
Note that relocation should not alter existing page
boundaries (see warning on p. 44 of FOCAL 65-E
Manual). This actually makes the job easier, because
only the high-order bytes of addresses and address-
words can be changed. Relocation then is accom-
plished by (a) adding the desired offsct to the
third byte of all three-byte instructions which do not
reference page zero; (b) Offsetting the data words for
routines such as PUSH]J and POP]J, the software
stack manipulators. These words are scattered here
and there through all the code. A listing of their
high-order halves is given in Table 1; they are
address words, so only the second byte is to be offset.
(c) Offsetting the high-order bytes of the address
tables at the end of the FOCAL code, which are at
hex locs. 34FA-3515, 3546-3557, 356A-356E,
3598-359C, 35A2-35A6, 35AC-35B0, 35B6-35BA,
35C0-35C4, and 35CA-35CE. (d) Adding the offset
to the IRQ-vector initialization byte at loc.
34AE (I date your cleverest relocation program to
find that one!).

A final change necessary to execute FOCAL
from PROM is to change the RAM allocation for
program statements and variables so it is located
in RAM, instead at the end of the machine code
to go in PROM. The original start of this allocation
is at loc. 35F3, but if you are going to PROM
your FOCAL I suggest you save some PROM loca-
tions by deleting the heading that is printed as if it
were line number 00.00 by the Write command. 1
retained only the line number zero and a carriage
return in my version, since the program expects to
print something there. This saves twenty-seven
bytes of memory. In my system, I decided to start
the RAM storage for statements and data at loc.
4000, so initialization there is as follows:

August/September, 1980. Issue 3,

August/September, 1980. lssue 3.

compute Il.

49

4000 00 ;line number
4001 00 ;of 00.00
4002 0D ;ASCII ‘CR’
4003 FE ;PBEG
4004 FF ;VEND

To tell FOCAL where to put its statements and
variables, some page zero locations need to be

changed:

002F was D4 35 change to 00 40 ;beginning of RAM allocation
0031 was F2 35 change to 03 40 ;start of user’s text

003E was F3 35 change to 04 40 ;start of variable list

0040 was I3 35 change to 04 40 ;start of variables for “‘aaseall”
0042 was F3 35 change to 04 40 ;end of variable list

The code to accomplish page zero and page 17 setup
and initialize the user RAM is given in Table 3. The
code begins at loc. 3677 instead of right after the
FOCAL code because I have some other modifica-
tions in between; the user will want to relocate this

to suit his system anyhow.

Table 1. Table of High-Order

Data Bytes Used by

POPJ and PUSH]J. Add
Offset to Relocate.
Hex Original
Location Contents
2088 23
20B2 23
20D7 29
212F 21
219E 21
21D0 23
21FE 23
2440 2B
2452 29
24BB 20
2502 2B
2516 29
2533 29
2546 29
256A 29
257A 23
25EB 29
29DC 29
29E5 2D
2A45 2B
2A5D 29
2ABE 29
2B97 29
2EFF 29
2F7F 29
2FA3 29
2FE8 29
300D 2B
309E 29
316A 2B
3186 29
31A8 24
34AE 20

1See 6502 User Notes, issue #16, and errata in issue #17.

Table 2. FOCAL Initialization

3677

3690

369D
3640

L)
375C
375D

367A

367E

:

A2 00
A0

20

36

05
F5
4C 00 20

contents of

FOCAL locs. $0020

$00DC go here

6C
4C
B5
95
4C
00
00
0D
FE
EF

00
00

00
00

COLDST
LOOP1

LO0OP2

LOOP3

-~

TABL2

TABL3

LDX $00
LDA(X) TABL1
STA(X)

INX

CPX $BD

BNE LOOPL
LDX $00
LDA(X) TABL2
STA(X) $17DA
INX

CPX $0D

BNE LOOP2
LDX $00
LDA(X) TABL3
STA(X) $4000
INX

CPX $05

BNE LOOP3
JMP FOCAL

,} TABL1

;Initialize table & instructions
sat page ZETO

;Initialize $17BA-$17E6 for
;removal of self-modifying code
;in FOCAL

;Initialize User RAM
;with line number
;zero and data bytes

;Go to FOCAL cold start ,
;page zero constants & code

; Table for patches to
;remove self-modifying
;code in FOCAL

;Line no.

;of 00.00

;ASCIT *CR’

;PBEG -
;VEND

50

compute Il.

