'Y
S
=
.l
o
5
-
()
@)
oc
-
Z
L
2
oc
@)
o
(dp)
“,v.

Brl
<
™~
1
B
.
€=
> =

)
£
<
=
[~
-
2




o

e

'




USBORNE INTRODUCTION TO

MACHINE CODy
FOR BEGINMNERS

Lisa Watts and Mike Wharton

lllustrated by Naomi Reed and Graham Round
Designed by Graham Round and Lynne Norman
6502 consultants: A. P. Stephenson and Chris Oxlade



Contents

4 What is machine code?
6 Getting to know your computer
8 The computer’s memory
11 Hex numbers ‘
12 Peeking and poking
14 Inside the CPU
16 Giving the CPU instructions
18 Translating a program into hex
20 Finding free RAM
23 Loading and running a program
27 Adding bytes from memory
28 Working with big numbers
29 The carry flag
30 Big number programs
32 Displaying a message on the screen
35 Jumping and branching
38 Screen flash program
40 Going further
4] Decimal/hex conversion charts
42 Z80 mnemonics and hex codes
45 6502 mnemonics and hex codes
46 Machine code words
48 Index

First published 1983 by Usborne Publishing Ltd, 20 Garrick Street, London WC2E 9BJ, England.

1983 Usborne Publishing
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or tansmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
permission of the publisher.
The name Usborne and the device == are Trade Marks of Usborne Publishing Ltd.
Printed in Spain by Printer Industria Grafica, S. A. - Depésito Legal B. 33.755/1983



About this book

This book is a simple, step-by-step
guide to learning to programin
machine code. Machine code isthe
code in which the computer does allits
work and programs written in machine
code run much faster and take up less
memory space than programsin
BASIC. A machine code program,
though, is much more difficult to write
and less easy to understand thana
program in BASIC.

This book takes you in very easy
stages through the basic principles of
machine code. It shows you how to
write simple machine code programs,
for example, to add two numbers or
flash a message on the screen, and how
to load and run a machine code
program on your computer.

The book is specially written for
computers with a Z80 or 6502
microprocessor.* The microprocessor
is the chip which contains the
computer’s central processing unitand
computers with different
microprocessors understand different
machine code. All computers with the
same type of microprocessor, though,
use the same machine code.

Machine code is difficult and very
laborious, with lots of rules to obey and
small details to remember. Don't worry
if you find it very hard at first. Itseems
confusing as you cannot read and
understand a program in machine code
—it'sjust a string of letters and numbers.
Bugs are very difficult to spot, too, and
have disastrous results if you miss them.
When you are working in machine code
you have to be very careful and
methodical and check everything two
or three times.

Unless you are really dedicated there
is no point in writing long programsin
machine code - some things can be
done just as well in BASIC. For certain
tasks, though, such as speeding up the
action in games programs or creating -
fantastic screen effects, you need touse
machine code. This book shows you
how to make your programs more
exciting by using short machine code
subroutines in BASIC programs.

some conversion charts to help you
when you are writing machine code,
and a list of machine code wordsto
explain all the jargon. There are also
lots of puzzles and ideas for short
programs to write, with answers on
page 44.

*The Spectrum and ZX81 (Timex 2000 and 1000) use the Z80 microprocessor and the VIC 20, the BBC,
the Atari computers and the Oric use the 6502. The Commodore 64 uses the 6510 and understands

6502 machine code.



Whatis machine code?

Machine code is the code in which the
computer does all its work. When you give
a computer a program in BASIC, allthe
instructions and data are translated into
machine code inside the computer.

In machine code, each instructionand
piece of information is represented by a
binary number. Binary is a number system
which uses only two digits, 1 and 0. Youcan
write any number in binary using lsand
0s.*

Inside the computer, the binary numbers
are represented by pulses of electricity,
with a pulse for a 1 and no pulse fora 0. The
pulses and no-pulses are called “bits”, short
for binary digits.

The bits flow through the computer in
groups of eight and each group is called a
“byte”. Each byte of pulses and no-pulses
represents the binary number for one
instruction or piece of information in
machine code.

Eachtask the computer can carry out, such
as adding two numbers or clearing the
screen, involves a sequence of several
instructions in machine code. When you
give the computer a BASIC command, a
special program called the “interpreter”
translates your command into the machine
code instructions the computer

*You can find out more about binary on page 28.

understands.

The term machine code is also used to
refer to programs written in a form which is
much closer to the computer’s code than
BASIC is. Ina machine code program you
have to give the computer all the separate
instructions it needs to carry out a task such
as clearing the screen.



Programming in machine code

There are several different ways of writing machine code programs. You could write allthe
instructions in binary numbers, but this would be very tedious. Instead, you can use another
number system called hex, short for hexadecimal. Once you get used to it, hex ismuch
easier to work with than binary.

Machine code programs can also be written in a code called “assembly language”. In
assembly language each instruction to the computer is represented by a “mnemonic”
(pronounced nemonic) —a short word which sounds like the instruction it represents.

LD A isthe mnemonic

Assembly
for an instruction.

language

3Eisthe hex code foran
instruction.

Thisisa
programto
add 2+4.

This is a program for
computers with a Z80
microprocessor. You
can find out how the
program works later in
the book.

This is the same program in assembly
This is part of a machine code programin language. Each line contains the mnemonic
hex. The hex number system has sixteen for one instruction and is the equivalent of
digits and uses the symbols 0-9 and A-F to the hex number in the same line on the left.
represent the numbers 0to 15. (Youcanfind For example, the mnemonic LD A

out more about hex later in the book.) The (pronounced “load A”) means the same as
hex number atthe beginning of eachlineof  the hex number 3E. In both these programs,
the program is an instruction (e.g. 3E). Itis each line contains an instruction whichis
the hex equivalent of the binary code for the equivalent of a single instruction in the
that instruction. computer’'s own code.

Computer’s
own code.

IR =SS [ -
To give a computer a programinassembly  mnemonics of assembly language (they are
language you need a special program easier to remember than numbers), then
called an “assembler” which translates the translate them into hex before you give
mnemonics into the computer’s code. Some them to the computer. Some computers will
computers have a built-in assembler; with accept hex numbers; with others you have

others, you can buy an assembler on to give them a short program, called a “hex
cassette and load it into the computer’s loader”, which translates them for the
memory. Alternatively you can write a computer. There is a hex loader program
machine code program using the on page 24 which you can use to load the

machine code programs in this book.

G LT |
] @ )

5



Getting to know your computer

When you program a computer in
machine code you have to tell it exactly
what to do at each stage: where to find
and store data, how to print onthe
screenand so on. (When youare
working in BASIC, special programs
inside the computer take care of all this
for you.) In order to give the computer
the correct machine code instructions,
you need a good idea of what isgoing
on inside your computer. The pictures
on these two pages show the parts
inside a home computer, and what they
are for. You can find out more about
them on the next few pages.

What the chips do
This picture shows the work carried out by
the different chips inside the computer.

Messages flow between the chips in the form

of bytes, i.e. groups of eight pulse and no-
pulse signals representing data and
instructions.

The ROM chips

ROM stands for “read only memory”. The
machine code instructions which tell the
computer what to do are stored inthe ROM
chips. Itis called a read only memory
because the computer can only read the
information in ROM, it cannot store
new information there. On most home
computers, the interpreter (the
program which translates BASIC
into computer code) is in the ROM

Inside a computer

TONO\S\WY

Inside the keyboard of a microcomputer
there is a printed circuit board. This has
metal tracks printed on it, along which
electric currents can flow. Attached to
the printed circuit board there area
number of chips.

A

Bytes of computer code flow
between the chips along the tracks -
of the printed circuit board. There are three
separate systems of tracks for carrying byte:
for doing different jobs. Each system of

tracks is called a “bus”. s

memory”. This is ¢

the programs you give the "
computer are stored while the
computer is working on them. It is
called a random access memory
because the computer can find, or access,
any piece of information anywhere in the
memory. When you switch the computer off
the information stored in RAM is wiped out.



Enlarged view
of circuits
inside chip.

circuit board
The proper name for a chip isan instructions in binary code, flowing
“integrated circuit” and inside each chip through the circuits in the chips. There
there are microscopic electrical circuits. are different chips for carrying out
Allthe computer’s work is done by different tasks. The work done by the
streams of pulses representing different kinds of chips is shown in the
picture below.

Clock

This is a quartz crystal which pulses millions of
times a second and regulates the flow of pulses
inside the computer.

The microprocessor

The microprocessor chip holds the computer’s
central processing unit, or CPU. This is where all
the computer’s work is done. The CPU does
calculations, compares pieces of data, makes
decisions and also co-ordinates all the other
activities inside the computer. The information
telling the CPU what to do is in the ROM.

g




The computer’'s memory

The easiest way to think of the computer's memory is as lots of little boxes, eachof
which can hold one byte, 1.e. one instruction or piece of information inmachine
code. Each box in the memory is called a “location”, and each location hasa
number, called its "address”, so the computer can find any box in thememory.

Different areas of the memory are used for storing information for different tasks
and a chart giving the address where each area starts is called a "memorymap”.

When you are programming in machine code you have to tell the computer
where to find or store each instruction or piece of information. You do this by giving
it the address of a memory location. You even have to tell it where to storethe
machine code program itself, so you need to get to know the memory map ofyour
computer.

The memory map

The picture on the right shows the memory map of
a home computer. There should be a map for your
computer in your manual. The memory is
organized differently in different makes of
computer, so your map will look different from this
one.

The memory map may be drawn as a column
like this, or horizontally. The address at which each
of the different areas in the memory starts is given
alongside the map and it may be a decimal number
or a hex number, or both, as here. In this book hex
numbers are distinguished by a & sign
(ampersand) before the number. Your manual may
use a different symbol, e.g. $, %, or #.

Variable storage

User RAM (

The boundary
between user
RAM and
variable storage
moves up ordown
depending on
how much space is
needed for variables.

The highest address in user RAM
is called “/RAMTOP”, oronsome
computers, “HIMEM".

The memory mapincludes
both ROM and RAM. The
operating system and the
BASICinterpreterarein
ROM and the rest of the
areasonthe maparein
RAM.



Memory addresses

Inside the computer, memory addresses are
represented by two bytes of computer code, i.e. 16
pulse or no-pulse signals or “bits”. The largest
possible memory you can have ona
microcomputer which uses a Z80 or 6502
microprocessor is 64K (ROM and RAM combined).
This is because the biggest number you can make
with 16 binary digits is 65535, so this is the highest
possible address. This gives 65536 locations,
numbered from 0 to 65535. Each location holds one
byte, 1024 bytes make a kilobyte (K) and 65536
bytes equal 64K (65536 + 1024 = 64).

Onthe ZX81 (Timex
1000) the boundary
between the screen
memory and user
RAM changes

dependingonthe ||
size of the program {
in user RAM. '

2

essesssresesesesee "

User RAM
This is where the programs you type inare
‘ stored. The data for variables and arraysis
&2E00 11776\ stored at the top of user RAM.

If you add extra memory
to your computer, the
addresses of some of the
areas may change. There
should be information
aboutthisin your manual.



10

Inside the computer’s workspace

This picture gives a closer view of the area of the computer’s memory reserved for use by
the operating system. There may be a second detailed map of this area in your manual, ora
list of the various addresses and what they are used for. On some computers (e.g.
Sinclair/Timex), the locations used by the operating system are not in one group and are

distributed throughout the memory.

S

\)
3

g

\

\\\ §

More about stacks

The computer uses the stacks to store
temporary data in a particular way. The last
item to be stored must always be the first to
be retrieved. This is called LIFO storage:
lastin, first out.



Hex numbers

Inamachine code program, numbers and addresses are always written in hex.
Below you can find out how to convert decimal numbers to hex, and vice versa.

Decimal 0 |1 213 |4 |56 |7 [8.]910[11[12]13]114]|15

Hex (0155 O < 6 5 O - (- 0 ey e e 5 Y = ) e o | ] B
This chart shows the hex digits (0-9and digits, just as you do in the decimal system
A-F)and their decimal values. Tomake to write numbers over 9. The value of each

numbers over 15 (F) you use two (or more) digit depends on its position in the number.
Decimal ( 4CAis hex )i

for 1226.

1000s | 100s | 10s | 1s

1 2 2 6 :
Inthe decimal system the first digit onthe In a hex number the first digit on the right
right of a number shows how many lsthere also shows the number of 1s but the next
are, the second shows the number of 10s, digit shows the number of 16s, and the third
the third, the number of 100s (10%), etc. digit shows the number of 256s (162).

Canyouconvert
&A7todecimal and
decimal 513to hex?

