
TABMT£9

y V V VV ^ i. *- ■

The

GIANT

Handbook

of

Computer

Projects

by the editors of

73 Magazine

A step-by-step guide to building modern computers and

accessories—CPUs, memories, input/output hardware, etc.

The GANT

Handbook of
Computer

Projects

The QANT

Handbook of
Computer

Projects

by The Editors of
73 Magazine

TAB BOOKS Inc.
BLUE RIOGE SUMMIT, PA. 17214

FIRST EDITION

FIFTH PRINTING

Printed in the United States ofAmerica

Reproduction or publication of the content in any manner, without express
permission of the publisher is prohibited. No liability is assumed with
respect to the use of the information herein.

Copyright 01979 byTAB BOOKS Inc.

Library of Congress Cataloging in Publication Data

Main entry under title:

The Giant handbook of computer projects.

Includes index.

1. Computer-Amateur's manuals. 1.73 magazine for radio
amateurs.

TK9969.G5 621.3819'5 79-5444

ISBN 0-8306-9724-1
ISBN 0-8306-1169-X-pbk.

Contents

Introduction 9

Computer Capabilities 11
What Is a Computer? 11

Computers are Simple 19

Who Uses Computers 48
Number Systems 50

How Computer Arithmetic Works 54
Two Finger Arithmetic 68
What's That in Binary? 79

The Hexadecimal System 82
Is Digital all That New? 84
The Ins and Outs of TTL 86

Practical D/Aand A/D Conversions 96

Microprocessors 109
Looking fora Micro? 113

Kim-1 Can Do It! 115
Interrupts 126

Troubleshooting a Micro 134
Dial Your Micro 143

An 8080 Disassembler 154
Hex Notation 159

The Bit Explosion 161

Z-80 Quality at a Good Price 167
The Cosmac Connection 171
The 7400 Quad NAND Gate 183

Memory 197
Checking Memory Boards 197
Short on Memory? 204

RAM Checkout 216

A Simple PROM Programmer 222
Memory Chips 226

6

Computer I/O 251
A Very Cheap I/O 252
Blowtorch Your ICs 260
A TTL Tester 262
Cold Solder Joints 264
Interfacing a Clock Chip 270
Inexpensive Paper Tape System 274

The Polymorphics Video Board 283

Computers and the Ham Shack 291
A Ham's Computer 291
The First Computer-Controlled Ham Station 298

A Ham Shack File Handler 305
Computer Logger 308
Print Your Own Log Book 310
Superprobe 314
Eight Trace Scope Adapter 314

ThelCSee-er 318
Seals Electronics Memory Board 322

Computer Games 327
A Programmable Calculator 327
A No-Cost Digital Clpck 331
Computerized Global Calculations 334

A Depth Charge Game 337
Nuclear Attack! 338
A Secret Weapon fcif Road Rallies 354

Do Biorhythms Really Work? 358

Miscellaneous Computer Projects . 367
ABionicClock 367
Computer-Controlled Thermometer 376

Winning the Name Game 384
Morrow's Marvelous Monitor 384
The North Star Disk 391
Timing Diagrams 398
Interrupts Made Easy 406
Build a CW Memory 416
A TV Game Chip 432
The SOL 440
Outstanding Computer Bargain 447
A Cassette-Computer System 455
The Cheaper Beeper 463
Simple Graphics Terminal 466
High Quality Display with Cursor and Video Control 479

Index.... -499

Introduction

Quite contrary to former beliefs, computers are not totally incom
prehensible. They are permeating our society, so you may as well

learn to use them. Even if you think you don't have much need for

computers now, you will in the very near future. When—not if—

they become a necessary part of almost every aspect of life, you will

be ready with the help of this book.

First you will be introduced to the technology of computers.

The computer's simplicity will convince you that even if you aren't

mechanically inclined or a mathematical wizard, you can operate a

computer. The mathematical capabilities of the computer are infi

nite, yet easy to understand. The following chapters will explain how

computer arithmetic works, the binary number system, the

hexadecimal system and the circuitry of digital equipment.

Microprocessors will be detailed for you including a section on

how to troubleshoot them. Several computers and their capabilities
will be compared including the Kim.-1 and the Z-80.

Then you'll be on the road to building your own pieces of

computer hardware equipment. YouTl be completing many compu

ter projects—even one on how to put together your own small home

computer.

Needless to say, once you've mastered the art of running your

computer, youTl want to store vital information. It's easy with

memory boards, memory chips and PROM programmers.

YouTl enjoy experimenting with projects on clock chips, video

boards and even one on an inexpensive paper tape system.

Even if you don't have vital information to store or programs to

run, youTl probably enjoy the many computer games you can design

from checkers and chess to nuclear attack games.

Various other miscellaneous computer game projects are of

fered to you as the reader. Among these projects are a bionic clock, a

computer-controlled thermometer, a programmable calculator and

even a no-cost digital clock.

Each project in this book is supplemented with drawings,

schematics and often parts lists.

10

Chapter 1

Computer Capabilities

Many experimenters are reticent to purchase and build a microcom

puter system, even though complete systems can now be purchased

for less than $100. This hesitancy on the part of interested ex

perimenters can in most cases be attributed to several factors:

• Temporary depletion of pocket cash.

• Lack of knowledge of computer fundamentals.

• Lack of personal confidence in being able to handle the

technology required.

The various components of fundamental computer systems will

be discussed, computer terminology will be explained and funda

mental, inexpensive breadboard circuits and experiments will be

given in order to teach the rudiments of computer technology. The

simple circuits and related experiments will give the experimenter

the experience and confidence needed to build and debug computer

circuitry.

The average experimenter with a basic knowledge of elec

tronics who performs these experiments should be capable of build

ing and using his own microcomputer system.

What Is a Computer?

A computer is a device whichaccepts information, applies some

prescribed process to that information, and supplies the results.

This definition can be applied to large classes of devices. For exam

ple:

11

• A series of gears, shafts, axles, cables, etc., such as a

speedometer, takes rotation of axle (accepts information),

converts the information to usable form (applies prescribed

process) and gives reading of speed on dial (supplies re

sults).

• A frequency counter takes input pulses (accepts informa

tion), counts them (applies prescribed process-counting)

and displays frequency on an indicator (supplies results).

• An amplifier takes a small voltage (accepts information),

amplifies it (applies prescribed process-amplification) and

gives larger voltage as output (supplies results).

These three devices are all examples of common computers.

A computer is not always recognized as a computer, and a

computer is not always called a computer. The term computer is a

broad term and may be applied to common everyday devices. Com

puters need not be electronic, but may be mechanical, hydraulic,

pneumatic or perhaps biological.

What is a Digital Computer?

Computers are divided into two common classes: analog com

puters anddigital computers. Both classes of computers are the same

in that they accept information, apply a process to that information

and deliver results; however, they differ in the types of information

which they can handle.

An analog computer processes information within a continuous

range or within continuous ranges. Using the amplifier as an exam

ple, consider a simple device which will deliver a gain ofprecisely 100

to voltages in the range of .03V to .08V. In this amplifier an input of

.039927V will give 3.9927 volts out. This simple analog computer

will operate with any voltage within its specified range. ,Further-

more, all values of voltage within the range of the device will be

processed. The range of the information that the analog computer

will handle is continuous—there are no gaps within the range.

A digital computer can process only discrete values (for exam

ple, in the range 1-5, the numbers 1, 2, 3, 4 and 5 are discrete

values). The digital computer is not capable of handling continuous

information. The reason for this is simple. The digital computer uses

a series of on-off conditions to store information. The number "one"

might be represented by an "oh," while the number "zero" might be

represented by an "off." But what about numbers such as .5? Can

you have half of an "on" or Jialf of an "off?" Certainly not very

conveniently. Of course we could change our definition and let. 5 be

12

INPUT

OEVICE PROCESSOR
OUTPUT

OEVICE

Fig. 1-1. Fundamental computer.

represented by an "on," but then how do you represent. 55,. 51 and

so on? The point is that a digital computer can only handle discrete

numbers, regardless of how we define those numbers. It cannot

handle all numbers in a given range.

The frequency counter is an example of a digital computer. It

accepts discrete pulses, counts them and displays the results. In a

given one second interval it cannot count 14, or Vz or .40497 of a

pulse. It can count only discrete pulses.

Components of a Digital Computer

The typical digital computer may have numerous components

with a rat's nest of interconnections; however, a fundamental digital

computer requires only three pieces: an input device, a processor

and an output device (Fig. 1-1).

The input device may be as complex as a graphics input terminal

or it may be as simple as a single switch. The output device may be as

complex as a video display or it could be very sophisticated, or it

could be simple logic used to detect the simultaneous presence of
switch closures.

As an example, consider a simple computer which has the sole

function of adding two numbers in the range 0 to 9 together and

displaying the output on an LED indicator. The block diagram of this
simple computer is shown in Fig. 1-2.

This simple computer is a fixed function computer and can do

only one function—add. The limitations of this computer should be
apparent. It has a small range (0-9), cannot perform other arithmetic

functions and cannot compare two numbers for equality.
We could expand the capabilities of our processor by exchang

ing the simple "addition box" for an ALU (arithmetic, logical unit).

This ALU type of processor is a readily available unit and offers
additional capabilities such as subtraction, comparison of two num

bers for equality, and logical operations such as "and" and "or." The
simple configuration has now been expanded to that in Fig. 1-3 by the
addition of an extra switch, an instruction switch, and by using an
ALU for the processor. By varying the position of this switch, the

13

F
I
R
S
T

'/
\

N
U
M
B
E
R
-
^
O
/

i
|
9

r

SE
CO

ND
•/
'

I
\

i
»

N
U
M
B
E
R
-
*
O
/

1
\
9

|

I
N
P
U
T
D
E
V
I
C
E
S

P
R
O
C
E
S
S
O
R

"
O
N
L
Y

P
E
R
F
O
R
M
S

A
D
D
I
T
I
O
N
S
"

L
E
D

D
I
S
P
L
A
Y

v
y

O
U
T
P
U
T
D
E
V
I
C
E

R
g
.

1-
2.

S
i
m
p
l
e
a
d
d
i
t
o
n
-
o
n
l
y
c
o
m
p
u
t
e
r
.

n
J

F
I
R
S
T
N
U
M
B
E
R

S
E
C
O
N
D
N
U
M
B
E
R

U
B

R

Ac

p A R E

A
D
,

o
,

/
I
N
S
T
R
U
C
T
I
O
N

>
S
W
I
T
C
H

A
L
U

A
R
I
T
H
M
E
T
I
C
,
L
O
G
I
C
A
L
,
U
N
I
T

A
D
D
S

S
U
B
T
R
A
C
T
S

C
O
M
P
A
R
E
S

P
E
R
F
O
R
M
S
L
O
G
I
C

O
P
E
R
A
T
I
O
N
S

P
R
O
C
E
S
S
O
R

L
E
D

D
I
S
P
L
A
Y

e
n

Fi
g.

1-
3.

S
i
m
p
l
e
c
o
m
p
u
t
e
r
u
s
i
n
g
AL
L)
.

various instructions could be selected. We could perform any of the

allowable operations on our two input numbers and have the results

displayed on the LED indicator. At this point, the fundamental

computer has additional capabilities, but still does not have enough

capability to be really practical. The ALU by itself can only process

two independent numbers at any given time. It is not capable of

simple steps such as adding a column of 10 numbers, let alone

complex problems involving many steps.

If our problem was to add a column of 10 numbers, we could

expand the fundamental computer still further by adding some de

vice to store the column of 10 numbers. The device could be

connected to the processor in such a manner that the 10 numbers

would automatically be added. This storage device could be in the

form of 10 sets of switches, a tape recorder, a rotating magnetic

disk, a series of magnetic cores or a series of electronic storage

locations. A storage device in one of these classes is commonly

called a memory. Note that a memory can be of several forms and is

not limited to magnetic core or electronic storage. (One of the

earliest digital computers used a tank of liquid mercury as a delay-

line memory.)

At the risk of appearinjg to go on and on forever, one last

addition will be made to the fundamental computer system—an

instruction memory. This instruction memory will serve to hold a

series of steps for the processor and will give these instructions to

the processor in sequence. A clock (in this example, part of the

instruction memory) is used to generate pulses to step the instruc

tion memory from one instruction to the next (Fig. 1-4). With this

system we could command the processor to perform the following

steps in sequence:

• Add the first two numbers.

• Add the last two numbers.

• Compare the two sums.

• Display the smallest sum.

Of course the sequence of commands could be endless. This

simple computer system had a lot of versatility and could be very

useful. (An example of this type of programmable computer is a

programmable calculator.) The process of setting up the instructions

for the computer is called programming. The computer as it follows

the programmed instructions executes or runs the program.

A Real-Life Computer

A real-life computer does not differ much in logic or function

from that shown in Fig. 1-4; however, the ALU is usually expanded

16

D
A
T
A

M
E
M
O
R
Y

I. 2
. 3
.

9
.

10
.

S
T
O
R
E
S

I
N
F
O
R
M
A
T
I
O
N

N
U
M
B
E
R
S
T
O

B
E
A
D
D
E
D

I
N
S
T
R
U
C
T
I
O
N

M
E
M
O
R
Y

C
L
O
C
K

1
s
t
I
N
S
T
R
U
C
T
I
O
N

2
n
d
.

3
r
d
.

C
L
O
C
K
G
E
N
E
R
A
T
E
S

P
U
L
S
E
S
T
O
S
T
E
P
"
C
O
M

P
U
T
E
R
"
T
H
R
U

I
T
S
L
I
S
T

O
F
I
N
S
T
R
U
C
T
I
O
N
S

I
N
P
U
T

P
R
O
C
E
S
S
O
R

L
E
D

D
I
S
P
L
A
Y

O
U
T
P
U
T

Fi
g.

1-
4.

C
o
m
p
u
t
e
r
w
i
t
h
m
e
m
o
r
y
.

1
U3

DATA
MEMORY

■■■■

Ul

CLOCK

U2

CPU

t

U4

INSTRUCTION
MEMORY

U5

INPUT/OUTPUT
INTERFACE

TO AND FROM

INPUT/OUTPUT DEVICES^
(SWITCHES, LEDS, KEY

BOARDS, ETC.)

Fig. 1-5. Real-life computer. U1 = 4201 clock chip; U2 = 4040 CPU chip; U3 =

4002 random access memory; U4 = 4308 read only memory; U5 = 4207 (4209,

4211) general purpose I/O.2

to provide additional capabilities, and additional circuitry is usually

provided to simplify input/output as well as to facilitate the flow of

information and instructions within the system. While this last

statement may sound like a zinger, it is not, since a device called a

CPU chip (a single integrated circuit) in most cases contains the

additional circuitry as well as the arithmetic and logical functions. A

CPU chip (Central Processor Unit) is very unique and versatile

device and is commonly called a "microprocessor." Figure 1-5

shows a block diagram for a typical, fundamental microprocessor

computer system. The five blocks shown correspond to five integ

rated circuits. This is a real-life system. An Intel 4040 microproces

sor system could be built using just five ICs.

How To Get Started?

It is not difficult to wire five integrated circuits together to form

a microprocessor system. It is difficult, however, to make the

plunge without first acquiring some important fundamental know

ledge. By gathering this basic knowledge first, you can better utilize

your microprocessor and you are in a better position to correct a

problem should difficulties be encountered.

Fortunately, a large investment is not required in order to get

into computers. For a nominal investment in a power supply, a

breadboard and a handful of very inexpensive ICs, the experimenter

can build up simple computer-oriented circuits to experience

18

firsthand just how things work. While simple circuits will not dupli

cate all of the functions of a microcomputer system, the experi

menter will be able to perform arithmetic and logical operations as

well as store and retrieve information with simple memories. If the

experimenter is able to understand these basic concepts and is able

to duplicate simple experiments, then he should be able to build and

use a microcomputer system.

Computers are Simple

There have been numerous examples put forth over the years

to illustrate the basic scheme behind the operation of computers.

The scheme is deceptively simple and incredibly powerful. The

power comes from the speed with which the machines can perform

the simple operations. The fundamental concept of the computer is

that it is a machine that is capable of doing two fundamental opera

tions at very high speed: First it is able to obtain a piece of informa

tion from a storage area and perform a function as directed by the

information it obtains; and secondly, based on its current status, it is

able to ascertain where to obtain the next piece of information that

will give it further directions. This fundamental concept is the key to

the operation of all digital computers and while it is a simple concept,

A1

B1

a

D1

E1

F1

G1

H1

A2

B2

C2

D2

E2

F2

G2

H2

A3

B3

C3

D3

E3

F3

G3

H3

A4

B4

C4

D4

E4

F4

G4

H4

A5

B5

C5

D5

E5

F5

G5

H5

A6

B6

C6

D6

E6

F6

G6

H6

A7

B7

C7

D7

E7

F7

G7

H7

A8

B8

C8

D8

E8

F8

G8

H8

Fig. 1-6. A set of Post Office pigeon holes containing messages.

19

it can be built upon to arrive at all the complex operations computers

of today can perform.

One of the best analogies for describing a computer's basic

operations is to consider a bank of boxes, similar to a bank of Post

Office mail boxes. A piece of paper containing directions can be

placed in each box. A person is directed to go to the bank of boxes,

and after starting at a given place, to open each box, withdraw the

piece of paper and follow the directions there-on. The boxes are

labeled in an orderly fashion, and the person is also told that unless a

piece of paper in a box directs otherwise, when the person is finished

performing the task directed, they are to replace the paper in the box

and proceed to open the next box. Note, however, that a piece of

paper may give directions to alter the sequence in which the person

is to open boxes.

Figure 1-6 shows a picture of a set of such boxes. Each box is

labeled for identification.

To present a view of a computer's operation, assume a person

has been told to start at box Al and to follow the directions contained

on the pieces of paper in the boxes until a piece of paper containing

the direction stop is found in=one of the boxes. In this example the

person finds the following instructions:

In box Al is the message: "Take the mathematical value ofl and

write it down on a scratch pad."

Since the instruction in box Al only pertained to some function

that the person was to perform, and did not direct the person to go to

some specific box, then the person will simply go on to the next box

in the row. Box A2 contains the information:

"Add the number2 to any value already present on your scratch

pad."

The person will at this point perform an addition and have a total

accumulated value on the pad of scratch paper. The accumulated

value would be 3. Since there are no other directions in box A2, the

operator would continue on to open box A3 which has the following

message:

"Place any accumulated mathematical value you have on your

scratch pad into box H8."

Thus the person would tear the current sheet off the scratch

pad and place it—containing the value 3—into box H8. Note, though,

that while the person was directed to place the accumulated value on

the scratch pad into box H8, tjie person was not directed to alter the

sequence in which to obtain new "instructions" so the person would

proceed to open box A4 which contains the directive:

"Take the mathematical value of 6 and place it on your scratch

pad."

20

Going on to box A5 the person finds:

"Add 3 to the present value on your scratch pad."

This is obviouslyjust a data word. The operator adds the value 6

from the previous box to the number 3, noting the calculation on the

scratch pad and proceeds to open box A6:

"Place any accumulated valueyou have onyour scratch pad into
box HZ"

The person thus would put the value 9 on a piece ofpaper (from
the scratch pad) into the designated box and proceed to open box A7:

"Get the value presently stored in box H8 and save the value on
your scratch pad."

This is a simple operation and the person proceeds to open up
box A8:

"Fetch the value in boxH7. Subtract the value ofyourscratchpad

from the valuefoundin boxH7. Leave the resultonyourscratchpad."

When the operator has performed this operation, the operator

will have finished theA row and will then continue obtaining instruc

tions by going to the B row and opening box Bl where more

directions are found: *

"Ifthepresentvalue onyourscratchpad is notzerogo to boxB3."

At this time if the person checks the scratch pad it will be found

that the value on the scratch pad is indeed non-zero as the last

calculation performed on the scratch pad was to subtract the value in

box H8 from the value in box H7. In this example that would be:

9-3 = 6

Therefore the directions in box Bl for this particular case will tell the

operator to jump over box B2 and go to box B3. For the sake of

completeness, however, box B2 does contain an instruction, for had

the value on the scratch pad been zero the operator would not have

jumped over box B2 and would have found the following message
inside box B2:

"The values in box H7 and H8 are of equal value. STOP!"

However, for the values used in this example, the person would

havejumped to box B3 where the following directive would be found:

"If the present value on your scratch pad is a "negative number"
jump to box B5."

Since this is not currently the case the person will notJUMP to

box B5, but will simply continue to open box B4 which contains:

"The value in boxH7 is larger than the value in box H8. STOP!

At this point the person has completed the instruction sequence

for this example. It should be noted, however, that box B5 did
contain the message:

21

"The value in box H7 is smaller than the value in box H8.

STOP!"

This little example of a person opening up boxes and following

the directions contained in each one is very similar to the concept

used by a computer. Note that each instruction is very short and

specific. Also note that the combination of all the instructions in the

example will result in the person being directed to solve the prob

lem:

"Is 1 +X greater than, less than, or equal to : 6 + Y?For the

reader can note, if the data words contained in boxes A2 and A5 for

the example were changed, the sequence of instructions would still

result in the person being told to STOP at the box that contained the

correct answer. The reader can verify this by simply assuming that

different numbers than those used in the example are in boxes A2

and A5 and going through the instruction sequence until told to

STOP.

The example illustrates how a carefully planned set of direc

tions, arranged such that they are performed in a precise sequence,

can be used to solve a problem even though the variables (data) in the

problem may vary. Such a set of instructions is often termed an

algorithm by those in the computer field. The example solved a

mathematical problem using the algorithm but the reader will find

that algorithms can be devised to solve many problems on a compu

ter that are not strictly mathematical!

Any person learning a new skill must of necessity learn the

vocabulary of the field in order to proceed to any great extent. You

might think that it would be easier if everything was written in plain

everyday words, but the truth of the matter is that specialized

vocabularies do serve several useful functions. For one thing, they

can greatly shorten the time that it takes to communicate ideas or

concepts. In today's fast-moving world, that is of significance in

itself. In addition, the limitations of the English language often result

in a given word having a special meaning when it is used in the

context of a particular subject. One must know the new meaning

when it is used in such a manner. Fortunately, much of the computer

vocabulary is very logically named. This is probably due partly to the

fact that computers are of necessity extremely dependent on logic,

and hence many persons who helped create the field—and by that

fact were rather logically oriented themselves—seem to have had

the logical sense to have named many of the parts and systems of

computers and computer programs, in a logical manner.

Figures 1-7 and 1-8 are used to demonstrate the analogy bet

ween the person taking instructions from a group of mail boxes and

the basic operation of a real minicomputer.

22

POST OFFICE BOXES

PERSON

PAD & PENCIL

A1

B1

C1

D1

El

F1

G1

HI

A2

B2

C2

D2

E2

F2

G2

H2

A3

B3

C3

D3

E3

F3

G3

H3

A4

B4

C4

D4

E4

F4

G4

H4

A5

B5

C5

D5

ES

F5

GS

H5

A6

B6

C6

D6

E6

F6

G6

H6

A7

B7

C7

D7

E7

F7

G7

H7

A8

B8

C8

D8

E8

F8

G8

H8

CENTRAL

PROCESSING

UNIT

MEMORY

ACCUMULATOR

Fig. 1-7. The computer structure compared to the Post Office pigeon holes.

23

Figure 1-7 shows the Post Office boxes, a figure representation

of a person who is able to fetch and return the instructions or data

from and to the boxes and a scratch pad on which the person can

make temporary calculations when directed to do so.

In Fig. 1-8 are three interconnected boxes which form a block

diagram fo a computer. The uppermost portion of the block diagram

is labeled the memory. The middle portion is labeled the central

processor unit or CPU for short. The lower part of the diagram

depicts an accumulator.

The correlation between the two pictures is extremely simple.

The Post Office boxes correspond to the memory portion of a real

computer. The memory is a storage place, a location where instruc

tions and data can be stored for long lengths of time. The memory

can be accessed. Instructions and/or data can be taken out of

memory, operated on and replaced. New data can be put into the

memory. A memory that can be readfrom as well as written into is

called a read and write memory. A read and write memory is often

referred to as anRAM as an abbreviation. Many times it is feasible to

have a memory that is only read from. A memory that is never

written into, but is only used to read from, is termed a read only

memory and is abbreviated as an ROM. For the present discussion

the term memory will refer to a read and write memory (RAM).

The figure of a person in Fig. 1-7 corresponds to the central

processor unit in Fig. 1-8. The central processor unit in a computer

is the section that controls the overall operation of the machine. The

CPU can receive instructions or data from the memory. It is able to

interpret the instructions it-fetches from the memory. It is also able

to perform various types of mathematical operations. It can also

return information to the memory—for instance make deposits of

data into the memory. The CPU also contains control sections that

enable it to sequentially access the next location in memory when it

has finished performing an operation, or, if it is directed to do so, to

access the memory at a specified location, or tojump to a new area in

memory from which to continue fetching instructions.

The pad ofpaper and pencil in Fig. 1-7 corresponds to the block

titled accumulator in Fig. 1-8. The accumulator is a temporary

register or manipulating area which is used by the CPU when it is

performing operations such as adding two numbers. One number or

piece of information can be temporarily held in it while the central

processor unit goes on to obtain additional instructions or data from

memory. It is an electronic scratch pad for the CPU.

The three fundamental units—the memory, central processor

unit and the accumulator—are at the heart of every digital computer

24

MEMORY

CENTRAL

PROCESSOR

UNIT

(CPU)

ACCUMULATOR

Fig. 1-8. Block diagram of a computer's fundamental components.

25

system. Of course, there are other parts which will be added in and

explained later, but these fundamental portions can be used to

explain the basic operation of a digital computer.

The reader should learn the names of the basic parts of the

computer as they are presented. Note how easy it is to remember

the portions that have been shown. The remembering element is a

memory. The portion that does the work or processing is simply

termed the central processor unity and the part that is used to

accumulate information temporarily is aptly called the accumulator*.

The reader should now have a conceptual view of the concept

behind a computer's operation and an understanding of the machine's

most basic organization. It is simply a machine that can fetch infor

mation from a memory, interpret the information as an instruction or

data, perform a very small operation and continue on to determine

the next operation that is to be performed. Each operation it is

capable of doing is very tiny by itself, but when the many operations

ofa typical program are performed in sequence, the solutions to very

complex problems can be obtained. It is important to remember that

the computer can perform each little operation injust a few millionths

of a second! Thus a program that might seem very large to a

person—say one with many thousands of individual instructions-

would only take a digital computer a few thousandths of a second to

perform. The speed with which the computer can execute individual

instructions is what gives the computer its seemingly fantastic capa

bility.

It is now time to start delving into the actual physical manner in

which a computer operates. How can a machine be constructed so

that it is able to perform the processes of the central processor unit?

While it will require a number of pages of text to explain the proce

dure, it is not nearly as difficult to understand as many people might

suspect. The complexity of a computer when first viewed by a

person is caused by the fact that it appears to consist of many

hundreds of parts. It becomes much simpler when one understands

that the hundreds of parts are really made up from a few dozen

similar parts and they are carefully organized into just a few major

operating portions. The reader is already familiar with the most

fundamental portions.

As fantastic as it may sound at first, a digital computer can be

thought of as really nothing more than a highly organized collection of

on or off switches. Yes, computers'are constructed from electronic

devices that can only assume one of two possible states. The

electronic switches can be constructed in a variety of ways. For

instance, the switch can be made so that the voltage at a given point

26

is either high or low, or current through a device is either flowing or

not flowing, or flowing in one direction and then the other direction.

But, regardless of how the electronic switch is constructed, its

status can always be represented as being eitheron oxoff. This on or

off status can be mathematically symbolized most suitably by a

mathematical system based on binary notation.

Some people tend to think that computers are very difficult to

understand because they have heard of strange types of mathema

tics that are often referred to in conjunction with computers. In

actuality much of the mathematics that are dealt with in computer

technology are much easier to understand and deal with than the

decimal system that the average person is familiar with. In the

decimal numbering system a person must learn 10 different sym

bols, and in order to manipulate those symbols, they must memorize

a lot of information. For instance, look at how students are taught to

multiply. The learning process actually involves the student having

to memorize a rather large number of facts. Because of the way it is

typically taught, most students never realize how much work they

have to go throughjust to learn the multiplication tables! The teacher

does not stand up and say, "OK, now you are going to memorize

about 100 facts." Instead, over a period of a few weeks or so, the

student is made to memorize the 100 or so facts—a few at a time.

The student must learn the value of each digit multiplied by all the

other digits in the decimal numbering system. The decimal number

ing system is far more complicated for the beginner than learning the

binary numbering system, and the binary numbering system is the

one utilized by computers at their most basic functioning level. The

reason the computer uses the binary system is because it is the

simplest system around and hence the easiest one with which to

construct a computing machine.

Readers know the word binary indicates two. Computers are
built up of electronic switches that can only have two possible states.

The switches are binary devices. The status of the switches can be
represented mathematically utilizing the binary numbering system.

The binary numbering system only has two digits in it. They are zero
(0) and one (1). A switch can thus be mathematically symbolized, for

instance, by a zero when it is offand a one when it is on. The opposite

relationship could also be established, a one could be used to repre

sent a switch being off and a zero used to represent a switch as on. It

would make no difference mathematically which convention was

used as long as one was consistent. For the purposes of the present

discussion, the reader can assume that the first convention (switch

off = 0, switch on = 1) will be used.

27

It should be immediately apparent that working with a number

ing system based on only two integers will be a lot easier than

working with one having 10 integer symbols. In fact, most problems

for people learning the binary system come about because they tend

to forget how simple it is, and they tend to keep going towards a
decimal solution out of habit when they are working with the binary

system. For instance, when one starts to add binary numbers, as

soon as the value 1 is exceeded, a carry to the next column must be

made. The value of the addition of 1 +1 in the binary system is: 10. It

is not 2. There is not such integer as 2 in the binary numbering

system. However, when a person who has worked with the decimal

system for years first starts working with the binary system, old

decimal habits tend to get in the way.

To formally introduce the binary mathematical system one can

start by stating that it uses two integers, zero (0) and one (1), and no

others. A binary number has a value determined by the value of the

integers that make up the number, and the position of the digits.

In the decimal numbering system, the reader is familiar with the

location of a digit having a weighted value as follows: A three digit

number has a value determined by the unit value of the digit in the

right-most column plus the value of the digit to the left of it multiplied

by 10, plus the value of the third digit mulitplied by one hundred as

illustrated in the following example:

The decimal number 345 is equal to:

5 units = 5

plus (+) 4 times 10 = 40

plus (+) 3 times 100 = 300

In other words, after the right-most column (which has the

value of the digit), each column to the left is given a weighting factor

which increases as a power of the total number of digits utilized by

the numbering system. Note that in this example the 4 representing

40 units is equal to 4 times the number of integer symbols in the

decimal system (10) because it is located in the second column from

the right. The number 3 representing 300 units is equal to 3 times

the number of integer symbols in the decimal system squared be

cause it is located in the third column from the right. This relation

ship of the weighted value of the digits based on their position can be

described in mathematical shorthand as follows:

If the number of different integer symbols in the numbering system

is U (for the decimal systemU = 10) and the column whose weighted

28

value is to be determined is column number M (starting with the

right-most column and counting to the left) and any digit is rep

resented by the symbol X, then the weighted value of a digit in

column M is expressed as: X times U raised to the power (M-l) or

The reader can easily verify that the above formula applies to

the decimal numbering system. However, the above formula is a

general formula that can be used to determine the weighted posi

tional value of any numbering system. It will be used to determine

the weighted positional values of numbers in the binary numbering
system.

In the binary numbering system there are just two different

integer symbols (0 and 1). Thus U in this formula is equal to 2. For

illustrative purposes assume the following binary number is to be
analyzed:

101

and it is desired to determine its value in terms of decimal numbers.

(Remember its binary value isjust 101), Using the above formula for
the digit in the right-most column: M is equal to 1, thus (M-l) is equal
to 0, and with X = 1:

Weighted Value = X. U(M1)

= 1.2° = 1

(Remember that any number raised to the zeropower is equal to 1.)
Going on to the next digit it can be seen that the weighted value is
simply 0! Finally, the digit in the third column from the right has the
weighted value because of its position:

Weighted Value = X.U(M1)

= 1.2f*l) = 22 = 4

Then, by adding up the sum of the weighted values (similar to that
done for the decimal example earlier) one can see that the decimal
equivalent of 101 binary is 5:

The binary number 101 is equal to:

1 units = 1

+ 0 times 2 = 0

+ 1 times 4 = 4

and thus 101 in the binary numbering system is the same as 5 in the
decimal numbering system.

29

There will be more to learn about the binary numbering system.

However, the brief information given will be enough to continue on

with the discussion that this section is primarily concerned with—

the basic operation of a computer. Since the reader is nowaware that

a computer is composed of numerous electronic switches and knows

that one can use a mathematical shorthand to represent the status of

the switches (whether they are on or off), and is also aware of the

fundamental concept behind a computer's operation, it is now possi

ble to proceed to show how electronic switches can be arranged to

build a functional computer. That is, how the electronic switches can

be arranged and interconnected in a fashion that will allow a machine

to fetch a piece of information from a memory section, decode the

information so as to determine an instruction, and also determine

where to obtain the next instruction or additional data.

To begin this part of the discussion it will be beneficial for the

reader to picture a group of cells (similar to the Post Office boxes

shown earlier) arranged in orderly rows as shown in Fig. 1-9. This

time, instead of each cell holding a complete instruction, it can be

understood that each cell only represents part of an instruction and

that it takes a whole row of cells to make up an instruction. Further

more, each cell may only contain the mathematical symbol for a one

(1) or a zero (0)—or, in other words, its contents represent the

status of an electronic switch.

At this time a few more computer technology definitions will be

illustrated in Fig. 1-9, each box containing a binary 1 or 0 represents

what is called a bit of information. While each cell may only contain

one piece ofinformation at a time, a cell can actually represent one of

two possible states of information. This is because the cell can be in

two possible states—it either contains a zero or a one. If one starts

assigning positional values to the cells in a row, it can be seen that the

total number of possible states in one row will increase rapidly. For

instance, two cells in a row can represent up to four states of
information. This is because two cells side-by-side, containing either

a 0 or 1 in each cell can have one of the following four states at a

particular moment in time: 10, 01,11 or 0 0. Three cells in a row can

represent up to eight states of information as the possible states of

three cells side-by-side are: 0 0 0,0 01,010,011,10 0,101,110,

111. In fact, when each cell can represent a binary number, the total

numberof states of information that a row of N cells can represent is:

2 to the Nth power, 2". Thus,. a row of eight binary cells can

represent 2 to the eighth (256) states of information! That is, the

combination of the eight cells can be filled with zeros and ones in 256

different patterns.

30

€
0

W
O
R
D

#
1

W
O
R
D
#
2

W
O
R
D
#
3

W
O
R
D
#
4

W
O
R
D
#
5

W
O
R
D
#
6

W
O
R
D
#
7

W
O
R
D
#
8

1 0 1 0 1 0 1 0

0 1 1 0 1 0 1 0

1 0 0 1 1 0 1 0

0 1 0 1 1 0 1 0

1 0 1 0 0 1 1 0

0 1 1 0 0 1 1 0

1 0 0 1 0 1 1 0

0 1 0 1 0 1 1 0

a
Fi
g.

1-
9.
A
n

a
r
r
a
y
of

el
ec

tr
on

ic
ce
lt
s,
8

bi
ts

p
e
r

ce
ll

.

A group (row) of cells in a computer's memory is often referred

to as a word. A word in a computer's memory is a fixed size group of

cells that are accessed or manipulated during one operational cycle of

the central processing unit (CPU). The CPU will effectively handle

all the cells in a word in memory simultaneously whenever it proces

ses information in the memory. Digital computers can have varying

word lengths depending on how they are engineered. Many mic

rocomputers have a memory word size consisting of eight cells. The

number of cells in a word, and the number of words in a computer's

memory have a lot to do with the machine's overall capability. In the

typical microcomputer system, the memory is available in

modules—groups of words which can be plugged into a common set

of wires in the system. With current LSI technology, a typical

module of moderate price has 1024 bytes in an 8-bit computer

system. With the 8008 oriented design serving as the basis for this

discussion, one could potentially plug in 16 modules for a total of

16,384 bytes or 131,072 bits. Thus, a large amount of information

can be stored in the computer's memory at any one time.

The astute reader may Rave already figured out a very special

reason for grouping cells into words in memory. It was pointed out

earlier that a row of eight ceHs could represent up to 256 different

patterns. Now, if each possible pattern could be decoded by elec

tronic means so that a particular pattern could specify a precise

instruction for the central processor unit, then a large group of

instructions would be available for use by the machine. That is

exactly the concept used in a digital computer. Patterns of ones and

zeros organized into a computer word are stored in memory. The

CPU is able to examine a word in memory and decode the pattern

contained therein to determine the precise operation that is to per

form. Most microcomputers do not decode every one of the possible

256 patterns that can be held in a row of eight cells as an instruction.

They have an instruction set of over 100 instructions which are

represented by different patterns of ones and zeros in an eight cell

memory word. Each pattern that represents an instruction can be

decoded by the CPU and will cause the CPU to perform a specific

function. Details of all the functions a computer can perform are

usually found-in the manufacturer's documentation.

There is another ingredient necessary for making the machine

automatic in operation. That is that the CPU must know where to

obtain the next instruction in memory after it completes an opera

tion. That function is greatly aided by having the memory cells

grouped as words. The reader should note that in Fig. 1-9 each

group of cells represents a word labeled as: "word #1," "word # 2"

32

etc. There is a special portion of the central processor unit that is

used to control where the next word containing an instruction in

memory is located. This special part is commonly referred to as the

program counter. One reason it was given the name program

counter is because most of the time all it does is count. It counts

memory words. Each word in memory is considered to have an

address. In Fig. 1-9 each word was given an address by simply

designating each word with a number. Word #1 has an address of 1.

Word #2 had an address of 2, etc. The program counter portion

of the CPU keeps tabs on where the CPU should obtain the next

instruction by maintaining an address of the word in memory that is

to be processed. About 90 percent of the time all the program

counter does is increment the value it has each time the CPU

finishes doing an operation. Thus, if the computer were to start

executing a simple program that began by its performing the instruc

tion contained in "word #1" in memory—the very process of having

the machine start the program at that location in memory would

cause the program counter to assume a value of 1. As soon as the

CPU had performed the function the program counter would incre

ment its value to 2. The CPU would then look at the program counter

and see that its instruction was located in word #2 in memory. When

the instruction in word #2 has been processed the program counter

would increment its value to 3. This process might continue uniter-

rupted until the CPU found an instruction that told it to STOP.

A sharp reader might be starting to ask, "Why have a program

counter if each instruction follows the next?" The answer is simply

that the availability of a program counter gives the freedom of not

having to always take the instruction at the next address in memory.

This is because the contents of the program counter can be changed

when the CPU detects an instruction that directs it to do so. This

enables the computer to be able tojump around to different sections

in memory, and as will become apparent later, greatly increases the

capability of the machine.

The program counter is actuallyjust a group of cells in the CPU

that may contain either a binary zero or one. The binary value in the

row of cells that constitute the program counter determines the

address of a word in memory. Since the number of words in memory

can be very large, and since the program counter must be capable of

holding the address of any possible location in memory, the number

of cells in a row in the program counter is larger than the number of

cells in a word in memory. In an 8008 oriented computer design, for

example, the number of cells in the program counter is 14. Since 2 to

the 14th power is 16,384, the program counter can present up to

33

16,384 different patterns. Each pattern can be used to represent the

address of a word in memory. Figure 1-10 illustrates what the

contents of the program counter would look like when it contained

the address for a specific word in memory. The address the example

displays is address 0. which can be considered the first word in

memory. The reader should note that an address of zero can actually

represent a word in memory.

Earlier it was stated that some instructions can actually change

the value of the program counter and thus allow a program tojump to

different sections in memory. However, the reader now knows that

a word in memory only contains eight cells, and yet the program

counter of an 8008 based computer contains eight cells, and yet the

program counter contains 14 cells. In order to change the entire

contents of the program counter (by bringing in words from mem

ory), it is necessary to use more than one memory word. This can be

done if the program counter is considered to actually be two groups

of cells connected together. One group contains eight cells and the

other six. In order to change the contents of the entire program

counter, one whole eight cell word could be read from a memory

location and placed in the right-hand group of eight cells of the

program counter. Then another eight cell word could be read from

memory. Since only six more cells are needed to finish filling the

program counter, the information in two of the eight cells from the

second word brought in from memory coould be discarded. If the

information in the two left most cells of the word in memory were

thrown away then the remaining six cells would contain information

that could be placed in the six unfilled locations in the program

counter. Most of the common eight-bit microcomputers use a similar

scheme of breaking an address into two pieces when the program

counter is loaded in a jump instruction.

In order to make it easier for a person working with the machine

to remember addresses of words in memory, a concept referred to

by computer technologists aspaging is utilized. Paging is the arbit

rary assignment of blocks of memory words into sections that are

referred to figuratively aspages. The reader should realize that the

actual physical memory unit consists of all the words in memory—

with each word assigned a numerical address that the machine

utilizes. As far as the machine is concerned, the words in memory

are assigned consecutive addresses from word #0 on up to the

highest word # contained in'the piemory. However, people using

computers have found it easier to work with addressed by arbitrarily

grouping blocks of words intq pages. For example in the Intel 8008,

pages are considered to be blocks of 256 memory words. The first

34

Fig. 1-10. The program counter of an 8008 based machine.

memory word address in an 8008 system is at address zero (0).

Programmers could refer to this word as word #0 on page #. The

256th word in memory as far as the computer is concerned has an

address of 255. (Note: Since the address of 0 is actually assigned for

the first physical word in memory, all succeeding words have an

address that is one less than the physical quantity. A programmer

could refer to this word as word #255 on page #0. The 257th word in

memory has an absolute address of256 ("n" th word minus one since

location 0 contains a memory word) as far as the machine is con

cerned, but a programmer could refer to that word location as being

on page #1 at location 0. Similarly, the 513th word in memory, when

the paging concept is used, becomes word #0 on page #2 for a

programmer—but it is just 512 as far as the machine is concerned.

Paging at multiples of 256 is a convenient tool when dealing with any
eight-bit microcomputer.

The reader might have noted a nice coincidence in regards to

the assignment of paging in eight-bit computers. Each page refers to

a block of memory words that contains 256 locations (0 to 255). The

reader will recall that that is exactly the number of different patterns

that can be specified by a group of eight binary cells, and there are

eight binary cells in a memory ward. The relationship is more than

coincidental. Note that now one has devised a convenient way for a

person to be able to think ofmemory addresses and at the same time

be able to specify a new address to the program counter that will still
result in it containing an absolute address that the machine can use.

For instance, if it was desired to change the contents of the 14 cell
program counter from an absolute address of word #0, say to word

#511, the following procedure could be used: The programmer

would first specify an instruction that the CPU would decode as

meaning change the value in the program counter. (Such an instruc

tion might be ajump instruction in the instruction set.) Following that

instruction would be a word that held the desired value of the low

order address or word # within a page. Since a memory word only

has eight cells, since eight cells, can'only represent 256 different
patterns and since one of the patterns is equivalent to a value of zero,

then the largest number the eight cells can represent is 255. How

ever, this is the largest word #°that is contained on a page. This

35

value can be placed in the right-most eight cells of the program

counter. Now it is necessary to complete the address by getting the

contents of another word from memory. Thus, immediately follow

ing the word that contained the low address would be another word

that contained the page # of the address that the program counter

was to contain. In this case the page number would be 1. When this

value is placed in the left six cells of the program counter, the

program counter would contain the pattern in Fig. 1-11.

If desired, the reader can verify by using the formula presented

previously for determining the decimal value ofa binary number, that

the pattern presented in Fig. 1-11 corresponds to 511, and thus, by

using the page # and word # on the page, each of which will fit in an

eight cell memory word, a method has been demonstrated that will

result in the program counter being set to an absolute address for a

word in memory. Figure 1-12 provides some examples as a sum

mary.

By now the reader should have a pretty good understanding of

the concepts regarding the organization of memory into electrical

cells which can be in one of tWb possible states, the grouping of these

cells into words which can hold patterns which the CPU can recog

nize as specifying particular operations and the operation of a pro

gram counter which is able to hold the address of a word in memory

from which the CPU is to obtain an instruction.

It is now time to discuss the operation of the "scratch pad" area

for a computer—the accumulator and some additional manipulating

registers in the typical 8008 based computer.

As was pointed out earlier, there is a section of a computer that

is used to perform calculations in and which can hold information

while the CPU is in the process of fetching another instruction from
the memory. The portion was termed an accumulator because it

could accumulate information obtained from the CPU performing a

series of instructions until such time as the CPU was directed to
transfer the information elsewhere (or discard it). The accumulator

is also considered to be the primary mathematical center for compu

ter operations for it is the place where additions, subtractions and
various other mathematically oriented operations (such as Boolean

algebra) are generally performed under program control.
The concept of an accumulator is not difficult to understand and

its physical structure can be readily explained. The actual control of
an accumulator by the CPU can bequite complex, but these complex

electronic manipulations do not have to be understood by the compu

ter user. It is only necessary.to know the end results of the various

operations that can be performed within an accumulator.

36

n

13 12 II 10 9 I 0

0 0 0

Fig. 1-11. The program counter with address 511 represented in binary notation.

The accumulator in an Intel 8008 based machine can be consi
dered as a group of eight memory cells similar to a word in memory

except that the information in the cells can be manipulated in many

ways that are not directly possible in a word in memory.

Figure 1-13 shows a collection of eight binary cells containing

ones and zeros to represent an accumulator. The cells are numbered

from left to right starting with B7 down to BO. The designations refer

to bitpositions within the accumulator. Note that the right-most cell

is designated BO and the eighth cell (left-most cell) is designated B7.
The reader should become thoroughly familiar with the concept of
assigning the reference of zero to the right-most bit position in a row

of cells (similar to the concept of assigning a reference of zero to the

first address of a word on a page in memory) as the convention is

frequently used by computer technologists. The convention can be
confusing for the beginner who fails to remember that the physical

quantity is one more than the reference designation. The convention

oflabeling the first physical position as zero makes much more sense

once the reader learns to think in terms of the binary numbering

system and thoroughly realizes that the zero referred to so fre

quently in computer work when discussing actual operations actually

represents a physical state (the status of an electronic switch) and

does not necessarily imply the mathematical notion of nothing. The

concept of assigning a bit designation to the positions of the cells

within the accumulator will allow the reader to follow explanations of

various accumulator operations.

One of the most fundamental and most often used operations of

an accumulator is for it to simply hold a number while the CPU

obtains a second operator. In an 8008 type of machine the ac

cumulator can be loaded with a value obtained from a location in

memory or one of the partial accumulators. It can then hold this value

until it is time to perform some other operation with the ac

cumulator. (It will become apparent later that the accumulator of an

8008 can also receive information from external devices.)

Perhaps the second most -often used operation of an ac

cumulator is to have it perform mathematical operations such as

addition or subtraction with the value it contains at the time the

function is performed and the contents of a memory location or one

37

1

0

1 0 1 1

0
1

1 0
1

0 0 0

0

P
A
G
E
=
O

i
i

0
0

0
0

0
0

A
B
S
O
L
U
T
E
A
D
D
R
E
S
S

I
N
T
H
E

P
A
G
E
=
0

1
I

0
0

0
0
1
1

A
B
S
O
L
U
T
E
A
D
D
R
E
S
S

I
N
T
H
E

P
A
G
E
^
1

i
i

0
0

0
1
0

0

W
O
R
D
=
O

0
0

0
0

P
R
O
G
R
A
M
C
O
U
N
T
E
R

W
O
R
D

=
2
5
5

1
1
1
1

P
R
O
G
R
A
M
C
O
U
N
T
E
R

W
O
R
D
=
0

0
0

0
0

A
B
S
O
L
U
T
E
A
D
D
R
E
S
S

I
N
T
H
E
P
R
O
G
R
A
M
C
O
U
N
T
E
R

P
A
G
E

=
1

W
O
R
D

=
M

0
0

0
1
0

0
0

0
0

0

A
B
S
O
L
U
T
E
A
D
D
R
E
S
S

I
N
T
H
E
P
R
O
G
R
A
M
C
O
U
N
T
E
R

0 1 0

0

0

i

1

i

0

\

1

1
S
T
P
H
Y
S
I
C
A
L
W
O
R
D

I
N

M
E
M
O
R
Y
H
A
S
A
N
A
B
S
O
L
U
T
E

A
D
D
R
E
S
S
O
F
:

0

2
5
6
t
h
P
H
Y
S
I
C
A
L
W
O
R
D

I
N

M
E
M
O
R
Y
H
A
S
A
N
A
B
S
O
L
U
T
E

A
D
D
R
E
S
S
O
F
:

2
5
5

2
5
7
t
h
P
H
Y
S
I
C
A
L
W
O
R
D

I
N

M
E
M
O
R
Y
H
A
S
A
N
A
B
S
O
L
U
T
E

A
D
D
R
E
S
S
O
F
:

2
5
6

2
5
8
t
h
P
H
Y
S
I
C
A
L
W
O
R
D

I
N

M
E
M
O
R
Y
H
A
S
A
N
A
B
S
O
L
U
T
E

A
D
D
R
E
S
S
O
F
:

2
5
7

C
O

C
O

0 0
1

0

r
~ 0

1

0 0 0 0

P
A
G
E
=
1

W
0
R
D
=
2

0
0
0
1
0
0
0
0
0
0

A
B
S
O
L
U
T
E
A
D
D
R
E
S
S

I
N
T
H
E
P
R
O
G
R
A
M
C
O
U
N
T
E
R

P
A
G
E
=
1

W
O
R
D

=
2
5
5

0
0

0
1
1
1
1
1
1
1

A
B
S
O
L
U
T
E
A
D
D
R
E
S
S

I
N
T
H
E
P
R
O
G
R
A
M
C
O
U
N
T
E
R

P
A
G
E
=
2

W
O
R
D
=
0

t
i

0
0

1
0

0
0

0
0

0
*
0

A
B
S
O
L
U
T
E
A
D
D
R
E
S
S

I
N
T
H
E
P
R
O
G
R
A
M
C
O
U
N
T
E
R

P
A
G
E
=
3

W
O
R
D
=
2
5
5

0
0
1
1
1
1
1
1
1
1

A
B
S
O
L
U
T
E
A
D
D
R
E
S
S
I
N
T
H
E
P
R
O
G
R
A
M
C
O
U
N
T
E
R

1 1 0r
.

1

0

i

1

i

0 I

2
5
9
t
h
P
H
Y
S
I
C
A
L
W
O
R
D

I
N

M
E
M
O
R
Y
H
A
S
A
N
A
B
S
O
L
U
T
E

A
D
D
R
E
S
S
O
F
:

2
5
8

5
1
2
t
h
P
H
Y
S
I
C
A
L
W
O
R
D

I
N

M
E
M
O
R
Y
H
A
S
A
N
A
B
S
O
L
U
T
E

A
D
D
R
E
S
S
O
F
:

5
1
1

5
1
3
t
h
P
H
Y
S
I
C
A
L
W
O
R
D

I
N

M
E
M
O
R
Y
H
A
S
A
N
A
B
S
O
L
U
T
E

A
D
D
R
E
S
S
O
F
:

5
1
2

1
0
2
4
t
h
P
H
Y
S
I
C
A
L
W
O
R
D

I
N

M
E
M
O
R
Y
H
A
S
A
N
A
B
S
O
L
U
T
E

A
D
D
R
E
S
S
O
F
:

1
0
2
3

Fi
g.

1-
12
.
E
x
a
m
p
l
e
s

of
a
d
d
r
e
s
s
e
s

in
a
n
8
0
0
8
b
a
s
e
d
s
y
s
t
e
m
.

B7 B6 B5 B4 B3 B2 B1 BO

1 0 1 0 1 0 1 0

Fig. 1-13. The accumulator, pictured with binary 10101010 (decimal value 160)

in its 8 bits.

of the partial accumulators. Thus if the accumulator contained the

binary equivalent of the decimal number 5, and an instruction to add

the contents of a specific memory location which contained the

binary equivalent of the decimal number 3 was encountered, the

accumulator would end up with the value of8 in binary form as shown

in Fig. 1-14.

Perhaps the next most frequently used group of operations for

the accumulator is for it to perform Boolean mathematical operations

between itself and/or other partial accumulators or words in mem

ory. These operations in the typical microcomputer include the

logical and, or and exclusive or operations.

Another important capability of the accumulator is its ability to

rotate its contents. In an 8008, as in many micros, the contents of

the accumulator can be rotated either to the right or left This

capability has many useful functions, and is one method by which

mathematical multiplication or division can be performed. Figure

1-15 illustrates the concept of rotating the contents of the ac

cumulator.

The astute reader may notice that the accumulator rotate

capability also enables the accumulator to emulate a shift register

which can be a valuable function in many practical applications of the

computer.

The accumulator serves another extremely powerful function.

When certain operations are performed with the accumulator the

computer is capable of examining the results and will thensrf or clear

a special group offlags. Other instructions can then test the status of

the special flags and perform operations based on the particular

setting(s) of the flags. In this manner the machine is capable of

modifying its behavior when it performs operations depending on the

results it obtains at the time the operation is performed!

In an 8008 based computer, there are four special flags which

are manipulated by the results of operations with the accumulator

(and in several special cases by operations with partial accum

ulators). These four flags will-be described in detail. Other micros

have similar condition flags.

40

B
7

0 0
»

-

0

B
6

0 0 0

B
5

0 0 0

B
4

0 0 0

B
3

0 0 1

B
2

1 0 0

B
1

0 1 0

B
O

1 1

9

0

,
O
R
I
G
I
N
A
L
C
O
N
T
E
N
T
S

O
F
T
H
E
A
C
C
U
M
U
L
A
T
O
R

C
O
N
T
E
N
T
S
O
F
T
H
E

S
P
E
C
I
F
I
E
D
W
O
R
D

I
N

M
E
M
O
R
Y

F
I
N
A
L
R
E
S
U
L
T
S
A
F
T
E
R

T
H
E
A
D
D
I
T
I
O
N

I
N
T
H
E

A
C
C
U
M
U
L
A
T
O
R

-k
R
g
.

1-
14

.
A
d
d
i
n
g
th

e
co

nt
en

t
of

a
m
e
m
o
r
y
w
o
r
d

to
th

e
ac
cu
mu
la
to
r.

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
O

0
0

0
0

0
0

1
0

0
0

0
0

0
1

0
0

O
R
I
G
I
N
A
L
C
O
N
T
E
N
T
S
O
F
T
H
E

A
C
C
U
M
U
L
A
T
O
R
(
E
Q
U
A
L
T
O

D
E
C
I
M
A
L

2
)

R
E
S
U
L
T
W
H
E
N
T
H
E
A
C
C
U
M
U

L
A
T
O
R

I
S
R
O
T
A
T
E
D
T
O
T
H
E

L
E
F
T
O
N
E
T
I
M
E
(
V
A
L
U
E
N
O
W

E
Q
U
A
L

4
)

0
0

0
0

0
0

0
1

R
E
S
U
L
T
W
H
E
N
T
H
E
A
C
C
U
M
U

L
A
T
O
R

I
S
N
O
W
R
O
T
A
T
E
D
T
O

T
H
E
R
I
G
H
T
T
W
O
T
I
M
E
S
(
V
A
L
U
E

N
O
W
E
Q
U
A
L

1)

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

N
O
T
E
T
H
A
T

I
F
A
R
O
T
A
T
E

R
I
G
H
T
C
O
M
M
A
N
D

I
S
D
O
N
E

A
G
A
I
N
T
H
A
T
T
H
E
"
1
"
I
N

P
O
S
I
T
I
O
N
B
0
W
I
L
L
A
P
P
E
A
R

A
T
B
7

!!

A
N
D
T
H
A
T
N
O
W
A
R
O
T
A
T
F

L
E
F
T
C
O
M
M
A
N
D
W
O
U
L
D

R
E
S
T
O
R
E
T
H
E
'
T
'
l
N

P
O
S
I
T
I
O
N
B

7
B
A
C
K
T
O
B
0

!

Fi
g.

1
-
1
5
.
R
o
t
a
t
i
n
g
t
h
e
c
o
n
t
e
n
t
o
f
t
h
e
a
c
c
u
m
u
l
a
t
o
r
.

The carryflag can be considered as a one bit (cell) extension of

the accumulator register. This flag is changed if the contents of the

accumulator should overflow during an addition operation (or under

flow during a subtraction operation). Also, the carry bit can be

utilized as an extension of the accumulator for certain types of rotate

commands.

The signflag is set to a logic state of 1 when the most significant

bit (MSB) of the accumulator (or partial accumulator) is a 1 after

certain types of instructions have been performed. The name of this

flag derives from the concept of using two's complement arithmetic

in a register where the MSB is used to designate the sign of the

number in the remaining bit positions of the register. Con

ventionally, a 1 in the MSB designates the number as a negative

number. If the MSB of the accumulator (or partial accumulator) is 0

after certain operations, then the sign flag is zero (indicating that the

number in the register is a positive number by two's complement

convention).

The zero flag is set to a logic state of 1 if all the bits in the

accumulator (or partial accumulator) are set to zero after certain

types of operations have been executed. It is set to 0 if any one of the

bits is a logic one after these same operations. Thus the zero flag can

be utilized to determine when the value in a particular register is

, zero.

Theparityflag is set to a 1 after certain types of operations with

the accumulator (or partial accumulators) when the number of bits in

the register that are a logic one is an even value (without regard to

the positions of the bits). The parity flag is set to 0 after these same

operations if the number of bits in the register that are a logic one is

an odd value (1, 3, 5 or 7). The parity flag can be especially valuable

when data from external devices is being received by the computer

to test for certain types of transmission errors on the information

being received.

In addition to the full accumulator previously discussed there

are six other 8 bit registers in the Intel 8008 computer referred to as

partial accumulators because they are capable of performing two

special functions normally associated with an accumulator (in addi

tion to simply serving as temporary storage registers). The full

accumulator is often abbreviated as ACC ovregisterA. The six partial

accumulators will be referred to as registers B, C, D, E, H andL.

Registers B, C, D, E, H and! of an 8008 are all capable, upon

being directed to do so by a specific instruction, of either increment

ing or decrementing their contents by one. This capability allows

them to be used as counters andpointers which are often of tremend-

44

ous value in computer programs. What makes them especially valu

able in 8008 architecture is that when their contents are incremented

or decremented the immediate results of that register will affect the

status of the zero, sign and parity flags. Thus it is possible for the

particular contents of these registers to affect the operation of the

computer during the course of a programs operation and they can be

used to guide or modify a sequence of operations based on conditions

found at the actual time a program is executed.

It should be noted that registers B, C, D, E, H and L are capable

of being incremented and decremented—but the full accumulator—

register A—cannot perform those two functions in the same man

ner. The full accumulator can be incremented or decremented by

any value by simply adding or subtracting the desired value. There is

not, however, a simple increment or decrement by one instruction

for use with the full accumulator of an 8008.

Two of the partial accumulators, registers H and L, serve an

additional purpose in the 8008 computer CPU. These two registers

can be used to directly/wmf to a specific word in memory so that the

computer may obtain or deposit information in a different part of

memory than that in which a program is actually being executed. The

reader should recall that a special part of the central processor unit

(CPU) termed the program counter is used to tell the computer

where to obtain the next instruction while executing a program. The

program counter was effectively a double word length register that

could hold the value of any possible address in memory. The prog

ram counter is always used to tell the machine where to obtain the

next instruction. However, it is often desirable to have the machine

obtain some information such as a data word, from a location in

memory that is not connected with where the next instruction to be

performed is located. This can be accomplished by simply loading

register H with the high address page (portion) of an address in

memory, then loading register L with the low address portion of an

address in memory, and then utilizing one of a class of commands

that will direct the CPU to fetch information into the location in

memory that is specified (pointed to) by the H and L register

contents. This information flow can be from or to the location

specified in memory and any of the CPU registers.

At this time it would be beneficial for the reader to study Fig.
1-16. It is an expanded block diagram of Fig. 1-8 and shows the units

of the computer which have been presented in the previous several
pages.

Until now no mention has been made of how information is put

into or received from a computer. Naturally, this is a very vital part

45

ofa computer because the machine would be rather useless if people

could not put information into the machine upon which calculations or

processing could be done, and receive information back from the

machine when the operations had been performed.

Communications between the computer and external

devices—whether those devices be simple switches, or transduc

ers, or teletype machines, or cathode-ray-tube display units, or

keyboards, or mag-tape and disk systems—or whatever, are com

monly referred to as input/output operations and are collectively

referred to in abbreviated form as I/O transfers.

In the Intel 8008 computer designs all 1/0 transfers are typically

made between external 1/10 ports (which connect to external de

vices via appropriate electronic connections) and the full ac

cumulator in the computer. This 1/0 structure means that a whole

group of devices can be simultaneously hooked up to the computer

and the computer used to receive information to a variety of devices

as directed by a program. A special set of commands is used to

instruct the computer as to which 1/0 port is to be operated at any

particular instant. With appropriate programming it is then possible

to have the computer communicate with a large variety ofdevices in

an essentially automatic mode—for instance receiving information

from a digital multimeter at specified times, then possibly perform

ing some averaging calculations and then outputting results to a

teletype machine without human intervention. Or, in other applica

tions, information from a human operator can be typed into the

machine using a typewriter-like keyboard. In its simplest form, a

group of switches can be used as aninput device and a group oflamps

used as an output device for the computer!

However, a more sophisticated system used in many applica

tions would be to use a teletype machine or a combination of a

keyboard and a cathode-ray-tube (CRT) display attached to input

and output ports to serve as the primary means of 1/0. A person can

thus type information on the keyboard which will pass it into the

computer, and the computer can display the results of its opera

tions on the CRT display (which can, incidentally, be made from an

ordinary oscilloscope and a special CRT interface unit).

Perhaps the most wonderful and exciting aspect about a digital

computer is its tremendous versatility. It has been said that the

computer is the most versatile machine in existence and that its

applications are limited only by man's ability to develop programs

that direct the operation of the machine. It is undoubtedly one of the

best machines for allowing man to exercise and test his creative

powers through the development of programs that direct the

46

0

0

0

1

0

1

1

REG

REG

MEMORY

1 0

0 0

0 0

1 0

0 1

1 1

1 1

0 0

0 0

0 0

0 0

1 0

1 1

1 1

1

0

0

1

0

0

1

PROGRAM COUNTER

CENTRAL

PROCESSOR

FLAGS: "C.

UNIT

""Zf""S

REGISTER "A*

REGISTER "B1

REGISTER "C

REGISTER D'

REGISTER E'

0

0

0

1

0

0

1

.p..

0

0

1

1

1

0

1

•Hfl & MEMORY PAGE POINTER

"LM & LOW ADDRESS POINTER

WORD = 1 AT PAGE 0 LOC 0

WORD -2 AT PAGE 0 LOC 1

WORD =3 AT PAGE 0 LOC 2

WORD ~X AT PAGE Y LOC Z

AN 8008

CPU WITH

PROGRAM COUNTER

AND REGISTER STATUS FLAGS

= FULL ACCUMULATOR

= PARTIAL ACCUMULATOR

= PARTIAL ACCUMULATOR

= PARTIAL ACCUMULATOR

= PARTIAL ACCUMULATOR

= PARTIAL ACCUMULATOR

= PARTIAL ACCUMULATOR

Fig. 1-16. The block diagram of Fig. 1 -8 filled in with the designations for an Intel
8008 computer.

47

machine to perform complex operations that can not only control

other machines, or perform calculations many times faster than

humanly possible, but because it can be used to simulate or model

other systems that it might be impractical to build for purely experi

mental purposes. Thus man can create a model in a computer

program and actuallyplay with the synthetic model without actually

building the physical device.

The computer's great versatility comes about because the

machine is capable of executing a large group of instructions in an

essentially limitless series of combinations. These series on instruc

tions are stored in the memory bank(s) of the computer and a new

series of instructions can be placed in the memory bank(s)

whenever desired. In fact, the memory bank(s) can often hold

several completely unrelated programs in different sections and thus

one can have a machine that performs totally unrelated tasks simply

by pushing a few buttons and thereby directing the machine to start

executing a new program in a different section of memory.

Who Uses Computers

The digital computer is capable of providing services to people

from all walks of life. A person need only choose (or develop)

programs and connect external instruments that will provide the

capabilities desired.

For instance, a scientist might put a mathematical calculator

program into the computer's memory and use the computer as a

sophisticated electronic calculator by using a calculator-type

keyboard as an input device and a CRT display as an output device on

which to receiye the answers to complex mathematical calculations

which the computer performs. After using the computer as a cal

culator for a period of time, the scientist might decide to utilize the

same computer to automatically record data from instruments dur

ing an experiment. By simply putting a different program in the

computer's memory and plugging some peripheral measuring in

struments into the computer's 1/0 ports, the scientist could have the

computer periodically make measurements while he went out to

lunch and save the results in its memory. After lunch the scientist

could have the computer tabulate and present the data obtained from

the experiment in compact form. Then, by merely putting a different

program in the memory, the scientist could have the computer help

him set up and arrange a reference file all sorted into alphabetical

order or any manner that would enable him to use the computer to

extract information far faster than a manually operated paper file

card system.

48

So the computer can be a valuable tool for a scientist; but, the

same machine with a different program in its memory (and possibly

different peripheral devices) could be used to control a complex

manufacturing operation such as a plastic injection molding machine.

In such a case 1/10 units that coupled to transducers on the injection

molding machine might be used to relay information to the computer

on a variety of parameters such as temperature of the plastic in the

feed barrel, amount of feed material in the hopper and injection

barrel, available pressure to the mold jaws and feed barrel, vacancy

or filled status of the mold and other useful parameters. The compu

ter could be programmed to analyze this information and send back

signals to control the operation of heaters, pressure valves, the feed

rate of raw materials, when to inject plastic into the mold, when to

empty the mold and other operations to enable the plastic injection

system to operate in an essentially automatic mode.

Or, a business man could use the same computer connected to

an electric typewriter, with a suitable program in memory, to com

pose, edit and then type out personalized form letters by directing

the computer to insert paragraphs from a bank of standard para

graphs so as to form a personalized customer answering system that

would handle routine inquiries in a fraction of the time (and cost) that

it would take a secretary to prepare such letters. Or, the

businessman might utilize the computer to help him control his

inventory, or speed up his accounting operations.

However, a computer that costs as little as the typical micro

system does not have to be restricted to a business or scientific

environment. The computer that can do all the types of tasks

mentioned above can also be used to have fun with, or to perform

valuable services, to private individuals.

The computer can be used as a sophisticated electronic cal

culator by almost anyone. It can be used to compose letters (using an

editor program) by virtually anyone. Programs that sort data al

phabetically or in various other categories can be of valuable service

to people in many applications. The computer can be used to monitor

and control many household items, serve as a security monitoring

system, be connected to devices that will dial telephones and do

thousands of other tasks.

The electronic hobbyist can be kept occupied for years with a

digital computer. For instance, one c$n build a little test instrument

that plugs into a few 1/0 ports on'the computer, then load programs

into memory that will direct the computer to automatically test

electronic components (such as complex TTL integrated circuits) in

a fraction of a second! (Businesses can do this too!)

49

Or a ham radio operator can put a program into memory that will

enable the computer to receive messages typed in from a keyboard,

convert the messages to Morse code and then actuate an oscillator

via an output port to send perfectly timed Morse code. In addition,

the ham radio operator might use the computer with an appropriate

program to serve as a contest logging aid. The logging aid would

serve as an instant reference file whereby the operator could enter

the calls of stations as they were worked and have the computer

verify if the contact was a duplicate. The computer could do other

tasks too, such as record the time of the contact by checking an

external digital clock (or by utilizing a program that would enable the

computer to be used as a clock within itself)!

And, the computer can be used to play numerous games with,

such as tic-tac-toe, checkers, word games, card games and a large

variety of other types of games that one can program a computer to

perform.

And perhaps most important—for the student, hobbyist, scien

tist, businessman or anyone interested in the exciting possibilities of

its applications—the contemporary microcomputer offers unlimited

possibilities for the expression of individual creativity. For the de

velopment of computer programs can be extremely creative, excit

ing and personally rewarding pastime and offers essentially limitless

ways to exercise one's creative capabilities in developing algorithms

that will enable the machine to perform desired tasks.

Number Systems

Have you ever wondered about the term binary number. Since

we already have a perfectly good decimal number system, why

complicate things with another? If you have a few minutes, here is

your chance to learn more about number systems than you ever

wanted to know.

One of the most important achievements in the development of

science has undoubtedly been the invention of our decimal number

system. Counting in units of 10 must certainly be due to the fact that

man has 10 fingers. In some cases, some people have counted in

units of five or 20, which correspond to the use of one hand or ofboth

hands and both feet.

The main use ofnumbers in early times was for simple counting

and record keeping. The numeration methods were designed chiefly

for those purposes. With the development of trade and the sciences,

the numeration became more and more inadequate. It took a long

time before an adequate number system was devised. The Greeks

50

and the Romans did not succeed in this endeavor even though they

achieved a rather high development in science. Just imagine per

forming simple arithmetic with Roman numerals, like dividing

MMDXLVI by CCIX using Roman numerals only. About 600

hundred years ago any simple operations like multiplication and

division of large numbers required the services of an expert.

The Hindus and the Arabs are credited with the concept of

positional value and the use of the zero, which are explained as

follows. Consider the number 74638. We understand this to mean 7

x 10,000 + 4 x 1,000 + 6 x 100+3 x 10 + 8 x 1. In the following

numbers, the 4 has different values depending on its position:

42,000, 240, 324. In the first number 4 is equal to 40,000, in the

second its value is 40 and in the last just 4. Without a 0 to place in

some of the positions, how would you write three hundred and six if

every position had to have a number? Use of the concept of zero

enables us to write 306.

The positional values of the base ten number system are as
follows:

10310210110°. 10-1.10-2 lO"3

You will note that in each case the value of the position is the radix

(10) raised to some power. It is necessary to go to the right of the

radix point (decimal point) in order to express fractional numbers.

The general expression for a number is then:

N = 0i (r)n2 + 02 (rT3 + 03 (r)*4 + 04 (r)n5

In the above expression r is the radix or number base and the a
values are the position numbers. In order to have a base ten number

system that will translate most practical numbers we would have to

make n = 5. Using the arbitrary number 2307.602 as an example,
and making n = 5, we derive:

2 (103) + SdO2) + 0Q01) +7(lOo) + 6(10-0 + 0Q0-2) +2 (10-3)

Note that any number raised to the zero power is equal to one (i.e.,
lOo = 1).

Now we can calculate the positional values for the binary (base

two) number system. They are as follows:

2° = 1 , '

21 = 2

22 = 4

23 == 8

51

24 =

25 =

26 =

2' =

2» =

29 =

21U =

2-1

2"2

2"3

2"4
2-5

2-6

2-'
2-8

2-io

2-io

We

16

32

64

128

256

512

= 1024

= .5

= .25

= .125

=.0625

=.03125

=.015625

= .0078125

=.00390625

=.001953125

=.0009765625

now have the conversion factors necessary to convert a binary

number to a decimal number.

Let's consider the base two number 0011100.0 and calculate its

decimal equivalent.

0

0

1

1

1 X

0

0

x 1 =

x2 =

x4 =

x8 =

16 =

X 32 :

x 64^

= 0

= 0

= 4

= 8

16

= 0

= 0

28 (base 10) = 0011100.0

(base 2)

It may not have been apparent from the preceding, but the fact

is that binary numbers are made up of Is and 0s only. If we were to

design an electronic computer or calculator to use the decimal

number system, we would find that the decimal number system was

capable of the high speeds that are necessary—but it would be very

difficult to provide ten stable states so that the computer could
handle the decimal numbers. Fortunately, any number can be rep

resented in the binary number system, so computers are designed

to use it.They might also use the base eight or base sixteen number

systems, since these have similar properties.

Electronic circuits have "been devised that will add, subtract,

multiply and divide in the binary number system.

52

T
l

1
1
7
V

D
I
O
D
E
B
R
I
D
G
E

5
V

R
E
G
U
L
A
T
E
D

O
U
T
P
U
T

.♦
~

j[
L
M
3
0
9
K

h
S
V
R
E
G
U
L
A
T
O
R

|
T

t

C
2

I
O
O
/
i
F

I
5
V

C
A
S
E

C
O
N
N
E
C
T
E
D
T
O
G
R
O
U
N
D

R
g

1-
17
.
Si

mp
le

po
we

r
su
pp
ly
.
T1

:1
2V

,
1
A

(P
ol

y
Pa

ks
92

CU
24

74
,
$2
.9
5)
.
Di
od
e
br

id
ge

:
2
A,

5
0
V
ep

ox
y
(P

ol
y
Pa

ks
9
2
C
U
1
3
4
6
,
$.

69
).
C
1
:
3
5
0
0

8
su

pp
Ty

pa
Xc

os
?^

??
7

$'
?9

)'
°2

''
1°

°
mF

>
15

V
DC

(J
am

es
El

ec
tr

on
ic

s.
$-

24
)-
LM
30
9K
:
5V

re
gu
la
to
r(

Po
ly

Pa
ks

,$
1.
50
).

To
ta
lp

ow
er

Just to stimulate your interest in the binary number system,

let's try working a problem. First we need to know that in the binary

system 1 + 1 = 0 plus a carry. The carry is into the next position (or

21) so that properly 1 +1 = 10. This happens in the decimal system

also; for example, 9 + 9 = 8 plus a carry into the 10* column, so that 9

+ 9 = 18. Now let's try out your new understanding of number

systems on this little problem. Calculate the first five positional

values to the left of the radix point in the base eight number system

(remember, 8° + 1). Then calculate the decimal equivalent of the

octal number 40. The answers follow the references. (Answers: 1,

8, 64, 512, 4096; 32.)

How Computer Arithmetic Works

The easiest and most inexpensive way to get started in com

puters is to begin with inexpensive, easy to use, fundamental build

ing blocks. These fundamental blocks can be used initially for educa

tional purposes to promote understanding and confidence, and later

combined to form a fundamental computer.

The arithmetic logical unit (ALU) is a fundamental part of a

typical computer system. Th§ ALU is inexpensive, is easy to use

and may be operated independently or in conjunction with other

devices. The ALU will be a stand-alone device in order to de

monstrate computer operations such as addition, subtraction and

complement. All necessary details and related information are given

so that the experimenter can learn fundamental computer arithme

tic.

The dollar outlay required to procure the parts and equipment

needed to perform the experiments given in this section should be

less than $12, not counting a breadboard or PC board.

The Parts and Equipment

The parts and equipment needed to perform these experiments

are as follows:

• 1—5V power supply

• 1—74181 integrated circuit

• 1—breadboard, perforated board, or homemade PC board

• 1—voltmeter or four LEDs

A 5V power supply may be purchased in kit form from James

Electronics for $9.95, or a wired "and tested supply may be pur

chased from Micro Digital Corp., for $24.50. A 5V power supply

may be built in breadboard fashion, for about $6.00, by using the

circuit described in Fig. 1-17.

54

81

D
A
T
A
I
N
P
U
T
S

<

F
U
N
C
T
I
O
N

S
E
L
E
C
T

J
I
N
P
U
T
S

I

I
N
V
E
R
T
E
D
C
A
R
R
Y

I
N
P
U
T

'
M
O
D
E
C
O
N
T
R
O
L
I
N
P
U
T r

f
u
n
c
t
i
o
n

)
o
u
t
p
u
t
s
]

r

3
B
O

D
a
o

D
S
3

D
S
2

D
s
i

D
s
o

D
c
n

D
M

D
F
O

D
f
i

D
g
n
i

PI
N
NO
.
^
*

1 2 3 4 5 6 7 8 9 1
0 II

>
1
2

"
H
P
I
N
N
t

2
4

2
3 CM-OCMCMM1
9 1
8

-
1
7

1
6

1
5

1
4

1
3

V
C
C
C

A
l
C

B
l
C

A
2
C

B
2
C

A
3
C

B
3
C

•
6

C

C
N
+
4
C

P
C

a
«
b
C

F
3

C

♦
5
V
R
E
G
U
L
A
T
E
D

V

>
D
A
T
A

I
N
P
U
T
S

C
A
R
R
Y
G
E
N
E
R
A
T
E

O
U
T
P
U
T

I
N
V
E
R
T
E
D
C
A
R
R
Y
O
U
T
P
U
T

C
A
R
R
Y
P
R
O
P
A
G
A
T
E
O
U
T
P
U
T

C
O
M
P
A
R
A
T
O
R
O
U
T
P
U
T

-
F
U
N
C
T
I
O
N
O
U
T
P
U
T

Fi
g.

1
-
1
8
.
7
4
1
8
1

p
i
n
c
o
n
n
e
c
t
i
o
n
s
.

I.6K 2I.6K ?I.6K SI.6K

ED MARKER THIS

END

LIGHT EMITTING

DIODES

Fig. 1-19. LED readouts. LEDs are Poly Paks 92CU1790 low current LED

MV-55.

The 74181ALU is available from many sources, such as Poly

Paks, James Electronics, International Electronics Unlimited and

others, for less than $4.00. An illustration of the pin and chip layout is

shown in Fig. 1-18.

The user may etch his own PC board or may use perforated

board if he wishes; however, a universal breadboard such as a

Continental Specialties QT-59S ($12.50) or AP Products 923261

Terminal Strip ($12.50) will make things a lot easier. With the

universal breadboard, no soldering is required, as all connections are

made with #22 AWG solid hookup wire. The breadboard is recom

mended to facilitate circuit changes and additions to the experi

ments.

Some type of indicator is needed to display the outputs of the

ALU. A 20,000 ohms/volt voltmeter (which will read 0-5 volts), a

DC oscilloscope, or a series of light emitting diodes may be used.

The circuit in Fig. 1-19 shows four LEDs connected to the ALU to

indicate HIGH (1 bit) and LOW (0 bit). The LEDs used are type

MV-55, available from Poly Paks (5 for $1.00, part number

92CU1790).

The Experimental Setup

The basic experimental setup is shown in Fig. 1-20. The in

struction lines are brought out to the left, the data inputs are brought

out to the right and the outputs are brought out to the bottom, or

lower left. The input, output and instruction connections may be

made to terminal strips, vacant connections on the breadboard or to

56

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T
S

C
N
«
_

M
©
-

»
F
2

»
6
N
0

2
3
2
2

2'
2<

A
L
U

O
U
T
P
U
T
S

o.
Fi
g.

1-
20

.
Ba
si
c
ex
pe
ri

me
nt
al

se
tu

p.
Br
in
g
in
st
ru
ct
io
n
in

pu
ts

ou
t
to

le
ft
a
s
s
h
o
w
n
.
Br

in
g
fu

nc
ti

on
ou
tp
ut
s
ei

th
er

ou
t
to

bo
tt
om

or
ou
t
to

le
ft
,
in

or
de

r
*>

■
s
h
o
w
n
.
C
o
n
n
e
c
t
+
5
V

re
gu
la
te
d
p
o
w
e
r
su

pp
ly

to
pi

ns
a
s
s
h
o
w
n
.

Br
in

g
in
pu
ts

ou
t
to

ri
gh
t
a
s
s
h
o
w
n
.

other suitable terminations. Pin 24 is connected to plus 5V from the

power supply, and pin 12 is connected to the power supply ground.

The outputs from the 74181 will either be HIGH(H) orLOW (L)

voltage levels. A HIGH will be 2.4 volts minimum, but not

greater than 5V. ALOW will be.4V or less. A 20,000 ft/V voltmeter

may be used to read the output levels, or LEDs may be connected as

shown in Fig. 1-19. If the LEDs are used, a lighted LED will be a

HIGH and a non-lighted LED will be a LOW. In these experiments,

a 0 bit is represented by a LOW while a 1 bit is represented by a

HIGH.

Ground Rules

• The 74181 will operate over a range of 4.75V to 5.25V.

Operating with voltages outside this range may produce

results which are not defined. Operating with a voltage

greater than 7V (the absolute maximum rating) may damage

the chip.

• Don't short the outputs to ground. If more than one output

in a HIGH state is shorted at one time, the chip may be

damaged.

EXPERIMENTS

Data Transfers

Connect the ALU as shown in Fig. 1-21. Note that six connec

tions form the instruction word and are used to select the function of

the ALU chip. As connected, this instruction will permit data to pass

directly from the A input to the output without changing. The data

appearing at the A input is a 0110 and is transferred directly to the

output, without change, as a 0110.

The data transfer is a useful instruction within a computer, as it

permits data to be transferred from one memory location to another

memory location without being changed. Thus, data may be dupli

cated or placed in a more convenient memory location.

Clear or Set to Zero

Figure 1-22 shows the instruction word (or instruction inputs)

required for a clear or set to zero. This instruction sets the output to

zero, regardless of the data appearing at either input.

This instruction is useful for setting the initial value of a storage

location to zero for counting or other purposes. When counting

within a computer, a programmer may add one to the contents of a

memory location every time a given event occurs. To insure a

58

I
N
S
T
R
U
C
T
I
O
N
W
O
R
D

S
3

$
2

S
i

S
p

C
n

M

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T
S

A
I
N
P
U
T

O
I
I
O

I
N
P
U
T
S

B
I
N
A
R
Y
O
U
T
P
U
T
-

Jf
Uj

fH
)

JM
2
3
2
2

2
1

2
0

A
L
U
O
U
T
P
U
T
S

-
0
1

1
0

M
.

B
I
N
P
U
T
S
N
O
T

B
"

U
S
E
D
F
O
R
T
H
I
S

i
k
i
w
i
t
c
F
U
N
C
T
I
O
N
-
M
A
Y
B
E

I
N
P
U
T
S
L
E
F
T
A
T
A
N
Y

V
A
L
U
E

M
E
A
S
U
R
E
D
W
I
T
H

L
E
D

I
N
D
I
C
A
T
O
R
O
R
V
O
L
T
M
E
T
E
R

H
-
H
I
G
H
.
G
R
E
A
T
E
R
T
H
A
N
O
R
E
Q
U
A
L
T
O
^
4
V

L
«
L
O
W
,
L
E
S
S
T
H
A
N
O
R
E
Q
U
A
L
T
O

.
8
V

H
«

I

L
-
0

0
1

C
O

Fi
g.

1
-
2
1
.
D
a
t
a

tr
an

sf
er

.
O
u
t
p
u
t
=

i
n
p
u
t
f
r
o
m
A
.

correct count, the contents are set to zero or initialized to zero

before the count starts.

Complement

The complement of a number can be obtained by using the

instruction word as shown in Fig. 1-23. The data input is 1011 and

the output is 0100, which is the complement of the input.

Addition

Addition is performed by using the experimental setup as

shown in Fig. 1-24. The output will be the sum of the data on the A

and B inputs. Thus, as shown,

0101 (5w)

+0011 (3io)

1000 (810)

Similarly,

0011 (3io)

+1010 (Mho)

1101. (13w)

But now add A and B as follows:

A = 0111 (7io)

B = 1011(lliu)

1 0010 (18io)

carry bit

The ALU has only four data outputs; thus, the results will

appear as 0010. This simple arithmetic operation has exceeded the

capability of the ACU. We call this an overflow condition and say that

overflow has occurred and that a cany has been generated.

Overflow is the phenomenon that separates binary arithmetic.

When performing binary arithmetic on paper with a pencil, number

size limitations are of little concern (you can always add another

sheet of paper). When doing arithmetic with computer elements,

number size is a serious concern since there is a hardware limit to

the size of the arithmetic word. In these experiments, the arithmetic

word size is four bits. If we connected twoALUs together, we would

have an 8 bit arithmetic word. With an 8 bit arithmetic word,

overflow would not occur and a carry bit would not be generated until

a sum exceeding 8 bits was generated.

60

I
N
S
T
R
U
C
T
I
O
N
W
O
R
D

S
3

S
2

S
|

S
o

C
N
M

0
0

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T
S

B
I
N
A
R
Y
O
U
T
P
U
T

jfO
jfL

)
2
S

2
2

2
I

2
0

A
L
U

O
U
T
P
U
T
S

0
0

0
0

A
A
N
D
B

I
N
P
U
T
S

N
O
T
U
S
E
D
F
O
R

T
H
I
S
F
U
N
C
T
I
O
N
-

M
A
Y
B
E
L
E
F
T
A
T

A
N
Y

V
A
L
U
E
.

M
E
A
S
U
R
E
D
W
I
T
H

L
E
D
I
N
D
I
C
A
T
O
R
O
R
V
O
L
T
M
E
T
E
R

o
>

Fi
g.

1-
22

.
C
l
e
a
r
o
r
s
e
t
o
u
t
p
u
t
to

ze
ro
.

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T

S
3

S
2

S
|

S
p

C
N

M

O
O
O

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T
S

A
I
N
P
U
T

0
I

I "
A
"

I
N
P
U
T
S

A
*

2
I

2
I

A
L
U
O
U
T
P
U
T
S

B
I
N
A
R
Y
O
U
T
P
U
T

0
1

0
0

C
O
M
P
L
E
M
E
N
T
O
F
A
,
X
«

I
0

I
I

0
1
0
0

I
N
P
U
T
S

B
I
N
P
U
T
S

N
O
T

U
S
E
D

Fi
g.

1
-
2
3
.
O
n
e
s
c
o
m
p
l
e
m
e
n
t

of
A
.

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T

S
3

S
2

S
|

S
p

C
m

M

O
O
O
I

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T
S

|}
J

J
2
3
2
2

2
1

A
L
U

O
U
T
P
U
T
S

B
I
N
A
R
Y
O
U
T
P
U
T
1
0

0
0

A
I
N
P
U
T

0
I
0
1

B
I
N
P
U
T

0
0

1
1

I
N
P
U
T
S

B
I
N
A
R
Y
A
D
D
I
T
I
O
N

0
I
0

0
0

I

S
U
M

1
0

0
0

8
Fi

g.
1-
24
.
Bi
na
ry

ad
di

ti
on

.
Ou

tp
ut

=
A

pl
us

B.

TO PIN 16

♦ 5

<

(a

I.6K

I) LE°

Fig. 1-25. LED connected to carry out.

If overflow were to occur without the user being aware of its

occurrence, erroneous results could occur. For this reason, it is

important to have the capability to detect the occurrence of over

flow. Overflow can be detected on the 74181 chip by monitoring the

output of pin 16, the inverted carry output. This output is normally

used to feed a carry input on another 74181, but it may also be used

to detect the occurrence of a carry bit (overflow). This output is

inverted, so it would normally read HIGH with no carry and LOW if a

carry occurred. An LED may be connected to the carry output as

shown in Fig. 1-25, so that the LED will light if a carry or overflow is

present.

By connecting the additional LED as shown in Fig. 1-25, we

have gained an additional bit for arithmetic. We have a 4 bit arithme

tic word, but we are able to display a 5 bit result.

For example:

1111 (A input)

+1111 (B input)

11110

T
(the fifth bit, the LED for carry, will be lit)

Subtraction

Subtraction using twos complement arithmetic is done by using

the instruction shown in Fig. 1-26 and 1-27. This experiment shows

an example of A-B. The 74181 performs the following functions in

order to effect a subtraction:

64

8

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T

S
3 0

s
2 1

S|

1

S
o 0

C
n 0

M 0

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T
S

(
H
)

2
3
2
2

21
2
°

A
L
U

O
U
T
P
U
T
S

0
1

I
I

A
I
N
P
U
T

I
I
0
0

B
I
N
P
U
T

0
1
0
0

1
1
0

0
■
0
1
0
0

1
0

0
0

0
I

I
I

Fi
g.

1-
26

.
Su

bt
ra

ct
io

n.
A
m
i
n
u
s

B.

• The twos complement of the B input is obtained by comple

menting the value and adding 1. The addition of the 1 is a

result of making the inverted carry in (Cn) a LOW.

• The twos complement of the B input is added to the A input.

For example, let us subtract 4io from 12io. The answer, of

course, should be 810.

A = 12io = 1100 » 1100

B = 4io = 0100—2s comp. +1100

1100 = 810

The result as displayed on the four output bits would be 1000

810. A=12, B=4 and A-B=8. Carry would occur and the carry LED

wouldbe lit, but in this case discarded, because it has no significance.

Do the following problem: 3 - 4 = ? Let A = 3, B = 4. What are

the results?

internal operation

A = 3 = 0011 * 0011

B = 4 = 0100—: 2s comp.—* +1100

1111 = negative 1

The result is negative 1 (or minus 1), which is the correct

answer for 3-4.

It may appear that there is no way of knowing whether a result

is negative or positive; however, this is not the case.

Consider the number 1 in binary. On paper, we may write the

number one as 1, as 01 or even 0000001 ifwe wish. To get a negative

one, we take the twos complement, which in the case of 0000001 is

1111111. This representation of a negative number is not com

pletely correct, since the 1 really has an infinite number of zeros in

front of it. To be correct, 0000001 is really "(infinite number of

zeros) 0000001," and the complement is "(infinite number of ones)

1111111."

It can be shown that, in a negative number, the leftmost bit at

infinity is a 1 bit. Of course in the real world we can't go on writing

down an infinite number of 1 bits to get to the leftmost bit in our

arithmetic word as the sign bit Using this definition, the leftmost bit

of our four bit arithmetic word is now the sign bit, and in our example

the number 1111 becomes a ^negative number.

Note that, by adopting the leftmost bit in our four bit arithmetic

word, our arithmetic is now restricted to 3 bits. The largest positive

number that we can generate is Olll=7io. The largest negative

number that we can generate is I0000=8io.

66

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T

S
3

S
2

S
,

S
0

C
N

M

0
I

I
0

0
C
A
R
R
Y

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T
S

J
Q
L

S
|

-
(
I
)

f
t
7
r

I
C
A
R
R
Y

L
1
2
L L
)

(
H
)

k•
P
I
N

I

►
B
O

T
0
P

V
C
C

>
A
O

V
I
E
W

A
,

.
j

•
S
3

S
2

•
S
I

»
S
O

M F
O

f
\

»
F
2

»
G
N
D

B
l

o

A
2

B
2

A
3

B
3 s
G
f
l

C
N

+
4 P
o

A
'
B
f
l

F
3

>
5
V
R
E
G

5
2
3
2
2

2
1

2
°

A
L
U

O
U
T
P
U
T
S

0
1

0
0

(
0
L
2
°
7
7
7

"A
"

I
N
P
U
T
S

(0
)0
20

(0
)0

2'

i
U
o
2
s
51

J
2
i
o
^
7/

7

"
B
"

I
N
P
U
T
S

A
I
N
P
U
T

I
I
0
0

B
I
N
P
U
T

0
1
0
0

I
I

-
0

I
0

0
0

0

*
C
A
R
R
Y

1
0

0
0

~
I

I
I

I [

1
0

0
0

Fi
g.

1
-
2
7

S
u
b
t
r
a
c
t
i
o
n
:
A
m
i
n
u
s

B
,
p
l
u
s

ca
rr

y.

Multiply by 2

The instruction shown in Fig. 1-28 is designated anA plus A

instruction, and has the effect of multiplyingA by2. This instruction

may also be called a shift left by 1 bit instruction, since it shifts the

number A to the left by one bit.

This instruction is useful for generating the squares ofnumbers

and may be used as a part of a program to perform multiplication.

ALUs, such as the 74181, are practical building blocks for the

computer designer and do exist as important parts of computers

available on the market today. These ALUs may stand alone as

independent units, or they may be combined with other functions to

form a device such as a microprocessor. Thus, the concepts de

scribed are applicable to large scale computers, independent ALUs

and microprocessors.

Two Finger Arithmetic

The first caveman, whenhe learned howto count on his fingers,

gave us the decimal number system which we use today. Again,

while this number system is second nature to us, it is not the only

number system with which' we come into contact every day.

Timekeeping, for example, uses a unique numbering system which

is based on the numbers 60 and 24. There are 60 seconds in a

minute, 60 minutes in an hour and 24 hours in a day. And of course,

the English have blessed us with unique number systems for weights

and measures. Who can forget that 4 gills = 1 pint, 2 pints = 1 quart

and 4 quarts = 1 gallon? If you stop to think we are involved with

many number systems other than the decimal system.

The advent of the computer age has ushered in an additional

number system, the binary system based on the number two. As

previously discussed, this system has come into common use since

digital computers can represent information in one of two states—on

and off. These two states are called binary states and are the basis

for the binary system which we use in digital computers.

Man commonly works with the decimal system, computers

operate with the binary system and the obvious questions are "How

do we get from one system to the other?" And, "How do I represent

information in a computer?"

The Decimal System

We are constantly thinking numbers, adding numbers and writ

ing down numbers, but, do we really have an understanding of what

we are doing? When we write down a number such as the number

3187, what does it really mean?

68

I
N
S
T
R
U
C
T
I
O
N
I
N
P
U
T

S
3
S
2

S
,

S
0

C
M

M

I
I
O
O
I
O

I
N
S
T
R
U
C
T
I
O
N

I
N
P
U
T
S

-
i
i
L

/
b

JQ
)

J
l
)

'
J
O
)

(L
)

[
H
)
1
(
H
)

—
■
«
o

©
2
3
2
^

2
)

A
L
U
O
U
T
P
U
T
S

1
0

1
0

"
A
"

I
N
P
U
T
S

A 0

I
N
P
U
T

1
0

1

B
I
N
P
U
T

N
O
T

U
S
E
D

I
N
P
U
T
S

Fi
g.

1-
28
.

Mu
lt
ip
ly

b
y

2:
A

pl
us
A

(s
hi

ft
o
n
e

bi
t

le
ft
).

All numbers are made up of a series of digits. A number can

have as few as one digit and is not limited to any maximum number of

digits. In the decimal system, each place occupied by a digit has a

power of ten associated with that place. For example, in the number

3187, we have four places. The powers of 10 associated with the

four places are as follows:

digit 3 1 8 7

power of 10 10310210110°

The number 3187 could be written as the following sum:

3187= 3 x 103 + 1 x 102 + 8 x 101 + 7 x 10°

and if we remember our basic mathematics we will recall that

103 = 10 x 10 x 10 = 1000

102 = 10 x 10 = 100

101 = 10

10° = 1

When we write the numbef 3187 we are saying that we have 3

thousands plus 1 hundred plus 8 tens plus seven units (or ones).

Similarly, larger numbers sueh as 5197283 may be represented as

5 x 106 + 1 x 105 + 9 x 104 +

7 x 103 + 2 x 102 + 8 x 101 +

3 x 10°

The Binary System

Computers operate with the binary system because each digit

can have only one of two states—on and off. Numbers are rep

resented in a computer by a string of binary digits called bits.

Consider a number represented by 4 binary digits (bits) when off = 0

and on = 1. Four lights may be Used to display the on and off, or one

and zero respectively:

number (gn) off (£n) (on)
numerically 1 x 23 + 0 x 22 + 1 x 21 + 1 x 2°

We know that:

23 = 8 21 = 2

22 = 4 2° = 1

Our number represented by the lights above would be:

lx8 + 0x4 + lx 2 + 1 = lln

Instead of actually writing down" lights to indicate the on and off

70

states, we use the binary numerals 0 and 1. Thus in base 2 our

number is written as lOlh. If it is very clear that you are working

with binary numbers, you may omit the subscript 2.

Conversion from Decimal to Any Base

Conversions from a given base to the decimal system can be

made by expanding a number to the powers of its base. But, how do

we take a decimal number and convert that number to another base?

The technique used for this type of conversion is the technique of
successive remainders. As an example, convert the decimal value 43
to base two:

21

2 RT

remainder 1 is the multiplier for 2°

10_ .

:| 21
20

remainder 1 is the multiplier for 21.

5

JO.

remainder 0 is the multiplier for 22

remainder 1 is the multiplier for 2s

J

2| 2

2

remainder 0 is the multiplier for 24

2 I 1 (doesn't go)

remainder 1 is the multiplier for 25

71

Our number expressed as powers of two is 1 x 25 + 0 x 24 + 1 x 23

+ Ox 22 + 1 x 21 + 1 x 2° or IOIOII2. Checking ourselves and

converting back to decimal, 1 x25 + 0 x24 + l x23 + 0 x22 + l x
211x2° = 32+ 0 + 8 + 0 + 2 + 1= 43.

Binary Arithmetic

Arithmetic in the base two is very simple. You don't have to

remember a lot of arithmetic facts; all you have to remember is zero

+ zero = zero, one + zero = one, and one + one = ten. As an

example:

1

+ 0

1

0

+ 1

1

0

+0

0

1

+1

10

With binary arithmetic, whenever two or more ones appear in a

column to be added there will be at least one carry bit added to the

next left digit. For example,-in adding

11 '
+ 1 right digit

10

T
we get carry bit '

carry—*1

11 11

+ 1 and then +1

0 100

Storing Numbers in a Computer

When we talk about numbers stored in a computer, we don't

normally speak of them in terms of bits (binary digits). We usually

speak of them in terms of bytes or words. A byte by definition is a

collection of sequential bits. A byte can be any number of bits but is

most commonly 8 sequential bits. A computer word is a collection of

bytes and is defined as the number of bytes pointed to by one

addressing operation in a computer. Words and bytes tell us about

the organization of the computer. As an example, assume the stan

dard definition of byte, where byte = 8 bits:

• The XDS Sigma 6 computer is a 32 bit computer. It has 32

bits per word. 32/8 = 4, thus there are 4 bytes per word.

72

• The DEC PDP 11 series of computers have 16 bits per

word. It has two bytes per word.

• The INTEL 8080 microprocessor is an 8 bit microproces

sor; it has 8 bits per word. Thus it has one byte per word.

The term byte is used very frequently as the definition for a unit of

information. Alphanumeric characters (letters, punctuation, print

able characters, etc.) are usually stored in coded form in one byte.

Numbers written on paper are stored in visual form and for all

practical purposes there is no limit to the size of the number on

paper. As stated previously, in a computer, there are limts set, due

to the word size and due to the aritmetic capabilities of the computer.

