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Preface

It is with great excitement that we present this book, which not only
introduces the 65816 and the 65802 in complete detail for the first time,
but also encompasses the 6502 and 65C02 in what is meant to provide a
complete reference guide to the 65x family.

As 6502 enthusiasts, we believe the two new 16-bit microprocessors—
the 65802 and the 65816—represent a great leap forward. We think they
hold the potential in days ahead for advances in systems and software
even greater than those realized by the 6502 in the early days of the
microcomputer revolution. Because of their unique compatibility with
the 6502 and 65C02, they bridge the past with the future in a way that
no other microprocessor has done.

While this collaboration represents our first work of reference propor-
tions in the computer science field, both of us have written extensively
in this field and others, and both of us develop software professionally.
It was our unalloyed enthusiasm for the subject that led us to this under-
taking. We hope the thrill we experienced when we ran our first 65802
programs on beta copies of the processor plugged into our Apples will
be yours to experience, too.

Both of us learned to program primarily through books and hands-on
experimentation with personal computers rather than through formal
training. Because of this, we share a high regard for the value of books
in the learning process and have formed strong opinions about what is
useful and what is not in learning how to use and program a new micro-
processor. We hope what worked for us will work for you.

Ron Lichty David Eyes
San Francisco, California Lowell, Massachusetts
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Foreword

It was in July 1972, approximately one year after joining Motorola
Semiconductor Products Division, Phoenix, Arizona, that | was first in-
troduced to microprocessor design. Previously, | had worked on analog
computers before graduating from Temple University in Philadelphia.
While at the University of Arizona | worked on computer simulation
of plasmas, simulating plasma reactions to radio frequency energy in
search of a breakthrough enabling a nuclear fusion energy generation
system (without radioactive waste) to become a reality. | graduated
from the University of Arizona with a bachelor's degree in electrical
engineering, majoring in digital semiconductor design with a minor in
computer engineering.

Then inJuly 1972, | was faced with a major challenge. Rod Orgill and
I were assigned the task that six engineers (two teams before us) had
failed, which was to deliver a custom microprocessor to Olivetti of
Italy. This was a very capable PMOS 8-bit microprocessor, which
became a basis for the design approach of the Motorola 8-bit NMOS
6800. Rod (who now works for HP in Colorado) and | were successful;
we were allowed to stay in design and become part of the 6800 design
team. As you may be aware, the 6800 led to the 68000. As you may or
may not be aware, it also led to the 6502.

In August of 1974, a few of us left Motorola and ended up at MOS
Technology in Valley Forge, Pennsylvania. In September 1975 in the St.
Francis Hotel in San Francisco, we introduced the NMOS 6502 with a
purchase price of $25. Because of the price, Steve Wozniak and others
could become familiar with this wonderful technology. At $375.00, (the
price of the Intel 8080 and Motorola 6800), Steve and others would have
bought a TV instead; with the 6502, we are talking about a computer
chip selling for the price of an engineering textbook. And so the per-
sonal computer technology was born.

In May 1978, | founded the Western Design Center, Inc., in Mesa,
Arizona. Our goal is to create the most affordable, highest perform-
ance, easiest to use, lowest power technology the world has seen. To
this end we created the 65C02 in 1982 by using the low-power CMOS
process (the same technology that lets a wristwatch run for a year off of
a single battery). It is a direct replacement for the NMOS 6502. The
65C02 is destined to become the most used core microprocessor for a
vast base of custom controller chips used in telephones, heart pacers,
and more. The Apple //c was introduced in 1984 using the 65C02, and
the Apple //e now uses it as well.

As Apple was introducing the Apple //c to the world, | was introduc-
ing to Apple the 16-bit version of the 65C02 known as the 65816. The
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65816 will ultimately replace the 65C02 (as the 65C02 becomes used
predominantly in one-chip microcomputers) and will become the mid-
range computer chip. Features have been selected that allow for com-
plete emulation of the 6502 and 65C02 using the E (emulation) bit.
(Incidentally, it was David Eyes who first suggested the E bit.) This
saves a lot of software from premature obsolescence.

Other features were picked for high-level languages, cache memory,
and recursive and reentrant code, just like the "big systems.” There will
be other generations. The 65832, for example, will have 32-bit floating
point operations, in addition to 8- and 16-bit operations. It will plug
into a 65816 socket and, of course, will be fully compatible with the
65C02 and 65816.

As the technology improves over the next 10 years and the density of
integration increases, we expect to have full-size personal computers on
one chip with only memory off chip. The memory cycle time for cache
operation should approach 100 MHz, the speed of multimillion dollar
mainframes. The power of the 65C02, in the same time frame, should
drop to under 1 micro amp (the same as a watch chip) running off a
watch crystal. Because the technology is low-power CMOS, low-cost
packages are available, and heat generated is very low; therefore, low-
cost environments can be built. The cost of the basic microprocessor
chip will be under $5.00. And so, this same technology that will power
human beings in heart pacers will also power telephones, communica-
tion networks, personal computers, and desk-top work stations. It is my
belief that this technology will fuel world peace.

This book, as | see it, is and will become the vehicle that WDC will
use to communicate not only to the layman, but also to the engineer.
Within this edition many of the details of the operation exist. | hope the
success of this edition will provide the basis for future editions which
will include new details about the chip and system usage gained from
industry experience, as well as information about new versions of the
processors.

The development of these processors is not the work of one man:
many have contributed directly and indirectly. |1 would like to thank a
few of the people who have helped me through the years: Rod Orgill, E.
Ray Hirt (vice-president of WDC), and Chuck Peddle who have given
me many good ideas over the years; Lorenz Hittel who has suggested
many features used on the 65C02 and 65816; Desmond Sheahan, Ph.D.
and Fran Krch who, while at GTE Microcircuits, were instrumental in
having the 65C02 and 65816 second sourced by GTE—a key to the early
success of these programs; Apple computer engineers who suggested
features for the 65816; Mike Westerfield who created the ORCA/M
macro assembler; David Eyes and Ron Lichty who not only have writ-
ten this book, which promises to be a classic, but also helped in the
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debug process by running some of the first software exploring various
modes of operation; Will Troxell who has developed a high-perfor-
mance board for the Apple // and a high-performance operating system
exploiting the potential of the 65816; my sister, Kathryn, Secretary of
WDC, and WDC's layout design manager who laid out the entire 65816;
and the entire staff at WDC.

A special thanks to my wife, Dolores (Treasurer of WDC), who has
given me much love, support, encouragement, laid out chips, taught
layout designers, and given me four, happy, healthy, beautiful children.

William D. Mensch, Jr.
Mesa, Arizona
June 1985



Introduction

For years, the 6502 stood alone as the original and sole member of the
65x series—or 6500 series, as the family was originally to be called. First
shipped in 1975, the 6502 was, at its height, the most popular eight-bit
microprocessor on the market, with tens of millions sold. It is found in
such personal computers as those made by Acorn, Apple, Atari, Com-
modore, and Ohio Scientific—to name some of the leading manufactur-
ers of past and present—as well as in video games and dedicated control
applications. Currently the 6502 is manufactured by its original devel-
oper, MOS Technology, and also by Rockwell International.

The 65C02, first introduced in 1983, was intended as a replacement
for the 6502. Using the CMOS fabrication process which became popu-
lar for microprocessor manufacturing in the early eighties, it strove for
(and for most practical purposes achieved) complete compatibility with
the 6502, and sought to differentiate itself in the market primarily by
virtue of its CMOS fabrication. Nonetheless, it included several signifi-
cant enhancements to the 6502 instruction set and fixed some of the
known problems in the 6502 design. These minor extensions, it turned
out, were intimations of the 65802 and 65816 to come.

The 65C02 was the design effort of William D. Mensch, Jr., who had
been, at MOS Technology, the lead designer on the original 6502 devel-
opment project. Mensch left MOS Technology to found his own com-
pany, The Western Design Center, where he designed the 65C02. In
addition to being available from the Western Design Center, the 65C02
is also manufactured by GTE Microcircuits, NCR, Rockwell Interna-
tional, and Hyundai. The first notable adoption of the 65C02 was by
Apple Computer for their portable Apple //c computer, in which the
low power consumption and low heat generation that results from the
CMOS process provides significant advantage over the 6502.

Almost immediately after completing the 65C02, Mensch and The
Western Design Center began work on the 65816 and 65802 processors,
sixteen-bit versions of the original 6502 design. In addition to the
strengths they inherit from the 6502 and the set of powerful new exten-
sions they implement, the 65802 and 65816 are unique among modern
microprocessors in that they faithfully execute the object code of their
eight-bit predecessors, the 6502 and 65C02.

Although they are two distinct products, the 65802 and 65816 are
really just two versions of the same design, which is fully realized in the
65816, with its sixteen-megabyte address space. The 65802, on the other
hand, provides compatibility with the 6502 not only on a software level
but, incredibly, on a hardware level, too: it can replace a 6502 or 65C02
in an existing system and emulate the processor it replaces faithfully,
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even as it provides a broad range of new features like sixteen-bit regis-
ters; but all that compatibility leaves it confined to the earlier proces-
sors' 64K address space.

The hardware compatibility of the 65802 makes the 65816 architec-
ture readily accessible to the thousands of users of existing personal
computers. It will undoubtedly provide many users with their first
exposure to the 65816.

How to Use this Book

The uniqueness of the 65802's and 65816's compatibility with the 6502
and 65C02 cried out for a unique approach to an assembly language
book about them: an introduction not just to one of these microproces-
sors, but to the entire family of them.

How you approach this book will depend most of all on who you are.
If you have little experience with assembly language, you should proba-
bly begin with Chapter One, Basic Programming Concepts, and read
sequentially. You will find that it introduces you to the concepts essen-
tial to understanding everything that follows. It should also provide a
useful and convenient review for more experienced readers.

If you understand assembly language, but have little or no experience
with 65x family processors, you should begin with Part Two, Architec-
ture. Each of the three chapters introduces the architecture of one of the
three generations of 65x processors. Because the 65802 executes the
same instruction set as the 65816 (as limited by the 65802's memory
space restrictions), these two share a single chapter. Each chapter builds
on the last, so you should read them in order: Since the 65816 is a
superset of all of the other processors, each chapter describes a larger
subset of the complete 65816 design. Furthermore, they illustrate the
register set and other basics on which the tutorial section which follows
is based.

If you know and have worked with the 6502 before, you may want to
skip or lightly skim the 6502 architecture chapter and go right on to the
65C02 chapter. If you know the 65C02, you can go right on to the
65816/65802 chapter.

Part Three, Tutorial, is a teaching section, with code examples sprin-
kled throughout. It is devoted to a step-by-step survey of all 256 dif-
ferent instructions, grouped into six categories (moving data, flow of
control, arithmetic, logic and bit manipulation, subroutines, and system
control and interrupts), and all 25 different addressing modes, divided
into two classes (simple and complex).

Those of you who either have no experience with assembly language
or have no experience with the 65x family will find it especially helpful.
Even if you're familiar with the 65x family, however, you may want to
selectively read from this section.
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Having built up to a concept of the 65816 by examining its predeces-
sor designs, the tutorial section views the entire series from this van-
tage—that of the full 65816 architecture. Of course, the 65816 is a
superset of all the other members of the 65x family, so a complete dis-
cussion of the 65816 is by definition a discussion of all the other proces-
sors as well.

Almost all of the examples in this section and the next are intended to
be executed on a system with either a 65802 or 65816 processor, and
more likely than not include 65816 instructions, although there are some
examples which are intentionally restricted to either the 6502 or 65C02
instruction set for purposes of comparison.

As the 65816 is explored, however, care is taken to distinguish fea-
tures, such as instructions or addressing modes, by the processors that
they are common to. In this way, this book provides the only reference
needed for the programmer faced with developing software for more
than one of the different processors in the series.

The highlighting and contrasting of the differences between the proc-
essors in the series should also be helpful for the programmer already
familiar with one processor who wants to learn another—both the
65816 programmer who needs to restrict his knowledge when program-
ming for the 6502, as well as the 6502 programmer who wishes to learn
the 65816.

If your interest is in writing applications for the 65x processors, you
will find Part Four, Applications, of particular interest and use. From
the selected code examples in Chapter 14 to the debugging tool in Chap-
ter 15 to the debugging checklist in Chapter 16, this section should pro-
vide helpful, down-to-earth examples and how-to.

But even if your interest in the 65x family is strictly academic, you
should study the examples in Chapter 14: The code for the sieve of
Eratosthenes, for example, provides you the means of comparing the
65816765802 with other processors, in design, size, and speed; multiply
and divide routines for all three generations of 65x processors demon-
strate what can be involved in conversion between them; there's a com-
parison between machine code created by a hypothetical compiler and
assembly code written by a hypothetical programmer; and there are
routines which deal with the likelihood that many readers will write
65802 programs to be run under 6502-based and 65C02-based operating
systems.

Finally, Part Five, Reference, is designed so you can turn to it over
and over for information and detail on how the various instructions and
addressing modes work, their syntax, and their opcodes. You'll find
fully illustrated addressing modes arranged alphabetically in Chapter
17; the instructions arranged alphabetically, with descriptions and
tables of opcodes and syntax, in Chapter 18; and the instructions listed
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four ways—alphabetically, functionally, numerically, and mapped in a
matrix—in Chapter 19.

If you're a whiz at assembly language or already know one of the 65x
processors intimately, this section may be all you need to learn and use
the entire 65x family (although we recommend looking over the archi-
tecture and applications sections for ideas and review; you may also
want to use the Debugl6 program in Chapter 15 as an aid for develop-
ing code).

If you need specialized information—hardware descriptions, data
sheets, compatible 1/0 parts, cycle descriptions, instruction group
breakdowns, deviant family members, and an ASCII chart (with high-
bit both set and reset)—you'll find it in the appendix.
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Basic Assembly
Language
Programming
Concepts

This chapter reviews some of the key concepts that must be mastered
prior to learning to program a computer in assembly language. These
concepts include the use of the binary and hexadecimal number systems;
boolean logic; how memory is addressed as bytes of data; how charac-
ters are represented as ASCII codes; binary-coded decimal (BCD) num-
ber systems, and more. The meaning of these terms is explained in this
chapter. Also discussed is the use of an assembler, which is a program
used to write machine-language programs, and programming techniques
like selection, loops, and subroutines.

Since the primary purpose of this book is to introduce you to pro-
gramming the 65816 and the other members of the 65x family, this sin-
gle chapter can only be a survey of this information, rather than a
complete guide.
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Binary Numbers

Grouping Bits into Bytes

Programming the 65816

In its normal, everyday work, most of the world uses the decimal, or
base ten, number system, and everyone takes for granted that this sys-
tem is the "natural" (or even the only) way to express the concept of
numbers. Each place in a decimal number stands for a power of ten: ten
to the 0 power is 1, ten to the 1st power is ten, ten to the 2nd power is
100, and so on. Thus, starting from a whole number's right-most digit
and working your way left, the first digit is multiplied by the zero
power of ten, the second by the first power of ten, and so on. The
right-most digits are called the low-order or least significant digits in a
positional notation system such as this, because they contribute least to
the total magnitude of the number; conversely, the leftmost digits are
called the high-order or most significant digits, because they add the
most weight to the value of the number. Such a system is called a posi-
tional notation system because the position of a digit within a string of
numbers determines its value.

Presumably, it was convenient and natural for early humans to count
in multiples of ten because they had ten fingers to count with. But it is
rather inconvenient for digital computers to count in decimal; they have
the equivalent of only one finger, since the representation of numbers in
a computer is simply the reflection of electrical charges, which are either
on or off in a given circuit. The all or nothing nature of digital circuitry
lends itself to the use of the binary, or base two, system of numbers,
with one represented by "on" and zero represented by "off." A one or a
zero in binary arithmetic is called a binary digit, or a bit for short.

Like base ten digits, base two digits can be strung together to repre-
sent numbers larger than a single digit can represent, using the same
technique of positional notation described for base ten numbers above.
In this case, each binary digit in such a base two number represents a
power of two, with a whole number's right-most bit representing two to
the zero power (ones), the next bit representing two to the first power
(twos), the next representing two to the second power (fours), and so on
(Figure 1.1).

As explained, if the value of a binary digit, or bit, is a one, it is stored
in a computer's memory by switching to an "on" or charged state, in
which case the bit is described as being set; if the value of a given bit is a
zero, it is marked in memory by switching to an "off” state, and the bit
is said to be reset.

While memory may be filled with thousands or even millions of bits,
a microprocessor must be able to deal with them in a workable size.
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Figure 1.1. Binary Representation.

The smallest memory location that can be individually referenced, or
addressed, is usually, and always in the case of the 65x processors, a
group of eight bits. This basic eight-bit unit of memory is known as a
byte. Different types of processors can operate on different numbers of
bits at any given time, with most microprocessors handling one, two, or
four bytes of memory in a single operation. The 6502 and 65C02 proces-
sors can handle only eight bits at a time. The 65816 and 65802 can pro-
cess either eight or sixteen bits at a time.

Memory is organized as adjacent, non-overlapping bytes, each of
which has its own specific address. An address is the unique, sequential
identifying number used to reference the byte at a particular location.
Addresses start at zero and continue in ascending numeric order up to
the highest addressable location.

As stated, the 65802 and 65816 can optionally manipulate two adja-
cent bytes at the same time; a sixteen-bit data item stored in two contig-
uous bytes is called a double byte in this book. A more common but
misleading usage is to describe a sixteen-bit value as a word; the term
word is more properly used to describe the number of bits a processor
fetches in a single operation, which may be eight, sixteen, thirty-two, or
some other number of bits depending on the type of processor.

It turns out that bytes—multiples of eight bits—are conveniently sized
storage units for programming microprocessors. For example, a single
byte can readily store enough information to uniquely represent all of
the characters in the normal computer character set. An eight-bit binary
value can be easily converted to two hexadecimal (base sixteen) digits;
this fact provides a useful intermediate notation between the binary and
decimal number systems. A double byte can represent the entire range
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of memory addressable by the 6502, 65C02, and 65802, and one com-
plete bank—64K bytes—on the 65816. Once you've adjusted to it, you'll
find that there is a consistent logic behind the organization of a com-
puter's memory into eight-bit bytes.

Since the byte is one of the standard units of a computer system, a
good question to ask at this point would be just how large a decimal
number can you store in eight bits? The answer is 255. The largest
binary number you can store in a given number of bits is the number
represented by that many one-bits. In the case of the byte, this is
11111111, or 255 decimal (or 28—1). Larger numbers are formed by
storing longer bit-strings in consecutive bytes.

The size of a computer's memory is typically expressed in bytes,
which makes sense because the byte is the smallest addressable unit.
And since a byte is required to store the representation of a single alpha-
numeric character, you can get an easy visualization of about how
much storage 64K of memory is by thinking of that many characters.
The K stands for one thousand (from the Greek kilo, meaning thousand,
as in kilogram or kilometer); however, since powers of two are always
much more relevant when discussing computer memories, the symbol K
in this context actually stands for 1024 bytes, the nearest power-of-two
approximation of 1000, so 64K is 65,536 bytes, 128K is 131,072 bytes,
and so on.

Within a given byte (or double byte) it is often necessary to refer to
specific bits within the word. Bits are referred to by number. The low-
order, or right-most bit, is called bit zero; this corresponds to the one's
place. The next-higher-order bit is bit one, and so on. The high-order bit
of a byte is therefore bit seven; of a double byte, bit fifteen. The con-
vention of calling the low-order bit the "right-most" is consistent with
the convention used in decimal positional notation; normal decimal
numbers are read from left to right, from high-order to low-order. Fig-
ure 1.2 illustrates the bit numbers for bytes and double bytes, as well as
the relative weights of each bit position.

Double-Byte

Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

High-Order Low-Order

Figure 1.2. Bit Numbers.
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Hexadecimal Representation of Binary

While binary is a convenient number system for computers to use, it
is somewhat difficult to translate a series of ones and zeroes into a num-
ber that is meaningful. Any number that can be represented by eight
binary bits can also be represented by two hexadecimal (or hex for
short) digits. Hexadecimal numbers are base sixteen numbers. Since
base two uses the digits zero through one, and base ten the digits zero
through nine, clearly base sixteen must use digits standing for the num-
bers zero through fifteen. Table 1.1 is a chart of the sixteen possible
four-bit numbers, with their respective decimal and hexadecimal repre-
sentations.

Table 1.1. Decimal and Hex Numbers.

Binary Decimal Hexadecimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
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Because the positional notation convention reserves only a single
place for each multiplier of the power of that base, the numbers ten
through fifteen must be represented by a single base-sixteen digit.
Rather than create entirely new symbols for digits, the first six letters of
the alphabet were chosen to represent the numbers ten through fifteen.
Each of the sixteen hex digits corresponds to one of the possible combi-
nations of four binary digits.

Binary numbers larger than 1111 are converted to hexadecimal
by first separating the bits into groups of four, starting from the right-
most digit and moving left. Each group of four bits is converted
into its corresponding hex equivalent. It is generally easier to work
with a hexadecimal number like F93B than its binary counterpart
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1111100100111011. Hexadecimal numbers are often used by machine
language programming tools such as assemblers, monitors, and debug-
gers to represent memory addresses and their contents. The value of
hexadecimal numbers is the ease with which they can be converted to
and from their binary equivalents once the table has been memorized.

While a hexadecimal 3 and a decimal 3 stand for the same number, a
hexadecimal 23 represents two decimal sixteen's plus 3, or 35 decimal.
To distinguish a multiple-digit hex number from a decimal one, either
the word hexadecimal should precede or follow it, or a '$' should prefix
it, as in $23 for decimal 35, or $FF to represent 255. A number without
any indication of base is presumed to be decimal. An alternative nota-
tion for hexadecimal numbers is to use the letter H as a suffix to the
number (for example, FFH); however, the dollar-sign prefix is generally
used by assemblers for the 65x processors.

The ASCII Character Set

Characters—Iletters, numbers, and punctuation—are stored in the
computer as number values, and translated to and from readable form
on input or output by hardware such as keyboards, printers, and CRTs.
There are 26 English-language lower-case letters, another 26 upper-case
ones, and a score or so of special characters, plus the ten numeric digits,
any of which might be typed from a keyboard or displayed on a screen
or printer, as well as stored or manipulated internally. Further, addi-
tional codes may be needed to tell a terminal or printer to perform a
given function, such as cursor or print head positioning. These control
codes include carriage return, which returns the cursor or print head to
the beginning of a line; line feed, which moves the cursor or print head
down a line; bell, which rings a bell; and back space, which moves the
cursor or print head back one character.

The American Standard Code for Information Interchange, abbrevi-
ated ASCII and pronounced AS key, was designed to provide a com-
mon representation of characters for all computers. An ASCII code is
stored in the low-order seven bits of a byte; the most significant bit is
conventionally a zero, although a system can be designed either to
expect it to be set or to ignore it. Seven bits allow the ASCII set to pro-
vide 128 different character codes, one for each English letter and num-
ber, most punctuation marks, the most commonly used mathematical
symbols, and 32 control codes.

The use of different bit values, or numbers, to store character codes,
is entirely analogous to the "decoder ring" type of cipher: the letter 'A' is
one, 'B' is two, and so on; but in the case of the ASCII character set, the
numbers assigned to the letters of the alphabet are different, and there
are different codes for upper- and lower-case letters.
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There is an ASCII chart in Appendix F of this book. Notice that since
the decimal digits 0 through 9 are represented by $30 to $39, they can be
easily converted between their binary representations and their actual
values by the addition or subtraction of $30. The letters are arranged in
alphabetical order, the capital letters from A through Z represented by
$41 through $5A and the lower-case letters from a through z represented
by $61 through $7A. This allows letters to be placed in alphabetical
order by numerically sorting their ASCII values, and characters to be
converted between upper- and lower-case by the addition or subtraction
of $20. Finally, notice that the control characters from Ctrl-@ and Ctrl-
A through Ctrl-Z and on to Ctrl- run from zero to $1F and allow easy
conversion between the control characters and the equivalent printing
characters by the addition or subtraction of $40.

To print a character on an output device, you must send it the ASCII
value of the character: to print an 'A’, you must send $41 to the screen,
not $A, which is the ASCII code for a line feed; and to print an '8', you
must send $38, not $8, which is the ASCII code for a back space. The
space character, too, has an ASCII code: $20.

Since any memory value—take $41 for example—could represent
either an ASCII code (for 'A' in this case) or a number (decimal 65), the
interpretation of the data is defined by the code of the program itself
and how it treats each piece of data it uses within a given context.

Boolean Logic

Logical operations interpret the binary on/off states of a computer's
memory as the values true and false rather than the numbers one and
zero. Since the computer handles data one or two bytes at a time, each
logical operation actually manipulates a set of bits, each with its own
position.

Logical operations manipulate binary "flags". There are three logical
operations that are supported by 65x microprocessor instructions, each
combining two operands to yield a logical (true or false) result: and, or,
and exclusive or.

Logical And

The AND operator yields true only if both of the operands are them-
selves true; otherwise, it yields false. Remember, true is equivalent to
one, and false equivalent to zero. Within the 65x processors, two strings
of eight, or in the case of the 65816, eight or sixteen, individual logical
values may be ANDed, generating a third string of bits; each bit in the
third set is the result of ANDing the respective bit in each of the first
two operands. As a result, the operation is called bitwise.
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When considering bitwise logical operations, it is normal to use
binary representation. When considered as a numeric operation on two
binary numbers, the result given in Figure 1.3 makes little sense. By
examining each bit of the result, however, you will see that each has
been determined by ANDing the two corresponding operand bits.

11011010 $DA

AND 01000110 $45

equals 01000010 $42
Figure 1.3. ANDing Bits.

A truth table can be drawn for two-operand logical operations. You
find the result of ANDing two bits by finding the setting of one bit on
the left and following across until you're under the setting of the other
bit. Table 1.2 shows the truth table for AND.

Table 1.2. Truth Table for AND.

Second Operand

0 1

First Operand
0 0 0
1 0 1

Logical Or

The OR operator yields a one or true value if either (or both) of the
operands is true. Taking the same values as before, examine the result of
the logical OR operation in Figure 1.4. The truth table for the OR func-

tion is shown in Table 1.3.

11011010  $DA
OR 01000110  $45

equals 11011110 OE

Figure 1.4. ORing Bits.

Logical Exclusive Or

The exclusive OR operator is similar to the previously-described OR
operation; in this case, the result is true only if one or the other of the
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Table 1.3. Truth Table for OR.

Second Operand

0 1
First Operand
0 0
1 1

operands is true, but not if both are true or (as with OR) neither is true.
That is, the result is true only if the operands are different, as Figure 1.5
illustrates using the same values as before. The truth table for exclusive
OR is shown in Table 1.4.

11011010 $DA
EOR 01000110  $45

equals 10011100  soC
Figure 1.5. EXCLUSIVE ORing Bits.

Table 1.4. Truth Table for EXCLUSIVE OR.

Second Operand

0 1

First Operand
0 1
1 0

Logical Complement

As Figure 1.6 shows, the logical complement of a value is its inverse:
the complement of true is false, and the complement of false is true.
11011010 $DA
COMPLEMENTED ~ ----mooeeeee-
equals 00100101 $25
Figure 1.6. COMPLEMENTIing Bits.
While the 65x processors have no complement or not function built

in, exclusive ORing a value with a string of ones ($FF or $FFFF) pro-
duces the complement, as Figure 1.7 illustrates.
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11011010 $DA
EOR 11111111 $FF

equals Complement 00100101  $25

Figure 1.7. COMPLEMENTIing Bits Using Exclusive OR.

Since complement has only one operand, its truth table, drawn in
Table 1.5, is simpler than the other truth tables.

Table 1.5. Truth Table
for COMPLEMENT.

operand result
0 1
1 0

Many programs need nothing more than the whole numbers already
discussed.But others need to store and perform arithmetic on both posi-
tive and negative numbers.

Of the possible systems for representing signed numbers, most
microprocessors, among them those in the 65x family, use two's com-
plement. Using two's-complement form, positive numbers are distin-
guished from negative ones by the most significant bit of the number: a
zero means the number is positive; a one means it is negative.

To negate a number in the two's-complement system, you first com-
plement each of its bits, then add one. For example, to negate one (to
turn plus-one into minus-one):

00000001 To negate +1,
11111110 complement each bit
+1 and add one.

11111111 The result is-1.

So $FF is the two's-complement representation of minus-one. When
converting to two's complement by hand, an easier technique than the
two-step process is to copy zeroes from the right (least significant bit)
until the first one is reached; copy that one, and then change every zero
to a one and every one to a zero as you continue to the left. Try it on
the example above.
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Now, instead of using eight bits to represent the integers from zero to
255, two's-complement arithmetic uses eight bits to represent signed
numbers from -128 ($80) to +127 ($7F), as Table 1.6 shows. There is
always one more negative than positive number in a two's-complement
system.

Table 1.6. The Eight-Bit Range of Two's-Complement Numbers.

Decimal Hexadecimal Binary
+127 $7F 01111111
+126 $7E 0111 1110
+125 $7D 01111101

+1 1 0000 0001

0 0000 0000

-1 $FF 11111111
-2 $FE 11111110
-3 $FD 1111 1101
-126 $82 1000 0010
-127 $81 1000 0001
-128 $80 1000 0000

Another practical way to think of negative two's-complement num-
bers is to think of negative numbers as the (unsigned) value that must be
added to the corresponding positive number to produce zero as the
result. For example, in an eight-bit number system, the value that must
be added to one to produce zero (disregarding the carry) is $FF; 1 + $FF
= $100, or 0 if only the low-order eight bits is considered. $FF must
therefore be the two's-complement value for minus one.

The introduction of two's-complement notation creates yet another
possibility in interpreting the data stored at an arbitrary memory loca-
tion. Since $FF could represent either the unsigned number 255 or the
negative integer minus-one, it's important to remember that it is only
the way in which a program interprets the data stored in memory that
gives it its proper value—signed or unsigned.

Storing Numbers in Decimal Form

Computers use numbers in binary form most efficiently. But when a
program calls for decimal numbers to be entered or output frequently,
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storing numbers in their decimal form—rather than converting them to
binary and back—may be preferable. Further, converting floating-point
decimal numbers to a binary floating-point form and back can intro-
duce errors: for example, 8 minus 2.1 could result in 5.90000001 rather
than the correct answer, 5.9.

As a result, some programs, such as accounting applications, store
numbers in decimal form, each decimal digit represented by four bits,
yielding two decimal digits per byte, as Table 1.7 shows. This form is
called binary coded decimal, or BCD. BCD lies somewhere between the
machine's native binary and abstractions such as the ASCII character
codes for numbers.

Since four bits can represent the decimal numbers from zero to fif-
teen, using the same number of bits to represent only the numbers from
zero through nine wastes six combinations of the binary digits. This less
than optimal use of storage is the price of decimal accuracy and
convenience.

Table 1.7. The First 16 BCD Numbers.