(Answers page 44.)
R e

Decimal to hex
To convert a decimal number e.g. 1226, to 1226 = 266:=4.........cc0000000 4is4inhex
hex, first you divide by 256 to find howmany remainder 202

286s there are in the number. Then you i
divide the remainder by 16 to find the 202 ) B2 2 sramrwaiadis 12is & inhex
number of 16s and the remainder fromthis  remainder 10.................... 10is Ainhex
sum gives the number of 1s. Finally, convert - :

the answer to each sum to a hex digit.* 1226is4CAinhex

Converting hex addresses
Inahex address, e.g. 5C64, the two left-hand digits show which page (see opposite) the
location is on and the second pair of digits shows the position on the page.

To convert a hex address to decimal, first To convert a decimal address to hex you

convert each pair of digits to a decimal have to divide by 256 to find the memory

number, as shown above. Then multiplythe = page number. The remainder gives the

page number by 256 (there are 256 position on the page. Then you convert the
locations in a page) and add the numberfor  figuresto hex digits as described above.

the position on the page. 11

*See page 41 for how to do this on a calculator.



12

Peeking and poking

Two BASIC words, PEEK and POKE, *
enable you to look at the bytes stored in
the computer's memory locations and
change them. You use PEEK and POKE
with the decimal, or onsome
computers, hex, address of a memory
location. Remember, to give the
computer hex numbers you must type a
signsuchas &, # (called hash) or$
before the number. Check this in your
manual as it varies on different
computers and some computers will
accept only decimal numbers.

Using PEEK

8625 8626 8627

8620 k(862! i 8622 plbige23

POKE 8616, 50

86l5 8616 B
274 WA’
PEEK (8615)

You can peek into any location in your
computer’'s memory, but you can only poke
new bytes into RAM locations because the
bytes in ROM cannot be changed.

r

PRINT PEEK (12345)
456

PRINT PEEK(720)
240

PRINT PEEK (8643)
0

LET A=PEEK (1024)
PRINT A

R AL

‘i‘

30 NEXT J

10 FOR J=700 TO 725
20 FRINT PEEK(J)3","s

~

Yl
Pl
-

These are the
decimal equivalents
of bytes of

computer code.

Totell the computer to look in a memory
location you use PEEK (or your computer’s
command) with the address of that location.
To see the result on the screen, use PRINT
PEEK, or store the result in a variable using
LET and then print out the variable, as
shown above left.

Poking

Try writing a short program using a FOR/
NEXT loop, like the one in the centre above,
to print out the bytes from a series of
locations. Look at your computer’'s memory
map and experiment with addressesin
different parts of the memory.

This tellsthe
computerto put 60
in location 16763.

Use PRINT PEEK
to see the result.

The picture above shows you how touse
POKE. You can poke anywhere in RAM, but
if you poke new values into the area
reserved for use by the operating system
you may disrupt the workings of the
computer. You can restore it to normal by
switching off and on again. Try writinga

This putsa
number, N,
into

location A.

short program like the one above to poke
several numbers into a series of locations in
user RAM.

The numbers you poke must be between
0and 255, the highest number than can be
represented with eight binary digits (one
byte of computer code).

(2

— @ 2\

*Some computers use different commands, e.g. the BBC uses a ? mark. Check your manual.



What the numbers mean

When you tell the computer to print the
contents of a memory location on the
screen, the result is always a decimal
number from 0 to 255. This is because each
memory location can hold one byte, and the
highest value that can be represented with
eight binary digits is 255. There are only 256
(0to 255) possible different bytes of
computer code and each byte can have
several different meanings for the
computer.

For example, the binary number
00110000 (decimal 48) could be the code for
one of the instructions in the instruction set,
for aletter on the keyboard, or for part of
the address of another memory location
(each address consists of two bytes).

inyour
computer’s

Now find the screen memory for your
computer, then try poking numbers into
screen memory locations. You do not need
touse PRINT PEEK because bytes stored in
the screen memory are automatically
displayed on the screen. This time the
computer interprets the number as the
code for a character.*

Putan addressin
yourcomputer's
screenmemory

Try a short program like the one above to
print your computer’s character set. The
program uses ASCII codes, starting with 33,
the code for |, and ending with code 90.
Other numbers in the range 0-255 are for
special keys such as SPACE and DELETE,
for printing the alphabet in inverse or
flashing characters, and for graphics
characters.

' Typeintheaddress for
‘5 your computer’s
operating system.

Look in your manual to find the addressin
ROM of your computer’s operating system
and then try this program. The numbers
which appear on the screen are the decimal
equivalents of bytes of machine code from
one of the programs in the operating
system.

Thisisthe
ASCIl code
forZ.

(pronounced “askey”), to decide which
numbers represent which characters, but
some, such as the ZX81 (Timex 1000) use
different numbers. The VIC 20 has a special
set of numbers, called screen codes, for
characters to be displayed on the screen.
There should be a list of your computer’s
character codes in your manual.

HOUR MM MM NN NN MMM MMM NN AN NAM NN NN NNANAN
HANHUAKNKANKNKMNANNANNHNUNURNANNANX
PR M MMM N NN MM N MMM MMM MMM MMM MMM MNN NN
HURARMNMRAARRKKNAARRAMR A MM NNANARNX

X Location 1120.
First location in screen memory.

On most computers you can printa

character in a particular position on the

screen by working out the address of the

location for that position. For example, ifthe
screen memory starts at location 1024 and

the computer can print 32 charactersona

line, the address for the first position onthe

fourth line will be 1024+ (32 % 3) whichis

1120. (Address 1024 is counted as zero.) 13

*On the Spectrum (Timex 2000) the information for each position on the screen is stored in several
different memory locations and you cannot print characters by poking codes into the screen memory.



Inside the CPU

All the computer's work is done by
fetching bytes of instructions and data
from the memory, then carrying out the
Instructions in the CPU.

There are three main areas inside the
CPU: the registers where bytes of data
are held while they are processed; the
ALU, or arithmetic/logic unit where
bytes can be added, subtracted or
compared; and the control unit which
organizes all these activities.

The arrangement of the registers in
the Z80 and 6502 chips is different, as
shown in the pictures below.

The Z80registers

Fetch a byte
fromthe
memory
and putit
inthe

the sort of registers.

instructions

the CPU can

carry out.

These pictures show the sort of instructions
which the CPU can carry out. They areall
very simple. It can fetch bytes from the
memory and put them in the registers, move
bytes from one register to another, process
themin the ALU and store the results inthe
memory. Even the simplest task, such as

The main difference between the Z80 and the 6502 chips is that the Z80 has more registers.
This means that bytes can be stored temporarily in the CPU, whereas in the 6502 they haveto

be sent back to the memory.

A stands for “accumulator”. Fisthe “flags register”. It holdseight IXandIY are called

It is the most important bits but only six of them are used. “index registers”.
register in the CPU and Eachbit acts as a signal. For They can each hold
stores bytesontheirwayto example,the carryflagissettol 16 bits and they are
and from the arithmetic/ when an answer is greater than 255 used in certain
logic unit. It can only hold and will not fit in one byte and the instructions to work
one byte atatime. sign flag shows whether anumberis  outthe addressofa

positive or negative. byte in the memory.

B,C,D,E,Hand L are general SP stands for “stack PC is the “program counter”.

purpose registers where bytes pointer”. Itis a 16-bit Itis a 16-bit register and it

can be stored on their way to or register and stores the holds the address of the next

fromthe memory. Eachcanhold addressofthelastitemin byteto be fetched fromthe

only one byte but they can be the machine stack - the memory. The number inthe

grouped together in pairs, e.g. place where the CPU program counter increases
14 BC,DE or HL to hold two bytes. stores temporary data. by one each time an

instruction is carried out.



Transfera
byte fromone T

Jumpto registerto

instruction6. (. another.

) G - ] )
adding two numbers and displaying the
result on the screen, involves over a
hundred simple steps like these and the
CPU can carry out over half a million each
second.

For each operation the control unit
fetches an instruction byte from the ROM or

“Flipthe bits",|
thatis, make
allthe 1sinto

\ Osand all the
Osinto 1s.

bits one place
totheright. ¢

A / - \o . "._
RAM, loads a data byte into the registers
and then performs the operation specified
by the instruction. In machine code, you can
tell the CPU what to do with the bytes inthe
registers, but the ALU and control unit carry
out their work automatically and you cannot
tell them what todo.

The 6502 registers

The main registers in the 6502 are the same as those in the Z80, but some of them are called

by different names.

A is the “accumulator”
where bytes are stored on
their way to and from the
ALU. Itisthe same asthe
accumulator in the Z80 and

P stands for “processor
status register” and it has
the same function as the
flags register in the Z80. It
contains eight bits, seven of

can hold only one byte.

Xand Y are “index

which are used. Each bitis
setto 1 to record a certain
condition, such as whethera

registers”. They are used in
certain instructions to work

number is positive or
negative.

out the address of a byte of

data. They can also be used

asgeneral purpose

registers to hold bytes

temporarily. PCisthe

“program

Thisisthe counter” and it
ninth bit of worksinthe
the stack same way as the
pointer PCregisterin
(reglster S) thezgo.

Sisthe “stack pointer”. It stores the address of the last item onthe
stack —the special area in the RAM where the CPU stores data. Inthe
6502 the stack pointer is an eight-bit register. In order tostore
addresses a ninth bit kept permanently at 1 is wired up tothe S
register. This represents the page number of the address, so inthe
6502, the stack is always in page one of the memory. The numberin
the stack pointer gives the position on the page.

18



16

Giving the CPU instructions

A program in machine code consists
ofa list of instructions telling the CPU
exactly what to do with bytes in the
registers. You can use only the
instructions that the CPU
understands, so for computers with a
Z80 or Z80A microprocessor you
must use instructions from the Z80
Instruction set and for computers
with a 6502, 6502A or 6510
microprocessor, you must use 6502
instructions. There is a list of Z80and
6502 instructions at the back of this
book.

OPERAND

Most machine code instructions consist of
two parts: an “opcode” and an “operand”.
The opcode tells the CPU what to do and the
operand tells it where to find the datato
work on. (The word operand means “object
on which an operation is performed”.) Each
opcode is an instruction from the instruction
set.

Opcodes can be written as mnemonics —
short words which represent what they do—
or as the hex equivalents of the computer’s
binary code for each instruction. For
example, LD A on the Z80 and LDA onthe
6502 are the mnemonics for “load a byte into
the accumulator”. The same opcodes in hex
are 3E for the Z80 and A9 for the 6502.

Z80

Here are two machine code instructions in
mnemonics, one for the Z80 and one for the
6502. They both tell the computer to load the
number 05 hex into the accumulator (& isthe

*You can find out about assemblers on page 40.

Mnemonics are much easier to
understand then hex, but you cannot type
them into your computer unless you have an
assembler (a program which translates the
mnemonics into the computer’'s own
code).* Most people write machine code
programs in mnemonics and then translate
themto hex.

sign to indicate hex numbers). Numbers are
always written in hex in machine code. On
the 6502 a number is preceded by a #
(hash) sign to show that it is a pi€éce of data.



A simple program

Here are two programs, one for the Z80 and one for the 6502, which tell the CPU to add two
numbers. They are both written in mnemonics. Strictly speaking, a program in mnemonics
is called an assembly language program and one which uses hex codes is called machine
code. Over the page you can find out how to translate the programs to machine code, and
on the next few pages, how toload and run the version for your computer.

The Z80 and 6502 programs follow the same steps, although the actual instructionsare
different.* In the 6502, data on which calculations are to be carried out must alwaysbe
placed in the accumulator. In the Z80 it is placed in the accumulator, or for big numbers, in
register pair HL.

To add two numbers you load the first accumulator and store the result inthe
number into the accumulator. Thenyouadd  memory. The mnemonic opcodes for these
the second number to the one inthe instructions are given below.

" P Opcodes and
Z80 mnemonics Meaning } operands forthe | |48
Z80 are separated $K 8§
by commas.

Load A with a number. A stands for “accumulator”
LD A, number and LD is short for “load”.

ADD A, number Add to A (the accumulator), a number.

Load a certain address with the contents of A (the accumulator).
LD (address), A | Addresses are always written in brackets.

s

6502 mnemonics | Meaning

LDA number Load A with a number. A stands for “accumulator” and LD is short for
“load”.

=
i ADC is the mnemonic for the instruction “add with carry”. It tells the
[

ADC number computer to add a number to the accumulator and to set the carry flag in
the flags register if necessary. You can find out more about this on page 29.
Store A (i.e. the contents of the accumulator) at a certain address. ST is

STAaddress l short for “store” and A stands for “accumulator”.

