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Preface 

Ever since the advent of FORTRAN in the 1950s, so many 
high-level languages have been introduced that few people can 
keep track of them. Some of these languages generated initial 
excitement, then slowly faded from the scene. Other languages 
were well conceived, but were so difficult to use that they, too, 
disappeared. Still other languages attracted a dedicated group 
of advocates, but were too specialized to gain general accept¬ 
ance. However, every so often a new language has features 
which so appeal to the programming public that the language 
is accepted. FORTH* is such a language. 

The most attractive feature of FORTH is that it can be 
extended. That is, if you need to perform some function that is 
not already included in the language, you can add it! FORTH 
consists of a set of predefined commands, called words. Each 
word performs one specific task, such as adding two numbers 
or storing a number in memory. If you wish to perform more 
than one of these functions, you can do so by having the com¬ 
puter execute the appropriate sequence of words. For example, 
to add two numbers and store the sum in memory, you would 
execute the “add” word, then the “store” word. 

If your application calls for many “add-then-store” 
sequences, you can define this two-word sequence as a new, 
single word, and add it to FORTH’s word set, its dictionary. 
Thereafter, any time you need to do an add-then-store, you 
simply use the new word from the dictionary. In this way, 
FORTH programming involves defining word after word, with 
each new word at a higher level than the words used to con¬ 
struct it. 

This building-block approach offers several advantages. 
First, since new words are always constructed from previously 
defined, error-free, older words, FORTH programs (that is, 
words; they are equivalent) are inherently easy to debug. In 
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most cases, debugging a new word is simply a matter of de¬ 
termining whether the word operates as expected, not whether 
its construction is valid. Most word definitions are short, too, 
since you are building with lower-level words, which also 
makes troubleshooting easier. 

Moreover, the modularity of FORTH words allows them to be 
used in a variety of programs. This means that you only need to 
program a given function once. Thereafter, it becomes part of a 
permanent “toolbox” in your system. 

Ease of programming and debugging ensures that even 
novice FORTH programmers can develop software quickly and 
efficiently. Besides this cost-effectivity, system developers are 
also impressed with the compactness of FORTH-based 
software in memory and the fact that programs execute faster 
than with most other high-level languages—often at speeds 
approaching that of assembly language! 

This book describes FORTH “from the ground up.” It starts 
with the most fundamental concepts and gradually introduces 
more complex topics, thereby helping you learn the language 
in an orderly manner. If you have already done some FORTH 
programming, using any of the standard software packages, 
this book will clarify many points that may not be fully ex¬ 
plained (or perhaps not even mentioned) in the manufacturer’s 
documentation. 

Most FORTH packages are based on either of two popular 
“dialects,” FORTH-79 or fig-FORTH. This book describes both 
dialects, and identifies programming differences where they 
exist. Therefore, users of virtually any FORTH package will find 
material directly applicable to their system. 

This book has 13 chapters. Chapter 1 introduces the basic 
concepts of FORTH and shows you how to perform some sim¬ 
ple operations. Chapter 2 discusses addition, subtraction, mul¬ 
tiplication, and division. 

In Chapter 3 you are shown how to manipulate the stack, the 
memory structure on which most FORTH operations take place. 
Data transfers between the stack and other portions of memory 
are described in Chapter 4. 

Chapter 5 introduces a capability that makes FORTH different 
from most other high-level languages—adding new operations 
(words) to the language. Once added, these new words become 
as much a part of FORTH as the words provided in the original 
software package. 

Chapters 6 and 7 describe the control structures DO-LOOP, 
BEGIN-UNTIL, and IF-ELSE-THEN; structures that alter the flow 
of the program based on pre-established conditions. 



Constants, variables, arrays, and tables are discussed in 
Chapter 8. Chapter 9 tells how to switch from one numbering 
system to another for input and output. 

Chapter 10 discusses how to interact with the FORTH system 
while it is running. That is, it tells you how to make the com¬ 
puter wait for information from the terminal or print informa¬ 
tion in a form you have specified. 

Chapter 11 explains how to process strings of text in mem¬ 
ory; Chapter 12 continues with a related topic—how to transfer 
strings, tables, and other “nonprograms” to and from the disk. 

Finally, Chapter 13 discusses logical, shift, and rotate opera¬ 
tions, which are essential if you plan to manipulate the binary 
patterns in which data is stored in memory. 

This book also has three appendices, for quick reference. 
Appendix A provides hexadecimal/decimal conversion tables 
and a listing of the ASCII character codes; Appendix B sum¬ 
marizes the standard word sets for both FORTH-79 and fig- 
FORTH; and Appendix C describes FORTH-79’s Double 
Number Extension Word Set and defines those words, so you 
can add them to your system, if desired. 

May you have as much satisfaction developing FORTH 
software as I have had writing this book. 

Leo J. Scanlon 
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CHAPTER 1 

Introduction to FORTH 

FORTH was developed by one man, Charles H. Moore (Fig. 
1-1), over a period of time starting in the early 1960s.1 Working 
on a variety of programs for such diverse applications as satel¬ 
lite orbits, chromatography and business systems, Moore felt 
hindered by the amount of time it took to develop programs in 
FORTRAN, ALGOL, and other languages of the day, and de¬ 
cided to invent a tool to help increase his productivity. Through 

Fig. 1-1. Charles H. Moore, Inventor of FORTH. (Courtesy FORTH, 
Inc.) 
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12 FORTH Programming 

the years he added one element after another, as the need 
arose, until finally, in 1968, he programmed an entity known as 
FORTH on an IBM 1130 computer. (In those days of “third- 
generation” computers, Moore saw his accomplishment as a 
fourth-generation language, but labeled it FORTH, rather than 
FOURTH, because the IBM 1130 permitted only five-character 
identifiers!) 

Three years later, while writing a radio-telescope data acqui¬ 
sition program for the National Radio Astronomy Observatory, 
Moore added a compiler to the system, followed in 1973 by 
multiprogramming capability. To this day, Charles Moore’s 
FORTH system runs a radio telescope at the NRAO station at 
Kitt Peak, Arizona. In great demand by observers, this instru¬ 
ment is responsible for discovering half of the interstellar 
modules (“space dust”) that are known to exist. 

Spurred by interest from astronomers, Moore and a few other 
FORTH enthusiasts left NRAO in 1973 to form FORTH Inc. Al¬ 
though initially dedicated to astronomical applications, the 
company has since diversified into general-purpose commer¬ 
cial FORTH systems. 

Beginning with astronomers, FORTH was quickly “dis¬ 
covered” by individuals and groups around the world. Finally, 
in 1976, the European FORTH Users’ Group (EFUG) was 
formed. Out of their first meetings grew an international 
FORTH Standards Team, who drafted a formal specification de¬ 
scribing a set of FORTH commands (called words) that were to 
be included in every system, for compatibility. In 1978, the 
FORTH Interest Group (FIG) was founded by FORTH program¬ 
mers to encourage use of the language by interchanging ideas 
through seminars, conventions, and publications. In 1982, FIG 
had over 2400 members worldwide. Membership in FIG also 
includes a subscription to its excellent bimonthly magazine, 
FORTH DIMENSIONS. For information contact: FORTH Interest 
Group, P.O. Box 1105, San Carlos, CA 94070. 

FORTH-79 AND fig-FORTH 

The FORTH Standards Team is still in existence, and meets 
periodically to review the Standard. This book describes the 
1979 version of the Standard (the most recent version as of this 
writing), which was released in October 1980. The contents of 
this FORTH-79 Standard are discussed in more detail in the 

next section. 
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FORTH-79 is one of two primary “dialects” of FORTH. The 
other, fig-FORTH, was developed by the FORTH Interest Group. 
Its “standard” is the fig-FORTH Installation Manual, written by 
William F. Ragsdale. (This manual and the FORTH-79 Standard 
are both available from the FORTH Interest Group.) There are a 
number of differences between FORTH-79 and fig-FORTH, both 
in content and how certain words operate. These differences 
are identified in the course of the book. 

OVERVIEW OF FORTH PROGRAMMING 

Every computer language has its own term to describe what 
you must type in to make things happen. In assembly language, 
it’s called an “instruction.” In BASIC and Pascal, it’s called a 
“statement.” In FORTH, it’s called a “word.” 

It's All a Matter of Words 

A word is a sequence of one or more characters that iden¬ 
tifies an execution procedure. That is, it is a label for what 
should happen when the word is executed. Every FORTH sys¬ 
tem has a built-in set of words. Each of these words makes one 
specific thing happen. 

For example, the FORTH word + causes two numbers in 
memory to be added, and the sum returned to memory. An¬ 
other word, TYPE, causes a string of characters in memory to 
be printed or displayed. 

If you want to do something more complex than a single 
word will provide, you can write several words consecutively to 
form a program. That’s really all there is to FORTH program¬ 
ming: combining the words at your disposal in a way that will 
do something you want done. 

The sum total of all words in a FORTH system is contained in 
what is called, appropriately enough, its dictionary. When you 
first buy a FORTH system, the dictionary contains only the 
words that have been provided by the manufacturer. If the 
package you bought conforms to the FORTH-79 Standard, it 
will contain the FORTH-79 Required Word Set (description up¬ 
coming). Otherwise it will contain a fig-FORTH word set, or a 
polyFORTH word set, or the word set of some other FORTH 
“dialect.” 

In any case, the dictionary is not limited to the words that are 
built into the system you have purchased. FORTH, by its nature, 
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Chart 1-1. Required Word Set 

Nucleus Wbrds 

I * */ */MOD + +! 4-loop - / /MOD 0< 0= 0> 1+ 1- 2+ 2- < = > >R 
?DUP @ ABS AND begin C! C @ colon CMOVE constant create D+ D< 
DEPTH DNEGATE do does> DROP DUP else EXECUTE EXIT FILL I if J 
LEAVE literal loop MAX MIN MOD MOVE NEGATE NOT OR OVER PICK 
R> R@ repeat ROLL ROT semicolon SWAP then U* U/ U< until variable 

while XOR 

Note: Lower-case entries refer only to the run-time code corresponding 
to a compiling word. 

Interpreter Words 

# #> #S ' ( -TRAILING . 79-STANDARD <# >IN ? ABORT BASE BLK 
CONTEXT COUNT CR CURRENT DECIMAL EMIT EXPECT FIND FORTH 
HERE HOLD KEY PAD QUERY QUIT SIGN SPACE SPACES TYPE U. 
WORD 

Compiler Words 

+ LOOP , ; ALLOT BEGIN COMPILE CONSTANT CREATE 
DEFINITIONS DO DOES ELSE FORGET IF IMMEDIATE LITERAL LOOP 
REPEAT STATE THEN UNTIL VARIABLE VOCABULARY WHILE 

[ [COMPILE] ] 

Device Words 

BLOCK BUFFER EMPTY-BUFFERS LIST LOAD SAVE-BUFFERS SCR 

UPDATE 

quired Word Set operate on numbers, values which can be con¬ 
tained in 16 bits of a computer’s memory. Because 16 bits can 
represent values no larger than 65,535, the FORTH Standards 
Team defined a set of words that could operate on double 
numbers, values that occupy 32 bits in memory. These words, 
which comprise the Double Number Word Set, are listed in 
Chart 1-2. Each word will be described in following chapters. 

The Assembler Word Set allows you to include assembly lan¬ 
guage programs within a FORTH program, to perform tasks 
that cannot be done efficiently in FORTH. As you can see in 
Chart 1-2, the Assembler Word Set consists of only four words, 
three that delineate the assembly language code and one that 
calls the assembler. Of course, the actual assembly language 
instructions will vary from system to system (depending on 
which microprocessor is involved), as will the details of the as¬ 
sembler, so these four words are all that are needed in the 
Standard. 
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Chart 1-2. Extension Word Sets 

Double Number Wbrd Set 

2! 2@ 2CONSTANT 2DROP 2DUP 20VER 2ROT 2SWAP 2VARIABLE 
D+ D- D. D.R D0= D< D= DABS DMAX DMIN DNEGATE DU< 

Assembler Word Set 

;CODE ASSEMBLER CODE END-CODE 

The Reference Word Set 

Within the FORTH-79 Standard, the FORTH Standards Team 
included a group of words to be used strictly for reference. 
Some of the words in this Reference Word Set are words that 
appeared in earlier versions of the Standard and have approved 
Standard Word Definitions. Others have “uncontrolled” def¬ 
initions; these have widespread usage among software vendors 
and/or are candidates for future standardization. Both types of 
Reference Words are listed in Chart 1-3. 

This book contains descriptions of many Extension Words 
and Reference Words, as well as Required Words. To avoid con¬ 
fusion, Extension Words and Reference Words will be so iden¬ 
tified. 

What You VLIST Is What You Get 

If you ever want to see a list of all the words available in your 
particular FORTH system, simply type in the word 

VLIST 

Chart 1-3. Reference Word Set 

Standard Word Definitions 

—> AGAIN BL BLANKS DUMP EDITOR END ERASE HEX OFFSET SP@ 

U.R 

Uncontrolled Word Definitions 

IBITS ** +BLOCK - MATCH -TEXT .R/LOOP 1 +! 1 -! 2* 2/ ;S <> 
<BUILDS <CMOVE >MOVE< @BITS ABORT” AGAIN ASCII ASHIFT 
B/BUF BELL C, CHAIN COM CONTINUED CUR DBLOCK DPL FLD FLUSH 
H. I' IFEND IFTRUE INDEX INTERPRET K LAST LINE LINELOAD LOADS 
MAPO MASK M.S NAND NOR LUMBER O. OCTAL OTHERWISE PAGE 
READ-MAP REMEMBER REWIND ROTATE SO SET SHIFT TEXT THRU 

USER VLIST WHERE \ LOOP 
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and press the Return key on your computer’s keyboard. This 
will cause FORTH to list the words in its dictionary, one by one, 
until the dictionary has been exhausted or you (exhausted by 
the listing) press ESC, Break, or Reset. 

If you have added any words of your own to the dictionary, 
these, too, will be included in the VLIST. In fact, the listing will 
start with the most recently defined word, if any, and work 
down from there. 

STACKS 

To do any programming in FORTH, you must know what a 
stack is. Why? Because virtually all FORTH operations involve a 
stack in some way or other. For instance, before adding two 
numbers, both must be on the stack—and the result is re¬ 
turned on the stack. The same applies to subtraction, multipli¬ 
cation, division, printing numbers, and just about everything 
else. In FORTH, the stack is where the action is! 

A stack is not some mystical piece of hardware, but is just an 
area of the computer’s memory in which numbers are kept 
temporarily. In this area of memory, numbers are stacked on 
each other just as plates are stacked in a kitchen. That is, the 
first number goes on the bottom of the stack, and each new 
number is deposited directly above (or on top of) the previous 
number. And like a stack of plates, the last number to be placed 
on the stack wili be the first number to be removed from the 
stack. 

This type of stack is usually categorized as a “last in, first 
out’’ (or LIFO) stack. The last number in is always the first 
number out. 

Fig. 1-2 illustrates how a simple subtract operation (3-2) af¬ 
fects the stack. In Fig. 1-2A, three numbers are on the stack, 
but we don’t care what those numbers are. In Figs. 1-2B and 
1-2C, the two operands are “pushed” onto the stack. In Fig. 
1-2D, following the subtract operation, the operands have dis¬ 
appeared and just the result remains on the stack. Note that the 
stack “builds” in the direction of low memory; each number is 
pushed onto the stack at a lower address than the preceding 
number. 

Pushing Numbers Onto the Stack 

How do you put numbers onto the stack in FORTH? Does it 
require some exotic command such as PUT 3 ONSTACK? No, 
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(A) Before subtract operation. (B) Put 3 onto stack. 

(C) Put 2 onto stack. (D) Subtract. Result is left on 
stack. 

Fig. 1-2. How a subtract operation affects the stack. 

nothing as complicated as that. Since FORTH is a stack- 
oriented language, nearly every operation implies ‘‘do this to 
the stack.” Therefore, to push a number onto the stack, simply 
type in the number and press the Return key (or, on some 
computers, the Enter key). 

For example, if you type in the digits 

123 

and press Return, the decimal value 123 will be pushed onto 
the top of the stack. If more than one number is to be pushed 
onto the stack, you can simply type them all on one line (sepa¬ 
rated by at least one space) and press Return when the final 
number has been entered. For example, if you type in 

123 456 789 

and press Return, three decimal values will be pushed onto the 
stack: 123, followed by 456, followed by 789. The value 789 will 
be on top of the stack, because it was specified last. 

Displaying Stack Values 

How can you find out what values are on the stack at any 
given time? FORTH provides a word that displays the top 
number on the stack, by writing it out to your system’s active 
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output device (screen and/or printer). This word is, quite sim¬ 
ply, a “dot” [.]; that is, a “period” on your keyboard. 

To use an earlier example, if you type in the digits 

123 

and press Return, the decimal value 123 will be pushed onto 
the top of the stack. If instead you type 

123 . 

and press Return, the value 123 will go onto the stack, but then 
will be immediately pulled off and displayed. The display will be 
in this format: 

123 OK 

It is important to remember, though, that anything displayed 
with a “dot” is no longer on the stack. There are ways to dis¬ 
play stack values nondestructively, and we ll treat these later in 
the book. 

The dot can also be used to display several values on the 
stack, by repeating the dot word. For example, if you type in 

123 456 789 . . 

and press Return, you will receive this display: 

789 456 OK 

What is the top value on the stack after this sequence? It is the 
number 123, because the numbers 456 and 789 were pulled off 
the stack by the two display operations. 

At this point, the stack holds just one number, 123. You can 
enter one more dot to display that number, but what happens if 
you enter fwo dots? If you enter two dots: 

and press Return, you will have attempted to display a 
nonexistent value, so FORTH will print an error message such 
as 

? STACK EMPTY 

REVERSE POLISH NOTATION 

In most computer languages, such as BASIC, the preceding 
subtract operation would be written in the form 

3-2 
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just as it is written using pencil and paper. However, because 
FORTH always operates on numbers that are already on the 
stack, it is more efficient to place the operator after the 
operands, rather than between them. Therefore, our subtract 
operation would appear like this: 

32- 

in a FORTH program! 
Note that we’ve actually shown three separate operations 

here: 

1. The number “3" pushes the value 3 onto the stack. 
2. The number “2” pushes the value 2 onto the stack, on top 

of the value 3. 
3. The word [-] subtracts the top item on the stack (the 

value 2, in this case) from the second item on the stack 
(the value 3), and leaves only the result (the value 1) on 
the stack. 

This peculiar operator-last notation is called reverse Polish 
notation (RPN). This notation is commonly used in stack- 
oriented machines. Hewlett-Packard’s line of programmable 
calculators are stack-oriented, for example, and require opera¬ 
tions to be typed in using reverse Polish notation. 

Although RPN is bound to feel somewhat “funny” after a 
lifetime of exposure to standard operand-operator-operand no¬ 
tation, you should begin to feel comfortable with it after run¬ 
ning just a few FORTH programs, You must only remember that 
something must be on the stack before you apply an operator 
and that the operand(s) must be in the intended order. That is, 
the top number is the number that FORTH will add to, subtract 
from, divide into or multiply by the second number. 

HOW FORTH WORDS ARE DESCRIBED IN THIS BOOK 

In the remaining chapters we will describe each of the words 
defined in the FORTH-79 Standard. These include Required 
Words, Extension Words, and Reference Words (both Standard 
and uncontrolled). 

To help you understand how these words relate to each 
other, words that have similar functions will be described to¬ 
gether, in groups. That is, those that perform arithmetic opera¬ 
tions (such as add, subtract, multiply, and divide) will be de¬ 
scribed in one group, those that perform memory operations 
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(such as store, fetch, and block move) will be described in an¬ 
other group, and so on. 

Each of the functional group descriptions will be accom¬ 
panied by a table that summarizes the words in that group. This 
table will list the syntax of the word, what effect the word has 
on the stack and the action taken by the word. Further, for 
non-Required words, the table will include a note that tells 
whether the word is defined in an Extension Word Set, or is a 
Standard or uncontrolled word defined in the Reference Word 

Set. 
For example, the table entry for the uncontrolled word 2* will 

look like this: 

WORD STACK ACTION NOTES 

o* 
* 

n-2*n Multiplies number by 2. (D 

The WORD column gives the syntax of the word, the STACK 
column shows that some number n on the top of the stack will 
be replaced by the value 2*n after the word is executed (the 
three dashes, “-”, are the normal way “before” and “after” 
values are separated in FORTH literature), the ACTION column 
tells what the word does, in plain English, and the NOTES col¬ 
umn is keyed to a note at the end of the table. In this case, the 
appropriate note for the word 2* will read: 

(1) Included in Reference Word Set as an uncontrolled word 
definition. 

REFERENCE 

1. Moore, Charles H. “The Evolution of FORTH, an Unusual Lan¬ 
guage.” BYTE, August 1980, pp. 76-92. This article provides a fas¬ 
cinating insight into the development of FORTH, by its inventor. 



CHAPTER 2 

Arithmetic Operations 

In addition to the four standard arithmetic operations—add, 
subtract, multiply, and divide—FORTH provides words that 
provide such handy tasks as finding the larger or smaller of two 
numbers, or determining an absolute value. Since many of 
these operations are available for both single-precision num¬ 
bers and double-precision numbers, we should begin by de¬ 
scribing these two types of numbers. 

NUMBERS AND DOUBLE NUMBERS 

In FORTH, the basic unit of data is called a number. A 
number can be any integer value between -32,768 and 32,767. 
Readers who have been involved with the technicalities of 
computers will recognize these limits as the range of values 
that can be represented in 16 “bits” (binary digits) of a compu¬ 
ter’s memory. Of these 16 bits, the lowest 15 bits hold binary 
data and the highest bit holds a sign indicator, usually 0 = 
positive and 1 = negative. (Don’t worry about this for now. We’ll 
discuss bits in more detail in Chapter 9.) 

If we are dealing with absolute quantities, such as memory 
addresses, the highest bit is also a data bit, so all 16 bits repre¬ 
sent data. Now our 16 bits hold unsigned numbers, which can 
have values from 0 to 65,535. 

FORTH can also operate on double numbers, those that are 
contained in 32 bits of memory. Signed double numbers range 
from -2,147,483,648 to 2,147,483,647 and unsigned double 
numbers range from 0 to 4,294,967,295. 

23 
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Pushing Numbers Onto the Stack 

You will recall from Chapter 1 that to push a number onto the 
stack, you simply type it in and press Return. Unsigned num¬ 
bers are pushed onto the stack in the same way, but double 
numbers must contain a decimal point, to distinguish them 
from numbers. 

The decimal point may precede the double number, follow it, 
or fall anywhere within it. As long as the decimal point is there, 
FORTH will interpret the value as a double number and push 
that double number onto the stack. For instance, [.600000], 
[600000.] and [60.000] all cause the same value, 600000, to be 
pushed onto the stack. 

Displaying Numbers 

In Chapter 1 you learned that a number at the top of the stack 
is pulled off and displayed by using the word [.]. Unsigned 
numbers and double numbers also have their own special dis¬ 
play words; they are [U.] and [D.], respectively. Here are some 
examples: 

(Unsigned number) 40000 U. 40000 OK 

.600000 D. 600000 OK 

600000. D. 600000 OK 

-30. D. -30 OK 

(Double number) 

(Double number) 

(Double number) 

Note that the last example number (-30) is specified as a 
double number (by the presence of the decimal point), al¬ 
though it certainly could have been represented as just a (16- 
bit) number. This example was included to show that 
“number-size” values may, at times, have to be specified as 
double numbers, if they are to be used in an operation where a 
double number operand is required. 

How Numbers Are Stored in Memory 

Most of the popular microcomputers are designed around an 
8-bit microprocessor, which means that their basic unit of data 
is eight binary bits, or one byte. This means that a FORTH 
number, which occupies 16 bits, must be stored in two con¬ 
secutive bytes in memory—or on two consecutive bytes on the 
stack. 

The arrangement of these two bytes will depend on how your 
FORTH system is implemented. In some systems, the higher 
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eight bits will be at the lower-addressed location; in other sys¬ 
tems, the higher eight bits will be at the higher-addressed loca¬ 

tion. 
But unless you’re examining the contents of memory byte by 

byte, the arrangement of individual bytes is unimportant. In 
fact, the FORTH-79 Standard totally avoids defining the order 
of bytes within a 16-bit number. However, in a double number 
the Standard states that the higher 16 bits (with sign) must be 
stored starting at the lower address in memory, and must be 
more accessible on the stack. 

Fig. 2-1 shows a typical arrangement of numbers and double 
numbers on the stack or in memory. 

7 0 

(A) Signed number. (B) Unsigned number. 

(C) Signed double number. (D) Unsigned double number. 

Fig. 2-1. Typical values in memory. 

HI HIGH 16 BITS- 

LOW 16 BITS 

-HIGH 16 BITS- 

-LOW 16 BITS- 

HIGH DATA 

LOW DATA 

s HIGH DATA 

LOW DATA 

THE ARITHMETIC WORD GROUP 

Table 2-1 summarizes the FORTH words that perform arith¬ 
metic operations, subdivided by function. At the end of this 
chapter we will present the equivalent table for fig-FORTH. 

ADDITION 

The fundamental addition word is the “plus” [+] operator, 
which adds two numbers at the top of the stack and leaves 
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Table 2-1. Arithmetic Words 

Word Stack Action Notes 

n- Prints number on top of 
stack. 

D. d — Prints double number on 
top of stack. 

(1) 

U. un- Prints unsigned number on 
top of stack. 

+ nl n2-sum Adds two numbers. 

1 + n-n + 1 Adds 1 to number. 

2+ n-n+2 Adds 2 to number. 

D + dl d2-sum Adds two double numbers. 

- nl n2-diff Subtracts n2 from nl. 

1- n-n-1 Subtracts 1 from number. 

2- n-n-2 Subtracts 2 from number. 

D- dl d2-diff Subtracts d2 from dl. (D 

* nl n2-prod Multiplies signed numbers 
nl and n2, leaving single¬ 
precision product. 

u* uni un2-ud Multiplies unsigned 
numbers uni and un2, 
leaving double-precision 
product. 

2* n-2*n Multiplies number by 2. (2) 

/ nl n2-quot Divides nl by n2, leaving 
quotient. 

MOD nl n2-rem Divides nl by n2, leaving 
remainder with same sign 
as nl. 

/MOD nl n2-rem quot Divides nl by n2, leaving 
remainder and quotient. 

U/MOD ud un-rem quot Divides double dividend by 
single divisor, leaving 
single remainder and 
quotient, all unsigned. 

21 n-n/2 Divides number by 2. (2) 

*/ nl n2 n3-quot Multiplies nl by n2, then 
divides the result (a 32-bit 
intermediate product) by n3, 
leaving single quotient. 

*/MOD nl n2 n3 - 
rem quot 

Same as [*/], but leaves 
both remainder and quotient. 
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Table 2-1 —cont. Arithmetic Words 

Word Stack Action Notes 

** nl n2 - n1**n2 Leaves the value of nl 
raised to the power n2. 

(2) 

NEGATE n-n Reverses the sense of a 
number. 

DNEGATE d-d Reverses the sense of a 
double number. 

ABS n-|n| Leaves the absolute value 
of a number. 

DABS d —|d| Leaves the absolute value 
of a double number. 

(1) 

MAX nl n2-max Leaves the greater of two 
numbers. 

MIN nl n2-min Leaves the lesser of two 
numbers. 

DMAX dl d2-dmax Leaves the greater of two 
double numbers. 

(D 

DMIN dl d2-dmin Leaves the lesser of two 
double numbers. 

(1) 

Notes: (1) Included in Double Number Extension Word Set. 
(2) Included in Reference Word Set, as an uncontrolled word 

definition. 

their sum. (In FORTH nomenclature, the word “leaves” implies 
“leaves on the top of the stack.”) 

The sequence 

3 2 + 

followed by Return, leaves the number 5. If you wish to use 
your FORTH computer as a calculator, you can follow the 
“plus” [+] with a “dot” [.], and have the result printed, but not 
saved. Therefore, the key sequence 

will give this display: 

3 2 + . RETURN 

3 2 + . 5 OK 

Although the Return key was shown above, for clarity, it will 
not be shown throughout the remainder of this book. Instead, 
regular type will be used to denote operator input and italics 
will be used to denote computer-generated display (or print) 
information; a “Return” is assumed to separate the two. 



28 FORTH Programming 

Remember, numbers can be negative as well as positive, so 
an operation such as 

3 -2 + . 1 OK 

will work, too! 

Adding a Column of Numbers 

Being free-form, FORTH does not limit you to a single opera¬ 
tion on a line. If you wish to add a column of numbers and print 
the final result, your line will look something like this: 

32 64 + 56 + 96 + 124 + . 372 OK 

Alternatively, you can group all of the “pluses" at the end, and 
use this variation: 

32 64 56 96 124 + + + + . 372 OK 

This second form works fine as long as you’re just adding all 
of the numbers together (and you’ve specified the correct 
number of [+] operators). However, it can get you in trouble if 
there are some subtractions or other arithmetic operations 
mixed in. All things considered, the simplest solution is the 
more “correct" solution. 

Add One or Two to the Stack (1+ and 2 + ) 

The requirement to add a small constant, such as 1 or 2, to 
the number on the stack is so common that the FORTH-79 
Standard has Required Words to perform each of these tasks. 

An example of “one-plus” is 

6 1 + . 7 OK 

and an example of “two-plus” is 

6 2+ . 8 OK 

These words are of dubious value when you are using FORTH 
to perform simple calculator-like functions, as we have been 
doing so far. However, if the value at the top of the stack repre¬ 
sents a memory address, rather than data, [1 +] can change that 
address so that it references (that is, “points to”) the next con¬ 
secutive byte in memory, thereby preparing FORTH to operate 
on that byte. Similarly, the word [2+] can change an address so 
that it references the next consecutive (two-byte) number in 
memory. 
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Add Double Numbers (D + ) 

The 32-bit double numbers on the stack can be added just as 
easily as the 16-bit numbers, by using the word [D+] instead of 
[+]. A typical example is: 

100000. 200000. D+ D. 300000 OK 

SUBTRACTION 

The fundamental subtraction word is the “minus” [-] oper¬ 
ator, which subtracts the top number on the stack from the 
second number on the stack and leaves their difference. 
(Again, “leaves” implies “leaves on the top of the stack.”) 

The numbers can be both positive, as in 

3 2 - . J OK 

or both negative, as in 

-3 -2 - . —7 OK 

or mixed, as in 

3 -2 - . 5 OK 

Further, additions can be mixed with subtractions (or other 
operations) on a single line, as in 

32 64 + 56 - 96 + 124 - . 72 OK 

Subtract One or Two from the Stack (1— and 2 — ) 

Like their addition counterparts, these two words provide a 
quick way to apply a small constant to the top value on the 
stack. Examples are: 

6 l - . 5 OK 
1 2- . -7 OK 

Subtract Double Numbers (D—) 

This word, [D-], is the first word we’ve encountered that is 
not part of the Required Word Set. However, it is included in 
the Double Number Extension Word Set, which comes with 
many FORTH software packages. 

A typical example of its usage is: 

10000. 200000. D- D. -190000 OK 
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MULTIPLICATION 

The fundamental word for multiplying two stack values is 
“times” [*]. This word multiplies the top two numbers on the 
stack and leaves the product. 

For example, 

3 2 *. 6 OK 

However, the product must also be a number-sized value. That 
is, the product must be in the range -32,768 to 32,767. Many 
versions of FORTH will produce a product that has “wrapped¬ 
around” to a 16-bit value. For instance, 2 times 30,000 should 
produce 60,000, but in many FORTH packages, this will 
happen: 

30000 2 * . —5536 OK (Incorrect answer) 

Students of binary arithmetic will realize that the carry has 
been ignored, and that the result (minus carry) has been incor¬ 
rectly interpreted as an “OK” answer! 

Unsigned Multiplication (U*) 

If the numbers you are multiplying are unsigned, the product is a 
double number, which expands the range of valid answers consid¬ 
erably. For example, our previous out-of-bounds operation 

30000 2 U* D. 60000 OK 

now produces the correct answer! 

Multiply by Two (2*) 

An uncontrolled word definition in the Reference Word Set 
allows us to double the top number on the stack; that is, mul¬ 
tiply this number by two. An example of this word, [2*], is: 

42* . 8 OK 

DIVISION 

FORTH includes three different Required Words that divide 
the second number on the stack by the top number on the 
stack. The first of these words, [/], leaves only the quotient. An 
example is: 

7 4 1.1 OK 
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Note that although the decimal answer is 1.75, FORTH trun¬ 
cates the fractional portion (the remainder), thereby rounding 
off the quotient toward zero rather than toward the nearest in¬ 
teger (2). 

A second divide word, [MOD] (for “modulo”), performs the 
same divide operation, but leaves only the remainder. An 
example is: 

7 4 MOD . 3 OK 

The remainder will always carry the same sign as the dividend 
(second number on the stack), as we see here: 

— 7—4/.10K (Quotient) 

-7 -4 MOD . -3 OK (Remainder) 

The third divide word, [/MOD], leaves both the quotient and 
remainder on the stack, with the quotient on top. Using the 
previous examples: 

7 4 /MOD .. 1 3 OK 
-7 -4 /MOD . . 1 ~3 OK 

Unsigned Division (U/MOD) 

The unsigned division word U/MOD (called U/ in fig-FORTH) 
divides a double dividend by a single divisor to produce a 
single remainder and quotient. The double dividend feature 
makes the following kind of division operation possible: 

3000000. 460 U/MOD U. U. 6521 340 OK 

where 6521 is the quotient (since it was left at the top of the 
stack) and 340 is the remainder. 

Divide by Two (2/) 

An uncontrolled word in the Reference Word Set allows us to 
divide the top number on the stack by two. An example of this 
word, [21], is: 

7 2/ . 3 OK 

MULTIPLY-THEN-DIVIDE 

Many applications involve scaling a number; that is, multiply¬ 
ing the number by a fraction. The easiest way to do this, with 
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the words we’ve studied so far, is to multiply the number by the 
numerator (the top part of the fraction) and then divide the re¬ 
sult by the denominator (the bottom part of the fraction). The 
following sequence scales the number 32 using the fraction 
5/9: 

32 5 * 9 /. 17 OK 

Since this task is so common, FORTH provides two Required 
Words that will do the job. Both words require all three 
operands to be on the stack: the base number, the numerator, 
and the denominator, in that order. 

The first of these words, [*/], leaves only the quotient; that is, 
the integer portion of the answer. For example, 

32 5 9 */ . 17 OK 

The second word, [*/MOD], leaves both the quotient and re¬ 
mainder—that is, the integer and fractional portions of the 
answer—on the stack, with the quotient on top. Therefore, 

32 5 9 */MOD . . 17 7 OK 

[*/] and [*/MOD] Give More Precise Answers 

Besides the convenience offered by these two combination 
words, they will actually produce more precise answers if large 
numbers are involved. This is true because both [*/] and 
[*/MOD] maintain the intermediate product (number times 
numerator) as a 32-bit value, rather than a 16-bit value. 

This double-precision feature is valuable in operations involv¬ 
ing “pi” (77-), for instance. Since FORTH cannot handle frac¬ 
tional numbers directly, a value such as 3.1416 could be repre¬ 
sented as the fraction 31416/10000, or as the closer approxi¬ 
mation 355/113. Thus, the equation for the circumference of a 
circle becomes 

c = 7Td = 
355 *d 

113 

where, 
c is circumference, 

d is the diameter. 

If the diameter is already on the stack, the circumference can 
be calculated with the sequence 

355 113 */ 
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Let’s see what happens with a diameter of 42: 

42 355 113 */ . 131 OK 

So the circumference is equal to 131. 

RAISE A NUMBER TO A POWER 

The uncontrolled word [**] raises a number to a power. Spe¬ 
cifically, the second number on the stack is raised to the power 
given as the top number on the stack, leaving a result number. 
For example, 

9 4 **. 6561 OK 

Bear in mind, though, that the result must not exceed the limits 
-32,768 through 32,767. 

NEGATE 

Two FORTH words allow you to reverse the sense of the value 
at the top of the stack. That is, these words make positive 
values negative and negative values positive. They do this by 
two’s complementing the value, by subtracting it from zero. 

One of these words, NEGATE (labeled MINUS in fig-FORTH), 
operates on a number. Two examples are: 

3 NEGATE . -3 OK 
-3 NEGATE . 3 OK 

The other word, DNEGATE (labeled DMINUS in fig-FORTH), 
operates on double numbers, such as 

300000. DNEGATE D. -300000 OK 

Combine DNEGATE and D+ to Subtract Double Numbers 

If your FORTH does not have the Double Number Extension 
Word Set, which includes the “subtract-double” word D-, you 
can still subtract double numbers, by combining Required 
Words DNEGATE and D+. 

Assuming that the two double operands are already on the 
stack, the sequence to subtract the top value from the second 
value is: 

DNEGATE D+ 
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Using some actual numbers, an example is: 

200000. 10000. DNEGATE D+ D. 190000 OK 

ABSOLUTE VALUE 

If you care only about the magnitude of a number, and not 
whether it’s a negative or positive value, you can derive its 
absolute value with two FORTH words. 

One of these words, ABS, takes the absolute value of a 
number. That is, 

3 ABS .3 OK 
-3 ABS . 3 OK 

Similarly, DABS, a Double Number Extension Word, takes the 
absolute value of a double number, such as 

-300000. DABS D. 300000 OK 

MAXIMUM AND MINIMUM 

There are times in which two numbers are on the stack, but 
we only want to use the larger number, or the smaller number. 
FORTH has words that compare these two numbers, then leave 
only the larger or the smaller, depending on which was spec¬ 
ified. The two words that do this job are MAX and MIN, respec¬ 
tively. Here are examples of both: 

6 -6 MAX . 6 OK 
-64 -20 MAX . -20 OK 

6 -6 MIN . -6 OK 
-64 -20 MIN . -64 OK 

The Double Number Extension Word Set includes equivalent 
words for finding the larger or smaller double number. Exam¬ 
ples of these words, DMAX and DMIN, are: 

300000. 100000. DMAX D. 300000 OK 
-200000. 200000. DMIN D. -200000 OK 

fig-FORTH ARITHMETIC WORDS 

Table 2-2 summarizes the arithmetic words included in Re¬ 
lease 1 of fig-FORTH. A comparison with Table 2-1, which lists 
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the FORTH-79 arithmetic word group, will reveal that many of 
the definitions are identical. To avoid repetition, the remainder 
of this chapter will describe only the words that are unique to 
fig-FORTH. 

Addition and Subtraction 

Although fig-FORTH includes all four of the FORTH-79 addi¬ 
tion words, it has only the basic subtraction word, [-]. Fortu¬ 
nately, the three missing subtraction words, [1 —], [2-], and 
[D—], are easy to simulate. We showed the simulation of [D-] 
earlier, in our discussion of DNEGATE. However, in fig-FORTH 
DNEGATE is labeled DMINUS, so the simulation sequence for 
[D-] becomes: 

DMINUS D+ 

Multiplication 

For multiplication fig-FORTH includes the two multiplication 
words [*] and [U*], and adds one more valuable word, [M*]. 
This word is similar to [*], but leaves a double-number product 
rather than a single-number product. Therefore, [M*] eliminates 
the possibility of generating an out-of-range product by multi¬ 
plying two signed numbers. With [M*] you can make this calcu¬ 
lation 

30000 30000 M* D. 900000000 OK 

which would have failed using [*]. 

Division 

For division, fig-FORTH includes all four of the FORTH-79 Re¬ 
quired Words (although the FORTH word U/MOD is called U/ in 
fig-FORTH), and is missing only the uncontrolled word 21, 
which is not much of a loss. In addition, fig-FORTH has two 
very useful new division words. 

The first of these words, M/, acts like the /MOD, but operates 
with a double-number dividend. This feature makes the follow¬ 
ing kind of calculation possible: 

3000000. 5000 M/ . . 600 0 OK 

where 600 is the quotient and 0 is the remainder. As usual, the 
remainder will have the same sign as the dividend. 

At this point we know of two fig-FORTH words that use a 
double-sized dividend, U/ (for unsigned numbers) and Ml (for 
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Table 2-2. fig-FORTH Arithmetic Words 

Word Stack Action 

+ nl n2-sum Adds two numbers. 

1 + n-n+1 Adds 1 to number. 

2+ n-n+2 Adds 2 to number. 

D+ dl d2-dsum Adds two double numbers. 

- nl n2-diff Subtracts n2 from nl. 

* nl n2-prod Multiplies numbers nl 
and n2, leaving single¬ 
precision product. 

M* nl n2-dprod Multiplies numbers nl 
and n2, leaving double¬ 
precision product. 

U* uni un2-ud Multiplies unsigned 
numbers nl and n2, 
leaving double-precision 
product. 

/ nl n2-quot Divides nl by n2, leaving 
quotient. 

MOD nl n2-rem Divides nl by n2, leaving 
remainder with sign of nl. 

/MOD nl n2-rem quot Divides nl by n2, leaving 
remainder and quotient. 

Ml d n-rem quot Divides double dividend 
by single divisor, 
leaving single remainder 
and quotient. 

U / ud un-rem quot Divides unsigned double 
dividend by unsigned 
single divisor, leaving 
single remainder and 
quotient. 

