
WITH THE

LAIMCE A.LEVENTHAL

Digitized by the Internet Archive

in 2016

https://archive.org/details/microcomputerexp00leve_0

MICROCOMPUTER
EXPERIMENTATION
WITH THE AIM 65

LANCE A. LEVENTHAL

Emulative Systems Company
San Diego, California

PREN I ICE-HALL, INC., Englewood, Cliffs, Mew jersey 07632

Library of Congress Cataloging-in-Puhlication Data

Lbventhal, Lance A., 1945-

Microcomputer experimentation with the AIM 65.

Includes index.

1. AIM 65 (Computer)—Programming—Laboratory

manuals. 2. Automatic control—Laboratory manuals.

3. 6502 (Microprocessor)—Programming—Laboratory

manuals. I. Title.

TK7889.A37L48 1987 629.8'95 86-12277

ISBN 0-13-580283-0

Editorial/production supervision and

interior design: Cheryl SmithIMary Jo Stanley

Cover design: Photo Plus Art

Manufacturing buyer: Rhett Conklin

This book is dedicated to Stan Rogers, in appreciation of all he taught me about technical writing.

© 1987 by Prentice-Hall, Inc.

A Division of Simon & Schuster

Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be

reproduced, in any form or by any means,

without permission in writing from the publisher.

AIM 65®— Courtesy of Dynatem under license from Rockwell International.

Printed in the United States of America

10 987654321

ISBN -13-SflDBfl3-D DBS

Prentice-Hall International (UK) Limited, London

Prentice-Hall of Australia Pty. Limited, Sydney

Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Me.xico

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

CONTENTS

PREFACE

LABORATORY 0 BASIC OPERA T/ONS
Overview 2

Resetting the Computer 4

Examining Memory 4

Changing Memory 7

Running a Program 8

Key Point Summary 9

LABORATORY 1 WRITING AND RUNNING
Data Transfer Program 13

Entering and Running the Data Transfer

Program 1

6

Processing Data 19

Logically ANDing Two Values 21

SIMPLE PROGRAMS
Examining Registers 23

Changing Registers 24

Common Operating Errors

Key Point Summary 25

24

LABORATORY 2 SIMPLE INPUT

Simple Input 30

Flags and Conditional Branches

Waiting for a Switch to Close

Special Bit Positions 35

Examining Flags 36

Waiting for Two Closures 38

Searching for a Starting Character

Key Point Summary 40

LABORATORY 3 SIMPLE OUTPUT

LED Connections 43

Assigning Directions to VIA I/O

Lines 44

Lighting an LED 45

Producing a Time Delay 46
Lengthening the Delay 48

iv Contents

Bit Manipulation

Duty Cycle 51

50 Key Point Summary 53

LABORATORY 4 PROCESSING DA TA INPUTS 54

Handling More Complex Inputs 56

Waiting for Any Switch to Close 56

Debouncing a Switch 58

Counting Closures 60

Identifying the Switch 61

Using a Hardware Encoder

Key Point Summary 66

64

LABORATORY 5 PROCESSING DATA OUTPUTS

Handling More Complex Outputs 70

Using the On-Board Display 70

Adding a Delay 75

Decimal-to-ASCII Conversion 76

Hexadecimal-to-ASCII Conversion 78

Counting on the Displays 80

Character Selection by Lookup Table

Moving a Character across the

Display 84

Key Point Summary 86

68

82

LABORATORY 6 PROCESSING DA TA ARRA YS 88

Data Arrays 89

Processing Arrays with the 6502

Microprocessor 9

1

Sum of Data 92

Using a Terminator 95

LABORATORY 7 FORMING DATA ARRAYS

Standard Procedure for Forming

Arrays 107

Clearing an Array 108

Placing Values in an Array 109

Entering Input Data into an Array 1 1

2

Limit Checking 97

Displaying a Message 99

Varying the Base Address

Key Point Summary 103

102

105

Accessing Special Elements 116

Counting Switch Closures 118

Arrays of Addresses 119

Long Arrays 122

Key Point Summary 124

LABORATORY 8 DESIGNING AND DEBUGGING PROGRAMS 125

Stages of Software Development 127

Flowcharting 128

Flowcharting Example 1: Counting

Zeros 1 28

Flowcharting Example 2: Maximum
Value 132

Flowcharting Example 3: Variable

Delay 134

Debugging Tools 135

Breakpoints 136

STEP Mode 137

Traces 137

Debugging Example: Counting

Zeros 138

Using Breakpoints 141

Dump and Disassembler 145

Why the Editor/Assembler Is

Useful 146

Common Programming Errors

Key Point Summary 148

146

Contents v

LABORATORY 9 ARITHMETIC

Applications of Arithmetic 151

8-Bit Binary Sum 151

Binary-Coded-Decimal (BCD)
Representation 153

8-Bit Decimal Sum 155

0

LABORATORY A SUBROUTINES AND THE

Rationale and Terminology 171

Call and Return Instructions 171

6502 Stack and Stack Pointer 172

Guidelines for Stack Management 174

Subroutine Linkages in the Stack 175

Saving Registers in the Stack 177

Delay Subroutine 177

749

Decimal Summation 157

16-Bit Arithmetic 158

Multiple-Precision Arithmetic 161

Arithmetic with Lookup Tables 164

Key Point Summary 167

STACK j69

Input Subroutine 179

Output Subroutine 180

Using Monitor Subroutines 181

Using the Output Subroutines 183

Calling Variable Addresses 187

Key Point Summary 190

LABORATORY B INPUT/OUTPUT USING HANDSHAKES 192

Synchronous and Asynchronous I/O 196
Treating Status and Control Signals as

Data 197

Using Data Lines for Status 198

Using Data Lines for Control 200
6522 Versatile Interface Adapter 203

VIA Status Inputs 206
VIA Control Outputs 210
VIA Automatic Control Modes 214
Programmable I/O Devices 216
Key Point Summary 216

LABORATORY C INTERRUPTS

Overview of Interrupts 220
6502 Interrupt System 220
AIM Interrupts 222

Nonmaskable Interrupts 222

6522 VIA Interrupts 223

Handshaking with Interrupts 226
Communicating with Interrupt Service

218

Routines 230

Buffering Interrupts 231

Multiple Sources of Interrupts 235
Guidelines for Programming with

Interrupts 239

Key Point Summary 239

LABORATORY D TIMING METHODS

Timing Requirements and Methods
Waiting for a Clock Transition 244
Measuring the Clock Period 246

Programmable Timers 249
6522 Interval Timers 249

Elapsed Time Interrupts 253

241

243 Real-Time Clock 256

Longer Time Intervals 259
Keeping Time in Standard Units 260
Real-Time Operating Systems 263
Key Point Summary 263

vi Contents
t

LABORATORY E SERIAL INPUT/OUTPUT

Serial Interfacing 267

Serial/Parallel Conversion 267

Generating Bit Rates 270

Using the Real-Time Clock 273

265

Start and Stop Bits 276

Detecting False Start Bits 219,

Generating and Checking Parity 282

Key Point Summary 285

LABORATORY F MICROCOMPUTER TIMING AND CONTROL

Special Problems in Microcomputer

Hardware Design 288

Timing and Control Functions 288

System Clock 289

Tracing Instruction Execution 292

Execution of Addressing Modes 293

Decoding Address Lines 295

Multiple Addresses and Memory

Expansion 299

Addressing I/O Devices 300

Key Point Summary 302

286

Appendix 1 6502 Microprocessor Instruction Set 304

Appendix 2 ASCII Character Table 309

Appendix 3 Brief Descriptions of 6502 Family Devices 310

Appendix 4 Laboratory Interfaces and Parts Lists 324

Appendix 5 Summary of the AIM 65 Monitor 332

INDEX 337

PREFACE

The purpose of this manual is to provide experimental training on microcomputers for

people in the fields of engineering, engineering technology, computer science, the physical

sciences, electronics, and related fields. The emphasis is on the design of controllers for

industrial and laboratory use. The experiments, examples, and problems were adapted from
applications in instrumentation, test equipment, communications, computers and peripher-

als, industrial control, process control, business equipment, aerospace and military sys-

tems, and consumer products. The manual illustrates the use of microcomputers in tasks

that are essential to all these applications, responding to switches, controlling displays,

encoding and decoding data, collecting and processing data, executing arithmetic func-

tions, interfacing simple handshaking peripherals (such as terminals and printers), timing
and scheduling operations, and implementing serial communications.

First, the manual describes how to operate the microcomputer. It then introduces

assembly language programming, shows how to perform simple controller functions,

discusses hardware-software trade-offs, describes how to design and develop programs,
illustrates alternative approaches to input/output and timing, presents the advantages and
uses of programmable LSI devices, and describes serial communications. The final experi-

ment provides a brief introduction to hardware design and development. The manual
includes numerous examples drawn from actual applications, but simplified to avoid
requiring extensive background, special equipment (beyond the microcomputer itself), or

long setup times. Because the manual is self-contained, it can be used by people with a

variety of interests and backgrounds.

The manual is based on the popular AIM 65 microcomputer (formerly manufactured
by Rockwell International and now licensed to Dynatem of Irvine, California) because of its

low cost, wide availability, completeness, and ease of use. The AIM does not require

VII

viii Preface
«

expensive peripherals (such as a terminal), has excellent documentation, requires no

assembly, has expansion capabilities, and contains all the components of typical microcom-

puters. The AIM’s ROM-based monitor makes it easy to explain and use, and it has enough

memory and input/output lines for many interesting and relevant examples.
'

This manual emphasizes the control of systems with software. This control is

illustrated with simple examples using switches, single displays, and the on-board

peripherals. The intent here is to provide realistic examples that require little additional

hardware and can be performed in short time periods. Numerous programs are included as

starting points for students and as references for examination and comparison.

The standard format used in this book conforms with other textbooks, manuals, and

reference materials. I have used the notation from the 6502 assembler provided by MOS
Technology (now a division of Commodore Business Machines). I have tried to make all

programs clear, simple, well structured, and well documented. I have avoided programming

tricks, even when they would make programs somewhat shorter and faster. Good programming

practices are essential to microcomputer users, so I have tried to provide sound, fiilly tested

examples for readers to follow. Besides, few things give readers more pleasure than writing a

program that is shorter, faster, and more ingenious than the one in the book.

This manual does not describe the 6502 microprocessor in detail. Nor does it offer a

complete discussion of 6502 assembly language programming. I therefore provide exten-

sive references to appropriate textbooks, 6502 manuals, and programming books. Because

the manual is self-contained, it can be used independently of the reference materials. I have

also compiled an extensive index so that casual users can find programs of specific interest

to them and students can readily find material for review, reference, or further information.

Each experiment in the manual is itself self-contained. Each includes a list of goals,

definition of new terms, references (with page numbers), descriptions of instructions that are

being introduced, a list of required equipment (with diagrams), and a key point summary. Each

laboratory exercise contains numerous problems that are linked closely to the discussion. The

problems illustrate key points, relate current material to previous experiments, and provide

examples from actual applications; there are no “make-work” problems or rote tasks. I have

tested all the problems and provide sample data, hints, and discussions.

Many people contributed to the writing of this manual. Irvin Stafford of Burroughs

Corporation constructed the hardware, checked the examples and problems, and suggested

many improvements and corrections. Carter Stafford provided the photographs of the AIM
and the other laboratory apparatus. Ralph Reccia of Rockwell International was most

helpful in answering questions and providing materials and encouragement. Dennis Star-

buck of Dynatem also provided current material describing his company’s product line.

Professor Wilson Turner of California State University, San Bernardino, used a preliminary

version of the manual in his classes and offered many criticisms and suggestions. Cheryl

Smith and Mary Jo Stanley of Prentice-Hall, along with copy editor Bruce Emmer, did an

outstanding production job. All remaining errors are, of course, my fault. Cheers!

LANCE A. LEVENTHAL

San Diego, California

LABORATORY 0 J

BASIC OPERATIONS

PURPOSE

I’o learn how to operate the mieroeomputer.

REFERENCE MATERIALS

R. J. TOCCI and L. P. LASKOWSKI, Microprocessors and Microcomputers: Hardware
and Software, 2nd ed., Prentiee-Hall, Englewood Cliffs, NJ, 1982, pp. 11-12 (hex-

adecimal number system), 70-72 (types of semiconductor memories), 92-94 (basic

computer system organization).

AIM 65 Users Guide, Dynatem, Irvine, CA, 1979, Chapters 1 and 2.

1

2 Microcomputer Experimentation with the AIM 65

WHAT YOU SHOULD LEARN

1. How to reset the eompiiter.

2. How to examine a memory location.

3. How to ehange a memory loeation.

4. How to enter and run a program.

TERMS

Byte a unit of 8 bits, may be described as eonsisting of two hexadeeimal digits (the four

most signifieant bits and the four least signifieant bits).

Central proeessing unit (CPU) the part of the eomputer that eontrols its operations and

proeesses data.

Cursor a movable indieator of position on a display.

Hexadecimal (hex) number system with base 16. 1 he digits are the numbers 0 through

9, followed by the letters A through F (see Table 0-1).

Mieroeoinputer a computer with a microprocessor as its CPU.

Mieroproeessor a single-chip CPU.

Monitor a program that allows the computer user to enter programs and data, run

programs, examine memory and registers, and use peripherals.

Nonvolatile memory a memory that retains its contents when power is lost.

Read-only memory (ROM) a memory that can be read but not changed in normal

operation.

Read/write (random-access) memory (RAM) a memory that can be both read and

changed (written) in normal operation.

Reset a signal that puts the computer in a known initial state.

Scratchpad a memory area that is especially convenient to use for temporary storage.

Word the basic grouping of bits that a computer can process at one time. The 6502

microprocessor has an 8-bit word.

6502 INSTRUCTIONS

BRK (00 hex) force break; on the AIM 65, BRK transfers control to the monitor.

OVERVIEW

rhe AIM 65 (Figure 0-1) is an inexpensive microcomputer. Sections 1.6 through 1.8 of

Basic Operations 3

X
HGURL 0-1. The AIM 65 microcomputer. (Courtesy of Carter Stafford.)

the AIM 65 Users Guide describe how to set it up and attach a power supply. It has the

following components:

• A 6502 microprocessor, the central processing unit or “brain.”

• Read-only memory, or ROM (two 2332 devices that contain a monitor). Each 2332
ROM consists of 4K 8-hit units (bytes). IK = 2*‘^ = 1,024.

• Rcad/writc memory, or RAM (two 2114 devices into which the user can enter data

and programs). Each 2114 RAM consists of IK 4-hit units. 'I’lie two 2114s con-
nected in parallel provide IK bytes of memory. 'I’liere are sockets for six more
2114s, thus e.xpanding RAM to 4K bytes.

4 Microcomputer Experimentation with the AIM 65 ft

• 'Two 6522 Versatile Interfaee Adapters (VIAs). Eaeh VIA eontains two 8-bit input/

output (I/O) ports.

• A 54-key keyboard. Most keys are loeated just as on a standard typewriter; note,

however, that tliere are no lowerease letters. .

• A 20-eharaeter alphanumerie display.

• A 20-eoluinn thermal printer.

• A eassette interfaee that lets you transfer programs and data to and from audio

eassettes (see Seetions 2.9 and 2.10 of the AIM 65 Users Guide). We will not

diseuss eassettes again; you ean use them to save programs and thus avoid repetitive

keyboard input.

Appendix 5 eontains deseriptions of the 6502 and 6522 devices. For those unfamiliar with

the hexadecimal (base 16) number system, there is a brief explanation in the textbook by

d’occi and Laskowski, as well as in many other books. Hexadecimal notation is merely a

convenience to avoid references to long binary numbers.

RESETTING THE COMPUTER

Before you start working with the AIM, you should reset it. The RESET button is located

near the left edge of the computer just below the printer. Press and release it. d'he AIM
should flash a message (ROCKWELL AIM 65) on its display and then leave a prompt (Z_)

at the far left.

d'he AIM is now executing the monitor stored in the 2332 ROMs. This program

allows you to control the AIM from its keyboard. You can place programs and data in

read/write memory, run programs, examine and change memory and registers, and do

other simple operations. For more details, see the booklet entitled A/M 65 Monitor

Program Listing.

EXAMINING MEMORY

d’he basic AIM 65 has IK bytes of read/write memory (RAM) in addresses 0000 through

03FF hexadecimal. Some of these addresses are special (see Appendix 5 for a complete

map of AIM 65 memory). In particular, note the following:

• 'The monitor uses OODF through OOFF for its own purposes. We will therefore not

use those locations.

• 'The 6502 microprocessor uses 0100 through OlFF for its stack. We will discuss the

stack in Laboratory A, but for now we will simply not use those locations either.

• Addresses 0000 through OOFF (the monitor uses some of these) serve as a

scratchpad. We will see why in Laboratory 1. We will use 0000 through OODF for

data only; we will not put any programs there.

Basic Operations 5

Oxcrall, \vc will use the following addresses:

• 0000 through OODK for data.

• 0100 through OlFF for the stack.

• 0200 through 03FF for programs and data.

Note that each locatic^i has a 16-bit address (four hexadecimal digits) and contains 8 bits

of data (two hexadecimal digits), d’ablc 0-1 is a list of the hexadecimal digits and their

biliary and decimal equivalents. Use this table if yon need help converting numbers from
one base to another.

TABLE 0-1 HEXADECIMAL-TO-DECIMAL CONVERSION TABLE

Hexadecimal Digit Decimal Value Binary Value

0 0 0000

1 1 0001

2 2 0010
3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

K 14 1110
1'

15 nil

Before yon continue, be sure the AIM is in the following state:

1 . Printer off. Yon can toggle the printer (that is, turn it off if it is on and vice versa) by

pressing CFRL (leftmost key in the middle row) and PRINT (rightmost key in the

top row) together, d’he display indicates whether the printer is on or off. Yon should

turn it off initially to avoid wasting paper.

2. RUN/S'PEP and KBAITY switches both forward (toward the keyboard). 'Phesc

switches are located just left of the display. Moving them forw'ard puts RUN/Sd’EP
in the RUN position and KB/TFY in the KB position.

d o examine memory, first press the M key. 'Phe display will show

Z-MA = '

6 Microcomputer Experimentation with the AIM 65
*

The " acts as a cursor; it indicates where you are working on the line. You must now enter

the address you want to examine, starting with the most significant digit. You can omit

leading zeros. Remember that the digits are hexadecimal (see Table 0-1). If you get lost,

start over by pressing RESEH" or the ESC (escape) key (leftmost key in the'*next-to-top

row).

Eor example, enter the four-digit address 0200. New' digits appear at the right as you

would expect. Now press RETURN (rightmost key in the next-to-top row). Remember

that the display is hexadecimal and that memory addresses are four digits long, whereas

data entries are Kvo digits long.

If you have done everything correctly, the AIM will display the address at the left

and the contents of that address and the next three higher addresses at the right. A typical

example is

Z_MA= 0200 1F 2F be 9D

This means

1. Address 0200 contains IE.

2. Address 0201 contains 2E.

3. Address 0202 contains BE.

4. Address 0203 contains 9D.

Use Table O-I if you need help with hexadecimal digits.

Since 0200 through 0203 are in RAM, their values are arbitrary. RAM loses its

contents when power is removed and could start in any state whatsoever. Such a memory

is said to be volatile. Anything you put in RAM will be lost when you turn the AIM off.

Thus you can examine a memory location as follows:

1. Press ESC or RESET to obtain the prompt (Z_).

2. Press M.

3. Enter its address as four he.xadecimal digits starting with the most significant digit.

You may omit leading zeros.

4. Press RETURN.

rhe contents of the location and the next three higher addresses will appear on the

display. If you enter the address incorrectly, simply press ESC to start over. If you get

totally confused, press RESET.

PROBLEM 0-1

Examine address 0038 (hex).

Basic Operations 7

PROBLEM 0-2

Examine address ECA2 (hex). Its eontents should be BK. We know what it con-

tains, since it is in the nonvolatile read-only memory, "i on can look up the contents of

ROM addresses in the AIM 65 \louitor Program Listing.

Note the following special features of the AIM display;

1. B and D ha\e tails at the top and bottom, so you can tell them from 8 and 0,

respectively.

2. 6 has a bar at the top and 9 has one at the bottom to make them easier to read.

3. Letters arc generally wider than digits. In particular, the letters O and S are twice as

u ide as the digits 0 and 5, respectively, riuis you can tell them apart without much
trouble.

4. I is a capital letter, so you can easily distinguish it from 1 (one).

5. Many letters (particularly B, C, D, K, P, Q, R, S, and V) look strange. 4’here are no
curved lines, and letters vary in size and spacing. 'Lhc overall effect is primitive but

consistent, as if someone were using a machine to imitate a child’s printing.

As with calculator displays, the AIM’s odd-looking letters and numbers will become

familiar with practice.

Once you have examined a set of four memory addresses, you can move on to the

next four higher addresses by pressing the space bar. Try this and sec what happens. I’he

M disappears, but everything else looks the same, except that the address is 4 larger.

Examine memory locations 0200 through 0220. You can move up through memory but

not down. To stop examining memory, press ESC.

CHANGING MEMORY

"i'oii can also change the locations you are examining. Eirst, press the / key (next-to-last

key in the row just above the space bar). Eor example, assume that you have just

examined locations 0200 through 0203. You can change 0200 to 75 by pressing

/ (the display shows Z_/A 0200 "I

7 (the display shows Z_/AQ2Q0 7')

5 (the display shows Z_/ A 0200 yS")

RETURN

'The display goes blank except for the prompt. To verify the change, reexamine 0200.

Note that you can change all four locations just by entering more data as the cursor moves

right. To lca\e a location unchanged, press the space bar, and the cursor will skip over it.

W'hcn you have changed or skipped the fourth location, the display will go blank.

8 Microcomputer Experimentation with the AIM 65 «

1 lowcvcr, you can continue at the next higher address by simply pressing the / key again.

So yon can change a memory location (after examining it) as follows:

6. Press /.

7. hnter the data as two hexadecimal digits, starting with the more significant digit.

If yon enter the data incorrectly, press ESC and / to start over, d’he address at the left will

be the same as before.

Note that the monitor does not actually change memory until you enter the second

digit. Check this by entering F2 into location 0200; verifying that it is there; pressing 0,

k-SC; and then examining 0200 again. It should still contain F2; the 0 was never actually

stored in memory.

PROBLEM 0-3

Enter the following data into 0200 through 0202:

Memory Address (hex) Memory Contents (hex)

0200 A9
0201 6A
0202 00

Verify the values after you enter them.

PROBLEM 0-4

1 ry changing address ECA2 to A4. What do you find when you examine it again?

Remember that ECA2 is in read-only memory, not in read/write memory.

RUNNING A PROGRAM

do run a program, press ESC or RESEd’ to restore the prompt. You must first tell the

AIM where the program begins by pressing * (second key from the right in the top row).

Note that * is an uppercase character, so you must press SIdlET to type it, just as if you
wanted a capital letter on a typewriter. Enter the starting address as four hexadecimal

digits, omitting leading zeros, and press RETURN. If vou now press C and REd'URN,
the AIM will run your program.

A simple example is the single instruction BRK (FORCE BREAK), which makes
the AIM return control to the monitor. We can enter and run this program as follows.

1. Press ESC or RP]SE P to get the prompt.

2. Press M to examine memory.

Basic Operations 9

3. Press 2,0,0, RE l'URN to examine address 0200. W’e will start (and finish) oiir

program there. Note that we have omitted the leading zero.

4. Press /,0,0, RE PURN to put 00 in 0200. 00 is the he.xadecimal version of BRK; yon

can look it up on your programming card or in Pablc Al-1 of this book.

5. Press *,2,0,0, RE'PURN to make the starting address 0200.

6. Press G, RE l’URN to rim the program.

W hat happens? All the computer does is display 0201 and some other information that we
will discuss later. W'c do not know whether anything happened, except that the AIM did

not w ander off (aimlessly!). We will present more imprcssi\ c programs w ith actual results

in Laboratory 1.

PROBLEM 0-5

Ehitcr and run BRK in 022A. What does the display show after you run it?

PROBLEM 0-6

Enter and run BRK in ECA2. What happens and why? Was BRK ever stored in

memory?

KEY POINT SUMMARY

1. rhe AIM 65 has a monitor program stored in read-only memory (ROM). 4’his

memory is nonvolatile, and you cannot change it.

2. You can initialize the AIM and transfer control to its monitor by pressing the

RESE;r button.

5. The AIM has read/write memory (RAM) in addresses 0000 through 03EE. This

memory is volatile (its contents change when pow'cr is lost), and you can change it.

4. Some read/write memory is reserved, either by the monitor or by the micro-

processor. We will use addresses 0200 through 03EE for programs and data and

0000 through OODE for data only.

5. Each memory location has a 16-bit address (four hexadecimal digits); its contents

arc an 8-bit number (two hexadecimal digits).

6. You can examine four successive memory addresses by pressing the M key, entering

the lowest address, and pressing the RETURN key. The contents of the four

locations appear on the display from left to right. You can then change them by

pressing / and entering new data (or spaces if you want to leave locations

unchanged). You can continue examining successively higher addresses by pressing

the space bar, and you can continue changing memory by pressing /. 4’hcsc pro-

cedures let you examine memory and put programs and data in it.

7. You can make the AIM run a program by entering its starting address (pressing *,

address, RETURN) and then pressing G and REl’URN.

LABORATORY I

J

WRITING AND RUNNING

SIMPLE PROGRAMS

PURPOSE

I'o learn how to write, load, and run simple programs.

REFERENCE MATERIALS

L. A. LEVENTHAL, Introduction to Microprocessors: Software, Hardware, Program-

ming, Frentiee-Hall, Englewood Cliffs, NJ, 1978, pp. 40-63, 72-104.

L. A. LEVEN'l’HAL, 6502 Assembly Language Programming, Osborne/MeGraw-Hill,

Berkeley, CA, 1979, Chapter 4.

R. J. rOCCI and L. P. LASKOWSKI, Microprocessors and Microcomputers: Hardware

and Software, 2nd ed., Prentiee-Hall, Paiglewood Cliffs, NJ, 1982, pp. 95-99 (eom-

pnter words), 99-101 (instrnetion words), 112-119 (hardware and software), 163-164

(program eonnter), 165-166 (aecumulator), 310-311 (mieroproeessor instrnetion sets).

10

Writing and Running Simple Programs 1

1

311-316 (6302 registers), 317-322 (6302 instruetion set and addressing inodes), 341

(memory-register transfers).

\\
. J. W’KLLKK, Practical Microcomputer Programming: Phe 6302, Northern I'eeh-

nology Books, FAanston, IL, 1980, Chapters 2-3.

A/.\/ 65 Users Guide, Dynatem, lr\ine, CA, 1979, Chapter 2.

WHAT YOU

1 .

2 ,

3.

4.

3.

6 .

7.

SHOULD LEARN

How to load programs into memory.

How to determine the length of instriietions.

1 low to place addresses in instructions.

1 low to examine the results of programs.

How to make the 6302 do simple arithmetic and logic.

1 low to examine registers.

1 low to change registers.

TERMS

Absolute addressing an addressing mode in which the instruction contains the actual

address required to execute it. In 6502 terminology, absolute addressing refers to direct

addressing with 16-bit addresses.

Accumulator a register that holds one operand and, subsequently, the result in most

arithmetic and logical operations.

Addressing modes the methods for specifying the addresses used to execute an instruc-

tion. Common modes include direct, immediate, indexed, and relative.

Assembler a program that converts assembly language programs into a form (machine

language) that a computer can execute directly. T he assembler translates mnemonic

operation codes and names into their numerical equivalents and assigns locations in

memory to data and instructions.

Assembly language a computer language that allows the programmer to use mnemonic

operation codes, labels, and names to refer to their numerical equivalents.

Comment part of a program that has no purpose other tl]an documentation. Comments
are neither translated nor executed; they are simply copied into the program listing.

Direct addressing an addressing mode in which the instruction contains the actual

address required to execute it. The 6302 has two types of direct addressing: zero-page

(requiring only an 8-bit address on page 0) and absolute (requiring a full 16-bit address).

logical shift a shift that fills vacated bits with zeros.

Machine language the programming language that the computer can execute directly

w ith no translation other than numerical conversions.

12 Microcomputer Experimentation with the AIM 65 t

Mnemonic name that suggests something’s purpose or function.

Operation code (op code) part of an instruction that tells what operation it perforins.

Page a subdivision of memory. In 6502 terminology, a page consists of 256 bytes with

the same 8 most significant address bits; for example, page C6 consists of addresses C600
through C6FF.

Page number the identifier for a memory page; in 6502 terminology, the 8 most signifi-

cant bits of a memory address.

Program counter a register that contains the address of the next instruction to be fetched

from memory.

Register a storage location inside the CPU.

Zero-page addressing a type of direct addressing in which the instruction contains only

an 8-bit address on page 0. That is, page 0 is implied.

6502 INSTRUCTIONS

AND logically AND the accumulator with a memory location.

ASL arithmetic shift left; shift the accumulator or a memory location left 1 bit and clear

the least significant bit (see Figure 1-1).

EOR logically EXCLUSIVE OR the accumulator with a memory location.

EDA load accumulator from a memory location.

LDX(Y) load index register X(Y) from a memory location.

LSR logical shift right; shift the accumulator or a memory location right 1 bit and clear

the most significant bit (see Figure 1-1).

ORA logically (INCLUSIVE) OR the accumulator with a memory loeation.

STA store accumulator in a memory location.

STX(Y) store index register X(Y) in a memory location.

Original contents of CARRY flag and accumulator or memory location

c by be be b4 ba ba bi bo

After ASL (ARITHMETIC SHIFT LEFT)

b? be be b4 ba ba bi bo 0

After LSR (LOGICAL SHIFT RIGHT)

bo 0 b? be be b4 ba ba bi

HGURE 1-1. 6502 shift instructions ASL and LSR.

Writing and Running Simple Programs 13

DATA TRANSFER PROGRAM

Our first program simply mo\ cs the contents of memory location 0040 (hex) to 0041 . i ’he

computer here provides the cqni\alcnt of an electrical connection between the two

locations.

I’he program is

LDA $40
STA $41

BRK

GET DATA
MOVE DATA
RETURN TD MDNITDR

W'c are using the format of the AIM 65 assembler (sec Figure 1-2); $ in front of a number

means “hexadecimal.” The comments (preceded by semicolons) act only as documenta-

tion and do not affect the program. Figure 1-3 is a programming model of the 6502

microprocessor.

Before a number:

$ - hexadecimal

% - binary

@ - octal

The default case (i.e., unmarked) is decimal.

Other symbols:

- immediate addressing

,
- between a base address and the

designation of an index

register (X or Y)
'

- before an ASCI I character

;
- before a comment

A space is required after a label and after an operation code.

Parentheses around an address indicate that it is to be used

indirectly (i.e., it contains an address rather than the actual FIGURK 1-2. Format for the AIM 65

data). The default addressing mode is absolute (direct). assembler.

Let us now look at each instruction in detail;

1. LDA $40 loads the accumulator with the contents of memory location 0040. 4'hc $

means “hexadecimal,” and the leading zeros can be omitted as in common prac-

tice. Remember, the address is four hexadecimal digits (16 bits) long, but the data

stored there is two digits (8 bits) long.

2. S4 A $41 stores the accumulator in location 0041. Here again, the address is four

digits long, whereas the data is two digits long.

3. BRK returns control to the AIM’s monitor. You should put it at the end of every

program.

14 Microcomputer Experimentation with the AIM 65 t

> j

A

' t
Y

’ A

X

A

PCM PCL

• A

\ S

PROGRAMMING MODEL

accumulator a

iNOex REGISTER y

INDEX REGISTER X

program COUNTER PC

PROCESSOR STATUS
REGISTER P or F

CARRY 1 . true

ZERO 1 = RESULT WAS ZERO

IRQ Disable i • disable

decimal mode I - MODE ON

BRX command

STACX POINTER S OVERFLOW 1 • TRUE

NEGATIVE ISIGNI

FIGURE 1-3. Programming model of the 6502 microproeessor.

One way to load a program into memory is to look up the hexadeeimal operation

codes on the Programming Referenee Card (see d’able A 1-1). We eould then enter the

program in hexadeeimal as we did in Laboratory 0. Note that most instructions have
different operation (op) codes for different addressing modes. Each operation code is

followed by two numbers: the one under n indicates how many clock cycles the instruc-

tion takes to execute, while the one under # indicates how many bytes of memory it

occupies. We will explain the addressing modes as we use them.

A handy feature of the AIM is that it will translate mnemonic operation codes into

hexadecimal numbers. The monitor’s Instruction Mnemonic Entr>' (I) command lets us

enter programs in assembly language (i.e., referring to the instructions by name) rather

than in machine language (i.e., numbers only). Assembly language is obxiously much
easier to read and remember than machine language, since it is based on meaningful
names {mnemonics) rather than on arbitrary numbers.

You can enter programs using mnemonics as follows:

1. Press I. The AIM will respond with the current starting address, do change it, type
*

(uppercase) followed by the address you want and REITIRN.

2. Once you have the correct starting address, enter the three-letter operation code for

the first instruction. If an operand is needed, enter it in he.xadecimal according to a

format from I able 1-1. When you complete the instruction and press the space
bar, the AIM will first display the program counter, hexadeeimal operation code,
and instruction. It will then display the program counter again, this time along with
the machine language version of the instruction. Finally, it will display the next
axailahle address, and you mav continue entering instructions or exit bv pressing

ESC.

Mnemonic entry works well only if you turn the printer on (by pressing C’PRL and
PRIN I simultaneously). With the printer off, the output appears only briefly on the

display; this is difficult to follow unless you ha\e quick reactions and a photographic
memory. Remember to turn the printer off when you no longer need it.

Writing and Running Simple Programs 15

It an instruction (such as BKK) docs not require an operand, tlic AIM will take

control as soon as you enter the third letter. It will automatically display the program

counter, hexadecimal operation code, and instruction. 1 on may then proceed as usual.

d he .MM indicates undefined operation codes or improper operands with a simple

KRROR message. I’his usually means that yon made a typing mistake or one of the

eommon errors we will describe later. If you make a mistake before completing an

operation code or address, you can correct it immediately. Pressing Df'l. (rightmost key in

the middle row
)
erases flic last character and moves the cursor left. Note that DKL works

only if you have not completed an entry; it will not, for example, move the cursor hack if

you ha\e finished a three-letter operation code (say, typed LDX instead of L.D1). Section

3.5.1 of the A/.\/ 65 Users Guide describes several ways to correct mistakes.

TABLE 1-1 MNEMONIC ENTRY
FORMATS FOR ADDRESSING MODES

Addressing Mode Operand Format

Immediate #1111'

Zero-page illl

Zero-page, X nil, X

Zero-page, A’ nil, Y

Accumulator A

Absolute IIIIIIII

Absolute, X IIIIIIII, X
Absolute, Y IIIIIIII, V

Relative^ nil or IIIIIIII

Indexed indirect (iin, X)

Indirect indexed dill), Y

Absolute indirect (IIIIIIH)

’H represents a liexacleeiinal digit; a leading zero

may not be omitted.

-l‘or eonditional branches, you may enter the dis-

placement from the program counter as a two-digit

relati\c offset or as a four-digit absolute address. In

the second alternative, the monitor computes the

relative offset automatically.

Program 1-1 contains both hexadecimal (machine language) and mnemonic-entry

versions of the data transfer program. Mnemonic entry differs from AIM 65 assembly

language as follows:

1. '^011 need not indicate that a number is hexadecimal. In fact, no other number

svstems arc allowed. Thus, for example, you must enter address 0040 as 40, not

$40. Entering $40 will result in an error message.

2. You cannot omit leading zeros except when the result is a valid format. 'Phus you

must enter 0 as 00 and 200 as 0200. You can, however, omit the page number from

0040 and enter it as 40. Entries such as #0 and 20E will cause error messages.

16 Microcomputer Experimentation with the AIM 65 «

PROGRAM 1-1

Memory

Address

(Ilex)

Memory

Contents

(Hex)
*

Instruetion

(Mnemonic)

0200 A5 LDA 40
2D1 40
202 85 STA 41

0203 41

0204 00 BRK
S

Note the following in Program 1-1:

1. We have used zero-page (direet) addressing for both LDA and STA; the byte of

memory following the operation eode eontains the address. This address is aetually

16 bits long, but if its 8 most signifieant bits are all zeros, we ean omit them and use

zero-page addressing. This is like the eommon praetiee of referring to an interval of

less than a minute as, for example, “20 seeonds” rather than as “zero minutes and
20 seeonds.” If the 8 most signifieant bits of the address are not all zeros, we eannot

omit them and must use absolute (direet) addressing.

2. In zero-page addressing, the seeond byte of the instruetion eontains an address.

Note the LDA $40 means “load the aecumulator from address 0040.” That loeation

eould eontain any 8-bit number; it need not eontain 40.

8. The instruetions vary in length. LDA $40 and S'LA $41 require two bytes of

memory, whereas BRK requires only one.

Let us now' run Program 1-1 with 6C in 0040. The answer should be 6C in 0041.

You should elear 0041 before running the program to prove that the eomputer is aetually

doing something.

ENTERING AND RUNNING THE DATA TRANSFER PROGRAM

To enter Program 1-1 and the test data, and then run the program, proeeed as follow's:

Enter Program

1. Press RESET or ESC if the prompt is not showing. If the printer is off, turn it on by

pressing CTRL and PRINT simultaneously.

2. Start mnemonie entry at address 0200 with the key sequence

Writing and Running Simple Programs 17

2

G

Q

RETURN

3. Enter the prograni in innemonie form with the key sequenee

L

D
A
4

0

SPACE
5

T

A
4

1

SPACE
B

R

K

ESC

You ean verify the entries by comparing the printed machine language instructions with

the memory contents in Program 1-1.

Enter Data

1. Examine 0040 with the key sequence

M
4

0

RETURN

2. Enter the data (6C) and clear 0041 with the key sequence

/

6

C

ESC

18 Microcomputer Experimentation with the AIM 65
*

Note that you iiiiist enter the test data into memory in addition to the program.

Run Program

'^on can now execute the program as follows:

1. Establish the starting address with the key sequence

0

RETURN

2. Make the computer rim the program by pressing

G
RETURN

Remember, the program starts in 0200. The final RE T URN transfers control to it;

control returns to the monitor when the computer executes BRK.

Examine Results

Einally, yon can examine the data and the result (after running the program) with
the key sequence

M
4

RETURN

Remember, the program stores the result in 0041. The computer does not tell you the
answer (regardless of what some fiction writers think). All the computer does is execute the
program (which takes about 6 microseconds) and return control to the monitor (since you
put BRK at the end).

PROBLEM 1-1

Run Program 1-1 with the following data:

a. EO

b. 28

Writing and Running Simple Programs 19

PROBLEM 1-2

Rc\ ise Program 1—1 to do the following:

a. Store the result in 0042.

b. Move the contents of 0041 to 0040.

PROBLEM 1-3

Re\ ise Program 1-1 to use index register X instead of the accumulator. How would

you make it use register V?

PROBLEM 1-4

Revise Program 1-1 to transfer data from 0380 (hex) to 0381 (hex). Now you must

use absolute addressing instead of zero-page addressing. Note in the machine language

output that 2-byte absolute addresses arc loaded upside down; tlie order in a 3-hyte

instruction is operation code, less significant address byte, and more significant address

bvte. LDA $0380, for example, is translated into AD (LDA with absolute addressing), 80

(less significant address byte), and 03 (more significant address byte).

PROBLEM 1-5

Write and run a program that moves the contents of location 0040 to 0042 and the

contents of 0041 to 0043.

Sample Problem

Data: (0040) = C6
(0041) = 5E

Result: (0042) = C6

(0043) = 5E

How much longer is the program if the addresses are 0380 through 0383 instead of 0040

through 0043?

PROCESSING DATA

Of course, we usually want to process the data rather than just move it around in memory.

Eor example, the following program shifts each data bit left one position and clears the

20 Microcomputer Experimentation with the AIM 65
*

least significant bit before storing the result in 0041. The computer here mimics an 8-bit

shift register. 4’he program is

LDA $40 :GET DATA
ASL A ;SHIFT DATA LeFT
STA $41 iSTDRE RESULT
BRK ;RETURN TD MDNITDR

1 he only new instruction is ASL A, which shifts the accumulator left 1 bit and
clears the least significant hit. Note that ASL A is a 1-byte instruction; it does not require
an address, since the data is in the accumulator.

Run this program (Program 1—2 contains hexadecimal and mnemonic-entry ver-

sions) with the data 01 (00000001 binary) in 0040. The result should be 02 (00000010
binary) in 0041. Why? Use Table 0-1 to convert hexadecimal numbers to binary, and
vice versa. For example, 01 hex is 00000001 binary since 0 hex is 0000 binary and 1 hex is

0001 binary. Going the other way, 00000010 binary is 02 hex since 0000 binary is 0 hex
and 0010 binary is 2 hex. You must split the byte down the middle to form two hex-
adecimal digits.

PROGRAM 1-2

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruetion

(Mnemonie)

200 A5 LDA 40
201 40
202 0A ASL A'

0203 85 STA 41
0204 41

0205 00 BRK

PROBLEM 1-6

Run Program 1—2 with the following data:

a. 40. The result should be 80.

b. C7. The result should be 8E. What happens to the 1 that is originally at the far

left?

PROBLEM 1-7

Can you revise Program 1—2 to use an index register? Are there instructions that

shift the index registers? I he accumulator is the only register we can use for data proces-
sing.

Writing and Running Simple Programs 21

PROBLEM 1-8

Make Program 1-2 shift the data right instead of left. (Hint: Replaee ASL. A with

LSR A.)

Sample Problems

The parentheses around a memory address indicate “contents of.”

a. (0040) = 02

Result: (0041) = 01

b. (0040) = C7
Result: (0041) = 63

What happens to the 1 that is originally at the far right?

PROBLEM 1-9

Revise Program 1-2 to shift the contents of two successive locations and store the

results in the next two locations. 11iat is, the new program should store the shifted version

of 0040 in 0042 and the shifted version of 004 1 in 0043.

Sample Problem

Data: (0040) = 01

(0041) = 08

Result: (0042) = 02

(0043) = 10

LOGICALLY ANDING TWO VALUES

We can easily convert the left-shift program into a logical AND program. The task now is

to logically AND the contents of 0040 and 0041 and place the result in 0042. Here the

computer mimics two 7408 quadruple hv'o-input TEL ANL9 gates. Note, however, that a

6502 can perform many different arithmetic and logical functions. I’he logical AND
program is

LDA $40

AND $41

STA $42

BRK

GET FIRST OPERAND
LOGICALLY AND SECOND OPERAND
STORE RESULT

22 Microcomputer Experimentation with the AIM 65

Program 1-5 is the mnemonic-entry version. We have started it in 0210, so we ean
leave Program 1—2 in memory for later use. Remember that AND works as follows on
eaeh hit:

Input 1 Input 2 Input 1 AND Input 2

0 0 0

0 1 0

1 0 0

1 1 1

PROGRAM 1-3

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0210 A5 LDA 40
021

1

40
0212 25 AND 41

0213 41

0214 85 STA 42
0215 42
0216 00 BRK

Enter Program 1—3 into memory and run it for the following sample eases.

Remember to start at 0210, not at 0200. Use Table 0—1 to eonvert hexadeeimal values

into binary to eheck your results.

a. Data: (0040) = 23

(0041) = 34

Result: (0042) = 20

b. Data: (0040) = FO

(0041) = 3B

Result: (0042) = 30

e. Data: (0040) = OC
(0041) = 77

Result: (0042) = 04

PROBLEM 1-10

Make Program 1-3 logically OR two locations and store the result. How would you
get a logical EXCLUSIVE OR? Refer to 4’able 3-3 if you cannot remember bow logical

functions work.

Writing and Running Simple Programs 23

Sample Problem

Data: (004U) = 23

(0041) = 34

Result: (0042) = 37 for logical OR
(0042) = 17 for logical KXCLUS1\4^ OR

EXAMINING REGISTERS

One way to determine what a program is doing is to examine the processor’s registers. On

the AIM, yon can examine registers by pressing the R key. With the printer on, yon will

see the following line of identification codes:

PS AA XX YY SS

"i’on will then see the current register \alnes in the following order from left to right:

PC P A X Y S

PC is the program counter (a 16-bit register), P is the processor status register, and S is the

stack pointer.

If the printer is off, the identification line disappears and yon must use 4’able 1-2 to

figure out what the values mean. 4 he program counter is obvious, since it is the only

four-digit register. Taping a copy of the identification line to the AIM will help yon

identify the other registers. Yon can exit from the register display by pressing ESC.

We have not yet discussed some registers. We will describe the status register in

Laboratorv 2 and the stack pointer in Laboratory A. T he program counter contains the

address of the next instruction that the CPU w ill fetch from memory. Each time the CPU
uses the program counter, it adds 1 to its contents. Tims the computer will execute

instructions sequentially unless it is specifically told to do otherwise. Since the program

counter is 16 bits long, it can hold a complete memory address.

TABLE 1-2 ORDER IN REGISTER DISPLAY (LEFT TO
RIGHT)

IXsignation Meaning

* * « Program counter (four digits)

PS Status (P) register (flags)

AA Accumulator

XX Index register X

vv Index register Y

SS Stack pointer

24 Microcomputer Experimentation with the AIM 65
«

CHANGING REGISTERS

"toil can cliange a register by entering cither two or four (program counter only) hex-

acleeiinal digits after pressing one of the following keys:

1. for program counter (remember, is uppercase). You must type RET’URN after

eompleting the entry.

2. A for accumulator.

3. X for index register X.

4. Y for index register Y.

3. S for stack pointer.

6. P for processor status register.

For e.xample, say we want to put 4C in index register Y. All that we must do is press Y, 4,

C. I he AIM will load 4C into Y; we ean verify this by pressing R.

1 here are two things to watch here. First, note that you cannot change the register

display direetly (that is, by pressing /), nor can you change more than one register with a

single command. Second, the program counter is special. It can accept a four-digit entry,

and you can omit leading zeros. However, you must press RET'URN after changing it.

With the other registers, you cannot omit a leading zero, but you need not press

RE 1 URN. The AIM takes control as soon as you enter the second digit.

Run Program 1-2 with (0040) = C7. What are the final contents of the accu-
mulator and program counter? Does it matter if you clear the accumulator initially (i.e.,

load it with 00)?

PROBLEM 1-11

Run Program 1-3 with (0040) = 23 and (0041) = 34. What are the final contents

of the accumulator and program counter? Does it matter if you clear the accumulator
initially? What happens to values you load into the index registers before running Pro-

gram 1-3? Try different values (e.g., 00, FF, AA, SS) and see if the results vary. What
happens if you reset the computer after loading the index registers? What happens if you
enter 6F into the stack pointer (S register) and then press RESET"?

COMMON OPERATING ERRORS

By now' you have undoubtedly discovered the following common errors that plague the

AIM user:

1 . Forgetting to enter operands properly in mnemonic entry. You must enter operands

as Kvo or four hexadeeimal digits with no leading $; you cannot omit leading zeros.

I ypical problem cases are EDA #0 (you must enter 00, not just 0) and EDA $206
(you must enter 0206, not 206 or $206).

Writing and Running Simple Programs 25

1

4.

5.

6 .

n
/ .

8 .

Forgetting to press M before examining ineinory or / betore elianging it. It yon

begin with tlie address or data, you will eontn.se the .\1M eoinpletely and start a

whole series of problems. The .\1M will think the first digit is a eoininand.

1 Vying to ehange the register display. V on must pre.ss a eoininand key to ehange a

register, and you ean ehange only one at a time.

Filtering a new eoininand before eompleting the current one. t he .\1.\I is remarka-

bly tolerant of this and will often proeeed eorreetly w ith the new eoininand. Some-

times, however, the AIM eannot figure out w hat you want. It, for example, you try

to examine the registers during mnemonie entry, the AIM will probably think R is

the first letter of an operation eode. To avoid this problem, always press FSC and

restore the AIM’s prompt before entering a eoininand.

Misinterpreting data as instruetions. For example, you may set the starting address

to 0040 instead of 0200. d’his mistake eauses the AIM to exeeute the data as if it

eonsisted of instruetions. 'The way to a\ oid this is to keep programs and data elearly

separated in your mind and in all your work.

Forgetting to enter a starting address. You must enter a starting address before

running a program or loading one using mnemonie entry.

Forgetting to run the program—that is, entering the program and the data and

waiting for something to happen. This is like entering data into a ealeulator and

waiting for it to produee a result. Neither a eomputer nor a ealeulator will do

anything until directed to run a program.

Starting program exeeution at the w rong address, d he eomputer w'ill exeeute what-

ever it finds at the address you speeify. 4 his is a eommon error if you have several

programs in memory or if you \ ary the starting address. The way to ensure that you

have the eorreet address is to mark it on eaeh program listing.

Errors will often make the AIM lose its way and never return to the monitor. If this

happens, press RESF'F. Always eheek your program and data before proeeeding; the

eomputer will probably have ehanged them (unless you are much luckier than I am).

KEY POINT SUMMARY

1. Most simple 6502 programs use the accumulator as the center of operations. 4 hey

begin by loading the accumulator from memory and end by storing the result (from

the accumulator) in memory.