280 adding Ihhri:epégg;%rgsei%s A, The # sign indicates

program ADD A, and thatthe operandisa

LD (address), A. piece of data.

LD A, &02 :

ADD A, 804 -\ " %)

LD (&7F57), A (

| ™ Addres

Now you can fill in the data and addresses. and 4 decimal), and storing the resultin
Inthese examples the programs are adding memory location 7F57 hex.
2 hex and 4 hex (which are the same as 2

17

*From now on, if you have a Z80 you can skip over the 6502 programs and if your computer uses 6502
instructions, ignore the Z80 programs.



Translating a program into hex

The only way to translate the mnemonics into hex codes is to look up each
mnemonic in a chart. There is a chart of mnemonics and hex codes at the back ofthis
book. You have to be careful, though, as there are several different hex codesfor
each instruction depending on whether the operand is a piece of data, an addressor
the name of a register. For example, here are some different versions of the
opcodes for loading the accumulator, and their hex codes.

Whenthe operand is a piece of data itis this book includes all the instructions

called “immediate addressing”. Whenitis covered in this book. If you want to write

the address where the data is stored itis more advanced programs you will need to
called “absolute addressing”. The list of geta complete list of Z80 or 6502 codes and
mnemonics and hex codes at the back of there are some suggested books on page 40.

Here are the hex codes forthe Z80and 6502  code and those in hex are called object
adding programs. Instructions in code.
mnemonics are sometimes called source

Now you can fill in the data and addresses.
This is quite straightforward — except for
the addresses. In machine code you haveto
reverse the order of the two pairs of digits
which make up an address. You can find out
18 more about this on the opposite page.

You havetoreverse
the two pairs of digits
in an address, like this.

You leave outthe &
and # signs in the hex
code version.



More about hex codes

Machine code programs are written in hex rather than decimal numbers because the
binary numbers used in the computer's own code translate more neatly to hexthan

For example, the highest address you can number that can be represented by one
have with sixteen binary digits is 65535 in byte (eight binary digits) is 255 decimal and
decimal and FFFF in hex and the highest FF hex.*

y Hex

Mnemonic ' - Mnemonic code Address

Most of the opcodes in the computer’s though, take up two bytes so they need two
instruction set are one byte long, so in hex pairs of hex digits.
eachopcode is two digits. Addresses,

| @@
-
High order
byc_:e A B Low order byte

The first pair f hex digits is called the high (one page = 256 memory locations).
order byte and it is the page number inthe Because of the way the CPU handles

memory on which the addressislocated addresses you must always give it the low
(see page 10). The second pair of digitsis order byte (position on page) first, followed
called the low order byte and it isthe by the high order byte (page number).

position of the memory location on the page

*You can find out how to convert binary numbers to decimal on page 28.



20

Finding free RAM

There are several things to do before you can load and run the adding programon
page 18. First you need to choose an area in the memory in which to storethe
program. When you type in a BASIC program, the BASIC interpreter automatically
stores your program in user RAM. When you give the computer a machine code
program, you bypass the interpreter so you have to tell the computer whereto
store the program.

You need to choose an area in the RAM where your machine code will not
interfere with any other information stored in the memory. For instance, youmust
not store machine code in the areas reserved for use by the operating system, such
as the systems variables or the stacks. If you do the system will probably crashas
your machine code will have replaced vital information which the computer needs
to organize all its work. You also have to be careful to keep your machine code
separate from any BASIC program you may give the computer at the same time. If
the computer crashes the only way to restore it is to switch it off and on againand
you will lose your program.

Each memory
location holds
» one byte.

.

It is quite easy to work out the length ofa Most machine code programs are quite
machine code program - you just count up short and to start with a hundred bytes of
the number of pairs of hex digits (eachpair = memory space will probably be plenty for
takes up one byte). For example, theadding your machine code programs.

program has seven bytes.

Finding free RAM

The normal place to store machine code
programs is at the top of user RAM, the
place where BASIC programsare
stored. You have to make sure, though,
that the machine code will not get mixed
up with any BASIC programs. To avoid
this you can lower the top of the user
RAM area. This makes a “no-man’s land”
above user RAM which the computer
will not use until you tell it to when you
load your machine code program.

The top of user RAM is called
RAMTOP, or HIMEM, or just top of
memory. You can find out how to lower
RAMTOP on the opposite page.




Lowering the top of user RAM

The computer keeps a record of the address of RAMTOP in the systems variables and you
can change RAMTOP by changing the address stored in the systems variables. The
instructions for doing this vary on different computers, but most follow the principles given
below. You should check how to change the top of RAM in your manual though, as your
computer may use different instructions, or may even have an easier way to make space

for machine code.

N

P I 5 L]
f SYSTEMS VARIABLES R/

" Yy I i

The address of RAMTOP takes up two
consecutive locations in the systems
variables, one for the page number of the "%
location and one for the position onthe
page. Look up the addresses of these
systems variables locations in your manual
(they may be listed as RAMTOP, HIMEM, or

A

You canuse PRINT PEEK (or your
computer’'s command) like this to peek into
the systems variables and print out the
address of RAMTOP. Fill in the addresses
of your systems variables.

CLEAR ramtop address — 100
HIMEM ramtop address — 100
s Oric

Most computers have their own special
command for changing the address of the
top of user RAM. For instance, for the
Spectrum (Timex 2000) the'command is
CLEAR and for the Oric it is HIMEM. These
commands are followed by the address of
the top of user RAM minus the number of
bytes of memory you wish to reserve for

D ! A 4] )
| - / ;1) % 4
PR . i ‘
D i ’ |
: i ! [ J
- o~ o L =t

Position
onthe

just top of user RAM). The computer stores
the two bytes of the addressinreverse
order —first the position on the page, then
the page number, so the first location inthe
systems variables holds the position
number and the second, the page.

This command automatically converts the
two bytes of the RAMTOP addressintoa
decimal address by multiplying the page
number by 256, then adding the position on
the page.

machine code as shown above left. Check
your computer’'s command in your manual.
These commands lower the top of user
RAM by 100 locations and so reserve an
area of 99 bytes for machine code starting at
the address after RAMTOP. You can
change the figure 100 to reserve more space.
21

*See over the page for how to lower the top of RAM on the VIC 20, and where to store machine code

onthe ZX81 (Timex 1000).



22

VIC 20 tip

The VIC 20 has no special command for
changing the address stored inthe
systems variables. Here are the
instructions for lowering the address of
the top of user RAM on the VIC.

YSTEMS K
VARIABLES |

\ﬁﬂ '
L R R )

The address is held in systems variables
55 and 56. Remember, the second
location holds the page number.
[F%:Kﬁ 56, PEEK (56) -1 J
To lower the top of user RAM by 256
locations, i.e. one page, use the direct
command shown above. This makes the
computer peek into location 56 (the one
which holds the page number). It
subtracts 1 from the value held thereand
then pokes the new value back into
location 56. In other words, it reduces the
page number part of the address by 1. To
see the new address of the top of user
RAM type this command:
PRINT PEEK(55)+ PEEK(56)*256.

ZX81tip

Onthe ZX81 the best place to store
machine code programs is at the
beginning of user RAM. To do this you
type a REM statement as the first line of
the hex loader program given on page
24 and fill it with as many digits asthere
are bytes in your machine code
program.

Each of the digits in the REM statement
takes up one location in the memory.
Now you can poke your bytes of
machine code into the locations
reserved by the digits in the REM

statement.

The first byte
of machine
code will be
storedin
location 16514.

User RAM
starts at
location

Todo thxs you need to know the address
where the first digit is stored. User RAM
starts at location 16509 and the computer
needs two bytes to hold the REM line
number, one for REM, one for NEWLINE
and one to record the length of the line,

sothe first digit is in location 16514.

addresses of these areas inthe

~ storing machine code. Youshouldleak

Other places to store

machine code

There are a few other placesinthe
memory where you can store machine
code, if you are not using them. For
instance, if you are not planning on
saving your program, you can store it in
the cassette buffer, or if you are not

creating any user-defined graphics,you

could store it in the area set aside fortlus
Look in your manual to find the

Your manual may also suggest suita
places in your computer’s memory f

out.too,forupsinw‘ ooks.

Cassette

User defined buffer

graphics area.




Loading and running a program

The next few pages show you how to load and run the adding program on page 18.
To give the computer a machine code program you have to poke each byte intothe
area of memory that you have chosen for storing machine code (e.g. above
RAMTOP). On most computers you can only poke decimal numbers so you usea
short BASIC program called a "hex loader" to do this for you. The hexloader
converts each byte of machine code to a decimal number, then pokes it into the
memory. There isa hex loader program over the page. First, though, youneedto
change the address for the answer to the adding program, to an addresssuitable
for your computer. There is also one more instruction (see below) you must add to
the program.

Choosing an address for the answer

Data produced by a machine code they will not get mixed up with the program
program, such as the answer to the sumin itself. The best place is right at the

the adding program, is called “data bytes”. beginning of the area you have reserved for
It is important to store data bytes where machine code, in front of the program.

For example, if you have lowered thetopof  store the data byte and the program would
user RAM to, say, location 16000, the first start in location 16002. You will need to
address of the area for machine code will convert the address for the data byte to hex

belocation 16001. This is where you would SO you can insert it in the program.

Address
16001 is
3E81in hex.

To convert the addressto hexyoudivideby  To convert these to hex you divide by 16

256. The answer is the decimal page and then convert the answers and
number and the remainder is the position remainders to hex digits as shown above.
onthe page (see page 11).

The return instruction

Z80 mnemonics Hexcodes |
LD A, &02 i 3E, 02
ADD A, &04 " C6,04

A

LD (&7F57), A-ug ' _t L R9.677F
D

Atthe end of every machine code program itleft off. Without this command, the

you must always have the instruction RET computer would carry on attempting to

(for the Z80) or RTS (for the 6502). This follow an instruction for every byte it found
makes the computer stop running the in the memory and the system would soon
machine code program and returntowhere crash.* 23

*There is more about the return instruction on page 35.



mnnnnnggnna
57

| 65] 66] 67] 68] 69] 70]

“——— minus 55

Asci a5 |49 [50 1] 52 ] 53] 54

minus 48

pecimall 01 |2 3[4 |5]6]7]8]o9]10/11]12]13/14] 1588
. : Decimal SIS \D
L] S e T eae Z‘Z ) olueo! S ?:;"

o5
e 3E is 62. 3.1




Using the loader

Now you can use the hex loader to try out the machine code adding program. This is nota
very exciting program, but it is simple and it shows you how machine code works. Typethe
hex loader into your computer. At line 160, replace the sample data with the hex codes for
the adding program, as shown below.

Data for the hex loader

YENE T
Replace Ib and hb with the two
bytes of the address forthe

answer.

END signal
to computer.

These are the hex codes for the adding answer will be stored in your computer.
program. You need to replace the letters b Remember to put the bytes inreverse

(low order byte) and hb (high order byte), order, i.e. low order byte (position on page)
with the two bytes of the address where the followed by high order byte (page number).

Running the hex loader

Now type RUN to run the hex loader you are storing the answer. Type this
program. When it asks you for theaddress, address as adecimal number as it willbe
type in the first location after the one where  used with the POKE command.

Running the machine code program

i 1L
= N N

These are some of the
commands used on
different computers.

The command to tell the computer to start first byte of the program is stored. Check
running a machine code programvarieson  this command in your manual. Whenthe
different computers. Some use CALL, computer receives this command it goes to
othersuse PRINT USR or SYS with the the address and starts carrying out the '
decimal address of the location where the machine code instructions. 25



Seeing theresult

‘  FRINT PEEK(16001) PRINT PEEK (16001)

g -_‘,_7 -;:. i " ».lf : l,. J L) . .44&' 1,‘
The computer carries out the machine code have touse PRINT PEEK with the address of
instructions and stores the answer inthe the answer. The result will be the answerin

location you told it to. To see the result you decimal.

Programs to write
You now know enough machine code to write some simple programs. Thereisa

checklist at the bottom of the page to help you remember all the things you have todo
when you write a machine code program. Answers page 44.

1. Try writing a program to add 25 and 73
(decimal) and store the result inthe

The adding program will only add

TICIROLY. @i numberswhich total less than 255.
2. See if you can write a program toadd Y2\ Onpage 28 you can find out howto
64 and 12 and 14 (decimal) and store the = add larger numbers.

result in the memory. -V

Machine code checklist

1. Write your program in assembly
language and convert any data to hex.

2. Look up the hex code for each of the
mnemonics (there is a list of the
mnemonics and hex codes at the back of

6. Fill in the addresses in the program —
remember to put the two bytes inreverse
order. (See pages 18-19.)

\r

Before running the hex
checkthe hex codes in the datali
very carefully.