August/September, 1980, Issue 3.

COSMAC
QUICKIES-

Quick, inexpensive solutions to control problems are
always desirable, so owners of COSMAC EIf micro-
computers may find many interesting ways to use the
““quickie’” programs in listings one, two and three
accompanying this article.

The programs were written specifically for my
Quest Super Elf, which has 4.25K RAM, but they
should run with very little tweaking on any
1802-based system, if entered beginning at any
quarter-K page boundry.

Listing one is an interval timing program that
can be set for any delay from a couple of seconds to
about ten minutes by varying only the data byte in
location 0011. By changing the program beginning at
location 0015 to read: ‘‘9F FB XX (any value from
00 to FF) CE 30 05 7B 30 00°’ the program can set
intervals up to two days (actually the maximum
value for Register F falls a few minutes short of 48
hours). The data bytes in locations 0011 and 17 set
the final value selected. Since the 1802 has plenty of
registers for such usage, it would be very easy to
establish intervals months long.

The program specifically uses Register E, one of
the 1802’ sixteen, sixteen-bit general purpose
registers, as a timer that continually counts down
from hex FFFF. When Register E reaches zero, a
fact discovered by testing both high and low bytes,
Register F is incremented by one. The F register is
then tested to see if the predetermined value has
been set. If not, the timing loop continues.

Once the proper value for F has been reached,
the 1802 sets its Q line, an external flag that can be
set or reset depending on various internal conditions
of the processor, to a logic ‘1. After thus
acknowledging it has reached the required time, the
Q line is reset to logic zero and the timer resumes its
labors. The Q line transition can be latched by con-
necting it to an integrated circuit such as the
741.8175 or the CMOS 4016, and held for use in
driving a transistor, opto-isolator or relay (for high-
voltage uses) to operate a coffee pot, television,
stereo--practically anything controllable with an elec-
tronic switch.

Newcomers to the 1802 be warned: when tying
to the Q line always buffer it generously with an IC
like the 4050 or 4049, either of which can drive two
TTL loads. Otherwise, you risk ruining your
microprocessing chip.

A variation of this use of the Q line is found in
listing two, in which the operator wishing access to
the Q line must first enter three predetermined, two-
hex-digit numbers into memory in the proper se-
quence. That oughta keep Pop’s pet project safe from
the kids!

As the data bytes for the ‘‘combination’” are
entered into memory, the 1802 performs a logical ex-
clusive or with each byte in turn, using data stored
at addresses 000D, 0017 and 0021 respectively. If the
wrong number is entered at any point, the program
jumps to the error subroutine beginning at location
0030, which momentarily outputs an “‘EE’’ to the
data display (I have seven-segment LEDs) while ex-
ecuting a three-second timing delay, then outputs a
00" to the data display and jumps back to the
beginning of the program.

In listing two, once the proper number sequence
has been entered, the Q line goes high and stays that
way until the input key is pressed and released (or
external data flag EF4 is otherwise pulled low). Once
EF4 goes low and returns to its normal state, Q goes
to logic zero and the program loops back to the
beginning again.

As written, you would have to enter 05 (at 0D),
17 (at 17) and 98 (at 21) to turn the Q) line from
logic low to logic high. You can change the data
bytes for any combination you wish. The chances of
someone solving the combination decrease if you add
more numbers to the combination.

Listing three changes this program to utilize an
output port and eight data bits to control various
devices. When entered as listed and run, the pro-
gram will: require you to enter the three number
combination properly, after which the Q line goes
high (on my system this turns on an LED); then you
must enter a status byte which will be put in the
memory stack and also latched into the output port
(1802 output instructions are 6N, where N designates
a port from one to seven). I use a 63 instruction
because that port is readily available on my Elf's ex-
pansion board. Once the status byte has been latched
to the output port, the program loops back to the
beginning of memory and starts again.

The status byte can be whatever you want it to
be, depending on your interface configuration. Eight
data lines are immediately available, so using tran-
sistors, relays or a combination of techniques can
give you immediate computer control of the major
energy consuming devices in your home--air condi-
tioning, hot water heater, and so on.

By expanding the interval timer to include a
lookup table of status bytes for dispatch to the output
port at various times of the day, automatic control
your home’s major functions becomes possible. The
only guestion you must answer is how elaborate you
want it to be.