Binary Hexadecimal Decimal BCD
0000 0000 0 0 0000 0000
0000 0001 1 1 0000 0001
0000 0010 2 2 0000 0010
0000 0011 3 3 0000 0011
0000 0100 4 4 0000 0100
0000 0101 5 5 0000 0101
0000 0110 6 6 0000 0110
0000 0111 7 7 0000 0111
0000 1000 8 8 0000 1000
0000 1001 9 9 0000 1001
0000 1010 A 10 0001 0000
0000 1011 B 11 0001 0001
0000 1100 C 12 0001 0010
0000 1101 D 13 0001 0011
0000 1110 E 14 0001 0100
0000 1111 F 15 0001 0101

The 65x processors have a special decimal mode which can be set by
the programmer. When decimal mode is set, numbers are added and
subtracted with the assumption that they are BCD numbers: in BCD
mode, for example, 1001 +1 (9 + 1) yields the BCD result of 0001 0000
rather than the binary result of 1010 (1010 has no meaning in the con-
text of BCD number representation).
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Obviously, in different contexts 0001 0000 could represent either 10
decimal or $10 hexadecimal (16 decimal); in this case, the interpretation
is dependent on whether the processor is in decimal mode or not.

Computer Arithmetic

Binary arithmetic is just like decimal arithmetic, except that the high-
est digit isn't nine, it's one. Thus 1 + 0 = 1, while1 + 1 = 0 with a
carry of 1, or binary 10. Binary 10 is the equivalent of a decimal 2. And
1 — 0 = 1, while during the subtraction of binary 1 from binary 10, the
1 can't be subtracted from the 0, so a borrow is done, getting the 1 from
the next position (leaving it 0); thus, 10 —1 = 1.

Addition and subtraction are generally performed in one or more
main processor registers, called accumulators. On the 65x processors,
they can store either one or, optionally on the 65802 and 65816, two
bytes. When two numbers are added that cause a carry from the highest
bit in the accumulator, the result is larger than the accumulator can
hold. To account for this, there is a special one-bit location, called a
carry bit, which holds the carry out of the high bit from an addition.
Very large numbers can be added by adding the low-order eight or six-
teen bits (whichever the accumulator holds) of the numbers, and then
adding the next set of bits plus the carry from the previous addition,
and so on. Figure 1.8 illustrates this concept of multiple-precision
arithmetic.

Microprocessor Programming

You have seen how various kinds of data are represented and, in gen-
eral, how this data can be manipulated. To make those operations take
place, a programmer must instruct the computer on the steps it must
take to get the data, the operations to perform on it, and finally the
steps to deliver the results in the appropriate manner. Just as a record
player is useless without a record to play, so a computer is useless with-
out a program to execute.

Machine Language

The microprocessor itself speaks only one language, its machine lan-
guage, which inevitably is just another form of binary data. Each chip
design has its own set of machine language instructions, called its
instruction set, which defines the functions that it can understand and
execute. Whether you program in machine language, in its correspond-
ing assembly language, or in a higher level language like BASIC or Pas-
cal, the instructions that the microprocessor ultimately executes are
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0 1 1 1 0 0 0 1 0 0 0 0 0 1
$38 $83

0 1 0 0 1 0 1 1 0 1 0 0 1 0

Plus $A5 Plus $A5
PLUS CARRY

1 0 1 1 1 1 0 0 0 1 0 1 0 0
Equal $DE Equals $28

Carry =1

$3883 Plus $A5A5 Equals $DE28
Figure 1.8. Multiple-Precision Arithmetic.

always machine language instructions. Programs in assembly and
higher-level languages are translated (by assemblers, compilers, and
interpreters) to machine language before the processor can execute
them.

Each machine language instruction in the 65x series of microproces-
sors is one to four bytes long. The first byte of each instruction is called
the operation code (opcode for short); it specifies the operation the com-
puter is to do. Any additional bytes in the instruction make up the oper-
and, typically all or part of an address to be accessed, or a value to be
processed.

Assembly Language

Writing long strings of hexadecimal or binary instructions to program
a computer is obviously not something you would want to do if you
could at all avoid it. The 65816's 256 different opcodes, for example,
would be difficult to remember in hexadecimal form—and even harder
in binary form. Assembly language, and programs which translate
assembly language to machine code (called assemblers) were devised to
simplify the task of machine programming.

Assembly language substitutes a short word—known as a mnemonic
(which means memory aid)—for each binary machine code instruction.
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So while the machine code instruction 1010 1010, which instructs the
65x processor to transfer the contents of the A accumulator to the X
index register, may be hard to remember, its assembler mnemonic TAX
(for "Transfer A to X") is much easier.

The entire set of 65x opcodes are covered alphabetically by mnemonic
label in Chapter Eighteen, while Chapters Five through Thirteen discuss
them in functional groups, introducing each of them, and providing
examples of their use.

To write an assembly language program, you first use a text editing
program to create a file containing the series of instruction mnemonics
and operands that comprise it; this is called the source program, source
code or just source. You then use this as the input to the assembler pro-
gram, which translates the assembler statements into machine code,
storing the generated code in an output file. The machine code is either
in the form of executable object code, which is ready to be executed by
the computer, or (using some development systems) a relocatable object
module, which can be linked together with other assembled object mod-
ules before execution.

If this were all that assembly language provided, it would be enough
to make machine programming practical. But just as the assembler lets
you substitute instruction mnemonics for binary operation codes, it lets
you use names for the memory locations specified in operands so you
don't have to remember or compute their addresses. By naming rou-
tines, instructions which transfer control to them can be coded without
having to know their addresses. By naming constant data, the value of
each constant is stated only in one place, the place where it is named. If
a program modification requires you to change the values of the con-
stants, changing the definition of the constant in that one place changes
the value wherever the name has been used in the program. These sym-
bolic names given to routines and data are known as labels.

As your source program changes during development, the assembler
will resolve each label reference anew each time an assembly is per-
formed, allowing code insertions and deletions to be made. If you hard-
coded the addresses yourself, you would have to recalculate them by
hand each time you inserted or deleted a line of code.

The use of an assembler also lets you comment your program within
the source file—that is, to explain in English what it is you intend the
adjacent assembly statements to do and accomplish.

More sophisticated macro assemblers take symbol manipulation even
further, allowing special labels, called macro instructions (or just mac-
ros for short), to be assigned to a whole series of instructions. Macro is
a Greek word meaning long, so a macro instruction is a "long" instruc-
tion. Macros usually represent a series of instructions which will appear
in the code frequently with slight variations. When you need the series,
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you can type in just the macro name, as though it were an instruction
mnemonic; the assembler automatically "expands" the macro instruc-
tion to the previously-defined string of instructions. Slight variations in
the expansion are provided for by a mechanism that allows macro
instructions to have operands.

In addition to understanding the processor you're working with, you
must also have a good knowledge of the particular assembler you are
using to program in assembly language. While the specific opcodes used
are carved in the silicon die of the processor itself, the mnemonics for
those opcodes are simply conventions and may vary slightly from one
assembler to another (although the mnemonics proposed by a proces-
sor's manufacturer will tend to be seen as the standard). Varying even
more widely are assembler directives—assembler options which can be
specified in the midst of code. These options tell the assembler such
things as where to locate the program in memory, which portions of the
source listing to print, or what labels to assign to constants.

Nevertheless, most microcomputer assemblers have a great deal in
common. They generally provide four columns, or fields, for different
types of information about an operation: a label which can be used to
symbolically identify the location of the code; the opcode; the operand;
and space for comments. Figure 1.9 illustrates some typical assembler
source code, with the different fields highlighted.

While an opcode or directive appears in every assembler statement,
the operand field may or may not be required by any particular opcode,
since there are several one-byte instructions which consist solely of an
opcode. The label and comment field are optional, added to make the
program easier to read, write, debug, and modify later.

During assembly, the assembler checks the fields to be sure the infor-
mation there is complete, of the proper type, and not out of order, and
issues error messages to warn you of problems. It also checks to be sure
you have not tried to define the same label twice, and that you have not
used a label you did not define.

Programming Concepts

There are several concepts which, in general terms, characterize the
different ways a program can execute.

The most obvious concept is that of straight-line execution: a pro-
gram starts in low memory and steps a few bytes higher into memory
with execution of each new instruction until it reaches the end, never
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Label Opcode Operand Comment

Field Field Field Field
REP #3$10
LONG 1 ON
SEP #3$20
LONGA OFF
LDY #0
LOOP LDA (1,9),Y get character from first string
BEQ PASS if zero, end of string: match
CMP (3.9).Y compare to corresponding char in 2nd string
BNE FAIL bra if not equal; probabty failure
INY else do next pair
BRA LOOP

i matches shortest string

PASS PLP they match up to shortest string;
CLC restore status, but clear carry
BRA EXIT

FAIL LOA <3,8).,Y was last failure due to end of string2?
BEQ PASS yes; let it pass
PLP restore status, but set carry (no match)
SEC

Figure 1.9. Typical Assembler Source Code.

doubling back or jumping forward. Straight-line execution is clean and
clear: it begins at the beginning, executes every instruction in the pro-
gram once, and ends at the end. This type of execution is the default
execution mode. The 65x processors have a register called the program
counter, which is automatically updated at the end of each instruction
so that it contains the address of the next instruction to be executed.

Selection Between Paths

Real-life problems—the kind you want to write computer programs
to solve—are seldom straight and simple. A computer would be very
limited with only straight-line execution capability, that is, if it could
not make choices between different courses of action based on the con-
ditions that exist while it is executing. Selection between paths provides
computers with their decision-making capabilities. The 65x micropro-
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cessors carry out selection between paths by means of conditional
branch instructions.

An example of selection between paths would be a tic-tac-toe pro-
gram. Playing second, the program must choose where to place its first
token from eight different squares. If the opponent has taken the center
square, the program must respond differently than if a side square were
taken.

Execution still begins at the beginning and ends at the end, in a single
pass through the code, but whole groups of instructions on paths not
taken are not executed.

Looping

Let's say you write a program to convert a Fahrenheit temperature to
Celsius. If you had only one temperature to convert, you wouldn't
spend the time writing a program. What you want the program to do is
prompt for a Fahrenheit temperature, convert it to Celsius, print out the
result, then loop back and prompt for another Fahrenheit temperature,
and so on—until you run out of temperatures to convert. This program
uses a program concept called looping or iteration, which is simply the
idea that the same code can be reexecuted repeatedly—with different
values for key variables—until a given exit condition. In this case the
exit condition might be the entry of a null or empty input string.

Often, it's not the whole program that loops, but just a portion of it.
While a poker program could deal out 20 cards, one at a time, to four
players, it would use much less program memory to deal out one card
to each of the players, then loop back to do the same thing over again
four more times, before going on to take bets and play the poker hands
dealt.

Looping saves writing repetitive code over and over again, which is
both tedious and uses up memory. The 65x microprocessors execute
loops by means of branch and jump instructions.

Looping almost always uses the principle of selection between paths
to handle exiting the loop. In the poker program, after each set of four
cards has been dealt to the four players, the program must decide if that
was the fifth set of four cards or if there are more to deal. Four times it
will select to loop back and deal another set; the fifth time, it will select
another path—to break out of the loop to begin prompting for bets.

Subroutines

Even with loops, programmers could find themselves writing the
same section of code over and over when it appears in a program not in
quick succession but rather recurring at irregular intervals throughout
the program. The solution is to make the section of code a subroutine,
which the program can call as many times and from as many locations



1 Basic Assembly Language Programming Concepts 21

as it needs to by means of a jump-to-subroutine instruction. The pro-
gram, on encountering the subroutine call, makes note of its current
location for purposes of returning to it, then jumps to the beginning of
the subroutine code. At the end of the subroutine code, a return-from-
subroutine instruction tells the program to return from the subroutine to
the instruction after the subroutine call. There are several different types
of calls and returns available on the different 65x processors; all of them
have a basic call and return instruction in common.

Programmers often build up large libraries of general subroutines that
multiply, divide, output messages, send bytes to and receive bytes from
a communications line, output binary numbers in ASCII, translate num-
bers from keyboard ASCII into binary, and so on. Then when one of
these subroutines is needed, the programmer can get a copy from the
library or include the entire library as part of his program.
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Architecture of the
6502

This chapter, and the two which follow, provide overviews of the
architecture of the four 65x family processors: the 6502, the 65C02, and
the 65802/65816. Each chapter discusses the register set and the function
of the individual registers, the memory model, the addressing modes,
and the kinds of operations available for each respective processor.
Because each successive processor is a superset of the previous one, each
of the next two chapters will build on the material already covered.
Much of what is discussed in this chapter will not be repeated in the next
two chapters because it is true of all 65x processors. As the original 65x
machine, the 6502 architecture is particularly fundamental, since it
describes a great number of common architectural features.
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Microprocessor Architecture

The 6502 Registers

Programming the 65816

The number, kinds, and sizes of registers, and the types of operations
available using them, defines the architecture of a processor. This archi-
tecture determines the way in which programming problems will be
solved. An approach which is simple and straightforward on one proc-
essor may become clumsy and inefficient on another if the architectures
are radically different.

A register is a special memory location within the processor itself,
where intermediate results, addresses, and other information which
must be accessed quickly are stored. Since the registers are within the
processor itself, they can be accessed and manipulated much faster than
external memory. Some instructions perform operations on only a sin-
gle bit within a register; others on two registers at once; and others
move data between a register within the processor and external mem-
ory. (Although the registers are indeed a special kind of memory, the
term memory will be used only to refer to the addressable memory
external to the microprocessor registers.)

The 6502 is not a register-oriented machine. As you will see, it has a
comparatively small set of registers, each dedicated to a special purpose.
The 6502 instead relies on its large number of addressing modes, partic-
ularly its direct-page indirect addressing modes, to give it power.

An addressing mode is a method, which may incorporate several
intermediate calculations involving index registers, offsets, and base
addresses, for generating an instruction's effective address—the memory
address at which data is read or written. Many 6502 instructions, such
as those for addition, have many alternate forms, each specifying a dif-
ferent addressing mode. The selection of the addressing mode by you,
the programmer, determines the way in which the effective address will
be calculated.

There are three aspects to learning how to program the 6502 or any
processor. Learning the different addressing modes available and how to
use them is a big part. Learning the available instructions and opera-
tions, such as addition, subtraction, branching and comparing, is
another. But to make sense of either, you must begin by understanding
what each of the different registers is and does, and how the memory is
organized.

If you compare the different processors in the 65x family—the eight-
bit 6502 and 65C02 and the sixteen-bit 65816 and 65802—you will find
they all have a basic set of registers and a basic set of addressing modes
in common: the 6502's.

The 6502 registers are:
= The accumulator, or A register, is the primary user register and
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generally holds one of the operands, as well as the result, of any
of the basic data-manipulation instructions.

e The X and Y index registers are used chiefly in forming effective

addresses for memory accesses and as loop counters.

< The processor status, or P, register contains bit-fields to indicate

various conditions, modes, and results within the processor.

= The stack pointer, or S register, is a pointer to the next available

location on the system stack, a special area of memory for
temporary data storage. In addition to being available to the user,
the stack pointer and stack are also used automatically every
time a subroutine is called or an interrupt occurs to store return
information.

<« Finally, the program counter, or PC, is a pointer to the memory

location of the instruction to be executed next.

These six basic 6502 registers are depicted in the programmer model
diagrammed in Figure 2.1. Notice that, with the exception of the pro-
gram counter (PC), all of them are eight-bit registers. Because they can
contain only eight bits, or one byte, of data at a time, they can only per-
form operations, such as addition, on one byte at a time. Hence the
6502 is characterized as an "eight-bit" processor.

Although the user registers of the 6502 are only eight bits wide, all of
the external addresses generated are sixteen bits. This gives the 6502 an
address space of 64K (216 = 65,536). In order to access data located
anywhere in that 64K space with an eight-bit processor, one instruction
operand in calculating effective addresses is almost always found in
memory—either in the code itself following an instruction, or at a speci-
fied memory location—rather than in a register, because operands in
memory have no such limits. All that is needed to make a memory oper-
and sixteen bits are two adjacent memory locations to put them in.

To allow programs longer than 256 bytes, the program counter,
which always points to the location of the next instruction to be exe-
cuted, is necessarily sixteen bits, or two bytes, wide. You may therefore
locate a 6502 program anywhere within its 64K address space.

Now each of the 6502 registers will be described in more detail.

The Accumulator

The accumulator (A) is the primary register in a 65x processor.
Almost all arithmetic and most logical operations are performed on data
in the accumulator, with the result of the operation being stored in the
accumulator. For example, to add two numbers which are stored in
memory, you must first load one of them into the accumulator. Then
you add the other to it and the result is automatically stored in the accu-
mulator, replacing the value previously loaded there.
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6502 Programming Model

Accumulator (A)
X Index Register (X)

Y Index Register (Y)

0 0 0 0 0 0 1 Stack Pointer (S)

Program Counter (PC)

Processor Status Register (P)

n Vv b d i z ¢

— Carry 1= Carry
— Zero 1= Result Zero
mRQ Disable 1= Disabled
mDecimal Mode 1= Decimal Mode

+Break Instruction 1= Break caused
interrupt

mOverflow 1= Overflow
-Negative 1= Negative

Figure 2.1. 6502 Programming Model.

Because the accumulator is the primary user register, there are more
addressing modes for accumulator operations than for any other reg-
ister.

The 6502 accumulator is an eight-bit register. Only one byte is ever
fetched from memory when the accumulator is loaded, or for operations
which use two values—one from memory and the other in the accumu-
lator (as in the addition example above).

The X and Y Index Registers

The index registers are generally used either as components in gener-
ating effective addresses when any of the indexed addressing modes are
used, or as loop counters. They can be easily incremented or decre-
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mented; that is, the value in the index registers can, by means of a single
instruction, be increased or decreased by the number one. They are,
therefore, useful in accessing successive table locations, moving mem-
ory, and counting loop iterations. Unlike the accumulator, no logical or
arithmetic operations (other than incrementing, decrementing, and com-
paring) may be performed upon them.

The use of indexing allows easy access to a continuous series of mem-
ory locations, such as a multiple-byte, binary floating-point number, or
an array of many single- or multiple-byte objects. Indexing is performed
by adding one of several forms of base addresses, specified in the oper-
and field of an instruction, to the contents of an index register. While a
constant operand is fixed when a program is created, the index registers
are variable and their contents can be changed readily during the execu-
tion of a program. As a result, indexing provides an extremely flexible
mechanism for accessing data in memory.

Although the X and Y index registers are basically similar, their capa-
bilities are not identical. Certain instructions and addressing modes
work only with one or the other of these registers. The indirect indexed
addressing modes require the Y register. And while the X register is pri-
marily used with direct page indexed and absolute indexed addressing, it
has its own unique (though infrequently used) indexed indirect address-
ing mode. These differences will become clear as you learn more about
the different addressing modes.

The Status Register

The status register (also called the P register, for processor status)
contains a number of flags which describe, in part, the status of the
microprocessor and its operations. A flag is, in this case, a single bit
within the status register. Its value, set (a one) or reset (a zero), indicates
one of two conditions. While the 6502's eight-bit status register could
provide eight one-bit flags, only seven of them are used.

Figure 2.1 showed the 6502 P status register; Tables 2.1 and 2.2
describe the functions of its flags.

Table 2.1 describes the five status register condition code flags—nega-
tive, zero, overflow, carry, and break. Their values indicate various
conditions that result from the execution of many 6502 instructions.
Some instructions affect none of the condition code flags, others affect
only some, and still others affect all. The effect that an instruction has
on the condition flags is an important part of describing what the
instruction does. These condition code flags are used to determine the
success or failure of the branch on condition instructions.

Notice particularly the zero flag (z). It can sometimes confuse assem-
bly programmers because a zero flag setting of one indicates a zero
result while a zero flag setting of zero indicates a non-zero result.
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Name

negative

overflow

carry

break
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Table 2.1. Status Register Condition Code Flags.

Explicitly Set or cleared to
Abbrev Bit set or clear Reflect an operation result

Reflects most significant bit of result

(the sign of a two's-complement binary number):
0 = high bit clear (positive result)
1 = high bit set (negative result)

Indicates zero or non-zero result:
0 = non-zero result

1 = zero result

Clear to reverse Indicates invalid carry into high bit of arithmetic
"set-overflow" result (two's-complement overflow):
hardware input 0 = two's-complement result ok

1 = error if two's-complement arithmetic

Clear before starting Arithmetic overflow:

addition addition: carry out of highbit:
Set before starting 0 = no carry
subtraction 1= carry

subtraction: borrow required to subtract:
0 = borrow required
1= no borrow required
Logic:
receives bit shifted or rotated out;

source of bit rotated in

Status register itself: no function; value unknown.
Pushed status register after interrupt:
indicates source of interrupt:
0 = hardware interrupt
1 = software interrupt (BRK instruction)

In connection with the carry flag, it is important to know that the
6502 add operation has been designed to always add in the carry, and
the subtract operation to always use the carry as a borrow flag, making
it possible to do multiple-precision arithmetic where you add suc-
cessively higher sets of bytes plus the previous add's carry or subtract
successively higher sets of bytes taking into the operation the previous
subtract's borrow. The drawback to this scheme is that the carry must
be zeroed before starting an add and set before starting a subtraction.
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In the case of subtraction, the 6502's carry flag is an inverted borrow,
unlike that of most other microprocessors. If a borrow occurred during
the last operation, it is cleared; if a borrow did not result, it is set.

Finally, notice that in the status register itself, the break bit has no
function. Only when an interrupt pushes the status register onto the
stack is the break bit either cleared or set to indicate the type of inter-
rupt responsible.

Table 2.2 describes the other two P register flags, the mode select
flags: by explicitly setting or clearing them, you can change the opera-
tional modes of the processor.

Table 2.2. Status Register Mode Select Flags.

Reason to explicitly

Name Abbrev Bit set or clear

decimal d 3  Determines mode for add & subtract (not increment/decrement, though):
Set to force decimal operation (BCD)
Clear to return to binary operation

interrupt i 2 Enables or disables processor's IRQ interrupt line:
Set to disable interrupts by masking the IRQ line
Clear to enable IRQ interrupts

The decimal mode flag toggles add and subtract operations (but not
increment or decrement instructions) between binary and decimal
(BCD). Most processors require a separate decimal-adjust operation
after numbers represented in decimal format have been added or sub-
tracted. The 65x processors do on-the-fly decimal adjustment when the
decimal flag is set.

The IRQ disable or interrupt disable flag, toggles between enabling
and disabling interrupts. Typically, the interrupt mask is set during
time-critical loops, during certain 1/0 operations, and while servicing
another interrupt.

The Stack Pointer

The stack pointer (S) implements directly in hardware a data struc-
ture known as a stack or push-down stack. The stack is a dedicated area
of memory which is accessed by the user via push and pull instructions.
Push stores the contents of a register onto the stack; pull retrieves a data
item from the stack, storing it into a register.

The 6502's stack is limited to 256 bytes by the eight-bit width of its
stack pointer. The chip confines it in memory between $100 and $1FF by
fixing the high-order byte of the stack address at $01. Software power-
up routines generally initialize the 6502 stack pointer to $FF, resulting in
an initial stack location of $1FF (see Figure 2.2).
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Initializing the Stack Pointer to $FF:
Resulting Initial Stack of $1FF

Stack Pointer=$FF

0 0O O 0O 0o o0 I 1 11 11 111

Stack

$01FF
(1st available)

$01FE
$01FD
$01FC

$01FB

Figure 2.2. Initializing the Stack Pointer to $FF.

The push and pull instructions are one-byte instructions: the instruc-
tion itself specifies the register affected, and the value in the stack
pointer register, added to $100, specifies the stack memory location to
be accessed.

When a push instruction is executed, data is moved from the register
specified by the instruction opcode to the stack address pointed to by
the stack pointer. As Figure 2.3 shows, the value in the stack pointer is
then decremented so that it points to the next lower memory location—
the location to which the next push instruction encountered will store its
data.

The pull instruction reverses the process and retrieves data from the
stack. When a pull instruction is executed, first the stack pointer is
incremented, then the register specified in the instruction opcode is
loaded with the data at the incremented address pointed to by SP.

In addition to being available as a temporary storage area, the stack is
also used by the system itself in processing interrupts, subroutine calls,
and returns. When a subroutine is called, the current value of the pro-
gram counter is pushed automatically onto the stack; the processor exe-
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After Pushing the Accumulator

Stack Pointer=$FE

jo 0o 0 0 00 0 1 11111110

Stack

$01FF A A A A A A A A *

$01FE
(next available)

$01FD
$01FC

$01FB

Accumulator

Figure 2.3. After Pushing the Accumulator.

cutes a return instruction by reloading the program counter with the
value on the top of the stack.

While data is pushed into subsequently lower memory locations on
the 65x's stack, the location of the last data pushed is nonetheless
referred to as the top of the stack.

The Program Counter

The program counter (PC) contains the address of the next byte in the
instruction stream to fetch. Execution of a program begins when the
program counter is set to the program's entry point (typically the
address at which it was loaded). The processor fetches an instruction
opcode from that location, and proceeds to execute it. Based on the
given opcode, the processor will need to fetch zero, one, or two bytes of
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operand from the successive locations following the instruction. When
the operand has been fetched, the instruction is executed. The program
counter is normally incremented to point to the next instruction in mem-
ory, except in the case of jump, branch, and call instructions, which
pass control to a new location within the program by storing the new
location to the program counter.

The 6502 program counter is sixteen bits wide, allowing for programs
of up to 64K bytes. If the program counter is incremented past $FFFF, it
wraps around to $0000.

Addressing Modes

The fourteen different addressing modes that may be used with the
6502 are shown in Table 2.3. The availability of this many different
addressing modes on the 6502 gives it much of its power: Each one
allows a given instruction to specify its effective address—the source of
the data it will reference—in a different manner.

Table 2.3. 6502 Addressing Modes.

Addressing Mode Syntax Example
Opcode Operand

Implied DEX
Accumulator ASL A
Immediate LDA #55
Absolute LDA $2000
Program Counter Relative BEQ LABEL12
Stack PHA
Zero Page LDA $81
Absolute Indexed with X LDA $2000, X
Absolute Indexed with Y LDA $2000,Y
Zero Page Indexed with X LDA $55,X
Zero Page Indexed with Y LDX $55,Y
Absolute Indirect JIMP ($1020)
Zero Page Indirect Indexed with Y (Postindexed) LDA ($55),Y
Zero Page Indexed Indirect with X (Preindexed) LDA ($55,X)

Not all addressing modes are available for all instructions; but each
instruction provides a separate opcode for each of the addressing modes
it supports.

For some of the 6502 addressing modes, the entire effective address is
provided in the operand field of the instruction; for many of them, how-
ever, formation of the effective address involves an address calculation,
that is, the addition of two or more values. The addressing mode indi-
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cates where these values are to come from and how they are to be added
together to form the effective address.

Implied addressing instructions, such as DEY and INX, need no oper-
ands. The register that is the source of the data is named in the in-
struction mnemonic and is specified to the processor by the opcode.
Accumulator addressing, in which data to be referenced is in the accu-
mulator, is specified to the assembler by the operand A. Immediate
addressing, used to access data which is constant throughout the execu-
tion of a program, causes the assembler to store the data right into the
instruction stream. Relative addressing provides the means for condi-
tional branch instructions to require only two bytes, one byte less than
jump instructions take. The one-byte operand following the branch
instruction is an offset from the current contents of the program
counter. Stack addressing encompasses all instructions, such as push or
pull instructions, which use the stack pointer register to access memory.
And absolute addressing allows data in memory to be accessed by
means of its address.

Like the 6800 processor, the 6502 treats the zero page of memory spe-
cially. A page of memory is an address range $100 bytes (256 decimal)
long: the high bytes of the addresses in a given page are all the same,
while the low bytes run from $00 through $FF. The zero page is the first
page of memory, from $0000 through $00FF (the high byte of each
address in the zero page is zero). Zero page addressing, a short form of
absolute addressing, allows zero page operands to be referenced by just
one byte, the low-order byte, resulting both in fewer code bytes and in
fewer clock cycles.

While most other processors provide for some form of indexing, the
6502 provides some of the broadest indexing possibilities. Indexed effec-
tive addresses are formed from the addition of a specified base address
and an index, as shown in Figure 2.4. Because the 6502's index registers
(X and Y) can hold only eight bits, they are seldom used to hold index
bases; rather, they are almost always used to hold the indexes them-
selves. The 6502's four simplest indexing modes add the contents of the
X or Y register to an absolute or zero page base.

Indirection (Figure 2.5) is less commonly found in microprocessor
repertoires, particularly among those microprocessors of the same
design generation as the 6502. It lets the operand specify an address at
which another address, the indirect address, can be found. It is at this
second address that data will be referenced. The 6502 not only provides
indirection for its jump instruction, allowing jumps to be vectored and
revectored, but it also combines indirection with indexing to give it real
power in accessing data. It's as though the storage cells for the indirect
addresses are additional 6502 registers, massively extending the 6502's
register set and possibilities. In one addressing mode, indexing is per-
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Indexing: Base plus Index

For example: Base=%$2000
Index Register X=$% 03

Effective Address=%$2003

Base=%$2000

00 [ oo0o000joo 000000

Figure 2.4. Indexing: Base Plus Index.

formed before indirection; in another, after. The first provides indexing
into an array of indirect addresses and the second provides indexing into
an array which is located by the indirect address.

The full set of 65x addressing modes are explained in detail in Chap-
ters 7 and 11 and are reviewed in the Reference Section.

Instructions

The 6502 has 56 operation mnemonics, as listed in Table 2.4, which
combine with its many addressing modes to make 151 instructions
available to 6502 programmers.
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Indirection: Operand Locates Indirect Address
For example: Zero Page Operand =$20

Data at $20.21 (Indirect Address)= $3458
Effective Address = $3458

Zero Page
Operand =$20

Memory

$001F
$0020

$0021

$0022

$0023

$3456
$3457
$3458 $3458
$3459
$345A

Figure 2.5. Indirection: Operand Locates Indirect Address.

Arithmetic instructions are available, including comparisons, incre-
ment, and decrement. But missing are addition or subtraction instruc-
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Table 2.4. 6502 Instructions.

Instruction
Mnemonic Description
ADC Add memory and carry to accumulator
AND And accumulator with memory
ASL Shift memory or accumulator left one bit
BCC Branch if carry clear
BCS Branch if carry set
BEQ Branch if equal
BIT Test memory bits against accumulator
BMI Branch if negative
BNE Branch if not equal
BPL Branch if plus
BRK Software break (interrupt)
BvC Branch if overflow clear
BVS Branch if overflow set
CLC Clear carry flag
CLD Clear decimal mode flag
CLI Clear interrupt-disable flag
CLvV Clear overflow flag
CMP Compare accumulator with memory
CPX Compare index register X with memory
CPY Compare index register Y with memory
DEC Decrement
DEX Decrement index register X
DEY Decrement index register Y
EOR Exclusive-OR accumulator with memory
INC Increment
INX Increment index register X
INY Increment index register Y
JMP Jump
JSR Jump to subroutine
LDA Load accumulator from memory
LDX Load index register X from memory
LDY Load index register Y from memory
LSR Logical shift memory or accumulator right
NOP No operation
ORA OR accumulator with memory
PHA Push accumulator onto stack
PHP Push status flags onto stack
PLA Pull accumulator from stack
PLP Pull status flags from stack

ROL Rotate memory or accumulator left one bit
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Table 2.4. 6502 Instructions (Cont.).