Don'tforgetto put END afteryour
listof hexcodesinthe hexloader. f_'

1. Type inthe hex loader (you could save
this program on tape) and fill in the hex
codesinline 160 followed by the END
signal. (See page 24.)

3. Add the return instruction to the end of
the program. (See page 23.)

4, Count up the number of bytesand
reserve your free RAM area. (See pages
20-22.)

8. Run the hex loader and input the
decimal address of the first location
where you wish to store the machine
code. (See page 25.)

9. Run the machine code program using
your computer’'s command with the
address (in decimal) of the first location
where the machine code is stored. (See
page 25.)

Make a note of the addresses of
data bytes and of the address
where you have stored the
program. :

If you change the datain the hex
loaderyou have to runthe
program again to poke the new
bytes into the memory.

5. Work out what memory locations you
need for data bytes and convert the
26 addressesto hex. (See page 23.)



Adding bytes from memory

In the previous program the data was included in the program itself. Thisiscalled
immediate addressing. Sometimes, though, youmay want to tell the computer to
do something with data stored in its memory. In this case, the operand part ofan
Instruction will be an address telling the computer where to find the data. Thisis

called absolute (or direct, or extended) addressing.
Immediate Absolute
addressing addressing
2 N

74

-

These are just two of the several different modes”. There is a different hex code for
ways in which you can tell the computer eachinstruction depending onthe
where to find the data to work on. The addressing mode you are using.

different ways are called “addressing

Program to add numbers from the memory

Here is a programto add two numbers stored in the memory. Compare the hex codes for
the instructions in this program, which uses absolute addressing, with those for the
previous adding program which used immediate addressing.

Z80 program
Mnemonics Hex codes Meaning
LD A, (address1) 3A, address 1 Put the number in address 1 into the accumulator.
LD B,A 47 Put the number in the accumulator into register B.
LD A, (address2) 3A, address 2 Put the number in address 2 into the accumulator.
ADD A,B 80 Add the number in register B to the accumulator.
LD (address 3), A 32,address 3 Store the contents of the accumulator in address 3.
RET C9 Return
To add two numbers from memory you straight from the memory, though, so you
have to load them into the registers first. For  have to put the first number into A and then
this you can use the accumulator (A) and transfer it to B.

register B. You cannot load register B

Running the program

To run this program, follow the steps given in the checklist on the opposite page. First,

though, you will need to poke into the memory the two numbers to be added. Youshould

choose memory locations at the beginning of the area you have cleared for machine code, to
keep these data bytes separate from the instructions. Then convert the addresses to hexand
insert them in the program. You need a third address for the answer. To see the result, type
PRINT PEEK(address 3). 27



Working with big numbers

The programs on the previous few pages only work with numbers which add upto
255 or less. This is the highest number that you can represent with the eight bitsin
one register or memory location. To work with larger numbers you need to knowa
little more about the binary number system, and how to use the carry flag. Overthe
page there 1s a machine code program to add larger numbers.

Binary numbers

The binary number system works like hex and decimal numbers except that there are only
two digits, 0 and 1. To make numbers bigger than 1 you use several digits and the value of
each digit depends on its position in the number.

11111111 binary

X128 64 X320 X116 x 8 x4 X 2 %11

1280 =760 32 ENI6, = 8 - §REERd o = IHG

Inabinary number, eachdigithastwice  the third, the number of fours; the fourth the
the value of the digit onitsright. Thefirst number of eights and so on, as shown above.
digit (the one on the right) shows how To convert a binary number to decimal you
many ones there are inthe number. The  multiply each digit by the value of its position
second digit shows the number of twos; inthe number and add up the answers.

Canyou convertthese to
decimal? (Answer page

=

e

X128 x64 x32 x16 x8 x4 x2 x1 X128 x64 x32 x16 x8 x4 x2 x1

0+ 0+32+ 0+8+4+2+0 128+ 0+0+0+0+4+2+1
=46 =135

Here are some more examples which show how you
convert binary numbers to decimal.

Giving the computer big numbers

Inside the computer, numbers over 255 are stored in two bytes, called the “high order byte”
and the “low order byte”, just like addresses. The high order byte shows how many 256s
there are in the number and the low order byte is the remainder. As with addresses, the
computer always deals with the low order byte before the high order byte and you haveto

store them in that order in the memory.
[V iouabedome ] Hu

/ Number over 255

12420 + 256 = 48 remainder 132 ‘
|  Highorderbyte U
oo B8

To give the computer a number over 255 If you want to use the number asdataina
you have to work out the value for each machine code program you have to convert
byte. To do this you divide the number by each byte to hex. To do this, divide each
256. The answer is the decimal value of the byte by 16, then convert the answersand
high order byte. The remainder is the low remainders to hex digits as described on
order byte. page 11.

— T e —{ What are the decimal high orderand
28 l 1307; 21214; 759; 1023. low order bytes for these numbers?
And what are they in hex? (Answers
on page 44.)




The carry flag

The carry flag is a single bit in the flags
register (also called the processor
status register), which isused to
indicate when the answer to a sumis
greater than 255 and will not fit into one
byte (eight bits). Whenever this
happens the computer automatically

You can think of the carry flag as a ninth b1t

putsa 1 inthe carry flag. This iS Ca_lled indicating that a binary 1 has been carried
setting the carry flagand making it O1s over from column eight of a number. For
called clearingit. example, look at the sum 164 + 240

(10100100+ 11110000 in binary), below.

To add binary numbers you carry 1
each time a column totals more than
1justasyoudoin decimal addition
when a column totals more than 9.

The answer to tlus sumis 404 which takes the computer it would be represented by
up nine bits in binary. The ninth bitshows the bit in the carry flag.
how many 256s there are in the number. In

Carrying inthe Z80

The Z80 has two different adding
instructions: ADD and ADC. ADD tellsthe
computer to add two numbers but to ignore
any carry over from previous calculations.
If the calculation results in a carry over, the \
computer will set the carry flag and ifthere ADC stands for “add with carry” and it

is no carry it will make the carry flag 0. tells the computer to add two numbers plus
the carry flag, and to set or clear the carry
flag depending on the result. If youare
doing a series of calculations it'is best touse
the ADD instruction for the first sum to make
sure you do not include a carry left over
from a previous operation, and then touse
ADC in case there was a carry from the first
calculation.

A, Youcansee howthe

( carryflagworksin
the program over
the page.

The 6502 has only one adding instruction, itis important to clear the carry flag using
ADC, so it always includes the contents of the instruction CLC (clear carry flag) before
the carry flag in calculations. Because of this  you do any additions. 29



30 youusetheregistersinpairsyouneedonly registerinthe pair.

Big number programs

Before you can run the programs on these two pages you need to work out the high
and low byte for each of the numbers you want to add and poke them into the

Q
memory. For example, say you want to add 307 and 764. High e B

_ _ High |
First number: 307 order

307 + 256 = 1 remainder 51 byte

Second number: 764

764 + 256 = 2 remainder 252
Loworder Highorder

Next you need to poke these bytes into bytes for the first number are stored in

memory locations at the beginning ofthe locations W and W1 and the bytes for the

area you have reserved for machine code. second number are in locations X and X1.

For each number, the low order byte must Youneed three locations, Y, Y1 and Z forthe

be in the first location, followed by the high answer (one for the low order byte, one for

order byte. In the picture above, the two the high order byte and one for a possible
carry).

280 big number program
Adding the two numbers on the Z80 is quite easy as you can use the registers in pairs, with
each pair holding the two bytes for one number. You can use the H and L registers asone
pair and the B and C registers as another. When they are used like this they are referredto
as HL and BC. When you are not using the accumulator you use the HL registers foradding.
Here are the mnemonics and hex codes for the program. It may help you to look atthe
picture at the top of the page when you study this program.

Mnemonics Hex codes Meaning

LD HL,(addressW) | 2A, address W Puts byte from address W (low order byte of
first number) into register L and byte from
address W1 (high order byte, first number) into
register H.

LD BC,(addressX) | ED4B,address X Puts byte from address X (low order byte,
) | second number) into register C and byte from
\_ This opcodeis | addressX1 (highorder byte, second number)
twobyteslong. | intoregisterB.

ADD HL, Adds contents of HL and BC and leaves result in
i @ HL. It does not add in the carry flag but it does set
the carry flag if necessary.
Stores low order byte of answer in address
LD (address Y), HL 22,address Y Y and high order byte in address Y1.
LD A, &0 3E,0 W : ;
; % See opposite page for how the See opposite for
ADC A, &0 CE,0 computer checks the carry flag. } howtodisplay
LD (address Z), A 32 address Z the result of
RET C9 Retun. fiRipbrogran,
To run the program you need tofill inthe specify one address for each pair. The
hexaddresses for W, X, Y and Z. (Don't computer automatically puts the byte from

forget to reverse the pairs of digits.) When the next consecutive address into the other



Checking the carry flag

Add with

LEC kL 1 ed Eie |

Lg. HODNANNEYN | ' N
Lines 5-7 of the Z80 program are for accumulator (5th line), then add 0, using the
checking the carry flag. Youcannotloadthe = add with carry instruction. If the carry flag
contents of the carry flag straight intoa was set by the previous calculation the
register, or into the memory. The only way accumulator will now contain 1 (fromthe
to see if it has been set is to do another carry flag) and this is stored in address Z
addition. To do this you put 0 into the (7thline).
6502 big number program

Here is the program for adding numbers greater than 255 on the 6502. Before you run ityou
need to work out the high order and low order bytes for the two numbers and pokethem
into the memory as described on the opposite page.

Rl —_
First the program Then it puts the low order byte of thefirst Ifthe resultis greater
clears the carry flag number into the accumulatorandadds  than 255itsetsthe
in case it was set by with carry the low order byte of the carry flag.

apreviousoperation. second number (2nd and 3rd lines).

Lines 8-10 checkto

high order bytes and the carry (if there was one) fromthe seeif the carry flag

previous sum. It stores the result in location Y1 (7thline). was set using the same
. method as shown at

Seeing theresult the top of the page.

The result is stored as three bytes. The low
order byte (location Y) shows the number of
units. The high order byte (location Y1) v — v
shows the number of 256s. Thistime thecarry | ( Seeifyou canadaptthe program

; I on page 27 so that it can cope with
(loc;tllon Z;)u.«;howsﬂt‘hg numbgr of6§'>5365. T(t)h ~ [ results greaterthan 255. Hint: you
see the result use the instruction shown onthe need to add lines to check the carry:

right. (Replace Y, Y1 and Z with your L flag. (Answer page 44,
computer'saddresses.) .




32

NAEE S e

Displaying a message on the screen

The next program shows you how to use machine code to display a message onthe
screen. The program for the Z80 is on the opposite page and the one for the 6502 ison
page 34. The two programs follow the same basic principles, although the methodis
slightly different for the different microprocessors. *

How the program works
Message pe r

First you poke the character code for each ofthe message you poke in the code 255 asa
letter of your message into locations at the signal to tell the computer this is the end of

beginning of your free RAM area. Each the message.
letter takes up one byte. At the end
Arethey
>
— RAN\ TR _ - SCREE B
L QQQ 76 \—1¥
Q - Py 255
A\
S\ e N

= pedn

. ";‘ LR T ,.,w‘-'.':-‘—-""-"r:-":‘:'q':-.::.'.
The program loads each byte S P T S
of the message into the accumulator displayed on the screen. Thenthe
and compares it with 255. If the byte of computer jumps back to the beginning of
message does not equal 255, it stores it in the program to find the next byte of the
the screen memory and it is automatically message in the memory.

Comparing things

Youuse the opcode CPonthe Z80and CMP  resultis 0, the two bytes are equal and it sets
on the 6502 to tell the computer to compare the zero flagin the flags register to 1. If they
a byte with the one in the accumulator. The are not equal the zero flagis 0. You canthen

computer compares them by subtracting tell the computer to go to another part ofthe
one fromthe other. (Thisisjustatest,infact, program, or carry on with the next instruction
the two bytes remain unchanged.) If the depending on whether the zero flagis 1 or 0.

*On the Spectrum (Timex 2000) you will not get a legible message on the screen because of the waythe
screen memory is organized.



Z80 message program

Here are the mnemonics and hex codes for the Z80. Before you run the program, poke your
message into free RAM. Then fill in the addresses in lines 1 and 2 of the program. The last
instruction of the program tells the computer to jump back to the third instruction.

You need to insert the address where the third instruction will be stored in your computer,

into the last line of the program.