2. 44ie most straightforward addressing mode is direct addressing, in which the

instruction contains the address it needs. 4’his address follows the operation eode in

memory.

3. If the 8 most significant hits of a direct address are all zeros, we ean omit them and

use zero-page addressing. 4’his makes page 0 special, since instruetions that use it

occupy less memory and execute faster than instructions that use other pages.

26 Microcomputer Experimentation with the AIM 65 «

4. If the 8 most significant bits of a direct address are not all zeros, we cannot omit

them and must use absolute addressing. An absolute address occupies 2 bytes of

memory, with the 8 most significant bits in the second byte. 'I'bat is, the address is

stored upside down.

5. 'To make the computer do something useful, you must enter the program and data

into memory, run the program, and e.xamine the results. The I (mnemonic entry)

eommand lets you enter programs in simplified assembly language rather than as

hexadecimal numbers (machine language).

6. rhe 65U2’s accumulator is special, because it is the only register that can be used in

most arithmetic and logical operations. '

7. You can examine the 6502’s registers by pressing the R key. The AIM displays

identification codes and register values in the following order from left to right:

program counter (four digits), status (P) register, accumulator, index register X,

index register Y, stack pointer.

8. You can change a register by pressing one of the following keys: * for the program

counter, A for the accumulator, X for index register X, Y for index register Y, S for

the stack pointer, and P for the processor status register. The program counter

requires an address (four digits, but leading zeros can be omitted), followed by

REd’URN. d’he other registers require two-digit entries; a leading zero cannot be

omitted, but no REd’URN is necessary.

9. Common errors in operating the AIM include using mnemonic entry incorrectly,

forgetting to press M or / before examining or changing memory, attempting to

change the register display, starting one command in the middle of another, failing

to enter a starting address, misinterpreting data as instructions, forgetting to run the

program, and starting program execution at the wrong address.

LABORATORY 2
4.

I

SIMPLE INPUT

PURPOSE

To learn how to use the eoinputer’s input ports.

PARTS REQUIRED

Eight svvitehes attaehed to the Applieation Conneetor as shown in Figure 2-1. Table 2-1

eontains the pin assignments.

REFERENCE MATERIALS

L. A. LEVENTHAL, Introduction to Microprocessors: Software, Hardware, Program-

ming, Prentiee-Hall, Englewood Cliffs, NJ, 1978, pp. 72-104, 369-370.

27

28 Microcomputer Experimentation with the AIM 65

L. A. LI\Vh,N'I’l lAL, 6502 Assembly Language Programming, Osborne/McGravv-Hill,

Berkeley, CA, 1979, pp. 11-1 to 11-12, 1 1-39 to 11-49.

R. J. 1 OCCl and L. P. LASKOWSKl, Microprocessors and Microcomputers: Hardware
and Software, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1982, ^pp. 26 (hex-

adecimal arithmetic), 31-32 (AND function), 62-63 (arithmetic circuits), 169-171

(status register), 174-180 (arithmetic-logic unit), 203-206 (simple input port), 312—316
(6502 flags), 319 (immediate addressing), 338-340 (compare and bit test instructions),

346-355 (conditional branch instructions).

AIM 65 Users Guide, Dynatem, Irvine, CA, 1979, pp. 6-1 to 6-19.

R6500 Microcomputer System Programming Manual, Rockwell International, Semicon-
ductor Products Division, Newport Beach, CA, 1979, Chapters 2-5.

WHAT YOU

1 .

2 .

3.

4.

5.

6 .

SHOULD LEARN

How the 6502 identifies I/O ports and which instructions are commonly used for 1/

O.

How to determine whether a switch is open or closed.

Which bit positions can be accessed most easily.

How to examine the flags.

How to handle a series of switch closures.

How to recognize a starting (synchronization) character.

TABLE 2-1 APPLICATION CONNECTOR PIN

ASSIGNMENTS FOR PORT A OF THE USER
VIA

Assignment Pin

Bit 0 (PAO) 14

Bit 1 (PAD 4

Bit 2 (PA2) 3

Bit 3 (PA3) 2

Bit 4 (PAT) 5

Bit 5 (PA5) 6

Bit 6 (PA6) 7

Bit 7 (PA7) 8

TERMS

Branch instruction see Jump instruction.

Carry flag a flag that is 1 if the last operation generated a carry from the most significant

hit and 0 if it did not.

Simple Input 29

Flag a bit that indicates a condition within the computer, often used to choose hetween

altcrnatixc instruction sequences.

Immediate addressing an addressing method in which the instruction contains tlie data

it requires, usually immediately following the operation code in memory.

Jump instruction (or branch instruction) an instruction that places a new \alue in the

program counter, thus departing from the normal instruction sequence. conditional

jump instruction placgs the new value in the program counter only if a condition is true.

Label a name attached to an instruction or statement in a program, d’he name takes on

the value of the starting address in memory of the resulting machine language or assign-

ment.

Masking singling out 1 or more hits from a group of hits.

Memory-mapped inpnt/ontput assigning I/O ports to memory addresses rather than

giving them their own set of addresses.

Negative flag (or sign flag) a flag that contains the most significant hit of the result of the

previous operation.

Port the basic addressable unit of the computer’s input/output section.

Relative addressing an addressing method in which the instruction contains the offset

from a base address.

Relative offset the difference hetween the address to he used in an instruction and the

current program counter.

Relocatable able to he plaeed anywhere in memory without ehanges; that is, capable of

oeeupying any set of eonseeutive memory addresses.

Sign flag see Negative flag.

Status Register a register that eontains bits (flags) deseribing the eurrent state of the

eomputer.

Synchronization (sync) character a eharaeter that is used only to synehronize the trans-

mitter and the reeeiver. 'The eharaeter does not eontain any aetual information.

Zero flag a flag that is 1 if the last operation produeed a zero result and 0 if it did not.

6502 INSTRUCTIONS

T’he following hraneh instruetions all jump over the speeified number of memory loea-

tions if the specified eondition is true; otherwise, they proceed to the next instruetion in

sequenee.

BCC hraneh if earry elear.

BCS hraneh if earry set.

BEQ hraneh if equal to zero (ZERO flag = 1).

BMI branch if minus (NEGATIVE flag = 1).

BNE branch if not equal to zero (ZERO flag = 0).

30 Microcomputer Experimentation with the AIM 65 *

BPL branch if plus (NEGA'l'IVE flag = 0).

BVC branch if overflow clear.

BVS branch if overflow set.

BlI bit test; logically AND the accuinulator with a memory location but leave the

accumulator unchanged, d’his instruction affects only the flags. BFl’sets the NEGAT IVE
flag from bit 7 of the memory location and the OVERFLOW flag from bit 6 without
considering the accumulator. The onlv flag that depends on the logical AND is the

ZERO flag. BIT allows only zero-page and absolute (direct) addressing.

CMP compare memory and accumulator; subtract a memory location from the

accumulator hut leave the accumulator unchanged. This instruction affects only the

flags.

6502 INPUT/OUTPUT INSTRUCTIONS

I hc 6502 has no specific input/output (I/O) instructions. Instead, it treats I/O ports as

memory loeations. In this approaeh, ealled memory-mapped input/output, any instruc-

tion that transfers data to or from memory ean perform I/O. T he 6502 instructions most
often used for I/O are:

• EDA loads the aecumulator from an input port.

• STA stores the aeeumulator in an output port.

• BIT (BIT TEST) sets the flags as if the data from an input port had been logieally

ANDed with the aeeumulator. The aeeumulator does not ehange.

• CMP (COMPARE MEMORY AND ACCUMULA TOR) sets the flags as if the

data from an input port had been subtracted from the aeeumulator. d’he

accumulator does not ehange.

SIMPLE INPUT

d’he AIM 65 has I/O ports in its on-board 6522 Versatile Interfaee Adapters (VIAs).

I hroughout this hook, we will employ user VIA port A (address AGO I) for input and port

B (address AOOO) for output. Starting from reset, the following program loads the

aecumulator from port A:

LDA $A001
BRK

d’he mnemonic-entry version is Program 2-1. Open all the switehes attaehed to

port A, reset the AIM, and exeeute Program 2—1. What does the aeeumulator eontain

afterward?

Simple Input 31

Close the sw iteh attached to bit S and execute Program 2-1 again. Now what is in

the aceuinnlator?

PROGRAM 2-1

Memory

.\ddrc^s

(Hex)
'

Memory

Contents

(Hex)

Instruction

(Mnemonic)

200 AD LDA A001
0201 Q1

202 AO
0203 0 BRK

PROBLEM 2-1

'Phe computer interprets an open switch as and a closed sw itch as if the

connections are as shown in Figure 2-1.

+5V

n

APPLICATION
CONNECTOR

FIGURF. 2-1. Attachment of switches to

the Application Connector. I'he user VIA
is device Z1 in the AIM schematics.

32 Microcomputer Experimentation with the AIM 65 *

PROBLEM 2-2

Determine wliat value Program 2-1 plaees in the aeeiimulator if:

a. rhe switeh attaehed to bit 2 of port A is elosed.

h. Svvitelies attaehed to bits 2 and 5 are elosed.

e. Svvitehes attaehed to bits 0,6, and 7 are elosed.

Assume that all other switehes are open.

PROBLEM 2-3

What happens if you replaee LDA $A001 with LDA $A000? Does opening or

elosing switehes affeet the input? Explain the result.

Remember the following:

1. The standard in the eomputer industry is to number bit positions starting with 0 at

the far right. Thus the bits in a byte are numbered 0 through 7 from right to left; bit

0 is least signifieant and bit 7 most signifieant. Figure 2-2 (shown later in this

ehapter) is an example of the standard numbering. Be eareful—switehes and other

I/O deviees often use other eonventions (e.g. , 1 to 8 or left to right).

2. Sinee AOOl is not on page 0, we must use absolute addressing to refer to it. As you

ean see in Program 2-1, the 16-bit address oeeupies 2 bytes of memory, with its less

signifieant bits first.

FLAGS AND CONDITIONAL BRANCHES

do have the eomputer determine if a switeh is open or elosed, w'e must use the flags and
conditional branch instructions. Instructions that move or process data also affect the

flags. A conditional branch instruction lets the computer use a flag to choose between

alternative paths through a program.

The major 6502 flags are:

C (CARRY) 1 if the last arithmetic or shift instruction produced a carry, 0 if it did not.

N (NEGATIVE or SIGN) 1 if the result of the last instruction had a 1 in its most

significant bit, 0 if it did not.

Z (ZERO) 1 if the result of the last instruction was zero, 0 if it was not zero.

Conditional branch instructions place a new value in the program counter if the

specified flag has the specified value. Otherwise, they leave the program counter

unchanged and the processor simply continues its normal sequence. Conditional

branches make a computer “smart,” that is, capable of making decisions based on current

Simple Input 33

information. The computer thus becomes an intelligent controller, l ablc 2-2 lists the

6502’s conditional branch instructions.

TABLE 2-2 6502 CONDITIONAL BRANCH INSTRUCTIONS

Instruction 4
^

Flag Used

Value

on W hich Branch

Occurs

BCC CARR'i 0

BCS CARRY I

BNE ZERO 0

BEQ ZERO I

BPl. NEGATIX'E (SIGN) 0

BMI NEGATIX'E (SIGN) I

B\'C OX'ERFLOW' 0

B\'S OX'ERELOW 1

WAITING FOR A SWITCH TO CLOSE

Let us now concentrate on the switch attached to bit 5 of port A (switch 5, for short). The

following program waits for you to close that switch; it then returns control to the monitor.

Remember that an open switch is a 1 and a closed switch is a 0 (see Figure 2-1). Program

2-2 is the mnemonic-entry version.

WAITC LDA $AQ01 ;
GET INPUT DATA

AND #o/oQ0100QQO
;
IS SWITCH 5 CLDSED?

BNE WAITC : ND. WAIT

BRK

Let us now look at each instruction:

1. LDA $A001 loads the accumulator from port A. WAI'PC is our name for the

memory address in which LDA $A001 begins. Such a name is called a label; its sole

purpose is to make the program easier for a reader to follow. However, since the

mnemonic-entry mode does not allow labels, we must replace them with the actual

addresses to which they refer. For example, if Program 2-2 starts at 0200, WAIT’C

is 0200, and BNE WAI TC must produce a conditional branch to 0200. The name

WAITC is arbitrary; we chose it because it suggests waiting for a closure.

2. AND #%00 100000 logically ANDs the accumulator with the binary number

00100000. % means “binary” and # means “immediate” (i.e., the data is in the

next bvte of memory). The result is 0 if the switch is closed and 00100000 if the

switch is open. (VeriE this!) Singling out part of a group of bits is called masking.

3. BNE WATTC makes the processor execute the instruction in address WATPC next

if the ZERO flag is 0. Otherwise, the processor continues sequentially (to BRK in

this case). Note that the ZERO flag is 1 if the last result was zero.

34 Microcomputer Experimentation with the AIM 65 t

PROGRAM 2-2

Memory

Address

(Ilex)

Memory

Contents

(He.x)
•

Instruction

(Mnemonic)

Q200 AD WAITC LDA A001
0201 1

0202 A0
203 29 AND #20
204 20
0205 DO BNE 0200
206 F9

0207 0 BRK

Note the following features of Program 2-2:

1. LDA $A001 uses absolute addressing, d’he 16-bit address is stored upside down
following the operation eode.

2. AND #%00 100000 uses immediate addressing. The data (00100000 binary = 20

hex) follows the operation eode. An instruetion with immediate addressing eontains

the aetual data, not its address.

Although we have written the data in binary to make its purpose elearer, we must
enter it in hexadeeimal. To eonvert, we split the binary data in half and use Table
0-1 to eonvert the halves: 0010 is 2 hex and 0000 is 0 hex.

Be eareful when you enter AND #20. You must hpe # to indieate “immediate”; it

is not like $, whieh you must omit. Entering AND 20 will not eause an error

message but will result in an entirely different instruetion. What does AND 20

mean? By the way, # looks strange on the display beeause the bottom parts of the

vertieal lines are missing.

3. BNE requires an 8-bit relative offset following the operation eode. This offset tells

the eomputer how many locations to jump over from the end of the instruction

(address 0207 in this case). A positive offset (most significant bit = 0) is added to the

final address (e.g., an offset of 02 would be added to 0207 to make the destination

0209); the maximum positive offset is 7E, or +127 decimal. A negative offset (most

significant hit = 1) tells the computer how many locations down to go (down one is

FF, down two is EE, etc.). You can calculate the offset by subtracting the address

just after the branch from the destination address; in Program 2-2 the subtraction is

0200 (destination address)

— 0207 (address immediately following BNE)
FEF9

Only the F9 is significant; the largest negatixe offset is 80 hex, or — 128 decimal.

Simple Input 35

Hexadecimal subtraction is a nuisance unless yon liave either a bexadeeiinal cal-

culator (such as the I’cxas Instruments Programmer) or 16 fingers. Kortnnately, the AIM
will calculate the relative offset if you simply enter the destination address after the

branch’s operation code. For example, von would enter BNK W Al'l'C in Program 2-2 as

BNF 0200.

But what if you don’t know the destination address? If the branch goes backward,

you can sec the destination in the printed output. But if the branch goes forward, you

must determine the address using the instruction lengths in Pable A 1-1 (under n). Of

course, you can always guess and correct the value later after the AIM prints the actual

address.

Enter and run Program 2-2. W'hat happens if you leave switch 5 open? What

happens if you close other switches?

PROBLEM 2-4

Make Program 2-2 wait for you to close switch 4 (i.e., the sw itch attached to bit 4 of

AOOl). Next try switch 2 and then switch 6. 1 low difficult would these changes be to make

it ’FPL logic?

PROBLEM 2-5

Make Program 2-2 start at address 0210. A program that you can put anyw^hcrc in

memory without changes is called relocatable. Is Program 2-2 relocatable? Flxplain why

the relati\e offset in BNE? is important. Would the program be relocatable if BNl^

contained the actual destination address? Why would you want a program to be relocat-

able?

SPECIAL BIT POSITIONS

Some instructions and flags make certain bit positions more accessible than others. For

example:

1. ASL (sec EAgure 1-1) shifts each bit left. Bit 6 ends up in the NEGATIVE flag,

where it can be used as a branch condition for BMl or BPL.

2. LSR (see Figure 1-1
)
similarly moves bit 0 to the CARRY, where it can be used as a

branch condition for BCC or BCS.

3. EDA places bit 7 in the NEGATIVE flag, where it can be used as a branch

condition for BMI or BPL.

So the following program waits for you to close switch 7:

WAITC LDA $A001 ;
GET INPUT DATA

BMI WAITC : WAIT UNTIL SWITCH 7 IS CLOSED
BRK

36 Microcomputer Experimentation with the AIM 65 *

No AND is necessary. Program 2-3 is the mnemonic-entry version.

PROBLEM 2-6

Write two programs that wait for you to close switch 0, one using AND and one
using LSR. Which program is shorter? Which takes less time to examine the switch and
branch?

PROBLEM 2-7

Brr has the odd feature that it sets the NEGATIVE and OVERFLOW flags from

hits 7 and 6, respectively, of the memory location without even considering the

accumulator. Write a program that uses BIT to wait for you to close switch 6.

PROGRAM 2-3

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

200 AD WAITC LDA A001
0201 01

2G2 AO
0203 30 BMI 0200
0204 FB

0205 00 BRK

If you have only one or two switches (or other serial inputs) to attach to a port,

which bit positions should you use for the ones that are read most frequently?

EXAMINING FLAGS

The current values of the flags are in the processor status (P) register (second register from
the left in the AIM’s register display; see Table 1-2). Figure 2-2 shows the organization of

the P register. We will describe the DECIMAL MODE and INTERRUPT DISABLE
flags later. Here the hexadecimal display is a nuisance, because only the binary values are

meaningful. You can use Table 0-1 to convert hexadecimal to binary.

You can see how an instruction affects the flags by initializing the P register and the

operands, letting the computer execute the instruction, and then examining the P register

afterward. The result will depend on the instruction and the operands.

If, for example, we start with (A) = 80 hex and (P) = 04 (making the CARRY,
NE’.GATIVE, and ZERO flags all 0), executing AND #$80 makes (P) = B4 hex =
10110100 binary (see Table 0-1). The major flags are:

NEGA4WE (SIGN) = I (bit 7 of P)

Simple Input 37

7 6 5 4 3 2 1 0

and is always 1.

ZERO = 0 (bit 1 of P)

CARRY = 0 (bit 0 of P) (This is unchanged.)

'Phe result of logically ANDing 80 hex (10000000 binary) with itself is 80 hex. Thus the

operation clears the ZERO flag since the result is not 0, and sets the NE,GA 1 IVE flag

since bit 7 of the result is 1 . Logical operations do not affect the CARRY. Remember, you

must use the A and P keys (sec Laboratory 1) to initialize the accumulator and status

register.

PROBLEM 2-8

What are the NEGATIVE, ZERO, and CARRY flags after the processor executes

AND #$80 for the following initial conditions?

a. (P) = FF

(A) = 80

b. (P) = 04

(A) = 7F

c. (P) = FF
(A) = 7F

Hint: Use the program:

AND #$8Q
BRK

Do the final flag values depend on the initial values?

38 Microcomputer Experimentation with the AIM 65 «

WAITING FOR TWO CLOSURES

W c can easily extend Program 2—2 to wait for two elosures. I he following program waits
for sv\’itehes 2 and S to be elosed in that order; assuming that you start with all switehes
open.

WAIT1 LDA $A0Q1 GET INPUT DATA
AND #o/oOOOOQ100 IS SWITCH S CLDSED?
BNE WAIT1 ND. WAIT

WAITS LDA $A001 GET INPUT DATA
AND #o/o0010000Q IS SWITCH 5 CLOSED?
BNE
BRK

WAITS ND, WAIT

PROGRAM 2-4

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

SCO AD WAIT1 LDA A001
0S01 01

OSOS AO
0S03 S9 AND #04
0S04 04
OSOS DO BNE OSOO
OSOS F9

0S07 AD WAITS LDA A001
0S08 01

0S09 AO
OSOA S9 AND #S0
OSOB SO
OSOC DO BNE 0S07
OSOD F9

OSOE 00 BRK

Enter and run this program; the mnemonie-entry version is Program 2—4. What
happens if you elose switeh 2 and then switeh 5? What happens if you reverse the order?
Explain the result. Does it ehange if you allow only one switeh to be elosed at a time?

PROBLEM 2-9

Make Program 2-4 wait for you to elose switeh 3 followed by switeh 1. What
happens if you leave one sv\ iteh elosed all the time?

Write a program that waits for a partieular sequenee of switeh elosures, and let

someone try to guess the sequenee. What happens if the other person simply eloses all the

Simple Input 39

switches? You can defeat this strategy by using CMP instead ot AND. CMP (COMPARK
MKMOR'i’ AND ACCUMUL.A POK) sets the flags as if it had subtracted a ineinory

location from the accumulator. Phus CMP sets the ZP'dU) flag only if its operands are

equal. Since the outcoinc depends on all eight switches, a subsequent BNK will force a

branch unless they arc all set correctly. For example, after

LDA $A001 :
GET INPUT DATA

Cl^P #%00100000

the ZERO flag will be 1 only if all eight switches arc in the positions specified by CM P’s

operand (0 = closed, 1 = open).

PROBLEM 2-10

WYite a program that waits for you to close switch 0 and then switch 7. Write one

version that ignores the other switches and one that works only if all other switches are

open. What happens in the second version if you rexerse the order (i.e., close switch 7

first and then switch 0) or leave either switch 0 or switch 7 closed all the time?

PROBLEM 2-1

1

Write a program that waits for you to close switches 2 and 5 at the same time and

then switches 0 and 7 at the same time.

PROBLEM 2-12

Write a program that waits for you to close either switch 2 followed by switch 5 or

switch 5 followed by switch 2. Allow only one switch to be closed at a time.

SEARCHING FOR A STARTING CHARACTER

In communications applications, the input data is the latest character received. Of course,

if the transmitter is inactive, that character will be noise. Assume that the transmitter starts

everv message with 7F (a synchronization, or sync, character since it is not part of the

actual information).

PROBLEM 2-13

Write a program that waits for 7P" to appear in y\0()l. An easy way to produce 7V is

first to open all switches (producing PT) and then close switch 7.

If the input data is random noise, how often will the computer think it has found a

message? ’Phat is, what is the probability of the random value being 7P7 I low often would

the computer find a message erroneously if the synchronizing pattern were two 7P’

characters? How about three 7P" characters?

40 Microcomputer Experimentation with the AIM 65 t

Clearly, a longer synehroiiizing pattern results in fewer false messages. On the other
hand, noise eould eause a 7f to be reeeived as something else, and the eomputer would
then miss a real message.

PROBLEM 2-14

Write a program that aeeepts the input as 7F regardless of the value of bit 2. How
often wdl this program find a message erroneously (i.e., what is its probability of finding a
7F in random data)?

KEY POINT SUMMARY

1. I he 6502 mieroproeessor has no speeifie I/O instruetions. Instead, it addresses I/O
ports as memory loeations (memory-mapped I/O), and any instruetion that transfers
data to or from memory ean also perform I/O.

I he AIM has two free I/O ports in its user 6522 VIA. We will use port A (address
AOOl) for input and port B (address AOOO) for output.

3. d’he 6502 has three major flags (CARRY, ZERO, and NECAdlVE or SICN),
whieh are set from the results of eertain instruetions. Almost all instruetions affeet
the ZERO and NECAIIVE flags, whereas only arithmetie and shift instruetions
affeet the CARRY flag.

4. A eonditional hraneh instruetion ehanges the program eounter if the speeified
eondition is true. If the eondition is false, the proeessor eontinues its normal
sequenee. Conditional hraneh instruetions are the kev to eomputer deeision mak-
ing.

5. 1 he proeessor can determine the value of a hit in a register or memory location by
logically ANDing the contents with a mask. 4 ’he mask has a 1 in the specified hit

position and Os elsewhere. The result is 0 if and only if the bit is 0. Bit positions at
either end of a byte can be handled by using the SICN or CARRY flag and the load,
shift, or bit test instructions.

6. I he processor ean determine whether a register or memory location contains a
specified value by subtracting the value from the contents. 4Te result is 0 only if the
register or memory location contains the value.

7. The processor performs logical operations (AND, OR, EXCLUSIVE OR, N(YF)
hit by hit, 8 hits at a time. However, arithmetic operations (ADD, SUB4 RACI’)
involve carries or borrows, so the hit positions are not independent.

LABORATORY I
i

SIMPLE OUTPUT

PURPOSE

T o learn how to use the eomputer’s output ports.

PARTS REQUIRED

Eight LEDs (light-emitting diodes) attaehed to the Application Conneetor as shown in

Figure 3-1. Table 3-1 eontains the pin assignments.

REFERENCE MATERIALS

L. A. LEV^ENT HAL, Introduction to Microprocessors: Software, Hardware, Program-

ming, Prentiee-Hall, Englewood Cliffs, N), 1978, pp. 72-104, ^76-l>77, 413, 414.

41

42 Microcomputer Experimentation with the AIM 65 t

L. A. LPA^LN'niAL, 6502 Assembly Language Programming, Osborne/McGraw-Hill,

Berkeley, CA, pp. 11-1 to 11-12, 11-39 to 11-42, 11-61 to 11-64.

R. J. lOCCl and L. P. L.ASKOWSKl, Microprocessors and Microcomputers: Hardware
and Software, 2nd ed., Prentiee-Hall, Englewood Cliffs, NJ, 1982, pp. ^31-33 (logie

gates), 33-34 (logie equivalenees), 200-202 (LED displays), 329-334 (logieal instrue-

tions), 337-338 (deereinent and inereinent instruetions), 368-373 (timing loops).

AIM 65 Users Guide, Dynatem, Irvine, CA, 1979, see. 8.1 to 8.3.

R6S00 Microcomputer System Hardware Manual, Roekvvell International, Semieondue-
tor Produets Division, Newport Beaeh, CA, pp. 6-5 to 6-7.

WHAT YOU SHOULD LEARN

1. How to make 6522 I/O 1 ines into inputs or outputs.

2. How to turn LEDs on and off.

3. How to make the eomputer wait between operations.

4. How to manipulate single bits of data.

5. How to eomplement (invert) data.

6. How to operate LED displays at a speeifie duty cycle.

7. How to use software to control displays.

TERMS

Anode positive terminal.

Cathode negative terminal.

Complement see Ones complement.

Data direction register a register that determines whether I/O lines are inputs or out-

puts.

Duty cycle the period of time during which a de\ ice is active as part of a total period of

continuous operation.

Light-emitting diode (LED) a semiconductor de\ ice that emits light when its cathode is

sufficiently more negative than its anode.

Nesting constructing programs hierarchically with one level contained inside another.

One’s complement bit-by-bit imersion, replacing each 0 with a 1 and each 1 with a 0.

Software delay a program that does nothing except waste time.

6502 INSTRUCTIONS

DEC subtract 1 from a memory location. DEC cannot be applied to the accumulator.

DEX(Y) subtract 1 from index register X('\’).

INC add 1 to a memory location. INC cannot be applied to the accumulator.

INX(Y) add 1 to index register X(Y).

Simple Output 43

IMP jump (transfer control) to a memory address. JMP allows onl\ absolute (direct) or

indirect addressing.

LED CONNECTIONS

.\ttaeh eight LP'.Ds to user \4A port B as described in Table 3-1 and f igure 3-1. An LKD
lights when its cathode; is sufficiently more negatixe than its anode. The computer can

therefore light an LP’d^ either by grounding its cathode or by applying + 5\' to its anode.

Since we have connected the output port to the cathodes, a 0 from the computer lights an

LKD.

TABLE 3-1 APPLICATION CONNECTOR PIN

ASSIGNMENTS FOR USER VIA PORT B

Assignment Pin

Bit U (PBO) 9

Bit 1 (PBl) 10

Bit 2 (PB2) 11

Bit 3 (PB3) 12

Bit 4 (PB4) 13

Bit 3 (PB5) 16

Bit 6 (PB6) 17

Bit 7 (PB7) 15

APPLICATION CONNECTOR

PBO |~9^>-

PB1 [l0^

PB2 [TT^

PB3
(
22^

PB4

PB5 [Ts^

PB6
[
17^

PB7 [l£>-

7407

7407

7407

7407

7407

7407

7407

7407

470n

470n
-A/W-

470n
-^vw-

470n
-^vw-

470n

470n

470n
-^vw-

470n
-^yvv

+5V
0

FIGLIRK 3-1. Attachment of LEDs to the Application Connector. T he user VIA is

device Z1 in the AIM schematics.

44 Microcomputer Experimentation with the AIM 65 «

ASSIGNING DIRECTIONS TO VIA I/O LINES

In Laboratory 2, we used a 6522 VIA port for input. In fact, the programmer can make
each bit of a VIA port either an input or an output by placing either a 0 (input) or a 1

(output) in the corresponding bit position of the port’s data direction register.

d ims, the data direction registers control which way data flows; they act like direc-

tional arrows on a highway or railroad. The data direction registers themselves occupy

memory addresses (see Table 3-2).

TABLE 3-2 MEMORY ADDRESSES FOR THE I/O

PORTS IN THE USER VIA

Address (He.\) Function

AOOO Port B

AOOl Port A
A002 Data direction register for port B

A003 Data direction register for port A

Typical examples of making bits inputs or outputs are:

1. Storing 0 in A003 makes port A all inputs.

LDA #0
STA $A003

2. Storing P’F hex in A002 makes port B all outputs.

LDA #$FF
STA $A002

3. Storing OF hex in /\002 makes bits 4 through 7 of port B inputs and 0 through 3

outputs.

LDA #$0F
STA $A0Q2

4. Storing AA hex (10101010 binary) in A003 makes bits 1, 3, 5, and 7 of port A
outputs and 0,2,4, and 6 inputs.

LDA #$AA
STA $A003

Of course, specifying the data direction register in binary makes it easier to see which bits

are inputs and which are outputs. A hexadecimal value is difficult to interpret, since only

the individual bits matter.

Simple Output 45

The 6522 \4A has the following key features:

1 . RESE1’ clears the data direction registers, thus making all I/O lines inputs, ’^'oii can

check this by resetting the AIM and examining A002 and AOOT I’liis fact allowed

us to ignore the data direction registers in Laboratory 2, as long as we started from

reset.

2. rhe I/O ports can consist of any combination of inputs and outputs, riiiis AIM
users can assign l/O lines rather than making designs conform to a fixed scheme.

3. In an application, the initialization routine (starting from reset) must make bits

inputs or outputs. The main program rarely changes the assignments.

PROBLEM 3-1

Write a program that makes port A of the user VIA input and port B output. How
would you test this program? Wdiat happens when you run it after resetting the computer?

What happens if you then change A002 to 00? Change A002 to AA (lOlOlOIO binary)

and see what happens.

PROBLEM 3-2

Write a program that makes bit 0 of port B an output and the rest of port B inputs.

Wdiat happens when you reset the computer and run the program?

LIGHTING AN LED

I'he following program lights the LED attached to bit 3 of user VIA port B (LED 3, for

short).

LDA #$FF
: MAKE PORT B OUTPUT

STA $A0Q2
LDA #%11 110111

: LIGHT LED 3

STA SAOOO
BRK

Since the port is connected to the cathodes, 0 turns an LED on and I turns it off. We
must make B an output port before any LEDs will light. Program 3- 1 is the mnemonic-
entry version; enter and run it. What happens if you then reset the AIM?

PROBLEM 3-3

Change Program 3-I so that it lights only LED 4. How would you make it light

only LEDs 2 and 5?

PROBLEM 3-4

Write a program that displays the data from port A on the LEDs attached to port B.

Does a switch have to be open or closed for the corresponding LED to light?

46 Microcomputer Experimentation with the AIM 65 t

PROGRAM 3-1

Memory

Address

(Ilex)

Memory

Contents

(Ilex)

Instruetion

(Mnemonic)

200 A9 LDA #FF
Q201 FF

0202 8D STA A002
203 02
0204 A0
205 A9 LDA #F7
0206 F7

207 8D STA AOO0
208 0
0209 AO
020A 00 BRK

PRODUCING A TIME DELAY

Of course, in real applications we do not want to leave an output in the same state forever.

Instead, we typieally want to leav^e it on or off for a specifie amount of time. The
microproeessor ean wait by performing a simple time-wasting proeedure sueh as:

1. Load a register with a value.

2. Deerement the register until it contains 0.

The program that does this using register X is

LDX #COUNT
DLY DEX

BNE DLY

d’liis works like a eountdown before a missile launch or the detonation of explosives.

We ean determine how mueh time is wasted from the following information:

Instruction

Number of Times

Executed

Clock Cycles

Per Execution

LDX # (IMMEDIATE) 1 2

DEX COUNT 2

BNE COUNT 2 if no branch,

• 3 if a branch occurs

BNE’s exeeution time depends on whether a braneh oeeurs; it takes three eyeles if the

ZERO flag is 0 and the program branches, and two eyeles otherwise.

' Simple Output 47

I’ablc A 1-1 contains the execution times for 6502 instructions. I hc execution time

for the delay program is

[2 + 5 X (COUN'r - 1) + 4] X

where Iq is the AIM’s clock period. The constants are 2 for the initial LDX #CC)UN'I’, 5

for DEX (2) and BNE^\ ith a hranch (3), and 4 for the last DEX, BNE sequence in which

no hranch occurs and hence BNE takes only two cycles.

Since the AIM has a 1-MHz clock (sec pp. 7-5 to 7-6 of the AIM 65 User's Guide),

(q =
1 |JLS. If, for example, COUN'I’ = 10, the amount of time wasted is

[5 X (10 -
1) + 6] X

1 ^JLs = 51 jjLs

1 he most time this program can waste is

[5 X (256 — I) + 6] X I)xs = l,28l |jls, or 1. 28 ms

What value of COUNT produces the

ments register X before branching.

You can add a delay to Program 3-

1

LDA #$FF
STA $A002
LDA #%1 1110111

STA SAOOO
LDX #CDUNT

DLY DEX
BNE DLY
LDA #%1 1111111

STA SAOOO
BRK

longest delay? Note that the program decre-

as follows:

;
MAKE PORT B OUTPUT

; LIGHT LEO 3

: DELAY

:
TURN OFF LED 3

Program 3-2 is the mnemonic-entry version. The first four instructions are the same as in

Program 3- 1.

Be careful when you enter and run Program 3-2. Do not type DLY or COUN’P;
entering either will result in an error message. Omit DLY (it simply indicates where the

hranch goes), and replace COUNT with a number.

A good value for COUNT is 00, since it produces the longest delay. (Why?)

However, 1 . 28 ms is still short, and you should focus your eyes and use a dark background

to sec the LED light. To obtain the clearest view, first enter the starting address (0200) and

press G. 4’hen put a finger on the RE'LURN key and stare directly at the LED. Einally,

press RE’PURN. Be careful not to hypnotize yourself during this intellectually challeng-

ing exercise!

48 Microcomputer Experimentation with the AIM 65

PROGRAM 3-2

Memory

Address

(Hex)

Memory

Contents

(Ilex)
•

Instruction

(Mnemonic) '•

0200 A9 LDA #FF
0201 FF

0202 8D STA A002
0203 02
0204 AO
0205 A9 LDA. #F7
0206 F7

0207 80 STA AOOO
0208 00
0209 AO
020A A2 LDX #COUNT
020B 00
020C CA DLY DEX
0200 DO BNE 020C
020E FD
020F A9 LDA #FF
0210 FF

0211 BO STA AOOO
0212 00
0213 AO
0214 00 BRK

PROBLEM 3-5

Run Program 3-2 repeatedly, dividing COUNT (address 020B) in half after eaeh
exeeution; use the sequenee 00, 80, 40, 20, 10, 08, 04, 02, 01. What is the smallest value

of COUN T for vvhieh you eau see the LED light?

LENGTHENING THE DELAY

You eau lengthen the delay by plaeiug one time-wasting routine inside another (ealled

nesting); that is,

LDY #CT1
: SET MULTIPLYING FACTOR

DLY1 LDX #CT2
; SET DELAY FACTOR

DLY2 DEX
BNE DLY2
DEY
BNE DLY1

Simple Output 49

CTl determines how many times the CI’2 loop is executed. Program is a revision of

Program 3-2 with a nested delay.

PROGRAM 3-3

Memory Memory
.\ddress Contents Instruction

(Hex) . (Hex) (Mnemonic)

200 A9 LDA #FF

Q2Q1 FF

0202 8D STA A002
0203 02

0204 AO
0205 A9 LDA #F7
0206 F7 •

0207 80 STA AOOO
0208 00

0209 AO
020A AO LDY #CT1

020B CTl

0200 A2 DLY1 LDX #CT2
020D CT2

020E CA DLY2 DEX
020F 0 BNE 020E
0210 FD

0211 88 DEY
0212 DO BNE 0200
0213 F8

0214 A9 LDA #FF

0215 FF

0216 8D STA AOOO
0217 00

0218 AO

0219 00 BRK

PROBLEM 3-6

If you set CTl (020B) to 200 (C8 hex), what value ofCT2 (020D) produces a 10-ms

delay? What value of CT2 produces a 100-ms delay?

PROBLEM 3-7

Revise the delay routine to count down location 0040. What is the execution time

as a function of 0040’s initial contents?

50 Microcomputer Experimentation with the AIM 65 t

BIT MANIPULATION

Often, we want to ehange one LED without affeeting others attaehed to the same port.

\\ e ean do this by using the following effeets of the^ logieal functions (sec Ttible 3—3):

1. Logically ANDing a bit with 0 clears it, while logically ANDing it with 1 leaves it

unchanged.

2. Logically ORing a hit with 1 sets it (to 1), while logically ORing it with 0 lea\es it

nnehanged.

t>. Logically EXCLUSIVE. ORing a hit with 1 complements (inverts) it, while logically

E.XCLUSIVE, ORing it with 0 leaves it unchanged.

I bus yon can ehange a particular hit of the accumulator (hit 5, for e.xample) as

follows:

1. Make it 1 with ORA #%00 100000.

2. Make it 0 with AND #%1 1011111.

3. Complement (invert) it with EOR #%0() 100000.

In Program 3—2, for example, we could set hit 3 of the accumulator and thus affect

only LED 3 by using ORA #%00001000; that is,

02QF 09 ORA #08
0210 08

Make this ehange and run the revised program. Make a similar change in Program 3—3.

PROBLEM 3-8

Write a program that turns LED 4 off, waits for a while, and then turns LED 4 on
w ithont affecting any other displays.

TABLE 3-3 EFFECTS OF LOGICAL INSTRUCTIONS

Original V'alue Mask V'alue AND OR Exclusi\e OR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 I

1 1 1 1 0

PROBLEM 3-9

Write a program that obtains the data for the LEDs from 0040, turns LEDs 2 and 5

Simple Output 51

on, waits for a wliilc, turns LKD 5 oft, waits again, and finally turns LKl^ 2 ott and Id'd) 5

on without affecting any other L.f'Ds.

Obviously, we can change several bits at once by using the appropriate mask. For

example, AND #%1 1 10101 1 clears bits 2 and 4 of the accumulator. FOR complements

(imerts) the entire accumulator if its mask is FF (the all I’s byte); that is, FOR
replaces each 0 with a 1 and each 1 with a 0.

PROBLEM 3-10

W rite a program that displays the contents of 0040 on the LFDs attached to port B

ot the user \'L\. Make the data appear in the form an obser\ er would expect—that is, an

LFD should be lit to indicate a 1 and off to indicate a 0.

DUTY CYCLE

'Lhe computer can operate an L.FD at a specific duty cycle by simply turning it on and

then otf for periods of time. 'Lhc follow ing program uses two delay routines to do the job:

LDA #$FF
: MAKE PDRT B DUTPUT

STA $A002
CYCLE LDA #o/o1 1110111

; LIGHT LED 3

STA SAOOO
LDY #CT1

: DELAY WHILE LED IS DN
LY1 LDX #CT2

DLY2 DEX
BNE DLY2
DEY
BNE DLY1

LDA #%1 1111111
: TURN DFF LED 3

STA SAOOG
LDY #CT3

: DELAY WHILE LED IS OFF
DLY3 LDX #CT4
LY4 DEX

BNE DLY4
DEY
BNE DLY3
JMP CYCLE

:
START OVER

Program 3-4 is the mnemonic-entrv version. Enter and run it with 044 = C47 = C4’3

= 04 ’4 = 00.

PROBLEM 3-11

SetO4’2(020D) = O4H(021O) = 00. Start with 044 (020B) = 04’3 (021A) = 00

and run Program 3-4. 4’hen try the following sequence of hexadecimal values for 044

52 Microcomputer Experimentation with the AIM 65
«

PROGRAM 3^

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemontc)

200 A9 LDA #FF
0201 FF

202 8D STA A002
0203 02
0204 AO
0205 A9 CYCLE 'LDA #F7
0206 F7

0207 8D STA AOOO
0208 00
0209 AO
20A AO LDY #CT1
020B CT1

0200 A2 DLY1 LDX #CT2
20D CT2
020E CA DLY2 DEX
020F DO BNE 020E
0210 FD
0211 88 DEY
0212 DO BNE 020C
213 F8

0214 A9 LDA #FF
0215 FF

0216 8D STA AOOO
0217 00
218 AO
0219 AO LDY #CT3
021A CT3
021 B A2 DLY3 LDX #CT4
0210 CT4
021 D CA DLY4 DEX
21 E DO BNE 021 D
021 F FD
0220 88 DEY
0221 DO BNE 021 B
0222 F8

223 40 JMP 0205
0224 5
0225 02

and Cd 3: 80, 40, 20, 10, 08, 04, 02, 01. What is the smallest value for vvhieh you ean see

the LED flieker? How many times per seeond is the LED being turned on and off at this

value?

Simple Output 53

PROBLEM 3-12

Set d'2 = d’4 = 0. Start with d’l = d’3 = 10 hex and run Program 3-4. Try

the following hexadecimal \alnes for Cl’l and d’3:

a. C4’l = 1C, C4’3 = 04

h. C'ri = 18, C'1’3 = 08

c. C'l’l = 08, Cl’3 = 18

d. d’l = 04, CI'3 = 1C

Describe how different values affect the brightness and continuity of the LEDs. Compare

the effects to those yon saw in Problem 3-1 1.

PROBLEM 3-13

Set e rZ = C L4 = 0 and C PI = C P3 = 20 hex. Write a program that flashes the

LED on and off for 5 s. Use 0040 as an overall counter and load it initially from the

keyboard before executing the program.

KEY POINT SUMMARY

1. I’hc I/O ports in the 6522 VIA can be either inputs or outputs. Each bit is made an

input or an output by storing a value (0 for input, 1 for output) in the corresponding

bit position of the data direction register. The data direction registers themselves

occupy memory addresses; the user must remember, however, that they are actually

located inside the VIA and are not connected to peripherals.

2. By storing the appropriate values in the data direction registers, the user can vary the

numbers and arrangements of inputs and outputs for different applications. In most

applications, the initialization routine assigns the directions and the rest of the

program simply uses the ports.

3. The computer can wait by counting down a register or memory location. I’he

length of the wait depends on the number of instructions in the countdown program

and their execution times. Nested countdown programs can produce longer waits.

4. A bit can be cleared, set, or complemented by means of logical operations with

appropriate masks. The entire accumulator can be inverted by EXCLUSIVE
ORing it with the all Es byte.

5. The computer can establish a duty cycle by waiting after turning a peripheral on

and off.

6. You can easily change the timing for a peripheral if it is implemented in software.

Replacing a few numbers can change the operating speed or duty cycle.

LABORATORY s

PROCESSING DATA INPUTS

PURPOSE

'I’o lea rn how to process data inputs.

PARTS REQUIRED

• Eight switches attached through aii encoder to user VIA port A as shown in Figure
4-1. 4’his add-on can employ the same switches as the add-on in Figure 2-1, since
the two are not needed at the same time.

• A 74148 priority encoder (see Table 4-2 and Figure 4-4 for a description).

REFERENCE MATERIALS

F. A. FEVEN I HAF, Introduction to Microprocessors: Software, Hardware, Program-
ming, Prcntice-Uall, Englewood Cliffs, NJ, 1978, pp. 369-376.

54

Processing Data Inputs 55

+5V

PA7

+5V

PA6

6 PA5

IkH

5 PA4

<^T| PA3

<3 PA2

<^14
]
PAO

APPLICATION
CONNECTOR

FIGIIRE 4-1. Attachment of switches and an encoder to user VIA port A.

L. A. LEV'EN l'HAL, 6S02 Assembly Language Programming, Osbornc/McGraw-IIill,

Berkeley, CA, 1979, pp. 11-8 to 11-12, 11-39 to 11-60.

R. J. rOCCI and L. P. LASKOWSKl, Microprocessors and Microcomputers: Hardware

and Software, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1982, pp. 60 (encoders),

274-279 (keyboard input devices), 335-337 (shift and rotate instructions), 346 (uncon-

ditional jump instruction).

W. J.
WELLER, Practical Microcomputer Programming: 'Phe 6S02, Northern Pech-

nology Books, Evanston, IL, 1980, Chapter 11.

Phe TTL Data Book for Design Engineers, 4'exas Instruments Inc., Dallas, 4’X, 1976, pp.

7-151 to 7-156 (74148 encoder).

WHAT YOU SHOULD LEARN

1 . How to wait for a switch to open or close.

56 Microcomputer Experimentation with the AIM 65

2. How to deboiincc a switch.

3. How to count switch closures.

4. How to determine the hit position of a switch closure.

5. How to make simple hardware/softwarc tradeoffs.

TERMS

Bounce move hack and forth before settling down.

Cross-eoupled describing two devices that each has its output fe^ back into the other’s

input.

Deboiinee convert the output from a contact with bounce into a clean transition.

Enable allow an activity to proceed or a de\ice to produce data outputs.

Encoder a device that produces coded outputs from unencoded inputs. A priority

encoder accepts only the highest-priority input if more than one is active.

Group Select (GS) a signal that indicates whether any signals in a group are active. It

can be used to control function common to the entire group.

Negative logic active state is 0, rather than 1.

6502 INSTRUCTIONS

TAX(Y) transfer accumulator to index register X(Y). The accumulator does not change.

TX(Y)A transfer index register X(Y) to accumulator. The index register does not

change.

HANDLING MORE COMPLEX INPUTS

We generally want a microprocessor to do more than just determine if a binary input is 0

or 1 . Rather, we want it to deal with a series of inputs and perform such tasks as smoothing
data and accounting for the rates at which peripherals operate. These tasks can be

performed entirely in software or partly in hardware. Designers must make tradeoffs based

on per-unit cost, development time and cost, reliability, compatibiliW with other applica-

tions, power dissipation, hoard space, and availability of parts that perform specific func-

tions.

WAITING FOR ANY SWITCH TO CLOSE

Table 4-1 lists the inputs produced by closing one of eight switches. If all eight are open.

Processing Data Inputs 57

the input is all Is (FK hex). So the following program will wait for yon to close any sw itch

attached to user \'1A port

WAITC LDA $A001
CMP #$FF
BEQ WAITC
BRK

GET INPUT DATA
ARE ANY SWITCHES CLOSED?
NO. WAIT

TABLE 4-1 INPUTS RESULTING FROM
THE CLOSURE OF INDIVIDUAL SWITCHES

Bit Position

Of Closed

Switch

Input

Binary Hex

0 11111110 I'E

1 11111101 FD
2 11111011 L'B

3 11110111 F7

4 11101111 FF
5 11011111 DF
6 10111111 BF
7 01111111 7F

Program 4-1 is the mnemonic-entry version. CMP #$FF subtracts FF from the

accumulator and sets the flags but does not save the result. Thus the data from port A
remains in the accumulator.

Enter and run Program 4-1. Show that it exits if you close any switch. What
happens if you close se\ cral switches at once? What happens if you close switches before

running the program? Note the final contents of the accumulator in each case.

PROGRAM 4-1

Memory

Address

(Hex)

Memory
Contents

(Hex)

Instruction

(Mnemonic)

200 AD WAITC LDA A001
0201 01

G2Q2 AG
203 C9 CMP #FF
0204 FF

0205 FO BEQ OBOG
206 F9

207 0 BRK

We can easily add a section that waits until all the switches arc open again. 4'he new
section simply branches on the opposite condition.

58 Microcomputer Experimentation with the AIM 65 t

WAITO LDA $A001
; GET INPUT DATA

CMP #$FF
: ARE ANY SWITCHES CLOSED?

BNE WAITO
: YES. WAIT

Program 4-2 contains the inncmonic-cntry additions to Program 4-1. Enter them
into memory and run the eomhined program several times. Does it always wait for you to

open the switeh?

PROGRAM 4-2

Memory

.Address

(Hex)

Memory

Contents

(Hex)

N

Instruction

(Mnemonic)

0207 AD WAITO LDA A001
0208 01

0209 AO
020A C9 CMP #FF
0208 FF

020C DO BNE 0207
020D F9

020E 00 BRK

PROBLEM 4-1

Write a program that waits for you to elose and open switch 5, regardless of the

other switches.

PROBLEM 4-2

Write a program that waits for you to close switch 5, open it, and then close it again,

regardless of the other switches.