In large scale computers, it is possible to work with very large

numbers such as those which can be represented in 64 bits or more.

In microprocessors, however, the limit is very small, usually being 8

bits but in some cases being 4 bits. The arithmetic capability that we

are talking about is the type of arithmetic which can be performed in

one computer instruction. It is possible to string instructions to

gether and thus handle larger numbersl. This is usually done by

software.

Computer Arithmetic

As previously mentioned, computers have limits set on their

arithmetic capabilities. They cannot in a single instruction perform

simple arithmetic on all size numbers. They are limited to perform

ing arithmetic on some given number of bits. Because of these

limitations, computer arithmetic is somewhat different from binary

arithmetic. Computer arithmetic is binary arithmetic within limits.

A typical microprocessor, such as the Intel 8080, has 8 bit

arithmetic capability. It can perform arithmetic on 8 bit numbers. It

cannot in a single instruction operate on a 32 bit number.

The largest number that can be expressed inS bit arithmetic can

be determined as follows: Consider an eight bit binary number such

as 11111lib, all one bits in the eight bits. The number can be

expanded aslx27 + lx26 + lx25 + lx24 + lx23 + lx22 +

1 x 21 +1 x 2°, which is the same as 128 + 64 + 32 +16 + 8 + 4 + 2

+1 = 255io. This is the largest number that can be stored in a single

8 bit word (or byte) and also the largest sum that can be accumulated

from the addition of two numbers. We can add 250io + 5io and get a

sum of 255, but we cannot add 25Oio and 610 to give 256io, since that

sum is beyond the arithmetic capabilities of 8 bit arithmetic. Of

course this arithmetic restriction only applies to a computer with 8

bit arithmetic. If the computer used 4 bit arithmetic or 32 bit arithme

tic, then the actual larges number would be different. In a four bit

73

arithmetic microprocessor, the largest number would be IIII2 = 1

x 23 + 1 x 21 + 1 x 2° = 15.

In order to simplify the examples, all discussion in this section

will pertain to a microprocessor or computer with 8 bit arithmetic

capability.

If our microprocessor can handle eight bit arithmetic and can

also store sums up to 255, then what is to prevent us from attempt

ing to add two numbers that will produce a sum greater than 255?

The computer doesn't know what the sum will be before the addi

tion, so we can at least make an attempt. The answer is, "Yes, you

can instruct the computer to perform the addition, but the results

will be wrong/' An overflow condition will result. The storage

capabilities and the arithmetic capabilities of 8 bit arithmetic will be

exceeded. What happens is analogous to trying to pour 3 quarts of
water and 4 quarts of water into a five quart container. The container

will overflow.

Subtraction and Negative Numbers

Most microprocessors available today have subtraction

capabilities; however, the microprocessor user may or may not wish
to use those subtraction capabilities, depending on the capabilities

available. The user may wish to complement the number to be
subtracted and then perform an addition, so that the arithmetic
techniques may be simplified. Two types of computer arithmetic will
be discussed—ones complement arithmetic and twos complement

arithmetic.

Both negative numbers and subtraction are used in a computer,

but not necessarily in the same manner as with pencil and paper. In
order to indicate a negative, instead of writing down a minus sign on
paper a sign bit is set to one somewhere in the computer. This sign

bit may be stored in a word by itself or it may be stored in the same

work in which the number is stored. Most commonly, the sign bit,
which indicates a negative number, is stored with the number itself
in the leftmost bit position of the word. In an eight bit word, the sign

bit would be as shown:

Sign bit® x x x x x x x

In a sixteen bit word th6 sign bit would still be the leftmost bit

as:

Sign bit

®xxxxxxx xxxxxxxx

74

If the sign bit is a 0, then the number stored in the word is positive. If

the sign bit is a 1, then the number stored in the word is negative.

The maximum range ofnumbers which can be represented in an
8 bit computer would be as follows:

Sign bit

0 1111111 = 127io

(most positive value)

0 1 1 1 1 1.1 0 = 126io

000000:i0 = 2
00000001=1

00000000 = ZERO

1111111 1=-1

1 1 1 1 1 1.1 0 = -2

100 00 0:0 1=-127io
100 00 000 = -128iu

(Most negative value)

In an 8 bit word we have defined one bit as the sign bit, leaving 7

bits for the data. This means that the largest number including sign

that can be stored in an 8 bit word is 127io. This puts a further

restriction on arithmetic operations as can be seen by the example,

64 + 64.

64 in binary = 01000000

+ 64 =01000000

10000000

By definition, we now have negative number! We have changed the

sign of our number. As can be seen, the right combination of

numbers added together will not produce overflow, but will change

the sign. Thus, it is also important to test to see if the sign is changed

when performing addition on numbers of like sign. If the sign has

changed, the 7 bit capability has been exceeded.

In computer logic, it is easy to complement a word such that all

ones become zeros and all zeros become ones. This capability is

usually a standard feature within the arithmetic-logical unit of a

microprocessor. The complement of the eight bit binary number

01001101 would be 10110010. The number 3 represented in 8 bits is

00000011, and the complement of three would then be 11111100.

This type of complement where zeros are exchanged for ones and

ones are exchanged for zeros is calleS ones complement
By complementing a number using the ones complement, we

have placed a 1 bit or a sign bit in the leftmost bit of the word,

indicating that the number stored in the word is a negative number.

75

A typical ALU will complement a word internally, and then perform

addition in order to effect subtraction. This might happen as follows,

for the operation 7-4:

7 in binary = 00000111

4 in binary = 00000100

The ones complement of4 (negative 4) = 11111011. Adding the two

together,

00000111

11111011

1 000000102 = 2io

carry bit J

(overflow)

But the answer is off by one and overflow has occurred. We got an

answer of 2. The answer should have been three. This is the

shortcoming of ones complement arithmetic, and is the reason all

modern computers use twos complement for arithmetic operations

and representing negative numbers.

Twos Complement Arithmetic

Twos complement arithmetic operations can be found in all

present-day computers, from the lowly 4 bit microprocessor all the

way up to the giant large scale systems. The reasons will become

evident as wego on and see how effectively negative numbers canbe

represented in this form.

To find the twos complement of a number, take the ones

complement of the number and add 1. For example, find the twos

complement of 6:

6 in binary = 00000110

ones

complement of 6 = 11111001

addl 1
twos complement = 11111010

This value (11111010) represents a negative six. Therefore, we can

say that when we take the twos complement of a positive number we

are changing it to a negative value. To best illustrate that this value is

in fact a negative six, let us increment it six times (up to zero):

11111010 Negative six

+ 1

11111011 Negative five

76

1

t
Carry

11111100

+ 1

11111101

+ 1

11111110

+ 1

11111111

+ 1

00000000

discarded

Negative four

Negative three

Negative two

Negative one

ZERO

Following are some examples of subtraction in twos comple

ment arithmetic:

1.6-5

5 in binary = 00000101

ones

complement of 5 = 11111010

addl 1

twos complement = 11111011

Summing,

6 in binary = 00000110

twos

complement of 5 = 11111011

1 00000001

A carry is produced, but is discarded. The sign (most significant bit)

is zero, indicating the result is positive.

2.3-3

3 in binary = 00000011

ones

complement of 3 = 11111100

addl 1

twos complement = 11111101

Summing,

3 in binary = 00000011

77

twos

complement of 3 = 11111101
1 00000000

And, the correct answer is, of course, zero.

3. 3-4

4 in binary = 00000100

ones

complement of 4 = 11111011

addl L
twos complement = 11111100

Summing,

3 in binary = 00000011

twos

complement of 4 = 11111100
11111111

The result is negative one in twos complement (no carry produced).

In two complement arithmetic, the addition of two numbers of

opposite sign will always produce the correct result. It may or may

not produce a carry. The carry or overflow may be ignored.

Notice that, in both ones complement arithmetic and twos

complement arithmetic, addition stays the same. The only thing that

is changed is the way in which the complement is taken in order to

effect subtraction. Some ALUs will compensate automatically for

subtraction in ones complement arithmetic, while some won't.

In twos complement arithmetic, the programmer should test

for overflow. In any addition of like signed numbers where there is a

possibility that the maximum sum could be exceeded, a test must be

made for overflow. If the test is not made, there is a danger that

erroneous results could occur and that the user might not be aware

of that fact. In reality, any addition could produce overflow. While

the user may never expect overflow to occur, if his data were

erroneous, then an erroneous sum could result. By making the test

for overflow under all conditions, those errors which couldritpossibly

happen would be detected.

All of the examples given here used 8 bit arithmetic to simplify

the examples, but the principles and concepts discussed hold true

regardless of the arithmetic word length used. On a 32 bit machine,

larger numbers can be handled, but the test for overflow (carry) and

change of sign must still be made.

78

Arithmetic Software

Binary arithmetic within a computer is not difficult or mysteri

ous; however, care must be given to making sure that the results

obtained from an arithmetic operation are correct. The care required

can add additional steps to a program and can conceivably make a

simple problem into a lot of work. One way in which some of the

work can be eliminated is to choose a microprocessor which pro

vides an automatic hardware scheme for testing for overflow or

change of sign. Another solution is to choose a microprocessor

which provides the same capabilities by software. Software in this

case is a program furnished by the manufacturer to do the proper

testing for you. This software may also offer the capability to work

with 16 or 32 bit numbers and may in addition offer other capabilities

such as multiplication and division.

What's That in Binary'.-

My first introduction to the world of computers left me with a

terrible reaction. I tend to break out into a rash when real math

comes my way, which is not the best reaction when starting to shake

hands with computers.

Since others may suffer similar reactions, I have dredged the

contents of my memory to recall a simple way of converting a base

ten number into the binary numbering system or into the octal

system of notation.

Interestingly enough, I was exposed to this method some 35

years ago, in, of all places, a Latin class. The instructor believed in

making things come alive by spending some class time showing us

how to multiply and divide Roman numerals. Computer stuff, by

comparison, is mere child's play—and it is no wonder the barbarians

wiped out Rome. It had to be painfully obvious that the Romans were

so busy XXVIIing it that they had no time left to fight a mere war.

Here is a little something for my fellow non-math lovers:

X

Alb + Ao + 2 a'1 b"1. . .

1

It is perfectly obvious that this little bit ofrazzle-dazzle contains

all the wisdom needed to convert a number of any base or radix to a

number with any other base. For example, a decimal number to a

binary number or an octal number to a decimal number.

79

Rather than trying to unscrew the unscrutable by translating

this little gem into basic English, let me pass on a simple nuts-and-

bolts nugget of wisdom.

Specifically, let's examine a way to convert any decimal

number, such as 19758 or a number of your choice, to binary or

octal. All you need is the native ability to divide by two or by eight.

Decimal to Binary Conversion

• The digits as derived are set down right to left, the right

most digit being the least significant bit and the leftmost digit

being the most significant bit.

• We divide the number first into odd or even by inspection. If

the number is even we automatically make the least signific

ant bit a ZERO. If the number is odd, we make the least

significant bit a ONE.

• Now we proceed to divide the number by two in a series of

successive divisions. We ignore fractional remainders pro

duced by the divisions, i. e., 19 divided by 2 would produce a

real world answer of 9*/2, but we would ignore the remainder

or fractional Vi.

• Any division that produces an EVEN number gives us a

ZERO in our process of converting decimal to binary.

• Any division that produces an ODD number gives us a ONE

in our process of converting decimal to binary.

• The process of successive divisions ends when the number

is finally reduced to ONE again, ignoring any fractional

remainders.

For example, to convert decimal number 38 to binary:

• By inspection, since 38 is an even number the least signific

ant bit is ZERO. 0

• 38 divided by 2 = 19. Nineteen is ODD, hence next bit is a

ONE. 10

• 19 divided by 2 = 9 (ignore fraction). Nine is ODD, hence

next bit is a ONE. ... 110

• 9 divided by 2 = 4 (ignore fraction). Since 4 is even, next bit

is a ZERO. • . 0110

• 4 divided by 2 = 2. Since 2 is even, next bit is a ZERO.

. 00110

• 2 divided by 2 = 1 (divisions end). Since ONE is ODD, the

next bit is a ONE. 100110

The final bianry number thus produced is decimal 38 converted

to its binary form.

80

This painless method makes it much easier to generate decimal

to binary conversions than remembering the absolute values of each

binary bit, particulary for conversions where the decimal number is

four or five digits long.

Decimal to octal conversion is a similar process involving suc

cessive divisions by eight. However, the signposts in the divisions

are different. In the decimal to binary conversion we completely

ignored the fractional parts associated with the successive divisions.

In the octal conversion we use the numerator of these fractional

parts to tell us what the octal bit values are to be.

As you know, in binary or base two, we only have a string of

ONEs orZEROs in the final conversion. In octal or base eight we use

the numbers ZERO through SEVEN.

Decimal to Octal Conversion

• As in the bianry conversion, we are using a series of succes

sive divisions. This time the constant divisor is 8. The same

rule of bit value applies: rightmost digit is the least signific

ant bit and the leftmost digit is the most significant bit.

• Select a number in decimal to be converted to octal and

divide it by 8. This will result in a whole number or a whole

number plus a fraction. If the result of the division is a whole

number, the octal bit is a ZERO.

• If the division results in a whole number plus a fraction then

the octal bit is represented by the numerical value of the

numerator of the fractional part.

• The next successive divisions divide the whole number part

of the previous division by 8, applying the above rule for

determining the bit value of the octal number.

• The successive divisions come to an end when you are left

with a simple fraction.

For example, to convert decimal 525 to octal:

• 525 divided by 8 = 65-%. Thus our least significant bit is 5.

... 5

• 65 divided by 8 = 8-% thus our next bit is 1. . . 15

• 8 divided by 8 = 1-0/8. Since ONE is a whole number the

next bit is ZERO. The form 1-0/8 is shown to make it clear

that the numerator is really still our guidepost even in the

case of no fractional remainder. . 015

• We now divide ONE by 8 (which equals Vs), which produces

our most significant bit—-and* the division process ends as

we are down to a simple fraction. 1015

81

Thus 525 decimal has been converted to 1015, which is its octal

equivalent.

These simple conversions will make life a bit more livable when

you meet the computer, and you are a giant step ahead of good old

Flavius Maximus, who had to MCXVII it all the way to the Circus

Maximus checkout. By the time he got his change counted, the show

was over!

The Hexadecimal, System.

By this time words like octal, binary and decimal, plus phrases

like base two or base ten have penetrated the consciousness of the

reader. The sign of the I/O stands a good chance of becoming the

thirteenth sign of the zodiac for many experimenters.

For those so afflicted, here is one more number base family to

shake hands with. Hexadecimal or base 16 (hexa meaning six and

decimal meaning ten ... the sum thereof being 16) has a unique

quality in that it symbology uses both numbers and letters.

The first 10 states are conventional, using number symbols 0

through 9. The next six symbols in order are A, B, C, D, E, F. These

six alpha characters represent number symbols for values 10, 11,

12, 13, 14, 15.

If you encounter this number family in computer literature, you

will generally find that hexadecimal is indicated in one of two general

ways. H 10' might be one general form. The alternate form drops

the H but keeps the single quote before and after the number, '10'.

The place values for hexadecimal, as might be expected, rise

rather rapidly due to the fact that we are dealing with base 16.

Confining our discussion to whole numbers, the value of the

rightmost figure of any hexadecimal expression ranges from 0 to 15,

this compared to 0 and 1 for binary, 0 to 9 for decimal and 0 to 7 for

octal notation.

In a two digit hexadecimal expression, we can see the rapid

escalation of values. Any digit in the column to the left of the first

digit is multiplied by 16 to get its absolute value.

As an example, H '3A' is numerically the sum ofA which equals

10, plus 3 times 16 or 48. Thus H '3A' equals decimal 58.

H TF' would similarly be computed as the sum of 15 added to 15

times 16. This would equal decimal 255.

If we consider four place values of hexadecimal in the same

mathematical fashion as we consider decimal, binary or octal, they

would form the usual series:»

16316216116°

82

Thus by the time we have something like this, H '3A7B\ its decimal

value, computed as follows, really climbs.

• The value of 'B' is decimal 11.

• The value of '7' is 7 times 16 or decimal 112.

• The value of 'A' is 10 times 162 or decimal 2560.

• The value of '3' is 3 times 163 or decimal 12,288.

• The value of the entire expression is 14,971. If you want

some exercise you can compute the value of H 'FFFF.'

You may well ask, "Is there a justification for hexadecimal?"

The answer most definitely is yes. It is the same reason that octal is

of value. You can enter large numbers in a system much faster

(fewer key strokes) with octal than you can with binary, and the

same is true of hexadecimal by several orders of magnitude. Try

expressing the numerical value 14,971 in binary to get the idea ofjust

how time/cost effective the higher valued base systems are.

You can perform basic manipulations with hexadecimal just as

you can with any other number family. Take the simple example of

adding two numbers such as H '13' and H 'Al':

H '13'

H'Ar -

'B4'

How do we arrive at this conclusion? The sum of the rightmost

column is fairly obvious, 3 plus one = 4. The sum of the next column

becomes equally clear if we remember we are really adding 1 plus 10

which equals 11 which equals B in hex notation.

To prove the answer we get the decimal value of H' 13' which is

16 plus 3 or decimal 19. H 'Al' is equal to 10 times 16 plus 1 or 161.

The result of the addition is decimal 180. Our answer H 'B4' is the

sum of 11 times 16 plus 4, or 176 + 4 which is the same decimal

number, 180.

Now let's introduce the element of the "carry" into another

simple addition problem, adding H'lA' to H'27'L

How did we arrive at this? The sum of 'A' plus '7' is decimal 17. We

deduct the number of sixteens we cafi get out of this first column

addition, and the remainder becomes the right hand figure in the

answer. The integral number of sixteens is then added to the next

column as a carry. This next column now looks like this ...

83

H '1' (the carry)

HT

H'2'

H'4'

Checking as before, in the original problem H '1A' equals decimal 26.

H '27' equals decimal 39 and the sum of 26 + 39 = 65. Our addition

answer H '41' equals 4 x 16 + = 65.

Is Digital all That New?

To meditate on an experiment, a serious experimenter often

shelves today's experiment, perhaps never to take it up again. The

light was in the meditation and not in the experiment. This brings me

to the point at hand—meditation as related to digital.

For several years now, a transition from analog to digital has

been in the process. To many people, digital is considered as a rather

new development, but I ask, "Is it really all that new?" The question

may suggest the answer that digital has been around for some time.

Just for the fun of it, let=us take a brief and somewhat abstract

view of digital devices or communications through the age of man.

From man's beginning, -he had a very good calculator at his

fingertips as well as a computer with all the software that is neces

sary for its operation, although he had very little need for either in his

primitive culture. It was two to three million years before man saw

the need to communicate between computers. Man has, over the

last 20,000 years, developed ways to communicate between com

puters.

If the old axiom is true that a picture is equal to a thousand

words, and if we should equate the picture to a computer address

and equate the thousand words to the memory ofthe computer, then

the cave man had the basic idea in his cave drawings some 20,000

years ago. Programming his computer to accept more addresses

(more pictures), he was able to develop a memory system called

hieroglyphics, which used approximately 900 pictures. Up to this

time man had almost exclusively used analog, which is called the

spoken language. Hieroglyphic programming was too complex for

most computers, so a much simpler system was developed using

only about 24 pictures. Hierotics, as this sytem is called, was very

effective digital-wise, but lacked the ability to communicate with

analog systems. About 3,000 yaears ago a digital-to-analog and

analog-to-digital system was developed. This system is often called

phonic writing. Soon to follow was a digital system that was much

more simple and was easily converted to analog. This system was

84

made by the combining of the Phoenician phonic system and the

Roman alphabet. Because this system had only 26 digits or letters

and could be formed into word groups, it was adaptable to program

ming. Such programs are placed into a machine called a printing

press and are read out into a permanent storage unit known as a

book, which is a type of read-only memory. With this type of ROM,

the two or three million-year-old old computer design has almost

unlimited capacity to perform the most complex problems.

In Aristotle's theory of the universe formulated sometime

around 400 BC, it was suggested that a binary system was possible.

Such a system would consist of such variables as hot and cold, wet

and dry, light and dark, etc.

Much experimenting in digital communications was taking place

by the mid-1700s, parallel versus serial as each form was being

developed. Static or friction electricity and its pith balls came first as

a parallel system (i.e., one set of pith balls for each letter). Soon to

follow was a synchronized serialform using only one set ofpith balls.

Galvan electricity and the use of magnetic needles went

through the same parallel and serial development. However, a new

wrinkle was added. The new wrinkle was code—that is, left or right,

operated or non-operated. Its form was much like that of Morse

code.

From its inception in the mid-1800s, the electromagnetic (tele

graph) system used a code in serial form. It was the search for the

conversion of the electromagnetic digital system to analog that led to

the development of the telephone—which just happens to be an

analog device. It was only a few years ago that the conversion of

digital to analog and analog to digital was electronically ac

complished. Its form is called pulse code modulation.

Just as in the addressing of electronic computers, we have been

simplifying the addressing to the two or three million-year-old de

sign. Some examples include changing "The United States of

America" to USA, and other conversions resulting in terms such as

IRS, FCC, IBEW, NAACP, FBI, CIA and others.

What is the answer to the question, "Is digital all that new?" I

would say no. I would go so far as to say that at present we are not

really in a truly transitional period but rather in a sort of jockeying

position. As we turn the corner, I predict that the next big develop

ment will be a 3D computer that will make the present computer look

like a small contribution to the overall communications system—but

I see no way that the old two or three million-year-old design will

ever be replaced.

85

The Ins and Outs of TTL

The design of digital circuits using TTL integrated circuits can

be much less frustrating if some simple rules are followed. I am
referring to the rules that dictate how and why interconnections

between the various circuits and the outside world are made. If you

follow the rules, you should be able to put together a digital circuit

from TTL ICs and only have to worry about wiring errors, logic

goofs and bad ICs. The information is from the manufacturers'

literature and my own experiences on the bench.

Ins
The most common and most easily overlooked input of TTL

circuits is the power supply. One look at any TTL circuit and you
quickly know the value of the supply voltage is +5V. For those who
worry about such things, the tolerance is ± percent (military ver

sions are ±10 percent). In other words, the manufacturer only

guarantees proper operation of his ICs when the supply voltage is

between 4-4.75V and 5.25V: This is not to say they won't work at

other voltages—only that there is no guarantee.

When TTL circuits switch they generate very high frequency

current spikes on the power supply lines. These current spikes

traveling through the high frequency impedances of the power sup

ply lines cause voltage spikes which can couple into other circuits and

trip flip flops, clock counters and do all sorts of nasty (and very

difficult to find) things. To protect yourself from this problem these

power connection rules should be followed:

• Connect a .01 uF disc capacitor from the +5 connection to

the ground connection of each IC. Locate the capacitor as

close as is practical and use short leads. A miniature disc

with a voltage rating of 10 volts or more is a good choice.

• Use fairly heavy wire (I recommend #18 or larger) for 4-5

and ground lines and arrange them so there are many con

nections. Try to simulate a ground plane and a + 5 plane.

• For every 20 ICs or so in your circuit put in one electrolytic

capacitor from ±5 to ground. Any value between approxi

mately 4 and 25 /uF and 10 volts or more rating is okay. If

only one is used, try to locate it where the ±5 first comes

into the board. If more are used, distribute them more or

less evenly over the board.

• Use a regulated supply for the ±5. There are many circuits

for making a regulated supply.

Some of these rules may seem obvious while others are not so

well known, especially to the newcomer. Figure 1-29 illustrates one

86

6
R
I
D
0
F
N
0
.
I
8

W
I
R
E
(
B
O
T
T
O
M

S
I
D
E
)
F
O
R

G
R
O
U
N
D

E
L
E
C
T
R
O
L
Y
T
I
C

C
A
P
A
C
I
T
O
R

G
R
O
U
N
D

T
E
R
M
I
N
A
L

+
5
V
T
E
R
M
I
N
A
L

P
E
R
F
O
R
A
T
E
D

B
O
A
R
D
W
I
T
H

H
O
L
E
S
S
P
A
C
E
D

O
N
.

I
in
.
G
R
I
D

-
G
R
I
D
O
F
N
O

1
8

W
I
R
E
(
T
O
P

S
I
D
E
)
F
O
R
+
5
V

Fi
g.

1
-
2
9
.

Il
lu

st
ra

ti
on

of
r
u
l
e
s

fo
r

p
o
w
e
r
s
u
p
p
l
y
c
o
n
n
e
c
t
i
o
n
s
.

Fig. 1-30. Standard TTL input circuit.

method of construction employing point to point wiring following

these rules.

Next on the list ofTTLins let's investigate a typical input circuit

as shown in Fig. 1-30. In order to guarantee that the transistor is

turned on we must do two things. First, we must make the input

voltage less than .8V, and second we must draw out of the emitter

1.6mA of current. In order to guarantee that the transistor is turned

off we must also do two things. First, we must make the input

voltage greater than 2V, and second we may have to supply up to 40

uA of leakage current. The diode is not necessarily present in all

circuits. Its purpose is to limit negative pulses on the input that may

occur due to transmission line effects on long interconnections. This

input characteristic is called one unit load (UL) and a circuit such as in

Fig. 1-30 which contains 1 UL is said to'have a fan-in of 1.

If a second emitter is added to the circuit of Fig. 1-30, wehave a

2-input gate configuration, as shown in Fig. 1-31. Each input has its

own protection diode. If either input satisfies the on requirements,

the transistor will be on. Obviously, both inputs must satisfy the off

requirements in order to turn the transistor off. By adding more

emitters the manufacturers make multiple input gates. The 7430, for

instance, has eight emitters.

What about the undefined area of the input characteristic which

lies between.8V and2V? Itisjustthat,undefined. This is a grey area

88

where nothing is guaranteed and, except for some special circuits, it

should be passed through as quickly as possible (less than 200 ns). If

the input passes through this region too slowly the output can

actually break into oscillation. In fact, this is how a TTL oscillator

gets started: by being biased deliberately into this grey area until

oscillation occurs and then having the frequency of oscillation con

trolled by external components.

Inputs from the Outside World

TTL circuits connect to themselves very nicely, but the outside

world is not necessarily TTL compatible. How do you satisfy these

input requirements? It is very easy to get a voltage less than ,8V and

able to sink 1.6 mA—just short the input to ground with a switch.

What about the other limit? How do we get the high voltage and
current source? Figure 1-32 shows one way. The Ik resistor

guarantees that even with 40 uA being drawn, the voltage will be

above the required 2V minimum.

When the input is relatively slow in changing, you can avoid the

grey area problem by using TTLICs which have a special hysteresis

built into them. These are called Schmitt triggers and have different

switching points depending on whether the signal is positive or

negative going at the time. The 7413, 7414 and 74132 are examples
of this Schmitt trigger type of circuit.

INPUT I

INPUT 2

Fig. 1-31. Input circuit of 2-input gate. "

89

Fig. 1-32. Using a normal switch to drive TTL

When considering switches as the connection to the outside

world another potential problem arises. The contacts of the switch

don't close cleanly. They actually hit and bounce apart one or more

times before remaining closed. Normally this is no problem, but if

you were attempting to count switch closures it would not be

possible. Figure 1-33 shows how to use an SPDT switch and two

NAND gate elements to form a flip flop which debounces the switch.

This is a very common form of circuit configuration called

crosscoupled NAND gates.

Often when you are finished with a logic design you will find

yourself with unused inputs to some circuits. Never, repeat, never

leave any unused input to float. It will cause nothing but trouble.

Even though an open input is theoretically the same as a high, in

practice it is very sensitive to any kind of noise and can cause the

output to change for no apparent reason.

What do you do with unused inputs? There are several choices:

• If it will not prevent normal operation of the circuit you can

ground the unused input or connect it to a high source.

1. The high can be obtained by connecting directly to +5V.

The manufacturers don't recommend this since, if the input

goes above +5.5V, it-is possible to damage the input if the

current is not limited in some way. I do it all the time with

no problems (yet). I.recommend connecting to the +5V

connection on the chip itself.

90

2. Connect the unused input to +5V through a Ik resistor.

One resistor can tie as many as 50 inputs to +5V.

3. Use an unused inverting element and ground the input(s) to

force the output high. This high output can then be used to

pull as many inputs as its fan-out is rated (see output
section).

• Unused inputs of gates can be connected in parallel with

used inputs. There is no increase in load for low inputs. The

total current required for the two inputs in parallel is still 1.6

mA. Actually you can tie as many in parallel as you wish and

the total low fan-in will not exceed 1 UL. The high fan-in

does increase, however, as each emitter may require the 40

uA leakage current. As long as the high fan-out capability of

the driving circuit is not exceeded you can parallel gate

inputs.

One more input characteristic ofTTL circuits is worth mention

ing. This is the difference between so-called edge-triggered and

master-slave flip flops. The outputs of both circuits react according

to the status of the control lines at the time the clock pulse occurs.

An edge-triggered flip flop output reacts essentially immediately.
The small delay is called propagation delay. A master-slave flip flop is

more subtle. On the leading edge of the clock pulse the master

reacts like an edge-triggered flip flop. The output, however, is from

the slave and it does not react until the trailing edge of the clock

pulse. Figure 1-34 shows this difference in graphic form. The main

point to remember is that a master-slave flip flop requires a complete

clock cycle, not just one edge.

Outs

There are three basic forms of output circuit used in TTL. The

most common form is shown in Fig. 1-35. This is the so-called totem

THIS IS HIGH

FOR SWITCH

POSITION
SHOWN

THIS IS LOW

FOR SWITCH
POSITION

SHOWN

Fig. 1-33. Using cross-coupled NAND gates to debounce a switch.

91

INPUT CLOCK —■ f

OUTPUT OF EDGE \ I T
TRIGGERED ___ [l I
FLIP-FLOP H I

-► kPROPAGATION
j I J DELAY

OUTPUT OF ! !
MASTER-SLAVE
FLIP-FLOP 4 —L

MASTER CHANGES HERE

Fig. 1-34. Timing diagram showing difference between edge-triggered and

master-slave flip flops.

pole configuration. In the low output state the bottom transistor is on

and the top transistor is off. The bottom transistor sinks the current

from the connected inputs. In the high state the bottom transistor is

off and the top transistor is on. The top transistor now supplies the

leakage currents for the connected inputs. This is the normal ver

sion. There are minor variations on this circuit but they all operate

the same way.

The number of unit loads an output can drive is called its

fan-out. The standard TTLIC has a low fan-out of 10 UL and a high

fan-out of 20 UL. In other words, a standard TTL output can sink 16

mA (10 times 1.6 mA) and the output is guaranteed to be no higher

than ,4V or it can source 800 uA (20 times 40 uA) and the output is

guaranteed to be higher than 2.4V. If you compare these output

specs with the input specs you will find there is a .4V safety margin.

There are several ICs which are specifically designed to drive

larger loads. The 7437, 7438, 7439 and 7440 will all sink 30 UL. The

7437 and 7440 will also source 30 UL.

The 7438 and 7439 belong to another class of output circuit

calledopen collector. In this configuration the top transistor is missing

and the bare collector of the bottom transitor is brought out. With

this circuit you need an external load resistor of some sort to provide

the pull-up to +5V. If the voltage rating of the IC output is high

enough (the 7407 is rated for 30V, for example), you can switch

much higher voltages, and even drive relays and lamps if the current

rating is not exceeded.

The open collector circuit is also used in a logic configuration

known as both wired-and and wired-or. Figure 1-36 shows how this

92

works. All the open collector outputs are tied to a common pull-up

resistor. If any output goes low they all go low (wired-or), and the

output will only be high when all the output transistors are off

(wired-and, hence both terms). There is a practical limit to how

many outputs you can connect together. The pull-up resistor must

supply the leakage current for all inputs and all outputs when they are

all off and still maintain the voltage above 2.4V. However, it must

still be large enough to limit the total current ofresistor plus inputs to

16 mA (10 UL) when any output is on.

Contrary to what you may have read previously, it is alright to

connect TTL outputs in parallel, provided you also connect the

inputs in parallel so the outputs are doing the same thing at the same

time. In fact, the manufacturers recommend this technique as one

way to increase fan-out when the load is too much for one output.

However, you should restrict this paralleling to elements in the same

package because large transient currents are generated and can

cause problems if they are not closely confined.

90X1

TOP

TRANSISTOR

■^OUTPUT

BOTTOM

TRANSISTOR

Fig. 1-35. Totem pole TTL output circuit.

93

+ 5

-€L

RESISTOR

SUPPLIED
LEAKAGE
CURRENT

N UL
CURRENT

IF ANY

OUTPUT

IS LOW

N INPUTS

EACH I UL

Fig. 1-36. Using open collector outputs for wired-or configuration.

The third and newest type of output configuration is the so-

called tri-state or three-state output. This is a normal TTL totem

pole output where both transistors can be turned off. An extraenable

input is added to the the circuit and when enabled the output

functions as a normal TTL output. When disabled the output is

essentially disconnected. This allows one common wire with many

tri-state outputs connected to it to carry all sorts of different infor

mation (even in different directions) on a time division multiplex

basis. All you have to do is enable the appropriate outputs and inputs

at the proper time. This bus structure is very common in the world of

computers and microprocessors. I have used tri-state circuits to

match 336 bits of data at one time and then output them 8 bits at a

time. That is 42 different outputs on each data line.

Someplace in your design you have to connect outputs to the

outside world. There are special ICs for driving displays of different

kinds as this is one of the most common outputs encountered. I have

also mentioned using high voltage open collector outputs. If you

need more current or voltage," you can use a circuit such as shown in

Fig. 1-37. In both versions the resistors limit the base current to a

94

+ 5

360&
MINIMUM

OPEN COLLECTOR

OUTPUT

560X1
MINIMUM

NORMAL OUTPUT

Fig. 1-37. TTL driving transistors.

safe value. When driving an external circuit of any kind it is best to

use an ouput dedicated to only that load. That way, if any stray

TYPICAL

ESTIMATE

10% TO 20%
OF DIODE
CURRENT

OPEN COLLECTOR
OUTPUT

Fig. 1-38. Using an opto-isolator.

95

too easy for a stray signal to sneak back, get inside the flip flop and do

weird things.

When it becomes necessary to switch large output loads, often

there are transients generated that ride back in on the ground and

cause stray triggers of flip flops and other nasty things. A relatively

new circuit element called an opto-isolator eliminates this problem

completely. Even when driving all eight channels plus sprocket

advance of a high speed paper tape punch there is no problem—and

that represents 9 A at 24V every 9 ms. The opto-isolator (Fig. 1-38)

consists of an infrared LED and phototransistor. The LED is driven

from an open collector output and its energy is coupled optically (no

physical connection) to the phototransistor, which is then used as a

low level switching stage in a totally electrically isolated circuit.

The preceding rules and suggestions will not eliminate all your

digital logic problems but they will greatly reduce them, especially

those frustrating random ones. Remember the manufacturers only

guarantee proper operation if you stay within the specs.

Practical :D/A and A/D Conversions

Aside from computers and their peripherals, much of the rest of

the world is analog. Computers can perform many valuable tasks in

isolation, but application possiblilities are far greater when a compu

ter can communicate directly with the analog world. Communication

from a computer to the analog world is normaly done using a digital-

to-analog, or D/A, converter to change the digital output of the

computer to an analog voltage. Similarly, an analog-to-digital, or

A/D, converter can be used to convert analog voltages to digital

words which can be sensed and measured by a computer.

Integrated circuits designed to be the heart of D/A converters

are now becoming available from several mail-order parts suppliers.

Although these devices were originally developed for use with addi

tional custom control circuits, they can be used in conjunction with a

microcomputer to do D/A and A/D conversion. In fact, one of the

circuits described can be set by a switch to do .either D/A or A/D

conversion. Thus, it enables communications to and from the analog

world, depending upon application, with a minimum of components.

D/A Conversion

The most basic form of D/A converter is shown in Fig. 1-39. It

consists of switches which are used to represent a binary word and

binary weighted resistors which contribute current to the output in

proportion to the bit posistions of the switches. This particular

96

>
4

Fi
g.

1-
39

.
Pr
ot
ot
yp
e
D
/
A
co
nv
er
te
r
us
in
g
bi
na
ry

w
e
i
g
h
t
e
d

re
si

st
or

s.

signals are picked up and fed back on this line to the outside world

they won't be able to couple into another input and disrupt operation.

Also you should never use the output of a flip flop (this includes

counters, shift registers, etc.) to connect to the outside world. It is

converter has eight switches, so it can convert an 8-bit digital word

into an output current having 28 = 256 step values. The output

current for this type of converter is equal to the voltage source value

divided by the largest weighting resistor value (here 128ft) and

multiplied by the decimal equivalent of the digital word. The digital

word represented in the figure is 10011000, so the output current

would be 152V/12812 Amperes. The output current could be set to

values from 0 Amperes, for a digital word of 00000000, to 255V/

12811 Amperes, for a digital word of 11111111, in steps of V/128(l

Amperes. Notice that we call the output of a D/A converter an

analog signal but that it actually varies in discrete steps and only

approaches an analog signal when the step sizes are small. Usually, it

is more useful to have the output be in the form of a voltage rather

than a current, and an operational amplifier is included to do the

current-to-voltage translation.

A Practical D/A Converter

One disadvantage of using binary weighted resistors to make a

D/A converter is that the resistors span a wide range of values. It is

difficult to make accurate integrated circuit resistors over a 128-to-l

resistance range, so most integrated circuit D/A converters use a

different type of resistor network, known as an R-2R ladder, which

can give very high resolution with only two moderately sized resistor

values. Figure 1-40 shows an 8-bit D/A converter built around a

Motorola MC1408L-8. Internally, this device uses an R-2R ladder,

but externally, it behaves the same as the binary weighted resistor

prototype converter.

The MC1408 has eight input leads (D7-D0) which control the

settings of internal current switches. The inputs are TTL compati

ble, so they may be driven directly by a microcomputer parallel

output port, such as an 8212 or MC6820. As with the prototype

converter, an amplifier is included to change the MC1408 output

current to a voltage. The amplifier output voltage is given by:

= 0.0021R,

D3 , D2 , Dl DO "I
32 64 128 256 J,

98

F
R
O
M

C
O
M
P
U
T
E
R

P
A
R
A
L
L
E
L

O
U
T
P
U
T

P
O
R
T

<

0
6

0
5

D
4

D
3

0
2

0
1

D
O

M
S
B

L
S
B

5 6 7 8 9 1
0 II 1
2

M
C
I
4
0
8
L
-
8

4
5
V

■4
24
00
Q

f
15

2
4
0
0
f
l

♦
5
V

o
V
O
U
T

Fi
g.

1-
40
.
A

pr
ac

ti
ca

l
D
/
A
co

nv
er

te
r
ha
vi
ng

a
n
ou

tp
ut

r
a
n
g
e
of

0
to

1
0

vo
lt

s
in

0.
03

9-
vo

lt
st
ep
s.

where DO through D7 are binary values, either zero or one. Regis-

tor Rr determines the amplifier gain and, therefore, its output vol

tage range. With Rf equal to 4.7kft, as shown in Fig. 1-40, the

maximum amplifier output voltage is approximately 10 volts, and the

step size is 0.039 volts. Rf may be decreased if a smaller output

range is desired. For example, the maximum output voltage will be 5

volts,and the step size will be 0.0195 volts, if Rf is 2.4kft.

Using the D/A converter is straightforward, since it needs

essentially no software driver program. All you need to do is output a

digital word to the microcomputer parallel output port, and the

converter will produce the corresponding analog voltage level at its

output.

In many applications, a D/A converter is used to generate a

time varying signal, such as a sine wave, by having the computer

output a series of digital words. In these cases, it may be important

to knowhow fast the D/A converter can react. The converter shown

in Fig. 140 can convert a digital word to an analog output voltage in

about two microseconds, which is faster than the instruction cycle

time of all but bipolar microprocessors. In general then, the mic

rocomputer rather than the D/A converter will limit the maximum

frequency which the D/A converter produces.

Adding A/D Conversion Capability

One of the most popular means of performing analog-to-digital

conversion is known as the successive-approximation technique, and

the heart of a successive-approximation A/D converter is a D/A

converter such as the one just described. An A/D converter has an

analog signal, usually a voltage, as its input, and the circuit tries to

find a digital representation for the signal. The successive-

approximation converter does this by using a D/A converter to

generate an analog voltage which can be compared to the input

signal. When the two analog signals are equal, the digital word

applied to the D/A converter is also a valid representation for the

analog input signal.

A basic block diagram of a successive-approximation A/D con

verter using an MC1408 is shown in Fig. 1-41. The analog input

signal is applied to IC1, which is a high input impedance amplifier that

keeps the converter from loading down the analog source. Output

currents from IC1 and the MC1408 are compared by high-gain

amplifier IC2. Whenever the output current of the MC1408 is grea

ter than that of IC1, the output of IC2 will appear as logic 1 to the

computer input port. Conversely, when the output current of the

100

A
N
A
L
O
G

I
N
P
U
T

V
O
L
T
A
G
E

D
7

M
S
B

M
C
I
4
0
8

D
I
G
I
T
A
L
W
O
R
D

F
R
O
M

C
O
M
P
U
T
E
R

O
U
T
P
U
T

P
O
R
T

I
C
2

T
O

C
O
M
P
U
T
E
R

I
N
P
U
T
P
O
R
T

D
l

Fi
g.

1
-
4
1
.
A

b
a
s
i
c
a
n
a
l
o
g
-
t
o
-
d
i
g
i
t
a
l
c
o
n
v
e
r
t
e
r
.

MC140 8 is less than that of IC1, the computer input port will see a

logic zero (the output of IC2 will be a large negative voltage, but

diode Dl will prevent the negative voltage from reaching the compu

ter input).

By comparing Figs. 1-40 and 1-41, you can see that the differ

ences between A/D and D/A converters arfe small. The circuit of

Fig. 1-42 takes advantage of their similarity because it canbeused as

an A/D converter when desired, and, at the flip of a switch, it can be

changed into a D/A converter for use in other applications. In the

D/A conversion mode, IC1 is disconnected, and Rf is connected to

establish the proper gain for IC2. In the A/D mode, IC1 is con

nected, and the gain of IC2 is made very high by disconnecting Rf.

Thus far, in discussing the A/D converter, I have ignored the

problem of determining the exact digital word which should be

presented to the MC1408 input so that its output is identical to the

analog signal being applied to the D/A converter. The only way to

determine the correct digital word is to sequentially generate digital

words in a judicious manner so that each successive word corres

ponds more closely to the analog voltage. It is this sequential pro

cess which gives the successive-approximation converter its name.

An algorithm which converges rapidly on the correct digital word is

one which individually tests bits, beginning with the most significant

bit, to determine whether that bit should be set to a one or zero.

Each bit is tested by outputting a word with that bit set to a one. If

the output of the MC1408 produced by the test word is less than the

analog input signal (IC2 outputs a logic zero), then that bit should

remain a one. If the MC1408 output is greater than the analog input
(IC2 outputs a logic one), then that bit shouldbe set to a zero. Aftera

bit is tested and its value is known, the next most significant bit is

tested in a similar fashion until all bit values are known.

A flowchart listing of the successive-approximation algorithm is

given in Fig. 1-43. First, the analog voltage is checked to see if it

exceeds the range ofthe converter. This is done by outputting word

FFH (all bits set to one), which corresponds to an analog voltage of

10 volts. If the output of IC2 is a logic zero, then the input voltage

must be greater than 10 volts, and an error message is printed. Ifthe

output of IC2 is a logic one, you can begin the testing of individual

bits. Register B always contains a single one in the bit position being

tested. After the bit test is completed, register B is rotated right to

move the one into position for the next test. Results of all previous

bit tests are combined in register A. An example of how the al

gorithm proceeds is given in Table 1-1.

102

4
7
0
0

A
N
A
L
O
G

I
N
P
U
T

F
R
O
M
C
O
M
P
U
T
E
R

P
A
R
A
L
L
E
L

O
U
T
P
U
T
P
O
R
T

0
7

D
6

0
5

D
4

D
3

D
2

0
1

D
O

4
7
0
0

M
C
I
4
0
8
L
-
8

A
/
D

♦
5
V

J
4
J
4
0
0
A

4
7
0
0

S
I
B

A
/
D

D
/
A

1
/
2

,
J
_
M
7
4
7
H

J

:
;
4
7
0
0

m

♦
1
2
V

-
I
2
V

A
N
A
L
O
G

O
u
t
p
u
t

3
3
0
0

m

0
T
0
C
O
M
P
U
T
E
R

I
N
P
U
T

P
O
R
T

S
Fi

g.
1-

42
.
A

co
nv
er
te
r
wh
ic
h
ca

n
pe
rf
or
m

ei
th

er
D/

A
or

A/
D
co
nv
er
si
on
,
de

pe
nd
in

g
up

on
th
e
se

tt
in

g
of

sw
it
ch

S1
.

C
ST

AR
T

J

S
E
T
M
C
I
4
0
8

T
O
M
A
X
I
M
U
M

C
U
R
R
E
N
T

(
O
U
T
P
U
T

F
F
H

T
O
S
E
T
A
L
L

B
I
T
S

L
E
T

I
C
2

S
E
T
T
L
E

(
W
A
I
T

7
M
I
C
R
O
S
E
C
O
N
D
S
)

•
D
O
E
S
A
N
A
L
O
G

I
N
P
U
T
E
X
C
E
E
D

R
A
N
G
E

,

{
(
I
N
P
U
T
F
R
O
M
J
C
2
J

|
N
O

(
I
C
2
A
L
O
G
I
C

\l
Y
E
S

(
I
C
2
A
L
O
G
I
C

0
)

S
E
T
M
S
B

T
O
A
O
N
E

(
8
0
H

I
N
T
O

B
R
E
G
.
)

C
O
M
B
I
N
E

P
R
E
S
E
N
T

T
E
S
T

B
I
T

W
I
T
H

P
R
I
O
R

T
E
S
T

R
E
S
U
L
T
S

(
A
O
R
E
D

W
I
T
H

B
I
N
T
O

A
)

S
E
T

M
C
I
4
0
8

T
O

T
E
S
T

L
E
V
E
L

(
O
U
T
P
U
T

A
)

L
E
T

I
C
2

S
E
T
T
L
E

(
W
A
I
T

7
M
I
C
R
O
S
E
C
O
N
D
S
)

I
S
A
N
A
L
O
G

I
N
P
U
T

L
A
R
G
E
R

T
H
A
N
T
E
S
T

L
E
V
E
L

(
I
N
P
U
T
F
R
O
M

I
C
2
)

I I

N
O
0
C
2

A
L
O
G
I
C

I)

Y
E
S

(
I
C
2
A
L
O
G
I
C

0
)

R
E
S
E
T

B
I
T
I
N
D
E
R

T
E
S
T

I
N
A
R
E
G
I
S
T
E
R

(
E
X
C
L
U
S
I
V
E
O
R
O
F

A
A
N
D

B
I
N
T
O

A
)

"
L

H
A
V
E
A
L
L

BI
TS

B
E
E
N

T
E
S
T
E
D

~~
1

(
I
S
O
I
H

I
N

B
R
E
G
?
)

I

N
O

P
R
E
P
A
R
E

T
O
T
E
S
T
N
E
X
T

B
I
T

(
R
O
T
A
T
E

B
R
E
G

T
O

R
I
G
H
T
)

Y
E
S

C
DO
NE

J

0
1

Fi
g.

1-
43
.
A
/
D
c
o
n
v
e
r
s
i
o
n

ro
ut
in
e.

Re
gi

st
er
A

co
nt

ai
ns

re
su

lt
s
of

al
l
pr

io
r
bi

t
te
st
s.

Re
gi
st
er
B

co
nt
ai
ns

a
lo
gi

c
o
n
e

in
th

e
bi

t
po

si
ti

on
u
n
d
e
r

te
st
.

T
a
b
l
e

1-
1.

A
l
g
o
r
i
t
h
m
C
o
n
v
e
r
s
i
o
n
.

Fi
rs
t
t
e
s
t

(t
o
s
e
e

if
i
n
p
u
t

is
g
r
e
a
t
e
r
t
h
a
n
5

vo
lt
s)

N
e
x
t

t
e
s
t

(t
o
s
e
e

if
i
n
p
u
t

is
g
r
e
a
t
e
r
t
h
a
n
7
.
5

vo
lt

s)

N
e
x
t

t
e
s
t

(t
o
s
e
e

if
i
n
p
u
t

is
g
r
e
a
t
e
r
t
h
a
n
6
.
2
5

v
o
l
t
s
)

T
e
s
t
s
c
o
n
t
i
n
u
e

un
ti

l
al

l

bi
t
p
o
s
i
t
i
o
n
s
a
r
e
t
e
s
t
e
d

A
-
r
e
g
i
s
t
e
r
c
o
n
t
e
n
t
s

8
0
H

(
1
0
0
0
0
0
0
0
)

T
e
s
t
p
a
s
s
e
s
(
I
C
2
a

l
o
g
i
c
0
)

C
O
H

(
1
1
0
0
0
0
0
0
)

T
e
s
t

fa
il

s
(
I
C
2
a

l
o
g
i
c

1)

A
O
H

(
1
0
1
0
0
0
0
0
)

T
e
s
t

fa
il

s
(
I
C
2
a

l
o
g
i
c

1)

B
-
r
e
g
i
s
t
e
r
c
o
n
t
e
n
t
s

8
0
H

(
1
0
0
0
0
0
0
0
)

4
0
H

(
0
1
0
0
0
0
0
0
)

2
0
H

(
0
0
1
0
0
0
0
0
)

A/D conversion is a slower process than D/A conversion be

cause eight digital words must be generated sequentially (one for

each bit test) to complete the conversion of one analog value. After

each word is output, a delay ofat least seven microseconds should be

allowed for IC2 to settle, so the hardware limits the maximum

conversion speed to 56 microseconds. To this, you must add the

time needed for the microprocessor to cycle through the conversion

algorithm instructions. Generally, this will extend the conversion

time to several hundred microseconds. Fortunately, changes in the

analog world tend to take place comparatively slowly.

Possible Applications

D/A converters synthesize sounds. With them, you can have a

function generator ofalmost unlimited flexibility for amplifier testing,

music creation and perhaps even synthetic speech generation. A/D

converters have possibilities which may be even more exciting, for

they can tell a computer what is going on around it. They can tell it

the temperature, how much power the house is consuming, how

much sunlight is falling on a solar collector and even whether it

should be in pain because a brownout is occurring.

107

Chapter 2

Microprocessors

Computers are definitely the wave of the future. So says an expert

named Hans Napfel. Not only does he work with them at Fairchild,

where he oversees 28 people, most of whom are engineers, but he

also has been studying them since the early 60s at home, through all

stages of their development. And he knows what applications are

planned for them in the foreseeable future. No one, he says, can be

unaffected by computers. They are a part of everyone's life, and this

will be increasingly true.

Hans designed and built a small dedicated computer-(one re

stricted to performing certainfunctions) in 1973. It was built with the

best components available at the time—resistors, transistors,

capacitors and some integrated circuits—and had no microprocessor

(a group of integrated circuits formed into a single component). But

most amateur computing did not really begin until more than a year

later, when 8008s, the first microprocessing chips, appeared on the

market. Now amateur computing is a rapidly-growing hobby, one

which Hans nevertheless believes is still in its infancy.

The personal computer is industry's answer to the general

demand for involvement with computers. It is diminutive in size, can

read from already-prepared tapes to carry out a program, or the

operator can write in his or her own programs.

Technicalpeople will find computers extremely useful as a tool,

Hans believes. Indeed, it was Hans's technical needs as a radio

amateur that created his interest in computers and caused him to

begin working with them. "Now," Hans says, "my computer runs

109

my radio station." Not the limited-function computer of 1973, but a

second model, built in 1975, which Hans affectionately calls "The

Blue Max." It is a general computer, programmable for many things.

The Blue Max (which is named for its attractive azure front panel)

takes up less than a square foot of space (quite a contrast from the

behemoths of the sixties, which were also awkward to use). Max can

provide automatic-repeat CW when Hans wants to run a test. It

makes contact with a friend on schedule, with or without Hans'

presence, and records the Morse code answer received, which it

prints, in words, either on the attachable television screen or by

radioteletype, or both, as Hans has instructed. It prints the received

message at exactly the same speed as the sender gives it.

Hans' computer is helpful to him in other ways with amateur

radio. It keeps track of his QSLs for him so that he does not have to

wonder whether the contact he's just made should be asked for one.

(A bulging QSL file shows why this is helpful!) It keeps track of

call-letter changes. And it can be asked to print out all the "Charlies,"

all the W5s or whatever.

Indeed, with a capability of handling 200,000 full instructions

(not bits) per second (yes, that's per second), Hans computer can be

asked to remember anything. Hans uses it during contests to keep

his log and to eliminate duplications in the log. "It is also useful for

field days," he says, "to keep you from repeating stations worked."

Hans also recommends computers as a good way to practice

Morse code. For not only does the computer send perfect code

every time, at whatever speed you desire, but it also can show you

the dots and dashes on screen simultaneously, thus giving you the

benefit of involving two senses instead of just one. And it can be

programmed to increase the speed gradually, if you wish.

There are other interesting computer applications for the radio

amateur. For instance, the moonbouncer will find it "indispensable,"

Hans says, to keep the antenna positioned at the moon. When an

experimenter with a parabolic dish is not at home, a computer can

sense the weather and wind and rotate the dish for the least amount

of wind resistance.

Hans and three of his friends are working on an even better

computer than The Blue Max. It, too, is homemade, but is com

posed of commercial boards that the four men have modified. (For

Max, Hans designed even the routine things.) Hans and his friends

are taking care to program their computers the same way and with

the same language (they have settled on "super BASIC"), so that

they can exchange programs and communicate with each other

effectively. The computers can use audio cassettes as well as paper

110

tape. Punch cards, Hans says, are almost obsolete in personal

computing.

In addition to paper tape and punch cards, Hans computer can

work from afloppy disk, with the addition of a floppy bit memory unit.

This attachment records information on a flexible record called a

floppy disk, and thus gives Hans quick access to what is now

peripheral-memory material, freeing space in the computer's central

memory. These disks too, are transferable and easily mailed.

When this system is complete, Hans says, it will not only run his

radio station, but his whole house as well. Already, Max organizes

important dates for him. It tells him when to pay certain bills; it will

monitor the water temperature and control the pump and filter of his

in-ground backyard pool; it tells him when to send birthday and

anniversary cards and when to buy gifts. How does it do this? Not by

waiting for Hans to call up its memory. When Hans looks into his

conveniently-located equipment room each morning, there is the

day's message right on the screen—blinking to get his attention.

"A computer can handle anything to do with numbers," Hans

says, "Using it unclutters your memory and makes life easier." If

Hans should be late for a class or fail to acknowledge an occasion, it

will not be because he was not informed! Max lets him know the

flagging date—the day it is necessary to know—ifan event is coming

up. And Hans can call for a review of the coming month, if he so

desires.

The computer is also useful as a telephone directory. It may

take a few hours to prepare the program, but to update it later will

only take seconds. And you can get the number by first name only,

last name only or even by call letters.

Having a computer in the home can be beneficial to non-hams,

too. Hans' 12-year-old daughter uses it for games, for educational

math workouts and to make musical programs. She will soon have a

remote terminal in her room. There is already a remote unit in the

kitchen, where Hans' wife bones up on her French.

But the computer can do more. It can adjust the thermostat in

the house, for instance. It could even be made to do this intelligently,

by monitoring the outside and inside temperatures and deciding how

to adjust the inside accordingly. This could be important when one is

away, especially in winter when pipes could freeze, but when an

Indian summer could allow a lower-than-usual inside temperature.

The computer could also be made to turn lights on and off, water

plants, feed the dog, play music and control air conditioning.

The family car will not be unaffected by computers. "In the next

two years," Hans says, "cars will have computers to control gas

111

mileage (by noting speed vs. vacuum vs. temperature and keeping

the car running at maximum efficiency by optimizing the fuel mix

ture) and to monitor the condition of the car (letting you know if a

light is not working, for instance). In fact, a few cars even have

computers now." Signals to the driver will be shown on one light-

emitting-diode display, not by means of six or eight meters as we

now often see in a car. A computer-controlled warning system will

sound a buzzer to alert a speeding or sleeping driver (erratic wheel

movements will indicate that the car has left the pavement).

Computers will eventually revolutionize grocery shoping. One

could make selections at home, visually (even comparingprices from

store to store, right at your own kitchen terminal), and then go to the

store to pick up the waiting order. Or it could be delivered to your

door. Food, by this system, could be dispensed directly from

warehouses. And computers (microprocessors) already control

microwave ovens and teaching machines.

But computers will never make it big in the classroom, Hans

feels, because "teachers are too threatened by machines. Machines

are potentially authority-shattering. What if something goes wrong

that the teacher can't fix?" Still, Hans feels that computers could be

used by schools successfully as tutors for drill and routine work, if

they are housed in a separate room overseen by a competent

technician. "But they will never replace teachers," he says.

For handicapped people, they will be especially important,

Hans says, becoming the ears of deaf people and eyes of the blind.

Already, speaking computers can be purchased. And in the health

field, they are already indispensable, but will become even more so.

"And by 1985 or 1990, every house will have its own minicom

puter," Hans says. It will be used as an intelligent security system

(those who live in each house will not set off the alarm), as a

telephone answering service and directory (indeed, all forms of

paper directories may soon be obsolete), as well as for energy

management, bookkeeping, scheduling, providing educational drill

and playing games.

"What about using them to communicate with outer space?" we

asked Hans.

His eyes twinkled at the unexpected thought.

"They would be essential in a space colony," he answered, "to

monitor the station's life-support system and relative positions, and

to keep track of supplies. But to communicate with other intelli

gences in outer space? Let me put it this way: I'm a hardware

realist."

112

For Hans, that's not a limitation. "I keep up with what's being

discovered," he says, "and I just take it one step further. That's

what makes the difference." In fact, Hans advances the state of

computer art through his hobby, then takes his knowledge to thejob,

where he educates others.

In a pursuit requiring perseverance and thoroughness, Hans'

philosophy is clearly the one that works.

Looking for a Micro?

If you are in the market for a complete microcomputer, but your

funds are somewhat limited, the KIM-1 is for you.

For $245 the KIM-1 comes complete with CPU, 1024 (IK)

bytes of random access (read/write) memory, 2048 (2K) bytes of

read-only memory, a 23-pad keyboard for hexadecimal input and

limited front panel capabilities, a six-digit seven-segment series of

light emitting diodes (LEDs) for output, a cassette interface and a

serial teleprinter interface. The only thing the KIM-1 lacks is a

power supply. If you are going to run a cassette, you will need a +5V

and a +12V power supply; otherwise, +5V at 1.2 Amps will be

sufficient. The power supply can be built from a schematic supplied

in the back of the KIM-1 User's Manual, or you can purchase one at a

local radio store for under $50.

The CPU is the MCS6502. It is capable of addressing up to

65,536 (64K) bytes of memory. Although the instruction set of the

6502 is somewhat limited when compared to the 8080A, which is the

chip used by the Altair 8800B and others, it is more than sufficient for

the person who is just starting to program. (The 6502 has 56

instructions, as compared to the 78 instructions for the 8080A). With

some ingenuity, the 6502 instruction set can go quite a long way.

The system clock runs at 1 MHz. The instruction execution time

runs from two to seven cycles, with four cycles being the average.

This means the 6502 can execute up to approximately 250,000

instructions per second. This is only half as fast as the machines that

usethe8080A; however, it is still fast enough for most applications.

The IK of random access memory that is provided onboard is

not enough to do much in the way of serious programming. It is,

however, sufficient to learn basic machine level programming skills.

Input is through a keyboard located at the lower right-hand

corner of the board. If you have an ASR-33 teletype with the 20 mA

loop, it can be connected directly to the machine. Lacking this, you

are restricted to the keyboard. I would like to take this time to

comment on the positioning of the keyboard. I am left-handed; as a

113

result, I find that I must be aware of where I rest my hand, as the two

interfaces are directly to the left of the keyboard. This could be

improved by having the keyboard remote from the machine itself.

This is, however, a relatively minor problem. The keys on the

keyboard are as follows:

O-F hex—instruction and data input

AD—enter address mode

DA—enter data mode

H—increment address by 1

PC—restore program counter

ST—generate interrupt (STOP)

GO—begin program at current program counter

RS—reset to monitor control

SST—a slide switch for single-step execution of programs.

Output is through 6 seven-segment LEDs. The left four LEDs

are separated from the right two, making it easy to read the display.

The display is located directly above the keyboard.

The 2K bytes of read-only memory contain a monitor program

which basically controls input/output operations, including cassette

operation and serial teleprinter operation.

My main objection to the design of the KIM is the absence of

sockets for the 22 integrated circuits. This is not a problem unless

one burns out. If one should burn out, it will take a lot of time and

patience to replace it. The board has been silk-screened to prevent

accidentally shorting out adjacent foils. It should be noted that a

potentiometer has been utilized as part of the onboard audio cassette

interface. This potentiometer is preset at the factory and should not

be adjusted by the user.

The onboard interfaces are for an audio cassette and a serial

teleprinter (specifically the ASR-33). The first expansion recom

mended for the KIM is to add an audio cassette. When you are

working on small programs, it is no big deal to key in your program,

turn the machine off, and key the program in at a later time;

however, when you start to write long programs, keying in a long

program every time you turn on your machine becomes a hassle. If

you can store that program and load it without having to key it in, you

have overcome this problem.

The primary solution to this problem, employed by microcom

puters, is storage on audio cassette tape. This is fine—that is, until

you drop a bit. Unlike digital recorders in the big machines, an audio

recorder does not go back and make sure it has recorded the data

properly. You will not discover the error until you try to load the

program, and, for some reason, it doesn't work. This is a major

114

problem with audio cassettes and one not easily reckoned with.

The advantage of audio cassette recorders is that they are

inexpensive. However, the serious user will soon find that he needs

to go to another form of mass storage, such as floppy disk.

The second interface provided is for a serial teleprinter. The

ASR-33 is the recommended machine. While this is a fine machine, it

is relatively expensive (between $500 and $1000). This is one

expansion I don't plan to do for a long while. If I had that kind of

money, I would have bought a bigger machine. I would recommend

to anyone who is looking toward terminals to consider a CRT

(Cathode Ray Tube) terminal, as one can be had for around $250,

although you'll have to interface it yourself.

The documentation on the KIM is excellent. It consists of three

books, a wall chart and a card listing the instruction set. The books

include the Use/s Manual, which should be read first, the Prog

rammingManual and theHardware Manual. The wall chart shows

how the hardware is connected, and the instruction set card lists the

mnemonics and op codes with variations.

Getting the KIM-1 up and running took us almost a week. The

main problem was getting the power supply ready to supply power.

My power supply is a Control Data Corporation model, supplied by

Electravalue Industrial for $50. Initially, upon unpacking the supply,

I was terrified by all the cables. However, upon more careful inspec
tion, I was able to determine how to hook it up to the KIM. The

problem lies in the number of connectors comingfrom the supply and

the lack of an AC power cord. It took three days of searching over

the greater New York area before I finally found one suitable for the

job at Westchester Electronics in White Plains.

Once the power considerations were taken care of, I was able

to turn on the machine and run the test problem in the Use/s

Manual—a simple 8-bit addition routine to check the operation of

the KIM. The program worked perfectly, and I have had no prob
lems with my machine yet.

Overall, the KIM-1 is an excellent beginning machine. Among

other things, it teaches you how much you can really do with only IK

of memory, something that is forgotten with today's massive

machines. More importantly, however, the KIM-1 (at $245) makes

computing available to anyone who wants it, and it is versatile
enough to satisfy most people's needs.

Kim-1 Can Do It!

Of the several thousand KIM-1 microcomputer systems pro

duced since the system's introduction, many are now being used by

115

experimenters in a number of interesting applications. The KIM-1

may be adapted to function as a versatile RTTY terminal at nominal

cost. Methods ofinterfacing KIM-1 to a typical Baudot TTY loop, as

well as some of the software requirements will be discussed. All of

the options to be described have been tested and will work success

fully. However, there are some considerations to keep in mind

before deciding which method might be preferred.

Since all amateur RTTY operation uses the Baudot code, it is

necessary to convert the incoming data to the ASCII code for video

display presentation, or to operate an ASCII hard-copy printer.

Conversely, ASCII characters from the keyboard, or from memory,

must be converted to Baudot for transmission. In addition, the

system should also perform some of the other functions normally

expected of a RTTY terminal.

KIM-1 RTTY Functions

The program I am currently using performs nearly all of the

required functions, and it can be expanded to accommodate others.

These functions may be summarized as follows:

• Baudot to ASCII conversion (receive mode), with unshift on

space.

• ASCII to Baudot conversion (send mode).

° Automatic end-of-line (EOL) functions (2 CR1LF) in send

mode. Keyboard line feed generates the same EOL func

tions.

• Store messages from keyboard in selected memory blocks.

These may be CQ calls and other canned messages, such as

the station brag tape. Error correction is provided and case

typing errors are made during keyboard entry.

• Read previously stored messages for transmission. CQ calls

may be repeated automatically as many times as desired.

• Send "DE (callsign)," followed by the time generated by a

real-time clock.

• The real-time clock uses a simple crystal-controlled 1PPS

generator connected to the NMI (non-maskable interrupt)

line. The 1 PPS output of some digital clocks can be used for

this purpose. The clock is updated from the keyboard with

the current time after program execution. The 1 PPS

generator is turned on at the exact minute entered.

• CW ID (Morse identification). This routine is a modified

version of WB2DFA's KIM-1 Morse keyboard program.

However, the CW ID is read from a table, rather than types

from the keyboard.

116

• Keyboard control of all functions. One control key is used to

select the receive mode, which is disabled if any other key is

depressed.

The RTTY Program

To fully implement all of the above, 892 bytes of onboard

memory are presently used with the parallel I/O configuration to be

described later. This includes lookup tables for the code conversion.

An additional 2K bytes of an S. D. Sales 4K memory expansion board

is allocated to message buffer storage. The program is suitable for

firmware (ROM or EROM), with the exception of the real-time clock

"digit" locations, which must be in RAM. This portion ofthe program

can be modified.

Table 2-1 lists the keyboard control functions. Some ASCII

keyboards are not properly coded, so you may have to make some

changes to the keyboard control routine, if yours is different.

Table 2-2 is a combination memory map and hex listing of the

program. Data in zero page locations 0000-000F is variable and does

not have to be saved when making a tape recording of the program.

Canned messages may be saved and loaded into memory as part of

the program, so they do not have to be reentered.

For my display, Baudot carriage return is converted to a null

and does nothing. Line feed is converted to space. The ASCII

Table 2-1. Keyboard Control Functions.

ESC Sets receive mode.

ETX (CTRL C) Time update for real-time clock.
Type in four digits using 24-hour format.

ENQ (CTRL E) DE (callsign) and time.

DC1 (CTRL Q) CW ID.

STX (CTRL B) Store message (followed by 1, 2, 3, or 4).

(AT Sign) Read message (Followed by 1, 2, 3, or 4).

♦(Asterisk) End of transmission. Last character typed to

end store mode.Also added by store routine,
if end of message block, to prevent over

writing into next block.Message is not
repeated.

+(Plus sign) Repeat message. Last character typed, if

message is to be repeated. Location 034F

contains number of times to be sent.

CRLF ends transmission after last line.
Error correction. This is effectively a

backspace and decrements the message
store pointer. Used when stroing a message

____^_ from keyboard.

117

0000-OOOF

0010

0020

0030

00<*0

D050

3060

3070

0080

0090

00A0

OOBO

00B2

00C2

0100

0110

0120

0130

0200

0210

0220

0230

0240

Table 2-:

Temporary

Baudot-ASCII

00

54

00

35

45 20

5A4C

33

22

20

29

41

57

2D

32

ASCII-Baudot

00

16

00

16

03

17

OD

17

19

OA

11

13

OE

05

14

01

I Memory

data and

Conversion

20

48

20

23

53

59

00

36

49

50

38

30

55

51

37

31

, Conversion

09

10

09

OA

Initialisation.

D8

02

85

A9

A9

03

Wait 1

24 02

EF 20

25

3F

8D

8D

-oop.

30

00

08

02

FA

03

01

07

00

10

OD

IE

1A

15

1A

13

OB

07

Ma;tand Program

indirect

Table

00

4F

00

39

44

42

24

3F

Table

14

ID

OF

06

Set progran

17

17

Looks

2C

4C

00

B2

A9

A9

04

41

8D

8D

for KBD 1

17

00

10

Baudot-ASCII Conversion

AD

A9

00

00

80

24

1EA9

17

85

01

00

Keyboard

84

48

03

A9

86

05

A9

4C

03

02

20

80

4F

C9

C9

4A

01

10

29

4C

02

8D00

IF

31

69

17

Control <

5A

85

03

03

OA

IE

02

C9

DO

DO

A4

68

05

03

03

85

01

20

A9

00

C9

AA

40

03

C9

IF

B5

8D

06

15

12

18

52

47

34

26

OB

11

00

OE

Listing

pointers*

4A

00

27

00

OF

00

00

IE

1 oounter

FB

01

17

17

itart 1

20

04

DO

10

00

00

FO

04

C9

17

1 ASCII-Baudot

05

C9

DO

4C

4C

C9

02

03

7A

99

IB

DO

4C

04

02

DO

03

8E

C9

C9

05

4C

03

OD

20

A9

A9

bit

01

OF

A9

00

60

4E

4D

2C

2E

12

IF

OC

00

to

00

40

or

2C

C9

00

FO

46

58

21

2F

1C

00

03

00

43

56

3A

3B

OC

00

1C

00

0090 1

85 01

8D 00

4B

00

28

00

18

00

ID

19

to start.

85

17

receive node enable.

40

IB

85

03

17

DO

01

20

Conversion

A9

OE

C9

DO

DO

00

02

11

05

OE

85

C9

DO

A9

C8

02

40

03

00

CO

07

A5

AO

60

DO

4C

4C

43

118

02AB

02BB

02CB

02DB

02EB

02FB

025C

026C

027C

028C

029C

02AC

) 30 03 4C 99 02 A9 04 4C 86 02 85 04 24 04 70 09

) 24 03 50 10 A9 IB 4C 6F 02 24 03 70 07 A9 IF 20

> 86 02 A5 04 85 03 29 3F iLAB5 50C80048D006

) 20 86 02 4C 99 02 8D 02 17 09 20 8D 02 17 A9 00

> 8D 02 17 2C 02 17 10 FB 60 AO 00 A9 08 20 86 02

> A9 08 20 86 02 A9 02 20 86 02 60

Message Select 19 2,

20 5A

08 85

85 07

60 C9

0EA9

85 07

Q20B

030E

031E

032E

033E

034E

034F

035F

036F

037F

IE C9 31 DO 13

OE 85 OA A9 7F

85 OD A9 05 85

33 DO 15 A9 00

FF 85 09 A9 07

85 OD A9 08 85

85 0A60

Store Message

20 AB 02 A2 00

PO 2E C9 3C DO

4C 13 03 E6 07

0? DO D2 A5 OA

60

Read Message

A9 OA 85 OB 20

2B DO 12 06 OB

85 08 40 56 03

02 E6 07 A9 00

3 or 4.

A9 00 85

85 09 60

08 85 OE

85 07A9

85 0A60

08 85 01

20 5A IE

OD 06 07

A9 00 C5

C5 08 DO

AB 02 A2

DO 03 4C

84 05 48

C5 07 DO

Used by Read

07

C9

85

OD

C9

19

81

A9

07

CC

00

99

20

CE

85 OD A9

32 DO 13

OA A9 FF

19 06 85

34D0 4S

FT 85 09

07 C9 2A

FF C5 07

DO 02 E6

A9 2A 81

Al 07 09

02 A5 OD

AO IE 68

B6 08 4C

I &

05

A9

85

08

19

19

PO

DO

08

07

2A

85

A4

56

Store routine*).

85

80

09

85

00

OB

32 C9 2B

E7 06 08

A5 09 C5

20 AO IE

PO 2F C9

07 A5 OE

05 20 39

03 60

continued on page 120

119

Table 2-2. Memory Map and Program Listing, continued fron

038E

0399

O3A9

O3B9

O3C9

O3D9

O3E9

O3P9

0409

DE CALL

A9 99 85 07 A9 03

Call Table & Tine.

44 45 20

CW ID

A2 00 BD

06 20 EA

CO 00 DO

F8 03 20

03 98 48

48 AO 03

8D 0? 17

0418-0421 CW]

0425

0435

0445

0455

0465

0475

047A

048a

00 00

18 04

03 4C

06 20

FF03

AO 06

4C 03

CD 07

00

85

AB

Fl

4C

4C

04

17

CD Table.

85 08 4C 56 03

Enter ASCII equivalent

null locations O39C

00 00 00 20

OD E8 EO OB

03 29 FC 85

03 4C AB 03

C9 03 20 FF

06 04 98 48

98 48 AO 01

10 FB CO 00

Biter Morse

(Call Sign]

Real-Time dock (NMI routine).

48 B6 OC

AD A6 03

A5 03 C9

03 C9 3A

C9 34 DO

8D A3 03

A5 OC

C9 3A

36 DO

DO 08

OF AD

68 40

Tine Update

A9 00 85

F5 60

0500-057F MSO

O58O-O5FF MSG

0600-07FF MSO

0800-OBFF MSG

OC A2

Block

Block

Block

Block

C9

DO

08

29

A3

00

1

2

3

4

3C DO 4A A9

08 29 30 8D

29 30 8D A5

30 8D A4 03

03 09 32 DO

20 5A IE 9D

(128 bytes)

(128 bytes)

(512 bytes)

(1024 bytes)

30

DO

OE

88

03

AO

EE

DO

30

01

A5

06

20

02

00

Fl

30

60

OD

OE

FF

4C

17

68

J to

30

C9

29

90

03

06

88

A8

> equivalent!

1.

00

A6

03

EE

08

A3

85

03

EE

A3

A9

03

OC

EE

A4

03

30

flB

EE

A5

03

AD

of

lpage 119.

1 call sign in

03A1.

5A

00

07

09

4C

04

A9

60

2A

DO

AB

20

09

98

37

1 for DE (space)

A6

03

AD

A4

8DA4

EO 04

03

AD

A4

03

03

DO

120

carriage return i$ converted to a blank, since the line feed takes care

of EOL functions, as previously noted.

Morse equivalents for the CW ID table are listed in the lookup

table in the Morse keyboard program. Ifany locations in the table are

not filled, place word spaces (00) at the beginning or end ofthe table.

Serial I/O

The type of interfacing required for the external Baudot TTY

loop will depend upon the user's choice of serial or parallel input/

output. This will, of course, affect the software as well.

The simplest interface, from a hardware standpoint, is the

serial I/O shown in Fig. 2-1. The interval timer of the 6530

peripheral interface is normally programmed for 45.5 baud (60 wpm)

operation, but it may be changed to any other speed. On the input

side, the start bit is sampled at midpoint, 11 ms after detection, and

succeeding bits are sampled every 22 ms thereafter. If desired,

presence of a stop bit may also be tested, and the character rejected

if the stop bit is not received.

The only time a character may be displayed by the video

terminal (i.e., TV typewriter) is during the stop pulse, nominally 31

ms at 60 wpm. The video terminal serial interface must be set for

something faster than 300 baud, preferably at least 600 baud. The

KIM monitor OUTCH routine is used to output characters to the

terminal. The keyboard is connected for interrupt operation, as

shown in Fig. 2-1, rather than to the terminal input. Therefore,

terminal baud rate cannot be determined by sampling the ROBOUT

key start bit, as normally done by the KIM monitor program. The

data for the KIM monitor CNTL30 and CNTH30 locations (17F2 and

17F3, respectively) was read once with the keyboard connected to

the terminal. These locations are then initialized accordingly when

the program is executed.

On the output side, keyboard characters are stored in a 256-

byte buffer by the FIFO (first in, first out) input routine. Characters

are output any time there is something in the buffer. When fetched

from the FIFO, and prior to further processing, the character is

displayed. This takes a finite time and adds to the Baudot output stop

pulse length. Again, the interval timer is used to output serial bits.

The length of the stop bit to be added by the serial output routine

depends on the character display time. If the TVT clock rate is 600

baud (approximately 17 ms), an additional 22 ms stop bit will give a

total of about 39 ms, slightly longer than normal, but acceptable.

Since Baudot figures and letters shift functions are generated

by the program and are not displayed, a stop pulse delay to compen-

121

:
4
7

II
N
4
0
0
4

O
P
T
O
-
I
S
O
L
.

M
C
T
-
2

a o o < o

A
S
C
I
I

K
E
Y
B
O
A
R
D

B
7

B
6

B
5

B
4

B
3

6
2

B
l

I
S
O
L
.
L
O
O
P

K
E
Y
E
R

D
S

P
B
7

K
I
M
-
I

6
5
3
0
-
0
0
3

P
A
7

P
A
6

P
A
5

P
A
4

P
A
3

P
A
2

P
A

I

P
A
O

-
>
N
M
I

O
R

I
R
Q

I
N
P
U
T

F
i
g.

2
-
1
.

B
a
u
d
o
t

s
e
r
i
a
l

I
/
O
a
n
d

k
e
y
b
o
a
r
d

in
pu

t.

8

♦
5
V

I ►
4
.
7
K

T
T
Y

L
O
O
P

;
i
N
4
0
0
4

M
C
T
-
2

r
h

T
O

L
O
O
P

K
E
Y
E
R

♦

s
i

r
o

D
A
V

X
R

C
£

2
R
D
5

i

m

i <
*

R
0
3

R
D
4

R
D
2

R
D
!

1
9

2
1

P
B
7

P
B
5

P
B
4

P
B
3

P
B
2

P
B
I

P
B
O

r
o

O O
1

O r
o

i
n
C
D

Fi
g.

2
-
2
.
B
a
u
d
o
t

pa
ra
ll
el

in
pu
t.

sate must be added, using a separate interval timer routine. This

same routine must be used after the line feed function of the automa

tic EOL.

Parallel Input

To eliminate possible software timing problems in the receive

mode, the circuit of Fig. 2-2 was tried. This uses the receive side of a

UART chip to convert the Baudot serial input to parallel outputs,

which are connected to the 6530 "B" side inputs. This works some

what in the same manner as a 6820 or 6520 PIA, but is simpler to

program, since there is no control register. PB7 is the input for the

"data available" flag, while PB5 is used as an output to reset the flag.

This method works perfectly. Serial output and keyboard inputs

were left as previously described.

Since the keyboard is not connected to the KIM-1TTY input

when using the foregoing configuration, the hex keyboard and dis

play must be used when loading the program or otherwise using the

KIM monitor. The TTY/KB switch should be placed in the KB

position and returned to the TTY position after executing the prog

ram with the GO key.

Parallel Output

Having gone this far, I decided to change the output to parallel

operation also, as shown in Fig. 2-3. To make things easier, the

parallel input was changed over to the 6530 "A" side, so PAO could

be programmed for the CW ID output. Now the "B" side is used for

the output, as seen in Fig. 2-4.

Obviously, this configuration leaves no parallel input ports for

the keyboard. It is connected to the TVT in the normal manner, and

the KIM monitor GETCH routine is used to fetch keyboard charac

ters. The software IFO, therefore, cannot be used. The solution to

this is to make a trade-off and use a Fairchild 3351 FIFO chip. Note

that, in this case, the FIFO is on the Baudot output rather than the

keyboard input. Although the 3351 has a capacity of only 40 charac

ters, this is adequate to absorb data at normal typing rates somewhat

in excess of six characters per second, as well as providing buffering

for the Baudot figures and letters shifts and EOL functions. PB5 is

the data strobe for the 3351 shift is (SI) input, and PB7 serves as the

input ready (IR) flag.

The UART is configured for five bits per character and one stop

bit. The actual time between characters on transmit is set by the

741123 dual MV timing and results in characters being shifted out of

124

T
O

L
O
O
P

K
E
Y
E
R
"

I
N
P
U
T

2
5

2
0

S
O

S
I

D
B
I

0
B
2

0
B
3

0
B
4

D
B
5

E
O
C

T
B
M
T

O
S

2
6

2
7

2
8

2
9

3
0

2
4

2
2

2
3

T
O

P
I
N

5
M
C
T
-
2

1
2

1
/
3

17
41

01 I
0

A

S
E
C
.

2

+
5
V

4
-
I
2
V

1
2 1
3

0
0

0
1 0
2

O u.
0
3

.7 t
o

O
R

S
O

|
2
8 0
0

0
1

0
2

0
3

0
4

S
I

I
R

i2
r

t
■i
1

2
6

2
5

2
4

2
3

2
2

1
7

1
6

2
3
.
2
7

♦
5
V

I I

Q
i
A

Q S
E
C
.

I

1
0
/
t
F

1
4

4
7
0
p
F

7
4
1
2
3
M
V

1
5

♦
5
V

I
O
K

P
B
O

P
B
I

P
B
2

P
B
3

P
B
4

P
B
S

P
B
7

8 i O t
o

I
O

Fi
g.

2-
3.

B
a
u
d
o
t

pa
ra
ll
el

o
u
t
p
u
t
w
i
t
h

F
I
F
O

bu
ff
er
.

the FIFO at a smooth rate. A crystal-controlled clock is not neces

sary. At low data rates, a 555 timer clock is perfectly adequate and

rarely needs adjustment. The clock is set to 728 Hz for 45.5 baud

operation.

Loop Isolation

I use a 60 mA loop, which is common for both send and receive.

A printer is always in the line for hard copy. The optoisolator is one of

several available types, such as the Motorola MCT2. The loopkeyer

output is completely isolated from ground and the input. Figure 2-5 is

a schematic diagram of the loop keyer. It's a keyed, balanced mul

tivibrator, running at about 750 kHz, capacitively coupled to a diode

bridge rectifier and loop-keying transistor, Q4. The keying transis

tor can be any high-voltage NPN-type, such as the MJE340,2N5655

or 2N3440. Ql, Q2 and Q3 can be any small-signal switching transis

tors. Note that Q3 must be a PNP type.

The loop keyer is sensitive to nearby rffields when you operate

a transmitter at high power, so each side of the loop jack at the

KIM-1 end must be bypassed to ground. If CWID output is used, the

output jack should be by passed for the same reason. A shielded

cable to the AFSK input should be used. KIM-1 and all associated

boards appear to be immune to rf, even unshielded.

Interrupts

For most microprocessor owners, the subject of interrupts is

avoided like the plague. This should not be so. Interrupts are among

some of the most useful options available to the microprocessor

owner.

The very nature of interrupts (i.e., their unpredictability) ac

counts for the fear and mistrust of using them. A Dictionary of

Electronics defines an interruption as: "In microcomptuers: a halt

ing of the main program followed by the starting of an interrupt

subroutine, or returning from the subroutine to the main program."

Either way, it does not make much sense until you realize just

how useful an interrupt is.

An interrupt is virtually a "Hey you" followed by an "I want this

done now..." The loudness of the "Hey you" indicates its priority if

more than one arrives at once. When an interrupt occurs, you drop

whatever you are doing and go to the interrupter to see what

he/she/it wants, and when this is completed, you are free to return

to what you left.

126

F
R
O
M

O
P
T
O
-
I
S
O
L
.

I
N
P
U
T

C
K
T

2
0

S
I

c
t

< 3

T
O

A
F
S
K

C
W

1
0

I
N
P
U
T

/
7
7

2
N
3
9
0
4

.
0
1

D
I
S
C

D
A
V

X
R

R
D
5

R
D
4

R
D
3

R
D
2

R
D
I

2
1

<
■

8 6

4
.
7
K

—
W
N
,

"

P
A
7

P
A
6

O
P
A
4

O

PA
3

8 i
n

P
A
2

0
>

P
A

I

P
A
O

Fi
g.

2-
4.

B
a
u
d
o
t

pa
ra

ll
el

in
pu

t
a
n
d
C
W

I
D
ou
tp
ut
.

A more useful analogy when considering interrupts is the tele

phone. Picture yourself sitting with some friends chatting (main

program) when the telephone rings (an interrupt). You excuse

yourself and go to answer the telephone (jump to the interrupt

location). When you pick up the receiver, the telephone becomes

engaged (interrupts are disabled), and you talk to the person calling

(execute the interrupt subroutine). When you have finished, you

hang up the receiver (enable interrupts) and resume the conversion

with your friends (return from interrupt).

Priority and multiple interrupts can also be considered in this

fashion, such as the doorbell ringing (high priority), the telephone

(low priority, let the XYL answer it), or a call on your experimenting

gear (high priority to you, but low to the XYL). The analogy can be

carried much further.

In the following description, I have tried to be as general as

possible, because with the wide variety of chips, each with its own

unique interrupt system, the details are best left up to the program

ming manual for that particular chip.

However, the basic rules of interrupts are common to all sys

tems. Interrupts were developed to handle a particular type of

situation. This situation is when an external device, at some unpre

dictable moment, requires that the computer do something im

mediately.

When an interrupt occurs, the CPU (Central Processing Unit)

must literally drop everything, but it must remember where it was

before the interrupt occurred. To do this in most systems, all of the

contents of the register are pushed onto the stack (an area of

memory or other hardware storage) before the CPU jumps to the

interrupt location (the interrupt subroutine). Then the CPU will

perform the subroutine at the interrupt location. During this time,

the CPU does not want to be interrupted again and, for this reason,

most microprocessors have a Disable Interrupts instruction (e.g.,

PI, hex F3 on the 8080A and SEI, hex OF on the M6800) which

allows the CPU to ignore any "Hey you" no matter how loud, while it

performs the current interrupt subroutine.

Systems of interrupts are generally unique to the chip and/or

the machine's implementation, but generally there are three main

categories:

Single Line Interrupts. Here the processor responds to an

interrupt on one line (Fig. 2-6). For more than one, the devices are

tied to an OR gate and the individual devices must be scanned by the

processor to find out which one generated the interrupt (also refer

red to as polling). Because of this, single line interrupts are slow.

128

♦
5
V
-
4
-

7t
Z
0
5

i
3
3
0

£
4
7
K

L
O
G
I
C

I
N
-
*
-

2
.
2
K

0
1
2
N
2
2
2
2

l
O
O
p
F

M
O
K

0
2
2
N
2
2
2
2l
O
O
p
F

'S
l
O
K

1
0

[
J
O
O
p
F

Q M
J
E
3
4
0

1
r

I3
3

I
T°

2
I

I
I[

4
0
0
V

M
Y
L
A
R

£ O

M
7
0

Fi
g.

2-
5.

Is
ol

at
ed

lo
op

ke
ye

r.
Ma
rk
-4
ii
gh
;
sp

ac
e-

lo
w.

Re
si
st
or
s-
'*

W;
ca

pa
ci

to
rs

-d
is

c
ce
ra
mi
c,

ex
ce
pt

as
no

te
d.

g

D
A
T
A

C
P
U

I
N
T
E
R
F
A
C
E

1
I

I
I
2

3 D
E
V
I
C
E
S

I
N
T

1
2

3
n

D
E
V
I
C
E
I
N
T
E
R
R
U
P
T
S

Fi
g.

2
-
6
.
S
i
n
g
l
e

li
ne

in
te
rr
up
ts
.

C
O

(
A
)

R
E
0
7

(
B
)

P
R
I
O
R
I
T
Y

I
N
T
E
R
R
U
P
T

L
O
G
I
C

(
S
U
C
H
A
S

I
N
T
E
L
8
2
1
4
)

I
N
T
R
E
O

D
E
V
I
C
E

I

D
E
V
I
C
E

2

D
E
V
I
C
E
3

D
E
V
I
C
E
4
-

-*
>

Fi
g.

2-
7.

Mu
lt
i-
le
ve
l

in
te
rr
up
ts
.

D
A
T
A

D
A
T
A

Multi-level Interrupts. Here the interrupts could occur on

one or several lines going into a priority determination chip or logic

(top of Fig. 2-7). If the number of devices generating interrupts is

greater than the number of lines, then some lines must be used as in

single line interrupts. The M6800 has two multi-level interrupts

within the chip, such as in the bottom of Fig. 2-7.

Vectored Interrupts. In this case, only one line is used, but

the interrupting device generates an instruction onto the data bus

which causes the CPU to jump (vector) to a predetermined sub

routine. The device priority must be resolved in hardware external

to the CPU (the 8080A has a limited form of vectored interrupts).

Figure 2-8 is a block diagram of a vectored interrupt configuration.

On return from an interrupt, the CPU must be returned to the

state it was in before the interrupt occurred. This is often done by a

specific instruction, Return from Interrupt (RTI, hex 3B on the

M6800). This brings the contents of the registers (especially the

Program Counter) back from the stack, so that return to the main

program can be accomplished.

With a microprocessor, control lines other than the interrupt

lines may be used as specific purpose interrupts, and in most sys

tems they are. The control bus lines, HOLD and WAIT (or their

equivalents), are normally used for slowing down or synchronizing

the CPU to slow memories. They can also be used as Halts for DMA

(Direct Memory Addressing) applications.

The RESET line is a major interrupt line with which returns the

processor to some initial state to halt the execution of a program.

This line could be set by hardware devices any time a major catas

trophe occurs (such as tape drive failure).

Such control lines are normally used to provide versatility for

the microprocessor in different machine implementations of the chip

and to allow it to be used with a wide variety of devices, e.g., in

parallel processing, where several processors are using the same

memory (Fig. 2-9) and switch each other off or on along the

HOLD/WAIT lines. Although these lines were designed for inter

face with slow memories, they are particularly well suited to allow

parallel processing and other DMA applications.

An example of the use of DMA would be for slow to fast scan

conversions using a microprocessor. The SSTV analog could be

digitized (analog to digital conversion) and stored, and the wideband

ATV scanned off the same memories by DMA for display on a normal

TV set. Think of the graphics facilities this would allow for both

SSTV and ATV!

132

I

C
E

UJ
Q

CM

UJ
u

UJ
Q

nr

^»

u
UJ

>

to

UJ
o

UJ
o

CM

133

Similar examples of the use of interrupts can be considered by

multi-user computers. An example would be to put the microproces

sor up near the local repeater and have it accessible to amateurs with

RTTY gear. In this case, the use ofinterrupts would be essential (for

timing users, I/O transmission control, etc.).

Closer to home, interrupts allow the user to have input and

output to several devices occurring simultaneously (or almost) and

not wasting time while doing this. As in most computers, the actual

processing time is very short in comparison to the input/output

time. This means the more time taken for input/output during the

processing, the less efficient your programming will be. This may

not be a major consideration with home systems today, but it will be

in the years to come.

Troubleshooting a Micro

While we are often bombarded with propaganda manufacturers

proclaiming the wonders of microprocessors and what they can do to

automate our station or figure our income tax, we sometimes over

look the problem associated with trying to troubleshoot an ailing

system. There is a good reason for this, based on the complexity of

the functions that are being performed and the unavailability of test

points within the chip. You must be somewhat of a detective to

determine what is happening inside from the sparse information that

is available to you externally. Fortunately, few of the problems are

found within the microprocessor chip itself, but that possibility does

exist. While there may be some exceptions to this, it has been my

experience that, if the microprocessor will fetch and execute one

instruction, it will probably fetch and execute all instructions.

Before starting the troubleshooting procedure, it is important

to note whether or not the system is home brew or from a manufac

turer. It is also significant whether it has been running and just died,

or whether it has never run properly. While the troubleshooting that

follows is applicable to all of these cases, there are certain problems

that can be ruled out, depending on the previously mentioned condi

tions. For example, if it is a manufactured system that you are

merely assembling, then it is unlikely that it is a wiring error on the

cards that you have purchased. If it is your own handwired system,

then the likelihood is that youVe forgotten some interconnect or

connected something up incorrectly.

If the system has been running but now fails, the problem can

usually be traced to a faulty bus driver/receiver on the data or

address bus. If the system is intermittent, look for temperature

effects changing the response of memory, or look at that new

134

C
P
U

N
O
.
I

I
N
T

A
D
D
R
E
S
S

0
1

0
2

R
E
Q

W
A
I
T

[
D
A
T
A

C
L
O
C
K 1

C
O
N
T
R
O
L

T
D
A
T
A

B
U
F
F
E
R

1
1

1
1

1
1

1
1

M
E
M
O
R
Y

0
1

0
2

C
P
U

N
O
.
2

I
N
T
R
E
O

W
A
I
T

D
A
T
A

1

1
[a
dd
re
ss

A
D
D
R
E
S
S

Fi
g.

2-
9.

Pa
ra

ll
el

p
r
o
c
e
s
s
i
n
g
.

interface or memory board that you just hung on the system. Much

troubleshooting can be done by merely removing one memory or

interface card at a time.

Before continuing, it may also be necessary to note those

minimum pieces of test equipment that are required for troub

leshooting a system. While some rudimentary checks can be made

with a VOM, the system must be looked at dynamically with at least

a 10 MHz bandwidth scope. This scope should have at least external

triggering and preferably dual trace. Yes, you can look at the buses

with slower scopes and see the transitions, but we are looking for

problems that may be associated with 50 ns pulses of noise riding

around on signal lines, and you will never see them without the

prerequisite bandwidth. The microprocessor should also be set up

with a hardware restart switch connected directly to the chip itself

(or through a peripheral chip designed to do this), so that is can be

repeatedly restarted.

There is also one class of problem that is not discussed here,

and that is the passing of misinformation by the manufacturer.

Occasionally, errors are made in the manuals, or changes are made

in the chips that cause them to not function as advertised. This, of

course, pertains mostly to the home brew systems. Don't be afraid

to call up the local field applications engineer for the company that

made the chip and explain your problem. They are, in general,

knowledgeable about their product, and may have actually encoun

tered the problem before. If it is a long distance phone call, call them

before they are in the office and leave a message with their answer

ing service to have them call you. It may save you quite a phone bill.

As with all electronic problems, beware of the obvious, that is,

whether it is a microprocessor thatjust plain refused to work, or one

that intermittently fails to execute its program properly. Start with

some of the basic which are often taken for granted.

Power Supply Voltages

The tolerance on power supplies ±5 per cent or 4.75 to 5.25

volts for the 5 volt supply and 11.4 to 12.6 volts for the 12 volt

supply. And that is a clean five/twelve volts and a clean ground line.

While you wouldn't expect it, most of the digital noise that is found in

on the ground line. It should be the first suspect for intermittent

faulty operation, assuming that it has never yet worked completely

right. Adequate current reserve in the power supply and sufficient

bypass capacitors are required for proper operation. As ballpark

numbers, 10 microfarads per 20 chips and 0.1 microfarad (for high

frequency bypassing that the electrolytic can't handle) near each chip

136

0
2

A
I
5
-
A
0
-

0
7
-
D
O

S
Y
N
C

t
O
l

-
t
C
Y
-

•-
tD
3-
*|

h
»
-
t
O
2

T
D
2

•
-
t
D
A
-
^
H

c
^
-

t
D
i
k
-

t
D
I

t
o
c
K
-

~X
DA

TA
IN

—«
*j

t
D
S
I
p
—

U-
tD
S2
-

t
A
W

-
-
-
t
o
w
-

D
A
T
A
O
U
T
—
4

Fi
g.

2-
10
.
Ti

mi
ng

di
ag
ra
m
fo
r
a
n
8
0
8
0
A
mi
cr
op
ro
ce
ss
or
.

In
te
l
sp

ec
if

ie
s

t^
1
a
s
6
0
ns

m
i
n
i
m
u
m
,

t
C
Y
a
s
4
8
0
ns

to
2
mi
sc

ro
se
co
nd

s,
t<

D2
a
s
2
2
0
n
s

m
i
n
i
m
u
m
,
t
D
3
a
s
1
3
0
n
s
m
i
n
i
m
u
m
a
n
d
t
D
2
a
s
7
0
n
s
m
i
n
i
m
u
m
.

that drives signals off of the card or over long distances (bus drivers)

should be sufficient.

Another point to remember about checking power supply vol

tages is to check them at least on the card, if not near the chips

themselves, for two reasons. The first is that if a power supply with

no voltage sensing is used, the voltage at the power supply may be

set to five volts. But, because of losses due to the high currents and

small gauge supply wires, the voltage at the chips may, in fact, be

below the 4.75 volts minimum. Secondly, if remote sensing is used,

the sense line may be open, or the regulating circuitry not operating

properly.

Clocks

To operate properly, microprocessors must be supplied with

clock signals, since all of the internal functions are performed syn

chronously. Not only must these signals be present and of the proper

duration, but they also must be free from glitches and in the proper

timing relationship. Figure 2-10 shows a timing diagram for an 8080

showing a two-phase clock. Note that the duration ofphase one must

be a minimum of 60 ns, the delay between the rise of phase one and

the rise of phase two a minimum of 130 ns and the delay between the

fall of phase two and the rise of the next phase one 70 ns minimum.

While the clock was being run at 9.5 MHz, rather than the maximum

of 18 Mhz, the minimum times were met. A measurement like this

can not only be made on a dual trace, 10 MHz scope triggered only by

the phase one input, but can also be done on a single trace unit with

external trigger. First, phase one is displayed and checked in terms

of glitches and minimum pulse width and maximum pulse interval.

The triggering is now set up for this signal, and it is moved to the

external trigger input (with the scope triggered from this source).

Phase two is now connected to the vertical input and displayed,

relative to phase one. It may make it easier if phase one is written in

on the face of the display with a grease pen.

Instruction Execution

We are now assuming that the microprocessor is hard down and

won't do anything. First, disconnect all cards/interfaces/memory,

except for Read Only Memory (ROM); then program a ROM with a

jump-to-self instruction. In the case of an 8080 the instruction would

be as shown in Table 2-3. It is, quite literally, Jump (C3H) to the

address (000H) which follows.

While this can be done with other instructions on different

machines (such as those with program counter relative addressing),

138

Table 2-3. Address and Contents.