Mnemonics Hex codes N !
This is immediate
LD HL, screenaddress 21, screen address addressing - the operand is
LD DE, messageaddress | 11, message address the data to be loaded into
41A the registers.

[ CP&FF FE.FF

RET 'Z C8

| LD (HL),A 17 Inindirect addressing the

INC, DE 13 operand is written in

INC, HL 23 brackets.

JP, address of 3rd \ C3,address of 3rd

instruction instruction

In this program, register pairs HL. and DE are used as pointers to the addresses wherethe
computer should store or fetch data. This is called “indirect addressing”. The instructionsin
the third and sixth lines use indirect addressing.

In the first two lines, the computer puts the screen address (the address where data isto
be stored) into register pair HL and the message address (the address from which datais

fetched), into register pair DE.

Address of -
first byte of message.

Y E > -
ero
A fla
1
- . C
B /\

LD A, (DE) tells the computer to read the
address in DE and then fetch the byte from
that address and put it in the accumulator.
This is indirect addressing. Then it
compares the byte in the accumulator with

SCREEN

LD (HL),A also uses indirect addressing. It
tells the computer to read the address in HL
and then store the contents of the
accumulator (the message byte) at the
location with that address. INC isthe
mnemonic for “increment” and means

&FF (the hex for 255). RET Z tells the
computer to return to BASIC if the zero flag
is 1 (i.e. if the byte equals 255). If the zero
flagis 0, it carries on with the next
instruction.

increase by one. In the seventh and eighth
lines the computer adds one tothe
addresses held in DE and HL so that when it
jumps back to the instruction in the third
line, it fetches the message byte fromthe

next memory location. 33



6502 message program

Here are the mnemonics and hex codes for the 6502. Before you run the program youneed
to poke the character codes for your message into free RAM, followed by 255, the signal for
the end of the message. Then put the address, in hex, of the first location where the
message is stored, in the second line of the program. Put an address in your computer’s
screen memory in the fifth line.

You also need to fill in the seventh line with the address where the second instructionin
the program will be stored in your computer. This makes the computer jump backto

repeat the program.
= Inthe fourth li f
Mnemonics Hex codes tﬂe hee)? g’ode;’;ﬁ;’
LDX #&00 A200 = Ny figure07tells the
LDA message address, X #BD message address computer how
CMP #&FF CO9FF . many locations to
BEQ to RTS instruction - F007 J;mpto reach the
STA screen address, X 9D screen address TSinstruction.
INX E8
JMP address of 2nd instruction| N4C address of 2nd instruction
RTS »>60
This program uses another addressing Y registers are added to the operand to give
mode, called “indexed addressing”. In the address where the data is stored. The
indexed addressing, the contents ofthe Xor second and fifth lines use indexed addressing.

: RAM
e ||| - =] =]

Inthe first line, the computer puts O intothe  givenin the instruction. The result gives it
X register. The second instruction uses the address of the data to be loaded into the
indexed addressing so the computeradds  accumulator (a byte of message).

the contents of the X register to the address

— Seven bytes

7 ; | S| S | (i | S | G | F | G =
) ’— I | -‘
LEEERER
) J il el . .. A A W E R

CMP in the third line makes the computer flagis 1). Inthe hex codesit is followed by a
compare the byte in the accumulator with number telling the computer how many
&FF (hex for 255), the signal for the end of locations to jump. We want the computer to
the message. If they are equal it sets the branchto RTS if the message byte equals
zero flag to 1. The next instruction, BEQ, 255 and there are seven bytes betweenthe
stands for “branchif equal” (i.e. if the zero branch instruction and RTS.

(TSTREEN MEMORY / Q0 5

[ XA

[6] +\
Next, in the fifth line, the programuses the X register. Then it jumps back tothe
indexed addressing to store the byte inthe second instruction. This time X is 1, soit
accumulator (the message byte) atthe loads the next byte of the message into the
address given in the instruction plus X. accumulator and stores it at the next screen

INX stands for “increment X” and it location.
34 makesthe computer add 1to the contents of



Jumping and branching

Making the computer go to an instruction in another part of the program iscalled
branching. There are three different ways of branching: jumps, subroutinesand
conditional branches. In a conditional branch the computer carries out a testand
then branches, or goes on with the next instruction, depending on the result ofthe
test. You can find out more about conditional branches over the page. Jumps justtell
the computer to go to a certain address.

The program counter

The program counter is a special 16-bit register which holds the address of the next
instruction the computer is to carry out. The computer reads the number in the program
counter and then goes to the location with that address to fetch its next instruction. Thenthe

When you tell the computer to jump or Jump

branchto a certain address, thataddressis  sequence from that address. The opcodes
putin the program counter and the for a jump on the Z80 and 6502 are shown in

computer then carries out the instructionsin  the picture above.

Subroutines

The instruction “CALL address” on the Z80 and “JSR address” (jump to subroutine) onthe
6502, tell the computer to go to a subroutine. This is just like in BASIC and at the end ofthe
subroutine you need the return instruction (RET on the Z80 and RTS on the 6502).

When you tell the computertogotoa instruction after CALL or JSR) are stored or
subroutine, the address of the subroutineis  “pushed” on the stack. The stack is a special
putinthe program counter. The contentsof  part of RAM set aside for the computer’s use
the program counter (the address of the (see page 10).

When the computer reachesthe RTSor RET  This is the address of the instruction after
instruction at the end of the subroutine, it the one which sent it to the subroutine. This
retrieves, or “pops”, the last item off the is also what happens when you tell the
stack and puts it in the program counter. computer to run a machine code program.

35



36

Conditional branches

In a conditional branch the computer tests one of the bits in the flags register and then,
depending on the result, either branches or carries on with the next instruction. Here arethe
bits in the flag register which you can test in conditional branches.

Q

S NorS ,;9

]

o0

Z Thisisthe zero
flaganditissetto 1

of ones in a byte and is used for checking purposes.

iftwo pieces of data
are equal.

NL NI
Nor S Thisisthesign =V or P/V This s called the overflow bitonthe 6502. C Thisis the carry
bit.ItisreferredtoasN  Onthe Z80 it has two functions and is called the flag.Itissetto 1
onthe6502and Sonthe parity/overflow. Asanoverflow bititissetto 1 when whentheanswerto
Z80.1tis setto 1 when the result of a calculation in two's complement a sum will not fitin
the result ofa notation (see opposite) results ina carry overtothe  one byte.
calculationis negative  signbit.
and 0 for positive Asa parity bititis setto 1 if there is an odd number
results.

Various instructions in addition to the
compare instruction cause these flags to be
automatically set or cleared. For example,

on the 6502 the instruction DEC
(decrement) affects the sign and zero
flags.*

Conditional branch opcodes
Here are the conditional branch instructions for testing each bit.
Z80 6502
Jumpif. .. Branchif. ..
| O e thereisacarry (C = 1). BCS Vs
JRNC e nocarry (C=0) B e e i
A ek equal(Z=1) BECL:... .. s
SRINT not equal (Z = 0) BINE ...
MEM oo minus (S = 1) B L
PP earseenss plus (S = 0) BPL e
JPPO parity odd (P/V = 1) BYE icrvesrens
JBPE o parity even (P/V = 0) BVC .5 by
0°
00
JP C address 280
JRNC &05 Jump 5locations if
there is no carry.

280

Jump to a certain 6502 - :

addressifthereisa Branch 5locations if

carry. thereisa carry.

After the “JP test” instruction on the Z80 you
give the computer the address of the
instruction you want it to jump to. Onthe
6502 you give the computer a number which
tells it how many locations it has to jump
forwards or backwards to find the
instruction. This is called “relative

“displacement”, or “offset”.

The Z80 has an additional conditional
branch instruction, “JR test”, which you use
with a displacement rather than anaddress.
JR stands for “jump relative” and you can only
test the zero flag and the carry flag withJR.

* A complete list of your microprocessor's instruction set will tell you which instructions affect which

flags.



(

(

Working out the displacement

When you give the computer a displacement

computer works out the address of the instruction it is to jump to by adding or subtracting
the displacement from the program counter. To work out the displacement, count the
number of bytes up to and including the instruction you want to jump to. Start atthe
instruction after the conditional branch and count that as 0 (because the program counter
will already point to that instruction). For example, here are two short 6502 programs
which show how you work out the displacement. (The method is the same for the Z80.

Rememberto count
two bytes for an address.

number in a conditional branch, the

2=
LDA address
CMP #&FF
BNEtoRTS
STA address
RTS LDA CMRAI FF Y |BNE O3 ¥ STAY| (b

To make the computer jump to the RTS
instruction in the example above, the
displacementis 3.

In the example below, the displacement
to make the computer jump back tothe
ADC instructionis —6.

LDA #&00
ADC #%01
CMP #&FF :
BNE to ADC Count this

RTS —— Jreton| [ pafll oo Y| ADC

Ol W CMPY| FF \_BNE =6 RTS

Forwards and backwards jumps

For forwards jumps you just translate the displacement into a hex number and insert it inthe
program. For backwards jumps, though, the displacement is a negative number and thereis
no way of indicating negative numbers in eight bit binary. Instead, you use a different system

of notation called “two’s complement”. In two’

s complement, the left-hand bitisused asa

sign bit. If this bit is 1 the number is negative. If it is 0 it is a positive number.

Two’'s complement

1. To work out the two’s complement of a
number, say 6 (the displacement for the
program above), first write down the
number in binary.

2. Thenyouchange allthe Osto 1 and the 1s
to 0. Thisis called “flipping the bits” or
“complementing” a number. The resultis
called the “one’s

complement”.

3. Nextadd 1. The This isthe two’s
result is the two’s complement of 6.
complement of the

number.

4. Now you need to convert this to hex to %4 S B R

insert it in the program. The easiest way to
dothis is to divide the number down the

middle and work out the decimal and then
the hex value of each group of four digits.

128s 64s 32s 16s 8s 4s 2s 1s
1 = 98i=10" "0 -0 0.0 "L 1S0

R P 15 (ST

1and 1 make
Ocarry 1.

R S5 T 00 18
=decimal 15 =decimal 10
= hexF =hex A

—

So the hex representation of the two'’s
complement of 6 is FA and for a backwards
jump you insert this number in the program.
Intwo’s complement, the highest number

backwards displacement you can have.
The biggest forwards displacement is 127,
the highest number you can make with the
eighth binary digit set to 0 to indicate a

ositive number.
F 37

anyouwork outthe hex forthe two’s )

i &
complement of 12, 18 and 9? (Answer page 48)




38

Screen flash program

On these two pages there is a program which swaps two blocks of display onthe
screen to make a flashing effect. It shows how simple animation works. The
program for the Z80 is given below and the one for the 6502 is on the opposite page.
At the end there are guidelines for running the program for both microprocessors.

Z80 screen flash

Put very simply, the program swaps the two blocks of the diplay by loading a byte from
each block into the registers, then storing the byte from block b in the screen address for
block a and vice versa.

R L e e s Block a

neoa0oun 2 | (R —
N

00000000000000000000000000000000
00000000000000000000000000000000 Blockb

The program uses indirect addressing. The  the program repeats, these are the

screen addresses for the first byte of each addresses of the next two bytesineach
block are stored in registers HL and DE. block on the screen.

The computer reads the addresses inthese Register B holds the number of bytes to
registers each time it loads or stores the be swapped. Each time the program

bytes. After swapping two bytesthe repeats, B is decremented (decreased) by 1

instruction INC (mnemonic for increment) soitactsas acounter. WhenB=0allthe
makes itadd one to HL and DE sothatwhen  bytes have been swapped.

Z80 program
n=number of bytes in one block; a=first address of block a; b=first address of block b.

Mnemonics Hex codes | Meaning { HL holds address
LDB,n 06,n Counter. ¢ forblockaand
= DE holds address

LD HL, (addressa) 21,addressa| PutaddressofblockainHL. } forblockb.
LD DE, (address b) 11,addressb| Putaddress of blockbinDE.
LDC, (HL) 4E Load C with contents of address in HL (indirect addressing).
LDA, (DE) 1A Load A with contents of address in DE (indirect addressing).
LD (HL),A TE Store contents of accumulator at address in HL (indirect).
LDA,C 79 Put C (first byte block a) into accumulator.
LD (DE),A 12 Store contents of accumulator at address in DE.
INCHL 23
ING DE 13 Add one to HL and DE.
DECB 05 Decrement B, the counter.
LDA, &00 3E, 00 Put 0 in the accumulator
CPB B8 Compare B with contents of the accumulator (0).

If B does not equal zero, jump back &F3 locations to load
JR NZ to 4th instruction| 20, F3 next bytes into registers. F3 is hex for two's complement

of 13 (see page 37).
RET Cc9 Return.