Instruction

Mnemonic Description
ROR Rotate memory or accumulator right one bit
RTI Return from interrupt
RTS Return from subroutine
SBC Subtract memory with borrow from accumulator
SEC Set carry flag
SED Set decimal mode flag
SEI Set interrupt-disable flag
STA Store accumulator to memory
STX Store index register X to memory
STY Store index register Y to memory
TAX Transfer accumulator to index register X
TAY Transfer accumulator to index register Y
TSX Transfer stack pointer to index register X
TXA Transfer index register X to accumulator
TXS Transfer index register X to stack pointer
TYA Transfer index register Y to accumulator

tions which do not involve the carry; as a result, you must clear the
carry before beginning an add and set it before beginning a subtraction.

Logic instructions available include shifts and rotates, as well as an
instruction for bit comparing.

Branch instructions are entirely flag-based, not arithmetic-operation
based, so there are no single branch-on-greater-than, branch-on-less-
than-or-equal, or signed arithmetic branches. There is also no uncondi-
tional branch and no branch-to-subroutine. The unconditional branch
can be imitated by first executing one of the 6502's many clear- or set-
flag instructions, then executing a branch-on-that-flag's-condition
instruction.

All three of the main user registers can be loaded from and stored to
memory, but only the accumulator (not the index registers) can be
pushed onto and pulled from the stack (although the flags can also be
pushed and pulled). On the other hand, single instructions let the accu-
mulator value be transferred to either index register or loaded from
either index register. One more transfer instruction is provided for set-
ting the value of the stack pointer to the value in the X index register.

The 6502 System Design

There are a number of other features of the 6502's design which make
it unigue and make systems designed with it stand apart from systems
designed with other microprocessors.
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The 65x microprocessors have the capability of doing two things at
once: the 6502 can be carrying on an internal activity (like an arithmetic
or logical operation) even as it's getting the next instruction byte from
the instruction stream or accessing data in memory.

A processor is driven by a clock signal which synchronizes events
within the processor with memory accesses. A cycle is a basic unit of
time within which a single step of an operation can be performed. The
speed with which an instruction can be executed is expressed in the
number of cycles required to complete it. The actual speed of execution
is a function both of the number of cycles required for completion and
the number of timing signals provided by the clock every second. Typi-
cal clock values for 65x processors start at one million cycles per second
and go up from there.

As a result of the 6502's capability of performing two different but
overlapping phases of a task within a single cycle, which is called
pipelining, the 65x processors are much faster than non-pipelined proc-
€ssors.

Take the addition of a constant to the 6502's eight-bit accumulator as
an example. This requires five distinct steps:

Step 1: Fetch the instruction opcode ADC.

Step 2: Interpret the opcode to be ADC of a constant.
Step 3: Fetch the operand, the constant to be added.
Step 4: Add the constant to the accumulator contents.
Step 5: Store the result back to the accumulator.

Pipelining allows the 6502 to execute steps two and threein asingle
cycle: after getting an opcode, it increments the programcounter, puts
the new program address onto the address bus, and gets the next pro-
gram byte, while simultaneously interpreting the opcode. The com-
pletion of steps four and five overlaps the next instruction's step one,
eliminating the need for two additional cycles.

So the 6502's pipelining reduces the operation of adding a constant
from five cycles to two!

The clock speed of a microprocessor has often been incorrectly pre-
sumed to be the sole determinant of its speed. What is most significant,
however, is the memory cycle time. The 68000, for example, which
typically operates at 6 to 12 megahertz (MHz, or millions of cycles per
second) requires four clock periods to read or write data to and from
memory. The 65x processors require only one clock period. Because the
6502 requires fewer machine cycles to perform the same functions, a
one-megahertz 6502 has a throughput unmatched by the 8080 and Z80
processors until their clock rates are up to about four MHz.
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The true measure of the relative speeds of various microprocessors
can only be made by comparing how long each takes, in its own
machine code, to complete the same operation.

Memory Order of Multiple-Byte Values

Multiple-byte values could be stored in memory in one of two ways:
low-order byte first, followed by successively higher order bytes; or
high-order byte first, followed by successively lower order bytes. The
6502, like the Intel and Zilog chips (the 8080, 280, 8086, and so on), but
unlike the Motorola chips (the 6800, 6809, 68000, and so on), puts the
low-order byte first, into the lower memory address.

This seemingly unnatural order of the placement of multiple-byte val-
ues in memory can be disconcerting at first. The sixteen-bit value stored
in memory as a $30 followed by $FE is not $30FE but rather $FE30.
Multiple-byte values are written high-order first, to read from left to
right; this is the opposite of how the bytes are placed in memory. This
memory order, however, contributes to the success and speed of
pipelining. Consider, as an example, the loading of the accumulator
using absolute indexed addressing (two lines for a cycle indicate simulta-
neous operations due to pipelining):

Cycle 1. Fetch the instruction opcode, LDA.

Cycle 2: Fetch an operand byte, the low byte of an array base.
Interpret the opcode to be LDA absolute indexed.

Cycle 3: Fetch the second operand byte, the high array base byte.
Add the contents of the index register to the low byte.

Cycle 4: Add the carry from the low address add to the high byte.

Cycle 5: Fetch the byte at the new effective memory address.

(Note: The 6502 also does a fetch during Cycle 4, before it checks to
see if there was any carry; if there is no carry into the high byte of the
address, as is often true, then the address fetched from was correct and
there is no cycle five; the operation is a four-cycle operation in this case.
Absolute indexed writes, however, always require five cycles.)

The low-high memory order means that the first operand byte, which
the 6502 fetches before it even knows that the opcode is LDA and the
addressing mode is absolute indexed, is the low byte of the address base,
the byte which must be added to the index register value first; it can do
that add while getting the high byte.

Consider how high-low memory order would weaken the benefits of
pipelining and slow the process down:

Cycle 1. Fetch the instruction opcode, LDA.
Cycle 2: Fetch an operand byte, the high byte of an array base.
Interpret the opcode to be LDA absolute indexed.
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Cycle 3: Fetch the second operand byte, the low array base byte.
Store the high byte temporarily.

Cycle 4. Add the contents of the index register to the low byte.

Cycle 5: Add the carry from the low address add to the high byte.

Cycle 6: Fetch the byte at the new effective memory address.

Memory-Mapped Input/Output

The 65x family (like Motorola's but unlike Zilog's and Intel's)
accomplishes input and output not with special opcodes, but by assign-
ing each input/output device a memory location, and by reading from
or writing to that location. As a result, there's virtually no limit to the
number of 1/0 devices which may be connected to a 65x system. The
disadvantage of this method is that memory in a system is reduced by
the number of locations which are set aside for 1/0 functions.

Interrupts

Interrupts tell the processor to stop what it is doing and to take care
of some more pressing matter instead, before returning to where it left
off in regular program code. An interrupt is much like a doorbell: hav-
ing one means you don't have to keep going to the door every few min-
utes to see if someone is there; you can wait for it to ring instead.

An external device like a keyboard, for example, might cause an
interrupt to present input. Or a clock might generate interrupts to toggle
the processor back and forth between two or more routines, letting it do
several tasks "at once." A special kind of interrupt is reset (the panic
button), which is generally used out of frustration to force the processor
into reinitialization. Reset generally does not return to the interrupted
code after it has been served, however.

The 6502 has three interrupt vectors—memory addresses that hold
the locations of routines which are automatically executed upon recog-
nition of an interrupt by the processor. The first of these is used for
reset.

The second vector is used both by maskable interrupts—those which
you can force the processor to ignore, either temporarily or perma-
nently, by setting the i interrupt bit in the status register—and by soft-
ware interrupts—which are caused by the execution of the break
instruction (BRK). If any hardware can cause a maskable interrupt, the
interrupt service routine pointed to by this vector must determine the
source of the interrupt. It must poll a status flag on each possible hard-
ware source as well as check the stacked status register's b flag, which is
set and pushed when a break instruction is executed. When it finds the
source of the interrupt, it must then branch to a routine which will
respond to the interrupt in a way appropriate to the source (getting a
character from a communications port, for example).
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The third vector is used by nonmaskable interrupts, those which
interrupt regardless of the i bit in the status register. The non-maskable
interrupt is usually reserved for a single high-priority or time-critical
interrupt, such as refresh of a CRT screen or to warn of impending
power failure.

The 6502 was designed to service interrupts as fast as possible.
Because interrupts cannot be served until the current instruction is com-
pleted (so no data is lost), the worst case is the longest instruction time
and the 6502's instructions each take very few cycles to execute. As a
result, the 6502 and its successors have the lowest interrupt latency—the
time between interrupt occurrence and interrupt-handling response—of
any eight-bit or sixteen-bit processors.

NMOS Process

The 6502 is fabricated using the NMOS (pronounced "EN moss") pro-
cess (for N-channel Metal-Oxide Semiconductor). Still one of the most
common of the technologies used in large-scale and very-large-scale
integrated circuits, NMOS was, at the time the 6502 was designed and
for many years after, the most cost-efficient of the MOS technologies
and the easiest process for implementation of relatively high-speed
parts. This made NMOS popular among designers of microcomputers
and other devices in which hardware cost was an important design
factor.

Most of the current generation of 8-, 16-, and 32-bit processors were
originally implemented in NMOS. Some, like the 6502, are still only
available in NMOS process versions. Others, like all of the recently
designed members of the 65x family (the 65C02, 65802, and 65816) were
produced exclusively using the CMOS process.

Bugs and Quirks

The 6502 has a number of features which the less enthusiastic might
be inclined to call bugs or quirks.

The one most clearly a bug involves using indirect addressing with the
jump instruction, when its operand ends in $FF. To use an example,

IMP  ($20FF>

should cause the program counter to get, as its new low byte, the con-
tents of $20FF, and as its new high byte, the contents of $2100. How-
ever, while the 6502 increments the low byte of the indirect address
from $FF to 00, it fails to add the carry into the high byte, and as a
result gets the program counter's new high byte from $2000 rather than
$2100.
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You can also run into trouble trying to execute an unused opcode, of
which the 6502 has many. The results are unpredictable, but can include
causing the processor to "hang."

Finally, the decimal mode is not as easy to use as it might be. The
negative, overflow, and zero flags in the status register are not valid in
decimal mode and the setting of the decimal flag, which toggles the
processor between binary and decimal math, is unknown after the proc-
essor has received a hardware "reset".



Architecture of the
65C02

The 65C02 microprocessor is an enhanced version of the 6502, imple-
mented using a silicon-gate CMOS process. The 65C02 was designed
primarily as a CMOS replacement for the 6502. As a result, the signifi-
cant differences between the two products are few. While the 65C02
adds 27 new opcodes and two new addressing modes (in addition to
implementing the original 151 opcodes of the 6502), its register set,
memory model, and types of operations remain the same.

The 65C02 is used in the Apple //c and, since early 1985, in the Apple
//e, and it has been provided as an enhancement kit for earlier //¢'s.

Remember that even as the 65C02 is a superset of the 6502, the 65802
and 65816, described in the next chapter, are supersets of the 65C02. All
of the enhancements found in the 65C02 are additionally significant in
that they are intermediate to the full 65816 architecture. The next chap-
ter will continue to borrow from the material covered in the previous
ones, and generally what is covered in the earlier of these three architec-
ture chapters is not repeated in the subsequent ones, since it is true for
all 65x processors.
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The 65C02 Architecture

Addressing Modes

Both the 65C02 and the 6502 are eight-bit processors, with a 64K
address space and exactly the same register set.

The 65C02 features some small but highly desirable improvements in
the use of the status register flags: it gives valid negative, overflow, and
zero flags while in decimal mode, unlike the 6502; and it resets the deci-
mal flag to zero after reset and interrupt.

The 65C02 has slightly different cycle counts on a number of opera-
tions from the 6502, some shorter and a few longer. The longer cycle
counts are generally necessary to correct or improve operations from
the 6502.

The 65C02 introduces the two new addressing modes shown in Table
3.1, as well as supporting all the 6502 addressing modes. All of them
will be explained in detail in Chapters 7 and 11, and will be reviewed in
the Reference Section.

Table 3.1. The 65C02's New Addressing Modes.

Addressing Mode Syntax Example
Opcode Operand
Zero Page Indirect LDA ($55)
Absolute Indexed Indirect JMP ($2000, X)

Zero page indirect provides an indirect addressing mode for accessing
data which requires no indexing (the 6502's absolute indirect mode is
available only to the jump instruction). 6502 programmers commonly
simulate indirection by loading an index register with zero (losing its
contents and taking extra steps), then using the preindexed or post-
indexed addressing modes to indirectly reference the data.

On the other hand, combining indexing and indirection proved so
powerful for accessing data on the 6502 that programmers wanted to see
this combination made available for tables of jump vectors. Absolute
indexed indirect, available for the jump instruction only, provides this
multi-directional branching capability, which can be very useful for case
or switch statements common to many languages.

Instructions

While the 65C02 provides 27 new opcodes, there are only eight new
operations. The 27 opcodes result from providing four different address-
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ing modes for one of the new mnemonics and two for two others, and
also from expanding the addressing modes for twelve 6502 instructions.
The most significant expansion of a 6502 instruction by combining it
with a 6502 addressing mode it did not previously use is probably the
addition of accumulator addressing for the increment and decrement
instructions.

The new 65C02 operations, shown in Table 3.2, answer many pro-
grammer's prayers: an unconditional branch instruction, instructions to
push and pull the index registers, and instructions to zero out memory
cells. These may be small enhancements, but they make programming
the 65C02 easier, more straightforward, and clearer to document. Two
more operations allow the 65C02 to set or clear any or all of the bits in a
memory cell with a single instruction.

Table 3.2. New 65C02 Instructions.

Instruction
Mnemonic Description
BRA Branch always (unconditional)
PHX Push index register X onto stack
PHY Push index register Y onto stack
PLX Pull index register X from stack
PLY Pull index register Y from stack
STZ Store zero to memory
TRB Test and reset memory bits against accumulator
TSB Test and set memory bits against accumulator

CMOS Process

Unlike the 6502, which is fabricated in NMOS, the 65C02 isa CMOS
(pronounced "SEE moss") part. CMOS stands for Complementary
Metal-Oxide Semiconductor.

The most exciting feature of CMOS is its low power consumption,
which has made portable, battery-operated computers possible. Its low
power needs also result in lower heat generation, which means parts can
be placed closer together and heat-dissipating air space minimized in
CMOS-based computer designs.

CMOS technology is not a new process. It's been around for about as
long as other MOS technologies. But higher manufacturing costs during
the early days of the technology made CMOS impractical for the highly
competitive microcomputer market until the mid 1980s, so process
development efforts were concentrated on NMOS and not applied to
CMOS until 1980 or 1981.
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CMOS technology has reached a new threshold in that most of its
negative qualities, such as the difficulty with which smaller geometries
are achieved relative to the NMOS process, have been overcome. Price
has become competitive with the more established NMOS as well.

The 65C02 fixes all of the known bugs and quirks in the 6502. The
result of executing unused opcodes is now predictable—they do nothing
(that is, they act like no-operation instructions). An interesting footnote
is that, depending on the unimplemented instruction that is executed,
the number of cycles consumed by the no-operation is variable between
one and eight cycles. Also, the number of bytes the program counter is
incremented by is variable. It is strongly recommended that this feature
not be exploited, as its use will produce code incompatible with the
next-generation 65802 and 65816.

The jump indirect instruction has been fixed to work correctly when
its operand crosses a page boundary (although at the cost of an execu-
tion cycle). The negative, overflow, and zero flags have been imple-
mented to work in decimal mode (also at the cost of an execution cycle).
The decimal mode is now reset to binary after a hardware reset or an
interrupt.

Finally, a fix which is generally transparent to the programmer, but
which eliminates a possible cause of interference with memory-mapped
1/0 devices on the 6502, is the elimination of an invalid address read
while generating an indexed effective address when a page boundary is
crossed.

The quirk unique to the 65C02 results from trying to eliminate the
quirks of the 6502. The timing improvements of a number of instruc-
tions and the bug fixes from the 6502 make the 65C02 an improvement
over the 6502, but not quite fully compatible on a cycle-by-cycle basis.
This is only a consideration during the execution of time-critical code,
such as software timing loops. As a practical example, this has affected
very little software being ported from the Apple //e to the lie.



Sixteen-Bit
Architecture: The
65816 and the 65802

While the 65C02 was designed more as a CMOS replacement for the
6502 than an enhancement of it, the 65802 and 65816 were created to
move the earlier designs into the world of sixteen-bit processing. And
although the eight-bit 6502 had been a speed demon when first released,
its competition changed over the years as processing sixteen bits at a
time became common, and as the memory new processors could address
started at a megabyte.

The 65816 and the 65802 were designed to bring the 65x family into
line with the current generation of advanced processors. First produced
in prototypes in the second half of 1984, they were released simulta-
neously early in 1985. The 65816 is a full-featured realization of the 65x
concept as a sixteen-bit machine. The 65802 is its little brother, with the
65816's sixteen-bit processing packaged with the 6502's pinout for com-
patibility with existing hardware.

The two processors are quite similar. They are, in fact, two different
versions of the same basic design. In the early stages of the chip fabrica-
tion process they are identical and only assume their distinct "personali-
ties" during the final (metalization) phase of manufacture.

The two processors provide a wealth of enhancements: another nine
addressing modes, 78 new opcodes, a "hidden" second accumulator in
eight-bit mode, and a zero page which, renamed the direct page, can be
relocated to any contiguous set of $100 bytes anywhere within the first
64K of memory (which in the case of the 65802 is anywhere in its
address space). The most dramatic of all the enhancements common to
both 65802 and 65816, though, is the expansion of the primary user
registers—the accumulator, index registers, and stack pointer—to
sixteen-bit word size. The accumulator and index registers can be tog-
gled to sixteen bits from eight, and back to eight when needed. The
stack, pointed to by an expanded-to-sixteen-bit stack register, can be
relocated from page one to anywhere in a 64K range.

The primary distinction between the two processors is the range of
addressable memory: the 65816 can address up to sixteen megabytes;
the 65802 is constrained by its 6502 pinout to 64K.
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A secondary distinction between the two processors is that the
65816's new pinout also provides several significant new signals for the
hardware designer. While outside the primary scope of this book, these
new signals are mentioned in part in this chapter and described in some
detail in Appendix C.

It is important to remember that the 65802 is in fact a 65816 that has
been coerced to live in the environment designed originally for the 6502
and 65C02. Outside of the memory and signal distinctions just listed,
the 65816 and the 65802 are identical. Both have a native mode, in
which their registers can be used for either eight- or sixteen-bit opera-
tions. Both have a 6502 emulation mode, in which the 6502's register set
and instruction timings emulate the eight-bit 6502 (not the 65C02)
exactly (except they correct a few 6502 bugs). All existing 6502 software
can be run by the new processor—as can virtually all 65C02 software—
even as most of the native mode's enhancements (other than sixteen-bit
registers) are programmable in emulation mode, too.

To access sixteen megabytes, the signals assigned to the various pins
of the 65816's 40-pin package are different from the 6502, the 65C02 and
the 65802, so it cannot be installed in existing 65x computers as a
replacement upgrade. The 65802, on the other hand, has a pinout that is
identical to that of the 6502 and 65C02 and can indeed be used as a
replacement upgrade.

This makes the 65802 a unique, pin-compatible, software-compatible
sixteen-bit upgrade chip. You can pull a 6502 out of its socket in any
existing 6502 system, and replace it with a 65802 because it powers-on
in the 6502 emulation mode. It will run existing applications exactly the
same as the 6502 did. Yet new software can be written, and 6502 pro-
grams rewritten, to take advantage of the 65802's sixteen-bit capabili-
ties, resulting in programs which take up much less code space and
which run faster. Unfortunately, even with a 65802 installed, an older
system will remain unable to address memory beyond the original 64K
limits of the 6502. This is the price of hardware compatibility.

The information presented in this chapter builds directly on the in-
formation in the previous two chapters; it should be considered as a
continuous treatment of a single theme. Even in native mode with
sixteen-bit registers, the 65802 and 65816 processors utilize many of the
6502 and 65CO02 instructions, registers, and addressing modes in a man-
ner which differs little from their use on the earlier processors. If you
are already familiar with the 6502 or the 65C02, you will discover that
the 65802 and 65816 logically expand on these earlier designs.

Power-On Status: 6502 Emulation Mode

When the 65816 and 65802 are powered on, they initialize themselves
into 6502 emulation mode in which, with the exception of fixing several
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6502 bugs, they exactly emulate the 6502. The stack is confined to page
one, just like the 6502 stack pointer. The registers are configured to
eight bits, to model the 6502's registers. Every 6502 instruction is imple-
mented identically. The timing of each instruction is exactly the same as
on the original NMOS 6502. The direct page of the 65802 and 65816,
which as you will learn can be relocated using the sixteen-bit direct page
register, is initialized to page zero, making direct page addressing
exactly equivalent to 6502 zero page addressing. The program and data
bank registers, which as you will learn provide efficient access in the
65816 to any one or two 64K banks of memory at a time, are initialized
to the zero bank.

Unlike the NMOS 6502, which has undefined results when unimple-
mented opcodes are executed, and the 65C02, which treats unimple-
mented opcodes as variously-timed and -sized no-operations, the 65802
instruction set implements every one of the 256 possible one-byte
opcodes. These additional instructions are available in emulation mode
as well as in native mode.

Among the newly implemented opcodes are ones that allow the proc-
essors to be switched to their native mode—sixteen-bit operation. While
there is more to say about 6502 emulation mode, it will be easier to
understand in the context of native mode.

The Full-Featured 65x Processor:
The 65816 in Native Mode

The 65816 in its native mode (as opposed to its 6502 emulation mode)
has it all: sixteen-bit registers, 24-bit addressing, and all the rest. The
65802's native mode is a subset of this, as are the emulation modes of
both processors.

Figure 4.1 shows the programming model for the 65816 in native
mode. While the accumulator is shown as a sixteen-bit register, it may
be set to be either a single sixteen-bit accumulator (A or C) or two
eight-bit accumulators, one accessible (A) and the other hidden but
exchangeable (B). While the index registers are shown as sixteen-bit reg-
isters, they may be set, as a pair, to be either sixteen-bit registers or
eight-bit registers—their high bytes are zeroed when they are set to eight
bits. The obvious advantage of switching from a processor with eight-
bit registers to one with sixteen-bit registers is the ability to write pro-
grams which are from 25 to 50 percent shorter, and which run 25 to 50
percent faster due to the ease with which sixteen-bit data is manip-
ulated.

The feature that most clearly distinguishes the current generation of
advanced microcomputer systems, however, is the ability to address
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65816 Native Mode Programming Model

(16-bit accumulator & index register modes: m=0 & x=0)
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1

i3

Accumulator (B) (A or C) Accumulator (A)
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X Index Register (X)
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10verflow 1=0verflow
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Figure 4.1. 65816 Native Mode Programming Model.

lots of memory. It is this increased memory addressability which has
ushered in the new era of microcomputer applications possibilities, such
as large spreadsheets, integrated software, multi-user systems, and
more. In this regard, the 65816 stands on or above par with any of the
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other high-performance microprocessors, such as the 68000, the 8086,
or their successors.

There are two new eight-bit registers called bank registers. One,
called the data bank register, is shown placed above the index registers
and the other, called the program bank register, is appended to the pro-
gram counter. The 65816 uses the two bank registers to provide 24-bit
addressing.

A bank of memory is much like a page; just as a page is a range of
memory that can be defined by eight bits (256 bytes), a bank is a range
of memory that can be defined by sixteen bits (64K bytes). For proces-
sors like the 6502, which have only sixteen-bit addressing, a 64K bank is
not a relevant concept, since the only bank is the one being currently
addressed. The 65816, on the other hand, partitions its memory range
into 64K banks so that sixteen-bit registers and addressing modes can be
used to address the entire range of memory.

Bank zero, for example, is that 64K range for which, when addressed
using 24 bits, the highest byte (also called the bank byte) is zero. Simi-
larly, a highest byte of nine in a 24-bit address would address a location
somewhere in bank nine. This highest byte is called the bank byte so
that the term high byte can still be used to refer to the byte that deter-
mines the page address. In other words, "high byte" is used on the 65816
as it is on the 6502, 65C02 and 65802, where addresses are only sixteen
bits.

Another new register shown in Figure 4.1 is the direct page register.
Much like the 6800's special zero page became the 6809's direct page, the
6502's and 65C02's zero page has been transformed into the 65802's and
65816's direct page. This direct page is, as Figure 4.1 shows, limited to
bank zero, shown in the programming model by the implied zero as its
bank byte. The direct page register can be set to any 256-byte page
starting on any byte boundary within bank zero. All of the 6502 instruc-
tions that use zero page addressing use an expanded form called direct
page addressing on the 65816 and 65802; however, when the direct page
register value is zero, the two modes are operationally identical.

Figure 4.1 also shows that the stack pointer has been unbound from
page one to float anywhere in bank zero by making it a sixteen-bit reg-
ister.

While Figure 4.1 doesn't show the interrupt vectors, they too are
located in bank zero, and they point to interrupt handling routines
which also must be located in bank zero.

Finally, the status register is different from the 6502's and 65C02's
(compare Figure 4.1 with Figure 2.1 in Chapter 2). The first obvious dif-
ference is the single bit labelled e for emulation hanging off the top of
the carry flag. Accessible only through the carry flag, its contents deter-
mine whether the processor is in native or 6502 emulation mode. Here it
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holds a zero to indicate the processor is in native mode. The second dif-
ference is the m and x flags replace the 6502's break and unused flags: m
indicates the size of the accumulator (eight or sixteen bits) as well as the
size of memory accesses; x indicates the size of the two index registers
(eight or sixteen bits). Changing the contents of either of these two new
flags toggles the size of the corresponding registers. The b flag is no
longer necessary to distinguish the BRK software interrupt from hard-
ware interrupts because native mode provides a new interrupt vector for
software interrupts, separate from the hardware interrupt vector.

Native mode also provides one timing improvement over the 6502:
one cycle is saved during a cross-page branch.

The Program Bank Register

The 65816's sixteen-bit program counter is concatenated to its eight-
bit program counter bank register (PBR, or K when used in instruction
mnemonics) to extend its instruction-addressing capability to 24 bits.
When the 65816 gets an instruction from memory, it gets it from the
location pointed to by the concatenation of the two registers. In many
ways, the net effect is a 24-bit program counter; for example, when an
interrupt occurs, all 24 bits (program counter plus program counter
bank) are pushed onto the stack. Likewise, when a return-from-inter-
rupt occurs, 24 bits (both registers) are pulled from the stack.

All previous instructions that jumped to sixteen-bit absolute addresses
still work by staying within the same bank. Relative branches stay in
the same bank; that is, you can't branch across bank boundaries. And
program segments cannot cross bank boundaries; if the program
counter increments past $FFFF, it rolls over to $0000 without increment-
ing the program counter bank.

New instructions and addressing modes were added to let you trans-
fer control between banks: jump absolute long (jump to a specified 24-
bit address), jump indirect long (the operand is an absolute address in
bank zero pointing to a 24-bit address to which control is transferred),
jump to subroutine long (to a specified 24-bit address, with the current
program counter and program bank register pushed onto the stack
first), and a corresponding return from subroutine long, which re-loads
the bank register as well as the program counter. (The addressing modes
are among those listed in Table 4.3, the instructions in Table 4.4.)

These instructions that specify a complete 24-bit address to go to,
along with native mode's software interrupt and return from interrupt
instructions, are the only ones that modify the value in the program
bank register. The program bank can be pushed onto the stack so it can
be pulled into another register and be examined or tested. But there is
no instruction for pulling the program bank register from the stack,
since that would change the bank the next instruction would come
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from—certain to be catastrophic. To avoid such "strange" branches
across banks, the program counter bank register can only be changed
when the program counter is changed at the same time.

The Data Bank Register

The data bank register (DBR or, when used as part of a mnemonic, B)
defines the default bank to be used for reading or writing data whenever
one of the addressing modes that specifies (only) a sixteen-bit address is
used, such as the absolute, indirect, or indexed instructions found on the
6502. Such sixteen-bit effective addresses as used with the 6502 are con-
catenated with the value in the data bank register to form a 24-bit
address, much as the program counter is concatenated with the program
bank register. An important difference is that, unlike the program
counter bank register, the data bank register can be temporarily incre-
mented by instructions which use indexed addressing; in other words,
bank boundaries do not confine indexing, which crosses them into the
next bank.

As already mentioned, direct page and stack-based values are always
accessed in bank zero, since the implied bank used with the direct page
and stack is zero. But indirect addresses pulled out of the direct page or
off the stack (when used with addressing modes that do not further
specify the bank value) point to locations in the current data bank.

The existence of the data bank register on the 65816 provides a con-
venient way to access a large range of data memory without having to
resort to 24-bit address operands for every operation.

The Direct Page Register

The direct page register (D) points to the beginning of direct page
memory, which replaces zero page memory as the special page used for
short-operand addressing. All of the 6502 instructions that use zero page
addressing use an expanded form called direct page addressing on the
65816 and 65802. If the direct page register is set to zero, then direct
page memory is the zero page, and direct page addressing is operation-
ally identical to zero page addressing.

One effect of having a direct page register is that you can set up and
alternate between multiple direct page areas, giving each subroutine or
task its own private direct page of memory, which can prove both use-
ful and efficient.

The Stack Pointer

The native mode stack pointer holds a sixteen-bit address value. This
means it can be set to point to any location in bank zero. It also means
the stack is no longer limited in length to just $100 bytes, nor limited to
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page one ($100 to $1FF). Page one therefore loses its character as a "spe-
cial* memory area and may be treated like any other page while running
the 65802 or 65816 in the native mode.

The Accumulator and the Index Registers

The key difference between the 65816/65802 and the earlier proces-
sors in the series is that the 65816's three primary user registers—the
accumulator and the X and Y index registers—can be toggled between
eight and sixteen bits. You can select which size (eight or sixteen bits)
you wish to use by executing special control instructions that modify the
new m and x flags.

This enhances the basic processing power of the chip tremendously. A
simple subtraction of sixteen-bit numbers, for example, illustrates the
difference. The eight-bit 6502 must be programmed to load the low byte
of the first sixteen-bit number, subtract the low byte of the second num-
ber, then save the result, load the first number's high byte, subtract the
second number's, and finally, save the high result. The sixteen-bit proc-
essors, on the other hand, can load one sixteen-bit value, subtract the
other, then save the sixteen-bit result. Three steps replace six.

With its ability to change register size, the 65816 functions equally
well with eight bits or sixteen. From the programmer's point of view, it
is a dual word-size machine. The machine word size—the basic unit of
data the machine processes in a given instruction cycle—may be either
byte or double byte, that is, eight or sixteen bits.

In the terminology used in describing other sixteen-bit processors, the
term word is used specifically to refer to sixteen-bit data, and byte to
refer to eight-bit data. But other sixteen-bit processors generally have
different mechanisms for selecting byte or double byte data to operate
upon. The terminology appropriate to the 65802 and 65816 is to refer to
sixteen-bit data as double byte, rather than word, since their word size
alternates between eight bits and sixteen, and since they can operate in
either byte mode or double byte mode with equal effectiveness. They
are hybrid processors.