Address

OOOOHex

1H

2H

Contents

0C3Hex

OOH

OOH

the principle is the same. Try to get the machine to do the minimal

amount it can do and still keep fetching and executing a predictable

instruction. Now, how do you know if it is running? Look at the synch

signal out of the microprocessor. (In the case of the 8080, there is

one synch per instruction execution.)

The first check, in this case, is to look at the synch while the

reset (a hard reset to the microprocessor through a switch closure)

is activated. This reset should set the internal program counter to

the starting address where the first instruction will be found (000H in

the case ofthe 8080), and the microprocessor will run for one, two or

a number of instructions and then halt. Each of these has a signifi

cance. One instruction execution, or synch pulse, means that the

microprocessor recognized the rest and has gone out to fetch the

first instruction from its starting address. Ifyou don't see at least one

synch, it is probably a microprocessor chip problem. If a second

synch pulse is found, it means that the microprocessor has output an

address, and something has come back. What you don't know for

sure is what actually was read from memory. But, you do know that

it is going out and fetching. If our dummy instruction is being fetched

a number of times (this could be into the hundreds), and then dies,

this can probably be attributed to slow memories. To test for this,

slow down the system clock. "How?" you say. "It's crystal control

led." First of all, there is nothing that says that is has to be crystal

controlled and, second, any experimenter should have miscellane

ous crystals around that are less than the value (preferably V2) of the

crystal frequency currently being used in the system. Insert the

crystal, verify that the clock is running, and see if the microproces

sor still dies. If it does, we have to look further.

Address Bus

Whether we are at the one, two, three or more synch pulse

stage, it is advisable to check the address bus for proper operation.

We are, of course, assuming that the ROM with the jump-to-self

instruction is still in the system at the starting address of the

microprocessor. One method of checking for proper operation of the

address bus would be to synch to the read memory pulse, as this

139

must occur during the time that the address bus is stable. In any

event, we should alternately push the restart button and look at each

of the address lines to see that the desired starting address is being

presented to the ROMs during the time of the read memory pulse. A

read memory bar Qow is true) is found on the top trace and an

address line on the lower trace shows a good zero. No read memory

pulse? Probably a bad CPU chip. What you may find is that the

leading edge of one of the address lines, either rising or falling,

occurs during the read memory pulse. Since this pulse says that the

addresses are stable, something is awry. Since there should be

nothing on the address bus other than the microprocessor itself and

the ROM, the problem is probably not excessive capacitive loading

of the bus.

More probably, it's a faulty bus driver/receiver chip if one is

used, or a short to Vcc or ground. Alack of noise on an address line is

a good indicator of a short to ground. Usually, one address is found to

be at fault, and this quickly isolates the offending chip or shorted line.

Should all of the address lines be pulling to the required one or zero

during the read memory pulse time, then we must look elsewhere

for the problem.

Data Bus

The troubleshooting of the data bus can be somewhat more

tedious than the previous problems, and so it is left to last. Part of

the problem is due to the fact that it is a bidirectional bus and can be

transmitting data either to or from the microprocessor. Since the

bus is bidirectional, some means must be maintained to keep track of

whose data is on the bus at any given time. In a simple system this is

easy, because the microprocessor is controlling the bus, and the

interfaced hardware has only specific times during which it can put

data on the bus.

To digress a moment, although the reader may be familiar with

TTL (transistor-transistor logic), to understand the concept of a

bidirectional bus, tri-state logic must be brought in (not at the

expense of open collector buses, but it is easier to see what is

happening on them). Not that understanding them is difficult, for

when it is enabled, a tri-state ouput looks like any other TTL signal.

When the chip is not enabled, the output assumes a high impedance

state. Referring to Fig. 2-11, it can be seen that the normal TTL
output is a totem pole arrangement of two transistors, one of which

is normally on while the other is off. In fact, what accounts for the

large noise spikes in TTL circuitry is that for nanosecond periods of

140

5
4
1
2
5
,
7
4
1
2
5

4
K

C
O
N
T
R
O
L

I
N
P
U
T

o
-

C

G
R
O
U
N
D
o
-

I
.
6
K

D
A
T
A

I
N
P
U
T
A

I
.
6
K

Fi
g.

2-
11
.
Sc

he
ma

ti
c
di

ag
ra

m
of
a
Si

gn
et

ic
s
7
4
1
2
5
q
u
a
d
bu
s
bu

ff
er

ga
te

wi
th

tr
i-

st
at

e
ou

tp
ut

.
Du
ri
ng

th
e
tr
i-
st
at
e
co
nd

it
io

n,
bo
th

ou
tp
ut

tr
an

si
st

or
s

a
r
e

in
t
h
e
h
i
g
h
i
m
p
e
d
a
n
c
e

s
t
a
t
e
.

time, both transistors may be on, causing a direct short to ground

from Vcc. Looking at it binarily, there is only one other possible state

for the two transistors, and that is with both of them off. In this case,

looking back into the output of the tri-state device, we see a high

impedance to both ground and Vcc and, hence, a very low loading of

the data bus.

In the simple case of our jump-to-self instruction, the micro

processor releases control of the data bus during the read memory

pulse (and slightly before and after). It is this pulse (read memory)

that is logically combined with the decoded address on the address

bus to provide a chip enable signal to the ROM so that its tri-state

output is enabled and the next instruction put onto the data bus. So

the first thing we must do is to look at the pin on the ROMfor the chip

enable to see if it is, in fact, being enabled. A lack of a chip enable

signal says that the problem can now be localized to the chip-select

decoding circuitry. If it is present, we continue by looking at the data

bus, bit by bit, in synch with the read memory pulse. (At least one

should be generated each time the microprocessor is reset.) While it

is typically the case that all of the data lines are pulled high (through

externally supplied pull-up resistors) so that they go to a known state

while they are not being enabled, this is not required, and you may

see a data bus without them. Note that the information on the bus is

only valid during the read memory pulse time, so both signals must

be displayed, or at least synched. Check, as with the address lines,

to see that the data is fully a one or a zero during the time that the

read memory pulse is there.

During the third read memory bar (low is true) pulse, the data

bus is neither high nor low.

If All Else Fails

About the only thing left that can give you fits is an unpredict

able interrupt being forced onto the microprocessor through a faulty

interrupt controller, an interrupt line that is going low, or one that is

not tied high through a resistor (allowing noise to pull it low). Check

all interrupt lines for noise. If the chips are mounted in sockets,

remove them, use solvent, and reinsert them to allow for a possible

faulty interconnect. The same goes for the insertion of the board into

its socket. This can be a great source of intermittent aggravation,

when it dies every 20 minutes and then starts up with no problems.

Another somewhat elusive problem is changing chip parameters

with an increase in temperature, especially if the device is being run

at close to its rated speed.

142

So, let's assume that life is not being cruel to you, and the first

time that you put the jump-to-self instruction in, the synch pulses

and everything else appears to be operating normally. Now is the

time to put your rudimentary monitor program ROM back into

memory and see if the monitor functions (reads memory, changes

registers, etc.). If not, recheck with a scope all of the address lines,

data lines and interrupt lines. After a while, you can tell when a line

looks correct, even without doing all of the synching, etc. You may

want to still check them while you synch with the read memory pulse

to check for a slowing of the response of the address and data buses

due to capacitive loading increases when additional ROMs are ad

ded. If you don't have a small monitor program, put in the minimum

amount of software and interface that you need and see if it will work.

Slowly add interfaces and memory until the problem occurs. If you

are lucky, you should be able to look at each of the address and data

lines and see the one that is degraded by the malfunctioning board. If

those show nothing, look on the most recently inserted interface/

memory board to ascertain if signals are getting through to it.

Perhaps it is being enabled all of the time, or conversely, never due

to faulty logic on the board. Hopefully, the insertion of boards one at

a time will point out the defective board, and a look at all of the lines

going to that board will give you a startingplace for troubleshooting.

Read the Manual

Since you probably plugged the thing in before you really under

stood it, and it (miraculously) worked, or it worked after you only

read half of the book, read the other half. Experience had shown that

the microprocessor is probably not running because you forgot to

read footnote number three at the bottom of page sixty-seven,

which says that pin five of board six must be grounded for proper

operation.

Dial Your Micro

A modem, now that's what I need for my 6800 system! Buthow

about one that has auto answer? Auto answer lets you dial up your

phone, and, when it rings, the modem will answer and connect your

computer to the phone line. Now you, or someone else, can operate

your computer from a remote terminal and modem.

I decided on using Motorola's MC6860 modem IC, and being a

fairly-stingy-with-a-buck person, its availability, features and $14.95

price are what sold me.

After spending a week thinking, I decided on the features for

my first modem. It was going to do everything the chip was capable

143

of. This overkill approach does have its advantages when you're not

positive about what you're going to do with it or connect it to.

Two months later, when the smoke finally cleared, I had built

two modems. One was a do-everything, interface-to-almost-

everything, and the other was a minimum-parts version, with most

of the features.

This section will be about a combination of my two modems

which will have the following features: 0-300 baud, self-test, full

duplex, originate and answer modes, compatible with various sys

tems via TTL or RS-232 levels and auto answer and disconnect. My

total cost for all new parts was under $70, including the case and

power supply.

Theory

This modem uses audio frequency shift keying (AFSK). The

data to be sent is converted to audio tones. If the modem is in the

originating mode, a logic 0 (space) is sent as a 1070 Hz tone (2025

Hz, if in answer mode) and a logic 1 (mark) is sent as a 1270 Hz tone

(2225 Hz if in answer mode). See Table 2-4. This might seem a little

confusing, but it works just fine. These frequencies are standard for

low-speed data communication.

This modem is composed of several logical sections. First is the

interface to the telephone company line (Fig. 2-12). This interface

must be able to match the characteristic impedance of the phone line,

usually 900 ohms, to the modem. It must provide DC isolation from

the telephone line and, for automatic answer, must be able to detect

when the phone is ringing and be able to answer and terminate the

call.

The filter (Fig. 2-13) passes only the frequencies 1070 Hz to

1270 Hz when in answer mode and 2025 Hz to 2225 Hz when in the

originate mode. The filter is needed because, in full duplex opera

tion, the modem is transmitting and receiving at the same time, and

the signals must be separated. The limiter, IC3, takes the sine wave

from the filter and changes it into a symmetrical square wave of a

TTL-compatible level. The demodulator in the modem IC compares

each half-cycle of this square wave against the crystal-controlled

timebase to determine if the incoming frequency is a mark or space.

The threshold detector, IC4, is used to tell the modem IC that the

input signal entering the limiter is above the minimum detectable

level.

The 6860 modem IC is the brains behind the outfit. It takes care

of modulation, demodulation and the hand-shaking signals to estab

lish, maintain and terminate the data link. Another section is the

144

Table 2-4. FSK Transmit Frequency.

Data

0 Space

1 Mark

Originate

1070 Hz

1270 Hz

Answer

2025 Hz

2225 Hz

interface to the computer or terminal. There is a fair amount of

flexibility here due to the 6860 signal levels being TTL-compatible.
Depending on the exact use you plan for the modem, it can be
tailored to fit.

How It Works

IC1 is placed in the answer mode when its pin 19 is grounded.

This is done by the ring detector when your phone rings or by
pushing the answer switch. This causes IC1, pin 4 to go high,

operating RL1, which connects the modem and answers the call. At

the same time, IC1, pin 15 goes low. This places RL2 in the proper

position to select the answer mode filter. When IC1 detects the

mark tone from the other modem, pin 23 goes low. This turns on the

dear-to-send (CLS) LED.

The originating mode is initiated when the originating switch is

pushed, causing IC1, pin 21 to go low. Next, pin 4 goes high, closing

RL1, connecting the modem to the phone line. At the same time, pin

15 goes high, operating RL2 and selecting the originating filter.

When IC1 detects the mark tone from the answering modem, it will

send out its mark tone from pin 10 to the transmit buffer, Tl, and out

to the line. Now the CTS LED will light, indicating "ready to
exchange data."

If IC1, pin 16 is held low, the modem is placed in the self-test

mode. The demodulator is changed to the modulator frequency and

loops back to the terminal whatever is typed in.

When a break (150 ms space) is received by the modem, IC1,

pin 3 is clamped high and stops data exchange. This positive-going

level triggers a one-shot, IC6, which sends a negative pulse to IC1,

pin 9, automatically releasing the break condition. This negative

pulse is also sent to my SWTP 6800 computer's MRST line. This

gives the remote terminal the ability to operate the computer's

hardware reset by sending a break.

Construction Tips

I built the modem on four printed circuit boards, consisting of

the following circuits: the internal coupler, the filter, limiter and

145

T
E
L
E
P
H
O
N
E

P
L
U
G

N
E
-
2
/
C
d
S

4
«

M
O
O
U
L
E

4
t

Fi
g.

2
-
1
2
.
M
a
i
n
s
c
h
e
m
a
t
i
c
wi

th
in
te
rn
al

c
o
u
p
l
e
r
.

T
R
A
N
S
M
I
T

B
U
F
F
E
R

T
O
T
E
R
M
I
N
A
L

A
4
-
1
2

T
O

I
C
l

P
I
N

1
0

Fi
g.

2
-
1
3
.

Fi
lt

er
ci

rc
ui

t.

threshold detector, the modem IC and RS-232 chips and the power

supply. You can use whatever construction technique you prefer. I

always socket all integrated circuits. This time I had to replace the

24-pin socket with one of better quality. It caused all sorts of

problems, so beware! I guess if I had socketed the sockets, I might

not have had that problem.

I made the ring detector by laying an NE-2 lamp on top of a flat

cadmium sulfide cell and using hot-melt glue at each end of the lamp

to hold them together. Then I wrapped black electrical tape around

them to keep out the ambient light. The first one I made didn't work.

I found that some NE-2 lamps require about 100V AC before they

light. Next I took apart a neon pilot lamp assemble. It had an internal

22k resistor in series with the neon lamp. This combination worked.

The series resistor, R3, can be from 22k up to 220k, depending on

the wattage rating of the lamp. Pretest your neon-resistor combina

tion to make sure it will light on approximately 70V AC. I bought the

cadmium cell at a surplus store. It's about %-inch square and Vi-inch

thick (any similar configuration you can come up with should work).

There are also commercial neon/CdS modules available, such as the

Clairex DLM 3120A Photomod.

RL1 is an SPST12V DC relay with a Ik ohm coil, mounted in a

14-pin IC package. A suitable 5V relay could be used if connected to

the 5V supply.

RL2 is a DPDT 5V relay with a 100-ohm coil, mounted in a TO-5

package. You should be able to use any similar relays. In my second

modem, I left out RL2 and just used a DPDT switch, mounted

between the originate and answer push-buttons. This made con

struction a lot easier, without losing any real features.

IC5a is just used for inversion to save a transistor.

I used a 500- to 600-ohm transformer for Tl. The ideal value for

the side that connects to the phone line is 900 ohms. The side of Tl

connected to terminals A and B can be anything between 500 and Ik

ohms, but, whatever value it is, Rl (connected to pin 1 of IC2a)

should be adjusted to match it.

All the frequency-determining resistors in the originating and

answer filters should be 1 percent. All the .01 uF capacitors should

be 5 percent or better, mylar or polystyrene.

A lot of phone companies Require you to rent (from them) a

coupling device when connecting external equipment to their lines.

There are several types of coupling devices that will give the same

auto answer and disconnect features as the internal coupler de

scribed here. One is a CBS data coupler which has RS-232-

compatible signals. If you use one of these, the optional data coupler

150

♦ 12

.1

r.

"I-

c «•—

1

(5

2

v_

1 1

MC

488

MC

1488

I7

\
MC

1489

5

? N

>/
\

470pF

MC

1489

TO CBS

DATA COUPLER

f
13>OT

.1

I"
OpF

?fe 470pF

I
4

470pF

I

m

uSMC

°l 1489

470pF

12

m

13^ ^^^

14
.1

' 1

♦ 5

_r

| C>SG.DR

Rg. 2-14. Optional CBS data coupler Interface.

151

interface (Fig. 2-14) is used in place of the internal coupler. This

circuit will provide the RS-232 levels needed by the phone com

pany's CBS data coupler. Rl should be changed to a 600-ohm

resistor, because the customer sides of their couplers are 600 ohms.

Testing and Adjustment

The modem's handshaking signals should be tested first. Con

nect a small high-impedance speaker (100 ohm) or frequency

counter to the line terminals of the modem. Turn on the power and

push the answer push-button. You should hear a 2225 Hz tone. The

level can be adjusted by R2.

Next, connect an audio oscillator across the speaker and apply a

2225 Hz signal, push the originate push-button and, if you left out

RL2, change the filter switch to originate. You should hear the

modem send out a 1270 Hz tone, and the clear-to-send (CLS) LED

will light. Next, push the break push-button. The modem should

send a 150 ms 1070 Hz tone every time this switch is pushed. Now

push the disconnect switch. The modem will send a three-second

1070 Hz tone, the CTL LED will go off and the modem will stop

sending.

The transmit level (R2) will be adjusted next. Dial up a friend

and have him leave his phone off the hook. With the modem line

terminals connected across the phone line, push the answer push

button and hang up your phone, or operate the line switch to the

modem. You have 17 seconds to measure the signal level across the

phone line with an ungrounded meter. Use the output jack or con

nect a 0.1 uF capacitor in series with the meter and adjust R2 for a

level of -15 dBm, 0.14V rms or 0.39V p-p.

Next have your friend call you back, but, before he does, the

modem should be on and connected to the phone line. If you left out

RL2, place the filter switch in the answer position. When he calls,

the phone should ring once. If it does, wait a few seconds and pick up

your phone. The modem should be sending out a 2225 Hz tone. If the

phone keeps ringing, the ring detector is not working.

To test the data section, connect the data in and out to some

thing that speaks RS-232 at 300 baud or less. The modem does not

care about format. It converts to tones anything that comes into it. I

used my SWTP CT1024 terminal. Turn on the modem and push the

answer switch. Turn on the test switch. Now the CTS LED will

light, and what you type on the keyboard will be looped back and

printed on the screen. If you installed the manual filter switch,

change it to the originate position (this is one of the things that RL2

does automatically).

152

I
I
O
V
A
C

-

2
4
V

T
O
2
8
V

6
0
0
m
A

I
A

1
0
0
P
I
V

B
R
I
D
G
E

l C
T

V

H
E
A
T

S
I
N
K

I
N

I
N

1
1
0
0

L
M
3
4
0
T
-
5

n
7

L
M
3
2
0
T
-
I
2

0
«
F

N
2
5
V

1
I
O
O
O
M
F

s
2
5
V

I
N

f

I
N
4
0
0
3

i

I
N
4
0
0
3

i

L
M
3
4
0
T
-
I
2

•
_

N
1

S
1

i
i

*
V

I"
12

Fi
g.

2
-
1
5
.
P
o
w
e
r

s
u
p
p
l
y
.

Interface and Operation

I connected the modem to my system by paralleling it across

the CT 1024 data in and out lines. This way, it acts like another

terminal that can access the computer over the phone line.

To use the modem as a terminal only, like talking to a time-

share computer, just connect it to the terminal and disconnect the

rest of the system.

When using modems, a point to remember is that one end must

be in the originate and the other in the answer mode.

The hand-shaking tones can be lost for up to 17 seconds before

the connection will be lost, but data sent when the CTS LED is off

will be lost.

During actual use, if you are the originating modem, dial the

number you want, and it will be answered by a person or a modem. If

you hear a tone, you have 17 seconds to push your originate switch

and hang up or change your line switch to the modem. When your

modem detects the tone, it will send out its mark tone. The CTS

LED will light and the data can now be exchanged.

If you are talking to an SWTP computer whose MRST line is

connected to the reset terminal, sending a break will reset the

computer to its Mikbug™ operating system. Operating the discon

nect push-button will cause the modem at the other end to hang up.

Also remember that, if the modem is on and connected to the

phone line, it will answer all calls you get. It could be someone not

expecting to get a 2225 Hz tone in his ear, and they could report your

phone out of order. The best thing would be if you had a separate

phone line just for the modem.

For my acid test, I left one modem at home and the computer

loaded with games; the other I took with my terminal over to a

friend's home. I dialed up the computer, and We played games for

four hours. It worked great!

The power supply schematic for this project can be found in

Fig. 2-15.

An 8080 Disassembler

This program was written for a Poly-88 microcomputer (Table

2-5). However, since it is in BASIC, it is easily modified for other

8080-based computers that have a BASIC interpreter or compiler

available.

A disassembler's task is very difficult. It must be able to jump

into the middle of the computer's memory, help the user to read the

mixture of ASCII and numerical data stored there and change the

numerical instruction codes into mnemonic assembler code. Instruc-

154

Table 2-5. Program Listing.

90 GOSUB 9000\REM INITIALIZE
100 !"*",

110 C-INP(l)

120 IF C-13 THEN 1\GOTO 100
130 IF (C<32) OR (O122) THEN 110
140 GOSUB 200

145 GOSUB 1000

150 GOTO 100

205 C$-ChI|(OEN C-C-32NREM MAKE UPPER-CASE
210 IF C$-fl " THEN RETURN
220 IF C$-"A" THEN 2000
230 IF C$-"J" THEN 400

240 IF C$-"B" THEN 500
250 IF C$-"C" THEN 450
260 IF C$-"R" THEN 600

270 IF C$-"P" THEN 700
300 A-AO

310 RETURN

400 IF JO-0 THEN 300
410 !"Jump",

420 A-E

430 RETURN

450 IF JO-0 THEN 300
460 !"Cair\

465 S(SO)-A
470 SO-SO+1

475 A-E

480 RETURN

500 l"Back"
510 A-A0-1

520 RETURN

600 IF SO-0 THEN 300
610 !"Return",

620 SO-SO-1

630 A-S(SO)
640 RETURN

700 !"Previous instr."
710 T-AO-12

720 A-T\GOSUB 1200

730 I-B(PEEK(A))
740 T-T+I

750 IF T<A0 THEN 720

760 RETURN

1000 !\REM MAIN LOOP

1005 GOSUB 1200

1010 H2-A\G0SUB 4000\REM PRINT ADDRESS
1020 •••-" -»-'-•»

1025 A0-A\REM REMEMBER ADDRESS

1030 X-PEEK(A)
1040 FOR 1-0 TO B(X)-1

1050 H-PEEK(A+I)

1055 GOSUB 4200

1060 NEXT I

1065 !TAB(T2),

1070 FOR 1-0 TO B(X)-1

1075 H-PEEK(A+I)

1080 IF(H<32)OR(H>126) THEN !"_", ELSE tCHR$(H),
1085 NEXT I

1090 !TAB(T3),

1100 GOSUB 5000\REM DISASSEMBLE INSTRUCTION
1110 ITAB(TA),

1120 RETURN

1195 REM NORMALIZE A

1200 IF A<0 THEN A-A+W\GOTO 1200

1210 IF A<W THEN RETURN

155

Table 2-5. Program Listing.

1220 A-A-W*INT(A/W)

1230 RETURN

2000 ("Address: "
2010 GOSUB 2200

2020 A-H2

2030 RETURN

2195 REM GET A HEX NUMBER FROM THE KEYBOARD

2200 H2-0

2210 1-0

2220 C-INP(l)

2225 C$-CHR$(C)

2230 OC-48\REM ASCII 0

22A0 IF C<0 THEN 2220

2250 IF C<10 THEN 2300

2260 C-C-7\REM MAGIC!

2270 IF (C<10)0R(C>15) THEN 2220

2300 !C$,

2310 I-I+l

2320 H2-16*H24C

2330 GOTO 2220

2350 IF 1-0 THEN 2220

2360 I-I-l

2370 H2-INT(H2/16)

2380 1CHR$(127),
2390 GOTO 2220

2400 IF 1-0 THEN T'O",

2410 RETURN

3995 REM PRINT H2 AS 4 HEX DIGITS

4000 H-INT(H2/256)

4010 GOSUB 4200

4020 H-H2-256*H

4030 GOTO 4200

4195 REM PRINT H AS 2 HEX DIGITS

4200 N-INT(H/16)

4210 !H$(N+1,N+1),

4220 N«H-16*N

4230 IH$(N+1,N+1),

4240 RETURN

5000 REM GIVEN ADDRESS IN A, DISASSEMBLE 1 INSTRUCTION

5005 JO-O\REM ZERO JUMP FLAG

5010 X-PEEK(A)\REM OPCODE IN X

5015 A-A+l

5020 L«INT(X/64)\REM BITS 6-7

5030 ON L+l GOTO 5100,7000,6000,8000

5100 REM OOXXXXXX

5120 ON J+l GOTO 5130,5200,5400,5600,5700,5710,5800,5900

5130 IF X>0 THEN 7200

5140 !"NOP",

5150 RETURN

5200 REM 00XXX001

5210 J-INT(I/2)\REM BITS 4-5

5215 K-I-2*J\REM BIT 3

5220 IF K-0 THEN 5300

5230 !"DADtf,

5240 GOTO 6600

5300 !"LXIM

5310 GOSUB 6600

5320 I",",

5330 GOTO 7500

5400 REM 00XXX010

5410 K-INT(I/4)\REM BIT 5

5420 I«I-4*K\REM BITS 3-4

5430 IF K-l THEN 5500

5440 J-INT(I/2)\REM BIT 4

5450 K-I-2*J\REM BIT 3

continued on page 157

156

Table 2-5. Program Listing.

5460 ON K+l GOTO 5470,54*0
5470 !"STAX",\GOTO 6600

5480 !"LDAX",\GOTO 6600
5500 ON 1+1 GOTO 5510,5520,5530,5540
5510 !"SHLD",\GOTO 7450

5520 !MLHLD",\GOTO 7450
5530 !"STA",\GOTO 7450
5540 l"LDA",\GOTO 7450
5600 REM OOXXXOll

5610 J-INT(I/2)\REM BITS 4-5
5620 K-I-2*J\REM BIT 3

5630 ON K+l GOTO 5640,5650
5640 !"INX",\GOTO 6600
5650 !"DCX",\GOTO 6600

5 700 !"INRM,\J-I\GOTO 6400
5710 !MDCR'\\J«I\GOTO 6400
5800 REM OOXXXllO

5810 !"MVI",

5815 J-I

5820 GOSUB 6400

5830 I",11,

5840 GOTO 7700

5900 REM OOXXXlll

5910 ON 1+1 GOTO 5920,5930,5940,5950,5960,5970,5980,5990
5920 !"RLC",\RETURN
5 930 !"RRC",\RETURN

5940 !MRAL",\RETURN

5950 !"RAR",\RETURN
5960 !"DAAM,\RETURN

5970 !"CMA" \RETURN

5980 !MSTCM.\RETURN
5990 r'CMClf,\RETURN

6000 REM 1OXXXXXX

6030 ON 1+1 GOTO 6100,6110,6120,6130,6140,6150,6160,6170
6100 l"ADD",\GOTO 6200

6110 i"ADC",\GOTO 6200

6120 r'SUB'WGOTO 6200

6130 !"SBB",\GOTO 6200
6140 !"ANA",\GOTO 6200

6150 !MXRA",\GOTO 6200
6160 !"ORAM,\GOTO 6200

6170 T'CMP'WCOTO 6200
6200 I11 M,

6210 GOTO 6500

6400 REM PRINT BLANK, THEN REG. NAME
6410 I" ",

6500 REM GIVEN J, PRINT REGISTER NAME
6510 N-J+l

6520 !R$(N,N),

6530 RETURN

6600 1" ",

6700 REM GIVEN J, PRINT RP NAME
6710 N-J+l

6720 C$-D$(N,N)

6730 !C$,

6740 IF C$-"S" THEN lflP",

6750 RETURN

7000 REM OIXXXXXX

7010 IF X-118 THEN 1"HLT'\\RETURN

7020 !flMOV ",

7040 K-J\REM SAVE J
7050 J-I\GOSUB 6500

7060 !" ",

7070 J-K\GOSUB 6500

157

Table 2-5. Program Listing.

7080 RETURN

7200 REM UNDEFINED INSTRUCTION

7210 I"--",
7220 RETURN

7400 REM JUMP OR CALL

7410 REM SET JUMP FLAG
7420 JO-1

7 450 1" "
7500 REM FETCH NEXT 2 BYTES, INTERPRET AS ADDRESS,

7510 REM AND PRINT IN HEX

7520 Y-PEEK(A)\A«A+1

7540 E«Y+256*Z\REM E IS EFFECTIVE ADDRESS

7550 H-Z\GOSUB 4200

7560 H°Y\GOSUB 4200

7570 RETURN

7 700 REM FETCH AND PRINT NEXT BYTE

7710 Y»PEEK(A)\A-A+1

7720 H«Y

7730 GOTO 4200
7 800 REM PRINT RST ADDRESS

7810 ! I,

7 820 RETURN

8040 SnMJ+1'XG^X8050, 8100, 8200, 8300, 8400,8500,8600,8700
8050 !"R",\REM RETURN ON CONDITION

8060 GOTO 8800

8100 REM 11XXX001

8105 J-INT(I/2)\REM BITS 4-5

8110 K=I-2*J\REM BIT 3
8115 IF K«l THEN 8150

8120 !"POP ",

8150 ONTJ+19GOTO 8160,7200,8170,8180
8160 !"RET'\\RETURN

8170 1MPCHL",\RETURN

8180 !"SPHL",\RETURN

8200 REM 11XXX010
8210 !"J".\REM JUMP ON CONDITION

8220 GOSUB 8800

8230 GOTO 7400

Sl?0 5flil1XGO?i18320, 7200, 8330, 8340, 8350, 8360,8370,8380
8320 r\JMP",\GOTO 7400
8330 I"OUT ",\GOTO 7700
8340 !"IN ".\GOTO 7700

8350 1"XTHL",\RETURN

8360 !"XCHGfl,\RETURN

8370 !"DI",\RETURN

8380 !"EI".\RETURN

8400 REM 11XXX100

8410 !"C",\REM CALL ON CONDITION

8420 GOSUB 8800

8430 GOTO 7400

8500 REM 11XXX101
8510 J°INT(I/2)\REM BITS 4-5

8520 K«I-2*J\REM BIT 3
8530 IF K«l THEN 8550

8540 I"PUSH ".\GOTO 8900

8550 ON J+l GOTO 8560,7200,7200,7200

8560 T'CALL",

8570 GOTO 7400

8605 SNMlilXGO^°8610. 8615,8620, 8625,8630, 8635,8640,8645
8610 i"ADII,\GOTO 8650

, '

continued on pagi 159

158

Table 2-5. Program Usting.

8615

8620

8625

8630

8635

8640

8645

8650

8660

8700

8710

8720

8730

8800

8810

8820

8830

8840

8850

8860

8870

8880

8890

8900

8910

8920

8930

8940

9000

9010

9020

9030

9040

9050

9060

9100

9105

9110

9115

9120

9125

9130

9135

9140

9145

9150

9160

9170

9180

9200

9210

9220

9230

9300

9305

9310

9350

9400

9410

9420

9430

9440

9500

9510

9900

"AC",\GOTO 8650

»»SU",\GQ,TO 8650

"SB'WGOTO 8650

"ANfl.\GOTO 8650

"XR",\GOTO 8650

"OR",\GOTO 8650

"CP",
ii j it

GOTO 7700
REM 11XXX111

!"RSTft,

H-I\GOSUB 7800

RETURN

REM GIVEN I, PRINT RET, CALL, OR JMP CONDITION
ON 1+1 GOTO 8820 8830,8840,8850,8860,8870,8880,8890

!"NZ",\RETURN

!"Z",\RETURN

!"NC",\RETURN

!MC",\RETURN

!MPOn,\RETURN

!"PE'\\RETURN

•"P'MRETURN.

!"M",\RETURN

REM GIVEN J, PRINT RP NAME FOR PUSH OR POP

I-J+l

C$-D$(I,I)

IF C$«"S" THEN !"PSW".\RETURN

1C$,\RETURN

REM INITIALIZATION

DIM R$(8)

R$-"BCDEHLMA"\REM REGISTER NAMES

DIM D$(4)

D$="BDHS"\REM REGISTER PAIR NAMES

DIM H$(16)

H$«"0123456789ABCDEF"

DIM B(255)\REM 0 OF BYTES FOR INSTRUCTION

FOR 1-0 TO 63

READ B(I)

NEXT I

FOR 1-64 TO 191

,2,

,2,

,2,

,2,

» 1»
,1,
♦ 3,

,3,

NEXT I

FOR 1-192 TO 255

READ B(I)

NEXT I

DATA 1 3,1,1.1,

DATA 1,3,1,1,1,

DATA 1,3,3,1,1,

DATA 1,3,3,1,1,

DATA 1,1,3,3,3,

DATA 1,1,3,2,3,

DATA 1,1,3,1,3,1,2,

DATA 1,1,3,1,3,1,2,

A«0

AO-0

JO-0

W-65536

REM TAB STOPS

Tl-7

T3»24

T4-40

DIM S(20)\REM ADDRESS STACK
SO-0

RETURN

,1,
,1,

,1,

,1,
» 1»

,1,
,1.
,1,

,1,1,2,

,1,1,2,

,1,1,2,

,1,1,2,

,3,

,3,2,3,1,

,3,1,3,1,

,3,1,3,1,

159

tions on the 8080 are of varible length, and if the disassembler

happens to start in the middle of an instruction rather than at its

beginning, what comes out is garbage.

To help cure these problems, this disassembler displays the

contents of each location in hexadecimal, in ASCII and in assembler

code. It takes into account the variable length of the instructions.

The misalignment problem is quite difficult, and if the disassembler is

started in the middle of an instruction, it usually takes a few instruc

tions before it is back on the track. However, this program incorpo

rates a heuristic method for obtaining correct alignment. A special

code "P," for "Previous intruction," attempts to find the nearest

previous instruction that seems reasonable. What it actually does is

this: first it jumps back in memory 12 bytes, then it disassembles its

way forward to the last instruction that does not overlap the one you

started in. The odds are very good that, during this process, the

disassembler will find the proper alignment. This feature is,

perhaps, the most interesting advance this disassembler exhibits.

The other features that make it very convenient to use are explained

in the operating instructions.

The disassembler was written by Douglas Wyatt, with a little

bit of the code (and probably most of the bugs) supplied by me. Afew

comments on changing Poly BASIC to your BASIC might help. The

exclamation point (!) means "PRINT." Anything shown in lowercase

may be changed to uppercase. We think that it is nicer for the

computer to talk in standard English if it can, so we use lowercase

where appropriate. The function INP(l) grabs a character from the

keyboard. Thus, lines 110 and 120 take a character, C, and ask if it is

a RETURN (ASCII-13). If it is, the computer does a RETURN and a

LINE FEED. The slash (/) allows two instructions to appear on the

same line. You can modify this so that they are on separate lines if

your BASIC doesn't support this feature.

Knowing the symbol equivalent of various ASCII codes is useful

in understanding the program. Your BASIC must have the PEEK

function, of course. On some, this is called EXAM. We also use

TAB. If you don't have the multiway branch (the ON instruction),

you will have to use a list of IFs. It's not all that hard.

Operating Instructions

When the program is running, a press on the space bar disas

sembles the next instruction. Any key other than a command just

repeats the previous instruction. The following six commands form

the entire assembler. When they are pressed, no RETURN is

required if you use the INP function or its equivalent.

160

A(ddress). When this command is given, you have to supply a
hex address. Disassembly proceeds from that address.

J(ump). If the instruction just disassembled was any kind of
jump, this command causes disassembly to proceed at the jump's
destination address. Thus, you can use the disassembler to trace
through a program.

B(ack). This causes disassembly of the previous instruction.
C(all). If the instruction just disassembled was a CALL then

this instruction causes the first line of the called subroutine to be
disassembled. Disassembly proceeds through the subroutine until
you give the instruction.

R(eturn). Disassembly proceeds with the statement following
the CALL. Subroutines may be nested. Use of the R(eturn) instruc
tion is not limited to when you find the subroutine's RTN instruction.

It can be used at any time to return to disassembling the calling
program.

Previous instruction). This command has the disassembler
go back 12 bytes, then scan forward to the last instruction before the
one you started in, trying to align itself to the correct instruction

boundaries. If the code you are disassemblingisn't making sense, try
this instruction. There is a good chance (although it is not certain)
the disassembler will now be properly aligned with the program. Of
course, if you are in a region of memory that is full of data, then a

glance at the ASCII or the hexadecimal columns should show the
structure of the data.

Output Format

The address appears at the left edge, followed by the contents
of the location (and the next one or two locations if the disassembler
thinks that a multi-byte instruction lives there) in hexadecimal. Next
is the ASCII representation of those contents, or underlines if they
are not printing characters. This is followed by the assembler
mnemonic, and then an asterisk.

Hex Notation

Hex smex! It seems that hex notation is the national language of
microprocessors. This is understandable, with two hex digits fitting
neatly in an eight-bit byte. But oh, my head, after about 10 minutes

of converting front-panel binary into hexadecimal. The obvious solu
tion is a hexadecimal front panel. A hex keyboard is no problem, but
the hex display is another matter. It's better to have a little skull
sweat in the design stage than the long hours of headache during
program debugging.

161

Table 2-6. Human Readable Hex Characters.

A few minutes of checking prices on hexadecimal readouts

proves that their use can be rather expensive. Being the miser that I

am, seven-segment displays seem to be the only practical way to go.

While most BCD-to-7-segment decoders have unique patterns for

the representation of the numbers from 10 through 15, these

patterns are almost as difficult to memorize as the binary LED

patterns. A little special encoding is required to represent the letters

A through F in a human readable form. Table 2-6 shows the pro

posed character representations for seven-segment displays. These

characters are further encoded with the decimal point active for A

through F to accent these unusual patterns.

Try as I might, I could not find a standard encoder that so much

as comes close to such a pattern. Normally, this situation would call

for a 4-to-16 decoder and a handful of diodes to implement such a

character generator, but space considerations in my application

require a different approach. What is required is a hex-to-seven-

segment decoder/driver.

The 8223 is the ideal PROM for such a circuit. Its eight outputs

provide control for all segments, including the decimal point. Decod-

Fig. 2-16. Output connection for common cathode displays.

162

Fig. 2-17. Common anode connection.

ing hexadecimal data uses only 16 of the 32 memory words available

in the 8223. By inverting the date for the second 16 words, the

encoder is able to drive low or high active seven-segment displays.

AO through A3 define the hex input date, while A4 selects the type of
display. With A4 high, the outputs are active high for driving com
mon cathode displays as shown in Fig. 2-16. Figure 2-17 details the

common anode connection with A4 active low. The programming

code for the 8223 PROM is shown in Table 2-7.

Bit Explosion

Why settle for eight bits? If you're thinking ofbuilding yourown
microcomputer, take a quick look at what's available before plunging
in. For slightly more than what you would expect to pay foran 80-bit

CPU chip, you can nowget a 12- or 16-bit microprocessor with many
more capabilities and features. Those currently available include the

12-bit CMOS chip from Intersil (IM-6100) and Harris Semiconductor

(HM-6100) which executes the same instruction set as the Digital

Equipment PDP-8/E minicomputerand the 16-bit CPUsfromTexas
Instruments (TMS-9900), National Semiconductor (PACE) and
General Instruments (CP-1600). If you think you're not ready to
design your own custom system, several of these companies offer
various boards and systems all ready to go.

The 12-Bit 6100

The IM-6100 from Intersil and the HM-6100 Irom Harris

163

Table 2-7.8223 PROM Encoding Data for Hex-to-Seven-Segment Decoder.

A4 A3 A2

0

G

0

0

c

c

c

c

c

c

c

c

c

C

0

0

0

) 0

I 0

I 0

I 0

) 0

1 1

) 1

) 1

> 1

> 1

) 1

0 1

0 1

I (

I (

I (

0

0

0

0

1

1

1

I 1

0

0

0

0

1

1

1

1

) 0

> 0

) 0

I 0 0

1 0 1

I 0 1

I 0 1

1 0 1

I

1

I 0

I 0

I 0

1 0

f 1

f 1

1 1

I 1

A1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

AO

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

p

B7

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

9

B6

1

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0
^

0

0

1

1

1

1

1

0

1

1

1

1

1

1

1

1

I

B5

0

1

1

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

1

1

1

1

1

0

1

1

0 d

B4 B3

0

1

0

1

1

1

0

1

0

1

0

0

0

0

0

G

C

1

c

c

(

1

0

1

0

0

1

0

0

1

0

0

1

I 0

I 0

I 0

\ 0

I 1

> 0

1

) 1

) 0

) 1

1

0 0
1I 1

0 1

I 0

I 1

I 1

I 1

I 1

I 0

e

B2

0

0

1

0

0

0

0

0

0

0

0

0

1

0

1

1

1

0

1

1

1

1

1

1

1

1

1

0

1

0

0

b

B1

0

0

0

0

0

1

1

0

0

0

0

1

1

0

1

1

1

1

1

1

0

0

1

1

1

1

0

0

1

0

0

a

BO

0

1

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

1

1

0

1

1

1

1

1

1

0

1

0

1

1

40 pin dual-in-line packages. Both recognize the standard instruction

set of the Digital Equipment PDP-8/E minicomputer but cannot

accept the Expended Arithmetic Element (EAE) or User Flag (UF)

options. Normal memory addressing capacity is only 4K but may be

extended to 32K via an Extended Memory Control element The

bus structure of the 6100 can be adapted to provide a subset of the

PDP-8/E OMNIBUS signals allowing all PDP-8(EprogrammedI/O
interfaces to operate with the 6100 without hardware of software

modifications.

164

The CMOSprocessor chip requires onlya single voltage supply
between 4 and 11 volts and is TTL compatible with a 5V supply.

There is a built-in crystal controlled oscillator, for system timing,
with a maximum frequency of 8 MHz with selected versions of the

chip. All control signals are produced by the CPU chip and can

interface with up to 64 separate I/O devices with PDP-8/E compati
ble interfaces. Other features include single clock/single instruction

capabilities, Direct Memory Access (which is not PDP-8 compati

ble), interrupt and dedicated control panel features.

The 6100 does require slightly more support hardware than the

simpler 8-bit microprocessors, but its software compatibility with
the PDP-8 should make the extra effort well worthwhile. Over a

thousand fully developed and documented programs are available
from Digital Equipment Corporation, Software Distribution Center,
146 Main Street, Maynard MA 01754. Other user generated prog

rams are available from the DEC User's Society (DECUS) at Parker

Street, Mail Stop PK-3/E55, MaynardMA01754. Besides the usual
loaders, assemblers, editors and other utility programs, you canalso
get various versions of BASIC and FOCAL or even a complete

PDP-8 operatingsystem softwarepackage. Foraddedtroubleshoot
ing convenience, the complete set ofprocessor, memoryand termi
nal diagnostic programs for the DEC PDP-8 can also be used with

the 6100. This last feature, the ability to run various diagnostic

programs, is lacking in most microprocessors/microcomputers cur
rently available.

The 16-Bit Offerings

The TMS-9900 from Texas Instruments provides a unique
approach in micro-system design using a memory to memory

architecture with multiple register files resident in memory, similar
to some large scale computers. It's available as a single chip, a

complete board (similar to the DEC SLI-11) or a complete system.

Each has hardware multiply and divide as a standard feature. The
rather large 64 pin dual-in-line package requires ±5V and +12V
supplies along with a four-phase 3 MHz clock. Figure 2-18 gives a
block diagram of the internal architecture of the TMS-9900.

The maximum addressable memory space is 64K 8-bit bytes or
32K 16-bit words. The first 64 words of memory are reserved for
interrupt andtrap vectors while the last twomemorywords are used
for the LOAD signal trap vector. The remaining memory space may
be used for programs, data or workspace registers as desired.

The only three internal hardware registers accessible to the
user are the program counter (PC), the status register (ST) and the

165

iwVWroicoii

♦•-♦4

00-015 CftUIN CftUOUT

Fig. 2-18. TMS-9900 block diagram.

workspace pointer (WP). The workspace pointer points to the

starting address ofa 16 register workspace resident anywherein the

external memory space. Each workspace register is addressed by

an offset from the current workspace pointer, and the various

registers may be used as desired except for a few that have fixed

uses as part of subroutine and interrupt linkage conventions.

The CPU provides up to 16 different interrupt level with level <f>

reserved for the RESET function. A built-in Communications Regis

ter Unit (CRU) allows up to 4096 I/O bits in fields of 1 to 16 bits in a

unique command-driven I/O interface. This interface allows imple

menting interfaces with exactly the right number of data bits re

quired for a particular application. Other timing and control signals

166

Rg. 2-19. PACE microprocessor functional block diagram.

167

provide capabilities for ROM loaders, front panel service, CPU hold,

slow memory cycles and DMA transfers. Of the 66 general instruc

tions, five provide a means of initiating user implemented external

functions for special applications.

Figure 2-19 shows a block diagram of the PACE microproces

sor from National Semiconductor, a 16-bit microprocessor in a 40 pin

dual-in-line package. The PACE provides for 16-bit general purpose

working registers along with a 16-bit status and control flag register

that automatically preserves the system status. Return addresses

for subroutines and interrupt servicing are automatically saved on a

10 word last-in, first-out stack which may be expanded through

software via stack full/stack empty interrupt routines. There is a six

level, vectored priority interrupt system with individual interrupt

enables in the status register for each level as well as a master

interrupt enable for the five lower levels as a group. For direct

processor status and control functions, there are four sense inputs

and four control flag outputs to the CPU chip itself.

The instruction set consists of 45 instructions in eight classes.

Memory reference instructions utilize an addressing scheme that

provides three floating memory pages and one fixed memorypage of

256 words (16-bit) each. The maximum addressable memory size is

64K words of 16 bits each.

Several support chips are available for PACE which are de

signed to interface directly with the microprocessor chip and thus

simplify system design. The System Timing Element (STE) pro

vides the required MOS clock signals as well as an optional TTL

clock. The Bi-directional Transceiver Element (BTE) provides

single chip, 8-bit I/O buffering between TTL devices and the PACE

MOS I/O lines. The remaining support chips include an Address

LatchJElement (ALE) and an Interface Latch Element (ILE) that

may be needed for more complex systems.

For more complete information, sample system diagram and

applications, refer to the PACE Technical Description available from

National Semiconductor (publication #4200078A).

The CP-1600 from General Instruments is a single 40 pin chip,

16-bit MOS LSI microprocessor that closely resembles a Digital

Equipment PDP-11 in architecture (Fig. 2-20). There are eight

general purpose, 16-bit registers with R6 reserved as the stack

pointer (SP) and R7 as the program counter (PC) just as in the

PDP-11. Unlimited stack depth and self-identifying nested interrupt

and subroutine capabilities are provided by the stack pointer in

conjunction with external RAM memory.

168

Instruction execution timesrangefrom 1.6 to4.8 microseconds
with a 2-phase, 5 MHz clock. Fouraddressing modes combined with

a 16-Mt word length allow direct addressing of 64K bytes or 32K

words of memory or peripheral devices. Memory and peripheral

interfaces are intermixed in the same address space as desired, and

all I/O operations may use any of the 87 available general purpose

tion (BEXT) instruction allows direct testing of up to 16 external

The main difference between the CP-1600 and the PDP-11 is

that the CP-1600 instruction word format is only 10 bits long in the
lower order bit positions of a 16-bit processor word. The higher

order 6 bits are ignored; thus only 10-bit wide ROM memory is

needed where ultimate ROM bit efficiency is desired for particular

For complete information on the CP-1600 CPU chip showing
timing diagrams, programming information and system configura

tions, the Series 1600 Microprocessor System Documentation is
available from General Instruments for $20.

to simple 8-bit systems and that some of the larger chips are very

attractive from the hobbyist point of view in building a new system

from the ground up. The prices currently range from about $30 to
over $100 in small quantities, but should continue to drop as more

interest develops and second-sourcing becomes more common.
So why build an 8-bit machine and wish you could do more,

when 12 or 16-bit CPUs are currently available at reasonable prices

with many expanded features? Keep in mind that the larger word
size machines make higher-level languages more powerful and

machine language—and who in their rijght mind would?

With the price ofhobby computer equipmentgoingfrom expen

sive to overpriced and, lately, to outrageous, I have been home
brewing most of my computer equipment This makes it more

affordable, as the price of the components plus the cost of a wire-

equivalent kit. I have designed and built a complete Altair S-100 bus

performs equally. It was originally designed to use the somewhat

puter

169

BDIR«

BC1'

8C2<
BUS CONTROL!

E8CAO-3<-/-L

STPST«

HALT*

BDRDY-

PCIT*-

TCI«

INTR*-

INTRM*-

BUSRQ*-
BUSAK*«

EBCI-

VOD
VCC
GND
VBB

INSTRUCTION!

REGISTER

IR DECODE

ROM

STATE

TIMING

ROM P
TS1 TS2 TS3 TS4

CLOCK GENERATOR

MSYNC#
t
02

170

BIDIRECTIONAL BUS

DOD15

ft.
BIDIRECTIONAL BUFFERS

16

8

ARITHMETIC!
LOGIC UNIT

(ALU)

EXTERNAL

16 BIT

\

INTERNAL

16 BIT

BIDIRECTIONAL
BUS

Rg. 2-20. CP-1600 internal block diagram.

171

when I changed over to a Z-80. However, as anyone who has ever

used both chips can tell you, once you have used a Z-80 you will not

be able to tolerate the poor instruction set and processing ineffiency

of the 8080. About that time I saw an ad for the $149.95 Z-80 CPU

card from S. D. Sales. It was fantastic and was at aprice that was less

than my first Z-80 card cost to build. Ofcourse, the price of theZ-80

had dropped somewhat since I built my first card, but the price was

still around the current cost ofparts to build a card, so I ordered one.

Having built several microcomputer kits, and lived with poor

documentation, poor quality boards, idiotic designs that were very

hard to change, etc., I didn't really know what to expect at such alow

price. But, past experience with S. D. Sales on parts orders had

shown me that they were reputable, quick and generally offered a

good value with prime quality parts. This still did not completely

prepare me for the surprise that I got when I opened the package.

The PC board was one of the best quality boards I have ever

seen. Fully solder masked, high quality plating, plated through

holes—everything! The design was really superb—two 5V reg

ulators with heat sinks (most CPUs really need two as the current

required for all the buffers really heats one), heavy powerbuses with

a fantastic ground plane, silver mica caps, precut, preformed resis

tors (most resistors and caps were precut, preformed and ready to

insert in the PC board), a very thick book on the design, software

and hardware differences between the Z-80 and 8080, complete

instructions for assembly and a Z-80 manual. The ICs were all prime

quality with very recent date codes. All of the component values

(part numbers) were screened exceptionally clearly on the compo

nent side of the board, and the IC numbers and component numbers

are still visible after installing sockets and components.

The actual assembly of the board was one of the easiest and

quickest assemblies of PC boards I've ever done. The instructions

were excellent, and the preformed leads and clear screening made

everything fall together. One or two resistor locations were some

what obscure, as they did not wind up in the general numeric order of

most of the parts and required a little searching. But there were only

a couple of these, and they were solved after a few seconds of

searching.

I popped the board into the computer and powered it up.

Everything worked beautifully the first time, and with noproblems. I

did have to make one minor modification to myVDM board (involv

ing the bending of one pin on an IC) before I could initialize the

screen. This was mentioned in the Z-80 manual that S. D. Sales

provides (the kit manual), but I wanted to try it first to see if it was

172

really necessary. They also mentionafew modifications and changes

(all very minor) to other boards to get them to work with the Z-80.

This is necessary in the case of the VDM because of the timing

difference between the Z-80 and 8080 (the Z-80 is in most cases

faster). However, it works fine, and it was really thoughtful of S. D.

Sales to point all of these differences out (This is an example of the

thorough and complete attention to detail and documentation that is

typical of everything involved with the kit.) It is one of the truly

fantastic bargains still available on the hobby microcomputer market
today.

Speaking of fantastic bargains, S. D. Sales also makes a 4k low
power memory board for the Altair S-100 bus that is an equal

bargain, in that it has the same quality parts, is equally well

documented, easy to build and costs less than the components to
wire-wrap one. This is another well-designed, well-implemented

piece of hardware. The board uses four regulators and runs very
cool. Fast memory chips and good design allow super fast board

access time. (The board has no provisions for wait states but works

perfectly with a Z-80 CPU running at almost 3 MHz, which is far in

excess of specs.) There are sockets for everything. Run to the

nearest phone and order a dozen orso right away, before they come

to their senses andraise the price to whatit shouldbe. At$89.95you
are robbing them blind.

The combination of the CPU and memory gives you the basis

for a really super home brew computer with the addition ofa panel,

back-planeandpowersupply. Thiswillgiveyouacompletemadiine,
with aZ-80,16K ofreliable, lowpowerSTATICmemoryandfullI/O

for about the cost of a bare IMSAI or the same with video output
capability for the cost (or slightly less) of an Altair (the case, panel,

8080 CPU and power supply and nothing else).

The Cosmac Connection

A simple 90-byte program can turn your Cosmac microcompu

ter into an excellent automatic keyer for sending Morse code. It

adjustable dash:dot ratio, automatic letter spacing, iambic or

squeeze keying and adjustable speed from 5 wpm to 80 wpm.

Equipment Required

You will need the Cosmac microcomputerfashioned around the

CDP1802CD CPU by RCA. The program requires 90 bytes of

memory. In addition, you will need some ICs and perhaps a transis-

173

tor or relay in order to interface the computer with your transmitter.

The program was written for a clock frequency of 1 MHz, but it can

be modified for other clock frequencies quite easily.

How the Program Works

After setting subroutine counters and memory pointers, the

first thing the program does is convert the code speed entered via

the keyboard into hexadecimal form. The programassumes the code
speed will be less than 100 wpm. An example will illustrate the

method best. Suppose you enter 35 as your desired speed. The
program converts this to base 16 by repeatedly subtracting lOiefrom

it until the remainder is less than 10ie. In this case,

35ie — lOie = 25ie

25l6 —' 10l6 = 15l6

15l6 — 10l6 = 05l6

Each time a subtraction is performed, OA is added to Rl, and,
finally, the remainder is added to Rl. In this case Rl = OA + OA +
OA + 05 = 23ie. This completes the conversion, 35 wpm = 23ie.

Next, I derive a number which is proportional to the length of

one dot. Since the length ofa dot is inversely proportional to the code

speed, I calculate OOF7/code speed in hex form and store the
quotient in M(000A). This number sets the length of a timing loop in

making a dot. Two times this number is used for letter spacing, and
three times this number is used for the dash length. Actually, during

execution of the program, a dot or dash is automatically followedby a
space of one dot, and, if a letter space of two dots is added to this,
you get effectively a letter space equal to the length of three dots.

Spaces were left at M(0048) and M(0049) to enable you to

increase the length of the dashes. By inserting the instruction F4 at
M(0048), the dashes will be four times the dot length. If you also put

F4 at M(0049), the dashes will be five times the dot length. This will

change the speed of the code, of course.

The dash length is stored in M(000C), and, since it cannot

exceed FF, this restricts the maximum dot length at M(000A) to 1/5
of FF if you use a 1:5 dot-to-dash ratio. This, in turn, places a

maximum value on the numerator of the formula quoted earlier,

00F7/code speed in hex form. So, summing up, the number 00F7

was chosen to allow code speeds as low as 5 wpmwithout exceeding

a dash time of FF at M(000C). At M(0036), provision is made for

changing this numerator to 01F7 or 02F7, if desired. This is useful

when operation will consistently be at high code speeds and when

finer resolution is required in the code speed. For example, with the
programas is, youget the same speed ofcodewhetheryou enter25,

174

26 or 27 wpm. The speed changes at 28 wpm, but remains at this

new speed whether you enter 28, 29 or 30. The problem is accen

tuated at very high speeds. For example, you get the same speed of

code for all entries between 62 and 81 wpm.

The rest of the program is straightforward and is understood

best by looking at the flowchart. The key is connected to EFl and

EF2. Closing the dot side makes EFl = 1. Closing the dash side
makes EF2 = 1. Theprogram periodically checks the status ofthese

inputs, and the dots and dashes come out on the Q-line, which is

interfaced with the transmitter as described later.

The subroutine in the program in simply a timed loop using

registers Rl and R2. The initial value ofR2 is set before entering the

subroutine according to the length of delay required, whether a dot,

dash or letter space in being generated. At a code speed of24 wpm,

SIOETONC OSCILLATOR

B

FROM PIN 4 s J*
OF ICI ' m

♦5V

220

: 220

m

A \ TO GRIOS OF KEYEO STAGES
V '(UP TO -300 VOLTS AND 6mA)

Rg. 2-21. Interface between Cosmac and transmitter; alternate circuit for rigs
with grid-blocked keying eliminates relay and Q1.

175

you should get 10 dots per second. For a 1:3 dot: dash ratio, the

length of a dot at 24 wpm should be 50 ms. Accordingly, the values of

Rl.l and R1.0 were set at M(009C) and M(009F) so that the dots

are the correct length at this speed. They will automatically be the

correct length at other speeds because the number in R2 is propor

tional to the code speed. The values chosen for R1.0 and Rl.l

assumed a clock frequency of 1 MHz. It should be a simple matter to

adjust these figures for different clock frequencies, although I have
not tried anything but a 1 MHz clock.

Interface Circuitry

The connection of the computer to the transmitter is shown in

Fig. 2-21. It includes a sidetone oscillator for monitoring your code

and also an input for a hand key which I like to use when tuning up the

transmitter or when the computer is programmed as an automatic

message generator instead of an automatic keyer. Figure 2-22

shows the method used to connect the key to the computer.

If your transmitter is running more than a few watts, you must

be careful that your wiring does not pick up rf in your workshop. If it

does, it may upset the logic gates, and you'll find that, once the first

dot or dash is sent, the transmitter might not shut off. This rules out

any long dangling wires running across your desk in front of your

transmitter! For best results, use a shielded enclosure and bypass

the leads to the transmitter and key with 0.001 uF ceramic

capacitors.

TOCOSMAC

1
>4.7K |4.7K

/&EF1-I DOT NOW

EF2»I DASH NOW

Fig. 2-22. Key connections.

176

SCT SWITCH tVTC INTO

MEMORY ANO DISPLAY

CONVERT THIS

TO HEX FORM

ESTABLISH A NUM1CR

FOR THE LENGTH OF A

OOT MAKING IT

INVERSELY PROPORTIONAL

TO THE CODE SPECO

SET OOT TO OASH RATIO

ANO LETTER SPACING

INTO MEMORY IFLI MEANS OOT KEY CLOSEO

EF2-I MEANS OASH KEY CLOSEO

SET NA FOR OOT NOW

ANO LOAO OOT

UENGTHININTO W

SET HI FOR OASH N

ANO LOAO OASH

LENGTH INTO R»

TURN ON LEO ANO
CALL SU8R0UTINE

TURN OFF LEO

LOAO OOT LENGTH INTO

Rt ANO CALL SUt-

ROUTINE FOR A SPACC

3K&U

RESET OOT NEXT

RESET OOT NEXT

RESET OASH NEXT

RESET OASH NEXT

E A LETTER SPACE

RESET OOT NEXT

RESET OASH NEXT

Fig. 2-23. Flowchart for automatic keyer.

177

Using the Keyer

Enterthe programshown (Figs. 2-23,2-24and Tables2-8,2-9)

and, before setting the computer to run, enter the desired code

speedfrom the front panel. Set the computer torww, and your speed

will be displayed on the hex display. To change the speed, just set

the switches on the front panel to the new speed and flick the run

switch offand then on. Somepeople find the automatic letter space a

bit awkward at first, probably because their fist, like mine, has

become a little sloppy over the years. To eliminate automatic letter

spacing, enter the instruction C4 at M(007F). C4 means no opera

tion, and the subroutine normally called at that location does not get

called.

Program Your Way To CW Happiness

Now you can reduce operator fatigue in that next CW contest

by storing commonly used messages in your microcomputer, all

ready to be sent automatically at the flick of a switch. Imagine

relaxing in your armchair... you reach over to your computer, flick

a switch, and out comes CQ FD CQ FD DE VE3CWY/3K. No

answers? Flick the switch again for a repeat. You've got somebody.

You casually call him with your hand key, W1XXX. Then push

another button on the computer and presto! Out comes DE

VE3CWY/3 QTH HR IS... You wait until it's finished. The code is

the best you've ever heard. Now how much simpler could things

get? Not much, unless you also have an automatic Morse decoder,

too! Of course, you don't have to be a contest operator to use this
little gem. Weuse it nowfor many regular QSOS toput outthe initial

CQandtosend thefirstmessage, which, formostpeople, is simplya

signal report, QTH and operator's name.

This Cosmac microcomputer constructed around the

CDP1802CD CPU is used with 256bytes ofRAMofwhich 105bytes

areused for the main program, therest beingused for storage ofthe

messages. Program timingassumes a clockfrequency of 1 MHz, but

it is easily adapted for other clock frequencies. The byte stored in

M(0004) is selected initially by the operator from Table 2-10. This

byte sets the length of a dot and hence sets the speed of the code.

The program triples this to get a number that will represent the

length of a dash; this is stored in R6.0. Four times the dot byte

represents a word space, and this byte is stored in R7.0. Actually,

this space gets added to the usual space of three dots that follows

every letter so that the actual spacebetween words is equal to seven

dots. These bytes are later used to specify the length ofa timed loop

and thereby set the length of all the dots, dashes and spaces,

178

Theprogram fetches the first byte oftheprogrammedmessage
from M(0069). It is 45, which stands for the letter C, as you can see

from Table 2-11. The first digit, 4, is the total number of dots and

dashes in the letter. The second digit, 5, specifies the order in which
the dots and dashes appear. Taking C as the example, —.—. can be

represented in binary form by 0101, where the 0 represents a dot

and the 1 represents a dash. This is the binary code for the number

SET III .
, LENGTH
OECAV

SET OOT NEXT

SET OOT NEXT

Fig. 2-24. Timed subroutine flowchart.

179

Table 2-8.

Address

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

OOOB

OOOC

OOOD

OOOE

OOOF

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

001A

001B

001C

001D

001E

001F

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

002A

002B

002C

002D

002E

002F

0030

0031

Program

Bytes

F8

OD

A3

F8

9B

A4

C4

C4

C4

D3

F8

OA

A5

F8

OB

A6

F8

OC

A7

F8

01

AA

AB

AC

AD

E7

6C

64

27

F8

00

A1

FO

FF

10

3B

2F

57

81

FC

OA

A1

30

23

81

F4

55

Listing. Title: Automatic Keyer.

Comment

0D-»D set main program

counter

D-R30

9B-»D set subroutine

counter

D-R40

no operation; leaves

space for setting up

additional subroutine

counter

3-P go to main program

dot time

letter space time

dash time

0A-D

D-R50R50 aOA

OB-D

D-R60R60 =» OB

0C-D

D-R7-0R7-0 = 0C

01-D

D-RA0

D-RBO

D-RC0

D-RDO

7-X

input switch byte

-MX.D

MX-display, RX + 1

RM

00-D start decimal to

hex conversion

D-R10setsR10 = 00

MX-D

D-10-D, carry-*DF

Go to 2F if DF = 0

(if number is less than 10)

D-»M7 place remainder

inM7

R10-D

OA + D-D

ADDOAtoRI

D-*R10

Go to 23

R1-0-D

MX + D-D

D-M5 conversion

complete

180

Address

0032

0033

0034

0035

0036

0037

0038

0039

003A

003B

003C

003D

UUoc

003F

0040

0041

0043

0044

0045

0046

0047

0048

0049

004A

004B

004C

004D

004E

004F

0050

0051

0052

0053

0054

0055

0057

0058

0059

005A

005B

005C

005D

005E

005F

0060

0061

0062

0063

0064

Bytes

E5

F8

00

A2

F8

01

A1

F8

F5

F7

12

33
4D
W

21

81

3A
M

82

55

F4

56

F4

C4

C4

57

34

67

3D

4B

F8

00

AB

47

27

A2

30
nn
w

F8

00

AA

45

25

A2

7B

D4

7A

45

25

A2

D4

F8

Comment

5-X

00-D routine to set dot

timing

D-R20
01-*O

D-R10
F5-D limits minimum

speedto5wpm

D-MX"*D, carry-*DF

R2 + 1R2 accumulates

quotient

goto3BifDF«1

R1-1

R10-D

go to 39 If D# 00

R20-D

D-M5

MX + D-D

D-M6

D + MX-D

no operation

no operation

D"*M7 conversion

complete
QOto57lfEF1 «i

(dot now)

goto4BlfEF2»0
(no dash either)

00-+D dash now

D-RB0

M7-DR7 + 1

R7-1

Da#R2*0

go to 5D and make dash

00-Ddotnow

D-»RA0
M5-DR5 + 1

R5-1

D-R20

1-O light on

4r+P call subroutine
for a delay
(HQ light off
M5-DR5 + 1

R5-1

D-R20

4-P call subroutine

for delay »idot
01-D

181

Table 2-9. Register Assignments.

0065

0068

0067

0068

0069

006A

006B

006C

006D

008E

006F

0070

0071

0072

0073

0074

0075

0076

0077

0078

0079

007A

007B

007C

007D

007E

007F

0080

0081

0082

0083

0084

0085

0086

0087

0088

0089

008A

008B

008C

008D

008E

008F

0900

0091

0092

0093

0094

0095

0096

0097

01

AA

AB

8C

3A

70

F8

01

AC

30

57

8D

3A

78

F8

01

AD

30

4F

34

90

35

95

46

26

A2

D4

8C

3A

88

F8

01

AC

30

57

8D

3A

4B

F8

01

AD

30

4F

F8

01

AC

30

57

F8

01

AD

D-»RAO reset dot now

D-RB 0 reset dash now

RCO-D

go to 70 if D#00

(no dot next)

01-D

D-*RC0 reset dot next

go to 57 and make dot

RD-0-D dash next?

go to 78 if D ^00

(no dash next either)

01-D

reset dash next

D-RDO

go to4F and make adash

goto90ifEF1 = 1

and make a dot

goto95ifEF2 = 1

and make a dash

M6-D, M6 + 1

no dot or dash now

R6-1

D-R2 0

call subroutine for

letter space

RC0-D dot next?

goto88ifD#00

no dot next

01-D

D-*RC0 reset dot next

go to 57 and make dot

RD0-*Ddash next?

go to 4B if D # 00

no dash either

01-D

D-RDO reset dash next

go to 4F and make dash

01-D

D-RC 0

qo to 57 and make a dot

01 -D

D-RD0

182

Table 2-9. Register Assignments

0098
OftftQVU99

009A

009B

009C

009D

009E

009F

00A0

00A1

00A2

00A3

00A4

00A5

O0A6

00A7

00A8

00A9

OOAA

OOAB

OOAC

OOAD

OOAE

OOAF

OOBO
00B1

00B2

00B3

00B4

00B5

00B6

00B7

O0B8

00B9

OOBA

OOBB

OOBC

OOBD

OOBE

OOBF

OOCO

00C1

00C2

30
AP

D3

F8

01

B1

F8

58

A1

21

91

3A

A1

8A

3A

AF

3D

BD

F8

00

AD

30

BD

8B

3A

B9

3C

BD

F8

00

AC

30

BD

34

B4

35

AA

22

82

3A

9B

30

9A

go to4Fand makea dash

3-P return to main

program

01-D start subroutine

D-RM

58-D fine adjustment

of dot length

D-R1-0
RM

R1-1-D

gotoA1ifD#00

RAO-Ddotnow?

gotoAFifD#00

gotoBDifEF2 = 0
(no dash next)
00-D

CHRD0 set dash next

RBO-D dash now?

gotoB9ifD#00

(if no dash now either)
gotoBDifEFI =0

00-D

D-RC0 set dot next
gotoBD

gotoB4ifEF1 = 1

QOtoAAIfEF2 = 1

R2-1

R20^D

goto9BifD#00

goto9A

end of subroutine

R1, R2-part of timing loop and used fordecimal to hex conversion
R3—main program counter
R4—subroutine counter
R5-memory pointer for dot length
R8—memory pointer for letter space
R7—memory pointer for dash length
RA = 00 if dot now

RB s 00 if dash now
RC s 00 if dot next

RD s 00 if dash next

183

5. So byte 45 tells the computer the order of dots and dashes and the

number of dots and dashes in the letter. To actually generate the

code —.—., the number 0101 is stored in the D-register. D is

shifted right giving 0010, and the 1 that peels off the right end of the

number tells the computer to send a dash first. D is shifted right

again, giving 0001; this time, a 0 peels off the right end, producing a

dot. A third shift gives 0000, pushing a 1 off the right end, thus

making a dash. A fourth shift gives 0000, pushing a 0 off the right

end; this makes the final dot. The computer stops shifting D now

because the4 in byte 45 tells it to make only4 shifts. A letter space is

then generated and the next byte is fetched from M(006A).

Since there areno letters that have more than4 dots and dashes

in total, the order of dots and dashes in any letter can be represented

by four binary digits or one hex digit. The numbers, punctuation, and

other special characters listed in Table 2-11 contain 5 or more dots

and dashes. To handle each of these, two bytes are required. The

first specifies the total number of dots and dashes, while the second

specifies the order in which they occur.

The rest of the program is easy to follow from the flowchart.

Two special bytes were set up. One is EE, which calls for a word
space; theotherisFF, which halts the program until the input button

connected to EF4 is depressed-

Using the Program

Select the code speed desired from Table 2-10 and store this

byte at M(0004). Table 2-10 was constructed assuming a clock

frequency of 1 MHz. If your crystal is not 1 MHz, simply experiment

a little with different hex bytes to get the different speeds. The code

speed varies inversely with the size of byte.

After entering the main program, decide on the messages you

want and select from Table 2-11 the bytes for each letter, number or

punctuation. Note that the numbers and punctuation require two

bytes each. Terminate each message with FF so that the program

will halt. To initiate one ofthe messages, enter the memory address

of its byte from the front panel of the computer using the toggle

switches. Turn on the run switch. When the message terminates,

Table 2-10. Hex Byte for Code Speed.

Speed (wpm)

Hex code

184

5 7 IO 13 16 20 25 30 35 40

3F 2D IF 17 13 OF OC OA 09 08

Table 2-11.

One-byte characters

A

B

B

C

D

E

F

G

H

1

J

K

L

M

22

41

41

45

31

10

44

33

40

20

4E

35

42

23

word space
stc>P

N

0

0

P

Q

R

S

T

U

V

w

X

Y

z

EE

FF

21

37

37

46

4B

32

30
11

34

48

36

49

4D

43

Hex Codes for Letters and Punctuation.

Two-byte characters

1

2

3

4

5

6

7

8

9

0

50

50

50

50

50

50

50

50

50

50

1E

IC

18

10

00

01

03

07

OF

1F

?

/

double dash

end of message

end of work

wait

60

60

60

50

50

50

60

50

2A

33

OC

09

11

OA

28

02

you can make it carry on with the next stored message by pressing

the input button which is connected to EF4. This way, you can have

callsign manually.

The 7400 Quad NAND Gate

or

circuit for the first time. Though the logic elements involved in any

particular circuit are seemingly simple to understand, theirintercon
nection with other elements and devices often tends to make the

circuit as a whole confusing to the point of incomprehensibility,
especially to the inexperienced. Circuit analysis is also further com
plicated when logic devices are utilized to perform functions other
than that for which they were primarily intended. Unfortunately,
these sources of confusion often appear formidable enough to dis
courage some of the less experienced experimenters from experi
menting with digital logic circuits.

Some of the mystery about the many uses of one of the most
basic logic elements, the two-input NAND gate, will now be dispel
led. In addition to explaining its primary function, it will be shown
how it may be connected to perform the functions of an inverter, a
set-resetffipflop, a switch debouncer, apulseshaper, a squarewave

osdllatorandevenacrystal oscillator. In spite ofthe rather ominous

185

forewarning that this is about a digital logic element in an integrated

circuit package, it will be shown that these applications are ex

tremely simple, making this the ideal device for learning the basics

about logic circuits.

Basics

For two important reasons, the NAND gates described will all

be of the TTL (transistor-transistor logic) family. First of all, TTL is

by far the most commonly used logic in current ham projects.

Second, it is the least expensive and the most readily available from

surplus dealers. The current price of the 7400 quad two-input

NAND gate is a whopping 16 cents.

Figure 2-25A shows the common schematic representation of

the two-inputNAND gate. Figure 2-25B is the truth table that shows

the output of the NAND gate for all possible combinations ofinputs.

The truth table is the key to understanding the NAND gate, and will

be referred to repeatedly in subsequent discussions and applications

of this device.

For TTL logic, each 0 in the truth table represents a voltage of

0.8 volts or less. Each 1 represents a voltage of greater than 2.0

volts but less than the NAND gate, supply voltage of 5.0 volts.

Figure 2-25C shows the pin diagram for the SN7400 quad

two-input NAND gate. As the word quad implies, there are four

two-input gates contained in one dual in-line packaged IC. As was

previously mentioned, a regulated five volt power supply is neces

sary to power the IC. Positive is connected to pin 14. Negative is

connected to pin 7.

Internal Circuitry

At this point let's digress forjust a moment and take a peek into

the innards of the IC. Iftransistor circuitry isn't yourbag, simply skip

this section. The following discussion of the internal circuitry is not

essential in applying the device, but is presented for those who

desire further insight into how the gate actually works. For those

who are indifferent about this aspect of the IC, the NAND gate can

be treated as a black box device.

Figure 2-26 shows the transistor circuitry that actually com

prises each section ofthe SN7400 two-inputNAND gate. The inputs

are actually the two emitter leads of Ql, a double emitter transistor.

The output is connected to the collector of Q4.

First, let's consider the case where both inputs are tied to a 1,

or a voltage ofbetween 2.0 and 5.0 volts. This will correspond to the

bottom line of the truth table listed in Fig. 2-25B. The base-collector

186

junction of Ql will be forward biased for this particular set ofinputs,

allowing Ibci to flow. This current wil! be sufficient magnitude to

saturate transistor Q2. The resulting collector current of Q2 will

produce a voltage drop across the 1.6k ohm collector resistor of

sufficient magnitude to cause the collector voltage ofQ2 to decrease

to the point where transistor Q3 is cut off, or effectively open

circuited. The rise in potential at the base oftransistor Q4 caused by

Q2's increased emitter current across the Ik ohm emitter resistor
will be sufficient to saturate Q4, causing its collector voltage to drop

to nearground potential, ora logic 0. This is exactlyas stated by the

truth table of Fig. 2-25B.

Now suppose that input A is tied to ground or to a voltage

source of 0.8 volts or less. This would correspond to the second line

ofthe truth table ofFig. 2-25B. Nowa current Ibei willflowfrom the

emitter of Ql to the grounded input A. In this case, Ibci will be zero,

causing Q2 to be cut off or effectively open circuited. Nocurrentwill

flow in either the emitter or collector circuit of Q2. Therefore, Q4

will not be biased on as in the previous case, and will in effect be cut

off, causing its collector-emitter junction to appear to be open cir
cuited. On the other hand, the collector of Q2 will be approximately

at the potential of Vcc. This will cause transistor Q3 to saturate,
presentinga logic 1 voltage at the output terminal that is equal to the

A<

B<

OUTPUT

FIG q

INPUTS

A

0

0

I

1

B

0

1

0

1

OUTPUT

1

1

1

0

FIG t>

TOP VIEW

FIG e

Fig. 2-25. The two-input NAND gate. (A) is the schematic; (B) shows the
truth table. (C) The pin layout of the 8N7400.

187

Fig. 2-26. The circuitry for one of the gates in the 7400 quad two-input

NAND gate.

supply voltage, Vcc, minus the voltage drop across the base-emitter

junction of Q3 and the diode, D3. This output voltage is typically

about 3.3 volts.

Note that the conditions described in the preceding paragraph

apply to the cases where either or both input terminals are con

nected to a logic 0 aspreviously defined. Thiscorrespondstothetop

three lines of the truth table.
Diodes Dl and D2 are included to help protect the gate should

the inputs be accidentally connected to a negative voltage.

One important TTL design rule should be evident at this point.
An open circuited input of a TTL gate corresponds to a logic 1 input

rather than a 0 input. Or in other words, to input a logic 0 you must

tie the input to ground or to a voltage of less than 0.8 volts so that
transistor Ql's base-emitterjunction will conduct. To input a logic 1

you may either tie the input to a voltage of greater than 2.0 volts or

simply leave that input open circuited.

Now that we've taken a look at what's inside the NAND gate,

let's discuss some of its many uses. First of all, as its name implies,
the NAND gate's primary function is that ofgating. In a logic circuit,

188

the NAND gate will provide a unique output response of logic 0 if,
and only if, both inputs are simultaneously at a logic 1.

Inverter

An inverter is a logic element that provides a 1 output for a 0
input and a 0 output for a 1 input. The two-input NAND gate can be
easily converted to perform the functions of an inverter by simply
tying the two inputs together. Now, only the top and bottom lines of
the truth table apply. The output will always be the inverse of the
input.

Like the gating function, the use of the NAND gate as an
inverter is very common. The easiest way to gain further insight into

the reasons for its use in this fashion is to study current digital logic
projects.

Pulse Shaper

Afast switching waveform is necessary to reliably triggerTTLflip
flops and counters. Slower switching waveforms such as low fre
quency sine waves will often result in erratic operation. The circuit

of Fig. 2-27 shows how two sections of a 7400 NAND gate can be
connected to form a waveform conditioning circuit, providing a TTL

compatible square wave output from a slower switching waveform
presented at the input.

♦5V
o

INPUT O-

6.8K

ICIA)h3
.OIjtF

OUTPUT

_TLTL

Fig. 2-27. An input conditioning circuit utilizing two sections of the quad two-
input NAND gate.

189

As was discussed in the section on internal circuitry, theNAND

gates are saturated logic elements. In other words, the output is

either on (ata voltage of approximately 3.3 volts) or off (at a voltage

of approximately 0.4 volts). The circuitry tends to avoid any in-

between output states.

This characteristic is utilized in the circuit of Fig. 2-27. As the

waveform at the input slowly changes from a 0 to a 1 logic level, and

vice versa, the abrupt switching characteristic of the NAND gates

transforms this input waveform to a square wave output at terminal
6. The inclusion of the. 01 uF capacitor from pin 6 of section IC1B to

pin 2 of section IC1A provides a transient feedback that further

enhances the switching speed of the trailing edge of each pulse.

The circuit of Fig. 2-27 is often found in digital circuits that

contain transistor or unijunction transistor oscillators that do not

have TTL compatible outputs. The circuit is also often used to

condition 60 Hz half-wave rectified sine waves for use in digital clock

circuits.

A set-reset flip flopjs a logic element with two outputs com

monly labelled Q and Q. Q is said to be the inverse of Q, since § is
always a 1 when Q is a 0, and always a 0 when Q is a 1. A logic 0

applied to the set input of the set-reset flip flop will cause the Q
output to go to a logic 1 and the Q output to go to a logic 0. The flip

flop will then remain in this state when the 0 at the set input is
removed. In this respect, the flipflop maybe thought ofasamemory

device. A 0 applied to the reset input will cause Q to switch back to a

logic 1, and Q to switch back to a logic 0.
Figure 2-28 shows the common logic symbol for a set-reset flip

flop, and how NAND gates can be connected to form this device. In
this diagram, both SW1 and SW2 are normally open switches or

contacts. IfSW1 is momentarily closed, groundingpin 1 ofIC1A, pin
3 will switch to a logic 1 as dictated by the truth table. This logic 1 is

then present at pin 4 of IC1B. Since pin 5 of IC1B is open circuited

and therefore also at a logic 1 level, the output ofIC1B switches to a

logic 0. Now, when SWl returns to its normally open position, pin 1
of IC1A returns to a logic 1 voltage. However, pin 2, being con

nected to pin 6 ofIC1B, remains at a logic 0. Therefore the output of

IC1A remains at a logic 1 state and the output of IC1B remains at a

logic 0 state. This is the set condition of the flip flop.
Now, if SW2 is momentarily closed, a 0 is applied to pin 5 of

IC1B, changingits output toalogicl. Bothinputs oflCIAare thenat

190

a logic 1 causing its output to switch to a logic 0. As before, both

ICIA and ICIB retain these output states when SW2 returns to its

normally open position. This is the reset condition of the flip flop.

Even though there are TTL ICs specifically designed as flip

flops, it is not at all uncommon to see the 7400 quad NAND gate

being used to implement the set-reset flip flop function. In many

cases one half of the 7400 IC will be used as a flip flop while the other

two NAND gates will be used as gates, inverters, pulse shapers,

etc.

Switch Debouncer

We have already taken a look at one of the peculiarities of

interfacing TTL logic with the outside world, namely the require

ment of waveform conditioning. Another interfacing difficulty is

depicted in Fig. 2-29. Mechanical inputs such as switch and relay

contacts are relatively noisy. As shown in the illustration, when a

mechanical switch or relay contact closes, the contact actually

bounces many times before coming to rest in the closed position.

Fig. 2-28.(A)The common schematic for the set-reset flip flop; (B)two sections

fo the SN7400 can be connected to form a set-reset flip flop.

191

^-SWITCH

_ TO LOGIC /BOUNCE
I ° ° • * CIRCUIT iij |

Fig. 2-29. Switch bounce.

These bounces are very fast, being only fractions of a microsecond in

duration, and therefore do not affect electromechanical or slower

speed electronic circuits. However, to the high speed TTL logic,

these contact bounces are a bona fide string of individual input pulses

and can cause erratic or unreliable circuit operation. For instance,

suppose that a counter circuit comprised of TTL logic elements was

constructed to count the number of times the switch contact in Fig.

2-29 was closed. As can be seenfrom the waveform produced by this

noisy switch contact, the counter would actually count the several

contact closures that result as the contact bounces ox chatters before

coming to rest in the closed position. Obviously some sort of inter

face is necessary to prevent this type of misoperation.

The circuit of Fig. 2-30 shows how two NAND gates can be

connected to form a bounceless switch or interfacing circuit. SW1

can be any SPDT switch or relay contact. As can easily be seen by

comparison to Fig. 2-28, the bounceless switch is no more than a

set-reset flip flop. Due to the memory action of the flip flop the circuit

will always switch on the initial contact closure and will therefore be

immune to the subsequent contact bounces. As can be seen from the

illustration, the NAND gates will provide one clean pulse for each

contact closure cycle even though contact bounce actually occurs at

both the normally open and normally closed switching positions.

Square Wave Oscillators

The NAND gate can also be connected as a square wave

generator as shown in Fig. 2-31. The particular component values of

Rt and Ct shown in this diagram will allow oscillation in the 1 kHz

range. To explain the operation of this astable multivibrator circuit,

let's first assume that we are starting at the instant that pin 6 of IC1B

has switched to a logic 0. Since pin 3 of IC1A is at a logic 1 at this

same instant, Ct will begin charging through resistor Rt. When the

192

Fig. 2-30. Two sections of the SN7400 connected to form a bounceless switch.

capacitor has charged to a voltage sufficient to provide a logic 1 at
pins 1 and 2 of ICIA, the two NAND gates abruptly switch logic

output states. Then the logic 1 at pin 6 of IC1B and the 0 at pin 3 of

ICIA cause G to begin discharging through Rt. When Ct has dis
charged to a 0 logic level, the gates abruptiy change states again.
Thus the oscillations continue at a rate dependent on the RC time
constant of Rt and Ct.

Provisions for keying the oscillator can be made by disconnect

ing pin 1 from pin 2 of ICIA. Now, grounding or application of a 0 at

Fig. 2-31. Two sections of the SN7400 connected to form a square wave
oscillator.

193

*

I
K

I
O
O
A

^
O
U
T
P
U
T

F
I
G

a
F
I
G
,
b

Fi
g.

2-
32

.
T
w
o
m
o
r
e
sq
ua
re

w
a
v
e
ge

ne
ra

to
rs

.
T
h
e
os
ci
ll
at
or

of
(A

)
wi

ll
os

ci
ll

at
e
at

ap
pr

ox
im

at
el

y
4
5
Hz
.
T
h
e
os
ci
ll
at
or

of
(B

)
wi

ll
h
a
v
e
a
fr

eq
ue

nc
y
of

a
b
o
u
t
5
0
k
H
z
.

2
2
0
f
t

3
9
0
p
F

Fi
g.

2-
33
.
T
w
o
e
x
a
m
p
l
e
s

of
h
o
w
th

e
S
N
7
4
0
0
c
a
n
b
e
c
o
n
n
e
c
t
e
d
to

fo
rm

a
cr
ys
ta
l

os
ci
ll
at
or
.

pin 1 of IC1A will prevent oscillation, since according to the truth

table the output of IC1A must always remain at a 1 as long as one

input is at a 0. A logic 1 or an open circuit at pin 1 would allow the

oscillator to run.

Two other connections of NAND gates to form square wave

oscillators are shown in Fig. 2-32. Like the oscillator just described,

these oscillators also rely on the charge-discharge cycle of

capacitors to provide oscillation. In all these oscillators the fre

quency ranges may be varied by the selection of the RC compo

nents. The higher the RC product, the lower the frequency range

that will result.

Oscillators of the type shown in Figs. 2-31 and 2-32 are often

found in circuits that require a TTL compatible clock. Though these

oscillator circuits are reliable, some frequency drift can be expected

in normal operation.

Crystal Oscillator

Finally, as shown in Fig. 2-33, the NAND gate can be used to

make a crystal oscillator for applications that require a more stable

clock pulse than that yielded by the previously described square

wave oscillators. As can be seen by comparison with Fig. 2-32B, the

crystal oscillator is basically the same as the square wave oscillator

except for the replacement of one capacitor with a quartz crystal.

The upper frequency range of the NAND gate as used in this

application is typically 15 MHz though some gates will oscillate at

somewhat higher frequencies. The addition of a trimming capacitor

in the circuit of Fig. 2-33 will allow for netting the oscillator fre

quency if this is deemed necessary in certain applications.

This list of presented applications of the 7400 quad NAND gate

is by no means complete. Like all other devices, its possible applica

tions are limited only by the ingenuity of the circuit designer. The

basic simplicity of the device itself, its low price tag and its versatility

make it the ideal device from which the digital logic neophyte can gain

valuable insight into digital logic circuitry.

196

Chapter 3

Memory

While the computer hobbyist faces many trials and tribulations dur

ing his quest to get his fabulous (and complex) new toy "up and
running," one ofthe most frustrating problems that he can encounter

involves debugging a troublesome memory board. This chapter

begins by describing a simple memory diagnostic program, and
illustrating its use in tracking down problems in memory. While not a

"cure-all" for all memory related problems, especially those that

render the complete board inoperable, this will allow the hobbyist to

"exorcise" those gremlins responsible for such irritations as mem

ory locations which refuse to store the exact data which you load into

them, and addresses which appear to change their contents as
though they had a mind of their own.

Checking Memory Boards

The two problems which arepresented for illustrative purposes

are real-life "bugs" which cropped up following the recent assembly

of two 4K memory boards. Note that the program and associated

debugging technique which evolved were developed for an Altair

8800 (but should be applicable, with appropriate modifications, to
other systems).

At this point, a few words concerning the memory diagnostic

program (Table 3-1) are in order. Ignore those parts of the program

in parentheses, for the time being. The program, as presented,

resides on page 2, address 000-041 (octal). This address was chosen

197

because I already had a simple "MONITOR" residing on pages 0 and

1, and I was certain that page 2 had no "bugs," due to the fact that

other small programs which resided there from time to time per

formed their appointed duties without difficulty. The program can be

placed on any other page (change memory references accordingly),

assuming that the chosen page has no "bugs" which would interfere

with the program's operation. Needless to say, the program can be

placed on a correctly operating board, and used to debug all 4K of

other appropriately addressed boards. The only restriction concern

ing placement of the program is that the page(s) to be tested must be

different from that page on which the program resides—hence, my

choice of page 2.

The program also assumes that you have an octal conversion

and print subroutine ("OCTOUT") which it can call. Since this is

generally a part of most monitors, it is not included here.

Operation of the program is straightforward. The program

loads the value of an address, as data, into that address. For exam

ple, address 000 contains data 000, address 001 contains 001, etc.

Then the computer compares the contents of the address with the

numerical value of the address. If they differ, the program will print

out the address and its incorrect contents. Since this method is not

infallible, those parts of the program in parentheses are utilized to

load and compare specific patterns of data in memory, if necessary.

To employ this modification, simply substitute the parts of the

program in parentheses for the existing parts. The need for the

modified program will be made clear in due course.

The Basics

Before proceeding further, a general discussion of a 4K mem

ory board is in order. These boards usually employ 2102s or a

reasonable facsimile thereof, and have the chips arranged in four

banks of eight chips each (Fig. 3-1). The particular bank chosen is a

function of a two-to-four decoder, which decodes address lines 10

and 11. Figure 3-2 is a schematic and truth table of a typical circuit.

The active output of the decoder circuit pulls down the eight pin

13s of the particular bank of 2102s being addressed, thus enabling

that particular bank.

Table 3-2 illustrates the address decoding with regard to each

bank and the associated 256 word pages therein. The particular page

in a bank is a function of the state address lines A8 and A9. Re

member, to activate a given page or address, the appropriate ad

dress pins on the chip are pulled down.

Each chip within a bank corresponds to a particular bit, 0-7.

198

D
E
B
U
G

N
E
X
T

A
G
A
I
N

C
O
N
T
I
N

D
U
M
P

0
0
2
-
0
0
0

0
0
2
-
0
0
1

0
0
2
-
0
0
2

0
0
2
0
0
3

0
0
2
0
0
4

0
0
2
-
0
0
5

0
0
2
-
0
0
6

0
0
2
-
0
0
7

0
0
2
-
0
1
0

0
0
2
-
0
1
1

0
0
2
-
0
1
2

0
0
2
-
0
1
3

0
0
2
-
0
1
4

0
0
2
-
0
1
5

0
0
2
-
0
1
6

0
0
2
-
0
1
7

0
0
2
-
0
2
0

0
0
2
-
0
2
1

0
0
2
-
0
2
2

0
0
2
-
0
2
3

0
0
2
-
0
2
4

0
0
2
-
0
2
5

0
0
2
-
0
2
6

0
0
2
-
0
2
7

0
0
2
-
0
3
0

0
0
2
-
0
3
1

0
0
2
-
0
3
2

0
0
2
-
0
3
3

0
0
2
-
0
3
4

0
0
2
-
0
3
5

0
0
2
-
0
3
6

0
0
2
-
0
3
7

6
0
2
-
0
4
0

0
0
2
-
0
4
1

0
4
6

X
X
X

0
5
6

0
0
0

0
0
0

0
0
0

1
6
5

0
5
4

3
0
2

0
0
6

0
0
2

1
7
6

2
7
5

3
0
2

0
2
7

0
0
2

0
5
4

3
0
2

0
1
3

0
0
2

3
0
3

0
0
0

0
0
2

1
1
7

3
1
5

2
3
7

0
0
0

1
1
5

3
1
5

2
3
7

0
0
0

3
0
3

0
2
0

0
0
2

M
V

(
0
0
6
)

(
Y
Y
Y
)

(
1
6
0
)

(
2
7
6
)

M
V
I
H

P
a
g
e
t
o
t
e
s
t
e
d

M
V
I
L

N
O
P
(
M
V
I

B
)

"~
"

N
O
P
(
R
A
N
D
N
U
M
)

M
O
V
M
,
L
(
M
O
V

M
,
B
)

I
N
R
L

J
N
Z

N
E
X
T

M
O
V
A
,
M

=
C
M
P
L
(
C
M
P
B
)

J
N
Z

D
U
M
P

I
N
R
L

"
~

J
N
Z

A
G
A
I
N

J
M
P

=
D
E
B
U
G

M
O
V
C
.
A

"
"

C
A
L
L

O
C
T
O
U
T

M
O
V

C
,
L

C
A
L
L

O
C
T
O
U
T

J
M
P

~
~

C
O
N
T
I
N

—

L
o
a
d
H
&

L
r
e
g
i
s
t
e
r
s

w
i
t
h

s
t
a
r
t
i
n
g
a
d
d
r
e
s
s

o
f
m
e
m
o
r
y
s
e
g
m
e
n
t

t
o

b
e
t
e
s
t
e
d

S
t
o
r
e
p
a
t
t
e
r
n
i
n
t
o

e
n
t
i
r
e
m
e
m
o
r
y
p
a
g
e

C
o
m
p
a
r
e
r
o
u
t
i
n
e

(
&
j
u
m
p
t
o
"
d
u
m
p
"

if
e
r
r
o
r
f
o
u
n
d
)

C
o
n
t
i
n
u
e
c
o
m
p
a
r
i
s
o
n
s

E
x
e
c
u
t
e
p
r
o
g
r
a
m

a
g
a
i
n

P
r
i
n
t
o
u
t
e
r
r
o
r

a
d
d
r
e
s
s

& c
o
n
t
e
n
t
s

C
o
n
t
i
n
u
e
c
o
m
p
a
r
i
s
o
n
s

T
a
b
l
e

3-
1.

M
e
m
o
i
y

Di
ag
no
st

ic
p
r
o
g
r
a
m
.

BANK 0 BANK 1

(0-1023 decimal) (1024-2047 decimal)

(0-1777 octal) (2000-3777 octal)

IC

A

IC

B

IC

C

IC

D

IC

E

IC

F

IC

G

IC

H

IC

A

IC

B

IC

C

IC

D

IC

E

IC

F

IC

G

IC

H

BANK 2 BANK 3

(2048-3071 decimal) (3072-4095 decimal)

(4000-5777 octal) (6000-7777 octal)

IC

A

IC

B

IC

C

IC

D

IC

E

IC

F

IC

G

IC

H

IC

A

IC

,B_

IC

C

IC

D

IC

E

IC

_fJ

IC

G

IC

H

Fig. 3-1. 4K memory segment of 2102s.

Case 1

Symptoms: program data loaded into pages 6 and 7 was full of

errors when dumped. Testing of pages 6 and 7 with the unmodified

program produced the results illustrated in Table 3-3. Since errors

resided in pages 6 and 7, we can localize the difficulty to bank 1 (refer

200

Ta
bl

e
3-

2.
Ad
dr
es
s
D
e
c
o
d
i
n
g
wi
th

Re
ga

rd
to

B
a
n
k
a
n
d
P
a
g
e

Se
le

ct
io

n.

A
d
d
r
e
s
s
L
i
n
e
s
-

D
e
c
i
m
a
l
W
e
i
g
h
t
-

B
a
n
k
0

B
a
n
k

1

B
a
n
k
2

B
a
n
k
3

A
1
1

2
0
4
8

A
1
1 0 1 1

A
1
0

1
0
2
4

A
1
0

0 1 0 1

A
9

5
1
2

A
8

A
7

A
6

A
5

A
4

2
5
6

1
2
8

6
4

3
2

1
6

0
—
1
0
2
3
1
0
—
p
a
g
e
s

0
-
3
8

1
0
2
4
—
2
0
4
7
1
0
—
p
a
g
e
s
4
-
7
a

2
0
4
8
—
3
0
7
1
0
—
p
a
g
e
s

1
0
-
1
3
8

3
0
7
2
—
4
0
9
5
1
0
—
p
a
g
e
s

1
4
-
1
7
8

A
3 8

A
2 4

A
1 2

A
O 1

A II

-TO BANK 0

-TO BANK I

TO BANK 2

TO BANK 3

Fig. 3-2. Typical decoder circuit (and truth table) for decoding address lines A10

and A11 to choose the appropriate bank of 2102s.

to Table 3-2). Notice that the contents of the addresses which

contain errors are augmented by 004. This points to a problem with

bit 2 (chip C) in block 1. The fact that the problem showed up only on

pages 6 and 7 seems to indicate that whenever address bit A9 was

active, chip C on bank 1 contained a 1, producing the 004. Perhaps it

was an internal short in that chip. Substitution of the identified chip

corrected the problem.

Case 2

Symptoms: interaction between pages 4 and 5; specifically,

data entered into page 4 changed some, only some, data in page 5.

Initial use of the memory diagnostic program as in case 1 indicated no

errors, although it was known that the pages were interacting. At

this point, pages 4, 5, 6 and 7 were loaded with 000 using the

modified memory diagnostic. An octal dump of these pages indicated

that all were zeroed. The next step consisted of loading the pattern

Table 3-3. Typical Readout from DEBUG.

000

001

002

003

004

005

006

007

010

011

012

013

014

015

016

017

202

8
—

4
—

5
—

6
—

2
—

1
—

1
6
-

1
5
—

1
4
-

1
3
—

H
G

F

A
O

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

C
S

1
2

D
O
7

1
2

D
0
6

E
D

C
B

1
2

D
0
5

1
2

D
0
4

1
2

D
O
3

1
2

D
0
2

1
2

D
O
1

A

1
2

D
O
0

Fi
g.

3-
3.

T
h
e

lo
gi
c
st

at
e
of

e
a
c
h
2
1
0
2

in
t
h
e
b
a
n
k

of
ei
gh
t
co
nt
ri
bu
te
s
to

t
h
e
v
a
l
u
e
of

t
h
e
d
a
t
a
w
o
r
d

at
a
g
i
v
e
n
a
d
d
r
e
s
s
.
N
o
t
e
th
at

e
a
c
h
2
1
0
2

c
o
r
r
e
s
p
o
n
d
s
t
o
o
n
e

bi
t
in
a
n
8

bi
t
w
o
r
d
.

of 144 into page 4. The memory diagnostic and octal dump confirmed

that page 4 contained all 144s. However, an octal dump of page 5

revealed that, although it had not been reloaded, it now contained

040s (i.e., bit 5 was always set). Since it is page 5, our problem

resides in bank 1 (refer to Table 3-2), and because it is 040, the

problem is associated with chip F in bank 1 (Fig. 3-3). Now, since the

error popped up on page 5 although page 4 was the one being

addressed, it would suggest that A8 on chip F in bank 1 was going

low (remember A8 and A9 determine the particular page in a bank

that is being addressed). Manual addressing of page 4 from the

display/control board and activation of the examine switch, indeed,

showed that A8 on chip F in bank 1 was low. The corresponding pins

of other chips in this bank were high. It turned out to be a case of the

pin not making contact in the socket. Removal of the chip revealed

that pin A8 had been bent underneath upon insertion. Straightening

the pin and reinserting the chip (with care) corrected the problem.