M/MOD ud un-rem dquot Same as [U/], but leaves 
single remainder and 
double quotient. 

*/ nl n2 n3-quot Multiplies nl by n3, then 
divides the result (a 32-bit 
intermediate product) by n3, 
leaving a single quotient. 

‘/MOD nl n2 n3 - 
rem quot 

Same as */ , but leaves 
both quotient and remainder. 

MINUS n-n Reverses the sense of a 
number, leaving its two’s 
complement. 
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Table 2-2.—cont. fig-FORTH Arithmetic Words 

Word Stack Action 

DMINUS d-d Reverses the sense of a 
double number. 

+ - nl n2-n3 Applies the sign of n2 to 
nl, leaving it as n3. 

D+ — dl n-d2 Applies the sign of n to 
dl, leaving it as d2. 

S->D n-d Sign-extends a number to 
form a double number. 

ABS n-n Leaves the absolute value 
of a number. 

DABS d-d Leaves the absolute value 
of a double number. 

MAX nl n2-max Leaves the greater of two 
numbers. 

MIN nl n2-min Leaves the lesser of two 
numbers. 

signed numbers). As valuable as these words are, however, 
both are inadequate if the dividend is considerably larger than 
the divisor, because both can return only a 16-bit quotient. The 
second fig-FORTH word, M/MOD, eliminates this problem for 
unsigned numbers by dividing an unsigned double dividend by 
an unsigned single divisor to produce a single remainder and a 
double quotient. Thus, M/MOD permits this kind of calculation 
to take place: 

3000000. 7 M/MOD D. U. 428571 3 OK 

Multiply-Then-Divide, Absolute Value, Max and Min 

In each of these categories fig-FORTH offers the same words 
as FORTH-79, except that fig-FORTH does not include the 
double number maximum and minimum words, DMAX and 
DMIN. However, these words can be easily formed with a dou¬ 
ble number compare operation, which will be discussed in a 
later chapter. 

Change a Negative Number to Positive, or Vice Versa 

As was mentioned previously in this chapter, fig-FORTH in¬ 
cludes the two’s-complementing words NEGATE and DNE- 
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GATE, but has them labeled MINUS and DMINUS, respectively. 
In addition, fig-FORTH provides words that apply the sign of 
the top value (number or double number) on the stack to the 
second value on the stack. 

These words, [+-] and [D + -], operate on numbers and 
double numbers, respectively. In many cases, this top, deter¬ 
mining number will be a flag. A flag is the result of a compare 
operation, which we will discuss in Chapter 7. 

Convert a Number to a Double Number 

Rather than just changing the sign of a number, the fig- 
FORTH word [S->D] actually converts the number to a double 
number. This conversion is made by extending the sign of the 
number from 16 bits to 32 bits, but don’t worry about the me¬ 
chanics of the operation just yet. We will discuss the physical 
details of numbers in a later chapter. 

[S->D] is an extremely valuable word, because it permits 
numbers to be used in double number operations. For in¬ 
stance, it permits a number to be added to a double number, 
with the sequence ( S->D D+ ). 

SUMMARY 

In this chapter we examined the basic data units in 
FORTH—numbers and double numbers—and then discussed 
the various words that perform arithmetic operations on them. 
Besides the usual add, subtract, multiply, and divide opera¬ 
tions, FORTH provides such special-purpose tasks as multiply- 
then-divide, negate, absolute value, maximum and minimum. 

In addition to the Required Words, which primarily operate 
on 16-bit numbers, there were a variety of Double Number Ex¬ 
tension Words, which operate on 32-bit double numbers. There 
were also two “uncontrolled words,’’ [2*] and [2/], which multi¬ 
ply or divide the top number on the stack by two. 

The chapter concluded with a summary of the words that are 
available with Revision 1 of fig-FORTH, accompanied by a dis¬ 
cussion of how these words relate to the arithmetic words in 
the FORTH-79 Standard. 



CHAPTER 3 

Stack Manipulation 

As you may have noticed, the programming examples in the 
last chapter were all exceptionally “clean.” The operand words 
were right where we wanted them on the stack and in the 
proper order (since they were entered from the keyboard in 
most cases), and almost all examples involved just one opera¬ 
tion, which left the result on the top of the stack; again, just 
where we wanted it for printing. Ah, if all programming could 
be that simple! 

In real life, where most tasks in&plve many operations, things 
don’t normally work out that conveniently. At times, a number 
to be printed will end up as the second item on the stack or a 
divisor-dividend combination will occur in reverse order. For 
these situations, and similar mismatches, we need to be able to 
manipulate the stack. Table 3-1 summarizes the FORTH-79 
stack manipulation words, subdivided by function. 

DUPLICATE TOP ITEM 

Two Required Words cause the top number on the stack to be 
duplicated, leaving two copies of that number. The word DUP 
always duplicates the top number, regardless of its value, 
whereas ?DUP (called -DUP in fig-FORTH) only duplicates the 
number if it is nonzero. 

The word DUP is often used when a number is to operate on 
itself. Some common applications of DUP are: 

1. To double a number ( DUP +) 
2. To square a number ( DUP *) 
3. To cube a number ( DUP DUP * *) 
4. To quadruple a number ( DUP * DUP *) 

39 
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Table 3-1. Stack Manipulation Words 

Wbrd Stack Action Notes 

DUP n-n n Duplicate top number of 
stack. 

?DUP n-n (n) Duplicate top number only 
if it is nonzero. 

2DUP d-d d Duplicate top double number 
of stack. 

(1) 

OVER nl n2-nl n2 nl Leave copy of second number 
on top of stack. 

20VER dl d2-dl d2 dl Leave copy of second double 
number on top of stack. 

(D 

PICK 

CM
 

C
 1 1 1 c
 Leave copy of nl-th number 

on top of stack. 

DROP n- Delete top number from 
stack. 

2DROP d — Delete top double number 
from stack. 

(D 

SWAP nl n2-n2 nl Exchange top two numbers on 
stack. 

2SWAP dl d2-d2 dl Exchange top two double 
numbers on stack. 

(1) 

ROT nl n2 n3 - 
n2 n3 nl 

Rotate third number to top 
of stack. 

2ROT dl d2 d3 - 
d2 d3 dl 

Rotate third double number 
to top of stack. 

(D 

ROLL n-(n) Rotate n-th number to top 
of stack. 

DEPTH -n Count numbers on stack. 

SO -addr Leaves the address of the 
bottom of the stack. 

(2) 

SP@ -addr Leaves the address of the 
top of the stack. 

(3) 

Notes: (1) Included in Double Number Extension Wbrd Set. 
(2) Included in Reference Word Set, as an uncontrolled word 

definition. 
(3) Included in Reference Word Set, as a Standard Word Definition. 

Another common usage for DUP is to print a number without 
losing it from the stack. For example, the sequence 

42 DUP * DUP . 1764 OK 
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squares the number 42, then duplicates the result (1764) before 
printing it. The result is still on the top of the stack, for sub¬ 
sequent processing. 

One more use for DUP is to save a copy of a result that must 
be used immediately, then used again later. We’ll see how to 
access that saved result when we get to words like SWAP and 
ROT, later in this chapter. 

Our second Required Word, ?DUP, normally precedes the 
construct IF . . . THEN, so we’ll postpone the discussion of 
?DUP until we cover that construct. 

Table 3-1 also shows the Extension Word 2DUP, which is the 
counterpart of DUP for duplicating double numbers. 

COPY AN ITEM ONTO TOP 

Sometimes we will want to duplicate the second value on the 
stack, rather than the top number. This can be done for num¬ 
bers with the word OVER and for double numbers with the 
word 20VER; the latter is a Double Number Extension Word. 

For example, the sequence 

20 30 OVER 

leaves the numbers 20, 30, and 20 at the top of the stack. You 
might want to do this type of operation if you had just made 
two calculations and wanted to do something with the first re¬ 
sult immediately, and do something else with it later. Re¬ 
member, since the 20 was entered first, it will end up as the 
second number on the stack when 30 is entered. 

PICK Any Number in the Stack 

FORTH-79 also allows you to copy any number in the stack 
onto the top, using the word PICK. To select the number to be 
PICKed, put its depth level on top of the stack and execute 
PICK. A 1 on the stack selects the top number (1 PICK = DUP), 
a 2 on the stack selects the second number ( 2 PICK = OVER), 
a 3 on the stack selects the third number, and so on. 

For example, 

6 PICK 

copies the sixth number onto the top of the stack. As with 
OVER, after PICK, the selected number is in two places on the 
stack: its original position and on top of the stack. 
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Fig. 3-1 shows the numbering system for numbers on the 
stack. Double numbers are also shown, for future reference. 

NUMBER 

(TOP) 1 

2 

3 

4 

5 

6 

7 

DOUBLE 
NUMBER 

n 

n + 1 

Fig. 3-1. Numbers and double numbers on the stack. 

DELETE TOP ITEM 

There are also times in which we won't need the top value on 
the stack, and wish to delete it. For these times, FORTH-79 of¬ 
fers the Required Word DROP, to delete a number, and the 
Double Number Extension Word 2DROP, to delete a double 
number. 

MOVE AN ITEM TO THE TOP 

The DUP and OVER word groups allowed us to copy a value 
onto the top of the stack, but leave the original value in its 
former position. Those words are useful for applications in 
which we will need to re-access the original value. However, 
and more often the case, we will want to access some previous 
result from down in the stack, but we won't need it again. The 
words in this group give us that capability, by moving a 
selected value from its present position to the top of the stack. 
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SWAP the Top Two Items 

The Required Word SWAP and the Double Number Extension 
Word 2SWAP perform the simplest kind of stack move opera¬ 
tion; they just exchange the top two numbers or double num¬ 
bers, respectively. 

Such an exchange is handy if you’ve just performed a divide 
operation, for instance, with a /MOD or */MOD word, and wish 
to operate on the remainder. As you may recall, both words 
leave the quotient on top, followed by the remainder. However, 
a simple application of SWAP will put the remainder on top and 
the quotient in the second position. You’re now set up to oper¬ 
ate on the remainder! 

ROTate the Third Item Up to the Top 

The FORTH Standards Team realized that the third item on 
the stack is also one that is often needed, and provided two 
words that move this third item up to the top of the stack. As 
before, there is a Required Word, ROT, which accesses the 
third number, and a Double Number Extension Word, 2ROT, 
which accesses the third double number. 

For example, if the top three numbers look like this before 
ROT: 

(Top number) 

(Second number) 

(Third number) 

150 

250 

350 

they will look like this after [ROT] has been executed: 

(Top number) 

(Second number) 

(Third number) 

350 

150 

250 

ROLL Any Number to the Top 

FORTH-79 also allows you to move any number to the top of 
the stack, using the word ROLL. To select the number to be 
ROLLed, put its depth level on top of the stack, then execute 
ROLL. A 2 on the stack selects the second number ( 2 ROLL = 
SWAP), a 3 on the stack selects the third number ( 3 ROLL = 
ROT), a 4 on the stack selects the fourth number, and so on. 

For example, 

6 ROLL 
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moves the sixth number onto the top of the stack, and moves 
numbers one through five down one level. 

Delete Any Item From the Stack 

Since the words in this group physically displace a number 
or double number from its original position in the stack, these 
words can also be used to delete a value from the stack, in the 
same way DROP and 2DROP deleted the top value. All you 
need to do is add a DROP or a 2DROP, depending on whether 
you are deleting a word or a double word. Therefore, the fol¬ 
lowing operations are readily available: 

1. Drop the second number from the stack ( SWAP DROP). 
2. Drop the second double number from the stack ( 2SWAP 

2DROP). 
3. Drop the third number from the stack ( ROT DROP). 
4. Drop the third double number from the stack ( 2ROT 

2DROP). 
5. Drop the nth number from the stack ( n ROLL DROP). 

FIND THE BOUNDS OF THE STACK 

The three last words in Table 3-1 return information about the 
current status of the stack. The Required Word DEPTH leaves a 
count of the 16-bit values contained on the stack. If the stack 
holds 16-bit numbers, the value returned will be a count of 
those numbers. If the stack holds 32-bit double numbers, the 
value returned will be a count of those double numbers, multi¬ 
plied by two. 

For example, 

DEPTH . 8 OK 

informs us that there are currently eight 16-bit values on the 
stack. That is, the stack holds either eight numbers or four 
double numbers. 

FORTH maintains a special memory address pointer called a 
stack pointer, which holds the address of the top number on 
the stack. Upon entering FORTH, the stack pointer contains an 
implementation-dependent address called the “bottom” of the 
stack. With each number pushed onto the stack, the stack 
pointer gets decremented by two and thereby holds the ad¬ 
dress of the current “top” of the stack. Two FORTH words, SO 
and SP@, can be used to find the memory address of the bot- 
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tom and top of the stack, respectively. The addresses returned 
by these words are illustrated in Fig. 3-2. 

Knowing either the bottom or top address of the stack, you 
can compute the address of any item on the stack. For exam¬ 
ple, since SP@ leaves the address of the top number, then 

SP@ 2+ 

will leave the address of the second number, 

SP@ 4 + 

will leave the address of the third number, and so on. 

-*— SP@ LEAVES THIS ADDRESS 

—nTH NUMBER- 

I-*—SO LEAVES THIS ADDRESS 
—J 

—TOP NUMBER- 

—2ND NUMBER- 

—3RD NUMBER- 

Fig. 3-2. Stack boundaries (FORTH-79). 

DERIVING DOUBLE-NUMBER EQUIVALENTS 
OF PICK AND ROLL 

The Double Number Extension Word Set provides double¬ 
number equivalents to most of the words that manipulate num¬ 
bers on the stack. These include 2DUP, 20VER, 2DROP, 
2SWAP, and 2ROT. However, there are no double-number 
equivalents to PICK, the word that copies the nth number to the 
top of the stack, or ROLL, the word that rotates the nth number 
to the top of the stack. In this section we will show you how to 
derive double-number equivalents for both PICK and ROLL, 
using the available Required Words. 
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As you know, both PICK and ROLL based their operation on 
a “stack-depth” index at the top of the stack. If the index was 2, 
the second number was copied or rotated; if the index was 3, 
the third number was copied or rotated, and so on. If we think 
of a number as a 16-bit value (which it is), and a 32-bit double 
number as two 16-bit values (high-order 16 bits and low-order 
16 bits), the problem of copying or rotating a double number 
becomes a matter of applying PICK or ROLL twice, once for 
each half of the double number. 

The double number copy and exchange operations we’ll be 
giving here also begin with having an index on the top of the 
stack, but in this case the index will identify the double number 
to be operated on. Fig. 3-1 shows the relationship between 
number indexes and double number indexes. As you can see, 
for any double number index d, the single number indexes n 
and n + 1 can be derived using these equations: 

n = 2d — 1 and n+1 = 2d 

However, if we apply these equations directly to access a 
double number, we will be “off” by one stack value, because 
they don’t account for the fact that there are two indexes at the 
top of the stack, rather than just one. To accommodate this 
difference, just add one to each equation, to give: 

n = 2d and n+1 = 2d + 1 

At this point we are ready to look at two program sequences, 
one that will copy the nth double number onto the top of the 
stack (a 2PICK sequence, if you will) and another that will ro¬ 
tate the nth double number onto the top of the stack (a 2ROLL 
sequence). These sequences are shown in Examples 3-1 and 
3-2, respectively. In a later chapter we will show how sequences 
such as these can be defined as words; they are put in the dic¬ 
tionary to be thereafter used like the predefined words. 

Incidentally, the text enclosed in parentheses in these exam¬ 
ples is comments, to describe what’s taking place. This is the 
standard way comments are shown in FORTH. Note, too, that 
there is a space between the left parenthesis and the beginning 
of the comment. This space is required, because [(] is actually a 
Required Word, rather than simply a punctuation mark! No 
space is required between the end of the comment and the 
right parenthesis, however. 

These examples also illustrate a good FORTH programming 
practice: keep the lines short! Example 3-1 could have been 
written like this: 

2 * DUP 1+ PICK SWAP PICK 
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Example 3-1. Copy a double number onto the top of the stack 

( This sequence copies the d-th double number onto the ) 

( top of the stack. ) 

( Stack: d-dl ) 

2 * ( Leave index to high-orderl6 bits) 

DUP 1+ ( Leave index to low-order 16 bits) 

PICK ( Copy low-order 16 bits to top of stack) 

SWAP ( Put high-order index on top of stack) 

PICK ( Copy high-order 16 bits to top of stack) 

Example 3-2. Rotate a double number onto the top of the 
stack 

( This sequence rotates the d-th double number onto the ) 

( top of the stack. ) 

( Stack: d-dl ) 

2 * ( Leave index to high-order 16 bits) 

DUP 1+ ( Leave index to low-order 16 bits) 

ROLL ( Rotate low-order 16 bits to top of stack) 

SWAP ( Put high-order index on top) 

ROLL ( Rotate high-order 16 bits to top of stack) 

but that would have made it diabolically difficult to understand, 
and virtually impossible to comment. 

fig-FORTH STACK MANIPULATION WORDS 

Table 3-2 summarizes the stack manipulation words included 
in fig-FORTH. A comparison with Table 3-1, which summarizes 
the FORTH-79 stack manipulation words, makes it apparent 
that fig-FORTH offers only the fundamental words that dupli¬ 
cate, copy, delete, and rotate numbers. Operations on double 
numbers are totally omitted. 

Note that the descriptions of SO differ between Table 3-1 and 
Table 3-2. This occurs because in FORTH-79, SO returns the 
address of the bottom of the stack, whereas in fig-FORTH, SO 
returns a pointer to the address of the bottom of the stack. That 
is, the fig-FORTH SO returns the address of a memory location, 
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Table 3-2. fig-FORTH Stack Manipulation Words 

Word Stack Action 

DUP n-n n Duplicate top number of 
stack. 

-DUP n-n (n) Duplicate top number only 
if it is nonzero. 

OVER nl n2-nl n2 nl Leave copy of second number 
on top of stack. 

DROP n- Delete top number from 
stack. 

SWAP nl n2-n2 nl Exchange top two numbers on 
stack. 

ROT nl n2 n3 - Rotate third number to top 

n2 n3 nl of stack. 

SO -addr Points to the address of 
the bottom of the stack. 

SP! A user-supplied procedure 
to initialize the stack 
pointer from SO. 

SP@ -addr Leaves the address of the 
top of the stack. 

I I SO LEAVES THE ADDRESS OF 
--' THIS ADDRESS 

Fig. 3-3. Stack Boundaries (fig-FORTH). 
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and that memory location contains the address of the bottom 
of the stack. Fig. 3-3 illustrates the relationship of the SP@ and 
SO addresses to the stack. You might wish to compare this dia¬ 
gram to its FORTH-79 counterpart, in Fig. 3-2. 

Also fig-FORTH provides a new word, SPI, that initializes the 
stack pointer using the address pointed to by SO. 

SUMMARY 

This chapter showed us how items on the stack could be 
manipulated, thereby bringing a value to the top, where it could 
be processed. Included were words that duplicated or deleted 
the top item, words that brought an item to the top from a 
lower level (by either copying it or rotating it) and words that 
returned the address boundaries and the number count. 

Some simple examples showed how the words learned so far 
could be combined, to define new operations. These examples 
also demonstrated the proper way of adding comments to 
FORTH programs—with a left parenthesis and a blank preced¬ 
ing the commentary text. 



CHAPTER 4 

Memory Operations 

Chapters 2 and 3 dealt exclusively with operations on the 
stack. This is a proper place to begin, since virtually all FORTH 
words affect the stack in one way or another. However, the 
stack is just a temporary depository for information. In all com¬ 
puter systems, most information is held in memory, including 
programs being executed. 

There are essentially two types of memory: random access 
memory and mass storage. Random access memory can be 
either read/write memory (usually called RAM, although this is 
a misnomer) or read-only memory. Read/write memory serves 
as “working storage” for data and programs while the system 
is running; all information in read/write memory is lost when 
the power is turned off. Read-only memory (ROM) is permanent 
storage that is usually used to hold system programs; informa¬ 
tion stays in read-only memory “forever,” even when the power 
is off. As the names imply, you can transfer information into or 
out of read/write memory, but you can only transfer information 
out of read-only memory. All operations in this chapter are per¬ 
formed on read/write memory, or RAM. 

Mass storage is memory that holds information that will later 
be transferred to or from read/write memory. Floppy disks, hard 
disks, reel tapes, and cassette tapes are common examples of 
mass storage devices. We will cover mass storage operations 

♦ later in this book. 

THE MEMORY WORD GROUP 

Table 4-1 summarizes the words that operate on memory. 
Each of these words requires a memory address to be on the 

51 
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Table 4-1. Memory Words 

Word Stack Action Notes 

@ addr-n Fetches number at address. 

! n addr - Stores number at address. 

c@ addr-byte Fetches byte at address. 

C! n addr - Stores least-significant 
byte of n at address. 

2@ addr-d Fetches double number at 
address. 

(1) 

2! d addr - Stores double number at 
address. 

(1) 

? addr- Displays number at address. 

DUMP addr n- Displays the contents of n 
memory locations, starting 
at addr. 

(3) 

+ ! n addr - Adds n to the number at 
address. 

MOVE addrl addr2 n- Copies n numbers starting at 
addrl to memory starting at 
addr2. The move proceeds 
from low memory to high 
memory. 

CMOVE addrl addr2 n- copies n bytes starting at 
addrl to memory starting at 
addr2. The move proceeds 
from low memory to high 
memory. 

<CMOVE addrl addr2 n- Copies n bytes starting at 
addrl to memory starting at 
addr2. The move proceeds 
from high memory to low 
memory. 

(2) 

FILL addr n byte- Fills n consecutive bytes 
in memory with the value 
byte, starting at addr. 

ERASE addr n- Fills n consecutive bytes 
with 0, starting at addr. 

(3) 

BLANKS addr n- Fills n consecutive bytes 
in memory with the ASCII 
value for “blank,” starting 
at addr. 

(3) 

Notes: (1) Included in Double Number Extension Word Set. 
(2) Included in Reference Word Set, as an uncontrolled word 

definition. 
(3) Included in Reference Word Set, as a Standard Word Definition. 
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stack and some require an additional parameter, such as a 
number. 

Memory Is Arranged in Bytes 

In FORTH, addresses are unsigned numbers, which can have 
values between 0 and 65,535. This is the normal addressing 
range of 8-bit microprocessors, since these microprocessors 
have 16-line address buses. 

FORTH also assumes that memory is arranged in bytes (8 bits 
of data), the smallest memory unit that is addressable by a mi¬ 
croprocessor. Therefore, we see words in Table 4-1 that refer¬ 
ence bytes, as well as numbers and double numbers. A single 
byte can represent unsigned values between 0 and 255 and 
signed values between -128 and 127. 

Know Your Memory Map 

To use the FORTH memory words intelligently, you must un¬ 
derstand how the memory in your particular system is ar¬ 
ranged. That is, you must know which portions of memory hold 
RAM, which hold ROM and, if your microcomputer uses 
memory-mapped I/O (with peripheral devices addressed like a 
standard memory location), which portions of memory are 
connected to peripherals. 

All of these questions can be answered by studying the 
memory map of your system. Become familiar with the memory 
map. Even if you don’t see any reason to do so now, it will pay 
off in the future. 

FETCH AND STORE 

FORTH-79 provides four Required Words that transfer num¬ 
bers and bytes between the stack and memory. The_ words 
[@]and [C@] fetch (read) a number or a byte from a specified 
location in memory and leave it on the top of the stack. The 
words [!] and [Cl] store (write) a number or a byte into a spec¬ 
ified location, taking the address and the value from the stack. 
In the case of [Cl], only the least-significant byte of the 2-byte 
number is transferred; the most-significant byte is ignored. 

Here ate examples of these four words: 

500 200 ! OK ( Store the number 500 at address 200) 

200 @ . 500 OK ( Read and display the number stored at address 200) 



54 FORTH Programming 

50 200 C! OK ( Store the byte 50 at address 200) 
200 C@ . 50 OK( Read and display the byte stored at address 200) 

Keep in mind that a read operation simply copies the contents 
of a memory location onto the stack; it does not affect the 
memory location contents in any way. 

The Double Number Extension Word Set includes the words 
[2@] and [2!], which fetch and store double numbers, respec¬ 
tively. Using the preceding parameters: 

500. 200 2! OK ( Store the double number 500 at 
address 200) 

200 2@ D. 500 OK( Read and display the double number 
stored at address 200) 

Of course, for numbers and double numbers, the specified lo¬ 
cation does not hold the entire value, but just one of its bytes. 
Numbers occupy two bytes in memory and double numbers 
occupy four bytes in memory. 

Deriving [ 2@] and [ 2! ] Using [ @] and [ ! ] 

If your FORTH does not have the words [2@] and [21], you 
can derive these double number functions using the Required 
Words [@] and [!]. It simply involves operating on each half of 
the double number (the high-order 16 bits and the low-order 16 
bits) individually. Examples 4-1 and 4-2 show the sequences to 
perform the [2@] and [2!] functions, respectively. 

Example 4-1. Fetch a double number from memory 

( This sequence fetches a double number from memory.) 

( Stack: addr-d) 
DUP 2+( Leave addr+2) 
@ ( Fetch low-order 16 bits) 

SWAP ( Put addr on top of the stack) 
@ ( Fetch high-order 16 bits) 

DISPLAY THE CONTENTS OF MEMORY 

In the course of debugging a program, you may need to find 
out what a certain memory location contains, without reading 
its contents onto the stack. The FORTH word [?] displays the 
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Example 4-2. Store a double number in memory 

( This sequence stores a double number into memory.) 

( Stack: d addr-) 

ROT ( Rotate low-order 16 bits to top of stack) 

OVER ( Copy addr to top of stack) 

2 + ( and change it to addr+2) 

! ( Store low-order 16 bits) 

! ( Store high-order 16 bits) 

number stored at a selected address. For example, the se¬ 
quence 

200 ? 500 OK 

shows that memory starting at address 200 contains the 
number 500. 

There are no standard FORTH words to display a byte or a 
double number in memory, but these operations are nothing 
more than the sequences 

C@ . ( Display a byte) 

and ';'- 

2@ D. ( Display a double number) 

Again, if your FORTH does not have the [2@] word, you can 
substitute the sequence shown in Example 4-1, and follow it 
with [D.]. 

Use DUMP To Display Consecutive Bytes in Memory 

An even more useful debugging word is DUMP, which is a 
Standard Word in the Reference Word Set. DUMP displays 
a selected number of memory locations, starting at a 
specified address. Most FORTHs, including fig-FORTH, display 
several values on a line, and precede the first value with its 
address. 

For example, the sequence 

220 6 DUMP 

may produce a listing such as 

220 0 0 60 0 

224 136 4 



56 FORTH Programming 

INCREMENT A NUMBER IN MEMORY 

In Chapter 2 we discussed adding values to numbers on the 
stack, using the words [1+] and [2+]. FORTH offers a similar, 
but more versatile word called [+!], which adds a number on 
the stack to a number in memory. For example, 

5 200 +! 

adds the value 5 to the number stored at address 200. Similarly, 

-5 200 +! 

subtracts 5 from the number stored at address 200. 

Other Arithmetic Operations on Memory 

Clearly, it is also possible to perform a multiplication or a 
division on a number in memory, by simply fetching the 
number onto the stack, operating on it, then returning the re¬ 
sult to memory. Before fetching the number, however, you 
must duplicate the address, so that it is available for the store 
operation. 

The normal sequence for a multiply or divide operation on 
memory is: 

DUP @ ( Fetch the number from memory) 

ROT ( Rotate operand to top of stack) 

( Perform the operation) 

SWAP ( Put the address on top) 

! ( Return the result number to memory) 

Adding a value to a double number in memory is somewhat 
more complex, though, due to the amount of stack manipula¬ 
tion that is required. Example 4-3 shows a sequence that will 
do the job, along with a “snapshot” of the stack after the mem¬ 
ory contents have been fetched. The snapshot includes a 
number on each level of the stack, which will help you under¬ 
stand what the first ROLL is doing. You should be able to follow 
the sequence from there. 

MOVE A BLOCK OF DATA IN MEMORY 

Many applications require blocks of information to be copied 
from one part of memory to another. For instance, data proc¬ 
essing often involves copying a table of numbers from one file 
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Example 4-3. Add d to a double number in memory 

( This sequence adds d to the double number starting at addr.) 

( Stack: d addr-) 

DUP ( Leave copy of addr) 

2@ ( Fetch double number at addr) 

5 ROLL ( Rotate low operand to top) 

5 ROLL ( Rotate high operand to top) 

D+ ( Add the two double numbers) 

ROT ( Rotate addr to top) 

2! ( Store result in memory) 

1 

2 

3 

4 

5 

Stack After [2@] 

high 

low 

addr 

high d 

low d 

to another and word processing involves duplicating a phrase, 
a sentence, or a paragraph in two different parts of a text. Such 
tasks can be readily accomplished with two Required block- 
move words, MOVE and CMOVE. 

Both words accept three arguments from the stack: a source 
address (addrl), a destination address (addr2) and a count of 
the items to be moved (n). Starting with the number at addrl, 
MOVE copies n numbers to the block of memory starting at 
addr2. Similarly, CMOVE copies n bytes from addrl to the 
block of memory starting at addr2. 

For example, 

200 400 20 MOVE OK 

copies 20 numbers fhat start at address 200 to the portion of 
memory that starts at address 400. Similarly, 

200 400 20 CMOVE OK 

performs the same operation, except that 20 bytes are copied 
from address 200 to address 400. These examples copied in¬ 
formation into a higher part of memory, but they could have 
also copied it into a lower part of memory. Therefore, 

400 200 20 MOVE OK 

is an equally valid operation. 
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If you wish to check that the move was made correctly, just 
apply the word DUMP. For example, the sequence 

400 20 DUMP 

will list the contents of locations 400 through 419. 

<CMOVE Solves Overlap Problems 

The Required words MOVE and CMOVE perform their copy 
operations by working from the beginning of the source block 
to the end; that is, the first item (number or byte) is copied first. 
The FORTH-79 Standard also includes an uncontrolled word, 
cCMOVE, that works in the opposite order, from the end of the 
block to the beginning, with the last byte being copied first. 

Why would you ever need two separate byte-copying words? 
Well, if the source and destination blocks lie in two distinct 
areas of memory, either copy sequence (first-to-last or last-to- 
first) has the same effect, so either approach will have the same 
effect. However, if the destination block overlaps the source 
block, only one sequence will get the job done; the opposite 
sequence will wipe out one or more needed items. 

To illustrate this point, Fig. 4-1 shows how CMOVE and 
cCMOVE each affect an operation in which four bytes (the 
values 1, 2, 3, and 4) are displaced one byte position backward 
in memory. In Fig. 4-1A, CMOVE starts the copy operation with 
the first byte, and produces the desired result. However, in Fig. 
4-1B, cCMOVE copies the source bytes in the reverse order 
and ends up over-writing the destination block with 4's. 

Similarly, if the source block was copied forward (to a higher 
address), instead of backward (to a lower address), cCMOVE 
would produce the proper result but CMOVE would not. To be 
safe in your block-copy operations, use this rule: if a block is 
being copied to lower-addressed memory, use CMOVE; if a 
block is being copied to higher-addressed memory, use 

<CMOVE. 

FILL A BLOCK OF MEMORY 

If your application involves processing a data table or an 
array in memory, you may wish to initialize that area of memory 
with some known value—perhaps zero—before storing any¬ 
thing else there. The easiest way to do this is with the word 

FILL. 
Before executing FILL, the stack must hold three parameters: 



Memory Operations 59 

ADDR2 

ADDR1 

(A) Copying with CMOVE. 

ADDR2 

ADDR1 

(B) Copying with <CMOVE. 

Fig. 4-1. Two block-copy operations. 

the starting address of the block to be filled, the length of the 
block (in bytes), and the byte value to be stored into the block. 
For example, 

200 50 0 FILL OK 

stores a 0 into locations 200 through 249, inclusive. Remember, 
a byte can hold any value between 0 and 255. 

Zero is such a commonly used filler value that the Reference 
Word Set includes a Standard Word, ERASE, that fills the spec¬ 
ified block with the byte value 0. Thus, the ERASE equivalent of 
the preceding sequence is: 

t 200 50 ERASE OK 

Fill a Text Block With Blanks 

In word processing and other text-oriented applications, the 
counterpart of zero is an ASCII blank or space. Therefore, in 
these applications you will often want to fill memory with 
blanks, usually to wipe out whatever text is currently in that 
block. 

In the computer field, blanks and all other text characters are 
usually represented using an industry-standard code called 
ASCII (for American Standard Code for Information In- 
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terchange). Every time you press a key at the keyboard, the 
ASCII value for that key will be entered into the computer. Simi¬ 
larly, every character transmitted to a printer or a display 
screen will also be in ASCII. 

The ASCII standard provides value for 127 separate char¬ 
acters, including letters of the alphabet (both upper case and 
lower case), numeric digits, punctuation marks, symbols, and 
control characters (backspace, delete, etc.). Appendix A shows 
the ASCII value in two different bases, decimal (base 10) and 
hexadecimal (base 16). Don’t worry abqut hexadecimal num¬ 
bers just yet; we will discuss them later. 

At any rate, the Reference Word Set includes a Standard 
Word, BLANKS, that fills memory with the ASCII value for 
“blank” (decimal 32, or SP, in Appendix A). This word is handy 
for eradicating text. For instance, 

400 40 BLANKS OK 

eradicates the text in locations 400 through 439, by filling it 
with ASCII blanks. 

Of course, the computer doesn’t know whether 32, the value 
you’ve stored into memory, represents the number 32 of the 
ASCII value for “blank.” This strictly depends on how your 
program makes use of the information! 

Incidentally, ERASE, when coupled with CMOVE, implies 
some possible text processing capability with FORTH. Notice 
that the sequences 

200 400 20 CMOVE OK 

200 20 ERASE OK 

are effectively moving a string of characters—a sentence, 
perhaps—from address 200 to address 400, then blanking out 
the source block. We will discuss the impressive string process¬ 
ing capabilities of FORTH later. 

fig-FORTH MEMORY WORDS 

The fig-FORTH memory word set, summarized in Table 4-2, is 
a subset of the FORTH-79 memory word set. As usual, fig- 
FORTH lacks the double number operators—the words [2@] 
and [2!] in this case—but includes all other words except [+!]. 
You’ll see a cCMOVE definition in Chapter 11. (Double number 
words [2@] and [2!] were provided earlier in this chapter, as 
Examples 4-1 and 4-2, respectively.) 
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Table 4-2. fig-FORTH Memory Words 

Word Stack Action 

@ addr-n Fetches number at address. 

! n addr - Stores number at address. 

c@ addr-byte Fetches byte at address. 

C! n addr - Stores least-significant 
byte of number at address. 

? addr- Displays number at address. 

DUMP addr n- Displays the contents of n 
memory locations, starting 
at addr. Both addresses 
and contents are shown in 
the current number base. 

+! n addr - Adds n to the number at 
address. 

MOVE addrl addr2 n- Copies n numbers starting at 
addrl to memory starting at 
addr2. 

CMOVE addrl addr2 n- Copies n bytes starting at 
addrl to memory starting at 
addr2. 

FILL addr n byte- Fills n consecutive bytes 
in memory with the value 
byte, starting at addr. 

ERASE addr n- Fills n consecutive bytes 
with 0, starting at addr. 

BLANKS addr n- Fills n consecutive bytes 
in memory with the ASCII 
value for “blank,” starting 
at addr. 

SUMMARY 
4 

This chapter described how FORTH can be used to operate 
on memory. We began with a brief overview of memory, includ¬ 
ing the concept of byte addressing, then discussed the FORTH 
words that have memory-related functions. Besides the basic 
fetch and store operations, there were words to display the 
contents of memory (either individually or in blocks), add a 
value to a number in memory, move blocks and fill a selected 
portion of memory. 

The chapter also included program sequences to fetch or 
store a double number and to add a value to a number or dou¬ 
ble number in memory. 



CHAPTER 5 

Add Your Own Words to FORTH 

After reading to this point in the book, you are probably 
wondering what is so special about FORTH. Based on what 
we’ve learned so far, that is a reasonable question. Indeed, 
from all appearances FORTH seems to be a rather ordinary 
high-level language. It has its share of good features (words 
can be combined in any order), bad features (programs tend to 
be hard to follow without copious comments) and features of 
dubious merit (reverse Polish notation, stack orientation). 

Well, before dismissing FORTH as “just another language,’’ 
you might consider reading about the most unique aspect of 
FORTH. Specifically, FORTH allows you to add your own words 
to the language! 

That is, the FORTH dictionary can be physically extended to 
include words that you have defined. Once “compiled," these 
newly defined words become as much a part of the dictionary 
as [+], [DUP], [SWAP], and the other words that came with your 
FORTH package. Because these new words are held in the 
computer’s read/write memory, they will disappear when you 
turn the power off. To solve this problem, FORTH provides 
words that allow you.to save the definitions of these words on 
disk or cassette. 

Table 5-1 summarizes the words we will describe in this chap¬ 
ter, words that are used to define new words and words that 
are used to communicate with the disk or cassette. 

HOW TO DEFINE A NEW FORTH WORD 

Defining a new word to be added to the FORTH dictionary is 
extremely easy. All you have to do is enter your definition in 

63 
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Table 5-1. Word-Defining Words and Disk Words 

Word Stack Action Notes 

Used in the form 

: name . . . ; 

to begin colon-definition 
of the word name. 

Ends colon-definition. 

( 

CR 

— 

Used in the form » 

( comment) 

to begin a comment that 
will be ended by a right 
parenthesis on the same 
line. 

Used in the form 

.“ message” 

to begin an output message 
that will be ended by a 
double quote on the same 
line. 

Transmits a carriage 
return and line feed to 
the current output device. 

VLIST 

FORGET 

-addr 

Lists the word names in 
the dictionary, starting 
with the most recent 
definition. 

Used in the form 

FORGET name 

to delete the most recent 
definition of name from the 
dictionary. 

Used in the form 

’ name 

to leave the dictionary 
address of the word name. 

(D 

EDITOR Invokes the user-defined 
editor vocabulary. 

(2) 

EMPTY- 
BUFFERS 

UPDATE 

Marks all block buffers as 
“empty,” without 
necessarily affecting their 
contents. Usually the 
first word executed in an 
editing session. 

Marks the most recently 
referenced block as 
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Table 5-1—cont. Word-Defining Wbrds and Disk Wbrds 

Word Stack Action Notes 

SAVE- 
BUFFERS 

"modified.” This block 
will be automatically 
transferred to disk if its 
memory buffer is needed for 
storage of another block, 
or upon execution of 
SAVE-BUFFERS. 

Writes all UPDATEd blocks 
to disk. 

FLUSH Synonym for SAVE-BUFFERS. (1) 

INDEX nl n2- Displays the first line 
of screens nl through n2. 
The first line usually 
contains a title. 

(D 

LIST n- Lists the ASCII symbolic 
contents of screen n on 
the current output device, 
setting SCR to contain n. 

LOAD n- Loads block n (compiles or 
executes), reading the 
block from disk if it is 
not already in memory. 

SCR -addr Leaves the address of a 
variable containing the 
number of the screen most 
recently LISTed. 

-> Directs FORTH to continue 
interpretation on the next 
screen. 

(2) 

;S Stops interpretation of a 
screen. 

(1) 

Notes: (1) Included in Reference Word Set, as an uncontrolled word 
definition. „ 

(2) Included in Reference Word Set, as a Standard Word Definition. 

this form: 

: name word(s) ; 

That is, a word definition is comprised of four parts: 

1. The FORTH word [:], pronounced “colon.” 
2. The name of the new word. The FORTH-79 Standard 

specifies that a name can be up to 31 characters long and 
may not contain an ASCII null, blank, or “return.” 



66 FORTH Programming 

3. The sequence of previously defined words that tell what 
operation the new word is to perform. The word(s) used 
here can be drawn from the dictionary that came with the 
FORTH package, or from words that you have previously 
defined (and thereby added to the dictionary) using the 
procedure we are describing. 

4. The FORTH word [;], pronounced “semicolon.” 

Some Simple Examples 

To see how a new word can be defined, let’s assume that we 
want to have a word that squares the number at the top of the 
stack. From Chapter 3 we know that squaring a number can be 
performed with the sequence 

DUP * 

Therefore, if we call our new word SQUARE, its colon- 
definition (the standard FORTH nomenclature) would be 

: SQUARE DUP * ; 

After typing in this line and pressing Return, SQUARE is in the 
dictionary, ready to be used. To verify that it works, you can try 
sequences such as these: 

2 SQUARE . 4 OK 
-8 SQUARE . 64 OK 
17 SQUARE . 289 OK 

With SQUARE now defined and compiled (in the dictionary), 
it can serve as a building block for more new words. For in¬ 
stance, the definition of a word that cubes a number on the 
stack might be 

: CUBE DUP SQUARE * ; 

Applying CUBE to our three preceding examples: 

2 CUBE .8 OK 
-8 CUBE . -512 OK 

17 CUBE . 4913 OK 

Now both words can be used to raise a number to the sixth 
power, with the colon-definition 

: N**6 SQUARE CUBE ; 

which allows us to do this: 

2 N**6 . 64 OK 
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(The example values -8 and 17 cannot be demonstrated with 
[N**6], because they produce a result that is not representable 
as a number; the result exceeds the upper limit of 32,767.) 