Using the upper four bits of the status tied to,
say, a 7418154 four-to-sixteen line decoder, with the
lower four bits or-tied to sixteen latches like the
741.8175, 1t would be possible to contral up to sixty-
four devices from your micro’s output port.

Possible expansions and combinations of these
programs are virtually endless. As quickie programs
go, however, they should give newcomers Lo the

August/September, 1980, Issue 3.

compute II.

51

1802, or people struggling with a system they’ve had

trol application possibilities of the typical COSMAC

for a time, a feel for register manipulation and con- system.
Listing 1-- Address Data Mnemonics Comments
Interval Timer 0000 F8 00 LDI 00 Initialize Reg. F for
02 AF BF PLO, PHI use as workspace
01 7A REQ Make sure Q is at logic 0"’
05 2E DEC R.2 Decrement timer
06 9E CE GHI, L.SZ Check timer, long skip if zero
08 30 05 BR 05 If not zero, continue loop
0A 8E CE GLO, LSZ If high byte zero, check low byte
0C 30 05 BR 05 If not zero, continuc loop
(U] iF INC Reg. F If low byte zero, increment workspace register by one
OF 8F GLO R.F Get new value from Register
10 FB 17 XRI 17 Exclusive Or with predetermined value
12 CE 1L5Z If values match, long skip (PC incremented by 2)
13 30 05 BR 05 If no match, continue loop
13 7B SEQ Set Q line at logic ‘1"
16 30 00 BR 00 Then start looping again
i7 00 IDL End
Listing 2-- Address Data Mnemonics Comments
Combination 0000 F8 00 LDI 00 Set up workspace in memory
Lick 02 B4 PHI using Reg. 4 to point to
03 F8 FO LDI FO stack beginning at
05 At PLO address 00F0
06 E4 SEX
07 3F 07 BN¢ 07 Loop if EF4 equals zero
09 37 09 B4 09 Loop if EF4 equals one
0B 6C INP 4 Get keyboard byte
0c FB 05 XRI 05 Check if correct combination #
OE CE LSZ Long skip if zero (a match!)
OF 30 30 BR 30 Else go to error subroutine
11 3F 11 BN4 Wait until next byte latched
13 37 13 B4 in from keyboard
15 6C INP 4 get the byte
16 B 17 XRI 17 If it matches, too, then long skip
18 CE LSZ
19 30 30 BR 30 Go To error subroutine otherwise
1B 3F 1B BIN4 If second number matches, wait
1D 37 1D B4 for last combination number
1F 6C INP 4 Get it
20 FB 98 XRI 98 See if it, too, matches
22 CE ISE Long skip if it does
23 30 30 BR 30 Lrror subroutine if it docsn’t
25 7B SEQ All numbers OK, @ equals ““1”
26 3F 26 BN4 Keep Q line on until input
28 37 28 B4 key pressed and released N
2A 7A REQ ‘Then turn it off and go back k
2B 30 00 BR 00 to beginning
Error subroutine
30 F8 EE LDI EE Load message “EE"
32 54 STR store it in stack, then
33 64 QUT 4 output to LED display port
34 BF PHI Reg. F Also store in Register F
35 2F DEC Reg. F Reg. F decremented by ane
36 9r GHI Check byte in Reg. F
37 CE LSZ Skip next two bytes if zero
38 30 35 BR 35 Otherwise loop
3A F8 00 LDI 00 Load **00”" and output to
3C 54 STR clear error message from
3D 64 ouT 4 display
3E 30 00 BR 00 Go back and try again
Listing 3-- Address Data Mnemonics Comments
Controlling 002A 6C INP 4 Get the byte input after correct combination given
multiple devices 2B 54 STR Put status byte in stack
2C 63 OuUT3 Output status byte to device interface
2D 7A REQ Turn Q) off
2K 30 00 BR 00 Then go back to start ©

52

compute Il

August/September, 1980, [ssue 3

The 1802
Instruction Set

Dann McCreary
Box 16435
San Diego, CA 92116 .

In case you missed our first column, we took a flight
of fancy over the 1802 to survey it’s architecture.
With this installment we begin a leisurely look at the
1802s’ instruction set. Where possible, we'll try to
compare and contrast 1802 instructions with similar
instructions on the 6502.