The width of the accumulator and the width of the index registers are
independently controlled by setting and resetting the two special flag
bits within the status register, the index register select (x) and memory/
accumulator select (m) flags. When both are set, the eight-bit register
architecture of the 6502 is in force. While very similar to the emulation
mode, this eight-bit native mode is subtly different in important ways: a
BRK vector is available in the native mode; interrupt processing is dif-
ferent between emulation and native mode in general; and of course
sixteen-bit processing can be called up with a single instruction. Yet the
65802 and 65816 will execute a good deal of existing 6502 programs
without modification in this mode.
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When either or both the index register select or memory select flags
are cleared, the word size of the corresponding register(s) is expanded
from eight bits to sixteen.

The four possible modes of operation are shown in Table 4.1.

Table 4.1. The Four Possible Native Mode Register
Combinations.

eight-bit accumulator (m bit is set)
eight-bit index registers (x bit is set)
eight-bit accumulator (m bit is set)
sixteen-bit index registers (x bit is clear)
sixteen-bit accumulator (m bit is clear)
eight-bit index registers (x bit is set)
sixteen-bit accumulator (m bit is clear)
sixteen-bit index registers (x bit is clear)

When the opcode for a given instruction is fetched from memory dur-
ing program execution, the processor may respond differently based
upon the settings of the two register select flags. Their settings may be
thought of as extensions to the opcode. For example, consider the fol-
lowing instruction:

object
code instruction
BDOOBO LDA $B000,X

which loads the accumulator with data from the effective address
formed by the sum of $B000 and the contents of the X register. The X
register contents can be either eight bits or sixteen, depending upon the
value of the index select flag. Furthermore, the accumulator will be
loaded from the effective address with either eight or sixteen bits of
data, depending upon the value of the memory/accumulator select flag.

The instruction and addressing mode used in the example are found
also on the 6502 and 65C02; the opcode byte ($BD) is identical on all
four processors. The 65816's new mode flags greatly expand the scope of
the 6502's instructions. For programmers already familiar with the 6502,
the understanding of this basic principle—how one opcode can have up
to four different effects based on the flag settings—is the single most
important principle to grasp in moving to a quick mastery of the 65802
or 65816.
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Switching Registers Between Eight and Sixteen
Bits

The two register select flags are set or cleared by two new instructions
provided for modifying the status register: one of the instructions, SEP,
(set P) can be used to set any bit or bits in the P status register; the
other, REP, (reset P) can be used to reset any bit or bits in the status
register.

Figure 4.2 shows the results of changing the index registers and accu-
mulator between eight and sixteen bits. When a sixteen-bit index regis-
ter is switched to eight bits, the high byte is lost irretrievably and
replaced by a zero. On the other hand, when an eight-bit index register
is switched to sixteen bits, its unsigned value is retained by concatenat-
ing it to a zero high byte; that is, the eight-bit unsigned index already in
the register is extended to sixteen bits.

Unlike the index operations, switching the accumulator's size in either
direction is reversible. The accumulator is treated differently due to its
function, not as an index register, but as the register of arithmetic and
logic. In this role, it is often called upon to operate on eight-bit values
with sixteen-bit ones and vice versa.

When the sixteen-bit A accumulator is switched to eight bits, the low
byte becomes the new eight-bit A accumulator while the high byte
becomes the eight-bit "hidden" B accumulator. B may be seen as an
annex to the A accumulator, accessible only through a new instruction
which exchanges the values in the two accumulators (making B useful
for temporarily storing off the eight-bit value in A). Conversely, when
the accumulator is switched from eight bits to sixteen, the new sixteen-
bit A accumulator has, as its low byte, the previous eight-bit A accumu-
lator and, as its high byte, the previous hidden B accumulator.

Certain instructions that transfer the accumulator to or from other
sixteen-bit registers refer to the sixteen-bit accumulator as C to empha-
size that all sixteen accumulator bits will be referenced regardless of
whether the accumulator is set to eight- or sixteen-bit mode. Again, this
is illustrated in Figure 4.2.

The Status Register

Because the emulation bit is a "phantom” bit, it cannot be directly
tested, set, or cleared. The flag that it "phantoms" or overlays is the
carry bit; there is a special instruction, XCE, that exchanges the contents
of the two flags. This is the "trapdoor” through which the emulation
mode is entered and exited.

Two status register bits were required for the two-flag eight-or-
sixteen-bit scheme. While the 6502's status register has only one unused
status register bit available, its break flag is used only for interrupt pro-
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Results of Switching Register Sizes
(L=bits in low byte; H= bits in high byte)

Index Registers; 16 Bits to 8

HHHH HHHH | LLLL LLLL 0000 0000 LLLL LLLL
|

Index Registers: 8 Bits to 16

0000 0000 LLLL LLLL 0000 0000 LLLL LLLL

Accumulator: 16 Bits to 8

HHHH HHHH | LLLL LLLL LLLL LLLL

(also C) (also C)

Accumulator: 8 Bits to 16

- >

HHHH HHHH LLLL LLLL HHHH HHHH LLLL LLLL

[
|
m=1 _

m=0

— ) — T -~
(also C) (also C)

Figure 4.2. Results of Switching Register Sizes.

cessing, not during regular program execution, to flag whether an inter-
rupt comes from a break instruction or from a hardware interrupt. By
giving the break instruction its own interrupt vector in native mode, the

65816's designers made a second bit available for the m and x register
select flags.

6502/65C02 Addressing Modes on the 65816

All of the 6502 and 65C02 addressing modes are available to the
65816765802, but native mode's sixteen-bit features mean you need to
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expand your thinking about what they will do. For example, the 65816's
direct page, which can be located anywhere in memory, replaces the
earlier zero page as the special page for short-operand addressing
modes. All 6502/65C02 zero page addressing modes become direct page
addressing modes, as shown in Table 4.2.

Table 4.2. Addressing Modes: Zero Page vs. Direct Page.

6502/65C02 65802/65816 Syntax Example Common to Both
Zero Page. Addressing Mode Direct Page Addressing Mode Opcode Operand
Zero Page Direct Page LDA  $55
Zero Page Indexed with X Direct Page Indexed with X LDA  $55X
Zero Page Indexed with Y Direct Page Indexed with Y LDX $55,Y
Zero Page Indirect Indexed with Y
(Postindexed) Direct Page Indirect Indexed with Y LDA  ($55),Y
Zero Page Indexed Indirect with X
(Preindexed) Direct Page Indexed Indirect with X LDA  ($55X)
Zero Page Indirect Direct Page Indirect LDA  ($55)

Notice in Table 4.2 that the assembler syntax for each direct page
addressing mode (not to mention the object bytes themselves) is the
same as its zero page counterpart. The names and the results of the
addressing modes are what differ. Direct page addressing, like the 6502/
65C02 zero page addressing, allows a memory location to be addressed
using only an eight-bit operand. In the case of the 6502, a sixteen-bit
zero page effective address is formed from an eight-bit offset by concate-
nating a zero high byte to it. In the 65802/65816, the direct page effec-
tive address is formed by adding the eight-bit offset to the sixteen-bit
value in the direct page register. This lets you relocate the direct page
anywhere in bank zero, on any byte boundary. Note, however, that it is
most efficient to start the direct page on a page boundary because this
saves one cycle for every direct page addressing operation.

When considering the use of 6502/65C02 zero page instructions as
65802765816 direct page instructions, remember that a direct page
address of $23 is located in memory at location $0023 only if the direct
page register is set to zero; if the direct page register holds $4600, for
example, then direct page address $23 is located at $4623. The direct
page is essentially an array which, when it was the zero page, began at
address zero, but which on the 65816 and 65802 can be set to begin at
any location.

In the 6502/65C02, the effective address formed using zero page
indexed addressing from a zero page base address of $F0 and an index of
$20 is $10; that is, zero page indexed effective addresses wrap around to
always remain in the zero page. In the emulation mode this is also true.
But in native mode, there is no page wraparound: a direct page starting
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at $2000 combined with a direct page base of $20 and a sixteen-bit index
holding $300 results in an effective address of $2320.

The three main registers of the 65802/65816 can, in native mode, be
set to hold sixteen bits. When a register is set to sixteen bits, then the
data to be accessed by that register will also be sixteen bits.

For example, shifting the accumulator left one bit, an instruction
which uses the accumulator addressing mode, shifts sixteen bits left
rather than eight if the accumulator is in sixteen-bit mode. Loading a
sixteen-bit index register with a constant using immediate addressing
means that a sixteen-bit value follows the instruction opcode. Loading a
sixteen-bit accumulator by using absolute addressing means that the
sixteen-bit value stored starting at the absolute address, and continuing
into the location at the next address, is loaded into the accumulator.

Sixteen-bit index registers give new power to the indexed addressing
modes. Sixteen-bit index registers can hold values ranging up to 64K; no
longer must the double-byte base of an array be specified as a constant
with the index register used for the index. A sixteen-bit index can hold
the array base with the double-byte constant specifying the (fixed)
index.

Finally, the 65816 has expanded the scope of 6502 and 65C02 instruc-
tions by mixing and matching many of them with more of the 6502/
65C02 addressing modes. For example, the jump-to-subroutine instruc-
tion can now perform absolute indexed indirect addressing, a mode
introduced on the 65C02 solely for the jump instruction.

New 65816 Addressing Modes

Not only do the 65802 and 65816 provide all the 6502 and 65C02
addressing modes, but they also offer nine new addressing modes of
their own, in both emulation and native modes. They are shown in
Table 4.3.

Table 4.3. The 65816/65802's New Addressing Modes.

Addressing Mode Syntax Example
Opcode Operand

Program Counter Relative Long BRL JMPLABEL
Stack Relative LDA 3,S
Stack Relative Indirect Indexed with Y LDA (5,9),Y
Block Move MVP 0,0
Absolute Long LDA $02F000
Absolute Long Indexed with X LDA $12D080,X
Absolute Indirect Long JMP  [$2000]
Direct Page Indirect Long LDA [$55]

Direct Page Indirect Long Indexed with Y LDA [$55],Y
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There are six new addressing modes that use the word "long", but
with two very different meanings. Five of the "long" modes provide 24-
bit addressing for interbank accesses. Program counter relative long
addressing, on the other hand, provides an intrabank sixteen-bit form of
relative addressing for branching. Like all the other branch instructions,
its operand is an offset from the current contents of the program
counter, but branch long's operand is sixteen bits instead of eight, which
expands relative branching from plus 127 or minus 128 bytes to plus
32767 or minus 32768. This and other features greatly ease the task of
writing position-independent code. The use of the word "long" in the
description of this addressing mode means "longer than an eight bit off-
set," whereas the word "long" used with the other four addressing
modes means "longer than sixteen bits."

Stack relative addressing and Stack relative indirect indexed with Y
addressing treat the stack like an array and index into it. The stack
pointer register holds the base of the array, while a one-byte operand
provides the index into it. Since the stack register points to the next
available location for data, a zero index is meaningless: data and
addresses which have been pushed onto the stack start at index one. For
stack relative, this locates the data; for stack relative indirect indexed,
this locates an indirect address that points to the base of an array
located elsewhere. Both give you the means to pass parameters on the
stack in a clean, efficient manner. Stack relative addressing is a particu-
larly useful capability, for example, in generating code for recursive
high-level languages such as Pascal or C, which store local variables and
parameters on a "stack frame."

Block move addressing is the power behind two new instructions that
move a block of bytes—up to 64K of them—from one memory location
to another all at once. The parameters of the move are held in the accu-
mulator (the count), the index registers (the source and destination
addresses), and a unique double operand (the source and destination
addresses in the operand specify the source and destination banks for
the move operation).

The five remaining "long" addressing modes provide an alternative to
the use of bank registers for referencing the 65816's sixteen-megabyte
address space. They let you temporarily override the data bank register
value to address memory anywhere within the sixteen-megabyte address
space. Absolute long addressing, for example, is just like absolute
addressing except that, instead of providing a two-byte absolute address
to be accessed in the data bank, you provide a three-byte absolute
address which overrides the data bank. Absolute long indexed with X,
too, is four bytes instead of three. On the other hand, it is the memory
locations specified by absolute indirect long, direct page indirect long,
and direct page indirect long indexed with Y that hold three-byte indi-
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rect addresses instead of two-byte ones. Three-byte addresses in mem-
ory appear in conventional 65x order; that is, the low byte is in the
lower memory location, the middle byte (still referred to in 6502 fashion
as the "high" byte) is in the next higher location, and the highest (bank)
byte is in the highest location.

Instructions

There are 78 new opcodes put into use through the 28 new operations
listed in Table 4.4, as well as through giving the previous processors'
operations additional addressing modes.

Table 4.4. New 65816/65802 Instructions.

Instruction
Mnemonic Description
BRL Branch always long
COP Co-processor empowerment
JML Jump long (interbank)
JSL Jump to subroutine long (interbank)
MVN Block move negative
MVP Block move positive
PEA Push effective absolute address onto stack
PEI Push effective indirect address onto stack
PER Push effective program counter relative address
onto stack
PHB Push data bank register onto stack

PHD Push direct page register onto stack
PHK Push program bank register onto stack

PLB Pull data bank register from stack

PLD Pull direct page register from stack

REP Reset status bits

RTL Return from subroutine long

SEP Set status bits

STP Stop the processor

TCD Transfer 16-bit accumulator to direct page register
TCS Transfer accumulator to stack pointer

TDC Transfer direct page register to 16-bit accumulator
TSC Transfer stack pointer to 16-bit accumulator

XY Transfer index registers X to Y

TYX Transfer index registers Y to X

WAI Wait for interrupt

WDM Reserved for future two-byte opcodes
XBA Exchange the B and A accumulators
XCE Exchange carry and emulation bits
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Five of the new push and pull instructions allow the new registers to
be stored on the stack; the other three let you push constants and mem-
ory values onto the stack without having to first load them into a regis-
ter. PER is unique in that it lets data be accessed relative to the program
counter, a function useful when writing relocatable code.

There are also instructions to transfer data between new combina-
tions of the registers, including between the index registers—a long-
wished-for operation; to exchange the two bytes of the sixteen-bit
accumulator; and to exchange the carry and emulation bits, the only
method for toggling the processor between emulation and native modes.

There are new jump, branch, return, and move instructions already
described in the section on addressing modes. There's a new software
interrupt provided for sharing a system with a co-processor. There are
two instructions for putting the processor to "sleep" in special low-
power states. And finally, there's a reserved opcode, called WDM (the
initials of the 65816's designer, William D. Mensch, Jr.), reserved for
some future compatible processor as the first byte of a possible 256
two-byte opcodes.

Interrupts

Native mode supplies an entire set of interrupt vectors at different
locations from the emulation mode (and earlier 6502/65C02) ones to
service native mode and emulation mode interrupts differently. Shown
in Table 4.5, all are in bank zero; in addition, the sixteen-bit contents of
each vector points to a handling routine which must be located in bank
zero.

Table 4.5. Interrupt Vector Locations.

Emulation Mode Native Mode
IRQ FFFE,FFFF FFEE,FFEF
RESET FFFC,FFFD -
NMI FFFA FFFB FFEA,FFEB
ABORT FFF8,FFF9 FFES8,FFE9
BRK - FFE6,FFE7
COP FFF4,FFF5 FFE4,FFE5

All locations are in bank zero.

As discussed earlier in this chapter, native mode frees up the b bit in
the status register by giving the break instruction its own vector. When
a BRK is executed, the program counter and the status register are
pushed onto the stack and the program counter is loaded with the
address at $FFE®6, the break instruction vector location.

The reset vector is only available in emulation mode because reset
always returns the processor to that mode.
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The 65816765802, in both emulation and native modes, also provides
a new coprocessor interrupt instruction to support hardware coproc-
essing, such as by a floating point processor. When the COP instruction
is encountered, the 65802's interrupt processing routines transfer control
to the co-processor vector location.

Finally, the pinout on the 65816 provides a new abort signal. This lets
external hardware prevent the 65816 from updating memory or registers
while completing the current instruction, useful in sophisticated memo-
ry-management schemes. An interrupt-like operation then occurs, trans-
ferring control through the special abort vector.

The 65802 Native Mode

For all that the 65816 is, it is not pin-compatible with the 6502 and
65C02. You can't just replace the earlier chips with it. It is here that the
other version of this chip, the 65802, comes into its glory. The price, of
course, is that the 65802 has the same addressability limitations as the
6502 and 65C02.

Figure 4.3 shows the programming model for the 65802's native
mode. The bank registers, while they exist, do not modify address-
ability, so they are shown as eight-bit entities. All registers have been
scaled back to sixteen bits. There is only one bank a 65802 can address;
since it holds the direct page, the stack pointer, and the interrupt vectors
(bank-zero features on the 65816), you can consider the 65802's bank to
be bank zero. Otherwise, the programming model is identical to the
65816's.

The bank registers are an anomaly. They have no function because
the packaging provides no pins to connect them to. But they exist
because, inside the packaging, the chip itself is a 65816. In fact, you can
change their value just as you would on the 65816, with a pull instruc-
tion, a long jump or JSR, an interrupt, or a long return, either from sub-
routine or from interrupt. Furthermore, every interrupt and return from
interrupt pushes the program bank byte onto the stack or pulls it off,
just like the 65816 does. But the bank register values are ignored
(stripped from 24-bit addresses when they're sent to the sixteen-bit out-
put pins).

The long addressing modes also seem misplaced here. You can exe-
cute instructions using long addressing on the 65802, but the bank
addresses are, again, ignored. They are certainly an inefficient method
for undertaking intrabank accesses and transfers, since they take up
extra bytes for the bank address, and use up extra cycles in translation.
Still, they cause the 65802 no problems, as long as you understand that
the bank value is disregarded and only the remaining sixteen bits of
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65802 Native Mode Programming Model

(16-bit accumulator & index register modes: m=0 & x=0)

15 7 0

1
k

Accumulator (B) (A or C) Accumulator (A)
i

X Index Register (X)

Y Index Register (Y)

Direct Page Register (D)

Stack Pointer (S)

Program Counter (PC)

J Data Bank Register (DBR)

j Program Bank Register (PBR) ]

Processor Status Register (P)

7 0
Emulation 0= Native Mode
sCarry =Carry
-Zero = Result Zero
1IRQ Disable = Disabled
Decimal Mode = Decimal, 0=Binary

Index Register Select = 8-bit, 0 = 16-bit
Memory/Accumulator Select = 8-bit, 0=16-bit

OverflOwerflow

NegatiNegative

Figure 4.3. 65802 Native Mode Programming Model.
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address are effective in pointing to an address in the 65802's single
addressable bank of memory.

Finally, the bank bytes specified to the block move instructions are
ignored, too. Block moves are by necessity entirely intrabank on the
65802.

Because the abort signal was designed into the 65816 by virtue of its
redesigned pinout, its vector exists on the 65802 but has no connection
to the outside world. Since there is no way to abort an instruction with-
out using the external pin, the abort operation can never occur on the
65802.

In all other respects, the 65802 and 65816 are identical, so the 65802
can almost be thought of as a 65816 in a system with only 64K of physi-
cal memory installed. Table 4.6 summarizes the differences between the
65802 and 65816 native modes and the 6502 and 65C02.

Emulation Mode

That the 65802 provides a pinout the same as the 6502's and the
65C02's is not enough to run all the software written for the earlier two
processors. For one thing, the eight-bit software expects interrupt han-
dlers to distinguish break instructions by checking the stacked break
flag, and the 65802's native mode has no break flag, having replaced
both it and the 6502's unused flag with the m and x flags. For another,
6502 instructions that use eight-bit registers to set the stack would set
only half of the sixteen-bit stack. The native mode interrupt vectors are
different from their 6502/65C02 counterparts, as Table 4.5 showed.
There are also little differences; for example, while the direct page can
be set to the zero page, direct page indexed addresses can cross pages in
native mode, but wrap on the 6502 and 65C02.

Reaching beyond hardware compatibility to software compatibility
was clearly so important that the designers of the 65802 and 65816
devised the 6502 emulation mode scheme. Both processors power-on in
emulation mode, with the bank registers and the direct page register ini-
tialized to zero. As a result of both this and having the same pinout, a
65802 can be substituted for a 6502 in any application and will execute
the existing software the same. Furthermore, it is possible to design
second-generation 65816 systems compatible with existing 6502 designs
which, provided the computer's designers do as good a job in providing
compatibility as the 65816's designers have, could run all the existing
software of the first generation system in emulation mode, yet switch
into native mode for sixteen-bit power and 24-bit addressing.

It is important to realize, however, that 6502 emulation mode goes far
beyond emulating the 6502. It embodies all the addressing mode and
instruction enhancements of both the 65C02 and the 65802/65816; it has
a fully relocatable direct page register; it provides the stack relative




Programming the 65816

88

auou
T obed

abed 108.1p

Z6

d4444'v444

9s¢

s|uqg 8

paijipow jou g
paijipow jou g
sdeam

pien Z ‘A 'N
sak

asn sy 4o
sak

IN9T

14

SHq 8/8

sak

sak

ou

uonenw3 918499

auou
0 Mueq

abed 108.11p
26

4344'v344
9G¢

S1q 9T 10 8
0=a

0=a

abed sass01d
PIleA Z ‘A ‘N
ou

sak

sak

IN9T

14

SHQg 8/8 10 9T
sak

ou

ou

3AIlBN 9T899

auou
T obed

abed 100.1p

26

d4444'v444

95¢

s|uqg 8

paijipow jou A
paijipow 1ou g
sdeam

pifea Z ‘A ‘N
sak

asn 91| Jo
pa199uu09 10U
APY9

14

SHq 8/8

ou

sak

sak

uonenw3 ¢08s9

auou
0 Mueq

abed 10811p
26

4344'¥344
95¢

s1q 9T 10 8
0=a

0=a

abed sass042
pifen Z ‘A ‘N
ou

sak
pa199uu09 10U
AV9

14

SHq 8/8 10 9T
ou

ou

sak

3NIIEN 208599

dON

T abed
abed ouaz
79
4444'v444
8.1

SHQ 8
0=4da
0=da
sdeim
piren Z ‘A ‘N
sak

auou
auou

AP9

9T

suq g

ou

ou

sak

¢0099

ysead pjnoa
T abed

abed oiaz

9%

4444444

16T

suq 8
umousiun g
payipow jou A
sdeam

pieaul Z ‘A ‘N
sak

auou

auou

MAP9

1

SHQg 8

ou

sak

sak

¢099

"SOPOIN pue S10SS8204d Usamlag sadualaliqg Jole|N "9'¢ ajqel

sapoodo pasnun
Moels

abed |eloads
soluowauw
sydnuiaul
suonoNIIsuUl
s191s16a1 xapul
19sal Ja1je sbeyy
1dnuialul Jayye sbep)
paxapul abed 10811p
sBel) spow |ewiosp
Beyy Mealq

SaAoW X20|q
sJ1ais16al dueq
aoeds ssalppe
sapow Buissaippe
Joye|nwinooe

leubis 1oqe

Burwn zos9

nourd z059



Sixteen-Bit Architecture: The 65816 and the 65802 69

addressing modes; and in the 65816's emulation mode, it can switch
between banks to use 24-bit addressing. The primary differences be-
tween native and emulation modes are limitations placed on certain
emulation mode registers and flags so that existing programs are not
surprised (and crashed) by non-6502-like results. These differences are
summarized in Table 4.6.

The pair of 65816 instructions that have little use in emulation mode
are the block move instructions. Because the source and destination
parameters for moves are passed to the instruction in the index registers,
their eight-bit limits confine the instruction to the zero page: a block can
only be moved from one zero page location to another.

Only in emulation mode do 65802/65816 interrupt vectors match
their 6502/65C02 counterparts. Native mode interrupt vectors have
their own locations, as Table 4.5 showed.

Emulation Mode Registers

The 65802765816, under emulation mode, has the same six registers
as the 6502/65C02. In addition, all of the new 65802/65816 registers are
available in some form, although some of these on a limited basis. Fig-
ure 4.4 shows the result.

The primary accumulator A is always limited to eight bits by lack of
an m flag, but the hidden eight-bit accumulator B is available, as with
the native mode eight-bit accumulator setting. For certain register-trans-
fer operations, the two are combined to form the sixteen-bit register C,
just as in native mode. The index registers are limited to eight bits by
lack of an x flag. The direct page register is fully functional, although
direct page indexing wraps rather than crossing into the next page. The
stack pointer is curtailed to page one, as on the 6502 and 65C02; if a
sixteen-bit value is used to set it, the high byte is ignored. Finally, there
are the two bank registers, which are initialized to zero, but which can
be changed to point to other banks.

Now look at the P status register. In addition to the eight bits of the
standard 6502/65C02 status register, you'll see the ninth "phantom" e
bit, which contains a one; this setting puts the processor into its 6502
emulation mode.

The A and B registers, which together make up the native mode
sixteen-bit accumulator, are used together in emulation mode as C
solely for transferring values to and from the direct page register and the
stack.

The direct page register (D) points to the beginning of direct page
memory. You'll probably normally set it to zero in the emulation mode
to make the direct page identical to 6502 zero page memory. This is par-
ticularly true if your 65802 program is running within a 6502 or 65C02
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65816 Emulation Mode Programming Model

23 15 7

i Accumulator (B) ©) Accumulator(A)

Data Bank Register (DBR)

X Index Register (X)

Y Index Register (Y)

10 0 0 0 0 0 0 O Direct Page Register (D)
Ilooooooo 01T00000001 Stack Pointer ()
Program Bank Register (PBR) Program  Counter (PC)

Processor Status Register (P)

7 0

e mEmulation 1=6502 Emulation Mode

*Carry 1=Carry
-Zero 1= Result Zero
mIRQ Disable 1=Disabled
Decimal Mode 1=Decimal, 0= Binary

-Break Instruction 1= Break caused
interrupt

mOverflow 1=0verflow

mNegative 1=Negative

Figure 4.4. 65816 Emulation Mode Programming Model.

operating system. The operating system will have stored values to zero
page memory; if you change the direct page to point to another page,
then call an operating system routine, the operating system will load its
information from the wrong direct page (any page other than the zero
page) and fail miserably.
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Switching Between 6502 Emulation and Native
Modes

As you've seen, the native mode and the 6502 emulation mode
embody a number of significant differences. When running the 65802 in
an older machine, such as the Apple //c, //e, or Il Plus, you will proba-
bly call your 65802 programs from a 6502 operating system or program.
Your 65802 code can immediately switch the processor into native
mode, so you can take advantage of the additional power. You must,
however, switch back to emulation mode to use any I/0 routines, or to
call the 6502-based operating system.

Understanding the transitions between the two modes is critical, par-
ticularly in an environment where you are switching back and forth
between 6502 systems programs and your own 65802 code.

Switching from Emulation to Native Mode

When the 65802 is switched from emulation to native mode, the value
in the status register's carry bit winds up being toggled. Native mode is
set by swapping a cleared carry bit with the current value in the emula-
tion bit (which was a one if the processor was in emulation mode). The
m and x flags in the status register are switched into place (replacing the
b break flag) and the processor automatically forces the flags to one,
which leaves the accumulator and index registers as eight-bit registers,
the same as they were in emulation mode. The rest of the bits in the sta-
tus register remain the same.

While the emulation mode stack pointer register is only an eight-bit
register, it can be thought of as a sixteen-bit register with its high byte
hard-wired to one, so that the emulation stack is always in page one.
When the 65802 is switched from emulation to native mode, the
sixteen-bit native mode stack pointer assumes the same value the emula-
tion mode stack pointer has been pointing to—a page one address.

All other registers make the transition unchanged.

Switching from Native to Emulation Mode

Switching from native to emulation mode also toggles the carry. The
carry bit is set, then exchanged with the emulation bit to force the proc-
essor back into emulation mode. Provided the processor was previously
in native mode, the carry flag is cleared. The status register's m and x
bits disappear, forcing the accumulator and index registers back to eight
bits. If the index registers were in sixteen-bit mode, they keep their low
bytes, but their high bytes are permanently lost. If, on the other hand,
the accumulator was in sixteen-bit mode, the low byte remains in accu-
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mulator A while the high byte remains accessible as the hidden accu-
mulator B. The m bit (bit five) returns to its emulation role as the break
flag; the x bit (bit four) becomes once again an unused flag.

The stack is truncated from sixteen to eight bits, with its high byte
forced to a one; that is, the stack is forced to page one. Any value in the
high byte of the stack pointer register is permanently lost, which means
you must be very careful not to “lose" a non-page-one stack. Solving
this and other sticky problems involved with calling an emulation mode
routine from native mode is the goal of one of the routines in Chap-
ter 14.

All other registers make the transition unchanged.

As on the 65C02, the 6502's bugs are corrected by the 65802. Unlike
the 65C02, however, the 65802 fixes the bug either only in native mode
or without modifying the 6502's cycle counts (as the 65C02 in some
cases does). There are no unused opcodes on the 65802, although there
is an opcode which, while technically "used," is really reserved. If exe-
cuted, it acts like a no-operation instruction.

The most anomolous feature of the 65816 is the behavior of new
opcodes while in the 6502 emulation mode. While strict 6502 compat-
ability is enforced for all 6502 and 65C02 opcodes, this is not the case
with new opcodes. For example, although the high byte of the stack reg-
ister is always set to one, wrapping of the stack during the execution of
a single non-6502 instruction is not supported. These issues are dis-
cussed more fully in Chapter 16.

Because the 65802 fixes the 6502's bugs and quirks while leaving that
chip's timing cycles untouched, the 65802 is in fact a hair more compati-
ble as an upgrade chip than is the 65C02.
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Part Three is devoted to a step by step survey of all 92 different 65816
instructions and the 25 different types of addressing modes which,
together, account for the 256 operation codes of the 65802 and 65816.
As a matter of course, this survey naturally embraces the instruction
sets of the 6502 and 65C02 as well.

The instructions are grouped into six categories: data movement, flow
of control, arithmetic, logical and bit manipulation, subroutine calls,
and system control instructions. A separate chapter is devoted to each
group, and all of the instructions in a group are presented in their
respective chapter.

The addressing modes are divided into two classes, simple and com-
plex. The simple addressing modes are those that form their effective
address directly—that is, without requiring any, or only minimal, com-
bination or addition of partial addresses from several sources. The
complex addressing modes are those that combine two or more of the
basic addressing concepts, such as indirection and indexing, as part of
the effective address calculation.

Almost all of the examples found in this book are intended to be exe-
cuted on a system with either a 65802 or 65816 processor, and most
include 65816 instructions, although there are some examples that are
intentionally restricted to either the 6502 or 65C02 instruction set for
purposes of comparison.

Because of the easy availability of the pin-compatible 65802, there is a
good chance that you may, in fact, be executing your first sample pro-
grams on a system originally designed as a 6502-based system, with sys-
tem software such as machine-level monitors and operating systems that
naturally support 6502 code only. All of the software in this book was
developed and tested on just such systems (Apple // computers with
either 65802s replacing the 6502, or with 65816 processor cards in-
stalled).