This procedure is relatively straightforward and best of all does

not require any sophisticated equipment. In fact, you already pos

sess the two most important pieces—the computer itself and in

genuity.

The program also is relatively simple as memory diagnostic

programs go. I would recommend that a number of patterns be tried

with the modified program to ensure that all possible bits and con

sequently all possible chips in a bank be tested. Embellishments such

as these could be built into the program by the software connois

seurs among us. Space doesn't permit elaborating upon other possi

ble sources of memory problems. However, the technique of isolat

ing the bank, the chip and the appropriate pins has been presented

and, hopefully, will be of value when a memory problem occurs.

Short on Memory?

Medical science tells us that only a tiny fraction of the human

brain's capacity is used during an individual's lifetime. This excess

memory capacity is unfortunately not a feature of the average home

microcomputer system, a fact which usually causes the experi

menter to seek additional brain power almost as soon as the new

micro kit or protype is finished and running. Most of the commer

cially supplied micro kits provide only minimum memory, usually

1024 bytes (IK) or less. It is in this memory that the user's applica

tion programs and language processors (such as BASIC) must re

side.

204

A typical amateur radio application for a microprocessor system

is the control of a RTTY station. The micro can be programmed to

send CQs, answer calls automatically, detect speed changes, etc.

However, it becomes immediately obvious to the operator of the

station that more memory than is supplied with most micro kits is

required to handle even the simplest functions, such as sending a list

of station equipment. For example, the single message:

CQ CQ FROM WB2ZCF-"JOHN"

takes about 33 characters, including shift functions. Taking into

account that the machine code to control the system occupies the

same memory, it becomes obvious that, when stored in memory,

even a short list of equipment, when added to other operator com

ments, rapidly eats up critical space. Think about some of those

other functions that can be controlled by a micro, and you will be

ready to consider adding memory capacity to your micro system.

There are two ways of making your micro smarter—buying a com

mercial 2K or 4K board and sliding it into your system or, home

brewing a memory system for your setup.

This is a description of the latter approach—a complete do-it-

yourself 2K memory system for a Motorola 6800 type microproces

sor, including interface and memory board. The design uses popular

(and inexpensive) 2102 static memory chips, and the interface de

sign may be modified to support other microprocessors. All parts

used in this project are readily available. I have attempted to present

in logical order the background required to understand the project,

the design criteria, pitfalls, actual construction and logic analysis and

finally, the debug techniques used in bringing up the add-on memory.

Hopefully, this will encourage those of you who need additional

memory for your systems to consider building it yourselves.

The Microprocessor's Nervous System

The Motorola M6800 microprocessor is capable of supporting

up to 65,536 bytes of random access memory. The single byte

accessed during a machine cycle is selected by 16 address lines.

Each address line may be viewed as a digit (1 or 0) in the binary

system; therefore, the unique memory address generated by the

micro is really a binary number in the range of 0-65,536 (Fig. 3-4).

The data to be read or written by the micro is transferred over eight
data lines, or the data bus. The memory is directed to read or write

by a single line, the R/W line. If the 6800 places a 1 (TTLHI) on the

R/W line, the memory sends the single byte of data (whose address

205

R
/
W

"

R
*
V

W
«
'
O
*

V
M
A

«

M
6
8
0
0
M
I
C
R
O
-
P
R
O
C
E
S
S
O
R

k
u
n
u
i
i
i
i
i
i
i
i

*'
o,

A
D
D
R
E
S
S
B
U
S

D
O

•

1
•

D
A
T
A

B
U
S

Fi
g.

3-
4.

M
6
8
0
0

co
nt

ro
l
li
ne
s
u
s
e
d
b
y
t
h
e
m
e
m
o
r
y

in
te
rf
ac
e.

R
e
a
d
/
w
r
i
t
e
li
ne

(
R
/
W
)
co

nt
ro

ls
fl

ow
of

d
a
t
a
o
n
8

bi
t
bi

di
re

ct
io

na
l
d
a
t
a
bu
s.

T
h
e

va
li

d
m
e
m
o
r
y
a
d
d
r
e
s
s

li
ne

(
V
M
A
)
,
w
h
e
n

HI
,
al
lo
ws

th
e
in
te
rf
ac
e
to

r
e
s
p
o
n
d
to

th
e
1
6

bi
t
a
d
d
r
e
s
s
o
n
th
e
a
d
d
r
e
s
s
bu

s.
E
a
c
h
a
d
d
r
e
s
s

li
ne
,
w
h
e
n

HI
,

re
pr

es
en
ts

a
p
o
w
e
r
of
t
w
o
in
t
h
e
bi

na
ry

n
u
m
b
e
r
i
n
g
s
y
s
t
e
m
.
F
o
r
e
x
a
m
p
l
e
,

if
li
ne
s
A
O
,
A
2
,
a
n
d
A
1
0
a
r
e
HI

,
t
h
e
a
d
d
r
e
s
s
se
nt

to
th

e
in

te
rf

ac
e
is
e
q
u
a
l
to

(2
°
=

1
+

2
2
=
4
+

21
0
=

1
0
2
4
)
or

1O
29

io
.

6
8
0
0

M
I
C
R
O

<
^

D
A
T
A

B
U
S

>

C
O
N
T
R
O
L

"
>

A
D
D
R
E
S
S
B
U
S

"
V
.

A
O
T
H
R
U

AI
5

^

M
E
M
O
R
Y

I
N
T
E
R
F
A
C
E

C
D
A
T
A

>

R
/
W
L
I
N
E

%

A
D
D
R
E
S
S

\
A
O
T
H
R
U
A
9

J
>

R
A
N
D
O
M

A
C
C
E
S
S

M
E
M
O
R
Y

(
R
A
M
)

(
2
0
4
8

L
O
C
A
T
I
O
N
S
)

Fi
g.

3-
5.

In
fo

rm
at

io
n
fl
ow

b
e
t
w
e
e
n
mi

cr
o,

in
te

rf
ac

e
a
n
d
m
e
m
o
r
y
.
N
o
t
e
th
at

on
ly

ad
dr

es
s
li
ne
s
A
0
-
A
9
g
o
to
m
e
m
o
r
y
,
a
s
th

e
in

te
rf

ac
e
u
s
e
s
re

ma
in

in
g

l
i
n
e
s
t
o
d
e
c
o
d
e

v
a
l
i
d
m
e
m
o
r
y
a
d
d
r
e
s
s
e
s

g
,

l
i
n
e
s
t
o
d
e
c
o
d
e

v
a
l
i
d
m
e
m
o
r
y
a
d
d
r
e
s
s
e
s
.

was presented on the 16 line address bus) to the micro over the data

bus. A 0 on the R/W line causes a memory write to occur; the data on

the data bus is written into memory. One control line, called VMA

(Valid Memory Address), is a 1 if the micro really wants to access

memory. These lines, the address, data bus, R/W and VMA, must

be used to coordinate data flow between the micro and out planned

add-on memory. The logic required to do this is called an interface.

We will build a simple interface to control our new memory (Fig.

3-5). Since all micros do not have a VMA line or its equivalent, the

design of the interface includes a method of removing the VMA

function.

interface Deisgn

The interface has three primary functions. The first and most

important function is to determine that the address on the address

bus is really intended for our memory. You may wonder how an

address could possibly be invalid until you realize that when adding a

2K memory to a system capable of addressing 65K, some means

must be employed to channel addresses to the area where memory

really exists. This process is called address decode and is a concept

common to any memory design. There are address decoding

techniques that could make our 2K add-on respond to any 2K range

of addresses within the allowable 65K, but for simplicity we will place

our memory in the range of 0-2047. The actual process of address

decode is simple in practice, requiring only a couple of packages in

my design.

Recalling that the data bus in the 6800 is bidirectional, we need

some method of making the memory correctly receive and transmit

data over a common bus when commanded by the R/W line. This,

the second feature of the interface, is accomplished by using three-

state logic. This logic has the familiar 1 and 0 TTL output levels, as

well as an open circuit state. Thus, upon command, a gate with

three-state output capability may appear to be an open circuit to any

other device on the same line. This allows us to parallel (OR-TIE)

many gates to the same bus, with only one actually driving the bus at

a given time. The design presented here uses three-state logic to

drive the data bus. On a memory read cycle, the gates driving the

bus are turned on (or enabled) by the R/W line, allowing memory

data to flow from the 2102s to the microprocessor. On a write cycle,

the gates previously enabled are driven into the open circuit mode,

allowing data to flow into the memory (Fig. 3-6). The final function of

the interface is to buffer the address, data and control lines. Most

MOS microprocessors such as the 6800 can drive only one TTL load

208

D
A
T
A

F
L
O
W

D
A
T
A

b
u
s
t
o
;

M
I
C
R
O

D
O
-

D
7
-

:
b

'
T
H
R
E
E
-
S
T
A
T
E
1

C
O
N
T
R
O
L

L
I
N
E

T
O
2
1
0
2
(
W
R
I
T
E
)

B
I
T
0

D
A
T
A
F
R
O
M

2
1
0
2
(
R
E
A
D
)

B
I
T

7
D
A
T
A

T
S
C

r
o
o C
O

Fi
g.

3-
6.

T
h
r
e
e
-
s
t
a
t
e
lo
gi
c
a
l
l
o
w
s
d
e
v
i
c
e
s
to

b
e
pa

ra
ll

el
ed

o
n
t
h
e
bi
di
re
ct
io
na
l
d
a
t
a
bu

s.
D
u
r
i
n
g
a
m
e
m
o
r
y

wr
it

e
cy
cl
e,

t
h
e
T
S
C

li
ne

is
HI

,
al

lo
wi

ng
d
a
t
a
to
p
a
s
s
f
r
o
m
t
h
e
d
a
t
a
b
u
s
t
h
r
o
u
g
h
d
e
v
i
c
e
A

in
to
m
e
m
o
r
y
.
T
h
e
B
d
e
v
i
c
e
s
a
r
e
f
o
r
c
e
d
in
to
a
n
o
p
e
n
ci

rc
ui

t
co

nd
it

io
n,

t
h
u
s
no
t
af

fe
ct
in

g
d
a
t
a
fl
ow
.
O
n

a
r
e
a
d
cy

cl
e,

a
L
O
o
n
t
h
e
T
S
C

li
ne

tu
rn

s
o
n
d
e
v
i
c
e
B,

a
l
l
o
w
i
n
g
d
a
t
a
p
a
s
s
a
g
e
f
r
o
m
m
e
m
o
r
y
to

t
h
e
d
a
t
a
b
u
s
.
D
e
v
i
c
e
A,

a
l
t
h
o
u
g
h
a
l
w
a
y
s
e
n
a
b
l
e
d
,

is
no
t

a
f
f
e
c
t
e
d
b
y
r
e
a
d
d
a
t
a
p
a
s
s
i
n
g
t
h
r
o
u
g
h

it
,
a
s
t
h
e
2
1
0
2
m
e
m
o
r
y
'
s

wr
it

e
li

ne
is

of
f
d
u
r
i
n
g
a
r
e
a
d
cy

cl
e.

per line; thus it is most important not to overload the micro. The

interface uses 7400 gates between the NAND gate as a buffer

causes the signal to be inverted, a useful characteristic in some parts

of the interface.

Pitfalls

One desirable feature of the M6800 microprocessor system can

be a possible problem when adding memory. Input and output

operations, as well as some system features, use actual memory

addresses to initiate and control special functions. For example,

micro systems using the MKBUG® monitor program (such as the

SWTP 6800) use locations from AOOOie—A07Fie for system stor

age, and some locations around 8000ie are used for I/O control.

These locations must not be overlapped by add-on memory. My

stem also restricts the use of the upper few memory locations, as

they are reserved for system use in a special read-only memory.

The point of all this is to be careful where add-on memory is located

using address decode techniques. Overlapping system locations can

and will cause difficult debugging sessions once the system is run

ning. Good digital construction practices must be used when work

ing with memory systems. No software problem is harder to find

than one caused by a hardware glitch. Noise is a problem in systems

with add-on memories, as the new memory is seldom on the same

board as the original. Liberal doses of power supply bypassing are a

must. I used 0.2 uF capacitors in parallel with 0.01 uF ones to bypass

power leads. The interface and memory boards are wire-wrapped,

but all IC power connections are soldered to the wire-wrap stakes,

using #18 bus wire. Interconnection lead length is not critical. Mine

are 9 inches between microprocessor and interface and about the

same between memory and interface.

Linking Micro and Memory

The interface is represented in Fig. 3-7. All connections bet

ween the micro, memory and interface are made using standard 14

and 16 pin wire-wrap sockets. The cables are ribbon cable with IC

header connectors used as plugs. The interface functions as follows:

Address decode is accomplished in part by keying on the A10

address line to determine if the address is in the range of O-lO23io

(Bank 0) or 1024-2047 (Bank 1). Line A10 allows us to select the

bank to be accessed. The 2102 type RAM is formatted 1024 bits by

one bit wide; thus it takes eight RAMs, each contributing a single bit,

to make up one memory bank consisting of 1024 bytes (eight bits to a

byte). It takes 10 address lines to resolve an address in the range of

210

FROM MICRO

R/W

L-JEDb—■

ICI.IC2

IC3

IC5.IC6

IC7.IC8

IC4

- 7400PIN7-6ND

14-+5

- 743OPIN7-GND
PIN 11,12,14-+5

- FAIRCHILD 34050

PIN8-6ND
I-+5

- FAIRCHILD 340097

PIN8-6ND

I6-+5

- 7441 PIN 12,7,4 GNO

5-*5

DO

MICRO D3
DATA BUS

D4

D5

► 2102 R/W

rcr &2I02 °<>w
-<]2 |C5 > 2102 DOR

IC5

IC5

IC5

DIR

D2W

D2R

D3W

D3R

D4W

D4R

D5W

D5R
IC6 "

06 ^<2 IC6 »D6R

D7

IC8.PINS.U5

Fig. 3-7. Memory interface schematic.

1024 bytes; therefore, lines A0-A9 are connected to each 2102. A

given bank of eight RAMs is enabled or selected by bringing the

enable pin (pin 13) low. The eight enable lines of each bank are in

parallel to select eight RAMs at once. Since our memory is to

respond only to addresses in the range of 0-2047io, all other addres

ses must be locked out by our address decode logic, which works as

follows: Any address outside the allowable range will have one

address line between All and A15 activated, ICl and IC2A invert

and buffer the incoming address lines and pass the resulting five
signals to IC3, a 7430 eight-input NAND gate. The gate produces a

TTL HI output if any of the eight input lines goes LO, a condition

caused by one of the inverted address lines containing an invalid (HI)

211

address. If all five of the address lines in question are LO, the output

ofthe7430isLO; this signal, calledENAB (ENABLE), will allow the

memory bank selected to respond to the memory access. Note that

the VMA lines is also connected to IC3. Recall that VMA is HI if the

micro really wants a memory access. A LO on VMA disables the

memory exactly as an invalid memory address would.

If your micro does not have a VMA line, tie IC3, pin 6, to Vcc

along with pins 11 and 12 (the unused inputs). This process satisfies

the address decode function described earlier. Now, recall that our

2K memory is actually two banks of IK, each bank having an enable

line formed by interconnecting the 2102 enable lines. We must now

select the bank desired, as well as using the ENAB signal formed by

the decode process. The key to bank selection is based on the fact

that line A10 is LO when addresses 0-1023 are referenced, and HI

when addresses 1024-2047 are referenced. This fact allows the easy

selection of Bank 0 or Bank 1, if the ENAB signal is active. IC4 is a

data decoder chip, which provides a unique LO output based upon

four input signals. For example, if input lines 10-13 contain data "LO

LO LO LO," the first of 10 output lines will be LO. If the input data is

"HI LO LO LO," the second output line will be LO; the first returns

to a HI state. The remaining input-output correspondence is not

used in this design. Since we only desire to monitor one input line

(A10), we connect it to IC4 pin 3. Then, when A10 goes LO, IC4 pin

16 goes LO, thus enabling BankO. If A10 goes HI, IC4 pin 15 goes

LO, selecting Bank 1. Our ENAB signal is fed to the second IC4

input, pin 6. If ENAB goes HI (invalid address), both of the outputs

that enable our banks go HI, effectively disabling the entire memory

system. It may be seen that the unused inputs and outputs of the

data selector IC4 could be used in more elaborate memory systems.

So far we have determined that the address presented to the

interface is valid and the correct bank has been selected. All that

remains is to control the 2102 read/write function as well as the

three-state data bus drivers. The R/W signal is buffered and in

verted by IC2B. This output is re-inverted by IC2C and fed to the

2102 read/write lines to direct data flow within the memory chips.

This signal is inverted and used to drive the three-state control lines

of IC7 and IC8, the data bus drivers. The additional inversion is

required as an active LO signal enables the bus drivers, while a HI

signal causes the 2102 chips to output data (read cycle). Finally, note

that each 2102 receives address lines A0-A9. The interface board

was wire-wrapped on a standard perfboard. The memory and inter

face could have been constructed on a single board, eliminating some

interconnections, but I chose to make the interface separate as I had

212

a 2K memory board left over from a former project. The choice is left

to the reader.

The Memory

The 2102 RAM device is an economical choice for memory

systems under 8K. Eight of the chips are required for each IK byte

of memory. When constructing^ memory board, for each IK bank,

tie address lines A0-A9, the CE lines, the R/W lines and the DATA

IN, DATA OUT lines to form five memory buses. As banks are

Bit
R/W

DOW

R

01 W

R

02 W

R

03 W

R

04 W

R

03 W

R

06 W

R

D7W

R

2102-1

BANK

2102-1

BANK

2102*1

BANK
0
BIT

I

ft/W

2102-1

BANK

b!t

Bit

2102-1

BANK

-HL

2102-1

BANK

SIGNALS FROM
INTERFACE

ADDR

BUS

TO ALL

2102'S

102 PIN t
-8 1
4

3

6

7

2

I

16

13

> 14-

AODRESS LINES
AO -A9 FROM

MICRO

ALL 21021 PIN9-6N0

10- ♦$

Fig. 3-8. 2K memory consisting of two banks of 1K each. Note that the A0-A9

address bus goes to all 16 2102-1 RAMs, as does the R/W line. Trie eight enable

pins of Bank 0 tied to BOEfrom the interface (pin 13). All enable lines from Bank 1

go to B1E. Finally, the DOW and DOR lines go to pins 11 and 12 respectively on

Bank 0, bit 0, and Bank 1, bit 0. This pattern of interconnections follows for the

remaining D-W, R pairs.

213

formed, all buses are tied except the CE bus, which is used to select

banks. Refer to Fig. 3-8 for details. The memory may be con

structed on perfboard and wire-wrapped, but be sure to provide

heavy power lines. Commercial memory boards may be used with

the home brew interface if the builder so desires. If this approach is

taken, be sure that no address decoding is done on the commercial

board, or an address conflict will occur.

Testing

Once the interface has been developed and a memory con

structed, the system may be connected to the microprocessor

board. Connect all buses as indicated in Fig. 3-9. Five volt power

(Vcc) for the interface can probably be borrowed from the micro, as

the drain is under 60 mA. However, 2K of 2102 RAM requires

upwards of 700 mA, dictating a separate supply unless the main

supply has the beef. Remember to tie all ground leads if using more

than one 5V source. In some cases it is necessary toremove existing

memory chips from the micro board if they conflict with the add-on

memory. For example, my Motorola MEK prototype board had
several 128 byte RAMs in low memory that would have conflicted,

so we popped them out and used them in another system.

After making all interconnections and checking for obvious

shorts, etc., apply power and check for smoke. If all looks good,

insert the ICs, reapply power and then attempt to read a new

location. Many 6800 systems use the Motorola MIKBUG® monitor,

Which enables the user to execute an M command to examine
memory. A random pattern should be present. Now attempt to

rewrite the location, checking for correct data. Systems with front

panel switches, such as the MITS 680, can be checked by manually

reading/writing new locations. Next, check the location following

the last one supported by the add-on (2048 in this system). It should

be zero, indicating correct address decode. Also, try locations that

are 2K multiples of the add-on, such as 4096, etc. They, too, should

be zero. If all is fine so far, load and execute a program—better yet,

write that new application! Don't get lost in all that new memory.

Problems

The most likely problem area is in the address decode logic. If

locations read/write erratically, check for address overlap with

existing memory or I/O devices. If two devices answer an access

request, an error is sure to result. Look forpatterns in errors. If a

single bit of multiple bytes is set or off continuously, check for

214

M
6
8
0
0

M
I
C
R
O
P
R
O
C
E
S
S
O
R

C
P
U

B
O
A
R
D

\

v
c
c

4

♦
5
V
D
C

6
N
D

x
"

B
I
-
D
I
R
E
C
T
I
O
N
A
L
D
A
T
A

1
^
v

B
y
?

1

A
D
D
R
E
S
S

"
\

L
I
N
E
S
A
I
0
-
A
I
5

J
>

R
/
W

V
M
A

2
K
M
E
M
O
R
Y

I
N
T
E
R
F
A
C
E

1
1

^
8

B
I
T
S

^
R
E
A
D

^

r
T
w

B
O
E

B
T
E

2
K
M
E
M
O
R
Y

\
\

♦
5
V
C
C

G
N
D

7
0
0
M
.
A
.

Fi
g.

3-
9.

S
y
s
t
e
m

i
n
t
e
r
c
o
n
n
e
c
t
i
o
n
s
.

memory board data line wiring errors. Repetitive errors are easy to

isolate due to the fact that so many elements are tied together. Don't

discount the possibility of a bad 2102. They are MOS devices,

capable of being zapped by static charges during installation. Handle

them with care. Do not attempt to use old 2102 devices without the

"-1" suffix. These are 1000 ns devices and much too slow to be used

with 6800 and 8080 systems, especially considering the propagation

delays introduced by the interface. Use 2102-1 (500 ns) devices.

After adding a couple of K to your system, applications should

suggest themselves at every turn. In order to run BASIC or other

language processors, at least 8K will be required. Hopefully, having

built the simple 2K system, you will be encouraged to tackle a larger

memory system using some of the suggested techniques.

RAM Checkout

This memory monitor is a simple assembly language program

designed to load zeros or sequential numbers into a block of memory

for testing purposes. My original version would only load 256 bytes

at a time, which made testing a new 8K board somewhat of a chore,

since it had to be run 32 times (256 x 32 = 8K). This final version will

load from 1 to 65,536 (64K) bytes of memory. That should be

enough to satisfy everyone.

SOL Operations

First, let us describe how my SOL system works so that you

can decide how the following explanation pertains to your machine.

The SOL has a program in PROM called CONSOL, which handles

the keyboard, video and other routines. I can enter data to memory

by typing "ENTER-(address)-(data)-CR," and I can dump

memory to the video screen by typing "DUMP—(start address)—

(finish address)—CR." If the difference between the start address

and the finish address is less than 256 bytes, all of the data requested

will fill the screen. If more than 256 bytes are requested, the readout

will start at the top of the screen and, when it reaches the bottom,

will scroll upward until all of the requested data has appeared.

Apparently, the same ENTER and DUMP (examine) opera

tions will work on a computer which uses front panel switches, but

they will be done at a much slower rate. Testing a memory board can

be accomplished on any machine by first manually loading data into

each memory location on the board and then dumping or examining

each location to determine that the correct information was indeed

written. My memory monitor does it much quicker (Table 3-4). I am

216

Address

C900

C902

C905

C908

C90A

C90B

C90C

C90D

C90E

C90F

C911

C912

C915

C916

C919

Table 3-4. Memory

Opcodes

OE

1 1

21

36

7E

81

23

77

IB

3E

BA

C2

BB

C2

C3

01

FF IF

00 00

00

00

OA ££

OA ££

04 CO

Monitor Listings.

MVI

LXI

LXI

MVI

MOV

ADD

INX

MOV

DCX

MVI

CMP

JNZ

CMP

JNZ

Mnemonics

C 01

D FF IF

H 00 00

M 00

A M

C

M

M A

D

A 00

D

OA C9

E

OA C9

CALL TO RESIDENT

COMMAND MODE

very much a novice when it comes to programming, so I make no

claim that this is the easiest, fastest or best way to get thejob done.

Breakdown

If you are not familiar with assembly language, you might be

interested in how the memory monitor does what it does. In fact,

let's look at it line by line. Since SOL and I talk to each other in a

number form called hexadecimal, all numbers in this program are

hexadecimal (hex for short).

The first column in Table 3-4. is headedAddress, and that tells

me where this program will be located in memory. When I tell SOL,

"EXECUTE C9</><£," it will go to memory location C9<fxpt execute

the instruction located there and then continue down the list of

instructions until told to stop.

The second column is headed Op code. These are the instruc

tions, addresses and data that the computer will use to perform its
task.

Column three is headed Mnemonic (mnemonic means some

thing that helps the memory). Mnemonics are the assembly lan

guage abbreviations for the op codes (machine language codes).

I started the program at location C9<fxj> because the SOL has IK

of onboard RAM beginning at that location. We can put it anywhere

217

Decimal

256

512

768

1024

2048

3072

4096

8192

16384

32768

65536

(IK)

(2K)

(3K)

(4K)

(8K)

(16K

(32K

(64K

Hexadecimal

FF

IFF

2FF

3FF

7FF

BFF

FFF

1FFF

) 3FFF

) 7FFF

j FFFF

Table 3-5. A decimal -to- hexadecimal

Conversion Table.

you like, but you must rewrite the twoJNZ (jump non-zero) instruc

tions. As they stand, ajump will be made to C90A (8080 address and

register pair instructions are always written with the address or data

backwards). If you wanted to load the memory monitor at location

8000, for instance, you would change C9 to 80 at each place that it

appears in the program. This is called relocating the program.

In the first line, 01 in location C901 tells the computer how you

want it to load the memory locations. 00 here would load all zeros

(erase memory), and 01 would load sequential numbers, 00, 01,

02, etc. 02 would load 00, 02, 04, etc.

The FF IF at locations C903 and C904 tells the computer how

many address locations you want to load. FF IF is actually 1FFF

(backwards), which is 8K in the hexadecimal number system (Table

3-5). If you wanted to load a 4K board, then line C905 lets the

computer know which address to start loading at. The addressing of

most memory boards is determined by setting on-board switches or

byrunning jumpers. For this test,we addressed my 8Kboard to start

at address 0000, but it could be set to start anyplace you want, and

instruction C905 should reflect this address. If you wanted to locate

this board at 6000 because you already had something at 0000,

line C905 would read 21 00 60 (address reversed as usual).

Enter the program into the memory locations you have

selected. Execute the first address, and the computer will load 00

into the starting address on the board to be tested, 01 in the next

location, 02 in the next and so on, until it has loaded as many

locations as you requested. Then it will stop.

Figure 3-10 is a simplified drawing of the internal makeup of the

8080 microprocessor. Making use of Table 3-4 and Fig. 3-10, let's

218

A
D
D
R
E
S
S

A
N
D

D
A
T
A

B
U
S
S
E
S

T
O
M
E
M
O
R
Y

a
i
/
o
d
e
v
i
c
e
s

A
C
C
U
M
U
L
A
T
O
R

(
A
R
E
G
I
S
T
E
R
)

F
L
A
G
S

P
R
O
G
R
A
M

C
O
U
N
T
E
R

B
R
E
G
I
S
T
E
R

P
A
I
R

(
B
a

C
R
E
G
I
S
T
E
R
S
)

D
R
E
G
I
S
T
E
R

P
A
I
R

(
D
a

E
R
E
G
I
S
T
E
R
S
)

H
R
E
G
I
S
T
E
R

P
A
I
R

(
H
a

L
R
E
G
I
S
T
E
R
S
)

r
o

Fi
g.

3
-
1
0
.
A

si
mp
li
fi
ed

d
r
a
w
i
n
g
of

t
h
e
8
0
8
0
.
T
h
e
r
e
g
i
s
t
e
r
s
w
h
i
c
h
m
a
k
e
u
p
t
h
e
B-

,
D-
,
a
n
d
H
-
r
e
g
i
s
t
e
r
p
a
i
r
s
c
a
n
b
e
u
s
e
d
e
i
t
h
e
r
in

p
a
i
r
s
o
r
a
s
in

di
vi

du
al

re
gi
st
er
s,

d
e
p
e
n
d
i
n
g
o
n
y
o
u
r
r
e
q
u
i
r
e
m
e
n
t
s
.
T
h
e
8
0
8
0
c
o
n
t
a
i
n
s
m
a
n
y

o
t
h
e
r
f
e
a
t
u
r
e
s
w
h
i
c
h
a
r
e
n
o
t
s
h
o
w
n

h
e
r
e
.

step through the memory monitor as the computer would and see

what happens. First, my "EXECUTIVE C900" command will load

C9(fxf> into the program counter in the 8080 and start processing

instructions from there. The program counter keeps track of which

instruction comes next in the program.

The microprocessor can always tell from the first byte of an

instruction whether it is a one-, two- or three-byte instruction. As a

start, it will fetch 0E, which is what it found at location C900, and

since k knows that 0E is a two-byte instruction, it will also fetch 01,

which is in C901. 0E (MVI C) tells the processor to take the byte

that follows 0E and load it into the C-register. The PC (program

counter) then steps to C902 and starts a new fetch which is 11 plus

FF IF (LXID FF IF). 11 says load the following two bytes into the

D-register pair (registers D and E). C9c/>5—21 00 00 (LXI H 00

00) loads 00 00 into the H-register pair (registers H and L), and

C908—36 00 (MVI M 00) tells the processor to load 00 into the

location whose address is found in the H-register pair. In other

words, you put the address where you want to start your memory

board test into the H-register pair (0000) and then tell the proces

sor to load 00 at that location.

Next, move the contents (00) of the start test location (0000)

into the A-register (accumulator) C90A—7E (MOV A M), which

means that you are about to work on it. The next instruction

C90B—81 (ADD C) will add the contents of register C to the

accumulator (00 + 01), and C90C—23 (INX M) increases the

address in the H-register pair by one. C90D—77 (MOV M A) takes

the contents of the accumulator (01) and puts them into the location

whose address is now in the H-register pair (location 0001).

C90E—IB (DCX D) subtracts one from the contents of the

D-register pair, and C90F—3E 00 (MVI A 00) puts 00 into the

accumulator.

At the start, the D-register pair contained the total number of

locations you wanted to load. After youVe gone through the program

once and subtracted one from D, check to see if you are finished.

The accumulator contains the 00 which you loaded there. C911—

BA (CMP D) compares the contents of the D-register with the

contents of the accumulator (00) and, if they are equal, sets the zero

flag. If they are not equal, C912-C2 0A C9 (JNZ 0A C9) will take

you back to C90A for another run through the program.

If they are equal (Both 00), the program counter will move to

C915—BB (CMP E) and compare the E-register, which is the lower

half of the D-register pair, to see if it is zero also. C916/C2 0A C9

(JNZ 0A) works the same as C912 and reruns the program or passes

220

0
0
0
0

0
0
1
0

0
0
2
0

0
0
3
0

0
0
4
0

0
0
5
0

0
0
6
0

0
0
7
0

0
0
8
0

0
0
9
0

0
0
A
0

O
O
B
O

O
O
C
O

O
O
D
O

O
O
E
O

O
O
F
O

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

A
O

B
O

C
O

D
O

E
O

F
O

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

A
l

B
l

C
l

D
l

E
l

F
l

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
2

A
2

B
2

C
2

D
2

E
2

F
2

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
3

A
3

B
3

C
3

D
3

E
3

F
3

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
4

A
4

B
4

C
4

D
4

E
4

F
4

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

A
5

B
5

C
5

D
5

E
5

F
5

0
6

1
6

2
6

3
6

4
6

5
6

6
6

7
6

8
6

9
6

A
6

B
6

C
6

D
6

E
6

F
6

0
7

1
7

2
7

3
7

4
7

5
7

6
7

7
7

8
7

9
7

A
7

B
7

C
7

D
7

E
7

F
7

0
8

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
8

A
8

B
8

C
8

D
8

E
8

F
8

0
9

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

9
9

A
9

B
9

C
9

D
9

E
9

F
9

O
A

1
A

2
A

3
A

4
A

5
A

6
A

7
A

8
A

9
A

A
A

B
A

C
A

D
A

E
A

F
A

O
B

I
B

2
B

3
B

4
B

5
B

6
B

7
B

8
B

9
B

A
B

B
B

C
B

D
B

E
B

F
B

O
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

A
C

B
C

C
C

D
C

E
C

F
C

O
D

I
D

2
D

3
D

4
D

5
D

6
D

7
D

8
D

9
D

A
D

B
D

C
D

D
D

E
D

F
D

O
E

I
E

2
E

3
E

4
E

5
E

6
E

7
E

8
E

9
E

A
E

B
E

C
E

D
E

E
E

F
E

O
F

I
F

2
F

3
F

4
F

5
F

6
F

7
F

8
F

9
F

A
F

B
F

C
F

D
F

E
F

F
F

!S
Fi
g.

3-
11

.
A
m
e
m
o
r
y
d
u
m
p
of

th
e

fi
rs
t
2
5
5
by

te
s
of
m
e
m
o
r
y

in
th

e
S
O
L
A
s
c
a
n
b
e
se
en
,
th
e
co
mp
ut
er

h
a
s
co

un
te

d
fr
om

4>
to
2
5
6

in
he
xa
de

ci
ma
l.

to the next instruction, depending on the condition of the zero flag.

When both registers of the D-register pair are equal to zero, then

you have loaded as many memory locations as you originally asked

for.

It is now time to exit the program. C919/C3 </>4 C<£ is a call to

the command mode in the SOL CONSOL operating system When

SOL is turned on or the reset switch is pushed, the computer enters

the command mode, puts a prompter (>)on the screen,and waits for

me to tell it what to do. This line can be ajump or call to any location

you desire and will depend on your machine's operating characteris

tics.

In order to determine how the test went, I type "DUMP ##</>#

1FFF," which covers all of the memory locations of this 8K board,

and the screen will scroll through these locations. It's must too fast

to really check individual locations, but I'm really only interested in

the last location. Since the contents of each location are the contents

of the previous location plus one, the contents of 1FFF should be FF,

if the test went well. If they aren't, then it is necessary to dump 256

byte pages one at a time until the problem area is found. With this

program, I found three 2102 pins that were bent under the IC instead

ofinserted into the sockets. Figure 3-11 is what the first 256 bytes of

memory look like after running the program.

Instruction information for the 8080 is contained in the Intel

8080 Microcomputer Systems User's Manual and the Intel 8080

Assembly Language Programming Manual. The "Intel 8080 Assem

bly Language Reference Card" is also useful. Anyone who is serious

about assembly language programming the 8080 should have all of

these.

Any program, whether it is very simple or incredibly complex,

is nothing more than a logical progression through a series ofinstruc

tions. Pick some little chore that you'd like your machine to do, break

it down into logical steps, convert those steps into assembly lan

guage instructions, and you'll be surprised and happy with the

results.

A Simple PROM Programmer

Usually when a PROM is required for a project, a schematic is

supplied along with instructions for programming, but not the con

struction of the programmer. This is a description of the one I built

for programming the 8223 PROM. The 8223 PROM is a 32 word by

8 bit memory element. I added a built-in 5 volt regulator and a low

current LED to verify the output programming and switches. The

only power needed is a regulated 12.5 volt supply or auto battery.

222

3
9
0
f
t

1
2
.
5
V
D
C

1
.
5
V

@
3
0
0
m
A

P
U
S
H
T
O

P
R
O
G
R
A
M

S
B

-
0

O
F
F
o

6
8
0
f
t

I
O
O
M
F

Fi
g.

3
-
1
2
.
8
2
2
3
P
R
O
M
p
r
o
g
r
a
m
m
e
r
s
c
h
e
m
a
t
i
c
di
ag
ra
m.

Construction

The programmer (Figs. 3-12 and 3-13) is built in a 4 foot x 6

foot x 2 foot aluminum chassis. A parts layout is given, but may be

altered to suit your own taste, depending on the enclosure used. All

wiring is point-to-point, with only one PC board used. The PC board

has a socket for the 8223 and also provides solder pads for wiring.

First, lay out the top panel. Then drill the holes for the switches

and LM309K. Drill two 7/16" holes and file to a rectangular shape for

the IC socket to fit snug. Using the PC board as a template, mark and

drill the two mounting holes. Drill a hole somewhere on the panel for

the LED and two holes on a side panel for the power connections.

Deburr all holes and cutouts. Apply lettering if desired.

Mount all the parts on the chassis with appropriate hardware,

using insulated washers where necessary. A few ground lugs will

also help. Install the resistors, capacitors and LED first, then wire

the output selector switch, using color-coded wire to avoid confu

sion. TTien wire the address and program switches, the Vcc and

ground lines. For a complete parts list, see Table 3-6.

Operation

Recheck all you wiring and then program according to the

following instructions:

• Connect programmer to a regulated 12.5 volt source.

• Set the PROGRAM-VERIFY switch to OFF.

• Insert the 8223 to be programmed in the socket, paying

attention to the location of pin 1.

• Set the ADDRESS switches to the proper word to be

programmed.

• Set the OUTPUT switch to the output to be programmed

for the corresponding word.

Table 3-6. Parts List.

1

1

1

1

1

1

1

1

2

1

PC1

LM309K

390 Ohm v2W

680 Ohm v2W

LED

.2 uF disc

10uF16V

100uF6V

Chassis RS # 270-245

Banana jacks

16 pin DIP socket

Printed Circuit RS # 276-024

S1-S5SPDTRS #275-326

S6

S7

S8

8-position rotary or thumbwheel

DPDT Neutral Center RS #275-1545

SPST Momentary Contact push-button

224

1
3
/
8

8
2
2
3
P
R
O
M
P
R
O
G
R
A
M
M
E
R

v
3
/
1
6
0

5
/
3
2
D

-
D
I
M
E
N
S
I
O
N
S
I
N
I
N
C
H
E
S
-

O
U
T

L
M
3
0
9
K

3
/
I
6
D

I
N

•
-
9
/
I
6
—
H

8
2
2
3

V
E
R
I
F
Y

1
/
8
0

A
P
P
R
O
X

L
O
C
A
T
I
O
N

(
S
E
E
T
E
X
T
)

-
1
3
/
1
6
-

L
L
E
D

P
U
S
H
T
O

P
R
O
G
R
A
M

(\
X
/
7
/
3
2
D

-
I
1
3
/
1
6
-

O
U
T
P
U
T

"
I
*

A
4

I
/
4
D
/
T
N

■o
'

vt
/

—
I

A
3

A
2

A
l

A
O

-
1
/
2
-

A
D
D
R
E
S
S

P
R
O
G
R
A
M

O
F
F

|

V
E
R
I
F
Y

C
U
T
O
U
T
F
O
R

E
E
C
O
S
W
I
T
C
H

D
E
C
I
M
A
L

T
H
U
M
B
W
H
E
E
L

3
/
4

i
2
9
/
3
2
-

3
1
/
3
2

Fi
g.

3
-
1
3
.
P
a
r
t
s
l
a
y
o
u
t
of

t
o
p
p
a
n
e
l
w
i
t
h
s
u
g
g
e
s
t
e
d

la
be
li
ng
.
H
o
l
e

fo
r
L
E
D
s
h
o
u
l
d
e
n
s
u
r
e

ti
gh

t
pr

es
s-

fi
t.

• Set the PROGRAM-VERIFY switch to PROGRAM.

• Momentarily depress the PUSH-TO-PROGRAM switch to

program a logic 1. (Do not exceed one second.)

• Set the PROGRAM-VERIFY switch to VERIFY. The LED

will light indicating a logic 1 has been programmed. Set

switch to OFF.

• Repeat steps 4 through 8 to program the rest of the chip.

Only logic Is need to be programmed as the chip comes with all

outputs at a logic 0. Also, by using the V E R I F Y position,

pre-programmed chips may be tested and a truth table made up.

Memory Chips

Data processing systems have revolutionized our world, allow

ing vast amounts of information to be stored, exchanged, updated

and utilized in ways undreamed of a few years ago. A chain of

department stores can be tied together, for example, by a data

network making current inventory, personnel and credit information

instantly available at widely separated locations; a railroad can con

trol activity at its switchyard from a control center hundreds of miles

distant; switching functions within a telephone company office can be

accomplished rapidly and reliably in accordance with stored program

instructions. The information involved in each of these examples is

different, but the underlying processing principles are the same.

A digital computer or data processor of any type is basically a

stored-program machine, in which a memory facility holds a set of

operating instructions—the system program. Information is put into

a digital format and fed into the machine, which retains it in a data

memory. The instructions in the program memory, which are also in

digital form, tell the processor what problem is to be solved, or

function performed, related to the input data. When the operations

demanded by the program memoryhave been completed, the data is

fed out to be utilized in some manner. In practice, program instruc

tions are often stored within the same memory facility as the data; in

this way, the program can also be changed if desired.

Despite surface differences, the ways in which memory

facilities receive, hold, and feed out information are all based on

either sequential or random access principles.

Sequential Memories

The sequential, or serial, memory method requires that the

data bits comprising the information be arranged in a particular

order. Data stored in this manner—including both programmed

226

B
I
T

D
I
G
I
T

5
4

3
2

4
(
O

D
I
R
E
C
T
I
O
N
O
F
T
A
P
E
M
O
V
E
M
E
N
T
-

•
=
H
O
L
E

O
=
N
0
H
O
L
E

S
E
N
S
I
N
G

D
E
V
I
C
E

D
I
G
I
T

5
4

3
2

B
I
T

I
_
n
_
r
u
T
_
n
_

n
n

n
n
*

n
n

n
*

n
n

_T
L

E
L
E
C
T
R
O
N
I
C
P
U
L
S
E
S
R
E
S
U
L
T
I
N
G
F
R
O
M

P
A
P
E
R
T
A
P
E
H
O
L
E
P
A
T
T
E
R
N
S
.

io
Fi
g.

3-
14

.
Pa
pe
r
ta
pe

is
a
fo
rm

of
se
qu
en
ti
al

m
e
m
o
r
y

st
or

ag
e,

in
th
at

th
e

bi
ts

id
en

ti
fy

in
g
a
gi
ve
n

di
gi
t
ca
n
on

ly
be

re
tr

ie
ve

d
du

ri
ng

th
ei
r
al

lo
tt

ed
!ij

se
ns

in
g
ti

me
,
wh

ic
h
ma
y
ca
us
e
de
la
y

in
fi
nd
in
g
de
si
re
d
da
ta
.

instructions and input information—is retrieved strictly in accor

dance with its position in a time sequence.

A simple example of sequential memory storage is paper tape,

which uses the presence or absence ofholes to indicate the condition

of a data bit; the combined states of several bits identify a particular

digit (Fig. 3-14). The tape is moved through a sensing device to

convert the hole patterns into a series of pulses for electronic

processing. Each piece of information is retrieved as it passes the

sensor. Another form of sequential memory storage is magnetic

tape, which stores information as magnetic flux variations corres

ponding to the Is and Os of digital data.

Sequential access memory system, including punched cards

and magnetic disks as well as tapes, have been widely used in the

area of mass computer memories. They typically contain program

instructions and must be physically introduced into the processor

system—threaded through a sensing device, for example—so that

input data can be operated upon. They may also be used to retain the

data for future processing. These devices provide a permanent

storage capability since the cards, disks and tapes can be removed

and filed for repeated use, and they have non-destructive readouts

(i.e., data does not have to be re-entered every time it is used);

however, they have some shortcomings which limit their usefulness

in high speed memory applications.

For example, sequential access can be a relatively slow process

because a large amount of irrelevant data may have to be scanned

before the desired bits are found. This delay may be from mil

liseconds to minutes, which is much too great for many ofthe uses to

which modern data processing equipment is put. Additionally, these

sequential mass memory systems require a mechanism to move the

data-carrying medium past the sensor. This device is of necessity

completely mechanical, and is subject to the adjustment and mainte

nance considerations which apply to all such devices.

Temporary Memories

Cards, tapes and disks continue to play an important role as high

density, longterm mass memory storage elements in such applica

tions as personnel record maintenance, inventory control and reten

tion of performance data for comparison with future achievements.

For low capacity, temporary memory storage, however, struc

tures composed of semiconductor devices have become dominant in

recent years. Temporary data storage facilities are used in such

areas as office equipment (calculators, etc.) and immediate-use or

228

D
A
T
A

I
N
O
-

C
L
O
C
K

O
-

S
H
I
F
T
R
E
G
I
S
T
E
R

C
E
L
L

I
C
E
L
L
2

t

C
E
L
L
3

C
E
L
L
4

C
E
L
L
5

~
|

.
D
A
T
A

O
U
T

m
e
m
o
i
y
s
y
s
t
e
m
s
.

^

working memories wherein a data processing device can hold the

data with which it is dealing at any given time. It is not Uncommon for

a data processing system to use tapes and similar elements as

permanent, high volume program storage facilities and semiconduc

tor structures for the working memories in which the stored data is

operated upon.

Temporary memories are also widely used in data processing

terminals, which serve as remote input/output units for a large

central computer and may be in any number of forms, from a simple

typewriter keyboard to a small computer. Terminals provide a
means of encoding data for manipulation by a central computer, and

decoding it for use by a human operator.

Interconnection of central computer and remote terminal is

commonly made over telephone lines through an interface unit called

a modem, or data set. The data set may also contain a temporary

memory facility which allows it to hold data and either condition it for

transmission over the lines or prepare received data for application

to the processor.

The semiconductor devices used in temporary memory struc

tures are typically arranged as groups of individual units called

memory cells, each of which stores one bit of information as either a

logic 1 or logic 0. A cell may consist of as little as one transistor-

capacitor combination, or it may be a complex arrangement of

several components. But, whatever its composition, it has at least

two states that can represent digital data bits.

Shift Registers

A shift register is a device for the temporary storage of digital

information. When a shift, or clock, pulse is applied, the register

accepts new data and moves every stored bit one step toward the

output. Figure 3-15 shows an example of a semiconductor shift

register containing five memory cells, each of which is a solid state

reset-set (R-S) flip flop circuit. Data applied to the register input in a

digital form is stored and shifted from cell to cell in accordance with

the clock cycle rate. A logic 1 on the S input of cell 1, for example, will

set the flip flop to the 1, or "on," state if a clock pulse is present at

input C, thus storing the digit. On the next clock pulse, the stored bit

is shifted out of cell 1 to set the second cell to the 1 state, and a new

digit is fixed in the first cell. This procedure continues through the

register, with the output of the final cell being shifted out for data

processing. The clock frequency controls the rate at which the shift

register stores and feeds out data bits, with each bit being delayed

between input and output by as many clock cycles as there are cells

230

in the register. Since the storage and retrieval are done on a first-in,

first-out basis, the shift register is a sequential memory storage
device.

Digital data can also be handled by a random access process.

This does not mean, of course, that no orderly procedure is in

volved. It means, rather, that information can be stored in a particu

lar memory cell, or location, and retrieved without regard for any
other location.

Random Access Memory Systems

A random access memory (RAM) can be defined as a structure
in which any data bit can be stored (written) or retrieved (read out) in
any order.

One of the most basic ways to create a memory cell is through

the use of the bistable multivibrator, or flip flop. As shown in Fig.

3-16, such a memory cell may consist of only two transistors, two

resistors and a power source. In this cell, one or the other of the

transistors is always conducting, holding the other one off. When an

external signal forces the off transistor into conduction, the initially

on transistor turns off and remains in this condition until another

external signal resets it. The flip flop, therefore, has two stable

states which can be used to store information in the form of logic Is
and Os.

A RAM is esentially a matrix of such memory cells, with each
cell identified by a unique code, or address. The data processing

VOLTAGE
SOURCE

INPUTo i \ . y 4 oQUTPUT

Fig. 3-16. The bistable multivibrator, or flip flop, has two stable states, making it
an ideal digital data memory storage ceil.

231

equipment can retrieve a bit of information by addressing the proper

location. Because ofthe matrix structure, the time required to locate

any given bit is approximately the same as that required to locate any

other bit. For example, in Fig. 3-17 the digit stored in cell 1, at

location Al, could be available at the data output in almost exactly the

same time as the bit in cell 16, location D4. This rapid access to

information makes the RAM ideal for application as a temporary

storage facility.

Random access memory structures are of two basic types:

read/write and read only. A read/write RAM is programmable; that

is, data can be entered into, changed, and removed from the mem

ory at any time. A read only memory (ROM), however, has certain

data patterns fixed into it, usually during the manufacturing process.

In such a structure, information can be read out—it will always

perform the same function—but the stored program does not

change. Because the data pattern is fixed, a ROM retains its prog

ram regardless of circuit power considerations; that is, it is a non

volatile memory device. A read/write memory, however, needs a

constant source of power to remain in operation. If power is re

moved, the semiconductors stop conducting and the stored informa

tion is lost, so the read/write RAM is considered to be a volatile

device.

Although it is not technically accurate to do so, common usage

has led read/write memories to be referred to simply as RAMSs,

while read only structures—which are, in reality, a type of RAM—

are designated Rms.

Bipolar and Unipolar Transistors

The two most widely used devices in memory matrix design

today are the bipolar and unipolar, or field effect, transistor. Each

can be easily realized as an integrated circuit (IC) component, and

they are readily adaptable to virtually any circuit configuration.

Essentially, a bipolar transistor is a semiconductor device

whose conductive properties depend upon both majority and minor

ity carriers; that is, current flows in a bipolar transistor because of

the simultaneous movement of both positive and negative charges.

Negative charges predominate in n-type semiconductor material

because there is a surplus of free electrons within the material's

atomic structure; p-type material, however, has a shortage of free

electrons. The regions in which the electrons would normally exist

act as positive, mass-bearing charges called holes; p-type material

thus maintains an excess of positive charge carriers. The common

232

Fig. 3-17. A random access memory (RAM) is a matrix of memory cells, any of

which can be accessed without regard for any other cell.

transistor is a general type of bipolar device; since its current flows

due to hole and electron movement. Figure 3-18A shows the normal

flow pattern within an NPN structure. Figure 3-18B shows a bipolar

NPN structure as an integrated circuit. The forward-biased

emitter-base junction allows electrons to be injected by the emitter

into the base region. Within the base, the greater part of the current

flow is caused by holes combining with the excess electrons. The

reverse bias of the collector-base junction allows electrons to pass

into the collector region. Because there are two n-type regions,

electrons are the majority carriers, although the simultaneous action

of the minority carrier holes is indispensable.

The field effect transistor (FET) is a unipolar device, in that its

current flow is the result of the movement of only one type of carrier.

In what is called the p-channel FET, holes are the majority carriers,

while the carriers in an n-channel FET are electrons. Figure 3-18C

shows a p-channel FET structure operating in the enhancement

mode, which is the most common operating mode for FETs. In this

mode, there is no conduction within the device when the gate

233

voltage is zero. The other mode of operation is called depletion,

wherein the semiconductor device is always conducting and requires

a proper gate-to-source voltage to turn off.

When the gate in Fig. 3-18C is made negative with respect to

the source, it creates an electrostatic field which attracts holes from

the n-type semiconductor material toward the area directly below

the gate dielectric material. Initially, this n-type area has a surplus of

electrons, but as the holes are drawn into it, the electrons are

neutralized. At some gate voltage, the holes become dominant and a

current-carrying channel is produced between source and drain in

which holes are the majority carriers. Because the gate is electrically

isolated from the rest of the structure by the dielectric material,

there is no current flow into it. The channel, which allows current to

flow between source and drain, is created and maintained by the

electrostatic field.

The need to provide more electronic function in increasingly

small areas has resulted in a great variety of miniaturized circuits.

Bipolar transistors, for example, can be realized as discrete items,

such as those seen in various entertainment products. In data pro

cessing applications, however, the large number of components

required to produce a memory matrix makes the use of such bulky

devices impractical. A circuit board with several hundred discrete

transistors mounted on it, which is what a memory matrix would

require, would be too unwieldy to be of any real use.

Bipolar Transistor RAMs

Integrated circuit techniques allow quantities of circuit ele

ments to be realized in a small space. These techniques have been

used to produce bipolar transistor memories of various mic

rominiaturized sizes and densities.

The basic storage element in these matrices is the bistable flip

flop, which appears in many circuit variations to meet different

application requirements.

A bipolar RAM cell which has been widely used is the

transistor-transistor-logic (TTL) type, exemplified by the multiple-

emitter circuit (Fig. 3-19). In this case, the data processor applies an

address code to a decoding circuit. The decoded address raises the

voltage on the correct word select line (places it at a logic 1 level),

preparing the cell for the read or write function. A logic 1 bit can be

written into the cell, for example, by placing the write enable line at a

low voltage (logic 0) level while the data bit input is logic 1. This

caused the bit line to be low, turning Ql on and Q2 off, a state which

represents a logic 1 within the cell. Once the write function is

234

E
L
E
C
T
R
O
N
S

N
-
T
Y
P
E
E
M
I
T
T
E
R

/
\

H
O
L
E
S

P
-
T
Y
P
E
B
A
S
E

E
L
E
C
T
R
O
N
S

N
-
T
Y
P
E
C
O
L
L
E
C
T
O
R

B

i
•

N
-
T
Y
P
E
E
M
I
T
T
E
R

|

P
-
T
Y
P
E

N
-
T
Y
P
E

B
A
S
E

C
O
L
L
E
C
T
O
R

r

G
A
T
E

S
O
U
R
C
E

P
-
T
Y
P
E
M
A
T
E
R
I
A
L

L
D
I
E
L
E
C
T
R
I
C

M
A
T
E
R
I
A
L

r
^

D
R
A
I
N

P
-
T
Y
P
E
M
A
T
E
R
I
A
L

I

N
-
T
Y
P
E
M
A
T
E
R
I
A
L

C
O
N
D
U
C
T
I
N
G
C
H
A
N
N
E
L

Fi
g.

3
-
1
8
.

N
P
N

st
ru

ct
ur

e;
(C

)
c
o
n
d
u
c
t
i
n
g
ch
an
ne
l.

complete, the address changes, the word select line returns to a

logic 0 state and Ql remains on. To read out the stored digit, the

address raises the word select line level and the write enable line and

the write enable line is held high (logic 1), allowing read current

representing the value of the cell's contents to flow into the approp

riate sense amplifier for output to the data processor. Because the

read process does not change the state of the flip flop, the stored

information is not lost and the cell is considered to have a nondes

tructive readout capability.

The 2-word, 2-bits-per-word memory shown in Fig. 3-19 is, of

course, limited in its application. The same addressing, reading and
writing functions, however, are performed in bipolar RAMs contain

ing several times the number of cells. A typical example of expanded
capacity is a single integrated circuit capable of storing 16 words of4
bits each, for a total of 64 bits on one tiny silicon chip. GTE Lenkurt

uses nine such chips in both its 262A and 262B data sets. The bipolar
RAMs comprise a data memory, in which input data is held to be

operated upon. Because of the read/write capabilities of the RAMs,
the data being processed can constantly be updated and changed.

Major considerations in memory design include the speed with

which a cell can be made to change state (access time) and the

amount of power dissipated by the cell's components.

Operating in a saturation mode in which the on transistor

constantly conducts the maximum possible current, the TTL-type

memory cell requires some amount of time to drive the transistor

out of saturation before a change of state can occur. This delay is

only on the order of nanoseconds, but is enough to concern circuit

designers. In addition, the saturation mode consumes relatively
large amounts of power. Two of the more successful configurations

developed to overcome these disadvantages are the diode coupled

and emitter-coupled logic (ECL) cells.

Diode Coupled RAMs

Two gating diodes are used to control conduction in a diode

coupled cell (Fig. 3-20). In integrated circuits, these diodes are

frequently hot-electron, or Schottky barrier, devices, which become

forward-biased at lower voltages than conventional diodes.

If the state of a cell must be changed to store a bit, the address

decoder causes the voltage on the word select line to be forced low,

while the voltage is raised on the bit line associated with the transis

tor to be turned off. Referring to Fig. 3-20, in which Q2 is hypotheti-

cally to be turned off, raising the bit line B voltage and dropping the

word select line (effectively making it more negative) draws addi-

.236

BIT I

VOLTAGE-
SOURCE

ADDRESS __

INFORMATION

BIT 2

t

WRITE
ENABLE
LINE

DATA

IN

WORD I SELECT LINE

CELL 3

4—-t
WORD 2 SELECT LINE

SENSE
AMPLIFIER

DATA
BIT OUT

CELL 2

CELL 4

i r

.WORD

FIXED
.REFER
ENCE

VOLTAGE

.WORD

DATA

IN

Fig. 3-19. A 2-word, 2-bits-per-word memory array utilizing multi-emitter bipolar
transistor structures.

tional current through R4, increasing the base voltage on Ql to the

point at which it begins conducting. The cross-coupling of the trans

istors then causes Q2 to turn off, thus effecting the cell's change of

state.

Reading the stored digit out of a diode coupled cell also requires

that the word select line be forced low, but in this case there is no

voltage increase on either of the bit lines. The combined effects of

the lowered word select line and a bias network cause the diode

associated with the on transistor to be forward-biased, causing the

diode to conduct. Since the diode associated with the offtransistor is

reverse-biased, a differential voltage develops between the bit lines.

A sensing circuit determines the cell's logic state from this voltage.

237

Read current in a diode coupled cell is greater than standby

current, which flows when the cell is storing a bit without being

addressed, but is substantially lower than write current. Because of

this, the voltage developed across the load resistors during the read

operation is not great enough to change the cell's state and the

readout is a nondestructive process.

Since standby current is lower than read current and is present

a greater per cent of the time, overall power consumption in a diode

coupled cell is lower than that of a TTL device.

ECL RAMs

The structure of emitter-coupled logic (ECL) memory cells

closely resembles that of TTL cells, but biasing techniques are used

to keep the transistors out of saturation. This allows the ECL

storage element to change state very rapidly. The greatest advan

tage of ECL over other semiconductor memory configurations is

that it has the shortest access time of all. Reading and writing

processes are accomplished in essentially the same manner as for

TTL, but at a greater speed. Because it constantly draws high

current, however, an ECL memory cell has even higher power

consumption than TTL, a fact which does impair its usefulness in

certain applications.

MOS Technology

One of the major objectives in semiconductor memory design

has been to incorporate as much capacity as possible in the smallest

area. The greatest size reductions have been achieved with metal

oxide-silicon (MOS) techniques, which produce field effect transis

tor (FET) structures that are considerably more compact than the

bipolar integrated circuits (ICs) previously discussed.

An MOS FET is formed by depositing an insulating metal

oxide—most often silicon dioxide—on a chip of silicon. Etching

processes then remove the oxide from selected areas of the chip,

exposing the substrate at source and drain locations while leaving

the gate region insulated. Further processing establishes n- and

p-type areas within the substrate.

The size reduction possible with MOS techniques allows a

much denser memory array to be produced within a given space than

is possible with vipolar devices; there are also sbustantially lower

power requirements and reduced packaging costs.

Storage cells composed of MOS FETs may be of either a static

or dynamic nature. A static cell retains its stored data as long as

238

B
I
T
L
I
N
E
A

I I

-f
cF
-

A
D
D
R
E
S
S

C
O
U
N
T
E
R

V
O
L
T
A
G
E

S
O
U
R
C
E

B
I
A
S

N
E
T
W
O
R
K

B
I
T
L
I
N
E
B

I I

■
w
-

W
O
R
D
S
E
L
E
C
T

L
I
N
E

S
E
N
S
I
N
G

C
I
R
C
U
I
T

D
A
T
A

■
B
I
T

O
U
T

Fi
g.

3-
20

.
A

d
i
o
d
e
c
o
u
p
l
e
d
m
e
m
o
r
y

ce
ll

u
s
e
s
ga
ti
ng

d
i
o
d
e
s
to

co
nt
ro
l
c
o
n
d
u
c
t
i
o
n
a
n
d
r
e
d
u
c
e
p
o
w
e
r
c
o
n
s
u
m
p
t
i
o
n
.

power is supplied to the circuit. A dynamic cell depends upon

capacitive charge storage to hold its data, and must receive a refresh

input to counteract the effects of leakage.

Static MOS RAMs

The basic static MOS RAM cell is a bistable multivibrator (Fig.

3-21) closely resembling the bipolar flip flop used in TTL memories.

In an MOS flip flop, however, transistors serve not only as

crosscoupled inverters (Q3 and Q4), but also as load resistances (Ql

and Q2). Electrical isolation of the FET gate results in a very high

input resistance which can be controlled by the gate voltage. A

large-value resistor can thus be produced by an FET in a relatively

small space compared to a conventional resistor.

Since only one of the cross-coupled inverters conducts at any

given time, the cell has two stable states which can be used to store

information in the form of logic Is and Os. The state of the cell is

determined by external address and data signals. The cell's state

remains constant unless changed by an external signal, so no refresh

action is required and the circuitry needed to support the operation

to support the operation of the cell is simplified.

A static MOS RAM storage unit, however, contains a minimum

offour transistors, so it occupies a considerable amount of space on a

silicon chip and consumes a relatively large amount of power. Be

cause of these disadvantages, static devices have been largely re

placed by dynamic MOS RAMs.

Dynamic MOS RAMs

The basic storage element in a dynamic MOS RAM cell is a

capacitor, which holds and releases a stored charge in response to

read and write commands. While the capacitor could be an external

device, it is much more common for dynamic RAMs to utilize the

capacitance existing between gate and source of the MOS FET

itself. This capacitance is due to the isolation of the gate from the

rest of the structure by a dielectric material. Charging the gate-

source capacitance sufficiently to turn the transistor on represents a

logic 1 state in most applications, while a lower charge or no charge

at all serves as a logic 0.

Inevitably, as with all capacitive devices, the charge stored in

the gate-source region drains off due to leakage current. If the

charge is allowed to deteriorate too much, the data bit is lost, so

some means must be provided to periodically restore, or refresh,

the charge; a common requirement is that every cell in a memory

matrix be refreshed every 2 milliseconds. Circuits to accomplish this

240

VOLTAGE

SOURCE

DATAo- -oDATA

Fig. 3-21. The heart of the static MOS RAM storage cell is the bistable flip flop
composed entirely of field effect transistors (FETs). The logic level at one
terminal is always the complement of that at the other.

are included in dynamic RAM designs, as are address decoding
circuits.

The operation of a typical dynamic MOS RAM cell can be
illustrated with the 3 transistor cell shown in Fig. 3-22. In this case,
information is stored as a charge in the gate-source capacitance (Cg)

of transistor Q2. To write a data bit into this cell, an address decoder
produces a write select signal, activating transistor Ql and allowing

data on the write data line to be transferred to the storage element.

Depending upon the state of the data input, Cg either charges or is

discharged. When the write select signal is removed at the end of the

write cycle, the bit is held in the cell.

At the beginning of a read cycle, both the read and write data

lines are preset to some voltage. When the address decoder pro

duces a read select signal, Q3 is ready to begin conducting. If the

charge on Cg is sufficient (logic 1), Q2 turns on and current flows

through Q2 and Q3, reducing the voltage on the read data line. With

no charge on the capacitance, Q2 and Q3 remain off and the read data

line stays at its preset level. Because of the gate isolation, Cg is in the

same condition (charged or discharged) at the end of the read cycle

as at the beginning, making the read process nondestructive. An

output amplifier senses the state of the read data line and determines

241

what cell condition would produce it (a low-level line generally

indicates a stored logic 1) for application to the data processor.

Refresh

Refresh of the stored digit in Fig. 3-22 is accomplished through

a clocked amplifier connected between the read and write data lines.

Control circuitry provides the timing necessary to keep the refresh

cycle separate from the read and write operations.

The refresh process involves reading out the stored digit and

writing it back into the cell. To do this, both data lines are preset at

the beginning of the refresh cycle. A read select signal is then

produced, transferring the bit to the read data line in the same

manner as the normal read operation. The refresh amplifier inverts

the condition of the read data line and applies it to the write data line.

A write select signal then replaces the read signal and the data

present on the write data line is entered into the memory. If, for

example, a logic 1 (maximum charge) is stored on Cg, the read data

line is forced low (logic 0) when the read select signal forces Q2 and
Q3 into conduction. The refresh amplifier inverts this and applies

logic 1 to the write data line; the presence of the write select signal
causes this data to be written into the cell as a refreshed bit. With no
charge (logic 0) on Cg, this sequence is repeated, with a logic 0

appearing on the write data line to ensure that the capacitance is not

charged by stray circuit currents.

In Fig. 3-22, timing from the control circuitry allows a single

amplifier to serve an entire column of cells. One alternative config
uration uses a common read/write data line. This lets the cell form a

loop within itself and thus eliminates refresh amplifiers.

ROMs

A read only memory (ROM) is a data storage facility into which

information is normally written only once. After this entry, a ROM

always produces the same output when addressed.

The difference between the read/write RAM and the ROM can

perhaps be best illustrated with the example of the pocket calculator.

In almost all calculator designs, a RAM matrix serves as a working,

or data, memory and ROMs are used for input/output interface,

timing control and program storage (Fig. 3-23).

Each key on the calculator keyboard is identified by a unique

binary number. All of these numbers are permanently fixed in the

ROM encoder so that, when a key is pressed, the corresponding

binary number appears as the encoder output. If a digit key is

242

s

T
O

O
T
H
E
R

C
E
L
L
S

W
R
I
T
E

D
A
T
A

L
I
N
E

A
O
O
R
E
S
S
-

T
O

O
T
H
E
R

C
E
L
L
S

R
E
A
D

D
A
T
A

L
I
N
E

R
E
F
R
E
S
H

A
M
P
L
I
F
I
E
R

R
E
A
D

S
E
L
E
C
T
-

L
I
N
E

T
O

-
O
T
H
E
R

C
E
L
L
S

I
W
R
I
T
E

■
J
—
S
E
L
E
C
T
-

-
J

L
I
N
E

T
O

•
O
T
H
E
R

C
E
L
L
S

O
U
T
P
U
T

A
M
P
L
I
F
I
E
R

D
A
T
A

B
I
T

O
U
T

C
O
N
T
R
O
L

Fi
g.

3-
22

.
A
dy

na
mi

c
M
O
S
R
A
M

ce
ll

st
or

es
da

ta
in

th
e
ga
te
-s
ou
rc
e
ca
pa
ci
ta
nc
e
of

o
n
e

of
it

s
tr
an
si
st
or
s.

pressed, the bits comprising the number are written into the RAM

data store. Function key (addition, subtraction, etc.) numbers are

applied to the ROM program store as addresses. In the program

store are contained instructions for each function. When an address

is presented, the proper instructions are read out of the ROM,

leading to performance of the desired operation upon the data held in

the RAM. When the function has been completed, the result is read

out and applied to the decoder, which puts it into a form suitable for

display.

The basic ROM structure is a matrix of elements, each of which

is accessed by a random address code, allowing approximately equal

access time to all bits. The simplest ROM structure is a network of

diodes wherein the presence or absence of a diode determines the

logic state of a particular location. Such a network is shown in Fig.

3-24. The row address decoder raises the voltage on the appropriate

word line to a high positive level, forward-biasing the diodes at

tached to that line. When the diodes begin conducting, they force

their associated bit lines to a high (logic 1) level, while bit lines not

connected to diodes remain low (logic 0). Output amplifiers sense

the state of each line and present the bits to the data processor's

other circuitry.

For example, if the row address decoder raises the word line 1

level, diodes Dl, D2, and D3 conduct, raising bit lines 1, 2 and 4. In

this case, the matrix output would be the binary number 1101. The

next address might raise word line 4, in which case the output would

be 0110. In some applications, column (bit line) addressing is added

to select fewer than the maximum possible bit outputs.

ROM matrices are also formed with bipolar and MOS devices.

In the most common configurations, the presence or absence of

conductors establishes logic states.

Figure 3-25 shows a ROM matrix utilizing multiple-emitter

bipolar transistors. In this case, the collectors are used as row

enabling contacts, replacing the word lines, and emitter contacts are

omitted from selected locations to set logic levels. When the row

address decoder raises the voltage on the appropriate collector to a

sufficiently high level, the transistor segments with emitter contacts

begin conducting. For example, if Q2 is selected, the matrix output

is 1001 (the level of columns 1 and 4 raised by conduction, 2 and 3

remaining low). In Fig. 3-25, column address and data output decod

ing selects two of the four bits for application to the processor.

In Fig. 3-^26, a ROM matrix composed of static MOS FET

devices is shown. Logic states are determined by the presence or

absence of gates within the transistor structures. Reading this

244

K
E
Y
B
O
A
R
D

R
O
M

I
N
P
U
T

E
N
C
O
D
E
R

R
O
M

R
A
M

D
A
T
A

S
T
O
R
E

■
(
A
M

S
T
O
R
E

R
O
M

O
P
E
R
A
T
I
O
I
S

C
O
N
T
R
O
L

R
O
M

O
U
T
P
U
T

D
E
C
O
D
E
R

D
I
S
P
L
A
Y

01
Fi
g.

3-
23

.
A

p
o
c
k
e
t
ca

lc
ul

at
or

ty
pi

ca
ll

y
ut

il
iz

es
b
o
t
h
R
A
M
a
n
d
R
O
M

fa
ci
li
ti
es

to
p
r
o
c
e
s
s

in
pu

t
da
ta
.

s

A
D
D
R
E
S
S

R
O
W

A
D
D
R
E
S
S

D
E
C
O
D
E
R

B
I
A
S
P
O
W
E
R

S
U
P
P
L
Y

x D4
>^

D
9

B
I
T

L
I
N
E

I

D
3
\

D
I
O

B
I
T

B
I
T

B
I
T

L
I
N
E
2

L
I
N
E
3

L
I
N
E
4

W
O
R
D

L
I
N
E

I

W
O
R
D

L
I
N
E
2

W
O
R
D

L
I
N
E
3

W
O
R
D

L
I
N
E
4

Fi
g.

3
-
2
4
.
A

d
i
o
d
e
n
e
t
w
o
r
k
wi

th
r
a
n
d
o
m
a
c
c
e
s
s
a
d
d
r
e
s
s
i
n
g

is
t
h
e
s
i
m
p
l
e
s
t
t
y
p
e
of

s
e
m
i
c
o
n
d
u
c
t
o
r
R
O
M
.

A
D
D
R
E
S
S
-

♦
V
C

-
g

Fi
g.

3-
25
.
Bi
po
la
r
r
e
a
d
on

ly
m
e
m
o
r
y

ma
tr
ix
.

\ \

C
O
L
U
M
N
A
D
D
R
E
S
S
8

D
A
T
A
O
U
T
P
U
T

D
E
C
O
D
E
R

1
D
A
T
A

B
I
T
O
U
T

1
D
A
T
A

B
I
T
O
U
T

0
1

0
2

0
3

0
4

memory is accomplished in the same manner as diode and bipolar

ROMs, except that the bit lines are driven low (to ground) when the

FETs conduct.

Programmable ROMs

Semiconductor memories are almost universally formed on

minute silicon chips capable of holding large numbers of integrated

circuit devices. The chips often contain complete addressing, decod

ing and output circuitry in addition to the memory cells.

In the formation of standard ROM matrices—in which the

stored data is never to be changed—logic states are established

during the manufacturing process by omitting the proper elements

to create the desired bit pattern. This is the most prevalent type of

read only memory. There are cases, however, in which standard

memories are not available to meet application requirements, so

programmable ROM (PROM) matrices are also produced.

A PROM is essentially a semiconductor matrix which has its

program written into it at some time other than the manufacturing

process. The manufacturer provides a chip on which all of the rows

and columns (word and bit lines) are linked by conducting devices.

Before integrating the chip into a circuit, the purchaser ofthe PROM

uses various techniques—from application of a high-level write cur

rent to a laser beam—to eliminate devices from the matrix. In this

way, a stored program unique to a given application can be produced.

New Developments

This discussion has covered structures that are representative

of devices currently used in data processing memory facilities, and

has not attempted to consider all of the variations of the basic

structures. Advances are being made at a remarkable rate, and

today's technology may be totally obsolete in a few years. Among

the new memory devices that may bring this about are charge

coupled devices (CCDs), bucket brigade devices (BBDs) and

magnetic bubbles. Charge coupled and bucket brigade devices are

similar in that both store digits as the presence or absence of electric

charge.

A basic CCD is a semiconductor chip, either n-or p-type, over

which a dielectric material is laid. A series ofgate contacts are placed

along the dielectric. Charge is stored as minority carriers under the

gate regions. When the substrate is p-type, for example, applying a

positive voltage to one gate attracts electrons out of the substrate

until they dominate in the area directly beneath the gate, forming a

potential well. This storage condition is maintained for times up to

248

R
O
W

A
D
D
R
E
S
S

R
O
W

A
D
D
R
E
S
S

D
E
C
O
D
E
R

B
I
A
S
P
O
W
E
R

S
U
P
P
L
Y

-
r

-
r

-
r

B
I
T

L
I
N
E

I
B
I
T

L
I
N
E
2

B
I
T

L
I
N
E
3

•
W
O
R
D

L
I
N
E

I

W
O
R
D

L
I
N
E
2

W
O
R
D

L
I
N
E
3

W
O
R
D

L
I
N
E
4

B
I
T

L
I
N
E
4

5
Fi
g.

3-
26
.
T
h
e

lo
gi
c
st

at
es

wi
th

in
a

st
at
ic
M
O
S
R
A
M

ar
e
d
e
t
e
r
m
i
n
e
d
b
y
th

e
p
r
e
s
e
n
c
e
or

a
b
s
e
n
c
e

of
ga
te

co
nt
ac
ts
.

several seconds after the gate voltage is reduced. Raising potential

on the next gate in the series forms a second potential well into which

the stored charge is transferred. Gate potentials are sequentially

raised by a clocked voltage to move the stored bit through the

device. The CCD is thus a sequentially accessed memory facility

similar to the shift register.

The movement of charge in a bucket brigade device is the same

as in the CCD. Potential wells, however, are replaced by buckets of

material unlike the substrate. For example, n-types areas may be
embedded beneath the gates in a p-type chip to act as MOS storage

capacitors.

Fabrication techniques currently limit the production of CCDs

and BBDs, but they hold the promise of extremely small, very fast,
low power memories of high density, and many manufacturers are

investigating their commercial feasibility.

Magnetic bubble technology is still in the developmental stage,

but it also shows great promise. The bubbles, which are tiny, mobile

particles whose polarity is opposite to that of the thin film containing

them, can be arranged to form coded data patterns, thus providing a

storage medium.

Conventional bipolar and MOS devices are being modified to

achieve an optimum combination of memory cell size, speed and

power consumpion. N-channel and p-channel MOS FETs are being

combined on one chip as complementary MOS (CMOS) devices for

low power applications, and Schottky diodes are being introduced

into various bipolar configurations to decrease power consumption

and increase speed. One such modification has resulted in the low

power Schottky TTL memory cell, which has access speed ap

proaching that of ECL (the fastest presently available cell type) and

power requirements close to those of MOS FETs; GTE Lenkurt

uses this family of devices in its 262A and 262B data sets to achieve

the most rapid data processing possible with the least power. In

another development, metal-nitrade oxide semiconductors are

being looked at as possible non-volatile read/write RAMs (memory

facilities which would not lose stored data whenpower is removed).

Whether improvements to existing structures continue at the

present rate, or new technologies take over completely, there is no

doubt that semiconductors will play an increasingly important role in

data processing systems.

250

Chapter 4

Computer I/O

Contrary to the opinion expressed often in computer hobbyist publi

cations, Baudot is not deadl It is alive and well. Frankly, I am glad I

learned years ago not to believe everything I find in print. If I had, my

Model 15 Teletype® would not be speaking BASIC today. I want to

make it clear at the outset that this discussion is not intended to

foster a Baudot/ASCII split among computer hobbyists. Nor is it

written to argue the relative merits of one system over the other. I

wish simply to demonstrate that a Baudot machine can be made an

effective and useful hard copy peripheral in a hobby computer sys

tem.

Permit me to digress a moment from the main subject-

Baudot*-to comment in a more general way on these people we call

hobbyists. Although they come in many varieties depending on in

terest and ability, there seems to be a common thread running

between them: the need to be creative with their hands, heads or

both. For instance, there can be no greater pleasure for an electronic

hobbyist than to sit back and watch his junk box creation perform like

its store-bought counterpart. At that moment he feels a sense of

acomplishment unobtainable in many other pursuits of life. This

"make do with what you have" philosophy is a reflection of the spirit

that has brought man to his stately position among the world's lesser

creatures. The hobbyist has the opportunity to foster this spirit each

time he digs into hisjunk box for a new project. Unless you think I am

only talking about an electronic junk box, let me remind you that a

16K word memory filled with NOPs is in a sense a junk box as well!

251

What does all this philosophical wandering have to do with

Baudot? Simply this: There are people who say Baudot is obsolete

and Teletypes that speak it are junk. Now, can't you see the eyes of

some hobbyist light up when the word junk is mentioned? The very

word carries with it a challenge he cannot resist. Out to the

storeroom he goes to retrieve his old Model 15. The renewing of the

hobbyist spirit has begun!

About six months ago, a friend and I were taking just such a

challenge. We have made quite a lot of progress since then. In our

present state of excitement we want to share some of the know

ledge gained and lessons learned. We hope our success will encour

age some junk box digging.

A Very Cheap I/O

The best place to begin is in the pages of a book on Baudot

Teletypes. One good choice is Wayne Green's RTTY Handbook,

(TAB book No. 597). Learn the theory of teleprinter operation and

become familiar with the different machines available.

Next, begin your search for a machine. This will probably

require some footwork and a little time. If you live close to a large

city start by looking in the yellow pages under junk dealers and

electronic surplus houses. Make a few phone calls, ask questions

and follow leads. There are mail order companies that have tele

printer equipment. Check the back pages and classified ads of

amateur and computer hobbyist magazines. Write a few inquiries,

get quotations and ask for the specific machine you want. Get in

touch with local radio amateurs and see if they can help. Hams

generally have a good attitude toward hobbyists of other persuasions

and go out of their way to help. You might find a ham with a spare

Teletype that he would be willing to loan out until you can get your

own.

Give Western Union and Bell Telephone a call. If you can get

through to the right people you may have a chance of getting a free

machine. I have heard of this approach yielding success more than

once. In these inquiries be sure to emphasize the hobby nature of

your interest! Above all don't get disappointed and give up too soon.

There are thousands of these machines out there—probably one

with your name on it!

A Model 15

As the owner of a Baudot Teletype you should take some pride

in your new possession. Over the years the Model 15 Teletype has

252

gained an excellent reputation among people who appreciate well-

engineered mechanical devices. Most of its moving parts are made

of casehardened steel. When a part does wear there is generally an

adjustment somewhere to take up the slack. If you can find a

maintenance manual, get it and use it. Your efforts will pay off in

many years of reliable service. I have often heard Model 15 owners

say not to worry with cleaning the working parts—the worse it looks

the smoother it operates. A friend has a Model 15 with several more

layers of dirt and grease than mine. Not only does his keyboard have

a lighter touch but his printer is several decibels quieter! Remember

to keep machine oil in the cups and on the clutch felts. With reasona

ble care your machine should serve you well for years to come.

The Interfacing Problem At the Teletype End

Normally the Teletype will have two connecting cables: one for

send (the keyboard) and the other for receive (printer magnet). For

testing purposes the two can be series-connected with a power

supply and current limiting resistor. Connected in this way the

machine will type to itself. Teletype users call this local loop opera

tion. For computer use the send and receive cables must be con

nected separately. Figure 4-1 shows a transistorized switching cir

cuit that provides the necessary TTL level signals for a computer

interface.

The following notes refer to Fig. 4-1:

• The use of a high voltage supply (100 to 120 volts) is

recommended since it provides the simplest and most reli

able operation. Of course, the driver transistor must be a

high voltage type similar to the one shown.

• Make certain that the local-line is a non-shorting (break-

before-make) type. 120 volts is not a TTL level! A tele

phone type lever switch is ideal.

• The printer magnets (usually there are two mounted side by

side) can be connected in series or parallel. The circuit

shown assumes a parallel connection. Adjust the slide on the

power resistor for 60 mA in the magnet circuit.

• Notice that in the local position the keyboard contacts are

switching the full 60 mA at 120 volts. The contact arcing

seems to do wonders for cleaning up noise problems in the

keyboard. In the line position, the keyboard is switching to

ground and the printer will accept TTL logic levels.

• Make absolutely certain that the Teletype and all computer

circuits share a good ground system. In fact, connect the

Teletype chassis to the computer ground with a separate

253

ground with a separate heavy wire. We have experienced

AC transients on interface lines when the ground connection

on the Teletype was inadvertently broken. On one occasion

we lost some TTL in our Altair during such an occurrence.

The Interfacing Problem At the Computer End

There are several schemes available to perform the serial

input/output function at the computer. A UART (Universal Asyn

chronous Receiver Transmitter) is readily adaptable to five level

Baudot code. The UART represents a hardware solution to the

problem. The serial/parallel conversion can also be handled by

computer software. This simplifies the hardware requirement but

ties up the CPU during input/output operation. The circuit in Fig.

4-2 and the accompanying software listing of Table 4-1 will illustrate

this latter technique as applied in an Altair 8800 system.

Although the software I/O system is probably not a good

long-term solution to your I/O needs, it does offer a quick and simple

approach to getting your Teletype on-line. Figure 4-2 is very similar

to the interface circuitry necessary for a cassette interface of the

Suding type. If you later change your I/O to a UART type, you can

use this circuit to build up a cassette interface.

To check out the software I/O, make the following test:

• At a memory location above the I/O routines, load a main

program similar to:

LOOP

LXI SP. LOOP + 10

CALL INPUT

CALL OUTPUT

JMP LOOP

• EXAMINE the starting location of the main program and

begin execution.

• The printer should now echo keyboard entries.

In our Altair 8800 system we have used several home brew I/O

interfaces with success. Our original circuit followed in design the

"Basic Stunt Box" on page 299 of RTTY Handbook, TAB book No

597. This circuit was modified and improved through several genera

tions. Most recently we have used a MITS SIOC interface board

with a few simple modifications. The MITS board is UART-based,

with a software controlled interrupt scheme we have found very

useful. After a great deal of experimenting, we have little doubt that

a UART-based I/O interface is best.

254

r
o

K
E
Y
B
O
A
R
O

o
»
o

"
B
"

T
T
L
L
E
V
E
L

D
R
I
V
E

"A
"
•
—
v

0
T
O
3
V
O
L
T
S

|
R

+
5
V

A
D
J
U
S
T
F
O
R
6
0
m
A

^
2
0
0
O
i
l

I
O
W

0
4
-
1
2
0
V
D
C

P
R
I
N
T
E
R
M
A
G
N
E
T
S

6
0
m
A

L
O
C
A
L
-
L
I
N
E
S
W
I
T
C
H

N
O
N
S
H
O
R
T
I
N
G
T
Y
P
E

S
H
O
W
N

I
S
L
O
C
A
L

P
O
S
I
T
I
O
N

g{
Fi
g.

4-
1.

Te
le
ty
pe

in
te
rf
ac
e

ci
rc

ui
t:

Mo
de

l
15

or
si
mi
la
r.

Table 4-1.

LABEL OCTAL

ADDRESS

INPUT Low- 000

001

002

L00P1 003

004

005

006

007

010

Oil

012

013

014

015

L00P2 016

017

020

021

022

023

024

025

026

027

030

031

032

033

034

035

036

037

040

041

OUTPUT 042

043

044

045

046

047

050

051

052

053

054

055

L00P3 056

057

080

061

082

063

064

065
MB
WOO

087

070

071

, 072

073

074

075

076

077

100
im1UI

102

103

104

105

106

107

Serial I/O:

OCTAL

CODE

001

000

005

333

376

037

332

003

000

026

030

315

110

000

333

376

037

171

037

117

026

020

315

110

000

005

302

016

000

171

017

017

017

311

006

005

007

117

227

323

376

026

020

315

110

000

171

017

117

346

001

323

376

026
n9OU*U

315

110

000

005

302

056

000

076

001

323
"OTA<9/O

026
AOf|

315

110

000

311

Software Technique for Fig. 4-2.

MNEMONIC

LXIB

IN

RAR

JPC

LOOPKL)

LOOPKH)

MUID

CAL

TMOUT(L)

TMOUT(H)

IN

RAR

MOV A. C

RAR

MOVC.A

MUID

CAL

TMOUT(L)

TMOUT(H)

DCRB

JNZ

L00P2(L)

L00P2IH)

MOVA.C

RRC

RRC

RRC

RET

MUIB

RLC

MOVC,A

SUB A

OUT

MUID

CAL

TMOUT(L)

TMOUT(H)

MOVA,C

RRC

MOVCA

ANI

OUT

MUID

CAL

TMOUT(L)

TMOUT(H)

DCRB

JNZ

L00P3(L)

L00P3(H)

MUIA

OUT

MUID

CAL

TMOUT(L)

TMOUT(H)

RET

COMMENTS

ZERO C; COUNT IN B

LOOK FOR START PULSE

JUMP BACK IF NO START

SET FOR 1% TIME UNITS

CALL TIME OUT ROUTINE

COLLECT 5 DATA PULSES INTO C

SAVE A

SET FOR 1 TIME UNIT

CALL TIME OUT ROUTINE

CHECK COUNT

JUMP BACK IF NOT FINISHED

RETRIEVE A

ADJUST A TO PLACE BAUDOT IN

LOWER 5 BITS

END INPUT ROUTINE

COUNT IN B

SAVE A

CLEAR A

OUTPUT START PULSE

SET FOR 1 TIME UNIT

CALL TIME OUT ROUTINE

MASK OFF ALL BUT 0 BIT

OUTPUT DATA PULSES - 5 IN ALL

SET FOR 1 TIME UNIT

CALL TIME OUT ROUTINE

CHECK COUNT

JUMP BACK IF NOT FINISHED

OUTPUTSTOPPULSE

SET FOR 1% TIME UNITS

CALL TIME OUT ROUTINE

256

Table 4-1. Serial I/O: Software Technique for Fig. 4-2.

LABEL OCTAL

ADDRESS

TMOUT 110

111

LOOM 112

113

114

118

118

117

120

121

122

OCTAL

CODE

076

XXX

078

302

112

000

028

302

110

000

311

MNEMONIC

MUIA

DRCA

JN2

LOOP41L)

LOOP4W)

DCRD

JNZ

TMOUT(L)

TMOUT(H)

.RET

COMMENTS

ADJUSTTIME DELAY

170g for 60wpm; 135 for 78wpm

OMITS STATICMBMORYTESTED

VALUES)
JUMPBACK IP NOT FINI8HED

JUMP BACK IP NOT FINISHED

The MITS SIOC board was originally for use with a Model 33

Teletype. To use it with a Model 15 or similar machine, make the

modifications shown in Fig. 4-3.

In preparing the MITS board, tfie number of stop bits must be

selected. The five level Baudot code consists ofa start, stop and five

coded data pulses. The start and datapulses are22 ms each (60word

per minute machines) while the stop is 31 ms, about one and a half

times the others. Theoretically, the stop pulse generated by the

serial I/O circuit should be one and a halftimes thelength ofthe start

and data pulses. The MITS SIOC boardhas provision for one or two

stop pulses only. Our experience has shown that both choices work

satisfactorily. One stop pulse types a little faster than normal, two

stop pulses a little slower. We have used the one stop bit set up for

some time without any problems. AUART is available that provides

the correct one and a half stop bits but we don't believe you need to

be too concerned about getting one.

As you implement a Baudot system, knowledge of the Baud

rate will be required. For instance, the MITS serial board instruc

tions do not provide directly the Baud rate hookup for a 60 wpm

Baudot machine. After a little head scratching we were able to figure

out the circuit connections. For those contemplating a MITS board,

Table 4-2 gives the necessary data for strapping the Baud rate

counters. If you purchase some other I/O board, be sure to ask the

manufacturer for details on setting the Baud rate counters. If you

purchase some other I/O board, be sure to ask the manufacturer for

details on setting the Baud rate for your Baudot machine. By the

way, not all Baudot machines are 60wpm. Some are 65and 75wpm.

Gear sets are available from surplus dealers to change speeds.

Model 15s work well at 75 wpm. Model 28s are 10 wpm standard.

How Does Baudot Look in the Computer?

The answer to this question depends upon the configuration of

the interface system. Consider, for instance, a typical keyboard

257

K
E
Y
B
O
A
R
D

p
W
r

T
O
D
1
O

D
O
O
«

D
CL

Ql
NC

L
7
4

C
K

p
R

0
-o
T
E
L
E
T
Y
P
E
V

Fi
g.

4-
2.

C
o
m
p
u
t
e
r
in
te
rf
ac
e
fo
r
so
ft
wa
re

I/
O.

L
a
b
e
l
s

re
fl

ec
t
Al

ta
ir
8
8
0
0
bu

s.
Po
in
ts
A
a
n
d
B

re
fe
r
to

Fi
g.

4-
1.

Al
l
I
C
s
a
r
e
7
4
0
0
s
e
r
i
e
s
—
l
o
w
p
o
w
e
r

e
x
c
e
p
t
7
4
0
1
.

entry to the CPU accumulator. The normally closed keyboard con

tacts can produce a logic 0 or a logic 1 depending on the number of

inversions that take place in the I/O interface. In addition, the

interface circuit will determine the location and order of the five level

code in the eight bit accumulator. As an example, consider the letter

T as it might finally appear in the accumulator:

(T) »020 001 017 036

(*This bracket set will of a five level Baudot character.)

♦15V

I.5K

►POINT "B" OF CIRCUIT 1

X X

♦5V

470

CNOT CONNECTED

-I5V

j

2.7K 990 NOT CONNECTED

►POINT V OF CIRCUIT I

ALTAIR GROUND TELETYPE
GROUND

Fig. 4-3. Teletype drive circuits for MITS SIOC interface with modification for

connection to a Model 15 Teletype.

259

Table 4-2. Baud Rate for Baudot Teletypes on Altair 8800 Serial I/O Boards.

PRESET COUNT

TELETYPE SPEED

60wpm

65 wpm

75wpm

100 wpm

11

0

0

0

1

10

1

1

1

0

9

0

1

1

0

8

1

0
1

1

7

0

0

0
1

6

1

0
1

0

5

0

0
1

0

4

0

1

0

1

3

0

1

1

0

2

1

0

1

0

1

1

1

0

1

0

0

0

0

0

These examples assume the lower five bits of the accumulator

are used. A choice must be made from this group if standardization is

to be achieved. After consulting a few sources, 020 appeared the

best representation. The MITS and Processor Technology boards

produce this representation. Table 4-3 presents the full Baudot

character set as it would appear in octal notation.

For those not familiar with the Model 15s, upper or lower case

is set by FGS or LTR keystroke respectively. A mechanical flip flop

holds the case until another FGS or LTR keystroke produces a

change. It is convenient in some systems to use a sixth bit to indicate

which case is desired or the status of the machine. With the sixth bit,

software can be written to control the FGS/LTR function. This

relieves some of the difficulties encountered in keeping track of the

case.

Blowtorch Your IGs

Have you ever tried to remove 14 or 16 pin DIP ICs from

surplus computer boards? Sometimes this can be a very exasperat

ing job, and you may even pass up some good bargains because you

don't want to go through all the trouble of removing them.

There are many ways to remove ICs. You can use a special tip

that heats all the pins at once, you can clean the solder off the pins

one at a time, you can use a special tip with a vacuum line attached or

you can even use a special tip with a blower attached. All these

methods are slow, cumbersome and expensive, and you will usually

end up wishing you had three hands to accomplish very much.

The method that I use may shock you a bit at first, but believe it

or not, it really works well.

I remove ICs from surplus computer boards with a blowtorch.

That's right, a propane torch that can be obtained in just about any

experimenter's workshop.

I turn the flame on the pins from the circuit side of the board and

yank the IC out (fast) from the component side of the board using an

260

L
O
W
E
R
C
A
S
E

A B C D E F G H 1 J K L M N 0 P Q R S T U V w X Y z C
R

L
F

S
P

B
L
N
K

F
G
S

L
T
R

5
L
E
V
E
L

0
0
3

0
3
1

0
1
6

0
1
1

0
0
1

0
1
5

0
3
2

0
2
4

0
0
6

0
1
3

0
1
7

0
2
2

0
3
4

0
1
4

0
3
0

0
2
6

0
2
7

0
1
2

0
0
5

0
2
0

0
0
7

0
3
6

0
2
3

0
3
5

0
2
5

0
2
1

0
1
0

0
0
2

0
0
4

0
0
0

0
3
3

0
3
7

6
L
E
V
E
L

0
0
3

0
3
1

0
1
6

0
1
1

0
1
5

0
3
2

0
2
4

0
0
6

0
1
3

0
1
7

0
2
2

0
3
4

0
1
4

0
3
0

0
2
6

0
2
7

0
1
2

0
0
5

0
2
0

0
0
7

0
3
6

0
2
3

0
3
5

0
2
5

0
2
1

0
1
0

0
0
2

0
0
4

0
0
0

0
3
3

0
3
7

U
P
P
E
R
C
A
S
E

? $ 3 \ & # 8 B
e
l
l

() , 9 0 1 4 5 7 2 / 6 C
R

L
F

S
P

B
L
N
K

F
G
S

L
T
R

5
L
E
V
E
L

0
0
3

0
3
1

0
1
6

0
1
1

0
0
1

0
1
5

0
3
2

0
2
4

0
0
6

0
1
3

0
1
7

0
2
2

0
3
4

0
1
4

0
3
0

0
2
6

0
2
7

0
1
2

0
0
5

0
2
0

0
0
7

0
3
6

0
2
3

0
3
5

0
2
5

0
2
1

0
1
0

0
0
2

0
0
4

0
0
0

0
3
3

0
3
7

6
L
E
V
E
L

0
4
3

0
7
1

0
5
6

0
5
1

0
4
1

0
5
5

0
7
2

0
6
4

0
4
6

0
5
3

0
5
7

0
6
2

0
7
4

0
5
4

0
7
0

0
6
6

0
6
7

0
5
2

0
4
5

0
6
0

0
4
7

0
7
6

0
6
3

0
7
5

0
6
5

0
6
1

0
5
0

0
4
2

0
4
4

0
4
0

0
7
3

0
7
7

T
a
b
l
e
4
-
3
.
B
a
u
d
o
t
-
O
c
t
a
l
C
o
n
v
e
r
s
i
o
n
.

IC puller or just a plain old pair of pliers. Even when using the torch

running full blast, I have yet to damage an IC due to excessive heat.

Excessive heat seems to be an old wive's tale on some of these

modern ICs. Remember, of course, you can't reuse the boards.

A TTL Tester

Being economically minded by necessity, I have often purch

ased unmarked, untested semiconductors at really bargain prices.

This practice has necessitated the contruction of special test equip

ment.

One such piece of test equipment was designed to test TTLs.

This TTL tester is an expanded version of a very simple diode

tester. The simplicity of this diode tester should not be allowed to

downgrade its usefulness (Fig. 4-4).

Using this diode tester, the breakdown or zener voltage of a

diode or transistor can be quickly determined. Transistors can be

classified, after some experience in using this simple tester, into

small or large signal, low or high voltage, oscillators, amplifiers,

switching, high or low leakage, etc. It also indicates an open or short

which makes it useful for a continuity tester.

A built-in calibration source can be added with the addition of

one or more zener diodes and switches (Fig. 4-5).

The TTL tester is this same basic diode tester with a few more

components and a 5V source (Fig. 4-6). Any 5V DC power supply

can be used but should be protected from overload by a fuse or

current limited output because of a TTL short or human error.

Phone tip jacks are used for test points, with external test connec

tions being made by jumper wires with phone tips (Fig. 4-7).

For an unknown TTL, place the TTL into the test socket and

turn power on. The vertical probe is inserted into the CAL TP and

the scope adjusted as in Fig. 4-8A. Use an educated guess or flip a

coin to choose a TP that would ordinarily be ground, such as TP4 or

TP7. Say, for example, that we choose TP7. Ajumper would then be

placed from a ground TP to TP7. The vertical probe is then moved to

each TP, TP1 through TP14. The display on the scope (Fig. 4-9A)

may be similar to any figure of Fig. 4-8, but we are looking for one

that is decidedly different, or the oddball. Say in our example we

have only one that looks like Fig. 4-8H on TP14. It would appear that

we have made a wise choice of TP7 for our ground because + and -

are usually on 14 and 7 as one combination for TTLs. Reasonably

sure that TP7 is our ground, we once again take the vertical probe

through TP1 to TP14 with a ground on TP7. A record (mental if you

262

1
1
7
V
A
C

C
A
L
I
B
R
A
T
E

4
2
0
K
R
E
S
I
S
T
O
R

I
N
P
L
A
C
E
O
F

O
I
O
O
E

O
P
E
N

1
2
0
V
A
C

-
*

1
X
-

.
.
D
I
O
D
E
O
R
D
E
V
I
C
E

.
U
N
D
E
R
T
E
S
T

4
2
0
K *
■

O
S
C
I
L
L
O
S
C
O
P
E

o
1

Z
E
N
E
R
O
R

B
R
E
A
K
D
O
W
N

V
O
L
T
A
G
E

S
H
O
R
T

F
U
L
L
V
O
L
T
A
G
E

Fi
g.

4-
4.

D
i
o
d
e

te
st

er
.

Fig. 4-5. Calibration Source.

like) can be made of each TP test as in Fig. 4-9. Connect +5V to

TP14 with ajumper. This will oeprate all gates, etc. Check each test

point again with the vertical probe. A change of state will be noted as

in Fig. 4-9B. In our example, a change of state occurred at test

points 3, 6,11 and 8 for a total of four changes; thus we may have a

quad device. Next we monitor the points of change using the vertical

probe. The first in this example is TP3.

A single jumper lead from ground is moved to each test point of

no change. In our example, the ground jumper lead of TP1 changes

the state of TP3 (Fig. 4-9C). Removing the lead from TP1 restores

the state of TP3. Placing the jumper of TP2 changes the state of
TP3, etc. (Fig. 4-9C). Moving on to TP4, 5,13, 12,10, 9, we note

no change on TP3. In our example, we find the same relationship

between TP4, 5, 6 and TP13, 12, 11 and TP10, 9, 8. The example

was a 7400 TTL (Fig. 4-10) which is a quad 2 inputNAND gateTTL.