DEBOUNCING A SWITCH

If you run Programs 4-1 and 4-2 many times, you will probably find that the computer
often exits before you open the switch. T his occurs because a mechanical switch does not

open or close cleanly. Instead, it bounces for a while before settling into its final position.
4 ’bus opening or closing a switch typically causes several transitions, just as though it had
been opened and closed repeatedly.

We can eliminate the extra transitions by debouncing the switch. 41ns can be done
in hardware with cross-coupled NAND gates (see Figure 4—2) or in software with a delay

that waits until the switch stops bouncing. Since the bounce usually lasts less than 1 ms,

the following program will do the job:

WAITC LDA $A0Q1
CMP #$FF

: GET INPUT DATA
: ARE ANY SWITCHES CLOSED?

Processing Data Inputs 59

+5V

FIGURK 4-2. Dcbomiciiig a switch with

cross-coupled NAND gates.

BEQ WAITC
: NO. WAIT

LDX #$C8
: DELAY 1 MS TO DEBOUNCE

DLY EX
BNE DLY

WAITO LDA $AQQ1
: GET INPUT DATA

CMP #$FF
;
ARE ANY SWITCHES CLOSED?

BNE WAITO
: YES. WAIT

BRK

Program 4-3 contains the mncinonic-cntry additions to Program 4-1. We obtained C8
from the timing equation in Laboratory 3. Many svvitehes require a larger value sueh as

UFA0(20 ms).

PROGRAM 4-3

Address

(He.\)

Contents

(Hex)

Instruction

(Mnemonic)

0207 A2 LDX #C8
208 C8

0209 CA DLY DEX
020A DO BNE 0209
020B FD

020C AD WAITO LDA A001

020D 1

020E AO
020F C9 CMP #FF

0210 FF

0211 DO BNE 020C
0212 F9

0213 0 BRK

60 Microcomputer Experimentation with the AIM 65
*

ncboiincing is an example of a tradeoff between hardware and software, d’he

software delay costs very little, sinee the program is simple and takes only a few bytes of

memory. On the other hand, it ties up the proeessor, preventing it from doing other work.

Hardware debouneing frees the proeessor but requires an additional part and more eon-

neetions.

COUNTING CLOSURES

V\^e ean keep a running eount in 0040 of the number of switches closed and then

reopened as follows, assuming that we close and then reopen only one switch at a time:

1. Add the instructions

INC $4Q
: INCREMENT NUMBER OF CLOSURES

LDX #$C8
: DELAY 1 MS TO DEBOUNCE OPENING

DLY1 DEX
BNE DLY1

JMP WAITC
: WAIT FOR NEXT CLOSURE

to the end of Program 4-3, as shown in Program 4-4.

2. Clear 0040 from the keyboard before executing the program.

Since the program runs forever, you must reset the AIM to examine 0040. If the count is

erratic, lengthen the waiting period by using the nested delay in Program 3-3. Remember
to debounce both the opening and the closing of the switch.

PROGRAM 4-4

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0213 E6 INC 40
0214 40
0215 A2 LDX #C8
0216 C8
0217 CA DLY1 DEX
0218 DO BNE 0217
0219 FD
021A 4C JMP 0200
021 B 00
021 C 02

Processing Data Inputs (j1

PROBLEM 4-3

W rite a program that returns control to the monitor after counting the number of

switch closures in 0040. .\ssnme that only one switch is ever closed at a time.

PROBLEM 4-4

W rite a program that counts how many times switch 5 is closed. Use 0041 for the

counter.

PROBLEM 4-5

W^ritc a program that counts how many times switches 2 and 5 are closed. Use 0040

as the counter for switch 2 and 0041 for switch 5. Assume that only one switch is ever

closed at a time. I’he program can then simply wait for all switches to be open rather than

waiting specifically for the opening of the switch that was closed.

IDENTIFYING THE SWITCH

In T able 4-1, the bit that is 0 tells yon which switch is closed. T hat is, bit 0 is 0 if switch 0

is closed, bit 1 is 0 if switch 1 is closed, and so on. A simple way to find out which bit is

0 is the following (see Figure 4-3 for a flowchart):

1. SWITCH NUMBER = 0

DAT A = input from sw itches

2. Shift DAT A right 1 bit. If CARRY is 0, the program is finished.

FIGURE 4-3. Flowchart for switch

identification.

62 Microcomputer Experimentation with the AIM 65

3. swri'cii NUMBKR = SWITCH numbe:r + 1

Cio to step 2.

A program that docs this is

LDY #0
; SWITCH NUMBER = ZERD

SRCHS LSR A
: IS NEXT SWITCH CLOSED?

BCC DDNE
: YES. DONE

INY
: NO. ADD 1 TO SWITCH NUMBER

JMP SRCHS
DONE BRK

riic sw itch number ends up in index register Y.

If vve use a different starting point, we can omit JMP.

LDY #$FF SWITCH NUMBER = -1
SRCHS INY ADD 1 TO SWITCH NUMBER

LSR A IS NEXT SWITCH CLOSED?
BCS SRCHS NO. KEEP LOOKING
BRK

Which program do you prefer, and why?
A switch identificat ion program must do the following:

1. Wait for any switch to be closed.

2. Wait 1 ms to debounce the switch.

3. Identify the switch by shifting the input and counting until CARRY becomes

A con iplete assembly language program is

WAITC LDA $A001 GET INPUT DATA
CMP #$FF ARE ANY SWITCHES CLOSED?
BED WAITC NO. WAIT
LDX #$C8 YES. DELAY 1 MS TO DEBOUNCE

DLY EX
BNE DLY
LDY #$FF

: SWITCH NUMBER = -1
SRCHS INY ADD 1 TO SWITCH NUMBER

LSR A
;
IS NEXT SWITCH CLOSED?

BCS SRCHS
: NO. KEEP LOOKING

STY $41
: YES. SAVE SWITCH NUMBER

BRK

1 he switch number ends up both in 0041 and in register Y. Program 4-5 is a mnemonic
entry version, but note that addresses 0200 through 020B are the same as in Programs 4—
and 4-3.

Processing Data Inputs 63

Kntcr Program 4-5 into memory and test it on eaeli sw iteli indi\ idualK . W liat

liappens if you elose more tlian one sw iteh before exeeuting tlie program? W’hieh c losure

does it detect and why?

PROGRAM 4-5

Memory

Address

(Ilex)

Memory

, Contents

(Hex)

Instruction

(Mnemonic)

0200 AD WAITC LDA A001
201 1

202 AO
203 9 CMP #FF
204 FF

205 FO BED 200
206 F9

207 A2 LDX #C8
208 C8
209 CA DLY DEX
20A DO BNE 0209
20B FD

20C AO LDY #FF
20D FF

20E 8 SRCHS INY

20F 4A LSR A
210 BO BOB 20E
21

1

FC

212 84 STY 41

213 41

214 0 BRK

PROBLEM 4-6

Write a program tliat always finds the highest-numbered switch that is closed.

(Hint: Shift the data left and decrement Y, but remember to initialize Y correctly.)

PROBLEM 4-7

Revise Program 4-5 so that it checks the switches only once. If it finds none closed,

it places FF in 0041. What happens if this program checks the switches while one is

bouncing? How could you solve this problem? (Hint: If the program finds all switches

open, have it wait 1 ms and examine them again.)

Write a general program that accepts the input from the switches only if it remains

the same after a 1-ms delay. That is, the program should keep checking the switches until

two readings taken 1 ms apart have the same value.

64 Microcomputer Experimentation with the AIM 65 t

USING A HARDWARE ENCODER

I’lic 74148 priority encoder produces a 3-bit output in negative logic that identifies the

liighest-priorih’ active (low) input. Table 4-2 is a function table for the device, and F’igure

4-4 contains its pin assignments. Note the following;

1. Ihe data outputs (As) are the logical complement of the highest-priority active

input. For example, the outputs are 0,1,0 if #5 (101 binary) is the highest-priority

active input.

2. 1 he ENABLE IN (El) input and the ENABLE OUT (EO) output are used to

combine encoders to handle more than eight inputs. If El is high (indicating

acti\ ity at a level higher than the entire encoder), all outputs are high. If El is low
(indicating no higher activity) but the encoder has no active input, EO is low, thus
enabling encoders of lower priority.

TABLE 4-2 FUNCTION TABLE FOR 74148 ENCODER*

Inputs Outputs

El 0 1 2 3 4 5 6 7 Az Ai Ao GS EO
H — — — — — — — — H H H H H
L H H H H H H H H H H H H L
L — — — — — — — L L L L L H
L — — — — — — L H L L H L H
L — — — — — L H H L H L L H
L — — — — L LI H H L H H L H
L — — — L H H H H H L L L H
L — — L H H H H H H L H L U
L — L H H H U H H H H L L H
L L H H H H H H H H H H L II

= high (1), L = low (0).

VCC

16

OUTPUTS
r
EO

15 14

INPUTS
^ r
—

GS 3

13 12 11

OUTPUT

10

74148 ENCODER

INPUTS

U

OUTPUTS

8

GND
FIGURE 4-4. Pin assignments for the

74148 encoder.

Processing Data Inputs 65

3. The GROUP SELEC r (GS) output is low if tlic encoder is enabled and has an

active input. GS thus indicates activity at this encoder; it is not disabled (top line of

I’able 4-2) or inacti\c (second line of Pablc 4-2), c\cn if all data outputs (As) are Is.

Gonnect the encoder as described in 'liable 4-3. The following program identifies

the highest-numbered switch that is closed before the program is executed. I’hc switch

number ends up in the accumulator and in 0041.

TABLE 4-3 CONNECTIONS FOR 74148 ENCODER

Pin Number Designation Gonnection

I Input 4 Switch 4

2 Input 5 Switch 5

3 Input 6 Switch 6

4 Input 7 Switch 7

5 (El) Enable in Ground

6 (A2) Output 2 User \'1A pin PA2

7 (Al) Output I User V4A pin PA I

8 Ground Ground

9 (AO) Output 0 User \'\A pin PAO
lO Input 0 Switch 0

II Input I Switch I

12 Input 2 Switch 2

n Input 3 Switch 3

H (GS) Group select User VIA pin PA7
1 5 (EG) Enable out No connection

16 Vec + 5 V

LDA $AQQ1 : GET SWITCH DATA
EOR #$FF

: INVERT LOGIC

AND #o/oOQ0001 1

1

: MASK SWITCH BITS

STA $41 : SAVE SWITCH NUMBER
BRK

EOR #$EE inverts the data. This makes up for the fact that the 74148 encoder, like

many TI L devices, uses negative logic. Program 4-6 is a mnemonic-entry version; enter

it and test it on several different switch closures. What happens if more than one switch is

closed?

PROBLEM 4-8

1’o detect whether any switches are closed, you must test the encoder’s Group Select

(GS) output. Write a program that tests GS and stores either the switch number or EE (if

no switches arc closed) in 0041. Note that we have grounded El (see 4 able 4-3), so the

encoder is always enabled.

66 Microcomputer Experimentation with the AIM 65
«

PROGRAM 4-6

Memory

Address

(1 lex)

Memory

Contents,

(Hex)

Instriietion

, (Mnemonie)

200 AD LDA A001
201 1

202 AO
203 49 EOR #FF
204 FF

0205 29 AND #07
0206 07
0207 85 STA 41

0208 41

0209 00 BRK

PROBLEM 4-9

What values will the proeessor read from port A if you invert the switeh eonneetions

(i.e., eonueet switeh 7 to eneocler input 0, and so on)? Write a program that plaees the

switeh number in 0041 in this ease. How does the inversion affeet the priority of the

switehes?

Obviously, an eneoder makes the software simpler and faster and saves input lines

(sinee it uses 4 rather than 8). On the other hand, it inereases the parts eount, dissipates

power, requires extra eonneetions (whieh reduce reliability), and uses board spaee. In

low-volume applieations, you ean surely afford extra hardware if it simplifies the software.

In high-volume applieations, you must minimize hardware, sinee it adds to the eost of

eaeh system produeed.

KEY POINT SUMMARY

1. A meehanieal switeh requires a relatively long time to settle into a new position,

^ou ean either introduee a delay during which the processor does not examine the

switeh, or you ean add hardware that smooths the transition. Meehanieal compo-
nents generally take much longer to change states than do electrical components.

F]ithcr hardware or software must account for this difference.

2. Inputs must usually he converted into a comenient form before they can be pro-

cessed. Either hardware or software can perform this conversion.

3. Turning and code conversion arc common functions that either hardware or soft-

ware can perform. Extra hardware ean result in shorter, simpler programs. 4’his

usually makes system development easier, particularly if the designer is more famil-

iar with hardware than with software. Doing cvervthing in software reduces parts

eount, saves board space, and increases reliability.

Processing Data Inputs 67

4. Many factors affect tradeoffs between software and hardware. Among these are the

cost and axailahility of parts, designer experience, product \oluine, amount of

memory a\ailahle, amount of hoard space, and performanec requirements.

Rememher the following considerations:

a. Software costs are incurred only once, w hereas hardware costs are repeated for

each system produced, l luis higli-volumc products should ha\e more soft-

ware and less hardware than low-\olume products,

h. A single processor can do many tasks in software, particularly if they iin olve

slow mechanical components. External hardware, on the other hand, is more
difficult to share, even among similar tasks,

c. Certain tasks, such as switch and keyboard encoding, display decoding, and

scrial/parallel interfacing, arc so common that inexpensive circuits are readily

axailahle to perform them. Circuits for similar hut less common tasks are

generally far more expensive, dlic olwious reason is that manufacturers must

recover their design and development costs o\er a smaller numher of units.

LABORATORY 5 \

PROCESSING DATA OUTPUTS

PURPOSE

I’o learn how to process data outputs.

REFERENCE MATERIALS

R. C. CAMP et al., Microprocessor Systeni Engineering, Matrix Publishers, Portland,

OR, 1979, pp. 438-445.

L.. A. LFA^ENl’HAL, Introduction to Microprocessors: Software, Hardware, Program-

ming, Prentice-Hall, Englewood Cliffs, N), 1978, pp. 205-208, 377-378.

L. A. LEVEN'I'HAL, 6S02 Assembly Language Programming, Osborne/McGraw-Hill,

Berkeley, CA, 1979, pp. 7—4 to 7—6, 11—13 to 11—22 (6520 Peripheral Interface

Adapter), 11-65 to 11-75.

68

Processing Data Outputs 69

R. |. rOCCl and L. P. LASKOWSKI, Microprocessors and Microcomputers: Hardware

and Softw'are, 2nd cd., Prcnticc-Ilall, Englewood Cliffs, N], 1982, pp. 58-59

(decoders), 168-170 (index register), 230-257 (practieal interfacing considerations),

338—340 (compare instructions), 360-367 (indexed addressing).

W. |. VVfc^LLER, Practical Microcomputer Programming: Phe 6502, Northern 'Pech-

nology Books, Evanston, IL, 1980, Chapter 10.

A/i\/ 65 Users Guide, Uynatein, Irvine, CA, 1979, pp. 7-24 to 7-27.

WHAT YOU SHOULD LEARN

1. How the AIM display is organized and connected.

2. How to activate characters and send them data.

3. How to convert numbers to ASCII.

4. How' and when to use lookup tables.

5. How indexed addressing works and how it is used.

6. How to count on the display.

7. How' to move a character across the display.

TERMS

Absolute indexed addressing inde.xcd addressing with a 16-bit base address.

Alphanumeric display display that can form both letters and digits.

ASCII American Standard Code for Information Interchange, a 7-bit character code

widely used in computers and communications. Appendix 2 contains an ASCII table.

Base address (or base) memory address at which a table begins.

Character one of a set of elementary symbols, usually including controls and delimiters

as well as representations of letters, digits, punctuation marks, and other symbols.

Effective address actual address used by an instruction to perform its overall function.

Endless loop (or junip-to-self) instruetion an instruction that transfers control to itself.

Index data item used to select an element from a set of data.

Index register register that can be used to modify memory addresses.

Indexed addressing addressing method in which the address in the instruction is modi-

fied by an index register to determine the effective address.

Lookup table set of data organized so that the answer to a problem may be determined

merely by selecting the correct entry (without any calculations).

Zero-page indexed addressing indexed addressing with an 8-bit address on page 0.

70 Microcomputer Experimentation with the AIM 65 *

6502 INSTRUCTIONS

add a mcMiiory location and tlic CARRY flag to the accumulator.

CLC clear the CARRY flag (make it 0).

CPX('i
) compare memory and index register X(Y); subtract a memory location from

index register X(Y) but leave the index register unehanged. d1iis instruction affects only

the flags. I he addressing modes allowed are immediate, absolute (direct), and zero-page

(direct).

HANDLING MORE COMPLEX OUTPUTS

In real applications, the microprocessor must do more than merely turn a binary output
on or off. Rather, it must produce a sequence of outputs and convert the data into the

forms peripherals require. The processor should also time the outputs properly.

-As with inputs, we can use either hardware or software to process outputs. The
designer must make tradeoffs suited to the application. Furthermore, the designer ean
often make tradeoffs between exeeution time and memory usage. One way to perform a

ealeidation is to use a table that contains all possible residts. Now the program must
simply seleet the eorreet entry, mueh as one might use a hook of tables to obtain values

needed in surveying, navigation, or finance. T1iis method (called table lookup) is fast and
easy to implement hut usually requires more memory than an explieit ealculation.

USING THE ON-BOARD DISPLAY

I he AIM s on-board display is a simple example of an output deviee that requires parallel

data, timing, and eode eonversion. Figure S-\ shows the display interfaee. TTe 20
eharaeters are di\ ided into fi\ e modules, eaeh with four alphanumerie displays. The A/A7
65 Users Guide refers to the modules as DSl through DS5 and the eharaeters as I

through 20 from left to right (see d able 5-
1). Within each module, the eharaeters are also

numbered as 0 to 3 from right to left (see Figure 5-2). Be eareful of this eonfusing

distinetion.

d’he display interfaee, a 6520 PIA, is like a VIA. All we need to know about it is

1. Address AC02 is used to send data to the displays. Bit 7 should always be I.

2. Address ACOO is used to seleet a display and eontrol data storage.

Figure 5-3 deserihes the organization of ACOO. Bits 0 and I seleet a character from
a module, d'his is where we need the odd right-to-left numbering. Zeros in hits 2 through
6 seleet modules as shown in 'I’ahle 5-2. d’he end result is that hits 0 through 6 of ACOO
seleet a charaeter as given in Table 5-3.

Processing Data Outputs 71

FIGURK 5-1. Schematic for the on-board display. (Courtesy of Dynatem, Irvine,

Calif.)

Bit 7 controls data storage; 0 stores the eurrent data in the selected eharaeter,

w hereas 1 retains the old data. 'Hiis allows us to ehange seleetion eodes without transient

effects.

'I’hiis the following program activates the character defined by ACI lYh, and stores

the value DA'I'A there.

LDA #DATA
STA $AC02
LDA #ACTIVE

STA SACCO

:
SEND DATA TO DISPLAY

:
ACTIVATE A CHARACTER

72 Microcomputer Experimentation with the AIM 65 t

TABLE 5-1 NUMBERING OF CHARACTERS IN ON-BOARD DISPLAY

Position

Module

Designation

Overall Character

Designation

Character Designation

Within Module

EEEIMOST DSl 1

~
'

3

DSl 2 2

DSl 3 1

DSl 4 0

DS2 5 3

DS2 6 2

DS2 7
X

1

DS2 8 0

DS3 9 3

DS3 10 2

DS3 11 1

DS3 12 0

DS4 13 3

DS4 14 2

DS4 15 1

DS4 16 0

DS5 17 3

DS5 18 2

DS5 19 1

RIGHTMOST DS5 20 0

Module

Overall

Within
module

DS1 DS2 DS3 DS4 DS5

1234 5678 9 10 11 12 13 14 15 16 17 18 19 20

3210 3210 3210 3210 3210

HGURE 5-2. Numbering of characters in the on-board display.

By
CO

CO B5 B4 B3
CNJ

CD GO 00

0

Address
ACOO

Storage

Control
Select

Module
DS5

Select

Module
DS4

Select

Module
DS3

Select

Module
DS2

Select

Module
DSl

Sel

Chara(

Moc

ect

:ter in

tule

FIGURE 5-3. Control and selection for the on-board display.

Processing Data Outputs 73

TABLE 5-2 OUTPUTS FOR ACTIVATING

MODULES

Module Ds D, 1^2

DSl 1 1 1 1 0

DS2 1 1 1 0 1

DS3 1 1 0 1 1

DS4^ 1 0 1 1 1

DS5 0 1 1 1 1

TABLE 5-3 OUTPUTS FOR ACTIVATING

CHARACTERS

Overall Character

Designation Binary

Output

Hex

1 01111011 7B

2 01111010 7A

01111001 79

4 01111000 78

) 01110111 77

6 01110110 76

7 01110101 75

8 01110100 74

9 01101111 6F'

lU 01101110 6K

11 01101101 6D

12 01101100 6C

n 01011111 5F

14 01011110 5F

15 01011101 5D

16 01011100 5C

17 00111111 3F

18 00111110 3F

19 00111101 3D

20 00111100 3C

Wc obtain the value ACI’IVE from 3’able 5-3. 'I’o retain that data while ehanging

another eharaeter, we set hit 7 of ACOO and deaetivate all modules with

LDA #$FF :
RETAIN DATA. DEACTIVATE EVERYTHING

STA SACOO

rhe AIM display requires data in a form ealled the Ameriean Standard Code for

Information Interehange, or ASCII (pronoimeed “ass-kee”). Table 5-4 lists the ASCII

deeimal digits with hit 7 set to 1. Appendix 3 eontains a eomplete ASCII table with hit 7

cleared. Remember that data sent to the AIM display must have hit 7 set.

d he following program displays 0 on the leftmost eharaeter. 'The display selection

eode eomes from d’able 5-3 and the data value from d’ahle 5-4.

74 Microcomputer Experimentation with the AIM 65
«

LDA #$B0
;
data = ASCII 0 WITH BIT 7 SET

STA $AC02
LDA #$7B

: SELECT LEFTMOST CHARACTER
STA SAGOO *

BRK

TABLE 5-4 DECIMAL-TO-ASCII '

CONVERSION TABLE

Decimal Digit ASCII Digit with Bit 7 Set (Hex)

0 BO

1 Bl

2 B2

3 B3

4 B4

5 B5

6 B6

7 B7

8 B8

9 B9

PROGRAM 5-1

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0200 A9 LDA #B0
0201 BO

0202 8D STA AC02
0203 02

0204 AC
0205 A9 LDA #7B
0206 7B

0207 8D STA ACOO
0208 00

0209 AC
020A 00 BRK

Enter and run Program 5-1. What happens? The problem is that the monitor takes

over the displays as soon as the proeessor exeeiites BRK. Thus all vve see is the next value

of the program eounter (020B) and the instruetion at that address. Program 5-1 ean retain

eontrol of the display if you replaee BRK with an endless loop (i.e., an instruetion that

jumps to itself).

020A 4C HERE JMP 020A
020B OA
020C 02

Processing Data Outputs 75

I’lic rc\ised program runs forever, so you must reset tlie AIM to regain eoutrol.

PROBLEM 5-1

\\ rite a program that displays 6 on the leftmost eharaeter.

PROBLEM 5-2

W rite a program that displays 6 on eharaeter 12.

PROBLEM 5-3

W rite a program that displays 8 on eharaeter 4 and 2 on eharaeter 5. Be sure to

retain the data on the first eharaeter and deaetivate all modules before changing the

activation code. W4iat happens if you omit this step? Can you explain the result?

ADDING A DELAY

rhe following delay routine leaves the display on for a while before returning control to

the monitor.

LDY #CT1 ; SET MULTIPLYING FACTOR
DLY1 LDX #CT2 ; SET DELAY FACTOR
DLY2 DEX

BNE DLY2
DEY
BNE DLY1

Program 5-2 is the mnemonic-entry version of a delay at the end of Program 5-1. Enter

the changes, setting CTl = CT2 = 00, and run the program.

PROGRAM 5-2

Memory

Address

(Hex)

Memory
Contents

(Hex)

Instruction

(Mnemonic)

20A AO LDY #CT1
20B CTl

020C A2 DLY1 LDX #CT2
0200 CT2

20E CA DLY2 DEX
20F DO BNE 020E
210 FD

0211 88 DEY
212 DO BNE 020C
213 F8

214 0 BRK

76 Microcomputer Experimentation with the AIM 65
*

PROBLEM 5-4

Leaving CI2 = 00, run Program 5-2 with the following values for CTl (address

020B): 80, 40, 20, 10, 08, 04, 02, 01, 00. What is the smallest value for whjch you can
see the zero appear?

PROBLEM 5-5

What happens if you change the display data (address 0201) to A4? Explain the

result. Try the following data values and see how they look: A7, AF, BE, C2, DB.

DECIMAL-TO-ASCII CONVERSION

We can easily make the program convert decimal digits to ASCII and character numbers
to activ'ation codes. Let us first implement decimal-to-ASCII conversion.

To convert a decimal digit to ASCII with bit 7 set, we need only add BO (see Table
5-4). Thus the following program converts a decimal digit in 0040 to an ASCII digit in

0041. Program 5-3 is the mnemonic-entry version.

LDA $40
CLC
ADC #$BO
STA $41

BRK

This is more complicated than you might expect, since the 6502’s only add instruction is

ADC (add with carry). ADC’s result is

(A) = (A) -H (M) + CARRY

where M is a memory location. To keep CARRY from interfering with the conversion, we
must clear it before adding. The sequence

CLC
ADC #$BO

: GET DECIMAL DIGIT

; CDNVERT DECIMAL TD ASCII

: SAVE ASCII DIGIT

produces the result

(A) = .<A) -h BO hex -h CARRY
= (A) -I- BO hex

Enter Program 5-3 into memory and run it for the following test cases:

1. Data: (0040) = 00

Result: (0041) = BO

2. Data: (0040) = 07

Result: (0041) = B7

Processing Data Outputs 77

PROGRAM 5-3

Menior)’

Address

(Hex)

Memorv'

Contents

(Hex)

Instruction

(Mnemonic)

20Q A5 LDA 40

Q2Q1 40

Q2Q2, 18 CLC

Q2Q3 69 ADC #B0

Q204 BO

0205 85 STA 41

2D6 41

2Q7 0 BRK

7’he next program shows the decimal digit from 0040 on the leftmost character of

the display. Program 5-4 is the mnemonic-entry version.

LDA #$7B :
ACTIVATE LEFTMOST CHARACTER

STA SACOO
LDA $40 : GET DECIMAL DIGIT

CLC : CONVERT DIGIT TO ASCII

ADC #$B0
STA $AC02 ; SEND ASCII DATA TO DISPLAY

JMP HERE :
WAIT FOREVER

PROGRAM 5^

Memory

Address

(Hex)

Memoiy

Contents

(Hex)

Instruction

(Mnemonic)

0200 A9 LDA #7B

0201 7B

0202 8D STA ACOO

0203 00

0204 AC
0205 A5 LDA 40

0206 40

0207 18 CLC

0208 69 ADC #B0
0209 BO

020A 8D STA AC02

020B 02

020C AC
020D 4C HERE JMP 020D

020E OD
020F 02

78 Microcomputer Experimentation with the AIM 65
*

PROBLEM 5-6

Change Program 5-4 to show the digit on character 15.

*

PROBLEM 5-7

Since adding BO hex to a decimal digit simply sets bits 4, 5, and 7, you can replace
CLC and AOC #$B0 with a logical OR. Make the change and run the revised program.
4’his approach is shorter but not as easy to explain.

HEXADECIMAL-TO-ASCII CONVERSION

We may extend the ASCII conversion to hexadecimal digits using Table 5—5. Note,
however, that this table has a gap. Instead of ASCII A being BA hex, it is Cl hex. After
the gap, the codes are consecutive again. To bridge the gap, v\e must add an extra 7 (Cl-
BA) for digits that are 10 (OA hex) or larger.

TABLE 5-5 HEXADECIMAL-TO-ASCII
CONVERSION TABLE

Hexadecimal

Digit ASCII Digit with Bit 7 Set (Hex)

0 BO

1 B1

2 B2

3 B3

4 B4

5 B5

6 B6

7 B7

8 B8
9 B9

A Cl
B C2
C C3
D C4
e; C5
E’ C6

4’he following program converts a hexadecimal digit in 0040 into an ASCII digit in

0041. Program 5-5 is the mnemonic-entry version.

LDA $40
; get hexadecimal DIGIT

CMP #1Q
: IS DIGIT DECIMAL?

BCC CNVRT
ADC #6
CLCCNVRT

: ND. ADD EXTRA 7 (6 PLUS CARRY]
: CONVERT DIGIT TO ASCII

Processing Data Outputs 79

ADC #$B0
STA $41 : SAVE ASCII DIGIT

BRK

PROGRAM 5-5

Mcmor\

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0200 A5 LDA 40

0201 40

202 09 CMP #0A
Q203 OA
0204 90 BCC 0208

0205 02

0206 69 ADC #06
0207 06

0208 18 CNVRT CLC
0209 69 ADC #B0
020A BO
020B 85 STA 41

020C 41

020D 00 BRK

Comparing values is also more difficult than one might expect. CMP affects

CARRY as follows:

• CARRY = 1 if the subtraction does not require a borrow, that is, if the accu-

mulator is greater than or equal to the number being subtracted from it.

• CARRY = 0 if the subtraction requires a borrow, that is, if the accumulator is less

than the number being subtracted from it.

If this seems backward to you, you are surely in the majority. Most other microprocessors

(e.g., the 6809, 68000, Z-80, and 8086 or 8088) work the opposite way—they set the

CARRY if a borrow is necessary and clear it otherwise.

In our program, we want the computer to branch if the digit is less than 10. In that

case, subtracting 10 will require a borrow and thus clear CARRY. 7’he branch should

therefore be BCC.
If BCC does not cause a branch, we know CARRY is 1. ADC #6 will therefore

produce the result

(A) = (A) + 6 + CARRY
= (A) + 6+1
= (A) + 7

Work through the program by hand if you find it confusing. Unfortunately, computer

designers are not required to be logical or sensible.

80 Microcomputer Experimentation with the AIM 65
*

Enter Program 5—5 into memory and try it on the following sample eases:

1. Data: (0040) = 08

Result: (0041) = B8

2. Data: (0040) = OC
Result: (0041) = C3

PROBLEM 5-8

Extend Program 5-5 to show the hexadeeimal digit on the leftmost charaeter of the
display.

COUNTING ON THE DISPLAYS

We ean use either eonversion routine to eount on the displays. The following program
eounts up from 0 to 9 in the leftmost eharacter. Program 5—6 is the mnernonie-entry
version.

COUNT
DLY1

DLY2

DONE

LDA #$BO
STA $AC02
LDA #$7B
STA SACOO
LDY #CT1
LDX #CT2
DEX
BNE DLY2
DEY
BNE DLY1
LDA $AC02
CMP #$B9
BEQ DONE
INC $AC02
JMP COUNT
BRK

INITIAL DATA = ASCII ZERO

ACTIVATE LEFTMOST CHARACTER

WAIT A WHILE

: HAS COUNT REACHED 9?

: YES. DONE
: NO. ADD 1 TO COUNT

Enter Program 5—6 into memory with CTl — CT2 = 00 and run it. Note that we ean
add 1 to the data simply by inerementing the output port with INC $AC02.

PROGRAM 5-6

Memory Memory
Address Contents Instruction

OEx) (Hex) (Mnemonic)

0200
0201

A9
BO

LDA #BO

Processing Data Outputs 81

PROGRAM 5-6 (continued)

Memory
Address

(Hex)

MemoiA’

Contents

(Hex)

liistruetion

(Mnemonic)

G2Q2 8D STA ACG2

02G3 G2

G2G4 0 AC
G2G5 A9 LDA #7B
G2G6 7B

G2G7 8D STA ACGG
G2G8 GG

G2G9 AC
G2GA AG CDUNT LDY #CT1

G2GB CT1

G2GC A2 DLY1 LDX #CT2
G2GD CT2

G2GE CA DLY2 DEX
G2GF DG BNE D2GE

G21G FD

G21

1

88 DEY
G212 DG BNE D2GC

G213 F8

G214 AD LDA ACG2
G215 G2

G216 AC
G217 C9 CMP #B9
G218 B9

G219 FG BED G221

G21A G6

G21B EE INC ACG2
G21C G2

G21D AC
G21E 4C JMP D2GA

G21F GA
B22G G2

G221 GG DDNE BRK

PROBLEM 5-9

Make Program 5-6 count down from 9 to 0 on the rightmost character.

PROBLEM 5-10

Write a program that counts up from 0 to F on the leftmost character. How would

you make the program start over at 0 after displaying F?

82 Microcomputer Experimentation with the AIM 65 t

CHARACTER SELECTION BY LOOKUP TABLE

'Hic next task is to make the computer select the character position. Unfortunately, Table
5—3 is not as simple as tables 5—4 and 5—5. Since^ it has several gaps, the'* conversion
program would involve many comparisons.

An alternative is to simply put 'Fable 5-3 in memory and use it as a lookup table. A
program can then perform the conversion as follows:

1. Calculate the address of the desired activ^ation code by adding the starting (base)
address of the table to the character number (index). n

2. Obtain the code by loading it from the calculated address.

We can combine these steps into a single LDA with indexed addressing. In that
mode, the processor adds an index register to the address in the instruction. It then uses
the sum as the address from which to load the accumulator. We refer to the address in the
instruction as the base address, the index register as the index, and the sum (the address
actually used to perform the operation) as the effective address.

I he following program uses indexed addressing to convert a character number in
0040 into an activation code in 0041.

LDX $40
: GET CHARACTER NUMBER

LDA $038Q,X
: GET ACTIVATION CODE FROM TABLE

STA $41
: SAVE ACTIVATION CODE

BRK

This program assumes that the activation code table is in memory starting at 0381.
'Fhe table thus does not interfere with our programs. 'There is an offset of 1 here, since we
have numbered the characters from 1 to 20, rather than from 0 to 19. Note that you must
enter both Program 5—7 (starting at 0200) and Table >— 3 (starting at 0381) into memorv.

PROGRAM 5-7

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruetion

(Mnemonie)

200 A6 LDX 40
0201 40
0202 BO LDA 0380.x
0203 80
0204 03
0205 85 STA 41
0206 41

0207 00 BRK

0381 7B
0382 7A

Processing Data Outputs 83

PROGRAM 5-7 (continued)

Memory Memory

Address Contents Instruction

(Hex) (Hex) (Mnemonic)

383 79

0384 78

385 77

386 76

387 75

388 74

389 6F

38A 6E

38B 6D
38C 6C
38D 5F

38E 5E

38F 5D
390 5C
391 3F

392 3E

393 3D
394 3C

We use LDA with absolute indexed addressing, since the table is not on page 0.

When the processor executes an indexed LDA, it both calculates the required address and

loads the data.

Program 5-7 works as follows (assuming that 0040 contains 06):

1. LDX $40 loads register X with the character number (06).

2. LDA $0380,X first calculates the effective address by adding register X (06) to the

base address (0380). The sum is 0380 + 06 = 0386. The processor then loads the

accumulator from 0386; 0386 contains 76, the activation code for character 6 in the

on-board display.

To produce a visible result, use the following program, which shows 0 on the

activated display.

LDA
STA

#$B0
AC02

; data = ASCII ZERD

LDX $40 : GET CHARACTER NUMBER
LDA $0380,X

: GET ACTIVATIDN CDDE FROM TABLE
STA AC00

:
ACTIVATE CHARACTER

JMP HERE
: WAIT FOREVER

Program 5-8 is the mnemonic-entry version.

84 Microcomputer Experimentation with the AIM 65
t

PROGRAM 5-8

Memory

Address

(Hex)

Memory

Contents

(Hex)
•

Instruction

(Mnemonic)'*

Q200 A9 LDA #B0
2Q1 BO
0202 8D STA AC02
0203 02
0204 AC
0205 AS LDX 40
0206 40
0207 BD LDA 0380.x
0208 80
0209 03
020A 8D STA ACOO
020B 00
0200 AC
020D 4C HERE JMP 020D
020E OD
020F 02

MOVING A CHARACTER ACROSS THE DISPLAY

We can use Table 5-3 to move a character across the display. The following program

moves a 0 from left to right. Since we are changing activation codes, we must deactivate

all displays by storing FF in ACOO before proceeding to the next character.

DSPLC

DLY1
DLY2

LDA #0
: CHARACTER NUMBER = ZERO

STA $40
LDA #$B0

: data = ASCII ZERO
STA $AC02
INC $40

: MOVE TO NEXT POSITION
LDX $40

: HAS DATA REACHED FAR RIGHT?
CPX #21

BED DONE
: YES. DONE

LDA $0380.

X

: NO. GET NEXT ACTIVATION CODE
STA $AC00
LDY #CT1

: WASTE SOME TIME
LDX #CT2
DEX
BNE DLY2
DEY
BNE DLY1
LDA #$FF

: DEACTIVATE ALL DISPLAYS
STA $AC00

Processing Data Outputs 85

JMP DSPLC
: CONTINUE MOVING THE ZERO

OONE BRK

Program 5-9 is the mnemonic-entry version. Remember to place I’ablc 5-3 in 0381

tbrougb 0394. CPX #21 subtracts 21 decimal (15 hex) from register X; it sets the flags but

does not change X. Note that the comparison must be with 21, not with 20, since INC
precedes it. We must save the count temporarily in 0040 because the delay routine uses

register X.

Enter Program 5-9 into memory, setting Cd’l = C 17 = 00, and run it. Note that

the line of zeros extends to the right as the program proceeds; the previous characters are

not erased.

PROGRAM 5-9

Memory Memory

Address Contents Instruction

(Hex) (Hex) (Mnemonic)

LDA #00

STA 40

LDA #BQ

STA AC02

Q20Q A9
2Q1
202 85

203 40

0204 A9
02D5 BO

2Q6 8D
207 2
208 AC
209 E6

20A 40

20B A6

20C 40

20D EC

20E 15

20F FO

210 18

211 BD
212 80

213 3
214 8D
215
216 AC
217 AO
218 CT1

219 A2
21A CT2

21 B CA
21

C

DO
21 D FD

21 E 88

DSPLC INC 40

LDX 40

CPX #15

BED 229

LDA 380,

STA ACOO

LDY #CT1

DLY1 LDX #CT2

DLY2 DEX
BNE 21 B

DEY

86 Microcomputer Experimentation with the AIM 65
t

PROGRAM 5-9 (continued)

Memory

Address

(Ilex)

Memory

Contents

(Ilex)

Instruetion

(Mnemonie)

21 F D0 BNE 0219
0220 F8 '

0221 A9 LDA #FF
0222 FF

0223 8D STA AC00
224 \

225 AC
226 4C JMP 0209
227 9
228 2
229 DONE BRK

PROBLEM 5-1

1

Write a program that moves a zero left aeross the display.

PROBLEM 5-12

Write a program that changes the digit as it moves. Make the digit increase from 0
to 9 as it moves across the leftmost nine characters. That is, the program should show
0123456789 at the left end of the display just before it returns control to the monitor.

PROBLEM 5-13

Make the program blank the current character (by storing AO hex in it) before
proceeding to the next character. AO hex is an ASCII space (see Appendix 2) with bit 7 set.

How would you make your program move the 0 continuously around the display (that is,

make it appear at the left end after it disappears from the right end)?

KEY POINT SUMMARY

1. Most output devices (and observers) require data to be available for a long time by
processor standards. The processor must not change the data too frequently.

2. Outputs must usually be converted into the forms required by peripherals.

3. Output transfers generally involve control signals as well as data. These control

signals may select peripherals or control their operations.

4. Lookup tables often simplify code conversions. Such tables simply contain all codes
organized in a convenient manner. They are easy and quick to use but may occupy
a large amount of memory.

Processing Data Outputs 87

5. In indexed addressing, the proeessor ealeulates the actual (etfecti\e) address to be

used in exeeuting the instrnetion. d’he ealeulation involves adding an index register

to the address ineliided in the instrnetion. Indexed addressing lets tlie prograininer

implement lookup tables and aeeess suceessive elements in a table.

LABORATORY \

PROCESSING DATA ARRAYS

PURPOSE

To learn how to process data arrays.

REFERENCE MATERIALS

L. A. LEVEN FHAL, 6S02 Assembly Language Programming, Osborne/AIcGravv-Hill,

Berkeley, CA, 1979, Chapter 5.

L. A, LEVEN I HAL and W. SAVILLE, 6S02 Assembly Language Subroutines,

Osborne/McGraw-Hill, Berkeley, CA, 1982, pp. 29-34, 39-40, 204-229, 382-414.

R. J. TOCCI and L. P. LASKOWSKI, Alicroprocessors and Microcomputers: Hardware
and Software, 2nded., Prentice-Hall, Englewood Cliffs, NJ, 1982, pp. 168-170 (index

register), 338-340 (compare instructions), 367-368 (indirect addressing).

W. J. WELLER, Practical AUcrocomputer Programming: The 6502, Northern Tech-
nology Books, Evanston, IL, 1980, Chapters 5, 10.

88

Processing Data Arrays 89

AIM 65 User's Guide, D\natcni, lr\ inc, CA, 1979, pp. 6-20 to 6-29.

R6S00 Microcomputer System Programming Manual, Rockwell International, Seinicon-

cluctor Products Di\ ision, Newport Beach, CA, 1979, Chapters 6, 7, Appendix G.

WHAT YOU

1 .

?̂
•

3 .

4.

5.

6 .

7.

SHOULD LEARN

What identifies elements of an array.

I’he most efficient way to process arrays using the 6502.

I low to perform a summation.

How to use a terminator.

How to determine whether numbers arc within limits.

How to display a message.

How to use indirect indexed (postindexed) addressing.

TERMS

Array collection of related data items.

Borrow hit that is set (1) if the result of a subtraction is negative and cleared (0) if it is

positive or 0. Borrows are used to subtract numbers that are too long for a single operation.

Checksum logical sum used to guard against errors.

Indirect address address that contains the address of the data, as opposed to a direct

address that contains the actual data.

Indirect indexed addressing addressing mode in which the effective address is deter-

mined by first obtaining the base address indirectly and then indexing from it. Also known
as postindexing, since the indexing is performed after the indirection.

Inverted borrow bit that is cleared (0) if the result of a subtraction is negative and set (1)

if it is positive or 0.

Limit checking determining if data is within limits, that is, below an upper threshold

and above a lower threshold. This procedure can be used to discard invalid data resulting

from operator or communications errors. Typical examples of such data are a transaction

dated February 30 and a room temperature setting of 70°C (instead of F).

Logical Slim binary sum w'ith no carries between bit positions.

Postindexing see Indirect indexed addressing.

Terminator item that marks the end of an array.

DATA ARRAYS

Most computing tasks involve applying the same instructions to collections of related data,

or arrays. T ypical array operations are calculating averages and other statistics, finding the

90 Microcomputer Experimentation with the AIM 65 «

largest element for sealing, organizing data for storage on tape or disk, editing, sorting,

arranging sequenees of operations, and searching for commands.
I he elements of arrays are usually stored in consecutive memory addresses. Two

items are then needed to reach a particular element:

1. d’he array’s starting (base) address.

2. The clement number, or index.

\\ c olten refer mathematically to an element as A-, where A identifies the entire array

(i.e., base address) and i identifies the particular element (i.e., index).

Flexible addressing modes are the keys to processing arrays. One sequence of

instructions should be able to process any element. Otherwise, minor changes in the

locations or lengths of the arrays will require major revisions in the program. A flexible

addressing mode such as indexing allows an instruction to use different effective addresses

at different times.

PROBLEM 6-1

Which of these instructions could handle any element of an array? Why?

a. LDA $40

b. LDX #$A3

c. LDA $0340,X

d. LDX $40

Which instruction can load data from different memory locations at different times even if

the program is stored in read-only memory?

PROBLEM 6-2

If an array starts at address BASE and each element occupies one location, which
address contains the second element? Assume that BASE contains the “zeroth” element.

Which address contains the /th element?

PROBLEM 6-3

Flow do the answers to Problem 6—2 change if each element occupies two memorv
locations? What if each element occupies k locations?

PROBLEM 6-4

We can store a two-dimensional array either by row or by column. Eor example, we
can store an array A with m rows and n columns by row, starting with row 1. Denoting the

element in row i and column j as A,-, the order in memory is: Ajj, Ap, Ap, . . ., Aj,,,

Processing Data Arrays 91

^^21’ ^‘^22’ ^'^2^’ • • •’ ^^712’ • • •> ^77777-
'V 1

ill aclclrcss B, which address

contains Wliich address contains element A,^? W hat is the lowest address occupied

by A,^ if each element occupies k memory locations?

PROBLEM 6-5

7-\ssmnc that an array contains the angles at w hich a \ ehicle should move (0 to 359

degrees) and the numben: of minutes (0 to 59) for w hich it should tra\cl at each angle.

E.ach entry consists of 3 bytes; the first 2 contain the angle and the third the travel time at

that angle. If the first angle is in addresses BASK and BASK+ 1, where would you find:

a. 'I’hc third angle?

h. rhe travel time at the fifth angle?

c. rhe sixth angle?

PROCESSING ARRAYS WITH THE 6502 MICROPROCESSOR

'The fastest way to process arrays with the 6502 is as follows (see Figure 6-1 for a

flowchart):

1. Load an index register with the array’s length and work backward (i.e., from the

highest address down). This is more efficient than working forward because the loop

can end when it decrements the index register to 0. No comparison instruction is

necessary.

2. Refer to an element by indexing from a base one less than the lowest occupied

address. A typical instruction is AL^C ST ART — 1,X where ST ART’ is the lowest

occupied address. The — 1 is necessary because tbc loop ends when it decrements

the index register to 0. Thus 1 is the smallest index ever used.

3. Access other elements either by using different bases or by changing the index

register. For example, AL9C ST’ART+5,X adds to the accumulator an element

located 6 bytes ahead of where the processor is working.

4. Use DEX or DEY to proceed to the next clement.

This approach assumes a fixed base address. W^e will show later how to remove this

restriction by using postindexed (indirect indexed) addressing. T’he computer can operate

on any element simply by using the appropriate base; for example:

LDA ST ART — 1,X loads the accumulator with the element from address

START- 1+(X).

EOR START’ T 9,X logically EXCLUSIVE ORs the accumulator with the element

from address START’ + 9 + (X).

92 Microcomputer Experimentation with the AIM 65
t

NO

YES

FIGURE 6-1. Array processing with the

6502 microprocessor.

PROBLEM 6-6

Write a program that logically ANDs location START+8 + (X) with

START — 1 -t-(X) and stores the result in STAR r + 8 + (X). START is a fixed address.

Example: START = 0340

(X) = 06

Result: (034E) = (034E) AND (0345)

Remember that the parentheses mean “contents of.”

SUM OF DATA

A simple example of array processing is summing the elements. This is an essential step in

calculating averages, variances, or numerical integrals. The following program assumes

an array consisting of four elements in 0340 through 0343 (see Eigure 6—2 for a flowchart):

Processing Data Arrays 93

ADDELM

LDX #4
: INDEX = LENGTH

LDA #
: CLEAR SUM INITIALLY

CLC
: CARRY = 0 ALWAYS

ADC
DEX

$033F,X
: ADD ELEMENT TD SUM

BNE ADDELM
: CDNTINUE THRDUGH ALL ELEMENTS

STA $40
: SAVE SUM

BRK 4

Program 6-1 is the mnemonic-entry version. Run it with the following data:

(0340) = 07

(0341) = 23

(0342) = 31

(0343) = 20

Result: (0040) = 7B

Remember that the numbers are hexadecimal. Change 0342 to FI and run the program
again. What is the result, and why? Note that we must clear CARRY in each iteration, so
it does not affect the addition.

I-IGURE 6-2.

program.

Flowcliart for summation

94 Microcomputer Experimentation with the AIM 65
t

PROBLEM 6-7

Write a program that sums six elements starting at 0340.

Sample Problem

(0340) = 07

(0341) = 23

(0342) = 31

(0343) = 20

(0344) = 16

(0345) = 38

Result: (0040) = C9

PROBLEM 6-8

Make Program 6—1 EXCLUSIVE OR the elements together instead of adding

them. The result, ealled a logical sum or checksum, is often used to deteet errors in tape or

disk reeords.

Sample Problem

(four elements starting at 0340, result in 0040)

PROGRAM 6-1

Memory Memory
Address Contents Instruction

(Hex) (Hex) (Mnemonic)

0200 A2 LDX #04
0201 04

0202 A9 LDA #00
0203 00

0204 18 ADDELM CLC
0205 7D ADC 033F.X

0206 3F

0207 03

0208 CA DEX
0209 DO BNE 0204
020A F9

020B 85 STA 40
0200 40

020D 00 BRK

Processing Data Arrays 95

(0340) = 07

(0341) = 23

(0342) = 31

(0343) = 20

Result: (0040) = 35

PROBLEM 6-9
#

F^xtend Program 6-1 to save the earries and store the 16-bit sum in 0040 and 0041

(more signifieant byte in 0041).