It is assumed that you will have some kind of support environment
allowing you to develop programs and load them into memory, as well
as a monitor program that lets you examine and modify memory, such
as that found in the Apple /7 firmware. Since such programs were origi-
nally designed to support 6502 code, the case of calling a 65816 program
from a 6502-based system program must be given special attention.
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A 65802 or 65816 system is in the 6502 emulation mode when first ini-
tialized at power-up. This is quite appropriate if the system software
you are using to load and execute the sample programs is 6502-based, as
it would probably not execute correctly in the native 65816 mode.

Even though almost all of the examples are for the 65816 native mode
of operation, the early examples assume that the direct page register,
program counter bank register, and data bank register are all in their
default condition—set to zero—in which case they provide an environ-
ment that corresponds to the 64K programming space and zero page
addressing of the 6502 and 65C02. Aside from keeping the examples
simple, it permits easy switching between the native mode and the emu-
lation mode. If you have just powered up your 65816 or 65802 system,
nothing need be done to alter these default values.

The one initialization you must do is to switch from the emulation to
the native mode. To switch out of the 6502 emulation mode, which is
the default condition upon powering up a system, the code in Fragment
5.1 must be executed once.

CLC clear carry flag
XCE exchange carry with e bit (clears e bit)

Fragment 5.1.

This clears the special e flag, putting the processor into the 65816
native mode.

If you are using a 65802 processor in an old 6502 system, the above
code needs to be executed each time an example is called. Further,
before exiting a 65816 program to return to a 6502 calling program, the
opposite sequence in Fragment 5.2 must be executed.

SEC set carry flag
XCE exchange carry with e bit (sets e bit)

Fragment 5.2.

Even if you are running your test programs from a fully supported
65816 or 65802 environment, you should include the first mode-
switching fragment, since the operating mode may be undefined on
entry to a program. Execution of the second should be acceptable since
the system program should reinitialize itself to the native mode upon
return from a called program.
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A further requirement to successfully execute the example programs is
to provide a means for returning control to the calling monitor pro-
gram. In the examples, the RTS (return from subroutine) instruction is
used. The RTS instruction is not explained in detail until Chapter 12;
however, by coding it at the end of each example, control will normally
return to the system program that called the example program. So to
exit a program, you will always code the sequence in Fragment 5.3.

SEC set carry flag
XCE exchange carry with e bit (sets e bit)
RTS

Fragment 5.3.

Some systems may have a mechanism other than RTS to return con-
trol to the system; consult your system documentation.

In addition to these two details, a final pair of housekeeping instruc-
tions must be mastered early in order to understand the examples.

These two instructions are SEP and REP (set P and reset P). Although
they are not formally introduced until Chapter 13, their use is essential
to effective use of the 65802 and 65816. The SEP and REP instructions
have many uses, but their primary use is to change the value of the m
and x flags in the status register. As you recall from Chapter 4, the m
and x registers determine the size of the accumulator and index registers,
respectively. When a flag is set (has a value of one), the corresponding
register is eight bits; when a flag is clear, the corresponding register is
sixteen bits. SEP, which sets bits in the status register, is used to change
either the accumulator, or index registers, or both, to eight bits; REP,
which clears bits, is used to change either or both to sixteen bits. When-
ever a register changes size, all of the operations that move data in and
out of the register are affected as well. In this sense, the flag bits are
extensions to the opcode, changing their interpretation by the processor.

The operand following the SEP and REP instructions is a "mask" of
the flags to be modified. Since bit five of the status register is the m
memory/accumulator select flag, an instruction of the form;

REP #% 00100000

makes the accumulator size sixteen bits; a SEP instruction with the same
argument (or its hexadecimal equivalent, $20) would make it eight bits.
The binary value for modifying the x flag is %00010000, or $10; the
value for modifying both flags at once is %00110000, or $30. The sharp
(#) preceding the operand signifies the operand is immediate data,
stored in the byte following the opcode in program memory; the percent
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(%) and dollar ($) signs are special symbols signifying either binary or
hexadecimal number representation, respectively, as explained in Chap-
ter 1.

Understanding the basic operation of SEP and REP is relatively sim-
ple. What takes more skill is to develop a sense of their appropriate use,
since there is always more than one way to do things. Although there is
an immediate impulse to want to use the sixteen-bit modes for every-
thing, it should be fairly obvious that the eight-bit accumulator mode
will, for example, be more appropriate to applications such as character
manipulation. Old 6502 programmers should resist the feeling that if
they're not using the sixteen-bit modes “all the time" they're not getting
full advantage from their 65802 or 65816. The eight-bit accumulator and
index register size modes, which correspond to the 6502 architecture,
can be used to do some of the kinds of things the 6502 was doing suc-
cessfully before the option of using sixteen-bit registers was provided by
the 65816. Even in eight-bit mode, the 65802 or 65816 will provide
numerous advantages over the 6502.

What is most important is to develop a sense of rhythm; it is undesir-
able to be constantly switching modes. Since the exact order in which a
short sequence of loosely related instructions is executed is somewhat
arbitrary, try to do as many operations in a single mode as possible
before switching modes. At the same time, you should be aware that the
point at which an efficiency gain is made by switching to a more appro-
priate mode is reached very quickly. By examining the various possi-
bilities, and experimenting with them, a sense that translates into an
effective rhythm in coding can be developed.

Finally, a word about the examples as they appear in this book. Two
different styles are used: Code Fragments, and complete Code Listings.

Code Fragments are the kinds of examples used so far in this chapter.
Code Listings, on the other hand, are self-contained programs, ready to
be executed. Both appear in boxes, and are listed with the generated
object code as produced by the assembler. Single-line listings are
included in the text.

The Assembler Used in This Book

The assembly syntax used in this book is that recommended by the
Western Design Center in their data sheet (see Appendix F). The assem-
bler actually used is the ProDOS ORCA/M assembler for the Apple //
computer, by Byteworks, Inc. Before learning how to code the 65816, a
few details about some of the assembler directives need to be explained.

Full-line comments are indicated by starting a line with an asterisk or
a semicolon.
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If no starting address is specified, programs begin by default at $2000.
That address can be changed by using the origin directive, ORG. The
statement

ORG $7000

when included in a source program, will cause the next byte of code
generated to be located at memory location $7000, with subsequently
generated bytes following it.

Values can be assigned labels with the global equate directive, GEQU.
For example, in a card-playing program, spades might be represented by
the value $7F; the program is much easier to code (and read) if you can
use the label SPADE instead of remembering which of four values goes
with which of the four suits, as seen in Fragment 5.4.

SPADE GEQU  $7F
HEART GEQU  $FF
CLUB GEQU  $3F
DIAMOND GEQU $1F

Fragment 5.4.

Now rather than loading the A accumulator by specifying a hard-to-
remember value,

A97F LDA 0$7F

you can load it by specifying the easier-to-remember label:

A900 LDA OSPADE

Once you have defined a label using GEQU, the assembler automati-
cally substitutes the value assigned whenever the label is encountered.

The # sharp or pound sign is used to indicate that the accumulator is
to be loaded with an immediate constant.

In addition to being defined by GEQU statements, labels are also
defined by being coded in the label field—starting in the first column of
a source line, right in front of an instruction or storage-defining direc-
tive. When coded in front of an instruction:

A905 BEGIN LDA 05

the label defines an entry point for a branch or jump to go to; when an
instruction such as

4C0400 JMP BEGIN

is assembled, the assembler automatically calculates the value of BEGIN
and uses that value as the operand of the JMP instruction.
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Variable and array space can be set aside and optionally labelled with
the define storage directive, DS. In the example in Fragment 5.5, the
first DS directive sets aside one byte at $1000 for the variable FLAGZI;
the second DS directive sets aside 20 bytes starting at $1001 for
ARRAY1.

ORG $1000
MAIN START
FLAG1 DS 1

END

Fragment 5.5.

The value stored at FLAGI can be loaded into the accumulator by
specifying FLAGI as the operand of the LDA instruction:

ADO0010 LDA FLAG1

Program constants, primarily default values for initializing variables,
prompts, and messages, are located in memory and optionally given a
label by the declare constant directive, DC. The first character(s) of its
operand specifies a type (A for two-byte addresses, Il for one-byte inte-
gers, H for hex bytes and C for character strings, for example) followed
by the value or values to be stored, which are delimited by single
quotes.

Fragment 5.6 gives an example. The first constant, DFLAGI, is a
default value for code in the program to assign to the variable FLAGI.
You may realize that DFLAGI could be used as a variable; with a label,
later values of the flag could be stored here and then there would be no
need for any initialization code. But good programming practice sug-
gests otherwise: once another value is stored into DFLAGI, its initial
value is lost, which keeps the program from being restarted from mem-
ory. On the other hand, using a GEQU to set up DFLAGI would pre-
vent you from patching the location with a different value should you
change your mind about its initial value after the code has been
assembled.

DFLAG1 DC 11" $FE"

0010 COUNT DC A1$10001
496E7365 PROMPT DC C"Insert disk into drive 17

00

DC n ’0°

Fragment 5.6.
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Defining COUNT as a declared constant allows it, too, to be patched
in object as well as edited in source.

PROMPT is a message to be written to the screen when the program
is running. The assembler lists only the first four object bytes generated
('496E7365") to save room, but generates them all. The zero on the next
line acts as a string terminator.

Sometimes it is useful to define a label at a given point in the code,
but not associate it with a particular source line; the ANOP (assembler
no-operation) instruction does this. The value of the label will be the
location of the code resulting from the next code-generating source line.
One use of this feature is to define two labels with the same value, as
shown in Fragment 5.7.

0000 BLACK ANOP
0000 0000 WHITE O8] 2

Fragment 5.7.

The two bytes of variable storage reserved may now be referred to as
either BLACK or WHITE; their value is the same.

Address Notation

The 16-megabyte address space of the 65816 is divided into 256 64K
banks. Although it is possible to treat the address space in a linear fash-
ion—the range of bytes from $000000 to $FFFFFF—it is often desirable
and almost always easier to read if you distinguish the bank component
of a 24-bit address by separating it with a colon:

$00:FFFO
$xx:1234
$01:XXXX

In these examples, the x characters indicate that that address compo-
nent can be any legal value; the thing of interest is the specified compo-
nent.

Similarly, when specifying direct page addresses, remember that a
direct page address is only an offset; it must be added to the value in the
direct page register:

dp:$30
$1000:30

The dp in the first example is used to simply indicate the contents of
the direct page register, whatever it may be; in the second case, the
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value in the direct page register is given as $1000. Note that this nota-
tion is distinguished from the previous one by the fact that the address
to the left of the colon is a sixteen-bit value, the address on the right is
eight. Twenty-four-bit addresses are the other way around.

A third notation used in this book describes ranges of address. When-
ever two addresses appear together separated by a single dot, the entire
range of memory location between and including the two addresses is
being referred to. For example, $2000.2001 refers to the double-byte
starting at $2000. If high bytes of the second address are omitted, they
are assumed to have the same value as the first address. Thus, $2000.03
refers to the addresses between $2000 and $2003 inclusive.



First Examples:
Moving Data

Most people associate what a computer does with arithmetic calcula-
tions and computations. That is only part of the story. A great deal of
compute time in any application is devoted to simply moving data
around the system: from here to there in memory, from memory into
the processor to perform some operation, and from the processor to
memory to store a result or to temporarily save an intermediate value.
Data movement is one of the easiest computer operations to grasp and is
ideal for learning the various addressing modes (there are more address-
ing modes available to the data movement operations than to any other
class of instructions). It, therefore, presents a natural point of entry for
learning to program the 65x instruction set.

On the 65x series of processors—the eight-bit 6502 and 65C02 and
their sixteen-bit successors, the 65802 and 65816—you move data
almost entirely using the microprocessor registers.

This chapter discusses how to load the registers with data and store
data from the registers to memory (using one of the simple addressing
modes as an example), how to transfer and exchange data between reg-
isters, how to move information onto and off of the stack, and how to
move blocks (or strings) of data from one memory location to another
(see Table 6-1).
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Table 6.1. Data Movement Instructions.

Available on:
Mnemonic 6502 65C02 65802/316 Description

Load/Store Instructions:

LDA X X X load the accumulator
LDX X X X load the X index register
LDY X X X load the Y index register
STA X X X store the accumulator
STX X X X store the X index register
STY X X X store the Y index register
Push Instructions:
PHA X X X push the accumulator
PHP X X X push status register (flags)
PHX X X push X index register
PHY X X push Y index register
PHB X push data bank register
PHK X push program bank register
PHD X push direct page register

Push Instructions Introduced:

PEA X push effective absolute address
PEI X push effective indirect address
PER X push effective relative address

Pull Instructions:

PLA X X X pull the accumulator

PLP X X X pull status register (flags)

PLX X X pull X index register

PLY X X pull Y index register

PLB X pull data bank register

PLD X pull direct page register
Transfer Instructions:

TAX X X X transfer A to X

TAY X X X transfer Ato Y

TSX X X X transfer S to X

TXS X X X transfer X to S

TXA X X X transfer X to A

TYA X X X transfer Y to A

TCD X transfer C accumulator to D

TDC X transfer D to C accumulator

TCS X transfer C accumulator to S

(Continued)
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Table 6.1. Data Movement Instructions (Cont.).

Available on:

Mnemonic 6502 65C02 65802/816 Description
TSC X transfer S to C accumulator
TXY X transfer X to Y
TYX X transfer Y to X

Exchange Instructions:
XBA X exchange B & A accumulators
XCE X exchange carry & emulation bits

Store Zero to Memory:
STz X X store zero to memory

Block Moves:
MVN X move block in negative direction
MVP X move block in positive direction

When programming the 6502, whether you're storing a constant value
to memory or moving data from one memory location to another, one
of the registers is always intermediate. The same is generally true for the
other 65x processors, with a few exceptions: the 65816's two block move
instructions, three of its push instructions, and an instruction first intro-
duced on the 65C02 to store zero to memory.

As a result, two instructions are required for most data movement:
one to load a register either with a constant value from program mem-
ory or with a variable value from data memory; the second to store the
value to a new memory location.

Most data is moved via the accumulator. This is true for several rea-
sons. First, the accumulator can access memory using more addressing
modes than any of the other registers. Second, with a few exceptions,
it's only in the accumulator that you can arithmetically or logically
operate on data (although the index registers, in keeping with their role
as loop counters and array pointers, can be incremented, decremented,
and compared). Third, data movement often takes place inside of loops,
program structures in which the index registers are often dedicated to
serving as counters and pointers.

Loading and Storing Registers

To provide examples of the six basic data-movement instructions—
LDA, LDX, LDY (load accumulator or index registers) and STA, STX,
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and STY (store accumulator or index registers)—requires introducing at
least one of the 65x addressing modes. Except for certain instructions—
such as push and pull, which use forms of stack addressing—the abso-
lute addressing mode will generally be used in this chapter. Absolute
addressing, available on all four 65x processors, is one of the simplest
modes to understand. It accesses data at a known, fixed memory loca-
tion.

For example, to move a byte from one absolute memory location to
another, load a register from the first location, then store that register to
the other location. In Listing 6.1, the eight-bit value $77 stored at the
absolute location identified by the label SOURCE is first loaded into the
accumulator, then saved to the absolute location labeled DEST. Note
the inclusion of the mode-switching code described in the previous
chapter.

The code generated by the assembler, when linked, will begin at the
default origin location, $2000. The example generates 13 ($0D) bytes of
actual code (the address of the RTS instruction is at memory location
$200C). The assembler then automatically assigns the next available
memory location, $200D, to the label on the following line, SOURCE.
This line contains a DC (define constant) assembler directive, which
causes the hexadecimal value $77 to be stored at that location in the
code file ($200D). Since only one byte of storage is used, the data stor-
age location reserved for the label DEST on the next line is $200E.

The syntax for absolute addressing lets you code, as an instruction's
operand, either a symbolic label or an actual value. The assembler con-
verts a symbolic operand to its correct absolute value, determines from
its context that absolute addressing is intended, and generates the cor-
rect opcode for the instruction using absolute addressing. The
assembler-generated hexadecimal object code listed to the left of the
source code shows that the assembler filled in addresses $000D and
$000E as the operands for the LDA and STA instructions, respectively
(they are, of course, in the 65x's standard low-high order and relative to
the $0000 start address the assembler assigns to its relocatable modules;
the linker will modify these addresses to $200D and $200E when creat-
ing the final loadable object).

As Chapter 4 explained, the 65816's accumulator can be toggled to
deal with either eight-bit or sixteen-bit quantities, as can its index regis-
ters, by setting or resetting the m (memory/accumulator select) or x
(index register select) flag bits of the status register. You don't need to
execute a SEP or REP instruction before every instruction or every
memory move, provided you know the register you intend to use is
already set correctly. But always be careful to avoid making invalid
assumptions about the modes currently in force, particularly when
transferring control from code in one location to code in another.
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KEEP KL.6.1
65816 ON
MAIN START
1 code to switch from 6502 emulation to native mode
18 CLC clear carry flag
FB XCE exchange carry with E bit (clear E bit)
1 main example code
E220 SEP #*00100000 set 8-bit data mode
ADODOO LDA SOURCE load byte from memory location SOURCE
800E00 STA DEST store byte to memory location DEST
1 code to return to 6502 emulation mode
38 SEC set carry flag
FB XCE exchange carry with E bit (set E bit)
1
60 RTS
77 SOURCE  DC Hi77+
00 DEST DS 1
END
Listing 6.1.

The load and store instructions in Listing 6.1 will as easily move a
double byte as they did a byte, if the register you use is in sixteen-bit
mode, as in Listing 6.2.

Note that the source data in the define constant statement is now two
bytes long, as is storage reserved by the define storage statement that
follows. If you look at the interlisted hexadecimal code generated by the
assembler, you will see that the address of the label DEST is now $200F.
The assembler has automatically adjusted for the increase in the size of
the data at SOURCE, which is the great advantage of using symbolic
labels rather than fixed addresses in writing assembler programs.

The load and store instructions are paired here to demonstrate that,
when using identical addressing modes, the load and store operations
are symmetrical. In many cases, though, a value loaded into a register
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0001 oooo KEEP KL.6.2
0002 0000 65816 ON
0003 0000
0004 0000 MAIN START
0005 0000
0006 0000 1 switch from 6502 emulation to native mode
0007 0000 18 CLC
0008 0001 FB XCE
0009 0002 1
0010 0002 c220 REP  AFX00100000 reset accumulator to 16-bit mode
0011 0004 ADODOO LDA  SOURCE load double byte from memory location SOURCE
0012 0007 8DOFOO STA  DEST store double byte to memory location DEST
0013 000A
0014 000A 1 switch back to emulation mode
0015 O0O00A 38 SEC
0016 000B F8 XCE
0017 oo00C 1
0018 000C 60 RTS
0019 0000 1
0020 0000 7F7F SOURCE DC AISTF7F"
0021 0OOF 0000 OEST DS 2
0022 0011 END
Listing 6.2.

will be stored many instructions later, or never at all, or stored using an
addressing mode different from that of the load instruction.

Effect of Load and Store Operations on Status
Flags

One of the results of the register load operations—LDA, LDY, and
LDX—is their effect on certain status flags in the status register. When a
register is loaded, the n and z flags are changed to reflect two condi-
tions: whether the value loaded has its high bit set (is negative when
considered as a signed, two's-complement number); and whether the
number is equal to zero. The n flag is set when the value loaded is nega-
tive and cleared otherwise. The z flag is set when the value loaded is
zero and cleared otherwise. How you use these status flags will be cov-
ered in detail in Chapter 8, Flow of Control.

The store operation does not change any flags, unlike the Motorola
68xx store instructions. On the other hand, Intel 808x programmers will
discover the 65x processors use load and store instructions instead of the
808x's all-encompassing MOV instruction. The 808x move instruction
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changes no flags whatsoever, unlike the 65x load instruction, which
does.

Moving Data Using the Stack

All of the 65x processors have a single stack pointer. (This is a typical
processor design, although there are designs that feature other stack
implementations, such as providing separate stack pointers for the sys-
tem supervisor and the user.) This single stack is therefore used both by
the system for automatic storage of address information during subrou-
tine calls and of address and register information during interrupts, and
by user programs for temporary storage of data. Stack use by the sys-
tem will be covered in later chapters.

As the architecture chapters in Part Il discussed, the S register (stack
pointer) points to the next available stack location; that is, S holds the
address of the next available stack location. Instructions using stack
addressing locate their data storage either at or relative to the next avail-
able stack location.

The stack pointers of the 6502 and 65C02 are only eight bits wide; the
eight-bit value in the stack pointer is added to an implied base of $100,
giving the actual stack memory of $100 to $1FF; the stack is confined to
page one. The 65816's native mode stack pointer, on the other hand, is
sixteen bits wide, and may point to any location in bank zero (the first
64K of memory). The difference is illustrated in Figure 6.1.

Push

Push instructions store data, generally located in a register, onto the
stack. Regardless of a register's size, the instruction that pushes it takes
only a single byte.

When a byte is pushed onto the stack, it is stored to the location
pointed to by the stack pointer, after which the stack pointer is auto-
matically decremented to point to the next available location.

When double-byte data or a sixteen-bit address is pushed onto the
stack, first its high-order byte is stored to the location pointed to by the
stack pointer, the stack pointer is decremented, the low byte is stored to
the new location pointed to by the stack pointer, and finally the stack
pointer is decremented once again, pointing past both bytes of pushed
data. The sixteen-bit value ends up on the stack in the usual 65x mem-
ory order: low byte in the lower address, high byte in the higher
address.

In both cases, the stack grows downward, and the stack pointer
points to the next available (unused) location at the end of the
operation.
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$FFFF
MEMORY
65816/65802
native mode stack pointer:
16-bit range
$0000-$FFFF
6502/65C02
and
65816/65802
emulation mode
stack pointer: $0200
8-bit range j
$0100-501FF 1
$0100
$0000

Figure 6.1. Stack Memory.

Pushing the Basic 65x Registers

On the 6502, only the contents of the accumulator and the status reg-
ister can be pushed directly onto the stack in a single operation, using
the PHA and PHP instructions, respectively. The 65C02 adds instruc-
tions to push the index registers onto the stack: PHX and PHY.
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The 65816 and 65802 let double-byte data as well as single bytes be
pushed onto the stack. Figure 6.2 shows the results of both. In the case
of the accumulator and index registers, the size of the data pushed onto
the stack depends on the settings of the m memory/accumulator select
and x index register select flags. Since the accumulator and index regis-
ters are of variable size (eight bits or sixteen), the PHA, PHX, and PHY
instructions have correspondingly variable effects.

Pull

Pull instructions reverse the effects of the push instructions, but there
are fewer pull instructions, all of them single-byte instructions that pull
a value off the stack into a register. Unlike the Motorola and Intel proc-
essors (68xx and 808x), the 65x pull instructions set the n and z flags. So
programmers used to using pull instructions between a test and a branch
on the other processors should exercise caution with the 65x pull
instructions.

Pulling the Basic 65x Registers

The 6502 pull instructions completely complement its push instruc-
tions. PLP increments the stack pointer, then loads the processor status
register (the flags) from the page one address pointed to by the offset in
the stack pointer (of course, this destroys the previous contents of the
status register). PLA pulls a byte from the stack into the accumulator,
which affects the n and z flags in the status register just as a load accu-
mulator instruction does.

As instructions for pushing the index registers were added to the
65C02, complementary pull instructions were added, too—that is, PLX
and PLY. The pull index register instructions also affect the n and z
flags.

On the 65802 and 65816, the push and pull instructions for the pri-
mary user registers—A, X, and Y—have been augmented to handle
sixteen-bit data when the appropriate select flag (memory/accumulator
or index register) is clear. Code these three pull instructions carefully
since the stack pointer will be incremented one or two bytes per pull
depending on the current settings of the m and x flags.

Pushing and Pulling the 65816’s Additional
Registers

The 65816 adds one-byte push instructions for all its new registers,
and pull instructions for all but one of them. In fact, the bank registers
can only be accessed using the stack.

PHB pushes the contents of the data bank register, an eight-bit regis-
ter, onto the stack. PLB pulls an eight-bit value from the stack into the
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data bank register. The two most common uses for PHB are, first, to let
a program determine the currently active data bank, and second, to
save the current data bank prior to switching to another bank.

Fragment 6.1 is a 65816 code fragment which switches between two
data banks. While OTHBNK is declared just once, it represents two dif-
ferent memory cells, both with the same sixteen-bit address of $FFF3,
but in two different 64K banks: one is in the data bank that is current
when the code fragment is entered; the second is in the data bank
switched to by the code fragment. The code fragment could be executed
a second time and the data bank would be switched back to the original
bank.

OTHBNK  GEQU SFFF3 location of other bank stored here
E220 SEP #*00100000 set accumulator to 8-bit mode
ADF3FF LDA OTHBNK get location of bank to switch to
8B PHB push current data bank onto stack
48 PHA push other data bank onto stack
AB PLB pull data bank: make other data bank current
68 PLA get original data bank into accum
8DF3FF STA OTHBNK store it in 2nd bank so can be restored

Fragment 6.1.

Similar to PHB, the PHK instruction pushes the value in the eight-bit
program counter bank register onto the stack. Again, the instruction
can be used to let you locate the current bank; this is useful in writing
bank-independent code, which can be executed out of any arbitrarily
assigned bank.

You're less likely to use PHK to preserve the current bank prior to
changing banks (as in the case of PHB above) because the jump to sub-
routine long instruction automatically pushes the program counter bank
as it changes it, and because there is no complementary pull instruction.
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The only way to change the value in the program counter bank register
is to execute a long jump instruction, an interrupt, or a return from sub-
routine or interrupt. However, you can use PHK to synthesize more
complex call and return sequences, or to set the data bank equal to the
program bank.

Finally, the PHD instruction pushes the sixteen-bit direct page register
onto the stack, and PLD pulls a sixteen-bit value from the stack into the
direct page register. PHD is useful primarily for preserving the direct
page location before changing it, while PLD is an easy way to change or
restore it. Note that PLB and PLD also affect the n and z flags.

Pushing Effective Addresses

The 65816 also provides three instructions which can push data onto
the stack without altering any registers. These three push effective
address instructions—PEA, PEI, and PER —push absolute, indirect, and
relative sixteen-bit addresses or data directly onto the stack from mem-
ory. Their use will be explained when their addressing modes are pre-
sented in detail in Chapter 11 (Complex Addressing Modes).

Other Attributes of Push and Pull

The types of data that can be pushed but not pulled are effective
addresses and the K (or more commonly PBR) program bank register.

PLD and PLB are typically used to restore values from a previous
state.

Finally, you should note that even though the push and pull opera-
tions are largely symmetrical, data that is pushed onto the stack from
one register does not need to be pulled off the stack into the same regis-
ter. As far as the processor is concerned, data pulled off the stack does
not have to be the same size as was pushed onto it. But needless to say,
the stack can quickly become garbled if you are not extremely careful.

Transfers

The accumulator is the most powerful of the user registers, both in
the addressing modes available to accumulator operations and in its
arithmetic and logic capabilities. As a result, addresses and indexes that
must be used in one of the index registers must often be calculated in the
accumulator. A typical problem on the 6502 and 65C02, since their reg-
isters are only eight bits wide, is that sixteen-bit values such as addresses
must be added or otherwise manipulated eight bits at a time. The other
half of the value, the high or low byte, must meanwhile be stored away
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for easy retrieval and quick temporary storage of register contents in a
currently unused register is desirable.

For these reasons as well as to transfer a value to a register where a
different operation or addressing mode is available, all 65x processors
implement a set of one-byte implied operand instructions which transfer
data from one register to another:

TAX transfers the contents of the accumulator to the X index register
TAY transfers the contents of the accumulator to the Y index register
TSX transfers the contents of the stack pointer to the X index register
TXS transfers the contents of the X index register to the stack pointer
TXA transfers the contents of the X index register to the accumulator
TYA transfers the contents of the Y index register to the accumulator

Like the load instructions, all of these transfer operations except TXS
set both the n and z flags. (TXS does not affect the flags because setting
the stack is considered an operation in which the data transferred is
fully known and will not be further manipulated.)

The availability of these instructions on the 65802/65816, with its
dual-word-size architecture, naturally leads to some questions when you
consider transfer of data between registers of different sizes. For exam-
ple, you may have set the accumulator word size to sixteen bits, and the
index register size to eight. What happens when you execute a TAY
(transfer A to Y) instruction?

The first rule to remember is that the nature of the transfer is deter-
mined by the destination register. In this case, only the low-order eight
bits of the accumulator will be transferred to the eight-bit Y register. A
second rule also applies here: when the index registers are eight bits
(because the index register select flag is set), the high byte of each index
register is always forced to zero upon return to sixteen-bit size, and the
low-order value of each sixteen-bit index register contains its previous
eight-bit value.

Listing 6.3 illustrates these rules with TAY. In this example, the value
stored at the location DATAZ2 is $0033; only the low order byte has
been transferred from the accumulator, while the high byte has been
zeroed.

The accumulator, on the other hand, operates differently. When the
accumulator word size is switched from sixteen bits to eight, the high-
order byte is preserved in a "hidden" accumulator, B. It can even be
accessed without changing modes back to the sixteen-bit accumulator size
by executing the XBA (exchange B with A) instruction, described in the
following section. Listing 6.4 illustrates this persistence of the accumula-
tor's high byte. After running it, the contents of locations RESULT.
RESULT + 1 will be $7F33, or 33 7F, in low-high memory order. In other
words, the value in the high byte of the sixteen-bit accumulator, $7F, was
preserved across the mode switch to eight-bit word size.
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0000 KEEP KL.6.3
0000
0000 65816 ON
0000
0000
0000 MAIN START
0000 f switch-to-native-mode code
0000 18 CLC dear carry flag
0001 FB XCE exchange carry with
0002
0002 €220 REP #$20 set accum to 16
0004 E210 SEP #3$10 set index to 8
0006 A01200 LDA DATA
0009 A8 TAY
000A €210 REP #3$10 set index to 16
oooc 8C1400 STY DATA2
000F
000F 1 return to 6502 emulation mode
000F 38 SEC set carry flag
0010 FB XCE exchange carry with
0011
0011 60 RTS
0012
0012 33FF DATA DC A"$FF33*
0014 0000 DATA2 DS 2
0016
0016 END

Listing 6.3.

Now consider the case where the sixteen-bit Y register is transferred to
an eight-bit accumulator, as shown in Listing 6.5. The result in this case
is $33FF, making it clear that the high byte of the Y register has not been
transferred into the inactive high-order byte of the accumulator. The
rule is that operations on the eight-bit A accumulator affect only the
low-order byte in A, not the hidden high byte in B. Transfers into the A
accumulator fall within the rule.

Figure 6.3 summarizes the effects of transfers between registers of dif-
ferent sizes.

There are also rules for transfers from an eight-bit to a sixteen-bit reg-
ister. Transfers out of the eight-bit accumulator into a sixteen-bit index
register transfer both eight-bit accumulators.