A study of several known TTLs will give you the experience neces

sary to use this simple tester. The number and type ofjumpers will

of course depend upon the TTL under test. The 7451 TTL for

instance requires two jumpers.

In the end we will know what the circuit is and its maximum

breakdown voltage (Figs. 4-8B, C, D, G) as well as whether it is an

open collector (Fig. 4-8D) or if the circuit is open or shorted (Figs.

4-8E, H) and most importantly, whether it is working properly.

Cold Solder Joints

The advent of digital electronics in amateur radio has paved the

way for a new method of construction practice already widely used in

industry. This is called the Wire-Wrap method (The term "Wire-

264

1
1
7
V
A
C

I
2
0
V
A
C

4
2
0
K

®
.

P
H
O
N
E

T
I
P
J
A
C
K

(
T
E
S
T

P
O
I
N
T
S
a

S
U
P
P
L
Y
)

O
)
H
0
R
Z

V
E
R
T

©

;
R
E
S
I
S
T
O
R
S
B
E
L
O
W
(
1
5
)
-
I
8
O
K

I
O
C
/

-
I
8
O
K

\

A

)
O

(
)

<
)

Z
E
N
E
R

<$
)

<$
)
()

()
()

()
(I
)

T
Y
P
I
C
A
L

T
E
S
T
S
O
C
K
E
T

•
P
H
O
N
O
J
A
C
K

R
E
S
I
S
T
O
R
S
B
E
L
O
W

(
5
)
-
5
.
6
K

©
©
©
©
©

S
V
D
C
S
O
U
R
C
E

T
E
S
T

P
R
O
B
E

Fi
g.

4
-
6
.

F
i
v
e
-
v
o
l
t
s
o
u
r
c
e
.

TYPICAL PANEL LAYOUT

TEST SOCKET

*

o o o o o o o

o o o o oo o

LOGIC TESTER

14 13 12

1 2 3

CAL ♦ y^"

/
o o

II 10 9

4 5 6

o o

JUMPER - APPROX 8in LONG

8

VERT

i ©
HORZ

o
PROBE

Fig. 4-7. Schematic.

Wrap" is a registerd trademark of Gardner-Denver Co.). One might

ask, why Wire-Wrap? Just talking about the number of lines coming

from an IC could make one's head reel. For example, let us assume

that we have thirty 16 pin ICs, and that we have just one wire per pin

as either a voltage, a ground or a signal line. We now have 16 x 30,

or 480 lines to interconnect. Can't you just picture the complexity of

the printed circuit board required to accommodate such a circuit?

Note that I'm talking about a 16 pin IC in this case. Now we are well

into LSI and MSI with 24, 36 or 40 pin ICs becoming very popular.

Fig. 4-8. Scope adjustment.

266

1

6
A

6
B

6
C

X X

G
N
D

X

2
3

X X X

6
N
0

1 - 1 1

4 "
L

X X X

T
Y
P
I
C
A
L
S
C
O
P
E

5 X X X X

6 1 - - -

D
I
S
P
L
A
Y

7

6
N
D

G
N
O

G
N
O

G
N
O

1
4

-
u

♦
5
V

+
5
V

♦
5
V

1
3

X X X X

1
2

X X X X

II 1 - - -

1
0

X X X X

9 X X X X

8 1 - - -

Fi
g.

4
-
9
.
S
c
o
p
e

d
i
s
p
l
a
y
.

Fig. 4-10. A 7400 TTL

This is one reason why industry has gone the Wire-Wrap route. The

mechanical design effort in laying out such a PC board is a time-

consuming, costly operation. Most of the time a double-sided PC

board with plated-through holes would have to be used. And in even

more complex circuits, multi-layer boards would have to be de

signed.

A second advantage of Wire-Wrap over PC is the ease with

which a design change can be accomplished. All one needs to do is

unwrap the wire and put the new one in between the proper two

terminals. We all know what it is like to modify a PC board. I have

several scarred fingers from a slip of the knife as proof.

Now let's talk about some of the electrical and mechanical

attributes of Wire-Wrap. A Wire-Wrap connection consists of ap

proximately seven turns of 30 AWG solid copper wire. The wire is

wound about a 0.025 inch square terminal in a helical manner,

without the aid of solder. As the wire is wound about the terminal,

the corners of the terminal bite into the wire, as the wire notches the

sharp corner of the terminal. In this manner, a gastight, oxidation-

free joint exists between the terminal and the wire. As the connec

tion ages, a solid state diffusion process takes place, which enhances

the mechanical strength of the connection. Through exhaustive

tests it has been determined that a Wire-Wrapped connection has a

268

life expectancy in excess of 40 years. This tremendously exceeds

the reliable life of a solder connection.

Wire-Wrapping can be accomplished through several methods.

There are hand Wire-Wrap tools which are readily available and

inexpensive. If many wraps are to be done, I would suggest the

electrical hand gun. Where a small run of similar boards are to be

Wire-Wrapped, there is the semi-automatic method. A head with a

Wire-Wrapping bit is indexed over the proper terminal through the

use of a numerical controller. The fully automatic method would be

chosen on a large run of similarly Wire-Wrapped boards.

Let's go through a step-by-step procedure to show the simplic

ity of the Wire-Wrap process:

• Insert the stripped end of the wire into the tool.

• Place the tool with the wire over the terminal.

• Twist the tool clockwise, until the stripped portion of the

wire is used up in the wrap.

Figure 4-11 shows a completed modified wrap. Modified means

that there is approximately one turn of insulation around the terminal

for strain relief.

Fig. 4-11. Completed modified wrap.

269

f

9

0

9

d

b

c

Fig. 4-12. Segment designations.

Interfacing a Clock Chip

This circuit was developed as the result of a need to interface a

clock chip to some other hardware. Unfortunately, the clock chip

available had only seven-segment output, and was not equipped with

BCD outputs. The first solution required a relatively large number of

gates, and because of space restrictions, was inconvenient for the

project in hand. To overcome this problem, the gating was replaced

with a 32 x 8 PROM, addressing the PROM from the seven-

segment output of the clock, with the BCD stored in the appropriate

locations of the PROM.

Figure 4-12 illustrates the segment designations of a seven-

segment display.

Since the PROM is 32 x 8 bits, it has only five address lines,

and it is therefore impossible to use all the clock outputs. But if the

seven-segment coding for the numerals 0-9 is considered (Table

4-4), it can be seen that it is still possible to obtain a unique code for

each numeral, by using only segments a, b, e, f and g. If segment a is

considered as the most significant bit, and segment g as the least

270

Numeral

0

1

2

3

4

5

6

7

8

9

a

1

0

1

1

0

1

0

1

1

1

Table 4-4.

b

1

1

1

1

1

0

0

1

1

1

c d

1 1

1 0

0 1

t 1

1 0

1 1

1 1

1 0

1 1

1 0

One-Segment Code.

e

1

0

1

0

0

0

1

0

1

0

f

1

0

0

0

1

1

,1

0

1

1

8

0

0

1

1

1

1

1

0

1

1

PROM location addressed

with segments a, b, e, f, g.

(Decimal)

30

8

29

25

11

19

7

24

31

27

significant bit of a 5-bit natural binary code (used to address the

PROM), then the ten locations listed in Table 4-4 will be addressed

for the numerals 0-9. These locations contain the BCD code.

Although the solution was satisfactory, there is a considerable

amount of unused space in the PROM, and since it was desired to

link the clock to a microprocessor-based RTTY system at a later

date, it was decided to see if any of the remaining locations could be

used to contain ASCII or Baudot coding for the numerals 0-9. The

first to be dealt with is Baudot. If BCD and Baudot are compared

(Table 4-5), it is very clear that element "B" of the BCD is identical

to element "E" of the Baudot, except for the numeral 1. If it were not

for this one difference, it would be possible to store the BCD (4 bits)

and the Baudot (5 bits) in the 8-bit word of the PROM. This problem

was overcome by the addition of a 7410 triple 3-input NAND to the

output of the PROM, as shown in Fig. 4-13. Then, in any given word

of the PROM, the BCD is stored in bits 0-3, and elements A, B, C

and D of the Baudot are stored in bits 4-7. Thus all the BCD and

elements a-D of the Baudot are directly available at the output of the

Table 4-5. BCD and Baudot.

BCD

D

0

0

0

0

0

0

0

0

1

1

c

0

0

0

0

1

1

1

1

0

0

B

0

0

1

1

0

0

1

1

0

0

A

0

1

0

1

0

1

0

1

0
1

Baudot

E

0

1

1

1

0

0

1

1

0

0

D

1

1

1

0

1

0

0

1

1

0

c

1

1

0

0

0

0

1

1

1

0

B

0

0

0

0

1

0

0

0

0

1

A

1

1

1

0

0

1

1

0

0

1

Numer*1

0

1

2

3

4

5

6

7

8

9

271

Table 4-6. Seven-Segment Code, with A, B, E and G Inverted.

Numeral

0

1

2

3

4

5

6

7

8

9

a

0

1

0

0

1

0

1

0

0

0

b

0

0

0

0

0

1

1

0

0

0

e

0

1

0

1

1

1

0

1

0

1

f

1

0

0

0

1

1

1

0

1

1

£

1

1

0

0

0

0

0

1

0

0

PROM location

addressed with segments a, b, e, f, g.

(Decimal)

3

21

0

4

22

14

26

5

2

6

PROM, and element E of the Baudot is obtainable from the extra

gating, which works as follows. If the output of Ul is high, then the

output ofU3 will follow the input of U2 (element B of the BCD). But if

at any time the output of Ul should be low (which will happen for

numerals 1 and 7), then the output of U3 will be forced high. The

output of U3 can then be used as element E of the Baudot. Thus the

aim of encoding both BCD and Baudot is achieved, and they are

available simultaneously.

Obtaining the conversion to ASCII was accomplished in a totally

different way. It was necessary to modify the address inputs in some

way, so that the seven-segment would address another set of unique

store locations. The only modification of the address inputs which

can be done easily is controlled inversion. With the aid of a computer,

all the possible combinations of inversion of the address inputs were

checked, from which it was discovered there were two. And for

reasons which will be given later, the following was chosen. By

inverting segments a, b, e and gfrom the clock, the locations listed in

Table 4-6 can be addressed, and it is in these locations that the ASCII

(or any other code) is stored. The inversion is carried out with a 7486

quad exclusive OR, as shown in Fig. 4-13. If point X in Fig. 4-13 is

brought high, then segments a, b, e and g of the clock are inverted,

Table 4-7.

7-segment

a, b, e, & g

inverted

a

1

0

Allowance for Topped 6s.

b

0

1

e

1

0

f

1

1

g
1

0

Location

Location

23

10

272

7
4
8
6

f e

"
X
"

L
O
G
I
C

1=
A
S
C
I
I

L
O
G
I
C
0
=
B
C
D
/
B
A
U
D
O
T

L
S
B

6
3
3
1

O
R

8
2
2
3

w
P
R
O
M

if
)

£
8
B
I
T

X

g
3
2

W
O
R
D

Q
.

M
S
B

^
B
C
D

7
4
I
0

>
A
S
C
I

I

>
B
A
U
D
O
T
j

Fi
g.

4
-
1
3
.
C
o
n
v
e
r
s
i
o
n

ci
rc

ui
t.

and ASCII can be obtained from the outputs of the PROM. If X is at

logic low level, then the outputs obtained from the PROM will be

Baudot/BCD.

The circuit given will function perfectly well with any seven-

segment coding which produces a 6 without a top, and a 9 without a

tail. Since some clock chips produce the 6 with a top, and a 9 with a

tail, this was also given consideration. And this is the reason that of

the two possible combinations ofinversion ofthe input to the PROM,

the one given was chosen. Since the tail of a 9 is given by segment c,

it will have no effect anyway. But the top of the 6 will affect the most

significant bit of the PROM address line, and it is necessary to allow

for it. All that is required is to repeat the BCD/Baudot for the

numeral 6 in another location of the PROM, and the same for the

ASCII coding of the numeral 6. This information is given in Table

4-7.

Thus it can be seen that with the addition of two extra packages

to the PROM, it is possible to cater for the conversion of seven-

segment to ASCII/BCD and Baudot, with or without topped 6s and

tailed 9s. A complete summary of the layout of the PROM is given in

Table 4-8. Although this conversion was designed for use with a

clock chip, it could be equally well used to convert the output of other

chips, such as digital voltmeters, to another code.

The PROM used was a 6331 from Monolithic Memories, but a

Signetics 8223, which is easily obtainable, can be used instead.

Inexpensive Paper Tape System

Serious program development requires the use of nonvolatile

mass storage of some type. Cassette tape systems are popular

among computer hobbyists, and for good reason. Cassettes are

convenient, inexpensive and provide a high density medium for mass

storage. Much has appeared in the literature concerning cassette

recording techniques. The use of punched paper tape for mass

storage has not been adequately treated, although it is readily

available to hobbyists interested in Baudot equipment. Paper tape is

not nearly as fast or as dense as cassette tape, but it ranks high in

convenience and reliability. Programs can be stored on individual

strips of tape and labeled for later use.

The Model 19 Teletype comes with a five level paper tape

punch and reader. The punch is mechanically linked to the keyboard,

so tape must be punched by hand. The keyboard and punch can be

physically removed from the printing unit and used separately. The

punch magnet requires a 100 volt at 1 Amp supply. The tape reader

on the Model 19 is called a Transmitter-Distributor, or TD for short.

274

Table 4-8. Summary of Layout of Information in PROM.

Address

(Binary)

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

Address

(Decimal)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Content

ASCII Numeral 2

Empty

ASCII Numeral 8

ASCII Numeral 0

ASCII Numeral 3

ASCII Numeral 7

ASCII Numeral 9

BCD/Baudot Numeral 6

BCD/Baudot Numeral 1

Empty

ASCII Numeral 6

BCD/Baudot Numeral 4

Empty

Empty

ASCII Numeral 5

Empty

Empty

Empty

Empty

BCD/Baudot Numeral 5

Empty

ASCII Numeral 1

ASCII Numeral 4

BCD/Baudot Numeral 6

BCD/Baudot Numeral 7

BCD/Baudot Numeral 3

ASCII Numeral 6

BCD/Baudot Numeral 9

Empty

BCD/Baudot Numeral 2

BCD/Baudot Numeral 0

BCD/Baudot Numeral 8

275

A punched tape is drawn through one portion at a time, and a

mechanical parallel to serial conversion produces the correct tele

type (TTY) signal. The tape is read at 60,65 or 75 words per minute,

as determined by a gear set inside. The TD is usually connected in

series with the keyboard contacts, so that either can be used to

generate TTY signals. This is a satisfactory arrangementfor compu

ter operation.

With model 19 equipment alone, you will not be able to make

paper tapes under computer control. For this capability you will need

a Model 14 Typing-Reperforator. The Model 14 accepts standard

Baudot TTY signals and punches a corresponding paper tape. In

addition to punching, it prints the incoming characters in "ticker

tape" fashion. You may wonder how it prints on a tape full of holes.

Nothing extraordinary here: The paper tape is chadless (that is, the

holes are not punched all the way through). By the way, Model 14s

come in a less expensive non-typing version, also. If you already

have printer capability, this would be a good choice. Model 14s of

both types are readily available on the surplus market.

The Model 14 can easily be connected into the computer I/O

system. Since it accepts standard TTY signals, it may be connected

in series with the selector magnets of the Model 19 printer.

Paper tapes can be punched with two basic formats: Baudot and

binary. Baudot tapes record the five level Baudot code in five hole

positions across the width of the tape. Actually, there is a sixth

smaller hole (called the sprocket hole), but it is only used for drive

purposes. With the Baudot system, a hole is regarded as a mark and

awo hole as aspace. The orientation of the code is shown in Fig. 4-14.

Baudot format is that used for communication purposes.

Unlike Baudot, the binary format is not in common use. In such

tapes, the five hole positions are used to record five data bits. Ahole

represents a logic 1 and a no hole, a logic 0. The hole position

corresponding to the least significant bit is indicated in Gig. 4-14.

In a computer environment, Baudot paper tapes are useful for

recording programs written in a high level language such as BASIC.

Binary tapes, on the other hand, find greatest utility in preserving

machine language programs. This is accomplished by simply punch

ing in tape an image ofthe memory area containing the program. The

program can later be re-entered into the same area of memory by

reading the paper tape with the proper software. The discussions

which follow deal primarily with punching and reading binary tapes

under computer control.

The Altair 8800 and similar minicomputers have a basic word

length of 8 bits. Since a paper tape can record only 5 bits at a time,

276

<7
.
B
A
U
D
O
T

T
A
P
E

L
T
R I

A
B

C
D
.

.
X

Y
Z

0
3
7

0
3
1

O
i
l

0
0
3

0
1
6

O3
5°
25
O2
I

J
CH

AR
AC

TE
R

-
•
—
L
E
A
S
T
S
I
G
N
I
F
I
C
A
N
T

P
O
S
I
T
I
O
N

•
-
D
R
I
V
E
H
O
L
E
S

•
-
M
O
S
T

S
I
G
N
I
F
I
C
A
N
T

P
O
S
I
T
I
O
N

[o
ct
al

v
a
l
u
e

•
•
H
O
L
E
P
U
N
C
H
E
D
-
M
A
R
K

H
O
L
E
N
O
T
P
U
N
C
H
E
D
-
S
P
A
C
E

b.
B
I
N
A
R
Y

T
A
P
E I

B
I
N
A
R
Y
D
A
T
A

2
3

k
1
4

1
5

(
D
E
C
I
M
A
L
)

B
I
T

I

B
I
T
2

B
I
T
3

B
I
T
4

B
I
T
5

D
A
T
A
(
B
I
T
5
N
O
T
P
U
N
C
H
E
D
)

C
O
N
T
R
O
L
(
B
I
T
5
P
U
N
C
H
E
D
)

t
'
f
t

L
E
A
D
E
R

E
N
D

L
E
A
D
E
R

C
O
D
E

C
O
D
E

C
O
D
E

•
■
H
O
L
E
P
U
N
C
H
E
D
-
L
O
G
I
C

I

H
O
L
E
N
O
T
P
U
N
C
H
E
D
-
L
O
G
I
C
0

)
C
O
N
T
R
O
L

B
I
T

Fi
g.

4-
14

.
(A

)
C
o
n
v
e
n
t
i
o
n
a
l
B
a
u
d
o
t
p
a
p
e
r
t
a
p
e
a
s
u
s
e
d

in
c
o
m
m
u
n
i
c
a
t
i
o
n
s
se

rv
ic

e;
(B

)
B
i
n
a
r
y
p
a
p
e
r
t
a
p
e
fo
r
u
s
e

in
c
o
m
p
u
t
e
r
ap

pl
ic

at
io

ns
.

two read cycles are required to input the fiill data word. In this case,

one bit of the five can be set aside for control purposes, still leaving

the required eight bits with two read cycles. Bit 5 is used for the

control function in our system. When bit 5 is not punched, the

remaining four hole positions are considered binary data represent

ing half of an eight bit data word. The next character in the tape

without a control punch is regarded as the second half of the data

word. When bit 5 is punched, the remaining four bits represent a

control code. Fifteen possible codes can be used to control various

aspects of the reading program. In our systems, one such code is

used as the leader at the beginning of the tape and another serves to

indicate the end of the tape. Other uses can be made of the control

code as well. Suppose you wish to send the computer a 16 bit

memory address. You could prefix the four data characters with a

special control code that would cause the reading program to branch

to an appropriate subroutine. Table 4-9 gives the data and control

codes both in octal and their Baudot equivalent.

As further illustration, consider the implementation of paper

tape on our Altair 8800 system. A Model 19 TD is series connected

with the keyboard and a Model 14 is series connected with the

selector magnets of the printer. We choose two control codes: 037

octal for the leader and 020 for the end of the tape. As previously

indicated, two character positions are required to store the contents

of one memory location. The first contains the least significant four

bits while the second contains the most significant four bits. If the

leader is encountered within data, it is ignored. This makes it

possible to correct a bad punch by simply overpunching with all

holes.

The programs we use to punch and read binary paper tapes are

given in Table 4-10. The punch program requires the beginning and

ending addresses of the memory area that is to be stored on tape.

The read program needs only the beginning address, since the end is

signalled by an 020 punch.

The punch program is used in the following manner: The begin

ning and ending addresses to be dumped to tape are placed at 000207

and 000212, respectively. Location 000170 is examined and the

RUN switch is toggled. The program genrates a number of 37s for

the leader. The contents of consecutive memory locations are then

punched. At the end ofthe tape, an 020 octal is punched, followed by

an additional leader. Final termination of the program occurs in a

tight loop (i.e., an unconditional jump to itself). At this point, the

STOP switch may be toggled.

278

Data

OCTAL

000

001

002

003

004

005

006

007

010

011

012

013

014

015

016

017

Table 4-9. Data

CODE

BAUDOT EQUIVALENT

<BLANK>

<E>

<LF>

<A>

<SPACE>

<S>

<l>

<u>

<CR>

<D>

<R>

<J>

<N*s

<F>

fiC>

<K>

and Control Codes.

CONTROL CODE

OCTAL BAUDOT EQUIVALENT

020 <T>

021 <Z>

022 <L>

023 <W>

024 <H>

025 <Y>

026 <P>

027 <Q>

030 <0>

031

032 <G>

033 <FGS>

034 <M>

035 <X>

036 <V>

037 <LTR>

The tape reader program is used in the following way: The

address where the tape is to begin storing data is loaded at 000127.

Location 000123 is examined and the RUN switch is toggled. After

execution has begun, the TD is started with the tape in the beginning

leader. When the program is finished, the front panel light pattern

will change as a tight loop is entered. STOP may then be toggled.

The program or data should be correctly stored in memory.

In the event you have a Model 19 punch and TD but not a

reperforator, you can still make programs by hand. Figure 4-15 is a

software modification that outputs Baudot characters to the printer

as they should be punched by hand. The program supplies automatic

carriage returns and line feeds. A "Z" is printed at the end of each

line so that SPACEs may be detected. You will note in Table 4-9 that

data codes include CR, BLANK and LF (line feed). These would

either confuse the printout or not be printed, so the modification

software makes the following substitutions:

B is printed for BLANK

L is printed for LF

X is printed for CR

Use the procedure outlined above for punching tape with the modifi

cation program loaded at 000271. The characters to be punched will

be output to the printer in order. Then use the printout to hand

punch the paper tape. A button on top of the punching unit can be

used with the LTR key to punch all holes for error correction. When

279

Table 4-10. Reading and Punch Program: Model

TAG MNEMONIC

TREAD* LXISP

LXI H

L00P2 « LXIB

L00P1 PSH B

CALL

POPB

CPI

SELF JZ

JNC

ADRC

RLC

RLC

RLC

RLC

MOV C, A

DCRB

JNZ

ADDRESS

000123

000124

000125

000126

000127

000130

000131

000132

000133

000134

000135

000136

000137

000140

000141

000142

000143

000144

000145

000146

000147

000150

000151

000152

000153

000154

000155

000156

000157

000160

000161

000162

CODE

061

377

003

041

XXX

XXX

001

000

002

305

315

000

000

301

376

020

312

143

000

322

134

000

201

007

007

007

007

117

005

302

134

000

19 and Model 14.

EXPLANATION

Load the stack

pointer

SP(LOW)

SP (HIGH)

Load HL with

memory load

address

Low part of

address

High part of

address

Preset B to 2 and C

toO

Save B and C

CALL INPUT

ROUTINE

INPUT (LOW)

INPUT (HIGH)

Restore B and C

Check for end of

tape

<T>
Form tight loop for

end

SELF(LOW)

SELF (HIGH)

Ignore other

control codes

LOOP1 (LOW)

LOOP1 (HIGH)

First Pass: get

least 4 bits

Second Pass: get

highest 4 bits

Check for second

pass

Jump back for

second pass

LOOP1 (LOW)

LOOP1 (HIGH)

280

TAG MNEMONIC

MOVMA

INX H

JMP

TPUNCH**LXI SP

MVI B

LOOP1 MVI A

LOOP1 CALL

DCRB

JNZ

LXI H

LXI D

MOV A, H

CMPD

JNZ

MOV A, L

CMPE

JZ

ADDRESS

000163

000164

000165

000166

000167

000170

000171

000172

000173

000174

000175

000176

000177

000200

000201

000202

000203

000204

000205

000206

000207

000210

000211

000212

000213

000214

000215

000216

000217

000220

000221

000222

000223

CODE

167

043

303

131

000

061

377

003

006

036

076

037

315

273

000

005

302

175

000

041

XXX

XXX

021

yyy

yyy

174

272

302

226

000

175

273

312

EXPLANATION

Store byte in

memory

Increment to next

memory location

Jump back for new

byte

L00P2 (LOW)

L00P2 (HIGH)

Load the stack

pointer

SP(LOW)

SP(HIGH)

Load B with leader

count

30 decimal

Load A with

<LTR>
<LTR>

CALLTAPEOUT

ROUTINE

TAPEOUT (LOW)

TAPEOUT (HIGH)

Decrement Leader

count

Jump back for more

Leader

LOOP1 (LOW)

L00P1 (HIGH)

LOAD Starting

Address in HL

Low part of Address

High part of Address

LOAD Ending

Address in DE

Low part of Address

High partof Address

Check for end of

Load

Compare High

Address

If not same, Jump

to CONT

CONT(LOW)

CONT (HIGH)

Compare Low

Address

If same, Jump to

END

continued on page 282

281

TAG MNEMONIC

CONT MOV A, M

CALL

MOV A, M

RLC

RLC

RLC

RLC

CALL

INXH

JMP

END MVI A

CALL

MVI B

LOOP2 MVI A

CALL

DCRB

ADDRESS

000224

000225

000226

000227

000230

000231

000232

000233

000234

000235

000236

000237

000240

000241

000242

000243

000244

000245

000246

000247

000250

000251

000252

000253

000254

000255

000256

000257

000260

000261

000262

CODE

246

000

176

315

271

000

176

007

007

007

007

315

271

000

043

303

211

000

076

020

315

273

000

006

120

076

037

315

273

000

005

EXPLANATION

END (LOW)

END (HIGH)

Get memory byte

into A

CALL TAPEOUT

ROUTINE [Special

TAPEOUT [Special

(LOW)

TAPEOUT [Special

(HIGH)

Get memory byte

again into A

Reposition upper

four bits

CALL TAPEOUT

ROUTINE [Special]

TAPEOUT [Special]

(LOW)

TAPEOUT [Special]

(HIGH)

Increment to next

memory byte

Jump back to

AGAIN

AGAIN (LOW)

AGAIN (HIGH)

Load A with stop

code<T>

CALL TAPEOUT

ROUTINE

Load B with

Leader count

Load A with

< LTR > for
Leader

<LTR>

CALL TAPEOUT

ROUTINE

TAPEOUT (LOW)

TAPEOUT (HIGH)

Decrement Leader

count

282

TAG MNEMONIC

JNZ

SELF JMP

TAPEOUT ANI

[Special]

TAPEOUT PSH B

PSH A

CALL

POP A

POPB

RET

. ADDRESS

000263

000264

000265

000266

000267

000270

000271

000272

000273

000274

000275

000276

000277

000300

000301

000302

* TAPE READ PROGRAM

** TAPE PUNCH PROGRAM

CODE

302

255

000

303

266

000

346

017

305

365

315

042

000

361

301

311

EXPLANATION

If not finished,

Jump back to

L00P2

LOOP2 (LOW)

LOOP2 (HIGH)

Jump to SELF to

end

SELF (LOW)

SELF (HIGH)

Mask off upper four

bits

SaveB

Save A

CALL OUTPUT

ROUTINE

OUTPUT (LOW)

OUTPUT (HIGH)

Restore A

Restore B

Return to calling

program

making the tape, be sure to use the LTR key to make the leader.

This manual way of making a paper tape is quite tedious, but it will

allow you to become familiar with the binary tape system. Figure

4-15 shows a paper tape punched by the Model 14 under computer

control.

The Polymorphics Video Board

For someone who is primarily a software oriented person, I

seem to do a lot of hardware building. In September, 1974,1 started

building TVT-I. I got it working in December and had it connected to

my Altair 8800 in December, 1975. A friend, also with an Altair, built

TVT-II and it was so much faster and better designed that I sold my

TVT-I and built a TVT-II. I didn't keep detailed notes on the

construction of these two projects, but I learn from my mistakes.

When another friend showed me his Polymorphics video board, I

knew I was doomed. This video board plugs directly into the Altair or

IMSAI bus, eliminating a large boxfull of power supply, TVT-II and

cables, and frees the parallel I/O port I used with the TVT-II. This

time I kept notes on the subject. The kit is of good quality and there

should be no more than the normal problems puting it together;

283

a.

• •• •••

• ••

••*

• •

•••••♦

b EAKKABT

C. ADDRESS

000123

000124

000125

> LEADER CODE

ooon
>06l OCTAL

001 \)

1 1 1 0
> 377 OCTAL

1 1 1 1J

oo i O
^003 OCTAL

ooooj

} END CODE

^LEADER CODE

CODE

061

377

003

Fig. 4-15. (A) Binary papertape made by punch program; (B) Printout of modified

version fo punch program; (C) Memory area used for sample run.

nevertheless, there are some pitfalls. I will explain the ones I

encountered and how to solve them.

The video board appears to theprogram to be a block ofrandom

access memory which is constantly displayed on your monitor or

modified TV. The display has sixteen lines which may be either 32

character lines ($185) or 64 character lines ($210). The 32 character

lines will probably work with a modified TV which has a bandwidth of

2.5 MHz, but the 64 character lines may require a monitor, as they

284

need a bandwidth of 5.5 MHz. The memory uses 91L11 chips and

acts as a normal memory. It can be used for program or data storage

in addition to its normal uses. Data may be entered into any of its

memory locations at any time, giving the capability of scrolling,

paging, columns, fixed format eintry or any other display mode you

would like to use. This flexibility also requires suitable program

ming.

An 8-bit parallel input port is built into the video board so that a

keyboard may be attached, thus giving both input and output from

one board. Unfortunately, there is no corresponding status port for

this input port, so the program must check the data to see if it has

changed in order to know when new data is available—again, more

programming overhead.

The 6572 character generator chip provided with the kit gives

128 ASCII characters, including upper and lower case, numbers and

special symbols. Lower case Greek letters print in place of the

ASCII control characters. Other chips in the same series may be

substituted, giving different special symbols instead of the Greek

letters. The graphics display is handled external to the 6572 chip.

The character space is broken up into six spaces—three rows of two

blocks each, giving 64 possible graphics characters. The blocks

cover the entire character space so that the entire screen may be

made light with no spaces between characters.

Buying The Kit

When I decided that their kit would satisfy my needs, I called

Polymorphics and asked them to send me a kit.

I've learned several things from the boards that I've already

built. I use sockets for all ICs (socket come with the Polymorphics

video board) and I test all of the parts that I can test. These two

things can save hours of time later in the project when it doesn't

work.

The first thing I did when I opened the box was to look at the

instruction book. This is an impressive manual ofabout 72 pages and

covers assembly, theory, troubleshooting and software. The sec

tion on troubleshooting is especially impressive as many kits have no

such section. Polymorphics devoted 16 pages to troubleshooting,

arranged in a logical manner. Hopefully you won't need it, but it's

nice to know that it will help give you a better understanding of the

circuits involved.

Building The Kit

The first part of kitbuilding is checking the parts supplied

against the parts list. I was missing a 27 pF capacitor and a 150 ohm

285

TAG

TAPEOUT

[Special]

TAPEOUT

PRNTB

PRNTL

PRNTX

Table 4-11.

MNEMONIC

ANI

CPI

JZ

CPI

JZ

CPI

JZ

LXI D

MVI A

LXI D

MVI A

LXI D

MVI A

PSH B

CALL

POPB

LDA

INR A

STA

ANI

RNZ

MVI A

Modification for

ADDRESS

000271

000272

000273

000274

000275

000276

000277

000300

000301

000302

000303

000304

000305

000306

000307

000310

000311

000312

000313

000314

000315

000316

000317

000320

000321

000322

000323

000324

000325

000326

000327

000330

000331

000332

000333

000334

000335

000336

000337

000340

000341

000342

000343

Model 19

CODE

346

017

376

000

312

313

000

376

002

312

316

000

376

010

312

321

000

021

076

031

021

076

022

021

076

035

305

315

042

000

301

072

364

000

074

062

364

000

346

077

300

076

021

System Only.

EXPLANATION

Mask off upper four

bits

Check for

<BLANK>
<BLANK>

If so, Jump to

PRNTB

PRNTB (LOW)

PRNTB (HIGH)

Check for < LF >

<LF>
If so, Jump to

PRNTL

PRNTL (LOW)

PRNTL (HIGH)

Check for <CR>
<CR>
If so, Jump to

PRNTX

PRNTX (LOW)

PRNTX (HIGH)

Dummy: Skip

instruction

PlaceinA

Dummy: Skip

instruction

Place<L>in A
<L>
Dummy: Skip

instruction

Place<X>inA
<X>
Save BC

CALL OUTPUT

ROUTINE

OUTPUT (LOW)

OUTPUT (HIGH)

Restore BC

Place COUNT in A

COUNT (LOW)

COUNT (HIGH)

Increment COUNT

by one

Store in COUNT

COUNT (LOW)

COUNT (HIGH)

Check for end of

line

Return if not

Place<Z>inA
<Z>

286

Table 4-11. Modification for Model 19 System

TAG MNEMONIC

PSH B

CALL

MVI A

CALL

MVI A

CALL

POPB

ADDRESS

000344

000345

000346

000347

000350

000351

000352

000353

000354

000355

000356

000357

000360

000361

000362

000363

Only, continued from page 286

CODE

305

315

042

000

076

010

315

042

000

076

002

315

042

000

301

311

EXPLANATION

Save BC

CALL OUTPUT

ROUTINE

OUTPUT (LOW)

OUTPUT (HIGH)

Place<CR>inA
<CR>
CALL OUTPUT

ROUTINE

OUTPUT (LOW)

OUTPUT (HIGH)

Place<LF>inA
<LF>

CALL OUTPUT

ROUTINE

OUTPUT (LOW)

OUTPUT (HIGH)

Restore BC

Return to Calling

program

resistor, but it turned out that neither part was used in the kit. A

1N75912V zener diode was also missing, but a 78L12 was supplied
instead. An extra 10 uF electrolytic capacitor was included and was
used in the kit.

Having determined which parts were supplied, the next step

was to test all that I could. It is much easier to find a shorted

capacitor, for example, when you have not yet mounted it than it is

to find it when you discover that your board doesn't work! The

resistors supplied with my kit were all within tolerance, but I found

that one end of one 10k ohm trimpot was open. I was able to use it for

R22, so it caused no problem. I checked the capacitors for shorts and

observed the charging of those over .01 uF. All capacitors tested

good. All diode and transistor junction resistances (forward and

backward) were good. By inspection I found a solder bridge on one of

the ICs. This is not uncommon and can cause a lot of grief if it isn't

found before the IC is mounted.

The Assembly

The assembly instructions are aimed toward the person who

has had some prior kit-building experience. A drawing of the board is

given showing the locations of the various parts. Each part is listed

with a space to check as each is soldered in place. The drawing in my

manual was smeared in places so that I couldn't read the parts labels.

I was able to get the needed information from a friend with a

287

Polymorphics video manual with a clear drawing. There were also

two pages missingfrom my manual which I was able to copyfrom his.

Further confusion can arise from C25, which is labeled .01 uF on the

schematic but is given as 4700pF in the assembly instructions (4700

is correct). The polarity is not given for one of the electrolytic

capacitors and is shown reversed on the schematic for one of the

others. It may be obvious to everyone but me, but I still think that a

note should be included telling which way to orient the trimpots so

that they can be adjusted while the board is in operation. I also think

that instructions on connecting the video output cable should be

included.

In all, construction time was probably well under 10 hours, but

it is hard to tell when the time available to work on it comes in blocks

of30 minutes or less. In any event, the moment of truth finally came.

I plugged it in and turned the power on. A few quick adjustments of

the horizontal and vertical controls on my monitor and viola—a

screen with funny-looking characters on the left side of the screen

and wavy lines running from top to bottom. The characters didn't

look too good either. A quick voltage check showed 6.6 volts instead

of 5.0. Replacing the 7805 regulator brought the voltage down to an

acceptable 5.06 volts. I decided that it is worthwhile to test voltage

regulators also. Somewhat afraid that, after the 6.6 volts, I now had

a board of write-only memory, I tried again. No ripple this time and

the voltage was good, but the characters were still all at the left side

of the screen and still looked funny. I could enter characters or

change them but they looked like negative images. I had used

twinlead to connect the board to my monitor because I didn't have

any coax handy. (No cable is supplied with the kit.) My eagle-eyed

friend pointed out that I had reversed the connections to the

monitor, thus reversing the video. This also caused the monitor to

sync on the first white square (black in the negative image) on each

line, thus preventing me from centering the display. Changing the

cable restored a positive image and fixed the sync. The board now

worked just fine with respect to hardware.

Apparently there is a problem with some monitors due to the

fact that the video board operates at 17.094 kHz, which is above the

normal horizontal sweep frequency. Instructions are given to lower

the board's frequency if required. It is also possible to use an

onboard crystal to obtain any desired sweep frequency. Normally

the signals are divided down from the 2 MHz clock on the CPU

board. This modification was not needed with my Sanyo VM-4092

monitor.

288

Software

Because the board is so versatile, the software to control it is

complex and lengthy. For paging, the control software must deter

mine where the character is to be put, control a cursor if desired and

watch for end of page. Line feed and carriage return instructions

must be intercepted and handled as well as any optional commands

you wish to implement, such as backspace or backline, etc. One

problem which could have been avoided is the fact that the board

looks at the most significant bit to determine whether to display an

ASCII character or a graphic character. If the bit is a 1, the ASCII is

displayed. Most packaged software, such as MITS BASIC, will

mask this bit to a zero so the video control software must also fix this

bit.

Polymorphics includes a listing of a program to control their

board. It allows for input from their keyboard using interrupts to

determine when data is valid. The program offers quite versatile

control of the display. Home, erase, right, left, down, delete charac

ter, insert character, etc., as well as optional paging or scrolling, are

available under software control. The video control routine is 455

bytes long and is given as an assembly listing in hexadecimal. It uses

memory locations 0 through 44 and 1D00 through 1E83. The board

is assumed to start at memory location 8800 hex. This is a lot more

overhead than a simple I/O port which might use 20 bytes. The best

idea is to put the driver routine in PROM. Another disadvantage is

that this video output will not be compatible with other packaged

software such as MITS BASIC, although such programs can be

modified to call the video driver.

Another program listing is included in the manual. This one

plays the game ofLIFE. LIFE loads intomemory locations 0 through

0106 hex and also uses blocks of memory starting at 300 and 800

hex.

Since I work in octal, don't have an assembler operating and

these routines overlay my control programs, I don't have either Qf

them loaded yet. Both are well-documented with comments, though

neither appears to use structured program techniques. It should not

be difficult to get them running.

Overall, the kit seems well-designed. Except for a bad part (the

voltage regulator) and my own stupidity (the reversed video cable),

the board would have worked the first time. Even if it hadn't, the

troubleshooting section seems well thought out and requires no test

equipment but a voltmeter and your monitor.

289

Chapter 5

Computers and

the Ham Shack

For several years I have experimented with, built and operated

different items of SSTV equipment. From that experience I tried my

hand at building an all solid state RTTY TVT. In monitoring ham

RTTY transmissions on the West Coast, it was noted that the

subject of microcomputers and their application to ham radio was

being discussed in increasing frequency. My curiosity was aroused

about this new development in ham radio.

I was fortunate in being able to visit Dr. Robert SudingW0LMD

several times during business trips, and observed the development

of the microcomputer that is now marketed by The Digital Group of

Denver, Colorado. For my hands-on experiments in microcomput

ers, I purchased their type 8080-4BD kit. I feel that I was probably

like other hams and did not have the slightest notion ofhow this thing

worked, but figured to just jump in and have a go at it. I must say it

has been a very interesting project. I am slowly learning to live with

the new system and to use it in some practical applications.

A Ham's Computer

The 8080-4BD system as shown in the block diagram ofFig. 5-1

consists of several PC boards and the components that must be

mounted on the boards. This includes the standard mother board, a

CPU board with 2K of memory, an 8K memory board using 2102

ICs, a video display, cassette interface board and a four-port parallel

I/O board. The mother board will accommodate two more 8K

291

memory boards and three more four-port I/O boards. Low profile

sockets are used for mounting all ICs. An unmounted surplus

keyboard with ASCII encoded output was also purchased from The

Digital Group.

A12 inch transistorized black and white TV set was used for the

video display. The display consists of 16 lines of 32 characters per

line. For the cassette read and write modes, I use a Superscope

Model C-104 as recommended in the technical literature that ac

companies the kit. Power supplies in both kit and assembled form

are available from The Digital Group, but I chose to build my own.

The cabinet for the mother board, PC boards and power supply was

salvaged from an old obsolete tube transmitter. I also fabricated a

cabinet for the keyboard assembly. The TV set was modified to

accept video input from the computer.

Included in the parts from The Digital Group is a prerecorded

tape cassette that is used to initialize the system and to test out the

memory card. It also has a game program, a program to make the

unit act as a digital counter, a bicentennial demonstration program

and a ham CW and RTTY program. The bicentennial program on the

tape prints an American flag on the TV screen to the accompaniment

of The Star Spangled Banner.

Assembly of the System

It is stressed in the data furnished with the kit that the builder

should have some experience in building electronic equipment other

than assembling detailed kits from Benton Harbor. The data does

not give that kind of step-by-step instructions. The quality of the PC

boards is first class, with gold-plated connector contacts and

double-sided boards with through-plated holes. General instructions

on how to assemble each PC board are given with a description of

how the circuit works. A schematic diagram is furnished for each

board, along with a general parts layout for that particular board.

Testing and troubleshooting information is also furnished in the data

package.

In assembling my system, I discovered one board that was

missing all the bypass capacitors. They were immediately replaced

when The Digital Group was advised of the shortage. Another board

had one low cost IC missing which I replaced from my junk box.

Another board had one extra IC in the kit. After the unit was finally

assembled and ready to test, I ran into several bugs. The characters

on the video monitor were not complete, and it looked more like a

foreign language than English. I found, after consultation with Dr.

Suding, that I had a bit missing on the data lines going into the video

292

1
2
I
N
C
H

T
V

M
O
N
I
T
O
R

A
S
C
I
I

E
N
C
O
D
E
D

K
E
Y
B
O
A
R
D

C
A
S
S
E
T
T
E

T
A
P
E

R
E
C
O
R
D
E
R

S
T
A
N
D
A
R
D
M
O
T
H
E
R
B
O
A
R
D

E
X
P
A
N
S
I
O
N
F
O
R
-

3
E
A
8
K
M
E
M
O
R
Y
B
O
A
R
D
S

4
E
A
4
P
O
R
T

I
/
O
B
O
A
R
D
S

-
J

L
_

4
P
O
R
T

I
/
O

B
O
A
R
D

1

<

t
_

♦

V
-
C
A
S
S
E
T
!

I
N
T
E
R
F
A
C
E

r
E

B
O
A
R
D

*

i
-
J

U

8
0
8
0
C
P
U

A
N
D

2
K
M
E
M
O
R
Y

#
B
O
A
R
D

P
O
W
E
R

S
U
P
P
L
Y

^
5
V

-
5
V

♦
1
2
V

-
1
2
V

—
i

L
_

8
K
M
E
M
O
R
Y

B
O
A
R
D

*

R
g
.

5-
1.

B
l
o
c
k
d
i
a
g
r
a
m

of
m
i
c
r
o
c
o
m
p
u
t
e
r
s
y
s
t
e
m

at
K
7
Y
Z
Z
.

'
I
t
e
m
s
b
a
s
i
c
t
o
t
h
e
8
0
8
0
-
4
B
D

ki
t.

board. This was determined to be caused by a lack of through-plating

in one of the holes in the mother board. The next bug was that a

portion of the dot structure was missing in the characters being

displayed. This was found to be caused by a defective Motorola

(MCM 6571L) character generator chip which was promptly re

placed (once again) by The Digital Group. The last bug was that the

encoder chip (Tl TMS-5000) in the keyboard had to be replaced (as

one row of keys was dead). With those bugs out of the way the

system worked as designed.

The power supply shown in the diagram of Fig. 5-2 was

homemade, and provides all the voltages required at the specified

current loads. I had to salvage an old 6.3 volt 20 Amp transformer

and rewind it with a new secondary for the high current 5 volt load. A

second winding was also added for the +12 volt line. The crowbar

circuit was added to protect all those expensive ICs on the memory

and CPU card. Discussions with Dr. Suding indicated that anything

less than 50,000 uF in the 5 volt power supply filter might lead to

unwanted noise problems. I located just what was needed in a local

surplus store and ended up with a 55,000 uF unit.

The cabinet for the computer is lSVfe inches wide by 9 inches

high by 12 inches deep. I cut two large square holes in the top and

riveted in a perforated grille for better circulation of cooling air. A 4

inch fan is mounted on the compartment divider bulkhead between

the power supply compartment and the PC board compartment. The

air is directly over those warm memory chips. I have had no prob

lems with overheated ICs. The MPC-1000 5 volt 10 Amp regulator

is mounted on a very large heat sink on the back bulkhead, out in the

open air. This way it does not dump its heat into the unit.

The 12 inch TV set was modified Fig. 5-3. The level of the video

signal from the computer was more than the TV set could handle,

and required additional line loading before the set began to display

the signal on the screen at an acceptable brightness and contrast

level. The builder should not use a TV set that does not have apower

transformer providing power line isolation. Be sure that the set does

not have a hot chassis with series string heater tubes. That type will

really fry the ICs in a computer.

I found that when playing the cassette into the computer I could

not monitor the audio signal, so I modified the recorder by adding a

100 ohm resistor across the output jack switch contacts so that the

speaker was in the circuit even when an audio line plug was con

nected to the recorder output. It is convenient to monitor the mark

frequency tone as the program playback begins and ends.

294

T
R
A
N
S
F
O
R
M
E
R

!
2
2
L

I
60

Hz

-
L
.
O
I

1
1
7
V

1
2
V

2
A

1
2
V

2
A

C
A
S
E

;.
oo

i

_
.
R
A
D
I
O
S
H
A
C
K

^
2
7
6
-
1
1
3
6

T

L
M
3
2
O
-
I
2

2
7
6
-
1
1
3
6

♦
|
2
0
0
0
m
F

2
5
V

L
M
3
2
O
-
5

©
3

|
2
o
-

8 01
Fi
g.

5-
2.

P
o
w
e
r
s
u
p
p
l
y
fo
r
T
h
e

Di
gi
ta
l
G
r
o
u
p
8
0
8
0
-
4
B
D
.

■i

2
N
6
8
8

"
i
t 1
5
0
0
M
F

1
6
V

f
h

-
5

Initial Test

When power is applied to the system there should appear on the

top of the TV screen "Read 8080 INITIALIZE Cassette." If this

message appears, all is well. The first program on the audio cassette

furnished with the kit is loaded in the recorder. At the start of the

mark frequency tone the reset button on the computer is depressed

for a moment. The computer then begins to accept the digital data

recorded on the tape. As the data is loaded into the computer, the

TV screen will display lines of a running series of numbers beginning

with 1 through 7, and back to 0 through 7, until the program is

loaded. This represents each page of program data being loaded into

memory. At the end of the program tape, the mark tone will return

and the screen will display "8080 OP SYSTEM" and the options.

Selecting item 4 of this listing (hit key 4) will permit the operator to

begin generating a program from the keyboard beginning at page 6.

Program development using this tape will be in the octal code

format. Other prerecorded programs on the tape, such as the

Memory Check are used to determine if all of the memory ICs are

alright. The tape for that program is loaded and key 6 is depressed.

The TV screen goes blank until all the memory chips are tested.

Then, if all is OK, an alpha sign appears in the upper left hand corner

of the screen and another run is automatically begun. Each success

ful test provides another alpha figure on the screen. For the 2K

memory the check time is just a few seconds; for the 10K memory it

takes about a minute to run the test. If a defective memory IC is

located, it will stop the test and print on the TV screen which IC is

defective and on which circuit board the IC is located. This really

works, as I tried some known bum chips and it located them very

promptly.

At first I was very apprehensive about pushing that RESET

button, or switching off the power to clear the memory for a new

program entry, but after a while I found that it did not damage the

machine. I became more confident of the machine and its operation.

Operation

The Digital Group has established a branch called The Digital

Group Software Systems, which supplies cassettes of games and

other items, such as a Tiny BASIC Extended. I obtained all the

games (that are available to date), including the Tiny BASIC Ex

tended. Most of the games are written in Tiny BASIC and must have

the Tiny BASIC program loaded in the computer before they can be

played. The machine is turned on, and when the initialization state-

296

V
I
D
E
O

O
U
T
P
U
T

B
V
I
D
E
O

D
E
T
.

1
4
-

2
N
4
4
0
2

M
O
N
I
T
O
R
/
^
v

VI
DE

O
®

I
N
P
U
T
T

M
O
N
.

i
£
l

1
S
T

V
I
D
E
O

A
M
P

2
K

I
—

I I I

Fi
g.

5-
3.

(A
)
T
V

ci
rc

ui
t
b
e
f
o
r
e
mo
di
fi
ca
ti
on
;

(B
)
T
V

ci
rc
ui
t
af

te
r
mo
di
fi
ca
ti
on
.

ment appears on the TV screen the Tiny BASIC tape is loaded. Then

the selected game tape is loaded by keying 1 on the keyboard when

the mark tone appears at the beginning of the tape.

The blackjack game is fun to play, and some of the locally

trained (Las Vegas) experts tell me it is a very well written program.

It has all of the game's rules well executed. I condensed all of my

games onto two tapes. I recorded the Tiny BASIC program at the

beginning of each tape and then recorded around 10 to 12 games on

each tape. There is still plenty of tape left for additional games. The

magnetic tape cassettes are of the 30 to 46 minute type. Longer

tapes are too thin to make good recordings of digital data.

A new ham cassette is in the works at The Digital Group

Software Systems and will have expanded capability for both sending

and receiving CW and RTTY (with up to eight storage slots of 100

characters each).

I have had some success at trying to program some games

using the Tiny BASIC Extended. (Incidentally, the Tiny BASIC

Extended does not have floating decimal or square root math capabil
ity.) I feel that these programming efforts have been the most

informative and effective way to learn just what you can and cannot

do with the machine. Also, you can be sure that it will tell the

operator when he has goofed, in no uncertain terms.

The construction of the microcomputer turned out to be no

more difficult than most SSTV construction projects. The biggest

problem is acquiring an understanding of the machine and learning

the Tiny BASIC Extended language. Computer terminology is al

most like listening to a foreign language. I can assure the reader that

after continued exposure to this new technology the terms and

functions will begin to make sense. I should also like to warn the

reader that this machine is addictive. You will find yourself sitting in

front of that keyboard for hours trying out first one thing, then

another. It is absolutely fascinating.

The First Computer-Controlled Ham Station

The microprocessor has established itself as one of the most

useful and versatile products on the electronic market to date. It is

not too surprising that many amateurs are experimenting with and

using microprocessors in conjunction with their radio hobby. The

applications for microprocessors within amateur radio are as varied

as the individual imagination, the best part being that a

microprocessor-based implementation of a complex function is rela-

298

tively simple compared to its discrete component counterpart and is

much more flexible. I will attempt to give the reader an overview of

what I've done with an Altair 8800 microprocessor-based system
and a radioteletype station.

Definitions of Terminology

A few definitions are in order before I get too far. These are my

own definitions and are not necessarily rigorous.

• Microprocessor—An integrated circuit (sometimes sev

eral integrated circuits) which will perform a number of

varied operations according to a list of instructions stored in

memory; a computer on an integrated circuit. I have been

using the words microprocessor, processor and computer

almost interchangeably.

• Instruction set—A list of logical, mathematical or man

ipulatory operations that a processor will perform on data

stored in memory or within the internal register structure of

the processor.

• Hardware—The actual collection of electronic compo

nents, wire and other assorted items that makes up the

computer system.

• Program—A sequence of instructions (selected from the

instruction set) and data which directs the operation of the

processor to accomplish a given task. A program is stored in

memory while it is in use.

• Bit—The smallest unit of memory. A bit may be either on

or off, logical one or logical zero.

• Byte—Eight bits. The byte has come to be a standard

measure ofmemory. Hang around a couple computer freaks

and you will hear one of them ask how much memory so and

so has. If the answer is over 8 thousand bytes you should be

suitably impressed. If, on the other hand, the answer is

some small number like 256 then you should say something

like "What can he do with that?" If the number of bytes is

given in so many K, for instance 32K, that is the same as

saying 32 thousand except that it is easier. By the way,

whenever someone is talking about memory, a thousand (or

a K) usually means 1024. It's easier to say 16 thousand, or

16K, than 16,384.

• Word—A unit of memory consisting of a somewhat arbit

rary number of bits, the number being defined by the par

ticular processor used. It is the number of bits that the

299

processor operates on at any one time (don't quote me on

that since there are always exceptions). The most common

word size for a microprocessor is 8 bits, or one byte.

Memory—The medium which stores programs and data

such that the processor has access to any word at any time.

Mass storage—A medium which is used for long term or

large volume storage of information. Examples are magne

tic tape, paper tape and magnetic disc. I distinguish mass

storage from normal memory on the basis that information

stored on a mass storage device must be transferred to

normal memory before it can be used by the processor.

Software—Programs. Programs are called software be

cause they can be modified without too much trouble as

compared to modifying a piece of hardware.

Firmware—The exception to the last definition. Some

times programs are stored in a special type of memory that

cannot be modified by the processor (except in very special

cases or if the processor begins to burn). These programs

are called firmware because it is not as much trouble to

modify a firmware program as it is to modify hardware, but it

requires more profanity to fix an error in a firmware prog

ram than is normally associated with changing software. See

the next three definitions.

ROM—Read only memory. A type of memory that is prog

rammed during manufacture. The contents of a ROM can

not be changed except by destruction.

PROM—Programmable read only memory. A read only

memory that can be programmed in the field by the user

(meaning you). It is more useful to the amateur market than

ROM since programming charges for small quantities of

ROM (less than several thousand) are prohibitive.

EPROM—Erasable, programmable read only memory.

Same as PROM except that it may be erased by high

intensity ultraviolet light and re-programmed. There is also

a new type of ROM being introduced which is electrically

alterable. It is called EAROM for electrically alterable read

only memory. The main thing about ROM, PROM, EPROM

and EAROM is that it doesn't forget what it knows when the

power goes off.

RAM—Random access memory. This type of memory can

be read by the processor and modified by the processor. It

also tends to forget what it knows if the power goes off

unless it is magnetic core memory. Most microcomputers

300

use solid state RAM since core memory is expensive and

comparatively hard to use and uses much more power. Still,

you will hear people talk about how much core they have

even when they mean solid state RAM.

• FIFO—First-in-first-out buffer. A type of memory buffer

which stores information (usually characters) in such a way

that the characters are expelled from the memory (when

requested) in the same order in which they were originally

entered. Many radioteletype stations use such devices to

stimulate the paper tape punch/paper tape reader combina

tion which can be used to allow an operator to type informa

tion ahead of the transmitter.

• UART—Universal asynchronous transmitter/receiver. A

circuit which converts serial data to parallel data and vice

versa.

The Inspiration

When I first got into radioteletype I never imagined that I would

ever need or want anything beyond my RTTY converter (ST-6) and

my Model 19 teletype machine. After operating my station for a

couple years, I had talked to guys who had video displays, selective

call-up, time/date prestidigitizers, UARTs, FIFOs and all manner of

other equipment better than mine. Hardly anyone knew what a

Model 19 was except that it made a lot of noise. Pretty soon my ears

confirmed the suspicion that a Model 19 is not as quiet as it could be.

Then one day some guy told me what UART stood for and how to

use one. I decided to build a super station.

I made a list of all the features I wanted to include in my ultimate

teletype station. The major items were to be a video display, a solid

state keyboard, use of UARTs and FIFOs, selective call-up, time/

date generation and a message board. Minor items were added,

deleted and modified almost daily at the outset of the design project.

The first major sign of trouble appeared when I was considering

methods to edit a 72-80 character line down to 64 characters so it

would fit on my display. The most obvious idea is to break the line on

a space if it occurs near the end of the line. For this purpose one has

to consider the line feed character to be equivalent to a space. I was

talking to some station up in Nova Scotia and telling him about this

when I noticed that he, like many amateurs including myself from

time to time, had the habit of ending a sentence, sending 10-20

periods (or dashes), and then beginning a new sentence. This could

result in split words or lines beginning with umpteen punctuation

301

marks if I simply looked for spaces to break my lines on the display. It

began to look like I would have to settle for some funny looking print

occasionally. I was willing to accept that, so I plunged ahead. But, by

the time I was actually near the point of building anything, the

designs had gotten to be so complex and inflexible that I wanted to

wander onto 1-71 pulling my Model 19 right behind. Then I heard

rumblings about the eventual legalization of ASCII for use on the

amateur bands and all but gave up on the project.

One day, in the depths of despair, I read an article on recent

microprocessor breakthroughs which had brought prices down to

affordable levels. It didn't take too long to realize that by simply

interfacing the various components of my station to a computer, I

would be able to simulate all of the desired features by writing

appropriate software. In addition, I would be able to write programs

that would do all sorts of other things I had never even considered

building because of their complexity (e.g., almost automatic contest

operation). Time/date and selective call-up would be trivial. A FIFO

could be simulated by software with the addition of elaborate editing

capabilities. The legalization of ASCII would cause no problems

since I could copy any code (including Morse) by doing the approp

riate code conversion. I could evenhave the system whistle "Dixie."

The Realization

The block diagram of Fig. 5-4 shows the configuration that I

finally decided to use. It is not as optimum as it could be, since it

would be desirable to have a completely separate interface for the

cassette recorder. However, it is reasonable to use the RTTY

demodulator and AFSK generator for storing data on an audio

cassette since it involves no additional construction other than a

switch or two. I needed to get something going to fill the time it

would take to get a dedicated cassette interface going. Besides,

using normal AFSK for cassette recording will probably turn out to

be one of the best ways for amateurs to exchange software.

The keyboard is a solid state keyboard (many types are avail

able from the various surplus houses) which generates a seven bit

code (ASCII). The interface for the keyboard is a simple parallel

input port.

The Heath SB-301 and SB-401 are monitored and keyed

through the ST-6 demodulator and a UART. A control channel

allows the processor to select the shift, reverse the shift, select the

speed of the UART, turn the transmitter on and off and send make

break or narrow shift CW. It is pretty simple, consisting of the

UART and some latches to provide the necessary control.

302

S
B
-
3
0
3
/
4
0
1 1

k
i

C
O
N
T
R
O
L

C
H
A
N
N
E
L

t

S
T
-
6

F
i
g
.
!

U
A
R
T
A
N
D

P
A
T
H
C
O
N
T
R
O
L

t
A
F
S
K

U
A
R
T
A
N
D

L
O
O
P
D
R
I
V
E
R

j

A
L
T
A
I
R
8
8
0
0

(
8
0
8
0
-
B
A
S
E
D
)

C
O
M
P
U
T
E
R

-
«

*
»
■

T
E
L
E
T
r
P
f
c
T
A
B
L
E

(
P
R
I
N
T
E
R
,
T
A
P
E

R
E
A
D
E
R
,
K
E
Y
B
O
A
R
D
,

A
N
D
R
E
P
E
R
F
O
R
A
T
O
R
)

V
I
D
E
O

D
I
S
P
L
A
Y

1
t

5-
4.

B
l
o
c
k
d
i
a
g
r
a
m
.

A
U
D
I
O

C
A
S
S
E
T
T
E

K
E
Y
B
O
A
R
D

The video display is a home brew display and is the most useful

item in the system next to the processor itself. It will display 29 lines

of 64 characters per line in both upper and lower case, plus a few

Greek symbols. The memory of the display is large enough to hold

32 lines of information but I have displayed only 29 lines to avoid

uncomfortably close line spacing. The processor treats the display

as normal memory rather than as an output device, and can read

from or write to the display memory at a very fast rate. The actual

rate depends on the program controlling the read or write functions.

An upper limit for the transfer rate is about 2 million characters per

second, the typical rate being closer to 100,000 characters per

second. The high read/write speeds mean that there is no need to

build extra hardware for scrolling the display—one simply writes a

short program that reads each character of the display and re-writes

it on the next line up. Scrolling the entire display then takes about 50

milliseconds of processor time. Another advantage of this technique

is that the display can be partitioned into several sectors and each

sector can be scrolled independently of the other sectors.

Another feature of the display is that each character can be

controlled on an individual basis to produce a black character in a box

of white. I use the video inversion feature for displaying cursors,

which means that I can have as many cursors roaming around as I

desire.

The teletype equipment (my old Model 19) is interfaced

through a UART and simple loop driver and sensor. I use the

teletype for producing hard copy of my programs, my logs and for

printing teletype art. It also serves as an excellent backup system for

making and reading paper tapes in case the cassette recorder de

cides to give up the ghost.

The Sting

The first practical use I made of the system was as an operating

aid in BARTG RTTY contest. I had just finished putting the system

together and had gotten a resident assembler running (a resident

assembler is an extremely valuable programming tool) when I was

invited to bring my system to Albuquerque as a display entry in the

Systems Demonstration Contest of the World Altair Computer Con

vention. It happened that the convention was the same weekend as

the BARTG contest. In four long evenings I wrote a contest prog

ram that would enable me to operate the contest from the conven

tion while I was devoting most ofmy attention to telling people about

the system.

304

The processor listened to the receiver through the ST-6 and

UART. When I was tuned to a valid RTTY signal, the information

was edited and displayed in one area of the video display. If I saw a

station that I wished to work, I typed in the call of that station. The

computer would instantly tell me if I had already worked the station

or not. At the same time it would enter the call of the station, the

current time and the contact number on a line of the display that I had

reserved for developing log entries. The only other piece ofinforma

tion that I needed to type was the signal report I wished to send to

the station. By using special two letter commands, I could have the

computer call the station (or answer him if he was calling me), send

the entire exchange, tell him that I QSL or ask him to repeat the

exchange, or tell him that this was a duplicate contact. Other two

letter commands allowed me to request the computer to send CQ

and call QRZ. All of the text that the computer generated (which was

complete with callsigns and carriage control) was displayed in

another area of the screen. Upon completion of a contact the compu

ter would turn on the printer and print a hard copy of all information

required in the contest log. If a contact was started and not com

pleted, then no log entry was made. The only information saved in

memory after a valid contact was the callsign and a tag byte to

indicate which bands the station had worked so the computer could

do the duplicate checking. The computer also handled generation of

the CW identification, when necessary.

The result was that I walked away with the first place prize in

the system display contest, a floppy disc drive. Needless to say, I

have altered my plans concerning construction ofa separate cassette

interface and will be devoting my time to writing software to utilize

the disc drive as my mass storage device.

So far I have only scratched the surface of the many possibilities

for use of a microprocessor in the RTTY area alone. Other obvious

uses for microprocessors within amateur radio include repeater

control, CW reception and transmission, antenna control (for

OSCAR or moonbounce especially) and who knows what else. A less

obvious but equally or more useful application is digital filtering. Slow

scan to fast scan conversion would also be another interesting

possibility.

A Ham Shack File Handler

This is a simple program in BASIC which will keep track ofyour
QSLs and also give you information on the repeaters that you may
wish to use. The program may also be extended to provide other

305

Table 5-1. A Sample Run of the Ham File.

RUN

REPEATER AND QSL FILE

FOR REPEATERS USE LAST THREE LETTERS OR FREQUENCY AS 13/73

OR CITY NAME. FOR AMATEUR STATIONS USE COMPLETE CALL

STATION? AAA

WR4AAA. 13.73. 190. SALISBURY. NC

END OF SEARCH

STATION? 28,88

WR4ABF. 28/88. 195, SHELBY. NC

END OF SEARCH

STATION? HICKORY

WR4ABF. 25/28 195 HICKORY. NC

END OF SEARCH

STATION? ABQ

NO RECORD IN FILES

STATION? CR6CA

5,26 71. 0015Z. 14MHZ. RTTY. JOE

END OF SEARCH

STATION? K4GV

116 75. 0710P. 2M-FM. TED

12 5 75. 0655P. 2M-FM. TED

END OF SEARCH

STATION? W2ABC

NO RECORD IN FILES

STATION*? W4BQ

THATS YOU. STUPID'

END OF SEARCH

STATION''

OK

functions in logkeeping, but it was kept simple to give the hams who

are new computer freaks a chance to get acquainted with their new

toy. It is written in Altair BASIC version 3.2, but could be easily

modified to any other BASIC.

Station Operation

A sample readout (Table 5-1) shows that information about a

repeater can be obtained by replying to the initial question of the

computer ("STATION?") with the last three letters of the repeater

call, such as "AAA" or by typing in the frequency pair as "37/97," or

even by typing in the location city as "SHELBY." If your input is a

city name, all the repeaters in that city will be printed and the same

goes for the repeater frequency pairs, but only one repeater will be

printed for each call. If you should be working in an area which

crosses district boundaries, and the same last three letters have

1306

MINT

"EN© Of

UAftCH*

mint
heading and
instkuct.ons

PRINT

DATA

SET

'RECORD
POUND'
FLAG

1
SET

'RECOf

POUNC
PLAG

0

SET

"SB"
FLAG

"I

SET

FLAG

i

SET

'RECORD
POUND*
PLAG

Fig. 5-5. Program flow chart

307

been assigned to repeaters that you work, then the identifier should

be expanded to include the district number (e.g., "3AAA" and

"4AAA").

For information from the log on amateur QSLs, the "STA

TION?" request is followed by typing in the full call of the amateur

station.

After the computer prints the information on repeaters or

amateur stations, it will print "END OF SEARCH" and then return

to "STATION?" for the next request. If the requested information is

not in the file, the computer will print "NO RECORD IN FILES" and

go back to "STATION?"

The Program

Additions or deletions to the file are accomplished by using the

Altair BASIC command "CLOAD," which brings the program into

the computer from cassette. A new entry is made by simply adding a

new line for each new station, repeater or even additional QSLs with

a previously logged station. After the updating has been performed,

the program (Fig. 5-5) is then put back on cassette using the

"CSAVE" command.

The memory required for the listing shown in Table 5-2 takes

about 1250 bytes and a typical entry takes about 45 bytes. The

program could be expanded to provide readouts for summaries of

QSLs by districts or foreign countries. This could be done by adding

an "OR" phrase as was done in the repeater section of the program,

but as mentioned at the start, this program has been kept simple.

However, it is a practical operating program and is in use at my

station. The listing as shown shows only a small portion of my log

files.

Computer Logger

I decided that a computer which prints log sheets was the type

ofprojectFd like to pursue. Unfortunately, I do not have access to a

computer using FORTRAN, haven't the foggiest notion of how

FORTRAN IV works and was reluctant to impose on people who do.

However, I have just finished a half-year course in BASIC program

ming on the PDP-8/e and decided that this was more my speed. This

final fact placed the objective within my grasp.

The program, as shown in Fig. 5-6, is relatively straight

forward for anyone familiar with BASIC. Almost all commands in the

program have been abbreviated to their three letter abbreviations.

The back slashes allow more than one command to be placed on a

308

T
a
b
l
e
5-

2.
P
r
o
g
r
a
m

Li
st
.

L
I
S
T

5
R
E
M
H
A
M

F
I
L
E

I
N
A
L
T
A
I
R

B
A
S
I
C
B
Y
G
E
O
R
G
E
L

H
A
L
L
E
R

1
0
P
R
I
N
T
:
P
R
!
N
T

2
0
P
R
I
N
T
"
R
E
P
E
A
T
E
R
A
N
D

Q
S
L

F
I
L
E
"

3
0
P
R
I
N
T

4
0
P
R
I
N
T
"
F
O
R

R
E
P
E
A
T
E
R
S

U
S
E

L
A
S
T
T
H
R
E
E

L
E
T
T
E
R
S
O
R

F
R
E
Q
U
E
N
C
Y
A
S

1
3
/
7
3
"

5
0
P
R
I
N
T
"
O
R

C
I
T
Y
N
A
M
E
,
F
O
R
A
M
A
T
E
U
R

S
T
A
T
I
O
N
S
U
S
E
C
O
M
P
L
E
T
E
C
A
L
L
"

6
0
P
R
I
N
T
:
P
R
I
N
T

7
0
J
N
P
U
T
"
S
T
A
T
I
O
N

"
;
A
$

8
0
F
=
0
:
R
E
M
R
E
S
E
T
"
R
E
C
O
R
D
F
O
U
N
D
"

F
L
A
G

1
0
0

IF
A
$
=
"
A
A
A
"
O
R

A
$
=
"
1
3
/
7
3
"
O
R

A
$
=
"
S
A
L
I
S
B
U
R
Y
"
T
H
E
N
G
O
S
U
B

3
0
0

1
1
0

IF
A
$
=
"
A
B
F
"
O
R

A
$
=
"
2
8
/
8
8
"
O
R

A
$
=
"
S
H
E
L
B
Y
"
T
H
E
N
G
O
S
U
B

3
1
0

1
3
0

IF
A
$
=
"
A
C
M
"
O
R

A
$
=
"
2
5
/
8
5
"
O
R

A
$
=
"
H
I
C
K
O
R
Y
"
T
H
E
N
G
O
S
U
B

3
3
0

2
8
0

IF
F
>
0
T
H
E
N

1
0
0
0
:
R
E
M

IF
R
E
P
E
A
T
E
R

IS
F
O
U
N
D

2
9
0
G
O
T
O

4
0
0
:
R
E
M
J
U
M
P
S
R
E
P
E
A
T
E
R
S
U
B
R
O
U
T
I
N
E
S

3
0
0
P
R
I
N
T
"
W
R
4
A
A
A
,

1
3
/
7
3
,

1
9
0
,
S
A
L
I
S
B
U
R
Y
,

N
C
.
"
:
F
=
1
:
R
E
T
U
R
N

3
1
0
P
R
I
N
T
"
W
R
4
A
B
F
,

2
8
/
8
8
,

19
5,

S
H
E
L
B
Y
,

N
C
"
:
F
=
1
:
R
E
T
U
R
N

3
3
0
P
R
I
N
T
"
W
R
4
A
C
M
.

2
5
/
8
5
.

1
9
5
.
H
I
C
K
O
R
Y
.
N
C
"
:
F
=
1
:
R
E
T
U
R
N

4
0
0

IF
A
$
=
"
W
4
B
Q
"
T
H
E
N

P
R
I
N
T
'
T
H
A
T
'
S
Y
O
U
,

S
T
U
P
I
D
!
"
:
F
=
1

4
1
0

IF
A
$
=
"
H
B
9
H
K
"
T
H
E
N

P
R
I
N
T

"
7
/
2
0
/
7
3
,

2
0
3
0
Z
,

1
4
M
H
Z
,

R
T
T
Y
,

W
I
L
L
Y
"
:
F
=
1

4
2
0

IF
A
$
=
"
C
R
6
C
A
"
T
H
E
N

P
R
I
N
T

"
5
/
2
6
/
7
1
,

0
0
1
5
Z
,

1
4
M
H
Z
,

R
T
T
Y
,

J
0
E
"
:
F
=
1

4
3
0

IF
A
$
=
"
O
A
4
B
R
"
T
H
E
N

P
R
I
N
T

"
7
/
3
/
7
4
,

0
9
1
5
Z
,

1
4
M
H
Z
,

R
T
T
Y
,

Z
I
P
"
:
F
=
1

4
4
0

IF
A
$
=
"
J
H
1
T
F
F
"
T
H
E
N

P
R
I
N
T

"
5
/
2
7
/
7
4
,

1
1
5
0
Z
,

1
4
M
H
Z
,

R
T
T
Y
,

D
0
C
"
:
F
=
1

4
5
0

IF
A
$
=
"
K
J
6
B
Z
"
T
H
E
N

P
R
I
N
T

"
7
/
6
/
7
3
,

0
2
0
0
Z
,

1
4
M
H
Z
,

R
T
T
Y
,
G
E
O
R
G
E
"
:
F
=
1

4
6
0

IF
A
$
=
"
K
4
G
V
"
T
H
E
N

P
R
I
N
T

"
1
1
/
6
/
7
5
,

0
7
1
0
P
,
2
M
-
F
M
,
T
E
D
"
:
F
=
1

4
7
0

IF
A
$
=
"
W
4
M
Y
G
"
T
H
E
N

P
R
I
N
T

"
1
1
/
3
/
7
5
,

0
7
2
5
P
,
2
M
-
F
M
,

R
A
Y
"
:
F
=
1

4
8
0

IF
A
$
=
"
K
4
G
V
"
T
H
E
N

P
R
I
N
T

"
1
2
/
5
/
7
5
,

0
6
5
5
P
,
2
M
-
F
M
,
T
E
D
"
:
F
=
1

4
9
0

I
F
A
f
c
=
"
K
4
F
Z
"
T
H
E
N

P
R
I
N
T

"
2
/
1
7
/
7
6
.
0
4
3
0
P

1
4
M
H
Z
r
S
S
T
V

B
O
B
"
:
F
=
1

1
0
0
0
P
R
I
N
T

1
0
1
0

IF
F
>
0
T
H
E
N

P
R
I
N
T
'
E
N
D
O
F
S
E
A
R
C
H
"
:
G
O
T
O

6
0

1
0
2
0
P
R
I
N
T
"
N
O
R
E
C
O
R
D

I
N
F
I
L
E
S
"
:
G
O
T
O

6
0

O
K

H
e
a
d
i
n
g

—
&

I
n
s
t
r
u
c
t
i
o
n
s

I
n
p
u
t
S
t
a
t
i
o
n
R
e
q
u
e
s
t
&

R
e
s
e
t
"
R
e
c
o
r
d
F
o
u
n
d
"

F
l
a
g

R
e
p
e
a
t
e
r
R
e
c
o
g
n
i
t
i
o
n

S
y
m
b
o
l
s

R
e
p
e
a
t
e
r
S
u
b
r
o
u
t
i
n
e
s

—
(
T
h
e
n
u
m
b
e
r

a
f
t
e
r
t
h
e
f
r
e
q
u
e
n
c
y
p
a
i
r

is
t
h
e

a
n
t
e
n
n
a
d
i
r
e
c
t
i
o
n
b
e
a
r
i
n
g
f
r
o
m
m
y

s
t
a
t
i
o
n
)

S
t
a
t
i
o
n
Q
S
L
C
o
m
p
a
r
e

R
o
u
t
i
n
e
s

line. Inputs are provided for the number of QSOs per log page and

number of pages desired, while string variables are input for the

printing at the top of each log page of name, QTH and callsign of the

operator. These inputs allows for the user's own information and

allow more than one person to use the same program.

I found the elimination of a column for power necessary due to

the fact that standard teletype paper is only 8Vfc inches wide. Not

enough room would remain for other information if I included a

column for power. Since most people usually use the same power on

any given mode, I included the power designation at the top of each

page for CWand voice modes. If desired, the power to be used could

be entered in the other column.

The judicious use of semicolons, commas and quotation marks

containing a number of spaces creates the proper spacing in the page

heading. This technique also extends the last name of the operator

and city name to a maximum of 12 characters (string length is a

maximum of six characters with the PDP-8/e).

Obviously, the most efficient way to execute the program

would be on a high speed line printer. However, it would be just as

easy to get the computer to its task and have it print your log book on

a TTY while you sleep (if you can stand the noise).

One final note: This program is by no means hard and fast. It is

readily adaptable to the whims of the user. From this basic format,

one could print special contest logs to accommodate for special

exchanges or print a log expressly for the traffic handler. The

possibilities are almost infinite.

Print Your Own Log Book

Several days ago, I stopped in at the local ham store to purchase

a log book. And, to my amazement, the ARRL Log Books were

priced at $2.00 each. I felt that something had to be done to help

combat this inflation, so I decided I could print my own logs (Fig. 5-7)

on the computer at work. Agreed, not everyone has access to an

IBM 370 Model 165 and 155 back to back. However, there are a lot

of computers around, and who knows, the guy down the block just

might run the program for you.

The program was written in Fortran IV because of simplicity,

and can be compiled by a large number of computers.

The computer program is punched into IBM cards on an IBM

029 Keypunch. The JCL (Job Control Language) was not included

because each computer installation has its own uniqueJCL. And, you

will need to know the JCL at the particular computer site you use.

310

READY

LIST

5 ftEK PROGRAM BY JIM BERETS

\Z PRI"AKATEJR RADIO STATION LOG BOOK. HCW MANY 7AGES"*NlNPj»

20 PRP'Al INPUT PO\tER(VATrS)MS\INPC\PAr*A3 INPUT PQtfERC7EP>"*AINPS
30 PRP'YOUK FIRST NAME'MMKPA*
40 PR I "FIRST 6 LETTEHS OF LAST NAH£"JMNPBS
5C PR 1 "NEXT 6 LETTERS OF LAST MAME"1\1NPCS

«0 PRI"FIRST 6 LETTERS OF CITY NAME"J\INPDS
79 PRI"NEXT * LETTERS OF CITY NAME'S\INPES

tiB PRI"STATE"I\INPFS

90 PRI"CALL"*AINPGS

100 PRI "QSOS PER PAGE'MMNPA

105 PflINPRINPRI\FORT-l TO N

110 PftI\PRl\PftI\PRl"AMATEUR RADIO STATION LOG FOR "i

120 PR IAS J" "JBSJCSJ"* tf;GS# "LOCATED IN"*D*JES*FS

130 PRI"EXCEPT AS NOTEC ALL Al QSOS"JCS"WATTS* ALL A) QSOS"J

140 PRISJ**WATTS."\PRI

160 PRI'* TIME EMISS RPRT

170 PR I"DATE STATION START END FREQ HIS MINE OTHEft dSL
160 F0RJ-1T0A

190 PRI** I I I I X I I S h

80S PRI - - - — ...-.—

210 NEXJ

215 PRI\PRINPRI

220 NEXTT

230 PRX\PRX\PRI\END

READY

RUN

AMATEUR RADIO STATION LOO BOOK* HOW MANY PA6EST 8
Al INPUT P(WERCVATTS>T 180

A3 INPUT POWIRCPEP)? 840

YOUR FIRST NAME? JAMES

FIRST 6 LETTERS OF LAST NAME? BERETS

NEXT 6 LETTERS OF LAST NAME?

FIRST 6 LETTERS OF CITY NAME? STAMFO
NEXT 6 LETTERS OF CITY NAME? RD
STATE? CONN.

CALL? VA1U0U

OSCS PER PAQE? 4

AMATEUR RADIO STATION LOO FOR JAMES BERETS* VA1U0U LOCATED IN
STAMFORD CONN.

EXCEPT AS NOTED ALL Al QSOS 100 WATTS, ALL A3 GSOS 840 WATTS.

DATE STA1

I

I

I

I

riON START EN

I I

I

I

I

I

I

I

D FREQ HIS

I 1 I

I

I

I

I

I

X

1

I

I

MINE OTHER

I

I

I

I

tSL

S R

S R

S R

* A

AMATEUR RADIO STATION LOG FOR JAMES BERETS* WA1U0U LOCATED IN
STAMFORD CONN.

EXCEPT AS NOTED ALL Al QSOS 180 WATTS* ALL A3 dSOS 240 WATTS*

TIME EMISS RPRT

DATE STATION* START END FREQ HIS CINE OTHEh QSL

I I I I I I I S R

I

I

1

I

I

I

I

I

I

I

I

I

I

I

I

1

I

I

I

I

I

£ h

S A

i R

Fig. 5-6. Program.

311

T
I
P

3!

?
K
*
C
U

U
N
D
E
R
T
E
S
T

v
c
c

r
h

CL
OS

ED
^R

ES
CT

/P
UL

SE
MO

DE

Fi
g.

5-
7.

T
h
e
S
u
p
e
r
p
r
o
b
e
.
C
3

is
t
w
o
s
m
a
l
l
6
0
u
F
c
a
p
s
w
i
r
e
d

in
pa
ra
ll
el
.

T
a
b
l
e
5
-
3
.
L
o
g
B
o
o
k
P
r
o
g
r
a
m
.

C
O

C
O

1 2 3 4 5 6 7 8 9
1
0

1
1
1
2

1
3
1
4

1
5
1
6

1
7

1
8

1
9

2
0

2
1

2
2

S
J
O
B

D
O

9
M
«
l
t
1
5

W
R
I
T
E
(
6
,
1
|

1
F
O
R
M
A
T
!
M
M

W
P
!
T
F
C
6
«
2
>

2
F
O
R
M
A
T
!
'

•
•
!
3
0
!
f
-
M
)

W
R
I
T
E
!
6
«
3
)

3
F
O
R
M
A
T
!
•

•
#
•
!

1
C
A
L
L

W
R
I
T
E
!
6
,
2
>

W
R
I
T
E
!
6
,
4
)

4
F
O
R
M
A
T
!
•

•
•
•
I

1
E
0
.

|
M
O
D
E

W
R
I
T
E
!
6
#
5
>

5
F
O
R
M
A
T
!
•

•
*
•
1

1
1

W
R
I
T
E
{
6
»
2
)

D
O

7
K
=
l
*
2
4

W
R
1
T
E
!
6
«
6
>

6
F
O
R
M
A
T
!
•

•
•
•
1

1
1

7
W
R
I
T
F
!
6
«
2
)

9
W
R
I
T
E
!
6
»
3
)
M

8
F
O
R
M
A
T
!
/
^

f
*
f
P

W
R
I
T
E
!
6
«
1

)

S
T
O
P

F
N
D

S
E
N
T
R
Y

A
M
A
T
E
U
R

R
A
D
I
O

S
T
A
T
I
O
N

L
O
G

O
F

W
A
Y
N
E

G
R
E
E
N

W
2
N
S
D
/
1

T
f
M
F

I
N
G
M
T
»
*
3
3
X
»
•
|
•
I

D
A
T
E

fc
f
S
T
A
T
I
O
N

|
C
A
L
L
E
O

|
H
I
S

|
M
Y

|
F
R

1
P
O
W
E
R

1
T
I
M
F

|
C
O
M
M
E
N
T
S
'
#
2
2
X
.
«
|

O
S
L

|
«
)

T
I
M
E

1
C
A
L
L
E
D

I
B
Y

|
R
S
T

|
R
S
T

I
1
W
A
T
T
S

1
E
N
D
E
D

(
•
•
B
l
X
t
'
l

S
|
R
|
M

1
1

1
t

1
1

1
l
'
«
3
1
X
t
*
|

|
!
•
)

A
G
E
9
•
1
5
I

So why not punch up the program, find a computer and run off

several thousand log sheets on that idle computer?

Superprobe

If the modern technician is going to be successful when working

with digital logic, he must have means of looking inside the circuit.

The most common way in the industry is with the use of an oscillo

scope or logic analyzer. Both of these instruments are great, but the

cost puts them out of reach for most experimenters.

The Superprobe was designed to be an inexpensive piece of

test gear which will provide the necessary insight into the digital

circuit under test. This probe is not a toy, and will provide the user

with almost as much information as a $3,000 oscilloscope, when

dealing with TTL or DTL logic.

The probe has several desirable features, aside from the ex

pected 1 and 0 indication. The first is a pulse stretcher and pulse

memory. Any time a high to low or low to high transition takes place,

the pulse LED will flash. The flash will be visible even with very

narrow pulses, since the probe will stretch the pulse width to a

visible flash. If the probe is in the memory mode, the pulse LED will

remain lit until reset by the operator, capturing any stray pulse.

Another important feature is high impedance input. It will not load

the circuit under test. The input is protected by the zener action of

the input transistors, with current limited by Rl, in the event the

probe is touched to high voltage.

Yet another feature of this probe is that if the tip is touched to an

open circuit, or to a chain of floating inputs, no light will light, thus

identifying this condition immediately. The entire circuit uses only

two inexpensive TTL ICs, three transistors, and can be built into a

handy, hand-held probe. The unit shown in Table 5-3 was built by

W6ILT. On this very fine unit, Carl used a section of fiber tube for

the body, and cast a tip using casting resin (with a glass cigar tube as

a mold). A bit of polishing, drilling and handwork gives his probe a

professional look. The wire coming out of the top of the unit is for

power, which is taken from the unit under test. For a complete parts

list, see Table 5-4.

Eight Trace Scope Adapter

Probably the most frustrating problem faced when designing

digital circuitry is control of timing. After working out a design on

paper, one usually breadboards the circuit to prove it out. In accor

dance with Murphy's well-known laws, there will be several logic

314

Table 5-4. Parts List.

IC1—SN7404IC

IC2—SN7400 IC

Q1, Q3—2N3904 transistor

Q2—2N3906 transistor

CR1, 2, 3, 4—1N914 diode

R1—1k 1/4 Watt resistor

R2—10k 1/4Watt resistor |

R3-9—470 Ohm 'AWatt resistors

C1, C2—200 pF capacitor

C3—120 uF capacitor (2 small

60 uF in parallel)

C4—.1 uF disc capacitor

LED 1-3—Any type/color LED desired

errors which will then be apparent but very elusive. Depending upon

the complexity of the design, the errors may be (but usually are not)

easily located and corrected.

A number of tools are helpful in tracking down these

problems—the logic probe and oscilloscope probably being the most

helpful. A logic probe establishes the steady-state status of various

points in the circuit, but tells nothing about pulse widths or repetition

rates. The oscilloscope is used to visually illustrate these

waveshapes, pulse widths and repetition rates. What most scopes

do not show is the time relationship between pulses at different

locations in the circuit. Sometimes this relationship is crucial in

searching out a problem that may be caused by glitches (extremely

short pulses caused by unexpected and unwanted time overlaps).

Well-equipped laboratories use special multi-channel logic scopes for

this sort of work, but most of us are not equipped with the kilobuck

pocketbook required to manage this. Even a dual channel high speed

scope requires a considerable investment.

While such a scope would be most welcome in any experiment

er's laboratory, most of us must settle for a relatively inexpensive

general purpose scope. Fortunately, it is neither difficult nor expen

sive to build an adapter to display multi-channel logic signals. The

adapter permits viewing up to eight channels of logic signals simul

taneously, and thereby examination of the relative timing between

them. Although analog waveshapes cannot be displayed (you can use

your scope without the adapter for this function), it will show the low

or high states, in precise time positions, of any signals present in

TTL or DTL circuits.

Almost any general purpose scope should work with this a-

dapter, but it is recommended that it be equipped with a triggered

315

sweep (Figs. 5-8 through 5-10). The viewing of simple repetitive

signals without a triggered sweep can be frustrating enough, but

attempting to lock onto one of eight channels being displayed may be

virtually impossible. If you are using a scope without this feature, I

highly recommend that you consider adding a new triggered sweep,

even if you do not build this adapter. Scope bandwidth is not critical

unless you are working with really high speed, and a 4 MHz

bandwidth will let you examine almost all you need to see. You must

have a way to externally trigger the scope sweep, and you will have

to find the sweep signal or blanking pulse to permit changing the

input channels during the retrace interval.

The circuit itself is very simple. A small capacitor couples the

scope sweep circuit to a voltage comparator (you may find it neces

sary to adjust the size of the capacitor for reliable trace switching).

The sweep retrace causes a negative excursion at pin 3 of the

LM311, forcing its output to go high. Each time this occurs, a 16

stage counter advances one count. Three output bits of the counter

are connected to an eight-to-one 9312 multiplexer, which selects

each input in turn, and outputs to pin 15. Ifmostofyourworkisatthe

lowerfrequencies, use the low order 3 bits of the counter, instead of

the 3 high order bits shown. When using the 3 high order bits, you

may use the adapter with a dual channel scope operating in the

alternate mode.

A ladder network commonly used for digital to analog conver

sion is used to position each channel on the screen. The resistors

should be well matched (i.e., 1 percent), but satisfactory results

have been experienced with 5 percent units. If your display is not

evenly spaced vertically, try swapping resistors in this network for

best spacing. The variable capacitor is used to compensate for the

scope input capacitance, and should be adjusted for best

waveshapes. The output potentiometer will not be required in most

instances, and should not be used unless essential. Note th^t a 74161

or 9316 synchronous counter is recommended, rather than a 7493 or

similar asynchronous type. It is unlikely that propagation delays in an

asychronous counter would result in viewable glitches on the scope

in this application, but it is good design practice to always use a

synchronous counter where the output states are decoded and fed

back to the counter.

The adapter may be built on a small printed circuit board (note

the IC polarity!) and installed inside your scope. However, it may be

very conveniently enclosed in a small box which can be located near

and powered from the digital project, and coupled to the scope via

cables. You will need the usual vertical input cable and a sweep-out

316

I
N
P
U
T
S

8
3
1
2
/
9
3
1
2

*
5
V

M
U
L
T
I
P
L
E
X
E
R

f
1
6

6
.
8
p
F

8
-
5
0
p
F

■
S
O

S
I

S
2

1
0

M
1
2

1
3

♦
5
V T'
6l

»
I"

1
3

1
2

1
5

5
.
6
K

1
4

II

T
C
O
A
O
B
O
C
0
0

E
p
g

7
4
1
6
1
/
9
3
1
6
C
O
U
N
T
E
R

M
R

C
O
A
O
B
O
C
D
O

E

2
K

|
3
.
9
K

m

2
K

2
K

3
9
K

3
9
K

I
K

♦
5
V

6
8
0

L
M
3
I
I

S
C
O
P
E

Y
I
N
P
U
T

O
P
T
I
O
N
A
L

:
«
^
—
»
O
P
T
H

X
V|
P 6
.
8
p
F

Fi
g.

5-
8.

S
c
h
e
m
a
t
i
c
.

signal. Many scopes have an Ext jack for horizontal input, which is

permanently connected to the input of the horizontal amplifier. When

the sweep is running, this also happens to be the output of the sweep

generator.

Should you experience difficulty in obtaining a stable trace, the

sweep circuit may not be advancing the counter properly. Try a

different spot in the sweep circuit first. You may find it necessary to

invert the signal by using pin 2 of the LM311 (grounding pin 3) if the

signal is reversed in polarity. The 74161 counts on a rising edge, and

reverse polarity will cause the channel change to occur in mid-

sweep, with obvious visible distortion. You may find experimenting

with the size of the sweep input capacitor to be helpful, but be careful

to avoid distorting the sweep. The scope will not be as bright as

usual, as the trace is being timeshared among eight signals. A slight

adjustment of the brightness control compensates for this. The

variable capacitor is adjusted for best waveform using a 10 kHz or

higher digital pulse. A 74151 multiplexer is functionally identical, but

not pin compatible, with the 9312 unit. The LM311 comes in either a

mini-dip or TO-5 package. As the pin-outs are identical, either may

be used with the circuit board shown.

Using your multi-trace scope is a delightful experience: You see

all of those signals at the same time, and can really tell what is going

on. Remember that you must trigger the sweep from the slowest

signal you are viewing; otherwise, you will not be able to sync the

slower signals. Also, be aware that the inputs are not protected in

any way, and connection to potentials outside of the proper logic

levels will destroy the multiplexer IC. Protective diodes may be

added on the input lines to give marginal security, but care, plus a

socket for the 9312, are probably adequate.

The small investment required to construct this unit will be

quickly repaid the first time you use it to track down a problem.

The IC See-er

Having been a dedicated ham and/or electronic freak for many

years, I feel that I can speak with some authority on the subject of

home construction of electronic projects. Unlike an engineer pal of

mine whose motto is, "Never build it if you can buy it," I have one

which is, and has always been, "Never buy it if you can build it." I

have a shop full of electronic residue to prove it.

Until recently I thought that I had run into every form of

frustration possible in the genre—that is, until I started (about six

months ago) my love/hate relationship with the ubiquitous integ-

318

Fi
g.

5-
9.
P
C

b
o
a
r
d

(f
ul
l
si

ze
).

rated circuit. It is my considered opinion that no invention in elec

tronics has caused as much fumble-fingered cussing and soldering

iron-induced frustration as the IC. Well, since I have always wound

up spending more time building the tool to do the job than on doing

the job, here is a gadget that will cost you less than $10.00 to build

(using all new parts), will cure all of the above mentioned evils and

will take the hate out of love/hate.

Yes, I know that there is an outfit that builds a better one, but

this is for guys like me who wouldn't buy one even if we could afford

the $50.00.

I built this in a 7 inches x 7 inches x 2 inches aluminum chassis.

The lens is one ofa pair of condenserlenses from a long since defunct

4 inches x 5 inches Omega enlarger. These little tidbits are 6V4

inches in diameter and weigh in at about 2 pounds apiece. I'm waiting

ion a 1 inch plastic lens to arrive from Edmund Scientific, so I can
build a new improved version.

A collar was fashioned (6 inches in diameter by 2 inches deep)

from scrap, medium hard aluminum, to hold the condenser lens in

place in the chassis (after cutting a 6 inch diameter hole in same).

I do not own a fly cutter large enough to cut a 6 inch circle, so I

fell back on the old-fashioned method of drilling a series of small holes

and chiseling away the metal between them. Since aluminum chassis

are soft, it goes rather quickly and the whole operation took me less

than 10 minutes using a drill press. If you have a hand drill it will pay

you to center punch at proper intervals so that you will not mess up

your nice new chassis. After you have the circle cut, a half round file

will dress the rough edges easily. Before I forget, I split a piece of

spaghetti tubing lengthwise and used it for an edge liner around the

hole. A spot or two of glue and the pressure of the lens keeps it tight,

and it makes a very professional looking finish.

I drilled holes in the sides at the point of balance and inserted

3/16 inch bolts and nuts for the side supports. By adding wing nuts

and lock washers, I created an easily adjustable mount. Two pieces

of Vs inch x 1V4 inches x 7 inches aluminum from an old panel were

used for side supports, and I bolted them to a scrap plate of 5/32 inch

x 8 inches x 8 inches metal that has been kicking around the shop for

years. As you might suspect, I never throw anything away, and this

base is the living proof that it pays.

I must admit both that I should live in a barn and that my wife is a

living, breathing saint (direct from the Old Testament) for putting up

with me. Actually, the mounting of this gadget can be done any

number of ways and this was just the easiest and quickest, consider

ing the weight of the lens. Besides, I was in a hurry to finish as I had a

320

-
I

Fi
g.

5
-
1
0
.
C
o
m
p
o
n
e
n
t

la
yo
ut
.

project waiting to be soldered and I wanted to give the IC See-er a

workout.

Now for the novel lighting arrangement. There are four pilot

light sockets fastened at equally spaced intervals around the outside

of the retaining ring collar. If you decide to go my route on this, I

want to give you a word of caution right now!

Make sure that the sockets are well insulated from each other

and from the metal collar that they are mounted on because I

wired them in series and hooked them across the 115VAC line with a

switch to turn them off and on. The bulbs are Tung-Sol #T313, 28

volt, bayonet base pilot lights. Twenty-eight times four equals 112

volts, and hooked across 115-120 this gives a not brilliant but very

pleasant and quite adequate light for close-up work.

An additional bonus is the high-priced PC board vise (always

give them a little extra for their money). It will be obvious that this

added luxury feature is the really expensive item ofthe project, since

chromed 2 inch paper clamps are selling in our inflated economy for

the munificent price of 27 cents each. I splurged and bought four, so

that I wouldhave extras for a vise to hold larger PC boards. The rest

of the stand is made from odds and ends of 14 inch shafting and old

shaft collars, plus some assorted scraps of aluminum and radio

hardware.

It took me about 2 hours to build this little gadget and, quite

honestly, every ham/experimenter who has been in the lab has tried

to steal it right off the bench, with me watching yet. Suffice to say I

would not part with it for love or money. The one fault it has is that I

made the support legs a little short. Still, it is doing a heck of ajob for

me and in retrospect I don't know how I survived so long without it.

Seals Electronics Memory Board

Upon investigation of the manufacturer of a particular board

(Seal Electronics) at the local computer club, I heard a very strange

rumor. That is, that it was possible to obtain this 8K static memory

board in only 10 days from the date that the order was received. I

was quite sure that it was actually 100 days, but the temptation was

more than I could resist. On June 16th I placed my order.

As soon as I dropped the order in the box I was gripped with

fear, realizing that the interest on my money would probably be

collected by the company for some time, at my expense. I resigned

myself to receiving the memory board in the next year.

On June 23rd the postman came carrying a box 3 inches deep

arid 1 foot square. Sure enough, it was from Seals Electronics. I

322

didn't open the box for a long while. I just stared at the box in

disbelief and was somehow comforted by its shape. This must be a

good sign, I thought.

Finally, I opened the box and peered inside. What a pleasant

surprise. I viewed a large plastic envelope that contained four smal

ler parts packages. All of the components were of top quality. But

what about the board? I quickly tore open the package that contained

the board and examined it. It was beautiful! Not only was it first class

in appearance, but it had no jumper wire holes. It had a solder mask

on both sides and was silk screened on the component side. And,

there was an assembly manual and two other documents.

I began reading the manual and, to my surprise, I could under

stand it. It was written in modern English, and even I could under

stand it. It described the assembly, installation and standby battery

hookup. The theory of operation was described so that it could be

easily interfaced with a home brew project. Could it be that this

manual was written for the hobbyist?

Two more pleasant surprises were yet to come. Upon examin

ing the two remaining documents, I found a multicolor fiill size

printed circuit board layout and a beautifully done foldout schematic

of the board circuitry.

My enjoyment increased as I began construction. I followed the

instructions and the memory began to take shape. First I installed

the diodes, then the resistors, next the regulators and then the

address selection switches. Oh yes, and the socketsl This kit was

supplied with sockets for all ICs! I was becoming convinced that a

tremendous amount ofthought hadgone into the planning ofthis kit.