Filling in the data and addresses

addressesaandb If youwanttoswap the toptwo
lines of the screen with the next two lines, make
address a the first address of your computer’s screen
memory. Address b is the address for block a plusthe
number of bytes to be swapped. Convert both
addressesto hex.

n (number of charactersin
one block) To find n, multipl
' | the number of charactersin
aline by the number of lines
inone block. Convert to hex.




6502 screen flash

This program swaps the two blocks, byte by byte (i.e. character by character), starting
with the last byte in each block. It loads these bytes into the registers, then stores the byte
from block a in the screen location for block b and vice versa. Then the programis
repeated to swap the next pair of bytes.

NI NN NN
HEEREHEXFERRREEE R R R X RREEREERR RN

b 00000000000000000000000000000000
00000000000000000000000000000000

It uses indexed addressing to find the
address for each byte. The total number of
bytes in one block is loaded into the X
register. Then, to store or load a byte, the
number in the X register is added tothe

6502 screen flash

program

starting address for each block. The
instruction DEX (decrement X) makes the
computer subtract 1 from X so that, when
the program repeats, the computer fetches
the next byte back in the display.

See the bottom of the opposite page for how to work out the values of n, aand b. Then
subtract 1 from a and b so that when the computer adds X it gets the last address ineach
block, rather than the first address of the next line. (Make suren,aand b areinhex.)

Mnemonics Hex codes | Meaning

LDX #n A2n Load X with the number of bytes in one block.

LDA addressa, X BD addressa| Put contents of location with address a+ X into accumulator.
TAY, A8 Transfer contents of accumulator to register Y.

LDA address b, X BD addressb| Put contents of location with address b+ X into accumulator.
STAaddressa, X 9D addressa| Store contents of accumulator ataddressa+X.

TYA 98 Transfer contents of Y register back to accumulator.
STAaddressb, X 9D addressb| Store contents of accumulator at address b+X.

DEX CA Decrement X. Zero flag is setto 1 when X=0.

BNE to instruction two

DOEF

Branch back &EF locations if X is not equal to 0. EF is the
hex fortwo’s complement of 17 (see page 37).

RTS

60

Return

180
190
200
210
220
230

FOR J=0 TO 79

NEXT J
FOR J=80

NEXT J

FOKE first screen address + J.42

(88 b=t
FOKE first screen address + 1,48

Loading and running the program for the Z80 or 6502

The best way to run this programis asa
“machine code subroutine in the hex
loader. To do this, follow these steps:
1. Typeinthe hexloader and put the hex
codes for your computer’s
microprocessor in line 160.
2. Atline 180 you need two loops to poke
the characters for the display into the
screen memory. For example, here are
the lines for two rows of *s (code 42)
followed by two rows of Os (code 48), fora
computer with a 40 column screen.

3. Next, add the following lines to the end
of the program:

240 CALL address where machine
code is stored

250 FOR k=1 TO 500

260 NEXT K Change figure 500 in delay
270 GOTO 240 loop to suit your computer.

4. Now type RUN to run the program. The
hexloader pokes the hex codes intothe
memory, then pokes the display codes
into the screen memory. Line 240 makes |
goto the location where the machine ¢
program is stored and carry out the
instructions. By itself, the machine code
program only swaps the display once, so
line 270 makes it call the program again
and again to make a flashing effect. You
need the delay loop because the machine
code is so fast.

0o

39




40

Going further

If you want to find out more about machine code the best way is to try writing your
own short programs and to test and study programs written by other people. One
good way to use machine code is as a short subroutine to carry out a particular task
ina BASIC program. For instance, machine code is particularly suitable for sorting
data or filling the screen with graphics because it is faster and takes lessmemory
space than BASIC. You can find subroutines for doing things like this inmagazines.
If the subroutines are written specially for your computer you can run them without

alteration. If they are written for another make of computer which uses the same
microprocessor you will need to change any addresses in the program for
addresses in the area in your computer's memory that you have chosen tostore

machine code.

Machine code subroutines

Here are the steps you need to follow touse
amachine code subroutine ina BASIC
program.

1. Make room in the memory for the
machine code by lowering the top of user
RAM (see pages 20-22).

2. Put the codes for the machine code
subroutine into line 160 of the hexloader
program on page 24. (Make sure thereisa
return instruction at the end of the machine
code program.) Add lines to poke inany
data bytes if necessary, then type in and run
the hex loader.

3. Number your BASIC program using line
numbers starting after those used in the hex
loader. At the point where you want the
computer to carry out the machine code,
put your computer's command for runninga
machine code programas aline inthe
BASIC program.

This tells the
computer to goto
location 16002 and
carry out the
instructions there.

4. Type the BASIC program into your
computer and then type RUN. The
computer will carry out the BASIC
instructions and when it reaches the line
telling it to run the machine code programi it
will go to the address where the machine
code is stored and carry out the
instructions. The return instruction at the
end of the machine code will send the
computer back to the next line in the BASIC
program.

Using an assembler

An assembler (a program which enables
you to type in a machine code programin
mnemonics) makes machine code
programming much easier. You can buy
an assembler on cassette for most home
computers and some, such as the BBC,
have a built-in assembler.

With an assembler you can type in
comments alongside the mnemonics to
remind you what each line does. The
assembler will then display the program
onthe screen in hex and mnemonics, with
the addresses where the instructions are
stored and the comments.

The assembler will automatically
reverse the pairs of digits inaddresses
and work out the address or displacement
for a jump. Some assemblers allow youto
use symbolic names for data, like
variables in BASIC. A good assembler
also has a debugger to find mistakes and
an editor to help you correct them.

Suggested books

There are lots of books on machine code
specially written for one particular make of
microcomputer. The best way to choose
oneistoread the reviews in computer
magazines. You may also find the following
books useful:

Programming the Z80 and Programming
the 6502, both by Rodney Zaks and
published by Sybex. These are very
detailed guides with complete lists of all the
instructions for each microprocessor. They
are not easy to read for beginners, but they
are useful for reference.

VIC 20 Programmer’s Reference Guide
published by Commodore.

6502 Machine Code for Beginners by A.P.
Stephenson, Newnes Microcomputer Books.



Decimal/hex conversion charts

This chart converts hex numbers from 0 to FF to decimal and vice versa.

Hex to decimal Decimal to hex

To convert a hex number to decimal read To convert a decimal number to hex, find
along the row for the first hex digit inyourhex the decimal number inthe chart. Thenread
number and down the column forthe second back along the row for the first hex digitand

to hex digits. A calculator would give you So 134 + 16 =8 remainder 6 therefore
the answer as 8.375. decimal 134 is 86 in hex.

hex digit. The number where the row and up the column for the second hex digite.g.

column meet is the decimal equivalent for 154is 9A.

your hex number, e.g. hex Al isdecimal 161.

Second hex digit \
0 1 2 3 4 5 6 7 8 9 A B o D E F

0 0 1 2 3 4 5 6 7 8 c ) [ ] - e - s S R T

1 Tl A ) T e I e ) = 5 - e s T T s

2| 82| .33] 34| 3| 3| 571 38| 39] ] 42| 43| 44 a5 46| 47

3| 48] 49| 50| 51| 52| 53| 54| 55| 56| 657 | 58| 59| 60| 61| 62 | 63

4 | 64| 65| 66| 67| 68 B9 70| 7| 72| 73| 724 | 7B 76l 72l 78 | 79
«|5] 8 | 81| 82| 83| 84| 85| 86| 87| 8| 8 | 90| 91| 92| 93| 94| 95
26| 9 | 97| 98| 99 [ 100 [ 101 [ 102 [ 103 | 104 | 105 [ 106 | 107 | 108 | 109 | 110 | 111
Sl7 112113114 [ 115 [ 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127
218 [128 [ 129 [ 130 [ 131 | 132 [ 133 [ 134 [ 135 | 136 | 137 | 138 | 139 | 140 | 141 [ 142 [ 143
#1019 [ 144|145 | 146 | 147 [ 148 [ 149 [ 150 | 151 | 152 | 163 [ 154 [ 155 [ 156 | 157 [ 158 | 159
i | A [ 160 [ 161 [ 162 | 163 | 164 | 165 | 166 | 167 | 168 [ 169 [ 170 [ 171 [ 172 | 173 [ 174 [ 175

B [176 [ 177 | 178 [ 179 | 180 [ 181 | 182 [ 183 | 184 [ 185 | 186 | 187 | 188 | 189 | 190 | 191

C [ 192193 ] 194 [ 195 [ 196 [ 197 | 198 | 199 [ 200 [ 201 [ 202 [ 203 | 204 | 205 [ 206 | 207

D[208 209|210 [ 211 | 212 [ 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223

E | 224 | 225 | 226 | 227 | 228 | 228 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239

F [ 240 [ 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255

Converting addresses

To use the chart to convert hex addresses, equivalent for the second pair of digitsto

look up the decimal equivalent for the first find the position on the page. Multiply the

pair of digits in the address. Thisisthepage  page number by 256 and add the position

number. Then look up the decimal onthe page.

Two’s complement conversion chart

This chart gives the two’s complement in find the number in the chart, thenread

hex of decimal numbers from —1 to —128. along the row for the first hex digit and up

To convert a number to two's complement, the column for the second digit.

Second hex digit
F E D | € B A 9 8 7 6 5 4 3 2 1 0

wl| F 1 2 3 4 5 6 7 8 o T B | BN L R R IR
o E FARECIE A A S A A EE R E R R
O[D| 33| 34] 35| 36| 37 38[ 39 40| 41] 42 43[ 44| 45[ 46| 47| 48
@fcl 49] s0[ 51| 52| 53] 54| 55] 56| 57| 58| 59| 60| 61] 62| 63| 64
w=|B| 65 66| 67| 68 69| 70| 71| 72| 73] 74| 75| 76| 77| 78| 79 | 80
Z[A[ 8 [ 8] 8] 84[ 85| 86| 87| 88| 8 [ 90 91] 92] 93] 94] 95| 96

9| 97| 98| 99| 100 | 101 | 102 | 103 | 104 | 105 [ 106 | 107 | 108 | 109 [ 110 | 111 [ 112

8| 113114 115116 117 [ 18] 119] 120 121 | 122 | 123 [ 124 125 126 [ 127 | 128

Doing conversions on a calculator 7o convert the remainder toawhole

When you do conversions on a calculator number you subtract the number before the

the calculator displays the remainderasa decimal point, then multiply by the number

decimal number. For example, if you are youdivided by.

converting decimal 134 to hex you divide by

16 then convert the answer and remainder bbpaeisiaxit=g 41




v

42

Z80 mnemonics and hex codes

The mnemonics and hex codes for the instructions covered in this book are givenon
the next few pages. The term "Implicit addressing” used in these lists is just the name
for instructions where no operand need be specified in the hex code. There area
few other instructions not listed here and if you want to go further with machine code
you will need a complete list of the Z80 instruction set (see page 40). The following
abbreviations are used in these lists:

n = number
nn = two byte number
r =register

rr =register pair
x =address

c¢ = condition
d =displacement

ADC A,n Add withcarry,a
number, n, to the accumulator.
(Immediate addressing.)

CALLx Gotosubroutine
starting at address x.
(Immediate addressing.)

DECr Decrementregisterr.
(Implicit addressing.)