“Before we get rolling, here’s an interesting bit of
news I got from a certain OEM user of the RCA
1802. They have been delivering 1802 based systems
which run at a clock rate of 3.2 MHZ. The systems
were designed well within RCA’s specs for the 1802.
They are real-time systems and much of the software
developed for them depends on that clock rate. Well,
it seems that RCA has since had second thoughts
about their 1802 speed spec. They've notified their
customers that the 1802 is now only useable at up to
2.5 MHZ. Not nice! Il any other 1802 users out
there feel like victims of the “‘sting’’, I'd like to hear
about it.

Do you remember the 1802s’ T and N registers?
A large number of 1802 instructions can be readily
understood by breaking them down into their I and
N components. Generally speaking, the contents of I
determine the operation to take place, while the con-
tents of N designate the general purpose 16 bit
register to be used or affected. Look at the illustra-
tion of the instruction matrix. Each unbroken
horizontal area represents an instruction of this type.
Even the LDN instruction in the first row is like this
excepl that it is not applicable to R0, since the 00
hex op-code has been preempted for use as the IDL
instruction.

Let’s take for example a 1C hex. The 1 in the [
register says that this is an increment instruction and
the C in the N register says that it is to affect RC,
one of the 16 bit registers. You could change this to
affect any register merely by changing the N portion
of the op-code. (By the way, this kind of consistency
across the board makes the 1802 one of the easiest
processors to hand assemble code for.) INC performs
a true 16 bit increment with rollover such that FFFF
hex increments to 0000 hex. It is very much like the
6502s” INX and INY instructions except that X and
Y are only 8 bit registers. One caution: since the
1802 has no status register, the only way to branch
on the result of an INC is to test the register contents
by moving them in to the 1802 accumulator, register
D. Also note that the 6502 INC lets you increment
memory contents but the 1802 INC is strictly for
registers. These comments apply as well 1o the DEC

instruction, 2N hex (where N represents any hex
digit), but in the opposite dircction.
On the 6502 you can load the accumulator
(LDA) from memory using a variety of addressing
modes. The 1802 gives you LDN (ON hex) which lets
you load D with the contents of a memory location,
and LDA (Load Advance, 4N hex) which is a LDN
and an INC rolled into one. But which memory loca-
tion does the data come from? The contents of the
register designated by RN go out on the address bus,
selecling a memory location. Right there, my friend,
is what can be one of the more frustrating aspects of
programming an 1802 - the only way to access
memory is via a register. This implies doing some
LDIs (Load Immediates, identical in function to the
6502 Immediate Mode) to set up a memory address.
Compare these:
6502

AD 3412 LDA ADDRI .. READ MEMORY
1802

F8 12 LDI A.1 (ADDR1) .. SET UP

B8 PHI R8 .. R§ TO POINT TO

F8 34 LDI A.0 (ADDRI) .. THE DESIRED

AQ8 PLO R8 .. MEMORY ADDRESS

08 LDN R8 .. READ MEMORY

Looks pretty bad for the 1802, right?

Well, consider that every time you want to load or
store at that memory location with a 6302 it’s going
to take 3 BYTES. On the 1802, once you've set up
the address you can load or store (STR) with only
one BYTE. The 1802 LDA instruction also gives you
16 bit auto-indexing memory access with a one
BYTE instruction! To do this on the 6502 you would
have to set up two page zero memory locations with
the starting address and then do a double-precision
increment between each memory access. I'll let you
figure out how many BYTES that would take you!

In our example we also used PHI and PLO.
These instructions transfer the contents of the ac-
cumulator, D, to the high or low order BYTE of the
register designated by N (RN). The converses of
PHI and PLO are GHI and GLO. GHI transfers the
most significant BY'TE of RN to D. GLO transfers
the least significant BYTE of RN to D.

The last two instructions that operate consistent-
ly across the board are SEP and SEX. SEP simply
takes the contents of N and places them in the P
register. You may recall that the 4 bit P register
determines which 16 bit register is the current pro-
gram counter. At system reset, P is forced to zero,
making RO the initial program counter. After in-
itializing some registers, a program might execute a
SEP instruction as a simple means of transferring to
a subroutine, Let’s consider a subroutine with the
simple task of toggling the Q flip-flop from its pre-
sent state to the opposite state. We'll assume that our
main program is using R0 as program counter and
that the subroutine will be at 1101 hex. Before we
can usc the subroutine, we must put its’ starting ad-

August/Septermber, 1980, Issue 3.

dress into a register like this:

F8 11 LDI A,1(QSUB) .. MSB OF ADDRESS

B7 PHIR7 .. INTO R7.1

F8 01 LDI A.0(QSUB) .. LSB of ADDRESS

A7 PLO R7 .. INTO R7.0

The .1 and .0 notations indicate HI and LO order por-
tions of a register or 16 bit address. Now we can ex-
ecute this:

D7 SEP R7 .. GO TO QSUB

When the SEP R7 is executed, RO is left pointing at the
instruction immediately following the SEP R7. So can
you guess what dur return from subroutine instruction
will be? Right, a SEP RO! Here’s QSUB:

1100

1101

DO QRET: SEP RO .. RETURN TO MAIN PROGRAM

CD QSUB: LSQ .. IF Q IS SET, SKIP 2 BYTES

7B SEQ) .. SET Q

38 NBR .. SKIP A BYTE

7A REQ .. RESET Q

30 00 BR QRET .. GO RETURN

Why is the return at the top? After executing QSUB
and branching to QRET, the last thing the
subroutine does is execute the SEP RO. As that is ex-
ccuted, R7 is incremented and now points once
again to QSUB, ready for the next subroutine call.
Please note that only programs using RO as their
program counter may call this subroutine. Incidently,
we used some new instructions here - SEQ and REQ
which are considered control type instructions and
some branch and skip instruetions. The branch in-
structions are the unconditional branch, BR, and the
unconditional branch not, NBR. Unlike the 6502
which provides relative branching, the 1802 only per-
mits absolute branching. Its short branches are much
like a 6502 JMP instruction, only the high-order ad-
dress 1s whatever 1s currently in the program

counter. Thus you can only do a short branch within
the memory page you are already on. Also, when
you relocate code in memory, most of the branch ad-
dresses must be changed - quite tedious if you are
assembling the code by hand. The 1802 does allow
unconditional short branches, something that sure
would be nice to have on the 6502, The NBR in-
struction is interesting because it effectively results in
a skip and in fact you may wish to use the mnemonic
skip rather than NBR. Conditional branches are
possible based on the state of Q or DF and also on
the zero/non-zero state of D. This includes both short
and long branches. The long branches are like the
jump on the 6502 but if you are assembling by hand,
beware! All 16 bit addresses on the 1802 are specificd
in normal order, not reversed as on the 6502. Condi-
tional short branches are also possible based on the
state of the external flag lines, EFI-EF4. As an exer-
cise, try writing a subroutine that returns a number
from 1 to 4 in D, based on which one of four exter-
nal flag lines is activated. Use the instructions B1,
B2, B3, and B4 to branch on the state of the flags.

compute Il 53

1802 INSTRUCTION
MATRIX

N
s|]#]c]olzld

T T
‘0’1 2|3‘4‘5|5 7’
LOAD VIA RN {LDN)

[=-]

I
1

‘ 0 I
| L

INCREMENT RN (INC)

DECREMENT RN (DEC)

BRANCH BRANCH NOT
ON EFI-EF4 ‘ ONQ, Z, DF

)

BRANCH NOT
ON EF2-EF4

BRANCH
ON Q, Z, DF

LOAD-ADVANCE RN (LDA)

5]

'

(&1

STORE VIA RN (STR)

'RJ OUTPUT

ARITHMETIC |
W/CARRY

INPUT
\

ARITH.
| IMMEDIATE
| WiCARRY

(=2}

CONTROL &
MEMORY REF,

CONTROL

GET LOW BYTE OF RN (GLO)

GET HIGH BYTE OF RN (GHI)

SET LOW BYTE OF RN (PLO)

SET HIGH BYTE OF RN (PHI)

LONG ‘h\’o LONG LONG LONG
BRANCH P SKIP BRANCH SKIP
£ L

SET P REGISTER (SEP)

SET X REGISTER (SEX)

I
LOGIC ARITHMETIC

LOGIC ARITHMETIC
IMMEDIATE | IMMEDIATE

M m g alw|p oo]|~

The LSQ in our example is typical of the Long
Skip isntructions. If the condition of the skip is met,
the next two bytes are skipped. Otherwise, execution
continues with the next instruction. Long Skip condi-
tions are the same as for Long Branches, with the
addition of LSIE which permits testing the state of
the interrupt enable flag, IE.

Finally, we come to the instruction we’ve all
been waiting for- SEX! Obviously the designers at
RCA are not your staid, single-minded, no-nonsense
engineering types at all. They appear to enjoy mix-
ing a little fun in with their work! Setting X, from
which the infamous mnemonic is derived, simply = -~
puts the value of N into the X register. A number of
the instructions we have yet to look at interact with
the memory location pointed to by the 16 bit register
designated by X. We'll refer to that register as RX.