Another thing that struck me as I continued to build the kit was

that all the holes were the correct size. Not once did I have to file

down a lead and stand on my pliers to insert a component lead

through the board.

The sockets fell into place and I even tried to make a solder

bridge on the board, but was unable to accomplish this due to the

almost foolproof solder mask. I was now convinced that anyone

could build this kit without error if he simply followed the instruc

tions. The last item of construction was the placement of the

capacitors and this also went without a hitch.

Now for the ICs. As I began to insert the ICs in the sockets,

another thought struck me. It was impossible to damage them with

the old soldering iron.

Finished! I quickly looked the board over with my magnifying

glass and, finding no problems, placed it before me with a sigh. After

gloating for a few minutes, I picked up the card and headed for the

323

computer. Snapping the address switches into the proper position, I

then placed the board in the slot and prepared myself for the big

moment. The familiar click of the power switch seemed to be more

meaningful and the whir of the fan and lighting of the LEDs joined in

to indicate that all was okay.

Nowfor the test. First I addressed the memory and deposited a

few bytes of data. Everything seemed to be working. Next I loaded

BASIC into the memory and it worked flawlessly. It worked! And

the first time, too.

When my wife called me to empty the garbage I realized that I

was not dreaming. I began to consider what performance tests I

might use to prove that this memory board was not all that it was

cracked up to be. I was really challenged now, and was determined

to find a problem with this board. After all, there just had to be some

shortcomings somewhere! Besides, my reputation as a skeptic was

at stake.

With these purist concepts in mind, I set out to test my newly

constructed memory board.

My first plan of attack was to prove that no static memory could

come close to my present dynamic memory in low power consump

tion. To accomplish this, I cut the three power leads betweenmy last

extender board and the other boards connected to the computer

bus. I stripped V4 inch of insulation from the free ends of all leads and

melted some solder on the exposed wire to aid in soldering them

during testing. I then resoldered two of the power leads, restoring

normal operation to those two sources of power. I connected my

ammeter between the two remaining leads.

The next step was to install two dynamic boards to give a total

of 8K of memory. Placing them in the test location, I then applied

power and recorded the ammeter reading.

I repeated this process with the two remaining power leads to

the boards, and recorded the results.

Now for the new memory board. I installed it in the same

manner and measured the 5 volt power line (the only one required

for the new memory).

After comparing the results, I was surprised to find that the

new low power static board consumed only 20 per cent more power

than the two dynamic boards. For all practical purposes, the power

consumption is an even swap.

Not being one who gives in easily, I continued my testing. This

particular board was advertised as having the memory of an

elephant, or something to that effect. So I proceeded to examine this

aspect of its operation.

324

There is a very unique feature built into this board; that is, there

is a diode switching network between the normal power line to the

memory and the battery standby line to the memory that is brought

in on pin 14 of the memory board. (This position is not used on the

bus line of the Altair and other similar computers.) This means you

can connect a battery across pin 14 and ground, and when power is

interrupted, the memory is automatically switched to the standby

source to retain memory content.

To test this feature of the memory, I constructed a simple

power supply capable of maintaining three volts under load when

connected to the memory while the computer was turned off. I then

soldered a small piece of wire on the free end of the extender board

at location 14. The positive lead from the supply was connected to

this wire and the negative lead from the supply was connected to

logic ground (pin 50).

Not wanting to start in a small way, I loaded BASIC in the

memory and immediately turned off the power. I waited for a few

minutes, switched on the power, reloaded the first byte of data

(location 0) that was lost by the computer, depressed the run switch

and up came BASIC. This was a milestone in the operation of my

computer system.

I then decided that a longer period of testing was needed. I

followed the same procedure as before, but this time I left the

computer off for 24 hours.

When I returned to resume testing I first touched the memory

regulator heat sinks to determine whether cooling would be neces

sary during standby operation. They were cool! When I powered up

the machine as before, BASIC came up without a problem.

By this time I was completely sold on my new 8K memory. I

was patting myself on the back for what I thought was extremely

good judgment on my part in selecting such a nice piece of equip

ment.

I pondered for some time after the completion of this testing to

be sure that nothing else could be done by me to break down the

resistance of the memory.

It then occurred to me that perhaps a good test would be to

operate the memory with a disc operating system. Since I happened

to have a brother-in-law with such a system, it seemed that a trip to

his place was in order.

Upon arrival, we installed the memory board in his computer

and, as you have probably guessed, it worked perfectly.

In conclusion, I would like to take my hat off to the folks at Seals

Electronics, and to what I believe is a long awaited answer to the

325

dreams of the computer hobbyist. It is obvious that they have done

their homework in producing a kit which can be built with more than a

reasonable expectation that it will work when finished.

If you plan to purchase memory in the future (and who

doesn't?), be sure to include this one on your list of considerations.

326

Chapter 6

Computer Games

The recent arrival of programmable pocket calculators at more
affordable prices offers the serious ham a new tool to improve his DX
through proper antenna orientation. It also gives him a very good

excuse for buying one of those very interesting new calculators that

can be taught to perform in seconds what would otherwise be a
rather messy calculation. After all, with the investment already

made in a two gallon linear, hundred foot tower and stacked yagis, it
would be a shame not to get through the pileup because the antenna

was pointed wrong. So will buying a programmable calculator fix

this? It's not quite that easy, but even if you know nothing of

computer programming and aren't too good in math, you can prog

ram this very useful computation (Table 6-1).

A Programmable Calculator

Before proceeding further, some mention should be made of

current practices among amateurs. All too often an experimenter

utilizes great circle maps or azimuth information determined for a

location considerably different from that of his QTH. This error,

together with the tolerances encountered in orientation toward true

north, mechanical drive backlash, and direction indication, can result

in an appreciable loss of signal strength in the desired direction. The

worst part is that the better the antenna, the less tolerant it is of

error in direction.

327

Table 6-1. User Instructions and Program Form.

HP-55

User Instructions

The problem of finding true north, orienting the antenna, zero

ing out the indicator and backlash error, and using maps and/or

formulas for determining direction are all covered in various publica

tions. Assuming proper attention to all the mechanical requirements

yields, acceptable accuracy, determination of the proper direction is

the next concern. Great circle maps are good if your QTH happens

to be near the map center. Otherwise, you are left with the pin,

328

HP-55

Program Form

DtSPlAV

LINE

01. ,

02.

03.

04.

05.

07.

08.

00.

10.

12.

13.

14.

15.

16.

18.

10.

21.

24.

25.

26.

27.

29.

31.

32.

33.

34.

35.

36.

I 37.

38.

40.

41.

42.

43.

44.

I5-
48.

■ 4y-
48.

40.

CODE

-M
03

61

33

3
13

01

31

"W
22

31

14

SI

34

01

31

13

71

"32
14

34

il
(

(

11

M)

14

31

•48

1

I

1

3-
i#

IT"
~«48
22

-®
51

-66
28

23

•00

*

—

4

COS

RCL

1

f

_

X^y

f

tan

RCL

4

"RCl

1

CM

X

f

tBM-1

RCL

♦

0

RCL

f

X<y*4fl

RCL

4—
X<y-4f

XSy

t

QTO-00

T

9

QTOOO

X Y Z T asmmm

ForOrsggyltoTli
XI ■ 36.167

Lia-t2jH7

womRt

"o

nr

*2 tt>M

a. LI

"•7?-

. ...

1
1

r~ -

".? —i

c- ^

string and globe approach. There are spherical trigonometry for

mulas one can use, but nobody in his right mind would recommend

them. If one is reasonably careful in performing the calculations, a

correct angle can be determined. Whether the angle is positive or

negative, is referenced to north or south, or is the long or short path,

is much in question. After much frustration, I set about to find a

means of determining the azimuth from my QTH to any point on the

329

earth without having to perform any calculations, map perusal or

thinking. Also, I had to find some good use for that HP-55 I had

bought on impulse.

My math was too rusty to rely on, so I engaged a friend and

math major to help develop a formula which not only could be

programmed with a minimum of key strokes, but also permitted the

calculator (not me) to determine the short path with a test and

conditional branch. The basic formula is included in case you need to

modify the instructions for a different instruction sequence (the

algebraic vs. RPN system). For Hewlett-Packard and probably

other RPN types, you can go right to the program.

The procedure to follow is simple. The PRGM switch places

the calculator in the learn position. The program is loaded into

memory by keying in the strokes listed on the Program Form. The

switch is placed in the run position, the BST button sets the program

at the starting point, and you are nearly ready to start. There is some

information that must be loaded into memory (because there wasn't

room in the program for it and it can change for different QTH

locations). This information is the QTH latitude, cosine of this

latitude, QTH longitude and two constants, 180 and 270. The for

mula was derived with east longitudes and north latitudes being

positive numbers. The CHS (change sign) key must be used for

south latitudes and west longitudes. Maybe that doesn't sound too

simple, but it is only done one time. From then on the calculator

displays the short path azimuth to any point if the latitude of the

remote location is entered (ENTER), followed by the longitude, and

the pressing of R/S.

The calculator can be left on in the shack and used to perform

other calculations without affecting the stored program. The HP-55

has a clock for timing QSO IDs or can be used for metric and

temperature conversions needed for foreign contacts. One precau

tion: Run the AC charger cord through grounded braid if there are

large rf fields around. A further suggestion: Determine the azimuths

to a few places in the manner you currently use, take this program to

your friendly calculator dealer and have him check you out before

you spend your money.

The basic formula is:

Azimuth = 270-htan"1

330

cos Xi
tan X cos (I2- li) - tan A.2

sin (I2-I1)

where

Xi =

ll =

X2 =

12 =

latitude of QTH

longitude of QTH

latitude of distant station

longitude of distant station

If the difference of longitudes (I2—li) lies between zero and

180 degrees, then 180 must be subtracted to get the short path
azimuth. Also, to avoid the denominator becoming zero (division by

zero not allowed), some small amount can be added to the home

QTH longitude (like 0.00001) when that constant is entered.
For example (Table 6-2). What is the azimuth from Chicago to

Cairo? (Chicago: 41° 52' N, 87°38' W) Converting to decimal de
grees, keyin41.87STO 1, fcosSTO2,87.63 CHS STO 3,180STO
5, 270 STO 6.

To find the azimuth from Chicago to any place, key in the other
place's latitude and longitude, available from an atlas, map or world
almanac. (Cairo: 30°00' N, 31°14' E) Key in 30 ENTER, 31.23 R/S

and read the answer displayed as 49.35° or 49°20', the clockwise
azimuth from true north.

A No-Cost Digital Clock

If you already own or are contemplating purchasing a prog

rammable calculator, you may want to try a novel method of using

your calculator as a timepiece.

City

Bogota

Calcutta

Canton

LaPaz

Perth

Now York

l.os Angeles

Table 6-2. Practice

Lat.

4.5

23.6

23.1

-16.5

-32.0

40.8

37.8

Examples.

Long.

-74.3

88.4

113.3

-68.4

115.9

-74.0

-122.4

Azimuth

158.6

4.0

339.3

158.8

290.3

91.5

272.9

331

Table 6-3. Program Listing.

Loc

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Code

59

59

59

74

92

00

02

94

37

01

04

22

00

00

33

00

15

32

37

03

05

74

01

94

32

15

34

00

74

92

04

94

22

00

00

01

54

00

94

41

Key

'pause

•pause

•pause

-

0

2

=

X = T

1

4
GTO

0

0

sto

0

CLR

x^t
X = T

3

5

—

1

=

x^t
clr

rcl

0

—

•

4

=

GTO

0

0

1

-f

0
=

R/S

332

My SR-56 calculator is a versatile piece ofhardware, but I have

discovered that, much of the time, I use it for simple functions that

could be done just as effectively on a less expensive machine. The

ability to enter programs that allow the calculator to automatically

solve complex equations makes the SR-56 and other calculators like

it special. After trying out some of the programs suggested by the

manufacturer, I became interested in writingmy own software. One

item that particularly intrigued me was the pause function. This does

just what the name suggests—leaves a short space in the program.

Normally one does not worry about the exact length of the pause,

but, just on a whim, I checked mine. It turned out to be about .62

seconds long. To convert this fraction into whole units that made

more sense, all I had to do was put three pauses in a row, giving a

resulting time of just under three seconds.

Now that the basic time unit was established, it became a simple

matter to write an addition program where a new time was displayed

every two seconds. By using the t-register (conditional branch),

where a number is compared with another number in the memory

and a predetermined command is given, it was simple to have the

calculator replace a. 6 with a 1 at the minute mark and start over with

1.02 and so forth.

Between using the t-register and the pause function, it is

possible to write a 12-hour clock program or even a 10-minute

countdown program that could be used by hams as an ID reminder or

possibly a darkroom timer.

The accompanying program (Tables 6-3 through 6-5) is meant

to serve as a starting point. It can probably be reworked for almost

any programmable calculator. As a novice programmer, I have made

little attempt to hone the program down to minimum size. A variety

of approaches can be taken. I have shown only the one I found most

easy to grasp.

If you need super accuracy, then time programming may not be

for you. But, if you enjoy writing your own calculator programs and

Table 6-4. User Instructions.

Procedure Enter Press Oisplay

1 Enter program

2 Reset and clear RSTCLR 0

3 Sett-register 9 x^t 0
4 Enter initial time 9.6 9.6

5 Start clock R/S
6 Ten-minute mark has

been reached (flashing)

333

Table 6-5. Ten-Minute ID Timer Explanation.

Steps 00-02 This gives a two-second interval.

Steps 03-07 This subtracts .02 (two seconds) from running total.

Steps 08-13 Running total compared to next lowest minute mark.

Steps 14-20 Running total stored, check made to see if it is 0.

Steps 21-25 T-register decremented to next lowest minute mark.

Steps 26-34 Running total lowered to next minute (.4 subtracted).

Steps 35-39 Flashing display for 00 seconds.

would like to show some unique and useful software to your friends,

then give it a try.

Computerized Global Calculations

How many of you keep a hand calculator next to your rig? It's

great to be able to calculate the distance between two places any

where in the world.

When you're working that rare DX in Timbuktu, it's always nice

to drop a tidbit of information like, "I calculate that our QSO spans a

distance of 8346 kilometers, QSL?" Pretty impressive-sounding

information, no doubt, and it's a novel topic for conversation.

After a while, though, you can become tired of doing all of that

number-crunching every time. No doubt some of you have let the bit

bug bite. Either you have picked up some type of microcomputer or

are at least interested in them. If so, let the number-crunching

bother you no more. Let the computer do it!

This project describes a computer program that calculates the

shortest distance between any two points on the globe. All you need

to do is type in the latitude and longitude of any two locations on

Earth, and it prints out the distance in miles and kilometers.

I call the program GLOBAL, for obvious reasons, and it is

written in the programming language BASIC. GLOBAL is listed in

Table 6-6. It is very straightforward and takes very little time to run.

In Table 6-6, statement numbers 40 through 90 have the computer

ask you to input information about your location or the location of the

first station. (If you are holding a three-way QSO, you could tell the

other fellows how far apart they are.) Statements 100 through 180

calculate the parameters for the first station. Unlike other methods,

your station can be located anywhere in the world. So, if you're not in

North America, you can still use the program. Statements 200

through 250 ask you questions about the second station's location,

and statements 280 through 370 calculate the parameters for his

334

location. The actual calculation of distance is carried out from state

ment 390 through 410, and then the distance is output in both miles

and kilometers.

The language BASIC that I used may be slightly different from

the one that you're using, but IVe attempted to make it so that the

Table 6-6. Program Listing For GLOBAL.

10

20

30
40

50

60

70

80

90
100

110

120

130

140

150

160

170

180
190

200

210

220

230

240

250
260

270

280
290

300

310

320

330

340
350

360
370

380

390
400

410

420

430

440

450
460
470

480

PRINT "THIS IS GLOBAL"

PRINT " "

REM INPUT DATA FOR MY LOCATION

PRINT "MY LOCATION IS"

PRINT "LATITUDE(DEG,MIN, 1 FOR NORTH- 0 FOR

INPUT L2,M2,Y

PRINT "LONGITUDE(DEG,MIN, 1 FOR EAST- 0 FOR
INPUT L1fM1,Z

PRINT " "

SOUTH)"

WEST)11

REM CALCULATE CONSTANTS FOR MY LOCATION

L1»(L1+(M1/60))»3.14159/180
L2«(L2+(M2/6O))»3.14159/18O
K1=SIN(L2)

K2=C0S(L2)

IF Z«0 THEN 170

L1.-L1

IF Y»1 THEN 190

K1=-K1

PRINT " "

REM INPUT DATA FOR HIS LOCATION
PRINT "HIS LOCATION IS"

PRINT "LATITUDE(DEG,MINf 1 FOR NORTH-0 FOR
INPUT L4,M4,B

PRINT "LONGITUDE(DEG,MIN, 1 FOR EAST-0 FOR
INPUT L3,M3,A

PRINT " "

REM CALCULATE CONSTANTS FOR HIS LOCATION
L3=(L>(M3/60))»3.14159/180
L4*(L4+(M4/60))»3.14159/180
IF A=1 THEW 330

C1*ABS(L1-L3)
GOTO 340

C1=ABS(LH13)
IF CK3.14159 THEN 360
C1*(2«3.14159)-C1
IF B=1 THEN 390
K1=-K1

REM CALCULATE DISTANCE

A1*(K1«(SIN(L4))WK2»(C0S(L4))*(C0S(C1)))
D=(3.14159/2)-(ATN(A1/(SQR(1-AU2))))
D=69.15#i80n>/3.14159
PRINT " "

REM OUTPUT

PRINT "DISTANCE IN MILES"fD
D1=1.6093»D
PRINT "DISTANCE IN KILOMETRES", D1
STOP

END

SOUTH)*

WEST)"

335

Table 6-7. GLOBAL Runs.

PUN

THIS IS GLOBAL

MY LOCATION IS

LATITUDE(DEG,MIN, 1 FOR NORTH-0 FOB SOUTH)

?*fO,52,1
LONGITUDE(DEG,MIN, 1 FOR EAST-0 FOR WEST)

?73,19,0

HIS LOCATION IS

LATITUDE(DEG,MIN 1 FOR NORTH-0 FOR SOUTH)

722.54,0,0

LONGITDDE(DEGfMIN, 1 FOR EAST-0 FOR WEST)

?if3.15,0,0

DISTANCE IN MILES if793.8V7786
DISTANCE IN KILOMETRES 77H. 7392^1

program will work in most machines. Notice that when inputting

latitude, you must type 1 for north or 0—zero for south latitudes. If

your machine will accept what they call string variables then you

could change the program to accept the letters "N" or "S", or the

words "North" or "South." The same applies for longitude. You will

need to alter the IF statements: 150, 170, 300 and 360. For in

stance, 150 would become: 150IFZ$="W"thenl70. Also, all of the

variables, A, B, YandZ, would need to be changed to A$, B$, Y$and

Z$, since these usually denote string variables.

One other important point is that GLOBAL converts degrees to

radians before calculating. Make sure that your version of BASIC

uses radians for angle calculations. If your BASIC needs degrees,

then you'll have to eliminate the conversion factors (3.14159/180)

from statements 110, 120, 280, 290 and 410, and you'll have to

change pi (3.14159) to the value 180 in statements 340,350 and 400.

One last thing you should know is that part of statement number 400

reads like this: SQR (1-A1+2). The Alt2 means Al to the exponent

2, or Al squared. Some machines may need that written Al**2, or,

if all else fails, just multiply Al by itself (A1*A1). So with these hints

in mind, you should be able to get GLOBAL to perform for you, no

matter what kind of BASIC your machine eats.

Table 6-7 shows the output for two different runs of the prog

ram. The first run calculates the distance between Huntington, Long

Island, NY (40°52'N., 73°19'W.) and Paris, France (48.52°N.

2.2°E.) as a total of 3596 miles. The second run calculates the

336

distance between Huntington and Rio de Janeiro, Brazil (22.54° S.,

43.15°W.) as 4794 miles.

If you get tired of typing in your own location, you can always

calculate LI, L2, Kl and K2 from your location and assign these in

the first statements of your program. You could then eliminate

statements ofyour program. You could then eliminate statements40

through 180. By the way, GLOBAL takes up very little space in

memory, less than IK, and the above measure would reduce it even

more.

A Depth Charge Game

The idea for this project came from a game that appeared in our

school's time-sharing library some time ago. However, this program

has several additional features that can make it very challenging.

Background

Depth Charge is written in BASIC for a Compucolor 8001 which

has 8K of user memory. The program itself doesn't take up nearly

that much. It uses probably half, so it should run on any machine with

4K of play room.

Use of the Compucolor was generously donated by General

Precision Electronics, Inc., in Watertown, Wisconsin, as, at the

time, I didn't have access to our school's time-sharing terminal.

The Game

Picture a coordinate system as in Fig. 6-1. Now, make believe

that it is a section of the ocean. You may make this section as large or

as small as you like, but the coordinate origin (0, 0, 0 as y, x, Depth)

will always be in the southeast corner (on the surface) of the ocean.

Somewhere within the boundaries of this section of ocean lies

the evil Klingon (Why not? We blame them forjust about everything

else) torpedo base. The base does not move, but it does pose a

threat to world peace (sound familiar?) by torpeoding the passing

unfriendly (to them) shipping. However, in typical Klingon style, it

takes them awhile to zero in before they can fire. The amount oftime

it takes to zero in is directly proportional to the size of the section of

ocean you have selected. In other words, the larger the area, the

more time you have to get them before they get you.

You are the captain of a depth charge carrying destroyer. Your

mission is to rid the seas of the evil Klingon torpedo base by

destroying it with the ship's depth charges. This is accomplished by

337

entering the detonation coordinates of a depth charge and using ship

sonar reports to find the location of the base.

Therequestdetonationcoordinates? ("SPLASH... THUMP")

is a request to enter the three numbers where you think the base is.

Type a y (north/south) coordinate, an x (east/west) coordinate and a

depth (zero is the surface) coordinate, in that order, separated by

commas.

You will then get a sonar report telling where your shot was in

relation to the target. For example, if sonar reported the depth

charge was "SOUTH," "EAST" and "TOO HIGH," the next shot

would have more north (larger y coordinate), further west (smaller x

coordinate) and deeper (larger depth coordinate). I use y, x, depth

instead of x, y, depth because people are used to saying southeast,

right?

Anyway, so the game goes until either the evil Klingon base is

destroyed by a depth charge ("BLAM"), or the Klingons finally zero

in and torpedo you ("WHOOSH . . . KERBOOM!"). Figure 6-2

shows a sample run to illustrate how this can work.

The Program

Figure 6-3 is the program listing. Except for the random

number generation at 210 through 230, you should have little diffi

culty in adapting the program to your system. For the random

generation statements, the idea is to generate a random integer

between zero and your maximum area value. If you have some

trouble getting it going, try this:

245 PRINT Y, X, Z

That will print your random values to troubleshoot other parts

of the program (or cheat at the game, if that's what you want). Most

of the program is pretty much self-explanatory.

Nuclear Attack!

Here's another violent and destructive computer game! And it

uses nuclear weapons, yet, in this age of detente. Ill bet Texas

Instruments never dreamed that their SR-52 would be used to stage

World War III battles. Read on, and see how to make yourself a

world power! If you don't like the game, at least you may pick up a

couple of interesting programming tricks for the SR-52.

The game itself is a new twist on the old sub search type of

game. Most people get sick of sub searching after a few games,

because the game isn't really challenging. It's a simple matter to

338

0

I-

2-

3-

4-

5 -

6-

7-

8 -

9-

10 1

f
/ WEST

I 1 1
1 2 3

DEPTH

A?

« .EAST

1 1 1 1 1 1 •"
4 5 6 7 8 9 10-

X AXIS

Fig. 6-1. Coordinate system.

339

IHIS IS THE DEPTH CHARGE GAMS

YOU ARE THE CAPTAIN OP A DESTROYER LOOKIWG POR

THE EVIL KLIffGO* UNDERWATER TORPEDO BASE.

YOUR JOB 18 TO DESTROY THE BASE USING YOUR DEPTH

CHARGES BEFORE THE KLINGONS ZERO IN AND TORPEDO

YOU AND TAKE OVER THE SEAS

YOU MAY SPBCIPY THE MAXIMUM SEARCH AREA BY GIVING

THREE NUMBERS—ONE POR THE Y AXIS (NORTH/SOUTH),

THE X AXIS (EAST/WEST), AND DEPTH.

THE LARGER THE AREA THE MORE SHOTS YOU GET

BEFORE THE KLINGONS ZERO IN AND TORPEDO YOU

TO MAKE A SHOT, ENTER THE THREE NUMBERS (Y, X, DEPTH)

WHERE YOU THINK THE BASE IS. THE SHIP'S SONAR

WILL REPORT BACK WHERE THE SHOT WAS IN RELATION TO

THE BASE. GOOD LUCK! 1!

MAXIMUM SEARCH AREA (Yv X, DEPTH)? 10,10,10

DBTONATION COORDINATES? 5t5t5

SPLASHI

I

I

I

I
I
I

I

I
I
I

I

I
I

I

I

♦ THUMP

NORTH

EAST

TOO HIGH

DETONATION COORDINATES? 3,3,7

Fig. 6-2. Sample run.

340

SPLASH!

♦----THUMP

NORTH

WEST

TOO HIGH

DETONATION COORDINATES? 1,4,10

SPLASH!

I

I

I

I
I

I

I

I

I

I

• THUMP

SOUTH

TOO LOW

DETONATION COORDINATES? 2,4,9

BLAM! I —-STATION DESTROYED!!! THE WORLD

IS SAPE!

TRY AGAIN? (1*YES)? 2

READY

341

10 PRINT"THIS IS THE DEPTH CHARGE GAME*

20 REM BY MARK HERRO POR A COMPUCOLOR 6001

30 PRINT"Y0U ARE THE CAPTAIN OP A DESTROYER LOOKING FOR"

40 PRINT^THE EVIL KLINGON UNDERWATER TORPEDO BASE.0

50 PRINT

60 PRINT"YOUR JOB IS TO DESTROY THE BASE USING YOUR DEPTH"

70 PRINfCHARGES BEFORE THE KLINGONS ZERO IN AND TORPEDO"

80 PRINT»YOU AND TAKE OVER THE SEAS."

90 PRINT

100 PRINT*YOU MAY SPECIFY THE MAXIMUM SEARCH AREA BY GIVING"

110 PRINT"THREE NUMBERS—ONE FOR THE Y AXIS (NORTH/SOUTH),

115 PRINT"THE X AXIS (EAST/WEST), AND DEPTH.

120 PRINT"THE LARGER THE AREA THE MORE SHOTS YOU GET"

130 PRINT"BEFORE THE KLINGONS ZERO IN AND TORPEDO YOU"

140 PRINT

150 PRINT"TO MAKE A SHOT, ENTER THE THREE NUMBERS (Y, X, DEPTH)"

160 PRINT"WHERE YOU THINK THE BASE IS. THE SHIPfS SONAR"

170 PRINT"WILL REPORT BACK WHERE THE SHOT WAS IN RELATION TO"

180 PRINT"THE BASE. GOOD LUCKtl!"

185 PRINT

190 REM SET UP CONDITIONS

200 INPUT"MAXIMUM SEARCH AREA (Y, X, DEPTH)"; A.B.C

210 LET Y=INT(A»RND(D)

220 LET X=INT(B»RND(D)

230 LET Z»INT(C»RND(D)

235 REM SHOT LIMIT

240 LET S»INT((A+B*C)/5)

250 FOR fc=l TO S

260 REM START SHOOTING

270 IP D«S-1 THEN PRINT"BETTER HURRY...THEY'RE ZEROING IN PAST!"

280 PRINT

290 INPUT»DETONATION COORDINATES"; D.E.P

Fig. 6-3. Program listing.

342

300 PRINT

310 PHI NT"SPLASH!*

320 FOR H=l TO 15

330 PRINT* I*

340 NEXT H

350 PRINT* * THUMP*

355 HEM *DEL* CAN HE SUBSTITUTED POR THE ■♦• IN SOME SYSTEMS

360 PRINT

365 REM SONAR REPORT

370 IP D<>Y THEN GOTO 420

380 IP BOX THEN GOTO 440

390 IP P<>Z THEK GOTO 460

400 PRINT*BLAM! I STATION DESTROYED!!! THE WORLD*

405 PRINT*IS SAFE!"

410 GOTO 530

420 IF D<Y THEN PRINTOUTS*

430 IF D>Y THEN PRINT*NORTH*

440 IF E<X THEN PRINT*WEST*

450 IF E>X THEN PRINT*EAST*

460 IF F<Z THEN PRINT*T00 HIGH*

470 IF P>Z THEN PRINT*TOO LOW*

480 NEXT L

490 PRINT

495 PRINT*WH00SH KERBOOM! I! !*

500 PRINT

510 PRINT*YOU«VE BEEN HIT!!!I ABANDON SHIP!»!!!•

520 PRINT*ITS ALL OVER BUT THE SHOUTING*

525 PRINT

530 INPUT*TRY AGAIN? (l»YESft T

540 IF 1*1 THEN GOTO 200

550 END

343

narrow down your coordinates with each shot, and the game be

comes a sort of three-dimensional high-low. The twist in this game is

that you are shooting at more than one target at once (six in this

version), and you have to be a lot more clever to figure out where

they are.

How To Play

For equipment (besides the calculator), you will need a pencil

and a sheet ofpaper marked off into 100 squares in a 10-by-10 array.

This sheet of paper represents your enemy's military base which

you are attacking. You don't have to use this paper diagram, but,

without it, keeping track of your play is nearly impossible. The

columns are numbered 0 through 9, from left to right, and the rows

are numbered likewise, from bottom to top (Fig. 6-4). In this way,

the board could be looked at as the first quadrant in an x-y plane, so I

will refer to the west-east direction as the x-axis and the north-south

direction as the y-axis.

Your enemy has six ballistic missile silos hidden at random on

this base. You, on the other hand, have a remotely-controlled offen

sive weapons satellite from which you can drop guided nuclear

bombs upon the enemy base. You input the coordinates ofthe square

upon which the bomb is to fall. It is your task to destroy all six silos

using as few of your bombs as needed. The only information you are

given is the number of silos that lie to the north, to the east, etc., of

each bomb you drop. How well you do depends on your skill at

organizing and interpreting, this information. There is no upper limit

on the number of shots you may take.

Each time you load the program, you will have to enter a seed

for the random number generator that locates the silos at the

beginning of each game. Enter your number and press A. You can

use the time of day, your age in minutes, the Dow-Jones average,

whatever. I usually just hit the decimal point and then seven or eight

digits at random. Any number between 0 and 109 will work (except

the number one—the random number generator chokes on the

number one).

To start the game, press B. The calculator will take about 30

seconds to randomly locate the six silos and will display a zero when

ready. You need only randomize once for each series of games you

play. Each successive start will give a different pattern of silos.

Now select which square you want to bomb first (example: 5,

6—five is the west-east, or x-, coordinate, and 6 is the north-south,

or y-, coordinate). Press 5 and then D to enter the x-coordinate,

followed by 6, then E to enter the y-coordinate and run the program.

344

9 8 7 6

Y A
_

X
5

S

4 3 2 1 0

0
1

i
W
E
S
T

2
3

4
5

X
A
X
I
S

E
A
S
T

►

6
7

8

N
O
R
T
H

S
O
U
T
H

i I

9

Fi
g.

6
-
4
.

T
h
i
s
is
h
o
w
t
h
e
b
o
a
r
d
is
s
e
t
u
p
.

It
r
e
p
r
e
s
e
n
t
s
y
o
u
r
e
n
e
m
y
'
s
m
i
s
s
i
l
e
b
a
s
e
.

Congratulations, you have just destroyed everything within square

5, 6. And you didn't even have to file an environmental impact

statement! After about 25 seconds, the calculator will come back

with a confusing string of digits, like 1562433. Let's break this

display down digit by digit and explain what it means.

Taking the digits from left to right, the first digit, 1, means shot

number one. The next two digits, 56, are an echo of which square

you bombed. The next digit, 2, means that there are two silos to the

north of this shot. This doesn't necessarily mean that they are

directly north along the same column, but only that their

y-coordinates are greater. This is a major point of conftistion among

new players (Fig. 6-5). The remaining digits are similarly south, east

and west, respectively.

Wait a minute! The example says 2433. That adds up to 12

silos. Is there a bug? No, each silo counts twice—once as being

either north or south of where the bomb was dropped, and again as

being either east or west. Note that, if a silo lies along the same line

as your shot, it won't show up in either of the two indicators for that

direction. In other words, a silo on the same vertical column as your

shot counts as neither east nor west, and one along the same

horizontal row counts as neither north nor south.

When you hit a square that contains a silo, the display will flash.

Press CE to stop the flashing. When a silo is hit, it is destroyed and

will not show up on subsequent shots. Although it doesn't happen

very often, two or more of the silos may be placed in the same

square. When this happens, they are both destroyed when the

square is bombed.

When the last silo is hit, the last four digits will be 0000, and the

game is over. To start a new game, press B.

Different people have come up with different strategies for this

game, and I will leave you to find your own. Among people I know,

the best players average about 13 shots per game. The record low at

this writing is eight bombs. However, at the other end of the

spectrum, I saw one person give up after 50 shots. That base must

have really been smoking!

About the Program

Writing a program for a programmable calculator is very diffe

rent from writing a program in microprocessor assembly language or

a higher level language such as BASIC. The greatest disadvantage of

the programmable calculator is its small amount of program mem

ory. The simplicity of pushing each key to enter its function into the

program makes coding a program, say from a flowchart, very simple

346

F
I
R
S
T

S
H
O
T
:
(
5
,
6
)

C
A
L
C
U
L
A
T
O
R

D
I
S
P
L
A
Y
S

1

T
H
E
R
E
A
R
E

S
I
L
O
S
W
E
S
T

T
H
I
S

L
I
N
E

9 8 7 6

Y S» S

4 3 2 0

0
1
2

3
X

5
6
2
4

T
H
R
E
E

O
F

5
3

X

4
5

A
X
I
S

T
H
E
R
E

S
I
L
O
S

T
H
I
S

6

A
R
E

T
H
R
E
E

E
A
S
T

O
F

.
I
N
E 7

8

T
H
E
R
E

A
R
E

T
W
O

S
I
L
O
S

N
O
R
T
H
O
F

T
H
I
S

L
I
N
E

T
H
E
R
E
A
R
E

F
O
U
R

S
I
L
O
S

S
O
U
T
H
O
F

T
H
I
S

L
I
N
E

9

F
i
g
.
6
-
5
.
D
i
a
g
r
a
m

o
f
e
x
a
m
p
l
e
u
s
e
d

in
te
xt
.

Register

99

19

18

17

16

15

14

13

12

11

10

09

08

07

06

05

04

03

02

01

00

Contents

random seed

number of shots taken

x-coordanate of shot

y-coordinate of shot

number of silos north of shot

number of silos south of shot

number of silos east of shot

number of silos west of shot

silo #1 x-coordinate

silo #1 y-coordinate

silo #2 x-coordinate

silo #2 y-coordinate

silo #3 x-coordinate

silo #3 y-coordinate

silo #4 x-coordinate

silo #4 y-coordinate

silo #5 x-cooridante

silo #5 y-coordinate

silo #6 x-coordinate

silo #6 y-coordinate

dsz and pointer

Table 6-8. Register Usage Table.

and straightforward. However, a more complex program will need

more keystrokes than there is memory to hold them using the

straightforward approach. So the programmer must resort to tricks

to condense the program to a usable size. The trade-offs involved

with these tricks are:

• They make the program harder to debug and harder for

someone other than the programmer to understand.

• They usually slow the program down.

So, as vital as informative remarks and good documentation are

for regular programs, they become even more important for the

programmable calculator's programs.

In this game, the x- and y-coordinates of each silo are stored in

registers 01 through 12 (Table 6-8). When a game is started by

pressing B, 12 is stored in register Roo, which is used as a pointer.

The program generates a random digit, which is stored in the

register pointed to by Roo using an IND STO instruction (step 197).

The IND key is one of the most useful programming functions on the

SR-52. It tells the calculator that it is to perform the memory

function immediately following the IND (STO, RCL, EXC, SUM,

etc.), not on the register specified in the instruction, but on the one

whose number is stored in that register. For example, if Roo contains

the number 9, then the command IND STO 00 would perform the

same function as STO 09: The displayed number would be stored in

register 09.

348

SET
POSSIBLE HIT
FLAG

CLEAR POSSIBLE
I HIT FLAG I

COUNT ONE
SILO WEST

COMPARE
Y COORDINATES

asm

NEXT
SILO

COUNT ONE
SILO NORTH

Fig. 6-6. Flowchart.

349

Using the dsz instruction (decrement and skip or zero) after

each random number is stored, the program decrements the value in

Roo by 1 and checks to see if it has reached zero. If it hasn't, the

program loops back to LBL *7' and repeats the process. So, effec

tively, the first time through, the loop Roo contains 12 and the IND

STO 00 stores the random digit in R12. The next time time through,

Roo contains 11 and the random digit goes in Ru and so on. When Roo

finally reaches zero, the dsz doesn't cause a branch, butjust lets the

program continue and halt. Now R01 through R12 each contain a

random digit, and these are the coordinates of the silos (Table 6-8).

The flowchart can be found in Fig. 6-6.

The Silo Shuffle

The random number generator (steps 179-196) has its random

seed stored in register 99. This is because R99 and R98 are surplus

registers which are unaffected by the CMs instruction Roo through

R19. The seed is recalled, Inxed and then squared and stored back in

R9 as the new seed This number is multiplied by the degrees/

radians constant (57.295779513) and the part to the left of the

decimal is chopped off, leaving a decimal fraction. The decimal is

multiplied by 10, and the digits to the right of the decimal are

removed, leaving an integer from 0 to 9. This approach can be

modified to produce random integers from zero to N by replacing the

multiplier of 10 in step 193 with a multiplier of N + 1.

Pressing D stores the x-coordinate of your shot in Ris. E stores

the y-coordinate in R17 and continues on to the main body of the

program.

Each silo is checked individually. First the xs are compared by

subtracting the shot x from the silo x. If the result is zero, then that

means that the shot and silo are on the same column. Flag zero is set

when this happens so that the calculator will remember later in the

program that the xs were the same in case the ys are the same, too,

which would mean a hit. If the difference between the x-coordinates

is positive, then the silo x was greater than the shot x, and the shot

must have fallen to the west of the silo, so Ru, which contains the

number of silos to the east, is incremented by one. If the difference is

negative, then the opposite is true, and R13 (west) is incremented

instead.

Now, since we are using Roo as a pointer to tell which coordinate

of which silo we are working on, we must decrement it by one to get

the y-coordinate. We do this with a dsz command that branches just

ahead of itself. The same procedure as was used on the

350

x-coordinates is applied to the y-coordinates, except that now, if

they are the same, we must check to see if flag zero is set. If it is,

then both silo coordinates match the shot coordinates, and we have a

hit. When a silo is hit, the program changes its x-coordinates to -1 as

an indicator that it has been hit and is to be skipped over on later

shots. Then a VjTestablishes an error condition so the display will
flash when execution is completed. If the y-coordinates are not the

same, then, like before, the north register is incremented, depend

ing on which side of the silo the shot fell.

Now another dsz instruction loops back to the beginning of the

check procedure and moves the pointer to the x-coordinate of the

next silo, or, if there are no more silos to check, passes control on to

the display routine.

The display segment demonstrates a useful way to display the

contents of several registers at once. Again Roo is used as a pointer,

but this time it starts at 19 and is decremented until it reaches 13,

and the program halts. The calculator keeps a running total of the

contents of each register times a decreasing power of 10. Thus we

get (R19) x 106 + (Ris) x 105 + . . . + (R13) x 10°. Each register

contains only a one-digit number, so the resulting sum is a number

made by stringing together the contents to registers 19 through 13.

Of course, the proper things are stored in each register in order to

have the display come out in the order we want.

For the Sake of Speed

Looking over the program listing, you may be wondering about

the strange order in which the segments of the program are ar

ranged in memory. The user-defined labels are near the end, and the

program branches and subroutines come before the program. The

best way I can answer this question is to have you try the following

experiment:

Run the four programs in Table 6-9, and time the execution

using the second hand of a clock or a stopwatch. Make sure you turn

the calculator off to clear the program memory before entering each

program.

You can see that the four programs do exactly the same thing.

They only differ in their locations in memory and their dsz instruc

tions. Two of them are labeled branches, and two are directly

addressed. On my calculator, all programs run in about 10 seconds

except number two, which takes more than 40 seconds. It seems

reasonable to me to assume that, when the calculator is told to

branch to a particular label, it must search through the program

memory starting from the beginning. Naturally, the farther down in

351

Table 6-9. Four Programs.

step

Program one

000

002

008

010

012

Program two

200

202

208

210

212

keystrokes

-LBLA

100STO00

*LBLB

*dszB

HLT

*LBLA

100STO00

*LBLB

*dszB

HLT

Program three

000

002

008

010

014

Program four

200

202

208

210

214

♦LBLA

100STO00

♦LBLB

*dsz 008

HLT

♦LBLA

100STO00

*LBLB

*dsz 208

HLT

the program memory (Table 6-10) a label is, the longer the calculator

must take to find it and the slower the execution will be. In the

program one, the sought-after label B is almost at the beginning, so

the calculator finds it quickly, and the loop executes swiftly. In

program two, however, the machine must search through almost

the entire memory before it locates label B. Consequently, this loop

takes much longer to execute. In programs three and four, the

branches are made directly to a specified address. The calculator

doesn't have to waste time searching, because it has been told

exactly where to put the program counter. Thus, both of these loops

execute quickly no matter where they are placed in program mem

ory.

As I said, this explanation is an educated guess on my part, and

perhaps someone who knows what goes on in the mind of a Tl

calculator will clarify this point.

Anyway, this is the reason for placing the branches and sub

routines before the main program—the closer they are to the begin

ning of program memory, the faster the calculator can find them and

the faster the program will run. It does make the program more

confusing to look at, and I don't recommend that you try to write

your programs this way. But, when you finish a long program and

have it running, you may find that rearranging things will speed it up

considerably.

Go, Team, Go

The game was popular enough in the dorm where I lived during

college that we decided to hold a tournament. Each contestant would

352

Table 6-10. Program Listing.

Step

000

002

004

006

008

010

012

016

018

020

024

026

028

032

036

041

044

046

052

055

056

058

062

066

079

084

086

089

093

096

101

103

105

109

111

115

124

126

128

132

134

136

142

144

149

157

165

168

170

172

174

179

181

189

198

202

204

206

208

212

214

Keystrokes

•LBL *V

•dsz *8'

•LBL *2'

•st fig 0
gto ••»•V3I w 9

•LBL +

1 SUM 14

GTO -51

•LBL '9'

1 SUM 16

GTO -8'

*LBL *3*

INV *if fig 0 '8'

1 SUM 00

± 'INDSTO00

Vx *dsz -8'
•LBL *B'

(STO -. 5)

•fixO*D.MS

*rtn

•LBLE

STO17CE

1 SUM 19

0 STO 16 STO 15 STO 14 STO 13

12 STO 00

•LBL *4'

INV *st fig 0

•INDRCL0O

INVif pos-1

-RCL 18 *

•ifzro*2f

"ifpos +

1 SUM 13

•LBL *5'

•dsz 115

•IND RCL 00-RCL 17 *

•lfzro-31

•if pos *9f

1 SUM 15

•LBL *8'

•dsz Mf

20 STO 00 0

•LBL *6*

+ *dsz 149

•IND RCL 00 X10 yx

(RCL 00 -13)

INVifzro'61

= HLT

•LBLB

CLR CMS

12 STO 00

*LBL *T

RCL 99 Inx ex2 STO 99
INVD/R-*B'X10 = #B'

*IND STO 00

•dsz *t
CLR HLT

•LBL A

STO 99 HLT

•LBLD

STO 18 HLT

Comments

Skip this silo.

Set the "possible hit" flag.

Count one silo east.

Count one silo north.

If flag set, then we have a hit.

Change x-coordinate

of silo to -1.

Start display flashing.

Integer-part subroutine.

Subtract rounding constant.

Eliminate fractional digits.

Store y-coordinate of shot.

Count one shot.

Clear N..S..E..W. registers.

Initialize check loop.

Beginning of loop.

Clear "possible hit" flag.

Get x of silo.

Branch if it's been hit.

Compare to x of shot.

If same, set flag.

If greater, count one silo east,

else count one silo west.

Move to y-coordinate.

Compare silo y to shot y.

If same, check for hit.

If greater, count one silo north,

else count one silo south.

Branch back if more silos.

Initialize display loop.

Beginning of loop.

Move to next register.

Get contents of this register and

multiply by decreasing powers of ten.

Begin new game.

Clear everything.

Initialize setup loop.

Beginning of loop.

Make a random digit

from 0 to 9.

Store it as a silo coordinate.

Branch back for the next one.

Ready to play.

Store initial random seed.

Store x-coordinate of shot.

353

play three games and total his scores, lowest score winning. To

make things fair, each person would play the same three configura

tion of silos. This was accomplished by randomizing with the same

initial seed before each game. For example, we used sin 1, sin 2 and

sin 3. The random number generator then generates the same

sequence each time, and the silos come out in the same spots. I find

that it's handy to write down the number you initialize with anyway.

That way, if the system crashes (batteries go dead), it's simple to set

the same game up again after plugging in the charger. It's really

frustrating to lose a game half way through, especially when you

were just about to blast a silo.

And you certainly don't have to be a computer buff to enjoy the

game. The person who won the tournament was a political science

major!

A Secret Weapon for Road Rallies

One of the more enjoyable hobbies, I pursue from time to time

is that of driving (or navigating) in TSD road rallies. The letters stand

for "time, speed and distance." If you run rallies, or know a friend

who does, your computer can give you a secret weapon to help you

win.

These events are not races, at least not in the conventional

sense. You are given a set of instructions. Then you follow them.

Sound dull? Well, it isn't! The object of the rally is to exactly follow

the instructions, to maintain an exact speed and to get where you are

supposed to get after a precise elapsed time. Penalty points are

given for being either early or late at the destinations. Usually, there

are several destinations—called checkpoints—in every TSD rally,

to give you some idea of the precision driving required, a penalty
point is equal to an arrival time (early or late) of one-hundreth minute

(.6 sec) from the scheduled time. A typical winner, in our club, will

have a score of 50 to 100, indicating a total error of one-half minute,

after three or four hours of driving. Of course, low score wins.

Several things are added for spice. When you start the rally,

you don't know how far the first checkpoint is (or any of the others,

for that matter). Nor do you even know where the checkpoints are,

or the necessary average speed to get there on time, or the time you

must expend in getting there. Distances are seldom marked on the

instructions. All this information is known only to the rallymaster and

his workers.

The instructions are rather like a computer program. Here is a

short excerpt from a recent one:

354

CAST 30

Right at Kenny Road

Left at "Y"

Left after SRIP "Garage"

CAST 42

Right 3d opportunity

This would be interpreted as follows: Change Average Speed

To thirty miles per hour; when you get to Kenny Road, make a right

turn; at the next "Y" in the road, after your right turn, take the left

fork; you should see a Sign that Reads In Part "Garage"—take the

next left (it may be miles down the road); as soon as you turn,

Change Average Speed To forty-two miles per hour; at the third

chance thereafter that you have to do so, turn right; and so on.

Of course, the sign with "Garage" on it may be faded and

half-covered with weeds, the road may be one on which no sane

person would go over 20 mph, one of the three "opportunities" will

doubtless be impossible to spot (or between the first and second

road will be a long private drive that gets counted as an "opportunity"

by half the contestants when it isn't) and so on. These are the simple

traps you will encounter; rallymasters delight in messing you up.

Anyway, you get the point—it is a real job just to stay on course.

Besides helping the driver stay on course and keeping up with

the instructions, the navigator has the job of calculating the average

speed of the car.

Time, speed and distance problems are all solved by the simple

formula: D=RT, where D is distance, R is rate (speed) andT is time.

Know any two, and you can find the other. In a rally, you will know

distance and time from the last speed change in the instructions. You

will be trying to calculate average speed in miles per hour by the

formula: RmPh = (D/T)*60. You will probably want to make a calcula

tion every mile, because tenths of a second are important, and there

might never be a chance to make good the loss of even a few

seconds.

The navigator is necessarily going to be busy with a stopwatch,

pencil, calculator and odometer for the entire rally. He may get so

busy that he loses track of where his car is.

You can buy an electromechanical gadget that will keep track of

elapsed time and of average speed, but they are very expensive. If

you are an experimenter, you might kludge up a small terminal to

your mobile rig and have a program running on the computer at

home, which will make your calculations for you. But terminals

aren't that cheap, either. (And watch sending ASCII over the air!)

355

The program shown here (Table 6-11) is a cheap and simple

answer. It allows you to work in time, not average speed. It is far

more helpful to know that you are three seconds ahead of time than

to know you are averaging 43.2 mph, when the instructions call for

42 mph. (Why? Because the more miles you drive with a constant

error in speed, the further off you become in time. In the heat of a

rally, a fraction of mph speed error may not impress you as impor

tant, even though you've traveled eight or more miles.

What you get from the program is a printout of speed, distance

and time. Your navigator turns to the sheet with the correct speed

for that leg, zeros the mileage indicator in your car and zeros the

stopwatch. Then, every mile or half-mile, he looks at the stopwatch

and compares it with the time next to the mileage which you have

traveled. He can then tell you how many seconds you are ahead or

behind where you should be at this point. It is then a very simple

matter for you, the driver, to make whatever correction is neces

sary. At the end of the next mile, or half-mile, another check is made

and further correction taken. And so on, throughout the rally.

Sure, the formula is not that hard to run on a calculator. But, to

get time-error that way, the old navigator is going to run two

calculations every mile. Try even the simplest calculation in a rally;

I've never known any navigator who didn't mess up at least a third of

his calculations on the first try. And he has his eyes off the road for

too long.

Yes, I know you can buy time-speed-distance charts at not too

great an expense. But, first of all, they can't be tailored for whatever

distance interval you wish. This program can. Secondly, they are

much harder to read than a computer printout.

The program is written in Dartmouth BASIC. It was run on an

IBM 370. It should work on most small BASIC interpreters. It will

not work on an integer system.

It is so simple that it almost explains itself. There are two loops,

one nested inside the other. The outer loop contains the average

speed. It is shown starting at 25 mph, but this could be any figure—it

depends on the minimum speed at which rallies in your area are run.

This loop terminates at 55 mph because no rally instructions can tell

you to drive at an illegal speed.

For each step of the outer loop the inner loop (distance) steps

39 times. Each time it steps, the program calculates time. Then,

speed, distance and time are printed out and the inner loop steps

again. When distance reaches 20, a blank line is printed, a new

heading is printed, and the outer loop steps to the next speed. Then,

the whole process is repeated, and repeated and repeated.

356

T
a
b
l
e
6
-
1
1
.
B
A
S
I
C
P
r
o
g
r
a
m

to
Ca
lc
ul
at
e
T
i
m
e

in
M
i
n
u
t
e
s
a
n
d
T
e
n
t
h
s

of
Mi

nu
te

s.

0
5

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
1
5

1
2
0

1
3
0

1
4
0

1
6
0

1
7
0

R
E
M
T
H
I
S

P
R
O
G
R
A
M

C
A
L
C
U
L
A
T
E
S

R
E
M

S
E
T

U
P

T
H
E

F
O
R

R
=
2
5

T
O

5
5

R
E
M

P
R
I
N
T

T
H
E

P
R
I
N
T

"
S
P
E
E
D
"
/
1

R
E
M

S
E
T

U
P

T
H
E

F
O
R

D
=
l

T
O

2
0

R
E
M

C
A
L
C
U
L
A
T
E

L
E
T

T
=
(
D
/
R
)
*
6
0

O
U
T
E
R

L
O
O
P
.

H
E
A
D
I
N
G
S
.

T
I
M
E

I
N

M
I
N
U
T
E
S

A
N
D

T
E
N
T
H
S

O
F

M
I
N
.

R
=
S
P
E
E
D

I
N

M
P
H
.

D
I
S
T
A
N
C
E
"
,
"
T
I
M
E
"

I
N
N
E
R

L
O
O
P
.

S
T
E
P

.
5

T
I
M
E

R
E
M

P
R
I
N
T

I
T
A
L
L

O
U
T

U
N
D
E
R

P
R
I
N
T

R
,
D
,
T

R
E
M

C
Y
C
L
E

T
H
E

R
E
M

C
Y
C
L
E

T
H
E

N
E
X
T

D

P
R
I
N
T

N
E
X
T

R

R
E
M

W
H
E
N

R
=
5
5

E
N
D

I
N
N
E
R
L
O
O
P

-

O
U
T
E
R

L
O
O
P
.

,
T
H
E

P
R
O
G
R
A
M

D
=
D
I
S
T
A
N
C
E

I
N
M
I
L
E
S

T
H
E

C
O
R
R
E
C
T

H
E
A
D
I
N
G

-
W
H
E
N

F
I
N
I
S
H
E
D
,

P
R
I
N
T

B
L
A
N
K

L
I
N
E

A
N
D

E
N
D
S
.

About 2 hours after you type run, you will have produced 14

feet of copy. This is assuming a step of. 5 and a 110 baud printer. By

the way, CPU time used on an IBM 370 is just over nine seconds.

If your BASIC does not have the step feature in its "FOR. . .

NEXT" statement just leave that out. The program will give you

printout for whole miles. This works just as well. Leave out the

"REMARKS" to save space. If your system can use multiple state

ments per line, great.

If you wish to provide for greater mileage in the inner loop, put

in whatever you like. You-all in the wide-open southwest might want

to go to thirty miles or even more. Frankly, my present version of

this printout only goes to 15 miles. I don't need that much, usually, in

the rallies I'm in.

If you just like a lot of paper used up, make the inner loop step =

.25. This will give you quarter-mile times for each speed. I doubt

you'll ever use it, and it triples the length of the printout.

One very useful change to the program is shown in Table 6-12.

This gives printout for time in minutes, seconds and tenths of

seconds instead of minutes and tenths of minutes. Of course, which

you use will depend on how your stopwatch is calibrated. The new

code will take the decimal fractions of minutes and convert them to

seconds and tenths of seconds. A formatting statement inserts a

colon for easier reading.

I use the program's output cut into sheets and staple them at

the upper left. The navigator simply flips through the pages for the

correct speed, as shown for that leg of the instructions. Then he's

set. Those ofyou handy with tools might want to construct a box-like

holder with a dowel at the top and bottom. Then the printout could be

scrolled past a window cut into the front of the box. For this display,

the printout would be better without the headings before each

speed. Change the location of that print statement so that it does not

pass by on each execution of the outer loop (i. e., move it to the f#st

line of the program).

Do Biorhythms Really Work?

Do you know what is meant by biorhythm? This project gives

you a basic method to compute the values for calculating your

biorhythms. Aflowchart and a program for the HP-55 programmable

calculator are provided (Figs. 6-7, 6-8 and Table 6-13). You should

be able to use this information, rewrite it for other calculators or

develop a program for your micro.

358

T
a
b
l
e
6
-
1
2
.
T
h
e
P
r
o
g
r
a
m

C
o
n
v
e
r
t
e
d
to

Ca
lc
ul
at
e
T
i
m
e

in
Mi

nu
te

s,
S
e
c
o
n
d
s
a
n
d
T
e
n
t
h
s
of

S
e
c
o
n
d
s
.

2
0

R
E
M

S
E
T

U
P

O
U
T
E
R

L
O
O
P
.

R
=
S
P
E
E
D

I
N
M
P
H

3
0

F
O
R

R
=
2
5

T
O

5
5

4
0

R
E
M

P
R
I
N
T

T
H
E

H
E
A
D
I
N
G
S

5
0

P
R
I
N
T

"
S
P
E
E
D
"
,
"
D
I
S
T
A
N
C
E
1
1
,
"
T
I
M
E
"

6
0

R
E
M

S
E
T

U
P

T
H
E

I
N
N
E
R

L
O
O
P
.

D
=
D
I
S
T
A
N
C
E

I
N
M
I
L
E
S

7
0

F
O
R

D
=
l

T
O

2
0

S
T
E
P

.
5

8
0

R
E
M

C
A
L
C
U
L
A
T
E

T
I
M
E

I
N
M
I
N
U
T
E
S

A
N
D

T
E
N
T
H
S

O
F

M
I
N
U
T
E
S
,

F
I
R
S
T
.

9
0

L
E
T

T
=
(
T
/
R
)
*
6
0

1
0
0

R
E
M

R
O
U
N
D

T
H
I
S

T
O
N
E
A
R
E
S
T

O
N
E
-
T
H
O
U
S
A
N
T
H

O
F

M
I
N
U
T
E

1
1
0

L
E
T

T
l
=
I
N
T
(
T
*
1
0
0
0
+
.
5
)
/
1
0
0
0

1
2
0

R
E
M

T
A
K
E

M
I
N
U
T
E
S

O
N
L
Y

A
N
D

C
A
L
L

I
T

T
2
.

1
3
0

L
E
T

T
2
=
I
N
T
(
T
1
)

1
4
0

R
E
M

N
O
W
,

G
E
T

J
U
S
T

T
H
E

F
R
A
C
T
I
O
N

A
N
D

C
A
L
L

I
T

T
3

1
5
0

L
E
T

T
3
=
T
1
-
T
2

1
6
0

R
E
M

C
O
N
V
E
R
T

T
H
I
S

F
R
A
C
T
I
O
N

T
O

S
E
C
O
N
D
S

A
N
D

T
E
N
T
H
S

1
7
0

L
E
T

T
4
=
T
3
*
6
0

1
8
0

R
E
M

P
R
I
N
T

E
V
E
R
Y
T
H
I
N
G

I
N

R
I
G
H
T

C
O
L
U
M
N
.

1
9
0

P
R
I
N
T

R
,
D
,
T
2
:
"
z
"
:
T
4

2
0
0

R
E
M

C
Y
C
L
E

T
H
E

I
N
N
E
R
L
O
O
P

2
1
0
N
E
X
T

D

2
2
0

R
E
M

W
H
E
N

O
U
T

O
F

D
I
S
T
A
N
C
E
S
,

P
R
I
N
T
A

B
L
A
N
K

L
I
N
E
A
N
D

C
Y
C
L
E

O
U
T
E
R

L
O
O
P
.

2
3
0

P
R
I
N
T

2
4
0

N
E
X
T

R

2
5
0

E
N
D

The word biorhythm literally means movement characterized

by regular recurrence of beat, or a pattern of this, in living things. In

a more strict sense, it means the study of biological cycles of man.

Proper understanding and use of these cycles may help you plan for

future events and forecast good days and bad days. It is one of our

newer scientific disciplines and concentrates on three natural cycles

that influence our physical, emotional and intellectual actions or

behavior patterns.

Scientists state that our biological cycles are set in motion at

birth. From then until death, we are influenced by these three

cycles. (More are acknowledged, but biorhythm study seems tu be

limited to these three.) Thephysical cycle, requiring 23 days, is said

to affect such things as strength, speed, resistance to disease,

coordination and other bodily functions. (It is easy to understand

why this is one of the more popular cycles!) Theemotional cycle has a

period of 28 days and is given reign over our mental health, mood,

creativity, sensitivity and our perception of ourselves and others.

Last is the intellectual cycle, which requires 33 days to be completed.

It affects our ability to recall memorized facts, to learn, to be logical

and to analyze.

When the three cycles start at birth, they start at a zero

reference, orbaseline, and proceed on a positive half of the full cycle.

Halfway through the cycle, they return to the baseline and enter the

negative half of the cycle. At the end of the negative portion of the

cycle, the zero reference line is crossed again, and the process will

then repeat itself.

There are, therefore, three main parts to consider: ttieposiHve

halfcycle, the negative halfand the zero reference. The theory states

that, during the positive portion all capacities, energies, talents and

skills will be enhanced. The negative portion is described as a

rehabilitation period during which all attributes of the rhythms are of

reduced magnitude. When any cycle crosses the zero reference line,

that day is referred to as a critical day. It is during this period that we

are most likely to experience accidents, physical harm, arguments,

depression, inability to learn, poor judgment, etc. All would depend

on the cycle or cycles involved.

It is possible to have single, double and triple critical days.

Double critical days are to be approached with extra caution. Such

days occur when two cycles cross the zero reference line on the

same day. They may both be on a negative slope or on a positive

slope, or one may be positive while the other is negative. So far as I

know, there seems to be no evidence to indicate a need to differen

tiate between the three types. Triple critical days occur at birth and

360

DISPLAY

UNE

00.

01.

02.

03.

04.

05.

06.

07.

08.

09.

CODE

02

71

03

KEY
ENTRY

STu

lUT

COMMENTS

7M ^toA^din
w 1*

"360" recalled lno

TPA & ifa rmiULaliexL
and atoned in
memonxj. O. (I

"23" siecaUed {mm

10.

n.

12.

13.

14.

31

12

06

into Peg. TmduaL

Sin of a .. ^ __
angle calculated &
ato/ied in

6.

r6 HJMI15.

16.

17.

18.

19.

20.

33.

34.

35.

36.

37.

38.

39.

n/s
SCL

00

*

12

SID

06

S/S

06
SQL

Physical Value.

Deo* D/ioduci.
memo/uj. 0,

"28" JtecaJULed lanm
R7_

memojw 4 &diyijded
into Peg. fnodiLct.

piom. memoax/. 0*

AecaUed

"9-

R.O-

R.1-

an/Ue calculated &
R.3--

added io memo/at.
w 6» R.4-

3nJxlU.ciual Value QU

Sum of
/lecalled

40.

41.

42.

43.

45.

46.

47.

48.

49.

m

01

1L

o&div. bu R.6-

Ava. Reading Plap.

R.8_ _

TPA Ajecalled

memoAJtf. /.

ilO 03 fnaanxm goe* io line 3<

Fig. 6-7. HP-55 biorhythm program.

361

once every 21,252 days, when all three are on a positive slope. So

you can expect to be born again every 58 years and 67 days. By the

way, the number 21,252 is derived from the product of the three

cycles.

It should be noted that a great number of well-documented

cases have been recorded to support the biorhythm theory. Airplane

crashes, train wrecks, automobile accidents and other tragedies

have occurred in very abnormal numbers when the responsible

people had critical days. Theory tells us to use extra caution, self-

control and restraint on critical days. Except things to be subnormal

on the negative half cycle. You may not beat world's records, but you

will do your best during the positive half of the cycle, especially if two

or all three cycles are so positioned. All other days will be mixed.

Now let's get to the program itself. The theory states that we

complete a physical cycle every 23 days, an emotional cycle in 28

days and our intellectual cycle requires 33 days. It also states that all

three start in phase at birth on the positive slope. It is obvious that

the three will immediately start to go out of phase with each other.

Thereafter, the composite biorhythm situation will vary from day to

day. Small numerical values for each of the cycles would seem to be

the best method to appraise them.

In order to arrive at some suitable numerical value, we must

first divide the total number of days alive (TDA) by the number of

days in the rhythm cycle of interest. For example, if the TDA =

10,000, and we are interested in the physical cycle (23 days), the

result would be 10,000/23 = 434.78+. In this case, the person

would have lived through 434 complete physical cycles and is into the

current cycle by .78+. It is this fraction of a cycle that we are

interested in. To convert this decimal number to degrees, we

multiply it by 360, the number ofdegrees in one complete cycle. This

yields approximately 281 degrees.

With this figure, we can see how far into the cycle we are, but

the figure is awkward and, for some, would be hard to position in the

mind. If, however, we now take the sine of that angle, we arrive at

-.98. This final figure gives us magnitude and polarity in a very

succinct way. By using the sine of the resultant angle, the numerical

value will start at zero, increase to +1.00 at the top of the positive

half cycle, decrease to zero at 180 degrees (a critical day), drop to

-1.00 at 270 degrees (the negative peak) and return to zero at 360

degrees for another critical day and the start of another cycle.

The math may be simplified to: sine (TDA x 360/number of

days in cycle). This is true because the sine of x degrees or any

multiple of 360 + x degrees would give the same result. This

362.

Table 6-13. The Procedure.

1. Enter the program.

2. In the run mode, store "360" in memory register number 2

3. In the run mode, store 23 in memory register number 3.

4. In the run mode store 28 in memory register number 4.

5. In the run mode, store 33 in memory register number 5.

6. Enter total days alive (TDA) in the x operating register.

7. Press BST to place the program pointer to the start of the program.

8. Press R/S to obtain the physical value.

9. Press R/S to obtain the emotional value.
10. Press R/S to obtain the intellectual value.

11. Press R/S to obtain the average reading of the P, E, and I values.

12. For the next day reading and subsequent days, repeat steps 8

through 11. The program automatically increments the TDA value by 1
after each set of readings.

If you forget what day you are reading, you may obtain the current TDA

figure by simply recalling memory number 1. This may be done at any

time without affecting the integrity of the program.)

method saves steps. Using this formula and the 10,000 TDA figure,

the emotional value would be +.78 and the intellectual value +. 19.

These figures provide us with a mathematical evaluation for each of

the three cycles for one particular day. They do not tell us whether

the slope is positive or negative.

To find this out, we must take a second set of readings for the

following day. In this case the TDA would be 10,001, the physical

value -.89, the emotional value +.90 and the intellectual value

+.37. Ifwe compare these figures with the previous day, it becomes

evident that all three are increasing in value. The P value is becoming

less negative, the E value will reach its peak value of 1 in two days

and the 1 value is on the way to a positive peak. The program (Fig.

6-7) automatically increments the TDA value by Jteach time a set of

readings is calculated with the above formula. With this program,

you can obtain a set of readings for a given day and for succeeding

days as far in the future as you like. A linear plot of these values will,

of course, result in a perfect sine wave.

One additional refinement has been added to this program. It is

my personal opinion that it is the totality of all forces acting upon a

person that best describes his situation. Which is to say that many

factors in addition to biorhythms affect our overall well-being. Those

factors are not to be dealt with here, but I felt that an average of the

three values might be the best expression of this concept. For this

reason, the program will also provide an average reading for each

day, after the separate readings have been displayed. With the

363

average reading, we can give a value to a "mixed day" and give it an

overall rating. It is very interesting to watch the cyclic gyrations of

these average figures. Unlike the other cycles, the frequency and

magnitude are constantly varying and might deserve greater study.

As previously mentioned, the critical day happens when the

cycle passes through the zero reference line. This will occur when

the slope is negative (going from the positive half cycle to the

negative half) and when the slope is positive. This should be indi-

f START ^

1-—"""input
TOTAL DAYS

ALIVE (TDA)

1
STORE

(TDA)

m (T)

TDA X 36O#

1
STORE

DEG. PRODUCT

1
DIVIDE

DEG. PRODUCT

BY 23

CALCULATE

SINE OF ANGLE

\

STORE IN

AVG. MEMORY

\
f HALT- X
/ PHYSICAL ^
i VALUE

^DISPLAYED J

RECALL
DEG. PRODUCT

1

DIVIDE
DEG. PRODUCT

BY 28

\
CALCULATE

SINE OF ANGLE

1

1

ADD RESULT

TO

AVG. MEMORY

i

f HALT- X
f EMOTIONAL *
VALUE ,

\DISPLAYEDy

1
RECALL
DEG. PRODUCT

1
DIVIDE
DEG. PRODUCT

BY 33

CALCULATE
SINE OF ANGLE

\
ADD RESULT

TO
AVG. MEMORY

*

-AINTELLECTUAL)
.VALUE DISP. J

i
RECALL

AVG. MEMORY

DIVIDE
AVG. MEMORY

BY 3

i
f HALT- \
(AVG VALUE
y DISP ^/

1
ADD 1

TO
TDA MEMORY

i
RECALL

TDA

1

Fig. 6-8. Biorhythm flowchart.

364

cated by zero, but on the HP-55 with this program, you get things

like -3.18927540 x 109 and other weird figures close to zero but

not absolute. This, I believe, is due to inherent limitations of accu

racy. It should also be noted that a critical day occurs not only at the

end of a cycle but also at the half-cycle point

In the case of the emotional cycle, this would be at the 14- and

28-day points and doesn't cause a problem. The P and I values do,

because half of 23 is 11.5 and half of 33 is 16.5 For this reason, on

these two rhythms, every other critical day point will not be indi

cated by zero (or a figure very close to it), but rather will be indicated

by two contiguous days of low, equal-but-opposite polarity values.

.14 and -.14 are good examples. How do we interpret this condi

tion? For the moment, let us assume that birth occurred at noon.

Presumably, the critical point of each critical day would then be at

noon. This is fine for the emotional cycle, but in the case of the other

two, we are forced to assume that the critical time of the half-cycle

critical day is positioned V2 day after the birth hour. In this example,

that would be at 12 midnight, splitting two days. In any event, you

may assume that the critical day, under these conditions, resides

between the two low, equal-but-opposite polarity values.

One problem with this subject is the task of determining the

TDA figure. You can do this by counting the number of days in your

first partial year of life. To this add all the normal 365-day years and

the 366-day leap years plus the number of days in the current year.

Or you can use one of several "Days Between Two Dates" prog

rams, such as the one in the HP-55 mathematics programs booklet.

Texas Instruments also has a similar program for their calculators.

However you calculate it, be sure to make a note of the date and

TDA figure. For future calculations, you then need only add the

intervening days.

A flowchart (Fig. 6-8) is included in the hopes that it will be of

assistance to those of you who own microcomputers. I believe that,

with proper graphics, you should be able to display each cycle for a

month at a time and all three with colors to represent each. The

flowchart should also help those with programmable calculators of

divergent operations.

So there you have it—a rather uncomplicated procedure to

obtain easily-understood numerical values for biorhythm cycles.

365

Chapter 7

Miscellaneous

Computer Projects

Many microcomputer applications require that the current time be

available for display or printout, either on demand or when certain

events occur. A time system of this type is known as a real-time

clock, as distinguished from the microprocessor clock used for

internal timing. One can think of at least a dozen applications fpr a

real-time clock. For RTTY operation, the current time can be $ent at

the beginning or end of a transmission, included as part of a contest

message when required and used as a 10-minute timer for CW

identification. Others may find the clock useful for such things as

logging, satellite tracking and timing in conjunction with repeater

control, just to name a few.

A Bionic Clock

A practical microcomputer real-time clock is not really a very

difficult project. At the time I needed one, however, I could not find

much information in the available literature. I had considered inter

facing a clock chip such as the MM5312 or 5313 to a 6820 PIA, but

neither was on hand at the time. One manufacturer is currently

advertising a real-time clock board kit and software for about $100.

This is not quite my idea of a cheap clock!

The system I finally decided to use operates on an interrupt

basis, using a crystal-controlled timebase and dividers to produce

one pulse per second. This is connected to the microprocessor

nonmaskable interrupt (NMI) line. The IRQ input can also be used, if

367

not otherwise required by the other programs. Component cost is

less than $10, and the programs require only a nominal amount of

memory. The programs to be described were developed for use

with a 6800, using the Mikbug™ monitor and the KIM-1 6502

system. Adapting the programs to other systems should offer no

great problems.

In addition to the clock routine, we must have a routine to store

the address of the clock routine in the interrupt vector locations, a

routine to initialize the clock digit locations from the terminal

keyboard and a routine to read out the time. A flowchart to do all this

is shown in Fig. 7-1. For the purpose of demonstrating the program,

a wait loop is used, so the program is waiting for a keyboard

command to either store or read the time.

To start the clock, select the Store Time control character,

type in only the four digits for the upcoming time in 24-hour format

and turn on the clock pulse generator at the exact minute. To read

the current time, select the Print Time control character. The

keyboard control characters can, of course, be changed to any

others, as you desire.

A flowchart of the NMI routine is given in Fig. 7-2. Tables 7-1

and 7-2 list the programs for the 6800 and 6502, respectively. When

the time locations are initialized with the current time, the seconds

counter location is cleared. After the clock generator is started, each

pulse causes the program to vector to the interrupt routine, and the

seconds counter is incremented by one. When 60 seconds are

counted, the units/minutes digit is incremented, and the seconds

counter is cleared again. The other digits are updated in essentially

the same manner, following ordinary clock logic. Since the 24-hour

format is used, the hours locations are cleared to zeros when the

time increments to 2400 hours.

One note of caution: The clock generator must be off when you

are in the system monitor. Until the program is loaded and executed,

any interrupt will cause the monitor program to go berserk. After

the program is loaded, you can safely return to the monitor if

necessary.

If you don't use Universal Coordinated Time (UTC), you can

change the time zone to anything else, such as EST, PST, etc. With

program modification, the time string can include other data.

A schematic of the clock generator is shown in Fig. 7-3. The

timebase reference uses components from a $4.95 60 Hz crystal

timebase kit. The 5369 is interfaced to the divider string TTL logic

level with nearly any small switching-type NPN transistor. The two

7490s form the divide-by-60 function followed by a 74121 oneshot,

368

C ENTER JENTER 1 ADDR. 0200

INITIALIZE

NMI VECTOR

NO

YES

UPDATE 4

TIME DIGITS

PRINT TIME
STRING

EXIT

EXIT

Fig. 7-1. Flowchart—wait loop, time update and print time routines.

to produce a pulse of approximately one ms. The pulse width is not

critical, however, since the interrupt operates on the negative edge

of the pulse. To reduce current drain, IC2 andIC3 can be replaced by

74LS90s. I could have used 74C90s, but I did not have a CMOS
substitute for the 74121.

I discarded that small PC board that came with the timebase kit

and made another board for the entire circuit. You can build the

circuit on a piece of perfboard, mounting the timebase components

on the PC board supplied. Artwork and component layout for the PC
board I used are shown in Fig. 7-4.

369

Table 7-1. 6800 Real-Time Clock Program.

0200

0201

0203

0206

0208

020B

020E

0210

0213

0215

0217

021A

021D

021P

0221

0224

0227

0229

022C

022S

0231

0234

0235

0237

0239

023A

023C

023F

0242

0243

0245

0247

0248

0249

024A

024B

024C

024D

024E

D6

A9

8D

A9

6D

2C

30

20

C9

00

20

4C

C9

DO

20

4C

A9

8D

A2

20

9D

B6

BO

DO

60

A2

BD

20

B6

BO

DO

60

30

30

30

30

20

55

54

50

FA

02

re

40

FB

5A

03

06

27

OB

05

EA

3A

OB

00

A5

00

5A

46

04

F5

00

48

AO

08

F5

17

17

17

IE

02

02

02

02

02

IE

02

02

IE

START

WAIT

RETIME

STTIME

T3HEIN

PRTIME

PRSTR

K0UR10

H0UR1

MIK10

MINI

CLD

LDA

sn

LDA

STA

BIT

h:i

JSR

CMP

BNE

JSR

JMP

CMP

BNE

JSR

JMP

LDA

STA

LDX

JSR

STA

INX

CPX

BNE

RTS

LDX

LDA

JSR

INX

CPX

BNE

RTS

#$50 INITIALIZE NMI VECTOR

HMIV (LO)

#$02

NMIV (HI)

SAD (KIM) LOOK FOR K3D 5TART BIT.

WAIT

QETCH (KIM) GET KBD CHAR.

#$03 ETX-TRE UPDATE CTRL CHAR.

RDTIME

STTIME

WAIT

#$05 ENQ-READ TIME CTRL CHAR.

WAIT

PRTIME

WAIT

#0

COUNT RESET SECONDS COUNTER.

#0

GETCH (KIM)

H0UR1O, X STORE 4 DIGITS.

#$04 -SIZE+1

TIMEIN

#0

H0UR10, X

OUTCH (KIM) PRINT CHAR.

#$08 -SI2E+1

PRSTR

0

0

0

0

SPACE

U

T

370

024F

0250

0251

0254

0257

0259

025B

025D

0260

0263

0266

0268

026A

026C

026F

0272

0275

0277

0279

027B

027E

0281

0284

0286

0288

028a

028D

0290

0292

0294

0297

0299

029B

0290

02A0

02A3

02A4

02A5

43

48

EE

AD

C9

DO

A9

8D

EE

AD

C9

DO

29

8D

EE

AD

C9

DC

29

8D

EE

AD

C9

DO

29

8D

EE

C9

DO

AD

C9

DO

A9

8D

8D

68

40

A5 02

A5 02

3C

48

00

A5

4B

4B

3A

08

30

4B

4A

4A

36

08

30

4A

49

49

3A

08

30

49

48

34

OF

48

32

08

30

49

48

02

02

02

02

02

02

02

02

02

02

02

02

02

02

Jtfl

TENMIN

ONEHR

TENHRS

BUT

OOUNT

PHA

INC

LDA

CMP

BNE

LDA

STA

INC

LDA

CMP

BNE

AND

STA

INC

LDA

CMP

BNE

AND

STA

INC

LDA

CMP

BNE

AND

STA

INC

CMP

BNE

LDA

CMP

BNE

LDA

STA

STA

PLA

RTI

C

NON-MASKABLE INTERRUPT ROUTINE

OOUNT

COUNT

#$3C

err

#0

COUNT

MINI

MINI

#$3A

TSNMIN

#$30

MINI

MIN10

MIN10

#$36

ONEHR

#$30

MIN10

H0UR1

H0UR1

#$3A

TENHRS

#$30

H0UR1

HOURIO

#$34

SOT

HOURIO

#$32

EXIT

#$30

H0UR1

HOURIO

SAVE A.

60SSCST

RESET SECONDS COUNTER.

lOMINST

MASK TO ASCII ZERO.

60MINST

10 HRST

H0UR1 -47

HOURIO - 2T

IF HRS-24, CLEAR TO 00.

RESTORE A.

371

CLEAR SECS

COUNTER

INCREMENT

MINI CTR

I£L-^CTR«IO X NO
MlNS P

MASK MINI

TO ASCII 0

INCREMENT
'MINIO CTR

MASK MINIO
TO ASCII 0

INCREMENT
HOUR! CTR

V

YES

MASK HOURl
TO ASCII 0

1
INCREMENT
HOURIO CTR

/HOUR! X. NO
^tr-iohrO—

V

Fig. 7-2. Flowchart—-NMI real-time clock routine.

The real-time clock has proved to be a real aid. It's foolproofand

reliable, and its accuracy is as good as any digital clock I have used. If

your microcomputer needs a clock, try this one.

372

2N
39

04
J.

4.
3

12
J»

l
J.
0^

^

I
6
M

X

2
7
p
F

C
T

*
,
,
3
-
3
0
p
F

L

I
C
2

7
4
9
0

2
3

4

4
.
7
K

S
T
A
R
T

S
W
I
T
C
H

♦
5
V

9
8

1
4

1
3

1
2

II
1
0
9

I
C
4

7
4
1
2
1

1
2

3
4
5
6
|
7

i
P
P
S
O
U
T
P
U
T

T
O
N
M
I

I
N
P
U
T

X
-
3
5
7
9
.
5
4
5
K
H
z
C
O
L
O
R
T
V
C
R
Y
S
T
A
L

O
.
I
M
F

Fi
g.

7
-
3
.
S
c
h
e
m
a
t
i
c
d
i
a
g
r
a
m

o
f
t
h
e
o
n
e
P
P
S

g
e
n
e
r
a
t
o
r
f
o
r
t
h
e
m
i
c
r
o
p
r
o
c
e
s
s
o
r
r
e
a
l
-
t
i
m
e
c
l
o
c
k
.

0200

0201

0203

0206

0208

020B

020E

0210

0213

0215

0217

021A

021D

021P

0221

0224

022?

0229

022C

022E

0231

023^

0235

0237

0239

023A

023C

023F

0242

0243

0245

0247

0248

0249

024A

024B

024C

024D

024E

06

A9

8D

A9

6D

2C

30

20

C9

00

20

4C

C9

DO

20

4C

A9

8D

A2

20

9D

B6

BO

00

60

A2

BO

20

E8

BO

DO

60

30

30

30

30

20

55

54

Table 7-2.

50

PA

02

FB

40

Fti

5A

03

06

2?

OB

05

EA

3A

OB

00

A5

00

5A

46

04

F5

00

48

AO

08

F5

17

17

17

IE

02

02

02

02

02

IE

02

02

IS

KIM-1

START

WAIT

RETIME

STTDffi

TIMEIN

PRTIME

PRSTR

H0UR10

H0UR1

MIK10

MINI

(6502)

CLD

LDA

ST\

LDA

STA

BIT

a:i

JSR

CMP

BNE

JSR

JMP

CMP

BNE

JSR

JMP

LDA

STA

LDI

JSR

STA

DOC

CPX

BNE

RTS

LDX

LDA

JSR

INX

CPX

BNE

RTS

Real-Time Clock Program.

#$50 INITIALIZE NMI VECTOR

iWIV (LO)

#$02

NMIV (HI)

SAD (KIM) LOOK FOR KBD START BIT.

WAIT

QETCH (XUJ) GET KBD CHAR.

#$03 ETX-TIME UPDATE CTRL CHAR.

RETIME

STTIME

WAIT

#$05 ENQ-READ TIME CTRL CHAR.

WAIT

PRTIME

WAIT

#0

COUNT RESET SECONDS COUNTER.

#0

GETCH (KIM)

H0UR10, X STORE 4 DIGITS.

#$04 -SIZEH-1

TIMEIN

#0

H0UR10, X

OUTCH (KIM) PRINT CHAR.

#$08 -SIZE+1

PRSTR

0

0

0

0

SPACE

U

T

374

024P

0250

0251

0254

0257

0259

025B

025D

0260

0263

0266

0268

026A

026C

026F

0272

0275

0277

0279

027B

027E

0281

0284

0286

0288

028A

028D

0290

0292

0294

0297

0299

029B

029D

02A0

02A3

02A4

02A5

43

48

EE A5 02

AD

C9

00

A9

8D

EE

AD

C9

DO

29

8D

EE

AD

C9

DO

29

8D

EE

AD

C9

DO

29

8D

EE

C9

DO

AD

C9

DO

A9

8D

8D

68

40

A5 02

3C

48

00

A5

4B

4B

3A

08

30

4B

4A

4A

36

08

30

4A

49

49

3A

08

30

49

48

34

OF

48

32

08

30

49

48

02

02

02

02

02

02

02

02

02

02

02

02

02

02

NMI

TENMIN

ONEHR

TENHRS

EXIT

COUNT

PHA

IKC

LDA

CMP

BNE

LDA

STA

INC

LDA

CMP

BNE

AND

STA

INC

LDA

CMP

BNE

AND

STA

INC

LDA

CMP

BNE

AND

STA

INC

CMP

BNE

LDA

CMP

BNE

LDA

STA

STA

PLA

RTI

C

NON-MASKABLE INTERRUPT ROUTINE

COUNT

COUNT

f$3C

EXIT

10

COUNT

MINI

KDU

#$3A

TENMIN

#$30

MINI

MIN10

MIN1O

#$36

ONEHR

#$30

MIN10

H0UR1

H0UR1

#$3A

TENHRS

#$30

H0UR1

H0UR10

#$34

EXIT

H0UR10

#$32

EXIT

#$30

H0UR1

H0UR10

SAVE A.

60 SECST

RESET SECONDS COUNTER.

10 MINST

MASK TO ASCII ZERO.

60 MINST

10 HRS?

H0UR1 -4T

H0UR10 - 2T

IF HRS-24, CLEAR TO 00.

RESTORE A.

375

IPUT

Fig. 7-4. PC board.

Computer-Gontrolled Thermometer

Browsing through the vast treasure trove of literature in our

library, a very good article caught my eye. Entitled "How You Can

Take Oscar's Temperature,-" this particular article described

OSCAR 7's telemetry information, including formulas to decode the

telemetry. After thinking for a bit, a little bug (actually a PROM

memory keyer, I think) flew into my ear and said, "You could write a

computer program for that!" So I did.

For the few who may not know, both OSCAR 6 and OSCAR 7

are alive, well and broadcasting their onboard Morse code telemet

ry, transmitting the ship's status to anyone who happens to be

listening. So although this project describes the OSCAR 7 telemetry

decoding, the same technique canbe applied to OSCAR 6 (and future

OSCARs) as well. OSCAR 7's telemetry during Mode A (2m/10m)

is transmitted on 29.502 MHz. Thus, anyone with a low band

receiver is capable of at least listening to the satellite and copying

telemetry.

The telemetry itself consists of a cycle (called aframe) of 24

numbers divided into a pattern of sixlines, and divided again into four

376

L
I
N
E
*

C
h
a
n
n
e
l A B C D

1

1
—

1
—

1
—

2

2 2 2
—

2
—

3

3 3 3
—

3

4

4
—

4
—

4
—

4
—

5 CJI5
—

5
— CJI6

6
—

6 6
—

6
—

C
O ^}

Fi
g.

7-
5.

Te
le

me
tr

y
ch
an
ne
ls
.

channels to each line. Channels are designated A, B, C and D. Thus,

any specific number could be referred to as "channel 5C," or what

ever (Fig. 7-5). Each number represents a different function or

status of the ship. Coming from OSCAR, the telemetry might read

like this: HI HI 114127143195 218 223 262... Notice the pattern of

1A, IB, 1C, ID, 2A, 2B, 2C, . . . The "HI HI" at the beginning

merely separates each full frame of numbers—the telemetry trans

mits continuously.

The Program

Although the program is written in BASIC for a DEC PDP/11-

45,1 tried to keep the program straightforward enough to adapt to

any of the other forms of BASIC floating around. It shouldn't take

that much memory either. See Table 7-3 for the program listing.

A little explanation of the program seems to be in order. First of

all, the "Date of Copy" and "Orbit #" inputs (lines 30 and 40) are for

the operator's information and convenience only. I included them to

keep the reception and orbital data straight for future reference,

especially if the output is to a TTY or other hard copy device.

Another possible confusing feature is the request to delete the

first number of each channel (line 80). The first digit in each

channel—the line number (i.e.,i 23.. .215.. .367... etc.)—is for

reference only and is not involved in any calculation! So ifyou use the

program as is, you would type "23,41, 77..." instead of "123,141,

177..." It's possible, of course, to delete that first number within

the program, but for the sake of simplicity (and less hassle for the

programmer, not to mention memory!), I chose to do it this way.

Table 7-4 shows a sample run to illustrate the program operation (I

used a "1" as the input in each case).

Since some ofthe formulas use the same math equation, instead

of just retyping that same thing over and over again while putting in

the program, I just stuck in the GOSUB statements for lines 9000

and 9500. Let the computer do the work. This is first demonstrated

with the "+X Quadrant Current" statement. There are two separate

formulas used repeatedly. The answers to all the equations will be in

the units specified in the preceding PRINT statement. The usual

abbreviations apply: milliamp = mA, milliwatt = mW, temperature

in Celcius (later in the program, just "Cel"), etc. If you still don't

quite understand the program operation, see the flowchart in Fig.

7-6 for help.

Bells and Whistles

Once you have the program running, it's kind of fun to see for

yourself how OSCAR is doing up there. And, of course, you don't

378

Table 7-3. Program Listing.

LIST

OSCAR7 03:06 PM 11-FEB-77

10 PRINT"OSCAR-7 TELEMETRY DECODING PROGRAM'1

20 REM BY MARK HERRO, WB9LSS

30 INPUT'TYPE DATE (GMT) OF COPY (DAY, MONTH, YEAR)";D,M,Y

40INPUT"ORBIT#";O
50 DIM A(24)

60 REM 'A' CAN NOW HAVE 24 INPUTS

70 REM GET READY FOR INPUTS

80 PRINT'TYPE ONE NUMBER PER '?', DELETING THE FIRST NUMBER"

90 PRINT'OF THE THREE NUMBER SET (I. E. USE 23,43,77,80..."

100 PRINT'INSTEAD OF 123,143,177,180,...)"

110 FOR Y=1 TO 24

120 INPUT A(Y)

130 NEXTY

140 REM ♦♦♦♦DECODING MEAT###»

150 PRINT'TOTAL SOLAR ARRAY CURRENT (MA)="

160 PRINT 29.5 *A(1)

170 PRINT"+X QUADRANT CURRENT (MA)="

180 REM LET N»A(2) THEN GOSUB TO RIGHT EQUATION
190 LET N»A(2)

200 GOSUB 9000

210 PRINT'-X QUAD. CURRENT (MA)="

220 LET N»A(3)

230 GOSUB 9000

240 PRINT"+Y QUAD. CURRENT (MA)="

250 LET N=A(4)

260 GOSUB 9000

270 PRINT"-Y QUAD. CURRENT (MA)="

280 LET N=A(5)

290 GOSUB 9000

300 REM SO MUCH FOR THE REPEATS FOR GOSUB 9000

310 PRINT"70/2 OUTPUT POWER (WATTS)="

320 REM IF INPUT IS '00' ODDS ARE 70/2 IS SHUT DOWN

330 PRINT 8#(1-.01»A(6))t2
340 PRINT "SHIP TIME (HOURS)="

350 REM TIME INCREASES 1 INCREMENT EVERY 14 MINUTES

360 PRINT.253*A(7)

370 PRINT'BATTERY CHARGE/DISCHARGE CURRENT (MA)="

380 PRINT 40#(A(8)-50)
390 PRINT'BATT. VOLTAGE (VOLTS)="

400 PRINT .1#A(9)+6.4

410 REM I DONT KNOWWHY THEY PUT THIS NEXT ONE IN, BUT...

379

420 PRINT'ONE HALF BATT. VOLTAGE (VOLTS)="

430 PRINT .1*A(10)

440 PRINT"BATT. CHARGE REGULATOR #1 (VOLTSK'
450 PRINT .15*A(11)

460 PRINT'BATT. TEMPERATURE (CELCIUS)="

470 REM START SECOND SET OF REPEATED NUMBERS (9500)

480LETN=A(12)

490 GOSUB 9500

500 PR!NT"BASE PLATE TEMP. (CEL)="

510LETN=A(13)

520 GOSUB 9500

530 PRINT'T.A. TEMP. 2/10 TRANSPONDER (CEL>"

540LETN=A(14)

550 GOSUB 9500

560 PRINT'+X FACET TEMP. (CEL.)*"

570LETN=A(15)

580 GOSUB 9500

590 PRINT"+Z FACET TEMP. (CEL.K'

600LETN=*A(16)

610 GOSUB 9500

620 PRINT'P.A. TEMP. 70/2 TRANSPONDER (CEL.)="

630LETN=A(17)

640 GOSUB 9500

650 PRINT'P.A. EMITTER CURRENT 2/10 (MA)="

660 PRINT 11.67*A(18)

670 PRINT'TRANSPONDER MODULATOR TEMP. 70/2 (CEL.K'

680LETN=A(19)

690 GOSUB 9500

700 REM END OF ALL THE REPEATED EQUATIONS

710 PRINT"INSTRUMENT SWITCHING REGULATOR CURRENT (MA)="

720 PRINT 11+.82*A(20)
730 PRINT"2/10 TRANSPONDER POWER OUT (MW)="

740 PRINT A(21)t2/1.56
750 PRINT"435 MHZ BEACON POWER OUT (MW)="

760 PRINT .1 *(A(22)t2)+35
770 PRINT "2304 MHZ BEACON POWER OUT (MW)="

780 PRINT .041 *(A(23)t2)
790 PRINT'MIDRANGE TELEMETRY CALIBRATION (VOLTSK'

800 PRINT .01 *A(24)

S10 REM GOSUB EQUATIONS

320 GOTO 9700

9000 PRINT 1970-20*N

9100 RETURN

9500 PR I NT 95.8-1.48* N

9600 RETURN

9700 END

continued on page 381

380

+X QUADRANT CURRENT (MA)»

1950

-X QUAD. CURRENT (MA)»

1950

+Y QUAD. CURRENT (MA)»

1950

-Y QUAD. CURRENT (MA)=

1950

70/2 OUTPUT POWER (WATTS)=

7.8408

SHIP TIME (HOURSH

.253

BATTERY CHARGE/DISCHARGE CURRENT (MA)=

-1960

BATT. VOLTAGE (VOLTS)«

6.5

ONE HALF BATT. VOLTAGE (VOLTS)=

.1

BATT. CHARGE REGULATOR #1 (VOLTS)=
.15

BATT. TEMPERATURE (CELCIUSH

94.32

BASE PLATE TEMP. (CEL)=

94.32

P.A. TEMP. 2/10 TRANSPONDER (CEL.)=

94.32

+X FACET TEMP. (CEL>

94.32

+Z FACET TEMP. (CEL.)=

94.32

P.A. TEMP. 70/2 TRANSPONDER (CEL.)=

94.32

P.A. EMITTER CURRENT 2/10 (MA)=

11.67

TRANSPONDER MODULATOR TEMP. 70/2 (CEL.H

94.32

INSTRUMENT SWITCHING REGULATOR CURRENT (MA)=-

11.82

2/10 TRANSPONDER POWER OUT (MW)=

.641026

435 MHZ BEACON POWER OUT (MW)=

35.1

2304 MHZ BEACON POWER OUT (MW)=

.041

MIDRANGE TELEMETRY CALIBRATION (VOLTS)=

.01

READY

381

Table 7-4. Program Sample Run.

READY

RUN

OSCAR7 03:14 PM 11-FEB-77

OSCAR-7 TELEMETRY DECODING PROGRAM

TYPE DATE (GMT) OF COPY (DAY, MONTH, YEAR)? 00,00,00

ORBIT #? 00000
TYPE ONE NUMBER PER '?', DELETING THE FIRST NUMBER

OF THE THREE NUMBER SET (I. E. USE 23, 43, 77, 80...

INSTEAD OF 123,143,177,180,...)

? 1 TEST

TOTAL SOLAR ARRAY CURRENT (MA)=

29.5

have to stop where the program ends; there are a number ofpossible

modifications. Subtracting out the first number of the channel by the

program is one thing, as I said earlier. Or you could try to just

calculate one number out of a whole frame. If you really wanted to go

all out, you could try getting your system to take the telemetry

Morse code off the air (adjusting for the Doppler shift), decode the

information and print it out at the same time!!

With a minimum of time and effort, it wouldn't be hard to "take

OSCAR's temperature" the easy way. If you have a hard copy

printout, all the better. You might even try taking a long-term survey

of the satellite's performance by saving the information you collect

382

LET N-A(Y)

/ INPUT
/ OATE OF
/RECEPTION

DIM A (24)

NEXTY

GET NEXT

NUMBER OUT
OF FOR/NEXT
LOOP

Fig. 7-6. Program flowchart.

383

for a time, then graphing the data with your new graphics system!

Don't forget AMSAT; I'm sure they would be interested, too.

Now, after you have all that set up, try checking into OSCAR

9's telemetry. That'll have 128 channels when it is launched.

Winning the Name Game

Would you like to have a fantastic memory with everyone's

name on the tip of your tongue (keyboard)? Whether you are running

for office, trying to borrow equipment orjust want to appear to be on

the ball, this program will fill that need.

The number of newcomers appearing on the repeater scene

increases every day. It is extremely difficult to remember

everyone's name. Using my program, all you have to do is type in the

call of the operator. The computer supplies you with his call and his

name. A small piece of information can be included if you so desire.

I wrote this program using SWTPC 8K BASIC to run on my

6800-based machine (Tables 7-5 and 7-6). Southwest BASIC re

serves 32 bytes for a string variable. This would allow 6 bytes for the

call and 1 byte for a space. This leaves 25 spaces (bytes) available for

the operator's name and a key word of information pertaining to that

particular operator. If your memory is small, you might consider

limiting the length of the string variables by adding DIM statements.

String variables in Southwest BASIC may be named any single

alphabetic character or a subscripted letter. The subscripts permit

ted are 0 through 9 only.

When adapting my program for your own use, be sure to keep

some type of line number organization to avoid confusion when

adding new calls to memory. Assuming you are using the program

for local 2 meter operation data, the call area will probably be the

same for the majority of the entries. Therefore, concentrate on the

last three letters of the operator's call. In my program, I assigned the

line numbers as follows: 100-190 to the calls whose last three (or two

as the case may be) letters begin with the letter A, 200-290 to those

whose last three letters begin with the letter B and so on through the

rest of the alphabet. Those amateur calls contained in statement line

100-190 would be assigned the string variables A$(0) through A$(9).

Those in lines 200-290 (beginning with B) would be assigned B$(0)

through B$(9) and so on. Line 9000 is inserted as a slight delay loop.

Morrow's Marvelous Monitor

One of the finest, though unheralded, microprocessor boards

on the market today is the George Morrow CPU/front panel board,

384

1
0

2
0

3
0

4
0

1
0
0

1
0
1

2
0
0

2
0
1

3
0
0

3
0
1

4
0
0

4
0
1

5
0
0

5
0
1

T
a
b
l
e
7
-
5
.

R
E
M

*
*

3
X

5
C
A
R
D

U
P
D
A
T
E
*
*

R
E
M

*
*
A
M
A
T
E
U
R
R
A
D
I
O

N
A
M
E

D
I
R
E
C
T
O
R
Y

*
*

P
R
I
N
T
"
E
N
T
E
R

T
H
E
A
M
A
T
E
U
R
C
A
L
L

"
;

I
N
P
U
T
C
$

L
E
T
A
$
(
l
)

=
"
W
A
3
A
0
Q

B
I
L
L
"

I
P

C
$
=

L
E
F
T
$
(
A
$
(
1
)
,
6
)

P
R
I
N
T
A
$
(
l
)

L
E
T
B
$
(
l
)

m
"
K
3
B
D

M
I
K
E
"

I
F

C
$
=

L
E
F
T
$
(
B
$
(
1
)
,
4
)

P
R
I
N
T

B
$
(
l
)

L
E
T

C
$
(
l
)

=
"
K
3
C
H
D

D
O
N
"

I
F

C
$
m
L
E
F
T
$
(
C
$
(
1
)
,
5
)

P
R
I
N
T

C
$
(
l
)

L
E
T

D
$
(
l
)

m
"
W
B
3
D
H
B

P
H
I
L
"

I
F

C
$
=
L
E
F
T
$
(
D
$
(
l
)
,
6
)

P
R
I
N
T

D
$
(
l
)

L
E
T

E
$
(
l
)

=
"
W
A
3
E
N
U

R
I
C
H
"

I
F

C
$
=

L
E
F
T
$
(
E
$
(
l
)
,
6
)
P
R
I
N
T

E
$
(
l
)

P
r
o
g
r
a
m

Li
st

in
g.