By now you have a clear idea of the “extensibility” of FORTH, 
so we’ll forego additional examples. Hopefully, though, you 
also have an appreciation for the potential of this very unique 
feature. Admittedly, this building block approach can be 
applied in other computer languages—typically as “nested 
subroutines” — but not with the programming ease provided in 
FORTH. 

DEFINITIONS ARE COMPILED 

As mentioned in Chapter 1, every FORTH system includes 
two special programs that translate the character combinations 
which form FORTH words into electrical patterns the computer 
(or, more precisely, the computer’s central processing unit) can 
understand. These two programs are called the interpreter and 
the compiler. 

An interpreter is a program that translates and executes each 
line as it is typed in from the keyboard. Once executed, the 
commands (words) on the line are scrapped, and the interpre¬ 
ter sits and waits for another line. By using FORTH’s 
interpreter — as you have been doing in the preceding 
chapters—you are, in effect, employing the computer as a cal¬ 
culator. 

By contrast, a compiler is a program that translates an entire 
program into “machine code” patterns, and stores these pat¬ 
terns in memory, for later execution. So that the program (a 
colon-definition, in FORTH) can be found when it is to be exe¬ 
cuted, the compiler registers the word’s name and the memory 
address of its machine code in the dictionary. 

To execute a compiled program, you simply type in its word 
name. FORTH will take that name and search the dictionary for 
it. Then, upon finding the name, FORTH uses the accompany¬ 
ing address to locate and execute that particular name’s ma¬ 
chine code program. The compiler also performs the same kind 
of dictionary search each time it translates a colon-definition 
that includes that word name. 

ADDING COMMENTS TO DEFINITIONS 

If a colon-definition is to be printed out, for use by someone 
other than yourself (or by yourself, at a later date), it is worth¬ 
while to document the definition, so it remains understandable. 
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FORTH allows you to add comments anywhere within the 
definition, by entering them in this format: 

( comment) 

Unlike most languages, the left parenthesis is a word, rather 
than simply a punctuation mark. This word, [(], which must be 
followed by at least one blank space, tells FORTH that the text 
between the left parenthesis and the right parenthesis—or a 
Return — represents a nonexecutable comment. 

Comments should be used after a defining word name, to tell 
what the word does and what effect it has on the stack. Com¬ 
ments should also be used after most lines of the definition, to 
tell what that particular line is accomplishing. 

If you studied the examples in the preceding chapters, you 
should already have a good idea of what kinds of comments 
should accompany a definition. 

INCLUDING MESSAGES IN DEFINITIONS 

All of the preceding programs in this book have been in¬ 
nocuous little sequences that accepted just a few parameters 
as “input,” and produced just one or two numbers as “output.” 
These kinds of programs require very little mental effort to in¬ 
terpret the display; the number that precedes FORTH’s ubiqui¬ 
tous OK is inevitably the result. 

With programs that produce more than a single-number re¬ 
sult, or programs that must be interpreted by an untrained 
operator, things can get confusing. To help alleviate these 
problems, FORTH provides a word that outputs a user-defined 
message to the display and/or printer. This word, [.”], requires 
the format 

." your message here" 

Being nothing more than printed comments, messages fol¬ 
low the rules of comments. That is, the beginning word [.“] 
must be followed by at least one space, but no space is needed 
between the end of the message and the terminator (”). Mes¬ 
sages can only be used within colon-definitions; they cannot 
stand alone. 

The colon-definition 

: PRINT-N**2 ( Print N squared ) 

' ( n-) 

." N SQUARED IS " 

SQUARE . ; 
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combines the previously defined word SQUARE with a mes¬ 
sage, to produce a more meaningful output. A sample run is: 

3 PRINT-N**2 N SQUARED IS 9 OK 

Well, this does the job, but the message is crammed onto the 
same line as the input value and the word name. Let’s pretty-up 
the printout with a carriage return or two. 

Carriage Returns Make Printouts More Readable 

Realizing that FORTH programmers are tidy people who 
would want to format their output, the FORTH-79 Standards 
Team included a carriage return/line feed as a Required Word. 
This word, CR, causes the display screen cursor or the printer 
head to advance to the leftmost position of the next line. 

Now we can add a couple of carriage returns to 
[PRINT-N**2] —and have it print out the input—to give this 
new definition: 

: PRINT-N**2 ( Print N squared ) 

( n-) 

DUP CR. ( Print N) 

." SQUARES IS " ( Message) 

SQUARE . CR ; ( Print N**2) 

Now our printout is of the form: 

3 PRINT-N**2 

3 SQUARED IS 9 

OK 

TAKE INVENTORY WITH VLIST 

As was mentioned in Chapter 1, if you ever want to see a list 
of all the words that are in your FORTH dictionary at any given 
time, simply type in the word 

VLIST 

and press Return. 
Unlike the stack, which “grows” toward lower memory, the 

dictionary “grows” toward higher memory. Each word name 
that you add with a colon-definition will be recorded in the dic¬ 
tionary at a higher address than the previously defined word. 
Since VLIST starts at the top of the dictionary and works 
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downward, the listing will show the most recently defined word 
and work backwards, chronologically. 

Most FORTHs provide the memory address along with the 
word name, so after defining SQUARE, CUBE, AND N**6, the 
beginning of the listing may look like this: 

VUST 

336 N**6 

325 CUBE 

316 SQUARE 

309 EDITOR 

( Continue with lower entries) 

FORGET A WORD TO DELETE IT 

If you find that one of your recently defined words is no 
longer needed, or contains errors, you can delete that word 
from the dictionary with FORGET. The required format for 
FORGET is: 

FORGET name 

However, FORGET deletes not only the named word, but also 
every word that was defined thereafter. Therefore, if you decide 
to delete SQUARE, the command sequence 

FORGET SQUARE OK 

will delete CUBE and N**6 as well. In this case, the additional 
two deletions are desirable, since both include [SQUARE] in 
their definitions. 

REDEFINING A WORD 

When it comes to colon-definitions, FORTH does not differ¬ 
entiate between new words that are being added to the diction¬ 
ary and those that are already in the dictionary. Besides allow¬ 
ing you to define new, uniquely named words, FORTH allows 
you to redefine existing words, if you so choose. If you enter a 
colon-definition for a name that is already in the dictionary, 
FORTH will issue a warning message of the form 

name NOT UNIQUE OK 
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but (as the “OK” implies) the new definition is still entered into 
the dictionary. 

Since FORTH itself provides no protection against multiple 
definitions (although some FORTH packages do), any word in 
the dictionary can be redefined. For instance, someone who's 
really weird may decide to redefine [+] as a subtraction word, 
via the definition 

Thereafter, that person’s FORTH system would produce opera¬ 
tions such as 

3 2 + 1 OK 

Needless to say, you shouldn’t allow a first-grader around such 
a person. (Come to think of it, please don’t allow me around 
such a person!) 

FORTH Definitions Are Cumulative 

What about earlier words whose definitions include the newly 
redefined word? Are those words affected by the redefinition? 
No, they are not affected; they will operate exactly as they did 
before the redefinition! The reason for this is that FORTH 
definitions are cumulative. Once a word name is in the diction¬ 
ary, its operation will not change unless that word itself is re¬ 
defined. 

What happens to an earlier definition when a word name is 
redefined? Nothing. The earlier definition remains in the 
dictionary—as you will see if you run a VLIST—and will again 
become the active definition if you ever FORGET the re¬ 
definition. 

In practice, try to avoid redefining words (especially FORTH’s 
Required Words) unless it’s absolutely necessary. You are just 
courting disaster. 

['] Discovers Whether a Word Is in the Dictionary 

When in doubt, you can find out whether or not a word name 
is already in the dictionary without running a VLIST. The word 
that lets you do this is [’], pronounced “tick,” which has the 
form 

name 

[’] leaves the dictionary address of the named word on top of 
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the stack, so if we want to find out whether SQUARE is in the 
dictionary, the sequence 

' SQUARE OK 

. 316 OK 

shows that SQUARE is in the dictionary, at address 316. 
Incidentally, applying [’] or FORGET to a name that is not in 

the dictionary results in an error, which causes the stack to be 
cleared. Most FORTHs will also issue an error message, so if 
SQUARE were deleted, you would receive an indication such as 

SQUARE ? 

RENAMING A WORD 

A word can be renamed, of course, which is entirely different 
than redefining it. If a word is renamed, the dictionary will con¬ 
tain two different names that have the same definition, and 
either name can be used in a subsequent definition. If a word is 
redefined, the dictionary will contain one word name that has 
two different definitions, of which only the most recently 
defined definition applies. 

Renaming is almost exclusively used to make a FORTH pro¬ 
gram compatible with some other version of FORTH. For in¬ 
stance, in Chapter 3 we discussed a word that duplicates the 
top number on the stack only if that number is nonzero. This 
word is called [?DUP] in FORTH-79 and [-DUP] in fig-FORTH. 
Before a fig-FORTH program that contains [-DUP] can be run 
on a FORTH-79 compatible system, the definition 

= -DUP ?DUP ; 

must be added to the FORTH-79 dictionary. 

THE DISK AND THE EDITOR 

A program isn’t very useful if it disappears when you turn off 
the power, so you must know how to preserve it on some 
“mass storage” media; either disk or tape. FORTH has words to 
communicate with both media, but since most FORTH pack¬ 
ages come on disk, our discussion here will be limited to disk- 
related words. 

Besides saving the new dictionary words (that is, the words 
that comprise your program), you will also want to save a copy 
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of the definition text for those words—the source code — in 
case you want to alter and recompile them later. Virtually all 
FORTH packages include a text-altering program called an 
editor. An editor is not a required element of the FORTH sys¬ 
tem, however, so neither the FORTH-79 Standard nor the fig- 
FORTH Installation Manual has any editor specifications. As a 
result, editor commands vary from one FORTH package to an¬ 
other. Since this is a general-purpose book, we will not de¬ 
scribe the details of any particular package, but instead inves¬ 
tigate features found in most FORTH editors and take a brief 
look at a typical editor command set. 

DISK TERMINOLOGY 

The easiest way to remember FORTH’s disk-related words is 
to introduce them in the order in which they would be used. 
Before discussing disk operations, however, we must define 
some terms that will appear throughout these discussions. 

In FORTH, data is transferred to and from the disk in blocks, 
where a block consists of 1024 bytes. The number of blocks 
that can be held on any one disk depends on the storage ca¬ 
pacity of that particular disk. For example, a single 5V4-inch, 
13-sector floppy diskette holds about 110 blocks of data. 

Disks can also be used to save source programs—ASCII text 
you typed in using the editor. In this case, the FORTH literature 
refers to the 1024-byte mass storage unit as a screen rather 
than a block. Thus, you will encounter FORTH words that cause 
a “screen” to be compiled and others that cause a “block” to 
be executed. Screens are usually organized as 16 lines of 64 
characters (16 x 64 = 1024). However, some display screens 
are organized as 24 lines of 40 characters; these use only 960 
of the screen’s 1024 bytes. 

Each block or screen being transferred to or from disk is 
maintained in an area of memory called a block buffer, which is 
also 1024 bytes long. Fig. 5-1 shows the transfer paths between 
disk and a computer terminal, via a block buffer. 

Unlike most systems, FORTH automatically does all the 
buffer management, so you rarely need to worry about where a 
particular block is stored in memory—or whether it’s even in 
memory at all! To access any given block, you simply “load” 
that block by specifying its number. If the block is already in 
memory, FORTH will immediately display the OK message. If 
the block is on disk, FORTH will read it into a block buffer, then 
display the OK message. 
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How FORTH Manages Block Buffers 

Some FORTH systems have many block buffers, others have 
as few as two. Associated with each block is a system identifier 
containing the number of the block and a flag that indicates 
whether the block has been modified (or updated) since being 
read into memory. 

When you wish to load in a block, FORTH checks whether 
the block is in memory. If the block is in one of the buffers in 
memory, FORTH does nothing but issue the OK message. If the 
block is still on disk, FORTH will read it in to the most recently 
referenced block buffer. However, if that buffer has been up¬ 
dated, its contents are first written to disk before the new block 
is read in. This technique ensures that updated data in memory 
is never “clobbered” by new data. As you can see, then, the 
only difference between a system with many buffers and a sys¬ 
tem with two buffers is that the two-buffer system will be 
slower, because it will require more disk accesses. 

DISK OPERATIONS 

Now that you are familiar with the basic terminology of disk 
operations, we can introduce the FORTH words that transfer 
data to and from the disk. Rather than simply describe these 
words one by one, we will present a scenario of a typical pro¬ 
gramming session, from creating the source program to 
executing the compiled object program, and interject descrip¬ 
tions of the appropriate words in the order you would use 

them. 
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STANDARD SEQUENCE OF DISK OPERATIONS 

There are nine fundamental steps for creating a FORTH pro¬ 
gram using disk. They are: 

1. Empty all block buffers. 
2. Select a screen to hold the new words. 
3. Execute the editor program. 
4. Type in the definitions for the new words. 
5. Edit the text on this screen, as required. 
6. Write the source program onto the disk. 
7. Compile the source text from disk. This enters the new 

words into the dictionary. 
8. Execute the new words. 
9. If all definitions are correct, you are done. If not, list the 

appropriate screen text on the display and return to 
Step 3. 

Emptying the Block Buffers 

The first step here, emptying the block buffers, should be the 
initial step in every editing session. Just as pressing the Reset 
key on a computer keyboard puts the processor in a known 
state, emptying the block buffers puts those buffers in a known 
state. The FORTH word that does this, 

EMPTY-BUFFERS 

does not necessarily affect the contents of the block buffers 
(that’s implementation-dependent), but marks each buffer as 
“empty,” which tells the system “this buffer contains no useful 
information, and is available for storing disk data.” 

Selecting a Screen 

With the block buffers initialized, we can now select one 
block on the disk as a “screen” to hold the text for our new 
definitions. The active screen is identified by the value of the 
user variable SCR, so screen 50 can be selected by entering the 
sequence 

50 SCR ! 

Using an Editor 

The words that allow us to enter text and alter that text are 
contained in the editor program. An editor has its own diction- 
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ary, separate from FORTH’s main dictionary, and is invoked 
with the FORTH word EDITOR. 

Editors differ from one system to another, but all editors have 
commands to select a screen, to move the cursor, and to add 
and delete specific lines. Most editors also allow you to change 
strings of characters within a line, so you don’t have to retype 
the entire line. Table 5-2 lists the command for the editor shown 
in the fig-FORTH Installation Manual. Developed by William F. 
Ragsdale of the FORTH Interest Group, this editor is typical of 
those included in the popular FORTH packages on the market. 

Note there is no EDITOR command in Table 5-2, nor is there a 
command to change the variable SCR. These commands are 
not listed because they are built into the definitions of LIST 
(which edits a previously created screen) and CLEAR (which 
creates a new screen). Some other FORTH words described in 
this section are also built into editor commands, but they will 
be covered separately for the sake of completeness. 

The organization of text on a screen is, of course, up to you. 
However, standard FORTH practice is to use the top line to hold 
a comment describing the contents of that screen. For in¬ 
stance, the top line may read ( DOUBLE-WORD MULTIPLY & 
DIVIDE ) if the screen holds those word definitions. Comments 
are always ignored by the compiler, so you are encouraged to 
comment your programs liberally. 

UPDATE Edited Block Buffers 

Once you have completed editing an entire screen, you must 
“tell” FORTH that this screen has information that must be 
saved on disk the next time a disk transfer takes place. You can 
so mark the current screen as “saveable” by executing the 
word 

UPDATE 

(The editor in Table 5-2 automatically marks the screen as UP- 
DATEd at the end of every editing command.) 

Writing Blocks on Disk 

The final command in any editing session is SAVE-BUFFERS 
(called FLUSH in fig-FORTH). This command takes all screens 
or blocks that have been marked as UPDATEd and writes them 
to disk. Since all buffers carry the screen/block number, there 
is no need to specify these numbers with the SAVE-BUFFERS 
command. 



Add Your Own Words to FORTH 77 

Putting the Source Program Into the Dictionary 

At this point, the text (or source program) for the new words 
is saved on disk. To enter these new words into the FORTH 
dictionary, you must execute the word LOAD. For example, the 
sequence 

50 LOAD OK 

compiles the words in screen 50 into the dictionary, exactly as 
if you had typed them in from the keyboard. That is, once 
LOADed, the new words can be executed by typing in their 
names, as usual. 

Making Changes to a Program 

Because your source text is saved on disk, you can easily 
change the definitions and recompile them, if you ever wish to 
do so. To make these changes, LIST the source program on the 
screen, then invoke the editor once again to start a new editing 
session. For example, 

50 LIST OK 

will list the source program we just saved on disk. Before 
LOADing the updated source program, you may wish to 
FORGET the original definitions in the dictionary. 

SOME MORE TEXT-PREPARATION WORDS 

Many programs will occupy more than one screen. In stand¬ 
ard FORTH-79, you can compile these programs with a series 
of LOADs. For instance, 

50 LOAD 51 LOAD 52 LOAD OK 

will cause screens 50, 51, and 52 to be loaded in from the disk 
and compiled into the dictionary. However, the Reference Word 
Set contains a Standard Word Definition that does the same 
job. This word, 

--> 

placed at the end of a screen, tells FORTH to continue interpre¬ 
tation at the next sequential screen. Therefore, if screens 50 
and 51 are each terminated with [-->], all three screens (50, 51, 
and 52) will be compiled when you execute the sequence 

50 LOAD OK 
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Table 5-2. A Typical Editor Command Set 

Command Description 

Screen Editing Commands 

s LIST List screen s and select it for editing. 

s CLEAR Clear screen s and select it for editing. 

si s2 COPY Copy screen si to screen s2. 

L Re-list the current screen. The cursor 
line is displayed after the screen listing, 
to show the cursor position. 

FLUSH Used at the end of an editing session to 
write all updated text to disk. 

Cursor Movement Commands 

TOP Move the cursor to the start of the screen. 

c M Move the cursor c characters to the right 
(if c is positive) or to the left (if c is 
negative). 

Line Editing Commands 

P next Used after LIST or CLEAR to input new text 
to screen s. Example: 

0 P THIS IS HOW 
1 P TO INPUT TEXT 
2 P TO LINES 0, 1 AND 2 OF THE SCREEN. 

n D Delete line, but save it in the pad. 

n T Type line n and save it in the pad. 

n R Replace line n with the text in the pad. 

n 1 Insert the text from the pad at line n, moving 
the previous line n and subsequent lines down. 
Line 15 is lost. 

n E Erase line n with blanks. 

n S Spread at line n. Line n becomes blank; 
previous line n and subsequent lines move 
down. Line 15 is lost. 

String Editing Commands 

F text Find the next occurrence of the string text, 
starting at the current cursor position. If 
the string is found, the cursor is moved to 
the end of the string and the line is 
printed. If the string is not found, an 
error message is printed and the cursor 
is moved to the top of the screen. 

B Used after F to back up the cursor to the 
beginning of the text string, to prepare 
for editing this string. 
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Table 5-2.—cont. A Typical Editor Command Set 

Command Description 

N Used after F to find the next occurrence of 
the text string. 

X text Find and delete the next occurrence of the 
string text. 

C text Insert the string text at the current cursor 
position. 

TILL text Delete characters on the current line, from 
the cursor position to the end of the string 
text. 

C DELETE Delete c characters to the left of the cursor. 

The Reference Word Set contains another compiler-control¬ 
ling word, the uncontrolled word 

;S 

This word stops interpretation of a screen, often at the end of a 
[-->] sequence. The word [;S] can also be used to separate 
word definitions from comments at the end of a screen. 

Finally, the uncontrolled word INDEX displays the first line 
(as mentioned previously, usually a comment) of a specified 
range of screens. For example, the sequence 

50 52 INDEX 

will cause the first lines of screens 50, 51, and 52 to be dis¬ 
played. INDEX is useful for finding a screen whose number you 
don’t remember. 

fig-FORTH DEFINITION WORDS AND DISK WORDS 

Except for EDITOR, fig-FORTH has all the words summarized 
in Table 5-1. In fig-FORTH, SAVE-BUFFERS is called FLUSH. 

In addition, fig-FORTH has a variable called FENCE that pro¬ 
hibits FORGETting below a user-specified word in the diction¬ 
ary. For example, to protect the word MYWORD and its prede¬ 
cessors, execute this sequence: 

' MYWORD FENCE ! 

to store the address of MYWORD into the variable FENCE. 
Thereafter, any attempt to FORGET the word MYWORD, or a 
word defined previous to MYWORD, will produce an error 
condition. If you ever do wish to permit FORGETting below the 
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MYWORD level, you will need to change the value of FENCE. To 
eliminate the FENCE effect entirely, execute 

0 FENCE ! 

Table 5-3. Words Added to FORTH in Chapter 5 

Word Stack Action 

SQUARE 

CUBE 

N**6 

n-n**2 

n-n**3 

n-n**6 

Squares a number. 

Cubes a number. 

Raises a number to the sixth 
power. 

SUMMARY 

This chapter described how to add words to the FORTH dic¬ 
tionary using colon-definitions, including some remarks about 
comments and messages. We also discussed the implications 
of redefining, renaming and deleting words, and showed how 
word definitions could be saved on disk. 

Table 5-3 summarizes words defined in this chapter that can 
be added to FORTH. 
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Table 2-2. fig-FORTH Arithmetic Words 

Word Stack Action 

+ nl n2-sum Adds two numbers. 

1 + n-n+1 Adds 1 to number. 

2+ n-n+2 Adds 2 to number. 

D+ dl d2-dsum Adds two double numbers. 

- nl n2-diff Subtracts n2 from nl. 

* nl n2-prod Multiplies numbers nl 
and n2, leaving single¬ 
precision product. 

M* nl n2-dprod Multiplies numbers nl 
and n2, leaving double¬ 
precision product. 

U* uni un2-ud Multiplies unsigned 
numbers nl and n2, 
leaving double-precision 
product. 

/ nl n2-quot Divides nl by n2, leaving 
quotient. 

MOD nl n2-rem Divides nl by n2, leaving 
remainder with sign of nl. 

/MOD nl n2-rem quot Divides nl by n2, leaving 
remainder and quotient. 

Ml d n-rem quot Divides double dividend 
by single divisor, 
leaving single remainder 
and quotient. 

U / ud un-rem quot Divides unsigned double 
dividend by unsigned 
single divisor, leaving 
single remainder and 
quotient. 

M/MOD ud un-rem dquot Same as [U/], but leaves 
single remainder and 
double quotient. 

*/ nl n2 n3-quot Multiplies nl by n3, then 
divides the result (a 32-bit 
intermediate product) by n3, 
leaving a single quotient. 

‘/MOD nl n2 n3 - 
rem quot 

Same as */ , but leaves 
both quotient and remainder. 

MINUS n-n Reverses the sense of a 
number, leaving its two’s 
complement. 



46 FORTH Programming 

As you know, both PICK and ROLL based their operation on 
a “stack-depth” index at the top of the stack. If the index was 2, 
the second number was copied or rotated; if the index was 3, 
the third number was copied or rotated, and so on. If we think 
of a number as a 16-bit value (which it is), and a 32-bit double 
number as two 16-bit values (high-order 16 bits and low-order 
16 bits), the problem of copying or rotating a double number 
becomes a matter of applying PICK or ROLL twice, once for 
each half of the double number. 

The double number copy and exchange operations we’ll be 
giving here also begin with having an index on the top of the 
stack, but in this case the index will identify the double number 
to be operated on. Fig. 3-1 shows the relationship between 
number indexes and double number indexes. As you can see, 
for any double number index d, the single number indexes n 
and n + 1 can be derived using these equations: 

n = 2d — 1 and n+1 = 2d 

However, if we apply these equations directly to access a 
double number, we will be “off” by one stack value, because 
they don’t account for the fact that there are two indexes at the 
top of the stack, rather than just one. To accommodate this 
difference, just add one to each equation, to give: 

n = 2d and n+1 = 2d + 1 

At this point we are ready to look at two program sequences, 
one that will copy the nth double number onto the top of the 
stack (a 2PICK sequence, if you will) and another that will ro¬ 
tate the nth double number onto the top of the stack (a 2ROLL 
sequence). These sequences are shown in Examples 3-1 and 
3-2, respectively. In a later chapter we will show how sequences 
such as these can be defined as words; they are put in the dic¬ 
tionary to be thereafter used like the predefined words. 

Incidentally, the text enclosed in parentheses in these exam¬ 
ples is comments, to describe what’s taking place. This is the 
standard way comments are shown in FORTH. Note, too, that 
there is a space between the left parenthesis and the beginning 
of the comment. This space is required, because [(] is actually a 
Required Word, rather than simply a punctuation mark! No 
space is required between the end of the comment and the 
right parenthesis, however. 

These examples also illustrate a good FORTH programming 
practice: keep the lines short! Example 3-1 could have been 
written like this: 

2 * DUP 1+ PICK SWAP PICK 
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INCREMENT A NUMBER IN MEMORY 

In Chapter 2 we discussed adding values to numbers on the 
stack, using the words [1+] and [2+]. FORTH offers a similar, 
but more versatile word called [+!], which adds a number on 
the stack to a number in memory. For example, 

5 200 +! 

adds the value 5 to the number stored at address 200. Similarly, 

-5 200 +! 

subtracts 5 from the number stored at address 200. 

Other Arithmetic Operations on Memory 

Clearly, it is also possible to perform a multiplication or a 
division on a number in memory, by simply fetching the 
number onto the stack, operating on it, then returning the re¬ 
sult to memory. Before fetching the number, however, you 
must duplicate the address, so that it is available for the store 
operation. 

The normal sequence for a multiply or divide operation on 
memory is: 

DUP @ ( Fetch the number from memory) 

ROT ( Rotate operand to top of stack) 

( Perform the operation) 

SWAP ( Put the address on top) 

! ( Return the result number to memory) 

Adding a value to a double number in memory is somewhat 
more complex, though, due to the amount of stack manipula¬ 
tion that is required. Example 4-3 shows a sequence that will 
do the job, along with a “snapshot” of the stack after the mem¬ 
ory contents have been fetched. The snapshot includes a 
number on each level of the stack, which will help you under¬ 
stand what the first ROLL is doing. You should be able to follow 
the sequence from there. 

MOVE A BLOCK OF DATA IN MEMORY 

Many applications require blocks of information to be copied 
from one part of memory to another. For instance, data proc¬ 
essing often involves copying a table of numbers from one file 
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3. The sequence of previously defined words that tell what 
operation the new word is to perform. The word(s) used 
here can be drawn from the dictionary that came with the 
FORTH package, or from words that you have previously 
defined (and thereby added to the dictionary) using the 
procedure we are describing. 

4. The FORTH word [;], pronounced “semicolon.” 

Some Simple Examples 

To see how a new word can be defined, let’s assume that we 
want to have a word that squares the number at the top of the 
stack. From Chapter 3 we know that squaring a number can be 
performed with the sequence 

DUP * 

Therefore, if we call our new word SQUARE, its colon- 
definition (the standard FORTH nomenclature) would be 

: SQUARE DUP * ; 

After typing in this line and pressing Return, SQUARE is in the 
dictionary, ready to be used. To verify that it works, you can try 
sequences such as these: 

2 SQUARE . 4 OK 
-8 SQUARE . 64 OK 
17 SQUARE . 289 OK 

With SQUARE now defined and compiled (in the dictionary), 
it can serve as a building block for more new words. For in¬ 
stance, the definition of a word that cubes a number on the 
stack might be 

: CUBE DUP SQUARE * ; 

Applying CUBE to our three preceding examples: 

2 CUBE .8 OK 
-8 CUBE . -512 OK 

17 CUBE . 4913 OK 

Now both words can be used to raise a number to the sixth 
power, with the colon-definition 

: N**6 SQUARE CUBE ; 

which allows us to do this: 

2 N**6 . 64 OK 
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Fig. 6-1. DO-LOOP operation. 

index is used to number the printout. The colon-definition for 
this new word, PRINT8-NUMBERED, is: 

: PRINT8-NUMBERED 

9 1 DO C'R I . . LOOP ; 
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Now, if the stack holds the same eight numbers as before, 11 
through 18, PRINT8-NUMBERED will generate this printout: 

PRINT8-NUMBERED 

1 18 
2 17 
3 16 
4 15 
5 14 
6 13 
7 12 
8 11 OK 

The Index As An Operand 

The index value can also be used as an operand within a 
DO-LOOP. For instance, in Chapter 2 we presented this equa¬ 
tion for the circumference of a circle: 

c = 7rd = 355*d 

113 

and showed how the word [*/] could be used to make such a 
calculation. Example 6-1 formalizes the FORTH calculation se¬ 
quence as a colon-definition for the word CIRCUM, and in¬ 
cludes a colon-definition for a second word, PRINT-CIRCUM, 
which prints a list of diameters and corresponding circumfer¬ 
ences. 

For example, we can get a list of circumferences for diam¬ 
eters between 60 and 69, as follows: 

70 60 PRINT-CIRCUM 

60 188 
61 191 
62 194 
63 197 
64 201 
65 204 
66 207 
67 210 
68 213 
69 216 OK 

Indent Lines Within a DO-LOOP 

You should note that the line 

CIRCUM . 
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Example 6-1. Circumference of a circle 

: CIRCUM 
( Calculate circumference of a circle from its diameter ) 

( Stack: diam-circum ) 

355 113 *1 ; 

: PRINT-CIRCUM 

( Print a list of diameters and their corresponding ) 

( circumferences, incrementing diameter by one each time. ) 

( Stack inputs end-f 1 and start are the first diameter and ) 

( the last diameter plus one. ) 

( Stack: end + 1 start-) 

DO CR I DUP . ( Print diameter) 

CIRCUM . ( Print circumference ) 

LOOP ; 

in the PRINT-CIRCUM definition in Example 6-1 is indented one 
space to the right of DO. This is the standard way of delineating 
the boundaries and range of influence of DO-LOOPs and other 
control structures, and shows clearly which instructions are 
included in the structure. As a matter of good programming 
practice, you should get into the habit of aligning the DO and 
LOOP lines, and indenting all lines between these two words. 

+ LOOP ADDS ANY NUMBER TO THE INDEX 

FORTH provides an alternate type of DO-LOOP that allows 
the index to be incremented or decremented by any number 
value, not just +1. Like the standard DO-LOOP, this type, 

limit start DO . . . n +LOOP 

uses the top number on the stack (start) as the initial value of 
the index, but changes the index by n each time +LOOP is 
encountered. A DO- + LOOP stops looping when the index 
equals or exceeds limit. 

Put more concisely, if n is positive, limit must be greater than 
start and looping continues until the index has been increased 
to a value equal to or greater than limit. If n is negative, limit 
must be less than start and looping continues until the index 
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has been increased to a value equal to or less than limit. Thus, 
a sequence of the form 

10 o do . . . 2 +LOOP 

will cause the enclosed operation (shown as here) to be 
repeated five times, with index values of 0, 2, 4, 6, and 8, re¬ 
spectively. Similarly, a sequence of the form 

0 10 DO . . . -2 +LOOP 

will also cause the specified operation to be repeated five 
times, but with index values of 10, 8, 6, 4, and 2, respectively. 

Clearly, the +LOOP form is useful for applications in which 
certain index values are to be skipped, because it gives you 
every “nth” value and bypasses all others. For instance, our 
PRINT-CIRCUM word could be redefined to print out a list of 
circumferences in which the diameter increases by two with 
each loop. This is shown in Example 6-2. 

Example 6-2. Print alternate circumferences 

: PRINT-CIRCUM-2 

( Print a list of diameters and circumferences, increasing ) 

( the diameter by two each time. ) 

( Stack: limit start-) 

DO CR I DUP . ( Print diameter ) 

CIRCUM . ( Print circumference ) 

2 ( Add two to index ) 

+ LOOP ; 

Now, if we execute PRINT-CIRCUM-2 for diameters between 
60 and 70, we get: 

70 60 PRINT-CIRCUM-2 

60 188 
62 194 
64 201 
66 207 
68 213 OK 

The upper limit diameter, 70, was not processed because at 
that point the index equaled limit. 



Do-Loops 89 

+ LOOP IS USEFUL FOR MEMORY OPERATIONS 

Operations on consecutive numbers or double numbers in 
memory often employ the + LOOP variant to increment the ad¬ 
dress. Since each number has an address that is two greater 
than the preceding number, and each double number has an 
address that is four greater than the preceding double number, 
consecutive items can be referenced by applying an increment 
of two or four to +LOOP. 

Example 6-3 defines the word AVG-MEMORY, which takes the 
average of the numbers contained between addresses addrl and 
addr2. This sequence begins by calculating a byte count ( addr2 
- addrl ) and converting it to a number count. At this point the 
stack contains ( addrl count ), where count is the number that 
will become the divisor in the averaging calculation. 

Knowing that we will need to add “count” numbers that are 
two bytes apart, we form the DO-LOOP’s upper limit by multi- 

Example 6-3. Average the numbers in memory 

PICK 

( Leave copy of nl-th number on top of the stack ) 

( nl-n2 ) 

2 * ( Address index = 2*nl) 

SP@ + ( Address of n2 = top of stack + 

@ ; ( Fetch nl-th number ) 

index) 

AVG-MEMORY 

( Average the n 

( from addrl to 

( addrl addr2 - 

OVER - 

2/1 + 
DUP 2 * 

0 
SWAP 0 

DO 

3 PICK I + 

@ + 
2 

+ LOOP 

SWAP / 

SWAP DROP ; 

umbers contained in memory, ) 

addr2. ) 

— average ) 

( Calculate byte count) 

and convert it to number count) 

DO-LOOP limit = 2*count) 

To start, total = 0) 

Put DO-LOOP limits on top) 

( Address = addrl + I) 

( Add next number to total) 

(1 = 1 + 2) 

( Average = total/count) 

( Delete addrl) 
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plying count by two ( DUP 2 * ). Then, after initializing the 
“total" to zero, the stack holds the values ( addrl count limit 0). 
With the line ( SWAP 0 ), we put the DO-LOOP parameters limit 
and start (0) on top of the stack, and we’re ready to execute the 
DO-LOOP. 

The DO-LOOP removes the top two numbers, limit and 0, 
from the stack, then performs this sequence: 

1. Copy addrl and add I to it, to form the effective address of 
a number ( 3 PICK I + ). 

2. Fetch the number from memory and add it to the total ( @ 

+ )• 
3. Increment I by two and compare it to limit. 
4. If I equals limit, terminate the loop; otherwise, return to 

Step 1. 

Upon completion of this loop, the stack will hold the values 
( addrl count total ). The average is obtained by swapping 
count and total, then performing a divide. To “clean up" the 
stack, addrl is deleted with ( SWAP DROP ), leaving just the 
average on the stack. 

The word PICK is a Required Word in FORTH-79, but is not 
included in fig-FORTH. 

NESTED DO-LOOPS 

DO-LOOPs can also be placed inside other DO-LOOPs. That 
is to say, DO-LOOPs can be nested. Nesting allows you to exe¬ 
cute a series of repetitive operations in an “inner” DO-LOOP 
each time the “outer” DO-LOOP is executed. 

Moreover, the two DO-LOOP types just mentioned can be 
nested in any combination, so it is possible to imbed a [DO . . . 
LOOP] within a [DO . . . +LOOP], or a [DO . .. +LOOP] within 
another [DO . . . +LOOP], or whatever. 

To delineate the two DO-LOOPs, the inner loop is usually in¬ 
dented one space to the right, so that on paper a nested DO- 
LOOP structure should have the overall appearance of Fig. 6-2. 
DO-LOOPs can be nested to any practical level, but it’s doubt¬ 
ful whether you will ever need to nest them deeper than three 
or four levels. 

Indexes for Nested DO-LOOPs 

Recall that the word I leaves the current value of a DO-LOOP 
index on the top of the stack. In nested DO-LOOPs, I will leave 
the index of the loop in which it appears. 



Do-Loops 91 

: NESTED-DO-LOOPS 

limitl startl 

DO . . . 

Limits for outer loop) 

Start of outer loop) 

Iimit2 start2 

DO . . . 

Limits for inner loop) 

Start of inner loop) 

n2 

+ LOOP End of inner loop) 

nl 

+ LOOP End of outer loop) 

Fig. 6-2. Nested DO-LOOPS. 

FORTH provides a similar word, J, that leaves the index of the 
next outer loop. It is used within nested DO-LOOPs of the form 

DO . . . DO . . . J . . . LOOP . . . LOOP 

To illustrate nested DO-LOOPs, Example 6-4 defines the word 
SALES-TAXES, which prints taxes at four different rates (4, 5, 6, 
and 7%) over a range of dollar amounts, in $20.00 increments. 
For example, the input sequence 

200 100 SALES-TAXES 

will produce this printout: 

100 4 5 6 7 

120 4 6 7 8 

140 5 7 8 9 

160 6 8 911 

180 7 9 10 12 OK 

LEAVE TERMINATES A DO-LOOP 

You can force a DO-LOOP to terminate at any time with the 
word LEAVE, which sets the loop limit equal to the current 
value of the index. Since LEAVE is usually executed as the re- 
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Example 6-4. Print sales taxes at four rates 

: SALES-TAXES 

( Print sales taxes at 4, 5, 6, and 7% for a range of ) 

( amounts, in $20 increments. ) 

( high-amount low-amount — ) 

DO 

CR I . ( Print amount) 

8 4 

DO 

J I 100 */ . ( Calculate tax) 

( and print it) 

LOOP 

20 ( Increment by 20) 

+ LOOP ; 

suit of some conditional test, we will postpone discussing it 
further until Chapter 7. 

THE RETURN STACK 

The stack we have been referring to throughout this book is 
called the data stack (or sometimes the computation stack) in 
the FORTH literature. Every FORTH system contains a second 
stack, called the return stack, for keeping track of DO-LOOP 
limits and for various other “housekeeping” tasks. 

The return stack, like the data stack, operates on a “last-in, 
first-out” basis. The last number pushed onto the return stack 
will be the first number pulled from it. Moreover, the return 
stack, like the data stack, grows toward low memory; each 
number pushed onto the stack will be stored at a lower-valued 
address than its predecessor. 

For DO-LOOP operations, FORTH uses the return stack to 
hold boundary values. For example, Fig. 6-3A shows how these 
values are arranged on the return stack for a single (unnested) 
DO-LOOP application. At the end of each loop, the top value 
(“start,” initially) is incremented and then compared to the 
second value (“limit”), to determine whether looping is to be 
continued or terminated. 

Fig. 6-3B shows the return stack arrangement for a nested 
DO-LOOP application. The bounds of the inner (I) loop are on 
top, followed by the bounds of the outer (J) loop. 
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START 

LIMIT 

INNER (I) LOOP 

OUTER (J) LOOP 

(A) Single DO-LOOP. (B) Nested DO-LOOPS. 

Fig. 6-3. DO-LOOP bounds on the return stack. 

Manipulating the Return Stack 

Although the return stack is intended for the use of the 
FORTH system software, you can also make use of it from time 
to time—but you should do so with utmost caution, to avoid 
crashing the system! 

Table 6-2 summarizes the FORTH words that can be used to 
manipulate the return stack. Also included are some alternate 
descriptions of the DO-LOOP index words I and J—and one 
new word, I’ — related to the internal organization of the return 
stack. 

Table 6-2. Return Stack Manipulation Words 

Wbrd Stack Action Notes 

>R n- Transfers n from the data stack 
to the return stack. 

R> -n Transfers n from the return 
stack to the data stack. 

R@ -n Copies the top number of the 
return stack onto the data 
stack. 

1 -n Copies the top number of the 
return stack onto the data 
stack. Same as R@. 

1’ -n Copies the second number of 
the return stack onto the data 
stack. 

(1) 

J -n Copies the third number of the 
return stack onto the data 
stack. 

Note: (1) Included in Reference Word Set, as an uncontrolled word 
definition. 



94 FORTH Programming 

The word >R transfers the top number on the data stack to 
the return stack. Conversely, the word R> transfers the top 
number on the return stack to the data stack. A third word, R@ 
(called R in fig-FORTH), makes a copy of the top number on the 
return stack, and copies it onto the data stack. 

The return stack is particularly useful for holding numbers 
from the top of the data stack while you operate on a number 
that was previously “buried” in the data stack. Example 6-5 
demonstrates this technique in a fig-FORTH definition for the 
FORTH-79 word ROLL. As you will recall from Chapter 3, ROLL 
rotates any number in the data stack to the top of the stack. 

Example 6-5 may look complex, but isn’t. It simply involves 
moving all but the nth number (the ROLL “target”) to the return 
stack, then bringing these numbers, one by one, back to the 
data stack and swapping them with the target number. The 
added return stack instructions are required because, in each 
case, numbers moved to the return stack must be stored be¬ 
neath the DO-LOOP limits (which are at the top of the return 
stack). 