In Listing 6.6, the value saved to RESULT is $7FFF, showing that not
only is the eight-bit A accumulator transferred to become the low byte
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0000 KEEP KL.6.4

0000 65816 ON

0000

0000 MAIN START

0000

0000 1 switch-to-native-mode code

0000 18 CLC clear carry flag

0001 FB XCE exchange carry with e bit (clear e bit)
0002

0002 C230 REP #$30 set accum and index size to 16

0004 AD1400 LDA DATA16 load accum with 16-bit value at DATA16
0007 E220 SEP #$20 set accum to eight bits

0009 AD1600 LDA DATA8 load 8-bit value at DATA8

oooc C220 REP #3$20 make accum 16 again

000E 8D1700 STA RESULT save accum lo.hi in RESULT.RESULT+1
0011

0011 1 return to 6502 emulation mode

0011 38 SEC set carry flag

0012 FB XCE exchange carry with e bit (set e bit)
0013

0013 60 RTS

0014

0014 FF7F DATA16 DC A"$7FFF 1

0016 33 0ATA8 DC H *33*"

0017 0000 RESULT DS 2

0019

0019 END

Listing 6.4.

of the sixteen-bit index register, but the hidden B accumulator is trans-
ferred to become the high byte of the index register. This means you can
form a sixteen-bit index in the eight-bit accumulator one byte at a time,
then transfer the whole thing to the index register without having to
switch the accumulator to sixteen bits first. However, take care not to
inadvertently transfer an unknown hidden value when doing transfers
from the eight-bit accumulator to a sixteen-bit index register.

Transfers from an eight-bit index register to the sixteen-bit accumula-
tor result in the index register being transferred into the accumulator's
low byte while the accumulator's high byte is zeroed. This is consistent
with the zeroing of the high byte when eight-bit index registers are
switched to sixteen bits.

In Listing 6.7, the result is $0033, demonstrating that when an eight-
bit index register is transferred to the sixteen-bit accumulator, a zero is
concatenated as the high byte of the new accumulator value.
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KEEP KL.6.5
65816 ON
MAIN START
# switch to native mode
18 CLC clear carry flag
FB XCE exchange carry with e bit (clear e bit)
C230 REP #3$30 set accum, index size to 16
AC1500 LDY DATA16 load Y-reg with 16-bit value at DATA16
AD1700 LDA DATA2 load accum with 16-bit value at DATA2
E220 SEP  #$20 set accum to eight bits
98 TYA transfer Y register”s value to A
€220 REP  #3$20 make accum 16 again
8D1900 STA RESULT save accum lo.hi in RESULT.RESULT+1
1 return to 6502 emulation mode
38 SEC set carry flag
FB XCE exchange carry with e bit (set e bit)
60 RTS
FF7F DATA16 DC A“STFFF~
4433 DATA2 DC A"$3344"°
0000 RESULT DS 2
END
Listing 6.5.

In the 65816, transfers between index registers and the stack also
depend on the setting of the destination register. For example, transfer-
ring the sixteen-bit stack to an eight-bit index register, as in Fragment
6.2, results in the transfer of just the low byte. Obviously, though,
you'll find few reasons to transfer only the low byte of the sixteen-bit
stack pointer. As always, you need to be watchful of the current modes
in force in each of your routines.

The 65816 also adds new transfer operations to accommodate direct
transfer of data to and from the new 65816 environment-setting registers
(the direct page register and the sixteen-bit stack register), and also to
complete the set of possible register transfer instructions for the basic
65X user register set:
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(L=bits in low byte; H=bits in high byte; P= previous bits unmodified by transfer)

16-Bit Index Register to 8-bit Accumulator A

HHHH  HHHH LLLL  LLLL 1 byte PPPP PPPP LLLL LLLL
*

X orY B A
only transfers low byte (hidden B accumulator not affected)

16-Bit Accumulator A =s-----seeeeeeeee —eeeeee to— T 8-Bit Index Register
HHHH  HHHH LLLL  LLLL Lbye 1 0000 0000 LLLL LLLL

/ Xory
only transfers low byte

16-Bit Stack Pointer - — {0 - - mmem—m—————————— 8-Bit Index Register X

HHHH  HHHH LLLL LLLL lbyte | noon nnnn LLLL  LLLL
I

of little use: only transfers address-low

8-Bit Index Register to 16-Bit Accumulator A

0000 0000 LLLL  LLLL 2 bytes 0000 0000 LLLL  LLLL

X or Y high byte transferred is 0
8-Bit Accumulator A ----r--eeeoeeeeeea- — {0~ - - 16-Bit Index Register
i HHHH HHHH LLLL  LLLL 2 bytes HHHH HHHH LLLL  LLLL

B A L - X orY
transfer both accumulators

8-Bit Index Register X to 16-Bit Stack Pointer

0000 0000 LLLL  LLLL 2 bytes 0000 0000 LLLL  LLLL
sets stack to page 0 value

Figure 6.3. Register Transfers Between Different-Sized Registers.

TCD transfers the contents of the sixteen-bit accumulator C to the D
direct page register. The use of the letter C in this instruction’s
mnemonic to refer to the accumulator indicates that this opera-
tion is always a sixteen-bit transfer, regardless of the setting of
the memory select flag. For such a transfer to be meaningful, of
course, the high-order byte of the accumulator must contain a
valid value.

TDC transfers the contents of the D direct page register to the
sixteen-bit accumulator. Again, the use of the letter C in the



0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030

0000
0000
0000
0000
0000
0000
0000
0000
0001
0002
0002
0004
0007
000A
000C
000D
0010
0010
0010
0010
0011
0012
0012
0013
0013
0013
0015
0017
0019
0019

FB

€230
A01300
AC1500
E220
A8
8C1700

FF7F
4433
0000

TCS

TSC

Programming the 65816

KEEP KL.6.6
65816 ON
MAIN START
1 swi tct\ to native mode
CLC clear carry flag
XCE exchange carry with e bit (clear e bit)
REP #3$30 set accum, index size to 16 bits
LDA  DATAl16 load accum with 16-bit value at DATA16
Loy DATA2 load Y-reg with 16-bit value at DATA2
SEP  #$20 set accum to eight bits
TAY transfer accum to Y
STY RESULT save 16-bit index into RESULT.RESULT+1

return to 6502 emulation mode

SEC set carry flag
XCE exchange carry with e bit (set e bit)

RTS

DATA16 DC A1S7FFF*
DATA2 DC A"$3344*°
RESULT DS 2

END

Listing 6.6.

mnemonic to name the accumulator indicates that the sixteen-
bit accumulator is always used, regardless of the setting of the
memory select flag. Thus, sixteen bits are always transferred,
even if the accumulator size is eight bits, in which case the high
byte is stored to the hidden B accumulator.

transfers the contents of the sixteen-bit C accumulator to the S
stack pointer register, thereby relocating the stack. Since sixteen
bits will be transferred regardless of the accumulator word size,
the high byte of the accumulator must contain valid data.
transfers the contents of the sixteen-bit S stack pointer register
to the sixteen-bit accumulator, C, regardless of the accumulator
word size.
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SEP
TSX
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KEEP  KL.6.7
65816 ON

START

swi tch-to-nati ve-mode code

CLC clear carry flag

XCE exchange carry with e bit (clear e bit)
SEP  #$10 set index size to 8 bits

REP  #$20 set accum to 16 bits

LDA DATA16 load accum with 16-bit value at

LDY DATA8 load Y-reg with 8-bit value at DATA8
TYA transfer Y to accumulator

STA RESULT save 16-bit accum into RESULT.RESULT+1

return to 6502 emulation mode

SEC set carry flag

XCE exchange carry with e bit (set e bit)

RTS

DC A1STFFF*®
DC H+33"
DS 2

END

Listing 6.7.

#*00010000 set index mode to 8 bits

transfer low byte of stack ptr to 8-bit X

Fragment 6.2.

101

TXY transfers the contents of the X index register to the Y index reg-
ister. Since X and Y will always have the same register size,
there is no ambiguity.

TYX transfers the contents of the Y index register to the X index reg-
ister. Both will always be the same size.
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Transfer instructions take only one byte, with the source and destina-
tion both specified in the opcode itself. In all transfers, the data remains
intact in the original register as well as being copied into the new reg-
ister.

Using TCS and TCD can be dangerous when the accumulator is in
eight-bit mode, unless the accumulator was recently loaded in sixteen-
bit mode so that the high byte, hidden when the switch was made to
eight-bit mode, is still known. Transferring an indeterminate hidden
high byte of the accumulator along with its known low byte into a
sixteen-bit environment register such as the stack pointer will generally
result in disaster.

As always, you need to be watchful of the modes currently in force in
each of your routines.

Exchanges

The 65802 and 65816 also implement two exchange instructions, nei-
ther available on the 6502 or 65C02. An exchange differs from a transfer
in that two values are swapped, rather than one value being copied to a
new location.

The first of the two exchange instructions, XBA, swaps the high and
low bytes of the sixteen-bit accumulator (the C accumulator).

The terminology used to describe the various components of the
eight-or-sixteen bit accumulator is: to use A to name the accumulator as
a register that may be optionally eight or sixteen bits wide (depending
on the m memory/accumulator select flag); to use C when the accumu-
lator is considered to be sixteen bits regardless of the setting of the m
flag; and, when A is used in eight-bit mode to describe the low byte
only, to use B to describe the hidden high byte of the sixteen-bit accu-
mulator. In the latter case, when the accumulator size is set to eight
bits, only the XBA instruction can directly access the high byte of the
sixteen-bit "double accumulator"”, B. This replacement of A for B and B
for A can be used to simulate two eight-bit accumulators, each of
which, by swapping, "shares" the actual A accumulator. It can also be
used in the sixteen-bit mode for inverting a double-byte value. The XBA
instruction is exceptional in that the n flag is always set on the basis of
bit seven of the resulting accumulator A, even if the accumulator is six-
teen bits.

The second exchange instruction, XCE, is the 65816's only method for
toggling between 6502 emulation mode and 65816 native mode. Rather
than exchanging register values, it exchanges two bits—the carry flag,
which is bit zero of the status register, and the e bit, which should be
considered a kind of appendage to the status register and which deter-
mines the use of several of the other flags.

Fragment 6.3 sets the processor to 6502 emulation mode. Conversely,
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native mode can be set by replacing the SEC with a CLC clear carry
instruction.

0010 38 SEC
0011 FB XCE

Fragment 6.3.

Because the exchange stores the previous emulation flag setting into
the carry, it can be saved and restored later. It can also be evaluated
with the branch-on-condition instructions to be discussed in Chapter 8
(Flow of Control) to determine which mode the processor was just in. A
device driver routine that needs to set the emulation bit, for example,
can save its previous value for restoration before returning.

The selection of the carry flag for the e bit exchange instruction is in
no way connected to the normal use of the carry flag in arithmetic oper-
ations. It was selected because it is easy to set and reset, it is less fre-
quently used than the sign and zero flags, and there are branch-on-
condition instructions which test it. The primary use of the SEC and
CLC instructions for arithmetic will be covered in upcoming chapters.

Storing Zero to Memory

The STZ instruction, introduced on the 65C02, lets you clear either a
single or double byte memory word to zero, depending, as usual, on the
current memory/accumulator select flag word size. Zero has long been
recognized as one of the most commonly stored values, so a “dedicated"”
instruction to store zero to memory can improve the efficiency of many
65x programs. Furthermore, the STZ instruction lets you clear memory
without having to first load one of the registers with zero. Using STZ
results in fewer bytes of code, faster execution, and undisturbed reg-
isters.

Block Moves

The two block move instructions, available only on the 65802 and the
65816, let entire blocks (or strings) of memory be moved at once.

Before using either instruction, all three user registers (C, X, and Y)
must be set up with values which serve as parameters.
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The C accumulator holds the count of the number of bytes to be
moved, minus one. It may take some getting used to, but this "count” is
numbered from zero rather than one. The C accumulator is always six-
teen bits: if the m mode flag is set to eight bits, the count is still the
sixteen-bit value in C, the concatenation of B and A.

X and Y specify either the top or the bottom addresses of the two
blocks, depending on which of the two versions of the instruction you
choose. In Listing 6.8, $2000 bytes of data are moved from location
$2000 to $4000.

KEEP KL.6.8
65816 ON
MAIN START

18 CLC
FB e
C230 REP #$30 reset data and index mode to 16 bits

LONGA ON

LONG I ON
AD1300 LDA COUNT load 16-bit C accum with # bytes to be moved
AE1500 LDX SOURCE load 16-bit X reg with address of source
AC1700 LDY DEST load 16-bit Y reg with address of destination
540000 MVN 0,0
38 SEC
B XCE
60 RTS
FF1F COUNT DC A*SIFFF
0020 SOURCE  DC A*$2000
0040 DEST DC A*$4000

END

Listing 6.8.

The MVN instruction uses X and Y to specify the bottom (or begin-
ning) addresses of the two blocks of memory. The first byte is moved
from the address in X to the address in Y; then X and Y are incremented,
C is decremented, and the next byte is moved, and so on, until the num-
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ber of bytes specified by the value in C is moved (that is, until C reaches
$FFFF). If C is zero, a single first byte is moved, X and Y are each incre-
mented once, and C is decremented to $FFFF.

The MVP instruction assumes X and Y specify the top (or ending)
addresses of the two blocks of memory. The first byte is moved from
the address in X to the address in Y; then X, Y and C are decremented,
the next byte is moved, and so on, until the number of bytes specified
by the value in C is moved (until C reaches $FFFF).

The need for two distinct block move instructions becomes apparent
when the problem of memory overlap is considered. Typically, when a
block of memory starting at location X is to be moved to location Y, the
intention is to replace the memory locations from Y to Y + C with the
identical contents of the range X through X + C. However, if these two
ranges overlap, it is possible that as the processor blindly transfers
memory one byte at a time, it may overwrite a value in the source range
before that value has been transferred.

The rule of thumb is, when the destination range is a lower memory
address than the source range, the MVN instruction should be used
(thus "Move Next") to avoid overwriting source bytes before they have
been copied to the destination. When the destination range is a higher
memory location than the source range, the MVP instruction should be
used ("Move Previous").

While you could conceivably move blocks with the index registers set
to eight bits (your only option in emulation mode), you could only
move blocks in page zero to other page zero locations. For all practical
purposes, you must reset the x mode flag to sixteen bits before setting
up and executing a block move.

Notice that assembling an MVN or MVP instruction generates not
only an opcode, but also two bytes of operand. The operand bytes spec-
ify the 64K bank from which and to which data is moved. When operat-
ing in the 65816's sixteen-megabyte memory space, this supports the
transfer of up to 64K of memory from one bank to another. In the
object code, the first byte following the opcode is the bank address of
the destination and the second byte is the bank address of the source.

But while this order provides microprocessor efficiency, assembler
syntax has always been the more logical left to right, source to destina-
tion (TAY, for example, transfers the accumulator to the Y index regis-
ter). As a result, the recommended assembler syntax is to follow the
mnemonic first with a 24-bit source address then with a 24-bit destina-
tion address—or more commonly with labels representing code or data
addresses. The assembler strips the bank byte from each address (ignor-
ing the rest) and inserts them in the correct object code sequence. (Desti-
nation bank, source bank.) For example:

440102 MVP SOURCE,DEST move from bank of source(02) to bank of dest(01)
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The bank byte of the label SOURCE is 02 while the bank byte of the
label DEST is 01. As always, the assembler does the work of converting
the more human-friendly assembly code to the correct object code for-
mat for the processor.

If the source and destination banks are not specified, some assemblers
will provide a user-specified default bank value.

The assembler will translate the opcode to object code, then supply its
bank value for both of the operand bytes:

440000 MVP

If either bank is different from the default value, both must be speci-
fied.



The Simple
Addressing Modes

The term addressing mode refers to the method by which the proces-
sor determines where it is to get the data needed to perform a given
operation. The data used by a 65x processor may come either from
memory or from one or another of the processor's registers. Data for
certain operations may optionally come from either location, some from
only one or the other. For those operations which take one of their
operands from memory, there may be several ways of specifying a given
memory location. The method best suited in a particular instance is a
function of the overall implementation of a chosen problem-solving
algorithm. Indeed, there are so many addressing modes available on the
65x processors that there is not necessarily a single "correct" addressing
mode in each situation.

This chapter deals with those addressing modes which may be
described as the "simple" addressing modes. You have already seen
some of these used in the examples of the previous chapter; the simple
addressing modes are listed in Table 7.1. Each of these addressing modes
is straightforward. Those addressing modes that require more than a
simple combination of values from several memory locations or regis-
ters are described as "complex modes" in Chapter 11.
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Table 7.1. List of Simple Addressing Modes.

Available on all 65x processors: Example Syntax
immediate LDA #$12
absolute LDA $1234
direct page (zero page) LDA $12
accumulator ASL A
implied TAY

stack PHA

Available on the 65C02, 65802 and 65816 only:

direct page (zero page) indirect IDA ($12)

Available on the 65802 and 65816 only:

absolute long LDA $123456
direct page indirect long LDA [$12]
block move MVN SOURCE,DEST

In addition to solving a given problem, the processor must spend a
great deal of its time simply calculating effective addresses. The simple
addressing modes require little or no effective address computation, and
therefore tend to be the fastest executing. However, the problem-solving
and memory efficiencies of the complex addressing modes, which will
be described in subsequent chapters, can make up for their effective
address calculation overhead. In each case, the nature of the problem at
hand determines the best addressing mode to use.

Immediate data is data found embedded in the instruction stream of a
program itself, immediately following the opcode which uses the data.
Because it is part of the program itself, it is always a constant value,
known at assembly time and specified when you create the program.
Typically, small amounts of constant data are handled most efficiently
by using the immediate addressing mode to load either the accumulator
or an index register with a specific value. Note that the immediate
addressing mode is not available with any of the store instructions
(STA, STX, or STY), since it makes no sense to store a value to the
operand location within the code stream.
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To specify the immediate addressing mode to a 65x assembler, prefix
the operand with a # (pound or sharp) sign. The constant operand may
be either data or an address.

For example,

A912 LDA #$12

loads the hexadecimal value $12 into the accumulator.

The 6502 and 65C02, their registers limited to only eight bits, permit
only an eight-bit operand to follow the load register immediate opcodes.
When the constant in an assembly source line is a sixteen-bit value,
greater-than and less-than signs are used to specify whether the high- or
low-order byte of the double-byte value are to be used. A less-than indi-
cates that the low byte is to be used, and thus:

A234 LDX #<$1234

causes the assembler to generate the LDX opcode followed by a one-
byte operand, the low byte of the source operand, which is $34. It's
equivalent to:

A234 LDX #$34

The use of a greater-than sign would cause the value $12 to be loaded.
If neither the less-than nor greater-than operator is specified, most
assemblers will default to the low byte when confronted with a double-
byte value.

When assembling 65816 source code, the problem becomes trickier.
The 6502 and 65C02 neither have nor need an instruction to set up the
eight-bit mode because they are always in it. But the 65816's accumula-
tor may be toggled to deal with either eight- or sixteen-bit quantities, as
can its index registers, by setting or resetting the m (memory/accumula-
tor select) or x (index select) flag bits of the status register. Setting the m
bit puts the accumulator in eight-bit mode; resetting it puts it in sixteen-
bit mode. Setting the x bit puts the index registers in eight-bit mode;
resetting it puts them in sixteen-bit mode.

The m and x flags may be set and reset many times throughout a
65816 program. But while assembly code is assembled from beginning
to end, it rarely executes in that fashion. More commonly, it follows a
circuitous route of execution filled with branches, jumps, and subrou-
tine calls. Except for right after the m or x flag has been explicitly set or
reset, the assembler has no way of knowing the correct value of either:
your program may branch somewhere, and reenter with either flag hav-
ing either value, quite possibly an incorrect one.

While the programmer must always be aware of the proper values of
these two flags, for most instructions the assembler doesn't need to
know their status in order to generate code. Most instructions generated
are the same in both eight- or sixteen-bit mode. Assembling a load accu-
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mulator absolute instruction, for example, puts the same opcode value
and the same absolute address into the code stream regardless of accu-
mulator size; it is at execution time that the m bit setting makes a differ-
ence between whether the accumulator is loaded with one or two bytes
from the absolute address.

But a load register immediate instruction is followed by the constant
to be loaded. As Figure 7.1 shows, if the register is set to eight-bit mode
at the point the instruction is encountered, the 65816 expects a one-byte
constant to follow before it fetches the next opcode. On the other hand,
if the register is set to sixteen-bit mode at the point the instruction is
encountered, the 65816 expects a double-byte constant to follow before
it fetches the next opcode. The assembler must put either a one-byte or
two-byte constant operand into the code following the load register
immediate opcode based on the status of a flag which it doesn't know.

Immediate Addressing: 8 bits vs. 16

8-Bit Data (all processors): Data: Operand byte.

Instruction:

Opcode Data=Operand

16-Bit Data (65802/65816. native mode, applicable mode (lag m or x =0):
Data High: Second operand byte.

Data Low: First operand byte.

Instruction:

Data Low = Data High=

Opcode Operand Low Operand High

Figure 7.1. Immediate Addressing: 8 vs. 16 bits.

Two assembler directives have been designed to tell the assembler
which way to go: LONGA and LONGI, each followed with the value
ON or OFF. LONGA ON indicates the accumulator is in sixteen-bit
mode, LONGA OFF in eight-bit mode. LONGI ON tells the assembler
that the index registers are in sixteen-bit mode, LONGI OFF that they
are in eight-bit mode. Load register immediate instructions are assem-
bled on the basis of the last LONGA or LONGI directive the assembler
has seen—that is, the one most immediately preceding it in the source
file. For example,

LONGA ON
LONGI ON
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tells the assembler that both accumulator and index registers are set to
sixteen bits. Now, if it next encounters the following two instructions

A93412 LDA #$1234
A05600 LDY #$56

then the first puts a LDA immediate opcode followed by the constant
$1234 into the code, and the second a LDY immediate opcode followed
by the constant $0056, again two bytes of operand, the high byte pad-
ded with zero.

On the other hand,

LONGA OFF
LONGI OFF

tells the assembler that both accumulator and index registers are set to
eight bits. Now,

A934 LDA #$1234
A056 LDY #$56

puts a LDA immediate opcode followed by the constant $34 into the
code, and the second a LDY immediate opcode followed by the constant
$56, each one byte of operand.

Like the flags themselves, of course, one directive may be ON and the
other OFF at any time. They also do not need to both be specified at the
same time.

The settings of the LONGA and LONGI directives to either ON or
OFF simply represent a promise by you, the programmer, that the flags
will, in fact, have these values at execution time. The directives do noth-
ing by themselves to change the settings of the actual m and x flags; this
is typically done by using the SEP and REP instructions, explained ear-
lier. (Note, incidentally, that these two instructions use a special form of
the immediate addressing mode, where the operand is always eight
bits.) Nor does setting the flags change the settings of the directives. You
must therefore exercise caution to set the LONGA and LONGI flags to
correctly represent the settings of the m and x flags, and to be sure never
to branch into the code with the m or x flag set differently. If, for exam-
ple, the assembler generated a LDA #$1234 instruction with LONGA set
ON, only to have the m accumulator flag set to eight bits when the code
is executed, the processor would load the accumulator with $34, then
see the $12 which follows as the next opcode and try to execute it,
resulting in program failure.

Absolute Addressing

There are two categories of simple addressing modes available for
accessing data in a known memory location: absolute and direct page.
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The first of these, absolute addressing, is used to load or store a byte to
or from a fixed memory location (within the current 64K data bank on
the 65816, which defaults to bank zero on power up). You specify the
sixteen-bit memory location in the operand field (following the opcode)
in your assembly language source line, as Figure 7.2 shows.

For example, Fragment 7.1 loads the eight-bit constant $34 into the
accumulator, then stores it to memory location $B100 in the current
data bank.

0000 E220 SEP #%00100000 set 8-bit accumulator/memory mode

0002 LONGA OFF tell assembler the accumulator mode
0002 A934 LDA #$34 load constant $34 as immediate data
0004 8D00B1 STA $B100 store byte to memory location $B100

Fragment 7.1.

The same memory move could be done with either of the index regis-
ters, as shown in Fragment 7.2 using the X register. Symbolic labels in
the operand fields provide better self-documentation and easier program
modification.

0000 NUM1 GEQU $34 give this data byte a symbolic label
0000 DATA GEQU $8100 give this data byte a symbolic label
0000

0000 SEP #*00010000 set index registers to 8-bit mode

0002 LONGI OFF tell assembler the index mode is 8-bit
0002 A234 LDX #NUM1 load constant $34 as immediate data
0004 8E00B1 STX DATA store byte to memory location $B100

Fragment 7.2.

As you have seen, the 65816's accumulator may be toggled to deal
with either eight- or sixteen-bit quantities, as can its index registers, by
setting or resetting the m or x flag bits of the status register. Naturally,
you don't need to execute a SEP or REP instruction nor a LONGA or
LONGI assembler directive before every routine, provided you know
the register you intend to use is already set correctly, and the assembler
correctly knows that setting. But you must always exercise extreme care
when developing 65816 programs to avoid making invalid assumptions
about the modes currently in force or taking unintentional branches
from code in one mode to code in another.
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As Fragment 7.3 shows, the load and store instructions above will as
easily move sixteen bits of data as they did eight bits; all that's needed is
to be sure the register used is in sixteen-bit mode, and that the assembler
has been alerted to the setting.

0000 DATA GEQU SB100 give this location a symbolic label
0000

0000 C210 REP #*00010000 reset index registers to 16-bit mode
0002 LONGI ON tell assembler

0002 A23412 LDX #1234 load 16-bit constant $1234 immediate
0005 8EO00B1 STX DATA store double byte to memory toe $B100

Direct Page Addressing

Fragment 7.3.

As indicated, absolute addresses are sixteen-bit addresses. On the
6502, 65C02, and 65802, with memory space limited to 64K, sixteen bits
can specify any fixed location within the entire address space of the
processor. Therefore, the term absolute addressing was appropriate.

The 65816, on the other hand, with its segmentation into 256 possible
64K banks, requires a 24-bit address to specify any fixed location within
its address space. However, the same opcodes that generated sixteen-bit
absolute addresses on the 6502 and 65C02 generate 24-bit addresses on
the 65816 by concatenating the value of the data bank register with the
sixteen-bit value in the operand field of the instruction. (Instructions
that transfer control, to be discussed in Chapter 8, substitute the pro-
gram bank register value for the data bank register value.)

Absolute addressing on the 65816 is therefore actually an offset from
the base of the current bank; nevertheless, the use of the term absolute
addressing has survived on the 65816 to refer to sixteen-bit fixed
addresses within the current 64K data bank.

So long as the programmer needs to access only the contents of the
current data bank, (sixteen-bit) absolute addressing is the best way to
access data at any known location in that bank.

One of the most powerful and useful features of the 6502 and 65C02
processors is their zero page addressing modes. A page of memory on a
65x processor consists of 256 memory locations, starting at an address
which is an integer multiple of $100 hexadecimal, that is, $0000, $0100,
$0200, and so on. Generally, pages are numbered in hexadecimal, so
their range within a 64K bank is $00 through $FF. Zero page addressing
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is made even more powerful and generalized as direct page addressing
on the 65802 and 65816.

The zero page is the first of the 256 pages found within the 64K
address space of the 6502 and 65C02—memory addresses $0000 to
$00FF. These addresses may be accessed one byte cheaper than absolute
memory accesses. Whereas loading or storing data from an absolute
location will require three bytes of code, loading or storing a byte from
a zero page location requires only two bytes, as Figure 7.3 shows.

Effective Address:

High Low

00000000

Instruction:

Opcode Operand

Figure 7.3. Zero Page Addressing.

Since all of the addresses in the zero page are less than $0100 (such as
$003F, for example) it follows that, if the computer knew enough to
assume two leading hexadecimal zeroes, a zero page address could be
represented in only one byte, saving both space and time. But if abso-
lute addressing is used, the processor has to assume that two bytes fol-
low an instruction to represent the operand, regardless of whether the
high-order byte is zero or not.

This concept of expressing a zero page address with a single-byte
operand was implemented on the 6502 and 65C02 by reserving separate
opcodes for the various instructions using zero page addressing. Since
an instruction's opcode for using zero page addressing is unique (as
opcodes are for all of the different addressing modes of a given instruc-
tion), the processor will fetch only one operand byte from the code
stream, using it in effect as a displacement from a known base ($0000, in
the case of the 6502 and 65C02). Since only one byte need be fetched
from the instruction stream to determine the effective address, the exe-
cution time is faster by one cycle. The result is a form of addressing that
is shorter, both in memory use and execution time, than regular sixteen-
bit absolute addressing.

Clearly, locating your most often accessed variables in zero page
memory results in considerably shorter code and faster execution time.
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The limitation of having this special area of memory available to the
zero page addressing mode instructions is that there are only 256 bytes
of memory available for use in connection with it. That is, there are
only 256 zero page addresses. Resident system programs, such as oper-
ating systems and language interpreters, typically grab large chunks of
page zero for their own variable space; applications programmers must
carefully step around the operating system's variables, limiting assign-
ment of their own program's zero page variables to some fraction of the
zero page.

This problem is overcome on the 65816 by letting its direct page be set
up anywhere within the first 64K of system memory (bank zero), under
program control. No longer limited to page zero, it is referred to as
direct page addressing. The result is, potentially, multiple areas of 256
($100) bytes each, which can be accessed one byte and one cycle cheaper
than absolute memory. Setting the direct page anywhere is made possi-
ble by the 65816's direct page register, which serves as the base pointer
for the direct page area of memory. Expressed in terms of the 65816's
direct page concept, it can be said that on the 6502 (and 65C02), the
direct page is fixed in memory to be the zero page.

So 6502 and 65C02 zero page addressing opcodes become direct page
opcodes on the 65802 and 65816; and when they are executed, the "zero
page address”—the single byte that the processor fetches immediately
after the opcode fetch—becomes instead a direct page offset. This means
that instead of simply pointing to a location in the range $0000 to $00FF
as it would on the 6502 and 65C02, the direct page offset is added to the
sixteen-bit value in the direct page register to form the effective direct
page address, which can be anywhere in the range $00:0000 to $00:FFFF.

For purposes of this chapter, however, the discussion of direct page
addressing will be limited to the default case, where the value in the
direct page register is zero, making it functionally identical to the 6502
and 65C02 zero page addressing mode. Since it requires the effective
address to be computed, relocation of the direct page will be considered
as a form of complex addressing, and will be covered in future chapters.
While "direct page offset" is more correct, it is also more abstract; the
term direct page address is most commonly used. However, it is essen-
tial to remember that it is, in fact, an offset relative to a previously
established direct page value (again, as used in this chapter, $0000).

An example of the use of direct page addressing to store a constant
value to memory is as follows:

A9F0 LDA #$FO
8512 STA $12

This stores the one-byte value $F0 at address $0012. Note that the object
code generated for the store requires only one byte for the opcode and
one for operand.
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A9F0 LDA #$FO
8D00B1 STA $B100

stores the same one-byte value at the address $B100. In this case, the
store requires one byte for the opcode and two bytes for the operand.