Sample Problem

(0340)

(0341)

(0342)

(0343)

(0344)

Result: (0040)

(0041)

F7

23

31

20

16

81 (less signifieant byte of sum)

01 (more signifieant byte of sum)

USING A TERMINATOR

If you are not sure how long the array is (or do not want to count the elements), you can

follow the data with a special marker called a terminator. It must have a value that cannot

be a real data item. In a summation, 0 is a good choice because it does not affect the sum.
4’he program using 0 as a terminator is (see Figure 6-3 for a flowchart):

LDX #0 INDEX = ZERO
TXA SUM = ZERO

ADDELM LDY $0340,

X

IS ELEMENT ZERO?
BED DONE YES. DONE
CLC NO. ADD ELEMENT TO SUM
ADC $0340,X

INX

JMP ADDELM
DONE STA $40 SAVE SUM

BRK

Program 6-2 is the mnemonic-entry version. Here we must work forward, since the

terminator is at the end. Of course, we could put the terminator at the beginning and
work backward.

96 Microcomputer Experimentation with the AIM 65
t

FIGURE 6-3. Flowchart for summation program with terminator.

PROGRAM 6-2

Memory Memorv’

Address Contents Instruction

(Hex) (Hex) (Mnemonic)

0200 A2 LDX #00
0201 00

0202 8A TXA
203 BC ADDELM LDY 0340.

X

0204 40

0205 03

0206 FO BEQ 0210

0207 08

0208 18 OLO

0209 7D ADO 0340.x

020A 40

020B 03

0200 E8 INX

020D 40 JMP 0203

020E 03

020F 02

0210 85 DONE STA 40

0211 40

0212 00 BRK

Processing Data Arrays 97

Run Program 6-2 with the following data:

(0340) = 07

(0341) = 23

(0342) = 31

(0343) = 20

(0344) = 16

(0345) ="38

(0346) = 00

Result: (0040) = C9

What happens if you set (0343) = 00? What are the advantages and disadvantages

of using a terminator as eompared to eounting the elements? Whieh approaeh results in

faster programs? Whieh makes data entry simpler?

PROBLEM 6-10

If 0 is an aeeeptable data value, you must use something else as the terminator.

Revise Program 6-2 to use FF as a terminator. Whieh ternlinator should you use if the

data values are the numbers of eharaeters reeeived from a 10-eps (eharaeters per seeond)

teleh’pewriter in 1 s?

LIMIT CHECKING

We often want a computer to test the validity of data, that is, whether it is within certain

limits, below a threshold, or has an allowed value. Determining if data is within limits is

called limit checking. The key instruction here is a comparison (CMP, CPX, or CPY) that

subtracts a memory location from a register. Comparisons affect the flags but do not save

the result.

As noted in Laboratory 5, CARRY indicates which operand is larger after a com-

parison involving unsigned numbers. We know that

CARRY = 1 if(REG) > (M)

CARRY = 0 if (REG) < (M)

where REG refers to the accumulator or index register and M to the memory location.

We refer to CARRY as an inverted borrow, since it is cleared (0) if the subtraction requires

a borrow and set (1)
if it does not.

The following program sums six elements but ignores ones that are 80 hex or above

(i.e., have a most significant bit of 1).

LDX #6
LDA #0

: INDEX = LENGTH
: CLEAR SUM INITIALLY

98 Microcomputer Experimentation with the AIM 65
«

ADDELM LDY $033F,X
: COMPARE ELEMENT TO THRESHOLD

CPY #$80
BCS COUNT

: IGNORE IF VALUE ABOVE THRESHOLD
ADC $033F,X

: ADD ELEMENT [CARRY IS 0)
"

COUNT EX
BNE ADDELM
STA $40
BRK

Note that CARRY must be 0 if the program reaehes ADC $033F,X, sinee otherwise

BCS would have branched. I o make the threshold itself valid (i.e., ignore elements above
80 hex instead of 80 hex or above), simply replace CPY #$80 with CPY #$81. Program
6-3 is the mnemonic-entry version; run it with the following data:

(0340) = 07

(0341) = 20

(0342) = FI

(0343) = 3C

(0344) = 80

(0345) = 73

Result: (0040) = D6

PROGRAM 6-3

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0200 A2 LDX #06
0201 06
0202 A9 LDA #00
203 00
204 BC ADDELM LDY 033F.X
205 3F

0206 03
0207 CO CPY #80
0208 80
0209 BO BCS 020E
020A 03
020B 7D ADC 033F.X
020C 3F

0200 03
020E CA COUNT DEX
020F DO BNE 204
0210 F3

021

1

85 STA 40
0212 40
0213 00 BRK

Processing Data Arrays 99

PROBLEM 6-1

1

Make Program 6-3 ignore elements that are 80 hex or abo\e or 20 hex or below.

Sample Problem

(0340) = 07

(0341) =^20

(0342) = FI

(0343) = 3C

(0344) = 80

(0345) = 73

Result: (0040) = AF

Limit checking is often used to reject measurements that are far away from the

majority (and therefore suspect). Many data analysis routines discard the highest and

lowest values before averaging or performing other functions to eliminate readings that

may be the result of noise, equipment malfunction, or human error. Limit checking also

guards against errors such as an operator specifying a nonexistent time (e.g., 8:80 instead

of the intended 8:00) or an unrealistic or impossible parameter value (e.g., an automobile

speed of 1000 km/hr instead of the intended 100 km/hr).

DISPLAYING A MESSAGE

We can use array methods to show a message on the on-board display. We need a daia

array starting at 0341 and 4’ablc 5-3 (the character activation codes) starting at 0381. 41ie

following program (see Figure 6-4 for a flowchart) also assumes that 0040 contains the

message length.

LDX $40 STARTING INDEX = MESSAGE LENGTH
DSPLC LDA $0340,

X

GET A CHARACTER FROM MESSAGE
STA $AC02 SEND CHARACTER TO DISPLAY
LDA $Q38Q,X GET AN ACTIVATION CODE
STA SACQO ACTIVATE A CHARACTER
LDA #$FF HOLD DATA. DEACTIVATE DISPLAY
STA SACQQ
DEX
BNE DSPLC

HERE JMP HERE WAIT FOREVER

Program 6-4 is the mnemonic-entry version of the message display program. Run it

with the following data:

(0040) = 09 (number of characters in message)

(0341) = C3 (leftmost character)

100 Microcomputer Experimentation with the AIM 65

(0342) = DO

(0343) = D5

(0344) = AO

(0345) = C9 ‘

.

(0346) = D3

(0347) = AO

(0348) = CF
(0349) = CE (rightmost character)

You can use tlie ASCII tabic in Appendix 2 to create messages? but remember to set

bit 7 of each character.

PROBLEM 6-12

Plaee a nested delay routine inside the loop in Program 6-4. Set CTl (outer loop

eonstant) = CT2 (inner loop constant) = 00 and run the program. Be sure to save the

eharacter number (Program 6-4 leaves it in X). Describe what you see.

FIGURE 6-4.

message.

Flowchart for displaying a

Processing Data Arrays 101

PROGRAM 6-4

Memory .MemoiA'

Address Contents Instruction

(Hex) (Hex) (Mnemonic)

Q200 A6 LDX 40

0201 40

Q202 ^ BD DSPLC LDA 0340.x

G203 40

204 03

0205 8D STA AC02
0206 02

207 AC
0208 BD LDA 0380.x

209 80

20A 03

20B 8D STA AC00
200 0
20D AC
020E A9 LDA #FF

020F FF

0210 8D STA ACOO
0211 0
212 AC
0213 CA DEX
0214 0 BNE 0202

0215 EC

0216 4C HERE JMP 0216

0217 16

0218 2

Now run the program repeatedly with the following series of values for CTl: 80, 40,

20, 10, 08, 04, 02, 01. Explain what happens. Obviously, it does not take mueh comput-

ing power to make a display look continuous to a human observer.

PROBLEM 6-13

Write a program that produces a “newspanel” or “Times Square” display in which

the message appears to move from right to left. Your program should:

1. Start by placing ASCII spaces (AO hex) on all characters.

2. After a delay, put the first element of the message on the rightmost character and

ASCII spaces everywhere else.

3. Continue this process until the me.ssage has moved all the way across the

display. I’hen start over.

102 Microcomputer Experimentation with the AIM 65
*

our data should consist of a set of ASCII spaces, the message, and another set of ASCII
spaces. Yon must save a starting index that tells the computer where to find the display

data for a particular iteration.

VARYING THE BASE ADDRESS

So far, we have assumed a fixed base address. Programs that make this assumption clearly

lack generality, since they always work on data at a fixed place in memory. If the base

address were a \ ariable, we could then tell the program where the data is. T his would

make it unnecessary to move the data or change the program for a computer with a

different arrangement of memory addresses.

1 he 6502’s indirect indexed addressing (postindexing) provides the required

capability. In this mode, the processor obtains the base address from two snccessiv'e

memory locations on page 0. It then adds register Y to the base address to determine the

effeeti\e address. For example, the instrnetion

LDA ($40).

Y

loads the aeenmnlator from the effeetive address obtained by adding register Y to the base

address in 0040 and 0041. If (0040) = 80, (0041) = 03, and (Y) = 3C, the base address is

0380 and the effeetive address is 0380 + 3C = 03BC. T’hns 0040 and 0041 indieate

where the array starts.

We ean easily ehange Program 6-1 to use indireet indexed addressing. We must use

register Y instead of X and ADC with indireet indexed addressing instead of absolute

indexed addressing. T he revised program is

LDY #4
LDA #0

ADDELM CLC
ADC ($4Q],Y

DEY
BNE ADDELM
STA $42
BRK

Program 6—5 is the mnemonie-entry version using indireet indexed addressing. To
have this program work on a particular array, we simply plaee its starting address minus 1

in 0040 and 0041. Enter and run Program 6—5 for the same sample cases we used with

Program 6-1. Remember to load the starting address minus 1 (03 3F) upside down into

0040 and 0041 before exeeution.

PROBLEM 6-14

Make Program 6-2 use indireet indexed addressing and store the sum in 0042.

INDEX = LENGTH
CLEAR SUM INITIALLY

CARRY = Q ALWAYS
ADD ELEMENT TD SUM

:
SAVE SUM

Processing Data Arrays 103

PROBLEM 6-15

Write a program that logically ANDs memory location S'l’AK'I ’ + 8 -Efi

)

with loca-

tion S rAR L— 1+(Y) and stores the result in S I'AK 1 -t- 8 + ft). Assume that address

Sd’ART is stored in 0040 and 0041. Be sure that your program works even if the operands

arc on different pages. For the sample cases, assume that (0040) = 00 and (0041) = 02

(i.e., S4 ART is 0200).

Sample Problems

a. Data:

Result:

h. Data:

Result:

(Y) = 80

(027F) = 23

(0288) = 34

(0288) = (0288) A*ND (027F) = 20

(Y) = FF
(02FD) = C7
(0306) = 6D
(0306) = (0306) AND (02FD) = 45

PROGRAM 6-5

Memory

.\dclress

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

Q20Q A0 LDY #04
201 4
202 A9 LDA #00
0203 00

204 18 ADDELM CLC
0205 71 ADC (40).

Y

0206 40

0207 88 DEY
208 D0 BNE 0204
0209 FA

020A 85 STA 42
020B 42

0200 00 BRK

KEY POINT SUMMARY

1 . Arrays are collections of elements with similar meanings or purposes. Each element

is characterized by its position or index; the entire array is characterized by its base

address. Thus to reach a particular element of an array, you must know the base

address and the index.

104 Microcomputer Experimentation with the AIM 65
«

2. I’hc keys to processing arrays are:

a. An index that determines whicli element is being processed.

b. A flexible addressing mode that allows a single set of instructions to handle

any element.

c. A counter or terminator that can be used to determine the length of the array.

3. lo process arrays with the 6502, you can use an index register to hold the index,

indexed addressing to reach the data in memory, and another register or a memory
location to hold the counter or terminator. An efficient approach is to use the

starting address minus 1 as the base and work backward. You can then use the

setting of the ZERO flag as an exit condition, since the program counts the index

down to 0.

4. Comparison instructions can determine if an element is within limits. If the com-
parison’s operands arc unsigned, CARRY indicates which is larger. In the 6502,

CARRY is an inverted borrow'; it is set if no borrow' is necessary and cleared if a

borrow is required.

5. Indirect indexed addressing allows the 6502 to obtain a variable base address from

two memory locations on page 0. 4 his mode assumes the use of index register Y.

The locations on page 0 thus indicate where the actual array starts.

*

LABORATORY 7 I
I

FORMING DATA ARRAYS

PURPOSE

To learn how to form data arrays.

REFERENCE MATERIALS

L. A. LEVENT’UAL, Introduction to Microprocessors: Hardware, Software, Program-

ming, Prentice-Hall, Englewood Cliffs, NJ, 1978, pp. 179-198.

L. A. LEVENTHAL, 6502 Assembly Language Programming, Osborne/McGraw-Ilill,

Berkeley, CA, 1979, pp. 3-9 to 3-10, Chapter 5 (particularly pp. 5-20 to 5-22), pp.

11-123'.

L. A. LEVENTHAL and W. SAVILLE, 6502 Assembly Language Subroutines,

Osborne/McCraw-Hill, Berkeley, CA, pp. 12, 32-34, 51-52, 193-229.

W. J.
WELLER, Practical Microcomputer Programming: 'Phe 6502, Northern Tech-

nology Books, Evanston, IL, 1980, Chapters 5, 10.

105

106 Microcomputer Experimentation with the AIM 65
*

AIM 65 Users Guide, Dynatem, Irvine, CA, 1979, pp. 5-31 to 5-32.

R6500 Aiicrocomputer System Programming Manual, Rockwell International, Semicon-
ductor Products Division, Newport Beach, CA, 1978, Chapters 6—7, Appendix G.

WHAT YOU SHOULD LEARN

1. How to use indexed addressing to form arrays.

2. How to fill an area of memory.

3. How to enter input data into an array.

4. How to access a specific element of an array.

5. How to keep counts or running totals in an array.

6. How to differentiate between logical and physical devices.

7. How to handle large arrays.

TERMS

Arithmetic shift a shift that does not change the sign (most significant) bit. A right

arithmetic shift copies the sign bit into the positions to the right (called sign extension).

Clear set to 0.

Indexed indirect addressing an addressing mode in which the effective address is deter-

mined by indexing from the base address and then using the indexed address indirectly.

Also called preindexing, since the indexing is performed before the indirection. Of course,

the array starting at the base address must contain indirect addresses.

I/O device table a table that assigns actual (physical) devices or I/O subroutines to the

device numbers (logical devices) to which programs refer.

Logical device the I/O device to which a program refers. T he physical device is deter-

mined from an I/O device table.

Physical device an actual I/O device, as opposed to a logical device.

Preindexing see Indexed indirect addressing.

Rotate a shift that works as if the data were arranged in a circle, that is, as if the most

significant and least significant bits were connected.

6502 INSTRUCTIONS

ROL(R) rotate left (right); shift the accumulator or a memory location left (right) one bit

as if bits 0 and 7 were connected through the CARRY flag (see Figure E-2).

Forming Data Arrays 107

STANDARD PROCEDURE FOR FORMING ARRAYS

T he arrays in Laboratory 6 do not, of course, appear magically in the computer’s mem-
ory. In applications, the program must form the array before processing it; as with

processing, this requires a base address and an index.

T he standard procedure for forming an array is as follows (see Figure 7-1);

1. Initialization.

BASE = STARTING ADDRESS DF ARRAY
INDEX = 0

LENGTH = LENGTH OF ARRAY tif known)

FIGURE 7-1. Flowchart for array

formation.

108 Microcomputer Experimentation with the AIM 65 *

2. Entering an element.

[BASE + INDEX) = DATA
INDEX = INDEX + 1

*

'The data may be a constant, the result of a calculation, or an external input.

3. Conclusion.

a. Maximum length: If INDEX = LENGTH, then DONE; otherwise, return

to step 2.

b. Terminator: If DATA = TERMINATOR, then DONE; otherwise, return to

step 2.

Remember that on the 6502, we often find it more convenient to work through the

array backward rather than forw'ard. We can then count the index dowm to 0.

CLEARING AN ARRAY

A simple way to initialize an array is to clear its elements. This is a natural starting point

for accumulating totals or test results. Note that you cannot assume that an unused RAM
location contains 0; it could start with any value whatsoever when power is applied. The
following program clears 0340 through 0347:

LDA #0
; data = ZERD

LDX #8
; NUMBER DF BYTES = 8

CLR1 STA
DEX

$033F,X ; CLEAR A BYTE

BNE
BRK

CLR1 : CDUNT BYTES

Program 7-1 is the mnemonic-entry version. Enter and run it.

PROGRAM 7-1

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

200 A9 LDA #00
0201 0
0202 A2 LDX #08
2G3 8
204 9D CLR1 STA 033F.X

0205 3F

0206 3

Forming Data Arrays 109

PROGRAM 7-1 (continued)

Memoiy
Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

2Q7 CA DEX
Q208 DD BNE 0204

0209 ^ FA

Q20A 00 BRK

PROBLEM 7-1

Make Program 7-1 clear 0350 through 035E\

PROBLEM 7-2

Make Program 7-1 place (0040) in 0340 through a number of locations given by

(0041). Does your program work properly if (0041) = 00?

Example: (0040) = 3F (value)

(0041) = 03 (number of locations)

Result: (0340) = 3F

(0341) = 3F

(0342) = 3F

T he program should do nothing if (0041) = 00.

PLACING VALUES IN AN ARRAY

rhc next step is to place different values in different elements, d he following program

places the element numbers (1 through 8) in the corresponding positions (see Figure 7-2

for a flowchart). Program 7-2 is the mnemonic-entry version.

LDX #8 : NUMBER OF BYTES = 8

LDIND TXA : ELEMENT = INDEX

STA $G33F,X

DEX
BNE LDIND

BRK

Ehiter and run Program 7-2. It has practical value, since it creates an array of

identification numbers. For example, assume that you have a set of pressure readings

taken at different points in a chemical process. You could sort that set into descending

order and use the identification numbers to keep track of where the readings were taken.

1 10 Microcomputer Experimentation with the AIM 65
t

FIGURE 7-2. Flowchart for placing

element numbers in an array.

The top line of the results would then show the highest value and where it oeeurred. For

instanee, vou eould start with

Position Pressure

1 40

2 27

3 66

4 59

sures arranged in deseending order as

Position Pressure

3 66

4 59

1 40

2 27

Forming Data Arrays 1 1

1

Without the array of identification nuinhers, we would not know where the liighest

pressure occurred.

PROGRAM 7-2

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

Q20Q A2 LDX #08

201 08

0202 8A LDIND TXA

0203 9D STA 33F.X
0204 3F

0205 03

206 CA DEX

0207 DO BNE 0202

0208 F9

0209 0 BRK

PROBLEM 7-3

Start with 1 and make each subsequent element twice its predecessor; that is,

(0340) = 01

(0341) = 02

(0342) = 04

(0343) = 08

(0344) = 10

(0345) = 20

(0346) = 40

(0347) = 80

PROBLEM 7-4

Create the following sequence:

(0340) = 80 (10000000 binary)

(0341) = CO (U 000000 binary)

(0342) = EO (1 1 100000 binary)

(0343) = FO (1 1 1 10000 binary)

(0344) = F8 (1 1 1 1 1000 binary)

(0345) = FC(1 11 11 100 binary)

(0346) = FE(1 1 1 1 1 1 10 binary)

(0347) = FFdlllllll binary)

1 1 2 Microcomputer Experimentation with the AIM 65

What arc these numbers if they are in two’s eomplement form? An element ean be

obtained from its predeeessor by means of a right arithmetic shift, sinee the sign (most

signifieant) bit does not ehange. A right arithmetie shift requires an extra eopy of bit 7,

wiiieh you ean produee with the following instruetions:

TAY
ASL A
TYA
ROR A

SAVE ACCUMULATOR
MOVE BIT 7 TO CARRY
RESTORE ACCUMULATOR
SHIFT RIGHT WITH COPY OF BIT 7

ENTERING INPUT DATA INTO AN ARRAY

d’he next task is to form an array from input data entered on the switches attached to user

VIA port A. The steps are as follow's (see Figure 7-3):

1. Initialize the index and base address:

BASE = STARTING ADDRESS - 1

INDEX = LENGTH OF ARRAY

2. Wait for a switch to he closed.

3. Debounce the switch closure.

4. Identify the switch.

5. Place the sw'itch number in the array:

(BASE + INDEX] = SWITCH NUMBER

6. Update the index for the next entry:

INDEX = INDEX - 1

7. Wait for all switches to be open.

8. Debounce the switch opening.

9. If INDEX is not 0, return to step 2.

Tlic following program forms an array starting in 0340 from 4 switch closures (all

switches must be opened between closures).

SET UP USER VIA PORT A FOR INPUT

LDA #0
STA $A003

: MAKE PORT A INPUT

Forming Data Arrays 113

FIGURK 7-3. Flowchart for forming an

array from switch inputs.

4 Microcomputer Experimentation with the AIM 65 t

INITIALIZE INDEX TO LENGTH OF ARRAY

LDX #4 •
: INDEX = ARRAY LENGT|:t

WAIT FOR SWITCH TO BE CLOSED

WAITC LDA $A001 READ DATA FROM SWITCHES
CMP #$FF ARE ANY SWITCHES CLOSED?
BED WAITC NO. WAIT

DEBOUNCE SWITCH CLOSURE WITH 1 MS DEL.AY

LDY #$C8 DELAY 1 MS AFTER CLOSURE
DLYC DEY

BNE DLYC

IDENTIFY SWITCH BY SHIFTING INPUT

LDY #$FF SWITCH NUMBER = -1
SRCHS INY ADD 1 TO SWITCH NUMBER

LSR A IS NEXT SWITCH CLOSED?
BCS SRCHS NO, KEEP LOOKING

ENTER SWITCH NUMBER INTO ARRAY

TYA
STA $033F,X

: PUT SWITCH NUMBER IN ARRAY

WAIT FOR ALL SWITCHES TO OPEN

WAITC LDA $AOm
: READ DATA FROM SWITCHES

CMP #$FF
: ARE ANY SWITCHES CLOSED?

BNE WAITC
: YES. WAIT

: DEBOUNCE SWITCH OPENING WITH 1 MS DELAY

LDY #$C8
; DELAY 1 MS AFTER OPENING

DLYC DEY
BNE DLYC

COUNT SWITCH CLOSURES

DEX
BNE WAITC
BRK

Forming Data Arrays 115

Program 7-5 is the mnemonic-entry \ersion; enter and run it. Use the tollowing

sequence of sw itch closures: 5, 7, 0, 5. Rememl)er to open all sw itches after each closure,

rhe result should be:

(0340) = 05

(0541) = 00

(0542) = 07
' (0545) = 05

PROGRAM 7-3

Memory

.\ddress

(Hex)

Memory

Contents

(Hex)

Instrnetion

(Mnemonic)

G200 A9 LDA #00
Q201 00

Q202 8D STA A003

203 3
0204 AO
0205 A2 LDX #04

0206 04

0207 AD WAIT0 LDA A001

0208 1

0209 AO
020A 09 0MP #FF

020B FF

0200 FO BED 0207

20D F9

O20E AO LDY #08
020F 08

210 88 DLYG DEY
0211 DO BNE 0210

0212 FD

213 AO LDY #FF

0214 FF

0215 08 SR0HS INY

216 4A LSR A

0217 BO B0S 0215

0218 F0

0219 98 TYA
021A 9D STA 033F.X

0218 3F

210 03

021 D AD WAITO LDA A001

21 E 01

1 16 Microcomputer Experimentation with the AIM 65
«

PROGRAM 7--3 (continued)

Memory

Address

(Hex)

Memory

Contents

(Hex)

•

%

Instruction

(Mnemonic)*

021 F AO
220 09 OMP #FF
221 FF

0222 DO BNE 021

D

0223 F9

0224 AO Lt)Y #08
225 08
0226 88 DLYO DEY
0227 DO BNE 0226
0228 FD
0229 OA DEX
022A DO BNE 0207
022B DB
0220 00 BRK

PROBLEM 7-5

Revise Program 7-3 to exit when you close switch 0. Can you ever get a data entry

of 0?

PROBLEM 7-6

Extend Program 7-3 to combine the four entries in 0340 through 0343 into two 2-

digit numbers in 0061 and 0062. Load 0061 from 0340 (4 LSBs) and 0341 (4 MSBs); load

0062 from 0342 (4 LSBs) and 0343 (4 MSBs).

Example: Switches closed are 7, 3, 4, 2.

(0340) = 02

(0341) = 04

(0342) - 03

(0343) = 07

Result: (0061) = 42

(0062) = 73

Note how similar this process is to the entry of a 4-digit hexadecimal address from a

keyboard. Remember that keys are simply binary switches.

ACCESSING SPECIFIC ELEMENTS

Still another problem is how to find a specific element of an array. This is essential when a

program must count events (number of transactions of a particular type or number of

Forming Data Arrays 117

activations of a particular sensor) or must accumulate data properly (c.g., total for a

particular account, test point, or station). For example, the following program clears one

element of an array starting at 0340. 0041 contains the element number.

Examples

1. Data: (0041) = Oi

Result: [0340 + (0041)] = (0342) = 00

2. Data: (0041) = 07

Result: [0340 + (0041)] = (0347) = 00

LDX $41

LDA #0
STA $0340.X

BRK

Program 7-4 is the mnemonic-entry version; enter it and run the two examples.

Note how similar Program 7-4 is to the code conversion in Program 5-7.

GET INDEX

GET DATA
CLEAR INDEXED ELEMENT

PROGRAM 7-4

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0200 A6 LDX 41

2Q1 41

0202 A9 LDA #00

0203 00

0204 9D STA 0340.x

0305 40

0206 03

0207 00 BRK

PROBLEM 7-7

Revise Program 7-4 to add 1 to the element.

Example

(0041) = 04 (index)

(0344) = CF (original value)

Result: [0340 + (0041)] = (0344) = (0344) -F 1 = DO

1 18 Microcomputer Experimentation with the AIM 65
*

PROBLEM 7-8

Revise Program 7-4 to put (0042) in the element.

Example

(0041) = 06 (index)

(0042) = 3F (value)

Result: [0340 + (0041)] = (0346) = (0042) = 3F

llow would you make your program replaee the old value only if the new one is

larger? Assume that the numbers are unsigned. This proeedure would be neeessary if the

elements were the worst eases for a set of tests or sealing values for a set of plots.

PROBLEM 7-9

Re\’ise Program 7-4 to elear a 2-byte element.

Example

(0041) = 03

Result: [0340 -L 2 x (0041)] = (0346) = 00

[0340 + 2 X (0041) + 1] = (0347) = 00

{Eiint: Use ASL to double the element number. Assume that (0041) is less than 128, so

doubling it eannot produee a earry. Remember to elear both bytes of the element.)

COUNTING SWITCH CLOSURES

PROBLEM 7-10

Write a program that eounts how many times eaeh switeh attaehed to user VIA port

A is elosed. Consider only single elosures and assume that all switehes must be opened
between elosures. The steps required are (see Figure 7-4):

1. Initialize the array of eounts by elearing all elements.

2. Wait until a switeh is elosed.

3. Debounee the switeh elosure.

4. Identify the switeh.

5. Add 1 to the eount for that switeh.

6. Wait until all switehes are open.

7. Debounee the switeh opening.

8. Return to step 2.

Forming Data Arrays 1 19

Use 0340 through 0347 for the array.

FIGURK 7-4. Flowchart for cumulative

counts program.

ARRAYS OF ADDRESSES

Arrays may consist of addresses rather tlian data. By choosing a particular element from

such an array, we can choose an address to use in data transfers. Thus we want a

combination of indexing and indirection, just as in indirect inde.xed addressing, hut here

we want the indexing done first.

41ns combination, called indexed indirect addressing or preindexing, always uses

register X and an address on page 0. A typical example is LDA ($40, X), which loads the

accumulator from the address obtained indirectly by adding (X) to 0040. I he result is

(A) = [(0040 + (X) + I) (0040 + (X))]

120 Microcomputer Experimentation with the AIM 65 •

where the iiiclireet address, as usual, oeeupies two loeations. If, for example, (X) = 04,

the indireet address is in 0044 and 0045. If (0044) = 86, (0045) = 03, and (0386) = E4,

tlu; result of LDA ($40, X) is

>•

(A) = [(0040 + 04 + 1) (0040 + 04)]

[(0045) (0044)] = (0386) = E4

Be eareful with preindexing; the array on page 0 must eontain addresses, and you
ean refer only to even-numbered elements. (Why?) "hhe programmer must observe these

eonstraints; the 6502 does not warn you about errors.

Indexed indireet addressing ean be used to assign deviee numbers to I/O addresses or

the starting addresses of I/O routines for a partieular system. The programmer ean then

refer to I/O deviees by number (e.g., “print on deviee 2” or “read data from de\ iee 3”). An
//O device table eontains the aetual I/O addresses eorresponding to the numbers. We eall

the deviee number to whieh programs refer a logical device and the aetual I/O deviee a

physical device.

41ie advantages of maintaining this distinetion are:

1. Programmers need not deal with aetual I/O addresses. Thev ean refer to deviees bv

number without worrying about differenees resulting from updates, model ehanges,

or optional aeeessories.

2. Programs ean be written using device numbers and can be made to work on a

particular system by constructing an I/O device table. Such programs can be modi-
fied easily to work on computers with different peripherals.

3. A programmer can change the actual I/O addresses by modifying the device table.

For example, you might want the results of a test run or a minor change shown on a

CR4^ display rather than printed. Similarly, you could make a terminal simulate 1/

O devices that are unavailable or malfunctioning. Implementing these changes is

much like switching the output of a stereo system from the front speaker to the back

speaker.

I’he following program sends the data from 0040 to either device 0 (the LEDs
attached to port B of the user VIA) or device 1 (the leftmost character of the on-board
display). The device table is in 0050 through 0053.

LDA #$FF
STA $AGG2

: MAKE DISPLAY PORT OUTPUT
STA SAGGG

: TURN OFF LEDS AT PORT B
LDA #$7B

: ACTIVATE LEFTMOST CHARACTER
STA SACGG
LDA $41

: GET DEVICE NUMBER
ASL
TAX

A
: DOUBLE NUMBER FOR INDEXING

LDA $4G
; GET DATA

STA ($5G,X)
: SEND DATA TO PHYSICAL DEVICE

JMP HEREHERE

Forming Data Arrays 121

Program 7-5 is the mnemonie-entry version, along with the de\ iee table. W'e must

double the de\ iee number, sinee eaeh address oeeupies 2 bytes. Remember that 0 outputs

light the LE.Ds attaehed to the user \'1A (see Laboratory 5). Run Program 7-5 w ith (0040)

= C3 and (0041) = 00. What happens if you ehange 0041 to 01 and run the program

again?

PROGRAM 7-5

Memorv’ ^ Memors’

.Address Contents Instruction

(Hex) (Hex) (Mnemonic)

Q2QQ A9 LDA #FF

02Q1 FF

Q202 8D STA A002
0203 02

Q2G4 AO
Q205 8D STA AOOO
0206 00
207 AO
Q208 A9 LDA #78
209 78

2QA 8D STA ACOO
2QB 00

20C AC
20D A5 LDA 41

20E 41

Q20F OA ASL A
D210 AA TAX
Q21

1

A5 LDA 40

0212 40

0213 81 STA (50.X)

0214 50

0215 4C HERE JMP 0215
0216 15

0217 02

0050 00 DEVICE 0 (ADDRESS AOOO)

0051 AO
0052 02 DEVICE 1 (ADDRESS AC02)

0053 AC

PROBLEM 7-1

1

Change Program 7-5 to send (0040) to the deviee number in 0042 and (0041) to the

other output deviee.

Example

(0040) = CO (data for primary deviee)

122 Microcomputer Experimentation with the AIM 65 t

(0041) = BE' (data for secondary device)
'

(0042) = 00 (number of primary device)

Result: (AOOO) = CO (device 0 gets primary data)

(AC02) = BE' (device 1 gets secondary data) ^

W hat happens if yon change (0042) to 01? What happens if you reverse the order in the

device table?

LONG ARRAYS

W'c discussed indirect indexed addressing in Laboratory 6. In this mode, the processor

obtains a base address from two memory locations on page 0. 4’hus we can change that

base address freely, since it can be in RAM even when the program is in ROM.
Indirect indexed addressing has another important use in 6502 programming. It lets

us handle arrays that occupy more than 256 bytes. Ordinary indexed addressing cannot do

this because the index registers are only 8 hits long.

'The following program (see Program 7-6 for a mnemonic-entry version) clears a

section of memory. The section starts at the address in 0040 and 0041; its length is given

by the contents of 0042 and 0043 (in complemented form).

LDA
TAY

#0

CLEAR STA
INY

($40),

Y

BNE COUNT
INC $41

COUNT INC $42

BNE CLEAR
INC $43
BNE
BRK

CLEAR

;
data = ZERO

:
STARTING INDEX = ZERO

: CLEAR A BYTE

:
MOVE TO NEXT BYTE

: AND TO NEXT PAGE IF NEEDED
: COUNT BYTES

: WITH CARRY TO MSB

Incrementing a 16-hit number is not easy. Since neither INY nor INC affects

CARRY, it is difficult to determine when a carry is necessary. The only way to tell is to

test the ZERO flag. When INY makes Y zero, we move to the next page by incrementing

the more significant byte of the base address (0041). Similarly, when INC $42 makes the

less significant byte of the count zero, we use INC $43 to carry to the more significant

byte. Run Program 7-6 with the following sample data:

(0040) = 80 (LSBs of initial base address)

(0041) = 02 (MSBs of initial base address)

(0042) = CO (LSBs of complemented count)

(0043) = FE (MSBs of complemented count)

Which memory locations are cleared? Wc count up here rather than down since incre-

Forming Data Arrays 123

PROGRAM 7-6

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instrnetion

(Mnemonie)

2Q0 A9 LDA #00
02Q1 00
0202 ^ A8 TAY
0203 91 OLEAR STA (40).

Y

0204 40
0205 08 INY

0206 DO BNE 020A
0207 02

0208 E6 INO 41

0209 41

020A E6 ODUNT INO 42

020B 42

0200 DO BNE 0203
020D F5

020E E6 INO 43
020F 43

0210 DO BNE 0203
021

1

FI

0212 00 BRK

mentiiig a 16-bit counter is nuich simpler than clecreinenting one. Why? Counting up

requires us to calculate the hvo’s complement of the numher of locations to he cleared.

PROBLEM 7-12

What values must you place in 0040 through 0043 to make Program 7-5 clear

024C through 03EF" inclusive?

PROBLEM 7-13

F^xtend Program 7-4 to clear one element of a long array. Assume that the base

address is in 0040 and 0041 and that the 16-bit index is in 0042 and 0043.

Example

(0040) = 00 (LSBs of base)

(0041) = 02 (MSBs of base)

(0042) = 80 (LSBs of index)

(0043) = 01 (MSBs of index)

Result: (0380) = 00, since BASE + INDEX = 0200 + 0180 = 0380.

(Hint: Add the more signifieant bytes in the aecumulator and use the sum as part of an

indireet address.)

124 Microcomputer Experimentation with the AIM 65
t

KEY POINT SUMMARY

1. Arrays can be formed by using an index to determine vvhieh element is being filled,

batber a inaxiinuin length or a terminator ean eonelude the formation.

2. On the 6502, an index register ean hold the element number. Then you ean use

indexed addressing to aeeess the element, d’he simplest proeedure is to start the

index register at the nnmher of elements and use the lowest address of the array

minus 1 as the base.

3. lo reaeh an element, you must know the array’s base address and the element’s

index. Indexed addressing then allows the computer to aeeess the element easily.

4. ^ on ean handle an array with multibyte elements by multiplying the index times

the size of an element and adding the produet to the base address. Multiplieation by
a small integer ean he implemented as a series of additions. An arithmetie left shift

is equivalent to multiplieation by 2.

5. Indexed indireet addressing allows the proeessor to seleet one of a set of indireet

addresses to use in transferring data. This mode ean eonvert the logieal deviee

numbers to vvhieh a program refers into the physieal I/O addresses for a partieular

eomputer.

6. Using logieal I/O deviees allows one to write programs that ean run on many
eomputers. I o tailor them to a partieular eomputer, one must eonstruet an I/O
deviee table that eonverts logieal deviee numbers into physieal I/O addresses.

Changing the table lets the programmer vary I/O addresses without ehanging the

program. I his makes it easy to direet test results to a eonsole, ehoose whether
outputs should be displayed only or printed for permanent reeords, or switeh

between loeal and remote eontrol.

7. The 6502’s 8-hit index registers make arrays longer than 256 bytes awkward to

handle. One way to proeess long arrays is to use indireet indexed addressing. The
program must inerement the more signifleant byte of the indireet address after

proeessing eaeh 256-hyte seetion. This approaeh also requires a 16-hit eounter in

two memory loeations. The simplest way to eount is to eount up from the two’s

eomplement of the length of the array. Inerementing the less signifieant byte of the

eounter sets the ZERO flag to 1 if a earry oeeurs. The ZERO flag ean then he used
to deeide when to inerement the more signifieant byte.

LABORATORY 8 f

DESIGNING AND DEBUGGING

PROGRAMS

PURPOSE

To learn the fundamental approaehes to program design and debugging.

REFERENCE MATERIALS

L. A. LEVENT’HAL, Introduction to Microprocessors: Hardware, Software, Program-

ming, Prentice-Hall, Englewood Cliffs, N), 1978, Chapter 6.

L. A. LEVENT HAL, 6502 Assembly Language Programming, Osborne/McGraw-Hill,

Berkeley, CA, 1979, Chapters 13-15.

L. A. LEVENTHAL and W. SAVILLE, 6502 Assembly Language Subroutines,

Osborne/McGraw'-Hill, Berkeley, CA, 1982, pp. 133-135, 389-396.

R. J. rOCCl and L. P. LASKOWSKI, Microprocessors and Microcomputers: Hardware

and Software, 2nd ed., Prentice-Hall, Englew'ood Cliffs, NJ, 1982, pp. 577-57S

(address vectors, BRK instruction), 378-387 (program writing).

125

126 Microcomputer Experimentation with the AIM 65
*

AIM 65 Users Guides Dynatem, Irvine, CA, 1979, pp. 3-22 to 3-43.

WHAT YOU SHOULD LEARN

1 . Stages of software development.

2. Standard floweharting symbols.

3. How to use floweharts to design programs.

4. Common debugging tools.

5. How to insert and use breakpoints.

6. How to use the single-step (STEP) mode.

7. How to traee instruetions and registers.

8. How to debug simple programs systematieally.

9. Common errors in 6502 assembly language programs.

TERMS

Breakpoint a eondition speeified by the user under whieh program exeeution is to end
temporarily, used as a debugging tool. We refer to speeifying eonditions as setting break-

points and to deaetivating eonditions as clearing breakpoints.

Coding writing eomputer instruetions.

Debugger a program that helps loeate and eorreet program errors.

Debugging loeating and eorreeting errors in a program.

Disassembler a program that eonverts maehine language programs baek into assembly
language (the opposite of an assembler).

Dump a faeility that displays the eontents of an entire seetion of memory or group of
registers on an output deviee.

Editor a program that lets a user enter, eorreet, revise, load, and save text material.

File a eolleetion of related information that is stored and retrieved as a unit.

Flowehart a graphie representation of a eomputer program.

Modular programming a programming method that involves dividing the overall pro-

gram into logieally separate seetions, or modules.

Murphy’s Law the maxim “Whatever ean go wrong, will.” No one has ever doubted
that it applies to eomputer programming.

No operation (no-op) an instruetion that does nothing exeept inerement the program
eounter.

Problem definition the determination of exaetly what requirements a system must
meet.

Program design the design of a eomputer program to meet the requirements of the

problem definition.

Designing and Debugging Programs 127

Single step a facility that allows a program to be executed one step at a time.

Stnietiired programming a programming method that iinolves eonstriicting all pro-

grams from a few logical forms or structures, each of which has a single entry and a single

exit.

lesting ensuring that a system meets the requirements of the problem definition.

Text file a file consisting of symbolic characters rather than numbers (a data file) or

computer instructions {sr.program file).

Toggle a switch that turns something on if it was off and off if it was on.

I’op-down design a design method in which the oxcrall program is designed first and

parts of it are later defined in more detail.

Trace a facility that displays the status of a program during execution.

Unsigned number a number in which all bits represent magnitude.

STAGES OF SOFTWARE DEVELOPMENT

So far, our programs have been short, and we have started with initial versions. T’he

programming of real applications is, of course, more difficult. We cannot deal with all its

aspects here, but we will discuss the design and debugging of small and medium-sized

programs.

Software development consists of a series of stages:

Problem definition, in which you determine exactly what requirements the program

must meet.

Program design, in which you provide a “blueprint” for the program.

Coding, in w'hich you translate the design into computer instructions. Note that

writing instructions is only one of many stages.

Debugging, in which you locate and correct errors in the program.

Testing, in wdiich you ensure that the program meets its requirements.

Documentation, in which you describe the program so that it can be used, main-

tained, and extended.

Maintenance, in which you correct and upgrade the program to handle problems

found in field use.

Extension and redesign, in which you upgrade the program to handle new require-

ments or new' tasks.

A computer program thus goes through the same stages as a hardware project.

Definition, design, debugging, testing, documentation, and maintenance typically

require far more time and effort than does the writing of a program (or the construction of

a hardware prototype). As with any project, you should allocate enough time for defini-

tion and design and proceed cautiously and systematically through debugging and testing.

1 .

2 .

3.

4.

5.

6 .

7.

8 .

128 Microcomputer Experimentation with the AIM 65
*

We will concentrate here on simple problems in which

1. The requirements have already been determined.

2. The program can be designed with a flowchart.

3. Debugging and testing are virtually the same.

4. The later stages (e.g., documentation, maintenance) can be ignored. This is cer-

tainly not the case in practice; maintenance is often the most time-consuming and

costly stage of all. h

FLOWCHARTING

Flowcharting is the traditional method for designing programs. Its advantages are its

graphic form, set of standard symbols (see Figure 8—1), and wide recognition and accep-

tance.

We strongly recommend the following approach to flowcharting:

1. First draw a rough flowchart. Don’t worry about how artistic or how complete it is.

2. Check the flowchart for obvious errors and improvements. Be sure that all branches

lead somewhere, all variables are initialized or derived, and all decisions make
sense.

3. Next, revise the flowchart. Again, do not worry about details or appearance. It is

now time to write an initial program.

4. When you finish coding, debugging, and testing the program, draw a current

flowchart as part of the final documentation.

Don’t let the flowchart become a burden. There is no systematic way to debug a

flowchart or to code from it. You might as well work on the actual program as keep
revising the flowchart. If the program logic is complex, flowcharting alone is not an
adequate design method. You must then consider such methods as modular program-
ming, structured programming, and top-down design (These are described in Chapter 13

of L. A. Leventhal, 6502 Assembly Language Programming, Osborne/McCraw-Hill,
Berkeley, CA, 1979.).

FLOWCHARTING EXAMPLE 1: COUNTING ZEROS

Purpose

Count the number of zeros in 0340 through 0347 and place the result in 0040.

Designing and Debugging Programs 129

Input/Output

Processing

Operation

Decision Logic

Subroutine

Connector Point

t

Connector Arrows

Terminal Point FIGURK 8-1.

symbols.

Sample Case

(0340) = 37

(0341) = 40

(0342) = 00

(0343) = 5E

(0344) = 00

(0345) = D1

(0346) = 39

(0347) = 00

Result: (0040) = 03, since 0342, 0344, and 0347 contain zero.

Standard flowchart

Our initial flowchart is Figure 8-2. A hand check shows that we forgot to initialize

NZERO and that we reversed the branches after testing the memory location for zero.

130 Microcomputer Experimentation with the AIM 65
t

FIGURE. 8—2. Initial flowchart for the

zero-counting program.

Figure 8-3 shows the revised flowchart. We have not checked it in detail; we will describe

how to debug the actual program later.

PROBLEM 8-1

Draw a flowchart for a program that counts the number of values in 0340 through
0347 that exceed (0041). Place the result in 0040. Assume that all values are unsigned.

Example

(0041) = 67 (threshold)

(0340) = 35 (first value)

(0341) = 4A
(0342) = A9

(0343) - 67

(0344) = B3

Designing and Debugging Programs 131

START

FIGURL 8-3. Revised flowchart for the

zero-counting program.

(0345) = 69

(0346) = 14

(0347) = 33 (last value)

Result: (0040) = 03, since 0342, 0344, and 0345 contain values larger than (0041).

PROBLEM 8-2

Draw a flowchart for a program that searches 0340 through 0347 for a nonzero

value. If it finds one, it stops the search, places the value in 0041, and clears the location

from which it took the value. If all values are zero, the program clears 0041.

Example a:

(0340) = 07

(0341) = 04

(0342) = 12

132 Microcomputer Experimentation with the AIM 65
t

(0343)

(0344)

(0345)

(0346)

(0347)

Result: (0041)

(0345)

00

13

06

00

00

06, the first nonzero value encountered.

00, since the element removed from the array is then cleared.

Note that we are working backward through the array as usual on the 6502.
\

Example b:

(0340) through (0347) = 00

Result: (0041) = 00, since all elements are zero.

FLOWCHARTING EXAMPLE 2: MAXIMUM VALUE

Purpose

Find the largest unsigned binary number in 0340 through 0347 and store it in 0040.

Sample Case

(0340) = 37

(0341) = 40

(0342) = 88

(0343) = 5E

(0344) = 2B

(0345) = D1

(0346) = 39

(0347) = AE
Result: (0040) = D1

Our initial flowchart is Figure 8—4. A simple hand check shows that we forgot to
initialize MAX and that we forgot to save the new maximum. In fact, as you will probably
see if you implement the program, the revised flowchart of Figure 8-5 is still far from
optimal.

PROBLEM 8-3

Draw a flowchart that finds the largest unsigned 16-bit binary number in 0340
through 0347 and stores it in 0040 and 0041. All numbers are stored in the standard 6502
format with the less significant byte first.

Designing and Debugging Programs 133

FIGURK 8-4. Initial flowchart for the

inaximuin program.

Example

(0340)

(0341)

(0342)

(0343)

(0344)

(0345)

(0346)

(0347)

Result: (0040)

(0041)

40 (LSBs of first number)

88 (MSBs of first number)

5E (LSBs of seeond number)

2B (MSBs of second number)

D1 (LSBs of third number)

39 (MSBs of third number)

AE (LSBs of fourth number)

A6 (MSBs of fourth number)

AE (LSBs of maximum)

A6 (MSBs of maximum)

since A6AE is larger than 39D1, 2B5E, or 8840.

134 Microcomputer Experimentation with the AIM 65
t

s

HGURE> 8—5. Revised flowchart for the

maximum program.

FLOWCHARTING EXAMPLE 3: VARIABLE DELAY

Purpose

A switch attached to bit 7 of user VIA port A acts as a DELAY switch. When it is

closed, the proeessor waits for the number of seconds (0 through 63) specified by the

switehes attaehed to bits 0 through 5 of port A.

Sample Case

I he switehes attached to bits 0 through 5 of port A produce a reading of 01 1 1 10 (

1

= open, 0 = elosed). When switeh 7 is closed, the proeessor waits for 30 s (011110
binary = IE hex = 30 decimal). Figure 8-6 contains the initial flowehart. A eheck

Designing and Debugging Programs 135

FIGURK 8-6. Initial flowchart for the FIGURE 8-7. Revised flowchart for the variable delay

variable delay program. program.

shows tliat it is wrong if the delay has zero length. (Why?) hdgure 8-7 contains the revised

flowchart.

PROBLEM 8-4

Draw a flowchart for an extended program that uses switch 6 to determine if the

delay is in seconds (switch open) or milliseconds (switch closed).

DEBUGGING TOOLS

T he AIM 65 monitor provides many useful debugging tools, including:

1. Breakpoints, which let the user stop the program and examine its current status.

Breakpoints help you localize an error within a section of a program and pass

through sections that you know are correct.

136 Microcomputer Experimentation with the AIM 65

2. A single-step facility, which lets the user exeeute the program one step at a time. In

the AIM, we eall this the STEP mode.

3. A trace, whieh displays registers and memory loeations while the progrg^m is exeeut-
ing. Traees provide a detailed aeeounting of program exeeution.

4. A dump, whieh displays an entire seetion of memory on an output deviee (usually

the printer).

5. A disassembler, whieh eonverts maehine language programs baek into mnemonies.
I he disassembler ean help you see if the program has been entered ineorreetly,

ehanged improperly, or affeeted by its own exeeution.

BREAKPOINTS

The following AIM 65 eommands allow you to set, elear, enable, disable, and display up
to four breakpoints:

B Set or elear a breakpoint. To set a breakpoint, press B and enter its number (0 through
3) and its hexadeeimal address. To elear a breakpoint, do the same but enter 0 as the
address.

4 Enable or disable breakpoints. The 4 eommand enables breakpoints if they were
previously disabled and disables them if they were previously enabled. One generally uses
B to set breakpoints and then 4 to enable them.

? Display breakpoints. To see where the breakpoints are, press the ? key. The AIM will

display their addresses or 0000 for ones that are not set.