Example 6-5. ROLL, in fig-FORTH 

: ROLL 

( Rotate nth 

( n-(n)) 

number to top of stack ) 

DUP 1 = 

IF 

DROP 

ELSE 

If 1 ROLL, you are done) 

DUP 1 

DO 

SWAP 

R> R> 

ROT >R 

>R >R 

LOOP 

Otherwise put next number on top) 

Fetch loop limits from return stack) 

Move next number to return stack ) 

then return loop limits ) 

DO 

R> R> 

R> 

ROT ROT >R >R 

SWAP 

LOOP 

Fetch loop limits) 

and previously saved number) 

Return loop limits) 

Put ROLL target on top) 

THEN ; 
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fig-FORTH DO-LOOP AND RETURN STACK 
MANIPULATION WORDS 

Table 6-3 summarizes the fig-FORTH words associated with 
DO-LOOPs and those that are used to manipulate the return 
stack. As you can see, fig-FORTH includes all of the FORTH-79 
Required Words except J. As mentioned earlier, R in fig-FORTH 
is identical to R@ in FORTH-79. 

Table 6-3. fig-FORTH DO-LOOP and Return Stack Manipulation 
Words 

Word Stack Action 

DO 
LOOP 

end+1 start- Used in a colon-definition in the form 

DO . . . LOOP 

to begin a loop which will terminate 
when a loop index equals or exceeds 
end+1. The loop index begins with 
the value start, and is incremented by 
one each time LOOP is encountered. 

DO 
+ LOOP 

limit start- Used in a colon-definition in the form 

DO . . . +LOOP 

to begin a loop which will terminate 
when a loop index equals or exceeds 
limit. The loop index begins with the 
value start, and is incremented by n 
each time +LOOP is encountered. 

1 -index Copies the current loop index onto 
the stack. May only be used in the 
form 

DO . . . 1 . . . LOOP or 
DO . . . 1 .. . +LOOP 

LEAVE Forces a DO-LOOP to terminate at the 
next LOOP or +LOOP, by setting the 
loop limit equal to the index. 

>R n- Transfers n from the data stack to the 
return stack. 

R> -n Transfers n from the return stack to 
the data stack. 

R -n Copies the top number of the return 
stack onto the data stack. 

RO -addr Points to the address of the bottom of 
the return stack. 

RP ! A user-supplied procedure to initialize 
the return stack pointer from RO. 
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Example 6-6 is the definition of the missing word, J. From 
Fig. 6-3B, you would expect to pull just two numbers—the 
inner loop bounds—off the return stack in order to make the 
outer loop index (that is, J) available for reading, but this 
definition pulls three numbers off the return stack. This extra 
pull (R>) is needed because when FORTH encounters the new 
word J in a colon-definition, it saves a return address at the top 
of the return stack while it looks up and executes J’s definition 
in the dictionary. Thus, the first R> removes the return address 
from the return stack, the next two R>’s remove the inner loop 
bounds, and then R reads the outer loop index, J. 

Example 6-6. Return the index of the next outer loop in a 
nested DO-LOOP 

( Return index of the next outer loop of a nested DO-LOOP ) 

(-n ) 

R> ( Fetch return address) 

R> R> ( Fetch I loop limits) 

R ( Read J index) 

SWAP >R ( Restore I loop limits) 

SWAP >R ( and return address ) 

SWAP >R ; ( on return stack ) 

Two additional return stack words, RO and RP! are also con¬ 
tained in fig-FORTH. RO returns a pointer to the address of the 
bottom of the stack. That is, it returns the address of a location 
in memory, and that location holds the address of the bottom 
of the return stack. The second word, RP!, initializes the return 
stack pointer using the address pointed to by RO. Note that 
these words are return stack equivalents of the data stack 
words SO and SPI, described in Chapter 3 (Table 3-2). 

SUMMARY 

In this chapter we studied a repeating control structure 
called a DO-LOOP. Included were discussions of the two basic 
forms of DO-LOOPs: (1) DO . . . LOOP, which increments the 
loop count by one, and (2) DO . . . +LOOP, which increments 
the loop count by a specified number. We also discussed how 
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Table 6-4. Words Added to FORTH in Chapter 6 

Word Stack Action 

CIRCUM 

PRINT-CIRCUM 

PRINT- 

CIRCUM-2 

diam-circum 

end + 1 start- 

limit start- 

Return circumference of a circle. 

Print diameters and circumferences. 

Print alternate diameters and 
circumferences. 

AVG-MEMORY addrl addr2- 
average 

Average the numbers in memory, 
from addrl to addr2. 

to access the index value (I, J, or K) and how DO-LOOPs can be 
nested, to imbed DO-LOOPs within other DO-LOOPs. 

This chapter also introduced the return stack. Although 
primarily intended to hold DO-LOOP boundaries and other sys¬ 
tem information, the return stack is usable (with caution) as 
temporary storage for user parameters. 

Table 6-4 summarizes words defined in this chapter that can 
be added to FORTH. The next chapter will discuss additional 
kinds of control structures, those that base their operation on 
some pretested condition. 



CHAPTER 7 

Conditional Control Structures 

There are many applications in which you will want to control 
the actual execution path of a program, by having some se¬ 
quence of words executed in one situation and another se¬ 
quence of words executed in some other situation. For in¬ 
stance, if a program is controlling the sprinkler system around 
your home, you may want the lawn sprinklers turned on every 
day, the garden sprinklers turned on every other day, and none 
of the sprinklers turned on if it is raining. (From what I’ve seen, 
many sprinkler controllers lack the latter feature!) That is, you 
would want the program to make a “decision,” based on one or 
more conditions. The control structures described in this chap¬ 
ter provide that decision-making capability. 

Table 7-1 summarizes the control structures we’ll cover in 
this chapter. This table also includes a summary of the 
comparison words that provide the basis upon which a control 
structure makes its execution “decision.” Since a comparison 
word always precedes a conditional control structure, let’s 
begin by describing FORTH’s comparison words. 

COMPARISON WORDS 

FORTH’s conditional control structures base their “deci¬ 
sions” on a true/false indicator at the top of the stack. That is, 
these control structures operate one way if the indicator is 
“true” and another way if the indicator is “false." This indi¬ 
cator, called a flag, is considered to be true if it has a value of 1 
and false if it has a value of 0. 

The FORTH words that govern the state of a flag are called 
comparison words, because they set the flag to either true or 
false based on the result of a comparison operation. These 

99 
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Table 7-1. Comparison Words and Conditional Control Structures 

Word Stack Action Notes 

0< n-flag Sets flag true if n is 
less than zero. 

0= n-flag Sets flag true if n is 
equal to zero. 

0> n-flag Sets flag true if n is 
greater than zero. 

< nl n2-flag Sets flag true if nl is 
less than n2. 

— nl n2-flag Sets flag true if nl is 
equal to n2. 

> nl n2-flag Sets flag true if nl is 
greater than n2. 

<> nl n2-flag Sets flag true if nl is 
not equal to n2. 

(2) 

u< uni un2-flag Sets flag true if uni is 
less than un2. Both are 
unsigned numbers. 

D0= d-flag Sets flag true if double 
number d is equal to zero. 

(D 

D< dl d2-flag Sets flag true if dl is 
less than d2. 

D= dl d2-flag Sets flag true if dl is 
equal to d2. 

(D 

DU< udl ud2-flag Sets flag true if udl is 
less than ud2. Both are 
unsigned double numbers. 

(D 

NOT flagl-flag2 Reverses the value of a 
flag. This is identical to 
0=. 

?DUP n-n (n) Duplicates n if it is 
nonzero. 

BEGIN 
UNTIL UNTIL: flag- 

Used in a colon-definition 
in the form: 

WHILE 
REPEAT 

WHILE: flag- BEGIN . . . flag UNTIL or 
BEGIN . . . flag WHILE . . . 

REPEAT 

A BEGIN-UNTIL loop will be 
repeated until flag is 
true. A BEGIN-WHILE-REPEAT 
loop will be repeated until 
flag is false. 

END A synonym for UNTIL. (3) 

AGAIN Used in a colon-definition 
in the form: 

(3) 
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Table 7-1 —cont. Comparison Words and Conditional Control Structures 

Word Stack Action Notes 

BEGIN . . . AGAIN 
to force an unconditional 
jump back to BEGIN. 

IF 
ELSE 
THEN 

IF: flag- Used in a colon-definition 
in the form: 

flag IF . . . (true). . . 
THEN or 

flag IF . . . (true). . . 
ELSE . . . (false). . . 
THEN 

If flag is true, the words 
following IF are executed 
and the words following 
ELSE are skipped. 

If flag is false, words 
between ELSE and THEN are 
executed and the words 
between IF and ELSE are 
skipped. IF-ELSE-THEN 
conditionals may be nested. 

IFTRUE 
OTHER¬ 
WISE 
IFEND 

IFTRUE: flag- Used during interpretation 
in the form: 

flag IFTRUE 
. . . (true). . . 
OTHERWISE 
. . . (false). . . 
IFEND 

(2) 

These conditional words 
operate like IF-ELSE-THEN, 
except that they cannot be 
nested. 

LEAVE Forces a DO-LOOP to 
terminate at the next LOOP 
or +LOOP, by setting the 
loop limit equal to the index. 

EXIT When compiled within a 
colon-definition, forces 
the definition to terminate 
at that point. May not be 
used within a DO-LOOP. 

Notes: (1) Included in Double Number Extension Word Set. 
(2) Included in Reference Word Set, as an uncontrolled word 

definition. 
(3) Included in Reference Word Set, as a Standard Word Definition. 
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comparison operations are essentially subtractions, except that 
they produce a qualitative result—1 or 0 (true or false) — rather 
than a quantitative result. In this way, comparison words oper¬ 
ate like teachers who grade students with either “pass” or 
“fail” instead of with a letter grade or a number grade. 

As you can see from Table 7-1, there are two types of com¬ 
parison words: those that compare the top item of the stack 
with zero and those that compare the second item on the stack 
(nl) with the top item on the stack (n2). In all cases, the opera¬ 
tion removes the compared words from the stack and replaces 
them with the flag value. For example, the sequence (3 2 >) 
leaves a flag of 1, since 3 is greater than 2, whereas (2 3 >) 
leaves a flag of 0, since 2 is not greater than 3. 

Incidentally, you may wonder why the word ?DUP is included 
in Table 7-1, since it is neither a flag-related word nor a condi¬ 
tional control structure. The word ?DUP, called -DUP in fig- 
FORTH, is relevant here because it is primarily used to preserve 
a nonzero stack value before that value is compared with zero 
([0<], [0=] or [0>]). 

BEGIN-UNTIL LOOPS 

BEGIN-UNTIL loops are simply DO-LOOPs in which the 
number of repetitions is unspecified. They will repeat an oper¬ 
ation continually until some predefined condition occurs. 

BEGIN-UNTIL loops come in two forms: 

BEGIN . . . flag UNTIL 

BEGIN ... flag WHILE . . . REPEAT 

where flag is a true/false indicator on the top of the stack. The 
form BEGIN-UNTIL repeats the operation between BEGIN and 
UNTIL until the flag becomes true. The form BEGIN-WHILE- 
REPEAT repeats the operation between BEGIN and REPEAT 
until the flag becomes false (at which time, FORTH, continues 
at whatever word follows REPEAT). 

As you can see, a BEGIN-UNTIL loop always executes an op¬ 
eration at least once, because its flag is not tested until the end 
of the operation. However, a BEGIN-WHILE-REPEAT loop 
allows you to bypass the main operation (the one enclosed by 
WHILE and REPEAT) entirely, and never execute it, because the 
flag is tested prior to the operation, at WHILE. 

To see how BEGIN-UNTIL might be used, consider a FORTH 
program that controls a chemical plant, and must monitor a 
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mixing tank that is being filled with a chemical solution. If 
VALVE-ON and VALVE-OFF are words that control the filler 
valve, and FULL? is a word that sets a flag to true when the 
tank is full, you might expect to see this sequence in the pro¬ 
gram: 

( Previous operations) 

VALVE-ON ( Turn valve on) 

BEGIN 

FULL? ( Wait for tank to fill,) 

UNTIL 

VALVE-OFF ( then turn valve off ) 

( Continue the program) 

Derive a Square Root with BEGIN-UNTIL 

BEGIN-UNTIL loops are also ideal for making repetitive calcu¬ 
lations that converge to a desired result. A case in point is New¬ 
ton’s method for calculating the square root of a number. Es¬ 
sentially, Newton’s method states: If A is an approximation for 
the square root of n, then 

Ai = (n/A + A)/2 

is a better approximation. That is, each time a new approxima¬ 
tion is calculated using the preceding equation, you will get 
closer and closer to the actual value of the square root. 

Writing a program to calculate the approximations is a simple 
task. All you need to do is start with some arbitrary initial ap¬ 
proximation (the value 1 is as good as any), then use a 
BEGIN-UNTIL loop to grind out subsequent approximations. 
The only problem is knowing when to stop. We could have the 
program make some given number of iterations, but any 
number we choose may be too few for large values or too many 
for small values. An alternate approach—the one we’ll adopt 
here—is to continue looping until a calculation produces the 
same result as the preceding calculation, because from that 
point the approximations will not change. 

Example 7-1 shows the colon-definition for SORT, a word 
that calculates the square root of a number using Newton’s 
method. All of the OVERs make the program look somewhat 
complex, but it’s quite easy to understand if you draw a few 
stack pictures as you go along. (That’s always a good approach 
with FORTH programs!) 
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Just prior to the BEGIN-UNT1L loop, the stack holds the base 
number and the first approximation ( un 1 ). The next approxi¬ 
mation, A1, is begun by copying un and A onto the top of the 
stack ( OVER 0 3 PICK ), with a 0 to make un a double number, 
then dividing A into n ( U/MOD ) and dropping the remainder 
( SWAP DROP). The second term, A, is added to the result 
( OVER + ) and the sum averaged ( 0 2 U/MOD ). After drop¬ 
ping this second remainder ( SWAP DROP ), there are three 
values on the stack ( un A A1 ) and we are prepared to check 
whether the top two, A and A1, are equal. 

The comparison word we will be using, = , always destroys 
the top two numbers on the stack and replaces them with a flag 
value. Knowing that, should we duplicate both A and A1? No, 
we only need to duplicate A1, because the previous approxima¬ 
tion (A) is no longer needed, regardless of the compare result. 
The operation ( SWAP OVER = ) moves A to the top, puts a 

Example 7-1. Square root, using Newton’s method 

: SQRT 

( Calculate the square root of an unsigned number using ) 

( Newton's method. ) 

( un-sqrt (un) ) 

1 ( To begin, assume A = 1) 

BEGIN 

OVER 0 3 PICK U/MOD ( A1 = (n/A + A)/2 ) 

SWAP DROP 

OVER + 02 U/MOD 

SWAP DROP 

SWAP OVER = ( Test for A1 = A) 

UNTIL 

SWAP DROP ; ( Delete un) 

copy of A1 on top of it, and replaces the two with a true or false 

flag. 
If A and A1 had different values, UNTIL removes the flag and 

transfers control back to the line following BEGIN. Otherwise, 
UNTIL removes the flag and allows control to “drop through” 
to the last line ( SWAP DROP ), where un is deleted and only the 
final square root value remains on the stack. 
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Infinite BEGIN-UNTIL Loops 

Some FORTHs, including fig-FORTH, provide the form 

BEGIN . . . AGAIN 

in which AGAIN forces the processor to return to BEGIN after 
each loop, unconditionally. Thus, the loop repeats until 
either a reset or an interrupt occurs. BEGIN-AGAIN loops are 
nearly always used to produce a wait state, in which the pro¬ 
cessor waits for an interrupt from some external device in the 
system. In FORTH-79, you can produce the [AGAIN] function 
with [0 UNTIL], 

IF-THEN CONTROL STRUCTURES 

The next kind of control structure, IF-THEN, also comes in 
two different forms: 

flag IF . . . (true) . . . THEN 

flag IF . . . (true) . . . ELSE . . . (false) . . . THEN 

With both forms, the IF takes a flag from the top of the stack 
and makes an execution decision based on whether the flag is 
true or false. 

If the flag is true, an IF-THEN structure will execute the words 
between IF and THEN, and an IF-ELSE-THEN structure will 
execute the words between IF and ELSE. If the flag is false, an 
IF-THEN structure will simply skip the words between IF and 
THEN, but an IF-ELSE-THEN structure will execute the words 
between ELSE and THEN before continuing on in the program. 

For example, the sequence 

10 > 
IF 

CR . " Number is greater than 10." 

THEN 

prints the message only if the number at the top of the stack 
was greater than 10 (the past tense “was” applies here because 
comparison words delete the operands from the stack). 

However, the sequence 

10 > CR 

IF 

. " Number is greater than 10." 

ELSE 

. " Number is less than or equal to 10." 

THEN 
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prints a message regardless of the value of the operand. 
Incidentally, don’t make the mistake of assuming the IF-THEN 

sequence 

10 > CR 
IF 
. " Number is greater than 10." 
THEN 
. " Number is less than or equal to 10." 

performs the same task as the preceding IF-ELSE-THEN se¬ 
quence, because if the stack number happens to be greater 
than 10 you will receive both messages: 

Number is greater than 10. 
Number is less than or equal to 10. 

You can stay out of trouble by remembering that an IF-THEN 
will only do something if the flag is true, whereas an IF-ELSE- 
THEN will do something in either case, flag true or flag false. 

Nested IF-THENs and IF-ELSE-THENs 

Like all control structures, IF-THENs and IF-ELSE-THENs can 
be nested to any practical depth. Be aware, though, that every 
comparison word will remove one or two operands from the 
stack, so you must ensure that the appropriate stack operands 
are available for each level of nesting. 

To demonstrate nesting, let’s take our compare-with-10 test¬ 
ing one step further, to find out whether the number at the top 
of the stack is less than, equal to, or greater than 10. Thus, we 
want a FORTH program that will make a three-way decision. 
Example 7-2 shows a definition, COMPARE-WITH-10, that will 
do the job. 

Note that the DUP at the beginning of the definition saves a 
copy of the stack number for the possible use of the second- 
level IF-ELSE-THEN. If the number is greater than 10, a DROP 
deletes that copy. 

Using a False Flag With IF-THEN 

Thus far we have discussed only the standard form of IF- 
THEN, in which you execute a sequence if a flag is true and 
skip the sequence if that flag is false. Is it possible to use IF- 
THEN in the opposite way—execute if false, skip if true? Well, 
you can certainly do this by using the IF-ELSE-THEN variant 
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Example 7-2. A three-way compare in FORTH 

: COMPARE-WITH-10 

( Compare the number on the top of the stack with 10, ) 

( and print an appropriate message. The number itself ) 

( is deleted. ) 

( n-) 

DUP 10 > CR 

IF 

Number is greater than 10." 

DROP 

ELSE 

10 = 

IF 

." Number is equal to 10." 

ELSE 

." Number is less than 10." 

THEN 

THEN ; 

with nothing between IF and ELSE. For example, to execute a 
sequence if a stack number is less than or equal to 10, you 
could use: 

10 > 
IF 

ELSE 

. " Number is less than or equal to 10." 

THEN 

However, this approach includes an IF that does nothing more 
than allow you to get to the “false” case between ELSE and 
THEN. 

Would the following approach do the same job? 

10 < 
IF 

. " Number is less than or equal to 10." 

THEN 

No, this is insufficient because the case of number = 10 would 
cause the message to be skipped. What we need is a condi¬ 
tional that causes the sequence to be executed if the stack 
number is not greater than 10; something that reverses the flag 
established by the sequence ( 10 > ). 
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FORTH-79 has a Required Word, called NOT, that reverses 
the state of a flag. If a flag is true, NOT changes it to false; if a 
flag is false, NOT changes it to true. Therefore, the sequence to 
use in the preceding application is: 

10 > NOT 

IF 

" Number is less than or equal to 10.' 

THEN 

NOT is extremely convenient for this kind of situation, because 
it allows you to use IF-THEN in a sequence that would normally 
call for the form IF-ELSE-THEN. 

Incidentally, fig-FORTH does not include the word NOT, but 
fig-FORTH users can use the word [0=], which is equivalent to 
NOT. 

Mixing IF-THENs and DO-LOOPs 

Any of the control structures can be mixed as long as none of 
their individual rules are violated. Example 7-3 shows how IF- 
ELSE-THENs can be used in a DO-LOOP oriented program, to 
process some possible inputs that cannot easily be incorpo¬ 
rated into the DO-LOOP. 

Example 7-3. Raise number to a power 

( Raise nl to the power n2. If n2 is negative, the ) 

( result is zero. ) 

( nl n2-nl**n2 ) 

DUP 1 > 

IF 

SWAP DROP 

OVER SWAP 

DO OVER * LOOP 

n2 > 1) 

( nl n2 - nl nl n2) 

( DO-LOOP start = 1) 

( Multiply current product by nl) 

( Delete nl) 

ELSE ?DUP 0= 

IF DROP 1 n2 = 0, so answer = 1) 

ELSE 0< 

IF DROP 0 

THEN 

n2 < 0, so answer = 0) 

THEN 

THEN ; 

n2 = 1, so answer = nl) 
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This example is a colon-definition for the FORTH-79 uncon¬ 
trolled word [**], which was described in Chapter 2. Here, the 
DO-LOOP calculates n1**n2 for values of n2 that are greater 
than one, and nested IF-ELSE-THENs take over if n2 is equal to 
zero, equal to one or negative. Note that the DO-LOOP is pre¬ 
sented first in the definition, because it is most likely to be exe¬ 
cuted; this saves FORTH some searching time. 

An IF-ELSE-THEN for the Interpreter 

The FORTH-79 Standard provides for an interpreted (rather 
than compiled) form of IF-ELSE-THEN, called IFTRUE- 
OTHERWISE-IFEND. This uncontrolled definition has the gen¬ 
eral form 

flag IFTRUE . . . (true) . . . OTHERWISE . . . (false) . . . IFEND 

However, because IFTRUE-OTHERWISE-IFEND is interpreted, it 
cannot be nested, whereas IF-ELSE-THEN can be nested, as we 
have seen. 

DISPLAY THE CONTENTS OF THE STACK 

With the background provided by this chapter, we are now 
able to develop an extremely useful word that is mentioned in 
neither the FORTH-79 Standard nor the fig-FORTH Installation 
Manual, yet it is provided in virtually every FORTH package. 
This word, [.S], displays the contents of the stack without alter¬ 
ing the stack in any way. As any FORTH programmer will tell 
you, [.S] is absolutely the most powerful debugging tool at your 
disposal. 

Example 7-4 presents the colon-definition for [.S] in both 
FORTH-79 and fig-FORTH versions. Both versions are similar, 
but whereas the FORTH-79 is based on the words DEPTH and 
SP@, the fig-FORTH version is based on words SO and SP@. 
The definitions shown here are designed to display the stack 
numbers one per line, in top-to-bottom order. 

Either version should produce this kind of display: 

10 20 30 40 .S 

40 

30 

20 
10 OK 
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And if the stack is empty, you should see this display: 

.S 

STACK EMPTY OK 

Example 7-4. Display the contents of the stack 

: .S 

( Display the contents of the stack, without altering them. ) 

(-) 
DEPTH 2 * ( Byte count = 2* DEPTH) 

?DUP 0= ( Check for empty stack) 

IF 

CR STACK EMPTY " 

ELSE 

SP@ 2 + 

DUP ROT + 

SWAP 

DO 

CR I ? 

2 
+ LOOP 

( If empty, display message) 

( DO-LOOP start = original SP) 

( DO-LOOP limit = SP + bytes) 

( start limit-limit start) 

( Display next number) 

THEN ; 

(a) FORTH-79 version 

: .S 

( Display the contents of the stack, without altering them. ) 

(-) 
SP@ SO @ - ( -Byte count = SP@ - (SO) ) 

-DUP 0= ( Check for empty stack) 

IF 

CR ." STACK EMPTY " ( If empty, display message) 

ELSE 

SO @ ( DO-LOOP limit = (SO) ) 

DUP ROT + ( DO-LOOP start = (SO) - bytes) 

DO 
CR I ? ( Display next number) 

2 
+ LOOP 

THEN ; 
(b) fig-FORTH version 
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TO FINISH EARLY, JUST LEAVE OR EXIT 

Two Required Words can force a DO-LOOP or a colon- 
definition to be prematurely terminated. The word LEAVE causes 
a DO-LOOP to be terminated at the next occurrence of LOOP or 
+ LOOP, by setting the loop limit equal to the current value of 
the index. The word EXIT causes a colon-definition to be termi¬ 
nated immediately; that is, it acts like an imbedded [;]. EXIT can 
be used anywhere within a colon-definition, except within a 
DO-LOOP; but, of course, we have LEAVE for that purpose. 

Both LEAVE and EXIT are usually preceded by a comparison, 
to test for the terminate condition. However, EXIT is generally 
used to abort a colon-definition on an error, whereas LEAVE is 
often activated when a desired event occurs. 

For instance, the FIND-NUMBER program in Example 7-5 
searches a specified block of memory for a certain number 

Example 7-5. Find a number in memory 

FIND-NUMBER 

( Search memory between addrl and addr2 for the first ) 

( occurrence of the number n. 

( If n is found, its address is returned on the top 

( of the stack; otherwise, 0 is returned on the stack. 

( If found: addrl addr2 n-addrn ) 

( If not found: addrl addr2 n-0 ) 

4 ROLL ROT 

4 ROLL 

3 PICK - 

2 + 
0 

DO 

OVER I + 

@ 
OVER = 

IF 

( For now, assume "not found") 

( and rearrange stack as: ) 

( 0 addrl n addr2 ) 

( Calculate byte count) 

( DO-LOOP limit = byte count + 2) 

( DO-LOOP start = 0) 

( Address = addrl + I) 

( Fetch next number from memory) 

( Number = n?) 

ROT 3 PICK + I + 

SWAP ROT 

LEAVE 

THEN 

2 

+ LOOP 

DROP DROP ; 

( If so, make stack read) 

( addrn n addrl ) 

( If not, go fetch next number) 

( Delete top two numbers) 
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Table 7-2. fig-FORTH Comparison Words and 
Control Structures 

Word Stack Action 

0< n-flag Sets flag true if n is 
less than zero. 

0= n-flag Sets flag true if n is 
equal to zero. 

< nl n2-flag Sets flag true if nl is 
less than n2. 

— nl n2-flag Sets flag true if nl is 
equal to n2. 

> nl n2-flag Sets flag true if nl is 
greater than n2. 

BEGIN Used in a colon-definition 
UNTIL UNTIL: flag- in the form: 

WHILE WHILE: flag- BEGIN . . . flag UNTIL or 
REPEAT BEGIN . . . flag WHILE . . . 

REPEAT 

A BEGIN-UNTIL loop will be 
repeated until flag is 
true. A BEGIN-WHILE-REPEAT 
loop will be repeated until 
flag is false. 

END A synonym for UNTIL. 

AGAIN Used in a colon-definition 
in the form: 

BEGIN . . . AGAIN 

to force an unconditional 
jump back to begin. 

-DUP n-n (n) Duplicates n if it is 
nonzero. 

IF IF: flag- Used in a colon-definition 
ELSE 
ENDIF 

in the form: 

flag IF . . . (true). . . 
ENDIF or 

flag IF 
ELSE . . . (false). . . 
ENDIF 

If flag is true, the words 
following IF are executed 
and the words following 
ELSE are skipped. 
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Table 7-2—cont. fig-FORTH Comparison Words and 
Control Structures 

Word Stack Action 

THEN 

If flag is false, words 
between ELSE and ENDIF are 
executed and the words 
between IF and ELSE are 
skipped. IF-ELSE-ENDIF 
conditionals may be 
nested. 

A synonym for ENDIF. 

LEAVE Forces a DO-LOOP to 
terminate at the next LOOP 
or +LOOP, by setting the 
loop limit equal to the 
index. 

value, and uses LEAVE to exit the DO-LOOP if the number is 
found. On a successful search, the matching memory address 
is returned on the stack, but if the number is not found, a zero 
is returned on the stack. 

Upon entry, it is assumed that the number will not be found, 
so a zero is placed at the bottom of the stack for possible fu¬ 
ture use. After calculating the DO-LOOP limits, the program 
fetches a number from memory and compares it with the 
search value, n. If the two numbers are identical, an IF-THEN 
replaces the stack's zero value with the effective address of the 
matching number in memory, then a LEAVE forces the DO- 
LOOP to terminate at +LOOP. Otherwise, the DO-LOOP con¬ 
tinues searching memory, one number at a time, over the 
selected range. 

Upon completion of the DO-LOOP, whether due to match or 
no-match, the top two numbers on the stack, addrl and n, are 
deleted, leaving only the matching address (if the number was 
found) or zero (if the number was not found). 

Example 7-5 includes the words PICK and ROLL. If you have 
fig-FORTH, or some other FORTH that does not have these 
words, refer to Examples 6-3 and 6-5, respectively. 

As mentioned earlier in this section, EXIT is normally used to 
terminate a colon-definition on an error condition, particularly 
invalid input from the user. For instance, based on the fact that 
you can’t take the square root of a negative number, EXIT 
could be included in the word SORT (Example 7-1), to termi¬ 
nate the execution if the stack number is negative. With the 
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addition of this safeguard, the definition of SQRT would begin 
like this: 

SQRT 

DUP 0< ( These two lines guard against ) 

IF EXIT THEN ( a negative input. ) 

1 
BEGIN 

OVER OVER / 

etc. 

fig-FORTH COMPARISON WORDS AND CONDITIONAL 
CONTROL STRUCTURES 

Table 7-2 summarizes the comparison words and conditional 
control structures provided by fig-FORTH. As you can see, fig- 
FORTH has just a minimal complement of comparison words; 
those that compare just signed numbers ( although the 0> 
function is missing). There are no comparison words for un¬ 
signed numbers or double numbers. However, fig-FORTH does 
have FORTH-79’s required conditional control structures. The 
forms BEGIN-UNTIL, BEGIN-WHILE-REPEAT, IF-THEN and IF- 
THEN-ELSE are all provided, along with the alternate forms 
IF-ENDIF and IF-THEN-ENDIF. The DO-LOOP terminate word 
LEAVE is also included in fig-FORTH, but the colon-definition 
terminate word is not. 

SUMMARY 

This chapter covered conditional control structures and 
comparison words that provide the basis for an execution de¬ 
cision. One kind of conditional control structure, BEGIN-UNTIL, 
repeats an operation until a flag is true. A variation, BEGIN- 
WHILE-REPEAT, repeats an operation until a flag is false. 

Another kind of control structure, the IF-THEN conditional, 
executes an operation only if a flag is true; otherwise that op¬ 
eration is skipped. A variation, IF-ELSE-THEN, executes the 
IF-ELSE part if a flag is true and executes the ELSE-THEN part 
if it is false. 
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Table 7-3. Words Added to FORTH in Chapter 7 

Word Stack Action 

SORT un-sqrt (un) Returns integer square root 
of an unsigned number. 

.S Displays contents of the 
stack, without altering the 
stack. 

FIND-NUMBER addrl addr2 n 
-addm 

Returns address of a number, 
if it occurs between addrl 
and addr2. If the number is 
not found, zero is left on 
the stack. 

Finally, we examined two words that are not conditional 
themselves, but are normally executed conditionally. LEAVE 
forces a DO-LOOP to terminate and EXIT forces a colon- 
definition to terminate. 

This chapter also included definitions of three new words 
(Table 7-3) that you may wish to add to FORTH, as well as the 
definition of [**], an uncontrolled FORTH-79 word that raises a 
number to a power. 

/ 



CHAPTER 8 

Constants, Variables, Arrays, and Tables 

From time to time, you will find it convenient to reference 
data values by name, so you don’t have to bother remembering 
what the actual values are. FORTH provides two types of a 
named data, called constants and variables. A constant is a 
named value that usually remains unchanged throughout a 
program (although it can be changed, with some difficulty) and 
a variable is a named location that can be easily changed 
whenever you choose to do so. 

In this chapter we will discuss the FORTH words CONSTANT 
and VARIABLE, plus some other defining words that are used to 
establish arrays and tables in memory. The term defining word 
applies to FORTH words that create a new entry in the diction¬ 
ary. We encountered one defining word earlier, without calling 
it by that name. It was the word [:], the beginning word of 
colon-definitions. 

Table 8-1 summarizes the words that will be discussed in this 
chapter. 

CONSTANTS 

Setting up a constant is simply a matter of specifying a 
number, typing the word CONSTANT, and then giving the 
number a name, in this general form: 

n CONSTANT name 

As with colon-definitions, constant names can be up to 31 
characters long. 

For example, the sequence 

53 CONSTANT XI 

117 
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Table 8-1. Constant- and Variable-Defining Words 

World Stack Action Notes 

CONSTANT n- A defining word used in the 
form: 

n CONSTANT name 

to create a dictionary entry for 
name, leaving n in its parame¬ 
ter field. When name is later 
executed, n will be left on the 
stack. 

2CONSTANT d — Double-number equivalent of 
CONSTANT. 

(D 

VARIABLE A defining word used in the 
form: 

VARIABLE name 

to create a dictionary entry for 
name and allot two bytes for 
storage in the parameter field. 
The application must initialize 
the stored value. When name is 
later executed, the address of 
its parameter field is left on the 
stack. 

2VARIABLE Double-number equivalent of 
VARIABLE. Allots four bytes in 
the parameter field. (D 

ALLOT n- Adds n bytes to the parameter 
field of the most recently 
defined word. 

■ n- Allots two bytes in the diction¬ 
ary, storing n there. 

c, n- Allots one byte in the diction¬ 
ary, storing the low-order 8 bits 
of n there. 

(2) 

CREATE A defining word used in the 
form: 

CREATE name 

to create a dictionary entry for 
name, without allocating any 
parameter field memory. When 
name is later executed, the ad¬ 
dress of its parameter field is 
left on the stack. 
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Table 8-1—cont. Constant- and Variable-Defining Words 

Word Stack Action Notes 

DOES> Defines the run-time action of a 
word created by a high-level 
defining word. Used in the 
form: 

: name CREATE.. . 
DOES> ... ; 

and then 

name namex 

DOES> marks the termination 
of the defining word name, and 
begins the definition of the 
run-time action for words that 
will later be defined by name. 

Upon execution of namex, the 
sequence of words between 
DOES> and [;] will be exe¬ 
cuted, with the address of 
namex's parameter field on the 
stack. 

- 

<BUILDS A synonym for CREATE when 
used in the form: 

: name <BUILDS . . . 
DOES> ... ; 

(2) 

Notes: (1) Included in Double Number Extension Word Set. 

(2) Included in Reference Word Set, as an uncontrolled word 
definition. 

will cause the value 53 to be pushed onto the stack each time 
the word XI is executed. The colon-definition 

: XI 53 ; 

achieves the same result, but takes up more memory and more 
time to be executed, than the CONSTANT form. 

Changing the Value of a Constant 

Once assigned, constants normally retain their value perma¬ 
nently. However, you may encounter a situation in which a 
constant has inadvertently been given the wrong value, and 
must be changed. 

Changing the value of a constant takes this kind of opera¬ 
tion: 

nl ' name ! 
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where nl is the new value to be assigned to the constant name. 
This involves three steps: (1) put the new value, nl, on the 
stack; (2) fetch the address of the parameter field of name from 
the dictionary with the sequence [' name]; and (3) store nl at 
that address with the word [!]. 

For example, to change the value of XI from 53 to 54 re¬ 
quires the sequence 

54 ' xi ! 

Subsequent references to XI will return the value 54, rather 
than 53. 

VARIABLES 

To set up a variable with FORTH-79, you simply enter the 
word VARIABLE, followed by the variable’s name. This se¬ 
quence, 

VARIABLE name 

registers name in the dictionary and allocates two bytes to hold 
whatever value you will eventually give that name. The contents 
of those two bytes in memory are as yet undefined; they may 
contain anything. 

For example, the assignment 

VARIABLE HI-SCORE 

enters the name HI-SCORE into the dictionary, followed by two 
memory bytes. To assign a value to HI-SCORE (say, “85”), just 
enter 

85 HI-SCORE ! 

HI-SCORE will have the value 85 until you change it. 
In fig-FORTH, the variable is initialized at the same time it is 

defined, using the general form 

n VARIABLE name 

Thus, with fig-FORTH you don’t run the risk of forgetting to 
initialize the variable, as you do with FORTH-79. To define HI- 

SCORE in fig-FORTH, you would enter 

85 VARIABLE HI-SCORE 

which does the same job as the two preceding FORTH-79 se¬ 
quences. 
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Variables Return an Address 

There is an important difference between how constants and 
variables operate. Whereas, a constant returns its value on the 
stack, a variable returns the address of its value on the stack. 
Therefore, it takes two operations to access the value of a vari¬ 
able: reading the address and fetching the number at that ad¬ 
dress. For example, to fetch the value of HI-SCORE you must 
enter 

HI-SCORE @ OK 

To change the value of HI-SCORE, enter 

90 HI-SCORE ! OK 

and to examine the current value of HI-SCORE, enter 

HIGH-SCORE ? 90 OK 

Variables Can Keep Running Totals 

When used in conjunction with the word [+!], variables can 
be used to maintain running totals of things being counted. As 
you recall from Chapter 4, [+!] adds a number on the stack to 
another number in memory, based on an address at the top of 
the stack. 

As an example of a running total, consider a FORTH-based 
quality control system in a factory that has a variable called 
REJECTS, which holds a count of the faulty parts turned out in 
a single day (or week, or month, or quarter). At the beginning of 
each monitoring period, REJECTS would be initialized with 

0 REJECTS ! 

Then, with each bad part culled out of the system, the control 
program could update the count with 

1 REJECTS +! 

Thus, at the end of the monitoring period, REJECTS holds the 
accumulated bad-parts count. 

SUPER VARIABLES: ARRAYS 

Some applications include several data parameters that are 
related in one way or another. For instance, a manufacturer of 
widgets may have a FORTH system with which he’d like to keep 



122 FORTH Programming 

track of the number of widgets produced each day of the week. 
Due to a sudden, unexplained popularity for widgets, the plant 
must operate around the clock, seven days a week. (Rumor has 
it that widgets are being used for various and sundry diabolical 
purposes in obscure “emerging nations.” The CIA, KGB, and 
Interpol refuse to comment.) 

As the resident FORTH expert at Widgets Semi-Limited, your 
first inclination is to assign seven separate variables to this task 
(WIDGETS-MONDAY, WIDGETS-TUESDAY, etc.), one variable 
for each day of the week. However, you discover that seven 
different variables with seven different names occupy a lot of 
space in memory and, noting their similarity, wonder whether 
you can somehow group them into one super-variable. As a 
matter of fact, you can. All seven variables can be grouped into 
an array. 

An array is a logical grouping of identically sized variables. 
Assuming that the widget output for any given day does not 
exceed 32,767, we could define an array in which the “identi¬ 
cally sized variables” are numbers. With seven days in the 
week, we will need 14 data bytes, two bytes for each widget 
count number. 

Based on what we already know, we could define a variable 
called WIDGETS as 

VARIABLE WIDGETS 

This enters the name WIDGETS into the dictionary and allo¬ 
cates two bytes of parameter space to that name, as shown in 
Fig. 8-1 A. 

But the WIDGETS array needs 14 bytes of data storage, so we 
are 12 bytes short. How can the extra 12 bytes be added to 
WIDGETS’ dictionary entry? They can be added with ALLOT, a 
word that adds a specified number of bytes to the parameter 
field (that is, the data field) of the most recently defined word in 
the dictionary. Therefore, we must follow the WIDGET 
definition with the sequence 

12 ALLOT 

Now there are 14 data bytes allocated to WIDGETS (Fig. 8-1B). 

Accessing Numbers in an Array 

The 14 bytes allocated to WIDGETS provide memory space 
for seven 2-byte numbers. How can numbers be stored into this 
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ADDR 

NAME 
(WIDGETS) 

2 BYTES 

(A) After variable. 

NAME 
(WIDGETS) 

2 BYTES 

12 BYTES 
ADDED BY 

ALLOT 

(B) After ALLOT. 

NAME 
(WIDGETS) 

MONDAY 
NUMBER 

TUESDAY 
NUMBER 

WEDNESDAY 
NUMBER 

THURSDAY 
NUMBER 

FRIDAY 
NUMBER 

SATURDAY 
NUMBER 

SUNDAY 
NUMBER 

ADDR 

ADDR + 2 

ADDR + 4 

ADDR + 6 

ADDR + 8 

ADDR + 10 

ADDR + 12 

(C) With offsets. 

Fig. 8-1. Building up the WIDGETS array. 

space, and once stored, how can those numbers be retrieved? 
Well, knowing that the numbers lie two bytes apart in memory, 
we can get the address of any given number by adding some 
multiple of two to the “base address’’ of the data area; the ad¬ 
dress put on the stack by the word WIDGETS. 

If we call this address addr, the address of the first number is 
addr, the address of the second number is addr+2, the address 
of the third number is addr+4, and so on. That is, each number 
is located at some constant offset from the base address. 

The key word here is “constant.” Since each number in 
WIDGETS reflects the widget production count for a particular 
day of the week, we can have seven different constants, one for 
each day’s offset value. Specifically, the constants are: 

0 CONSTANT MONDAY 

2 CONSTANT TUESDAY 

4 CONSTANT WEDNESDAY 

6 CONSTANT THURSDAY 

8 CONSTANT FRIDAY 

10 CONSTANT SATURDAY 

12 CONSTANT SUNDAY 
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With these constants assigned, the data area of WIDGETS is 
effectively partitioned into seven different two-byte number 
“boxes,” as shown in Fig. 8-1C. 