Notice how the assembler automatically assumes that if the value of
the operand can be expressed in eight bits—if it is a value less than $100,
whether coded as $34 or $0034 or $000034—the address is a direct page
address. It therefore generates the opcode for the direct page addressing
form of the instruction, and puts onlya one-byte operand into the
object code. For example, in the first of the two examples above, the
direct page address to store to is $12. One result of the assembler's
assumption that values less than $100 are direct page offsets is that
physical addresses in the range $xx:0000 to $xx:00FF cannot be refer-
enced normally when either the bank (the "xx") register is other than
zero or the direct page register is set to other than $0000. For example,
assembler syntax like:

A4F0 LDY $FO

or

A4FO LDY $00F0

is direct page syntax. It will not access absolute address $00F0 ifthe

direct page register holds a value other than zero; nor will it access
$00F0 in another bank, even if the data bank register is set to the other
bank. Both are evaluated to the same $F0 offset in the direct page.
Instead, to access physical address $xx:00F0, you must force absolute
addressing by using the vertical bar or exclamation point in your assem-
bler source line:

ACF000 LDY 1$F0 toad Y absolute (not direct page) from $00FO

Indexing

An array is a table or list in memory of sequentially stored data items
of the same type and size. Accessing any particular item of data in an
array requires that you specify both the location of the base of the array
and the item number within the array. Either your program or the proc-
essor must translate the item number into the byte number within the
array (they are the same if the items are bytes) and add it to the base
location to find the address of the item to be accessed (see Figure 7.4).

Sometimes an array might be a table of addresses, either of data to be
accessed or of the locations of routines to be executed. In this case, the
size of each item is two bytes; the first address is at locations zero and
one within the array, the second at locations two and three, the third at
locations four and five, and so on. You must double the item number,
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Indexing: Base plus Index

For example: Base = S2000
Index Register X =S 03

Effective Address = 52003
Base-$2000
= LI

00iooooojoo 000000

Figure 7.4. Indexing.

resulting in the values Q 2, 4, . . . from the array indices O, 1, 2, . . . ,
and so on, to create an index into this array of two-byte data items.

The 65x processors provide a wide range of indexed addressing modes
that provide automatic indexing capability. In all of them, a value in
one of the two index registers specifies the unsigned (positive integer)
index into the array, while the instruction's operand specifies either the
base of the array or a pointer to an indirect address at which the base
may be found. Each addressing mode has a special operand field syntax
for specifying the addressing mode to the assembler. It selects the
opcode that will correctly instruct the processor where to find both the
base and index.

Some early processors (the 6800, for example) had only one index reg-
ister; moving data from one array to another required saving off the
first index and loading the second before accessing the second array,
then incrementing the second index and saving it before reloading the
first index to again access the first array. The 65x processors were
designed with two index registers so data can be quickly moved from an
array indexed by one to a second array indexed by the other.
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Often, the index registers are used simultaneously as indexes and as
counters within loops in which consecutive memory locations are
accessed.

The 65802 and 65816 index registers can optionally specify sixteen-bit
offsets into an array, rather than eight-bit offsets, if the x index register
select flag is clear when an indexed addressing mode is encountered.
This lets simple arrays and other structured data elements be as large as
64K.

On the 6502, 65C02, and 65802, if an index plus its base would exceed
$FFFF, it wraps to continue from the beginning of the 64K bank zero;
that is, when index is added to base, any carry out of the low-order six-
teen bits is lost. (See Figure 7.5.)

Correct result
on 65816

Figure 7.5. Indexing Beyond the End of the Bank.

On the 65816, the same is true of direct page indexing: because the
direct page is always located in bank zero, any time the direct page, plus
an offset into the direct page, plus an index exceeds $FFFF, the address
wraps to remain in bank zero.

But as Figure 7.5 shows, whenever a 65816 base is specified by a 24-
bit (long) address, or the base is specified by sixteen bits and assumes
the data bank as its bank, then, if an index plus the low-order sixteen
bits of its base exceeds $FFFF, it will temporarily (just for the current
instruction) increment the bank. The 65816 assumes that the array being
accessed extends into the next bank.
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Absolute Indexed with X and Absolute

Indexed with y Addressing_

Absolute addresses can be indexed with either the X (referred to as
Absolute,X addressing) or the Y (referred to as Absolute,Y addressing)
index register; but indexing with X is available to half again as many
instructions as indexing with Y.

The base in these modes is specified by the operand, a sixteen-bit
absolute address in the current data bank (Figure 7.6). The index is spec-
ified by the value in the X or Y register; the assembler picks the correct
opcode on the basis of which index register the syntax specifies.

In Fragment 7.4, the X register is used to load the accumulator from
$2200 plus 5, or $2205. If run on the 65816 in native mode, then if the
accumulator is set to sixteen-bit mode, two bytes will be loaded from
$2205 and $2206 in the current data bank.

0000 A20500 LDX #5 toad an index vatue of five
0003 BD0022 LDA $2200,X toad the accumutator from $2205

Fragment 7.4.

If the 65816 is in native mode and the index registers are set to
sixteen-bit mode, indexes greater than $FF can be used, as Fragment 7.5
illustrates.

0000 A00501 LDY #$105 load an index value of $105
0003 B90022 LDA $2200,Y load the accumutator from $2305

Fragment 7.5.

If the index register plus the constant base exceeds $FFFF, the result
will continue beyond the end of the current 64K data bank into the next
bank (the bank byte of the 24-bit address is temporarily incremented by
one). So an array of any length (up to 64K bytes) can be started at any
location and absolute indexed addressing will correctly index into the
array, even across a bank boundary. 65802 arrays, however, wrap at
the 64K boundary, since effectively there is only the single 64K bank
zero.

Loading the index register with an immediate constant, as in the pre-
vious two examples, is of limited use: if, when writing a program, you
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know that you want to load the accumulator from $2305, you will gen-
erate far fewer bytes by using absolute addressing:

AD0523 LDA $2305 Load the accumulator from $2305

The usefulness of indexed addressing becomes clear when you don't
know, as you write a program, what the index into the array will be.
Perhaps the program will select among indexes, or calculate one, or
retrieve it from a variable, as in Fragment 7.6.

0000 AE0600 LDX INDEX get previously calculated index from memory
0003 BD0022 LDA $2200, X load the accumulator from the array,X

0006

0006

0006

0006 0000 INDEX DS 2

Fragment 7.6.

It can be useful to be able to put the base of an array into the index
register and let it vary, while keeping the index into the array constant.
This is seldom possible with the eight bits of the 6502's and 65C02's
index registers, since they limit the base addresses they can hold to the
zero page, but it is a useful capability of the 65802 and 65816.

For example, suppose, as in Fragment 7.7, you're dealing with dozens
(or hundreds) of records in memory. You need to be able to update the
fifth byte (which is a status field) of an arbitrary record. By loading the
base address of the desired record into an index register, you can use a
constant to access the status field. The index into the array, five, is
fixed; the array base varies.

Because the index is less than $100, the assembler would normally
generate direct page indexing. To force the assembler to generate abso-
lute indexing, not direct page indexing, you must use the vertical bar (or
exclamation point) in front of the five, as Fragment 7.7 shows. That
way, the five is generated as the double-byte operand $0005, an abso-
lute address to which the address in the index register is added to form
the absolute effective address.

Had the Y index register been used instead of X in Fragment 7.7, the
vertical bar would have been acceptable but not necessary; direct
page,Y addressing, as you will learn in the next section, can only be
used with the LDX and STX instructions, so the assembler would have
been forced to use absolute,Y addressing regardless.

Both absolute,X and absolute,Y can be used by what are called the
eight Group | instructions, the memory-to-accumulator instructions
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STATUS  GEQU 5
OK GEQU 1
BAD GEQU
18 CLC
FB XCE
C210 REP #$10 set index registers to 16 bits
LONGI ON
E220 SEP #$20
LONGA OFF
AEOEO0O LDX REC get Location of record to update
A901 LDA #0K load A with ok status token
9D0500 STA ISTATUS, X store to status field
N force absolute,X addressing
0030 REC DC A*$3000" loc of 1st record (in data bank)

Fragment 7.7.

which can use more addressing modes than any others: LDA, STA,
ADC, SBC, CMP, AND, ORA, and EOR. In addition, absolute,X can
be used for shifting data in memory, incrementing and decrementing
data in memory, loading the Y register, and for other instructions; but
absolute,Y has only one other use—to load the X register.

Direct Page Indexed with X and Direct Page

Indexed with y Addressing

Arrays based in the direct page (the zero page on the 6502 and 65C02)
can be indexed with either the X register (called Direct Page,X address-
ing) or the Y register (called Direct Page,Y addressing). However, direct
page,Y addressing is available only for the purpose of loading and stor-
ing the X register, while direct page,X is full-featured.

As is standard with indexed addressing modes, the index, which is
specified by the index register, is added to the array base specified by
the operand. Unlike the absolute indexed modes, the array always starts
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in the direct page. So the array base, a direct page offset, can be speci-
fied with a single byte. The sum of the base and the index, a direct page
offset, must be added to the value in the direct page register to find its
absolute address, as shown in Figure 7.7.

In Fragment 7.8, the accumulator is loaded from a direct page offset
base of $32 plus index of $10, or an offset of $42 from the direct page
register's setting.

0000 A21000 LDX #$10 set up an index of $10
0003 8532 LDA $32, X Load accumulator from dp:$42

A2F0
B532

Fragment 7.8.

Remember that the effective address is an offset of $42 from the direct
page register and is always in bank zero. It will correspond to an abso-
lute address of $0042 only when the direct page register is equal to zero
(the default here in this chapter). Chapter 11, which covers the complex
addressing modes, details relocation of the direct page.

When the index registers are set to eight bits, you can code the index
and the array base interchangeably—they are both the same size. So the
index, if it is a constant, may be specified as the operand, with the array
base in the index register. Using the last example, the $10 in the index
register could be the direct page base of the array; the operand, $32,
would then be the index into an array in the direct page which begins at
the direct page offset $10.

On the 6502 and the 65C02, and in the 6502 emulation modes of the
two sixteen-bit processors, indexing past the end of the direct page
wraps to the beginning of the direct page, as Fragment 7.9 shows. The
index and the direct page array base are added, but only the low eight
bits of the sum specify the direct page offset of the effective address. So
in Fragment 7.9, while the base of $32 plus the index of $F0 equals $122,
only the $22 is kept, and the accumulator is loaded from dp:$22.

LDX #$FO set up an index of $FO
LDA $32, X toad accumulator from dp:$22

Fragment 7.9.

In 65802 and 65816 native mode, however, indexes can be sixteen
bits, so direct page indexing was freed of the restriction that the effective
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address be within the direct page. Arrays always start in the direct page,
but indexing past the end of the direct page extends on through bank
zero, except that it wraps when the result is greater than $FFFF to
remain in bank zero (unlike absolute indexing, which temporarily
allows access into the next higher bank).

In Fragment 7.10, the accumulator is loaded from the value in the
direct page register plus the direct page base of $12 plus index of $FFFO0,
or dp:$0002. Note this is in bank zero, not bank one.

REP #$30 set index and accumulator 16-bit modes
LONGA ON
LONGI ON
FF LDX #$F FFO
LDA $12,X load accum from $0002

Fragment 7.10.

If the index registers are set to sixteen bits and the array indexes you
need to use are all known constants less than $100, then you can use
direct page indexing to access arrays beginning, not just in the direct
page, but anywhere in bank zero memory: load the index register with
the sixteen-bit base of the array and specify the index into the array as
the operand constant. This technique would generally only be useful if
the direct page register has its default value of zero.

Accumulator addressing is only available for the read-modify-write
instructions such as shifts and rotates. The instructions themselves will
be explained in subsequent chapters, and the use of accumulator
addressing with them will be reviewed in detail.

As a simple addressing mode, accumulator addressing is included in
this chapter for the sake of completeness even though the instructions
which use it have not yet been introduced.

Generally, most operations take place upon two operands, one of
which is stored in the accumulator, the other in memory, with the result
being stored in the accumulator. Read-modify-write instructions, such
as the shifts and rotates, are "unary" operations; that is, they have only
a single operand, which in the case of accumulator addressing, is located
in the accumulator. There is no reference to external memory in the



7 The Simple Addressing Modes 127

accumulator addressing modes. As usual, the result is stored in the accu-
mulator.

The syntax for accumulator addressing, using the ASL (arithmetic
shift left) instruction as an example, is:

OA ASL A

Implied Addressing

In implied addressing, the operand of the instruction is implicit in
the operation code itself; when the operand is a register, it is specified in
the opcode's mnemonic. Implied operand instructions are therefore
single-byte instructions consisting of opcode only, unlike instructions
that reference external memory and as a result must have operands in
subsequent bytes of the instruction.

You have already encountered implied addressinginthe previous
chapter in the form of the register transfer instructions andexchanges.
Since there are a small number of registers, it is possible to dedicate an
opcode to each specific register transfer operation. Other instructions
that use implied addressing are the register increments and decrements.

As one-byte instructions, there is no assembler operand field to be
coded: You simply code the assembler mnemonic for the given instruc-
tion, as below:

7B TDC transfer direct page register to double accumulator
AA TAX transfer A to X
9B XY transfer X to Y

Stack

Stack addressing references the memory location pointed to by the
stack register. Typical use of the stack addressing mode is via the push
and pull instructions, which add or remove data to or from the stack
area of memory and which automatically decrement or increment the
stack pointer. Examples of the use of push and pull instructions were
given in the previous chapter.

Additionally, the stack is used by the jump to subroutine, return from
subroutine, interrupt, and return from interrupt instructions to auto-
matically store and retrieve return addresses and in some cases also the
status register. This form of stack addressing will be covered in Chapter
12, Subroutines, and Chapter 13, System Control.

The assembler syntax of the push and pull instructions is similar to
that of implied instructions; no operand field is coded, since the opera-
tion will always access memory at the stack pointer location.
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Direct page indirect addressing, or, as it is known on the 65C02, zero
page indirect, is unavailable on the 6502; it was first introduced on the
65C02.

Indirect addressing was designed for the 65C02 as a simplification of
two often-used complex forms of addressing available on the 6502
known as zero page indirect indexed and zero page indexed indirect
addressing (these forms of addressing on the 65816 are of course direct
page indirect indexed or indexed indirect addressing; they are explained
in Chapter 11, Complex Addressing Modes). It was found that pro-
grammers were tolerating the overhead inherent in these two complex
addressing modes to simulate simple indirection.

The concept of simple indirect addressing lies on the borderline
between the simple and complex addressing modes. An understanding
of it forms the basis for understanding several of the more complex
indexed modes which use indirection as well.

An indirect address is an address stored in memory which points to
the data to be accessed; it is located by means of the operand, an
address which points to the indirect address, as shown in Figure 7.8.
Except in the case of indirect jump instructions, explained in Chapter 8,
Flow of Control, this pointer is always a direct page address.

The use of indirect addresses brings great flexibility to the addressing
options available to you. There is, however, a penalty in execution
speed, imposed by the fact that, in addition to the operand fetch from
the code stream, the actual effective address must also be fetched from
memory before the data itself can be accessed. For this reason, direct
page addresses are used as the pointers to the indirect addresses since, as
you will remember from the discussion of direct page addressing, the
direct page offset itself can be determined with only a single memory
fetch.

The syntax for indirect addressing is to enclose in parentheses, as the
operand, the direct page pointer to the indirect address.

B280 LDA ($80)

This means, as Figure 7.8 illustrates, "go to the direct page address $80
and fetch the absolute (sixteen-bit) address stored there, and then load
the accumulator with the data at that address.” The low-order byte of
the indirect address is stored at dp:$80, the high-order byte at dp:$81—
typical 65x low/high fashion. Remember, in the default case where DP
equals $0000, the direct page address equals the zero page address,
namely $00:0080.

As explained above, the indirect address stored at the direct page
location (pointed to by the instruction operand) is a sixteen-bit address.
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The general rule for the 65816 is that when an addressing mode only
specifies sixteen bits of the address, then the bank byte (bits 16-23) of
the address is provided by the data bank register. This rule applies here;
but you must first note that the direct page offset which points to the
indirect address is itself always located in bank zero because the direct
page itself is always located in bank zero. The examples, however, were
simplified to assume both the data bank and the direct page register to
be zero.

The use of indirect addressing allows an address that is referenced
numerous times throughout a routine and is subject to modification—
for example, a pointer to a data region—to be modified in only one
location and yet alter the effective address of many instructions.

In Listing 7.1, the data $1234 is moved from location VARI to VAR2.
Note that the load and store instructions had the same operand: the
symbol DPA, which had been given a value of $80. The indirect address
stored at that location was different in each case, however, resulting in
the data being copied from one location to another. While this example
in itself is an inefficient way to move a double-byte word to another
location, it does illustrate the basic method of indirect addressing,
which will become quite useful as looping and counting instructions are
added to your working set of 65x instructions.

This is the first of the simple addressing modes that are available only
on the 65816 and 65802 processors.

Absolute long addressing is an extension of (sixteen-bit) absolute
addressing—that is, addressing at a known location. Remember that on
the 6502 and 65C02, address space is limited to 64K, and any location
within the entire memory range can be specified with a sixteen-bit
address. This is not the case with the 65816, which can address up to
sixteen megabytes of memory. Thus 24 bits are required to specify a
given memory location.

In general, there are two ways by which a 24-bit data address is gen-
erated. In the case of sixteen-bit absolute addressing, a 64K memory
context is defined by the value of the data bank register; the bank byte
of the 24-bit address is derived directly from that register via simple
concatenation (connecting together) of the data bank value and the
sixteen-bit address. The alternative method is to specify a complete 24-
bit effective address for a given instruction. The absolute long address-
ing mode is one of the means for doing this.

As the name should imply, this addressing mode specifies a known,
fixed location within the sixteen-megabyte addressing space of the
65816, just as sixteen-bit absolute addressing specifies a known, fixed
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KEEP KL.7.1
65816 ON
MAIN START
DPA ESU $80 give memory cell at $80 a labe
1 switch from 6502 emulation to native mode
18 CLC clear carry flag
F8 XCE exchange carry with e bit (clear e bit)
€230 REP  #$30 set 16-bit registers
LONGA ON
LONGI ON
A01500 LDY #VAR1 get the address where $1234 is stored
8480 STY DPA and store it as an indirect address at $80
8280 LDA (DPA) now load $1234 indirectly
A01700 LDY #VAR2 change the indirect address in DPA
8480 STY DPA to point to VAR2
9280 STA (DPA) and store $1234 by overwriting the $0000 there
1 return to 6502 emulation mode
38 SEC set carry flag
FB XCE exchange carry with e bit (set e bit)
60 RTS
3412 VARL DC A"$1234"
0000 VAR2 DC A "0000"
END
Listing 7.1.

location within either the 64K space of the 6502, 65C02, or 65802, or
else the 64K data space determined by the 65816's data bank register.
Just as the sixteen-bit absolute addressing operations are three-byte
instructions, consisting of opcode, address low, and address high, the
instructions that use the 24-bit absolute long addressing mode are four-
byte instructions, comprised of opcode, low byte of address, high byte
of address, and bank byte of address, as shown in Figure 7.9. The value
in bits 8-15 of the effective address is described as the high byte, and
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16-23 as the bank byte, because this most clearly reflects both the paral-
lels with the 6502 and 65C02 and the bank-oriented memory segmenta-
tion of the 65816 architecture.

When absolute long addressing is used, the bank address in the oper-
and of the instruction temporarily overrides the value in the data bank
register for the duration of a single instruction. Thus, it is possible to
directly address any memory location within the entire sixteen-mega-
byte address space.

You will likely find, however, that this form of addressing is one of
the less frequently used. There are two reasons for this: first, it is more
efficient to use the shorter sixteen-bit addressing modes, provided that
the data bank register has been appropriately set; second, it is generally
undesirable to hard code fixed 24-bit addresses into an application, as
this tends to make the application dependent on being run in a fixed
location within a fixed bank. (An exception to this is the case where the
address referenced is an 1/0 location, which is fixed by the given system
hardware configuration.)

The 65x processors, in general, do not lend themselves to writing
entirely position-independent code, although the 65816 certainly eases
this task compared to the 6502 and 65C02. There is, however, no rea-
son why code should not be written on the 65816 and 65802 to be
bank-independent—that is, capable of being executed from an arbitrary
memory bank. But using absolute long addressing will tend to make this
difficult if not impossible.

If you are using a 65802 in an existing system, it is important to note
that although the address space of the 65802 is limited to 64K at the
hardware level, internally the processor still works with 24-bit
addresses. One thing this means is that it is legal to use the long address-
ing modes such as absolute long. But using them is futile, even wasteful:
an extra address byte is required for the bank, but the bank address gen-
erated is ignored. There are cases where use of forms of long addressing
other than absolute long should be used if you are targeting your code
for both the 65802 and the 65816. But generally there is little reason to
use the absolute long addressing mode on the 65802, except perhaps for
fine-tuning a timing loop (the absolute long addressing mode requires an
extra cycle to execute in order to fetch the bank address in the fourth
byte of the instruction).

The assembler syntax to indicate the absolute long addressing mode is
simply to code a value in the operand field greater than $FFFF. To force
long addressing for bank zero addresses ($00:0000 to $00:FFFF), use the
greater-than sign (>) as a prefix to the operand (similar to the use of the
vertical bar to force sixteen-bit absolute addressing) as shown in Frag-
ment 7.11.

Note that the first STA instruction in Fragment 7.11 generates a four-
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byte instruction to store the accumulator to a bank zero address, while
the second STA instruction generates a three-byte instruction to store
the accumulator to the same sixteen-bit displacement but within bank
two, the current data bank. Also note that for both the load and the
first store instructions, absolute long addressing causes the current data

bank register, which is set to two, to be overridden.

E220 SEP #%$20 set 8 bit accumulator
LONGA OFF

A902 LDA #%$02 set data bank

48 PHA to bank two

AB PLB

AF9DA303 LDA $03A39D absolute long at $03:A39D

8F7F2E00 STA >$2E7F store data to $00:2E7F

8D7F2E STA $2E7F store data to $02:2E7F

Fragment 7.11.

Absolute Long Indexed with X Addressing _

Absolute long indexed with X, or absolute long indexed, uses the X
register for its index, and an absolute long address as its base. It lets you
index into an array located in a bank other than the data bank.

Instructions using absolute long indexed addressing are four bytes in
length, since three bytes are needed to express 24-bit absolute-long oper-
ands. The bank byte, being the highest byte in the operand, is the fourth
byte of the instruction. The contents of the X index register are added to
the absolute-long operand to form the 24-bit effective address at which
data will be accessed.

For example, Fragment 7.12 gets a character from a text buffer start-
ing at $3000 in bank zero and stores it into buffers starting at $1000 in
bank two and at $E000 in bank three. Because the character to be
loaded is in bank zero, its long address is expressed in sixteen bits. You
must preface a reference to it with the greater-than sign to override the
assembler assumption that a sixteen-bit operand is in the data bank, and
force the assembler to instead use long addressing. The next instruction
stores to the data bank, requiring only absolute indexing; the assembler
assumes simple sixteen-bit operands are located in the data bank.
Finally, storing into bank three requires no special specification: since
$03E000 cannot be expressed in sixteen bits, long addressing is assumed.
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E220 SEP #$20 set accumulator to 8 bits
LONGA OFF
Cc210 REP #$10 set indexes to 16 bits
LONGI ON
A902 LDA #2 set the data bank to bank 2
48 PHA
AB PLB
AE0080 LDX BUFIDX get 16 bit buffer index
BF003000 LDA >$3000, X force tong indexed addr:bankO
9D0010 STA $1000,X store into data bankCbank 2)
9F00EO03 STA $03E000,X store into bank 3

Fragment 7.12.

Direct page indirect long is another case of long (24-bit) addressing,
where the effective address generated temporarily overrides the current
value in the data bank register. Unlike the previous two long addressing
modes, however, the 24-bit address is not contained in the operand
itself. The instruction is two bytes long, much like regular direct page
indirect addressing. The operand of the instruction is, like its non-long
counterpart, a direct page offset acting as an indirect pointer; the differ-
ence in this case is that rather than pointing to a sixteen-bit address in
the data bank, it points to a 24-bit address. If, for example, the direct
page address is $80, as in Figure 7.10, the processor will fetch the low
byte of the effective address from dp:$80, the high byte from dp:$81,
and the bank byte from dp:$82. The bank byte temporarily overrides
the value in the data bank register.

Fragment 7.13 shows the use of both direct page indirect addressing
and direct page indirect long, using the latter to access the data as set up
in Figure 7.10. The syntax for indirect long addressing is similar to that
for direct page indirect, except left and right square brackets rather than
parentheses enclose the direct page address to indicate the indirect
address is long.

In this example, a sixteen-bit accumulator size is used with eight-bit
index registers. The simultaneous availability of both an eight-bit and a
sixteen-bit register in this mode simplifies the manipulation of long
addresses. First, a value of $04 is loaded into the eight-bit Y register
using immediate addressing. Since the LONGI OFF directive has been
coded, the assembler automatically generates an eight-bit operand for
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C220 REP #$20 set accum/memory size to 16 bits
LONGA  ON

E210 SEP #3$10 set index size to eight bits
LONGI OFF

A004 LDY #$04 set data bank

5A PHY to bank 4

AB PLB

A002 LDY #$02 bank of indirect address

8482 STY $82

A90020 LDA #$2000 high/low of indirect address

8580 STA $80

B280 LDA ($80) load indirect from $04:2000

8780 STA [$80] store indirect long to $02:2000

Fragment 7.13.

this instruction. This is pushed onto the stack, and then pulled into the
bank register. Next, Y is loaded with #$02, the bank component of the
indirect long address, which is stored to dp:$82. The sixteen-bit accu-
mulator is then used to load an immediate $2000 (high/low of the indi-
rect and the indirect long addresses), which is stored at dp:$80. This
results in the following values in memory: at dp:$80 is $00, at dp:$81 is
$20, and at dp:$82 is $02. The data bank register contains $04. The
memory at locations dp:$80.81 contains the indirect address $2000,
while the memory at locations dp:$80.82 contains the indirect long
address $02:2000. The load indirect instruction uses the data bank regis-
ter to form the bank address, and so loads double-byte data from
$04:2000. The store indirect long stores the double-byte data at
$02:2000. The overlapping of the low and high bytes of the indirect
address in locations dp:$80 and dp:$81 highlights the difference in the
source of the bank byte using the two addressing modes.

Block Move

Block move addressing is a dedicated addressing mode, available only
for two instructions, MVN and MVP, which have no other addressing
modes available to them. These operations were explained in the previ-
ous chapter.






The Flow of Control

Flow of control refers to the way in which a processor, as it executes a
program, makes its way through the various sections of code. Chapter 1
discussed four basic types of execution: straight-line, selection between
paths, looping, and subroutines. This chapter deals with those instruc-
tions that cause the processor to jump or branch to other areas of code,
rather than continuing the default straight-line flow of execution. Such
instructions are essential to selection and looping.

The jump and branch instructions alter the default flow of control by
causing the program counter to be loaded with an entirely new value. In
sequential execution, on the other hand, the program counter is incre-
mented as each byte from the code stream—opcode or operand—is
fetched.

The 65x processors have a variety of branch and jump instructions, as
shown in Table 8.1. Of these, when coding in the larger-than-64K envi-
ronment of the 65816, only the three jump-long instructions (jump indi-
rect long, jump absolute long, and jump to subroutine long) and the
return from subroutine long instruction are capable of changing the pro-
gram bank register—that is, of jumping to a segment of code in another
bank. All of the other branch or jump instructions simply transfer
within the current bank. In fact, the interrupt instructions (break, return
from interrupt, and coprocessor instructions) are the only others which
can change the program bank; there is no direct way to modify the pro-
gram counter bank without at the same time modifying the program
counter register because the program counter would still point to the
next instruction in the old bank.

139
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Table 8.1. Branch and Jump Instructions.

Available on:

Mnemonic 6502 65C02 65802/816 Description

BEQ X X X branch on condition instructions
(eight)

IMP X X X jump absolute

JMP X X X jump indirect

JSR X X X jump to subroutine absolute

RTS X X X return from subroutine

BRA X X branch always (unconditional)

JMP X X jump absolute indexed indirect

BRL X branch long always
(unconditional, 64K range)

JSR X jump to subroutine absolute
indexed indirect

JMP X jump indirect long (interbank)

JMP X jump absolute long (interbank)

JSL X jump to subroutine long
(interbank)

RTL X return from subroutine long

(interbank)

As you may have noticed, all of the flow-of-control instructions
(except the return instructions) can be divided into two categories:
jump-type instructions and branch-type instructions. This division is
based on addressing modes: branch instructions use program counter
relative addressing modes; jump instructions don't.

Jump instructions can be further split into two groups: those which
transfer control to another section of code, irreversibly, and those
which transfer control to a subroutine, a section of code which is meant
to eventually return control to the original (calling) section of code, at
the instruction following the jump-to-subroutine instruction.

The jump instructions will be covered in this chapter first, then the
branches; jump-to-subroutine instructions will be discussed in Chapter
12, which deals with subroutines.

Instructions

The jump instruction (JMP) can be used with any one of five different
65816 addressing modes (only two of these are available on the 6502, a
third is available on the 65C02) to form an effective address; control
then passes to that address when the processor loads the program
counter with it. For example,
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4C0020 JMP $2000 jump absolute to the code at location $2000

uses absolute addressing, a mode available to all 65x processors, to pass
control to the code located at $2000 in the current program bank.
(Notice that using absolute addressing to access data in the last chapter
used the data bank in place of the program bank.)

In addition to absolute addressing, all of the 65x processors provide a
jump instruction with absolute indirect addressing. While this form of
indirect addressing is unique to the jump instruction, it is quite similar
to the direct page indirect addressing mode described in Chapter 7. In
this case, the sixteen-bit operand is the address of a double-byte variable
located in bank zero containing the effective address; the effective
address is loaded into the program counter. As with absolute address-
ing, the program bank remains unchanged (Figure 8.1).

For example, the jump instruction in Fragment 8.1 causes the proces-
sor to load the program counter with the value in the double-byte vari-
able located at $00:2000. Unlike direct page indirect addressing, the
operand is an absolute address rather than a direct page offset. Further-
more, this form of absolute addressing is unusual in that it always refer-
ences a location in bank zero, not the current data bank.

LONGA ON
€220 REP #$20 set 16-bit accumulator
A93412 LDA #$1234 load sixteen-bit accumulator with $1234
8F002000 STA >$2000 store long to location $00:2000
6C0020 JMP ($2000) jump to location $1234 in program bank

Fragment 8.1.

The 65C02 added the absolute indexed indirect addressing mode to
those available to the jump instruction. This mode is discussed further
in Chapter 12, The Complex Addressing Modes. Although its effective
address calculation is not as simple as the jump absolute or jump abso-
lute indirect, its result is the same: a transfer of control to a new loca-
tion.

The 65802 and 65816 added long (24-bit) versions of the absolute and
indirect addressing modes. The absolute long addressing mode has a
three-byte operand; the first two bytes are loaded into the program
counter as before, while the third byte is loaded into the program bank
register, giving the jump instruction a full 24-bit absolute addressing
mode. For example,

5C4423FF JMP $FF2344
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causes the program counter to be loaded with $2344 and the program
bank counter with $FF. Note that on the 65802, even though the bank
register is modified by the long jump instruction, the bank address is
effectively ignored; the jump is to the same location as the equivalent
(sixteen-bit) absolute jump.