^ Clear all breakpoints. This elears all breakpoints at onee. Sinee RESET does not
elear breakpoints, you should press # after power-on and after finishing a debugging
session.

The AIM's breakpointing faeilities are handy. You ean set or elear individual

breakpoints and elear all breakpoints with a single keystroke. Furthermore, you need not
worry about ehanging the underlying program or plaeing the breakpoint properly within
an instruetion. The AIM does not replaee instruetions; it simply eheeks whether the
program has reaehed or passed through a breakpoint address. Thus you ean resume the
program with no diffieulty, and you ean set breakpoints anywhere, not just at addresses
eontaining operation eodes.

Mieroeomputer development systems usually have even more extensive breakpoint-
ing faeilities than the AIM has. Useful features inelude the abilitv' to set breakpoints on
sueh eonditions as:

1. Whenever a partieular operation eode is exeeuted. The usual ones seleeted are

those that perform input or output.

2. Whenever a partieular memory address is aeeessed.

Designing and Debugging Programs 137

3. Whenever a partieiilar sequenee of instruetions is exeeutecl.

4. \\4ienever a partieiilar signal or eoinhination of signals oeeurs. I his is strietly a

hardware breakpoint.

Still more advaneed faeilities eoinbine simpler features and eount oeeurrenees.

Setting breakpoints thus becomes similar to specihing triggering events on an
oscilloscope.

STEP MODE

1 o put the AIM in the Sd'EP mode, move the RUN/Sd’EP sw itch (left of the displav and

the KWVVY switch) to the S PEP position (back). Now when you initialize the program

counter and type G, you can tell the AIM how many instructions to execute as follows:

• 01 to 99 (two decimal digits) indicate that many instructions.

• RE'PURN indicates 1 instruction (same as 01).

• . or SPACE indicates continuous execution.

T'he AIM will continue until it executes the specified number of instructions, reaches a

breakpoint (if breakpoints are enabled), or executes BRK. Note that breakpoints apply only

in the STEP mode. When the AIM stops, it displays or prints the address of the next

instruction (not the one it just executed), the operation code at that address, and the

disassembled mnemonic instruction.

When the AIM returns to the monitor, you can resume execution without

reinitializing the program counter. You must, however, tell the AIM how many instruc-

tions to execute each time.

TRACES

The AIM monitor has three -tracing commands:

Z Toggle instruction trace. Pressing Z turns the instruction trace on if it is off and off if it

is on. This trace makes the AIM disassemble and print the next instruction after each one
it executes. The odd feature here is that the AIM does not disassemble the first instruction

it executes; furthermore, it disassembles the instruction where it would resume the pro-

gram.

V Toggle register trace. Pressing V turns the register trace on if it is off and off if it is on.

This trace makes the AIM print the register contents in the usual order (PC, P, A, X, Y,

and S, from left to right) after executing each instruction. How'ever, it does not print an

identification line.

138 Microcomputer Experimentation with the AIM 65

H I race program counter history. Pressing H displays the addresses of the last four
instructions executed and the address of the next one to be executed, d his applies only
when the AIM returns control to the monitor after executing instructions in the STEP
inode.

The instruction and register traces are handy if used carefully. The register trace, of
course, shows you exactly what the computer is doing. The instruction trace tells you
where the computer is in the program and keeps you from having to refer continually to a

listing. It also alerts you to valid but incorrect entries (such as LDX instead of LDY or
EDA 00 instead of EDA #00).

The problem is that traces are repetitive and slow. After all, instructions change at

most one user register (A, X, or Y), the stack pointer rarely changes, and the program
counter and status register are seldom of interest.

I he solution is to be selective. Trace only short sections of a program (say, at most
ten instructions). Be sure you know what to look for, and turn the traces off as soon as you
finish with them.

We suggest the following approach to the AIM’s trace commands:

E Else breakpoints first to shorten the section to be traced. Decide what data you will

use and what results you will examine.

2. Turn both traces on. The register trace generally provides the useful information, but
the instruction trace lets you determine how far the computer has gone through the
program.

3. Press R initially to list the starting register values and print an identification line.

Remember, you can press R to print another identification line later.

4. The instruction trace is unnecessary if you are single-stepping through a program,
since the AIM always dissassembles and prints one instruction.

DEBUGGING EXAMPLE: COUNTING ZEROS

From the flowchart in Figure 8—3, we write the following program for counting zeros.

(Program 8-1 is the mnemonic-entry version.)

LDX 8

LDY
LDA $340. X

CNTZ BED CHCNT
INY

CHCNT DEC $0340.X
BNE CNTZ
LDY $40
BRK

Designing and Debugging Programs 139

PROGRAM 8-1

Memorv'

Address

(Hex)

Memor>

Contents

(Hex)

Instruction

(Mnemonic)

0200 A6 LDX 08
0201 08
2Q2 A4 LDY 00
0203 00
0204 BD LDA 0340.x
0205 40
02Q6 03
0207 FO ONTZ BED 0200
0208 03
0209 08 INY

020A DE OHONT DEO 0340.x
020B 40
0200 03
020D DO BNE 0207
020E F8

020F A4 LDY 40
0210 40
0211 00 BRK

Enter this program but dont run it. (Important rule: Never just let a program run

the first time. It may—and probably will—write over itself or cause other problems.

E.xpect errors and plan for them.)

We will start by checking the initialization instructions (LDX 08, LDY 00). Since

this section is short, we will trace it immediately. If it were longer, we would probably

either step through it or di\ idc it further to minimize the amount of tracing,

d o trace the instructions, we must:

1. Move the RUN/STEP switch back to the STEP position.

2. Press Z and V to activate the instruction and register traces. Note that these are

toggles, and the AIM always tells you whether the traces are on afterward.

3. Initialize the program counter to 0200.

4. Press R to print the initial register values and an identification line. Be sure the

printer is on!

5. Press G, 0, 2, RETURN to make the AIM execute two instructions. Note that you

must enter 02 after G, not just 2.

The result after the first instruction should be

(X) = 08 (initial value of index)

140 Microcomputer Experimentation with the AIM 65

What do you find in X? We get

(X) = 82

Your result may be different sinee the program is way off base.

Obviously, the instruetion is wrong. The disassembly tells us nothing, sinee the

AIM does not disassemble the first instruetion. So why is LDX 08 wrong? The simplest

alternative would be LDX #08. This is, in faet, what we want, sinee we intend to load X
with the number 8, not with the eontents of address 0008. This is a eommon mistake

—

eonfusing a data value with an address, partieularly an 8-bit address on page 0.

So we must replace LDX 08 with LDX #08. We can either do this in the

mnemonic-entry mode or we can change 0200 from A6 to A2 manually. Of course, you

must look up the codes on your programming card or in Table A 1-1.

The second instruction should produce the result

(Y) = 00 (number of zeros found)

Instead, the register trace shows

(Y) = 10

Here the AIM at least disassembles the instruction. This tells us that we entered it

correctly but obviously not whether we selected it correctly. We immediately suspect the

same error as in the first instruction; we want LDY immediate, not LDY zero-page. So we

must replace LDY 00 with LDY #00 at address 0202.

Making this change and repeating the run produces the correct results;

(X) = 08 (initial value of index)

(Y) = 00 (number of zeros found)

Note the key points of this debugging exercise:

1. A single-step mode (particularly if it allows you to trace the registers) can show you

precisely what is wrong with a program.

2. Although tracing is helpful, it produces a lot of repetitive and irrelevant informa-

tion. Note how little of the trace we actually used.

3. To debug a program effectively, you must concentrate on short sections and decide

what you are looking for before proceeding. Otherwise, you will end up with useless

information and poorly documented changes.

4. Most programmers make the same mistakes consistently. Knowing your own favor-

ites will help you correct programs. Obviously, it is easier to list one’s favorite errors

than to change one’s habits.

Designing and Debugging Programs 141

USING BREAKPOINTS

Since we now know that the initialization instructions are correct, we can proceed to

debug the loop. Rather than count instructions this time, wc simply place breakpoints at

the beginning and end. First, clear all breakpoints by pressing # (remember, # is not a

toggle); this removes stray or leftover breakpoints that could cause problems. To set

breakpoint 0 in address ()204, press

1. B (set or clear breakpoints).

2. 0 (breakpoint number).

3. 2, 0, 4, RE TURN (location of breakpoint 0).

To set breakpoint 1 in address 020D, press

1. B.

2. 1 (breakpoint number).

3. 2, 0, D, RET URN (location of breakpoint 1).

You should also press ? to display the breakpoints and verify the entries. Finally, press 4 to

enable breakpoints.

At this point, we need some data. The choices are to make 0347 zero or nonzero.

Let us first try

(0347) = 00

Since this section has branches, we will single-step through it rather than using the

traces. First, reach the section by starting the program at 0200 and letting the computer

run through the initialization. To do this, simply press G, SPACE. Breakpoint 0 lets us

repeat the initialization quickly if necessary.

Now press R to get an initial register display and G, RET URN to execute one

instruction. EDA 0340,X should produce

(A) = 00 (the element loaded from 0347)

Instead we find

(A) = EO

An obvious pitfall in indexed addressing is having the base address off by 1. Let us

examine 0348 to see if that might be the problem here. Sure enough, we find

(0348) = EO

142 Microcomputer Experimentation with the AIM 65

So the error is that we are going past the end of the array. Note that a register traee would
not display the ineorreet effeetive address, sinee it is never plaeed in a register. To see the

effective address, we would need test equipipent to monitor the processor’s input and
output signals. Otherwise, all we can see is the contents of the registers.

Our correction here is to replace LDA 0340,X with LDA 033F,X in 0204. We then

go back to 0204 and press G, RETURN to execute the revised instruction. The result is

correct now, but the next instruction is completely wrong. In the first place, the program
branches when it shouldn’t (the accumulator does contain 0). In the second place, the

branch sends the processor to address 020C, which does not even contain an instruction.

The instruction disassembly makes this error obvious; since 03 i? not a valid operation

code, the computer prints and displays ???.

We can correct the first problem by replacing BEQ with BNE and the second one
by changing the destination from 020C to 020A. Thus, in the mnemonic-entry mode, we
must put BNE 020A in 0207. Here we have managed to make two common errors:

inverting decision logic and directing a forward branch to the wrong place.

Let us now try an entire iteration. We start back at 0200 and press G, SPAGE once
to reach 0204, and again to reach 020D. Now we press R to display the registers. The
results at the breakpoint are

(A) = 00

(X) = 08

(Y) = 01

Everything is fine except that X has not been decremented. A quick check shows that

DEG 0340,X is incorrect since it decrements a memory location, not register X. What we
want is simply DEX. But this correction leaves two extra bytes of memory that previously

held DEG’s base address. What should we put there? The answer is two NOPs. They do
not affect program execution, and we can always delete them later. Thus, in the

mnemonic-entry mode, we enter DEX, NOP, NOP, starting at 020A. Now the program
works properly through the breakpoint.

Let us try two iterations with

(0346) = 00

(0347) = 01

Execute the program starting at 0200. It will reach breakpoint 1 with the correct values:

(A) = 01 (the element loaded from 0347)

(X) = 07 (the initial index reduced by 1)

(Y) = 00 (no zero element has been found)

Designing and Debugging Programs 143

1 o run the second iteration, simply press G and SI’ACE. When the computer

reaches breakpoint 1 again, the results should be

(A) = 00 (the element loaded from 0346)

(X) = 06 (the initial index rediieed by 2)

(Y) = 01 (one zero element has been found)

T he actual results are

(A) = 01

(X) = 06

(Y) = 00

The program is not loading the second value from memory. A hand check shows that

label CNd'Z is misplaced. It should be one instruction earlier (i.e., attached to EDA
$033F,X) to make the program load a new element before checking the ZERO flag, d’he

corrected instruction is BNE 0204.

Now try the program on some test data, such as

1. (0340) through (0347) = 00.

2. Same except (0340) = 01.

3. Same except (0347) = 01.

The final version is

LDX #8
LDY #

CNTZ LDA $033F,X

BNE CHCNT
INY

CHCNT DEX
BNE CHCNT
LDY $4G
BRK

: NUMBER OF ELEMENTS = 8

:
NUMBER OF ZEROS FOUND = G

;
IS NEXT ELEMENT ?

: YES, INCREMENT NUMBER OF ZEROS

: SAVE NUMBER OF ZEROS FOUND

Program 8-2 is a mnemonic-entry version with the corrections.

Note the following key points from this exercise:

1. A breakpoint can tell you whether an entire section of a program is correct.

However, if it is not correct, the breakpoint alone does not tell you where the

error is.

144 Microcomputer Experimentation with the AIM 65

2. Breakpoints help you pass quiekly through a section that you know is correct.

3. Different debugging tools are complementary rather than competitive. Breakpoints

help restrict a search to a small section of a program, while a single-step mode and a

trace provide the detailed information that usually helps you spot the error.

4. Debugging tools cannot correct programs by themselves. All they do is provide

information; you must figure out what it means. Debugging is not a simple or

routine task; it requires organization, caution, patience, common sense, experi-

ence, and insight.

PROBLEM 8-5

What errors still remain in Program 8-2? Correct them and run the final version for

the three test cases we just described.

PROGRAM 8-2

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruetion

(Mnemonie)

0200 A2 LDX #08
0201 8
0202 AO LDY #00
0203 00
204 BD CNTZ LDA 033F.X
205 3F

206 03
207 DO BNE 020A
208 01

109 08 I NY
20A CA CHCNT DEX
20B DO BNE 0204
20C F7

20D A4 LDY 40
20E 40
20F 00 BRK

PROBLEM 8-6

Revise Program 8-2 to count the number of positive elements in 0340 through

0347. An element is positive if its most significant bit (bit 7) is zero, but its value is not

zero.

Example

(0340) = 01

(0341) = 80

Designing and Debugging Programs 145

(0342) = 7F

(0343) = FF

(0344) = 00

(0345) = 00

(0346) = 00

(0347) = 00

Result: (0040) = 02, since 0340 and 0342 contain positive elements.

PROBLEM 8-7

Code, debug, and test Flowcharting Example 2, the maximum-value program.

PROBLEM 8-8

Code, debug, and test Flowcharting Example 3, the variable delay. Fhc following

routine uses location 0040 and the index registers to produce a 1-s wait:

LDA #5 : WAIT 1 SECOND
STA $40

LY1 LDY #$C8
DLY2 LDX #$C8
DLY3 EX

BNE DLY3
DEY
BNE DLY2
DEC $4Q

BNE DLY1

You should verify the delay constants.

DUMP AND DISASSEMBLER

We have not described the following useful debugging tools:

D The D command lets you dump a section of memory on the printer. You must enter

the starting address (after the FROM = prompt), the ending address (after the TO =

prompt), and the output device (type P after the OUT = prompt). The D command is

more convenient than the M command for large memory areas.

K The K command disassembles a series of instructions. You must enter the starting

address (after the * = prompt) and the number of instructions as two decimal digits (after

the / prompt). As with G in the STEP mode, you can also enter

RETURN (1 instruction).

. or SPACE (continuous disassembly).

146 Microcomputer Experimentation with the AIM 65 «

'I o suspcMicl disassembly, press SPACE, d’o resume, press any key. Note that the AIM will

print question marks if it finds invalid operation eodes.

Oisassembly is a eonvenient way to obtain a elean eopy of a program in mnemonie
form. I his is useful if you have made a lot ofeHanges while debugging. Dissassembly ean
also show whether you made a ehange properly or whether the program has somehow
managed to ehange itself.

WHY THE EDITOR/ASSEMBLER IS USEFUL

N

As we have seen, deleting bytes from maehine language programs is simple. All you must
do is fill the unused loeations with NOPs. On the other hand, inserting bytes is diffieult

beeause you must move all subsequent instruetions to make room. If you aeeidently omit
a line near the beginning of a program, you might as well reenter it. Of eourse, Murphy’s
Law guarantees that omissions always oeeur near the beginning of a program, rather than
near the end.

Obviously, we eannot handle a long program this way, sinee reloading thousands of

loeations is impraetieal. A eommon alternative is to prepare the assembly language

program using an editor that lets us make insertions, deletions, replaeements, and other

ehanges. Finally, the editor lets us save the eompleted program as a text file (in memory,
on eassette, or on disk), whieh ean then be assembled. If we find errors in the assembly or

exeeution of the program, we ean eorreet them by returning to the editor, revising the text

file, and reassembling the program. The AIM 65 has an optional editor/assembler that fits

in a ROM soeket.

COMMON PROGRAMMING ERRORS

Wateh for the following eommon errors in AIM 65 mnemonie-entry programs;

1. Confusing data and addresses. Remember the differenee between immediate and
direet addressing; immediate addressing means that the instruetion eontains the

data, whereas direet addressing means that it eontains the data’s address. Remember
also that the value in a memory loeation is not related to the effeetive address, base

address, or index.

2. Using the CARRY ineorreetly. Remember that eomparisons and subtraetions set

the CARRY if they do not require a borrow. The CARRY flag is an inverted

borrow, not a true borrow as on most other mieroproeessors. Note also that addition

and subtraetion instruetions (ADC and SBC) always inelude the CARRY. You
must explieitly elear it before addition or set it before subtraetion to keep it from

affeeting the result.

3. Inverting the logie of eonditional braneh instruetions (e.g., using BCC instead of

BCS or BNE instead of BEQ). Be partieularly eareful after a eomparison.

Designing and Debugging Programs 147
4.

Jumping to the w rong address. 4 his often results in repeating or omitting initializa-

tion instructions or instructions that update indexes or indirect addresses.

When debugging programs on the AIM, the best way to make corrections is to

return to the mnemonic-entry mode. If, however, you choose to simply change memory
directly, watch for the following common errors:

0

1 . Inverting the order of the bytes in 2-bytc addresses. Remember that the 6502 expects

the less significant byte first.

2. Copying operation codes incorrectly. You should verify programs before executing

them.

3. Calculating relative offsets incorrectly. Either use a hexadecimal calculator or dou-

ble-check your results.

4. Omitting addresses, offsets, or data. Watch for instructions such as JMP, which

requires a full 16-bit address in the next 2 bytes of memory. Remember that

absolute addressing modes always require 2 bytes of memory and zero-page modes

(including preindexing and postindexing) always require 1 byte.

Other common errors in 6502 programs are:

1. Failing to initialize counters, indexes, and indirect addresses.

2. Branching incorrectly when operands are equal. Note that comparing equal values

sets the CARRY flag.

3. Overlooking trivial cases such as zero or one element in an array or table or no

inputs.

4. Using the flags incorrectly. Typical examples are trying to use a flag that an instruc-

tion does not affect and overlooking changes caused by intermediate instructions.

The only way to be sure of how an instruction affects the flags is to look it up in

Table A 1-1. Among 6502 instructions that often cause problems are loads (they

affect the ZERO and NECA41VE flags), stores (they affect no flags at all), incre-

ment and decrement (they do not affect the CARRY flag), and BIT (it sets the

OVERFLOW and NECATIVE flags from bits 6 and 7 of the addressed memory
location, regardless of the accumulator’s contents).

5. Using a register for several purposes without saving and restoring the different

values. Use page 0 of memory (addresses 0000 through OOFF hex) as extra

scratchpad registers, since it can be accessed quickly with zero-page addressing

modes.

6. Using the wrong base address in indexing. As noted in Laboratories 6 and 7, you

often must subtract 1 from the actual starting address to process an array efficiently.

It is easy to be off by one location and end up either misaligned or beyond the

bounds of the array.

148 Microcomputer Experimentation with the AIM 65
*

^ oil will undoubtedly make errors not mentioned here, but these lists should help
or at least suggest some possibilities. Unfortunately, debugging eomputer programs is

more of an art than a seienee.

KEY POINT SUMMARY

1. I he writing of software, like the building of hardware, eonsists of many stages.

Writing the aetual eomputer instructions (or coding) is one of the easiest stages.

2. Flowcharting is a simple graphic technique for designing ^nd documenting pro-

grams. A set of standard flowchart symbols is in widespread use.

3. A flowchart is a good starting place for w'riting a program, but it should not become
a burden in and of itself.

4. Breakpoints are stopping places in programs that you can use to determine whether
sections are correct and to pass through sections that you know' are correct. The
AIM’s #, B, ?, and 4 commands let you set, clear, display, enable, and disable up
to four breakpoints.

5. The STEP mode makes the AIM stop after it executes one or a few' instructions.

The register and instruction traces provide detailed information about the program
during execution. You can use these tools to pinpoint an error after using break-

points to narrow the search to a short section. You should limit your traces,

however, since tracing is slow and produces a lot of useless or redundant informa-
tion.

6. Common programming errors include confusing data and addresses, inverting logic

or reversing the direction of operations, failing to initialize variables or save results,

omitting operands, forgetting how instructions affect flags, ignoring trivial cases,

and branching incorrectly.

7. Program debugging is a difficult, time-consuming job. You must know- which tools

to use and when to use them, what to look for, and which errors are likely.

Debugging requires caution, organization, and imagination; in fact, it requires the

same skills needed to work a crossword puzzle, play chess or bridge, or solve a maze,
riddle, or murder mystery.

LABORATORY 9 i
I

ARITHMETIC

PURPOSE

To learn to perform arithmetic calculations using the 6502 microprocessor.

REFERENCE MATERIALS

M. ANDREWS, “Mathematical Microprocessor Software: A Square Root Comparison,”
IEEE Micro, May 1982, pp. 63-79.

K. HWANG, Computer Arithmetic, Wiley, New York, 1979.

U. W. KULISCH and W. L. MIRANKAR, Computer Arithmetic in Theory and Practice,

Academic Press, Orlando, FL, 1980.

L. A. LEVENTHAL, Introduction to Microprocessors: Hardware, Software, Program-
ming, Prentice-Hall, Englewood Cliffs, NJ, 1978, pp. 198-210.

149

150 Microcomputer Experimentation with the AIM 65 «

L. A. LEVENIIIAL, 6502 Assembly Language Programming, Osborne/McGraw-Hill,
Berkeley, CA, 1979, pp. 4-13 through 4-15, Chapter 8.

L. A. LEVE.N 1 1 lAL and W. SAVILLE, 6502 Assembly Language Subroutines,

Berkeley, CA, 1982, pp. 230-305, 382-388. .

R. J. I OCCI and L. P. LASKOWSKI, Microprocessors and Microcomputers: Hardware
and Software, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1982, pp. 12-14 (BCD
code), 17—24 (binary arithmetic), 24—26 (BCD arithmetic), 174—180 (arithmetic/logic

unit), 180-187 (comparison of microprocessors), 322-324 (status control instructions),

^24-329 (arithmetic instructions), 375-377 (multibyte arithmetic operations).

AIM 65 Users Guide, Dynatem, Irvine, CA, 1979, Section 5.8 (assembler directives).

“Binary Floating-Point Arithmetic, Standard for (IEEE Std 754-1985),” IEEE,
Piscataway, NJ, 1985.

R6500 Alicrocomputer System Programming Manual, Rockwell International, Semicon-
ductor Products Division, Newport Beach, CA, 1978, pp. 2-4 to 2-18, 6-11 to 6-13.

WHAT YOU SHOULD LEARN

1. The standard BCD representation.

2. How to use the 6502’s decimal mode.

3. How to add and subtract multiple-precision numbers.

4. How to use lookup tables to do arithmetic.

TERMS

BCD (binary-coded-decimal) a representation of decimal numbers in which each digit

is coded separately in binary.

Carry a bit that is 1 if an addition overflows into the succeeding digit position.

Half-carry the carry from the less significant 4 bits in an 8-bit operation.

Interpolation estimating a function at points between those where its values are known.

Linearization approximating a function by a straight line between two points where its

values are known.

Pseudo-operation an assembly language operation code that directs the assembler to do
something but does not generate a machine language instruction.

6502 INSTRUCTIONS

CLD clear DECIMAL MODE (D) flag (make it 0). The processor will perform subse-

quent ADC and SBC instructions in binary.

Arithmetic 151

SBC subtract with carry; subtract a memory location and tlic complemented CAKR'i’
flag from the accumulator, dlic result is (A) = (A) - (M) - (1 - CARR^'), where M is a

memory address.

SEC set CARRY flag to 1.

SED set DECIMAL MODE (1^) flag to 1. d he processor will perform subsequent ADC
and SBC instructions in BCD.

6502 ASSEMBLER PSEUDO-OPERATIONS

.BYTE form byte-length data; place 8-bit data items (separated by commas) in the next

available memory locations. .BY'd’E loads memory with fixed data (such as tables, mes-

sages, and numerical constants) needed for program execution.

.WORD form double-byte-length data; place 16-bit data items (separated by commas)
in the next available memory locations. .WY)RD loads memory with 16-bit fixed data or

addresses stored with the bytes in the standard 6502 order.

= set origin; plaee the maebine language generated from the subsequent statements

in memory addresses starting with the one specified, d’his pseudo-operation lets the

programmer determine where programs and data are placed in memory.

APPLICATIONS OF ARITHMETIC

'File proeessing of data almost always involves arithmetic. Typical operations are averag-

ing, sealing, linearizing inputs, ealculating numerieal integrals and derivatives, determin-

ing frequeney responses, performing statistical analysis, and preparing plots. Simple

applieations require only binary or deeimal addition and subtraction. Decimal arithmetic

is necessary in ealeulators, business equipment, terminals, instruments, applianees, and
games.

This laboratory starts with 8-bit binary arithmetie programs from Laboratory 6. It

then eovers decimal arithmetic, multibyte arithmetie, and the use of lookup tables.

8-BIT BINARY SUM

The following program adds 8-bit unsigned binary numbers from 0340 and 0341 and
stores the sum in 0040.

LDA $0340
CLC
ADC $0341

STA $40
BRK

GET FIRST NUMBER
CLEAR CARRY
ADD SECDND NUMBER
SAVE SUM

152 Microcomputer Experimentation with the AIM 65 t

We must clear CARRY before adding, since ADC always includes it. The mnemonic-
entry version of this program is Program 9-1; we have inserted two NOPs in anticipation

of a BCD version.

PROGRAM 9-1

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruetion

(Mnemonic)

200 EA NOP
0201 AD LDA 0340
0202 40
0203 03
0204 18 CLC
0205 6D ADC 0341
0206 41

0207 03
0208 85 STA 40
0209 40
020A EA NOP
020B 00 BRK

Enter Program 9-1 and run it for the following cases:

1. (0340) - 32

(0341) = 25

Result: (0040) = 57

2. (0340) - 38

(0341) = 25

Result: (0040) = 5D

PROBLEM 9-1

Make Program 9-1 save the carry in 0041. Try the following cases:

1. (0340) = 38

(0341) = 25

Result: (0040) = 5D
(0041) = 00

2. (0340) = 98

(0341) = 89

Result: (0040) = 21

(0041) = 01

Arithmetic 153

PROBLEM 9-2

Make Program 9-1 subtract instead of adding. How do yon keep CARRY from
affecting the result? I’ry the following eases:

1. (0340) = 32

(0341) = 25

Result: (0040) = OP
2. (0340) = 32

(0341) = 58

Result: (0040) = DA

BINARY-CODED-DECIMAL (BCD) REPRESENTATION

A BCD code is the simplest way to represent decimal numbers in a computer, since it

does not require multiplications or divisions by 10. In the standard BCD code (see Table
9-1), 0 through 9 are the same as in binary. However, numbers above 9 are different (see

Table 9-2 for some examples). Note the following:

1. Each decimal digit is coded separately in BCD. This is not true in binary, since 10
is not an integral power of 2.

2. The BCD representation requires more memory than the binary representation.

For example, 8 bits can represent a binary number as large as 255 but only 99 in

BCD. The number 999 requires three BCD digits (12 bits) but only 10 bits in binary

(since 2^^ = 1,024).

3. Some binary numbers are invalid in BCD. In standard BCD, no digit can exceed 9.

TABLE 9-1 STANDARD BCD
REPRESENTATION

Decimal Digit BCD Representation

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

154 Microcomputer Experimentation with the AIM 65 «

TABLE 9-2 STANDARD BCD REPRESENTATIONS OF SOME
DECIMAL NUMBERS

Decimal Number BCD Representation Binary Representation

10 0001 0000

*4

00001010

11 0001 0001 00001011

12 0001 0010 00001100

13 0001 0011 00001101

16 0001 0110 00010000

25 0010 0101 00011001

50 0101 0000 00110010

66 0110 0110 01000010
'

83 1000 0011 01010011

One problem with BCD numbers is the diffieulty of proeessing them in binary

arithmetie units. The reason is that BCD 10 (00010000) is not one larger than BCD 9

(00001001)—it is, in faet, seven larger. (Try subtraeting!) 4Tus to obtain a BCD sum
using a binary adder, you must add an extra 6 whenever the sum of two digits exeeeds 9.

Example 1

33 (BCD) = 00110011

25 (BCD) = 00100101

01011000 = 58 (BCD)

There is no problem here, sinee neither digit is more than 9.

Example 2

38 (BCD) = 00111000

25 (BCD) = 00100101

01011101 = 5D

Here an extra 6 is neeessary sinee 8+5 produees a deeimal earry.

5D

06

63

Example 3

98 (BCD) = 10011000

25 (BCD) = OOlOOIOl

10111101 = BD

Arithmetic 155

Here an extra 6 is neeessary in both positions.

BD

123

Obviously, deciding when to add 6 is not simple, since you must check each digit.

Since decimal arithmetic is essential in common applications, most processors have
special instructions for it. 'Hie 6502 has a decimal mode in which it adds and subtracts in

BCD. 'Fhe processor enters this mode by executing SED (SEd’ DECIMAL MODE), thus
setting the D (DECIMAL MODE) flag. It leaves the mode by executing CLD (CLEAR
DECL\1AL MODE). W^hen the D flag is set, ADC and SBC produce decimal results;

increments and decrements, however, still produce binary results. You can determine the
processor’s mode by examining the D flag (hit 3 of the status register).

8-BIT DECIMAL SUM

d'he following program adds BCD numhers from 0340 and 0341 and stores the sum in

0040.

SED
LDA
CLC
ADC
STA
CLD
BRK

The only changes from Program 9-1 are SED and CLD instead of NOPs.
Run the BCD version of Program 9-1 with the following data:

1. (0340) = 32

(0341) = 25

Result: (0040) = 57

2. (0340) = 38

(0341) = 25

Result: (0040) = 63

The second sum differs from the binary result.

PROBLEM 9-3

What is in the accumulator, CARRY, and half-carry (i.e., the carry from hit 3) after

ADC $0341 for the following examples in the binary mode?

$0340

$0341

$40

ENTER DECIMAL MODE
GET FIRST NUMBER
CLEAR CARRY
ADD SECOND NUMBER
SAVE SUM
LEAVE DECIMAL MODE

156 Microcomputer Experimentation with the AIM 65
«

a. (0340) = 38

(0341) = 25

b. (0340) = 98

(0341) =25
c. (0340) = 98

(0341) = 89

d. (0340) = 90

(0341) = 91

N

Why is the half-carry necessary in the decimal mode? (Hint: Examine the results of

examples c and d. You can observe the accumulator and the CARRY—(bit 0 of register

P)—hut you must calculate the half-carry since it is not saved in a flag.)

PROBLEM 9-4

Make the decimal program subtract instead of add. Try the examples in Problem 9-

3.

What is CARRY at the end of each example? What does CARRY mean at the end of

this program?

Adding and subtracting BCD numbers in the decimal mode is straightforward.

However, the effects on the flags and other instructions (compares, increments, decre-

ments, etc.) are confusing. Remember the following:

1. Increments and decrements produce binary results, regardless of the mode.

2. I’he NECA'PIVE flag always reflects the binary result, not the BCD result. Thus it

is meaningless after ADC or SBC instructions executed in the decimal mode. For

example, subtracting 60 hex from 30 hex in the decimal mode sets the NEGATIVE
flag (since the binary result is 11010000 or DO hex). It does not matter that the

decimal result (01110000 binary or 70 hex) has a most significant bit of 0.

3. Comparisons executed in the decimal mode set the ZERO and CARRY flags

properly (the mode does not matter—why?). The NEGATIVE flag, as usual,

reflects only the binary result.

4. RESET does not initialize the D flag. Thus the programmer must initialize it

(usually with CLD) before the program executes any ADC or SBC instructions.

5. As you might expect, the 6502 does not warn you if your program uses the decimal

mode improperly. If, for example, your program adds or subtracts nondecimal

numbers (such as EC hex) in the decimal mode, the processor will simply execute

the instructions and produce meaningless results.

6. Be careful not to set the D flag inadvertently or forget to clear it. Phis can happen

when you are revising or debugging programs or when you load the status register by

hand. If a program with ADC or SBC instructions produces odd results for no

apparent reason, check the D flag.

Arithmetic 157

DECIMAL SUMMATION

I he following version of Program 6—1 adds an array of unsigned binary numbers starting

at 0340; it plaees the sum in 0040. 4’he length of the array is in 0041.

ADDELM

NOP
LDX $41

: INDEX = ARRAY LENGTH
LDA #Q

: SUM = ZERO INITIALLY

CLC
ADC $Q33F,X

: CLEAR CARRY
; ADD ELEMENT TO SUM

EX
BNE
STA

ADDELM
$40

: SAVE SUM
NOP
BRK

Program 9-2 is the mnemonic-entry version.

PROGRAM 9-2

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0200 EA NOP
0201 A6 LDX 41
202 41

2Q3 A9 LDA #00
0204 00
0205 18 ADDELM CLC
0206 7D ADC 033F.X
0207 3F

0208 03
0209 CA DEX
020A DO BNE 0205
020B F9

020C 85 STA 40
020D 40
020E EA NOP
020F 00 BRK

We have inserted NOPs again in anticipation of a BCD version. Enter Program 9-2 and
run it with the following data:

(0041) = 03 (number of elements)

(0340) = 35 (elements)

158 Microcomputer Experimentation with the AIM 65
«

(0341) = 47

(0342) = 28

Result: (0040) = A4

Write a deeimal version and run it with the same data, "hhe answer should be (0040) =

10 .

16-BIT ARITHMETIC
\

We ean e.xtend Program 9-2 to handle 16-bit numbers. However, we must now deal with

earries behveen the bytes. Here ADC becomes really useful, since it results in

(A) = (A) + (M) + (CARRY)

where A is the accumulator and M is a memory location. So all we must do to perform

16-bit addition is

1. Clear CARRY initially.

2. Add the less significant bytes.

3. Add the more significant bytes.

ADC automatically includes the carry in the second addition.

The following program adds an array of 16-bit numbers starting at 0340; it places

the sum in 0040 and 0041. Each number occupies 2 bytes, with the less significant part

first. The length of the array (how many 16-bit numbers there are) is in 0042.

NOP
:
NOP FOR DECIMAL VERSION

LDY $42 : COUNT = ARRAY LENGTH
LDA #0 : SUM = ZERO INITIALLY

STA $40
STA $41

TAX : INDEX = ZERO INITIALLY

ADDELM LDA $40 ; ADD LSB OF ELEMENT
CLC
ADC $0340,

X

STA $40
INX

LDA $41 : ADD MSB OF ELEMENT
ADC $0340,

X

STA $41

INX

DEY : COUNT ELEMENTS
BNE ADDELM
NOP :

NOP FOR DECIMAL VERSION
BRK

Arithmetic 159

PROGRAM 9-3

Memorx

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

Q200 EA NOP
02Q1 A4 LDY 42
202 ' 42
0203 A9 LDA #00
204 0
0205 85 STA 40
0206 40
207 85 STA 41

0208 41

0209 AA TAX
02OA A5 ADDELM LDA 40
02OB 40
0200 18 0L0
20D 7D ADD 0340.x
20E 40
20F 3
0210 85 STA 40
0211 40
0212 E8 INX

0213 A5 LDA 41

0214 41

0215 7D ADD 0340.x
216 40
0217 3
218 85 STA 41

0219 41

21A E8 INX

21 B 88 DEY
0210 DO BNE 02OA
021 D E0

021 E EA NOP
021 F 0 BRK

Program 9-3 is the mnemonic-entry version; enter and run it with the following data:

(0042) = 02

(0340) = 3E

(0341) = 47

(0342) = F5

(0343) = 2A
Result: (0040) = 33

(0041) = 72

(number of 16-bit elements)

(LSBs of first element)

(MSBs of first element)

(LSBs of second element)

(MSBs of second element)

(LSBs of sum)

(MSBs of sum)

160 Microcomputer Experimentation with the AIM 65

rhat is,

473E

2A¥5

im

PROBLEM 9-5

Make Program 9-3 perform decimal (BCD) addition. Use the following data:

(0042)

(0340)

(0341)

(0342)

(0343)

Result: (0040)

(0041)

02 (number of four-digit elements)

36 (USDs of first element)

21 (MSDs of first element)

97 (USDs of second element)

18 (MSDs of second element)

33 (USDs of sum)

40 (MSDs of sum)

That is,

\

2136

1897

4033

PROBLEM 9-6

Extend the answer to Problem 9-5 so that it places the carries in 0042. Use 0043 for

the number of elements. Try the following data:

(0043)

(0340)

(0341)

(0342)

(0343)

Result: (0040)

(0041)

(0042)

02 (number of four-digit elements)

36 (USDs of first element)

21 (MSDs of first element)

97 (USDs of second element)

98 (MSDs of second element)

33 (USDs of sum)

20 (middle digits of sum)

01 (MSDs of sum = carries)

That is.

2136

9897

12033

Be sure to keep the carries as a decimal number.

Arithmetic 161

MULTIPLE-PRECISION ARITHMETIC

We can extend Programs 9-1 tliroiigli 9-3 to handle numbers of any length, d’he pro-

cedure (see Figure 9-1) is as follows:

1. Initialization.

INDEX = LENGTH OF NUMBERS [IN BYTES)

CARRY = 0, since there is never a carry into the least significant bytes.

2. Add 8 bits.

(BASE1 - 1 + INDEX) = (BASE1 - 1 + INDEX) + (BASE2 - 1 + INDEX) + CARRY

T his step produces a new CARRY.

INDEX = INDEX- 1

YES

FIGURE 9-1. Flowchart for multiple-

precision addition.

162 Microcomputer Experimentation with the AIM 65
«

3. Update index.

INDEX = INDEX - 1

If INDEX is not , return to step 2.

Here the numbers are in the reverse of the usual order, that is, with their least signifieant

bytes at the highest addresses.

If the length of the numbers is in 0040, the numbers start fmost signifieant bytes

first) in 0340 and 0360, and the sum replaees the number starting in 0340, the program is

LDX $40
: INDEX = LENGTH DF NUMBERS

CLC
:
CLEAR CARRY INITIALLY

ADBYTE LDA S033F.X
: GET BYTE OF FIRST NUMBER

ADC S035F.X
: ADD BYTE OF SECOND NUMBER

STA $033F,X
;
STORE SUM AS FIRST NUMBER

DEX
BNE ADBYTE
BRK

Program 9-4 is the mnemonie-entrv version. A key factor is that DEX does not affect

CARRY, so its value ean be used in the next iteration.

PROGRAM 9^

Memory Memory
Address Contents Instruction

(Hex) (Hex) (Mnemonic)

0200 A6 LDX 40
Q2Q1 40
2Q2 18 CLC
0203 BD ADBYTE LDA 033F.X
0204 3F

0205 03
0206 7D ADC 035F.X
0207 5F

0208 03
0209 9D STA 033F.X
020A 3F

020B 03
0200 CA DEX
020D DO BNE 0203
020E F4

020F 00 BRK

Arithmetic 163

1 ry Program 9—4 on the following problem;

(0040)

(0340)

(0341)

(0342)

(0343)

(0360)

(0361)

(0362)

(0363)

Result: (0340)

(0341)

(0342)

(0343)

I’hat is,

04 (length of numbers in bytes)

29 (MSBs of first number)

3E

AB
FO (L^Bs of first number)

19 (MSBs of second number)

DO
28

A1 (LSBs of second number)

43 (MSBs of sum)

OE

D4
91 (LSBs of sum)

293EABF0

19D028A1

430ED491

PROBLEM 9-7

Write a program that adds decimal numbers of arbitrary length. Assume the same
conditions as in Program 9-4. Use the following sample case:

(0040)

(0340)

(0341)

(0342)

(0343)

(0360)

(0361)

(0362)

(0363)

Result: (0340)

(0341)

(0342)

(0343)

T hat is,

04 (length of numbers in bytes)

29 (MSDs of first number)

34

71

60 (LSDs of first number)

19 (MSDs of second number)

60

28

81 (LSDs of second number)

48 (MSDs of sum)

95

00

41 (LSDs of sum)

29347160

19602881

48950041

164 Microcomputer Experimentation with the AIM 65
«

PROBLEM 9-8

Write a program that subtracts decimal numbers of arbitrary length. Assume the

same conditions as in Program 9-4. Subtract- the number starting in 0360^ from the one

starting in 0340. 4’ry the program on the following example. CARRY, as usual, is an

inverted borrow.

(0040) = 04 (length of numbers in bytes)

(0340) = 29

(0341) = 34

(0342) = 71

(MSDs of minuend)

(0343) = 60 (LSDs of minuend)

(0360) = 19

(0361) = 60

(0362) = 28

(MSDs of subtrahend)

(0363) = 81 (LSDs of subtrahend)

Result: (0340) = 09

(0341) = 74

(0342) = 42

(MSDs of difference)

(0343) = 79

That is.

(LSDs of difference)

29347160

19602881

'09744279

ARITHMETIC WITH LOOKUP TABLES

One way to do complex arithmetic is by using lookup tables that contain all possible

results. The program must then locate the desired result, just as in the code conversion of

Program 5-7.

For example, suppose we form a table of the squares of the decimal digits. The
following program uses it to square the digit in 0041; it places the square in 0042.

LDX $41 ; GET DATA
LDA $0340. X : GET SQUARE FRQM TABLE
STA $42
BRK

* = $0340 ; SQUARES OF DECIMAL DIGITS

.BYTE 0.1. 4.9. 16. 25. 36. 49. 64,81

* = (“set origin") is an assembler directive (called a pseudo-operation); it indicates where

the machine language generated from subsequent statements is to be placed in memory.

Arithmetic 165

1 he directive .BY FE (Form Byte-Length Data) places a list of 8-bit data items in the next

available locations. Program 9-5 is the mnemonic-entry version.

PROGRAM 9-5

Memor)'

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0200 A6 LDA 41

0201 41

Q2Q2 BD LDA 340.x
203 40
204 3
205 85 STA 42
206 42
207 BRK

340 .BYTE

341 1 1

342 4 4

343 9 9

344 10 16

345 19 25
346 24 36
347 31 49
348 40 64
349 51 81

Run Program 9-5 with the following sample data:

1. (0041) = 04

Result: (0042) = 10

2. (0041) = 07

Result: (0042) = 31

PROBLEM 9-9

Write a program that uses the table in Program 9-5 to add the squares of 0040 and
0041. The sum should end up in 0042.

Example

(0040) = 03

(0041) = 06

Result: (0042) = 2D (hex), since 2D = 09 (3^) -E 24 (6^).

166 Microcomputer Experimentation with the AIM 65
«

PROBLEM 9-10

Write a program that uses a table to cube a decimal digit. Allow 2 bytes for each

entry, since some cubes are larger than 256. Assume that the data is in 0041, and place

the result in 0042 and 0043 (MSBs in 0043).

Examples

1. (0041) = 03

Result; (0042) = IB

(0043) = 00

2. (0041) = 07

Result: (0042) = 57

(0043) = 01

The results are hexadecimal numbers.

PROBLEM 9-1

1

Write a program that takes the four-digit square root of a decimal digit. The digit is

in 0041, and the square root ends up in 0042 and 0043 (most significant digits in 0043).

Use the following table; enter it in memory starting at 0340 and indicate it in your

program with a .WORD (Form Double-Byte-Length Data) pseudo-operation.

Value Square Root

0 00.00

1 01.00

2 01.41

3 01.73

4 02.00

5 02.24

6 02.45

7 02.65

8 02.83

9 03.00

Examples

1. (0041) = 03

Result: (0042) = 73

(0043) = 01

2. (0041) = 07

Result: (0042) = 65

(0043) = 02

Arithmetic 167

PROBLEM 9-12

Extend the answer to Problem 9-1 1 to produce a six-digit square root in 0042,
0043, and 0044 (most significant digits in 0044). Use the following table:

\'alue Square Root

0 00.0000

1 01.0000

2 01.4142

3 01.7321

4 02.0000

5 02.2361

6 02.4495

7 02.6458

8 02.8284

9 03.0000

Examples

1. (0041) = 02

Result: (0042) = 42

(0043) = 41

(0044) = 01

2. (0041) = 06

Result: (0042) = 95

(0043) = 44

(0044) = 02

If the table is long, you could consider keeping only some entries in memory. You
could, for example, keep every tenth entry and interpolate to obtain intermediate values.

KEY POINT SUMMARY

1. BCD is a convenient way to represent decimal numbers, since each digit is coded
separately. However, BCD requires more memory and processing instructions than
the binary representation.

2. The 6502 processor has a special decimal mode in which additions and subtractions

produce BCD results automatically. The processor enters and leaves the decimal
mode by executing SED and CLD, respectively. The programmer must initialize

the D (DECIMAL MODE) flag and keep track of its value. Increments and decre-

ments always produce binary results.

3. Multiple-precision arithmetic requires a series of 8-bit operations. 'Hie CARRY flag

transfers carries or borrows behveen them.

Microcomputer Experimentation with the AIM 65
t

Lookup tables provide a simple way to perform eomplex arithmetie. The lookup
proeedure depends only on the organization of the table and the length of the

elements; it does not depend on the data values or the funetion involved.

LABORATORY A
J

SUBROUTINES AND THE STACK

PURPOSE

To learn how to write and use subroutines.

REFERENCE MATERIALS

R. C. CAMP et al., Microprocessor Systems Engineering, Matrix Publishers, Portland,

OR, 1979, Chapter 8 (partieularly pp. 499-505), Appendix A.

L. A. LEVENTHAL, Introduction to Microprocessors: Hardware, Software, Program-

ming, Prentice-Hall, Englewood Cliffs, NJ, 1978, pp. 57-60, 97-100, 113-1 15, 120,

220-229.

L. A. LEVENTHAL, 6502 Assembly Language Programming, Osborne/McCraw-Hill,

Berkeley, CA, 1979, pp. 9-16 through 9-17, Chapters 10, 15.

L. A. LEVEN 1 HAL and W. SAVILLE, 6502 Assembly Language Subroutines,

Osborne/McCraw-Hill, Berkeley, CA, 1982.

169

170 Microcomputer Experimentation with the AIM 65
«

R. j. I OCCI and L. P. LASKOWSKI, Microprocessors and Microcomputers: Hardware
and Software, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1982, pp. 172-174 (stack

pointer), 342—345 (stack transfers), 355—360 (subroutines), 367—368 (indirect addres-
sing), 368-375 (timing loops).

AIM 65 Monitor Program Listing, Dynatem, Irvine, CA, 1979.

AIM 65 Users Guide, Dynatem, Irvine, CA, 1978, pp. 6-34 to 6-36, 7-37 to 7-93.

R6500 Microcomputer System Programming Manual, Rockwell International, Semicon-
ductor Products Division, Newport Beach, CA, 1978, Chapter 8.

WHAT YOU SHOULD LEARN

1. How to transfer control to and from subroutines.

2. How to use the stack.

3. How to use monitor subroutines.

4. How to transfer control to one of a set of subroutines.

TERMS

Indirect jump a jump to an address stored in a register or in memory.

Overflow exceeding the amount of memory allocated to a stack.

Parameter an item that a subroutine needs to execute properly.

Passing parameters making parameters available to a subroutine.

Pop (or pull) remove an operand from a stack.

Push store an operand in a stack.

Stack a section of memory that can be accessed in a last-in, first-out manner. That is,

data can be added to or removed from it through its top; new data is placed above the old
data, and the removal of a data item makes the item below it the new top.

Stack pointer a register that contains the address of the top of a stack.

Subroutine a subprogram that can be called by another program.

Subroutine call the process whereby a computer transfers control to a subroutine while
retaining the information required to resume the current program.

Subroutine linkage the mechanism whereby a computer retains the information
required to resume its current program after executing a subroutine.

6502 INSTRUCTIONS

JSR jump to subroutine; jump to a memory address and save the return address (the

address of JSR’s third byte) in the stack.

PHA(P) store the accumulator (status register) at the top of the stack and decrement the
stack pointer by 1.

Subroutines and the Stack 171

PLA(P) increment the stack pointer by 1 and load the accumulator (status register) from

the top of the stack.

RI'S return from subroutine; load the program counter from the top two stack locations

and then add 1 to it. I’hc result is a jump to the address one larger than the contents of the

top two stack locations.

TSX transfer stack pointer to index register X. 'Hiis is the only way to save the stack

pointer. ^

TXS transfer index register X to stack pointer, d'his is the only way to load the stack

pointer.

Note: In JSR, PHA, PUP, PLA, PLP, and R'PS, the top of the stack is at address Olss hex,

where ss is the contents of the stack pointer.

RATIONALE AND TERMINOLOGY

Most tasks described so far occur many times in real applications. For example, actual

programs often include many time delays, code conversions, and arithmetic functions.