The constants allow the widget production number for any 
given day to be accessed by adding that day’s constant to the 
base address on the stack. For example, to store the number 
1315 into the Thursday count, enter 

1315 WIDGETS THURSDAY + ! OK 

Similarly, to add 12 to the Thursday count, enter 

12 WIDGETS THURSDAY + +! OK 

and to display the Thursday count, enter 

WIDGETS THURSDAY + ? 1327 OK 

Large Arrays 

For very large arrays, such as an array that holds a widget 
count for an entire year, it is impractical to set up a constant for 
each day, because that would require too many constants and 
take up a lot of memory. For such arrays, it is much better to 
access a given number by adding its offset to the base address. 

For example, a 365-day WIDGETS array could be established 
with sequences 

VARIABLE WIDGETS OK( Define the variable WIDGETS ) 

364 2 * ALLOT OK ( and make it a 365-number array ) 

This new version of WIDGETS holds 365 numbers, one for each 
day of the year. As before, each number has an address that is 
two greater than the number that precedes it. Therefore, the 
number for January 1 is located at addr, the number for Janu¬ 
ary 2 is located at addr+2, the number for January 3 is located 
at addr+4, and the address for the final day, December 31, is 
located at addr+728. The general form for the offset is, then: 

Offset = 2*(day-number) — 2 

where day-number is 1 for January 31 and 365 for December 
31. 

Thus, to store the value 1430 into the number for day 230, 
enter the sequence 

1430 WIDGETS 230 2 * 2- + ! OK 

and to display the value for day 230, enter 

WIDGETS 230 2 * 2-f ? 1430 OK 
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Arrays of Bytes 

If your array values never exceed 255, the storage limit of a 
single byte, it is extremely inefficient to store these values into 
two bytes (as we have been doing thus far). Is it possible to set 
up an array of bytes, instead of an array of numbers? Yes, it is. 
Moreover, it is done with the same procedure used for number 
arrays! 

Regardless of whether an array is to hold bytes or numbers 
(or double numbers, for that matter), you will use VARIABLE to 
assign the array name and allocate the first two bytes, then use 
ALLOT to allocate additional bytes as needed. Both of these 
operations involve reserving some number of bytes in memory 
for later use; neither “tells” FORTH whether the reserved 
memory will be used to hold byte values or number values. 

The data type held in an array is purely a function of the 
words used to access the array. To access an array of numbers, 
you would use [!] and [@] as the store and fetch words, and 
offsets in multiples of two. To access an array of bytes, you 
would use [C!] and [C@] as the store and fetch words, and 
offsets in multiples of one. 

For example, if Widgets Semi-Limited had a secondary prod¬ 
uct called frammets, but never produced more than 255 fram- 
mets per day, you could set up a seven-day frammet production 
array as: 

VARIABLE FRAMMETS OK 

5 ALLOT OK 

and the offsets as 

0 CONSTANT MON 

1 CONSTANT TUES 

2 CONSTANT WED 

3 CONSTANT THURS 

4 CONSTANT FRI 

5 CONSTANT SAT 

6 CONSTANT SUN 

Now, to store the value 43 into the Thursday count, enter 

43 FRAMMETS THURS + C! OK 

and to display the Thursday count, enter 

FRAMMETS THURS + C@ . 43 OK 

note that the sequence ( C@ . ) had to be used here because 
there is no byte equivalent of [?] in either FORTH-79 or fiq- 
FORTH. 
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Initializing an Entire Array 

Some arrays hold data that is primarily used for reference, 
such as dimensions, conversion factors, rates, prices and the 
like. Typically, this kind of array needs to be entirely initialized 
at the same time it is defined. 

One way of initializing an entire array is by executing a series 
of store operations, one for each element (number or byte) in 
the array. For example, our fictional company, Widgets Semi- 
Limited, may wish to set different widget production quotas for 
each day of the week, due to variances in the work force. As 
their FORTH programmer, you could define a quota array as 

VARIABLE WIDGET-QUOTA 

12 ALLOT 

and initialize it with this series of store operations: 

1500 WIDGET-QUOTA j 

1450 WIDGET-QUOTA 2 + ! 

1455 WIDGET-QUOTA 4 + ! 

1500 WIDGET-QUOTA 6 + ! 

1425 WIDGET-QUOTA 8 + I 

1300 WIDGET-QUOTA 10 + ! 

1200 WIDGET-QUOTA 12 + ! 

( Monday quota = 1500) 

( Tuesday quota = 1450) 

( Wednesday quota = 1455) 

( Thursday quota = 1500) 

( Friday quota = 1425) 

( Saturday quota = 1300) 

( Sunday quota = 1200) 

As tedious and time-consuming as this is with just seven num¬ 
bers, imagine what it would be like if the array had 1000 num¬ 
bers! Is there no easier way to initialize an array? 

As a matter of fact, there is an easier way to initialize an 
array—using the word [,] (that is, “comma”). The word [,] is a 
combination ALLOT-and-store word. It allocates two bytes in 
the dictionary, just like ( 2 ALLOT ), then stores the top 
number on the stack into those two bytes, just like [!]. There¬ 
fore, using [,] the preceding nine-line operation reduces to 
these four lines: 

VARIABLE WIDGET-QUOTA 

1500 WIDGET-QUOTA ! 

1450 , 1455 , 1500 , 

1425 , 1300 , 1200 , 

For arrays of bytes, there is a similar word, [C,], which allo¬ 
cates one byte in the dictionary, then stores the low-order eight 
bits of the top number of the stack into that byte. Thus, [C,] is 
equivalent to the sequence ( HERE C! 1 ALLOT ). 
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CREATE an Array 

If your application involves only one or two arrays, the 
VARIABLE-and-ALLOT sequences just described can be used to 
create those arrays. However, if several arrays are needed, 
you’re probably better off automating the process, by defining 
a new FORTH word that will create arrays. 

This new word—called ARRAY, perhaps—should take just 
two parameters, a name and a size (number count), and use 
those parameters to add an array to the dictionary. For exam¬ 
ple, if you type in 

10 ARRAY ITEMS 

a 10-number (20-byte) array called ITEMS should be added to 
the dictionary. 

Well, I have good news! FORTH contains a word combina¬ 
tion, CREATE and DOES> (<BUILDS and DOES> in 
fig-FORTH) that permits you to define ARRAY, or any other new 
operation or data type. Used alone, CREATE enters a specified 
name into the dictionary, without allocating any parameter 
space to that name. (That is, CREATE operates like VARIABLE, 
minus the two data bytes.) For example 

CREATE ITEMS 

enters the name ITEMS into the dictionary, but reserves no pa¬ 
rameter space for ITEMS. 

However, the combination of CREATE and DOES>, in a 
colon-definition of the form 

: name CREATE . . . DOES> . . . ; 

creates a new, “intelligent” data structure called name. This 
definition has two distinct parts. The words between CREATE 
and DOES> specify what happens when the colon-definition is 
compiled and the words between DOES> and [;] specify what 
happens when an object of the class name is executed. Con¬ 
fused? An example should make this clearer. 

Example 8-1 is a colon-definition for a new data type called 
ARRAY. This word, ARRAY, is designed to create an array in the 
dictionary that has a specified name and size (number count). 
The general form for using ARRAY is 

n ARRAY name 

so if you enter 

10 ARRAY ITEMS 
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Example 8-1. Create a number array 

: ARRAY 

( Create an array labeled name that has space for n ) 

( numbers, using the general form ) 

( n ARRAY name ) 

( Thereafter, fetch the address of any element in ) 

( name onto the stack by entering ) 

( element# name ) 

CREATE 

2 * ALLOT 

DOES> 

SWAP 
2 * 

+ ; 

( Enter name into dictionary ) 

( and allocate 2n bytes to it ) 

( Swap element# and base-addr) 

( Offset = 2*element#) 

( Addr = base-addr + offset) 

an array named ITEMS, which has space for 10 numbers (that 
is, 20 bytes), will be entered into the dictionary. In Example 8-1, 
the word CREATE enters the name (ITEMS, in this case) into 
the dictionary and the sequence ( 2 * ALLOT ) doubles the 
number count n (10, in this case), then allocates that number of 
bytes to its parameter field. 

Once an array is set up in the dictionary, you need to be able 
to access its individual elements (numbers) in order to initialize 
them, display them, change them, or whatever. As with 
FORTH’s built-in data type VARIABLE, the standard way to gain 
access to any particular element is to read its address onto the 
stack. In the case of our array ITEMS, for example, typing in 

8 ITEMS 

should return the address of element 8 on the stack. (The ele¬ 
ments are assumed to be numbered 0 through 9, so element 8 
is actually the next-to-last element in the array.) 

The second half of Example 8-1, from DOES> to [;], does the 
address fetching when you reference an element of the created 
array. The reference 

element# name 

puts the value element# onto the stack, then the address of the 
array parameter field (called base-addr in Example 8-1). Follow¬ 
ing DOES>, the SWAP exchanges these two values so that a 
subsequent [2 *] operation can convert element# into an ad- 
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dress offset. A simple add operation, base-addr + offset, leaves 
the address of the referenced element on the stack. 

In summary, then, the command that creates our sample 
array ITEMS is: 

10 ARRAY ITEMS 

and some typical operations on element 8 of ITEMS are: 

3500 8 ITEMS ! OK 

8 ITEMS ? 3500 OK 
2 8 ITEMS +! OK 
8 ITEMS ? 3502 OK 

( Store 3500 into element 8) 

( Display value of element 8) 

( Add 2 to element 8) 

( Display new value of element 8) 

Example 8-2 shows the colon-definition for the equivalent 
byte array-creating word, CARRAY. Note that this definition is 
much simpler than the definition of ARRAY, because the size 
specifier, b, is already a byte count and element# is already an 
offset. 

Example 8-2. Create a byte array 

: CARRAY 

( Create an array labeled name that has space for b ) 

( bytes, using the general form ) 

( b CARRAY name ) 

( Thereafter, fetch the address of any element in ) 

( name onto the stack by entering ) 

( element# name ) 

CREATE ( Enter name into dictionary) 

ALLOT ( and allocate by bytes to it) 

DOES> 

+ ; ( Addr = base-addr + element#) 

Using CARRAY, the command that creates a 10-byte array 
called B-ITEMS is: 

10 CARRAY B-ITEMS 

and typical operations on element 8 of B-ITEMS are: 

200 8 B-ITEMS C! OK ( Store 200 into element 8) 

8 B-ITEMS C@ . 200 OK ( Display value of element 8) 

If you plan to conduct many byte operations, you will prob¬ 
ably want to have a few byte operators that FORTH doesn’t 
provide. Example 8-3 defines [C?], which displays the contents 
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of a byte in memory, and Example 8-4 defines [C+l], which 
adds a value to a byte in memory. These words are byte equiva¬ 
lents of the FORTH words [?] and [+!], respectively. Here is 
how these new words can be used with the B-ITEMS array: 

8 B-ITEMS C? 200 OK ( Display value of element 8) 

2 8 B-ITEMS C + ! OK ( Add 3 to element 8) 

8 B-ITEMS C? 202 OK ( Display new value of element 8) 

Example 8-3. Display a byte in memory 

: C? 

( Display the byte at addr. ) 

( addr-) 

C@ . ; 

Example 8-4. Add n to a byte in memory 

: C + ! 

( Add n to the byte at addr. ) 

( n addr-) 

DUP @ ( Fetch byte at addr) 

ROT + ( and add n to it ) 

SWAP C! ; ( Return sum to memory) 

SUPER CONSTANTS: TABLES 

If you have a set of related data that will not change, you may 
wish to put it in a table, rather than in an array. Tables are often 
used to replace complicated or time-consuming operations, 
such as calculating the square root or cube root of a number, 
or to hold conversion factors, such as the sines or cosines of a 
range of angles. Tables are especially efficient when a function 
is limited to a very small range of arguments, because they 
alleviate the need to perform complex calculations each time a 
function is obtained. However, since tables usually require 
large amounts of memory storage space, they are most efficient 
in applications where storage space can be sacrificed for 
execution speed. 

Examples 8-5 and 8-6 show the definitions for TABLE and 
CTABLE, the words that create tables of numbers or tables of 
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bytes, respectively. Note that both of these definitions are simi¬ 
lar to those of their array-creating counterparts, ARRAY and 
CARRAY, except that: 

1. Due to the “permanent" nature of a table, elements are 
initialized as they are added, using either [,] (number ta¬ 
ble) or [C,] (byte table). Therefore, the CREATE portion of 
the definition is devoid of additional words. 

2. The DOES> portion of the definition has an [@] or [C@] 
word, to put the value of the element onto the stack, 
rather than its address. 

Example 8-5. Create a number table 

: TABLE 

( Create a table labeled name, using the general form ) 

( TABLE name ) 

( Elements are added with "comma". ) 

( Thereafter, fetch the value of any element by ) 

( entering ) 

( element# name ) 

CREATE 

DOES> 

SWAP ( Swap element# and base-addr) 
2 * ( Offset = 2*element#) 

+ ( Addr = base-addr + offset) 

@; ( Fetch value at addr) 

Example 8-6. Create a byte table 

: CTABLE 

( Create a byte table labeled name, using the general ) 

( form ) 

( CTABLE name ) 

( Elements are added with "c-comma". ) 

( Thereafter, fetch the value of any element by ) 

( entering ) 

( element# name ) 

CREATE 

DOES> 

+ ( Addr = base-addr + element#) 

C@ ; ( Fetch value at addr) 
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Sine of an Angle 

For illustration purposes, let’s develop a FORTH program 
that finds the sine of a specified angle, by looking up that sine 
in a table. 

As you probably recall from high school trigonometry, the 
sine of all angles between 0° and 360° can be graphed as 
shown in Fig. 8-2A. Mathematically, this curve can be approx¬ 
imated by the formula 

sine(X) = X- X^+Xf-X^+X^... 
3! 5! 7! 9! 

Fig. 8-2. The sines and cosines of angles between 0 and 360 de¬ 
grees. 
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It is certainly possible to write a program to perform this ap¬ 
proximation, but such a program may require a couple of mil¬ 
liseconds to calculate the sine. If your application requires very 
precise sines, you may be forced to write such a program. 
However, applications with less stringent requirements can use 
an angle-to-sine look-up table instead. 

If the application needs to be able to obtain the sine of any 
angle between 0° and 360°, where the angle is an integer, how 
many sine values must the table contain? Must it contain 360 
different sine values? No, we can get by with a table of only 91 
sine values, one value for each angle between 0° and 90°, in¬ 
clusive. 

To understand how this can be so, look at Fig. 8-2A once 
again. If we call the leftmost quarter of the graph (angles from 
0° to 90°) Quadrant I, we can see that: 

1. Sines in Quadrant II (angles between 91° and 180°) are the 
“mirror-image” of those in Quadrant I. 

2. Sines in Quadrant III (angles between 181° and 270°) are 
the “negative inverse” of those in Quadrant I. 

3. Sines in Quadrant IV (angles between 271° and 360°) are 
the “negative inverse, mirror-image” of those in Quadrant 
II. 

That is, the sines in all four quadrants are some variation of the 
sines in Quadrant I! 

Confident in this knowledge, we can create a table of sine 
values. To do this we would enter TABLE (Example 8-5) into the 
dictionary, followed by this sequence: 

TABLE SINE-TABLE 

0 , 175 , 349 , 523 , ( Sines for 0 - 3) 
698 , 872 , 1045 , 1219 , ( Sines for 4 - 7) 

( Sines for angles from) 
( 8 to 86 go here) 

9986 , 9994 , 9998 , 10000 , ( Sines for 87 - 90) 

These sine values (Table 8-2 shows the complete list) are to be 
interpreted with the decimal point placed four digits to the left. 
That is, the sine of 1° is entered as 175, but should be inter¬ 
preted as 0.0175. Similarly, the sines of 89° and 90° are entered 
as 9998 and 10000, but should be interpreted as 0.9998 and 
1.0000, respectively. Therefore, to use these values in a pro¬ 
gram, they must be divided by 10,000. 

Now that we have a sine look-up table, let’s use it to develop 
a program that can look up the sine of any angle between 0° 
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Table 8-2. A Sine Look-Up Table With Angles in 1° Increments 

Angle Sine Angle Sine 

Decimal Binary Decimal Binary 

0.00 .0000 00000000 45.00 .7071 01011010 
1.00 .0175 00000010 46.00 .7193 01011100 
2.00 .0349 00000100 47.00 .7313 01011101 
3.00 .0523 00000110 48.00 .7431 01011111 
4.00 .0698 00001000 49.00 .7547 01100000 
5.00 .0872 00001011 50.00 .7660 01100010 
6.00 .1045 00001101 51.00 .7771 01100011 
7.00 .1219 00001111 52.00 .7880 01100100 
8.00 .1392 00010001 53.00 .7986 01100110 
9.00 .1564 00010100 54.00 .8090 01100111 

10.00 .1736 00010110 55.00 .8191 01101000 
11.00 .1908 00011000 56.00 .8290 01101010 
12.00 .2079 00011010 57.00 .8387 01101011 
13.00 .2250 00011100 58.00 .8480 01101100 
14.00 .2419 00011110 59.00 .8572 01101101 
15.00 .2588 00100001 60.00 .8660 01101110 
16.00 .2756 00100011 61.00 .8746 01101111 
17.00 .2924 00100101 62.00 .8829 01110001 
18.00 .3090 00100111 63.00 .8910 01110010 
19.00 .3256 00101001 64.00 .8988 01110011 
20.00 .3420 00101011 65.00 .9063 01110100 
21.00 .3584 00101101 66.00 .9135 01110100 
22.00 .3746 00101111 67.00 .9205 01110101 
23.00 .3907 00110010 68.00 .9272 01110110 
24.00 .4067 00110100 69.00 .9336 01110111 
25.00 .4226 00110110 70.00 .9397 01111000 

26.00 .4384 00111000 71.00 .9455 01111001 
27.00 .4540 00111010 72.00 .9511 01111001 

28.00 .4695 00111100 73.00 .9563 01111010 
29.00 .4848 00111110 74.00 .9613 01111011 

30.00 .5000 01000000 75.00 .9659 01111011 
31.00 .5150 01000001 76.00 .9703 01111100 

32.00 .5299 01000011 77.00 .9744 01111100 

33.00 .5446 01000101 78.00 .9781 01111101 

34.00 .5592 01000111 79.00 .9816 01111101 

35.00 .5736 01001001 80.00 .9848 01111110 

36.00 .5878 01001011 81.00 .9877 01111110 

37.00 .6018 01001101 82.00 .9903 01111110 

38.00 .6157 01001110 83.00 .9926 01111111 

39.00 .6293 01010000 84.00 .9945 01111111 

40.00 .6428 01010010 85.00 .9962 01111111 

41.00 .6561 01010011 86.00 .9976 01111111 

42.00 .6691 01010101 87.00 .9986 01111111 

43.00 .6820 01010111 88.00 .9994 01111111 

44.00 .6947 01011000 89.00 .9998 01111111 

45.00 .7071 01011010 90.00 1.0000 01111111 
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and 360°. To do this, we must work out some conversion for¬ 
mulas for each quadrant. 

For Quadrant I, the sine values are taken directly from the 
table, so for any angle X, 

0° < X < 90°, take sine(X) 

directly from SINE-TABLE. 
For Quadrant II, the sine values are the “mirror-image” of 

those in Quadrant I. That is, the sine of 91° is the same as the 
sine of 89°, and the sine of 179° is the same as the sine of 1°. 
Therefore, 

90° < X < 180°, take sine(180° - X) 

For example, 

sine(l70°) = sine(180° - 170°) 

= sine(10°) 

Angles in Quadrants III and IV have sines with the same 
magnitude, but the opposite signs, as the angles in Quadrants I 
and II, respectively. This observation allows us to state the fol¬ 
lowing: 

180° < X < 270°, take -sine(X - 180°) 

270° < X < 360°, take -sine(360° - X) 

For example, 

sine(l 90°) = -sine(190° - 180°) 

= —sine(10°) 

Or, in Quadrant IV, 

sine(290°) = -sine(360° - X) 

= —sine(360° - 290°) 

= —sine(70°) 

Now, with an equation to relate Quadrants II, III, and IV to 
Quadrant I, we have all the tools to write a program that will 
find the sine of any angle between 0° and 360°. This program is 
given in Example 8-7, as the colon-definition for a word called 
SINE. Using two IF-ELSE-THENs and one IF-THEN, SINE finds 
the proper quadrant by a process of elimination. 

When using SINE, keep in mind that the sine is returned as 
an integer that must be divided by 10,000! For example, the 
sine of 19° will be returned as 

19 SINE . 3256 OK 

but its actual value is 0.3256. 
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Example 8-7. Sine of an angle, using a table 

: SINE 

( Return sine of any integer-valued angle between 0 ) 

( degrees and 360 degrees. To use the result, divide ) 

( it by 10,000. ) 

( angle-sine ) 

DUP 270 > 

IF 

360 SWAP - 

SINE-TABLE NEGATE 

ELSE 

DUP 180 > 

IF 

180 - 

SINE-TABLE NEGATE 

ELSE 

DUP 90 > 

IF 

180 SWAP - 

THEN 

SINE-TABLE 

THEN 

( For 271-360, leave—sine(360-X)) 

( For 181-270, leave -sine (X-180)) 

( For 91-180, leave sine(180-X)) 

( For 0-90, leave sine(X)) 

THEN ; 

Cosine of an Angle 

As Fig. 8-2B shows, the cosine curve is nothing more than 
the sine curve displaced one quadrant to the left. Thus, the 
cosine of any given angle is equal to the sine of an angle that is 
90° greater. In equation form: 

cosine(X) = sine(X+90) 

Knowing this, we can use SINE-TABLE to look up the cosine of 
an angle as well as its sine. Example 8-8 defines the appropri¬ 
ate word, COSINE. As with SINE, the result of COSINE must be 
divided by 10,000. 

Incidentally, note that both the sine curve and the cosine curve 
are symmetric about the vertical axis, so negative angles have the 
same sines and cosines as their positive counterparts. For exam¬ 
ple, — 10P has the same sine and cosine as +10°. This means you 
can also use SINE and COSINE for angles between -1° and -360°, 
by supplying the angle’s absolute value on the stack. 
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Example 8-8. Cosine of an angle, using a table 

: COSINE 

( Return cosine of any integer-valued angle between ) 

( 0 degrees and 360 degrees. To use the result, ) 

( divide it by 10,000. ) 

( angle-cosine ) 

DUP 270 > ( Is angle greater than 270?) 

IF 

270 - ( Yes. Look up Quadrant I sine) 

ELSE 

90 + ( No. Use next sine quadrant) 

THEN 

SINE ; 

SORTING ARRAYS 

In many applications, the numbers in an array represent test 
results, statistical data or some other kind of unordered infor¬ 
mation. If this information is to be processed or analyzed, you 
will probably want to rearrange it, or sort it, into either increas¬ 
ing or decreasing order. This section describes two common 
sorting techniques, called bubble sort and insertion sort, and 
provides FORTH words to perform each type of operation. Al¬ 
though our discussion will concentrate on increasing-order 
sorts, the principles also apply to decreasing-order sorts, 

Bubble Sort 

The bubble sort technique is so named because it causes 
numbers to rise upward in memory (to higher addresses) just 
as soap bubbles rise into the sky. During a bubble sort, num¬ 
bers in an array are accessed sequentially, starting with the first 
number, and compared to the next number in the list. If a 
number is found to be greater than its higher-addressed 
neighbor, the numbers are exchanged. The next two numbers 
are then compared, exchanged if required, and so on. By the 
time the microprocessor gets to the last number in the array, 
the largest number will have “bubbled up” to the last number 
position in the array. 

This algorithm usually requires several passes to completely 
sort the array, as you can see from the example in Fig. 8-3. 



138 FORTH Programming 

50 
30 
40 
10 

10 
20 
30 
40 

Fig. 8-3. A bubble sort “bub¬ 
bles” the largest numbers to the 
end. 

20 '50 50 50 

Here, the first pass “bubbles” 50 to the end of the array and the 
next two passes “bubble” 40 and 30 to the next highest posi¬ 
tions in the array. So this particular array has been sorted in 
three passes. 

With pass-by-pass “snapshots” of the array, like those shown 
in Fig. 8-3, it is easy for you to know when an array is sorted, 
but how can a computer know when an array is sorted? Unless 
it is given a specific pass count, or told when to stop in some 
other way, the computer will continue executing pass after 
pass, ad infinitum. Since the number of sorting passes depends 
on the initial arrangement of the array, we have no way to pro¬ 
vide a pass count in a program. For this reason, we will set up a 
special indicator, called an exchange flag, that the computer 
can use to know when to stop sorting. 

The exchange flag will be set to 1 before each sorting pass. 
Any sorting pass that includes a number exchange will cause 
the exchange flag to be reset to 0. Therefore, after each pass 
the value of the exchange flag tells the computer whether to 
continue sorting. A value of 0 signals the need for another pass 
through the array; a value of 1 indicates that the array is sorted, 
and tells the computer to stop sorting. Fig. 8-4 is a flowchart of 
the bubble sort algorithm. 

As you can see, even if an array is totally ordered at the out¬ 
set, it will take one pass to deduce this fact. If one pass is the 
minimum in a bubble sort, what maximum number of passes 
can be expected? The preceding five-number sample array, 
which was already partially sorted, required three passes to put 
the numbers in order and one more pass to detect that the 
array was sorted—four passes in all. If that same array had 
been initially arranged in descending order (the worst case), 
the bubble sort algorithm would have required five sorting 
passes; four passes to sort the data and one more pass to de¬ 
tect that no further sorting was needed. From this observation 
we can state that an N-number array will take from one to N 
passes to sort, with (N + 1)/2 passes being the average. 

Example 8-9 shows the definition of the word BBL-SORT, 
which sorts an array using the algorithm we just described. 
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Fig. 8-4. Bubble sort flowchart. 
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Example 8-9. Sort an array of numbers, using bubble sort 

: BBL-SORT 

( Using the bubble sort technique, sort an n-number array ) 

( beginning at addr. ) 

( addr n-) 

DUP + OVER + 2 - 

SWAP 

>R >R 

BEGIN 

1 
R> R@ OVER >R 

DO 

1 2 + @ I @ < 
IF 

I 2+ DUP @ 

I DUP @ 

4 ROLL ! I 

DROP 0 

THEN 

2 

+ LOOP 

UNTIL 

R> R> DROP DROP ; 

( DO-LOOP end = addr + 2n - 2) 

( DO-LOOP start = addr) 

( Save these limits on return stack) 

( To start, exchange flag = 1) 

( Fetch DO-LOOP limits) 

( Compare next two numbers) 

( If second number < first number,) 

( exchange the two numbers ) 

( Set exchange flag = 0) 

( Keep sorting until flag = 1) 

( Discard DO-LOOP limits) 

This definition is straightforward, and follows the flowchart in 
Fig. 8-4. Note that the DO-LOOP limits are saved on the return 
stack, because they must be reloaded after each sorting pass. 
You may also like to study how two numbers can be ex¬ 
changed. This operation involves first pushing the addresses 
and number onto the data stack, in this order: 

addr,+1 nm addr, n| 

Next, the sequence (4 ROLL) rotates the address of the second 
number onto the top of the stack, to produce this arrangement 

n,+1 addr, n| addr!+1 

At this point, we have two pairs of arguments. These are used 
by the sequence (! !) to store the first number into the second 
address, then the second number into the first address, which 
completes the exchange. 

The operation performed by BBL-SORT has one deficiency: 
each execution of the DO-LOOP causes all numbers in the 
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array to be compared—even the numbers that have already 
“bubbled up” to their final position! Since there is no need to 
process the numbers that have already been sorted, we can 
speed up the bubble sort operation, somewhat, by omitting 
those numbers from the comparison. That is, in sorting a 
N-number array, the first pass should process N numbers, the 
second pass should process N-1 numbers, the third pass 
should process N-2 numbers, and so on. 

To define a new FORTH word with this more efficient al¬ 
gorithm, we need only modify BBL-SORT so that the DO-LOOP 
“end” limit is decreased by two before each sorting pass. 
Example 8-10 shows the improved version of BBL-SORT, a 
word called BSORT. In BSORT, the DO-LOOP end limit is de¬ 
creased by two immediately after it is pulled from the return 
stack. To compensate for this before the first pass, the initial 
DO-LOOP end limit is calculated as 

addr + 2n 

a value two greater than the initial end limit in the BBL-SORT 
definition. These two changes are the only differences between 
BSORT and BBL-SORT; everything else is identical. 

How much faster is BSORT than BBL-SORT? To find out, I 
ran three “worst-case” sorts (numbers initially in decreasing 
order) using a FORTH system on my Apple II computer, and 
measured the execution times with a wristwatch. To sort 100 
numbers, BBL-SORT took 16 seconds and BSORT took 12 sec¬ 
onds. To sort 200 numbers, BBL-SORT took 66 seconds and 
BSORT took 47 seconds. To sort 300 numbers, BBL-SORT took 
150 seconds and BSORT took 103 seconds. From these results 
it appears that BSORT is about 30% faster than BBL-SORT! 

Insertion Sort 

The bubble sort technique is easy to understand and easy to 
implement, but unless the target array is almost sorted at the 
outset, bubble sort is one of the slowest of all sorting tech¬ 
niques. Another technique that is nearly as simple as the bub¬ 
ble sort, and almost always faster, is the insertion sort. 

An insertion sort arranges numbers in an array the same way 
you might arrange a deck of cards. That is, an insertion sort 
makes one pass through the array, starting with the second 
number, and compares each number with the numbers preced¬ 
ing it. If a number is less than any of its predecessors, it is 
moved toward the beginning of the array, to its proper position. 
If a number is greater than the preceding number (which 
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Example 8-10. An improved bubble-sort 

: BSORT 

( A more efficient version of BBL-SORT, in which only ) 

( previously unsorted numbers are processed. ) 

( addr n-) 

DUP + OVER + 

SWAP 

>R >R 

BEGIN 

1 
R> 2 - R@ OVER >R 

DO 

1 2 + @ I @ < 
IF 

I 2+ DUP @ 

I DUP @ 

4 ROLL I ! 

DROP 0 

THEN 

2 

+ LOOP 

UNTIL 

R> R> DROP DROP ; 

( DO-LOOP end = addr + 2n) 

( DO-LOOP start = addr) 

( Save these limits on return stack) 

( To start, exchange flag = 1) 

( Subtract 2 from end limit) 

( Compare next two numbers) 

( If second number < first number,) 

( exchange the two numbers ) 

( Set exchange flag = 0) 

( Keep sorting until flag = 1) 

( Discard DO-LOOP limits) 

means it is greater than all preceding numbers), it is left alone 
and the process continues with the next number. Fig. 8-5 
shows the insertion sort technique applied to the five-number 
array we bubble-sorted earlier, in Fig. 8-3. 

Example 8-11 shows the definition of the word ISORT, which 
uses the insertion sort technique to sort an n-number array. 
This definition is comprised of two DO-LOOPs. The outer DO- 
LOOP sequences through the array, starting with the second 
number, comparing a number with its immediate predecessor 
with each pass. If a number is found to be less than the preced¬ 
ing number, the inner DO-LOOP finds the proper position for 
that number by working backward through the array. The inner 
DO-LOOP always leaves an address on the stack; the address 
of the number that is equal to or greater than the search 
number. (This address can also be the starting address of the 
array.) The inner DO-LOOP is followed by a sequence that 
opens up a space for the search number and inserts the 
number in that space. 
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50 -,30 30 TO 10 

Fig. 8-5. An insertion sort finds ^ in /In 
the proper place for each number. 10 10 \g/ 50/ 40 

20 20 20 2(/ 50 

Example 8-11. Sort an array of numbers, using insertion sort 

: ISORT 

( Using the insertion sort techique, sort an n-number ) 

( array beginning at addr. ) 

( addr n-) 

DUP + OVER + ( DO-LOOP end = addr + 2n) 

OVER 2+ ( DO-LOOP start = addr + 2) 

DO 

1 @ DUP ( Is this number less than) 

1 2 - @ < ( the preceding number? ) 

IF ( Yes. Find its proper place) 

0 ( Dummy number) 

3 PICK 2-12- ( Inner loop limits = addr —2 1 — 2) 

DO 

DROP ( Drop dummy number or last 1) 

DUP 1 @ < ( Search number < this number?) 

IF 

1 ( If so, save this address) 

ELSE 

1 2+ LEAVE ( If not, go insert) 

THEN 

-2 

+ LOOP 

DUP DUP 2 + ( Open a gap for the insert,) 

1 3 PICK — <CMOVE !( then insert the number ) 

ELSE 

DROP ( Drop search number) 

THEN 

+ LOOP 

DROP ; ( Clear the stack) 

For the “worst case,” with all numbers initially in descending 
order, an insertion sort is slightly slower than a bubble sort. 
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Table 8-3. fig-FORTH Constant- and Variable-Defining Words 

Wbrd Stack Action 

CONSTANT n- A defining word used in tne form: 

n CONSTANT name 

to create a dictionary entry for name, 
leaving n in its parameter field. When 
name is later executed, n will be left 
on the stack. 

VARIABLE n- A defining word used in the form: 

n VARIABLE name 

to create a dictionary entry for name 
with its parameter field initialized to n. 
When name is later executed, the ad¬ 
dress of its parameter field is left on 
the stack. 

ALLOT n- Adds n bytes to the field of the most 
recently defined word. 

' n- Allots two bytes in the dictionary, stor¬ 
ing n there. 

C, n- Allots one byte in the dictionary, stor¬ 
ing the low-order 8 bits of n there. 

CREATE A defining word used in the form: 

CREATE name 

to create a dictionary entry for name, 
without allocating any parameter field 
memory. When name is later exe¬ 
cuted, the address of its parameter 
field is left on the stack. 

<BUILDS Used in a colon-definition in the form: 

DOES> : name <BUILDS ... 
DOES> ... ; 

Each time name is executed, 
<BUILDS defines a new word with a 
high-level execution procedure. 
Executing name in the form 

name namex 

uses <BUILDS to create a dictionary 
entry, with a call to the DOES> part 
for namex. 

When namex is later executed, the 
sequence of words between DOES> 
and [;] will be executed, with the ad¬ 
dress of namex’s parameter field on 

the stack. 
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Table 8-4. Words Added to FORTH in Chapter 8 

Word Stack Action 

ARRAY n- Creates an n-number array labeled 
name, using this form: 

n ARRAY name 

Thereafter, fetch the address of any 
element in name onto the stack by 
entering 

element# name 

CARRAY n- Same as ARRAY, but creates an 
n-byte array. 

C? addr- Displays the byte at addr. 

C+! n addr - Adds the low-order 8 bits of n to the 
byte at addr. 

TABLE Used in the form: 

TABLE name 

to create a dictionary entry for name, 
without allocating any parameter field 
memory. Elements are added to the 
table with [,]. 

Thereafter, fetch the value of any 
element by entering 

element# name 

CTABLE Same as TABLE, but CTABLE is used 
to create a byte table, in which ele¬ 
ments are added with [C,]. 

SINE angle-sine Returns the sine of any integer-valued 
angle between 0 and 360 degrees. To 
use the result, divide it by 10,000. 

COSINE angle-cosine Similar to SINE, but returns the 
cosine of an angle. 

BBL-SORT addr n- Sorts an n-number array, starting at 
addr, using the bubble sort technique. 

BSORT addr n- A more efficient version of 
BBL-SORT, in which only previously 
unsorted numbers are processed. 

ISORT addr n- Sorts an n-number array, starting at 
addr, using the insertion sort tech¬ 
nique. 

However, with random data, an insertion sort is about 20% 
faster than a bubble sort. 
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fig-FORTH CONSTANT- AND VARIABLE-DEFINING WORDS 

Table 8-3 lists the fig-FORTH words used to define constants 
and variables, and to create arrays and tables, Note that fig- 
FORTH does not include the double-number words 
2CONSTANT and 2VARIABLE, but all of FORTH-79’s other 
words are provided. 

There are a few differences, however. The primary difference 
is that fig-FORTH requires a variable to be initialized at the 
same time it is created, using the form: 

n VARIABLE name 

You will recall that FORTH-79 simply allocates memory space 
for the value, and leaves the initialization responsibility up to 
you. Thus, fig-FORTH provides a “safer” approach to setting up 
variables. The only other difference between FORTH-79 and 
fig-FORTH is that in creating new defining words, FORTH-79 
uses the construct CREATE-DOES>, whereas fig-FORTH uses 
the construct <BUILDS-DOES>. Other than that name change, 
these constructs are identical between the two FORTHs. 

SUMMARY 

This chapter discussed constants, words that rarely change, 
and variables, words that can be changed as necessary while 
the program is executing. Referencing a constant leaves its 
value on the stack, whereas referencing a variable leaves its 
address on the stack. 

We also discussed tables, which are groups of constants in 
memory, and arrays, which are groups of variables in memory, 
and showed how each could be initialized. Finally, we dis¬ 
cussed two sorting techniques, bubble sort and insertion sort, 
which put data in a form that is more suitable for processing. 

Table 8-4 summarizes the words that can be added to FORTH 
based on the material in this chapter. 



CHAPTER 9 

Numbering Systems 

Until now, all numbers in this book have been given in their 
decimal form. This has been no hindrance so far because we’ve 
been working primarily with data processing types of applica¬ 
tions; arithmetic operations, stack manipulations, memory 
transfers, and the like. However, at some point or other you will 
probably encounter other numbering systems, those that are 
more appropriate than decimal when you are dealing with 
computers. 

In this chapter we will present a brief “crash course” on the 
binary and hexadecimal numbering systems, those most com¬ 
monly used in computer applications. If you are already familiar 
with those concepts, feel free to skip the first few sections and 
proceed to the discussion of BASE, the system variable that 
FORTH uses to determine which numbering system is in effect 
at any given time. 

THE BINARY NUMBERING SYSTEM 

In a computer, all information used in programs (instructions 
and data) is stored in the computer’s memory. Memory is com¬ 
prised of a large number of electrical components that act like 
light switches. That is, these components have only two possi¬ 
ble settings, “on” and “off.” However, with just these two set¬ 
tings, combinations of memory components can very effec¬ 
tively represent numbers of any magnitude. How? Read on to 
find out. 

The “on” and “off” settings of the components in memory 
correspond to the two digits of the binary numbering system, 
the fundamental system for computers. Having only two digits, 
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1 (on) and 0 (off), the binary numbering system is a base 2 sys¬ 
tem. This contrasts with the familiar decimal numbering sys¬ 
tem, which has 10 digits (0 through 9), making it a base 10 
system. 

The light switch-like components of memory are called 
“bits,” which is short for binary digits. By convention, a bit that 
is “on” represents the value 1 and a bit that is “off” represents 
the value 0. This appears to be woefully limiting, until you con¬ 
sider that a decimal digit (no, it’s not called a “det”) can only 
range from 0 to 9. Just as decimal digits can be combined to 
form numbers greater than 9, binary digits can be combined to 
form numbers greater than 1. In fact, a binary number can rep¬ 
resent any value that can be represented by a decimal number; 
it will just take more binary digits to do the job! 

As you know, to represent a decimal number greater than 9 
will take one or more extra digits. Numbers between 10 and 99 
take an additional “tens position” digit, numbers between 100 
and 9999 take a tens position digit and an additional “hundreds 
position” digit, and so on. Therefore, each decimal digit has a 
weight of 10 times the digit to its immediate right. 

For example, the decimal number 324 can be represented as 

(3 X 100) + (2 X 10) + (4X1) 

or, put another way, 

324 = (3 X 102) + (2 X 101) + (4 X 10°) 

So, in mathematical terms, each decimal digit is a power of 10 
greater than the preceding (less-significant) digit. 

A similar rule applies to the binary numbering system: each 
binary digit is a power of two greater than the preceding binary 
digit. The rightmost digit has a weight of 2°, the next digit has a 
weight of 2\ and so on. Therefore, the binary number 101 has a 
decimal value of five because 

101 
"T*— =1 x 2° = 1 
-= 0 x 21 = 0 
-■ =1 x 22 = j4 

Total = 5 

Do you understand how binary numbers are constructed? 
For each binary digit position, you double the weight of the 
preceding digit. Thus, the first eight binary weights are 1, 2, 4, 
8, 16, 32, 64, and 128. These weights are shown in Fig. 9-1. 
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7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 BIT POSITION 

27 26 25 24 23 2* 2 21 2° POWER OF TWO 

128 64 32 16 8 4 2 1 DECIMAL VALUE 

Fig. 9-1. Weights of eight binary digits. 

To test your skill at binary numbering, try to construct the 
binary representations of the decimal values 12, 17, 45, and 79. 
(You should obtain the binary values 1100, 10001, 101101, and 
1001111, respectively.) Conversely, what decimal values are 
represented by the binary values 1000, 10101, and 11111? (The 
answers are 8, 21, and 31.) 

Eight Bits Form a Byte 

The Apple II, the Commodore PET/CBM, the Radio Shack 
TRS-80 and many other popular microcomputers are designed 
around an 8-bit microprocessor. These microprocessors can 
process eight bits of information in a single operation. To proc¬ 
ess more than eight bits requires additional operations. 

In computer literature, an 8-bit quantity of information is 
called a byte. With eight bits, a byte can represent decimal in¬ 
tegers from 0 (binary 00000000) to 255 (binary 11111111). 