DECA 3D
ADCA,n CE.n CALL x CDx DECB 05
ADCA,r Add withcarry CALLc,x Gotosubroutine DECC 0D
registe; rtothe accumula;or. starting ataddress x et L1
(Implicit addressing.) depending on condition c. DECE 1D
i cmay be Z (equal); NZ (not DECH 25
ADCAA 8F equal); C (carry); NC (no DECL 2D
ADCA,B 88 carry); PE (parity even); PO .
ADCA.C 89 (parity odd); M (minus) or P DI;C r Dec.re.ment reg1§ter
ADCAD 8A (plus). (Immediate pair rr. (Implicit addressing.)
ADCAE 8B addressing.) DECBC 0B
ADCA,H 8C CALLZ,x CCx DECDE 1B
ADCA,L 8D CALLNZ,x C4,x DECHL 2B
) CALLC,x DE,x DECIX DD2B
IIKIDC HL,rr AfddV_vnh carry, CALL NC,x D4,x DECIY FD2B
the contents of register pair rr CALL PE x EC x
to HL. (Implicit addressing. ’ : DEC (HL) Decrement
v 2 CALLPOx  E4.x contents of address held in HL.
ADCHLBC _ ED4A CALLMx __ FCx (Indirect addressing.)
ADCHL,DE ED5A CALLP,x F4,x DEC (HL) 35
ADCHLHL ED6A CCF Complement carry flag. :
(Implicit addressing.) INCr Incrementregisterr.
ADD A,n Addanumber,n,to . (Implicit addressing.)
the accumulator. (Immediate CCF 3F I
addressing.) NCA 3C
CPn Compare contents of INCB 04
ADD,n C6,n accumulator with datan. INCC oC
(Immediate addressing.) INCD 14
ADD A,r Addregisterrtothe CPn EEn
accumulator. (Implicit INCE 1C
addressing.) CPr Compare contents of INCH 24
T o = register r with the accumulator. INCL 2C
ADD A'B 80 (Implicitaddressing.) INC rr Increment register pair
ADD A' C 31 CEA BF rr. (Implicit addressing.)
ADDAD 82 cre e INCBC 03
ADDAE 83 CPC = INC DE 13
ADD A H 84 gFP,E gg INC HL 23
ADDA,L 85 CPH BC INC (HL) Increment contents
ADD HL,xr Add the contents CPL BD og?icridres s held in HL. (Indirect
of register pair rr to HL. CP (HL) Compare contents of i
ok adclressing. ) accumulator with contents of INC{HL) =4
ADDHL,BC 09 address held in HL. (Indirect JPx Jumptoaddressx.
ADDHL,DE 19 addressing.) (Immediate addressing.)
ADDHL,HL 29 CP (HL) BE JPx C3x




JP (rr) Jumptoaddress held in
register pair rr. (Implicit

LD A, (x) Load accumulator
with contents of address x.

LDE,r Loadregister E with
the contents of registerr.

addressing.)
JP(HL) E9
JP (IX) DDE9
JP(IY) FDES

JPc,x Jumptoaddressx
depending on condition c.
cmay be Z (equal); NZ (not
equal); C (carry); NC (no
carry); PE (parity even); PO
(parity odd); M (minus) or P

(Absolute addressing.) (Implicit addressing.)
LDA, (x) 3A, (x) LDEA 5F
LDE,B 58
LD rr, (x) Loadregister pairrr LDEC 59
with contents of addresses x LDE,D 5A
and x+1. (Absolute LDE,E 5B
addressi.ng.) LD E,H 5C
LD BC, (x) EDA4B, (x) LDE,L 5D
LD DE, (x) EDSB, (x) LD H,r Load register Hwith
LDHL, (x) 2A, (x) the contents of registerr.

g%l(lilrsé.s(slgg)e it LD A,r Loadthe ac_cumulator (In:;;h:tAadd.ressm:-.])
with contents of registerr. L -
| JPZx CA x (Implicit addressing.) tg :g 60
JPNZ,x C2,x . 61
JPC,x DA x N - i LDH,D 62
JP NC.x D2,x LDAC e LDHE 63
JP PE,x EA X DAD 7R LDH.H 64
JPPO,x E2,x . LDH.L 65
LDAE 7B
JPM,x FA,x LDAH 7C LDL,r Loadregister L withthe
JPP,x F2,x LD A:L 7D contents of register r. (Implicit
JRd Jump relative. Jump d i
bytes (the displacement). tl;ln B,r Load rfegls.ter B with LDLA 6F
(Relative addressing.) E cqn!ents o regxster 5 LDL,B 68
(Implicit addressing.) LDL,C 69
JRd 18d LDB.A a7 LDL,D 6A
JRc,d Jump relative. Jump d LDB.B 40 LOLE L
bytes (the displacement) LDB,C adl LDLH 6C
depending on condition c. LDB,D 42 LDL.L 6D
cmay be NZ (not equal); Z LDB,E 43 LD, (rr) Load register r with
(equal); NC (no carry) orC LDB,H 44 contents of address held in
(carry). (Relative addressing.) LDB,L 45 register pair rr. (Indirect
JRNZ.d 20.d . - addressing.)
JRZ,d 28,d f}'g Sé;téﬁ;dc) e fr“"‘h LDA,(BC) _ 0A
JRNC,d 30,d (Implicit ad dressgng) X LD A,(DE) 1A
JRC,d 38,d : LDA,(HL) 7E
LDCA 4F LD B,(HL) 46
LDr,n Loadregisterr with LDC,B 48 LD C,(HL) 4E
datan. (Immediate LDC,C 49 LD D,(HL) 56
asdaressg.) LDC,D 4A LDE,(HL)  BE
LDA,n 3E,n LDIC.E 4B LD H,(HL) 66
LDB,n 06,n LDC,H 4C LDL,(HL) 6E
tg g:” ?g” LDC.L 4D LD (x),A Store the contents of
N N the accumulator in address x.
LDE,n 1E,n LDD,r Loadregister D with (Absolute addressing.)
LDH,n 26,n the contents of registerr.
LDLn 2En (Implicit addressing.) LD (x),A 32,x
LDD,A 57 LD (x),rr Store the contents of
LD rr,nn Load register pair rr LDD,B 50 register pair 1r at addresses x
with two byte number nn. and x+ 1. (Absolute
(Immediate addressing.) LDD.C 2 addressing.)
LDD,D 52 i
LDBC,nn 01,nn LDD,E 53 LD (x),BC ED43,x
LD DE,nn 11,nn LDD,H 54 LD (x),DE ED53,x
LD HL,nn 21,nn LDD,L 55 LD (x),HL 22,x

43



44

LD (HL),A 77

LD (rx),x Store the contents of RETC D8 SBC A,(HL) Subtract with
register r at the address held in RETNC DO carry the contents of address
register pair rr. (Indirect RETPE ES8 held in register pair HL, from
addressing.) RET PO EO the accumulator. (Indirect
LD(BC)A 02 RETM F8 SR
LD (DE),A 12 RETP FO SBCA,(HL) 9E

LD (HL),B 70

LD (HL),C 71

LD (HL),D 72

SBC A,n Subtract with carry
data n from the accumulator.
(Immediate addressing.)

SCF Set carry flag. (Implicit
addressing.)

SCF 37

LD (HL),E 73

LD (HL)H 74

SBCAn DE,n

LD (HL),L 75

LD (xx),n Storedatanat

SBC A,r Subtract with carry
contents of register r from the
accumulator. (Implicit

SUBn Subtractdatan fromthe
accumulator. (Immediate

ccanbe Z (equal); NZ (not
equal); C (carry); NC (no
carry); PE (parity even); PO

address held in register pair rr. addressing.)
(Immediate/indirect
addressing.) SBCAA 9F
LD (HL),n 36 SBCA,B 98
SBCA,C 99
RET Return from subroutine. SBCA,D 9A
(Indirect addressing.) SBCAE 9B
RET Cc9 SBCAH 9C
RET ¢ Return from subroutine SBCAL 9D
depending on condition c.

SBC HL,xr Subtract with carry
contents of register pair rr from
register pair HL. (Implicit

addressing.)

SUB, n D6,n
SUBr Subtract contents of
register r fromthe
accumulator. (Immediate
addressing.)

SUBA 97

SUBB 90

SUBC 91

SUBD 92

SUBE 93

SUBH 94

SUBL 95

SUB (HL) Subtractthe
contents of address held in HL
from the accumulator. (Indirect
addressing.)

(parity odd); P (plus); M SAdoRENE)

(minus). (Indirect addressing.) SBCHL,BC ED42
RETZ c8 SBCHL,DE  ED52
RET NZ Co SBCHLHL  ED62

Puzzle answers
Page 11

&ATindecimalis 167. 513in hexis &201.

Page 26

1.25+173 (25is &19and 73is &49)

Tip: an easy way to work out the two’s
complement of a number is to subtract it

from 256, then convert the answer to hex.
E.g. 256 —6=250 whichis FA in hex.

e N e

SUB (HL) 96

Z80 6502 Meani
Mnemonics Hex codes Mnemonics Hex codes g
LDA, &l19 3E, 19 LDA #&19 A919 Put &19 in accumulator.
ADD A, &49 C6,49 ADC #&49 69 49 Add &49 to accumulator.
Store contents of )
LD (address), A 32, address STA address 8D address :gggg:;lator atacertain
RET C9 RTS 60 Return
2.64+12+14 (64is &40, 12is &0C and 14 is &0E)
Z80 6502 Meani
Mnemonics Hex codes Mnemonics Hex codes g
LD A, &40 3E.40 LDA #&40 A940 Put &40 in accumulator.
ADDA, &0C C6,0C ADC #&0C 690C Add &0C to accumulator.
ADD A, &0E C6,0E ADC #&0E 69 0E Add &0E to accumulator.
Store contents of
LD(address), A 32, address STA address | 8Daddress agcg;m\ﬂator ata certain
a €ess.
RET C9 RTS 60 Return

Puzzle answers continued on page 48.




6502 mnemonics and hex codes

This chart shows the mnemonics and hex codes for all the instructions (plus afew
more) covered in this book. The mnemonic instructions are given down the leftand
the hex codes for each instruction in the different addressing modes are shown
across the chart. Zero page addressing is just like absolute addressing, 1.e. the
operand is the address where the data is stored, but the address must be inpage
zero (1.e. locations 0-255) of the memory (see page 10). Implied addressing is justthe
term used to describe instructions where no operand need be specified, e.g. CLC.
There are a number of other instructions not given here, and if you want to gofurther
with machine code you will need to get a complete list of the 6502 instructionset.

2 @ X =
® o o
Addressing mode 3 g o 3 3 3 =
£ 3 o 3 3 3 k3
E L0 8 ¢ & £ E | &
Data |Any Address |[Address | Address | None | Displace-
Operandis address |in page |+ X +Y ment
zero register |register
ADC Add with carry,i.e. add a byte, plus the 69 6D 65 7D 79
carry flag, to the accumulator. -
BCC Branchif carry clear. Note thatnot all the instructionscan /90
BCS Branchif carry set. 12 be usedin all the addressing modes.) BO
BEQ Branchif equal. —r] FO
BMI Branch if minus. O 30
BNE Branchif not equal. — DO
BPL Branchif plus. @ 10
BVC Branchif overflow clear. 50
BVS Branchif overflow set. 70
CLC Clear carry flag. 18
CMP Compare with the accumulator. C9 CD C5 DD D9
CPX Compare withregister X. EO EC E4
CPY Compare withregister Y. Cco CC Cca
DEC Decrement (subtract 1 from) memory CE C6 DE
location.
DEX Decrement (subtract 1 from) X register. CA
DEY Decrement (subtract 1 from) Y register. 88
INC Increment (add I to) memory location. EE E6 FE
INX Increment (add 1to) X register. E8
INY Increment (add 1to) Y register. C8
JMP Jump to address specified in operand. 4C
JSR Jump to subroutine starting at address 20
specified in operand.
LDA Load accumulator. A9 AD A5 BD B9
LDX Load X register. A2 AE A6 BE
LDY Load Y register. A0 AC A4 BC
RTS Return from subroutine. 60
SBC Subtract with carry. Subtract from the E9 ED E5 FD F9
accumulator and borrow from the carry flag.
SEC Setcarry flag. 38
STA Store accumulator at a certain address. 8D 85 9D . 99
STX Store X register at a certain address. 8E 86
STY Store Y register at a certain address. 8C 84
TAX Transfer accumulator to X register. ‘AA
TAY Transfer accumulator to Y register. A8
TXA Transfer X register to accumulator. 8A
TYA Transfer Y register to accumulator. 98

45



Machine code words

# Hash sign. Thisisthe signused onsome
computers to indicate hex numbers. For the
6502 microprocessor it is used to indicate a
piece of data.

& Ampersand sign. Thisis another sign
used to indicate hex numbers.

Absolute address. The actualaddressofa
piece of data.

Absolute addressing. Anaddressing
mode in which the instruction contains the
address of the data. Also called extended
or direct addressing.

Accumulator. The register where bytes of
information on which arithmetical or logical
operations are to be carried out, are held.
Address. Anumber usedtoidentifya
location in the computer’s memory.
Addressing modes. The various waysin
which you can tell the computer where to
find the data to work on in a machine code
program.

Arithmetic logic unit (ALU). Thearea
inside the CPU where arithmetical and
logical operations are carried out.
Assembler. A program which converts
instructions written in assembly language
mnemonics into the computer’s own code.
Assembly language. A method of
programming the computer using letter
codes, called mnemonics, to represent
machine code instructions.

Binary. A number system with two digits, 0
and 1 and in which each digit in anumber
has twice the value of the digit on its right.
Bit. A single unit of computer code, i.e.al
or 0 representing a pulse or no-pulse signal.
Buffer. Atemporary storage areainthe
computer’'s memory where data is held on
its way to or from its final destination.
Branch. Aninstruction telling the
computer to jump to another lineina
program.