Clearly, repeating sequences of instructions each time would waste memory and program-

ming time. We would prefer to use one copy of each common sequence.

d o allow this, we need a way for the processor to suspend its current program,

execute a sequence, and resume the current program where it left off. Phen the processor

could use the same sequence from many different points in its overall program. T1ie

sequence could even be part of the monitor; in that case, the programmer would not have

to code it or load it into memory.

We use the following terminology in describing common sequences of instructions:

• Phe sequence is a subroutine, since it is subordinate to the calling program.

• T he process of transferring control to the subroutine is a subroutine call.

• A piece of data or an address that a subroutine needs is a parameter.

• T he process of providing the subroutine with parameters is passing parameters.

• The method whereby the computer transfers control to the subroutine and hack to

the calling program is a subroutine linkage.

CALL AND RETURN INSTRUCTIONS

The)SR and RTS instructions are essential for implementing subroutines; they work as

follows:

• JSR (JUMP T O SUBROUTINE) saves the address of its own third byte in the stack

before placing a new value in the program counter. It allows only absolute (direct)

addressing.

172 Microcomputer Experimentation with the AIM 65 *

• R I S (RE I URN FROM SUBROUTINE) loads the program counter from the top
two locations in the stack and adds 1 to it.

A JSR m the calling program transfers control to the subroutine that starts at the specified
absolute address. An R I S at the end of the subroutine returns control to the calling
program just after the JSR. The subroutine linkage is thus in the stack—JSR saves the
return address there and RTS retrieves it.

6502 STACK AND STACK POINTER
\

To explain JSR and RTS, we must describe how the 6502 transfers data to and from its

stack. This works as follows (see Figures A-1 and A-2):

1. To save data (called a push), it first stores the data at the top of the stack and then
subtracts 1 from the stack pointer.

2. To remove data (called a pop or pull), it first adds 1 to the stack pointer and then
loads the data from the top of the stack.

The stack is always on page 1 of memory. Its top (the next empty location) is at

address Olss hex, where ss is the contents of the stack pointer.

Note the following:

1. The stack is just an ordinary area of memory. The processor moves the top of the
stack up or down by decreasing or increasing the stack pointer (examine Figures A-1
and A-2 carefully).

Initial conditions:

ACCUMULATOR 85

STACK
POINTER

Final conditions

(after executing PHA):

ACCUMULATOR 85

STACK
POINTER

The accumulator is unchanged

01 F7

01 F8

MEMORY

FIGURE A-1. Entering data into the stack (a push).

Subroutines and the Stack 173

Initial conditions:

ACCUMULATOR 85

STACK
POINTER

Final conditions

(after executing PLA);

accumulator

STACK
POINTER

B4

F8

01F7

01 F8

MEMORY

25

B4

The contents of memory are unchanged

FIGURE A-2. Removing data from the stack (a pop or pull).

2. The programmer (or the monitor program) seleets where the staek begins (on page

1) by initializing the staek pointer. The sequenee LDX, TXS is the only way to do

this. Sinee the AIM 65 monitor starts its staek at 01 FF, we w'ill start ours at 017F to

avoid eonfusion. Programs seldom change the stack pointer explicitly after it has

been initialized.

3. The stack grows down (i.e.
,
toward lower addresses). If this makes you uneasy, stand

on your head and everything will be all right.

4. The stack pointer always contains the next available (empty) stack address. Fhe

lowest address actually occupied by the stack is 1 larger.

5.)SR and RTS transfer 16-bit addresses to and from the stack. The less significant

byte is obtained first and stored last in accordance with the usual 6502 method for

storing addresses. Be careful: The less significant byte is stored last, but it ends up at

the lower address because the stack is growing down. Note the strange offset of 1;

JSR saves the address of its own third byte in the stack, and RTS adds 1 to the

address it obtains from the stack. 'Phis apparently makes JSR execute faster, but it is

also another quirk for the programmer to remember.

Examples

a. (S) = 61

(PC) = 021C

After the processor executes JSR $0238 (occupying addresses 02 1C through

021E),

(S) = (S) — 2 = 5F, since a 2-byte address has been saved in the stack.

(PC) = 0238, the starting address of the subroutine.

174 Microcomputer Experimentation with the AIM 65 *

(0160) = It:, the LSBs of the address of jSR’s third byte.

(0161) = 02, the MSBs of the address of JSR’s third bvte.

h. (S) = 7C
(017D) = 28

(017E) = 02

y\fter the processor exeeutes Rd’S,

(S) = (S) -f 2 = 7E, sinee a 2-byte address has been removed from the staek
(PC) = (017E) (017E) = 0228 + 1 = 0229.

6. PLA (load aeeumulator from staek) and PLP (load status register from staek) load a

register from the top of the staek. PHA (store aeeumulator in staek) and PHP (store

status register in staek) store a register at the top of the staek. There is no direet path
between the staek and an index register; the data must move through the
aeeumulator.

Examples

a. (S) = 67

(A) = F2

After the proeessor exeeutes PHA,
(S) = 66

(0167) = (A) = F2

The aeeumulator does not ehange.

b. (S) = 6F

(0170) = 3B

After the proeessor exeeutes PLA,

(S) = 70

(A) = (Olss) = (0170) = 3B

Loeation 0170 does not ehange, but it is no longer part of the staek. The staek

expands and eontraets like oeean waves whieh alternately eover and uneover
parts of the shoreline.

GUIDELINES FOR STACK MANAGEMENT

Most beginners find the staek eonfusing and even a little frightening. However, it is easy
to manage if you follow these guidelines.

1. Load the staek pointer during system initialization. Start the staek at the highest
available address on page 1.

2. Always pair staek operations. Pair eaeh JSR with an RTS and eaeh PHA or PHP
with a PLA or PLP. Phis is just like pairing left and right parentheses in arithmetie
or quotation marks in sentenees.

Subroutines and the Stack 175

3. Don’t be fancy. Leave the stack and stack pointer alone except for JSR, R I S, and
push and pull instructions. Simple programs rarely need more than 20 bytes for the

stack. Leave lots of room so the stack never overflows; many 6502 programmers
simply assign all of page 1 to the stack.

SUBROUTINE LINKAGES IN T^^E STACK

Let us see how JSR and RTS work in a simple situation. Fhitcr the following program into

memorv:

STARTING AT $0200

LDX #$7F
TXS
JSR $0260
BRK

STARTING AT $0260

TSX
STX $40
BRK

: INITIALIZE USER STACK POINTER

: GO TO SUBROUTINE

: SAVE STACK POINTER

Program A-1 is the mnemonic-entry version. Note that we need the sequence TSX, ST"X

to save the stack pointer in memory.

PROGRAM A-1

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

200 A2 LDX #7F
0201 7F

0202 9A TXS
0203 20 JSR 0260
0204 60

0205 02

0206 00 BRK

0260 BA TSX
0261 86 STX 40
0262 40

0263 00 BRK

176 Microcomputer Experimentation with the AIM 65
*

PROBLEM A-1

What is in the stack pointer and locations 017E, 017F, and 0040 after you run
Program A— 1? Explain why 017E and 017F do not contain the address of the next
instruction after)SR. Do not reset the AIM after funning Program A-1 . What happens to
the stack pointer if you do? Do ODE and 017P change?

PROBLEM A-2

What are the final values of the stack pointer and locations 017E and 017F if you
replace the BRK in 0263 with RTS? Explain the changes.

PROBLEM A-3

What are the final values of the stack pointer and locations 017C through 017F if

you put the following instructions in memory? Remember to execute the main program
starting at 0200.

Q260 BA TSX
261 86 SIX 46
262 46
263 26 JSR BBBB
264 86
265 2
266 66 RTS

286 BA TSX
281 86 STX 41
282 41

283 BRK

What do 0040 and 0041 contain? What happens if you revise the program as
follows?

266 BA TSX
261 86 STX 46
262 46
263 26 JSR BBSS
264 86
265 2
266 BA TSX
267 86 STX 42
268 42
269 BRK

286 BA TSX
281 86 STX 41
282 41

283 66 RTS

Subroutines and the Stack 177

SAVING REGISTERS IN THE STACK

If you save the registers in the stack before a call, you need not worry about whether the

subroutine uses tbcin. Reineinber the following:

1. You can save and restore the accumulator with PllA and PLA.

2. You can save and restore the status register (Figure 2-2) with PHP and PLP.

3. You can save and restore an index register only via the accumulator. T he sequences

are:

TXmA :
SAVE INDEX REGISTER IN STACK

PHA

and

PLA :
RESTORE INDEX REGISTER FROM STACK

TAX(Y]

Since these sequences use the accumulator, you must save it first and restore it

afterward.

4.

You must restore registers in the opposite order of that in which you saved them. If

you save them with

PHP : SAVE STATUS
PHA : SAVE ACCUMULATOR
TXA : SAVE X

PHA
TYA : SAVE Y

PHA

you must restore them with

PLA : RESTORE Y

TAY
PLA : RESTORE X

TAX
PLA : RESTORE ACCUMULATOR
PLP :

RESTORE STATUS

DELAY SUBROUTINE

The following subroutine derived from Program 4-3 produces a 1-ms delay:

LDX #$C8
DEX
BNE DLY
RTS

DLYMS
DLY

; DELAY 1 MS

178 Microcomputer Experimentation with the AIM 65
t

We can use it in a main program as follows:

LDX #$7F
: INITIALIZE USER STACK POINTER

TXS
JSR DLYMS

: DELaV 1 MS
BRK

Program A-2 is the mnemonic-entry version of the main program and subroutine.
Enter it into memory and run it.

PROGRAM A-2

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0200 A2 LDX #7F
0201 7F
0202 9A TXS
0203 20 JSR 0260
0204 60
0205 02
0206 00 BRK

0260 A2 DLYMS LDX #08
0261 08
0262 CA DLY DEX
0263 DO BNE 0262
0264 FD
0265 60 RTS

PROBLEM A-4

Make the subroutine preserve the status register, accumulator, and index register X.
How much do the added instructions increase the e.xecution time?

PROBLEM A-5

Revise the subroutine to produce a delay in seconds rather than in milliseconds.
I lave the subroutine preserve all registers. Use 0041 for the count in seconds and use the
1-s delay program from Problem 8-8. ^

Example:

(0041) = 05 results in a delay of 5 s.

Subroutines and the Stack 179

INPUT SUBROUTINE

I’hc following subroutine (clcrixcd from Program 4-5) encodes a switch closure. It

assumes that the accumulator contains the data from an iu])iit port attached to eight

switches.

IDSW LDY #$FF
SRCHS INY

'

LSR A
BCS SRCHS
RTS

SWITCH NUMBER = -1

INCREMENT SWITCH NUMBER
IS NEXT SWITCH CLOSED?
NO. KEEP LOOKING

Program A-3 is the muemouic-cutry version. We started at 0270 to avoid interfering

with the 1-ms delay (Program A-2). Tlie following program waits until a switch is closed

at port A of the user VIA and then uses Program A-3 to identify it:

PROGRAM A-3

Memory

Address

(Flex)

Memory
Contents

(Hex)

Instruction

(Mnemonic)

Q270 IDSW LDY #FF

D271 FF

Q272 C8 SRCHS INY

Q273 4A LSR A

Q274 BO BCS 0272

275 FC

276 60 RTS

LDX
TXS

#$7F INITIALIZE USER STACK POINTER

WAITC LDA SACCI GET DATA FROM SWITCHES
CMP #$FF ARE ANY SWITCHES CLOSED?
BEQ WAITC NO. WAIT

JSR IDSW YES. IDENTIFY CLOSED SWITCH
STY $4C SAVE SWITCH NUMBER
BRK

Program A-4 is the mnemonic-entry version of the main program. Enter and run

it. Where does the subroutine put the switch number?

PROBLEM A-6

How could you make Program A-4 examine the switches once and conclude with

either the switch number or FF (if no switches are closed) in 0(J40?

180 Microcomputer Experimentation with the AIM 65 «

PROGRAM A-4

Memory

Address

(Ilex)

Memory

Contents

(Ilex)

0200 A2
0201 7F
0202 9A
0203 AD
0204 01

0205 AO
0206 09
0207 FF

0208 FO
0209 F9
020A 20
020B 70
0200 02
020D 84
020E 40
020F 00

Instruction

, (Mnemonic)

LDX #7F

TXS
WAITC LDA A001

CMP #FF

BEQ 0203

JSR 0P70

STY 40

BRK

PROBLEM A-7

Modify Program A—4 to wait for the number of switeh elosures speeified in 0042
and save the identification numbers starting at 0340. Use subroutine DLYMS to provide a
1-ms delay for debouncing.

Example:

If (0042) = 03 and you close switches 0, 6, and 5 in that order, the result should be

(0340) = 00

(0341) = 06

(0342) = 05

Assume that you must open all switches between closures.

OUTPUT SUBROUTINE

I he next subroutine (derived from Programs 5-1 and 5-3) converts a decimal digit in the
accumulator to ASCII and shows it in the rightmost character of the on-board display.
Program A— 5 is the mnemonic-entry version. The subroutine does not send anything to
the display if the accumulator does not contain a decimal digit.

Subroutines and the Stack 181

DSP1 CMP #1Q
: IS DATA A DECIMAL DIGIT?

BCS DONE
: ND. EXIT

LDX #$7B
: YES. ACTIVATE LEFTMDST CHARACTER

STX SACCO
CLC

:
CDNVERT DATA TD ASCII

ADC #$BO
STA SAC02

: SEND ASCII DATA TD DISPLAY
DONE RTS 0

PROGRAM A-5

Memorv'

Address

(Hex)

Memor\’

Contents

(Hex)

Instruction

(Mnemonic)

2A0 C9 DSP1 CMP #0A

02A1 GA

Q2A2 BO BCS 02AF

2A3 OB

Q2A4 A2 LDX #7B

Q2A5 7B

Q2A6 BE STX ACOO

2A7 00

2A8 AC
Q2A9 18 CLC

Q2AA 69 ADC #B0

Q2AB BO

02AC 8D STA AC02

Q2AD 02

2AE AC
2AF 60 DONE RTS

PROBLEM A-8

Write a main program that uses Program A-5 and the 1-s delay routine (Problem 8-

8) to show (0042) on the leftmost eharacter for 1 s.

USING MONITOR SUBROUTINES

JSR also lets us use subroutines from the AIM monitor. Among these (see 'Table A-1) are

routines that handle input and output, perform eode eonversions, and generate time

delays.

182 Microcomputer Experimentation with the AIM 65
«

An easy monitor routine to use is the time-delay DELAY, whieh starts in address
ECOK. The length of the delay depends on the eontents of A417 and A418 (more
signifieant byte in A418). We ean use DELAY as follows:

LDX
TXS

#$7F
; INITIALIZE USER STACK POINTER

LDA #
: DELAY CONSTANT = 8000 HEX

STA SA417
LDA #$80
STA $A418
JSR
BRK

DELAY
: WAIT A WHILE

PROGRAM A-6

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

200 A2 LDX #7F
0201 7F
0202 9A TXS
0203 A9 LDA #00
0204 00
0205 8D STA A417
0206 17

0207 A4
0208 A9 LDA #80
0209 80
020A 8D STA A418
0208 18

020C A4
020D 20 JSR ECOF
020E OF
020F EC
0210 00 BRK

Program A-6 is the mnemonie-entry version; enter and run it. Try the following
values for the more signifieant byte of the delay eonstant (address 0209): 40, 20, 10, 08,
04, 02, 01. When ean you no longer see the delay? Using the LEDs attaehed to port B of
the user VIA will make the time lapse more obvious. Make the port output and turn all

the LEDs on (with 0 bits) before ealling DELAY and off (with 1 bits) afterward.

One problem with using the monitor routines is that you eannot single-step through
them. 4 he AIM disables the S I EP mode when it is exeeuting instruetions in its monitor
to avoid eonfliet with normal operating funetions. So if the AIM exeeutes a monitor
subroutine in the S PEP mode, it will finish the whole thing and stop after the first

instruetion it exeeutes from user memorv.

Subroutines and the Stack 183

Even though)SR docs not change any registers or flags, the subroutine may. In

general, you must prcscr\c any \alues you need by saving them in the stack before calling

the subroutine. Note the importance of knowing which registers a subroutine affects.

PROBLEM A-9

Determine which of the following registers and flags DE^LAY affects by e.xperimcnt-

ing with their values in tlic S l EP mode.

a. Accumulator,

h. Index register Y.

c. Index register X.

d. ZERO flag (hit 1 of register P).

e. CARRY flag (hit 0 of register P).

Does DE^LAY change A417 and A418?

PROBLEM A-10

Use subroutine DEXAY to write a program that flashes 0 on the leftmost character

of the on-hoard display. Experiment with the delay constant until the flashing is readily

visible.

USING THE OUTPUT SUBROUTINES

Subroutine OUTDIS (starting address EE05) sends an ASCII character to the AIM
display. It also adds 1 to the display pointer, so the next character will he placed 1 position

to the right. Fhe following program (Program A-7 is the mnemonic-entry version) shows

the contents of 0380 through 0387 on the display. T he jump-to-self at the end keeps the

AIM from overwriting the message before we can see it.

LDX #$7F
TXS
LDX #0

DISPC LDA $0380.

X

JSR OUTDIS

INX

CPX #8
BNE DISPC

HERE JMP HERE

: INITIALIZE USER STACK POINTER

: START WITH LEFTMOST CHARACTER
; GET A CHARACTER
:
DISPLAY IT

: MOVE ON TO NEXT CHARACTER
: DONE WITH 8 CHARACTERS?
: NO. KEEP DISPLAYING MORE
: YES. WAIT FOREVER

Enter Program A-7 into memory and run it with the following data. Note that we

are not setting bit 7 of the ASCII characters here. OUd’DIS uses bit 7 to decide whether to

clear the display to the right. If bit 7 = 0, it clears all characters to the right of where it is

working.

184 Microcomputer Experimentation with the AIM 65 «

(0380) = 43 (leftmost character)

(0381) = W
(0382) = 4D
(0383) =50
(0384) = 55

(0385) = 54

(0386) = 45

(0387) = 52 (rightmost character)

To form your own messages, use the ASCII table in Appendix 2. A final BRK is

unnecessary, since Program A—7 never returns control to the monitor.

PROGRAM A-7

Memory

Address

(Hex)

Memory
Contents

(Hex)

Instruction

(Mnemonic)

2G0 A2 LDX #7F
201 7F

202 9A TXS
203 A2 LDX #
204
205 BD DISPC LDA G38G.X
206 80
207 3
208 20 JSR EFG5
209 5
20A EF

20B E8 INX

200 EO CPX #08
20D 8
20E DO BNE G2G5
20F F5

210 4G HERE JMP G21G
211 10

212 2

PROBLEM A-1

1

Expand the message to THE COMPUTER IS ON and show it on the display.

What happens if you expand it to THE COMPUTER IS NOT WORKINC?

TABLE A-1 AIM 65 MONITOR SUBROUTINES

Subroutine Starting Registers

Name Address Affected* Description

BLANK E83E A Sends a space character (20 hex) to

display or printer.

Subroutines and the Stack 185

TABLE A-1 (continued) AIM 65 MONITOR SUBROUTINES

Subroutine

Name
Starting

Address

Registers

Affected
*

LTescription

BLANK2 E83B A Sends two space characters (20 hex)

to display or printer.

CLR EB44 A Glears display and printer pointers.

CRCK EA24
0
4

A Sends contents of print buffer to

printer if print pointer is not clear.

CRLF E9F0 A Sends .\SG11 GR, LF to the active

output device.

CRLOW EA13 Sends .^SGII GR, LF to the display

or printer.

DEBKl ED2G A Generates a 5-ms delay.

DEHALF EG2G A Delays 1/2 bit time according to the

contents of GNTH30 (A417) and

GNTL30 (A418).

DELAY EGOF A Delays 1 bit time according to the

contents of GNTH30 (A417) and

GNTL30 (.\418).

DISASM F46G Sends the disassembly of the

current instruction pointed to by

SAVPG (A425) to the active output

device.

DUMFLA E56F Opens an audio-tape output file.

DU 11 E50A Gloses an autio-tape block.

EQUAL E7D8 A Sends an ASGll = to the display or

printer.

FROM E7A3 A.X.Y Sends “FROM = ” to the display or

printer and puts the entered address

in ADDR (A41G) and ADDR-f 1

(A41D).

GETTAP EE29 A,Y Reads a character from audio tape

into A.

GETTY EBDB A,Y Reads a character from TTY into

A.

Gonverts an ASGll hexadecimal

digit in A to hex. Puts the result in

the LSD of A and clears the MSD
of A. Sets GARRY to 1 if A does

not contain a hex digit.

HEX EA7D A

INALL E993 A Reads an ASGll character from the

active input device into A.

INLOW E8F8 A Puts ASGll GR in INFLG (A412)

to indicate keyboard input.

LL E8FE A Puts ASGll GR in INFLG (A412)

and OUTFLG (A413) to indicate

input from the keyboard and output

to the display or printer.

LOADTA E32F Searches for an audio-tape file with

the name specified in NAME
(A42E).

186 Microcomputer Experimentation with the AIM 65
«

TABLE A-1 (continued) AIM 65 MONITOR SUBROUTINES

Subroutine

Name
Starting

Address

Registers

Affected » Description

Nour e:a5i A Converts bits 0-S of A to ASCII

and sends them to the active output

device.

NUMA EA46 A Converts A to two ASCII hex digits

and sends them to the active output

device, MSD first.

OUTALL E9BC Sends an ASCII ehar^cter in A to

the aetive output deviee.

OUT'DIS EE05 Sends an ASCII character in A to

the display. Clears display to the

right if bit 7 of A is 0. Scrolls the

display left if more than 20

characters but less than 60 have

been displayed since last CR.
OUTDP EEFC Sends an ASCII character to the

display and the print buffer. Links

to OUTDIS indirectly through

DILINK (A406).

OUTLOW E901 A Puts ASCII CR in OUTFLG
(A4I3) to indicate output to the

display or printer.

OUTPRl FOOD Sends an ASCII character in A to

the print buffer. Prints a line if the

character is ASCII CR or if 20

characters are in the buffer.

OUTPUT E97A Sends an ASCII character from A
to the display or printer.

OUTTAP F24A T' Sends a character from A to tape.

PACK EA84 A Converts an ASCII hex number in

A to hex and puts the result

alternately in the MSD or LSD of

A.

Pushes X and Y onto the stack.PHXY EB9E
PLXY EBAC X,Y Pulls X and Y from the stack.

PSLl E8E7 A Sends ASCII / to the display or

printer.

QM E7D4 A Sends ASCII ? to the display or

printer.

RBYTE E3FD A Reads two charaeters from the

aetive input deviee. Converts them

to hex and paeks them into 1 byte if

they are hex digits.

RCHEK E907 A.X.Y Scans the keyboard. Returns to

caller if no keys are depressed.

Returns to monitor if ESC is

depressed. Waits for another key to

be depressed if the spaee bar is

depressed.

Subroutines and the Stack 187

TABLE A-1 (continued) AIM 65 MONITOR SUBROUTINES

Subroutine

Name
Starting

.\cldress

Registers

Affected
*

Description

RDRUB E95E

0

A.Y Reads a character from the

keyboard and echoes it to the

display or printer. Allows RUBOUT’
to delete the character.

RKAD E93C A Reads a character from the

keyboard into A.

Rfc:iX)UT E973 A Reads a character from the

keyboard and echoes it to the

display or printer if it is not a

carriage return.

SEMI E9BA A Sends an ASCII
;
to the active

output device.

TAISET EDEA Checks for SYN (16 he.\) character

on tape and returns to calling

routine if it detects five consecutive

SYNs.

TAOSET E21D Sends the number of SYNs given

by CAP (A4U9) times 4 to the tape.

T'lBYTE ELT3B A Loads an input character from the

audio-tape buffer into A. Reads a

block of data from the recorder if

tape buffer is empty.

TIBYl EDS 3 Loads 80 bytes from audio tape into

the tape buffer when BLK (01 15) is

0.

Sends “TO = ” to the display or

printer and puts the entered address

in ADDR (A41C) and ADDR-E 1

(A41D).

TO E7A7 A,X,Y

TOBYTE E18B A Stores a character in the audio-tape

buffer. Sends a block of data to the

recorder if tape buffer is full.

WHEREI E848 A.X.Y Determines and sets up the active

input device from the answer to

“IN = ” and puts the device code in

INELG (A412).

WHEREO E871 A,X,Y Determines and sets up the active

output device from the answer to

“OUT=” and puts the device code

in OUTELC (A413).

*A11 routines change the P register.

CALLING VARIABLE ADDRESSES

Since JSR allows only absolute addressing, we need special techniques to let a system

choose among subroutines. For example, many interactive systems ask the operator what

188 Microcomputer Experimentation with the AIM 65 *

to do next (c.g., continue, start over, change parameters, repeat, report results, or stop).

Many systems also have function keys that the operator uses to perform eommon pro-

cedures such as mathematical or statistical functions, loading of programs or data, or

graphics operations. Whatever the ease, the systein docs not know which'* subroutine to

execute until the operator selects one.

Assume that we have a table of starting addresses. P'or example, in a calculator,

these addresses might he entry points for the sine, cosine, exponential, logarithm,

reciprocal, and other routines. In a piece of test equipment, they might be entry points for

the self-test, initial condition setting, parameter selection, and data analysis routines, d o

transfer control to a particular routine, all we need is the table’s base address and the entry

number.

d’he way to overcome JSR’s limitations is to transfer control to an intermediate

routine, d’his routine can use JMP with indirect addressing to transfer control to an

address stored in memory. It must do the following:

1. Use indexed addressing to obtain the starting address of the routine from the table.

We must remember to double the entry number before indexing, since each address

occupies 2 bytes.

2. Store the starting address in memory so that it can he used indirectly. V\^e will store

it in 0040 and 0041.

3. Jump indirectly. We indicate an indirect jump in assembly language or mnemonic
entry by placing parentheses around the address, for example, JMP ($0040) transfers

control to the address stored in 0040 and 0041.

The following program (see Program A-8 for a mnemonic-entry version) performs

these steps. We have assumed that the entry number is in 0042 and that the table of

addresses starts at 0340.

JCALC LDA $42

ASL A
TAX
LDA $0340,X

STA $40
LDA $0341,

X

STA $41

JMP C$0040)

:
GET ENTRY NUMBER

; DOUBLE IT FOR 2-BYTE ENTRIES

: GET LSB OF ENTRY

: GET MSB OF ENTRY

:
TRANSFER CONTROL TO ENTRY

We do not need a final BRK, since JMP ($0040) transfers control. Mowever, to run the

program, we will need a table of addresses and a BRK instruction at each destination for

testing proposes. For example, if the table is

* = $0340
.WORD $0260, $0280. $02A0, 0200

we must place BRK in 0260, 0280, 02A0, and 02C0.

Subroutines and the Stack 189

Filter and run Program A-8 with this four-entry table. Show tliat it works properly

for (0042) = 00, 01, 02, and 03.

PROGRAM A-8

Mcmor>

Address

(Hex)

Memor>

Contents

/ (Hex)

Instruction

(Mnemonic)

0200 A5 JOALO LDA 42
0201 42

0202 OA ASL A
0203 AA TAX
0204 BD LDA 0340.x
0205 40
0206 03

0207 85 STA 40
0208 40

0209 BD LDA 0341.x
020A 41

020B 03
020C 85 STA 41

020D 41

020E 60 JMP (0040)

020F 40
0210 00

0260 00 BRK

0280 00 BRK

02A0 00 BRK

0200 00 BRK

0340 60 WDRD 0260.

0341 02

0342 80 0280.

0343 02

0344 AO 02A0.

0345 02

0346 00 0200
0347 02

PROBLEM A-12

Write a main program that simply initializes the stack pointer to 7F and then calls

Program A-8. What are the final contents of the stack pointer and locations 017E and

190 Microcomputer Experimentation with the AIM 65
t

017F? What happcMis if you replace the BRKs in 0260, 0280, 02A0, and 02C0 with
Rl’Ss?

PROBLEM A-1

3

Revise Program A-8 to exit immediately if 0042 contains an invalid value (i.e.,

larger than 3). Another approach to error handling is to end the table with an error exit

and replace all inxalid entries with its length. Revise Program A—8 to use this approach.
{Hint: For e.xample, put an error exit in 0348 and 0349. The program would replace any
entry above 4 with 4, thus causing a jump to the error exit.)

>

An alternative approach is to put the starting address of the subroutine in the stack
and use Rl’S to transfer control. It seems strange to use RTS to call a subroutine, but it

works. After all, R4’S jumps to the address at the top of the stack. If the stack contains a

starting address rather than a return address, RfS will jump to a subroutine rather than
back to a calling program. Since this approach is confusing, the documentation should
explain what is happening.

PROBLEM A-1

4

Revise Program A-8 to store the starting address in the stack and use RTS to jump.
What changes must you make in the table? Remember that R'FS adds 1 to the address it

obtains from the stack.

KEY POINT SUMMARY

1. You can make a single copy of a sequence of instructions available from anvwhere
in a program by making it into a subroutine. The process of transferring control to

the subroutine is referred to as a subroutine call, and the items the subroutine needs
for proper execution are called parameters.

2. On the 6502, a JUMP IO SUBROU f INE (JSR) instruction in the calling program
transfers control to a subroutine and saves the address of its own last byte in the

stack. A RE I URN EROM SUBROUTINE (RTS) instruction at the end of the

subroutine restores control to the calling program by loading the program counter
from the top of the stack and adding 1 to it.

3. I’he stack is just an ordinary area of read/write memory on page 1. The stack pointer

contains the less significant byte of the address of the next available stack location.

All that happens as the stack expands or contracts is that the stack pointer decreases
or increases. The stack grows down (i.e., toward lower addresses).

4. 4’he programmer must initialize the stack pointer (using LDX, TXS) before calling

subroutines or using the stack for other purposes.

5. You can use the stack for temporary storage. This is convenient since the stack is

ordered and easy to expand.

Subroutines and the Stack 191

6. 'I’oii can use monitor subroutines just like ones you have written, but you must
cletermiiie what parameters they require, whicli registers they use, and w here thev

put their results, d’he monitor subroutines are not necessarily either general or

useful.

7. A program can choose among subroutines by calling a routine that obtains the

proper starting address and stores it in memory. Either JMP w ith indirect addressing

or R rS can then transfer control to the subroutine. R'l'S at the end of the sub-

routine will return' control to the original calling point. jSR itself allows only

absolute (direct) addressing.

LABORATORY B f

INPUT/OUTPUT USING

HANDSHAKES

PURPOSE

To learn how to perform input and output using handshake status and control signals.

PARTS REQUIRED

• Two switches attached to CAl and CBl of the user VIA as shown in Figure B-1.

Table B-1 gives the pin assignments. These switches should be debounced with

cross-coupled NAND gates.

• Two LEDs and two switches attached to CA2 and CB2 of the user VIA as shown in

Figures B-2 and B-3. Table B-1 gives the pin assignments. The switches should be

debounced with cross-coupled NAND gates. The LEDs should be attached by their

cathodes. Jumper wires can select between the LEDs and the switches to avoid

damage to the gates.

192

Input/Output Using Handshakes 193

o +5V

<2^ CA

APPLICATION
CONNECTOR

-o +5V

CB1

o +5V FIGURE B-1. Attachment of switches to

user VIA control lines CAl and CBl.

TABLE B-1 APPLICATION

CONNECTOR PIN ASSIGNMENTS
FOR USER VIA CONTROL LINES

Assignment Pin

CAl (Control line 1, port A) 20

CA2 (Control line 2, port A) 21

CBl (Control line 1, port B) 18

CB2 (Control line 2, port B) 19

REFERENCE MATERIALS

L. A. LEVEN'I’HAL, Introduction to Microprocessors: Hardware, Software, Program-

ming, Prentice-Hall, Englewood Cliffs, NJ, 1978, pp. 337-369, 405-427.

L. A. LEVEN4 HAL, 6S02 Assembly Language Programming, Osbornc/McGraw-Hill,

Berkeley, CA, 1979, Chapter 11.

194 Microcomputer Experimentation with the AIM 65
«

L. A. LEVENl UAL and W. SAVILLE, 6S02 Assembly Language Subroutines,
Osbornc/McGraw-Hill, Berkeley, CA, 1982, Chapter 10.

R. J. lOCCI and L. P. LASKOWSKI, Microprocessors and Microcomputers: Hardware
and Software, 2nd ed., Prentiee^Hall, Englewood Cliffs, NJ, 1982, pp. 36-43 (flip-

flops), 43-46 (eoiinters), 46-53 (registers), 119-120 (I/O), 196-197 (I/O terms), 197-
199 (I/O examples), 199-200 (I/O methods), 206-212 (polled I/O), 259-265 (6520
PIA).

AIM 65 Users Guide, Dynatem, Irvine, CA, 1979, pp. 7-31, 8-1 to 8-25.

R6500 Microcomputer System Hardware Manual, Roekwell International, Semieondue-
tor Produets Division, Newport Beaeh, CA, 1978, Section 6.

Ikn
^AA/ 0+5V

<211

APPLICATION
CONNECTOR

<23

o +5V FIGURE B-2. Attachment of switches to

user VIA control lines CA2 and CB2.

WHAT YOU SHOULD LEARN

1. How to perform synchronous and asynchronous I/O.

2. How to handle handshake status inputs and control outputs in software.

3. I’he features of a 6522 Versatile Interface Adapter (VIA).

Input/Output Using Handshakes 195

APPLICATION
CONNECTOR

+5V

CA2 (2T> D>-^
O

470n
-^W\/ < •

7 407

CB2[T9>
470n

7407

FIGl’RK B-3. Attachment of LKDs to

user \'IA control lines CA2 and CB2.

4. How to determine a VIA’s operating mode.

5. How to implement handshaking with a \4A.

TERMS

Asynehronous operating without a eloek, that is, at irregular intervals.

Cloek a regular series of pulses that eontrol transitions in a system.

Control (or command) register a register whose contents determine how a device oper-

ates.

Control signal a signal that directs an I/O transfer.

Data accepted a signal indicating whether the latest data has been transferred suc-

cessfully .

Data ready a signal indicating whether new data is available; same as valid data.

Handshake the exchange of signals by sender and receiver to establish synchronization

and manage a data transfer.

Interrupt flag in a VIA, a bit that indicates the occurrence of an event such as an active

transition on a control line.

Interrupt request (IRQ) a signal indicating that a peripheral is requesting service.

Latch a storage device that retains its current contents until they are explicitly changed.

Peripheral port in a VIA, tlic actual input or output port.

Peripheral ready a signal indicating whether a peripheral can accept more data.

Polling determining which I/O devices are ready by examining the status of one at a

time.

Programmable I/O device an I/O device that has its operating mode determined by a

program.

Ready for data a signal indicating whether the receiver can accept more data.

Status register a register whose contents indicate the state of a transfer or the operating

mode of a device.

Status signal a signal that describes another set of signals and can be used to eontrol a

buffer or latch.

Synchronous operating according to a cloek, that is, at regular intervals.

196 Microcomputer Experimentation with the AIM 65
t

Valid data a signal indicating that new data is available.

Versatile Interface Adapter (6522 VIA) a device consisting of two 8-bit bidirectional I/O
ports, four status and control lines, two timers, and a shift register.

SYNCHRONOUS AND ASYNCHRONOUS I/O

So far we have dealt only with simple, low-speed I/O devices such as switches and
displays. Our only problems have been ignoring meaningless ehanges in inputs and
making outputs last long enough to satisfy a peripheral or an observer. Factors that we
have not considered inelude:

1. Whether the peripheral is ready.

2. Whether new data is available.

3. Whether the data has been transferred suceessfully.

I’hese matters beeome important for medium-speed peripherals sueh as terminals,
printers, modems, plotters, and eard readers.

1 o transfer data successfully, the following eonditions must hold:

1. The reeeiver must be ready.

2. The data must be available (or valid).

3. The reeeiver must aeeept the data before it changes.

So the sender must know whether the reeeiver is ready and whether it has aeeepted
the data. The reeeiver must know' whether new data is available.

One approaeh is to use a elock (i.e., a regular series of pulses) as a referenee. The
reeeiver must then be ready, and the data must be av'ailable and aeeepted at partieular
points in the eloek eyele (e.g., 100 ns after the rising edge of a pulse). This method, ealled
synchronous transfer, requires synehronization (i.e., alignment) of the reeeiver and the
transmitter with the clock.

The major problem w'lth this approach is its rigiditv'. I he only way to ehange the
data rate is by ehanging the eloek. 7’lius synehronous transfer cannot easily handle
peripherals that operate at varying data rates or provide data irregularly.

An alternative is to use status and eontrol signals to manage the transfer. 1 ypical
signals are

READY FOR DATA aetive w'hen the reeeiver ean aeeept more data.

VALID DATA aetive when new data is available.

DATA ACCEPTED active when the reeeiver has aeeepted the latest data.

The sender must provide VALID DATA; the reeeiver must provide READY FOR DAl’A
and DA I A ACCEFI ED. This method, ealled asynchronous transfer, requires no eloek
and allows any data rate.

Input/Output Using Handshakes 197

'I’he advantages of this approach arc flexibility (since the devices determine the

timing) and simplicih’ (no clock or synchronization is necessary), 'llie disadvantages are

the increased number of signals and reduced maximum data rates (since signals must

overlap properly).

I he terms polling and handshaking are commonly used to describe asynchronous

transfers. Polling is examining each peripheral’s status to determine whether it is ready for

a data transfer. Handshaking is exchanging status and control signals to manage a data

transfer; the handshake validates the transfer much as a human handshake validates a

contract.

TREATING STATUS AND CONTROL SIGNALS AS DATA

One way to handle status and control signals is to treat them as data. I hcy then act like

the binary inputs and outputs considered in Laboratories 2 and 3. In our examples, we

will use bit 7 of port A of the user VIA as a status input and hit 7 of port B as a control

output.

'I’lic following program (Program B-1 is the mnemonic-entry version) assigns direc-

tions to the user VIA’s ports and turns the LEDs off. We will use it for initialization

throughout this laboratory.

LDA #0 :
MAKE PORT A INPUT

STA $A003
LDA #$FF
STA $A002 :

MAKE PORT B OUTPUT

STA SAOOO :
TURN OFF THE LEDS

PROGRAM B-1

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

2G0 A9 LDA #00

201 0
0202 80 STA A003

0203 03

0204 AO

0205 A9 LDA #FF

0206 FF

0207 80 STA A002

0208 2
209 AO
02OA 80 STA AOOO

020B 0
200 A0

198 Microcomputer Experimentation with the AIM 65
«

USING DATA LINES FOR STATUS

Let us now use bit 7 of port A for status. Diiriiig input, tliis signal typically indicates
w hether new- data is available (e.g., whether an operator has pressed a key on* a keyboard).
'I’he following program waits for the switeh attaehed to bit 7 (switeh 7) to elose. It then
reads the data from port A and show^s it on the LEDs at port B.

WAITR LDA $A001
BMI WAITR
EOR #$FF
STA SAOOO
BRK

; IS DATA READY?
: ND. WAIT

: YES. ACCEPT DATA
; AND SHDW IT DN THE LEDS

Program B-2 is the mnemonie-entry version. Open switeh 7 and run Program B-2.
What happens? Does opening or elosing other switehes have any effeet? Open all other
switehes and then elose swdteh 7. What happens? The proeessor aeeepts only the data that
is present when the status signal beeomes aetive. Changes that oeeur while the status
signal is inaetive are ignored.

PROGRAM B-2

MemoT)

Address

(Hex)

Memory

Contents

(Hex)

20D AD
20E 01

2QF AO
210 30
0211 FB
0212 49
0213 FF

0214 8D
0215 00
0216 AO
0217 00

Instruction

(Mnemonic)

WAITR lDA AQ01

BMI OBOD

EOR #FF

STA AOOG

BRK

PROBLEM B-1

Change Program B—2 to make the status signal aetive-high. How would you make
the program wait for the status signal to go low and then baek high? Remember to
deboLinee the switeh.

PROBLEM B-2

Extend Program B—2 to read data into an array starting at 0340. It should read an
item eaeh time the status signal goes low. Remember to debounee the switeh.

Input/Output Using Handshakes 199

During output, the status signal indicates whether the periplieral is ready for more

data (c.g., whether a printer has finished with the last character), i’he following program

waits for switch 7 to close before sending data from 0340. (Program B-3 is the nmemonie-

entry version.)

WAITR

PROGRAM B-3

LDA SA001
BMI WAITR
LDA $0340
EOR #$FF
STA SAOOO
BRK

; IS PERIPHERAL READY?

:
NO. WAIT

; YES. SEND DATA

:
WITH REVERSED POLARITY

Memory Memory

Address Contents Instruction

(Hex) (Hex) (Mnemonic)

20D AD WAITR LDA A001

2QE 1

20F AO
0210 30 BMI 020D

0211 FB

212 AD LDA 0340

213 40

214 3
215 49 EOR #FF

216 FF

217 8D STA AOOO

218
219 AO
21

A

BRK

Enter Program B-3 into memory and run it with (0340) = FF. What happens

before yon close switch 7? Does it matter what 0340 contains? What happens when yon

close switch 7? 41ie old data persists until the peripheral specifically requests new data or

informs the computer that it is ready.

PROBLEM B-3

Make Program B-3 send data from an array starting at 0340. It should send a new

item each time the status signal goes low. Remember to debonnee the switch.

Example array (single light moves left, starting from bit 7);

(0340) = 80

(0341) = 40

(0342) = 20

200 Microcomputer Experimentation with the AIM 65
«

(0343) = 10

(0344) = 08

(0345) = 04

(0346) = 02

(0347) = 01

PROBLEM B-4

Make your answer to Problem B-3 exit after sending eight items. How would you
make it stop afer it sends a zero value?

USING DATA LINES FOR CONTROL

We can also use data lines as control signals. A control signal for an input device could
indicate that the computer has read the latest data. The following program loads 0340
with the data from port A and then lights the control LED by clearing bit 7 of port B.

LDA $A001
; get data FROM INPUT PORT

STA $0340
; SAVE DATA IN MEMORY

LDA #o/q01 111111
; turn CONTROL LIGHT ON

STA SAOOO
BRK

PROGRAM B-4

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruetion

(Mnemonie)

200 AD LDA AGG1
G2GE 1

20F AG
0210 8D STA G34G
211 40
212 3
213 AS LDA #7F
214 7F
215 SO STA AGOG
216
217 AG
218 BRK

E:nter and run Program B-4, the mnemonic-entry version. Here the light indicates
that the computer has accepted the latest data and is ready for more. Such a signal mav be
called READY FOR DATA, DA l A ACCEPTED, or DATA BUFFER EMFIT.

Input/Output Using Handshakes 201

Combining Programs B-2 and B-4 (sec Program B-5) makes the eompnter wait for
the status signal to become acti\c before accepting the data. It then sets the control signal
to mark the acceptance. Here we have a complete handshake {see Figure B-4); the sender
indicates that new data is axailablc, and the receixer, in response, reads the data and
acknowledges it.

WAITR LDA^ SAQOI
BMI 'WAITR

STA $Q34Q
LDA #o/o01111111

STA SAQOO
BRK

:
IS DATA READY?

: ND. WAIT

: YES. ACCEPT DATA
: INDICATE DATA ACCEPTED

PROGRAM B-5

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

020D AD WAITR LDA A001
020E 01

Q20F A0
0210 30 BMI 020D
211 FB
0212 8D STA 0340
0213 40
214 3
0215 A9 LDA #7F
0216 7F
217 8D STA A000
0218 00
0219 A0
21A 0 BRK

Enter and run Program B-5. An obx ious problem is that the light stays on. Clearly,
it should go off before the next transfer, dlie control light may, for example,

1. Remain active only briefly, thus producing a pulse that can be counted or latched.

2. Co off when the status signal becomes active again to begin the next transfer. The
control signal then indicates w hether the processor has accepted the latest data (i e
it is a BUFFER EMFFY signal).

3. Remain active for an amount of time determined by the program.

As we shall see later, the 6522 VIA contains circuits for all these alternatives. 4’he
user simply selects an operating mode by storing a value m a VIA control register.

Combining Programs B-3 and B-4 (see Program B-6) makes the computer wait for
the status signal to become active before sending the data. It then sets the control signal to

202 Microcomputer Experimentation with the AIM 65

STEP 1

PERIPHERAL PROVIDES DATA AND ACTIVATES DATA READY

DATA READY
^

/ DATA
PORT A <

N

PERIPHERAL

PORT B
DATA ACCEPTED

The peripheral provides both the data and an active DATA READY siQnsI

STEP 2

CPU RECOGNIZES THAT DATA READY IS ACTIVE AND READS THE DATA,

THUS PERFORMING THE ACTUAL DATA TRANSFER.

DATA READY

STEP 3

CPU ACTIVATES DATA ACCEPTED, INDICATING THE SUCCESSFUL
COMPLETION OF THE TRANSFER.

DATA READY

The peripheral can examine DATA ACCEPTED to determine when

it can send more data.

FIGURE B-4. Procedure for a eomplete

input handshake.

Input/Output Using Handshakes 203

mark the transmission. Here again we lia\e a eomplete handshake (see Figure B-5),

although tlie order and meaning of the signals differ from the input ease. 'The reeeix er

indieates that it is ready to accept data; in response, the sender pro\ ides the data and
indicates its availability.

WAITR LDA SAOQI
BMI WAITR
LDA $0340
EOR #$FF
AND #0/001 11 11 11

STA $A000
BRK

: IS PERIPHERAL READY?
: NO. WAIT

: YES. SEND DATA

: INDICATE DATA AVAILABLE

PROGRAM B-6

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

020D AD WAITR LDA A001
020E 01

020F A0
0210 30 BMI 020D
0211 FB

0212 AD LDA 0340
0213 40
0214 03
0215 49 E0R #FF
0216 FF

0217 29 AND #7F
0218 7F

0219 8D STA A000
021A 00
021 B A0
0210 00 BRK

6522 VERSATILE INTERFACE ADAPTER

LSI I/O devices can greatly simplify interfacing and I/O programming. Furthermore, they

are smaller, cheaper, more reliable, and use less power than circuits made from VVL
parts.

As an example, consider the 6522 Versatile Interface Adapter (VIA), d’his gener-

alized I/O device can operate in many useful ways; the programmer selects the operating

mode for each port by storing data in control registers, d’his data activates circuits in the

VIA, much as an instruction does in the CPU. The circuits in the VIA, however, are

much simpler than those in the CPU and arc designed to perform common I/O functions

such as handshaking.

204 Microcomputer Experimentation with the AIM 65
«

STEP 1

PERIPHERAL ACTIVATES PERIPHERAL READY, INDICATING THAT IT

IS ABLE TO ACCEPT DATA.

The output peripheral rnost provide the

input status signal PERIPHERAL READY

STEP 2

CPU RECOGNIZES THAT PERIPHERAL READY IS ACTIVE AND SENDS
THE DATA, THUS PERFORMING THE ACTUAL DATA TRANSFER.

STEP 3

CPU ACTIVATES DATA READY, THUS INFORMING THE PERIPHERAL
THAT NEW DATA IS AVAILABLE.

The peripheral can examine DATA READY to determine
when new data is available.

FIGURE B-5. Procedure for a complete

output liaudshake.

Input/Output Using Handshakes 205

Each VIA port contains:

• An input register, used to hold data read from an input device.

• An output register (or latch), used to hold data sent to an output de\ice.

• A data direction register that determines whether the I/O lines are inputs or outputs.

I his register is inside the VIA and is not connected to peripherals.

• I wo control lines tliat can be used for status and control signals as go\ erned by the

control registers. I’hesc lines, like the data lines, arc connected to peripherals.

1 he peripheral control register (Figure B-6) and the auxiliary control register deter-

mine how a VIA operates. We will discuss the peripheral control register here and the

auxiliary control register in Laboratory D.

7 6 5 4 3 2 1 0

0 Request interrupt on high-to-low

transition of CA1
1 Request interrupt on low-to-high

transition of CA1

On interrupt request set

Interrupt Flag register bit 1

000 CA2 input mode
f

Request interrupt on

001 CA2 independent input mode high-to-low CA2 transition

010 CA2 input mode I
Request interrupt on

011 CA2 independent input mode f '0'''''l0'^*9h CA1 transition

100 CA2 output low on CPU read or write

101 CA2 output low pulse on CPU read or write

1 10 Output CA2 low (manual mode)
111 Output CA2 high (manual mode)

On interrupt

request set

Interrupt Flag

register bit 0

0

1

Request interrupt on high-to-low

transition of CB1
Request interrupt on low-to-high

transition of CB1

On interrupt request set

Interrupt Flag register bit 4

000 CB2 input mode
(X)1 CB2 independent input mode
010 CB2 input mode
011 CB2 independent input mode
100 CB2 output low on CPU write

101 CB2 output low pulse on CPU write

110 Output CB2 low (manual mode)
111 Output CB2 high (manual mode)

Request interrupt on

high-to-low CB2 transition

Request interrupt on

low-to-high CB2 transition

On interrupt

request set

Interrupt Flag

register bit 3

FIGURE B-6. The 6522 VlA’s peripheral eontrol register (PCR). (Reprinted from
Oshurne -f- and H-Bit Microprocessor Handbook by permission of Osborne/MeGrau-l lill.)