Because a byte is the fundamental unit of processing, mi¬ 
crocomputers are described in terms of the number of bytes 
(rather than bits) contained in their memories. Further, mi¬ 
crocomputer manufacturers generally construct memory in 
blocks of 1024 bytes. This particular quantity is an outgrowth of 
the binary orientation of computers, in that it represents exactly 
210 bytes. 

The value 1024 has also been given an industry-standard ab¬ 
breviation; it is referred to by the letter K. Thus, when you read 
an advertisement for a computer that has a “16K RAM,” the 
manufacturer is telling you that this particular product has 16 x 
1024 (or 16,384) bytes of programmable memory. 

THE HEXADECIMAL NUMBERING SYSTEM 

Although binary numbering is an accurate way to represent 
numbers in memory, strings of nothing but ones and zeroes are 
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very difficult to work with for any extended period of time. They 
are error-prone as well, because a number such as 10110101 is 
extremely easy to write incorrectly as 10110110 (the rightmost 
two bits have been interchanged). 

Years ago, programmers realized that they were always re¬ 
quired to operate on groups of bits, rather than on individual 
bits. The earliest microprocessors were 4-bit devices (they pro¬ 
cessed information four bits at a time), so the logical alternative 
to binary numbering was a system that numbers bits in groups 
of four. 

As you know, four bits can represent the binary values 0000 
through 1111, which is equivalent to the decimal values 0 
through 15. If each digit of a numbering system is to represent 
four bits, that numbering system will have digits that can range 
from 0 to 15 (decimal). Therefore, that numbering system is a 
base 16 system. 

If the word binary is used to denote a base 2 system and the 
word decimal is used to denote a base 10 system, what term 
can be applied to a base 16 system? Well, whoever named the 
base 16 system took the Greek word “hex” (for six) and the 
Latin word “decern” (for ten), and combined them to form the 
word “hexadecimal.” Thus, the base 16 numbering system is 
called the hexadecimal numbering system. 

The 16 digits of the hexadecimal numbering system are 
labeled 0 through 9 (decimal values 0 through 9) and A through 
F (decimal values 10 through 15). The hexadecimal-to-decimal 
correlations are sumamrized in Table 9-1, for reference purposes. 

Like binary and decimal digits, each hexadecimal digit has a 
“weight” that is some power of its base. Since 16 is the base 
for the hexadecimal numbering system, each hexadecimal digit 
has a weight that is a power of 16 higher than the digit to its 
immediate right. That is, the rightmost digit has a weight of 16°, 
the second digit has a weight of 161, and so on. For example, 
the hexadecimal value 3AF has a decimal value of 943, because 

3AF 
F x 16° = 15 x 1 =15 
A x 161 = 10 x 16 = 160 
3 x 162 = 3 x 256 = 768 

Total = 943 

To save you the trouble of making this kind of calculation 
everytime you want to convert a hexadecimal number to a dec¬ 
imal number, or vice versa, a conversion table is given in Ap¬ 
pendix A. 
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Table 9-1. Hexadecimal Numbering System 

Hexadecimal 
Digit 

Decimal 
Value 

0 0 
1 1 

2 2 

3 3 
4 4 

5 5 
6 6 
7 7 

8 8 

9 9 
A 10 
B 11 

C 12 
D 13 
E 14 
F 15 

Use of Hexadecimal Numbers 

For the remainder of this book, and in your own FORTH 
programming, you will probably want to continue using dec¬ 
imal numbers for most arithmetic calculations, but switch to 
hexadecimal when specifying memory addresses or operating 
on individual bits in memory. 

The most prevalent use of hexadecimal numbers in com¬ 
puter-related literature is in referring to memory locations. 
Most 8-bit microprocessors have an addressing range of 65,536 
bytes (that is, 64K bytes). This means that memory locations 
can have addresses from 0 to 65,535 decimal, or from 0 to FFFF 
hexadecimal. As you can see, then, memory addresses are al¬ 
ways two bytes long, or in FORTH terminology, they are 
number- sized. 

UNSIGNED AND SIGNED DATA VALUES 

Throughout most of this book we have been dealing with 
signed numbers and double numbers, but from time to time we 
encountered words that can operate on unsigned numbers and 
double numbers. Since this chapter is dedicated to numbering 
systems, it is an appropriate spot to discuss the details of these 
two data types. For discussion purposes, we will concentrate 
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on numbers, but these principles also apply to double num¬ 
bers—or bytes, for that matter. 

Unsigned Numbers 

In an unsigned number, each bit carries a certain binary 
weight (as we discussed earlier), according to its position 
within the number. The least-significant bit has a weight of 2° 
(decimal 1) and the most-significant bit—the sixteenth bit— 
has a weight of 215 (decimal 32,768). Therefore, if all bits con¬ 
tain zero, the unsigned number has the value 0, and if all bits 
contain one, the unsigned number has the value 65,535. 

Signed Numbers 

In a signed number, only the 15 least-significant bits repre¬ 
sent data; the most-significant bit represents the sign of the 
number. The most-significant bit is 0 if the number is positive 
or zero and 1 if the number is negative. Positive signed num¬ 
bers can have values between 0 (binary 000 ... 00) and +32,767 
(binary 011 ... 11). Negative signed numbers can have values 
between -1 (binary 111 ... 11) and -32,768 (binary 100 . . . 00). 

Two's Complement 

Why is -1 represented by binary 1111111111111111, rather 
than by binary 1000000000000001? The answer is that negative 
signed numbers are represented in their fwo’s complement 
form. The two’s complement form was introduced to eliminate 
the problems associated with allowing zero to be represented 
in two different forms, all zeroes (the positive form) and all 
zeroes with a 1 in the sign bit (the negative form). Using two’s 
complement, zero is represented by only one form, all zeroes. 

To derive the binary representation of a negative number 
(that is, its two’s complement form), simply take the positive 
form of the number and reverse the sense of each bit—change 
each 1 to a 0 and each 0 to a 1—then add 1 to the result. The 
following example shows the steps required to derive the two’s 
complement binary representation of -32. 

00000000 00100000 +32 

11111111 11011111 One's complement 

+ 1 Add 1 

11111111 111 00000 Two's complement 
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Fortunately, FORTH has the two’s complementing words 
NEGATE and DNEGATE (called MINUS and DMINUS in fig- 
FORTH), so you will probably never have to go through this 
exercise yourself. However, this information may prove to be 
valuable if your program includes some assembly language 
routines that manipulate signed numbers. 

FORTH AND NUMBER BASES 

It is important to realize that the various numbering systems 
are simply alternate ways for you to represent the information 
being processed by the computer. The fact that you choose to 
represent that information in binary rather than in decimal, or 
in hexadecimal rather than in binary, has absolutely no effect 
on how the computer’s microprocessor operates on that infor¬ 
mation. To a microprocessor, the information in memory is 
nothing more than a series of binary patterns which are pro¬ 
cessed according to the machine code instruction that is being 
executed at any given time. 

BASE Selects the Numbering System 

With that aside, let us say that whereas most computer lan¬ 
guages offer a choice of no more than three or four numbering 
systems (base 2, 10, 16, and occasionally 8), FORTH offers 69 
different numbering systems, ranging from base 2 to base 70. 
The numbering system that is currently active is determined by 
the contents of a system variable called BASE. 

If BASE has a value of 2, FORTH will expect all numbers to be 
entered in binary form. Similarly, if BASE has a value of 10 or 
16, FORTH will expect all numbers to be entered in decimal or 
hexadecimal form. 

Changing the Number Base 

When you first enter FORTH, the BASE variable will have the 
value 10, which selects decimal numbering. If you wish to 
change to some other number base, simply store that number 
into BASE. For example, the sequence 

16 BASE ! 

selects hexadecimal numbering. Once BASE has been 
changed, FORTH will expect all numbers to be entered in the 
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selected number base, and will print out all results in that 
number base. 

After entering 16 into BASE, we can operate with hexadeci¬ 
mal numbers directly, such as 

3AF 6E + . 41D OK 

This will remain in effect until the value of BASE is altered. 
How can we return to the decimal system from hexadecimal? 

A common error is to attempt this sequence: 

10 BASE ! 

Why is this sequence erroneous? Because with BASE equal to 
16, FORTH assumes that the stack value 10 represents 
hexadecimal 10 (which is decimal 16) rather than decimal 10. 
The proper sequence to restore the decimal mode is: 

A BASE ! 

since hexadecimal A is equivalent to decimal 10. 
BASE is one of four FORTH words (see Table 9-2) that can be 

used to select a number base. Let’s look at two of the other 
words, DECIMAL and HEX. 

Table 9-2. Number Base Control Words 

Word Stack Action Notes 

BASE -addr Leaves the address of a user 
variable containing the current 
number base used for input 
and output conversion. 

DECIMAL Sets the input/output numeric 
conversion base to 10. 

HEX Sets the input/output numeric 
conversion base to 16. 

(D 

H. n- Outputs n as a hexadecimal in¬ 
teger with one trailing blank. 
The current base is unchanged. 

(2) 

OCTAL Sets the input/ output numeric 
conversion base to 8. 

(2) 

O. n- Outputs n as an octal integer 
with one trailing blank. The 
current base is unchanged. 

(2) 

Notes: (1) Included in Reference Word Set, as a Standard Word Definition. 

(2) Included in Reference Word Set, as an uncontrolled word 
definition. 
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DECIMAL AND HEX 

The Required Word DECIMAL gives you an easy way to exit 
from a nondecimal numbering system, by storing the decimal 
value 10 into BASE. You may also want to make a momentary 
side trip into decimal, to print out some result or to input some 
decimal data. 

Of course, if the decimal mode is just temporary, the original 
number base must be saved, then stored back into BASE when 
your decimal work is done. This requires the sequence 

BASE @ ( Fetch number from BASE) 

DECIMAL ( Call up decimal mode) 

( Perform decimal operations) 

BASE I ( Restore original number base) 

For example, if BASE is set to 16 and the stack holds the 
hexadecimal values 3AF and 6E, the sum of these numbers 
could be printed out in decimal with the sequences 

+ BASE @ DECIMAL SWAP . 1053 OK 

BASE ! 

The FORTH-79 Reference Word Set contains a similar word, 
HEX, which stores decimal 16 into BASE, thereby placing 
FORTH in the hexadecimal mode. Associated with this mode is 
the uncontrolled word [H.], which displays a number in hex¬ 
adecimal form without affecting the current base. The 
definitions of these words are: 

DECIMAL : HEX 16 BASE ! ; 

: H. BASE @ SWAP HEX . BASE ! ; 

You may be wondering why the word DECIMAL precedes the 
definition of HEX rather than falls inside the definition. The rea¬ 
son is simple: A BASE-changing word placed outside a defi¬ 
nition takes effect when the definition is compiled, whereas a 
BASE-changing word placed inside a definition takes effect 
when the defined word is executed. Therefore, the word DEC¬ 
IMAL preceding the definition of HEX tells the compiler, “The 
following definition has numbers which are to be interpreted as 
decimal numbers.’’ By contrast, the word HEX in the definition 
of [H.] causes FORTH to switch to decimal mode temporarily, 
before [.] is executed. Recognizing this distinction may help 
keep you out of trouble when you are developing your own 
FORTH programs. 
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Numbering systems can be mixed freely in programs, as long 
as you keep track of which base is active at any given time. 
Example 9-1 shows a colon-definition that has both HEX and 
DECIMAL in the same DO-LOOP. This word, .NUMBERS, dis¬ 
plays n consecutive numbers in memory, starting at addr. Thus, 
.NUMBERS is similar to DUMP, which displays n consecutive 
bytes. However, .NUMBERS can be more valuable in certain 
debug operations, because it displays the address in hexadec¬ 
imal and the number in decimal. (DUMP displays both in the 
current number base.) 

Example 9-1. Display consecutive numbers in memory 

: .NUMBERS 

( Display n consecutive numbers in memory, starting ) 

( at addr. For each number, the address is shown in ) 

( hexadecimal and the number is shown in decimal. ) 

( addr n-) 

BASE @ 

ROT ROT 

0 

DO 

CR DUP HEX U. 

DUP @ DECIMAL . 

2 + 
LOOP 

DROP 

BASE ! ; 

( Fetch active number base) 

( addr n base-base addr n) 

( DO-LOOP start = 0) 

( Display address) 

( Display number) 

( Address next word to be printed) 

( Discard last address on stack) 

( Restore previous number base) 

While .NUMBERS is executing, the current number base is 
preserved with the sequence ( BASE @ ) at the beginning of 
the definition and the sequence ( BASE ! ) at the end. A typical 
run of .NUMBERS will look like this: 

HEX OK 
B000 5 .NUMBERS 

B000 31052 
B002 19650 

B004 -15743 

B006 269 
B008 -30019 OK 
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OTHER NUMBER BASES 

The FORTH-79 Standard includes one other number base 
control word, OCTAL, as an uncontrolled definition. Seldom 
used now is the octal numbering system with the base eight, 
which means its digits run from 0 to 7. Associated with the 
octal system is another uncontrolled word, [0.], which displays 
a number in octal form without affecting the current case. The 
definitions of these two words are: 

DECIMAL : OCTAL 8 BASE ! ; 
: O. BASE @ SWAP OCTAL . BASE ! ; 

With BASE, it is possible to define a word for any number 
base between 2 and 70 (trivia buffs are directed to Table 9-3). 
However, for most applications, the only other numbering sys¬ 
tem needed is binary, base 2, which can be obtained with this 
word: 

DECIMAL : BINARY 2 BASE ! ; 

The binary numbering system is typically used to operate on 
individual bits within memory or peripheral control registers. To 

Table 9-3. Names of Various Number Bases 

Base Name 

2 Binary 
3 Ternary 
4 Quatenary 
5 Quinary 
6 Senary 
7 Septenary 
8 Octal, or octonary 
9 Novenary 

10 Decimal 
11 Undecimal 
12 Duodecimal 
13 Terdenary 
14 Quaterdenary 
15 Quindenary 
16 Hexadecimal, or sexadecimal 
17 Septendecimal 
18 Octodenary 
19 Novemdenary 
20 Vicenary 
32 Duosexadecimal, or duotricinary 
60 Sexagenary 
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display a number in its binary form, you could add this word to 
your dictionary: 

: B. BASE @ SWAP BINARY . BASE ! ; 

fig-FORTH NUMBER BASE CONTROL WORDS 

fig-FORTH provides only the words BASE, DECIMAL, and 
HEX, defined as in Table 9-2. However, you can add the other 
words shown in this table by entering the definitions given in 
this chapter. 

Table 9-4. Words Added to FORTH in Chapter 9 

Word Stack Action 

.NUMBERS addr n- Displays n consecutive numbers in 
memory, starting at addr. For each 
number, the address is shown in 
hexadecimal and the number is 
shown in decimal. 

BINARY Sets the input/output numeric con¬ 
version base to 2. 

B. n- Outputs n as a binary integer with one 
trailing blank. The current base is un- 
changed. 

SUMMARY 

This chapter began by describing the way information is 
stored in a computer’s memory; as a series of binary bits, usu¬ 
ally addressed eight bits at a time, which is called a byte. From 
there we moved on to a discussion of the hexadecimal number¬ 
ing system, which represents four bits as a single digit (0 
through 9 and A through F). 

These fundamentals paved the way for a description of 
BASE, the system variable that selects the form in which data 
will be entered into the system and displayed on the screen or 
printer. The FORTH words DECIMAL and HEX manipulate 
BASE to produce decimal or hexadecimal input/output, re¬ 
spectively. 

Table 9-4 summarizes the words that can be added to FORTH 
based on the material in this chapter. 



CHAPTER 10 

Interacting With FORTH Programs 

In the preceding chapters, you and the computer have as¬ 
sumed roles similar to those of a playwright and an actor. As 
playwright (programmer), you wrote a “script" (program) that 
informed the actor what to do. With your job done, the actor 
(computer) read the script and performed it, while you sat back 
as a passive observer. 

However, “real-life” applications often require you to take an 
active part in the production. That is, you will often wish to 
assume the additional duties of director, to give the actor (a- 
gain, the computer) new commands that will affect the out¬ 
come of the play. 

As an engineer or an accountant, for instance, you may need 
to halt the computer while you supply a new dimension or a 
new interest rate. Similarly, as a game-player, you may need to 
halt the computer while you enter your next move. These appli¬ 
cations, and many others, require a certain amount of interac¬ 
tion between the operator/programmer and the computer, 
while a program is running. 

This chapter covers the FORTH words you will need to in¬ 
teract with the computer; words that accept information from 
the keyboard and words that transmit information to a printer 
or display screen. As we learned in Chapter 4, this kind of in¬ 
formation is usually transmitted in a special 8-bit code called 
ASCII, so many of the FORTH words presented here involve 
operations on ASCII characters. Appendix A contains a sum¬ 
mary of the ASCII character set, for reference purposes. 

This chapter also covers a related topic: words that are used 
to format information on a printer or display screen to make 
that information more understandable. Table 10-1 summarizes 
all the words that will be discussed here. 

159 
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Table 10-1. Character and String Input/Output Words 

Word Stack Action Notes 

KEY -char Leaves the ASCII value of the 
next available character from 
the current input device. 

EMIT char- Transmits ASCII character to 
the current output device. 

BELL Activates a terminal bell or 
noise-maker appropriate to the 
device in use. 

(2) 

BL 

SPACE 

-char Leaves the ASCII character for 
“blank” (decimal 32). 
Transmits an ASCII blank to the 
current output device. 

(3) 

EXPECT addr n- Transfers characters from the 
terminal to memory, starting at 
addr, until a “return” or n char¬ 
acters have been received. One 
or more nulls are added at the 
end of the text. 

TYPE addr n- Transmits n characters, begin¬ 
ning at addr, to the current 
output device. 

COUNT addr-addr+1 n Leaves the address addr+1 and 
the character count of a string 
beginning at addr. The byte at 
addr must contain the char¬ 
acter count n. COUNT is usually 
followed by TYPE. 

PAD -addr Leaves the address of a scratch 
area used to hold character 
strings for intermediate pro¬ 
cessing. The minimum capacity 
of PAD is 64 characters (addr 
through addr+63). 

SPACES n- Transmits n spaces to the cur¬ 
rent output device. 

-TRAILING addr nl- 
addr n2 

Adjusts the character count nl 
of a text string beginning at 
addr to exclude trailing blanks. 

.R n width- Prints the number n, right- 
justified within the field width. 

(2) 

D.R d width- Prints the double number d, 
right-justified within the field 
width. 

(1) 

U.R u width- Prints the unsigned number u, 
right-justified within the field 
width. 

(3) 
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Table 10.1—cont. Character and String Input/Output Words 

Word Stack Action Notes 

<# Used in the form: 

<#...#> 
to begin a process that con¬ 
verts an unsigned double 
number into an ASCII character 
string, stored in right-to-left or¬ 
der. 

# udl-ud2 Converts one digit of an un¬ 
signed double number into an 
ASCII character, and puts that 
character into an output char¬ 
acter string. 

#S ud-0 0 Converts all remaining digits of 
an unsigned double number 
into ASCII characters, and puts 
those characters into an output 
character string. Adds a single 
zero to the output string if the 
value is zero. 

HOLD char- Inserts an ASCII character into 
an output character string, at 
the current position. 

SIGN n- Inserts an ASCII minus sign into 
the output character string, if n 
is negative. Usually used im¬ 
mediately before [#>], to pro¬ 
duce a leading minus sign. 

#> d-addr n Terminates numeric conver¬ 
sion. Leaves start address and 
character count of the char¬ 
acter string, suitable arguments 
for TYPE. 

CONVERT dl addrl- 
d2 addr2 

Converts the text beginning at 
addrl+1 to a double number, 
with regard to BASE. The new 
value is accumulated into dl, 
and left as d2. addr2 is the ad¬ 
dress of the first nonconvertible 
character. 

NUMBER addr-d Converts the text beginning at 
addr+1 to a double number, 
with regard to BASE. If numeric 
conversion is not possible, an 
error condition exists. The 
string may contain a leading 
minus sign. 

(2) 

Notes: (1) Included in Double Number Extension Word Set. 
(2) Included in Reference Word Set, as an uncontrolled word 

definition. 
(3) Included in Reference Word Set, as a Standard Word Definition. 
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CHARACTER OPERATIONS 

The most fundamental kind of ASCII transfer operation is one 
that involves just one character; either reading a character in 
from the keyboard or transmitting a character to a printer or 
display. The word KEY waits for the current input device (usu¬ 
ally a keyboard) to supply a character, and then places that 
character on the top of the stack. Conversely, the word EMIT 
takes an ASCII character off the top of the stack and transmits 
it to the current output device (usually a printer or display 
screen, or both). 

Because the word KEY induces a built-in wait until a key is 
pressed, typing in KEY and Return alone will not produce 
FORTH’s usual OK message; OK will not be displayed until 
you’ve pressed another key. Moreover, the single key itself will 
never be displayed. If you have a FORTH system, type in KEY, 
then press Return, then press A. This should produce: 

KEY OK 

Now try it again, but follow the “A” with a [.], so that the top 
value is printed. This should produce: 

KEY OK 

. 65 OK 

where, from Appendix A, “65” is the ASCII representation of the 
letter A, in decimal. 

Granted, a readout of “65” is meaningless unless you’re sit¬ 
ting at the terminal with an ASCII table close at hand. To make 
such ASCII values more readily understandable, FORTH pro¬ 
vides a second word, EMIT, which converts this number back 
to its character form, and displays that character. 

Now try the KEY-Return-A sequence again, but follow A with 
the word EMIT. This should produce: 

KEY OK 
EMIT AOK 

Here “AOK” is not a message from an astronaut, but rather the 
printout of our ASCII key character, “A”, immediately followed 
by the FORTH message “OK”. 

What are some possible uses for single-character transfers? 
One use is in selecting an option from a “menu” of options. For 
example, a small business may have disk files containing sum¬ 
mary data of accounts receivable, accounts payable, current 
inventory, payroll information, and so on. If a single digit iden- 
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tifier is assigned to each of these files, a KEY operation could 
select one of these files for listing on a printer. 

The fact that the response to KEY is not printed suggests 
another possible use for a single character: as a user access 
code for a classified system. Entering the correct character will 
grant the user access to the system; an incorrect character may 
do anything from print out a message (“Invalid code!”) to set¬ 
ting off an alarm. For example, 

: WAIT-A 

BEGIN KEY 65 = UNTIL ; 

waits until the letter A is entered at the keyboard before con¬ 
tinuing on. If necessary, WAIT-A will loop for years until some¬ 
one keys in an A! Example 10-1 shows the definition of WAIT- 
CHAR, a more general-purpose word that will wait for a key 
whose ASCII value is on top of the stack. For example, this se¬ 
quence in a program: 

54 WAIT-CHAR 

causes the computer to wait until someone presses the “6” key 
(ASCII 54 in decimal) before continuing. 

Example 10-1. Wait for a specified key 

: WAIT-CHAR 

( Loop until a character entered from the keyboard ) 

( matches the ASCII value on the top of the stack. ) 

( char-) 

BEGIN 

DUP ( Duplicate char) 

KEY = ( Fetch key and compare it to char) 

UNTIL 

DROP ; ( Upon match, remove char from stack) 

Special-Purpose Character Words BELL, BL, and SPACE 

FORTH defines three character operations as words because 
they are used so often. The first, BELL, sends a BEL character 
(ASCII 7) to the current output device, which should activate a 
bell, buzzer, or other noise-maker. A handy word for interactive 
applications, BELL should be used prudently, to preserve the 
mental health of the user! 
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The second word, BL, leaves the ASCII value for a blank (dec¬ 
imal 32) on top of the stack. That is, it operates the same as 
pressing the space bar in response to KEY. 

The third word, SPACE, is a variation of BL that transmits an 
ASCII blank to the current output device, without having to 
push that value onto the stack. That is, SPACE performs the 
same task as BL followed by EMIT. Like CR, SPACE is useful for 
separating information being output. 

STRING OPERATIONS 

Most operations involve a series of characters—that is, a 
string of characters—rather than just a single character. The 
ASCII characters that comprise the string may represent a 
number, a portion of text (a phrase, sentence, paragraph, etc.) 
or a combination of numbers and text. In any case, the interpre¬ 
tation of the string is strictly up to you, because FORTH views a 
string as simply a series of consecutive bytes in memory, noth¬ 
ing more nor less. 

Within a string, each byte holds the ASCII value for the char¬ 
acter it represents. You can structure strings any way you want, 
but FORTH is set up to handle strings as a series of character 
bytes preceded by a byte that holds the count of the number of 
characters in the string. Because this counter is a byte value, 
FORTH can easily handle strings that have up to 255 char¬ 

acters. 
Fig. 10-1 shows how the 11-character string 

NO STRINGS! 

would be stored in memory. Note that even the blank space 
between the two words is included in the character count. Ab¬ 
breviated SP (for space) in Appendix A, it has an ASCII value of 

decimal 32. 

String-Transfer Words 

Besides the character transfer words KEY and EMIT, FORTH 
also has two string transfer words, called EXPECT and TYPE. 
Both words take two stack parameters: a string starting ad¬ 
dress (addr) and a character count (n). 

The word EXPECT accepts characters from the terminal until 
n characters have been received or until you press the Return 
key. As each character is received, it is stored into memory at 
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Fig. 10-1. A string in memory. 

one byte location higher than the preceding character. There¬ 
fore, the first character is stored at addr, the second character 
is stored at addr+1, and so on. (Unlike KEY characters, most 
FORTHs display EXPECT characters as they are entered.) When 
all characters have been received, FORTH adds one or two null 
characters (ASCII 00) to the end of the text. 

For example, the sequence 

200 25 EXPECT 

will accept up to 25 characters from the terminal, and store 
them starting at decimal address 200. You have your choice of 
entering all 25 characters or entering some lesser number and 
pressing Return to tell FORTH that you are done. If you are 
currently using FORTH on a computer, use an EXPECT to put 
in the string “NO STRINGS!”, then examine the contents of 
memory with DUMP. You should find the byte values shown in 
Fig. 10-1, minus the count byte, but with one or two null (00) 
bytes at the end. 

Since EXPECT does not produce a count byte, it is not im¬ 
mediately evident how many characters are in the string, unless 
you’ve bothered to keep count yourself. However, FORTH gives 
you a way to determine the length of the string, because it 
planted one or two null characters at the end. Therefore, the 
length of the string is simply the difference between the start- 
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Example 10-2. Length of a string 

: LEN 

( Return the character count of the string that starts ) 

( at addr. ) 

( addr-count ) 

255 0 

DO 

DUP I + 

C@ 

0 = 

IF 

I LEAVE 

THEN 

LOOP 

SWAP DROP ; 

( Check 255 characters, maximum) 

( Address — addr + I) 

( Fetch next character from memory) 

( Is it a NUL?) 

( If so, put count on stack) 

( Delete addr, leaving only count) 

ing address of the string and the address of the first null char¬ 
acter (ASCII 00). 

The word LEN, in Example 10-2, calculates the character 
count of a string, by checking each byte in the string against 
the NUL character. LEN is programmed using a DO-LOOP 
whose index is the offset from the string’s start address. Upon 
encountering NUL, this index is placed on the stack, to reflect 
the character count. 

By combining LEN and EXPECT, you can convert a string 
received from the terminal into the standard FORTH format, 
count followed by characters. All you need to do is store the 
count produced by LEN into the byte that precedes the string in 
memory; if the string starts at addr, the count should be stored 
at addr-1. For example, the sequence 

200 DUP 20 EXPECT NO STRINGSI.OK 
* | Return 
'-1 pressed here 

reads “NO STRINGS!” into memory, starting at location 200. 
Then, the sequence 

DUP LEN SWAP 1- C! OK 

calculates the length of the string, and stores it at location 199. 
At this point, the pattern of bytes in memory, starting at loca¬ 
tion 199, should match Fig. 10-1 exactly. 

It is certainly possible to combine the EXPECT and LEN tasks 
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in a single word that transfers a number of keystrokes into 
memory and precedes it with a count byte. This new word, AC¬ 
CEPT, is defined in Example 10-3. (Note that ACCEPT requires 
the address of the count byte, not the address of the first string 
character.) Now our sample string can be input with the simpler 
sequence 

199 20 ACCEPT NO STRINGS! OK 

Example 10-3. Transfer a string, with length count 

: ACCEPT 

( Transfer characters from the terminal until a "return" ) 

( or a count or n has been received. The characters are) 

( stored as a packed string, with the length byte at addr. ) 

( addr n-) 

OVER 1+ DUP ROT ( Set up addr+1 for EXPECT and LEN) 

EXPECT ( Transfer n keys, starting at addr+1) 

LEN ( Calculate the string length) 

SWAP C! ; ( and store it at addr ) 

The FORTH word TYPE performs the opposite function of 
EXPECT. That is, TYPE transmits a string in memory to the cur¬ 
rent output device, which is normally a printer or a display 
screen, or both. TYPE takes two stack arguments: the address 
of the string’s first character byte (addr) and a count of char¬ 
acters to be transmitted (n). For example, the sequence 

200 11 TYPE 

could be used to print the “NO STRINGS!” string we just 
entered. 

Of course, typing in “11 ” here presumes you know how many 
characters are in the string. But even if you don’t know how 
many characters are in the string, you know where that count 
can be found: in the byte that precedes the first character. If 
the first character is stored at addr, the count is stored at 
addr-1. 

FORTH has a special word, COUNT, that is designed to fetch 
the character count of a string. Just give COUNT the address of 
the count byte and it will return the address of the first char¬ 
acter byte and the string’s character count—the very parame¬ 
ters required by TYPE! Therefore, the sequence 

199 COUNT TYPE 
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prints out our "NO STRINGS!” string without having to worry 
about how many characters are in the string. 

Put Temporary Strings in the PAD Area 

FORTH systems provide a scratch area in read/write memory 
that can be used to hold character strings for intermediate pro¬ 
cessing. This area starts at a fixed distance above the most re¬ 
cently defined entry in the dictionary, so it’s starting address 
will change as words are added to or removed from the 
dictionary. Normally this poses no problem, because temporary 
strings are nearly always input and output with two consecutive 
operations—typically an EXPECT followed by a TYPE—with no 
intervening dictionary changes. 

At any given time the starting address of the scratch area can 
be placed on the stack by executing the word PAD. The 
FORTH-79 Standard specifies the minimum capacity of the PAD 
area to be 64 bytes, which means that it will hold at least 62 
ASCII characters, a character count byte, and a null character. 
The number 64 corresponds to the standard 64-character line 
length of a FORTH screen (you will see more about this later). 
In fig-FORTH, the PAD area starts 68 bytes above the top of the 
dictionary. 

PAD, therefore, provides an area of memory that you know 
will be free to receive your input strings, making it a convenient 
place to store them. 

An Interactive Game: "Twenty Questions" 

To illustrate a possible use of PAD and the other words in this 
chapter—and to provide some much-needed diversion—we 
will look at a FORTH program that “plays” the popular parlor 
game Twenty Questions. For the benefit of readers who are un¬ 
familiar with Twenty Questions, it is a game in which one or 
more players attempt to identify some unknown animal, vege¬ 
table, or mineral based on another player’s yes or no responses 
to a series of up to 20 questions. 

Here, the "player” that will provide the responses to ques¬ 
tions is a computer. Your computer! Upon receiving a question 
typed in at the terminal, the computer will print or display the 
proper answer to the question, either YES or NO. 

Before examining the program that will perform this task, 
let’s look at the responses for a typical Twenty Questions ses¬ 
sion. Here they are: 
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20-QUESTIONS 

ENTER QUESTION 1 
Is it mineral? 

NO. 

ENTER QUESTION 2 

Is it vegetable? 

YES! 

ENTER QUESTION 3 

Does it grow under the ground? 

NO. 

ENTER QUESTION 4 
How about above? 

YES! 

ENTER QUESTION 5 
Are you sure? 

YES! 

ENTER QUESTION 6 
Does it grow on trees? 

YES! 

ENTER QUESTION 7 

Is it green? 

NO. 

ENTER QUESTION 8 
Are people likely to make juice from it? 

NO. 

ENTER QUESTION 9 

Is it a black olive? 

YES! 

You are certainly curious about the complexity of a program 
that possesses such intelligence, and must surely wonder how 
many months, or perhaps years, of programming it took to 
provide this intelligence. Well, you will be interested to know 
that the entire Twenty Questions program can by typed into 
your computer in a matter of minutes! In fact, it consists of just 
a few lines of FORTH code, those shown in Example 10-4. 

The “trick” is that the program does not respond to the 
entire question at all, but merely prints out a message based on 
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the character at the end of the question—the character that 
precedes the question mark (?). If this character is an “E” or an 
“S”, the program prints the message "YES!”; otherwise, if the 
question ends in any other letter, the program prints the mes¬ 
sage “NO.” 

This clever idea, adapted from the Atari BASIC and Atari 
PILOT versions given in COMPUTE! magazine1, is guaranteed 
to provide you with hours of pleasure mystifying your friends 
and relatives. You may also wish to consider adding the letter L 
to the "YES!” list, so that users will receive a positive response 
to the questions "Is it an animal?” or “Is it a mineral?” 

Example 10-4. “Twenty Questions" Game 

: 20-QUESTIONS 

( Provides yes/no answers to up to 20 questions entered 

( from the terminal. Questions can be up to 60 characters 

( long. Uses the word LEN; Example 10-2. 

21 1 
DO 

CR CR. ENTER QUESTION " I . CR 

PAD 60 EXPECT 

PAD LEN 

PAD + 2 - C@ 

CR DUP 69 = 

IF ." YES!" ELSE 

83 = 

IF ." YES!" ELSE 

." NO." 

( Wait for question) 

( Calculate its length) 

( Read next-to-last character) 

( Is it an E?) 

( If so, print "YES!") 

( Is it an S?) 

( If so, print "YES!") 

( Otherwise, print "NO.") 

THEN 

THEN 

LOOP CR 

." THAT'S TWENTY QUESTIONS!" CR 

." TYPE 20-QUESTIONS TO PLAY AGAIN." ; 

) 

) 

) 

FORMATTING TEXT 

In addition to CR, SPACE and the other formatting words 
we’ve encountered, FORTH has two other words that are useful 

'David D. Thornburg, “Computers And Society,” COMPUTE!, September, 

1981, pp. 10-16. 
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for formatting text strings. One of these, SPACES, transmits 
multiple blank characters to the current output device, taking 
the count from the top of the stack. SPACES can be used, for 
instance, to create a header for a table, as in the following se¬ 
quence, which writes the labels NUMBER, SQUARE, and CUBE, 
each separated by six spaces: 

NUMBER" 6 SPACES ." SQUARE" 6 SPACES ." CUBE" 

When executed, this sequence will produce the following 
printout: 

NUMBER, ^ ; SQUARE, ^ .CUBE 

t_I_Six blank spaces 

The other useful string formatting word is -TRAILING, which 
shortens the character count of a string to exclude all trailing 
blanks, so that they will not be printed. For example, suppose 
the string 

THIS IS ALL^ 

is stored starting at location 200 in memory (the ‘‘0’’ symbols 
represent trailing blanks). A sequence to type out this string is: 

199 COUNT CR TYPE 

THIS IS ALL OK 

The three spaces preceding OK reflect the trailing blanks in the 
string. These spaces in the printout will be eliminated by insert¬ 
ing -TRAILING into the sequence, as follows: 

199 COUNT -TRAILING OK 
CR TYPE 

THIS IS ALL OK 

-TRAILING only adjusts the character count for the print op¬ 
eration, however, the count byte is unaffected. 

FORMATTING NUMBERS 

Just as text can be displayed in various formats, numbers can 
also be displayed in various formats, using FORTH words that 
are especially designed for this task. We will examine two dif¬ 
ferent kinds of number-formatting words here: words that sim¬ 
ply display numbers right-justified in a specified character field 
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and words that can intersperse the numeric digits with dollar 
signs, colons, decimal points, and other kinds of characters. 

Display Numbers Right-Justified 

The simplest kinds of number-formatting words are those 
that cause the stack value to be displayed right-justified in a 
given field. These words, all variations of the print words we 
studied in Chapter 2, are [.Ft], [D.R], and [U.R]. As you may have 
guessed, [.R] displays a number right-justified, [D.R] displays a 
double number right-justified, and [U.R] displays an unsigned 
number right-justified. Each of these words takes two stack pa¬ 
rameters: the numeric value itself and a field width specifier. 
Here are examples of each word, using a six-character field in 
each case: 

—25 6 .R —250K ( Number ) 

—25. 6 D.R —250K ( Double number, indicated by ) 

350 6 U.R 3500K ( Unsigned number ) 

These three words can be used to generate a highly readable 
tabulation, with columns of numbers aligned on the printer 
paper or on the display screen. For instance, we can now 
develop a more elegant version of our earlier print-numbers 
word, .NUMBERS (Example 9-1), one in which the numbers are 
displayed four per line, and neatly aligned in columns. Example 
10-5 shows the definition for this new word, called DUMP-N. 

DUMP-N is similar to .NUMBERS, but DUMP-N displays four 
numbers on a line instead of just one, and [.R] is used to dis¬ 
play each number right-justified in a field of eight characters. 
The construction of DUMP-N is very similar to that of .NUM¬ 
BERS, too, except that DUMP-N includes a second DO-LOOP, 
which prints the four numbers on each line. A typical execution 
run of DUMP-N should look like this: 

HEX B000 A DUMP-N 

B000 31052 19650 -15742 269 

B008 -30019 768 127 14780 

B010 146 -51 640 310 

OK 

Display Numbers With Imbedded Characters 

You will often want to display numbers that represent the 
time of day, a telephone number, a date, or an amount of 
money; numbers such as 

2:45:55 726-6286 11/30/81 $2500.12 
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Example 10-5. Formatted dump of numbers in memory 

: DUMP-N 

( Display n consecutive numbers in memory, starting ) 

( at addr. Numbers are displayed four per line, in ) 

( decimal. The address of the first number on each ) 

( line is also displayed, in hexadecimal. ) 

( addr n :-) 

BASE @ 

ROT ROT 

0 

DO 

CR DUP HEX U. 

4 0 

DO 

DUP @ DECIMAL 8 

24- 

LOOP 

4 

4-LOOP 

DROP CR 

BASE ! ; 

( Fetch active number base) 

( addr n base-base addr n) 

( DO-LOOP start = 0) 

( Display first address on line) 

( Prepare to display 4 numbers) 

.R ( Formatted display, in fields of 8) 

( Address next word to be displayed) 

( Increment outer loop by 4) 

( Discard last address on stack) 

( Restore previous number base) 

That is, you will want to display numbers that have one or more 
imbedded characters. 

To do this, you need to have digit-by-digit control over the 
way the number is displayed, and have the ability to insert 
characters of your choice as needed. To provide this control, 
FORTH has a special number-formatting construct that begins 
with the word [<#] and ends with the word [#>]. 

This construct takes a double number from the top of the 
stack and converts it to a string of ASCII characters in memory. 
Some of these characters will be digits, but others may be 
symbols, punctuation marks, or other characters, according to 
the operations specified within the construct. The double 
number is always converted in right-to-left order, with the 
least-significant digit being converted first. 

At the end of the conversion process, the terminating word 
#> pushes the string’s starting address and character count 
onto the stack. These parameters generally serve as inputs for the 
word TYPE, which displays the string on a screen or printer. 
The general form of the number-formatting construct is: 

<#...#> 
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where “ . . represents one or more special character¬ 
generating words. Four such words are available for use in this 
construct: 

1. [#] converts the next digit of an unsigned double number 
to an ASCII character, and puts that character into the 
output string. If no digits remain, a zero is added to the 
output string. 

2. HOLD inserts the ASCII value at the top of the stack into 
the output string, at the current position. For example, 

47 HOLD 

inserts a slash (/) character into the output string. 
3. [#S] converts all remaining digits of an unsigned double 

number to ASCII characters, and puts them into the output 
string. If no digits remain, a single zero is added to the 
output string. 

4. SIGN inserts a minus sign into the output string if the 
number at the top of the stack is negative. 

The requirements of [#], [#S], and SIGN provide the rules that 
must be followed in forming the output string. They are: 

1. The words [#] and [#S] operate only on unsigned double 
numbers. If the value to be formatted is not an unsigned 
double number, you must convert it to one. 

2. If the value to be formatted is signed, its high-order 16 bits 
must be saved somewhere for later use by SIGN. The logi¬ 
cal place to save it is on the stack, beneath the unsigned 
double number. 

Table 10-2 lists the sequence of operations for numbers and 
double numbers, both signed and unsigned. For both kinds of 
signed values, the 16 bits containing the sign are placed 
beneath the double number, then rotated to the top just before 
SIGN is executed. 