54

compute Il

August/September, 1980. lssue 3

LDX is like LDN. It loads the contents of

~memory pointed to by RX into D. LDXA is to LDA
as LDX is to LDN. STXD is like a STR, but in-
stead of storing D via RN, it stores D at the location
pointed to by RX and decrements RX to boot. Now
if they had only included a load via X and decre-
ment, and a store via X and advance (LDXD &
STXA) the 1802 would have been much more ver-
satile! Oh, well. So much for memory reference via
RX.

The 1802 gives you a handful of arithmetic
operations that let you subtract or add the contents
of memory and D. Unlike the 6502, the 1802 gives
you the option of excluding the carry (DF) from the
operation. Thus, you can add without first clearing
the carry and subtract without first setting the carry.
Arithmetic can also be donc using the immediate
byte, allowing you to add or subtract fixed values.

The logical operators used VIA RX are AND,
OR and XOR (Exclusive OR). They work much like
their 6502 counterparts. They may also be used in
immediate mode. D may be operated on also with
the SHR, SHRC, SHL and SHLC. These are iden-
tical to the 6502 LLSR, ROR, ASL and ROL com-
mands, in that order except that they apply only to
shifting the accumulator.

related to RX. To output a byte of data, you must
first store it at the memory location pointed to by
RX. RX is also incremented when the OUT is ex-
ecuted, making this handy for outputting messages
from buffers. Using INP inputs a byte into D, but be
careful! It also gets stored VIA RX. Be sure RX is
pointing where you want it. When doing an Input or
Qutput, the N lines on the 1802 chip are set to
match bits 0, 1 and 2 of the contents of the N
register. This makes I/O decoding in hardware
somewhat simpler than the 6502 memory-mapped
only approach.

IRX increments the X register. It is really a
vestigial out instruction but no output is defined
when N = 0. Note also that what might have heen
an INP 0 (68 HEX) is the one undefined 1802 op-
code. Tt is now used on the recently released 1804 to
add some features and correct some 1802 deficien-
cies.

Well, we’ve looked over all but a handful of the
1802°s 255 instructions. All that are left are some
control instructions with some relatively obscure or
involved applications. We’ll discuss them in later col-
umns as we apply them. Meanwhile, try converting
some 6502 code into 1802 code for practice. And let
me hear some comments! I can be reached at Box

Input and output instructions are also intimately 16435, San Diego, CA 92116. &
While They Last | | | 1802 SOFTWARE
Blank board for EP-| EPROM BIORHYTHMS $12.95

PROGRAMMER, only $19, com-
lole‘l’e W'+L\ §O{+LUQV‘E QV\J cver 20
pages of JOCumeh"'q','ian.’ Bogramf,
verifies, copies, 2708, TM$2716,
2716, 2732 elc. Use with KIM, SYM,
AIM,PET, ele. Needs 5 ports.

EE-| Emulates EPROM For
sFeeAY ,nnv-J ware a.nd so‘H‘ware
deueloPmen+. Send S.AS.E (289)
for qmck infor mation,

NIAGARA MICRO DESIGN, INC,

1700 NIAGARA ST. BUFFALO, N.Y. 14207, 716-873-7317

SLOT MACHINE § 9.95
BLACKJACK $ 9.95
OTHERS

S.A.S.E. for information. Will work on
any 1802 system with terminal and 4K
memory. Written in machine language
by L. Sandlin.

ELF [l cassette and listing. Texas
Residents add 6% Sa. Tx.

SANSOFT PLUS
PO BOX 58170
Drawer 900
Houston, Texas
77058

C.0.D. after 6PM (713) 488-7905

August/September, 1980, Issue 3 compute Il 55

CAPUTE!

Our Bug-Box

Robert Lock

Here, at long last, are the corrections to Read Pet
Tapes With Your Aim that appeared in the March/
April issue (#3) of COMPUTE.

LINE 4 LOC O [INE
0041 021 D0 Fé

0043 0214 20 8% 03
0044 i

D045
064a
D047
004
0049
000
00El

Mk

AN AT END

R

LM

Sebey MEMORY

o5y

006&G
Q061 0230
0D&Z 0240

0064 0243
00&% 0246
0066 0249
00&7
Q&
00&9
agsa

O T

FREAD MEXKT 1

Note to you PET Owners who read COMPUTE.
Don’t use the Disk ID Changer program in Issue 5 un- \
til you see the important update in Issue 6. RCL ‘

56 compute Il August/September, 1980. Issue 3.