206 Microcomputer Experimentation with the AIM 65

VIA STATUS INPUTS

The VIA’s status inputs work as follows:

%

• Bits 0, 1,3, and 4 of the interrupt flag register (Figure B-7) are set to 1 whenever an

aetive transition oeenrs on eontrol line CA2'(bit 0), CAl (bit 1), CB2 (bit 3), or CBl
(bit 4).

7 6 5 4 3 2 1 0

IRQ T1 T2 CBl CB2 SR CAl CA2

Bit No. Set By Cleared By

0
Active transition of the signal

on the CA2 pin

Reading or writing the A Port Output
register (ORA) using address 0001

1

Active transition of the signal

on the CAl pin

Reading or writing the A Port Output
register (ORA) using address 0001

2
Completion of eight shifts Reading or writing the Shift

register

3
Active transition of the signal

on the CB2 pin

Reading or writing the B Port

Output register

4
Active transition of the signal

on the CBl pin

Reading or writing the B Port

Output register

5
Timeout of timer 2 Reading T2 low-order counter or

writing T2 high-order counter

6
Timeout of timer 1 Reading T 1 low-order counter or

writing T1 high-order latch

7
Any active and enabled

interrupt condition

Action which clears interrupt

condition

Bits 0, 1, 3, and 4 are the I/O handshake signals. Bit 7 (IRQ) is 1 if any of

the interrupts is both active and enabled.

FIGURE B-7. The 6522 VIA’s interrupt flag register (IFR). (Reprinted from Osborne 4- and 8-Bit

Microprocessor Handbook by permission of Osborne/McGraw-Hill.)

Input/Output Using Handshakes 207

• Bits in the peripheral eontrol register (Figure B-6) cleterinine whether tlie aetive

transition is positive (a ehange from 0 to 1) or negative (1 to 0). Bit 0 governs CAl;
bit 2, CA2; bit 4, CBl; and bit 6, CB2. A 0 value makes negative edges aetive, while

a 1 makes positive edges aetive.

rhus we ean provide a stains bit without using a data line. Furthermore, the VIA latches

(holds) the status bit, e\en if the input signal is only a brief pulse. All VIA status bits are

readily available for testing in the interrupt flag register.

The VIA also clears the status automatically when the I/O port is read or written.

I hat is, reading data from the I/O port or storing data into it clears the corresponding

interrupt flags (bits 0 and 1 for port A, bits 3 and 4 for port B). No additional hardware or

software is necessary.

TABLE B-2 REGISTER ADDRESSES IN THE USER VIA

Address

In User \'IA

Register

Designation L'unction

AOOO ORB/1 RB Inpiit/output register B

AOOl ORA/IRA I/O register A (handshake)

A002 DITRB Data direction register B

A003 DDRA Data direction register A
AOOC PGR Peripheral control register

AOOD IFR Interrupt flag register

4’he following program (see Program B-7) waits until the switch attached to CAl
(the CAl switch, for short) closes. It then reads the data from port A and displays it on the

LEDs. 'Fable B-2 contains the addresses for the user VIA’s peripheral control and inter-

rupt flag registers. Note that a high-to-low transition on CAl (i.e., closing the CAl
switch) sets bit 1 of the interrupt flag register. We must therefore test for a 1 even though

the active state on CAl is 0.

LDA # ACTIVE TRANSITION IS NEGATIVE
STA SAOOC
LDA #%QQ000010 MASK FOR CA1 INTERRUPT FLAG

WAITR BIT SAOOD IS DATA READY?
BED WAITR NO. WAIT
LDA $AOQ1 YES. FETCH DATA
EOR #$FF AND SHOW IT ON THE LEDS
STA SAOGO
BRK

208 Microcomputer Experimentation with the AIM 65

PROGRAM B-7

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instrqption

(Mnemonic)

20D A9 LDA #
20E
Q20F 8D STA A99C
D210 C
211 A9
212 A9 LDA #82
213 2
214 2C WAITR BIT ABBD
215 D
216 A9
217 F9 BED B214
218 FB

219 AD LDA ABB1
21A 1

21 B AB
21

C

49 EBR #FF
21 D FF

21 E 8D STA ABBB
21 F

22^ A8
221 BRK

Enter and run Program B‘7. What is the final value in AOOD? Explain what

happened. Remember that reading port A (address AOOl) automatically clears bit 1 of the

interrupt flag register. Show that this actually happens by executing the program in the

STEP mode and examining AOOD before and after EDA $A001. Does it matter if you

replace EDA $A001 with STA $A001?

Sometimes the processor may exit from Program B-7 before you close the CAl
switch. The usual reason is that the interrupt flag was already set when the program

started. To keep this from happening, examine AOOl (port A) or press RESET before

executing the program.

PROBLEM B-5

Any instruction that reads or writes port A clears the CAl interrupt flag. Try the

following: ASE $A001, ESR $A000, STA $A001, STA $A000, CMP $A001,

INC $A001, EDA $A00T How does each affect the interrupt flag? Note that reading or

writing the data direction register or port B does not do the job.

Input/Output Using Handshakes 209

PROBLEM B-6

Make Program B-7 respond to the opening of the CAl switcli. Kemeinber that the

switch is dcboiinccd.

PROBLEM B-7

Make Program B-7^1oad data into an array starting at 0340, Lhe rex ised program

should load an item each time you close the CAl switch.

You can use CA2 just like CAl. Now- active transactions set bit 0 of the interrupt

flag register instead of bit 1, and the edge control is bit 2 of the peripheral control register

instead of bit 0.

PROBLEM B-8

Make Program B-7 respond to the opening of the CA2 switch.

Similarly, we can use CBl or CB2 as a PERIPHE^RAL READY input. The revised

version of Program B- 3 using CBl is as follow's (see Program B-8 for a mnemonic-entry

version).

LDA # MAKE ACTIVE TRANSITIDN NEGATIVE
STA SAOQC
LDA #o/oQ00100QO GET MASK FDR CBl INTERRUPT FLAG

WAITR BIT SAQQD IS PERIPHERAL READY?
BED WAITR ND. WAIT
LDA $0340 YES. SEND DATA
EOR #$FF WITH REVERSED POLARITY
STA SAOOO
BRK

PROBLEM B-9

Make Program B-8 send data from an array starting at 0340. The program should

send an item each time the status signal goes low'. How' would you make it respond to the

status signal going high? How would you make it respond to CB2 instead of CBl?

PROBLEM B-10

Make your answer to Problem B-9 respond to CA2 instead of CBl, Be careful; you

must send the data to port A, but you must also clear the interrupt flag by reading or

writing port B. Note that you can use BET or CMP to read port B without changing the

accumulator. You can use control lines from other ports as long as you manage the status

and control signals properly.

210 Microcomputer Experimentation with the AIM 65
«

PROGRAM B-8

Memory

Address

(Ilex)

Memory

Contents

(Ilex)

020D A9
20E
20F 8D
210 C
0211 AO
212 A9
213 10

214 2C
215 D
216 AO
217 FO

218 FB
219 AD
21A 40
21 B 3
21 C 49
21 D FF

21 E 8D
21 F

220 AO
221

Instruction

' (Mnemonic)

LDA #00

STA AOQC

' LDA #10

WAITR BIT AOOD

BED 0214

LDA 0340

EOR #FF

STA AOOO

BRK

Remember that a high-to-low transition on CBl (i.e., closing the CBl switch) sets

bit 4 of the interrupt flag register. Enter Program B-8 into memory and run it with (0340)
= FF.

VIA CONTROL OUTPUTS

So far, we have used VIA control lines as DATA READY or PERIPHERAL READY
signals. I his approach does not use any data lines. Furthermore, the status is latched, and
the interrupt flags are cleared automatically.

We can, however, do even more with the VIA’s control lines. We can also use CA2
or CB2 as an output control signal. The peripheral control register bits (see Figure B—6)
required to do this are:

1. Bit 3 determines whether CA2 is input (0) or output (1). Bit 7 does the same for

CB2. Note that we have cleared these bits in the previous examples.

2. If CA2 is output, bit 2 determines whether it is pulsed automatically after input or

output (0) or left at a fixed level (1). Bit 6 does the same for CB2. These alternatives

Input/Output Using Handshakes 211

are called the automatic mode and the manual mode, respeeti\ely. In the antoinatie

inode, control line 2 is normally 1 and becomes 0 during a pulse.

3. lfCA2 is in the automatic mode, bit 1 determines whether the pulse lasts one clock

cycle (1) or until the next aeti\e transition on CAl (0). Bit 5 does the same for CB2.
I he first alternati\e can produce a brief B"! I f, OU T pulse for multiplexing dis-

plays. 1 he second alternatixc can produce an acknowledgment to an intelligent

peripheral such as a terminal with its own microprocessor, d’he acknowledgment
indicates that the computer has accepted the latest input data or has produced new
output data that the peripheral has not yet accepted.

4. lfCA2(CB2) is in the manual mode, bit 1 (hit 5) is its \alue. I hc])rogram can then

change control line 2 by setting or clearing a hit in the peripheral control register.

Let us now revise Program B-4 to use CA2 in the manual mode as the data accepted

signal. We must load the peripheral control register with 00001110 binary (OE hex),

where

hit 3 = 1 to make CA2 an output

hit 2 =
1 to operate CA2 manually

hit 1 = 1 to make CA2 initially 1 (thus turning the LED off)

1 he revised program is as follows (see Program B—9 for a mnemonic-entry version):

LDA #o/o00001110
: TURN CDNTROL LIGHT DFF

STA SAOOC
LDA $A001

: GET DATA FROM INPUT PORT
EOR #$FF
STA SAQDO

: SHOW DATA ON LEDS
LDA #%Q00011G0 : TURN CONTROL LIGHT ON
STA SAOOC
BRK

All the LEDs are available for data, since CA2 acts as the control signal. Enter and run

Program B-9; use the S4 EP mode to see the data appear on the LEDs and the control

light go off and on.

PROGRAM B-9

Memory Memory
Address Contents Instruction

(Hex) (ftex) (Mnemonic)

020D AS
020E E
020F 8D
0210 C
211 AG
212 AD

LDA #QE

STA AQOC

LDA AQQ1

212 Microcomputer Experimentation with the AIM 65
«

PROGRAM B-9 (continued)

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0213 01

214 AO
0215 49 EOR #FF

216 FF

0217 8D STA AOOO
0218 00

0219 AO
021

A

A9 LDA #00
021 B C
0210 8D STA AOOO
021 00
021 E AO
021 F 00 BRK

We can also revise Program B-5 (handshake input) to use CA2. Here CAl indieates

whether new data is available, and CA2 indieates whether the data has been aeeepted (see

Figure B-4). Program B-10 is the mnemonie-entry version.

LDA #o/o00001110 TURN ODNTRDL LIGHT OFF

STA SAOOO
LDA #o/o00000010 GET MASK FOR 0A1 INTERRUPT FLAG

WAITR BIT SAOOD IS DATA READY?
BED WAITR NO. WAIT
LDA SA001 YES. GET DATA FROM INPUT PORT
EOR #$FF SHOW DATA ON LEDS
STA SAOOO
LDA #o/o00001 100 TURN ODNTRDL LIGHT ON
STA SAOOO
BRK

One problem with the manual mode is avoiding ehanges in other bits in the

peripheral eontrol register. We ean use logieal funetions to manipulate a single bit as

follows:

1. do make eontrol line 2 a 1, logieally OR bit 1 (for CA2) or bit 5 (for CB2) with 1.

LDA SAOOC
ORA #o/o00000010

;
BRING CA2 HIGH

STA $AOQC

Input/Output Using Handshakes 213

PROGRAM B-10

Memory
Address

(Hex)

Memory

Contents

(Ilex)

Instruction

(Mnemonic)

20D A9 LDA #BE
Q20E E
2DF # 8D STA ABBC
D210 C
21

1

AO
212 A9 LDA #2
213 2
214 2C WAITR BIT ABBD
215 D
216 A9
217 F9

0

BED 214
218 FB

219 AD LDA ABBB
21A
21 B AB
21

C

49 EBR #FF
21 D FF

21 E 8D STA ABBB
21 F

22^ AO
221 AS LDA #
222 00
223 8D STA ABBC
224 C
225 AO
226 00 BRK

LDA SABBC
t

DRA #o/oBB1BBBBB
:
BRING CB2 HIGH

STA SAOOC

2. 3 o make control line 2 a 0, logically AND bit 1 (for CA2) or bit S (for CB2) with 0.

LDA SABBC
AND #o/o1 1 1 1 1 1B1

; BRING CA2 LOW
STA SABBG

LDA SABBC
AND #o/o1 1B1 1111

; BRING CB2 LDW
STA SABBC

214 Microcomputer Experimentation with the AIM 65
*

PROBLEM B-1

1

\A/ rite a program tliat uses logical functions to bring CB2 high, low, and then high
again.

VIA AUTOMATIC CONTROL MODES

We can simplify Programs B-9 and B-10 further by using the automatic mode, in which
the VIA generates a pulse on control line 2. For example, let us store the binary value

00001000 (08 hex) in the peripheral control register, where

hit 3 = 1 to make CA2 an output

hit 2 = 0 to generate a pulse on CA2
bit 1 =0 to make CA2 go low after the I/O port is read and remain low until the next

active transition on CAl (CA2 is thus an INPUT BUFFER EMPTY signal)

I he following program works the same as Program B-8; the processor waits for an
active transition on CAl, reads the data, and then brings CA2 low to indicate that the data

has been accepted. Program B-11 is the mnemonic-entry version.

LDA #%00001000
:
PUT CA2 IN AUTDMATIC MDDE

STA SAOOC
LDA #o/oOQ000010

: GET CA1 INTERRUPT MASK
WAITR BIT SAOOD

: IS DATA READY?
BED WAITR

; NO. WAIT
LDA $A001

: YES. GET DATA FROM INPUT PORT
EOR #$FF

: SHOW DATA ON LEDS
STA SAOOO
BRK

Enter Program B-11 into memory and run it in the STEP mode. The LED
attached to CA2 (the CA2 LED, for short) should be off until the processor executes EDA
$A001 . Then it should light and remain lit until you open and close the CAl switch, thus

producing the next active transition. Note that we need not change the peripheral control

register after initializing it; the VIA sends the control line low and high automatically.

Obviously, the automatic mode requires less programming than the manual mode.
However, the manual mode gives the programmer complete control over the pulse’s

length and polarity. As you might expect, the automatic mode often does not fit a

particular situation; in such cases the manual mode is handy.

PROBLEM B-1

2

Make Program B-6 use CB2 in the automatic mode as the control output.

Input/Output Using Handshakes 215

PROGRAM B-1

1

Memory

Address

(Hex)

Memor\

Contents

(Ilex)

Instruction

(Mnemonic)

0200 A9 LDA #08
020E 08
020F ' 80 STA AOOC
0210 OC
021

1

AO
0212 A9 LDA #02
0213 02
0214 2C WAITR BIT AOOD
0215 00
0216 AO
0217 FO BEQ 0214
0218 FB

0219 AD LDA A001
021A 01

021 B AO
021 C 49 EOR #FF
0210 FF

021 E 80 STA AOOO
021 F 00

0220 AO
0221 00 BRK

PROBLEM B-1

3

Make the answer to Problem B-1 2 send data from an array starting at 0340. The
program should send the next item eaeh time the status input (CBl) goes low. Single-step

through the program to see the eontrol light go on and off.

The other automatic mode (peripheral control register bit 1 or hit 5=1) generates a

brief pulse lasting one CPU clock cycle. Besides multiplexing displays, this mode can

clock I/O devices such as A/D and D/A converters. Change location 020E to OA and run

Program B-1 1 again. You will not he able to see the control light come on because the

pulse is too brief. To verify that the pulse occurred, tie CA2 to CBl and test bit 4 of the

interrupt flag register after running the program.

We should note that port A and port B have different automatic modes. Port A
produces automatic pulses after the I/O port is either read or written, whereas port B
produces automatic pulses only after the I/O port is written. Of course, we can always fool

the VIA by including an unnecessary store instruction in an input program:

LDA VIAORB
; GET DATA FROM PORT B

STA VIAORB
: PRODUCE AUTOMATIC PULSE

216 Microcomputer Experimentation with the AIM 65
t

PROGRAMMABLE I/O DEVICES

'I’he VIA lias many operating modes (see Figures B-6 and B-7). A program ean put it in a

speeifie mode by storing appropriate values in its eontrol registers. The advantages of sueh
a deviee are that you ean use the same hardware in many different applieations and you
ean make ehanges or eorreetions in software. 1 he disadvantages are the extra program-
ming required and the laek of standards. The deviee’s manufaeturer determines arbitrarily

what modes are available and how they are seleeted. For example, the funetions and
positions of the bits in the VIA's control registers are arbitrary; similar devices from other
manufacturers would have completely different registers. '

However, the following features are typical of all programmable I/O devices:

1. Control or command registers that determine how the device operates.

2. Status registers that describe the current state of the device and the data transfer.

The VIA’s interrupt flag register serves as its status register.

3. Separate data and status or control inputs and outputs.

Most or all bits in the control registers are set during initialization to implement a

particular interface. The main program does not change them. When using the VIA, for

example, most applications programs do not change the arrangement of input and output
lines or the operating mode.

Programmable I/O devices require careful documentation. The instructions that

determine their operating modes and use them are arbitrary and are seldom described well
in manuals.

KEY POINT SUMMARY

1. Input and output can proceed properly only if there is a way to determine when the

receiver is ready, when new data is available, and when the receiver has accepted

the data.

2. Synchronous transfers use a clock, whereas asynchronous transfers require a hand-
shake in which sender and receiver exchange status and control signals.

3. Status and control signals can be implemented using data ports. Such implementa-
tions are simple in theory but require a lot of softuare and hardware in practice.

4. If status and control signals are treated as data, determining the status of a peripheral

{polling) is much like determining the state of a switch. Managing a control output
is much like turning an LED on and off. A handshake requires a series of input and
output operations.

5. The 6522 Versatile Interface Adapter (VIA) is an LSI device that simplifies polling

and handshaking. A VIA contains two bidirectional I/O ports, two status inputs, two
bidirectional status or control lines, and latches (interrupt flags) that are set by

transitions on the status lines.

Input/Output Using Handshakes 217

6 .

7.

8 .

Bits 0, 1, 3, and 4 of the \4A’s interrupt flag register are set by active transitions on
the input control lines (bit 0 by CA2, bit 1 by CAl, bit 3 by CB2, and bit 4 by CBl).
Bits 0 (CAl), 2 (CA2), 4 (CBl), and 6 (CB2) of the peripheral control register

determine whether positive or negative transitions are active (0 means negative, 1

positive). 'I’lic interrupt flags arc cleared automatically when the CPU reads or

writes the associated I/O port, thus preparing the \4A for the next transfer.

Control line 2 of each \4A port can be an output signal. Bit 3 (port A) or bit 7 (port

B) of the peripheral control register determines whether line 2 is input (0) or output

(1). If it is an output, there are several operating modes. In the automatic modes (bit

2 or bit 6 = 0), the control line is pulsed automatically after each I/O operation

(output only on port B). 'Phe pulse lasts either one clock cycle or until the next

active transition on control line 1; this choice depends on bit 1 (bit 5) of the

peripheral control register (0 makes the pulse last until the next transition, while 1

makes it last one clock cycle). In the manual mode (bit 2 or bit 6=1), the control

line takes the value of peripheral control register bit 1 or bit 5. 'Phe manual mode
requires more programming than the automatic mode but can prox ide pulses of any
length and polarity.

Programmable I/O devices simplify hardware design. However, the lack of stan-

dards for them makes careful program documentation essential. Each programma-
ble device has its own set of operating modes, ways to select those modes, and
special features.

LABORATORY C f
\

INTERRUPTS

PURPOSE

To learn when and how to use interrupts.

REFERENCE MATERIALS

L. A. LEVENTHAL, Introduction to Microprocessors: Hardware, Software, Program-

ming, Prentiee-Hall, Englewood Cliffs, NJ, 1978, Chapter 9.

L. A. LEVENd’HAL, 6S02 Assembly Language Programming, Osborne/MeCraw-Hill,

Berkeley, CA, 1979, Chapter 12, pp. 14-1 to 14-5.

L. A. LEVEN 1 HAL and W. SAVILLE, 6502 Assembly Language Subroutines,

Osborne/MeCraw-Hill, Berkeley, CA, 1982, pp. 63-68, 153-155, 464-489.

R. J. 4 0CCI and L. P. LASKOWSKI, Microprocessors and Microcomputers: Hardware
and Software, 2nd ed., Prentiee-Hall, Englewood Cliffs, NJ, 1982, pp. 199-200 (I/O

218

Interrupts 219

alternatives), 212-222 (interrupts), 34V345 (saving registers during interrupts), 377-
378 (address \eetors).

AIM 65 Monitor Program Listing, 14ynatein, Irvine, CA, 1979, pp. 9-11.

AIM 65 Users Guide, Dynatein, Irvine, CA, 1978, pp. 7-89 to 7-91, 8-26 to 8-30.

R6500 Microcomputer System Hardware Manual, Roekwell International, Seinieondiie-

tor Products Division, Newport Beach, CA, 1978, pp. 1-17 to 1-25, 2-10 to 2-13, 3-

18 to 3-23, 6-20 to 6-*23, 6-29 to 6-30.

R6500 Microcomputer System Programming Manual, Rockwell International, Semicon-
ductor Products Division, Newport Beach, CA, 1978, Chapter 9.

WHAT YOU SHOULD LEARN

1. I he features of the 6502 interrupt system.

2. How to use the 6522 VIA with interrupts.

3. Flow to use interrupts in handshake I/O.

4. How to buffer interrupt-driven I/O.

5. How’ to manage systems with multiple interrupts.

TERMS

Disable stop an activity from proceeding.

Enable allow an activity to proceed.

Interrupt a signal that temporarily suspends the computer’s normal sequence of opera-

tions and transfers control to a special routine.

Interrupt-driven dependent on interrupts for its operation.

Interrupt mask (or interrupt enable) a bit that determines whether interrupts will be

recognized. A mask or disable bit must be cleared to allow interrupts, whereas an enable

bit must be set.

Interrupt service routine a program that responds to an interrupt.

Interrupt vector a pointer that directs the CPU to an interrupt service routine.

Maskable interrupt an interrupt that the CPU can disable.

Nonmaskable interrupt an interrupt that the CPU cannot disable.

Polling interrupt system an interrupt system in which a program determines the cause
of an interrupt by examining the possibilities one at a time.

Priority interrupt system an interrupt system in which some interrupts take precedence
over others—that is, are serviced first or can interrupt the others’ service routines.

Reentrant able to be executed correctly while the same routine is being interrupted.

Transparent routine a routine that operates without interfering with other routines.

220 Microcomputer Experimentation with the AIM 65 t

Vectored interrupt an interrupt that produces an identification code (or vector) that the

CPU can use to transfer control to the service routine.

6502 INSTRUCTIONS

CLI clear interrupt disable (enable interrupts)
;
clear the INTERRUPT DISABLE (I)

flag, thus enabling the maskable interrupt (IRQ input).

RTI return from interrupt; load the program counter and the status register from the

stack, assuming that they were saved as shown in Figure C-1. '

SEI set interrupt disable (disable interrupts); set the INTERRUPT DISABLE (I) flag,

thus disabling the maskable interrupt (IRQ input).

OVERVIEW OF INTERRUPTS

Interrupts go directly into the CPU. They inform it of an event mueh as the ringing of a

telephone tells you that someone is calling. The program then need not test status inputs.

Instead, interrupts foree the CPU to suspend its normal operations and respond imme-
diately.

While interrupts result in a quick, direct response to external events, they introduee

new problems. They make testing and debugging diffieult, since they ean oceur at any
time. Extra hardware is often necessary to eontrol them and simplify their identification

(this hardware aets like a telephone switehboard). Furthermore, the designer must decide

when to allow them and how to transfer data between the main program and the service

routines.

6502 INTERRUPT SYSTEM

The 6502 has Kvo interrupt inputs:

1. NMI (nonmaskable interrupt) is commonly used to inform the processor of an
impending loss of power. The input is edge-sensitive, so that it will not interrupt its

own serviee routine. Nonmaskable means that the interrupt cannot be shut out

{disabled). In many applieations, a drop in the supply voltage below a specified level

causes a nonmaskable interrupt. In response, the proeessor saves essential data in a

low-power memory attaehed to a battery. Obviously, loss of power should have top

priority, sinee it will quickly shut everything down anyway.

2. IRQ is a maskable interrupt generally used for I/O and other normal system fune-

tions. 1 he input is level-sensitive. The 1 (IN I ERRUPl DISABLE) flag determines

whether the proeessor reeognizes IRQ interrupts. Setting the I flag disables IRQ,
whereas elearing it enables IRQ.

Interrupts 221

I he 6502 responds to an interrupt by completing its current instruction and then
fetching a neu’ program counter value from a fixed pair of memor\' locations (see Table
C-1). The processor saves the old program counter (the address of the next instruction)

and status register in the stack automatically, as shovMi in T'igure C-1. R'Tl at the end of
the service routine restores the registers saved during the response.

TABLE C-1 MEMORY MAP FOR 6502 INTERRUPT
VECTORS

V'ector Address

MS LS Input or Instruction

KI^’KF FFFE IRQ input

I'FFB FFFA NMl input

RESE I sets the 1 flag, disabling the maskable interrupt and allowing the program to

initialize the system before any interrupts are accepted. Accepting an interrupt also sets

the I flag and thus disables the maskable interrupt. An interrupt will therefore not disturb
its own service routine. R'TI normally reenables maskable interrupts automatically, since
it restores the old I flag.

Original stack

Stack

Pointer

Stack after saving status

Stack

Pointer

ss = original stack pointer

PP = status register with INTERRUPT DISABLE flag unchanged but with
BREAK flag set if response to BRK

PCH = MSB of program counter after executing current instruction

PCL = LSB of program counter after executing current instruction

HGURE C-1. Saving the 6502’s status in the stack.

222 Microcomputer Experimentation with the AIM 65
t

AIM INTERRUPTS

T able C-2 lists the interrupt addresses used by the AIM monitor. It directs (vectors) NMI
through A402 and A403. I he default value there is E07B, the starting address of the

SIEP routine. In the SIEP mode, the AIM produces a nonmaskable interrupt during
each instruction executed from user memory.

4’he monitor vectors IRQ interrupts through A400 and A40I. These locations have
no default value, so the user must load them.

TABLE C-2 AIM INTERRUPT ADDRESSES

Input Function

Location of

Service Routine

Default

Value

(ITex)

NMI Nonmaskable Address in A402 and E07B
interrupt A403

IRQ Maskable Address in A400 and None
interrupt A401

Before the AIM can respond properly to interrupts, your program must:

1. Initialize the stack pointer, since the interrupt response uses the stack.

2. Put the starting address of the service routine in A400 and A401 (IRQ) or A402 and
A403 (NMI).

3. Enable the maskable interrupt with CLI.

NONMASKABLE INTERRUPTS

The easiest interrupt to use is the nonmaskable one produced by moving the RUN/STEP
switch to the STEP position. All your program must do is initialize the stack pointer,

since the monitor provides the interrupt vector and the service routine.

I’he following program (Program C-1 is the mnemonic-entry version) waits for you
to mov'e the RUN/STEP switch to the S I EP position. It then returns control to the

monitor. Obviously, you cannot use the STEP mode to debug this routine.

LDX #$7F
: INITIALIZE USER STACK POINTER

TXS
HERE JMP HERE

;
WAIT FOR INTERRUPT

Here the interrupt is always enabled; it normally stops program execution and returns

control to the monitor. Enter and run Program C-1; be sure to start in the RUN mode.

Interrupts 223

PROGRAM C-1

Memory
.\ddress

(Hex)

.Memory

Contents

(Ilex)

Instruction

(Mnemonic)

200 A2 LDX #7F
0201 7F

0202 ' 9A TXS
0203 40 HERE JMP 0203
0204 03
205 02

6522 VIA INTERRUPTS

A VIA can cause interrupts. Its interrupt flag register (Figure B-7) indicates which ones
have occurred, while its interrupt enable register (Figure C—2) indicates whieh ones are
aetive. Loading the interrupt enable register is trieky sinee bit 7 is a set or elear eontrol;
that is,

1. Bit 7 must be 1 to enable interrupts or 0 to disable them.

7 6 5 4 3 2 1 0

CA2

CA1

SHIFT REG

CB2

CB1

TIMER 2

TIMER 1

SET/CLEAR

0 = INTERRUPT DISABLED

1 = INTERRUPT ENABLED

NOTES:

1 . If bit 7 is a 0, each 1 in bits 0-6 disables the

corresponding interrupt.

2. If bit 7 is a 1 , each 1 in bits 0-6 enables the

corresponding interrupt.

3. If this register is read, bit 7 will be 0, and bits 0-6

will reflect their enable/disable state.

FIGURE C-2. The 6522 VIA’s interrupt enable register (IF^R). (Reprinted courtesy of
Rockwell International, Semiconductor Products Division, Newport Beach, CA.)

224 Microcomputer Experimentation with the AIM 65
t

2. rhc other bits determine vvhieh interrupts are affeeted. Is affeet the enabling bits,

whereas Os leave them unebanged. We ean enable or disable several interrupts at

onee, but we eannot enable some and disable others in a single operation.

Here are some examples for the user VIA (the interrupt enable register is address

AOOfc:; see d able C-3):

1. Enable the CAl interrupt.

LDA #o/o1000001Q
: ENABLE CA1 INTERRUPT

STA SAOOE

Bit 7 = 1 to enable interrupts and bit 1 = 1 to affeet speeifieally the CAl interrupt.

2. Disable the CB2 interrupt.

LDA #o/o00001000
: DISABLE CB2 INTERRUPT

STA SAOOE

Bit 7 = 0 to disable interrupts and bit 3 = 1 to affeet speeifieally the CB2 interrupt.

TABLE C-3 REGISTER ADDRESSES IN THE USER VIA

Address

In User VIA
Register

Designation Function

AOOO ORB/IRB I/O register B

AGO I ORA/IRA I/O register A
A002 DDRB Data direction register B
.AGO 3 DDRA Data direction register A
AGGC PGR Peripheral control register

AGGD IFR Interrupt flag register

AGGE lER Interrupt enable register

PROBLEM C-1

Write a program that enables both CAl and CBl interrupts.

PROBLEM C-2

Write a program that enables CAl and CB2 interrupts and disables CA2 and CBl
interrupts.

Let us now make the user VIA eause interrupts. Its interrupt output is tied to the

maskable interrupt (IRQ), whieh is servieed at the address in A400 and A401. Initially, we
will use the monitor’s BRK handling routine (address E163). The main program must:

1. Seleet the aetive transition by loading the VIA’s peripheral control register (Figure

B-6).

Interrupts 225

2. Load the interrupt vector; that is, put 63 in A400 and El in A401.

3. Enable the VIA interrupts by storing a value with bit 7 set in the interrupt enable

register (Figure C-2).

4. Enable the CPU interrupt by clearing the I flag.

4’hc following program (Program C-2
higb-to-low transition on CAl.

LDX #$7F
TXS
LDA #0
STA SAOQC
LDA #$63
STA $A400
LDA #$E1
STA $A4Q1
LDA #%100Q0010
STA SAOOE
CLI

JMP HERE

is a inneinonic-entry version) responds to a

: INITIALIZE USER STACK POINTER

: CAl ACTIVE HIGH-TO-LOW

: LOAD INTERRUPT VECTOR

: ENABLE CA1 INTERRUPT

: ENABLE CPU INTERRUPT

: WAIT FOR INTERRUPT

Enter and run Program C-2. Closing the CAl switch will produce an interrupt. Be
sure to clear it afterward by examining AOOl (I/O port A).

PROBLEM C-3

Make Program C-2 allow interrupts on higb-to-low transitions on CA2. What does

the interrupt flag register (address AOOD) contain after the program runs?

How would you make Program C-2 use CBl instead of CAl as the interrupt

source? What memory location must you examine to clear the interrupt flag? What
changes must you make to use CB2?

When changing interrupts, press RESET to clear the entire interrupt enable regis-

ter. Otherwise, interrupts from earlier programs will remain enabled and may cause

confusion. A sequence that disables all user VIA interrupts is

LDA #o/o01 111111
: DISABLE ALL INTERRUPTS

STA SADDE

What happens if you replace LDA #%01 111111 with LDA #%1 1 111111?

Note that you cannot use the STEP mode to debug a service routine. The STEP
mode depends on nonmaskable interrupts, which take priority over maskable interrupts.

The processor will therefore not respond to maskable interrupts when the AIM is in the

STEP mode.

226 Microcomputer Experimentation with the AIM 65
t

PROGRAM C-2

Memory

Address

(Hex)

Memory

Contents

(Hex)
%

Instruction

(Mnemonic)

0200 A2 LDX #7F
0201 7F

2Q2 9A TXS
0203 A9 LDA #
204
205 8D STA AOOC
206 C
207 AO
208 A9 LDA #7F
209 7F

20A 8D STA A400
20B
20C A4
20D A9 LDA #E1
20E El

20F 8D STA A401
210 1

21

1

A4
212 A9 LDA #82
213 82
214 8D STA AOOE
215 E
216 AO
217 58 CLI

218 4C HERE JMP 218
219 18

21A 2

To employ our own service routine instead of the monitor’s, we must

1. Change the address Program C-2 loads into A400 and A401. For example, we
could make that value 0280 (80 in A400 and 02 in A401).

2. Load our service routine into RAM, beginning at that address. For example, we
could place BRK (00) in 0280. Make these changes and run Program C—2 again.

How does the display change?

HANDSHAKING WITH INTERRUPTS
f

Interrupts are often used to perform handshake I/O (see Figures B-4 and B-5). To
experiment with this, we need the following startup routine (see Program C-3 for a

Interrupts 227

mnemonic-entry version). It loads the stack pointer, the VIA’s data direction registers, and
the AIM’s interrupt vector; it also turns all the LEDs off. (We leave the initialization of

the peripheral control and interrupt enable registers for later, since their values will vary.)

LDX #$7F
: INITIALIZE USER STACK PDINTER

TXS
LDA #

: MAKE PDRT A INPUT
STA $A003
LDA #$FF
STA $AQ02

: MAKE PDRT B DUTPUT
STA SAOQQ

: TURN LEDS DFF
LDA #$80

: LDAD INTERRUPT VECTDR
STA $A400
LDA #$G2
STA $A401

PROGRAM C-3

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

Q200 A2 LDX #7F
201 7F

0202 9A TXS
0203 A9 LDA #00
0204 00

0205 8D STA A003
0206 03
0207 AO
0208 A9 LDA #FF
0209 FF

020A 8D STA A002
0208 02

020C AO
020D 8D STA AOOO
020E 00

020F AO
0210 A9 LDA #80
021

1

80
0212 8D STA A400
0213 00

0214 A4
0215 A9 LDA #02
0216 02

0217 8D STA A401
0218 01

0219 A4

228 Microcomputer Experimentation with the AIM 65
*

'I’he following program is an interrupt-driven version of Program B-2. (Program
C-4 is a mnemonie-entry version.) It loads data from port A when you close the CAl
switch. I he main program clears the DAI A READY flag (0040) and waits for the service

routine to set it. In response to the interrupt, the service routine loads the data from the

input port and sets the DATA READY flag.

Note the following features of Program C-4;

1 . We enable the VIA and CPU interrupts last, after initializing all system parameters.

Otherwise, an early interrupt could cause problems if it found the VIA in the wrong
operating mode. '

2. We must set the bits in the VIA’s interrupt enable register to allow interrupts, but
we must clear the CPU’s INTERRUPT DISABLE flag.

3. The final SEI (SET INTERRUPT DISABLE FLAC) disables the CPU interrupt

before returning control to the monitor. This precaution avoids conflict with

monitor functions or later user programs.

4. The LDA $A001 instruction in the service routine clears the interrupt flag and
reads the data from port A.

WTRDY

LDA #0
STA SAOOC
LDA #o/o10000G1Q

STA SAOOE
LDA #
STA $40
CLI

LDA $40
BED WTRDY
SEI

BRK

; CA1 ACTIVE HIGH-TO-LOW

; ENABLE CA1 INTERRUPT

: CLEAR READY FLAG

: ENABLE CPU INTERRUPT

; IS DATA READY?
: ND. WAIT

:
YES. DISABLE CPU INTERRUPT

^ = $0280
PHA
INC $40
LDA $A001
STA $41

PLA

RTI

: INTERRUPT SERVICE RDUTINE
: SAVE ACCUMULATOR
; SET READY FLAG
: GET DATA. CLEAR INTERRUPT

: RESTORE ACCUMULATOR

The service routine need only save and restore the accumulator, since the interrupt

response saves the status register automatically. Try running Program C-4 for various

inputs at port A. What do you find in 0040 and 0()41?

PROBLEM C-4

Make Program C-4 display the data on the LEDs at port B after each closure.

Interrupts 229

PROGRAM C-A

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

021A A9 LDA #00
021 B 00
021

C

8D STA AOOO
021 D 00
021E AO
021 F A9 LDA #82
0220 82
0221 8D STA AOOE
0222 OE
0223 AO
0224 A9 LDA #00
0225 00
0226 85 STA 40
0227 40
0228 58 OLI

0229 A5 WTRDY LDA 40
022A 40
022B FO BED 0229
0220 FO

022D 78 SEI

022E 00 BRK

0280 48 PHA
0281 E6 INO 40
0282 40
0283 AD LDA A001
0284 01

0285 AO
0286 85 STA 41
0287 41

0288 68 PLA
0289 40 RTI

PROBLEM C-5

Make Program C-4 save input data values starting at 0340. 'That is, eaeh time you
elose the CM switeh, the program should read the data from port A and store it in the

next available loeation. Use 0040 for the buffer index, and make the serviee routine save

and restore any registers it uses.

PROBLEM C-6

Make the main part of Program C-4 wait for a 7F input, the synchronization

230 Microcomputer Experimentation with the AIM 65
t

character discussed in Laboratory 2. If the input is not 7F, the main program should

simply clear the DATA RP'.ADY flag and wait.

PROBLEM C-7

Write an intcrrnpt-driven version of Program B-3. The main program should clear

0040 to indicate that data is available for output. When a high-to-low transition occurs on

CBl, the service routine should send the data from 0041 and set 0040 to 1, indicating that

the data has been sent.

PROBLEM C-8

Change the answer to Problem C-7 so that the service routine sends the data only if

it is a synchronization character (7F hex). Otherwise, the ser\ ice routine simply sets 0040

to 1 and clears the interrupt flag. AH the LEDs will remain off unless (0041) = 7F.

COMMUNICATING WITH INTERRUPT SERVICE ROUTINES

We cannot use registers to transfer data to or from an interrupt service routine, since the

main program generally needs them to do its own work. What we need is an approach that

makes the service routines transparent to the main program, so that cither can be changed

without affecting the other.

One method is to use memory locations (called a mailbox) for data transfers. They
serve the same purpose as the drops in spy movies. The agent places orders, requests, and

payments in the drop; the informant picks up the mail and puts the information in the

drop. The agent and the informant never talk or meet. Either can be replaced without

affecting the flow of information.

Eor example, in Program C-4, the main program clears 0040 and waits for the

serviee routine to ehange it. When that happens, the main program exits. Here the

interrupt acts like a RUN command, causing the main program to proeeed.

PROBLEM C-9

Make Program C-4 use bit 7 of 0040 as the READY flag. The data is then in bits 0

to 6, as one would expect if it consists of 7-bit ASCII characters.

PROBLEM C-10

Make Program C-4 wait until 0040 eontains 10. How would you make it wait until

0040 contains the same value as 0020? T his approach is useful when the computer must

count external events, such as clock pulses or activations of a sensor.

Obviously, the receiver must check the mailbox often enough to avoid missing

messages. One drawback is that other programs may use the mailbox. Imagine an infor-

mant hiding valuable papers in a trash container. Unfortunately, before the agent can

retrieve them, the sanitation department eollects the trash.

Interrupts 231

BUFFERING INTERRUPTS

Program C-4 handles the input data one eliaraeter at a time. Clearly, this is awkward and
time-eonsiiming if the data rate is high or if only seqiienees of data are meaningful (as is

generally true when the inputs are from a terminal or eommunieations line). T he obvious
solution is to buffer the data in memory, i hen the ser\ iee routine ean fill a buffer, and the
main program need not be eoneerned with indixidual eharaeters. 'The buffer serves the
same purpose as a buffer memory in a printer or terminal, d he eomputer ean send the
peripheral a bloek of data, and the peripheral ean then handle individual items at its own
speed. In our ease, the serviee routine plays the role of the peripheral.

In the following program, the main program waits until the eount in 0040 reaehes
4. It also stores the inputs in sueeessixe loeations starting at 0340. (Program C— 5 is a

mnemonie-entry version.

)

WTCNT

LDA #0
: MAKE CA1 ACTIVE HIGH-TD-LDW

STA SAOOC
LDA #%1000001Q

: ENABLE CA1 INTERRUPT
STA SAOQE
LDA #Q

: CLEAR COUNT TO START
STA $40
CLI ENABLE CPU INTERRUPT
LDA #4 GET TARGET COUNT
CMP $40 ENOUGH INPUTS RECEIVED?
BNE WTCNT NO. CONTINUE
SEI YES. DISABLE CPU INTERRUPT. EXIT
BRK

* = 280
PHA SAVE ACCUMULATOR. X REGISTER
TXA
PHA
LDX $40 BUFFER INDEX = COUNT
LDA $A001 GET INPUT DATA
STA $0340, X STORE DATA IN BUFFER
INC $40 INCREMENT BUFFER INDEX
PLA RESTORE X REGISTER. ACCUMULATOR
RTI

This serviee routine must save and restore both A and X. Remember that the
proeessor saves only the program eounter and status register automatieally.

Enter and run Program C-5. Set the switehes to form the following array:

(0340) = FO (1 1 1 10000 binary)

(0341) = OF (00001111 binary)

(0342) = AA (10101010 binarv)

(0343) = 55 (01010101 binarv)

232 Microcomputer Experimentation with the AIM 65

PROGRAM C-5

Memory

Address

(Hex)

Memory

Contents

(Hex)

« Instruetion

(Mnemonic)

021A A9 LDA #
21 B

021 C 8D STA A00C
21 D C
21 E A0
21 F A9 'LDA #82
220 82

221 8D STA AC0E
222 E
223 A0
224 A9 LDA #
225
226 85 STA 40
227 40
228 58 CLI

229 A9 LDA #04
22A 4
22B C5 WTCNT CMP 40
22C 40
22D BNE 228
22E FG

22F 78 SEI

230 BRK

280 48 PHA
281 8A TXA
282 48 PHA
283 A6 LDX 40
284 40
285 AD LDA A001
286 1

287 A0
288 9D STA 340.x
289 40
28A 3
288 E6 INC 40
28C 40
28D 68 PLA
28E AA TAX
28F 68 PLA
290 40 RTI

Interrupts 233

PROBLEM C-1

1

Make Program C-5 fill the buffer until it recei\es an input of OD, an ASCII earriage

return eharaeter. Use 0041 as an END OP" LINE flag. 4’he main program should elear

the flag initially and then wait for it to he set. 4 he ser\ iee routine should set the flag when
it reeeives a OD input. A program like this handles input from a terminal one line at a

time.

PROBLEM C-1

2

Make Program C-5 fill the buffer with a message that starts with an ASCII S EX
(Start of 4 ext) eharaeter (02) and ends with an ASCII ETX (End of 4’ext) character (03).

All inputs before the S'EX are simply ignored, and the S4^X and E4’X characters them-
selves are not placed in the buffer. Such control characters are often used for synchroniza-

tion.

Example

If the inputs are (in order of receipt)

67

B2

02 ASCII S IX
47 ASCII C
5E ASCII O (letter)

OD ASCII Carriage Return

03 ASCII E4’X

the final buffer contents are

(0340) = 47 ASCII C
(0341) = 5E ASCII O (letter)

(0342) = OD ASCII Carriage Return

The h\'o inputs preceding the S^EX are ignored. The SIX and ETX characters do not

appear in the buffer. {Hint: Use 0042 as a 4’RANSMISSION IN PROCRESS flag. 44ie

main program should clear the flag initially, and the service routine should set the flag

when it receives an S4"X input.)

PROBLEM C-1

3

A common practice, called double buffering, allows the service routine to fill one
buffer while the main program processes another. Extend Program C-5 so that it first fills

the buffer starting at 0340 with four inputs and then fills the buffer starting at 0360. Use

234 Microcomputer Experimentation with the AIM 65 *

0041 as a flag that indicates whether the first buffer is full (0 means empty, 1 full), and use
0042 as a similar flag for the second buffer. Use 0043 and 0044 to hold the address of the
buffer the service routine is currently using. Be sure to disable CPU interrupts while
changing buffers. (Why?)

Example

Initially, 0041 and 0042 are both cleared. If the inputs are (in order of receipt)

FE (all switches open except #0)
FD (all switches open except #1)
FB (all switches open except #2)
F7 (all switches open except #3)
EF (all switches open except #4)
DF (all switches open except #5)
BF (all switches open except #6)
7F (all switches open except #7)

the first four values end up in the first buffer and the second four in the second buffer.

0041 is set to 1 after the first four inputs have been received; 0042 is set to 1 after the
second four inputs have been received. The values in the first buffer are

(0340) = FE
(0341) = FD
(0342) = FB

(0343) = F7

The values in the second buffer are

(0360) = EF
(0361) = DF
(0362) = BF
(0363) = 7F

PROBLEM C-14

Write an interrupt-driven output routine that transmits data from a buffer starting at

0340 until it finds a OD value, the ASCII carriage return character.

Example

(0340) = 80

(0341) = 40

(0342) = 20

(0343) = 10

(0344) = OD

Interrupts 235

The output should be a single light that moves right one position after eaeh interrupt. 4 he

program should exit with the displays showing OD.

MULTIPLE SOURCES OF INTERRUPTS

So far, we have assumed a single souree of interrupts. Real applieations normally have

several sourees, sueh as input deviees, output deviees, alarms, timers, eontrol panels, and

remote stations. T he problem is how to determine whieh souree eaused an interrupt.

Onee that is done, the proeessor must exeeute the appropriate serviee routine.

T he least expensive approaeh is to examine the status of one souree at a time. This

is like answering a telephone eonnected to several lines by trying lines sueeessively until

you find the caller. T he first active source is serviced, and the others are handled in the

order of examination. This approach (called polling) is particularly simple for a VIA since

its status is readily available in its interrupt flag register.

T he next program waits for an interrupt on either CAl or CBl of the user VIA. T he

service routine examines the interrupt flag register and services the first interrupt it finds

active. If the input (CAl) interrupt is active, the routine increments 0040 and loads the

input data into 0041 . If the output (CBl
) interrupt is active, the routine increments 0042

and sends the output data from 0043.

T he main service routine disables the VIA interrupts so you can see the effects of

priority'. Otherwise, the second interrupt would be serviced as soon as the first service

routine was completed. The disabling keeps the lower-priority interrupt from being ser-

viced, hence its interrupt flag remains set. You can check the interrupt flags by examining

AOOD, but be careful not to clear them by examining the I/O ports.

In the general case with many VlAs, the polling routine need initially examine only

bit 7 of each interrupt flag register. This is the IRQ (interrupt request) flag (see F igure B-

7); it is 1 if any interrupt condition is both active and enabled. A polling routine can

therefore use BYV to examine many VTAs successively. It need only examine the rest of

the interrupt flag register after it narrows its search to a particular VIA.

LDA #
: INTERRUPTS ACTIVE HIGH-TO-LOW

STA SAQOC
LDA #o/o1QQ10010

: ENABLE CAT CBl INTERRUPTS
STA $AOOE
LDA #0

: CLEAR READY FLAGS
STA $40

STA $42

CLI
: ENABLE CPU INTERRUPT

WTINT CMP $40
: INPUT DATA AVAILABLE?

BNE DONE
: YES. DONE

236 Microcomputer Experimentation with the AIM 65
«

CMP $42
BEQ WTINT

DONE SEI

BRK

* = $0280
PHA
LDA #o/oOO0 10010
STA $A00E
LDA #o/o00000010

BIT $A00D
BNE SRVIN
LDA #o/oOO010000
BIT $A00D
BNE SRVOUT
PLA

RTI

* = $02C0
SRVIN INC $40

LDA $A001
STA $41

PLA

RTI

* = $02E0
SRVOUT INC $42

LDA $43
EOR #$FF
STA $A000
PLA
RTI

OUTPUT BUFFER EMPTY/
NO, WAIT
EXIT BACK TO MONITOR

J
POLLING ROUTINE
SAVE ACCUMULATOR

: DISABLE FURTHER VIA INTERRUPTS

: INPUT INTERRUPT ACTIVE?

: YES. SERVICE INPUT

: OUTPUT INTERRUPT ACTIVE?