Clearly, the simplest use of this construct is to print an un- 

Table 10-2. Operations Using the <# . . . #> Construct 

Number to be printed General sequence of operations 

Unsigned double number 
Signed double number 
Unsigned number 
Signed number 

<#...#> 
SWAP OVER DABS <# . . . ROT SIGN #> 

0 <# . . . #> 
DUP ABS 0 <# . . . ROT SIGN #> 
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signed double number, without modifying it in any way. This 
gives us the following new FORTH word: 

: UD. <# #S #> TYPE ; 

An example of its use is: 

7266286. UD. 72662860K 

This particular definition causes the number to be printed di¬ 
rectly beside FORTH’s "OK”, with no space between them. 
That’s easily remedied by adding a SPACE, as in 

: UD. <# #S #> TYPE SPACE ; 

Now we get 

7266286. UD. 7266286 OK 

Now we suppose that you want to print the stack value as a 
telephone number. All this involves is inserting a hyphen char¬ 
acter between the third and fourth most significant digits, using 
the word HOLD. The definition for our phone-number-printing 
word is: 

: .PHONE# <##### 45 HOLD # # # #> TYPE SPACE ; 

where ( 45 HOLD ) puts the ASCII value for hyphen, decimal 45, 
into the output string. Note that we have seven occurrences of 
[#] here, four for the least-significant digits and three for the 
most-significant digits. However, the last three #’s are un¬ 
necessary; they can be replaced with [#S], This allows the 
shorter definition: 

: .PHONE# <##### 45 HOLD #S #> TYPE SPACE ; 

Using our earlier example value with .PHONE#, we get 

7266286. .PHONE# 726-6286 OK 

In the examples just given, the definitions for the words UD. 
and .PHONE#, the results were printed in decimal, with the 
unstated implication that BASE had the value 10. To be 
consistent with other FORTH number-printing words, UD. 
should always print its result in the current number base. How¬ 
ever, since phone numbers will, presumably, always be needed 
in decimal, we should have forced BASE into the decimal mode 
for .PHONE#. (Do you want to eliminate unwanted phone 
calls? Have the phone number on your business card printed in 
octal, and reveal the secret only to your friends!) Example 10-6 
gives a more fool-proof definition of .PHONE#. 
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Example 10-6. Print telephone number 

PHONE# 

( Print the unsigned double number on the stack as a ) 

(, telephone number, in the format xxx-xxxx. ) 

( ud-) 

BASE @ ( 

ROT ROT ( 

DECIMAL ( 

<##### ( 
45 HOLD ( 

#S ( 

#> ( 
TYPE SPACE ( 

BASE ! ; ( 

Fetch current base) 

ud base - base ud) 

Enter decimal mode) 

Convert four low-order digits) 

Insert hyphen in output string) 

Convert remaining digits) 

Leave addr and n for TYPE) 

Print phone number) 

Restore previous base) 

The definitions for both UD. and .PHONE# required an un¬ 
signed double number as the stack argument. Let’s examine 
the remaining features of our number-formatting construct by 
looking at an application that accepts a signed number as an 
argument — a word that prints out a dollar value, such as 
$136.55 (a credit) or -$136.55 (a debit). 

For this application the <#...#> construct must leave the 
signed number on the stack (for the benefit of SIGN), but put 
an unsigned double number version of this value above it. 
From Table 10-2 we know that the required set-up sequence for 
signed numbers is 

DUP abs o 

We also know that for dollar amounts, the construct must add 
two characters to the output string: a decimal point, following 
the two least-significant (“cents”) digits, and a dollar sign, fol¬ 
lowing the most-significant (“dollar”) digit. The minus sign, if 
required, is added by SIGN, which should be the final word in 
the construct. 

With all of these considerations, we can now define the 
money-printing word .MONEY, as shown in Example 10-7. Note 
that this word, like the final version of .PHONE#, forces BASE 
into decimal mode, but preserves the current base on the stack. 
Sample executions of .MONEY are: 

13655 .MONEY $136.55 OK 
-12366 .MONEY -$123.66 OK 



Interacting With FORTH Programs 177 

Example 10-7. Print dollar amount (-$327.68 to $327.67) 

: .MONEY 

( Print the signed number on the stack as a dollar ) 

( quantity, in the format $xxx.xx or —$xxx.xx ) 

(-) 
BASE @ 

SWAP 

DUP ABS 0 

DECIMAL 

<# # # 

46 HOLD 

#S 

36 HOLD 

ROT SIGN 

#> 

TYPE SPACE 

BASE ! ; 

( Fetch current base) 

( n base-base n) 

( base n - base n ud) 

( Enter decimal mode) 

( Convert cents digits) 

( Add decimal point) 

( Convert remaining, dollar digits) 

( Add dollar sign) 

( Add minus sign, if needed) 

( Leave addr and n for TYPE) 

( Print the string) 

( Restore previous base) 

The fact that the stack argument is a number limits .MONEY 
quantities between -$327.68 and $327.67, which is hardly 
adequate for most monetary applications. Example 10-8 shows 
the definition of a more useful word, ,MONEY-D$, which ac¬ 
cepts a signed double number argument, and can, therefore, 
print amounts from -$21,474,836.48 to $21,474,836.47—just 
what we need to keep track of our Irish Sweepstakes winnings! 

With ,MONEY-D$, you can expect these kinds of results: 

211111. .MONEY-D$ $2111.11 OK 
0. ,MONEY-D$ $0.00 OK 
-2145678. ,MONEY-D$ -$21456.78 OK 

And with minimal extra effort you should be able to modify 
.MONEY-D$ so that it prints a comma between each 
thousand-dollar division. 

CONVERTING TEXT TO NUMBERS 

In most cases you enter numbers into the computer by simply 
typing them in. FORTH interprets this stream of digits as a 
number, and automatically converts the digits to a numeric 
value, which it places on the stack. However, if a number is to 
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Example 10-8. Print dollar amount (-$21,474,836.48 to 
$21,474,836.47) 

: ,MONEY-D$ 

( Print the signed double number on the stack as a dollar ) 

( quantity, in the format $xxxx.xx or —$xxxx.xx. ) 

( d-) 

BASE @ 

ROT ROT 

SWAP OVER DABS 

DECIMAL 

<# # # 
46 HOLD 

#S 

36 HOLD 

ROT SIGN 

#> 

TYPE SPACE 

BASE I ; 

( Fetch current base ) 

( d base-base d) 

( base d - base n ud) 

( Enter decimal mode) 

( Convert cents digits) 

( Add decimal point) 

( Convert remaining, dollar digits) 

( Add dollar sign) 

( Add minus sign, if needed) 

( Leave addr and n for TYPE) 

( Print the string) 

( Restore previous base) 

be entered interactively, you must define the ASCII-to-numeric 
conversion procedure. 

Fortunately, there is a FORTH word that converts a text string 
in memory to a numeric value. This word CONVERT (or 
NUMBER in fig-FORTH) takes a double number and an ad¬ 
dress from the stack and returns a double number and an 
address to the stack. Therefore, CONVERT’S before-and-after 
stack description looks like this: 

dl addrl-d2 addr2 

Here, double number dl is a “dummy” argument. It does noth¬ 
ing more than reserve 32 bits on the stack, giving CONVERT a 
place into which it can accumulate the converted string digits. 
Thus, dl is nearly always zero. The second stack argument, 
addrl, is the address of the byte that precedes the first string 
character. CONVERT doesn’t use this byte, so it need not con¬ 
tain a length count. 

Here is how CONVERT works: Starting at addrl + 1, 
CONVERT converts each ASCII character into a numeric value 
and accumulates this value into dl. This process continues 
until CONVERT encounters a nonconvertible (nondigit) char¬ 
acter. With the conversion process now finished, the stack 
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holds the final, accumulated double number (d2) and the ad¬ 
dress of the nonconvertible character (addr2). 

Because CONVERT ignores the contents of the count byte, 
you can use EXPECT (rather than ACCEPT) to input a number, 
as in this example: 

PAD 11 EXPECT 1234 OK 

The string, now in the pad area of memory, can be converted to 
a number with the sequence 

0 0 PAD 1 - CONVERT OK 

This leaves the address PAD+4 on the stack, with the converted 
double number 1234 below it. If you don’t care about the ad¬ 
dress, follow the CONVERT sequence with the word DROP, and 
if your converted value is a 16-bit number, rather than a 32-bit 
double number, follow the convert sequence with DROP DROP 
(or just 2DROP, if you have it). 

In the preceding example, the “nonconvertible character” hap¬ 
pens to be a null character—one of the two nulls appended to the 
string by EXPECT—but any nondigit character can serve as a 
terminator. By leaving the address of the nonconvertible char¬ 
acter, CONVERT gives you the capability of investigating this 
character and making some decision based on your findings. For 
example, a decimal point terminator may signify the end of the 
string, whereas some other character (a colon, perhaps) may 
signify that a fractional value or a floating point exponent follows, 
signaling the need for further conversion. As you can see, 
CONVERT opens up a variety of possible applications. 

NUMBER, a Higher-Level CONVERT 

Unless you need to do the kind of sophisticated decision¬ 
making we’ve just described for CONVERT, you may prefer to 
use a higher-level form of CONVERT, called NUMBER. An un¬ 
controlled word in FORTH-79 and a standard word in fig- 
FORTH, NUMBER performs the same kind of numeric conver¬ 
sion as CONVERT, but can also accept a leading minus sign in 
the string, allowing you to enter negative numbers. Moreover, 
NUMBER takes just one stack argument, the address of the 
string’s count byte (which it ignores, as CONVERT does), and 
leaves only the converted double number on the stack. 

A typical example using NUMBER is: 

PAD 11 EXPECT -1234 OK 
PAD 1 - NUMBER OK 
D. -1234 OK 
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If you have a FORTH-79 compatible software package, it may 
not have NUMBER. Example 10-9 provides a definition of 
NUMBER for your convenience. 

Example 10-9. Convert text string to a double number 

: NUMBER 

( Converts the number starting at addr+1 to a signed ) 

( double number, using the current base. The string ) 

( may contain a leading minus sign. ) 

( addr-d ) 

0 0 ROT ( 

DUP 1+ C@ ( 

45 = ( 

DUP >R ( 

+ ( 
CONVERT ( 

DROP ( 

R> ( 

IF DMINUS THEN ; ( 

For CONVERT, set dl = 0) 

Get first string character) 

If it's a — sign, flag = 1) 

Save sign flag on return stack) 

Calculate address of first digit) 

Convert all digits in the string) 

Discard address) 

Retrieve the sign flag) 

Negate result if it's negative) 

Table 10-3. The fig-FORTH Words SIGN, (NUMBER), and NUMBER 

Word Stack Action 

Sign n d-d Inserts an ASCII minus sign into the 
output character string, if the third 
number on the stack (n) is negative. 

(NUMBER) dl addrl- 
d2 addr2 

Converts the text beginning at 
addrl + 1 to a double number, with re¬ 
gard to BASE. The new value is ac¬ 
cumulated into dl, and is left as d2. 
addr2 is the address of the first non- 
convertible character. 

NUMBER addr-d Converts the text beginning at 
addr+1 to a double number, with re¬ 
gard to BASE. If a decimal point is 
encountered in the text, its position 
will be given in the user variable DPL, 
but no other effect occurs. If numeric 
conversion is not possible, an error 
message will be given. 



Interacting With FORTH Programs 181 

fig-FORTH CHARACTER AND 
STRING INPUT/OUTPUT WORDS 

All FORTH-79 words listed in Table 10-1 except BELL and 
[U.R] are contained in fig-FORTH. Moreover, there are these 
differences between FORTH-79 and fig-FORTH: 

1. In fig-FORTH, SIGN assumes the 16-bit number containing 
the sign is immediately beneath a double number on the 
stack. 

Table 10-4. Words Added to FORTH in Chapter 10 

Word Stack Action 

WAIT-CHAR char- Waits until a key pressed at the termi¬ 
nal matches the ASCII value on the 
top of the stack. 

LEN addr-count Returns the character count of the 
string that starts at addr. 

ACCEPT addr n- Transfers characters from the terminal 
until a “return” or a count of n has 
been received. The characters are 
stored as a packed string, with the 
length byte at addr. 

20-QUES- 
TIONS 

Provides yes/no answers for up to 20 
questions entered from the terminal. 

DUMP-N addr n- Displays n consecutive numbers in 
memory, starting at addr. Numbers 
are displayed four per line, in decimal. 
The address of the first number on 
each line is also displayed, in 
hexadecimal. 

UD. ud- Prints unsigned double number on 
top of stack. 

.PHONE# ud- Prints unsigned double number in 
telephone number format, xxx-xxxx. 

.MONEY n- Prints signed number as a dollar 
quantity, in the format $xxx.xx or 
-$xxx.xx. Can print amounts from 
-$327.68 to $327.67. 

.MONEY-D$ d — Prints signed double number as a dol¬ 
lar quantity. Can print amounts from 
-$21,474,836.48 to $21,474,836.47. 
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2. The FORTH-79 word CONVERT is called (NUMBER) in 
fig-FORTH. 

3. In fig-FORTH a decimal point is permitted to be included 
in a number string. 

Table 10-3 gives the fig-FORTH definitions for SIGN, (NUMBER) 
and NUMBER. 

SUMMARY 

This chapter, probably the most complex yet, introduced 
words that allow you to interact with the computer through 
your terminal. It began with a discussion of two words that 
transfer individual characters, KEY and EMIT, and three other 
character-related words, BELL, BL, and SPACE. We then dis¬ 
cussed two string-transfer words, EXPECT and TYPE, and the 
word COUNT, which sets up the address and character count 
arguments required by TYPE. This section also included a de¬ 
scription of the scratch area called PAD, a portion of memory 
designed to hold text strings for intermediate processing. 

This was followed by a related topic: how to format output 
information. We learned that text can be formatted with the 
word SPACES, which outputs a specified number of ASCII 
blanks, and the word -TRAILING, which excludes trailing 
blanks from an output string. We also learned that numbers 
could be formatted in two ways: by displaying them right- 
justified within a selected character field and by exercising 
character-by-character control over the output, in order to in¬ 
sert characters between digits. The latter application uses a 
special <# . . . #> construct to "program” the output with 
combinations of the words [#], [#S], SIGN and HOLD. The re¬ 
mainder of the chapter dealt with converting text to stack num¬ 
bers, with either CONVERT or NUMBER. 

Table 10-4 summarizes words defined in this chapter that you 
may wish to add to your FORTH system. 



CHAPTER 11 

String Processing 

If your computer system is to store mailing lists, personnel 
files, correspondence, or any other kind of text-oriented infor¬ 
mation, you must not only know how to get this information in 
and out of the computer (described in Chapter 10), but how to 
manipulate, or process, it. Naturally, each text processing pro¬ 
gram must be customized to the kinds of text being processed, 
so we can’t hope to provide a “cookbook” of solutions in this 
kind of book. However, every text processing program must 
provide certain fundamental string operations. These include 
locating strings, adding, deleting and replacing strings and, in 
many applications, sorting groups of strings (or files). This 
chapter covers the fundamental string operations in a general 
way, which provides you with a basic “tool kit” that can be 
used to develop your own, specific text application program. 

Because there are so many different ways of manipulating 
strings, neither the FORTH-79 Standard nor the fig-FORTH In¬ 
stallation Manual addresses this subject. In fact, the only 
FORTH-79 Required Word even remotely connected to string 
processing is CMOVE, which copies a block of bytes from one 
part of memory to another. In Chapter 4, we saw two other 
words that may be used for string processing, but neither of 
these words (<CMOVE and BLANKS) is “required;” they are 
simply described in the Reference Word Set. The Reference 
Word Set also describes two other words, -MATCH and -TEXT, 
that are useful with strings, but both are uncontrolled words. 
The five words just mentioned are summarized in Table 11-1. 

DEFINING THE FUNDAMENTAL STRING WORDS 

Since none of the words in Table 11-1 (except CMOVE) are 
required, many FORTH packages do not have them. Thus, a 
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Table 11-1. String Words 

Word Stack Action Notes 

<CMOVE addrl addr2 n- Copies n bytes starting at addrl 
to memory starting at addr2. 
The move proceeds from high 
memory to low memory. 

(1) 

CMOVE addrl addr2 n- Copies n bytes starting at addrl 
to memory starting at addr2. 
The move proceeds from low 
memory to high memory. 

-MATCH addrl nl addr2 n2 
-addr3 flag 

Attempts to find the n2- 
character string beginning at 
addr2 somewhere in the nl- 
character string beginning at 
addrl. Returns the address of 
the last matching character +1 
(addr3) and a flag which is zero 
if the match exists or one if no 
match exists. 

(1) 

-TEXT addrl nl addr2 
-n2 

Compares two strings over the 
length nl, beginning at addrl 
and addr2. The number re¬ 
turned, n2, is zero if the strings 
are equal, positive if string 1 is 
greater than string 2 and nega¬ 
tive if string 2 is greater than 
string 1. 

(D 

BLANKS addr n- Fills n consecutive bytes in 
memory with the ASCII value 
for “blank,” starting at addr. 

(2) 

Notes: (1) Included in Reference Word Set, as an uncontrolled word 
definition. 

(2) Included in Reference Word Set, as a Standard Word Definition. 

logical way to begin our discussion of strings is by defining 
these fundamental words. 

<CMOVE 

As you recall from Chapter 4, CMOVE and <CMOVE both 
copy blocks of byte values (strings, if the bytes are ASCII 
values) from one part of memory to another. However, CMOVE 
starts copying from the beginning of the block and works 
toward the end, whereas <CMOVE starts copying from the end 
of the block and works toward the beginning. These two differ¬ 
ent approaches allow us to copy strings to lower memory (with 
CMOVE) or to higher memory (with cCMOVE) without worrying 
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about whether the destination string overlaps the source string. 
Example 11-1 shows a colon-definition for <CMOVE. 

However, two separate copy words require us to remember 
which to use in a given situation. To eliminate this problem, it is 
worthwhile to add a new FORTH word that makes this decision 
for us. This new word, CMOVE$ (see Example 11-2), checks the 
direction of the copy operation, then uses either cCMOVE or 
CMOVE, depending on whether a string is being copied to a 
higher address or a lower address. 

Example 11-1. Copy a byte string, starting at the end 

: CCMOVE 

( Copy n bytes starting at addrl to addr2. The move ) 

( proceeds from high memory to low memory. ) 

( addrl addr2 n- ) 

DUP ROT + ( Calculate addr2+n ) 

SWAP ROT ( and put it on bottom of stack) 

1 - ( DO-LOOP end = addrl-1) 

DUP ROT + ( DO-LOOP start = addrl +n —1) 

DO 

1 - ( Decrement last string 2 address) 

1 c@ ( Fetch next byte from string 1) 

OVER C! ( and copy it to string 2 ) 

-1 ( Decrement index) 

+ LOOP 

DROP ; ( Discard the string 2 address) 

Example 11-2. Copy a byte string in either direction 

: CMOVE$ 

( Copy n bytes starting at addrl to addr2. If addr2 ) 

( is forward of addrl, the move proceeds from high) 

( memory to low memory; otherwise the move proceeds) 

( from low memory to high memory. ) 

( addrl addr2 n -) 
OVER 4 PICK ( Copy addr2 addrl on top of stack) 
> ( Copying to a higher address?) 

IF CCMOVE ( If so, use CCMOVE) 

ELSE CMOVE 

THEN ; 
( If not, use CMOVE) 



186 FORTH Programming 

The stack requirements for the preceding words (and for all 
other words in this chapter) include the two standard string 
arguments: the address of the first character and a character 
count. At times you will need to type in both of these argu¬ 
ments from the keyboard, but usually you can use the word 
COUNT to generate them. As you recall from Chapter 10, 
COUNT takes a count byte address (addr) from the stack and 
returns the address of the first character (addr+1) and the con¬ 
tents of the count byte (n). Therefore, if a string’s count byte is 
stored at location 200, and you wish to copy the characters in 
this string to memory starting at location 400, the sequence to 
use is: 

400 200 COUNT CMOVE OK 

in which COUNT replaces the byte count address (200) with the 
address of the first character (201) and the byte count value 
stored at location 200. 

-MATCH 

Before you can delete, replace, or otherwise process a text 
string, you must know where that string is stored in memory. 
The word -MATCH searches a string whose text starts at addrl 
for the first occurrence of a smaller string (a “substring”) 
whose text starts at addr2. -MATCH requires four stack argu¬ 
ments: the address (addrl) of the first character in the string to 
be searched (the target string), the target string’s character 
count, the address (addr2) of the first character in the string 
being searched for (the search string) and the search string’s 
character count. These arguments must be in the following 
order on the stack: 

addrl nl addr2 n2 

-MATCH returns a memory address (addr3) and a flag value. If 
the search string is found in the target string, addr3 points to 
the byte that follows the matching substring, and flag = 0. If the 
search string is not found in the target string, addr3 points to 
the byte that follows the target string, and flag = 1. 

Usually, -MATCH is used to search a string in memory for the 
presence of a string typed in at the keyboard, so it is often used 
in conjunction with a string-input word, such as ACCEPT. For 
example, Fig. 11-1 shows a string of animal names, starting at 
location 200 (decimal). To search for CAT in this string, you 
would execute the sequences 

PAD 3 ACCEPT CAT OK 
200 COUNT PAD COUNT -MATCH OK 
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A N T ti A N T E A T E R 11 C A T P 1 G 

Fig. 11-1. A string of animal names. 

The results would be 

. . 0 217 OK 

because CAT is in the string (flag = 0), immediately preceding 
location 217 (remember, addr3 is the last matching address 
+ 1). 

However, a search for DOG, with this sequence: 

PAD 3 ACCEPT DOG OK 

200 COUNT PAD COUNT -MATCH OK 

produces the results 

. . 1 221 OK 

because DOG is not in the string (flag = 1) and the string ends 
at location 220 (here, addr3 is the address of the last character 
+ 1). 

Note that -MATCH never alters the target string, but just pro¬ 
duces an address (addr3) that can be used as the basis for a 
subsequent processing operation. Here are some typical uses 
for -MATCH: 

1. To insert a substring following the search string occur¬ 
rence, execute -MATCH to find the insertion point, then 
insert the new substring at addr3. 

2. To delete the search string from the target string, execute 
-MATCH, then delete n2 characters, starting at-location 
addr3-n2. 

3. Similarly, to replace the search string occurrence with a 
new substring, execute -MATCH, then write n2 new char¬ 
acters to memory, starting at location addr3-n2. 

The insert, delete, and replace operations will be described in 
detail later in this chapter. 

Example 11-3 shows a definition for -MATCH. This definition 
consists of two DO-LOOPs. The outer DO-LOOP searches the 
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Example 11-3. Search for a substring 

: -MATCH 

( Attempt to find the n2-character string beginning at ) 

( addr2 somewhere in the nl-character string beginning) 

( at addrl. Return the last matching address + 1 as ) 

( addr3 and a flag which is zero if a match exists or ) 

( one if no match exists. ) 

( addrl nl addr2 n2-addr3 flag ) 

SWAP DUP C@ 

5 PICK 5 ROLL + 

DUP 1 

SWAP 6 PICK - 1 + 

7 ROLL 

DO 

3 PICK I C@ = 

IF 

0 
6 PICK 1 

DO 

J I + C@ 

6 PICK I + C@ 

= NOT 

( These words change stack to: ) 

( addrl n2 addr2 byte-1 addrl+nl ) 

( To start, assume no match exists) 

( Final stack is:-n2 addr2 byte-1) 

( addrl+nl end start ) 

( Search for byte-1 in target string) 

( If found, compare rest of target) 

( Assume match, set flag = 0) 

( Inner loop limits = n2 1) 

( Fetch next target byte) 

( and next search byte ) 

( Do they match?) 

IF 

DROP 1 LEAVE 

THEN 

LOOP 

IF ELSE 

DROP DROP 

I 4 PICK + 0 

LEAVE 

THEN 

THEN 

LOOP 

ROT DROP 

ROT DROP 

ROT DROP ; 

( No. Resume search) 

( Yes. Continue comparing) 

( If entire string is found, ) 

( replace "no match" results) 

( with addr3 and 0, ) 

( then quit ) 

( Discard byte-1, addr2 and n2) 

target string for the first character in the search string. If this 
character is found, the inner DO-LOOP takes over, comparing 
the remainder of the search string (n2-1 characters in all) with 
the next n2-1 characters of the target string. If the inner loop 
encounters a mismatch, the word LEAVE returns control to the 
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outer DO-LOOP. Incidentally, the outer DO-LOOP does not 
need to check every character in the target string, but only up 
to the last n2 characters, since that’s the last possible place the 
search string will fit. Therefore, the limits of the outer DO-LOOP 
are: 

Start of search = addrl 

End of search = addrl + nl — n2 + 1 

Of course, the definition of -MATCH must also include pro¬ 
visions to return the proper stack results, addr3 and flag. Initial¬ 
ly, a nonmatch is assumed, so the values addrl +n1 (addr3 for a 
nonmatch) and 1 (flag for a nonmatch) are pushed onto the 
stack. If a successful match ever occurs, these values are re¬ 
placed with addr3 = match + 1 and flag = 0. 

-TEXT 

The word -TEXT performs the basic task needed by all sort¬ 
ing programs: it compares the magnitudes of two strings, to 
determine whether the strings are identical or, if not, which has 
the greater value. Example 11-4 shows the definition of -TEXT. 
In this definition, two strings of length nl are compared, byte 
by byte, by subtracting a byte in string 2 from its counterpart in 
string 1. The comparison process continues until a subtraction 
produces a nonzero result or nl bytes have been compared. 

BLANKS 

The final word in Table 11-1, BLANKS, is used to erase text 
that has been deleted or moved to some other part of memory. 
The definition of BLANKS is: 

: BLANKS 32 FILL ; 

where 32 is the ASCII space character. 

ADD A NEW SUBSTRING 

There are two ways to add a new substring to a string: you 
can either attach the substring to the end of the string (that is, 
append it to the string) or insert it somewhere within the string. 
If the string holds information that is unordered, you can just 
append the substring, but if the string holds personnel records, 
word processing text or some other kind of ordered informa- 
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Example 11-4. Compare two strings 

: -TEXT 

( Compare two strings over the length nl, beginning at ) 

( addrl and addr2. The result, n2, is zero if the ) 

( strings are equal, positive if string 1 is greater ) 

( than string 2, and negative if string 2 is greater ) 

( than string 1. ) 

( addrl nl addr2-n2) 

0 ( 

ROT 0 ( 

DO 

DROP ( 

OVER I + C@ ( 

OVER I + C@ ( 

( 

DUP 0= NOT ( 

IF LEAVE THEN ( 

LOOP ( 

SWAP DROP SWAP DROP ;( 

Put dummy number on stack) 

Check nl bytes) 

Discard last result or dummy no.) 

Fetch next byte of string 1) 

and next byte of string 2,) 

then subtract them ) 

Are these bytes equal?) 

No. Exit) 

Yes. Compare next two bytes) 

Discard addresses) 

tion, you will need to insert the substring in its proper position 
within the string. 

Naturally, appending a substring to the end of a string is 
much simpler than inserting it within the string. To append a 
substring, you simply copy the substring to the end of the 
string, then update the count byte to reflect the increased 
length. Example 11-5 shows a word called APPENDS that does 
precisely those tasks. It copies an n2-character substring to the 
end of an nl-character string, then stores the sum of nl and n2 
into the string’s count byte. The substring is unaffected. Inci¬ 
dentally, instead of copying just the n2 characters of the sub¬ 
string, APPENDS copies n2+1 characters, so that the string still 
terminates with a null character. 

Inserting a substring into a string requires one additional 
stack argument (the address of the insertion point) and one 
additional operation (opening up a gap in the string, to ac¬ 
commodate the new substring). The word INSERTS, defined in 
Example 11-6, can be used to make the insertion. INSERTS per¬ 
forms three operations: 

1. It opens up an n2-byte gap in the string, by moving all 
bytes between addr3 and the end of the string +1 higher 
in memory by n2 locations. 
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Example 11-5. Add a substring to the end of a string 

: APPEND$ 

( Add an n2-character string beginning at addr2 to the ) 

( end of an nl-character string beginning at addrl. ) 

( addrl nl addr2 n2-) 

SWAP 3 PICK 5 PICK + ( Append string 1) 

3 PICK 1 + CMOVE$ ( to string 2 ) 

+ SWAP 1 — Cl; ( Update string l's byte count) 

Example 11-6. Insert a substring into a string 

: INSERTS 

( Insert an n2-character substring beginning at addr2 ) 

( into an nl-character string beginning at addrl. The ) 

( insertion begins at addr3. ) 

( addrl nl addr2 n2 addr3-) 

DUP 6 PICK 6 PICK + 

1+ OVER - 

OVER 5 PICK + SWAP 

CCMOVE 

OVER 5 ROLL + 

5 ROLL 1 - C! 

SWAP CCMOVE ; 

( Calculate number of bytes ) 

( from addr3 to end of string) 

( Set up CCMOVE arguments) 

( and open up the gap ) 

( Update string l's byte count) 

( Make the insertion) 

2. It changes the string’s count byte to the value n1 + n2, to 
reflect the increased length. 

3. It copies the substring into the newly created gap in the 
string. 

In actual use, the insertion address, addr3, is usually pro¬ 
duced by a preceding -MATCH operation. For example, to insert 
DOG into our previous list of animal names, following CAT, we 
could execute these sequences: 

PAD 3 ACCEPT CAT OK ( Find insert point) 

200 COUNT PAD COUNT -MATCH OK 

DROP OK ( Discard flag) 

PAD 4 ACCEPT j^DOG OK ( Enter DOG substring) 

200 COUNT PAD COUNT 5 ROLL OK ( Set up arguments) 

INSERTS OK ( Make the insertion) 
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DELETE A SUBSTRING 

Deleting a substring is similar to inserting a substring, except 
that instead of opening up space in the string, you are shorten¬ 
ing it. Example 11-7 shows the definition of a substring delete 
word called DELETES. When executed, DELETES searches the 
string for the substring, using -MATCH. If the substring cannot 
be found in the string, DELETES clears the stack and exits. If 
the substring is found, however, DELETES deletes it by moving 
each remaining byte in the string (and the terminating null 
character) to a location n2 bytes lower in memory, thereby 
over-writing the substring. Of course, this also requires the 
count byte to be changed to reflect the deletion. 

For example, to delete CAT from the string of animal names, 
you can enter the sequences 

PAD 4 ACCEPT 0CAT OK 
200 COUNT PAD COUNT DELETES OK 

If you then DUMP from location 200, you will see that CAT is no 
longer in the string and the character count has dropped from 
20 to 14. 

SORTING TEXT FILES 

The string-processing words we’ve just covered are the 
foundations of word processing and text editing programs— 
programs that are useful for preparing correspondence, books, 
and other documents. Other applications, such as mailing lists, 
telephone lists, and the like, are also text oriented, but usually 
involve some processing in addition to manipulation. For these 
applications, text is grouped in files, rather than just strings. 
Within each file, an individual entry (a name and address, a 
name and a telephone number, or whatever) is called a record. 
If these records have been entered into the file in random or¬ 
der, as they often are, you may like to sort them alphabetically, 
to make them easier to process. 

We have already been introduced to sorting in Chapter 8, 
where we encountered two common sorting techniques, called 
bubble sort and insertion sort, and implemented each as a 
FORTH word (BSORT and ISORT, respectively) that could be 
used to sort numbers in an array. These techniques can also be 
used to sort records in a file, by making the modifications 
needed to handle multibyte records rather than two-byte num¬ 
bers. However, the more generalized nature of file-sorting 
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routines make them somewhat longer and more complex than 
array-sorting routines. 

For instance, because records may be of various lengths, a 
file-sorting routine must accept three arguments from the stack 
(a starting address, a record count, and a bytes per record 
count) instead of just two arguments (starting address and 
number count). The third argument, bytes per record, will be 
used as an offset between records, replacing the constant 
two-byte offset in array-sorting routines. 

Moreover, because records may be many bytes long, if we 
need to exchange two records (as in bubble sorting) or move a 
record in memory (as in insertion sorting), we will need to tem¬ 
porarily store a record some place other than on the stack. The 
pad area is ideal for this purpose. 

Finally, comparing two records is also somewhat more com¬ 
plex than comparing two numbers, because numbers can be 
compared directly with the words [>], [<], and so on, whereas 
records must be compared with the word -TEXT, which re¬ 
quires you to set up three stack arguments. 

Example 11-7. Delete a substring from a string 

DELETES 

( Delete an n2-character substring beginning at addr2 ) 

( from an nl-character string beginning at addrl. ) 

( addrl nl addr2 n2- 

4 PICK 4 PICK i 

4 ROLL 4 PICK -MATCH 

IF I 

DROP DROP DROP I 

DROP 

ELSE I 

DUP 3 PICK - I 

5 PICK 5 PICK + ( 

3 PICK - 1 + CMOVE ( 

- SWAP 1 - C! ( 

THEN ; 

) 
Search for the substring) 

If substring is not found,) 

clear the stack and exit ) 

If substring is found, ) 

delete it by moving all) 

remaining bytes up by) 

n2 bytes ) 

Update string l's byte count) 

Despite these differences, sorting text files is not too differ¬ 
ent than sorting number arrays, it just takes more careful pro¬ 
gramming. Examples 11-8 and 11-9 provide definitions for the 
file-sorting words BSORT$ and ISORT$. As you can see, these 
are very similar in structure to their array-sorting counterparts, 
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BSORT (Example 8-10) and ISORT (Example 8-11). In general, 
the insertion sort (ISORT$) is usually faster for sorting a file 
that is randomly arranged, but the bubble sort (BSORT$) can 
be faster if the file is already nearly sorted. 

Example 11-8. Sort records in a file, using bubble sort 

BSORT$ 

( Using the bubble sort technique, sort a file beginning ) 

( at addr. No. of records in the file is given by recs; ) 

( addr recs bytes/rec-) 

DUP ROT * 3 PICK + 

3 ROLL 

>R >R 

BEGIN 

1 

R> 3 PICK - R@ OVER >R 

DO 

OVER DUP I + SWAP I 

-TEXT 0< 

IF 

I PAD 4 PICK CMOVE 

I 3 PICK + I 4 PICK CMOVE 

PAD 3 PICK DUP I + SWAP CMOVE 

DROP 0 ( Set exchange flag = 0) 

THEN 
OVER ( Loop increment = bytes/rec) 

+ LOOP 
UNTIL ( Keep sorting until flag = 1) 

R> R> DROP DROP DROP ; ( Clear both stacks) 

( DO-LOOP end is one rec. past file) 

( DO-LOOP start is addr) 

( Save these limits on return stack) 

( To start, exchange flag = 1) 

( Subtract bytes/rec from end limit) 

( Compare next two records) 

If 2nd record < 1st record,) 

exchange the two records ) 

File sorting can be much more sophisticated than the level 
we have addressed here. The words BSORT$ and ISORT$ sort 
files based on the leading characters in each record. However, 
in practice, records often hold several different types of infor¬ 
mation, so the record itself may be subdivided into various 
fields. For example, each record in a mailing list file may be 
comprised of five different fields: name, street address, city, 
state, and zip code. To arrange this list geographically, you may 
wish to sort it by zip code, then sort addresses with the same 
zip code by city, then perhaps street. That is, your sort would 
need to extend to a “depth’’ of three fields, rather than just 
one. Such considerations are beyond the scope of this book, 
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Example 11-9. Sort records in a file, using insertion sort 

: ISORT$ 

( Using the insertion sort technique, sort a file beginning ) 

( at addr. No. of records in the file is given by recs; 

( no. of bytes per record is given by bytes/rec. 

( addr recs bytes/rec-) 

) 

( Is this record less than) 

( the preceding record? ) 

( Yes. Find its proper place) 

( Dummy number) 

( Inner loop limits = ) 

( addr-bytes/rec l-bytes/rec) 

DUP ROT * 3 PICK + 

3 PICK 3 PICK + 

DO 

I OVER I OVER - 

-TEXT 0< 

IF 

0 

3 PICK 3 PICK - 

I 4 PICK - 

DO 

DROP 

J OVER I -TEXT 0< 

IF 

I 

ELSE 

I OVER + LEAVE ( If not, go insert) 

THEN 

OVER NEGATE 

+ LOOP 

I PAD 4 PICK CMOVE 

DUP DUP 4 PICK + 

1 3 PICK - CCMOVE 

PAD SWAP 3 PICK CMOVE ( 

THEN 

DUP 

+ LOOP 

DROP DROP; ( Clear the stack) 

( DO-LOOP end is one rec. past file) 

( DO-LOOP start is addr) 

( Drop dummy number or last I) 

( Search record < this record?) 

( If so, save this address) 

( Save insert string in the pad) 

( Open up a gap for the insert) 

and insert the string 

but you should be able to apply the principles given here to 
develop a multilevel sort, if needed. 

fig-FORTH STRING WORDS 

Only two of the words listed in Table 11-1, CMOVE and 
BLANKS, are provided by fig-FORTH. However, since the re- 
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maining words are defined within this chapter, you can easily 
add them to your system, if you wish. 

Table 11-2. Words Added to FORTH in Chapter 11 

Word Stack Action 

CMOVE$ addrl addr2 n- Copies n bytes starting at addrl to 
addr2. If addr2 is forward of addrl, 
the move proceeds from high memory 
to low memory; otherwise the move 
proceeds from low memory to high 

memory. 

APPENDS addrl nl addr2 n2- Adds an n2-character substring be¬ 
ginning at addr2 to the end of an nl- 
character string beginning at addrl. 

INSERTS addrl nl addr2 n2 
addr3- 

Inserts an n2-character substring be¬ 
ginning at addr2 into an nl-character 
string beginning at addrl. The inser¬ 

tion begins at addr3. 

DELETES addrl nl addr2 n2- Deletes an n2-character substring 
beginning at addr2 from an nl- 
character string beginning at addrl. 

BSORTS addr recs bytes/rec- Uses the bubble sort technique to sort 
a file beginning at addr. No. of rec¬ 
ords in the file is given by recs; no. of 
bytes per record is given by bytes/rec. 

ISORTS addr recs bytes/rec- Similar to BSORT$, but uses the in¬ 
sertion sort technique. 

SUMMARY 

Because there are so many different ways to process text in¬ 
formation, both FORTH-79 and fig-FORTH leave this task to the 
user. For this reason, we used some words suggested in the 
FORTH-79 Standard to develop new words that perform three 
fundamental operations: add a substring to the end of a string, 
delete a substring from a string, and insert a substring into a 
string. These words can be used as the basis for a string¬ 
processing package of your own design. Finally, to aid applica¬ 
tions that involve processing files of text records, such as mail¬ 
ing lists, we defined two file sorting words. One of these words 
was based on the bubble sort technique, the other was based 
on the insertion sort technique. 

Table 11-2 summarizes the words that can be added to 
FORTH based on the material in this chapter. 



CHAPTER 12 

More Disk Operations 

As you learned in Chapter 5, data is transferred between disk 
and memory in 1024-byte units called blocks. A block may 
consist of text for a colon-definition (in which case it is referred 
to as a “screen”) or it may consist of numbers in a data base, 
names and addresses in a mailing list, or various other kinds of 
nonprograms. If you have been using this book in conjunction 
with a FORTH system, you should be familiar with the proce¬ 
dures for using the disk to store colon-definitions. However, the 
disk procedures for storing file's of nonprogram information are 
somewhat different, so they are worth treating individually 
here. Table 12-1 summarizes the FORTH words that will be in¬ 
troduced in this chapter. 

CREATING NEW BLOCKS 

Just as you needed to allocate a block buffer in memory to 
hold each text screen for definitions, you must allocate a block 
buffer to hold the text or numbers in a file. The FORTH word 
that does this is BUFFER. BUFFER accepts a block number 
from the stack and allocates a block buffer (1024 bytes) for that 
block. If the previous contents of the buffer have been marked 
as UPDATEd, those contents are first written to disk. To let you 
know where the block buffer is located in memory, BUFFER 
leaves the address of its first data storage byte on the stack. 

For example, the sequence 

64 BUFFER U. 42022 OK 

allocates a block buffer for Block 64 in memory, and shows its 
starting address as decimal 42022 (hex A426). Since blocks 
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Table 12-1. The Disk Words BUFFER and BLOCK 

Word Stack Action 

BUFFER n-addr Obtains the next memory buffer and 
assigns it to block n. If the previous 
contents of the buffer is marked as 
UPDATEd, it is written to disk. The 
block is not read from disk. The ad¬ 
dress left is the first byte available for 
data storage within the buffer. 

BLOCK n-addr Leaves the address of the first data 
storage byte in block n. If the block is 
not already in memory, it is trans¬ 
ferred from disk to whichever buffer 
was least recently accessed. If the 
block occupying that buffer has been 
marked as UPDATEd, it is rewritten to 
disk before block n is read into the 
buffer. 

provide 1024 bytes of storage, you know that the ending ad¬ 
dress is decimal 43046. 

INITIALIZING A BLOCK 

At the same time you allocate a block buffer, you will also 
want to enter some initial data into the buffer. The buffer pro¬ 
vides 1024 storage bytes, but the first two bytes should be used 
to hold a count of the bytes used. Like a string's preceding 
count byte, a buffer’s preceding count bytes must be updated 
any time you add data to, or delete data from, the buffer. Let s 
look at the procedures for storing numbers and text into a 
block buffer and, eventually, onto disk. 

If a block is to hold numbers, you need a FORTH word that 
takes a number count and a starting address from the stack, 
and uses those arguments to accept numbers from the 
keyboard and store them into the block buffer. The word 
INUMBERS, defined in Example 12-1, can be used to perform 
this task. For example, the sequence 

7 64 BUFFER 2 + INUMBERS 1 2 3 4 5 6 7 OK 

allocates a block buffer for Block 64 and initializes it with seven 
numbers, 1 through 7. (Remember, since the numbers are 
entered with ACCEPT, you must terminate each entry with a 

carriage return.) 
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INUMBERS leaves a byte count on the stack, so this value 
must be entered into the buffer’s count bytes. Can you use the 
word BUFFER to get the address of the count bytes? No, you 
cannot, because BUFFER always allocates a new block buffer, 
and you want to store the count in the existing buffer. To do 
this you will need to use another FORTH word called BLOCK. 
BLOCK is similar to BUFFER except that BLOCK works with 
blocks that have already been allocated, and are either in 
memory or on disk. 