Oops!

And here’s an important correction for Marvin L.
DeJong’s compute II, Issue 2 schematic. (Page 6,
Some A/D And D/A Conversion Techniques. Note
that pins 10 and 12 (circled) are now (correctly)

reversed.
Figure 1. Complete analog-to-digital and digital:tg-analog conyertcr circuit.
O +5v +5V @ O@@ +5v
s 10 12 ol
i 2 2
[a>—H 5 1 3 4
2 4 il
Al 5 8
3 3 3 12
A2

>CK 7 14

4 | O~V
B 16
559 Analog In g 18
5 2 MSB 4

Device D — il MSB -D7
select r|{ NATIONAL
74LS138 5741874 Bipolar 811597
b Offset
19 10
|
X7 K7
W ()
g o

6502 FORTH ., snrommess
KIM CASSETTE, USER MANUAL, AND
® 6502 FORTH is a complete programming system which COMPLETE ANNOTATED SOURCE
contains an interpreter/compiler as wellas an | ISTING $90.00

assembler and editor.
@ 6502 FORTH runs on a KIM-1 with a serial terminal. ($2000 VERS]ON) PLUS S&H 4.00

(Terminal should be at least 64 chr. wide) USER MANUAL (CREDITABLE

@ All terminal 1/0 is funnelled through a jump table near TOWARDS SOFTWARE
the beginning of the software and can easilybe =~ PURCHASE) $15.00
changed to jump to user written 1/Q drivers. PLUS S&H 1.50

® 6502 FORTH uses cassette for the system mass storage SEND A S.A.S.E. FOR A FORTH
device TRt

® Cassette read/write routines are built in (includes BIBLIOGRAPHY AND A COM-
Hypertape). PLETE LIST OF 6502 SOFTWARE,

® 92 op-words are built into the standard vocabulary. EPROM FIRMWARE (FOR KIM

® Excellent machine language interface. 2

® 6502 FORTH as user extensible. iy SUPERKIM, AIM, SYM, and

® 6502 FORTH is a true implementation of forth according APPLE) AND 6502 DESIGN
to the criteria set down by the forth interest CONSULTING SERVICES
group.

@ Specialized vocabularies can be developed for specific AVAILABLE g AN
applications. Eric Rehnke

® 6502 FORTH resides in 8K of RAM starting at $2000 and
can operate with as little as 4K of additional 1067 Jadestone Lane

contiguous RAM. Corona, CA 97120

Now Available For KIM, AIM, And SYM

Finally...Serious Expansion
. for the AIM-65

Introducing Memory-Mate*, the AIM-65 expansion
board that lets you spend your fime on application
‘solutions, not hardware hassles. Add Memory-Mate
1o your AIM-65 and make quick work of development
and process control projects. e

In its primary function, the Memory-Mate board pro-
vides 16-48K of RAM expansion assignable in 4K
blocks anywhere in the system. Memory-Mate’s pari-
ty check circuitry insures system RAM integrity (in-
cluding AIM’s 4K on-board RAM) for high reliability
applications. The programmable write profect feature
eases software development chores. This compact
board, which fits directly hemeath the AIM, dlso in-
cludes four programmable [/O ports, a fone
generator for audible warnings, and sockets for 4K of
PROM.

I/0 intensive applications are accommodated with
Memory-Mate’s STD BUS interface option. Use off-
the-shelf STD BUS cards to solve your higgest 1/0
problems.

The Memory-Mate with 16K RAM is priced at $475,
with 16K expansion chip sets (including parity chip)
costing $100 each. With 48-hour active burn-in and
warranty for a full yeor, you won’t have fo worry

about reliability either.

First of the complete AIM-Mate* series, Memory-
Mate will be joined shortly by the Video-Mate*,
Floppy-Mate* and the AIM-Mate case. For further in-
formation on the entire AIM-Mate series, write
‘Attn: AIM-Mate Series’ at the address below.

*TM Forethought Products

Forethought Products

87070 Dukhobar Rd., Eugene, OR 97402
(503) 485-8575

Introductory Special for Compute II Readers

Low Cost Graphics
- Are Now Here