Byte. A group of eight pulse and no-pulse
signals (or “bits”) which represents a piece
of information in computer code.

Carry flag. Abitinthe flags register which
is set to 1 when the result of an addition will
not fit into eight bits.

Clear. Tomake abit, e.g. one of the bitsin
the flags register, zero.

Complement. Also called “flipping the
bits” this is the process of changing all the

46 Osinabytetolandallthe IstoO. ”

Conditional branch. An instruction which
tells the computer to jump to another line in
the program depending on the result of a test.
Direct addressing. See absolute
addressing.

Disassembler. A program which can
display the contents of a series of memory
locations on the screen in assembly
language. You can buy a disassembler on
cassette and it is useful for debugging
machine code programs and for examining
the programs in your computer’'s ROM.
Displacement. A number used inajump
or branch instruction to tell the computer
how many locations to jump to find the next
instruction. Also called an offset.

Flag. Abitinthe flagsregister whichis
used to indicate a certain condition, e.g. the
presence of a negative number, or ofa
carry over in an addition.

Hexadecimal, or hex. A number system
which uses 16 digits (the numbers 0-9and
letters A-F). Each digit in a hex number has
16 times the value of the digit on its right.
Hexloader. ABASIC program which
converts the hex codes of a machine code
program into decimal numbers and pokes
them into the computer’s memory.

High order byte. The firsttwodigitsina
hex address which represent the number of
the page inthe memory where the address
is. Also, the two digits which show how
many 256s there are in a number larger than
255.

HIMEM. The highestaddressinuser RAM.
Immediate addressing. Anaddressing
mode in which the data for an instructionis
included in the instruction.

Implicit addressing. Anaddressing mode
in which the operand is understood and
need not be specified.

Implied addressing. Same asimplicit, see
above.

Indexed addressing. Anaddressing
mode in which the contents of anindex
register are added to the address givenin
the instruction to work out the actual
address of the data.

Index registers. The registersusedin
indexed addressing and also, in the 6502, as
general purpose registers.

Indirect addressing. Anaddressing
mode in which the operand isused asa



pointer to the data. The operand may be an
address or, in the Z80, a pair or registers,
and it holds the address of the data.
Instruction. Anoperation to be carried out
by the central processing unit.

Interpreter. A program which translates
instructions in BASIC (or other high level
language) into the computer’s own code.
Instructionset. All the operations which
can be carried out by a particular
MiCroprocessor.

Jump. Aninstruction whichtellsthe
computer to go to another line in the
program.

LIFO. This stands for “last in/first out” and
describes the method used by the
computer to store information in the stack.
Low order byte. Thetwo hexdigitsinan
address which give the position of that
address within a page of memory. Also, the
two hex digits which show the number of
units in a number larger than 255.
Microprocessor. The chip which contains
the computer’s CPU and which carries out
program instructions and controls all the
other activities inside the computer.
Mnemonic. A letter code usedin
assembly language to represent an
instruction in the computer’s own code. The
word mnemonic (pronounced nemonic)
means “to aid the memory” and assembly
language mnemonics sound like the
instructions they represent.

Object code. A program which hasbeen
translated into machine code from
assembly language or another high level
language.

Offset. Seedisplacement.

Opcode. The part of an instruction which
tells a computer what todo.

Operand. The part of an instruction which
tells the computer where to find the datato
work on.

Operating system. A group of programs
written in machine code and stored inthe
computer’'s ROM, which tell it how to carry
out all the tasks it hastodo.

Page. A subdivision of memory. On most
home computers a page is 256 locations.
Pointer. A memory location (or pair of
registers) which contains the address of a
piece of data.

Pop. Toremove anitem stored in the stack.
Processor status register. Thisisthe 6502
name for the flags register (the register
where each bit is used to record a certain

condition inside the computer).

Program counter. The register which
contains the address of the next instruction
to be fetched from the memory.

Pull. Same as pop, i.e. toremove anitem
from the stack.

Push. Toplace anitem inthe stack.
RAMTOP. The highest addressinuser
RAM.

Registers. The placesinthe CPUwhere
bytes of instructions, data and addresses
are held while the computer works on them.
Relative addressing. Anaddressing
mode in which the computer works out the
address of the next instruction by addinga
number called the displacement or offset,
tothe address in the program counter.
Screenmemory. Thelocationsin RAM
which are used to hold information to be
displayed on the screen.

Sign flag. The bit in the flags register
which is used to indicate negative and
positive numbers.

Source code. A program writtenin
assembly language, or other highlevel
language such as BASIC.

Stack. Anareaofthe memoryused bythe
computer for temporary storage and where
the lastitem stored is always the first tobe
retrieved.

Stack pointer. A register inthe CPUwhich
contains the address of the last item in the
stack.

Systems variables. Memory locationsin
RAM which hold information about the
current state of the computer.

Top of memory. The highestaddressin
user RAM.

Two’s complement. A system of notation
used to represent negative numbers. To
find the two’s complement of a number you
complement (make all the 1sinto Os and all
the Os into 1s) the binary for that numberand
thenadd 1.

User RAM. The part of RAM where BASIC
programs are stored.

Zeroflag. The bitinthe flagsregister
which indicates when the result of an
operationis 0 and is also used to show when
two bytes are equal.

Zero page. The first 256 locations inthe
memory.

Zero page addressing. Used only onthe
6502, this is an addressing mode in which
the operand is an address in page zero of
the memory (i.e. from 0-255). 47



48

Puzzle answers continued Decimal Hex

Page 28 High order | Low order | High order | Low order

00011010 is 26 decimal. 307 1 51 &01 &33

11111011 is 251 decimal. 21214 82 222 &82 &DE

10101010is 170 decimal. 759 2 247 &02 &F7
1023 3 255 &03 &FF

Page 31

To adapt the program on page 27 for

answers greater than:255 youneed todelete command:

the return instruction and add the lines

given below. To see the result you use this

PRINT PEEK(address 3) + PEEK(address4)*256.

Z80 6502 o
Mnemonics Hex codes Mnemonics Hex codes S

LD A, &00 3E,00 LDA #&00 A900 Put 0in accumulator.
ADC A, &00 CE,00 ADC #&00 6900 e s
LD(address 4),A | 32,address4 | STAaddress4 | 8Daddress4 | Siorecomentsol =~ .
RET C9 RTS 60 Return,

Page 37

Hex for the two’'s complement of 12 is &F4; 18is &EE and 9is &F7.

Index
& ampersand sign, 8, 12, 16, 18, 46
# hash sign, 12, 16, 18, 46
absolute addressing, 18, 27, 46
accumulator, 14-15, 17, 30, 32, 46
address, 8-9, 11, 19, 46
converting to hex or decimal, 11
in machine code, 18-19
addressing modes, 27, 46
ALU (arithmetic/logic unit), 13, 14, 46
ASCIl code, 13, 24, 32
assembler, 5, 16, 40, 46
assembly language, 5, 17, 19, 46
Atari, 3,24
BASIC, 4. 12,20, 40
big numbers, 28, 30-32

dump, 19

loader, 5, 23, 24, 25, 46

number system, 5, 8, 11, 46
high order byte, 19, 28, 30, 31, 46
HIMEM, 8, 20, 21, 46
immediate addressing, 18, 27, 33, 46
implicit addressing, 46
implied addressing, 46
increment, 33, 34, 38
indexed addressing, 34, 39, 46
index registers, 14-15, 46
indirect addressing (Z80), 33, 38, 46
instruction, 4, 5, 13-14, 16, 47
instruction set, 16, 47
interpreter, 4, 8, 20, 47

binary, jumps, 33, 35, 47
code, 4, 5, 16 LIFO, 10, 47
numbers, 4, 19, 28, 46 locations, memory, 8-9, 10, 11, 12-13
to hex conversion, 37 lowering RAMTOP, 21

bit, 4, 46

branch, 34, 35, 46

buffers, 10, 46

byte, 4, 13, 19, 20, 46

carry flag, 14, 15, 17, 29, 30, 31, 36, 46

carrying over numbers in addition, 29,
30, 31

character codes, 13, 32

clear, to, 29, 46

Commodore 64, 3, 7

comparing, 32

complement, 46

conditional branches, 35, 36-37, 46

low order byte, 19, 28, 30-31, 47
machine code,

checklist, 26

length of program, 20

subroutines, 39, 40

where to store in memory, 20-22
memory, 8-9, 10, 12-13
memory map, 8
microprocessor, 7, 16, 47
mnemonics, 5, 16-17, 47
object code, 18, 47
offset, 36-37, 47
opcode, 16, 18, 19, 47

13, 20-21
RAMTORP, 8, 20, 21, 47
lowering, 20-22
registers, 13-14, 27, 30, 31, 47
relative addressing, 36, 47
REM statement, storing machine
codein, 22
reserved for use of the operating
system, 8, 10
return instruction, 23, 35
ROM (read only memory), 6, 12, 13
running a machine code program, 25
screen memory, 8, 13, 47
set, to, 29
sign flag, 14, 36, 47
source code, 18, 47
Spectrum, 13, 24, 32
stack, 10, 14, 15, 20, 35, 47
stack pointer, 14-15, 47
subroutines, 35
systems variables, 10, 20, 21, 47
Timex 1000, 9, 13, 22, 24
Timex 2000, 13, 24, 32
top of memory, 20, 21, 47
two's complement, 37, 41, 47
user RAM, 8, 20, 47
VIC 20,7, 13, 22
zero flag, 32, 33, 34, 36, 47
zero page, 10, 45, 47
zero page addressing, 45, 47
ZX81,9, 13, 22, 24

control unit, 13, 14 operand, 16, 18, 27, 47 .
- CPU (central processing unit), 7, operating system, 8, 10, 11, 13, 20, 47 Hex Ioade_r conversions
14-15, 16, 19 Oric micro, 3,7, 21 Change these lines for the ZX81

crash, 20 overflow bit, 36 (Timex 1000):

databytes, 23, 28 page (of memory), 10, 11, 19, 21, 47 40 INFUT H$

decimal numbers, 11, 41 parity/overflow bit, 36 70 LET X=

decrement, 36, 38 PEEK, 12-13, 21, 26, 31 (CODE (H%) -28) *¥16
directaddressing, 27, 46 pointer, 33, 47 80 Delete

disassembler, 46 POKE, 12-13, 23 90 LET Y=CODE
displacement, 36-37, 46 pop, 35,47 (H$ (2 TO ))-28

display file, 8 position on page (of address), 11,19, | 100 LET x=x+Y

extended addressing, 27 21 110 Delete

flags register, 14-15, 17, 29, 36 processor status register, 15, 29, 47 155 Delete

hex, (see also flags register) 160 Delete

codes, 16, 18, 19 program counter, 14-15, 35, 47 Change this line for Atari computers:
converting to decimal, 11, 41 RAM (random access memory), 6, 12,| o0 1 ET v=a5C (A% (7))







Usborne Computer Books

Usborne Computer Books are colourful, straightforward and easy-to-
understand guides to the world of home computing for beginners of allages.

Usborne Guide to Computers A colourful introduction to the world of
computers. “Without question the best general introduction to computing | have
everseen.”’Personal Computer World

Understanding the Micro Abeginner’s guide to microcomputers, how to use
them and how they work. “This introduction to the subject seems to get
everything right.” Guardian

Computer Programming Asimpleintroductionto BASIC forabsolute
beginners. “... lucid and entertaining ...” Guardian

Computer and Video Games Allaboutelectronicgames and how they work,
with expert’s tips on how to win. “The ideal book to convert the arcade games
freak to real computing.” Computing Today

Computer Spacegames, Computer Battlegames ListingstorunontheZX81,
Spectrum, BBC, TRS-80, Apple, VIC 20 and PET. “Highly recommendedto
anyone ofany age.” Computing Today

Practical Things to do with a Microcomputer Lotsof programstorunanda
robot to build which will work with most micros.

ComputerJargon Anillustrated guide to all thejargon.

Computer Graphics Superblyillustrated introduction to computer graphics
with programs and a graphics conversion chart for most micros.

Write Your Own Adventure Programs Step-by-step guide to writing adventure
games programs, with lots of expert’s tips.

Machine Code for Beginners A really simple introduction to machine code for
the Z80 and 6502.

Better BASIC A beginner’s guide to writing programs in BASIC.

Insidethe Chip Asimple and colourful account of how the chip works and what
itcando.

Published in Canada by Hayes Publishing
Ltd, 3312 Mainway, Burlington, Ontario,
Canada, L7M 1A7.

Published in the USA by

o T O eAs, UsA. 1 Sure, ISBN 0860207358

PUBLISHING