Example 12-1. Read numbers into memory from the keyboard 

: INUMBERS 

( Accept nl numbers from the keyboard and store them into ) 

( memory, starting at addr. Leave byte count n2. ) 

( nl addr-n2 ) 

SWAP 2 * 

DUP 3 PICK + ROT 

DO 

PAD 6 ACCEPT 

PAD NUMBER 

DROP 

1 I 

2 

+ LOOP ; 

( Calculate byte count) 

( DO-LOOP limits = addr+n2 addr) 

( Read in a string from the keyboard,) 

( and convert it to a double number ) 

( Convert double number to number) 

( and store it in memory ) 

Now you know how to initialize and save a block of numbers. 
If a block is to hold a text file, you need a text counterpart of 
INUMBERS that takes a record count and a starting address 
from the stack, then accepts the specified number of records 
from the keyboard and stores them in the buffer. This particular 
word must, of course, be designed to accept the kinds of re¬ 
cords you wish to store. 

Example 12-2 defines a typical text-initializing word, 
IPHONE-LIST, which can be used to build a telephone list in a 
block buffer. In this case, each record is 34 bytes long and 
consists of three fields: a name (up to 22 characters), a three- 
digit area code, and a phone number in the format xxx-xxxx. 
The extra byte is a blank between the area code and the phone 
number. For instance, the sequence 

3 64 BUFFER 2 + IPHONE-LIST 
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accepts three records from the keyboard and stores them into 
the buffer allocated to Block 64. With the prompts, the ini¬ 
tialization session should look like this: 

NAME: PARKER, CHARLIE 

AREA CODE: 705 

NUMBER: 223-6666 

NAME: CHAMBERLAIN, IRV 

AREA CODE: 307 

NUMBER: 555-2121 

NAME: KIRK, CAPTAIN 

AREA CODE: 999 

NUMBER: 123-4567 OK 

Example 12-2. Read phone list into memory from the 
keyboard 

IPHONE-LIST 

( Accept nl phone number entries from the keyboard and ) 

( store them into memory, starting at addr. Each entry ) 

( consists of a name, up to 22 characters, plus a ) 

( three-digit area code and an eight-digit number in ) 

( the format xxx-xxxx. Leave byte count n2. ) 

( nl addr-n2 ) 

( n2 = nl * 34) 

( DO-LOOP limits = addr + n2 addr) 

SWAP 34 * 

DUP 3 PICK + ROT 

DO 

CR CR NAME: " 

PAD 22 ACCEPT 

PAD DUP C@ + 1 + 

22 PAD C@ - BLANKS 

PAD 1 + I 22 CMOVE 

CR AREA CODE: " 

I 22 + 3 EXPECT 

BL I 25 + C! 

CR NUMBER: " 

I 26 + 8 EXPECT 

34 

+ LOOP ; 

( Read name into pad, ) 

( and add trailing blanks) 

( Move name chars, to the buffer) 

Read area code into buffer ) 

and follow it with a blank) 

( Read phone number into buffer) 
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IPHONE-LIST, like INUMBERS, leaves a byte count on the 
stack. As before, you can record this count in the buffer with 

64 BLOCK ! OK 

then save the buffer on disk with either (UPDATE SAVE- 
BUFFERS) in FORTH-79 or (UPDATE FLUSH) in fig-FORTH. 

ACCESSING THE CONTENTS OF A BLOCK 

Once a block has been saved on disk, you can bring it back 
into memory with the word BLOCK. For example, 

64 BLOCK 

reads the contents of Block 64 into memory, if it is not already 
there, and leaves the address of its first storage byte (the first 
byte of the count) on the stack. 

By adding an offset to this starting address, you can access 
any specific data value in the block. For instance, if a block 
holds 8-bit bytes, you simply add the byte number to the start¬ 
ing address plus two. Therefore, to place the contents of byte 
100 of Block 64 onto the stack, execute the sequence 

64 BLOCK 2 + 100 + C@ OK 

(This assumes the first data byte in the block is byte 0, so byte 
100 is actually the 101st data byte.) Similarly, to change the 
contents of byte 100 to the value 4, execute the sequence 

4 64 BLOCK 2 + 100 + C! OK 

If a block holds 16-bit numbers instead of 8-bit bytes, you 
must double the offset before adding it to the starting address 
plus two. For example, to place the contents of number 100 of 
Block 64 on the stack, execute the sequence 

64 BLOCK 2 + 100 2 * + @ OK 

and to change the value of that number to 4, execute 

4 64 BLOCK 2 + 100 2 * + ! OK 

Of course, you must always “tell” FORTH when a block has 
been changed, by following the last change with UPDATE. 

If a block holds text, you can use -MATCH to locate a particu¬ 
lar record. For example, to find Captain Kirk’s phone number in 
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the telephone list application in the last section, you might use 
the sequence 

( Address & byte count of block) 

( Enter search name) 

( Leave flag & end addr + 1) 

( Leave starting address) 

64 BLOCK DUP @ OK 

PAD 4 ACCEPT KIRK OK 

PAD COUNT -MATCH OK 

DROP 4 - OK 

Although this procedure gets the job done, it is both cumber¬ 
some and error-prone. It is inefficient as well, because -MATCH 
searches the entire phone file, rather than just the name fields 
in the file. 

Example 12-3 shows a much better search algorithm, and 
names that algorithm GET-PHONE#. This word searches just 
the name fields in the file. If the specified name is found, GET- 
PHONE# leaves its starting address on the stack. An unsuc¬ 
cessful search produces the message “NAME NOT FOUND’’. 

Example 12-3. Search phone list for a name 

: GET-PHONE# 

( Search a telephone list for a specified name, up to 22 ) 

( characters, starting at addrl. If the name is found, ) 

( leave its starting address on the stack. If the name ) 

( is not found, print a message. ) 

( If found: addrl-addr2 ) 

( If not found: addrl- ) 

PAD 22 ACCEPT PAD COUNT ( Input search name from keyboard) 

0 ( Dummy number) 

4 ROLL DUP @ SWAP 2 +( DO-LOOP limits = ) 

DUP ROT + SWAP ( addrl+2 + bytes addrl+2) 

DO 
3 PICK 3 PICK I -TEXT ( Compare next name) 

0= 

IF I LEAVE THEN ( Exit if match occurs) 

34 

+LOOP 

?DUP0= 

IF 

CR ." NAME NOT FOUND " 

ELSE 

SWAP DROP SWAP ROT 

THEN 

DROP DROP ; 



More Disk Operations 203 

Once the starting address of a record is on the stack, you can 
print the entire 34-byte record with the word TYPE. For exam¬ 
ple: 

64 BLOCK GET-PHONE# KIRK OK 

CR 34 TYPE 

KIRK, CAPTAIN 999 123-4567 OK 

ADDING DATA TO A BLOCK 

The data entry words defined in this chapter, INUMBERS and 
IPHONE-LIST, can also be used to add new data to an existing 
block. For example, to add three new values to your block of 
numbers, you would execute the sequences 

3 64 BLOCK DUP @ + 2 + INUMBERS 10 11 12 OK 

64 BLOCK +! OK 

UPDATE SAVE-BUFFERS OK 

DUPLICATING A BLOCK 

Each block buffer in memory is preceded by two bytes. The 
first byte holds the block number to which that buffer is allo¬ 
cated. The second byte holds an UPDATE indicator; this indi¬ 
cator is equal to 1 if the block has been marked as UPDATEd 
and is otherwise equal to 0. By changing the contents of the 
first byte, the block indentifier, you can duplicate a block, 
thereby creating a backup copy for future reference or an ini¬ 
tialized starting point for a new data set. 

The procedure for duplicating a block is extremely easy. You 
simply alter the block identifier, mark the buffer as UPDATEd, 
then write the buffer to disk. For example, if Block 65 is to hold 
a duplicate of Block 64, execute the sequences 

65 64 BLOCK 2 - C! OK 

UPDATE SAVE-BUFFERS OK 

Incidentally, this technique is also convenient for duplicating a 
screen, in case you want to define a word that is similar to a 
previously defined word. You may wish to do this for debugging 
purposes, since it allows you to investigate some alternate ap¬ 
proach to a definition that is not working quite right, yet save 
the original definition. 
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SUMMARY 

This chapter described how to create and manipulate data 
and text files, and how to save these files as “blocks on disks. 
A related topic, how to duplicate a block, was also discussed. 



CHAPTER 13 

Logical, Shift, and Rotate Operations 

In the preceding three chapters we concentrated on ways to 
process ASCII characters, and strings of ASCII characters, be¬ 
cause virtually all printers, keyboards, and display terminals are 
ASCII-based devices. Such standard devices usually come with 
all the hardware and software necessary to communicate with 
your computer, so your job becomes one of supplying the cor¬ 
rect information and executing a simple “transmit” command, 
such as KEY, EMIT, EXPECT, or TYPE. Thus, the internal oper¬ 
ations are made “transparent” to you. However, if your system 
includes one or more nonstandard devices (perhaps devices of 
your own design), or if you wish to alter the internal operation 
of a standard device, you must develop an appropriate set of 
programming “tools” that allow you to do so. 

To control a device at this more detailed level, you will need 
to send it specific patterns of binary digits (or bits), patterns the 
device is designed to recognize as commands. Similarly, you 
will need to accept bit patterns from the device and extract 
selected bits as status indicators. In both cases you are re¬ 
quired to operate on values at the bit level, as well as at the 
number level. 

This chapter describes two classes of FORTH words that can 
manipulate bits within a number. The first class of words per¬ 
form “logical” operations on numbers. That is, they apply a 
mask to a number, which changes the state of specific bits to 
produce a new number. The second class of words shift or ro¬ 
tate the bit patterns that represent a number, thereby displac¬ 
ing the entire pattern so many positions to the right or left. 
Table 13-1 summarizes the words we will describe in this 
chapter. 
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Table 13-1. Logical, Shift and Rotate Words 

Word Stack Action Notes 

AND nl n2-n3 Leaves the logical AND of nl 
and n2. 

OR nl n2-n3 Leaves the logical inclusive-OR 
of nl and n2. 

XOR nl n2-n3 Leaves the logical exclusive-OR 
or nl and n2. 

COM nl-n2 Leaves the one’s complement 
of nl. 

(D 

ASHIFT nl n2-n3 Shifts the value nl arithmeti¬ 
cally by the number of bit posi¬ 
tions specified in n2. If n2 is 
positive, nl is shifted left and 
zeroes are shifted into the 
least-significant bit positions. If 
n2 is negative, nl is shifted 
right and the most-significant 
bits are replicated. 

(D 

SHIFT uni n-un2 Shifts the value uni logically by 
the number of bit positions 
specified in n. If n is positive, 
uni is shifted left. If n is nega¬ 
tive, uni is shifted right. Zeroes 
are shifted into vacated bit 
positions. 

(1) 

ROTATE uni n-un2 Rotates the value uni by the 
number of bit positions spec¬ 
ified in n. If n is positive, uni is 
rotated left. If n is negative, uni 
is rotated right. 

(D 

Note: (1) Included in Reference Word Set, as an uncontrolled word 
definition. 

LOGICAL WORDS 

Logical words are so named because they operate according 
to the rules of formal logic, as opposed to the rules of mathe¬ 
matics. For example, the rule of logic stated “if A is true and B 
is true, then C is true” has a FORTH counterpart in the word 
AND, which applies this rule to the 16 pairs of corresponding 
bits in two numbers. Specifically, for each bit position in which 
both numbers have a logic 1 (true), the bit position in the result 
number is set to logic 1. Conversely, for each bit position in 
which the two numbers have any other combination —both 
have logic 0, or one has logic 0 and the other logic 1—the bit 
position in the result number is set to logic 0. 
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AND is one of three logical words that are required by both 
the FORTH-79 Standard and fig-FORTH; the other two are OR 
and XOR. All three words logically combine the 16 bits of two 
numbers (a source number and a mask) on the stack, and leave 
the resulting number on the stack. 

Since logical operations reference specific bits within a 
number, you will usually use hexadecimal numbering for these 
operations (although binary, or base 2, numbering could also 
be used). Being 16 bits long, a number is represented by 4 
hexadecimal digits, the values 0 through FFFF. To help you 
construct the correct mask value for a logical operation, Table 
13-2 shows the hexadecimal representation of a “1” in each of 
the 16 different bit positions. For example, to select bit position 
2, the correct mask value is hex 4; to select bit positions 2 and 
3, the correct mask value is hex C (hex 4 + hex 8); and so on. 

The Word AND 

The word AND is primarily used to mask out (set to zero) cer¬ 
tain bits in a number so that some form of processing can be 
done on the remaining bits. As just mentioned, for each bit 
position in which both operands contain a logic 1, the corre¬ 
sponding bit position in the result is also set to logic 1; all other 
operand combinations cause the result bit to be reset to logic 
0. Table 13-3 summarizes the AND combinations. Note that any 
bit ANDed with 0 will be cleared to zero and any bit ANDed 
with 1 will retain its original value. 

As an illustration of AND, suppose memory location A000 
holds a 16-bit status value from an external device, and bit 6 of 
this indicates whether device power is on (logic 1) or off (logic 
0). If your FORTH program requires device power to be on be¬ 
fore continuing, it might include the following sequence: 

BEGIN 

A000 @ ( Read status value) 

40 AND ( Isolate the power indicator, bit 6) 

0= NOT ( Is power on?) 

UNTIL ( If not, keep checking) 

( If so, continue here) 

The Word OR 

The word OR produces a logic 1 result for any bit position in 
which either the source word or mask (or both) contains a logic 
1. Table 13-4 summarizes the OR combinations. 
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Table 13-2. Hexadecimal Values for Bit Positions 

Bit 
Number 

Hex 
Value 

Bit 
Number 

Hex 
Value 

0 (LSB) 0001 8 0100 

1 0002 9 0200 

2 0004 10 0400 

3 0008 11 0800 

4 0010 12 1000 

5 0020 13 2000 

6 0040 14 4000 

7 0080 15 (MSB) 8000 

Table 13-3. The AND Operation 

Operand Bits 

Result Bit A B 

0 0 0 
0 1 0 
1 0 0 
1 1 1 

Table 13-4. The OR Operation 

Operand Bits 

Result Bit A B 

0 0 0 
0 1 1 
1 0 1 
1 1 1 

OR is usually used to set specific bits to logic 1. For example, 

the sequence 

A200 @ C000 OR A200 ! 

sets the two most-significant bits of location A200 (bits 14 and 
15) to logic 1 and leaves all other bits unchanged. 

The Word XOR 

The word XOR is primarily used to determine which bits dif¬ 
fer between two operands, but it can also be used to reverse 
the state of selected bits. XOR produces a logic 1 result for any 
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bit position in which the operands differ (one operand contains 
logic 0, the other contains logic 1). If both operands contain 
either logic 0 or logic 1, the result bit is cleared to logic 0. Table 
13-5 summarizes the XOR combinations. 

Table 13-5. The XOR Operation 

Operand Bits 

Result Bit A B 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

The abbreviation XOR stands for exclusive-OR, because it 
functions like OR, but excludes the combination in which both 
operands hold a logic 1. The way XOR operates on a particular 
bit can be likened to a radio operator waiting for two messages. 
If neither message arrives, it is a zero night. If either message 
arrives, the night is a success. However, if both messages arrive 
at the same time (canceling each other), it also results in a zero 
night. 

As an example, the sequence 

A200 @ C000 XOR A200 ! 

will reverse the state of the two most-significant bits of location 
A200 and leave all other bits unchanged. 

The Word COM 

The FORTH-79 Reference Word Set includes an uncontrolled 
word that reverses the state of every bit in a number. This word, 
COM (for complement) changes every logic 1 bit to logic 0, and 
vice versa. Since COM acts like XOR with an all-ones mask, its 
definition is nothing more than 

: COM FFFF XOR ; 

SHIFT AND ROTATE WORDS 

Although rather rare, there are some applications that require 
the capability of displacing an entire bit pattern by one or more 
positions to the right or left. Serial communications, in which 
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data is transmitted and received one bit at a time, is a prime 
example. Because such requirements are relatively uncommon, 
neither the FORTH-79 nor the fig-FORTH Installation Manual 
includes standard words for this purpose. However, the 
FORTH-79 Standard suggests three uncontrolled words that 
can be used to displace a 16-bit stack operand. Two of these 
words, ASHIFT and SHIFT, “shift” the operand; the other word, 
ROTATE, “rotates” the operand. 

ASHIFT and SHIFT 

In a shift operation, bit values that are displaced out of one 
end of the operand are permanently lost. For a right shift, one 
or more low-order bits of the operand will be lost. For a left 
shift, one or more high-order bits will be lost. 

There are two different shift words because shifting unsigned 
numbers is somewhat different than shifting signed numbers. If 
the operand is unsigned, bits vacated during the shift operation 
are filled with zeroes, as shown in Fig. 13-1A. The same holds 

RIGHT SHIFT 

(LOST) 

(LOST) 

-0 LEFT SHIFT 

(A) Logical shifts (unsigned numers). 

RIGHT SHIFT 

-0 LEFT SHIFT 

(B) Arithmetic shifts (signed numbers). 

Fig. 13-1. Logical and arithmetic shift operations. 
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Example 13-1. Shift a number right or left 

: ASH I FT 

( Shift nl arithmetically n2 bit positions. If n2 is ) 

( positive, shift nl to the left; vacated bit ) 

( positions receive zeroes. If n2 is negative, shift) 

( nl to the right, extending the sign in the most-) 

( significant bit position. ) 

nl n2-n3 ) ( 
2 OVER ABS ** 

SWAP 0< 

IF 

/ 
ELSE 

* 

THEN ; 

SHIFT 

( 

( 

( Shift factor = 2**ABS(n2)) 

( Determine shift direction) 

( For right shift, ) 

( divide by shift factor) 

( For left shift, ) 

( multiply by shift factor) 

Logical shift uni by n bit positions; vacated bit 

positions receive zeroes. If n is positive, shift 

nl to the left; if n is negative, shift uni to the 

right. ) 
( uni n-un2 ) 

2 OVER ABS ** 

SWAP 0< 

IF 

0 SWAP 

U/MOD 

DROP SWAP DROP 

ELSE 

U* 

DROP 

THEN ; 

( Shift factor = 2**ABS(n)) 

( Determine shift direction) 

( For right shift, ) 

( make uni a double number 

( and divide by shift factor ) 

( Leave unsigned single quotient) 

( For left shift, ) 

( multiply by shift factor) 

( Leave unsigned single product) 

true when a signed number is left-shifted. However, when a 
signed number is right-shifted, vacated bit positions receive the 
sign bit value, rather than zeroes, and the sign itself is 
preserved. This is shown in Fig. 13-1B. 

The words that perform these shift operations, ASHIFT for 
signed numbers and SHIFT for unsigned numbers, can be 
defined based on this simple principle: each left shift multiplies 
the operand by two and each right shift divides the operand by 
two. Therefore, left-shifting involves multiplying the operand by 
some power of two and right-shifting involves dividing the 
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(E D 

C Z) 

RIGHT ROTATE 

LEFT ROTATE 

Fig. 13-2. Rotate operations. 

Example 13-2. Rotate a number right or left 

: ROTATE 

( Rotate uni by n bit positions. Bits shifted out of ) 

( one end of the number are shifted back in the ) 

( opposite end. If n is positive, rotate uni to the ) 

( left; if n is negative, rotate uni to the right. ) 

( uni n-un2 ) 

OVER OVER 

SHIFT 

>R 

DUP 0< 

IF 

16 + 

ELSE 

16 - 

( Make a copy of uni and n) 

( Shift uni and save result, un2, ) 

( on the return stack ) 

( Determine rotate direction) 

( For right rotate, ) 

( shift count = n + 16) 

( For left rotate, ) 

( shift count = n — 16) 

THEN 

SHIFT ( Shift vacated bits ) 

R> OR ; ( and combine the two results) 

operand by some power of two. In both cases, the exponent of 
two is nothing more than the number of bit positions the 
operand is to be shifted. For example, to shift an operand left 
by three bit positions, multiply it by two to the third power. 

Example 13-1 shows the definitions for both ASHIFT and 
SHIFT. These definitions are similar, except ASHIFT employs 
the signed multiply and divide words, [/] and [*], whereas SHIFT 
employs the unsigned multiply and divide words, U/MOD and 
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U*. Note that the word [**], which was defined in Example 7-3, 
is used to form the shift factor for both words. You might like to 
modify the definition of ASHIFT to detect whether a left-shift 
has altered the sign bit, which produces an invalid result. 

ROTATE 

A rotate operation is similar to a shift operation except that, 
with a rotate, bit values displaced out of one end of the 
operand are entered into the opposite end, to fill vacated bit 
positions. Thus, no bit values are ever “lost” in a rotate, as they 
are in a shift. Fig. 13-2 shows how a right rotate and left rotate 
operate. 

Because a sign bit is irrelevant in a rotate operation, we need 
only one FORTH word here. This word, called ROTATE, is 
defined in Example 13-2. This definition is comprised of two 
SHIFT operations, one to shift the number and the other to shift 
the “vacated” bit positions. The results of these two operations 
are then combined (ORed) to form the final result. 

SUMMARY 

This chapter described words that manipulate bits in a 
number. These included the logical words AND, OR, XOR, and 
COM, the shift words ASHIFT (arithmetic shift, for signed num¬ 
bers), SHIFT (logical shift, for unsigned numbers), and the word 
ROTATE. Only the logical words AND, OR, and XOR are stan¬ 
dard in both FORTH-79 and fig-FORTH. 
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Table A-2. Powers of 2 

Table A-3. Powers of 16 

16" n 

1 0 
16 1 

256 2 
4 096 3 

65 536 4 
1 048 576 5 

16 777 216 6 
268 435 456 7 

4 294 967 296 8 
68 719 476 736 9 

1 099 511 627 776 10 
17 592 186 044 416 11 

281 474 976 710 656 12 
4 503 599 627 370 496 13 

72 057 594 037 927 936 14 

1 152 921 504 606 846 976 15 

Table A-4. ASCII Character Values 

Decimal Hex Character 

0 0 CTRL-@ (Null) 
1 1 CTRL-A 
2 2 CTRL-B 
3 3 CTRL-C 
4 4 CTRL-D 
5 5 CTRL-E 
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Table A-4—cont. ASCII Character Values 

6 6 CTRL-F 

7 7 CTRL-G (Bell) 
8 8 CTRL-H (Backspace) 

9 9 CTRL-1 (Horizontal Tab) 

10 A CTRL-J (Line Feed) 

11 B CTRL-K (Vertical Tab) 
12 C CTRL-L (Form Feed) 

13 D CTRL-M (Carriage Return) 

14 E CTRL-N 

15 F CTRL-0 
16 10 CTRL-P 

17 11 CTRL-Q 

18 12 CTRL-R 

19 13 CTRL-S 
20 14 CTRL-T 

21 15 CTRL-U (Forward Space) 
22 16 CTRL-V 

23 17 CTRL-W 
24 18 CTRL-X (Cancel) 

25 19 CTRL-Y 
26 1A CTRL-Z 

27 IB CTRL-SHIFT K (Escape) 

28 1C CTRL-SHIFT L 

29 ID CTRL-SHIFT M 

30 IE CTRL-SHIFT N 

31 IF CTRL-SHIFT O 

32 20 Space (Blank) 

33 21 ! 

34 22 “ 

35 23 # 
36 24 $ 
37 25 % 
38 26 & 

39 27 ‘ (apostrophe) 

40 28 ( 
41 29 ) 
42 2A * 

43 2B + 

44 2C , (comma) 

45 2D - (minus or hyphen) 

46 2E . (period) 

47 2F / 
48 30 0 
49 31 * 1 

50 32 2 

51 33 3 

52 34 4 

53 35 5 
54 36 6 

55 37 7 

56 38 8 

57 39 9 
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Table A-4—cont. ASCII Character Values 

58 
— 

3A 

1 

: (colon) 

59 3B ; (semicolon) 

60 3C < 

61 3D = 

62 3E > 

63 3F ? 

64 40 @ 
65 41 A 

66 42 B 

67 43 C 
68 44 D 

69 45 E 
70 46 F 

71 47 G 
72 48 H 

73 49 1 
74 4A J 
75 4B K 

76 4C L 
77 4D M 
78 4E N 

79 4F O 
80 50 P 
81 51 Q 
82 52 R 
83 53 S 
84 54 T 

85 55 U 
86 56 V 
87 57 w 
88 58 X 
89 59 Y 
90 5A z 
91 5B [ 
92 5C \ 
93 5D ] 
94 5E t 
95 5F _ (underline) 
96 60 
97 61 a 
98 62 b 
99 63 c 

100 64 d 
101 65 e 
102 66 t 
103 67 g 
104 68 h 
105 69 i 
106 6A i 
107 6B k 
108 6C 1 
109 6D m 
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Table A-4—cont. ASCII Character Values 

110 6E n 
111 6F 0 
112 70 p 
113 71 q 
114 72 r 

115 73 s 
116 74 t 
117 75 u 
118 76 V 

119 77 w 
120 78 X 

121 79 y 
122 7A Z 

123 7B { 
124 7C f 

125 7D } 
126 7E ~ 

127 7F Delete 



APPENDIX. B 

FORTH Word Summari es 

This appendix summarizes all of the FORTH-79 Required 
Words and the most frequently used fig-FORTH words, and 
identifies some differences between them. For complete de¬ 
scriptions of these words, refer to the FORTH-79 Standard or 
the fig-FORTH Installation Manual, both available from: 

FORTH INTEREST GROUP 
P.O. Box 1105 
San Carlos, CA 94070 
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APPENDIX C 

Double Number Extension Words 

Since most applications need no more precision than can be 
provided by 16 bits, FORTH words in both the FORTH-79 and 
fig-FORTH dialects primarily operate on numbers. However, 
both dialects also include a few words that can operate on 
32-bit double-number values as a basis from which you can 
develop words to process larger values. This appendix sum¬ 
marizes the words described in the FORTH-79 Standard’s 
Double Number Extension Word Set, and gives colon- 
definitions you can use to add these capabilities to your own 
system. 

DOUBLE NUMBER EXTENSION WORD DESCRIPTIONS 

2! d addr - 

Store d in four consecutive bytes, beginning at addr. 

2@ addr-d 

Leave on the stack the contents of the four consecutive bytes begin¬ 

ning at addr. 

2CONSTANT d- 

A defining word used in the form 

d 2CONSTANT name 

to create a dictionary entry for name, leaving d in its parameter field. 

When name is later executed, d will be left on the stack. 

2DROP d - 

Drop the top double number on the stack. 

2DUP 

Duplicate the top double number on the stack. 

20VER dl d2-dl d2 dl 

Leave a copy of the second double number on the stack. 
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2ROT dl d2 d3-d2 d3 dl 

Rotate the third double number to the top of the stack. 

2SWAP dl d2-d2 dl 

Exchange the top two double numbers on the stack. 

2VARIABLE 
A defining word used in the form 

2VARIABLE name 

to create a dictionary entry for name and assign four bytes for stor¬ 

age in its parameter field. When name is later executed, it will leave 

the address of the first byte in its parameter field on the stack. 

D+ dl d2-d3 

Leave the arithmetic sum of dl and d2. 

D- dl d2-d3 

Subtract dl from d2 and leave the difference d3. 

D. d- 

Display d, converted according to BASE, in a free-field format, with 

one trailing blank. Display the sign only if negative. 

D.R d n - 

Display d, converted according to BASE, right-aligned in an 

n-character field. Display the sign only if negative. 

DO= d-flag 

Leave true flag if d is zero. 

D< dl d2-flag 

True if dl is less than d2. 

D= dl d2-flag 

True if dl equals d2. 

DABS d-|d| 

Leave the absolute value of the double number d. 

DMAX dl d2-d3 

Leave the larger of two double numbers. 

DMIN dl d2-d3 

Leave the smaller of two double numbers. 

DNEGATE d--d 

Leave the two's complement of a double number. DNEGATE is called 

DMINUS in fig-FORTH. 

DU< udl ud2-flag 

True if udl is less than ud2. Both numbers are unsigned. 

COLON-DEFINITIONS FOR DOUBLE NUMBER EXTENSION 
WORDS 

: 2! ( Store double number at address ) 

SWAP OVER 12+ ! ; 
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: 2@ ( Fetch double number from address ) 

DUP 2+ @ SWAP @ ; 

: 2DROP ( Drop double number ) 

DROP DROP ; 

: 2DUP ( Duplicate double number ) 

OVER OVER ; 

: 20VER ( Leave copy of second double number ) 

4 PICK 4 PICK ; 

: 2ROT ( Rotate third double number to top ) 

6 ROLL 6 ROLL ; 

: 2SWAP ( Exchange top two double numbers ) 

4 ROLL 4 ROLL 

: D— ( Subtract double number ) 

DNEGATE D+ ; 

(Note: In fig-FORTH, DNEGATE is called DMINUS.) 

: DH— ( Apply sign of number to double number ) 

0< IF DNEGATE THEN ; 

(Note: DH— is included in fig-FORTH.) 

: DABS ( Leave absolute value of double number ) 

DUP DH— ; 

(Note: DABS is included in fig-FORTH.) 

: D.R ( Print double number right-aligned in n-char field ) 

>R SWAP OVER DABS 

<# #S SIGN #> 

R> OVER - SPACES TYPE ; 

(Note: D.R is included in fig-FORTH.) 

: D. ( Print double number followed by one blank ) 

0 D.R SPACE ; 

(Note: D. is included in fig-FORTH.) 

: D0= ( Leave true flag if double number is zero ) 

OR 0= ; 

: D< ( True if 2nd double no. less than 1st double no. ) 

D- SWAP DROP 0< ; 

: D= ( True if two double numbers are equal ) 

D- D0= ; 

: DMAX ( Leave the larger of two double numbers ) 

20VER 20VER D< 

IF 2SWAP THEN 

2DROP ; 
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: DMIN ( Leave the smaller of two double numbe 

20VER 20VER D< NOT 

IF 2SWAP THEN 

2DROP ; 

(Note: In fig-FORTH, replace NOT with 0 = .) 

: 2VARIABLE ( Double variable ) 

CREATE 4 ALLOT DOES> ; 

: 2, ( Enter stack double number to dictionary ) 

HERE 2! 4 ALLOT ; 

: 2CONSTANT ( DOUBLE CONSTANT ) 

CREATE 2, DOES> 
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A 

Absolute value, 34, 37 
ACCEPT, 167 
Accessing 

contents of block, 201-203 
numbers in array, 122-124 

Add to stack, 28-29 
Adding column of numbers, 28 
Addition, 25-29 
ALLOT, 126 
AND, 207 
Angle 

cosine of, 136 
sine of, 132-135 

Arithmetic 
operations on memory, 56 
words, fig-FORTH, 34-38 

Array(s), 121-130 
accessing numbers, 122-124 
initializing, 126 
large, 124 
of bytes, 125 
sorting, 137-143 

ASCII, 59 
ASHIFT, 210 
Assembler Word Set, 14 
AVG-MEMORY, 89 

B 

BASE selects number system, 153 
BBL-SORT, 138 
BEGIN-UNTIL loops, 102-105 
BELL, 163-164 
Binary numbering system, 147-149 
BL, 163-164 
Blanks, 59-60 

Block(s) 
accessing contents, 201-203 
adding data, 203 
buffers, 74 

edited, 76 
emptying, 75 

creating, 197-198 
duplicating, 203 
initializing, 198-201 

Bounds of stack, 44-45 
Bubble sort, 137-141 
Buffers 

block, 74 
emptying, 75 

Byte(s) 149 
in memory, display, 55 

c 

Carriage returns, 69 
CARRAY, 129 

Character 
operations, 162-164 
words, 163-164 

CIRCUM, 86 
<CMOVE, 184-186 
Colon definition, 66 
COM, 209 
Comment, 68 
Comparison words, 99-102 
Compiler, 67 
Constant(s), 117-120 

changing value, 119-120 
Contents of stack, display, 109-110 
Converting text to numbers, 177-180 
Copy item onto top, 41-42 
Cosine of angle, 136 
COUNT, 167 
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CR, 69 

CREATE array, 127-130 
CUBE, 70 

Cumulative FORTH definitions, 71 

D 

DABS, 34 
DECIMAL, 155-156 
Definitions 

adding comments, 67-68 
compiled, 67 
including messages, 68-69 

Delete 
item from stack, 44 
top item, 42 
word, 70 

DEPTH, 44 
Dictionary, discover word, 71-72 
Disk, 72-73 

operations, standard sequence, 
75-77 

terminology, 73-74 
Display 

contents of memory, 54-55 
of stack, 109-110 

numbers, imbedded characters, 
172-177 

right-justified, 172 
Divide by two, 31 
Division, 30-31, 35-37 

unsigned, 31 
DMINUS, 35 
DNEGATE, 33 
DO-LOOP 

fundamentals, 83-87 
indent lines, 86-87 
nested, 90-91 

Double 
Number Extension Word, 34 

Word Set, 14 
DROP, 42 
DUMP, 55 
DUP, 39 
Duplicate top item, 39-41 

E 

Editor, 72-73 
using, 75-76 

EMIT, 162 
EMPTY-BUFFERS, 75 
ERASE, 59 
EXIT, 111-113 
EXPECT, 164 
Extension Word Set, 14 

F 

False flag with IF-THEN, 106-108 
FENCE, 79 
Fetch, 53-54 
fig-FORTH, 12-13 

arithmetic words, 34-38 
comparison words, 114 
conditional control structures, 114 
constant-defining words, 146 
DO-LOOP, 95 
manipulation words, 95 
memory words, 60-61 
number base control words, 158 
return stack, 95 
stack manipulation words, 47-48 
string words, 195-196 
variable-defining words, 146 

FILL 
block of memory, 58-60 
text block, 59-60 

FLUSH, 76 
FORGET, 70 
Formatting 

numbers, 171-177 
text, 170-171 

FORTH 
definitions, cumulative, 71 
Interest Group, 12 
programming, overview, 13-17 
-79, 12-13 

Standard, 14-15 
FORTH 

word, define new, 63-67 
described, 20-21 

H 

HEX, 155-156 
Hexadecimal numbering system, 

149-151 
HOLD, 175 

I 

IF-THEN 
control structures, 105-109 
mixing, 108-109 

Increment number in memory, 56 
Indent lines, DO-LOOP, 86-87 
Index(es) 84-88 

as operand, 86 
nested DO-LOOP, 90-91 

Initializing array, 126 
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Insertion sort, 141-143 
Interpreter, 67 
Inventory with VLIST, 69-70 

K 

KEY, 162 

L 

LEAVE, 111-113 
terminates DO-LOOP, 91 

LEN, 166 
LIST, 76 
LOAD, 77 
Logical words, 206-209 
Loop count, 84-86 
+ LOOP, 87-90 

M 

MATCH, 186-189 
MAX, 34 
Maximum, 34 
Memory 

arranged in bytes, 53 
arithmetic operations on, 56 
display bytes, 55 

contents, 54-55 
increment number in, 56 
map, 53 
move block of data in, 56-58 
operations, 89-90 
words, fig-FORTH, 60-61 

group, 51-53 
Messages in definitions, 68-69 
MIN, 34 
Minimum, 34 
MINUS, 33 
MOD, 31 
Moore, Charles, H., 11 
Move 

block data in memory, 56-58 
item to top, 42-44 

Multiplication, 30 
unsigned, 30 

Multiply-then-divide, 31-33 
MYWORD, 79 

N 

Nested 
DO-LOOP, 90-91 

indexes, 90-91 
IF-ELSE-THEN, 106 

-THEN, 106 
New FORTH word, define, 63-67 
NOT, 108 
Number(s), 23-25 

bases, 153-154 
convert, 38 
displaying, 24 
in memory, increment, 56 
pushing onto stack, 24 
stored in memory, 24-25 

Numbering 
system, binary, 147-149 

hexadecimal, 149-151 

o 

OCTAL, 157 
OK, 70 
OR, 207-208 
OVER, 41 
Overlap, 58 

P 

PAD, 168 
PICK number, 41 
Positive to negative, 37-38 
Power, raise number to, 33 
Printouts, 69 
Program, making changes, 77 

R 

Reference word set, 16-17 
REJECTS, 121 
Renaming word, 72 
REPEAT, 102 
Required Word Set, 14 
Return stack, 92-94 
Reverse Polish notation, 19-20 
ROLL, 43 
ROT, 43 
ROTATE, 209-213 
RP, 96 

S 

Negate, 33-34 SAVE-BUFFERS, 76 
Negative to positive, 37-38 Scaling, 31 
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Screen, selecting, 75 
SHIFT, 209-213 
Signed 

data values, 151-153 
numbers, 152 

Sine of angle, 132-135 
Sorting arrays, 137-143 
SP @, 45 
SPACE, 163-164 
SQUARE, 70 

root with BEGIN-UNTIL, 103-104 
SORT, 103 
Stack(s), 17-19 

bounds of, 44-45 
display contents, 109-110 
last in, first out, 17 
manipulation, fig-FORTH, 47-48 
pushing numbers onto, 17-18 
values, displaying, 18-19 

Store, 53-54 
String(s) 

operations, 164-170 
temporary, 168 
transfer words, 164-168 
words, 183-189 

fig-FORTH, 195-196 
Substring, 189-191 

delete, 192 
Subtract 

double numbers, 29 
from stack, 29 

Subtraction, 29 
Super 

constants: tables, 130-136 
variables: arrays, 121-130 

SWAP, 43 

T 

Text 
block, 59-60 
files, sorting, 192-195 
preparation words, 77-79 

Twenty questions, 168-170 
Two’s complement, 152-153 

U 

U/MOD, 31 
Unsigned 

data values, 151-153 
numbers, 152 

UPDATE edited block buffers, 76 

V 

Variables, 120-121 
keep running totals, 121 
return address, 121 

VLIST, 16-17 

w 

WAIT-A 163 
Word(s), 13-14 

comparison, 99-102 
define new FORTH, 63-67 
delete, 70 
discover in dictionary, 71-72 
fig-FORTH arithmetic, 34-38 

memory, 60-61 
group, arithmetic, 25 
redefining, 70-72 
renaming, 72 
Set, Reference, 16-17 
text preparation, 77-79 

X 

Tables, 130-136 XOR, 208-209 



The Blacksburg Group 

According to Business Week magazine (Technology July 6, 1976) large scale integrated circuits 

or LSI "chips" are creating a second industrial revolution that will quickly involve us all. The 

speed of the developments in this area is breathtaking and it becomes more and more difficult to 

keep up with the rapid advances that are being made. It is also becoming difficult for newcomers 

to "get on board." 

It has been our objective, as The Blacksburg Group, to develop timely and effective educational 

materials that will permit students, engineers, scientists, technicians and olhers to quickly learn 

how to use new technologies and electronic techniques. We continue to do this through several 

means, textbooks, short courses, seminars and through the development of special electronic de¬ 

vices and training aids. 

Our group members make their home in Blacksburg, found in the Appalachian Mountains of 

southwestern Virginia. While we didn't actively start our group collaboration until the Spring 

of 1974, members of our group have been involved in digital electronics, minicomputers and 

microcomputers for some time. 

Some of our past experiences and on-going efforts include the following: 

-The design and development of what is considered to be the first popular hobbyist computer 

The Mark-B was featured in Radio-Electronics magazine in 1974. We have also designed severe1 

8080-based computers, including the MMD-1 system. Our most recent computer is on 8085-based 

computer for educational use, and for use in small controllers. 

—The Blacksburg Continuing Education Series™ covers subjects ranging from basic electronics 

through microcomputers, operational amplifiers, and active filters. Test experiments and examples 

have been provided in each book. We are strong believers in the use of detailed experiments and 

examples to reinforce basic concepts. This series originally started as our Bugbook series and many 

titles are now being translated into Chinese, Japanese, German and Italian. 

-We have pioneered the use of small, self-contained computers in hands-on courses for micro¬ 

computer users. Many of our designs have evolved into commercial products that are marketed 

by E&L Instruments and PACCOM, and are available from Group Technology, Ltd., Check, VA 

24072. 

-Our short courses and seminar programs have been presented throughout the world. Programs 

are offered by The Blacksburg Group, and by the Virginia Polytechnic Institute Extension Divi¬ 

sion. Each series of courses provides hands-on experience with real computers and electronic 

devices. Courses and seminars are provided on a regular basis, and are also provided for groups, 

companies and schools at a site of their choosing. We are strong believers in practical labora¬ 

tory exercises, so much time is spent working with electronic equipment, computers and circuits. 

Additional information may be obtained from Dr. Chris Titus, the Blacksburg Group, Inc. (703) 

951-9030 or from Dr. Linda LefFel, Virginia Tech Continuing Education Center (703) 961-5241. 

Our group members are Mr. David G. Larsen, who is on the faculty of the Department of Chem¬ 

istry at Virginia Tech, and Drs. Jon Titus and Chris Titus who work full-time with The Blacksburg 

Group, all of Blacksburg, VA. 