•
•

•

•
•

•

9
0
0
L
E
T

I
$
(
l
)

=
"
K
3
I
Z
B

9
0
1

I
F

C
$
=

L
E
F
T
$
(
I
$
(
1
)

•
•

•

•
•

•

2
5
0
0

L
E
T
Z
$
(
l
)

s
"
W
3
Z
C
0

2
5
0
1
I
F

C
$
.

L
E
F
T
$
(
Z
$
(
1
)

9
0
0
0

F
O
R

D
m

1
T
O

5
0

9
0
1
0

N
E
X
T
D

9
0
2
0

P
R
I
N
T

9
0
3
0
P
R
I
N
T

9
0
4
0
P
R
I
N
T

9
0
5
0

G
O
T
O

3
0

J
O
H
N
"

,
5
)

P
R
I
N
T

I
$
(
l
)

K
E
N
"

,
5
)

P
R
I
N
T

Z
$
(
l
)

Table 7-6. Sample Run.

READ?

ENTER

K3IXB

ENTER

THE AMATEUR

JOHN

THE AMATEUR CALL ?

known as the "Sigma 100." It is being sold directly from Morrow's

Micro-Stuff or through dealers around the country. Although it is

being advertised innocently enough as a replacement front panel for

the Altair or Imsai computers, it does far more than any other CPU

system currently being offered. The Morrow board also comprises

the brains of the Equinox 100 computer system from Parasitic

Engineering.

I first discovered the early version of the board in late 1976,

when a friend of mine (computer freak of magnitude 9.9) called my

attention to a miniscule ad George Morrow was running which

offered a computer board at a ridiculous price. I hustled off a check,

figuring at the time that, if computers turned out to be a great hobby,

I would soon have a roomful of blinking LEDs (which I now have).

My previous experience in computers was a frustrating FOR

TRAN course, watching my friend's toggle-switch acrobatics on an

Altair, and articles in magazines that I didn't understand. I just

plowed ahead and decided to learn as I went. There's a first lesson

for beginners here—go ahead, even if you aren't sure that you know

what you're doing.

I received my Morrow CPU board in a week. This is a fully-

debugged working production model. There's no waiting months

until the company gets into production and works out glitches. This

is an important point because you see a lot of neat things advertised

which aren't being shipped.

The Morrow board itself is a nicely laid out double-sided job.

Assembly is straightforward. Stick sockets in, solder and it works.

Then comes the problem: What do you do with a computer

when you don't know anything about computers? First of all, you

need a power supply, case and mother board with sockets to give the

CPU board a home. You can get the works from Parasitic Engineer

ing in their Equinox 100. In addition to what I would best describe as

a moosepower supply (it powers 18 card slots—your money will run

386

out before this power supply will), the Equinox has a specially

designed mother board, also from George Morrow.

Next, you need some memory. There's another lesson here for

beginners. Pick a CPU that is compatible with your friends', or pick

friends who have CPUs and mother boards like yours. That way, you

can borrow a board or two of memory when you want to run some

large program that uses up memory. You can also swap boards for

debugging, at your own risk, of course!

After the memory is in and the power on, you begin tinkering

with the keys on the front panel to see what happens. George

doesn't swamp you with information, but you do get basic instruc

tions and a little program which makes the seven-segment LEDs

count. It helps familiarize you with the operation. The board's

operation is so simple that, in about an hour, I had figured out

basically what was happening inside the computer. The normal

reaction is, "Why aren't all computers designed like this?"

The control of the Morrow panel is set up in a perfectly rational

way, so, if you can operate a pocket calculator, you can work a

Morrow computer. You don't have to know anything about status

lights, memory protect, machine cycles, or nitty-gritty computer

design to get going. There's no binary conversion, no flashing lights.

The only switch on the board is a reset switch, which sort of sends

everything back to home when you mess up the program. There are

12 keys for control functions and 10 LED seven-segment readouts

to tell you what's going on.

How Does It Work?

Basically, the Morrow front panel/CPU works like this: There

is a combination hardware-software calledfirmware which controls

operation of the CPU and does all the work supervising the computer

operation. In the normal run mode, the CPU will go full speed just

like anybody else's 8080 CPU. But nowcomes the neat part. You can

execute the program just one step at a time single stepping or let the

front panel step through it at any rate you want (slow stepping) I will

discuss this in detail later. You can also put a halt instruction in the

program, and the front panel program will stop your program so that

you can see what happened so far. Then you can continue from that

point, at any speed from single step to full run. Normally, when an

8080 CPU reads a halt instruction, it stops dead in its tracks, and you

have to reset the whole works to get going again. Morrow's halt just

pauses the program and leaves all the registers, memory, etc.,

alone, so you can continue from that point on. Now the halt instruc-

387

tion is a truly useful programming aid. Programs can be run in

sections to help isolate the bugs more easily.

In addition to the regular speed of operation, the Morrow CPU

panel has four modes of operation at stepping speeds. The firmware

program lets your program execute just one step, and then it takes

over and displays to you what you want to see. You can select the

program counter where you look at the memory location and data,

any register or pair, any port location or watch one memory location.

You select whether it will execute just one step at a time or automat

ically step through your program.

Pressing the M key will run the CPU normally, and the front

panel will be in control for halts but will not display any data. The

CPU simply runs too fast for any practical monitoring of data in this

manner. Pressing S will stop the program, and the front panel

program will be completely in command. Pressings while the front

panel program is in operation will single step your program.

Pressing the 0 and then M keys is the normal mode which

examines each memory location as the program is stepped. The six

LED digits on the left tell you what memory location you are

seeing—the first location is 000,000 (octal), then 000,001, etc., on

up to 377,377, the last location in memory. The right three digits tell

you what is in the memory location displayed. In Fig. 7-7, you see

that at location 000,100, there is a 303, which would be executed as a

jump instruction. Since this instruction requires two more bytes

following for the address, you can press E and the next memory

location will be displayed (in the example, 000,101 would be dis

played) along with the data in that location. Pressing E again will

display the next location (000,102) and so on. To examine any

memory location, enter the location and press E. To deposit new

data at any memory location, first examine the location (enter the

location and press E), then enter the data (which might be an

instruction or a data byte) and press D. If you press D again, the

same data will be deposited in the next memory location also. It is not

necessary to examine each location before depositing data. Each

time you deposit data, the memory location will advance to the next

location. Thus a long program can be entered in a reasonable amount

of time.

The next mode is the register mode. To enter, press the I and

then M keys. Two digits on the left indicate which of the 8080

registers is displayed. The three or six (depending on whether it is a

16-bit pair or an 8-bit register) digits on the right indicate what is in

the register. In Fig. 7-7, you are looking at register 15, the program

counter. The next location that will be executed is 010,020. You can

388

MEMORY

LOCATION

DATA IN

MEMORY

QlOIOl /lOlDI \3\O\3
A. "O-M" MODE

REGISTER

DATA IN

REGISTER

l\5\ I IPI/IOIOIZIO
8. "I-M"MODE

Fig. 7-7. Memory Information.

examine a register and deposit data just like the memory locations.

As you single or slow step through a program, you can watch a

selected register or pair change. This is an extremely valuable tool in

debugging programs. In most computers, it takes an elaborate trace

program to perform this function.

Since the accumulator (register A) is a standard register, you

can watch the accumulator in the register mode. If you are building

an interface to the outside world (such as a keyboard), this function

can be useful in determining whether a problem lies in the interface

circuit or in your computer program. If you aren't getting data into

the accumulator, the interface circuit isn't working. If data is getting

into the accumulator register, your program is at fault.

In another mode, the2-M mode, input ports may be examined

and data may be outputted. During any part of your program, while

the program is halted and the front panel is in control, data may be

sent to any port, just as if you had written a section of computer

program which moves data to an output port. For example, if you

have just built a device connected to the computer's output port

which turns on relays and you want to test the relay interface

circuits, you would enter the port mode and then examine the port

your relays are connected to. By depositing data into that port, you

could see if the relays are turned on or not. Again, you can isolate any

problems to the computer program, the device interface circuit or

389

the device itself. As another example, say you've built an analog-to-

digital converter board which takes analog values (voltages) and

converts them to a digital number. By examining the A/D input port,

you can determine if the board is working. By slow stepping a

program which inputs the ports, you can watch the values change.

The final mode is the 3-M mode, which watches a particular

memory location. The display looks the same as the 0-M mode,

where the left six digits represent the memory location and the right

three represent the data. As the program is stepped through, the

memory location will not change in the 3-M mode, but, if different

data is put into the memory location, it will be displayed.

By now, you may have noticed that the Morrow front panel/

CPU bears a resemblance to the trainers which use similar LED

schemes and to the new Heath 8080 computer machine. It should be

noted that the Morrow board is the only one with a selectable

slowstep rate and with the controlled halt which does not require a

CPU reset and lose all of the program information. The stepping rate

of the slow step is determined by entering a value and then pressing

S. Entering 1 and then S runs the program very fast—it's good for

clearing memory areas quickly—and entering 100 and then S will

execute your program at about one step per second.

An additional plus for the Morrow board is the S-100 bus.

There's complete compatibility with the dozens and dozens of other

computer boards on the market. The system is totally upward

compatible, meaning that, as you begin to squander more and more

money on computers, you can use all that you have purchased so far.

You might think that 18 slots in the Equinox computer are a lot, but

just wait!

It doesn't take long to realize that there's more to a computer

than just getting the CPU board and power supply. You need mem

ory and interface boards if you want to communicate with the

machine via a keyboard and look at the results on a TV screen. That

translates into money. Fortunately, the Morrow board allows you to

use all 10 LED readouts and 11 of the keys as input/output ports.

When the firmware program is not using them, i. e., when theM key

is pressed and the CPU is going full blast, you can display any

segments of the readouts and input information from the keys. TheS

key is not usable, however, since pressing it anytime stops your

programming. You cannot use the readouts or keys during any

slow-step mode, since they are dedicated to the firmware program

at this time. Still, the keys and readouts do provide at least some

thing. You can devise a frequency counter and use the readouts for

frequency display, write a clock program which keeps time (none of

390

this $9.95 stuff), or put input data into the readouts to give you a

visual indicator that data is being received.

The LED displays are simply memory locations beginning at

377,000. The eight data lines drive each segment of an LED. By

depositing a 117 octal the segments forming a 3 will turn on. With

help from Morrow's instructions, you can easily make the readouts

count. Remember that, when the front panel program takes over, all

the information in the LEDs is lost, so the information needs to be

stored at another location.

The keypad is I/O ports 376 and 377. As a key is pressed, a

latch is set so that you can input any data combinations from the

keys. It's a little bit cumbersome but still better than toggle

switches.

Now that you've looked at some of the features of the Morrow

CPU board, I will briefly describe several applications for which this

computer is ideally suited. The first, and most obvious, is the

educational value of seeing what is going on inside a computer as the

program is running. Students can easily enter machine language

programs (in octal) and then run and debug the programs. As the

student becomes more and more proficient, additional boards-

memory, analog/digital, interface, etc.—can be plugged in to make

the system more sophisticated. I have found that, within the educa

tional realm, the Morrow board is uniquely suited for students to

learn computer control applications, beginning with simple programs

for simple control applications and progressing into more and more

complicated programs. Since data can be readfrom the LED displays

and program parameters changed through the front panel keys,

external displays such as CRTs need not be used. This is particularly

nice if the computer is going to be used in a laboratory situation, such

as machine control, where heat or vibration might cause a TV screen

some problems.

George Morrow, in his design of this CPU/front panel board,

has pretty well covered all bases. It is a simple-to-operate board for

beginners, a sophisticated supervisory-control firmware program

for programming and debugging and has complete compatibility with

the currently popular S-100 bus structure. Parasitic Engineering,

with the rugged power supply and cabinet to house the Morrow

board, provides the complementary components for the base for any

degree of sophistication.

The North Star Disk

How would you like to be able to turn your system off at night,

come back the next morning, flip two or three switches and be

391

running complex BASIC programs in 15 seconds? There are several

ways of accomplishing this, ranging from keeping a BASIC interpre

ter in PROM and files on tape to buying a powerful disk drive and

controller.

Commercial computers have used a number of interesting

schemes to accomplish anautoload—Emac used a large switch panel

organized as memory words. Early Control Data computers used

spinning cams to close switches and load data words into memory.

Recent modern minicomputers have made good use of direct stor

age access disk systems to take over the memory system and stuff a

bootstrap program from the first sector of a disk to the first few

memory locations.

Most of these methods, however, have been too complicated

and expensive for home use. But there is at least one happy excep

tion to this trend—the North Star Micro-Disk System. For about

$700 (the cost of three disk packs on a large mainframe system), you

can have the kind of performance described above.

The North Star Micro-Disk System is similar to other floppy

disk systems in many respects, but the price was kept at a minimum

by eliminating some of the frills without making major sacrifices in

performance. Incidentally, some of these frills have also been elimi

nated by other manufacturers without comparable price reductions.

One of the differences between the North Star system and

more conventional floppy systems is the use of a minifloppy drive

instead of a full-sized drive. This decreases the total amount of data

that can be saved on a disk. The mini-floppy drive can store 89.6

kilobytes of information as formatted by the North Star controller.

Also, this is not a direct storage access device. It uses a memory-

mapped I/O system similar to the kind of input/output commonly

used in a 6800 microprocessor system. This is, however, still much

faster than most tape systems that could be purchased on an exper

imenter's budget. The North Star minifloppy format is somewhat

less capable of storing large amounts of data than other minifloppy

systems which utilize double or quad density data packing. Still, 89.6

kilobytes leave sufficient room for a great many programs on a single

diskette, and swapping diskettes takes just 5 or 10 seconds. Also,

lower data density may result in higher data integrity.

There are four main components in the North Star disk system:

the drive, the controller, the disk operating software and the BASIC

interpreter. Let's examine them one at a time.

The Disk Drive

North Star uses the Shugart SA400 minifloppy diskette storage

drive. This is good news for the experimenter because Shugart is

392

one of the major names in floppy disk technology, and many of the

parts (notably the read/write head) have similar or identical coun

terparts with the very successful SA800 drive. The drive is solidly

built and appears very rugged. Most ofmy disk drive experience has

been with huge capacity rigid disks, and I was surprised to notice

that there are no provisions for alignment of the minifloppy. I was

assured by the technicians at North Star that there have been no

problems with diskette interchangeability since one of the recent

modifications to their controller board, but I had a great deal of

trouble reading the diskette originally shipped to me (containing the

disk operating system and BASIC). I took it to my distributor, and he

had similar troubles reading it. Autoloading from it took about 20

minutes because so many repeats were necessary due to errors

detected with the cyclic redundancy checking software. As it turned

out, I can reliably read the diskettes I write, my distributor can read

the diskettes he writes, but we can't read each other's diskettes

very well and neither of us had much luck reading what came from

North Star.

The diskette is hard sectored for 10 sectors per track and 35

tracks per disk, with the first 4 sectors dedicated to the file direc

tory. Two hundred fifty-six bytes of data storage are available on

each sector, and a preamble of 16 bytes of zeros and a special sync

character precedes the data. The data is followed by one check byte.

This format differs somewhat from that used by large-capacity rigid

disk drive manufacturers in that it does not allow address verifica

tion. This is an interesting area of sacrifice. Manylarge-disk systems

verify the disk address after every seek to make sure the drive has

gone to the correct track and sector. Floppy systems do not do this.

It has caused no problem in my system and is an example of eliminat

ing the icing while preserving the cake. I think it is worth it for a

hobbyist or small business, but, for a big business whose file entries

represent thousands or millions of dollars, it may be a serious

drawback.

The diskette may be write protected with a piece of masking

tape folded over a cutout in the cardboard carrier. When protected,

the drive will not write even if (erroneously) told to do so by the disk

controller.

The drive comes without a cabinet, but my distributor didn't

charge me for one of the pretty (blue) jobs. Incidentally, there is

room inside that little box for a small power supply, too, and, even

though I didn't pay the $40 they wanted for it, they shipped me the

PC board and regulators anyway, so I could tap into the unregulated
power from my computer. I was pleasantly surprised at that, but it

393

got me into some trouble later. The +12-volt supply draws a lot of

current when the motor starts up, and I had to beef it up before the

drive would run reliably.

I was also impressed by the head-seeking mechanism. They

have used a stepper motor to spin a disk in small increments. The

disk has a spiral groove in it, and what looks like a ball bearing rides

this spiral in and out, pushing the head carriage mechanism toward or

away from the center of the disk. On long seeks, you can hear the

stepped motor make a fluttering sound at each track. Track-to-track

access is advertised at 40 milliseconds, which means a 35-track seek

will take about 1.4 seconds.

North Star charges about $400 for this disk drive, but, if you

order directly from the factory, you can get it for about $355.

The Disk Controller

The disk controller is implemented on a single S-100 compatible

PC board which has been silk-screened and solder-masked to in

crease ease of assembly. Sockets are included for every IC, and, if

my experienfce is typical, it is a good idea. Even though I never had to

replace parts, I swapped a lot of them around in order to test them

because of timing problems I had.

They used a lot of clever unorthodox hardware tricks on this

board. For example, their use of memory-mapped I/O, rather than

standard 8080 I/O ports, surprised me. The disk controller looks

like a IK block of variable speed read only memory to the system

software, with each disk command decoded not from data sent out

from the accumulator, but from the contents of the address bus.

Status and disk data are given to the CPU on the memory data in

lines as if the data were retrieved from system ROM, and, when data

is not available as fast as the CPU wants it, wait states are introduced

exactly as if the CPU were waiting for slow memory. This scheme

does not tie up any of the 256 input or output ports of the 8080, but it

does use IK of address space starting at address E000 in the

standard version. North Star may have saved a little money with this

method because they don't have to decode the data out lines, but I

think there were other reasons for their choice of memory-mapped

I/O. It may be possible to use the North Star controller with a

minimum of modifications in a 6800 or similar system because of this

choice.

Incidentally, I was able to use the North Star controller concur

rently with a Godbout 8K PROM board with both addressed at

E000, but with the PROMs of the Godbout board removed from

E000 to EFFF. Software package 1 owners, take note.

394

Note a few other interesting hardware tricks. There are three

PROMs on the board; two are conventional program storage de

vices for bootstrap and low-level disk routines, and the third sits on

the upper eight address lines to decode board selection, bootstrap

PROM selection, status requests or the availability of a byte of data

to be written on the disk. There is also an on-board clock instead of

an attempt to use the 8080 system clock. This may be due to the

current trend of using the Z-80 and other microprocessors with

different clock speeds. Also, the engineers at North Star have

allowed the option of using XRDY instead of PRDY to sychronize

CPU speed with memory speed.

The other functions implemented by hardware are: Sync byte

detection is directly decoded from the disk and presented as a status

flag to the CPU, and a power-on clear eliminates the necessity of

resetting the board at turn-on time. (I wish my memory boards had

this feature; most of the 15 seconds it takes to autoload are spent

unprotecting RAM.)

A function not implemented by hardware is error checking.

Most disk systems use hardware to do a cyclic redundancy check or

an error correction code. North Star does a CRC in software. Also,

address marks are conventionally written on a disk by the controlling

hardware and verified at seek time. This is not done in the North Star

system, as previously mentioned.

I found a couple of problems with the disk controller. First,

current-model PC boards (#MDC A-2) need a modification which

requires cutting a run and adding a jumper. This is documented in an

errata sheet included with the kit. Unfortunately for me, this didn't

solve all my problems. I found my board was sometimes unable to

set a flip-flop used to inform the CPU of write status, and the

software would just hang in a loop waiting for it. I spent many hours

with a scope trying to make this problem go away and finally

suceeded by making a minor modification to the PC board. I discus

sed this with North Star and they were very alarmed, claiming that

no one else has ever had a similar problem and that I probably have a

bad chip.

The Disk Operating System

I think this is one of the real strengths of the North Star system.

It provides the ability to load, save, execute or access files by name

or disk location. Names may be up to eight characters long. Up to

256 different file types may be defined, and four are predefined with

the system. They are:

395

Table 7-7. Commands.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

DE

CO

TY

GO

GA

JP

LF

SF

CF

CD

RD

WR

IN

DT

L1 List the disk directory of the optionally specified drive.

The following information is returned: file names.

lengths, starting addresses, and types.

CR Create a new file. CRT specifies name, length, and

optional starting disk address.

Delete a file.

Compact file space, eliminating blank areas.

Change the type of a file.

Load and execute a type 1 file.

Set the "go address" of a type 1 file.

Jump to the address specified in HEX from the CRT

Load a file to RAM.

Save a file from RAM.

Copy a file (same or different disk, different names).

Copy an entire diskette (multiple drive systems).

Read a # of blocks from disk to RAM.

Write a # of blocks from RAM to disk.

Initialize a new diskette.

Drive test: writes a changing pattern all over the diskette,

then reads and checks it. This is useful for checking a

diskette for bad spots.

• Type 0: Default type. All files are type 0 until explicitly

changed.

• Type 1: Machine language (executable) program.

• Type 2: BASIC program. Can be loaded or saved from

BASIC.

• Type 3: BASIC data file. Can be read or written by BASIC.

Interfacing with system hardware is provided by a good

documentation package and memory space for the user to write his

or her own I/O and initialization routines. The guidelines provided

are thorough, and I have seen the DOS successfully interfaced to a

POLY-88, a 3P+S, and a line printer with relative ease.

There are 16 commands available from the CRT. Most of them

specify the file name, and some also specify drive number (1 to 3),

disk addresses, RAM addresses and number of sectors to be oper

ated upon. These commands are shown in Table 7-7.

I am so pleased with the DOS that it is hard to specify a

weakness of any kind. But it would be very nice to have the ability to

flag and skip over bad tracks on a diskette. I really don't know if this

should be called a weakness of the DOS or of the controller

hardware, but it would certainly be helpful.

North Star BASIC

I am also quite pleased with North Star's implementation of

BASIC. It is much better than the 5K version I had been using, even

though it uses 10K of RAM to do it.

396

I have noticed that it is much slower at number crunching than I

had expected, but it calculates eight significant digits instead of the

more common six, and the slower speed is probably a good market

ing strategy for North Star, whose second major product is a

hardware floating point board designed to speed up number crunch

ing.

As shipped from the factory, North Star BASIC expects to find

16K of RAM starting at address 2000 hex. It does not overwrite the

disk operating system, although some commands of the DOS bomb

BASIC. (It's a small loss when it only takes 5 seconds to reload.)

BASIC uses the upper 4K (approximately) for program storage, and

documentation is provided for expanding or moving the program

storage space.

Major strengths of the BASIC package are shown in Table 7-8.

Additionally, all of the standard features you'd expect to find in a

good BASIC package are available with North Star BASIC.

As for its weaknesses, once again, it is hard to criticize a

package as sophisticated as this one, especially at this price. Less

capable BASIC interpreters have been sold for thousands of dollars

with no hardware and very little documentation provided.

For a price which I considered very reasonable, I recently

received from the factory a software update on a diskette. This time

I was able to read the diskette perfectly. Included are ARC

TANGENT and CHAIN, the latter allowing one BASIC program to

call and execute another BASIC program from the disk. I consider

this an indication that they intend to give good support to this

product.

Table 7-8. BASIC Package Strengths.

1. A line editor which has several commands for copying or changing

portions of old lines.

2. Formatted output similar to FORTRAN.

3. Multiple-line user-defined functions.
4. String and substring manipulation.

5. Boolean operators: and, or, not.

6. Memory examine and fill (decimal memory values).

7. 8080 in and out capabilities.

8. Machine language subroutine calling with interface to OE and HI register pairs.
9. # of bytes of program storage remaining can be calculated.

10. Natural logs and antilogs.

11 Random and sequential disk file accessing.

12. Trigonometry (sine and cosine only).
13. Multiple dimensioned arrays.
14. Renumber.

397

Overall, I am very pleased with the North Star disk system. I

am convinced that, dollar for dollar, it is the best investment to be

had in the area of mass storage for computers today. Extra bonuses

are the great disk operating system and the good implementation of

BASIC.

Nevertheless, it is a big project. I have built each part of my

system from the ground up, and this has been, by a big margin, the

most difficult of all, including home brewing my own CPU from Altair

PC boards and home brew components, cabinet, power supply, back

plane, etc.

I recommend to those of you interested in buying this product

that, if you don't have a solid background in hardware and access to a

good dual-channel oscilloscope, buy it assembled and tested. It may

have been just bad luck on my part, but, even though I never had to

replace a bad component or redo a connection, it still took me almost

two weeks to get it running flawlessly.

Timing Diagrams

A timing diagram is one of several road maps for digital circuits.

Aside from providing us with a picture of what a waveform should

look like at the output of a circuit, it can also tell us the exact

conditions which exist within a circuit for any particular instant in

time. The latter can be very helpful information when troubleshoot

ing a circuit. Being able to generate a timing diagram to the point of

determining what the output waveform looks like is a useful tool in

analyzing and learning digital circuits.

We're going to be discussing timing diagrams from two different

angles. First, we're going to take a look at some of the fundamentals

and techniques involved in generating a timing diagram. Secondly,

we're going to examine a couple of manufacturers' diagrams and

discuss the intepretation of same.

A Basic Timing Diagram

Figure 7-8 illustrates the fundamentals of a simple timing diag

ram. Perhaps one of the first things worth pointing out is the

desirability of usinggraph paper. This will help you establish a time

reference (by assigning a time period for each division) and certainly

help in keeping events lined up vertically, which is one of the

objectives.

The arrow at the bottom of the diagram indicates time is going

from left to right. It's the only way to go. There aren't many things as

398

c

V
<

D

0

f- 1- cr

h-

Z)

Q.

Z

o

h-
3

O

cr

LJ

-J

CO

LU

cr
UJ
u.

X

h

Leo*
<HCD

<x

^Ko ^ tr m

3

E x
<

E

£

399

confusing as trying to use a timing diagram drawn the other way.

(Keep in mind that an oscilloscope display is also from left to right

with respect to time.)

The diagram illustrates the inputs and outputs of a 3-input

NAND gate. Assuming we had the three input signals down onpaper

our next step would be to generate the output. Remembering the

rules for a NAND gate (that is, the output will go low only when all of

the inputs are high), we begin examining the input signals from the

left. As long as any of the inputs are low, the output will remain high.

And, as you can see, the output drops low when all three are high.

Signal OPUT ("OUTPUT") is high, indicating an output function is to

be performed. INPT ("INPUT " NOT) is high, indicating, an input

function is not currently being done. And, XFER ("Transfer") goes

high to enable the data transfer. The output signal, GATB, ("Gate to

Bus" NOT) is low when we're gating data to the bus.

One more point before leaving this basic diagram. Notice the

comments. Now, it doesn't matter if you put comments with the

signal mnemonic or with the waveform, as shown. But, it's a good

idea to do it. This timing diagram is to the hardware man what a

program and/or flowchart is to a software man. All of them will be

easier to read and understand by others (and yourself, a year from

now) if there are comments included.

By the way, the reference to "hardware" and "software"

shouldn't imply that this discussion is aimed toward computers.

We're dealing with digital electronics, and that covers a wide range of

equipment and applications.

Timing Diagram Generation

It was evident from Fig. 7-8 that we needed to know what the

input signals were before we could start. This will, of course, hold

true for any timing diagram we wish to generate (i. e., the inputs will

be our known values, and the other signals—including the

output—will be our variables, or unknowns).

We have three signals coming into the circuit shown in Fig. 7-9.

These are ©1 (Phase 1), 02 (Phase 2), and RST (RESET NOT). As

you can see, this circuit has a flip flop, and it is very important that

you establish in the beginning the state of that flip flop (either set or

reset). Note that RST goes true (low) in the beginning to put the flip

flop in a reset condition. And, as part of the comments in this

diagram, the arrow illustrates this.

As a suggestion why don't you take a piece of paper and cover

the waveforms below the three inputs, and we'll see if you can

400

>CLKA

02 J

C

IC3

KrioQ

-* T 1350

f?35O

Fig. 7-9. Generation of a nonsymmetrical clock.

anticipate the outputs as we go along. Or better yet, draw them on

the paper.

01 has a period of 370 microseconds. If you grab your handy-

dandy little calculator and take the reciprocal of that, you should

come up with a frequency of 2700 Hz. The ANDing of 01 and 02

(through NAND gate ICl) produces the signal T2700. So much for

ICl. Doing it first was strictly arbitrary. Now, let's take the inver

sion of 02 (through IC2) and generate the clock for theJK flipflop. On

the trailing edge (ordown clock or one-to-zero transition) of 02 the flip

flop will change state. It started off in the reset condition (because of

RST) and is clocked set (i.e., O output high, and Q low) on the first

trailing edge of 02. And, as you can see, it is toggled (change of state)

two more times during the duration of the diagram. The outputs of

the flip flop are labeled T1350 and T1350. The signal names in this

case are derived from the frequency of the output, which is 1350 Hz.

(The flip flop divided the input frequency of 2700 Hz by two.)

401

In order to complete the timing diagram for this circuit, we need

to AND together (through NAND gate IC4) the signals T2700 and

T1350. Once again, remembering the rule that the output goes low

only when the inputs are both high, we generate the signal CLKA

(which is, of course, a non-symmetrical clock, or signal).

Figure 7-10 is an interesting circuit, a divide-by-three. Note

that in this case we didn't show the reset signal (RST) in the timing

diagram. Regardless, it's very important that you establish the

starting conditions for the flip flops (either set or reset). The labeling

of various timing points (to, ti... ts) can be very useful for reference

when discussing the diagram. Also notice the comments, the period

of the input waveform (7.716 usec), the period of the output

waveform (7.716 usec), the period of the output waveform (23.15

usec) and the arrows indicating which transition caused which

change of state. The divide-by-three function of the circuit is evident

when you see that it took three cycles at the input to develop one full

cycle at the output. If you haven't seen this circuit before, and you

find it interesting, it's suggested that you examine it more closely,

because it is definitely tricky.

Figure 7-11 is an exercise circuit for those of you who would like

to try your hand at generating a diagram from scratch. The answer

(timing diagram) is shown in Fig. 7-12. Assume that all three flip

flops are in a reset condition initially, and the input frequency of 10.8

kHz is a symmetrical square wave. Be sure to have at least 10 full

cycles of the input signal across the page.

Interpretation

There are several techniques regarding timing diagrams which

haven't been mentioned (but are very common) and will help you in

interpreting others. For example, we've been using the bar (or

vinculum) over the signal mnemonic to indicate the not term (e.g.,

INPT = "INPUT NOT"). There are several methods in use today

for representing the true and false terms in signal notation. Most of

them are listed in Table 7-9.

Figure 7-13 illustrates several techniques used to indicate vari

ous conditions or states. The first line (DAL 0-7) represents the data

and address lines of an 8 bit computer. The crossing over of the lines

simply indicates that the data and address will be either ones or

zeros. This is especially true for multiple lines (as per the example)

but can also be used for a single line. The signal called SYNC in the

second example is depicted with a broken line, which means that the

signal may or may not occur at that particular point. The third line

(ADDR) illustrates the settling time for a signal. Settling time is the

402

R
g
.
7
-
1
0
.
A

d
i
v
i
d
e
-
b
y
-
t
h
r
e
e
c
i
r
c
u
i
t

R
S
T

I
J p V I
S

F
/
F

N
O
.

I

C
L
R

^
[
w

i r y I
S

W

F
/
F

N
O
.
2

C
L
R

c
i

c

~
*

i

c V

F
/
F

N
O
.
3

■
4
-

f
t

•
0
1

Fi
g.

7
-
1
1
.
E
x
e
r
c
i
s
e

ci
rc

ui
t.

f.
K
)

-
3
7
O
/
i
S
-

F
/
F
N
O
2

F
/
F
N
O
.
3

J
I

Fi
g.

7
-
1
2
.
T
i
m
i
n
g
d
i
a
g
r
a
m
fo

r
e
x
e
r
c
i
s
e
ci

rc
ui

t.
Fl
ip

fl
op
#
1
d
i
v
i
d
e
d
t
h
e
in
pu
t
f
r
e
q
u
e
n
c
y
b
y
t
w
o
,
a
n
d
w
e
c
a
m
e
u
p
wi
th

5
.
4
k
H
z
.
Fl

ip
fl

op
#
2
d
i
v
i
d
e
d
t
h
e

5
.
4
k
H
z
b
y
t
w
o
a
n
d
w
e
n
o
w
h
a
v
e
a
f
r
e
q
u
e
n
c
y
of
2
7
0
0
H
z
.

In
o
r
d
e
r
to
m
a
k
e

th
is

ci
rc
ui
t
w
o
r
k
y
o
u
m
u
s
t
t
a
k
e
t
h
e
in

pu
t
c
o
n
d
i
t
i
o
n
s
t
o
fl

ip
fl

op
#
3

pr
io
r
to

t
h
e
tr
ai
li
ng
e
d
g
e
of

t
h
e

ti
c
l
o
c
k
p
u
l
s
e

(i
.e
.,
a
l
o
w
s
h
o
u
l
d
h
a
v
e
b
e
e
n
c
l
o
c
k
e
d
to

t
h
e
"
Q
"
o
u
t
p
u
t
,
a
s
s
h
o
w
n
h
e
r
e
)
.
T
h
e
h
i
g
h
o
u
t
p
u
t
(
0
1
)
f
r
o
m

fl
ip
fl
op
#
2

w
o
n
'
t
b
e
c
l
o
c
k
e
d
in
to

fl
ip
fl
op
#
3

un
ti

l
c
l
o
c
k
te

.
T
h
i
s
ci
rc
ui
t
h
a
s
g
e
n
e
r
a
t
e
d
a
f
r
e
q
u
e
n
c
y
of
2
7
0
0
H
z
at

f
o
u
r
di

ff
er

en
t
p
h
a
s
e
s
.
C
o
n
s
i
d
e
r
s
i
gn

al
"
0
1
"
a
s
0
°

P
h
a
s
e
,
a
n
d
"
0
1
"

wi
ll
b
e
t
h
e
1
8
0
2
P
h
a
s
e
.
"
0
2
"

is
9
0
°
r
e
m
o
v
e
d
f
r
o
m
0
°
P
h
a
s
e
(
a
n
d

is
t
h
e
r
e
f
o
r
e
t
h
e
9
0
°
P
h
a
s
e
)
.
S
i
g
n
a
l
"
0
2
"

is
1
8
0
°
r
e
m
o
v
e
d
f
r
o
m

9
0
°
,
a
n
d
m
u
s
t
t
h
e
r
e
f
o
r
e
b
e
t
h
e
2
7
0
°
P
h
a
s
e
.

Table 7-9. Examples of Signal Notation.

High True

Condition

STRB+

STEP

EADR

CRST

INTF

INIT

Low True

Condition

STRB-

STEP

NEADR

CRST

INTFL

♦INIT

time it takes for a signal to become stable after being applied to a line

or bus. This is of primary concern when the signal is initially applied

to a line, and therefore the fourth line illustrates another method of

showing this, but only at the beginning of the signal.

Timing diagrams arejust one of several useful tools for evaluat

ing, designing and analyzing logic circuits. It's like anything else—

the more you use it, the better tool it becomes.

Interrupts Made Easy

Whenmy Intel 8080-based S-100 bus system was finally up and

running, I began looking around for ways to increase its flexibility.

The first thing I needed was a means of getting out of a program that

was running and back into the monitor without using front panel

switches. Interrupt capability was clearly needed. Unfortunately,

parts ofmy software resided in the section of memory that the 8080

uses for its restart instructions, so I couldn't use an interrupt

controller such as Intel's 8214.

After a few minutes of thumbing through data sheet catalogs, I

discovered my problem—Intel's 8259 programmable interrupt con

troller. The 8259 uses a call instruction instead of a restart instruc

tion, which allows the interrupt-handling routines to be located

anywhere in memory. As an extra bonus, the 8259 also allows

interrupt priorities to be changed or individual interrupt lines to be

disabled at any one time during processor operation.

I will now describe how interrupts work in an 8080-based

system, the 8259 chip andhow to interconnect the 8259 to the S-100

bus.

Interrupts and the 8080

Basically, an interrupt is a request by a peripheral device for

immediate service by the central processor. In an 8080-based sys

tem, the sequence of events following an interrupt is as shown in

Fig. 7-14. You must first assume that the processor is busy execut

ing some program, which I have called Main, for lack of a better

4Q6

li
J

HI

D
A
L
0
-
7

S
Y
N
C

A
D
D
R

A
D
S
-

I
X

AD
DR

X
X

DA
TA

—
H

h
—
<
l
5
0
n
S
E
C

H

E
o
o
m

A
n
n
o

\/
ai

i
n

*
P

r
/
/
l
^

M
U
U
n

V
A
L
I
U

T
j

m
,

/
-

X

(
*
•
—
<
i
O
O
n
S
E
C

i

X

Fi
g.

7-
13

.
S
o
m
e

m
i
s
c
e
l
l
a
n
e
o
u
s
t
e
c
h
n
i
q
u
e
s
.

I IS THE I
INSTRUCTION

I A RESTART ■"
| OR A CALL |

L I

I 1

I IS IT I
| A CALL I-
| INSTRUCTION |

I I

EXECUTE THE
INSTRUCTION

RECEIVED

FETCH THE TWO BYTE ADDRESS OF

THE SERVICE ROUTINE, ONE BYTE
AT A TIME WITH EACH OF THE

NEXT TWO DBIN PULSES

PUSH CURRENT PROGRAM COUNTER

REGISTER ONTO STACK

PUT APPROPRIATE RESTART ADDRESS

OR THE ADDRESS FETCHED WITH THE
CALL INSTRUCTION INTO THE
PROGRAM COUNTER REGISTER.

/continue
/running the
i interrupt
v service
\ROUTINE.

POP OLD PROGRAM COUNTER REGISTER

CONTENTS FROM STACK AND PLACE IN

THE PROGRAM COUNTER REGISTER AGAIN.

^RETURNV
VJO STARTy"

Fig. 7-14. Flowchart of the event sequence for interrupts in an 8080-based

system.

408

(START ^*

SYSTEM IS RUNNING AND EXECUTING
A PROGRAM CALLED MAIN.

8080 INTERRUPT PIN (INT) PULLED
HIGH BY A OEVICE REQUESTING SERVICE.

8080 COMPLETES THE CURRENT
INSTRUCTION CYCLE.

f?S THE 8080't1
INTERNAL |

.INTERRUPTS
ENABLED (El)
IFLIP

iSLI

i—

FLOP I

.J
TYES

IGNORE THE
INTERRUPT
REQUEST

SET THE 8080s INTERNAL
INTERRUPT FLIP FLOP.

RESET THE 8080 s INTERNAL
INTERRUPTS ENABLEO (El) FLIP FLOP

PUT STATUS
WITH Ml, Vi

WORD ONTO THE DATA BUS
5, AND INTA BITS SET.

USEDSYNC PULSE USED TO LATCH THE
STATUS BITS FOR LATER USE.

8080 DOES NOJ INCREMENT THE

PROGRAM COUNTER REGISTER.

RESET THE 8080's INTERNAL
INTERRUPT FLIP FLOP.

DEVICE REQUESTING SERVICE
AN INSTRUCTION ON THf '*"

8080 INPUTS FROM THE DATA BUS-

INDICATES THAT IT IS DOING SO BY
RAISING ITS DBIN PIN HIGH.

409

name. When our external device decides that it needs to be ser

viced, it pulls the INT (interrupt) line (pin 14) on the 8080 chip high,

providing an interrupt request to the 8080. The 8080 ignores this

line until it has completed the current instruction cycle.

For those unfamiliar with the 8080, and instruction cycle con

sists of everything the 8080 must do to get and to process a single

instruction. Each instruction cycle is subdivided into smaller parts

called machine cycles. The first machine cycle in any instruction

cycle is the instruction fetch, or Ml, cycle. Whether or not any more

machine cycles are required depends on the type of instruction the

8080 obtained while in the Ml machine cycle. Many 8080 instruc

tions do not require more than one machine cycle, while some

require up to five.

After the current instruction cycle is completed, the INT line is

examined. If it is high, the 8080 also looks at its internal interrupts

enabled (El) flip-flop. This flip-flop is software controllable, using the

El (enable interrupts) and DI (disable interrupts) instructions, and

must be set before interrupts will be accepted by the 8080. If the El

flip-flop is not set, the 8080 ignores the interrupt request on its INT

line and continues running the program Main. If the El flip-flop is set,

the 8080 sets its internal interrupt flip-flop, resets the El flip-flop

(disabling any further interrupts) and begins an interrupt-instruction

cycle.

The 8080 tells the outside world what type ofmachine cycle it is

entering by placing eight status bits onto the data bus at the begin

ning of each machine cycle. The first machine cycle in the interrupt-

instruction cycle is indicated by having status bits Ml (instruction

fetch), WO (processor write, active low) and INTA (interrupt

acknowledge) high and all others low. These bits are latched into an

8-bit register by the SYNC pulse sent out by the 8080 on pin 19 when

the status bits are stable on the 8080 data bus. The status bits can

then be used to control circuitry external to the 8080.

During a normal instruction fetch, the 8080 would increment its

program counter register at this time. Following the interrupt,

however, the program counter register is not incremented. This

allows you to keep track of the address of the next instruction to be

executed in program Main so that you can continue execution after

the interrupt is processed.

Next, the 8080 resets its internal interrupt flip-flop and inputs

an instruction from the data bus. It is assumed that the interrupting

device has placed an instruction on the data bus for the 8080 to get.

The external circuitry associated with the device-requesting service

410

has the repsonsibility to see that the right instruction is placed on the

data bus at the right time.

The type of instruction that the 8080 receives from the data bus

determines what happens next. If the instruction is not one of the

8080's restart instructions or a call instruction, it is simply executed,

and the program Main then continues where it left off. This feature is

useful if it is desired to increment or decrement one of the 8080's

internal registers in response to some outside trigger while a prog

ram is running, for example, a counter. There are probably lots of

clever ways to use this feature of the 8080 that have not yet been

tried.

If the 8080 gets a call instruction, then it fetches two more

bytes which are the address of the routine being called. This is

normally the address of the service routine for the interrupt. It may

not be immediately apparent, but a lot has to take place in the

circuitry external to the 8080 for this to occur. That's what the 8259

is for.

If, instead the 8080 gets a restart instruction, the address of the

service routine is automatically set by a three-bit pattern imbedded

in the single-byte restart instruction itself. Obviously, only eight

such 3-bit patterns exist, so you only have eight places in memory to

locate your service routines. These start at address 0000 hex and

are spaced every eight bytes in memory. These addresses corres

pond, in order, to the restart instructions RSTO through RST7.

Regardless of whether the instruction was a call or a restart,

the 8080 now pushes (stores) the current program counter register

contents onto its stack (the area of memory devoted to keeping

addresses for future use) so that it will be available after completion

of the interrupt service routine. This is necessary because the

program counter register contains the address of the next instruc

tion to be executed in program Main. The appropriate address from

the call instruction or restart instruction is then placed in the prog

ram counter register, and the 8080 continues executing instruc

tions, only now it is in the interrupt service routine instead of the

program Main.

When (if ever) a return instruction is encountered by the 8080,

the old program counter register contents (address of the next

instruction in the program Main) that was pushed onto the stack

earlier is popped (removed) from the stack and placed in the program

counter again. The program Main now continues executing at the

instruction that would have been executed next if the interrupt had

not come along, just as if nothing at all had happened.

411

This is more or less how the 8080 was designed to handle

interrupts. Normally, you will use more than one interrupt request

line in a system to allow several devices to be serviced as they

require. The request lines are usually arranged in some order of

priority, with the most important devices taking precedence over

less important devices.

All of this is intended as a review if you are already familiar with

how the 8080 handles interrupts, or as a brief introduction if you are

encountering this for the first time.

The 8259

The 8259 gets around most of the limitations that the 8080 has

in handling interrupts. Figure 7-15 is a block diagram of the 8259.

The chip has its own internal bidirectional data bus and is interfaced

to the 8080 data bus through the eight-bit bidirectional data-bus

buffer.

The interrupt-request register (IRR) is basically an 8-bit posi

tive edge-triggered latch that holds a record of those devices that

have requested service. Thepositive edge-triggered business means

that, when the interrupt-request (IR) pulse is making the transition

from low to high, the flip-flop is set.

The priority resolver determines which (if any) of the interrupts

will be serviced next and then sets the appropriate bit in the in-

service register (ISR). The in-service register then determines

which address is to be placed on the data bus in response to the

INTA pulses from the 8080.

Individual interrupt request lines may be masked off, which

simply means that they can be inactivated, by setting the appropriate

bit in the interrupt-mask register (IMR).

The control logic block takes care of synchronizing the various

internal parts of the chip. Its primary duty is to issue an interrupt to

the 8080 in response to a valid interrupt request at one of the 8259's

eight interrupt-request lines and then gate the three bytes of the call

instruction onto the 8080's data bus in response to the three INTA

pulses from the 8080 support circuitry.

Programming and reading the status of various registers in the

chip are handled by the 8080's I/O (input/output) instructions and

the read/write logic block of the 8259. The chip requires two I/O

port addressed for proper operation.

More than one 8259 can be tied together through the use of the

cascade buffer/comparator. One 8259 is designated as the master,

and all other 8259s in the system are designated as slaves to the

412

C
O

P
t
N
C
O
N
F
I
G
U
R
A
T
I
O
N

O
t
C

o
.
C

°
»
c

D
b
|
_

p»
r*

"

D
o
E

C
A
S
O
[
I

C
A
S
l
£

G
N
O
C

2 3 4 S « 7 8 9 1
0

I
I

1
2

1
3

1
4

2
7

2
6

2
5

2
4

2
3

2
2

2
0 1
9 1
8

»
7

■
«

1
9

J
m
*

D
A
T
A

B
U
S

B
U
F
F
E
R

R
E
A
D
/

W
R
I
T
E

L
O
G
I
C

P
I
N

N
A
M
E
S

0
7
-
D
O

W
D

«
i
r

A
O

C
A
S
I
-
C
A
S
O

I
N
T

I
N
T
A

I
R
0
-
I
R
7

O
A
T
A
B
U
S

(
8
1
-
D
I
R
E
C
T
I
O
N
A
L
)

R
E
A
D

I
N
P
U
T

W
R
I
T
E

I
N
P
U
T

C
O
M
M
A
N
O

S
E
L
E
C
T

A
D
O
R
E
S
S

C
H
I
P

S
E
L
E
C
T

C
A
S
C
A
D
E

L
I
N
E
S

S
L
A
V
E

P
R
0
6
R
A
M

I
N
P
U
T

I
N
T
E
R
R
U
P
T

O
U
T
P
U
T

I
N
T
E
R
R
U
P
T
A
C
K
N
0
W
L
E
0
6
E

I
N
P
U
T

I
N
T
E
R
R
U
P
T

R
E
Q
U
E
S
T

I
N
P
U
T
S

C
A
S
C
A
D
E

B
U
F
F
E
R
/

C
O
M
P
A
R
A
T
O
R

S
T
-

B
L
O
C
K

D
I
A
G
R
A
M

T
N
T
T

I
N
T

C
O
N
T
R
O
L

L
O
G
I
C

1
r

I
I
I

j
N
S
E
R
V
I
C
E

(
I
S
R
)

^
~

I

A
—

V
-

i
n

I
N
T
E
R
R
U
P
T

R
E
Q
U
E
S
T

(
I
R
R
)

-
I
R
O

-
I
R
I

-
I
R
2

-
I
R
3

-
I
R
4

-
I
R
S

-
I
R
6

-
I
R
7

I
N
T
E
R
R
U
P
T
M
A
S
K

R
E
G

(
I
M
R
)

I
N
T
E
R
N
A
L

B
U
S

Fi
g.

7
-
1
5
.
P
i
n
o
u
t
a
n
d

b
l
o
c
k
d
i
a
g
r
a
m

o
f

In
te

l'
s
8
2
5
9
p
r
o
g
r
a
m
m
a
b
l
e

in
te
rr
up
t
co

nt
ro

ll
er

.
(
C
o
u
t
r
e
s
y
of

In
te

l.
)

master. The slave's INT line is connected to one of the master's

interrupt-request lines so that, when the slave chip gets an interrupt

request on one of its interrupt-request lines, it sets the master

8259's interrupt-request register flip-flop. The master 8259 then

issues an interrupt request to the 8080 on its INT line. An 8259 chip

is designated as a master by tying its slave program (SP) pin high or

as a slave by tying the SP pin to ground. Up to eight slave 8259s may

be used with a single master.

When a slave 8259 receives an interrupt request, the slave

outputs a high on its INT pin which is connected to one of the master

8259's interrupt-request (IR) pins. If that IR pin is not masked off by

the master 8259's interrupt-mask register (explained later), the

master 8259 issues an INT to the 8080. When the 8080 acknow

ledges with the first of the three required INTAs, the master 8259

puts the call instruction onto the data bus. The master also puts the

address (one of eight) of the slave 8259, the one which received the

interrupt request from the device needing service, onto the cascade

buffer/comparator output lines, CASO through CAS2. This address

(connected to the slave's cascade buffer/comparator lines) enables

the slave 8259 to put the required service routine address onto the

8080 data bus with the next two INTAs from the 8080.

Clearly, since a call instruction is used instead of a restart

instruction, the service routine may be located nearly anywhere in

the 64K of memory available to the processor. The master/slave

feature allows as many as 64 interrupt-request lines to be serviced

by 64 different routines, if desired.

The interrupt-mask register (IMR) allows for maskable inter

rupts. Again, this means that the user can disable any or all of the

interrupt-request lines to any 8259 chip. To accomplish this, you set

the desired bit(s) in the interrupt-mask register. You thus have the

option of turning off any particular interrupt(s) without turning them

all off.

The priority resolver allows the user to change the priority of

any interrupt-request line at any time during system operation.

Suppose, for instance, that, after servicing a particular device, you

wish to assign it to the lowest priority, giving the remaining devices

in the system a higher priority. This is easily accomplished with a

single command to the 8259, which reprograms the priority resolver

to do what you want.

By this time, you must already realize just how versatile the

8259 is. The chip has exactly the kind of flexibility that I needed to

solve my interrupt problems. The next step was to get the chip

operating in the S-100 bus environment.

414

Interfacing to the S-100 Bus

This section deals specifically with the S-100 bus standardized

by the Altair 8800.

All of the interfacing is fairly straightforward, except for one

small part. Intel designed the 8259 to work in a system that employs

the 8228 system controller and bus driver chip. For those not

familiar with this chip, it is basically a status bit latch and bidirectional

data-bus driver all in one chip. It also has another unique function.

When a call instruction is issued in response to an INTA status bit,

the 8228 issues three INTA pulses, one during each of the next

three machine cycles, so that the 8080 will get all three bytes of the

call instruction. Since S-100-based systems do not use the 8228,1

needed another method of producing these pulses.

A very simple solution to this problem is shown in Fig. 7-16.

When the INTA status bit is valid, PDBIN is allowed to give the first

of the three INTAs to the 8259 and also to dock the 7474 dual

flip-flop. Clocking the 7474 keeps the 7400 NAND gate between the

PDBEN bus pin and the 7474 enabled (Le., pin 1 of the 7400 is high)

so that the next two PDBINs can give the 8259 the next two INTAs

that it requires to gate the address onto the data bus.

Mergetting all three bytes ofthe call instruction, theverynext

thing that the 8080 will do is push the contents of the program

counter register onto stack. Since the INTAs must be stopped after

the 8259 has received three of them, the stack-status bit (Stack) is

used to reset the 7474 flip-flop, turning off the 7400 NAND gate

between PDBIN and the 7474 (Le., making pin 1 of the 7400 low),

stopping the INTA pulses to the 8259.

The entire logic diagram is shown in Fig. 7-17. TheINTApulse

generator of Fig. 7-16 is shown in the upper left-hand corner of Fig.

7-17. As shown in the diagram, the 8259 is selected (CS low), and

the appropriate set of data-bus buffers is enabled as soon as it is

apparent that the 8259 will be accessed-This is known when the

status bits have beenlatchedand the address has beendecoded. The

bus drivers to the S-100 data IN bus are also enabled when a status

INTA bit is received in response to an interrupt request, allowing

the 8259 to give the three-byte call instruction to the 8080.

Address decoding is done using two 7485 four-bit magnitude

comparators and an 8-bit DIP switch, which allows the interrupt

controller to be addressed at any pair of the 8080's 256 input/output

ports. Notice that, since two I/O ports are required for operation of

the 8259, address bitA0 has beenconnected directly to theA0pin of

the 8259.

415

Read (KB) or write (WR) strobes (active low) are obtained by

NANDing PDBIN with SINP (the status input bit) or PWR (proces

sor write signal) with SOUT (the status output bit), respectively.

This gives the necessary delay time between chip select (CS) and

the RD/WR strobes to the 8259 (50 ns minimum).

Since my system presently_uses only one 8259, I have prog

rammed it as a master by tying SP high. The three cascade buffer/

comparator lines, CASO through CAS2, are left unterminated, since

they serve no purpose when only one 8259 is used.

The eight interrupt-request lines to the 8259 from the S-100

bus are inverted to provide positive pulses to the 8259 from the

negative pulses used in my system for interrupts. This is necessary

since my system's interrupt-request lines (V10 through V17) go low

and stay low until reset by software commands. The 8259, on the

other hand, only acknowledges an interrupt if the interrupt-request

register flip-flop is set by the rising edge of a pulse. Clearly, if I did

not invert the interrupt-request lines before applying them to the

8259, the 8259 would never acknowledge an interrupt.

That completes the interfacing of the 8259 to the S-100 bus.

Build a CW Memory

While building a random access memory (RAM) for my keyer, it

occurred to me that my CW operating habits did not require the

versatility of the RAM and that my memory requirements could be

satisfied with one or more programmable read only memories

(PROMs).

Although the control logic for the read modes are similar for

RAMs and PROMs, PROMs offer a non-destructible memory

(within their recommended operating parameters) after their initial

programming, without the need to frequently refresh the memory as

is necessary with RAMs.

The memory described is self-contained and need not be used

with a keyer. The output circuitry is designed to drive gridblock

keyed transmitters with key-up voltages not exceeding -100 volts.

TTL inputs are available for keying the transmitter from an external

source (i.e., the digital output from additional memories, a keyer, or

CW identifier).

Circuit Description

Figure 7-18 shows a simplified block diagram of the PROM

memory. The memory uses four Intersil IM5600C PROMs. These

PROMs are fully decoded TTL Bipolar 256-bit custom programmed

416

S
I
N
T
A

P
D
B
I
N

7
4
0
0

J&
2-

S
S
T
A
C
K

7
4
0
4

O
—

1
/
2

7
4
7
4

>
C
L
0
C
K C
L
E
A
R I
N
T
A
'
s

T
O

8
2
5
9

P
I
N

2
6

Fi
g.

7
-
1
6
.
I
N
T
A
p
u
l
s
e
g
e
n
e
r
a
t
o
r

ci
rc

ui
t.

(
B
u
s

pi
n
n
u
m
b
e
r
s
a
r
e
t
h
o
s
e

of
t
h
e
S
-
1
0
0

b
u
s
.
)

ih>sinta L^x

^SSTACK

^SINP

m>
A7

,A6

w>

IzE>
AO

1/2 7474

CLOCK _ 0

AODRESS VALID

4.7K

A*B OUT VCC

A3 B3

74LS85

BO

4.7K

4.7K

4.7K

—a

A«B OUT 6N0

A3 B3

A2 62

74LS85

Al 61

AO 80

A»B IN VCC

♦ 3

I 4.7K

ADDRESS
SELECT

DIP SWITCH

Fig. 7-17. Logic diagram of the 8259 implementation in S-100 bus systems.

418

s»¥»i

>
OUT ENABLE

♦5

vcc

SP

INTA

RO

Wft

8259

AS! CAS2 I I
T3 F» T POSI

/8

EN

OCTAL
BUFFER

OCTAL
BUFFER

SIOO DATA

IN BUS

SIOO OATA OUT BUS

VIO^

POSITIVE EDGE
TRIGGERED INPUTS

read only memories organized as 32 words by 8 bits (U7-U10). Open

collector outputs and chip enables insure simple memory expansion.

An effective memory capacity of 1024 bits is obtained by ORing the

four 256-bit chips together. I chose a 256-bit PROM because it

offers a convenient memory length of approximately 22 characters.

Memory retrieval is initiated with the appropriate program select

push-button switch (S2-55). The program can be stopped at any

point with the stop push-button switch (SI).

U3 and U4 are 7476 Dual J-K flip flops with preset and clear,

used as start/stop flip flops. The stop push-button switch, SI, is

connected to the preset inputs (ins 2 and 7) ofU3 and U4. Grounding

this bus forces the Q outputs to logic 1, disabling the clock and U6,

419

stopping the program (a logic 1 on pin 7 of U6 forces pin 5 low). The

clock inputs (pins 1 and 6) are connected together. A negative edge

at the clock inputs, corresponding to the end of the 256th bit, will

clock Q to logic 1, disabling the clock and U6, ending the program.

Individual program select switches are connected to the clear inputs

(pins 3 and 8) and U3 and U4. Grounding one of these pins will start

the program corresponding to the PROM selected. The Q outputs of

U3 and U4 (pins 11 and 15) are connected to the chip enable inputs

(pin 15) of the four PROMs. The appropriate PROM is enabled by

forcing one of the outputs of U3 or U4 to logic 0, enabling the clock

and U6, starting the program. Starting the program resets the eight

bit binary address counter Ul and U2.

Ul and U2 are 7493 TTL MSI 4-bit binary counters used to

address PROMs U7-U10 and U6, a 74151 TTL MSI 8-line-to-l-line

data selector. The first three bits from the counter address U6,

while the remaining bits address PROMs U7-U10. In this fashion U6

multiplexes the PROM outputs of eight lines to one line before the

address counter selects the next word.

U5 is a 7420 TTL Dual 4-input positive NAND gate. It is the

enable/disable gate for the clock and U6 and the reset gate for the

eight-bit binary address counter. Ull is a 7403 TTL Quadruple

2-input positive NAND gate with open collector outputs used as the

input for the transmitter keying circuitry.

Clock pulses for the memory are generated by a relaxation

oscillator consisting of Ql and Q2 and associated parts. The oscil

lator is the same one used in my keyer and was selected so that the

speed controls could be ganged and would track in the event that the

keyer would be packaged with the memory (it wasn't).

Programming

PROMs are fabricated with all logic levels at zero. The prog

ramming procedure open-circuits metal links which results in a logic

1 at selected locations in the memory. Intersil, instead of using a

metal link, forces a resistive shaft through the junction of one diode

in the memory cell resulting in a logic 1 at selected locations in the

memory. Once the memory cell has been programmed to a logic 1,

that bit cannot be altered (reprogrammed).

Distributors of PROMs offer custom programming services or

the reader may program his own. Design data sheets and application

notes describe the programming procedures in detail. Read these

instructions carefully and fully understand the address methods as

programming errors can be costly.

420

EXTERNAL C
DIGITAL >
INPUTS >

KEYING
CIRCUITRY

(7403,04)
TO TRANSMITTER

CLOCK

(01,02)

DISABLE "
LINE

I
PARALLEL TO SERIAL
CONVERSION

(74151)

t '
PROM MEMORY

(IM5600C X FOUR)

i i i i i

ADDRESS COUNTER
(7493 X TWO)

4

—J

CHIP ENABLES

1

START/STOP FLIP/FLOPS
(7476 X TWO)

Fig. 7-18. Block diagram of the PROM CW generator.

Figure 7-19 illustrates a typical programming card for the fol

lowing program: DE WA6WL WA6WL WA6WL K. Standard

spacing should be used in writing the program. For example, use 7

bits for a word space, 3 bits for a letter space, 3 bits for a dash and 1

bit for a dot.

The quoted price from R.V. Weatherford included program

ming costs. One advantage of a distributor programming your

PROM is that they verify its program before they send it to you.

421

weanmeRFORD
See other side for full instructions.

noivs

}

•

Word
No.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

IS

16

17

18

19

20

SI

82

2)

24

21

20

27

28

29

30

31

Ctrl N<? ,

«7

m

CD

fli

CD

CD

a

a

m

m

■B

A

a

H

OB

a

CD

«

CD

■

a

■i

a

m

a

m

a

a

CD

CD

CD

06

CD

CD

CD

CD

CD

CD

CD

a

CD

CD

CD

CD

■ft

a

CD

CD

CD

CD

O

a

CD

a

a

m

C3

a

a

n

CD

CD

ONE

PROM identification no

Fig. 7

right t

Comoany name ,

•19. The above prog

o left, top to bottom

D.

05

■

■1

CD

Oi

a

CD

M

a

SB

n

«

a

a

a

a

a

a

a

a

a

a

a

CD

a

CD

001

w.

O»ia

04

IB

CD

CD

a

a

CD

CD

CD

CD

CD

CD

O

O

a

a

a

CD

a

a

ID

0

a

ea

a

o

C3

O

CD

CD

CD

a

»

of

Bits

O3

a

CD

CD

a

a

a

a

a

a

a

a

CD

a

a

a

a

a

CD

a

a

a

0

a

a

a

a

'a

a

CD

a

o2

CD

CD

CD

CD

CD

a

CD

CD

CD

a

a

CD

a

0

CD

CD

CD

a

a

a

Q

a

a

CD

a

a

CD

CD

CD

CD

a

ONE

ISHMAEL

CD

a

CD

a

a

a

a

a

CD

a

a

CD

«

CD

CD

a

a

a

a

a

a

a

«

a

a

CD

a

a

CD

SB

CD

CD

HI

a

1

«••

L .

C

cz-

QJ _

CD

CD

CD

CD^

a

cd:^

CD^

CD

a

a

CD

CD

CD

CD

£2

CD

CD

a

ram, DE WA6VVL WA6VVL WA6VVLK, is read from

The program is written in the same fashion.

422

Weatherford

Pragrambig Card
Ordering Information

1.Company"«""» 71.1'/py,

2. Company«h,w« 111 ftpy

Ave.fC!osta Mesa, Calif

3. Requisitioned name A
(714)4. Telephone number

5. P/ROM manufacturer's part number

6. Quantity of P/ROMs required—?:
7. Quoted price per P/ROM $6,00

8. Requisitioned purchase order number

9. Special P/ROM marking Instructions

10. Shipping instructions4JBS-

How to use this card

1. Uaa a aoft pancll (No. 2)

2. On tha "program" aida of avary card mark blank apaeaa for

tha logic "1" (high output atata) data-bit locationa in your

program.

3. Writa anywhara on tha ahadad portion of tha card. DO NOT

mark In tha unthadad portion unlaaa you ara Indicating a

"1" data-bit location.

4. 00 NOT ERASE In tha unahadad data-bit portion. If tn •net

it mada, dattroy tha card.

5. On card No. 1 of aach program, eomplata tha "Ordarlng Infor

mation" aaction abovt.

6. Pack carda with atiff backing to avoid damtga.

Take completed cards to your i

sales office or send to:

Weatherford Programing Center

6921 San Fernando Rd.

Qlendale.CA 91201

423

Power Supply

The 5 volts supply illustrated in Fig. 7-20 can be built to satisfy

the requirements of the memory circuitry. U12 should be mounted

on a heat sink similar to the Wakefield 680-.75A or 621-A.

U12 dissipates only lVfe watts at nominal line using a 6.3V

transformer. However, at low line, ripple feeds through the reg

ulator. No problems with the memory have been experienced under

low line conditions to date. A slight improvement in low line opera

tion can be gained by using a 12.6 VCT transformer and a full wave

center-tap rectifier.

If you anticipate using your keyer with this memory, do not

attempt to power the memory circuitry from your keyer power

supply unless it is capable of supplying an additional 450-650 mA.

Construction

The memory is housed in a Cal Chassis 7 inch x 11 inch x 2 inch

aluminum chassis base. The majority of the memory components

(Figs. 7-21 through 7-23) are mounted on a single-sided 8 inch x 5

inch glass-epoxy circuit board. The board is fabricated to fit a

standard 22-pin card edge connector.

Since the memory utilizes four PROMs in parallel on a single-

sided board, there are a number ofjumpers (92) and holes (434) on

the circuit board. The jumpers are installed first with the rest of the

components following. Sockets are advisible due to the cost of the

integrated circuits and PROMs. They not only speed troubleshoot

ing when the need arises, but also prevent overheating during the

soldering operation. The power transformer, filter capacitors, reg

ulator, panel switches and controls are mounted on the aluminum

chassis.

Total assembly time for the board, including drilling the holes,

was under 4 hours. Mechanical and chassis wiring consumedanother

10 hours.

After assembly, connect pins 1 and 20 together on the connec

tor. This connects the digital output of the memory to the first input

of the transmitting keying circuitry. If there are no additional inputs,

ground pins 2, 3 and 4.

After checking the power supply voltage, connect the power

supply, start/stop push-buttons and speed control, and the memory

is ready for use.

Two open-circuit phone jacks have been provided on the rear

apron of the chassis. They are connected in parallel providing an

input for my keyer and an output for the transmitter.

424

T
l

S
W
6

1
1
5
V
A
C

1

C
R
3

♦
5
V

I
N

C
R
5

m
m

U
I
2

C
5

/
7
7

O
U
T

]

L
E
D

Fi
g.

7
-
2
0
.
P
o
w
e
r
s
u
p
p
l
y
.
"
S
e
l
e
c
t
fo
r
a
p
p
r
o
p
r
i
a
t
e
c
u
r
r
e
n
t
t
h
r
o
u
g
h
L
E
D
s
e
l
e
c
t
e
d
.
1
5
0
o
h
m
s
w
a
s
a
d
e
q
u
a
t
e
w
i
t
h
a
H
e
w
l
e
t
t
-
P
a
c
k
a
r
d
5
0
8
2
-
4
4
4
0
L
E
D
.

R
g
.

7
-
2
1
.
C
o
m
p
o
n
e
n
t

la
yo
ut
.

427

STOP
ABCD

SW2

PROGRAM SELECT
PUSHBUTTON SWITCHES

Fig. 7-23. Schematic of the PROM CW generator-keyer.

428

PIN 21

SPARE INPUTS

RI6 FOR REMOTE
CHIP ENABLES
IN LIEU OF

Q4 U3S U4

2N4888

PIN 3

Ground unused inputs.

Connect pin 1 to pin 20 (PROM digital output).

429

Table 7-10. Parts List.

C1

C2

C3-4

C5

C6

C7

CR1

CR2-5

Q1

Q2

Q3

Q4

R1-R5, R16

R6, 7, 15, 17-24

R8

R9

R10

R11

R12

R13

R14

R25

SW1-5

SW6

T1

U1-2

U3-4

U5

U6

U7-10

U11

U12

4.7 mF 10 WV dc tantalum capacitor

.001 mF ceramic capacitor

4700 mF 16W V dc electrolytic capacitor

.33 mF ceramic capacitor

2.2 mF 10 W V dc tantalum capacitor

.1 mF 10 WV dc disc ceramic capacitor

1N914 silicon signal diode

1N4001 or equivalent 50 V piv rectifier diode

2N5086 or equivalent PNP transistor

2N5961 or equivalent NPN transistor

2N5224 or equivalent NPN transistor

2N48888 or equivalent HV PNP transistor

470 Ohm Vi Watt carbon resistor

4700 Ohm Vi Watt carbon resistor

22 Ohm v2 Watt resistor

27,000 Ohm v2 Watt carbon resistor

39,000 Ohm V2 Watt carbon resistor

15,000 Ohm V2 Watt carbon resistor

2700 Ohm Vz Watt carbon resistor

10,000 Ohm 2 Watt linear taper potentiometer

82 Ohm Vi Watt carbon resistor

10,000 Ohm V2 Watt carbon resistor

Normally open push-button switch. Similar to

Alcoswitch MSPS-103C SPST.

DPST miniature rocker switch. Similar to

Alcoswitch MSL-203N-7

6.3 V ac Filament Transformer, 1 A. Similar to

Allied 6K9HF or Triad F-14X.

7493 TTL MSI 4-bit binary counter

7476TTL Dual J-K flip flops with preset and clear

7420 TTL Dual 4-input positive NAND gate

74151 TTL MSI 8-line-to-1-line data selector

Intersil IM5600C 256-bit PROM

7403 TTL Quadruple 2-input positive NAND gate

7805 or LM309 Three terminal regulator

Alternatives

If the reader was not satisfied with using these PROMs, there

are a number of PROMs available from which the reader could

choose. Texas Instruments, for example, offers the 74186 (512-bit,

64 words by 8 bits), 74187 (1024-bit, 256 words by 4 bits) and the

430

Turn the PROM memory on off the air as it will take a few

seconds for the memory to clear itself, the actual time dependent

upon the setting of the speed control.

74188A (256-bit, 32 words by 8 bits). There are pin-compatible

equivalents available from other manufacturers. The Intersil

IM5600C is pin-compatible with other 256-bit PROMs including the

Texas Instruments 74188A and Signetics 8223.

If the reader was reasonably sure that his program would not

change, the 1024-bit PROM might be a better choice with simpler

supporting logic. Additional benefits include less than 2$/bit (com

pared to about 2V2$/bit for 256-bit PROMs) and one third the board

area. One possible disadvantage is the eight programming cards

which need to be filled out.

The memory described here has been designed specifically for

my CW operating habits. Many variations in construction, chip

enable and address circuitry, memory size (bits) and PROMs are

possible.

Using my board, total construction costs should not exceed

$60.00 assuming the reader had to purchase all the parts. Approxi

mately 40 percent of the cost is for the PROMs. For a complete

parts lists and for pin assignments, see Tables 7-10 and 7-11.

Table 7-11. Pin Assignments.

1 TTL input. Logical 1 (+2.5-5.25 V) will key transmitter. Ground if not used.

2. TTL input. Logical 1 (+2.5-5.25 V) will key transmitter. Ground if not used.

3. TTL input. Logical 1 (+2.5-5.25 V) will key transmitter. Ground if not used.

4. TTL input. Logical 1 (+2.5-5.25 V) will key transmitter. Ground if not used.

5. A spare"! May be used to externally enable
6. B spare the PROMS instead of U3 & U4,

7. C spare or connected to the chip enables.

8. D sparej to drive external LED displays.
9. Keyer output. Disigned to drive transmitters utilizing negative grid-block keying.

The PNP driver transistor specified will withstand-100 volts under key-up

conditions. Do not use with cathode keyed transmitters.

10. Digital output. Do not use for keying transmitter. Output is low as transmitter

is keyed. Logical 1. +2.5-5.25 V. Logical 0. 0 to + .4 V.

11. N.C.

12. N.C.

13. Start program A. Momentary contact closure to ground to start.

14- Start program B. Momentary contact closure to ground to start.

The PNP driver transistor specified will withstand-100 volts under key-up

15. Start program C. Momentary contact closure to ground to start.

16. Start program D. Momentary contact closure to ground to start.

17. Stop program ABCD. Momentary contact closure to ground to stop.

18. To speed control.

19. To speed control.

20. Memory digital output. Do not use for keying transmitters. Output is high as

transmitter is keyed. Logical 1. +2.5-5.25 V. Logical 0. 0 to +.4 V.

21. DC volts input. +4.75 V to +5.25 V.
22. Digital Ground.

431

There are very few things which are universally entertaining to

children, or adults for that matter—except maybe the boob tube.

Today's generation of children has grown up spending more time in

front of a television than in school. The TV has become a cheap

babysitter and the primary source of entertainment for most Ameri

can families.

One husband, trying to keep peace in the family, scans the TV

listings and sees that he has a choice of Peyton Place reruns, a

subtitled movie in Swahili and Jimmy Durante doing impressions of

Walter CronMte. His only wish at this point is that the TV set would

show something that he wanted rather than what Smell-o Deodorant

or Slippery Lip Ice Cream was willing to sponsor. In a search through

books and magazine articles, he spies something describing the

construction of a TV ping pong game and decides this may be the

answer to his problem. Such a system would use his existing

TV—no re-education necessary—and all parts are available from a

supplier.

He spends his $140 and obtains a kit by mail a month later. He

carefully lays out all the parts for the basic game plus the optional

scoring board and power supply: 90 TTL ICs, assorted resistors,

capacitors and hardware. His wife surveys this and pipes in with,

"Do they sell that junk by the pound?"

Completely undaunted, he spends the next week, three tele

phone calls to the kit manufacturer and one very expensive and

frustrating visit to a TV repairman for him to set and align all the

timing circuits. The kids have been thoroughly entertained in the

meantime watching Daddy yelling at each individual component as he

assembled the massive board.

Then came the moment of truth. Power on. It would be unfair to

say that it didn't work. It did work and the kids were completely

occupied for about three weeks. They then got tired ofjust bouncing

the ball back and forth in the same ping pong game all the time.

This painfully familiar story serves as our introduction to the

world of TV games. There are TV games sold in every discount

store and almost every major electronics publication has had a

construction article on them. The commercial units cost between

$75 and $100 and the construction kits are about the same cost, but

there are considerable differences among them. Some may be using

older designs which may have as many as 100 chips to perform only

one game, or at the other extreme one chip to perform six games.

Obviously, this husband would have been better off buying a unit

432

which performed more than one game and allowed variations within

each. Fewer parts would necessarily mean a lower price and in

creased reliability.

The ultimate in perfection (so far) is the subject of this project:

the AY-3-8500-1 made by General Instruments. This is a 24 pin

MOS integrated circuit TV game chip capable of playing six different

TV games. The features are as follows:

• Six selectable games—tennis, hockey, squash, single

player practice and two rifle shooting games.

• Automatic scoring.

• Score display on TV screen: 0-15.

• Selectable bat size.

• Selectable ball speed.

• Selectable deflection angles.

• Automatic or manual ball service.

• Realistic sounds.

• Shooting forwards in hockey game.

• Visually defined playing area for the four ball games.

Game Descriptions

Tennis. The tennis game picture on the TV screen have one

bat or player per side, a playing field boundary and a center net.

Scoring position is at the top center of the screen. After reset is

applied, the score is 0 to 0 and the ball will serve arbitrarily from one

side toward the other. It is the opposing player's objective to inter

sect the path of this ball and deflect it back toward his opponent. If no

intersection occurs, a point will be automatically scored against the

erring player and the ball will again be automatically served toward

him again. Serve will not change until he scores a point and gains the

advantage. A game concludes when one player's score totals 15

points.

The exact details of the game are a function of the optional

speed, size and angle selections. While the game is in progress,

three audio tones are output to indicate boundary reflections, bat

hits and scores.

Hockey. The rules of the hockey game are exactly the same as

the tennis game except that each human player controls two bats or

players on the screen. These players are referred to as the goalie

and the forward respectively. The goalie defends the goal, while the

forward is located in the opponent's playing area. When the game

starts, the ball will be arbitrarily served from one goal toward the

other side. If the opponent's forward can intercept the ball, he can

433

shoot it back toward the goal and score a point. If the ball is missed it

will travel to the other half of the playing area and the opponent's

forward will have the opportunity to deflect the ball toward the goal.

If the ball is saved by the goalie or it reflects from a boundary, the

same forward will have an opportunity to again try to deflect the ball

back toward the goal. This method ofjamming the ball between the

forward and the goalie is a very effective scoring method and makes

for an exceptionally exciting game.

Scoring and audio are the same as the tennis game.

Squash. In this game there are two players who alternately hit

the ball against a back court boundary.

Scoring and audio are the same as the tennis game.

Practice. This game is similar to squash except that there is

only one player.

Rifle. Rifle 1 game results in a large target which randomly

shoots across the screen while Rifle 2 requires that the target

bounce around within the area defined by the TV screen. External

circuitry listed in Fig. 7-24 conditions optical input to a photocell

located in the barrel of a toy pistol or rifle which is aimed at this

random target. When the trigger (PB3) is pulled, the shot counter is

incremented. If the rifle is on target, the hit counter is incremented.

After 15 shots the score is displayed.

Circuit Description

The simplest circuit utilizing this game chip is illustrated in Fig.

7-25. A DIP switch (S1-S8) is used for rarely changed functions such

as game selection, rebound angle and bat size. A $2.00 eight section

switch such as this serves to lower overall costs by replacing about

$8.00 worth of toggle and rotary switches while maintaining

miniaturization. SI through S6 are the game selection switches.

Only one of the switches is enabled or placed in the ON position. The

others must be left open or the game chip will try to play more than

one game simultaneously. The correct procedure for selecting a

game is to turn the currently programmed game off (all six switches

open) and then close the particular switch for the desired game.

Switches 1 through 6 will select the following games respectively:

Rifle 1, Rifle 2, tennis, hockey, squash and practice.

Bat size and ball deflection angle are controlled by DIP switch

sections S7 and S9 respectively. With S7 open the larger bat size is

selected. On the 21 inch television screen this will appear to be about

2 inches. When this switch is in the closed position, small bats of

approximately half the previous size will be displayed.

434

H
I
T

P
U
L
S
E

T
O
P
I
N
2
3

-
J
T
-

T
R
I
G
6
E
R

P
U
L
S
E

T
O

P
I
N
2
4

P
U
S
H

B
U
T
T
O
N

"
T
R
I
G
G
E
R

Fi
g.

7
-
2
4
.

Ri
fl

e
ci
rc
ui
t.

P
T
-
1
—
p
h
o
t
o
t
r
a
n
s
i
s
t
o
r
T
I
L
6
4
o
r
e
q
u
i
v
a
l
e
n
t
s
4
0
9
8
-
d
u
a
l
m
o
n
o
s
t
a
b
i
e
;
4
0
1
1
-
q
u
a
d
2
in

pu
t
N
A
N
D
;

al
l
re

si
st

or
s
Va
W

5
%
;

al
l

c
a
p
s
m
i
n
i
m
u
m
2
5
V
D
C

c
e
r
a
m
i
c
.

When first playing a TV game, a player may want to find his

bearings and fine tune his eye-hand coordination. Forjust this reason

General Instruments provided for selectable bounce, or deflection

angles. When S8 is open, three rebound angles are enabled—plus

and minus 20 degrees and straight back at 0 degrees. With S8

closed, five rebound angles are possible—plus and minus 20, plus

and minus 40 and 0 degrees. This latter selection requires consider

able player skill and dexterity and adds new dimensions to otherwise

repetitious games. If that were not enough, selectable ball speed is

also available. The ball speed switch SWl is used more often than the

game select switches and therefore should be a more easily used

slide switch. When this switch is open, low speed is selected. In this

mode the ball takes 1.3 seconds to traverse the screen. When the

switch is closed, high speed is chosen and the ball will dart across the

screen in .65 seconds. There is a complete understanding of the

concept of human fallibility after playing a game which combines

small bat size, full rebound angles and a fast ball speed. With this

combination, the cure for boredom becomes electronically induced

insanity.

If these features were not sufficient, there are more—realistic

sound and automatic scorekeeping. All games consist of 15 points

with both players starting with a score of zero after pushing the game

reset button (PB1). With pin 7 grounded through the manual serve

push-button (PB2), play will resume automatically upon the release

of the reset button. Automatic start is signified by the game ball

being arbitrarily served into the playing area, and each time a point is

scored, the ball will come into play into the court defended by the

player having scored the point. If automatic start is not desired, the

reset and serve buttons should be pressed simultaneously when

resetting a game. The reset button is then released while still

depressing the serve button. This will allow complete player readi

ness and will only put the ball in play when the serve button is finally

released. Score is incremented (up to a high of 15) each time a player

fails to deflect a ball away from goal.

All of this rebounding and scoring results in some very interest

ing game sounds. A ball hit upon a paddle results in 32 milliseconds of

-976 Hztone-A boundary reflection is 32 milliseconds (msec) of 488

Hz tone and score is 160 msec of 1.95 kHz tone. This square wave

oscillation is amplified by a 2N2222 transistor and applied to a 100

Ohm .2 Watt speaker. (An 8 Ohm speaker may be used with proper

current limiting in the collector circuit.) SW2 is provided to switch off

the sound without having to shut off the game. Player positioning is

remotely controlled through cables attached to pins 10 and 11 of the

436

game chip. Each player control consists of a 1 meg pot and .1

microfarad capacitor which combines to form a variable time con

stant utilized by internal timing circuitry. Longer or shorter time

constants will result in relatively different vertical player positions.

To reduce noise, this extension cable should be shielded; otherwise,

a display malady referred to as "herringbone effect" will result.

For a TV game to be properly displayed on a raster scan

television, the proper video signal, similar to that of any commercial

TV station, must be applied to the antenna. Such a video signal

results from synchronized dividers inside Al, which divide the 2

MHz master clock (Fig. 7-25) and output the required 60 Hz vertical

and 15750 Hz horizontal sync signals. These signals from pin 13 are

combined with those of the ball output, right player output, left

player output and score and field output (pins 5, 8, 9, and 21

respectively) in a two bit digital to analog converter formed with a

4072 CMOS dual 4 input OR gate. This type of video output is

referred to as composite video output and is suitable only for use on

video monitors and not standard televisions. This video output may

in turn be used to amplitude modulate an rf carrier suitable for a

standard television receiver. Figure 7-26 illustrates a sample circuit

of this basic type of modulator. Figure 7-27 is the necessary schema

tic. With the components chosen, the frequency is approximately

that of VHF channel five.

+6.2V

IOK

60-120/xH
2N2222

€>
2MHz

TO PIN 14

Fig. 7-25.2 MHzoscillator. Miller9055 miniature slugtuned coil; all resistors V* W

5%; all caps minimum 25V ceramic.

437

This circuit is intended for illustration only and acceptability by

the FCC as a proper class 1 rf modulator is not inferred. The

modulator output is connected directly to the TV antenna terminals,

with the antenna disconnected, and adjusted for the best reception.

This game is a marvel of engineering ingenuity through which

General Instruments has succeeded in enlightening the average

American to the latest advantages in electronic technology. It is easy

to overlook 16K bit RAMs and microprocessors, but it is hard to

ignore such a marvelously exciting TV game when presented on

your own home television. For a parts list, see Table 7-12.

Table 7-12. Parts List.

A1

A2

A3

A4

Q1.Q2

S1-S8

PB1.PB3

PB2

SW1.2

SW3

PT-1

D1.D2

C1

Z1

R1.R2

SPK

LED

AY-3-8500-1 MOS game chip General Instruments

4072 Dual 4 input OR gate CMOS RCA

4011 Quad 2 input NAND CMOS RCA

4098 Dual monostable CMOS RCA

2N2222 or equiv.

8 position DIP switch Gray Hill or equiv

SPST momentary push-button

C & K Subminiature

DPST momentary push-button

C & K Subminiature

SPST slide switch

Alco Subminiature

SPST toggle switch

C & K Subminiature 3 A 115 V ac

TIL 64 phototransistor or equiv

Texas Instruments

1N914 diode Texas Ins

100 uF electrolytic 15Vdc

1N753A or equiv.

1 meg composition potentiometer 2 Watt

Allen-Bradley or equiv.

10012.2 Watt speaker

NSL5053 LED or equiv.

All resistors are u Watt 10'' unless otherwise indicated

All capacitors are ceramic type with mm. voltage ratings of 25 V dc unless otherwise indicated

MISC extension cable, batteries, box. hook up wire, etc

438

W
O
U
N
D
O
N

1
/
4
W

R
E
S
I
S
T
O
R

♦
6
.
2
V

r
t
r

i
o
v

.
0
2

8 T
U
R
N
S

>
2 T
U
R
N
S

S
6
.
8
K

|
4
7
K

2
N
2
2
2
2

.
0
0
5

/
7
7

3
3
p
F

l
O
p
F

C
l

3
-
l
3
p
F

E
R
I
E

T
R
I
M

M
E
R

I
N
9
I
4

w

r

4
7
0
a

V
I
D
E
O

F
R
O
M

F
I
G

I

3
3
p
F

R
F
O
U
T
P
U
T

►
T
O
A
N
T
E
N
N
A

T
E
R
M
I
N
A
L
S

1
0
0
f
t

Fi
g.

7-
26

.
V
H
F

m
o
d
u
l
a
t
o
r
s
a
m
p
l
e

ci
rc

ui
t.

Al
l
re

si
st

or
s
Va
W

5
%
;

al
l
c
a
p
s
m
i
n
i
m
u
m
2
5
V
c
e
r
a
m
i
c
un
le
ss

ot
he
rw
is
e
no
te
d.

The SOL

The shipping carton measures 18 x 18 x 13 inches and checks

in at about 40 pounds. It will fit in the car nicely for the trip home. I

would suggest that the gals let the salesperson place the carton in

the car for them. You can wrestle the thing into the house after you

get it home.

If you have been waiting for the Heathkit to get their act

together before you take the plunge, you can stop waiting. This one

puts the whole show together and packages it in a neat console, just a

little larger than the typewriter that put the words on this manus

cript.

Shipping Carton Packaging

One of the things that I look for in kits is how well the manufac

turer packages his kit. All kinds of things can be inferred from this

information. The computer nut on the receiving end wants the kit

components well protected. After all, he has already paid for them.

How well the contents are protected also reflects how much the

manufacturer thinks of his product. He should want to get it to the

buyer without any damage whatsoever to the contents.

This kit is exceptionally well packaged. Inside, there is ample

packing material, and each individual item is protected from its

neighbors, so there is no chance of components rubbing and bumping

together. Short of dropping the shipping carton from a height of 4

feet onto a concrete floor, you can't hurt things at all. Normal

shipping handling should not affect this carton's contents. ^

Unpacking

When you slit the top tape holding the upper flaps closed, the

first thing you see is the thick binder. This is exactly the way it

should be. Leave the rest of the kit packed, and take the binder out of

the carton, relax in the easy chair and read it.

The first thing you are going to see is a page that says "STOP!

Do not pass Go without reading this page. We have a number of

revisions to incorporate into the manual first. This is par for the

course. Even Heath has to do this with their products for a while,

until all the kit builders feed back the necessary information to get all

the errors out of the assembly manual before the second printing of

the manual. (Sometimes, it's the second or third printing before you

get an error-free manual to work from.) Don't panic. The revisions

are quite minor and already reflect some of the feedback from the

kit-building fraternity.

440

L
E
F
T

P
L
A
Y
E
R

2
M
E
G

C
I
N
P
U
T
>

♦
6
2
V

I
M
E
G

♦
6
2
V

_
t

R
2

'/
8

fT
E
X
T
C
A
B
L
E

a'
I
O
K

2
2
0
f
t

S
P
K
R

B
A
T

S
I
Z
E

D
E
F
L

A
N
G
L
E

B
A
L
L

S
P
E
E
D

R
I
G
H
T

P
L
A
Y
E
R

I
M
E
G

R
I
F
L
E

«
2
3

♦
6
2V

™
?
C
,
U
I
T
^

A
h
l
b
5

Rl
>'

8
f
t
E
X
T
C
A
B
L
E

/
I
O
K

2
2
0
f
t

S
W
3

P
O
W
E
R

♦
7
5
V

7
9
T
O
9
V

-
±

B
A
T
T
E
R
Y

H
O
C
K
E
Y

>
G
A
M
E
S
E
L
E
C
T

(
C
L
O
S
E
O
N
E

4
0
7
2

-
I

Fi
g.

7
-
2
7
.
T
V
g
a
m
e

s
c
h
e
m
a
t
i
c
.

Manual Revisions

I want to revise the assembly manual even further, but this

revision has to do with the nature of the kit builder rather than any

errors that I uncovered. In Step 3 of the revision page, add an (aa)

before the manual's Step 1. For the (aa) step put in: Go to section VI,

page VI-9. What I want to do is to get you to the part of the manual

concerning the finishing of the walnut side panels at the very start.

These solid walnut side panels have to be finished with some type of

protective coating, and this will take some time. It could take several

days to put on the finish of your choice. If you don't have them all

done, finish dry and ready when you get to that particular assembly

step, they will probably end up getting put on without any finish

whatsoever, and youll make the excuse that youll take them off

later and finish them. If this step is not taken at the onset of the

construction process, then we kit builders know what will happen.

Assembly Tools and Test Equipment

A list of tools and necessary test equipment is given at the

beginning of each section. Almost all of these tools will already be on

hand for any serious kit builder. A good #2 Phillips screwdriver is an

absolute must. A good volt ohmmeter is a must. An oscilloscope is

desirable, but Processor Technology Corporation (hereinafter cal

led PTC) shows you how to build an rf probe from some of the kit

parts to bypass the scope, if you don't have one.

One of the things you are going to have to get for your computer

system is a video monitor. In fact, you are going to have to have one

for the assembly of this kit. This can be a commercial monitor or a

modified TV set. If you modify a TV set, then modify one that has a

transformer in it. Don't even try to use a so-called transformerless

set. These are often called hot-chassis sets and rightly so. A transis

torized black and white TV is around $100. Since you are going to

have more than a kilobuck invested in your system, it is not econom

ically sound to try and use a hot-chassis TV set with the possibility of

destroying your $1000 investment. The details on how to convert a

TV to make yourself a good monitor are in the back of your binder.

The assembly of the power supply and what PTC calls the

Personality Module will not require the video monitor. As soon as

you start the assembly of the main board, you will need it. PTC is

going to have you assemble and test the built-in character generator

chip and all its associated circuits at the beginning, to make sure they

work before you proceed with the microprocessor section. This is

sound procedure, and, after you see the entire character set dis

played on the screen, you will be feeling quite good about your

decision to build the SOL.

442

So, as soon as you place your order for your kit, get shopping

for your monitor. Until the kit arrives, you can enjoy the little black

and white transistorized TV in its more conventional application.

Problems

This usually turns out to be the longest portion ofmy kit building

experiences. This time I am going to have to get picky on the finest

details, because I had no problems. I suppose a good deal of this lack

of problems could be contributed to luck. However, Murphy usually

doesn't treat me any differently than he treats you.

The first unit assembled is the power supply module. It went

together smoothly and without problems. A test of the assembled

power supply module showed all the right voltages in the right

places, except one. Ill get to that incorrect voltage in a moment.

PTC even includes a spare fuse in case you aren't as lucky as I was.

This unit now has a spare fuse.

There is one feature in the power supply that I feel is needed

and is state of the art. This is the inclusion in this power supply of

overvoltage protection. Consider what will happen to all your preci

ous chips, throughout the entire computer, if the series pass reg

ulator transistor fails. The most common failure is a collector-to-

emitter short. Such a failure places unregulated DC on all chips

connected to the +5 volt line. TTL chips don't like to see anything

over about 5.5 volts. They are most unhappy with 8 volts applied to

them. There are a lot of TTL chips in this computer.

This power supply has overvoltage protection built in, and this

feature is often called crowbar overvoltage protection. I feel that this

feature is so important that I deliberately left this circuit energized, or

operational, to make certain the overvoltage circuitry was functional.

By leaving out R2 on the power supply, you can leave the overvol

tage circuit functioning, and you will not have +5 volts out of the

power supply. Since R2 is involved in one of the modifications that

PTC is going to have you make, it is relatively simple to leave out R2

and the modification, to insure that the circuit will offer the desired

protection. This is why I had one incorrect voltage, as stated above.

It was not because I had a problem; it was because I deliberately

introduced a problem, so I could test something. It involves a little

extra work on your part, but I feel that it is worth the extra work.

Assembly

I implied earlier that this was a kit that was comparable to a

Heathkit. I still wish to imply that you do not need to wait for

443

Heathkit to come out with their product. This one comes close to

their line in simplicity of assembly. You should have assembled

several Heathkits, including some of their more complicated ones.

This is not an easy kit and certainly not one that you should try to cut

your teeth on. Assembly time for me ran to 40 hours, and I had no

problems. With any problems, you should plan on at least twice that

much time. The factory charges $500 more for the assembled kits.

So that is how much you are going to save (earn?) by assembling

your own kit. That's what I would charge to put one together for you,

and I would be earning every penny of it, too.

You need to be able to solder and solder very well. You need to

be able to make a good solder connection quickly, with no more heat

than is necessary to do the job correctly. You need a good,

temperature-controlled soldering iron with a small point. If you don't

have one, then I suggest that you allow an extra $50.00 for your

system and purchase one. That's only 5% of your investment, and I

can't see how you can get around it.

This kit will challenge all the skills you have built up assembling

all the other kits. It is extremely well designed mechanically. They

have squeezed an awful lot into that package, and I am still amazed at

how all the parts fit. Somebody there at PTC has a lot of skill in the

mechanical engineering department.

Problems? I couldn't find one transistor. I couldn't find the tape

that goes in the finger wells. (The tape is packaged in with the

plexiglas in the lid.) I won't say that the transistor was not in the kit. I

suspect that I lost it somewhere here on the workbench. With

several thousand parts in the kit, a track record of just one missing

item tends to make me think I was at fault and not PTC. I replaced

the missing transistor from my own stock and did not even ask PTC

for it. Thus, with no missing parts, my assembly was not held up at

all. (The walnut end panels still don't have any finish on them.)

The Keyboard

I really like this keyboard. It has everything on it, and I espe

cially like the way it is constructed. The keys have what appears to

be aluminum foil bonded to a spring-type sponge pad. As you press

down on a key, this foil shorts two contacts on the keyboard PC

board under the key. This is my kind of circuit—simple, effective,

and almost foolproof. If you don't buy the SOL, buy the keyboard (if

PTC will sell you one separately). It's a winner. The feel is almost

perfect. The keys are arranged beautifully and functionally.

444

The Video Display

If you assemble any computer, or even if you buy one already

assembled, the first thing you will find when you finish assembly is

that you can't do anything. You have to have some way to get data

into the machine and some way for the machine to get data back out

to you. The keyboard takes care of the data input. I have already

indicated that you'll have to have a video monitor in order to assem

ble the SOL. You would have made it the first purchase after

assembling SOL anyway, so you already have the output device on

hand. The video monitor circuitry is built into SOL, and you have

verified its operation during assembly. All you need to do now, to be

up and running, is to connect the video monitor to the machine. The

assembly sequence and testing procedures also assure you that,

after you get the kit all put together, it will do something immediate

ly.
The video display is based on the 6574 character generator

chip, and this gives you the full ASCII character set, both upper and

lower case letters and all the other symbols. Provisions are made for

your choice of letters as well. You can have black letters on a white

background or white letters on a black background. And you can

have combinations of the two options. You will not have the Greek

alphabet with the character generator, but I doubt that this lack will

dismay very many of us. The lower case letters are offset. That is,

the descenders, such as on the letter pf extend below the line the

way they are supposed to. The display is 64 characters wide, and,

although this crowds the letters a little on my 5-inch monitor, each

character is clean and quite readable. On a larger screen, the charac

ters are better separated and more legible. I like this video monitor

display.

Input/Output and Expansion Capabilities

A serial data input/output port is built in. A parallel data input/

output port is built in. All the circuitry to control these ports is built

in. A cassette input/output port and its associated circuitry are built

in.

There are only five slots in the card cage. Is this going to be a

limiting factor? Every function that you want your machine to per

form requires the filling up of a mother board slot. Most computers

have as many as 20 or even 22 slots for you to plug cards into to get

these functions. Only having five available slots may seem to be quite

a limitation, at first. But, if you stop and thinkfor a moment, PTC has

built in almost all the circuitry that you need for almost all the

functions you are going to want immediately. One of those slots is

445

going to get either an 8K or 16K memory board. As soon as it is

filled, you can load PTC Bx\SIC via the built-in cassette recorder

circuitry and begin programming in BASIC. Another slot can be filled

with a floppy disk controller. A third slot can contain the interface

circuitry for a hard-copy printer, if you can't interface either through

the serial I/O or parallel I/O circuitry that you already have. You may

just have to hunt (or wait until something else is invented) for

something to fill those other empty slots in the card cage.

What Will It Do?

A better question might be: What won't it do? Attach the

monitor and apply power. Inside, a small plug-in board that PTC calls

their Personality Module, which contains four EROMs, provides the

firmware to get operational. The board is a small one, but it's big on

performance and takes the place of still another one of those boards

that would normally go in a mother board slot. When you order your

kit, get their best Personality Module, which PTC calls SOLOS™. It

does everything.

Software Support

PTC has indicated that a full line of software support will be

available as soon as all the bugs are out. That's nice—most of us

would much rather wait a little longer for them to debug in exchange

for the time it would take us to debug. In the meantime, since this is

an 8080-based machine, all the 8080 software that has been written

can be loaded from cassette and we can do anything with this

computer system that we can get into programming. The speed of

this machine is optimum. Running a machine at 4 MHz costs dollars.

We have to use memory that is very fast and, therefore, costs more

money. By running the system at a slower speed, we save money on

almost every device that we want to add to the system. Most of the

time that a computer system is operating is spent waiting for a

cassette to load, the printer to print out or the operator to program.

For the home computerist, there is seldom a time that running at 4

MHz is cost effective. The trade-off of speed versus dollars is still

very much on the side of dollars. My system uses a 750 kHz clock. It

waits 90 percent of the time for me. I am the factor that limits the

speed of my system.

Operation

As soon as you complete assembly, connect the monitor and

apply power. You can do something. Power on produces auto reset,

446

the prompt character appears, and the system awaits your instruc

tions. Typing/)C/mp followed by the entire address range from 0000

to FFFF will cause the entire contents of memory to flash by on the

screen. The addresses change so fast that the last two hexadecimal

digits are nothing but blurs, and the entire screen is nothing but data

in hexadecimal form. In couple of minutes, the entire 65K of ad

dressable memory is dumped. If a high speed printer were hung on

the parallel data port, the paper in the printer would literally fly out of

the printer and across the room.

Many other commands are already programmed into the

EROM firmware. You'll have to get yourself a SOL with SOLOS and

see for yourself.