When the target of a long jump is in bank zero, say to $00A030, then
the assembler has a problem. It assumes a jump to any address between
zero and SFFFF (regardless of whether it's written as $A030 or $00A030)
is a jump within the current program bank, not to another bank, so it
will generate an absolute jump, not a long jump. There are two solu-
tions. One is to use the greater-than sign (>) in front of the operand,
which forces the assembler to override its assumptions and use long
addressing:

5C30A000 JMP  >$A030 long jump from the current program bank to $00:A030

The alternative is to use the JML alias, or alternate mnemonic, which
also forces a jump to be long, even if the value of the operand is less
than $10000:

5C30A000 JML  SA030 jump from the current bank to $00:A030

The final form of the jump instruction is a 24-bit (long) jump using
absolute indirect addressing. In the instruction,

DC0020 JMP  [$2000] jump to the 24-bit address stored at $00:2000

the operand is the bank zero double-byte address $2000, which locates a
triple-byte value; the program counter low is loaded with the byte at
$2000 and the program counter high with the byte at $2001; the pro-
gram bank register is loaded with the byte at $2002. A standard assem-
bler will allow the JML (jump long) alias here as well.

Notice that absolute indirect long jumps are differentiated from abso-
lute indirect jumps within the same bank by using parentheses for abso-
lute indirect and square brackets for absolute indirect long. In both
cases the operand, an absolute address, points to a location in bank
zero.

The jump instructions change no flags and affect no registers other
than the program counter.

Conditional Branching

While the jump instructions provide the tools for executing a program
made up of disjoined code segments or for looping, they provide no
way to conditionally break out of a loop or to select between paths.
These are the jobs of the conditional branch instructions.
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The jump instruction requires a minimum three bytes to transfer con-
trol anywhere in a 64K range. But selection between paths is needed so
frequently and for the most part for such short hops that using three
bytes per branch would tend to be unnecessarily costly in memory
usage. To save memory, branches use an addressing mode called pro-
gram counter relative, which requires just two bytes; the branch opcode
is followed by a one-byte operand—a signed, two's-complement offset
from the current program location.

When a conditional branch instruction is encountered, the processor
first tests the value of a status register flag for the condition specified by
the branch opcode. If the branch condition is false, the processor
ignores the branch instruction and goes on to fetch and execute the next
instruction from the next sequential program location. If, on the other
hand, the branch condition is true, then the processor transfers control
to the effective address formed by adding the one-byte signed operand
to the value currently in the program counter (Figure 8.2).

As Chapter 1 notes, positive numbers are indicated by a zero in the
high bit (bit seven), negative numbers by a one in the high bit. Branch-
ing is limited by the signed one-byte operands to 127 bytes forward or
128 bytes backward, counting from the end of the instruction. Because a
new value for the program counter must be calculated if the branch is
taken, an extra execution cycle is required. Further, the 6502 and 65C02
(and 65802 and 65816 in emulation mode) require an additional cycle if
the branch crosses a page boundary. The native mode 65802 and 65816
do not require the second additional cycle, because they use a sixteen-bit
(rather than eight-bit) adder to make the calculation.

The program counter value to which the operand is added is not the
address of the branch instruction but rather the address of the opcode
following the branch instruction. Thus, measured from the branch
opcode itself, branching is limited to 129 bytes forward and 126 bytes
backward. A conditional branch instruction with an operand of zero
will continue with the next instruction regardless of whether the condi-
tion tested is true or false. A branch with an operand of zero is thus a
two-byte no-operation instruction, with a variable (by one cycle) execu-
tion time, depending on whether the branch is or isn't taken.

The 65x processors have eight instructions which let your programs
branch based on the settings of four of the condition code flag bits in the
status register: the zero flag, the carry flag, the negative flag, and the
overflow flag.

None of the conditional branch instructions change any of the flags,
nor do they affect any registers other than the program counter, which
they affect only if the condition being tested for is true. The most recent
flag value always remains valid until the next flag-modifying instruction
is executed.
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Branching Based on the Zero Flag

The zero bit in the status register indicates whether or not the result of
an arithmetic, logical, load, pull, or transfer operation is zero. A zero
result causes the bit to be set; a non-zero result causes the bit to be reset.

The BEQ instruction is used to branch when a result is zero—that is,
when the zero bit is set. Its mnemonic meaning, that of branch if equal
(to zero), describes what the processor does. Alternatively, it may be
considered a mnemonic for branch if (comparison) equal because it is
often used after two values are compared or subtracted; if the two val-
ues are equal, then the result of the comparison (subtraction) is zero (no
difference), and the branch is taken.

The BNE instruction is used to branch when a result is not zero. Also,
any non-zero value which is loaded into a register will clear the zero
flag. It is a mnemonic for branch if not equal; it too is used to branch
after a comparison or subtraction if the two values are not equal.

Zero is often used as a terminator, indicating the end of a list, or that
a loop counter has counted down to the end of the loop. Fragment 8.2 is
a short routine to search for the end of alinked list of records, and then
insert a new element at the end. Each element in the list contains a
pointer to the next element in the chain. The last element in the chain
contains a zero in its link field, indicating that the end of the list has
been reached.

traverse linked list searching for end of chain
AC0080 LDY NEXTNODE nextnode contains address of next
data element to be inserted.
A90080 LDA PROOT ROOT contains the address of
the link field of the first
record in the chain.
AA LOOP TAX use fetched address to get next link
B500 LDA 0,X
00FB BNE LOOP if not zero, use value to go to next
record
98 TYA
9500 STA 0,X store address of next record
in link field of current record
AA TAX
7400 STz 0,X now store zero to link field of
new record, which is now end

Fragment 8.2.
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The routine hinges on the BNE instruction found half-way through
the code; until the zero element is reached, the processor continues loop-
ing through as many linked records as exist. Notice that the routine has
no need to know how many elements there are or to count them as it
adds a new element. Figure 8.3 pictures such a linked list.

$1204 X $1254
$1203 X $1253
$1202 X $1252
$1201 $12 $1251 $00 End
of
$1200 $50 -» $1250 $00 List
$1254 $1304
Inserted
Data $1253 $1303
$1252 $1302
New $1251 $13 $1301 $00
Link
Field > $1250 $00 mU 51300 $00

Figure 8.3. Linked List.

The two conditional branch instructions that check the zero flag are
also frequently used following a subtraction or comparison to evaluate
the equality or inequality of two values. Their use in arithmetic, logical,
and relational expressions will be covered in more detail, with exam-
ples, in the next few chapters.

Branching Based on the Carry Flag

The carry flag in the status register is affected by addition, subtrac-
tion, and shift instructions, as well as by two implied-addressing
instructions that explicitly set or clear the carry (SEC and CLC) and, on
the 65802/65816, by the emulation and carry swapping XCE instruc-
tion, and the SEP and REP instructions.

The BCC instruction (branch on carry clear) is used to branch when
the carry flag is a zero. The BCS instruction (branch on carry set) is
used to branch when the carry flag is a one.

New
End
of
List
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The carry flag bit is the only condition code flag for which there are
explicit instructions both to clear and to set it. (The decimal flag, which
can also be set and cleared explicitly, is a mode-setting flag; there are no
instructions to branch on the status of the decimal flag.) This can come
in handy on the 6502, which has no branch-always instruction (only the
non-relocatable absolute jump): branch-always can be faked by setting
the carry, then branching on carry set:

38 SEC set carry bit in status register

BOEB BCS NEUCODE always document a BCS being used as branch-always

Since the code which follows this use of the BCS instruction will never
be executed due to failure of the condition test, it should be documented
as acting like a branch-always instruction.

The 6502 emulation mode of the 65802 and 65816 can be toggled on
or off only by exchanging the carry bit with the emulation bit; so the
only means of testing whether the processor is in emulation mode or
native mode is to exchange the emulation flag with the carry flag and
test the carry flag, as in Fragment 8.3. Note that CLC, XCE, and BCS
instructions themselves always behave the same regardless of mode.

CLC shift to native mode
XCE swap previous emulation bit value into carry
BCS EHHAND if was emulation, branch to emulation handler

else processor in native mode

Fragment 8.3.

Arithmetic and logical uses of branching based on the carry flag will
be discussed in the next two chapters.

Branching Based on the Negative Flag

The negative flag bit in the status register indicates whether the result
of an arithmetic, logical, load, pull, or transfer operation is negative or
positive when considered as a two's-complement number. A negative
result causes the flag to be set; a zero or positive result causes the flag to
be cleared. The processor determines the sign of a result by checking to
see if the high-order bit is set or not. A two's-complement negative num-
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ber will always have its high-order bit set, a positive number always has
it clear.

The BMI (branch-minus) instruction is used to branch when a result is
negative, or whenever a specific action needs to be taken if the high-
order (sign) bit of a value is set. Execution of the BPL (branch-plus) in-
struction will cause a branch whenever a result is positive or zero—that
is, when the high-order bit is clear.

The ease with which these instructions can check the status of the
high order-bit has not been lost on hardware designers. For example, the
Apple // keyboard is read by checking a specific memory location
(remember, the 65x processors use memory-mapped 1/0). Like most
computer I/0 devices, the keyboard generates ASCII codes in response
to keypresses. The code returned by the keyboard only uses the low-
order seven bits; this leaves the eighth bit free to be used as a special flag
to determine if a key has been pressed since the last time a key was
retrieved. To wait for a keypress, a routine (see Fragment 8.4) loops
until the high-order bit of the keyboard 1/0 location is set.

KEYBD  GEQLI $c000
KSTRB  GEQU $C010

1 wait unti | a character is pressed at the keyboard
SEP #$30 eight-bit words are used for 1/0
CO LOOP LDA KEYBD
BPL LOOP Loop until high order bit is set
[&{0] STA KSTRB got one; reset keyboard

continue execution having fetched key
from keyboard

Fragment 8.4.

The STA KSTRB instruction that follows a successful fetch is neces-
sary to tell the hardware that a key has been read; it clears the high-
order bit at the KEYBD location so that the next time the routine is
called, it will again loop until the next key is pressed.

Remember that the high-order or sign bit is always bit seven on a
6502 or 65C02 or, on the 65802 or 65816, if the register loaded is set to
an eight-bit mode. If a register being used on the 65802 or 65816 is set to
sixteen-bit mode, however, then the high bit—the bit that affects the
negative flag—is bit fifteen.
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Branching Based on the Overflow Flag

Only four instructions affect the overflow (v) flag on the 6502 and
65C02: adding, subtracting, bit-testing, and an instruction dedicated to
explicitly clearing it. The 65802/65816's SEP and REP instructions can
set and clear the overflow flag as well. The next chapter will discuss the
conditions under which the flag is set or cleared.

The BVS instruction is used to branch when a result sets the overflow
flag. The BVC instruction is used to branch when a result clears the
overflow flag.

Additionally, there is a hardware input on the 6502, 65C02, and
65802 that causes the overflow flag to be set in response to a hardware
signal. This input pin is generally left unconnected in most personal
computer systems. It is more likely to be useful in dedicated control ap-
plications.

Limitations of Conditional Branches

If you attempt to exceed the limits (+127 and —128) of the condi-
tional branches by coding a target operand that is out of range, an error
will result when you try to assemble it. If you should need a conditional
branch with a longer reach, one solution is to use the inverse branch; if
you would have used BNE, test it instead for equal to zero using BEQ. If
the condition is true, target the next location past a jump to your real
target. For example, Fragment 8.5 shows the end of a fairly large section
of code, at the point at which it is necessary to loop back to the top
(TOP) of the section if the value in location CONTROL is not equal to
zero. You would use the code like Fragment 8.5 if TOP is more than 128
bytes back.

cooo ADO08O LDA CONTROL

0003 F003 BEQ DONE done processing; skip over loop back
0005 4C0080 JMP TOP control not equal to zero; loop again
0008 DONE ANOP go on to next phase of processing
0008

0008

Fragment 8.5.

The price of having efficient two-byte short branches is that you must
use five bytes to simulate a long conditional branch.

Many times it is possible and sensible to branch to another nearby
flow of control statement and use it to puddle-jump to your final target.
Sometimes you will find the branch or jump statement you need for
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puddle jumping already within your code because it's not unusual for
two or more segments of code to conditionally branch to the same
place. This method costs you no additional code, but you should docu-
ment the intermediate branch, noting that it's being used as a puddle-
jump. Should you change it later, you won't inadvertently alter its use
by the other branch.

Each of the 65x branch instructions is based on a single status bit.
Some arithmetic conditions, however, are based on more than one flag
being changed. There are no branch instructions available for the rela-
tions of unsigned greater than and unsigned less than or equal to; these
relations can only be determined by examining more than one flag bit.
There are also no branch instructions available for signed comparisons,
other than equal and not equal. How to synthesize these operations is
described in the following chapter.

Unconditional Branching

The 65C02 introduced the BRA branch always (or unconditional
branch) instruction, to the relief of 6502 programmers; they had found
that a good percentage of the jump instructions coded were for short
distances within the range of a branch instruction.

Having an unconditional branch available makes creating relocatable
code easier. Every program must have a starting address, or origin,
specified, which tells the assembler where in memory the program will
be loaded. This is necessary so that the assembler will be able to gener-
ate the correct values for locations defined by labels in the source code.

Consider Fragment 8.6, the beginning of a program that specifies an
origin of $2000. In order to make patching certain variables easier, they
have been located right at the beginning of the program. When this pro-
gram is assembled, location $2000 holds a jump instruction, and the
assembler gives its operand the value of the location of BEGCODE, that
is, $2005. If this program were then loaded at $2200, instead of $2000 as
was "promised" by the ORG directive, it would fail because the very
first instruction executed, at $2200, would be the jump to $2005. Since
the program has now been loaded at $2200, the contents of $2005 are no
longer as expected, and the program is in deep trouble.

By substituting an unconditional branch instruction for the jump, as
in Fragment 8.7, the operand of the branch is now a relative displace-
ment (the value two), and the branch instruction will cause two to be
added to the current value of the program counter, whatever it may be.
The result is that execution continues at BEGCODE, the same relative
location the jump instruction transferred control to in the fixed-position
version.

The code is now one byte shorter. Most importantly, though, this sec-
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ORG $2000
MAIN START
4C0500 JMP BEGCODE jump around data to beginning code
77 DATA1 DC H*77
88 DATA2 DC Hiss1

BEGCODE ANOP

Fragment 8.6.

tion of the program is now position-independent. If executed at $2000,
the branch is located at $2000; the program counter value before the
branch's operand is added is $2002; the result of the addition is $2004,
the location of BEGCODE. Load and execute the program instead at
$2200, and the branch is located at $2200; the program counter value
before the branch operand is added is $2202; the result of the addition is
$2204, which is the new location of BEGCODE.

ORG $2000
MAIN START
8002 BRA BEGCODE branch around data to beginning code
77 DATA1 DC H177 *
88 DATA2 DC Higg *
AD0200 BEGCODE LDA DATA1

Fragment 8.7.

Because the operand of a branch instruction is always relative to the
program counter, its effective address can only be formed by using the
program counter. Programs that use branches rather than jumps may be
located anywhere in memory.

6502 programmers in need of relocatability get around the lack of an
unconditional branch instruction by using the technique described ear-
lier of setting a flag to a known value prior to executing a branch-on-
that-condition instruction.
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Even with the unconditional branch instruction, however, repeat-
ability can still be a problem if the need for branching extends beyond
the limits imposed by its eight-bit operand. There is some help available
on the 6502 and 65C02 in the form of the absolute indirect jump, which
can be loaded with a target that is calculated at run time.

The 65802 and 65816 introduce the BRL unconditional branch long
instruction. This is the only 65x branch instruction which does not take
an eight-bit operand: its operand, being sixteen bits, lets it specify a tar-
get anywhere within the current 64K program bank. It is coded like any
other branch, except that the target label can be outside the range of the
other branches. Obviously, a two-byte displacement is generated by the
assembler, making this branch a three-byte instruction. If the effective
address that results when the sixteen-bit displacement is added to the
current program counter would extend beyond the 64K limit of the cur-
rent program bank, then it wraps around to remain within the current
program bank.

The BRL instruction can replace entirely the absolute JMP instruction
in a relocatable program; the price is an extra execution cycle per
branch.






Built-In Arithmetic
Functions

With this chapter you make your first approach to the heart of the
beast: the computer as automated calculator. Although their applica-
tions cover a broad range of functions, computers are generally associ-
ated first and foremost with their prodigious calculating abilities. Not
without reason, for even in character-oriented applications such as
word processing, the computer is constantly calculating. At the level of
the processor itself, everything from instruction decoding to effective
address generation is permeated by arithmetic or arithmetic-like opera-
tions. At the software implementation level, the program is constantly
calculating horizontal and vertical cursor location, buffer pointer loca-
tions, indents, page numbers, and more.

But unlike dedicated machines, such as desk-top or pocket calcula-
tors, which are merely calculators, a computer is a flexible and general-
ized system which can be programmed and reprogrammed to perform
an unlimited variety of functions. One of the keys to this ability lies in
the computer's ability to implement control structures, such as loops,
and to perform comparisons and select an action based on the result.
Because this chapter introduces comparison, the elements necessary to
demonstrate these features are complete. The other key element, the
ability to branch on condition, was presented in the previous chapter.
This chapter therefore contains the first examples of these control struc-
tures, as they are implemented on the 65x processors.

Armed with the material presented in Chapter 1 about positional
notation as it applies to the binary and hexadecimal number systems, as
well as the facts concerning two's-complement binary numbers and
binary arithmetic, you should possess the background required to study
the arithmetic instructions available on the 65x series of processors.

Consistent with the simple design approach of the 65x family, only
elementary arithmetic functions are provided, as listed in Table 9.1,
leaving the rest to be synthesized in software. There are, for example,
no built-in integer multiply or divide. More advanced examples pre-
sented in later chapters will show how to synthesize these more complex
operations.

155
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Table 9.1. Arithmetic Instructions.

Available on:

Mnemonic 6502 65C02 65802/816 Description
Increment Instructions:
DEC X X X decrement
DEX X X X decrement index register X
DEY X X X decrement index register Y
INC X X X increment
INX X X X increment index register X
INY X X X increment index register Y
Arithmetic Instructions:
ADC X X X add with carry
SBC X X X subtract with borrow

Compare with Memory Instructions:

CMP X X X compare accumulator
CPX X X X compare index register X
CPY X X X compare index register Y

Increment and Decrement

The simplest of the 65x arithmetic instructions are increment and
decrement. In the case of the 65x processors, all of the increment and
decrement operations add or subtract one to a number. (Some other
processors allow you to increment or decrement by one, two, or more.)

There are several reasons for having special instructions to add or
subtract one to a number, but the most general explanation says it all:
the number one tends to be, by far, the most frequently added number
in virtually any computer application. One reason for this is that index-
ing is used so frequently to access multi-byte data structures, such as
address tables, character strings, multiple-precision numbers, and most
forms of record structures. Since the items in a great percentage of such
data structures are byte or double-byte wide, the index counter step
value (the number of bytes from one array item to the next) is usually
one or two. The 65x processors, in particular, have many addressing
modes that feature indexing; that is, they use a value in one of the index
registers as part of the effective address.

All 65x processors have four instructions to increment and decrement
the index registers: INX, INY, DEX, and DEY. They are single-byte
implied operand instructions and either add one to, or subtract one
from, the X or Y register. They execute quite quickly—in two cycles—
because they access no memory and affect only a single register.
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All 65x processors also have a set of instructions for incrementing and
decrementing memory, the INC and DEC instructions, which operate
similarly. They too are unary operations, the operand being the data
stored at the effective address specified in the operand field of the
instruction. There are several addressing modes available to these two
instructions. Note that, unlike the register increment and decrement
instructions, the INC and DEC instructions are among the slowest-exe-
cuting 65x instructions. That is because they are Read-Modify-Write
operations: the number to be incremented or decremented must first be
fetched from memory; then it is operated upon within the processor;
and, finally, the modified value is written back to memory. Compare
this with some of the more typical operations, where the result is left in
the accumulator. Although read-modify-write instructions require many
cycles to execute, each is much more efficient, both byte- and cycle-
wise, than the three instructions it replaces—load, modify, and store.

In Chapter 6, you saw how the load operations affected the n and z
flags depending on whether the loaded number was negative (that is,
had its high bit set), or was zero. The 65x arithmetic functions, includ-
ing the increment and decrement operations, also set the n and z status
flags to reflect the result of the operation.

In Fragment 9.1, one is added to the value in the Y register, $7FFF.
The result is $8000, which, since the high-order bit is turned on, may be
interpreted as a negative two's-complement number. Therefore the n
flag is set.

REP #$30 16-bit registers
LONGA ON
LONGI ON
7F LDY #$TFFF $7FFF is a positive number
INY $8000 is a negative number;n=1

Fragment 9.1.

In a similar example, Fragment 9.2, the Y register is loaded with the
highest possible value which can be represented in sixteen bits (all bits
turned on).

REP #$30
LONGA ON
LONGI ON
FF LDY #SFFFF
INY z = 1 in status register

Fragment 9.2.
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If one is added to the unsigned value $FFFF, the result is $10000:

1 one to be added
+ 1111 1111 1111 1111 binary equivalent of $FFFF
1 0000 0000 0000 0000 result is S10000

Since there are no longer any extra bits available in the sixteen-bit
register, however, the low-order sixteen bits of the number in Y (that is,
zero) does not represent the actual result. As you will see later, addition
and subtraction instructions use the carry flag to reflect a carry out of
the register, indicating that a number larger than can be represented
using the current word size (sixteen bits in the above example) has been
generated. While increment and decrement instructions do not affect the
carry, a zero result in the Y register after an increment (indicated by the
z status flag being set) shows that a carry has been generated, even
though the carry flag itself does not indicate this.

A classic example of this usage is found in Fragment 9.3, which shows
the techniqgue commonly used on the eight-bit 6502 and 65C02 to incre-
ment a sixteen-bit value in memory. Note the branch-on-condition
instruction, BNE, which was introduced in the previous chapter, is
being used to indicate if any overflow from the low byte requires the
high byte to be incremented, too. As long as the value stored at the
direct page location ABC is non-zero following the increment operation,
processing continues at the location SKIP. If ABC is zero as a result of
the increment operation, a page boundary has been crossed, and the
high order byte of the value must be incremented as well. If the high-
order byte were not incremented, the sixteen-bit value would “wrap
around" within the low byte.

0000 EE0080 TOP INC ABC increment low byte

0003 DOFB BNE SKIP if no overflow, done

0005 EE0180 INC ABC +1 if overflow: increment high byte, too

0008
0008
0008
0008

SKIP continue

Fragment 9.3.

Such use of the z flag to detect carry (or borrow) is peculiar to the

increment and decrement operations: if you could increment or decre-
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ment by values other than one, this technique would not work consis-
tently, since it would be possible to cross the "threshold” (zero) without
actually "landing" on it (you might, for example, go from $FFFF to
$0001 if the step value was 2).

A zero result following a decrement operation, on the other hand,
indicates that the next decrement operation will cause a borrow to be
generated. In Fragment 9.4, the Y register is loaded with one, and then
one is subtracted from it by the DEY instruction. The result is clearly
zero; however, if Y is decremented again, $FFFF will result. If you are
treating the number as a signed, two's-complement number, this is just
fine, as $FFFF is equivalent to a sixteen-bit, negative one. But if it is an
unsigned number, a borrow exists.

€230 REP #$30 16-bit regi sters

LONGA ON

LONGI ON
A00100 LDY #3$0001 = 0 in the status regi ster
88 DEY = 1 in the status regi ster

Fragment 9.4.

Together with the branch-on-condition instructions introduced in the
previous chapter, you can now efficiently implement one of the most
commonly used control structures in computer programming, the'pro-
gram loop.

A rudimentary loop would be a zero-fill loop; that is, a piece of code
to fill a range of memory with zeroes. Suppose, as in Listing 9.1, the
memory area from $4000 to $5FFF was to be zeroed (for example, to
clear hi-res page two graphics memory in the Apple /7). By loading an
index register with the size of the area to be cleared, the memory can be
easily accessed by indexing from an absolute base of $4000.

The two lines at BASE and COUNT assign symbolic names to the
starting address and length of the fill area. The REP instruction puts the
processor into the long index/long accumulator mode. The long index
allows the range of memory being zeroed to be greater than 256 bytes;
the long accumulator provides for faster zeroing of memory, by clearing
two bytes with a single instruction.

The loop is initialized by loading the X register with the value
COUNT, which is the number of bytes to be zeroed. The assembler is
instructed to subtract two from the total to allow for the fact that the
array starts at zero, rather than one, and for the fact that two bytes are
cleared at a time.
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KEEP KL.9.1
65816 ON
Lo1 START
18 CLC
FB XCE
BASE GEQU  $4000 starting address of fill area
COUNT GEQU $2000 number of bytes to clear
C230 REP  #$30 turn 16-bit modes on
LONGA ON
LONGI ON
A2FE1F LDX  ACOUNT-2 get the number of bytes to clear
1 minus two
9E0040 LOOP STZ BASE. X store zero to memory
CA DEX
CA DEX
10F9 BPL LOOP repeat loop again if not done
38 DONE SEC
FB XCE
60 RTS
END
Listing 9.1.

The loop itself is then entered for the first time, and the STZ instruc-
tion is used to clear the memory location formed by adding the index
register to the constant BASE. Next come two decrement instructions;
two are needed because the STZ instruction stored a double-byte zero.
By starting at the end of the memory range and indexing down, it is pos-
sible to use a single register for both address generation and loop con-
trol. A simple comparison, checking to see that the index register is still
positive, is all that is needed to control the loop.

Another concrete example of a program loop is provided in Listing
9.2, which toggles the built-in speaker in an Apple Il computer with
increasing frequency, resulting in a tone of increasing pitch. It features
an outer driving loop (TOP), an inner loop that produces a tone of a
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0001 0000 KEEP  XL.9.2
0002 0000 65816 ON
0003 o000
0004 o000 L92 START
0005 o000 18 CLC
0006 o001 FB XCE
0007 o002 E230 SEP  #$30 set s-bit modes
0008 0004 LONGA OFF
0009 0004 LONGI OFF
o010 0004 BELL GEQU  $C030
o011 0004
o012 0004 Azo0 LDX  #o0
0013 0006 sA TXA X, now in A, initializes the delay loop
0014 0007
0015 0007 9B TOP TXY initialize X s Y to O
0016 0008
0017 0008 8D30CO LOOP STA BELL accessing the tone generator pulses it
0018 o000B
0019 000B sA TXA dimininishing delay loop
0020 000C
0021 000C 3A DELAY DEC A
0022 000D DOFD BNE DELAY loop 256 times before continuing
0023 000F
0024 000F
0025 O00O0F ss DEY
0026 o010 DOF6 BNE LOOP
0027 o012
0028 o012 CA DEX
0029 0013 O00F2 BNE TOP
0030 0015
0031 0015 38 SEC
0032 0016 FB XCE
0033 0017 60 RTS
0034 0018 END
Listing 9.2.

given pitch, and an inner-most delay loop. The pitch of the tone can be
varied by using different initial values for the loop indices.

Addition and Subtraction:
Unsigned Arithmetic

The 65x processors have only two dedicated general purpose arithme-
tic instructions: add with carry, ADC, and subtract with carry, SBC. As
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will be seen later, it is possible to synthesize all other arithmetic func-
tions using these and other 65x instructions.

As the names of these instructions indicate, the carry flag from the
status register is involved with the two operations. The role of the carry
flag is to "link” the individual additions and subtractions that make up
multiple-precision arithmetic operations. The earlier example of the
6502 sixteen-bit increment was a special case of the multiple-precision
arithmetic technique used on the 65x processors, the link provided in
that case by the BNE instruction.

Consider the addition of two decimal numbers, 56 and 72. You begin
your calculation by adding six to two. If you are working the calcula-
tion out on paper, you place the result, eight, in the right-most column,
the one's place:

56
72
8

Next you add the ten's column; 5 plus 7 equals 12. The two is placed in
the tens place of the sum, and the one is a carry into the 100's place.
Normally, since you have plenty of room on your worksheet, you sim-
ply pencil in the one to the left of the two, and you have the answer.

The situation within the processor when it adds two numbers is basi-
cally similar, but with a few differences. First, the humbers added and
subtracted in a 65x processor are normally binary numbers (although
there is also a special on-the-fly decimal adjust mode for adding and
subtracting numbers in binary-coded decimal format). Just as you began
adding, the processor starts in the right-most column, or one's place,
and continues adding columns to the left. The augend (the number
added to) is always in the accumulator; the location of the addend is
specified in the operand field of the instruction. Since a binary digit can
only be a zero or a one, the addition of 2 ones results in a zero in the
current column and a carry into the next column. This process of addi-
tion continues until the highest bit of the accumulator has been added
(the highest bit being either bit seven or, alternatively on the 65802/
65816, bit fifteen, if the m flag is cleared). But suppose that $82 is added
to $AB in the eight-bit accumulator:

1 1 carry digits from previous addition to right
1000 0010 binary equivalent of $82

+ 1010 1011 binary equivalent of $AB
0010 1101

If you begin by adding the binary digits from the right and marking
the sum in the proper column, and then placing any carry that results at
the top of the next column to the left, you will find that a carry results
when the ones in column seven are added together. However, since the
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accumulator is only eight bits wide, there is no place to store this value;
the result has “overflowed" the space allocated to it. In this case, the
final carry is stored in the carry flag after the operation. If there had
been no carry, the carry flag would be reset to zero.

The automatic generation of a carry flag at the end of an addition is
complemented by a second feature of this instruction that is executed at
the beginning of the instruction: the ADC instruction itself always adds
the previously generated one-bit carry flag value with the right-most
column of binary digits. Therefore, it is always necessary to explicitly
clear the carry flag before adding two numbers together, unless the
numbers being added are succeeding words of a multi-word arithmetic
operation. By adding in a previous value held in the carry flag, and
storing a resulting carry there, it is possible to chain together several
limited-precision (each only eight or sixteen bits) arithmetic operations.

First, consider how you would represent an unsigned binary number
greater than $FFFF (decimal 65,536)—that is, one that cannot be stored
in a single double-byte cell. Suppose the number is $023A8EFI. This
would simply be stored in memory in four successive bytes, from low to
high order, as follows, beginning at $1000:

1000 - F1
1001 - 8E
1002 - 3A
1003 - 02

Since the number is greater than the largest available word size of the
processor (double byte), any arithmetic operations performed on this
number will have to be treated as multiple-precision operations, where
only one part of a number is added to the corresponding part of another
number at a time. As each part is added, the intermediate result is
stored; and then the next part is added, and so on, until all of the parts
of the number have been added.

Multiple-precision operations always proceed from low-order part to
high-order part because the carry is generated from low to high, as seen
in our original addition of decimal 56 to 72.

Listing 9.3 is an assembly language example of the addition of
multiple-precision numbers $023A8EFI to $0000A2C1. This example
begins by setting the accumulator word size to sixteen bits, which lets
you process half of the four-byte addition in a single operation. The
carry flag is then cleared because there must be no initial carry when an
add operation begins. The two bytes stored at BIGNUM and
BIGNUM + 1 are loaded into the double-byte accumulator. Note that
the DC 14 assembler directive automaticall