Project Summary

Been waiting for Heathkit to come out with their kit? They are

too late. Processor Technology has stolen the ball game. If you have

already built several kits, and at least one of the more complicated

kits, and you can solder quickly and well, then wait no longer. Write:

Processor Technology Corporation, 6200 Hollis Street, Emoryville

CA 94608; or call them at (415) 652-8080, and get the scoop. Get

yourselfa video monitor or a small black and white transistorized TV

set that has a transformer in it, get a schematic for the thing, modify

it, assemble the SOL and you will have an operational computer

system. Add 8K of BASIC via the cassette input already provided,

and you can start programming in BASIC immediately. Add a floppy

and a floppy controller, and you can have the whole ball game on the

road for about $2k with enough memory to play all the games and

even do the books for the corporate business.

Outstanding Computer Bargai

Have you seen the BYT-8 on display in the Byte Shops? This

little machine, with its rather plain black and beige aluminum cabinet

with wrap-around top is not much larger than a portable typewriter

case, measuring approximately 15 inches wide, 7 inches high and 11

inches deep. Inside it contains a 10-slot, S-100 bus mother board and

has a 10 Amp power supply (+8V DC, ±18V DC) and an MWRITE

logic circuit. It uses an optionally provided fan. The front panel is

uncluttered, having a start/restart switch and an LED to indicate

that the power is on. The power master switch is located on the back

panel to lessen the temptation of curious switch flippers who may

visit the computer room.

At first glance the kit appears simple, so putting it together

should be a snap, even for the novice. However, the manner inwhich

447

the assembly instructions are written makes it more of a challenge. If

you can spare the time, I'll tell you all about it.

My BYT-8 is the first of several building projects which I hope

helps provide me with a fully-operational home computing system.

I must point out that I have not yet accumulated all the compo

nents necessary to get it operational, so that, at this point, it hasn't

been fully tested. Therefore, all the comments made here relate

strictly to my experience in selecting and building the mainframe

assembly.

I was attracted to the BYT-8 initially because of its compact

ness and apparent simplicity. It affords one the opportunity to get

started in this new hobby in a modular way without a large initial

capital outlay. It also gave me some time to study various optional

paths I might take while getting my feet wet in kit-building activity.

Once I had taken the initial plunge, I was reasonably certain I would

pursue the activity until I had a complete system. That first commit

ment, for me, was a difficult hurdle to overcome.

The First Steps

Before making my initial selection, I suppose I did the normal

amount of agonizing over the offerings of the many computer com

panies. I even attended two large home computer shows on the

West Coast and hung out at the local computer shops. I joined a

computer club at work. I read everything I could get on the subject;

little did it matter that I understood only a small part of what I read. In

the end I was confused and indecisive, but I did know lots of

buzzwords and could smile and nod knowingly when people spoke of

such things as dynamic memories, EPROMs, machine cycles and

the like. By doing some home studying, I even got to know some

thing about BASIC programming. I became aware of BASIC'S gen

eral capabilities, though I still cannot claim any proficiency in the

language. The point of this is that I began to look at the various

systems offered in terms of both their hardware and software

capabilities.
After considerable soulsearching, I finally narrowed my selec

tion down to equipment offered by The Digital Group, Processor

Technology andTechnicalDesignLaboratories. All of these systems

appeared to best meet my basic objectives for a system, both from

the standpoint of the hardware and from software availability. In the

end, TDL's Z-80 CPU (ZPU) with its S-100 bus compatibility, won

out over the others. However, this immediately posed another

problem, since, at that time, TDL did not offer a complete package

to house their card. I had to seek a solution to that problem.

448

At this point, I recalled having seen the BYT-8 at a nearby

store, and I really became interested in it as a possible part of my

system. I wondered if a 10-slot mother board would be large enough

to meet my ultimate needs. The arguments of the Byte Shop people

convinced me that it would do. Currently my initial system is com

prised of the Z-80 CPU board supported by the TDL Z-80 monitor

board (this contains 2K ROM, 2K RAM, 2 serial and 1 parallel

input/output ports, plus a cassette interface). To this I plan to add a

16K memory board and a video interface. This should afford me

plenty of expansion room, especially in light of the high-density

memory boards which are currently available. Since most boards use

one Amp or less per board, the 10-Amp power supply should be

sufficient.

Before making the decision to buy the BYT-8, however, I

looked at the possibility of purchasing an Imsai mainframe assembly

without the front panel. I am convinced that the front panel is not

neededfor my application and is simply a source of additional trouble.

It appeared to be cost effective to eliminate the front panel if I could.

The Imsai sans the front panel would have cost about $70 more than

the BYT-8 (priced at $299). Since I had comvinced myself that I only

needed 10 slots, the larger cabinet and 28-Amp power supply didn't

hold much appeal for me. The only other alternative was to pick up a

mother board here and a power supply there and find a cabinet

somewhere to mount it all in. Since I am new in the hobby, I wanted

someone to hold myhand a bit, so I opted for the BYT-8 kit. I slapped

down my Mastercharge card and walked out of the Byte Shop with

the kit under my arm.

Once I had the box home, I opened it and began to read the

instructions. I was prepared for the worst, since I had heard from

others that computer kits are a far cry from Heathkits. At this point I

can say they were not exaggerating with respect to the BYT-8.

(Since constructing the BYT-8, I have put the TDLZPU together

and found it to be almost Heatkit-like in its approach.) At this point, I

want to make it clear that the criticism presented here is aimed

principally at helping the novice builder—either directly, by giving

him the benefit of my experience, or indirectly, by prompting the

manufacturer to improve his assembly instructions to make them

easier to follow. Those experienced in this field may feel I am

nitpicking, but I feel this is not so. I have thrown out a number of

lesser criticisms which I felt were too inconsequential to mention

here, but which, in the interest of product improvement, should be

considered. The kit manufacturer states early in his instruction

manual, 'Tor the most part, our discussion will be aimed at the

449

Intermediate, but we will constantly give references and repeat

things for the Neophyte and Novice." At times, the instructions fail

to keep this promise. The manual defines five categories of builders,

from the neophyte and novice through intermediate, advanced and

expert. By Byte Shop definitions, I should be classified as a novice.

My criticisms fall into two classes—those dealing with

hardware design and those relating to documentation. I feel that

those in the first class are not of a serious nature, if one is aware of

them, and that those in the latter are mainly a nuisance which tends

to take some pleasure out of the kit-building experience and could

cause those unfamiliar with electronics to blow a few components if

they are not careful and observant. The hardware aspects will be

covered first, followed by the documentation deficiencies.

Hardware Shortcomings

The most serious hardware problem results from the manufac

turer's recent change to a PC board which is twice as thick as that

used in his original design. This change is noted in the errata sheet,

where it is stated that the change was made to provide proper board

rigidity without the use of supporting struts since the struts were

found to be a source of short circuits to the mother board. While the

substitution appears reasonable, the manufacturer has not properly

considered the consequences of this decision on the IC sockets

provided. The pins on the sockets are too short to penetrate the

board far enough for reliable soldering. It is extremely difficult to

apply heat to these short pins to assure a good solder joint. Since the

traces are on only one side of the board, the holes are not plated

through, and solder does not tend to wick up the hole along the

socket pins. This condition occurs only in the MWRITE logic portion

of the board. If this optional circuit is going to be used, the builder

should exercise care here or purchase wire-wrap sockets whose

longer pins will easily penetrate the board. The pins on the 100-pin

edge connector present no problem, since they are long enough to

properly penetrate the board.

However, I should caution that the mother board requires the

100-pin connectors to have a lateral (across-the-connector dimen

sion) pin spacing of 5/32 of an inch. This proved to be rather costly

for me, since I found a ready supply of the Vi-inch dimension connec

tors for only $3.50 each, but the only 5/32-inch connectors I could

acquire cost $7.35 each! (Maybe I should have bought the Imsai!

Half of my saving by not buying the Imsai went for the more

expensive connectors.)

450

Apparently, when thenewboardwas manufactured, two errors

crept into the design regarding the connections to the power-on

LED. The first of these is minor. The pads for the plus voltage

supply, obrained through a droppingresistor, were changed to anew

location, and the pictorials were not properly updated. The other

problem results from neglecting to drill the hole for the LED ground

return. This simple operation must be done by the builder.

One other design deficiency relates to the power-on LED. The

BYT-8 design solders the two leads of the LED to wires running to

the mother board without any terminal strip to provide proper

support of the leads. The unsupported leads are subject to damage

or shorting whenever one works in the chassis or inserts orremoves

boards. To eliminate this problem of hanging leads, I installed a

two-lug terminal strip on a nearby chassis attach screw. This strip is

close enough to the LED so that the leads would reach, and no

additional holes were required in the chassis. Only one note of

caution: One should take care that the solder lugs of the terminal

used are not grounded through the terminal's mounting lug, in order

to preserve the BYT-8's ground independent of the cabinet.

When it came time to install the top and bottom covers of the

cabinet, I discovered that the top was about 1/32 inch too short! The

top is a wrap-around affair, and the curvature was slightly off, so two

ofthe mounting holes for the attaching screw didn't quite line up with

the threaded holes on the chassis side rails. I attempted to fix this

condition by reaming the holes out slightly, but this failed to give

enough relief to line the screws up with the holes. Tohave continued

on this tack would have required holes too large for the screwheads

and would have necessitated the use of large washers. Instead, I

elongated the holes on one side, difting them down and back with a

small file. This made the top fit acceptably well, but still, there is a

narrow gap along one side.

My final hardware comment is directed to the manufacturer. I

recommend strongly that the mother board be solder masked to

make it less likely that we novices will bridge the traces when we

solder in the bus sockets. Those traces are really very close to

gether!

Additional Shortcomings

None of the documentation deficiencies cited below are consi

dered highly critical but, by being aware of them, the inexperienced

builder may avoid time-consuming, if not costly, pitfalls.

The construction notes are contained in an attractive vinyl

loose-leaf notebook. Unfortunately, the instructions are somewhat

451

disorganized. The manufacturer should hire a programmer to write

the assembly instructions, since programmers should be orderly in

their thinking processes and would appreciate the need for logical

progression in assembling the kit. TTie writer of the instructions

provided apparently did not put organization very high in his order of

priorities. The document contains much irrelevant text and a

number of meaningless photographs and sketches. These and a

number of redundancies can be overlooked. However, some of the

photographs needed for an understanding of the assembly are of

poor quality, and proper highlighting of necessary details has been

omitted. For example, the master diagram is a top view photograph

ofthe mother board installed in the cabinet. Most ofthe components

show up well enough in this view, but the jumpers blend into the

background and are difficult to see. Small (less than 1/16 inch)

labels are penned in, but even these are difficult to see—in some

cases, they are black written on dark grey. This is one area that the

manufacturer should seriously consider for improvement.

At this point, follow me as I flip through the pages of the

instruction manual and point out some of the areas where problems

maybe avoided. Parenthetical numbers refer to the page numbers in

my instruction manual. (Possibly, later editions will have different

page numbers and will, hopefully, have clarified these points.)

The assembly instruction section has an overview which lists

the steps from unpacking the kit through the final testing (ASI-4).

This overviewis important, since itis the onlyplace where Ifoundan

unambiguous description of the construction steps required to as

semble the kit. It was here, for example, that I found that I should

have mounted the power transformer to the back panel before I

assembled the cabinet. Unfortunately, I hadn't remembered that bit

of wisdom at the critical point and proceeded to put the cabinet

together first, as later instructions implied. This out-of-step assem

bly caused only a little difficulty in bolting in the transformer and

making the solder connections that otherwise wouldhave beeneasy.

Therefore, I suggest to those building this kit that they take this list

of steps out of the book and consult it for each major operation along

the way.

Several pages in the overview of the assembly are devoted to

explaining the electrical characteristics of a number of the compo

nents, such as capacitors, diodes, etc. (ASI-8). These pages maybe

of value to the neophyte kit builder, but they are not complete

enough with respect to diodes, as I will explain later.

The expenditures for the two pictures showing how to unpack

the kit couldhave been betterused elsewhere to clarify construction
steps (ASI-17 and 18.)

452

The detailed installation pictorial (ASI-26) contains an error on

the bridge rectifier polarity (BR2). This picture shows the BR2 plus

pin as a minus. However, this should cause only minor confusion, as

the PC board has the correct polarity printed on it, as does the

as does the pictorial on page ASI-25. Also on page ASI-26, the

builder should be aware that the center tap of the 30V AC winding of

the power transformer (white/red) is inserted in the top-most hole

on the PC board, while the 9V AC and 30V AC leads are installed

below it in that order. This detail is not shown clearly anywhere in

the instructions and only is apparent if one refers to the wiring

schematic and compares it with the PC board. In the earlier discus

sion of diodes, the instructions failed to tell the neophyte how to

identify the anode and cathode of the diode. When he comes to the

point where he must insert it into the PC board, he has a 50-50

chance of being right. It would be helpful if he were told (back on

page ASI-8) that the diode has a band on one end of its package which

corresponds with the straight bar (cathode) on the symbolic rep

resentation of the diode. One last comment about page ASI-26—the

document persists in saying that the transformer 30V AC leads are

orange, except for one place, the schematic of the transformer,

where they are correctly identified as red.

On the next page (ASI-27), the voltage regulator circuit com

ponents are photographed and super-imposed on the photograph as

a schematic of the circuit. As so frequently happens in kits, compo

nents change in physical shape from time to time. In my kit, the

10-uF capacitors were not the same type as shown in the pictorial.

Instructions such as caution polarity are not very enlightening if one

is unaware of what the polarity is supposed to be. It would be helpful

if the polarity were indicated explicitly on the photograph. The

schematic, while helpful to some, may be confusing to the unin

itiated, since the relationshipsbetween the components in the photo

graph and those in the schematic are upside down.

Page ASI-28 is a photograph of the bottom of the mother board

which is captioned inspect and clean away residue. The text relating

to this step (ASI-24a) is only slightly more informative than the

picture. The builder should be told to thoroughly clean the resin

residue and solder splashes from the board with alcohol and a small

stiff bristle brush (acid brush obtainable at the local hardware store).

The board should be thoroughly wet with the alcohol in a small area

and brushed until all resin is dissolved. Before the alcohol dries, the

board should be blotted with a clean absorbent cloth. Several clean

ings may be necessary to remove all residue. After cleaning, each

solder joint should be inspected with a magnifying glass for solder

453

bridges and cold solder joints. Cold solder joints may be identified as

areas where the solder has a frosted appearance.

The transformer installation is indicated on page ASI-32. Here

one gets the impression that the transformer is installed after the

front and back panels are in place. This is wrong! This impression

stems from a picture showing the back panel already in place.

After reading page ASI-33, the neophyte may have some trou

ble installing the power cord grommet/strain relief, if he has never

installed one before. He should have a pictorial to go by and a bit of

encouragement that the task is at least possible. Attempting to push

the two parts of this grommet together with the heavy line cord

between them and to insert the entire assembly in the hole in the

chassis is almost like trying to put a one-inch-square peg in a

Vfc-inch-round hole!

The schematic of the power transformer (ASI-34) should have a

note to instruct the builder to scrape the paint away from the lug

mounting screw hole so a good connection can be made for the

ground wire of the line cord. This isn't made clear, and I imagine that

some builders may wonder why there is no ground on the chassis

when they come to that part of the checkout in later steps.

Page ASI-40 has a much better view of the jumpers that were

installed earlier in the assembly process (ASI-25). The photo has

increased contrast, and the details stand out more visibly. Here one

realizes that the board has some changes in the location of the LED

power connections from those pictured. Also on this page, one is

instructed to connect the start/restart switch. The switch in my kit

was a double-throw spring-loaded center switch. The picture

doesn't make it clear whether the second connection to the switch is

made to the top or bottom terminal. Since the function implemented

here is the restart, and the front panel shows this in the up position, I

reasoned that the connection should be made to the lower terminal

on the switch. This means that the start position has no effect.

Possibly this puzzle is the result of substituting a double-throw

switch for what was originally a single-throw switch.

There is one last item. In providing instructions for the cabinet

assembly, very little text is available; the manual relies almost totally

on the pictorials. This is fine. However, it would be helpful if the size

of the screws was specified in the drawings. I found that I used a

wrong screw size when I later discovered that the remaining screws

wouldn't work. Thus, I had to disassemble a few things and reas

semble them with different size screws.

One might gather from all the gripes above that I would hesis-

tate to recommend the BYT-8 to mv freinds. This is not the case. In

454

spite of the problems, I feel that it is worth what I paid for it, and, for

those forewarned of the deficiencies, it should pose no real prob

lems. At this point, I have tested every part of the board that I can

without the rest of the computer components, and it appears to work

as advertised. But who knows what I'll find when I plug in all the

other components?

A Cassette-Computer System

The most practical and economical way to store programs and

large quantities of data for small computer systems is with the

common tape cassette recorder. Cheap and plentiful, audio-type

cassette equipment is capable of storing several times the amount of

data that an equivalent volume ofpaper tape can hold, with the added

benefits of erasability and easier operation. Floppy disks may be

faster, but are beyond the price range of most hobbyists.

While computer manufacturers have long been supplying their

programs on audio cassettes, there has been a major problem with

compatibility. Every manufacturer has had his own pet system of

recording, and a tape recorded for use with one brand of computer is

utter gibberish to another brand of computer. For this reason,

several manufacturers decided to adopt a standard system of tape

interfacing.

The proposed standard, as implemented by Pronetics Corp.,

calls for a frequency-shift keying standard. The two tones to be

recorded are ideally to be square waves, with Mark (logic 1) to be

2400 Hz and Space (logic 0) to be 1200 Hz. With a standard tape

exchange speed of300 baud (bits per second), Mark would consist of

eight cycles, Space of four. This could be divided to 600 or 1200

baud, in which case one cycle would be a space (1/1200 seconds).

Higher density would be impractical. For comparison, 300 baud

corresponds roughly to 30 characters per second.

Within each character, the first recorded tone should consist of

a Space (start) bit, followed by eight data bits (least significant bit

first, parity last) and two Mark (stop) bits. All undefined bits, as well

as the interval between characters, would be Mark (2400 Hz).

This system aas several beneficial features. It is self-clocking.

The first bit of any character is Space and must follow the Mark tone

that ends previous characters and exists between characters. It is

possible to tolerate as much as a 30 percent speed variation with this

system, which can be an important factor with inexpensive tape

equipment.

Do You Need a Good Recorder?

Almost any cassette recorder can be used for data storage

455

using this FSK standard system. But for convenience and accuracy,

there are a few criteria for selection that differ from hi-fi quality.

You want a clean, reliable machine. Dirty heads and

mechanisms can soil data very easily. If you don't have a cassette

recorder already, a used model is adequate, but it shouldn't show

signs of mistreatment. It should also have capstan drive—a few

miniature units don't.

A digital tape counter is also a great convenience. Without one,

identifying programs on a tape can be difficult, and could lead to

accidental erasures. These are found on many hi-fi type machines,

and occasionally on portable units.

An important electrical feature is AC bias/erase. Some recor

ders, and most of the under-$100 category, use DC for erasing and

record biasing. This results in higher noise and less frequency

response. While frequency response is not as critical with this

system as with music recording, it still helps to have a good clean

treble response, which can help preserve the square wave shape.

Low noise means fewer errors, so a high signal-to-noise ratio aids

reliability.

Stereophonic capability is unnecessary. If you have a stereo

recorder, be sure to record both tracks simultaneously, and bulk

erase the tape before using it.

Your tape recorder must have an auxiliary or microphone input

jack, as well as an earphone or line output. Acoustic coupling is

unsatisfactory. The choice of levels can be performed in the compu

ter interface circuitry, so either mike, line or speaker levels can be

used.

What About Tape?

While the choice of tape recorder is uncritical, the tape itself is

the weak link in the chain. Do not skimp on tape. Use the best tape

you can get your paws on. Since dropout on the tape means loss of

data, the tape must have a high manufacturing standard. Some

cassettes jam easily, and the thin tape found in C90 and C120

cassettes is too thin and fragile to be reliable. A premium grade C60

tape is ideal. Perfectionists might want to spend the extra money for

chromium dioxide tape. The extra response can't hurt.

Store the tapes in a dust-free location, in their own container.

Do not smoke near the tapes or the recorder, and clean the heads

frequently. Tape cleanliness and quality are far more important in

digital applications than in music.

The Recording Interface

Digital information from your computer is generally available as

8 bits parallel from either an I/O port or data bus. The tape is

456

8
B
I
T

P
A
R
A
L
L
E
L

I
N
P
U
T

M
S
B

O
K
T
O
L
O
A
D

L
O
A
D

2
7

2
8

2
9

3
0

■
■
■
■
■
■

3
1

3
2

■
■
■
■

3
3

2
2

I
C
I
a

U
A
R
T

T
R
A
N
S

M
I
T
T
E
R

4
8
0
0
H
z
>
-

3
4

3
5

w
m
m
m

3
6

3
7

3
8

■
■
M
l

2
5

-
0
+
5

I
C
8
c

1
/
6
4
0
4
9

4
0

J
O 1
3

M

|
I
C
2
a 4
0
2
7

1
5

I
C
2
b

6
J

0

r
e

R
l
I
0
0
K

x
0
0
5

Fi
g.

7-
28

.
C
a
s
s
e
t
t
e
di

gi
ta

l
mo
du
la
to
r.

Th
is

ci
rc
ui
t
co
nv
er
ts

8-
bi
t
pa
ra
ll
el

in
pu

t
d
a
t
a
to
a
se
ri

es
of
2
4
0
0
a
n
d
1
2
0
0
H
z
t
o
n
e
s
fo
r
re
co
rd
in
g
o
n
ca

ss
et

te
t
a
p
e
.

w\VVAvAvAvW\

\/WVAAA/\A/V

vw\f\f\/\fvw
Fig. 7-29. If a square wave signal such as a waveform A is recorded on a low cost

cassette recorder, the playback response may look like waveform B, which is

very difficult to demodulate. If the square wave is filtered with a low pass filter

before recording (waveform C), the playback response will appear like waveform

D, a usable signal.

recorded serially; the conversion is best accomplished with a Univ

ersal Asynchronous Receiver/Transmitter (UART) IC.

The modulator is shown in Fig. 7-28. The serial output of the

UART has logic 1 as a high level and logic 0 as a low level. IC2a and

IC2b form a clock divider circuit, dividing the 4800 Hz clock signal by

2 or 4, depending on the UART output level. The output is a series of

square waves which feed the tape recorder's input.

The poor frequency response of some tape recorders, espe

cially those with DC Bias, causes the manufacturers to exaggerate

the treble being recorded, which distorts the square wave. Sine

waves record better, but are harder to generate digitally. In some

cases using a low pass filter makes the waveform usable; Rl and Cl

perform this function. A smaller value for Cl may increase effective

ness with better recorders. Figure 7-29 shows the effect of the

recording process on digital waveforms.

The AUX output of the interface is 500 mV peak-to-peak and is

for use with high impedance high level inputs. The MIC output is 50

mV, suitable for most units with microphone inputs.

The 4800 Hz signal must be capable of driving two TTL loads.

While a crystal oscillator and divider chain work best, and a phase

locked loop referencing the 60 Hz power line is also very good, the

oscillator in Fig. 7-30 is simple and quite satisfactory (but requires

calibration with a frequency counter).

If the available digital information from the computer is already

in serial form with the necessary start and two stop bits, and is

properly timed at 300 baud, the UART is not necessary. However,

the 4800 Hz clocking signal should be synchronous with the serial

458

data, with 16 clock pulses per bit. If the serial data is not at 300 baud,

a UART receiver must first be used to convert the data to parallel

form. It then is clocked through the UART transmitter as shown.

The OK TO LOAD line on the UART goes high when it is ready

to accept a byte of parallel data. The data is then loaded into the

UART transmitter by pulsing the LOAD line low for at least one usec

or until the OK TO LOAD line goes low. The transmitter will then

start transmitting the byte when the LOAD line is returned to the

high state. When not transmitting, the output is high, causing the

modulator to generate the 2400 Hz Mark signal.

The Playback Interface

There are several possible ways to recover the FSK signal from

the tape. An FM discriminator or a phase locked loop demodulator

can be used, just as with an amateur RTTY signal. Users of previous

nonstandardized cassette interfaces can readjust them to decode the

1200/2400 Hz tones, but the most accurate system uses digital

recovery to extract timing information from the recorded signal and

uses that information to retime the recovered data.

Figure 7-31 is a complete schematic of the playback demod

ulator. Figure 7-32 shows the resulting waveforms. The signal from

+ !
(

4

A

<

\

$

:8.2H

10K

- .01

ADJUST FOR
4800 Hz OUTPUT

+ 5

: I

2

LM

555

r±

N MYLAR

5

r ^T

3!

4PODM7■fOvv nz

7

:ig. 7-30. Circuit of 4800 Hz oscillator. Use this circuit if a more precise and
stable source of 4800 Hz is not available.

459

C4
.005
MYLAR

IC5a

1/2 4013

IC3a

1/4 LM324

♦ 15

Fig. 7-31. Cassette data recovery circuit.

the cassette player is conditioned by IC3, an op amp used as a

Schmitt trigger. The output of a Schmitt trigger is, by definition,

either fully high or low, so it regenerates pure square waves from

the distorted tape input. IC4 is a retriggerable one shot with a period

set to 555 microseconds. As long as the input signal is 2400 Hz, the

one shot is retriggered before it times out. Flip flop IC5a remains

high, which is interpreted as logic 1. The 1200 Hz signal, on the

other hand, has a period between pulses of greater than 555 usec, so

the one shot times out, resetting IC5a. It stays at logic 0 as long as

1200 Hz is being received because the one shot is timed out

460

IC8a

1/6 4049

4 20

Rll
47 K

IC8b

4800 ,/6 4049
17 "I

4 06X)

♦5 -12

T. t
-12

ICIb

DATA

UART

RECEIVER

I6X
CLOCK

5_

6
■oaai

7

8

9^

n
mmmmm

ii-

18

MSB

8 BITS

PARALLEL
OUTPUT

'LSB
.DATA AVAIL.

OUU

ENABLE

10 1/2 4013

IC90 IC9b

whenever the next triggering edge occurs. When the 2400 Hz signal

returns, the one shot stays high, permitting IC5a to switch back to

high state. The output of this flip flop is the serial data.

While that simple circuit will work well if the tape speed is

accurate to better than ±6%, such is frequently not the case. Since

tape speed variations will be reflected in pitch variations in the

recovered tones, it is possible to use the 1200 and 2400 Hz signals

from the tape to retime the recovered data. Flip flops IC6a and IC6b

extract this timing information. When the 1200 Hz signal is received,

IC6a is preset with a pulse generated by C8 and R15 every time the

461

one shot times out. The effect is to cause IC6 to divide by two. When

2400 Hz is being received, the one shot does not time out and IC6

divides by four. The result is a clock at the output ofIC6b, at 600 Hz.

Instead of clocking the data into a shift register, the receiver

portion of UARTIC1 is used. It has built-in circuitry to identify the

start and stop of each byte automatically. It also has three-state

output (logic low, logic high, and functionally disconnected), which

permits direct connection to most data buses and I/O ports. The

UART needs a 16x clock, which is formed by phase locking a 4800

Hz oscillator to the 600 Hz output of IC6b. The PLL is adjusted to

oscillate at 4800 Hz in the absence of any input signal. IC5b and IC9

divide the PLL output by 8 to drive one of the phase detector inputs,

while the other input is driven by IC6b.

The UART receiver raises its DATA AVAILABLE output to

logic 1 when it recognizes that it has received a complete character.

Since the UART outputs are three-state, it is necessary to drive the

RECEIVED DATA ENABLE input to logic 0 to read the parallel

output data. After the parallel data has been read it is necessary to

pulse the RESET DATA AVAILABLE line to prepare the UART to

output the next byte. The pulse must remain at logic 0 for at least

one usec, or until the DATA AVAILABLE line drops to logic 0.

Circuit Adjustments

The only adjustment necessary for the recording modulator is

to put the 4800 Hz signal exactly on frequency. Since a Mark byte

consists of eight (not seven or nine) cycles at 2400 Hz, this is fairly

critical.

The data recovery one shot and PLL oscillator must be accu

rately adjusted for best results. The one shot is critical. To adjust it,

set a well calibrated audio source to 1800 Hz with 1.5 to 3.5V rms

output. Adjust R9 until the data output of IC5a pin 1 just changes,

measured on a high impedance voltmeter. Adjust R9 to as close to

the point of change as possible.

The PLL oscillator is adjusted by R12 with no input to the

playback input. If no counter is available, the oscillator output at IC7

pin 4 should be compared to the 4800 Hz signal used for the UART

transmitter.

Circuit Operation

The circuit as shown will recover data most accurately if the

earplug output signal of the tape recorder is between 4 and 10 volts

peak-to-peak. Most portable recorders have that capability. If the

462

SIGNAL TO BE I (LOGIC ONE)
RECORDED
(AUX)

CONDITIONED
PLAYBACK

SIGNAL
(IC3O)

Fig. 7-32. Cassette modulator/demodulator waveforms.

cassette deck does not have a speaker amplifier, a low gain amplifier

may be necessary. If the recorder uses DC bias, there may be too

much tremble, which necessitates turning down the tone control.

To comply with the standard for tape exchange, the recorded

data should be preceded by at least 5 seconds of 2400 Hz tone before

the data begins. This is accomplished by operating the recorder in

the record mode for five seconds or longer before sending data to the

UART transmitter. With the UART idle, the modulator generates

2400 Hz.

During playback, wait a couple of seconds before allowing the

computer to accept the UART receiver output, to avoid reading the

garbage generated by turning the recorder on and off. It is possible

to have the computer control, via a relay, the remote control switch

of the tape recorder under program control. It is still necessary to

wait a few seconds before accepting data, due to the time spent

starting and stopping the tape. The 2400 Hz leader provides that

interval on the tape.

Using this type of hardware for tape cassette modulation and

demodulation simplifies programming for a cassette-oriented com

puter system. In some circumstances it may be possible to connect

the interface hardware directly to the computer, while some com

puters may require peripheral interface adapters to get the data in

and out of the computer.

The Cheaper Beeper

While the idea of a tone generator for a microprocessor is great

and the circuit is simple, $7.95 for the DIP-alarm seems a bit steep.

While it is probably best for the computer freaks, it can be done less

463

J

J

(

Ml

/7

Rl
IK

IOK

™ C1

7

7

6

i

2

♦5

i

V

e

555

J
FF

CO
PC

IOOK /k\

MPUTER x \tS/
RT ^TL

/77

l(—jYlStt SPEAKER

Fig. 7-33. Schematic.

expensively by usingjunk box parts (Fig. 7-33). While it isn't all that

original, it is different from a lot of keyed 555 tone generators. I have

often noticed with distress that people enable a 555 by grounding pin

1. Pin4is actually fabeledenable, and this circuit makes use ofit. The

transistor acts as an inverter.

Perhaps the easiest method of construction would be to find a

junked transistor radio and use the speaker and case from it. This

would save you having to go to the trouble ofmounting the speaker in

some other box along with the extra trouble of drilling holes for

sound. None of the component values are critical. By changing either

Rl or Cl, the frequency can be changed. With the values shown, the

frequency is about 600 Hz. For the transistor, I used an unmarked

type off a computer circuit board, and just about anything will work.

If you want a tone when a high is applied to the tone generator,

just disconnect the transistor and apply the signal from the uP

directly to pin 4. For those of you interested in using the generator

as a code practice oscillator, connect the side of the 100k resistor

marked from computer port to the 5-volt supply, and connect your

key from pointX to ground.

Also, note that this circuit does not have to be run off 5 volts. It

will work on anything from about 5 volts to 15 volts. As a CPO, it

would probably be easier to use a 9-volt battery. If you're using

CMOS in your uP and don't have a 5-volt supply, this circuit is

particularly nice.

464

B
7
-

8
6
-

B
5
-

8
4
-

B
3
-

B
2
-

T A
i
l

7
4
1
0
0

s
o
o
n

8 9 1
9

2
0

1
8

1
7

7 8 9 1
0

I
I

1
2

D
R
A
W

Fi
g.

7
-
3
4
.

I
n
p
u
t
r
e
g
i
s
t
e
r
a
n
d
D
A
C
.

Simple Graphics Terminal.

Several designs have been presented in the past that would, in

one way or another, allow the display of graphical data on a CRT.

Although these several approaches will accomplish the stated objec

tive, each has the shortcomings of requiring the builder to fend for

himself when it comes to the actual output device to be used. This

graphics display described takes advantage ofa group ofready-made

subassemblies, which when interconnected and properly interfaced

with the graphics driver portion of this project, will result in a first

class graphics display with capabilities far in excess of those attaina

ble with a simple oscilloscope adaptation or a raster-scan television

readout device (Figs. 7-34 through 7-39).

To illustrate that point, consider the following. The raster-scan

home television type display, such as that used in several popular

alphanumeric displays, canbeused. But, the display is overlycqmpli-

cated and will appear as a connection of blocks rather than as pure

line segments. Consequently, since graphics display implies a ran

dom display, a single memory cell is required for every defined

location on the screen, with the block size determining the maximum

number of locations and hence, the resolution. The finer the detail

required, the smaller the blocks and the more memory cells re

quired. If the complete screen is to have 256 elements or blocks,

these individual units could be defined by four bit X and Y addresses

and 32 bytes of 8 bit memory. The resolution in a display with these

few points would be terrible.

An 8 bit microprocessor works best with multiples of 8 bits. If

we, therefore, made a display incorporating an 8 bitX address and an

8 bit Y address, it would fit nicely and be easy to work with. This

display would be of fairly high resolution since it now has 65,000

discrete locations. The only complication is that it will require 8K

bytes of memory to store, regardless of the picture being displayed.

This will always be the case in any digital storage system. The

computer must account for every dot on the screen (65K) and,

depending on whether there is a one or a zero stored in the memory

location defining that spot, it will make it either black or white.

Additional information is required if gray tones are involved.

A much better system is one which incorporates this same high

resolution but does not have to provide storage for anything other

than the actual displayed points.The one described here isjust such a

system.

What Is Graphics Display?

Everybody knows what a graphics display is, right? We all know

that a graphics display will allow us to observe phenomena in that

466

S
W
I
T
C
H

3

R
A
W
Y
>

R
A
W
X
>

m
Y
O
U
T
T
O

O
I
S
P
L
A
Y

S
W
I
T
C
H

I

m

-
♦
X
O
U
T
T
O

D
I
S
P
L
A
Y

3
3
K

*
P
O
L
Y
S
T
Y
R
E
N
E
O
R
P
O
L
Y
C
A
R
B
O
N
A
T
E

Fi
g.

7
-
3
5
.
V
e
c
t
o
r
g
e
n
e
r
a
t
o
r
.
N
o
t
e
:
A
1
-
A
1
0
-
p
i
n
7
to
+
5
V
,
pi

n
4
to
-
1
5
V
,
A
1
6
-
A
1
7
,
A
2
1
,
A
2
2
—
p
i
n
1
4
to
+
5
V
,
pi

n
7
to

g
r
o
u
n
d
;
A
2
0
—
p
i
n
1
6
t
o
+
5
V
,
p
i
n

8
t
o
g
r
o
u
n
d
.

familiar Etch-A-Sketch format drilled into us since kindergarten

days. Using appropriate input signal conditioning, a graphics display

can be just about anything we want it to be ... from a simple

tic-tac-toe pattern to a very complex schematic or logic diagram. We

can even play games such as Space War and tennis, display a graph of

the current stock market trends, plot temperature and humidity and

on and on.

That's terrific. Everyone should have one, you say? Agreed.

The following paragraphs will describe, in sufficient detail, a method

whereby the average experimenter can acquire all of the parts and

subassemblies needed to constructjust such a device. Basically, this

graphics display consists of a group of ready-made subassemblies

which, when modified per the instructions contained herein, will

result in a very high performance X-Y display. The readout device is

a 12 inch diagonal TV-like CRT with a very bright green-blue trace.

This CRT has a medium persistence, which is desirable in the

interests of flicker reduction. Additional electronics are described to

transform the output instructions from any microprocessor into the

analog voltages and positioning signals used to actually produce the

various line segments that will make up the desired display of

information.

It should be noted that the graphics display described is the

result of the many bits and pieces of pertinent information and ideas

which abound in the field today. We've drawn on ideas, and in some

cases used portions of previously described circuits to arrive at the

final configuration presented here. We have integrated these various

data into a workable, practicable and available piece of equipment

intended to do a specific task well, but also have a degree of

expandability for new techniques of the future.

So much for the commercial. Now it's time to get on

with the description of the project. We'll start with the basic CRT

display, since that is the easiest portion. What could be easier than

simply sending off an order for a couple of boxes full of already

constructed gear and waiting patiently for the order to arrive? Well,

there's a wee bit more to it than that, but not much. Suntronix

Company (Londonderry, H.H. and Lawrence, Mass.) is once again

selling a package of electronic subassemblies that include all of the

basic electronic items needed to construct the X-Y display portion of

this project. These subassemblies include all of the power supplies,

both high and low voltage, the vertical and horizontal deflection

amplifiers, a special yoke for the magnetically deflected 12-inch

CRT, fourPC cards, a chassis and base to holdthese subassemblies

and a neat enclosure to hide all of the above. Also included in the

468

C
D

♦
5
V

C
4

U
|
3

4
7
0
0
p
F

|
|
O
K

♦
5
V

Y
D
R
A
W
-

♦
5
V

♦
7
.
5
V

B
L
A
N
K
I
N
G
O
U
T

T
O
D
I
S
P
L
A
Y

S
I
V
R
E
F

S
O
U
R
C
E

-
o
*
7
5
V

♦
I

I
O
O
M
F

H
5
V

-
C
-
7
5
V

♦
7
5
V
S
O
U
R
C
E

Fi
g.

7
-
3
6
.
S
c
h
e
m
a
t
i
c
.

package price is a keyboard, ASCII encoded, with an enclosure that

fits nicely with the rest of the equipment. Complete data in the form

of schematic diagrams for each subassembly is included. As received

from Suntronix, these subassemblies will interconnect without

major modification to provide the basic X-Y display. So, first thing to

do is fire off an order to Suntronix for the complete package of

subassemblies.

Now the hard part. You must decide whether you want to build

the CRT driver from scratch or order one from Suntronix.

Whichever route you choose, you should read the following technical

description anyhow, so put off the hard part (the decision-making)

and continue to read.

CRT Graphics Driver

The graphics driver is the interface between the actual display

and the microprocessor. It translates the binary coded coordinates

presented to it through software routines to analog voltages which

position the CRT beam appropriately. This driver is a fairly simple

system designed to draw line segments with a very high degree of

resolution, yet requires only beginning and ending cartesian coordi

nates to define that line segment. For example, a line running

diagonally across the CRT screen from upper left to lower right (- X,

+Y to +X, - Y) requires only four eight bit bytes to define the line.

Beam position is proportional to the analog voltages applied to the

inputs of the deflection amplifiers. The digital to analog converters

(DACs) in the graphics driver convert the eight bit coordinates to the

analog voltages they represent. Continuous scanning of a series of

these values connects many individual line segments to produce the

desired figures or pictures or whatever. Additional circuitry is in

cluded to assure a relatively uniform beam intensity regardless of

where the beam is commanded to go. Also, blanking of unwanted

beam movements is included.

Input Registers and DACs

The graphics driver has been designed to be driven by any eight

bit microprocessor such as the 8008, 8008-1. It is compatible with

any faster eight bit machine so long as the software scanning

routines do not exceed the processing and analog conversion time of

the driver. Though somewhat modified, this circuit is based upon a

similar design by Hal Chamberlin. Basically, the design is a software

graphics driver. Computer instructions are used to output the binary

position coordinates to the driver eight bits at a time; first an X

position, then a Y position. Together, these sixteen bits represent

470

the X, Y beginning position of a line segment. Next, the computer

outputs the X, Y values of the ending position of that line segment

and the driver unblanks the CRTbeam to allow display ofthis motion
between the start and end positions. Since this display is software

driven, the total number of displayed lines is a function of the

computer's speed. Refresh of the display is accomplished by having

the computer scan the coordinates continuously. If there are too

manypoints, the display will appear to blink orjitter. The CRT's P31

phosphor helps to correct this condition by allowing more time

between refresh cycles. This will be helpful to people with slow

computers!

Fourinstructions areused: Xmove, Ymove, XstoreandYdraw.

They are actually four output strobes from the computer which are

enabledbythe transfer ofposition data to the graphics driver storage

registers. When Xmove (the I/O instruction outputting data to

whatever output port is chosen) is executed, the contents of the

microprocessor's accumulator are transferred via the eight bit data

bus to an eight bit register, A13. Next a Ymove is executed and the

accumulator contents are transferred to AIL Connected to these

registers are two eight bit DACs, A14andA15. The converters free

runand will follow any change in value ofthe input registers. Withina

few microseconds of data input, the respective raw X and raw Y

voltages will have settled out andnowrepresent, in analogform, the

digital X and Y coordinates from the computer. As the instructions

implied (Xmove and Ymove), the beam position changes to follow

this period.

The actual analog voltage is a function ofthe 1408L8 DAC. This

device behaves like a programmable current source set by the

reference current at pin 14. In this particular design, the reference

current is approximately 2.0 mA. Binary inputs to the DAC provide

the equivalent fraction of the reference current at the output. For

example, if the input to the DAC were 00100000, the output current

would be 32/256 ofthe reference current. This signal is more useful

and manageable in voltage form. That's the job of op amps Al and

A2. These op amps are configured as current to voltage converters

withadjustablegainand offset. Withaninputof00000000 binary, the
output should be adjusted to a value of -2.5 volts. Adjusting the gain

and offset trimmers alternately will produce the desired results.

Conversely, an input of 10000000 should produce an output of +2.5
volts. This voltagerange is not compatible with the displaydeflection

amplifiers as received, and will be scaled by additional circuitry in the
display driver electronics.

471

Vector Generator

The raw X and raw Y voltages from the DACs go to the vector

generator which uses CD4016 quad analog switches. These

switches are controlled by Ql, Q2, Q3, and Q4, a level shifter that

changes the voltages from TTL levels to MOS levels, required by

the CD4016s. Each switch section consists of a signal input and

output terminal and a switch control terminal. When this control

terminal is at +7.5 volts, the switch is on, and when the control

terminal is at -7.5 volts, it is off. A DM8800 level shifter could be

used in place of the four transistors and associated components ifyou

can find it. The Suntronix graphics driver uses the transistor version

in the interest of simply being able to obtain the parts readily.

In the quiescent state, switches 1 and 3 are on, 2 is off, and the

output of the vector generator is equal to the raw input voltage.

When a Ydraw is executed, A20 fires for approximately 20 mic

roseconds and turns off switches 1 and 3. During this one shot

period, raw X and raw Y voltages are settling toward the new input

values loaded into the registers. These values correspond to the end

point of the line segment. The display is still in a blanked state, and

with switches 1 and 3 off, the vector generator is acting as a sample

and hold circuit in a hold condition with the output constant.

When the first one shot times out, it fires A21 which has a

period of approximately 100 microseconds. While A21 is on, the

beam is unblanked, switch 2 turns on, and switches 1 and 3 remain

off. In this state, the integrating capacitor at A9 starts charging

through switch 2 along an exponential curve. Even though this

voltage is actually 2 times the new raw value minus the original raw

value, the one shot's period is adjusted to time out at the correct end

point voltage and provide the appearance of a straight line. The fact

that the output voltage changes along an exponential curve is ir

relevant as long as both axes are identical. At the conclusion of this

one shot period, switch 2 turns off, switches 1 and 3 turn on, and the

display blanks again. The output voltage readjusts itself to exactly

the new voltage through switch 3.

The driver electronics, to this point, have been set to produce

minus and plus 2.5 volt signals for octal inputs of 000 and 377

respectively. This five volt magnitude is incompatible with the de

flection amplifiers as purchased. The purpose of A6 and A10 is to

scale and offset the vector generator outputs so they are within 0 to

-3 volts as required. Each op amp is configured as a non-inverting

summing amplifier. The span adjustment alternates the 5 volt abso

lute magnitude from the vector generator to 3 volts (plus 1.5 volts to

-1.5 volts). The offset pot is then set to produce an offset of -1.5

472

volts with no signal in. The resulting signal level will be minus 3 volts

for an octal 000 input and 0 volts for an octal 377 input. These two

settings, as well as the gain and offset adjustments of the D to A

converters, are best done by loading single values in the registers

and not trying to program an actual display.

The vector generators will need slope and end match calibra

tion. It is easiest to adjust the vector generator if a square with

diagonals from corner to corner is displayed. The worst case for the

driver, and hence the optimum case for calibration, is the display of a

square with full scale coordinates. A square with two diagonals can

be drawn with 6 line segments and is illustrated with full scale octal

coordinate numbers in Fig. 7-37. The brute force display method is

to write a program which treats each line segment as a separate

entity and outputs the display coordinates to the driver sequentially.

For this particular square, the program would do successive outputs

from the accumulator ofXmove, Ymove, Xstore and Ydraw, respec

tively, for the following series of octal coordinates: 000,000,000,377

(line segment 1); 000,377,377,377 (line segment 2);

377,377,377,000 (line segment 3); 377,000,000,000 (line segment

4); 000,000,377,377 (diagonal line segment 5); and

000,377,377,000 (diagonal line segment 6). Repeat continually for a

constant display.

This again is the worst case display and requires optimum

performance from the driver. End point timing problems will appear

either as under-or over-shoot of line segment length and can be

(000.377)

1

(000.200)* <

\

/
(OOO.OOO)

OISPLAYOF A SQUARE COORDINATES' ARE
USING FULL SCALE COORDINATES (X,Y) IN OCTAL

(2OO.377)*

2

X
/

4

(200.000)*

(377.377)

/
3

(377.200)*

(377 000)

Fig. 7-37. Example of a square for calibration.

473

compensated by adjusting the end match pot on A21. Slope problems

will result in the diagonals of the square pot meeting in the corners.

Slope adjustments are made with the appropriate pots at A5 and A9.

It is important not to substitute any operational amplifiers which may

have a slower frequency response than the LM301A's because this

will compromise the driver's ability to track large changes in input

coordinates and will attenuate full scale response. An additional area

of concern is power supply bypassing and grounding. The largest

ground plane and thickest wire appropriate for connecting grounds

will result in the least noise and the cleanest display. Bypass

capacitors (. 1 microfarad/25 volt) should be placed between supply

voltage points and the ground plane at a number of locations on the

display driver board. Too many is always better than too few when it

comes to bypass capacitors. Make the layout orderly and neat to

reduce crosstalk and avoid ground loops. If separate power supplies

for the +5 volts, 4-15 volts and -15 volts are built and connected by

a cable, it is a good idea to put extra filter capacitors (100 microfarad

or higher/25 volts) on these power lines where they enter the

display board. Tantalum capacitors are the best choice but aluminum

foil capacitors are adequate.

Now that you know how it works, it has once again come to the

hard part; a decision must be made whether to build or buy. Obvi

ously, the quickest and easiest way to get this fascinating and useful

instrument up and running is to purchase the graphics driver and the

set of subassemblies being offered by Suntronix Company. Certainly

that is not the only way. You may choose to build the graphics driver

from scratch. With the printed circuit card available from Suntronix it

should be a relatively simple and even enjoyable task. Merely follow

the instructions in the following paragraphs and those that come with

the PC card.

If you want to build the driver and elect not to purchase the

driver PC card, some additional comments are in order.

Much of the electronics on the four PC cards that come with the

subassemblies is superfluous when used as an X, Y display. The two

6 bit digital to analog converters previously used for character

placement can be eliminated, as well as the actual starburst pattern

generator. The only other alteration is to isolate the blanking signal.

When these few tasks are completed and external voltages applied

where the DAC inputs had been previously, one will have an opera

tional 12 inches X, Y input CRT all ready for graphics.

Testing the Unmodified CRT Subassemblies

Before any modifications can be made, the operational integrity

of the terminal must be established. Even though the refrigerator

474

sized controller necessary for alphanumerics is missing, the unit is

capable of self-scanning through a combination of positions and

blanking control with the D to A cards as they are. To test the unit,

install the four cards. The card closest to the screen is the horizontal

DAC and the next card behind it is the vertical DAC. Both cards are

identical. The third card in from the tube end is the integrator, clock

conditioner and starburst generator card. Behind it is the digital

position and unblanking card. On the back connector, labeledJ103, it

will be necessary to put in a 1 MHz clock signal and an unblanking

signal. The 1 MHz clock, which is required both for the high voltage

generation and character position, is applied to pins 8 and 9 (8 ground

and 9 high). A suitable TTL circuit to feed the 50 Ohm load pre

sented by the CRT is illustrated in Fig. 7-38. It is not necessary that

it be crystal controlled, but a clock input is required at all times to

operate this unit. The unblanking signal is applied to pins 10 and 11

(10 ground and 11 signal in). With the clock signal applied, and -5

volts from pin 11 to ground, turn on the display. A fairly noticeable

high pitched tone should be heard. This is the high voltage oscillator.

Slowly rotate the intensity control (same shaft with the on/off

control), and a pattern should appear. This pattern will appear as

though one were looking at ten layers of chicken wire, but it is

actually all starburst locations unblanked and displayed. Removing

the - 5 volts from the blanking input will leave one starburst pattern

displayed on the screen in a randbm location. Repeated applications

of the blanking input will make this single pattern appear to jump

around the screen.

At this point, initial checkout is complete and modifications can

begin. Although not absolutely necessary, it was determined that all

of the modifications to this terminal could be carried out on the four

PC cards. The easiest approach is always the preferred method

when dealing with surplus electronics because of the numerous

Fig. 7-38. MHz oscillator. All resistors Va W 5% unless otherwise noted.

475

design revisions such equipment has had over the years. The latest

schematics are always hard to find.

TTL Level Blanking Input

One of the first modifications necessary is to change the blank

ing level input from the previous level of - 5 volts into 50ft which is

inconvenient to use. This negative voltage is an external require

ment only. From there it feeds a level translator on the integrator

card which converts it to a +4.5 volt blanking level compatible for

use in the digital logic of the position and unblanking board. After

transferring through all the logic, this signal leaves the board as an

unblank to video amp signal on pin 3 of connectorJ107 on the base of

the card. Between terminal E31 (connected to pin 3) and E30 is a

jumper. Byremoving thisjumper and attaching a separate TTL level

input to terminal E31, this unblanking option can be externally

controlled. The card itself cannot be discarded and has to be inserted

for the unit to be operational. There is additional logic on this card

necessary to generate the high voltage for the CRT. This concludes

the modifications necessary to allow external blanking.

Eliminating the Starburst Generator

The starburst generator is located on the integrator and clock

conditioner card. The output of this generator feeds directly to the

video amplifier and must be disabled or a moving starburst will be

displayed rather than a line segment when the beam is moved. This

simple modification can be accomplished by removing a transistor,

Q9, and cutting a tape between pin 15 and thejunction ofR21 and the

emitter of Q8. By cutting these two signals to the video amp, we are

eliminating a 2 bit D to A converter which continually causes the

beam to trace a starburst pattern. What is left is a single dot on the

screen whose position is completely controlled by the vertical and

horizontal deflection voltages generated on the vertical and horizon

tal D to A cards. As in the previous case, there is other circuitry on

this card, such as the clock conditioner, which requires that the card

be inserted for the display to be used. This concludes the integrator

card modifications.

Vertical and Horizontal Deflection Inputs

The modification to the deflection amplifiers to allow external

deflection voltage input is indeed simple. It essentially means throw

ing away the two D to A converter cards and applying the external

input voltages directly to the connector pins. Unfortunately, getting

476

at these pins is difficult and requires removing the high voltage

section. An easier method is to disconnect the DAC outputs on each

card and attach the external input on the card in its place. The two

cards are identical and require the same modification. Each of these

boards is a 6 bit digital to analog converter card. The output of the

converter is jumpered from terminal El to terminal E2. Terminal E2

is also the output pin M on the base of the card. By removing this

jumper, the card electronics is disconnected. A coxial cable can then

be attached to terminal. E2 on each board to provide the external

input. There is plenty of foil grounding area on the cards to which to

solder the coax shield directly, and this serves to reduce input noise

considerably.

Warning! With all these modifications, the automatic blanking

and sweep circuits of the unit have been defeated. This is of no real

consequence, but extreme care must be taken not to damage the

CRT. The blue-green phosphor is exceedingly bright, and has to be

protected from over-intensity which would otherwise burn aperma-

nent mark on the screen. The graphics driver is designed to prevent

this occurrence, but at this stage of the checkout process, none of

those protective circuits is involved.

It is important to check the display terminal as it stands now.

For all practical purposes, it is a 12 inch oscilloscope at this point and

can be checked out as such. The deflection voltage which must be

externally applied to both horizontal and vertical inputs is in the

range of 0 to -3 volts. It is of Hiegravest importance that the polarity

not be reversed or the magnitude exceeded on these inputs.

a,

^OK

E2

TTL BLANKING

•NPUT—sr
0 VOLTS OFF
3 5 VOLTS ON

3V|

if
hr

EXTERNA

IMHz CLC

JI07

PINS 8 6

IOK

E2

L
>CK •

SYNCt

VERTICAL
D TO A

BOARD

POSITION AND
BLANKING

BOARD

HORIZONTAL

D TO A

BOARD

CLOCK
CONDITIONER 8
STARBURST

KB*1""

J BLANKING
| CIRCUIT

VERTICAL
DEFLECTION

AMPLIFIER

—{^

IMEG <t

HIGH VOLTAGE
SUPPLY

CRT

HORIZONTAL
DEFLECTION
AMPLIFIER

Fig. 7-39. Deflection amp subassembly checkout.

477

Schematically, it would appear quite acceptable to do this, but in

actuality it is disastrous. The deflection yoke resistance is less than

. 1 Ohm and demands considerable current to drive it. This deflection

current is directly proportional to the input voltage. When a 0 to -3

volt signal is applied, the deflection current sweeps from - 2 Amps to

+2 Amps approximately. The low voltage power supply is a real

brute capable of better than 10 Amps. When voltages of other than

the optimum are applied, the deflection will try to follow. The

unfortunate problem is that the manufacturer didn't build the deflec

tion amplifiers to handle this much current and they go poof! They, of

course, never were concerned with this problem because the D to A

converter cards could not have produced these voltages. It is a wise

idea, if this display is not going to be permanently attached to a driver

of some sort, to put some clamping and voltage limiting circuitry on

these inputs. It wasn't without hard reality that these facts were

determined.

To continue the deflection checkout, it is necessary to have two

3 volt supplies. Two pair of "C" cells in series are quite adequate and

safest. Figure 7-39 is a sketch of these checkout requirements. Each

3 volt supply should be placed across a 10k Ohm pot with the positive

side of the battery connected to the display chassis ground. The

output voltage at the wiper of the pot will go from 0 to -3 volts with

respect to chassis ground. When this fact is agreed upon, one can

feel fairly safe in attaching this variable voltage to the horizontal and

vertical inputs as described previously.

Now comes the acid test. Using a meter, set each input to -1.5

volts. This will correspond to a null or no deflection condition and

should place the beam position directly in the center of the screen.

The blanking input should be ungrounded and open and the 1 MHz

oscillator turned on. Very carefully turn on the display, but don't

immediately rotate the intensity adjustment. After allowing about 30

seconds warmup, and taking note the high voltage is on, slowly

increase the intensity. Eventually there will appear a single dot near

the center of the screen. Do not make it too bright because it will

burn the screen. When this phase is accomplished, increase the

voltage applied from the battery sources and notice that the beam

moves proportionally with the voltage change. The horizontal input

obviously is driving the beam in an X direction from left to right and

back, while the vertical is driving it in the Y direction which is up and

down. If both pots are turned simultaneously, the beam will move at

an angle.

That's all there is to it. Be sure to use coax between the driver

and the horizontal and vertical inputs and watch the ground loops.

478

Table 7-13. Parts List.

A1-A10

A11-A13

A14-A15

A16

A17

A18-A19

A20

A21

A22

All resistors

All variable

LM301 A Op amp

741oo 8 bit Reg.

1408 8 bit D to A converter—Motorola

7437 Quad NAND

7404 Hex inverter

4016 CMOS quad analog switch

74123 One shot

74121 One shot

74103 input NAND

Va W 5% unless otherwise noted.

resistors are trimpots or equivalent.

Properly adjusted and imaginatively programmed, this graphic dis

play will very quickly become your favorite form of entertainment as

well as an extremely useful tool. For the parts list for this graphics

drivers, see Table 7-13.

High Quality Display with Cursor and Video Control

This video display is a high quality display with large capacity

(2048 characters), extremely high speed (normal memory cycles are

used to enter or read data from display memory) and unlimited

formatting capability. I have assumed the reader has at least a basic

working knowledge of digital logic and is familiar with typical uses of a

video display.

The display itself consists of 32 lines each containing 64 charac

ters for a total of 2048 characters. The character set includes both

upper and lower case characters and the Greek alphabet, in addition

to some special characters. Normal display of a character is white on

black, but the video may be inverted on a character by character

basis to produce a black character in a field of white.

The display memory is accessed directly by the microprocessor

as though it were normal memory. This allows information to be

written to or read from any location of the display memory at any

time. Scrolling the display then becomes a software process, and as

such allows the display to be arbitrarily partitioned into several

segments, each being scrolled independently of the others. In fact,

programs may be loaded directly into display memory and executed.

The display does not, however, steal cycles from the processor

(as many who have seen my display immediately ask). Display

memory is normally isolated from the processor bus and is used by

the display control circuitry in parallel to normal processing. When

479

the processor performs a read or write cycle utilizing a location

within the display memory, control of that memory is automatically

switched to the processor. This means that the processor steals

cycles from the display when needed.

A Basic Video Display

Before I go into a detailed description of my display, I'd like to

go through a simplified description of the fundamental process of

creating a raster scan display.

A raster scan CRT (Cathode Ray Tube), an example ofwhich is

a normal TV set, produces an image by moving a electron beam

horizontally across the screen 262% times (from left to right) while

moving it once from top to bottom. On every other vertical trace of

the beam, the start of the horizontal tracing is delayed slightly to

produce a field of horizontal lines between the lines drawn by the

previous trace. Each of the two fields of lines is called aframe. The

process of causing the lines of the second frame of the first frame is

called interlacing.

Movement of the electron beam is synchronized by special

pulses which are part of a video signal, the horizontal and vertical

sync pulses. For instance, suppose that the beamhasjust completed

a trace across the face of the CRT. The horizontal sync pulse will

cause the beam to go back to the left side of the tube (retrace) and

begin a new sweep. Likewise, a vertical sync pulse causes the beam

to move back to the top of the screen. Another part of the video

signal is the blanking. Blanking pulses follow each of the horizontal

and vertical sync pulses and servo to blank out the retrace of the

beam so that it does not show up as unwanted light on the screen.

The final part of a video signal isjust the video information itself. This

information controls the intensity of the electron beam as it is being

swept across the CRT. The sync, blanking and video information are

all combined to produce a single signal which controls the CRT

monitor.

Producing a display of characters on a raster scan CRTinvolves

only the synchronization of an appropriate train of pulses with the

horizontal and vertical information. I have shown a simplified block

diagram to accomplish this in Fig. 7-40.

The clock and timing information block is responsible for gener

ation of the horizontal and vertical sync and blanking pulses. This

information is fed directly to a video combiner and is also used to

control the operation of several counters. The row counter and the

column counter provide an address to the memory (which contains

the characters to be displayed). The data from the memory serves

480

CLOCK AND TIMING

INFORMATION

SCAN
LINE

COUNTER

COLUMN
COUNTER

ROW

COUNTER

c:::

MEMORY

VIDEO
COMBINER

CHARACTER

GENERATOR

(READ ONLY

MEMORY)

ADDRESS
INFORMATION

^ VIDEO
^OUTPUT

SHIFT

REGISTER

Fig. 7-40. Video display simplified block diagram.

as one input to a read only memory called a character generator. The

character generator contains a matrix of dots for each character

(Fig. 7-41). Since only one row of dots for a character may be

produced on a given scan of the electron beam, a sen line counter is

needed to tell the character generator which particular row of dots is

currently being called for. The outut of the character generator is

loaded into a shift register and shifted out to be combined with the

horizontal and vertical information to produce white dots on the

screen.

My display writes 32 lines of 64 characters per line. I allow 15

scan lines per row of characters. This means that it takes 15 traces of

the electron beam to produce one row of characters. A simplified

flow of events would be:

• The system is reset by the vertical sync pulse.

• Several horizontal sweeps are allowed to happen before

anything else to space the characters down from the top of

the raster, which is usually distorted.

• Data from memory is presented to the character generator.

At the same time, the scan line counter tells the character

generator which row of dots within a character is needed.

• The output of the character generator is loaded into a shift

register and shifted out into the video combiner one bit at a

time.

• The column counter is incremented and the same process

takes place over and over until the end of a line.

• At the end of a horizontal trace, the scan line counter is

incremented by the horizontal sync and the same line of

characters is presented to the character generator to pro-

481

duce the second row of dots on the screen. This process

repeats until the firstrow of characters has been completed.

• A few horizontal sweeps are allowed for spacing. Then the

row counter is incremented and the above process repeats

for the next row of characters (and so on, until all the

characters have been completely displayed).

The operation of my display follows this basic outline, except

where I have taken advantage ofpeculiarities within the circuit. I also

have had to play tricks because of the interlacing of the two video

frames, so that I would have enough scan lines available to produce

32 lines of high quality characters.

Conventions

For simplicity I have adopted a few conventions in drawing the

schematics. First, all crossing lines are not connected. Connections

are drawn to produce T junctions.

A logic gate with an 00 in it is a 7400, one with an 04 in it is a

7404, and so on.

ICs drawn as boxes have their part numbers inside the box.

I have not numbered pin connections on common logic gates; I

leave this to the builder, since it is unlikely that his layout will make it

convenient to use the same pin numbers.

My display is wire-wrapped. I highly recommend going that

way, as a printed circuit layout on this scale would be a great

undertaking for the hobbyist. I have not numbered or shown power

connections for any but special ICs. Figure 7-42 contains all pin

number and power information for the ICs used. Where I have

numbered pins on counters, flip-flop and special ICs, there is little

choice (except for the flip-flops which have two gates per package).

Numbers in small square boxes refer to Altair bus numbers and are

the only off board connections to be made except for the video

connection itself. If you are not using an Altair-compatible bus, then

you will need to make appropriate corrections to thememory control

part of the schematic (note that the only connections to the external

world are those appearing on the memory schematic—except for

power and the video connection).

The Memory

111 start my discussion of the actual display circuit by describing

the memory schematic shown in Fig. 7-40, since it is relatively

straightforward.

I have used 2102s for memory, since they are cheap and readily

available. There is nothing sacred about this choice, and any other

482

S
i

"
i il

l!
!

n;
:!

:!
::

!:
:8

'
.
H
u
n
*

4
t
i
i

J
l

il
l is

H s
t
r
a
w

S
S
I

El
li

KS
SL

ii
il

ii

S
i
!

HH
Si

es
ii

ii
ii

ii
i

I

is
sn

i

O
'
i
r
s
i
-
>
a

•
H
I

t
i
l
l

11
t
i
l

"U
SB
SB
S!

•I
S!

.!
!!

;

H it
i

m uss
s
a
a
s

ii
il

■
M
l
»
>
■
•
•
■

I

h'
ar

i
•
1
1
(
1
!

t
m
o
i

n
:
n
)
i
i
n
n
i

II
I
M
l

II
II

It

!S
!a
^!
::

SI
]

n
n

1
1
1
1

i
i

II
I!

«:
■■
•&
■

SS
S5
3R

I
l
l
l
t
l
l
K
I
I
I
H
I

It
I
I
I
1
1
1

I I
I

H
%
a s

Fi
g.

7
-
4
1
.
C
h
a
r
a
c
t
e
r
s
e
t
fo

r
t
h
e
M
C
M
6
5
7
1
A

c
h
a
r
a
c
t
e
r
g
e
n
e
r
a
t
o
r
.
T
h
i
s
r
e
a
d
o
n
l
y
m
e
m
o
r
y

is
a
l
s
o
a
v
a
i
l
a
b
l
e
w
i
t
h
o
t
h
e
r
c
h
a
r
a
c
t
e
r
se

ts
.

^n
SNS400/8N7400M.N)

SN5410/5N7410(J,N) SN5430/SN7430(J,N)

SN5490A, SN7490A SN5493A, SN7493A

/ t! ^OUTPUT^ 'NP<yTS OUTPUT
: 4A 4? 4Y "Ia 3? 3Y

1

r

G

S

1A

1
4A

IB

1

1
4B 4Y 3A

1Y ?A ?B

3B

3Y

2Y

J

SELECT JA IB. 1Y 2B, 2Y GNO

MNAUCL INPUTS

SN54165,SN74165

SN54157,SN74157

Fig. 7-42. Pin configurations for the various ICs used in the display.

memory could be substituted if it were fast enough. I recommend

buying memory which is guaranteed to at least 500 nanosecond

access time (to insure reliable operation).

The address lines of the memory chips are tied in parallel and

connected to the outputs of the 74157 multiplexers, whose function

484

SN5406/SN7408U, N, W)

SN5473/SN7473M, N, W)

SN54125/SN74125U, N, W)

SN5408/SN7408U, N, W)

SN5474/SN7474g,N)

Id

2CZ

3CZ

4C

5CZ

6

7CZ

9CZ

1OCZ

12C

vCc

A6

OS

O3

O1

AS

A4

N.C.

A3

A2

RS3

RS2

RS1

RSO

06

04

02

00

A1

AO

N.C.

vSs

1324

ID23

Z322

Z321

ZI20

=319

1318

1317

ID 16

1315

=314

313

MM5320N

•.-. u .-

SN54192,SN74192 2102

—CttMMMTWH

111 describe soon. Data inputs of the memory are simply connected

to the data out bus of the processor. The data outputs ofthe memory

are connected to the charactr generator (Fig. 7-43) and to some

tri-state bus drivers (74125). The purpose of the tri-state bus

drivers is to allow data to be read from the display memory by the

485

processor. If you wish to use another tri-state gate (such as an

8T97), it will make no difference.

The memory control circuit serves to distinguish between valid

memory requests and random states of the Altair bus which occa

sionally look like memory requests if enough care is not taken. The

gates in the upper left of the left memory schematic decode valid

processor requests for the memory by monitoring three status lines

and five address lines. If SOUT and WO are both low, then the

processor is about to write memory. IfMEMR is high, the processor

is about to read from memory. If, at the same time, address lines

All through A15 are high, then the byte ofmemory being addressed

is within the two kilobytes of display memory. One half of a 7474

flip-flop is used to latch the request status during sync time of the

processor, with the Oi clock being used to clock the flip-flop at a time

when all address and status signals are stable. While my display

memory is located in the high order two kilobytes of the Altair's

memory addressing range, it is by no means a sacred choice. You can

put your display memory anywhere you wish by appropriate decod

ing of A11-A15.

When a valid processor request has been decoded and latched,

the three 74157 multiplexer chips shift control of the memory ad

dress lines from the display's own counters to the computer's ad

dress bus. The MWRITE Altair bus signal is gated by the output of

the request latch to allow the processor to write data into memory.

Similarly, the MEMR signal is gated with the output of the request

latch to enable the tri-state bus drivers for a read cycle.

Address bit 210 (from the multiplexers) is used to enable either

the high order kilobyte or low order kilobyte of display memory.

When the processor is finished with its request for use of the

memory, the multiplexers shift control of the memory back to the

display control.

The Character Generator

Before I get into the actual description of the control schematic,

I would like to take time to go over the character generator I chose

and attempt to explain why I did some of the things I did with the

control circuitry.

The character generator stores a 7 x 9 matrix of dots for each

of its 128 characters. Some of the characters (like j, y, g) should

extend beneath the line for best results, so the character generator

contains circuitry which shifts the matrix automatically on such

characters. What this means is that for a normal character, the dots

of the character will appear when lines 0 through 8 of the character

486

►
T
i
o
T
O

r
r
r
r
r
r
r
r

0
0

0
1
0
2
0
3
0
4
O
S
0
6
0
7

F
R
O
M

2
1
0
2
'
S

T
O
M
U
L
T
I
P
L
E
X
E
R
S

O
N
M
E
M
O
R
Y

C
O
N
T
R
O
L

I
C
9
«

Fi
g.

7
-
4
3
.
S
c
h
e
m
a
t
i
c
d
i
a
g
r
a
m

o
f
d
i
s
p
l
a
y
c
o
n
t
r
o
l

ci
rc

ui
ts

.

generator are addressed. For a shifted character, lines 0 through 2

will come out blank and the 9 lines of the matrix will appear when

lines 3 through 11 are addressed. In addition, if lines 11 through 15

are addressed, blanks will result at the output.

What this really means is that from the designer's viewpoint I

don't have to know that the information is stored in a 7 x 9 matrix. I

can make believe that it is in a 7 x 16 matrix where the last four lines

are always blank. Motorola, I love you for the MCM571A!

I use 15 scan lines per row of characters in my display (originally

I used 16 but could not achieve 32 lines of characters). Multiply 32

lines of characters by 15 scan lines per character line and you get 480

scan lines (see how nicely the units cancel—high school physics, eat

your heart out!).

Now remember from my earlier discussion that there are only

262^2 scan lines per frame. Since I need 480 lines, I must use the fact

that alternate frames are interlaced by causing my control circuitry

to do every other scan line and alternate between frames. Since I am

using 15 scan lines per character line, I must in one frame write the

eight even numberlines ofthe first row of characters, then the seven

odd numbered lines of the second row of characters, the even of the

next, etc., etc.

In the next frame, I must start with the seven odd numbered

lines of the first row, the eight even numbered lines of the second,

and so on. I also have to be sure that I am using the correct frames of

the raster to avoid producing some weird characters. It turns out

that only about 482 lines of the raster are useful. The rest are

contained within the field of the blanking pulses, and attempting to

use them results in a rolling display or worse. Otherwise I would

have stayed with 16 scan lines per character. I might also mention

that the choice of 14 scan lines per character was appealing to me

until I tried it and found that the lines began to be uncomfortably

close together.

Display Control

Several signals within the control circuitry are important, and

discussion of their functions will help to explain the operation of the

display control (Fig. 7-43). These are PAGE ACTIVE, FIELD

INDEX (FI), LINE ADVANCE, END OF PAGE (EOP), END OF

LINE (EOL), MASTER CLOCK (MC), VERTICAL DRIVE (VD),

HORIZONTAL DRIVE (HD)and COMPOSITE BLANKING (CB).

VERTICAL and HORIZONTAL DRIVE are really just vertical and

horizontal sync, but the sync generator manufacturer labels them as

drive. Any signal shown on the shematic with a bar above it (as CB or

488

VD) is the complement of the signal indicated. The signals VD, HD,

CB, and FI originate from the sync generator (Fig. 7-44). The other

signals are generated within the display control.

Sync Signals

I have used a National Semiconductor MM5320N TV camera

sync generator to generate timing signals needed to produce a

raster. It produces the VERTICAL DRIVE signal, which (along with

its complement) is used mainly to reset various counters and flip-

flops of the display control. The HORIZONTAL DRIVE output of

the sync generator serves the same purpose. The FIELD INDEX

output of the sync generator identifies field number 1 of the raster. It

220 I2.6MH2

960 I.8K

-12V

VD<-

00 ACLK

■CLK

7490

220

-w-

IF"
VIDEO TO MONITOR

Fig. 7-44. Sync generator, video combinerand clock circuits schematic diagram.

489

is a pulse which occurs for two clock cycles at the leading edge of the

vertical blanking for field one. I will discuss the sync generator in

more detail when I get to the description of that schematic (Fig.

7-44), and mention it here only as a prelude to describing the control

circuitry.

Page Active

PAGE ACTIVE is a signal which goes high during the writing of

a frame of information on the CRT. Thus, it will be low until the

electron beam is in position to trace out the top scan line of the first

row of characters and it will remain high until the last scan line of the

last row of characters has been produced. When it is low, all video

output is suppressed and the control circuit is mainly idle.

Here is the sequence of events which results in the clocking of

the PAGE ACTIVE flip-flop (which in turn enables the rest of the

display):

• "VD occurs (resetting other things which I will mention later)
and causes the scan line counter to be loaded with a five. I

will try to explain why I had to do this in a few lines.

• The CB signal will begin clocking the scan line counter.

When this counter reaches seven, the 7410 connected to

the A, B, and C outputs of the scan line counter will go low,

causing the PAGE ACTIVE flip-flop to be clocked, setting it

high.

The reason that I load the scan line counter with a binary five is

to cause a fixed number of scan lines to be ignored before clocking

the PAGE ACTIVE flip-flop. Remember that I said earlier that only

482 scan lines were useful? This is because 21 of the 262Vfc lines per

frame occur during the vertical blanking pulse. This leaves only

241V& useful lines per frame. By using the COMPOSITE BLANK

ING signal to clock the scan line counter, I already ignore the first 21

lines since no clocking of the counter will occur during the vertical

blanking pulse. By presetting the scan line counter to five, it will take

only a couple of lines to get it to seven where it causes the PAGE

ACTIVE flip-flop to come on, thereby wasting as few as possible

lines. It turns out that the counter wfll count the vertical blanking

pulse so that I am in fact only wastingabout one half ofa line at the top

of the display. In any case, there are not many lines to waste and this

method utilizes the maximum amount of useful raster.

Once the PAGE ACTIVE flip-flop has been set, the row coun

ters and the width counter are enabled (follow the logic on the

schematic to convince yourself of this). The PAGE ACTIVE flip-flop

is ultimately cleared by the END OF PAGE signal.

490

Odd/Even Flip-Flop

The FIELD INDEX is used to keep track of which frame is

being written at any given time. Remember that I mentioned earlier

the necessity to alternate even and odd scan lines of the characters

being displayed. The alternation must occur between rows of

characters and also between frames. The FIELD INDEX is used to

control the starting point of the odd/even flip-flop within a given

frame. This is accomplished by setting the odd/even flip-flop with

the END OF PAGE signal. The EOP flip-flop, however, is cleared

byVD, causing the EOP signal to go away at the beginning of theVD

pulse. The FI pulse hangs around for a couple of dock cycles after

the beginning of theVD pulse, so that if it (FI) is present it will clear

the odd/even flip-flop. Thus the odd/even flip-flop will be set or

reset at the beginning of a frame.

The output ofthe odd/evenflip-flop serves as bit zero ofthe line

input to the character generator, causing it to generate the approp

riate dot information. The output of the odd/even flip-flop also

serves to control the number of scan lines allowed for a row of

characters by causing the scan line counter to divide by either seven

or eight. This is relatively straightforward and I leave it to the reader

to verify that this is so by examining the schematic. Upon completion

oftwo complete scans, there will have been 15 scan lines allotted for

each row of characters.

Line Advance

The LINE ADVANCE signal is the same as used to enable the

PAGE ACTIVE flip-flop, except that once the PAGE ACTIVE

flip-flop is set, the LINE ADVANCE will clock the row counters. I

had trouble with a glitch on the LINE ADVANCE, so I had to put in

an 820 (or so) pF capacitor to get rid of it.

Row Counter

The row counter consists ofa 7490 decade counter and one half

ofa 7473 flip-flop. The row counter provides the high order five bits

of the memory address to the multiplexers.

End Of Page

The EOP flip-flop is clockedby the row counter after 32 rows of

characters have been displayed in a given frame. It is used to clear

the PAGEACTIVE flip-flop (which inhibits the world) and also to set

the odd/even flip-flop as described above. EOP is reset by VERTI

CAL DRIVE.

491

The Character Generator Again

The character generator accepts a row input from the scan line

counter to tell it which row of a matrix to present to its output. The

character code is the rest of the input to the character generator and

comes directly from the memory. Te seven bit output of the charac

ter generator represents part of the dot pattern of a character and is

presented to the 74165 shift register. Clocking of the shift register

to dump the dots out in serial fashion is by the MASTER CLOCK.

Loading of the shift register is controlled by circuitry associated with

the width counter.

Width Counter

The width counter is a 7490 decade counter which is really

dividing by nine because of external gating (shown in the schematic).

The width counter is held at zero whenever the PAGE ACTIVE line

is low. It is also cleared by the COMPOSITE BLANKING to insure

that it begins every line from zero.

The width counter is clocked by the MASTER CLOCK and is

responsible for determining the number of clock pulses allowed for

each character in a row. I have allowed nine clock pulses per

character. Seven pulses are needed to display the seven dot width of

a character, plus one leading and one trailing pulse to allow for

spacing between. I have arranged the loading and clocking of the

shift register to achieve both leading and trailing blank dots, as

opposed to simply allowing two blank dots between character. This

distinction is not too important when displaying normal video, but

when the video is inverted on a given character, it assures that the

character will be centered in the field of white.

The D output of the width counter is used to provide a load

signal to the shift register. The C output is used to clock the column

counters, which count the number of characters per row. Note that

the column counters are advanced before the shift register is loaded.

This is to allow sufficient time for the two memories (the main

character memory and the character generator) to stablize. The data

loaded into the shift register will be data from the last character,

because of the memory access time.

Column Counters

The column counter, a 7493 and part of a 7490, counts the

number of characters within a row and provides the low order six bits

of address information to the memory control board. The column

counter is reset by the HORIZONTAL DRIVE pulse to insure that it

492

begins counting at zero for each row. The C output of the width

counter is used to clock the column counter as discussed above.

One half of the 7490 used in the column counter is a divide-by-

four counter, while the other half is used as a flip-flop. To see this,

note that the D output of the 7493 is connected to the B clock of the

7490 (the B clock is the input to the divide-by-give stage of a 7490).

The C output of the 7490 is used to clock the A input, which will

cause the output to go high after the fourth time the B input is

clocked. The A output is connected in turn to the J input of the

END OF LINE flip-flop. The END OF LINE flip-flop will be clocked

on the falling edge of the D output from the width counter. The

output of the EOL flip-flop then inhibits any further loading of the

shift register, hence ending the current line.

The reason for all this playing around with the column counter is

to allow the last character to be loaded into the shift register. If you

remember the discussion about the column counter being clocked to

the next character before the data from the current character is

loaded into the shift register, you will see that the column counter

will be at 64 (representing the 65th character since the counters

start at zero) when the load pulse for character 63 (the 64th charac

ter) occurs. Since I have to allow the 64th load pulse to occur, I came

up with the above scheme to delay the clocking of the EOL flip-flop.

I might mention at this point that there is really no good reason

to bother using the C output of the 7490 to clock the A input. The

internal D flip-flop of the 7490 is already clocked by the C output, so

the D output could serve as the J input to the flip-flop. In fact, by

gating together the D output of the 7490 section of the column

counter with the D output of the width counter (using a 7408 AND

gate with the output of the AND gate clocking the A input of the

7490), the EOL flip-flop could be eliminated, the A output of the 7490

replacing the EOL signal. But you would have to use a NOT gate to

derive EOL and then you would have one half of a flip-flop left over

elsewhere. I mention this possibility partly for the benefit of anyone

who might be making changes where it would be nice to have an

extra flip-flop, and partly to illustrate that there is nothing sacred

about the way I have done things. As long as you understand the

purpose of each part of the circuit, you can modify it to suit your

particular requirements or supply of parts.

Video Inversion

The Invert Video flip-flop controls inversion of the video signal

to produce a black character within a field of white. Note that by

493

inverting the video, I am referring only to inverting the character

part of the video, not the sync and blanking signals.

The video may be inverted character by character, allowing the

use of multiple cursors (I use an inverted blank for a cursor) or

techiniques such as inverting important messages (or flashing them

between normal and inverted video). The display also makes a dandy

checkerboard. The eighth bit of the display memory is used to

control the state of each character.

Since the memory has already been advanced to the next

character during the time in which dots for a given character are

being drawn by the electron beam ofthe CRT, it is necessary to latch

the eighth bit of memory in the Invert Video flip-flop. This bit is

clocked into the flip-flop at the same time the load pulse for the shift

register goes high. The outputs of the flip-flop control a multiplexer

made from 7400 gates, thereby selecting either the Q or Q output

from the shift register. The Invert Video flip-flop is forcibly cleared

after the EOL signal comes on (EOL and the D output of the width

counter are gated to produce a clear pulse), to assure that the brief

part of a line traced by the electron beam after the last character is
blank.

Note that the output of the video inversion multiplexer (the

7400 gates) is clocked by the MASTER CLOCK. The main reason

for this is to eliminate the possibility ofgenerating a wide video pulse

(the top of a T or an inverted blank would be examples) which would

cause the trace produced by the electron beam to bloom or, at the

very least, appear brighter than other parts of the display. Clocking

the video makes all video pulses the same width (the top ofaT would

come out as seven consecutive short pulses rather than as one long

pulse) and results in a very uniform brightness over the entire

display.

Video Inhibit

The Video Inhibit flip-flop prevents generation ofrandom video

pulese which would otherwise result from decoding of wrong infor

mation by the character generator during times when the processor

is using the display memory. Whenever the processor makes a

request for the memory (as indicated by the CPU REQUEST signal

from the memory control schematic), the Video Inhibit flip-flop is

cleared. The Video Inhibit flip-flop inhibits further loading ofthe shift

register and forces the Video Invert flip-flop to the off state the next

time it is clocked. Once the processor request has been cleared,-the

Video Inhibit flip-flop will be clocked by the end of the next load

pulse, setting it back to normal. Note that the loadpulse which clocks

494

the Video Inhibit flip-flop will be ignored by the shift register, since it

does not clock the flip-flop until the trailing edge. The next load pulse

will cause the shfit register to be loaded. The result is that video is

inhibited during processor requests for memory and for at least one

complete character cycle after control is restored to the display (to

assure that the memory is back in step with the display control).

The loss of a row of dots from random characters around the

screen during processor requests is not a problem, since it is hard to

notice the absence of a single row of dots within a single character for

l/30th of a second. The only time that the display is noticeably

degraded is when the processor is making requests at a very rapid

rate. But the rate is so great that it would not be possible for most

people to read the display anyway.

One instance where the degradation of the display caused by

cycle stealing becomes noticeable is during a line feed. The line feed,

or scroll te a software function and involves reading and rewriting

almost all 2048 characters ofthe display. The process is very fast (50

to 100 milliseconds, depending on your software and memory cycle

time) and results in a noticeable display degradation because of the

large number of requests within a short time. But the degradation

during a line feed is not a problem since the display would be

non-readable during a line feed even if it was not degraded. Also, it

happens so fast that one does not really perceive the display to have

lost anything unless he is really looking for it.

One other thing to remember (to prevent heart seizure the first

time it happens) is that if you stop the processor and examine the

contents of a location within the display memory, then you are in

effect requesting 100 percent of the memory's time, resulting in a

completely blank display.

Sync Generator and Video Combiner

The sync generator schematic includes the MASTER CLOCK

and the video combiner. TheMASTER CLOCK is a simple oscillator

made from 7404 gates, a few Rs and Cs and a 12.6 MHz crystal.

The National Semiconductor MM5320 sync generator requires

a 1.26 MHz clock, so I divided the 12.6 frequency by ten. Note that

the 7490 is used as a symmetrical divide-by-ten counter by going

through the divide-by-five stage and then into the divide-by-two

stage.

I have buffered all outputs of the 5320 except the FIELD

INDEX output, which is only connected to one gate anyway. As I

discussed earlier, the sync generator does all the timing necessary

495

to generate the appropriate sync and blanking signals to produce a

raster.

Putting the COMPOSITE SYNC, COMPOSITE BLANKING

and VIDEO (from the display control schematic) to form a single

video signal is the function of the video combiner. The video com

biner is built from 7406 open collector inverters and some diodes.

The resistors shown at the junction of each of the 7406 outputs and

its respective diode determine the weight of the given signal. The

resistors I have shown are not too critical and may be changed for

best results. The resistor for the blanking component is chosen to

produce about a .2 to .3 volt change in the output level when the

blanking turns on and off. Similarly, the sync component should be

around .7 volts and the video component should be a couple of volts

(or whatever produces good contrast). These values seem to work

well with the monitor I use, as it has a 75 Ohm input impedance.

The video monitor is a Motorola M2000-1SC. It is a good

quality 9 inch monitor having a bandwidth of about 12 MHz. If you

plan to use an old black and white TV, you may experience problems

with overscan (which is built into most TV sets to make the picture

look bigger) or bandwidth. The Motorola monitor costs around

$115, but is well worth it for this application.

Power Supplies

The logic components will require a good five volt supply. I used

two 7805 regulators (the same as used by MITS and other Altair

board manufacturers) to regulate power from the Altair bus. I use

one for powering the memory and one for the logic. Be sure to install

plenty of. 1 uF capacitors at various points on the board, to prevent

noise problems from messing up the display. If you are building the

display for use outside an Altair type computer, I will assume that

you can also manage the power supply.

Various other voltages required by the sync generator and

character generator are provided by the zener diode regulators

shown on the schematics. The amounts of current needed at these

voltages are very small. The schematic of memory circuits is found

in Fig. 7-45.

Use of the Display

There are several ways for utilizing the display. I will try to

present a few simple ideas to get you started.

The first thing is to think of the display as a window to memory

rather than as an output device. Any manipulation of data on the

496

S
V
N
C

£
3
E
>
n

N
C
>
-

B
B

Y
o
o
o

Y
d
o
i

In
In

0 r
0 1

s Jt
0 Y
o
o
s
0 j

T
T
T

I
C
P
O
W
E
R

I
C

2
1
0
2

7
4
7
4

7
4
1
9
7

7
4
1
2
9

7
4
0
0

7
4
0
4

7
4
0
S

7
4
3
0

«
9
V

P
I
N

1
0

4 * 1
4

1
4

1
4

1
4

1
4

C
N
D

P
I
N

0 |
| 1 1 1 1

•
U
S

O
R
l
V
t
R
1
7
4
1
2
9
S
)

0
C
N
0
T
£
9

A
L
T
A
I
R
B
U
S
N
U
M
B
E
R

Fi
g.

7
-
4
5
.
S
c
h
e
m
a
t
i
c
d
i
a
g
r
a
m

o
f
m
e
m
o
r
y

ci
rc

ui
ts

.

display (writing, erasing, updating, scrolling) involves a software

process to put the desired information into the right location within

the memory. There is no line feed function, nor are there any cursor

positioning functions. Characters are simply stored at the correct

locations. Cursors, if used, are simulated by appropriate software

for the benefit of the person looking at the display. This allows the

display to be configured any way you see fit. Some of the photo

graphs depict displays where my Altair was being used as a terminal

to a DEC PDP-10. A simple program was written which made the

display behave as though it were a Hazeltine 2000 video terminal.

Some specific methods to accomplish normal functions are:

• Erasing—Simply store blanks throughout the display mem

ory. Note that selective erasing is just as easy.

• Scrolling—Read a character from the second line and write

it back in the same location on the first line (i.e., move it

back 64 places). Continue reading and writing characters

until you have rewritten the last line into the second to last

line. Then erase the last line. Note that it is a simple matter

to scroll only a part of the display instead of all of it.

Construction Ideas

Before you begin building the display, you should make copies

of the schematic and make any changes you think necessary to adapt

the display to your system. Then assign numbers (or letters) to all of

the ICs and number the pins. If the IC numbering scheme is devised

to represent a socket coordinate, you will have less trouble when

you begin to wire-wrap the board. Then make all power and ground

connections. Then finish the board by making all wraps associated

with a node on the schematic at the same time, indicating (by small

colored slashes or otherwise) that you have completed a node.

TESTING

There is very little I can mention here, as there are so many

things that can be wrong from a misplaced wire-wrap. I suggest

checking the sync generator to be sure it is working and then

proceeding to the various counters and flip-flops to see which are

working. The memory may be tested for proper operation by writing

a memory diagnostic program. Obviously, for any real troubleshoot

ing or debugging you will need an oscilloscope—and you will need to

be able to think through the operation of the display.

498

Index

A

Absolute address

Accumulator

A/D conversion capability,

adding

Address

absolute

bus

decode

low order

ALU

addition

clear or set to zero

complement

data transfers

equipment

experimental setup

experiments

ground rules

multiply by 2
nartcpal to

subtraction

Analog

computer

signal

APD conversions

Arithmetic logical unit

software

two finger

Assembly tools

B

Baseline

Baudot

35

24,36

100

33, 217

35

139

208

35

54

60

58

60

58

54

56

58-68

58

68

64

84

12

98

96

54

79

68

442

360

257

Binary

arithmetic

meaning

notation

number

system

what's that in

Bionic clock

Biorhythm

working

Bipolar transistor

transistor RAMs

Bit explosion

Bit of information

Bit positions

Block diagram

Blocks

Bus structure

BYT-8, first steps

Bytes

C

Calculations, computerized

global

Carry

bit

flag

Cassette-computer system

Caution polarity

Central processor unit

Character generator

hardware

Cheaper beeper

27

72

27

27

50

70

79

367

360

358

232

234

161

30

37

24

34

94

448

72

334

44

44

44

455

453

24

486

492

463

499

Circuit adjustments

description

getting started

operation

Clock chip, interfacing

Clocks

Cold solder joints

Column counters

Common computer

Computer

a ham's

analog

arithmetic

working

bargain, outstanding

common

digital

end, interfacing problems

games

logger

negative numbers

operation

real-life

simple

storing numbers

subtraction

what is a

who uses

Construction ideas

Contest logging aid

Cosmac connection

equipment

interface circuitry

using keyer

working program

Counters

CPC chip

Critical day

double

triple

Crosscoupied NAND gates

Crowbar overvoltage

CRT subassemblies, testing
CW

memory, building

D

D/A conversions

D/A converter

possible applications

Data

bus

word

Decimal system

462

436

18

462

270

138

264

492

12

11

291

12

73

54

447

12

12

254

327

308

74

20-22

16

19

72

74

11

48

498

50

171

171

174

176

172

44

18

360

360

360

90

443

474

176

416

96

98

107

45

140

45

68

Decimal to any base, conversion 71

binary, conversion

octal, conversion

80

81

Deflection inputs

horizontal

vertical

Depletion

Depth charge

background

game

program

Detonation coordinates

Digital clock, no-cost

Digital computer, components
what is a

Digital electronics

Digital, is it all that new

Diode coupled RAMs

Display control

Double word length

E

ECL RAMs

8080 disassembly

operating instructions

output format

Eight trace scope adapter

Electronic switches

Emotional cycle

Exercise circuit

F

Firmware

Flags

carry

parity

sign

zero

Floppy disk

Frame

G

Game descriptions

Gating

Generator, vector

Graphics

display

Graphics driver, CRT

DACs

input registers

Graphics terminal

Graph paper

H

Ham shack file handler

Ham station

inspiration

first computer-controlled
operation

realization

476

476

476

234

337

337

337

338

338

331

13

12

400

84

236

488

45

238

154

158

159

314

26

360

402

387

40

44

44

44

44

111

480

433

186

472

466

466

470

470

470

466

398

305

298

301

298

306

302

500

Hardware scheme

Hardware shortcomings

Hexadecimal system

Hex notation

Hieroglyphics

Hierotics

Hot-chassis sets

1

IC see-er

IC1, construction tips

working

ICs, blowtorch

Inputs from outside world

Instruction

execution

memory

set

switch

Intellectual cycle

Interface design

Interlacing

Interrupts

easy

with the 8080

with the 8259

I/O, model 15

very cheap

K

KIM-1,

KIM-1 RTTY, functions

L

Line advance

Log book, printing your own

Loop isolation

Low order address

M

Main

Manipulating area

Manual revisions

Memories, sequential

temporary

Memory

Memory board, basics

checking

chips

instruction

monitor

read and write

seals electronics

short on

Memory systems,

random access

Microcomputer

79

450

82

159

84

84

442

318

145

145

260

89

13

138

16

32

13

360

208

480

126-134

406

406

412

252

252

115

116

491

310

126

35

406

24

442

226

228

16

198

197

226

16

216

24

322

204

231

113

dial your

looking for a

troubleshooting

Microcomputer system,

assembly

initial test

operation

Microprocessor & memory,

linking

Microprocessor, nervous

system

Microprocessor nonmaskable

interrupt

Microprocessor system, pitfalls

problems

testing

Mnemonic

Modem, adjustment

interface

operation

testing

Modem IC, theory

Moose power supply

Morrow's marvelous monitor

Morrow's monitor, working

MOS technology

N

Name game, winning

Negative half

North star disk

BASIC

controller

drive

operating system

Nuclear attack

how to play

Number systems

0

Odd/even flip-flop

Ones complement

Op code

Open circuit state

Open collector

Opto-isolator

Overflow

P

Parity flag

Page active

Pages

Paging

Paper tape system, inexpensive

Parallel

input

output

143

113

134

292

296

296

210

205

367

210

214

214

217

152

154

154

152

144

386

384

387

238

384

360

391

396

394

392

395

338

344

50

491

75

217

208

92

96

60

44

490

34

34

274

124

124

124

501

Phonic writing

Physical cycle

Playback interface

Pointers

Polymorphics, assembly

building the kit

buying the kit

software

video board

Positive half cycle

Potential well

84

360

459

44

287

285

285

289

283

360

248

Power supply 424, 496

construction

voltages

Program

PROM programmer,

construction

operation

simple

PROMs, alternatives

circuit description

programming

Pulse code modulation

Q

Quad NAND gate, basics

crystal oscillator

gating

internal circuitry

inverter

pulse shaper

set-reset flip flop

7400

square wave oscillators

switch debouncer

R

RAM checkout

RAMs

bipolar transistor

diode coupled

dynamic MOS

ECL

static MOS

Read and write memory

Recorder, need one

Recording interface

Refresh

Register

Remembering element

Resident assembler

Road rallies, secret weapon

ROMs

new developments

programmable

Rotatina

424

136

46

224

224

222

431

416

420

85

184

196

186

184

188

188

190

183

192

190

216

234

234

236

240

238

240

24

455

456

242

24,44

26

304

354

242

248

248

40

Row counter

RTTY, program

S

Schmitt triggers

Scroll

Serial I/O

Settling time

Shift register

Shipping carton packaging

Shortcomings

additional

hardware

Sign bit

flag

Silo shuffle

16-bit offerings

Software support

SOL

assembly

breakdown

expansion capabilities

input/output

keyboard

operations

problems

video display

S-100 bus, interfacing

Sprocket hole

491

117

89

495

121

402

40, 230

440

450

451

450

66,74

44

350

163

446

440

443

217

445

445

444

216

443

445

415

276

Starburst generator, eliminating 476

Sting 304

Successive-approximation

technique

Superprobe

Switches, electronic

Sync generator

Sync signals

T

Tape recorder

Telemetry

bells

program

whistles

Teletype end, interfacing

problems

Terminology, definitions

Test equipment

Testing

Thermometer,

computer-controlled

Timing diagrams

basic

generation

interpretation

Tools, assembly

Totem Dole confiauration

100

314

26

495

489

456

376

378

378

378

253

299-301

442

498

376

398

398

400

402

442

92

502

Trace program

Trainers

Transformerless set

Transistors
bipolar

unipolar

TTL

fan-out

ins

level blanking input

outs

tester

TV game chip

12-bit 6100

Twos complement arithmetic

Two finger arithmetic

ii
u

Unipolar transistor

Unpacking

V

Vector generator

Video combiner

389

390

442

232

232

232

86

92

86

476

91

262

432

161

76

68

232

440

472

495

Video display

basic

conventions

memory

with cursor

with video control

Video inhibit

Video inversion

W

Word

data

Word lengths

double

Width counter

L

Z-80, quality at a good price

Zero flag

Zero reference

479

480

482

482

479

479

494

493

32,72

45

32

45

492

167

44

360

503

he QANT Handbodk of Computer Projects

by the Editors of 73 Magazine

If microcomputers have caught your interest, or if you've been

through the ready-made hardware routine, you're ready for this book.
It's a huge collection of ready-to-use information designed for the
enterprising hobbyist who wants more flexibility—and practicality—

than that offered by systems assembled for the mass market.
This volume is a builder's dream, with projects and complete

schematics, parts lists, and step-by-step construction instructions to
enable you to build your own systems. Now, instead of being locked
into the limitations of someone else's designs, you can build—to your

own specifications—central processors, memories, and a host of
input/output devices and other computer accessories. You'll find it will

be easy for you to "roll your own" computer hardware, designed to do

what you want it to do.

There's an enormous amount of useful data here, enough to
satisfy any computer hobbyist, experimenter, or technician who'd like

to try some new applications of microcomputer technology. If you'd
like a simplified, no-nonsense guide to microcomputer applications,

this book is for you.

TAB BOOKS OF INTEREST

How To Design, Build & Program Your Own Working Computer System

(No- 1111—S9.95 paper; $14.95 hard)
How to Build Your Own Working 16-Bit Microcomputer

(No. 1099—S3.95 paper only)

How To Build Your Own Self-Programming Robot

(No. 1241—S7.95 paper; S12.95 hard)

How To Build Your Own Working Robot Pet

(No. 1141—S6.95 paper; S10.95 hard)

The Complete Handbook of Robotics

(No. 1071—S7.95 paper; S12.95 hard}

Computerisfs Handy Manual

(No. 1107—S2.25 paper only)

How To Design & Build Your Own Customer TV Games

(No. 1101—S9.95 paper; S14.95 hard)

Programs in BASIC For Electronic Engineers, Technicians & Experimenters

(No. 1095—S4-95 paper; S7.95 hard)

24 Tested, Ready-to-Run Game Programs in BASIC

(No. 1085—S5.95 paper; S9.95 hard)

Digital Interfacing With an Analog World
(No. 1070—S8.95 paper; S12.95 hard)

Computerisfs Handy Databook/Dictionary

(No. 1069—S3.95 paper only)

The A to Z Book of Computer Games
(No. 1062—S7.95 paper; S12.95 hard)

Microprocessor Cookbook

(No. 1053—S5.95 paper; S9.95 hard)

57 Practical Programs & Games in BASIC

(No. 1000—S7.95 paper; S10.95 hard)

TAB BOOKS
ALSO PUBLISHERS OF MODERN AUTOMOTIVE SERIES & MODERN AVIATION SERIES

BLUE RIDGE SUMMIT. PA. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

0-8306-1169-X prices hl9her in Canada