: YES, SERVICE OUTPUT
: RETURN IF NEITHER ACTIVE

INPUT (CAD INTERRUPT SERVICE
SET INPUT READY FLAG
FETCH DATA FROM INPUT PORT
SAVE DATA
RESTORE ACCUMULATOR

OUTPUT (CBD INTERRUPT SERVICE
SET OUTPUT READY FLAG
GET OUTPUT DATA
INVERT POLARITY
SEND DATA TO LEDS
RESTORE ACCUMULATOR

You can test the priority seheine by setting both interrupt flags before exeeuting
Program C-6. Only the input interrupt will be servieed, and the output interrupt (CBl)
flag will remain set. You must, however, remove the STA $A000 instruetion from
Program C-3 (replaee it with three NOPs) sinee it will elear the CBl interrupt flag.

PROBLEM C-15

If an input interrupt and an output interrupt oeeur simultaneously, whieh will the
proeessor serviee? Why? How eould you ehange the polling routine to invert the priority?

PROBLEM C-16

Some interrupt systems may ignore low-priority interrupts indefinitely if there are
many high-priority interrupts. The situation is like that of a ealler who is left "on hold"
forever. One w'ay to ensure that all interrupts get servieed is to rotate the priorities. Make

Interrupts 237

the polling routine invert the order in which it examines interrupts as part of each
execution. Use 0044 as a flag indicating the order of examination (00 means “input

interrupt first” and FF means “output interrupt first”).

PROGRAM C-6

Memor>

Address

(Hex)

Memory
*

Contents

(Hex)

Instruction

(Mnemonic)

021A A9 LDA #00
021 B 00
021

C

8D STA AOOO
021 D 00
021

E

AO
021 F A9 LDA #92
0220 92
0221 8D STA AOOE
0222 OE
0223 AO
0224 A9 LDA #00
0225 00
0226 85 STA 40
0227 40
0228 85 STA 42
0229 42
022A 58 OLI

022B 05 WTINT OMP 40
0220 40
022D DO BNE 0233
022E 04

022F 05 OMP 42
0230 42

0231 FO BED 022B
0232 F8

0233 78 DONE SEI

0234 00 BRK

0280 48 PHA
0281 A9 LDA #12
0282 12

0283 8D STA AOOE
0284 OE

0285 AO
0286 A9 LDA #02
0287 02

0288 20 BIT AOOD
0289 OD
028A AO

238 Microcomputer Experimentation with the AIM 65
«

PROGRAM C—6 (continued)

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemortic)

Q28B DO BNE 02C0
28C 33
28D A9 LDA #10
028E 10

028F 2C BIT AOOD
290 D N

291 AO
292 DO BNE 02E0
293 4C
294 68 PLA
295 40 RTI

2C0 E6 SRVIN INC 40
2C1 40
2C2 AD LDA A001
2C3 1

2C4 AO
2C5 85 STA 41
2CB 41

2C7 68 PLA
2C8 40 RTI

2E0 E6 SRVOUT INC 42
2E1 42
2E2 A5 LDA 43
2E3 43
2E4 49 EOR #FF
2E5 FF

2E6 8D STA AOOO
2E7 0
2E8 AO
2E9 68 PLA
2EA 40 RTI

PROBLEM C-17

Write a program for a complete interrupt-driven I/O system. The program should
initially enable only the input interrupt and wait for input data. When it receives data, it

should disable the input interrupt, enable the output interrupt, and wait for the output
device to become ready. When the output device is ready, the program should send the

input data, disable the output interrupt, and complete the cycle by enabling the input

interrupt. Note that the VIA latches transitions that occur while its interrupt outputs are

disabled.

Interrupts 239

Do not service a disabled interrupt. Remember that its interrupt flag can still be set.

No interrupt will occur, but a polling routine will find the flag set. d ims if some VIA
interrupts are disabled, your polling routine should not check their flags. You can deter-

mine if an interrupt is enabled by testing the interrupt enable register.

Polling is adequate if there are only a few sources. As the number increases,

however, it becomes slow and cumbersome, dlic alternative is a vectored system in which

each interrupt directs the CPU to its service routine. For example, we could connect the

interrupts to an encoder like the one discussed in Laboratory 4. d’he processor could then

read the encoded value from an input port and use it to select a service routine.

GUIDELINES FOR PROGRAMMING WITH INTERRUPTS

In designing interrupt-based systems, the programmer should consider the follov\ing

guidelines.

1. Initialize all parameters before enabling interrupts.

2. Make all service routines transparent to the programs they can interrupt.

3. Provide a well-defined method for transferring data between the main program and

the scrx'ice routines. This method should be flexible and program-independent.

4 here are many aspects of programming w ith interrupts that we have not discussed.

Among them are reentrant programs that can be interrupted and resumed even if the

interrupt service executes them. Such programs must use the registers and the stack for

temporary storage, not specific memory addresses that would be overwritten.

Still another problem is the need to disable interrupts during activities that could

not be resumed properly, such as delay loops, command sequences, and updating of

multiple-byte results that must be used during the interrupt service. If a program is

changing multibyte data, it must finish if the interrupt service routine uses the data.

Otherwise, the service routine could find the data only partially changed.

KEY POINT SUMMARY

1 . Interrupts allow a computer to respond rapidly and directly to external events such

as changes in the status of peripherals. The program need not check whether events

have occurred, since the occurrences change hardware inputs.

2. The 6502 microprocessor has two interrupts: maskable (IRQ) and nonmaskable

(NMI). In response to them, the processor saves the program counter and status

register in the stack, disables the maskable interrupt, and fetches a new program

counter value from a specified pair of memory locations. An R'FI instruction at the

end of the service routine restores the old program counter and status register from

the stack. The service routine must save and restore the accumulator and index

registers if it uses them.

240 Microcomputer Experimentation with the AIM 65
«

3. Before enabling interrupts, the main program must load the staek pointer and
initialize any parameters that the serviee routines use. It must also determine the

operating modes for VIAs and other I/O deviees. RESET disables the CPU inter-

rupt and the VIA interrupts.

4. I he main program and the serviee routines eannot eommunieate through the

registers, beeause eaeh needs them for its own use. A simple w'ay to eommunieate is

through memory loeations, whieh aet like a mailbox. One program ean plaee
information there for the other to read.

5. Buffering allows the main program and the serviee routine to eommunieate less

often. The main program need only eoneern itself with an'entire buffer’s worth of
data. Either a large buffer or multiple buffers (double buffering) gives the main
program more time to do its work without missing data or ignoring requests for

serviee.

6. A VIA ean be used in an interrupt-driven mode by setting bits in its interrupt enable
register. Transitions on the control lines then cause interrupts as well as set the

interrupt flags.

7. If there are many sources of interrupts, the program must have a way of identifying

them. Polling means that the processor examines the status of successive sources
until it finds one that is active. Vectoring means that each source provides its own
identification.

8. In polling interrupt systems, the priorit>^ of the sources depends on the order of
examination. This order can be changed or varied if necessary. Since the time
required to identify a source increases linearly with how many there are, polling is

reasonable only in systems with just a few sources.

LABORATORY D 4.

4.

TIMING METHODS

PURPOSE

To learn how to time input and output operations.

PARTS REQUIRED

• A low-frequency clock input (5 to 200 Hz), such as one generated from a 555 timer

(see Figure D-1). The clock should be tied with a jumper to pin PA5 of the user

VIA (pin 6 of the Application Connector) as shown in Figure D-2. Jumpers will let

you choose between the clock input and the switch in Figure 2-1.

REFERENCE MATERIALS

L. A. LEVEN THAL, Introduction to Microprocessors: Hardware, Software, Program-

ming, Prentice-Hall, Englewood Cliffs, NJ, 1978, pp. 343-345, 485-486.

241

242 Microcomputer Experimentation with the AIM 65
t

L. A. LEVEN I HAL, 6502 Assembly Language Programming, Osborne/McGraw-Hill,
Berkeley, CA, 1979, pp. 11-8 to 11-11, 11-36 to 1 1-42, 12-23 to 12-31.

L. A. LEVF^NillAL and W. SAV1LLE-, 6502 Assembly Language^ Subroutines,

Osborne/McGravv-Hill, Berkeley, GA, 1982, pp. 460-463, 490-503.
^

A. OSBORNE and G. KANE, Osborne 4- and 8-Bit Microprocessor Handbook, Osborne/

MeGraw-Hill, Berkeley, GA, 1981, pp. 10-35 to 10-55.

R. J. lOGGI and L. P. LASKOWSKl, ALicroprocessors ar^d Microcomputers: Hardware
and Software, 2nd ed., Prentiee-Hall, Englewood Gliffs, NJ, 1982, pp. 43-46 (eoiin-

ters), 88-89 (proeess eontrol), 368—375 (timing loops). '

A/M 65 Monitor Program Listing, Dynatem, Irvine, GA, 1978, pp. 39, 55.

AIM 65 Users Guide, Dynatem, Irvine, GA, 1978, pp. 8-30 to 8-40 (6522 timers).

Appendix K (AIM 65 user submonitor with 24-hour eloek).

R6S00 Microcomputer System Programming Manual, Roekwell International, Semieon-
duetor Produets Division, Newport Beaeh, GA, 1978, pp. 6-8 to 6-14, 6-30 to 6-33.

+5 V

EXTERNAL
CLOCK

FIGURE D-1. Simple circuit for generating a low-frequency clock from a 555 timer.

The frequency is approximately 83 Hz.

EXTERNAL
CLOCK

APPLICATION CONNECTOR

<3 PAS

FIGURE I>-2. Connection of the external clock to bit 5 of port A of the user VIA.
{Note: jumper wires can be used to select either this input or the switch input in Figure 2-

1 .)

Timing Methods 243

WHAT YOU SHOULD LEARN

1. How to synchronize with an external clock.

2. How to dctcrininc the period of an external clock.

3. How to program the timers in the 6522 \'\A.

4. How to use an elapsed time interrupt.

5. How to produce and use a real-time clock.

TERMS

Multitasking executing many tasks at once, usually by working on the highest-priority

task that is currently active and suspending tasks that must wait for I/O, the completion of

other tasks, or external events.

One-shot a device that produces a single pulse of known length in response to a pulse

input.

Operating system (OS) a computer program that controls the overall operations of a

computer and performs such functions as assigning places in memory to programs and

data, scheduling the e.xecution of programs, processing interrupts, and controlling the

overall I/O system. Also known as a monitor or executive.

Programmable timer a device that can perform many timing functions, such as generat-

ing delays, under program control.

Real-time in synchronization with the actual occurrence of events.

Real-time clock a device that interrupts a CPU at regular time intervals.

Real-time operating system an operating system that can control programs with real-

time requirements.

Scheduler a program that decides when to start and terminate other programs.

Supervisor a program that controls the loading and execution of other programs.

Suspend halt execution and preserve the status of a task.

Task a self-contained program that forms part of a system under the control of a

supervisor.

Task status the parameters that specify a task’s current state.

Utility a program that performs a common overhead operation such as sorting, convert-

ing data from one format to another, or copying a file.

TIMING REQUIREMENTS AND METHODS

Timing is a continual problem in microprocessor applications. Systems must handle

inputs and outputs at the proper rates and perform their work on schedule. Delay pro-

grams, such as those described in Laboratory 3, can meet simple timing requirements.

244 Microcomputer Experimentation with the AIM 65
t

1 lowcvcr, since tlicy occupy the processor completely, they are inadequate for applica-

tions with complex, varying timing needs.

Many applications, particularly in process and industrial control, involve real-time

constraints; the microcomputer must take measurements and control opefrations at spe-

cific times. Some applications, such as energy management systems, navigation systems,

and security systems, must actually maintain a time-of-day clock and a calendar.

We will explore the following methods of handling timing:

1. Adapting to the frequeneies of external clocks.

2. Using a programmable timer.

3. Using a real-time cloek.

1 hese methods provide more flexibility than fixed delay routines; timers also reduee the

burden on the proeessor.

WAITING FOR A CLOCK TRANSITION

Many systems use either hardware (such as synchronizing circuits) or parameter values

stored in ROM to determine when time intervals begin and how long they last. This
approaeh is simple and compatible with systems that are not eomputer-based, but it is

inflexible. \ou cannot readily modify the systems to handle different or improved
peripherals. This is a major handicap currently, since peripheral (e.g., printer, terminal,

tape, and disk) teehnology is undergoing rapid change. A system that eannot be upgraded
easily soon beeomes outdated and uneompetitive.

An alternate approaeh is for the program to determine the time constants for its I/O
devices. For example, the system eould synehronize itself to a elock input. Attach a low-
frequency (5- to 200-Hz) clock to bit 5 of port A of the user VIA as shown in Figure D-2.
The following program (see Program D-I and Figure D-3) waits for a low-to-high cloek

transition.

WAITL LDA
AND

$A001
#o/o0010QQOO

; IS CLDCK LINE LDW?

BNE WAITL
: ND. WAIT

WAITH LDA
AND

$A001
#o/o00100000

:
IS CLDCK LINE HIGH?

BED
BRK

WAITH
: ND.WAIT

Enter and run Program D-I. Vary the elock rate. Mow would you make the

program wait for a low-to-high transition? Using a debounced switeh as the elock input

will give you complete eontrol for testing purposes.

Timing Methods 245

PROGRAM D-1

McinorN

.Address

(Hex)

Memory

Contents

(Ile.x)

Instruction

(Mnemonic)

02Q0 AD WAITL LDA A001
0201 01

02Q2 , AO
0203 29 AND #20
2Q4 20
0205 DO BNE 0200
0206 F9

0207 AD WAITH LDA A001
0208 01

0209 AO
20A 29 AND #20
20B 20
20C FO BED 0207
20D F9

020E 00 BRK

FIGURK D-3. Flowchart of the clock

synchronization program.

246 Microcomputer Experimentation with the AIM 65
*

PROBLEM D-1

Make Program D-1 wait for a full clock pulse (i.e., a low-to-high transition fol-

lowed by a high-to-low transition).

PROBLEM D-2

Make Program D-1 wait for ten low-to-high transitions.

MEASURING THE CLOCK PERIOD

We can extend Program D-1 to make the processor measure the clock’s period. I’his

imolves:

1. Waiting for a transition.

2. Counting time intervals until the next similar transition. Obviously, the period

must last many CPU clock cycles for this method to work.

'The following program (see Figure D-4 for a flowchart) waits for a low-to-high

clock transition and then counts milliseconds until another one occurs:

LDY #0 CLDCK CDUNT = ZERD
WTL1 LDA $A001 IS CLDCK LINE LDW?

AND #o/o00100QQO

BNE WTL1 NO. WAIT
WTH1 LDA $A001 IS CLOCK LINE HIGH?

AND #o/o0010QOOO

BED WTH1 NO. WAIT
WTL2 INY INCREMENT CLOCK COUNT

LDX #$C8 WAIT 1 MS
DLYL DEX

BNE DLYL
LDA $A001 IS CLOCK LINE LOW?
AND #o/o0O1Q00O0

BNE WTL2 NO. WAIT
WTH2 INY INCREMENT CLOCK COUNT

LDX #$C8 WAIT 1 MS
DLYH DEX

BNE DLYH
LDA $A001 IS CLOCK LINE HIGH?
AND #o/o00100000

BED WTH2 NO. WAIT
STY $40 SAVE CLOCK COUNT
BRK

Program D-2 is the mnemonic-entry version; enter it into memory and run it.

Check how accurately it measures some low-frequency clocks.

Timing Methods 247

READ CLOCK BIT

NO

COUNT = 0

1
READ CLOCK BIT

NO

READ CLOCK BIT

DELAY 1 MS
COUNT =

COUNT + 1

HGURL D—4. Flowchart of the program

that measures a clock period.

PROBLEM D-3

Make Program D-2 measure the high phase of the clock.

PROBLEM D-4

Make Program D-2’s resolution 100 p-s instead of 1 ms. Measure the period of your

clock using both resolutions.

248 Microcomputer Experimentation with the AIM 65
«

By using the measured eloek period to time input and output, a program eau
operate at different rates. For example, it eould handle serial I/O with a terminal at any
eommon data rate (10 or 30 eharaeters per seeond for low-speed units, 1,200 to 19,200
hits per seeond for higher-speed units). .

'*

'I’he AIM monitor uses this approaeh to determine the data rate of a teletypewriter.

All you must do is eonneet the teletypewriter, move the KBAITY switeh to the l^l’Y

position, reset the AIM, and type a RUBOUl^ (ASCII RUBOUl^ = 7F hex = 01111111
binary). I he AIM measures the time between bits and saves the eorresponding values in

loeations A417 and A418.

PROGRAM D-2

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruetion

(Mnemonic)

0200 A0 LDY #00
201 00
202 AD WTL1 LDA A001
203 1

0204 AO
205 29 AND #20
206 20
207 DO BNE 0202
208 F9

209 AD WTH1 LDA A001
20A 01

O20B AO
0200 29 AND #20
20D 20
20E FO BNE 0209
020F F9

0210 08 WTL2 INY
021

1

A2 LDX #08
0212 08
213 0A DLYL DEX
0214 DO BNE 0213
215 FD
216 AD LDA A001
0217 01

0218 AO
219 29 AND #20
021

A

20
0218 DO BNE 0210
210 F3

021 D 08 WTH2 INY

021

E

A2 LDX #08
21 F 08
0220 0A DLYH DEX

Timing Methods 249

PROGRAM D-2 (continued)

Meinon’

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0221 DO BNE 0220
222 FD
0223 ' AD LDA A001
0224 01

0225 AO
0226 29 AND #20
0227 20

0228 FO BED 021 D
0229 F3

22A 84 STY 40
022B 40
022C 00 BRK

PROGRAMMABLE TIMERS

T he previous methods still depend on the proeessor generating time intervals with delay

routines. An alternative is to nse a hardware timer under eompnter eontrol. T he proeessor

then only has to determine how the timer will operate, start it, and wait for it to indieate

the end of the time interval.

The simplest hardware timer is a one-shot that prodnees a single pulse of fixed

length in reponse to a pulse input. More complex timers contain counters and latches;

input controls may determine how many stages arc used.

Programmahle timers are like the programmable inpnt/output ports described in

Laboratory B. T hese de\ices have many operating modes; the program selects one by

loading control registers. The timer’s current state may be determined by examining its

status registers. Typical timer options are binary or decimal (BCD) counts, the shape of

output pulses (e.g., square wave or brief pulse on terminal count), whether an interrupt is

produced, whether the clock is divided, and whether the timer operates continuously

(i.e., reloads its counters with their initial values after counting them down to zero).

Like programmahle interfaces, programmable timers simplify hardware design, save

parts, and allow the nse of standard boards in many applications. On the other hand, they

are difficult to use and document because of their arbitrary features and unique program-

ming requirements.

6522 INTERVAL TIMERS

T’he 6522 VIA contains two 16-bit timers. Each has two 8-bit counter registers; timer 1

also has separate latches that can be loaded without affecting its current operation. A
program determines the starting count by storing it in the timer with hvo 8-hit operations.

250 Microcomputer Experimentation with the AIM 65
t

Programs should always load the less signifieant byte first, sinee loading the more signifi-

eant byte transfers the entire 16-bit value to the aetnal eoimter and starts the timer. When
the eonnt reaches /.ero, the assigned hit (#5 for timer 2, #6 for timer 1) in the VIA’s

interrupt flag register (see f igure D-5) is set to L The processor may elea^r the interrupt

flag by either reading the less significant byte of the counter or loading the more signifi-

cant byte.

TABLE D-1 USER VIA TIMER ADDRESSES

Address (Hex)

Register

Designation

\

Function

A004 TIC-L Timer 1 counter low-order byte

AGO 5 TIC-H Timer 1 counter high-order byte

A006 TIL-L Timer 1 latch low-order byte

A007 TIL-H I’imer 1 latch high-order byte

A008 T2C-L Timer 2 low-order byte

A009 T2C-H Timer 2 high-order byte

AOOB ACR Auxiliary control register

AOOD IFR Interrupt flag register

AOOE lER Interrupt enable register

Note: Timer 1 has two pairs of addresses, A004-A005 and A006-A007. The differenee is

that loading A006 and A007 does not load the actual counter or clear the interrupt flag.

Thus A006 and A007 can be changed without affecting the timer’s current operation;

such changes will, however, affect later operations and can be used to create complex,

\arying waveforms.

REG 13 - INTERRUPT FLAG REGISTER

7 6 6 4 3 2 1 0

CA2
l-CAI-

CB2-
‘-C81

TIMER 2-

‘-TIMER 1

IRQ

SET BY CLEARED BY

CA2 ACTIVE EDGE READ OR WRITE
REG 1 (ORAI

CA1 ACTIVE EDGE READ OR WRITE
REG 1 (ORA)

COMPLETE 8 SHIFTS READ OR WRITE
SHIFT REG

CB2 ACTIVE EDGE REAO OR WRITE ORB
DB1 ACTIVE EDGE READ OR WRITE ORB
TIME OUT OF T2 READ T2 LOW OR

WRITE T2 HIGH
TIME OUT OF T1 REAO T1 LOW OR

WRITE T1 HIGH
ANY ENABLED
INTERRUPT

CLEAR ALL
INTERRUPTS

FIGURE D-5. VflA interrupt flag register

(IFR). (Reprinted courtesy of Rockwell

International, Semiconductor Products

Division, Newport Beach, CA.)

'Phe auxiliary control register (see Figure D-6) determines how the timers operate.

We will be concerned only with the following options:

• Bit 5 = 0 to make timer 2 simply count down its initial value using the 6502’s

clock. This is called a one-shot mode, since it creates a single pulse of known
duration.

• Bits 6 and 7 = 0 to make timer 1 operate continuously {free-running mode),

reloading its counters from the latches after each interval.

Timing Methods 251

REG 11 - AUXILIARY CONTROL REGISTER

T1 TIMER CONTROL-

7 6 OPERATION PB7

0 0 TIMED INTERRUPT
EACH TIME T1 IS

LOADED DISABLED
0 1 CONTINUOUS

INTERRUPTS
1 0 TIMED INTERRUPT

EACH TIME T1 IS

LOADED

ONE SHOT
OUTPUT

t

1 1 CONTINUOUS
INTERRUPTS

SOUARE
WAVE
OUTPUT

T2 TIMER CONTROL

5 OPERATION
0 TIMED INTERRUPT
1 COUNT DOWN WITH
PULSES ON PB6

7 6 S 4 3 2 1 0

1 ' I Ij
1

PA

PB

LATCH ENABLE/DISABLE

0 • DISABLE
1 - ENABLE LATCHING

SMIM HtlilSl fcn CUfVI HUL

4 7 OPERATION
0 0 0 DISABLED
0 0 1 SHIFT IN UNDER CONTROL OF T2

0 1 0 SHIFT IN UNDER CONTROL OF 02

0 1 1 SHIFT IN UNDER CONTROL OF EXT. CLK
1 0 0 SHIFT OUT FREE RUNNING AT T2 RATE
1 0 1 SHIFT OUT UNDER CONTROL OF T2

1 1 0 SHIFT OUT UNDER CONTROL OF 02

1 1 1 SHIFT OUT UNDER CONTROL OF EXT CLK

FIGURE I>-6. V'lA auxiliary control register (ACR). (Reprinted courtesy of Rockwell

International, Semiconductor Products Division, Newport Beach, CA.)

T o use a timer, a program must do the following:

1. Determine the operating mode by loading the auxiliary eontrol register.

2. Load the timer’s eounter, less signifieant byte first. Loading the more signifieant

byte aetually loads the 16-bit internal counter and starts the timer.

3. Wait for the timer interrupt flag to be set.

4. Clear the timer interrupt flag by reading the counter’s less significant byte or by

loading its more significant byte. Of course, loading its more significant byte also

starts a new countdown.

T he following program (Program D-3 is the mnemonic-entry version) produces a

delay of 50,000 clock cycles (50 ms) by storing C350 in timer I’s counter in the user VIA.

T he program clears the auxiliary control register, thus making timer 1 produce a single

coLintdowTi. It then waits for bit 6 of the interrupt flag register to be set (indicating that the

count has reached zero). Finally, it clears the bit by reading the less significant byte of

timer I’s counter. Note (see Table D-1
)
that the user VIA’s timers occupy addresses A004

and A005 (timer 1) and A008 and A009 (timer 2) and that its auxiliary control register

occupies address AOOB. We arc ignoring an overhead factor (about tw'o clock cycles) that

occurs in each 6522 timing operation (see Figures 6-7 and 6-8 in the R6500 Microcom-

puter System Hardware Manual).

LDA #Q
STA SAOOB
LDA #$50
STA $A004
LDA #$C3
STA $A005

WTTIM BIT SAOOD
BVC WTTIM
LDA $A004
BRK

: TIMER 1 IN DNE-SHOT MODE. DISABLE PB7

: START COUNT AT 50.000 (C350 HEX)

IS INTERVAL OVER?
NO. WAIT

YES. CLEAR TIMER 1 INTERRUPT FLAG

252 Microcomputer Experimentation with the AIM 65 «

PROGRAM D-3

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonit;)

200 A9 LDA #00
0201 00
0202 8D STA AOOB
0203 OB
0204 AO
0205 A9 LDA #50
206 50
207 8D STA A004
0208 04

0209 AO
020A A9 LDA #03
020B 03
0200 8D STA A005
020D 5
020E AO
020F 20 WTTIM BIT AOOD
0210 OD
0211 AO
0212 50 BVO 020F
0213 FB

0214 AD LDA A004
0215 04

0216 AO
0217 00 BRK

PROBLEM D-5

Make Program D-3 use timer 2. Which timer is easier to use? Why?

PROBLEM D-6

Make Program D-3 wait for ten intervals given by a count of C350 hex. How would
you make the program obtain the count from 0040 and 0041 (more significant byte in

0041) and the number of intervals from 0042?

Sample Case

(0040) = 20 (less significant byte of count)

(0041) = 4E (more significant byte of count)

(0042) = 32 (number of intervals)

Result: The program waits for 32 hex (50 decimal) intervals given by a count of 4E20 hex

(20,000 decimal). The total delay should therefore last approximately 1 s.

Timing Methods 253

ELAPSED TIME INTERRUPTS

Obviously, w c liave not yet solved the problem of using the processor efficiently. Program

LT-3 still forees it to wait idly for the time interxal to end. 1 lowever, we ean eliminate that

requirement by having the timer prodiiee an interrupt. Now the processor ean perform

other tasks while the timer eounts.

d o produee an interrupt from timer 1, all we must do is set hit 6 (see Figure D-7) of

the interrupt enable register. Program lT-4 is an initialization routine that we will use

throughout the rest of this laboratory. It loads the staek pointer, the data direction

registers, timer Fs eounters, the interrupt enable register, and the AIM’s interrupt \ ector.

Program 14-5 produees an interrupt after 10 ms (10,000 eloek eyeles: 2710 he.\); note that

we must enable and disable the CPU interrupt and elear the timer interrupt flag.

GENERALIZED INITIALIZATION ROUTINE

LDX
TXS

#$7F

LDA #G
STA $A003
LDA #$FF
STA $A002
STA SAOOO
LDA #$10
STA $A004
LDA #$27
STA $A005
LDA #o/q110000QO

STA $AOOE
LDA #$80
STA $A400
LDA #$Q2
STA SA401

:
INITIALIZE USER STACK POINTER

:
MAKE PORT A INPUT

; MAKE PORT B OUTPUT
: TURN OFF LEDS INITIALLY

: SET TIMER FOR 10 MS

:
ENABLE TIMER 1 INTERRUPT

: LOAD INTERRUPT VECTOR

REG 14 - INTERRUPT ENABLE REGISTER

CA2

CA1

SHIFT REG

CB2

CB1

TIMER 2

TIMER 1

SET/CLEAR

0

• INTERRUPT DISABLED

1 • INTERRUPT ENABLED

NOTES
1 IF BIT 7 IS A "0". THEN EACH "I" IN BITS 0 - 6 DISABLES THE
CORRESPONDING INTERRUPT

2 IF BIT 7 IS A "I", THEN EACH "V IN BITS 0-6 ENABLES THE
CORRESPONDING INTERRUPT.

3 IF A READ OF THIS REGISTER IS DONE. BIT 7 WILL BE "0" AND
ALL OTHER BITS WILL REFLECT THEIR ENABLE/DISABLE STATE

FIGURE D-7. \qA interrupt enable

register (lER). (Reprinted eourtesy of

Rockwell International, Semiconductor

Products Division, Newport Beach, CA.)

Microcomputer Experimentation with the AIM 65
«

PROGRAM D-4

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruetion

(Mnemonie)

0200 A2 LDX #7F
0201 7F

2D2 9A TXS
0203 A9 LDA #
0204
205 80 STA A0d3
0206 3
0207 A0
0208 A9 LDA #FF
0209 FF

20A 8D STA A002
2QB 2
20C A0
20D 80 STA A000
020E
020F A0
0210 A9 LDA #10
211 10

0212 80 STA A004
0213 4
214 A0
215 A9 LDA #27
216 27
217 80 STA A005
218 5
219 A0
21

A

A9 LDA #
21 B C0
21 G 8D STA A00E
21 D E
21 E A0
21 F A9 LDA #80
220 80
221 80 STA A400
222
223 A4
224 A9 LDA #02
225 2
226 8D STA A401
227 1

228 A4

Timing Methods 255

PROGRAM D-5

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instrnetion

(Mnemonie)

229 A9 LDA #
G22A
G22B ^ 8D STA AGGB
22C B
22D AG
22E A9 LDA #
22F
23G 85 STA 4G

231 4G
232 58 CLI

233 A5 WTTIM LDA 4G
234 4G

235 FG BED G233
236 FC

237 78 SEI

238 BRK

28G EG INC 4G

281 4G

282 2C BIT AGG4
283 4
284 AG
285 4G RTI

;
INTERRUPT AFTER 1G MS (1G.GGG CLOCK CYCLES = 271 HEX)

LDA #
STA SAGGB : TIMER 1 IN ONE-SHOT MODE
LDA #
STA $4G

; CLEAR READY FLAG

CLI : ENABLE CPU INTERRUPT
WTTIM LDA $4G :

IS INTERVAL OVER?
BED WTTIM

: NO. WAIT
SEI

BRK
YES. DISABLE CPU INTERRUPT

* = $0280
INC $40
BIT $A0Q4
RTI

TIMER SERVICE ROUTINE
SET READY FLAG
CLEAR TIMER INTERRUPT FLAG

256 Microcomputer Experimentation with the AIM 65
«

BI T clears the timer interrupt flag without changing tlie accumulator. It affects only

the status register, which R'l’I restores automatically.

PROBLEM D-7

Write a program that waits for the number of interrupts in 0030 and then lights the

LEDs at port B for the number of interrupts in 0031.

Example:

(0030) = 50

(0031) = 30

Result: The program waits for 50 hex (80 decimal) interrupts and then lights the LEDs for

30 hex (48 deeimal) interrupts. Einally, it turns the LEDs off. Thus the LEDs are off for

0. 5 s and then on for 0.3 s.

REAL-TIME CLOCK

A real-time clock simply produces interrupts eontinuously. The computer ean keep time

by eoLinting them. To create a real-time elock, we operate timer 1 in the free-running

mode by setting bit 6 of the auxiliary eontrol register. Program D-5 keeps a cloek count in

0040 if we put an endless loop at the end of its main part. Now 0040 indieates how many
hundredths of a second have elapsed. Run the revised program a few times (Program D-6
is the mnemonie-entry version) and see what values you find in 0040 when you reset the

eomputer.

LDA #o/o01
; TIMER 1 IN FREE-RUNNING MODE

STA SAOOB
LDA #0

: CLEAR TIMER COUNT TO START
STA $40
CLI : ENABLE CPU INTERRUPT
JMP HERE

: WAIT AND COUNT

You should disable the CPU interrupt and elear the timer before returning control

to the monitor. Otherwise, the timer will run indefinitely.

Other programs ean use the elock count to measure time, much as a person uses a

watch. If your watch now' reads 2:33, for example, you can wait 1 5 minutes by adding 1

5

to 2:33 and waiting for your watch to read 2:48. Similarly, a program can produce a delay

by reading the eloek count, adding the required number of eloek periods, and waiting

until the sum and the eount are equal. The following instruetions at the end of Program

LT-6 make the eomputer wait 50 ms (five clock periods). Here the initial eount is zero, so

no addition is neeessary.

Timing Methods 257

PROGRAM D-6

Memor\’

.\ddress

(Hex)

McmoiA’

Contents

(Hex)

Instruction

(Mnemonic)

0229 A9 LDA #40
22A 40

22B ' 8D STA AOOB
22C OB
22D AO
22E A9 LDA #00
022F 00

230 85 STA 40

0231 40

232 58 CLI

233 40 HERE JMP 0233
0234 33

0235 02

0280 E6 INC 40

0281 40

0282 20 BIT A004
0283 04

0284 AO
0285 40 RTI

LDA #5
WAIT5 CMP $40 :

HAS CLOCK COUNT REACHED 5?

BNE WAIT5 : NO. WAIT

SEI ;
YES. DISABLE CPU INTERRUPT

BRK

T he mnemonic-entry version of the changes is

233 A9 LDA #05

0234 05

0235 C5 WAIT5 CMP 40

0236 40

237 DO BNE 0235

0238 FC

239 78 SEI

023A 00 BRK

Enter and run the modified program. Make it wait ten clock periods.

258 Microcomputer Experimentation with the AIM 65

PROBLEM D-8

«

Make the modified program wait five eloek periods and then light the LEDs for ten
eloek periods. Change it to produee the following on-off periods:

a. OFF-1

0

ON-5

b. OFF-1
ON-1

PROBLEM D-9

Make the answer to Problem D-8 operate continuously, turning the LEDs on and
off according to the duty cycle in 0030 and 0031. To determine when a time interval

ends, add its length to 0040. Does it matter if this produces a carry?

Run the program for the following test cases and describe what happens.

a. OFF-(0030) = 01

ON-{0031) = 01

b. OFF-(0030) = 04

ON-(0031) = 1C

c. OFF-(0030) = 10 (hex)

ON-(0031) = 10 (hex)

d. OFF-(0030) = 1C
ON-(0031) = 04

PROBLEM D-10

Make the program from Problem D—9 turn the LEDs on and off according to the
following duty cycle for each iteration:

OFF - 10 (hex)

ON - 20 (hex)

OFF - 40 (hex)

ON - 80 (hex)

Industrial and process controllers often have complex duty cycles with many variations in

length and amplitude.

To make the program shorter and more general, put the ON-OFF values in a table.

For example, you could use 0380 through 0383 as follows:

(0380) = 10 (first OFF period)

(0381) = 20 (first ON period)

(0382) = 40 (second OFT' period)

(0383) = 80 (second ON period)

Timing Methods 259

LONGER TIME INTERVALS

\Vc can handle longer time intervals by rising more nieinory locations for the clock count.

T he following service routine uses 0040 and 0041 (MSBs in 0041). T he main program

should clear both locations before enabling interrupts.

CLRINT

* = $0280
PHA 9

INC $40

BNE CLRINT

INC $41

BIT

PLA

RTI

$A004

:
SAVE ACCUMULATOR

:
INCREMENT LSB OF CLOCK COUNT

;
ANO MSB IF NECESSARY

:
CLEAR TIMER INTERRUPT FLAG

:
RESTORE ACCUMULATOR

Enter and run this program, placing an endless loop at the end of the main program.

Program lT-7 is the mnemonie-entry version. Let it run for a while and see what you find

in 0040 and 0041 when you reset the computer.

PROGRAM D-7

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

280 48 PHA
281 E6 INC 40

282 40

283 DO BNE 287
284 2
285 E6 INC 41

286 41

287 2C CLRINT BIT A004
288 4
289 AO
28A 68 PLA

28B 40 RTI

PROBLEM D-11

Write a main program that uses Program D-7 to turn all the LE^Ds at port B off for

300 (012C) clock periods and then on for 400 (0190) clock periods. Change your program

to produce the following on-off periods.

a. OFF-400 (0190 hex)

ON-300 (012C hex)

b. OFF-300 (012C hex)

ON-300 (012C hex)

260 Microcomputer Experimentation with the AIM 65

PROBLEM D-12

«

Make the program from Problem D-1 1 operate eontinuoiisly, turning the LEDs on
and off according to 0030 and 0031 (OFF period) and 0032 and 0033 (ON period). I’ry

the following test eases:

a. (0030) = 2C

(0031) = 01

(0032) = 58

(0033) = 02

h. (0030) = F4

(0031) = 01

(0032) = F4

(0033) = 01

(012C hex = 300 deeimal)

(0258 hex = 600 deeimal)

(01F4 hex = 500 deeimal)

(01F4 hex = 500 deeimal)

KEEPING TIME IN STANDARD UNITS

We ean easily write a serviee routine (Program D-8 is the mnemonie-entry version) that

keeps time in seeonds and minutes. As before, the main program must elear the eounter
loeations initially.

PROGRAM D-8

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruetion

(Mnemonic)

0280 48 PHA
281 E6 INC 48
282 48
283 A5 LDA 48
284 48
285 38 SEC
286 E9 SBC #64
287 64

288 D8 BNE 2A8
289 16

28A 85 STA 48
288 48
28C E6 INC 41

28D 41

28E A5 LDA 41

28F 41

298 E9 SBC #3C
291 3C
292 D8 BNE 2A8
293 C
294 85 STA 41

Timing Methods 261

PROGRAM D-8 (continued)

Menior> Memory

Address Contents Instruction

(Hex) (Hex) (Mnemonic)

295 41

296 E6 INC 42

297 / 42

298 A5 LDA 42

299 42

29A E9 SBC #3C

29B 3C

29C DC BNE C2AC

29D 2
29E 85 STA 42

29F 42

2A9 2C ENDINT BIT ACC4

2A1 4
2A2 AC
2A3 68 PLA

2A4 48 RTI

* = $289
PHA 1

SAVE ACCUMULATDR
INC $4C UPDATE HUNDREDTHS OF SECONDS
LDA $4C

SEC t IS THERE A CARRY TO SECONDS?
SBC #1CC
BNE ENDINT NO, DONE (C = 1 IF NO BRANCH)

STA $4C YES. MAKE HUNDREDTHS ZERO

INC $41 UPDATE SECONDS
LDA $41

SBC #6C IS THERE A CARRY TO MINUTES?

BNE ENDINT NO. DONE (C = 1 IF NO BRANCH)

STA $41 YES. MAKE SECONDS ZERO

INC $42 UPDATE MINUTES

LDA $42

SBC #6C IS THERE A CARRY TO HOURS?
BNE ENDINT NO. DONE
STA $42 YES. MAKE MINUTES ZERO

ENDINT BIT $ACC4 CLEAR TIMER INTERRUPT FLAG

PLA RESTORE ACCUMULATOR
RTI

PROBLEM D-13

Make Program D-8 keep time as pairs of cleeimal digits in 0040, 0041, and 0042

Use the decimal mode, but remember that INC and DEC always produee binary results

262 Microcomputer Experimentation with the AIM 65
*

PROBLEM D-14

Write a main program that uses Program D-8 to turn all the LF.Ds off for 1 min and
30 s and then on for 1 min and 15 s.

PROBLEM D-15

We eau use tables to prodiiee complex timing sequences. Write a program that

turns the LEL^s at port B on and off according to the following schedule. Each entry is the

length of a period in seconds, and the final zero is a terminator.

(0380) = OA

(0381) = OF

(0382) = 14

(0383) = OF

(0384) = OA

(0385) = 14

(0386) - 00

(first OFF period, 10 s)

(first ON period, 15 s)

(second OFF period, 20 s)

(second ON period, 1 5 s)

(third OFF period, 10 s)

(third ON period, 20 s)

(terminator)

The LEDs should be off for 10 s (OA hex), on for 1 5 s, off for 20 s, on for 1 5 s, off for 10 s,

and on for 20 s.

PROBLEM D-16

We can extend Problem D-1 5 to put the LEDs in other states besides all on and all

off. Write a program that operates the LEDs according to the following table. Each entry
consists of a length in seconds followed by a data \ alue for the LEDs. The final zero is a
terminator. Turn all the LEDs off before concluding.

(0380) = 14

(0381) = 00

(0382) = IE

(0383) = 01

(0384) = 14

(0385) = 03

(0386) = 00

(first period, 20 s)

(all LEDs on)

(second period, 20 s)

(all LEDs on except #0)
(third period, 20 s)

(all LEDs on except #0 and #1)
(terminator)

PROBLEM D-1 7

With Program D—8, what percentage of the processor’s time is spent ser\ icing the
real-time clock? Determine both the maximum and the average percentages. Note that

the 6502 takes seven clock cycles to respond to an interrupt. Furthermore, the AIM
monitor takes 29 cycles to vector the interrupt through A400 and A401. Flow much would
the percentages increase if the clock interrupted every 1 ms? What is the maximum clock
frequency if we limit the service routine to 10% of the processor’s time on the average?
What if we limit it to 10% maximum during any clock period?

Timing Methods 263

REAL-TIME OPERATING SYSTEMS

A real-time eloek ean satisfy many timing requirements. Tasks ean be selieclulecl or

suspended, delays can be produced, and real-time inputs and outputs ean be handled.

T he programmer must, however, determine the order and priority of tasks and specify

exactly how they use the clock.

A typical example application is a real-time monitoring system for process or indus-

trial control. T he systcil^i must collect data periodically (e.g., readings from sensors

located at various points in a pipeline, tank, or reactor), respond immediately to alarms,

and report status to a central computer. T’he times when alarms occur must he printed for

permanent records. T his system has many tasks to perform: data logging, alarm recogni-

tion, alarm recording, printing, and eomnumications with the central computer. 1 he

priority of the tasks is critical. LTr example, if an alarm occurs while a record is being

printed, the system must suspend the printing, mark when the alarm occurred, prepare a

new record for later printing, and then resume the suspended task. A similar procedure is

neeessarv if the central computer requests a report while the system is busy. T’hc program-

mer must manage the computer's resources so that it does its work without missing any

data, alarms, or requests for reports.

A real-time operating system removes much of the burden of task management

from the programmer. TTiis piece of packaged software schedules tasks, handles com-

munications between them (e.g., its routine would let the alarm recording task send

information about the alarm to the printer task), generates time intervals, and provides

real-time interrupt control for 1/C) devices. T’he programmer must learn only how to use

the operating system. TTie obvious advantages of such systems are that they can he

purchased rather than written and that they pro\ ide standard procedures and formats.

To use a real-time operating system in the monitoring application, you would liave

to write programs in the proper form to handle data logging, alarm monitoring, printing,

and status reporting. Kach program (or task) would call subroutines (sometimes called

utilities) from the operating system. 'The user tasks and the operating system would thus

together control the monitoring system. Note that you could change one task (e.g., attach

a new printer, allow more alarms, or add a local data buffer) without changing the other

tasks. We would like to thank Bill Renwick of Kadak Products Ltd. (Vancouver, B.C.,

Canada) for suggesting this example and describing how it would run under Kadak’s AMX
Operating System.

KEY POINT SUMMARY

1. Programs can he made more flexible by allowing them to determine timing param-

eters from system inputs. T’hc same program can then handle peripherals operating

at different data rates.

2. A program ean easily examine a clock line, synchronize with it, and measure its

period as long as its frequency is much lower than the CPU clock frequency.

3. A programmable timer can replace a delay routine. It simply indicates when a

starting value loaded into it has been counted down to zero. Programmable timers

264 Microcomputer Experimentation with the AIM 65 t

make systems more flexible beeause they ean operate in different modes under
program eontrol. However, these timers require eareful use and doeumentation
beeause there are no standards for their options or programming.

4. I he 6522 VIA has two 16-hit timers. A program ean start a timer at a Speeifie eount
by loading data into its registers, less signifieant byte first. 7he timer indieates the

exhaustion of the eount by setting a hit in the interrupt flag register. Either timer

ean he used in an interrupt-driven mode by setting a hit in the interrupt enable
register. 1 he auxiliary eontrol register determines the timers’ operating modes.

5. Interrupts are a eonvenient way to handle timing. A real-time eloek is a regular

souree of interrupts that ean he eounted for timing and seheduling. Time is spee-

ified in eounts.

6. A real-time operating system performs seheduling, eoordination, and eommuniea-
tions on a real-time basis. It provides a standard supervisor for applieations with
real-time needs.

LABORATORY E
J

SERIAL INPUT/OUTPUT

PURPOSE

To learn how to use the mieroeomputer to send and reeeive serial data.

REFERENCE MATERIALS

L. A. LEVE^NTHAL, Introduction to Microprocessors: Hardware, Software, Program-

ming, Prentiee-Hall, Englewood Cliffs, NJ, 1978, pp. 360-363, 385-388, 420-427,

489-492.

L. A. LEVE^Nd'HAL, 6502 Assembly Language Programming, Osborne/MeGraw-Hill,

Berkeley, CA, 1979, pp. 11-103 to 1 1-122, 12-32 to 12-36.

L. A. LEVENd HAL and W. SAVILLE, 6502 Assembly Language Subroutines,

Osborne/MeGraw-Etill, Berkeley, CA, 1982, pp. 428-439, 464-471, 480-489.

265

266 Microcomputer Experimentation with the AIM 65 «

). FI MCNAMARA, Technical Aspects of Data Communications, 2nd ed., Educational

Services Department, Digital Equipment Corp., Maynard, MA, 1982, Chapters 1-3,

5, 15.
«

R.). d’OCCI and L. P. LASKOWSKl, Microprocessors and Microcomputers: Hardware

and Software, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1982, pp. 14-16 (alpha-

numeric codes), 16-17 (parity), 48-49 and 51-52 (shift registers), 237-240

(asynchronous serial I/O), 240-244 (UARd’s), 245-254 (6850 device), 255-259 (serial

transmission standards), 279-281 (teletypewriters), 335-337 (shift instructions).

AIM 65 Monitor Program Listing, Dynatem, Irvine, CA, 1979, pp. 39, 46.

A/M 65 Users Guide, Dynatem, Irvine, CA, 1978, pp. 7-35, 9-28 to 9-35.

R6500 Microcomputer System Programming Manual, Rockwell International, Semicon-

ductor Products Division, Newport Beach, CA, 1978, Chapter 10.

WHAT YOU SHOULD LEARN

1. How to convert data between serial and parallel forms.

2. How to provide timing for serial communications.

3. How to generate and recognize start and stop bits.

4. How to detect false start bits using majority logic.

5. How to generate and check parity.

TERMS

ASCII American Standard Code for Information Interchange, a 7-bit character code

widely used in computers and communications. Appendix 2 contains an ASCII table.

Error-correcting code a code that the receiver can use to correct errors in messages.

Error-detecting code a code that the receiver can use to detect errors in messages.

False start bit a start bit that does not last the minimum required amount of time.

Majority logic a logic function that is true when more than half its inputs are true.

Parallel more than one bit at a time.

Parity a 1-bit code that makes the total number of 1 bits in a word, including the parity

bit, odd (odd parity) or even (even parity).

Protocol a set of conventions governing the format and timing of data transfers.

Serial one bit at a time.

Start bit a bit indicating the start of data transmission by an asynchronous device.

Stop bit a bit indicating the end of data transmission by an asynchronous device.

Universal asynchronous receiver/transmitter (UART) an LSI device that interfaces par-

allel systems to asynchronous serial peripherals.

Serial Input/Output 267

6502 INSTRUCTIONS

ROL rotate left; shift the aeeumiilator or a memory loeation left one bit as if hits 0 and 7

were eoimeeted through the CARR'i' (see Figure K-1).

ROR rotate right; shift the aeeumiilator or a memory location right one hit as if hits 0

and 7 were eoimeeted through the CARIO’ (see Figure F-1).

Original contents of CARRVflag and accumulator
or memory location

CARRY DATA

c b7 be be b4 ba ba bi bo

After ROL (ROTATE LEFT)
CARRY DATA

b7 be be b4 ba ba bi bo C

After ROR (ROTATE RIGHT)
CARRY DA1rA

^0 c b7 be be b4 ba ba bi
UGURL E-1. 6502 shift instructions

ROL and ROR.

SERIAL INTERFACING

Most eommuuieatious equipment and many other peripherals transfer data 1 bit at a time

{serially) rather than in larger units (i.e., in parallel). T he serial approach is cheaper to

implement since it requires only one data line. However, special interfaces are needed to

connect serial peripherals to a computer that handles data in parallel.

This laboratory describes how to interface serial peripherals using software. We will

show how to convert data between serial and parallel forms, pro\ide timing, add and

detect start and stop bits, and check and generate parity.

Serial interfaces allow many tradeoffs between hardware and software. A common
alternative to the software interface is the universal asvnchronous receiver/transmitter

(UART). UAR'Ts, which cost only a few dollars, do all the tasks we just mentioned. T hey

are thus an attractive choice in all except the most cost-sensitive applications.

SERIAL/PARALLEL CONVERSION

Shift instructions are the keys to programs that convert data between parallel and

serial forms. Since serial data transmission generally starts with bit 0, the following

program places bit 0 of location 0060 on the LED at bit 7 of user VTA port B (LED 7, for

short). Program E-1 is the mnemonic-entry version. LSR $60 moves a data bit from 0060

to the CARRY. ROR $A000 then sends it on to the output port. We have complemented

268 Microcomputer Experimentation with the AIM 65
«

the data, so it appears on the LEDs in positive logie. Program E-1 turns all the LEDs off

initially by storing EE in AOOO.

LDX
TXS

#$7F
:
INITIALIZE USER STACK POINTER "

LDA #$FF
STA $A002

:
MAKE PORT B OUTPUT

STA SAOOO : TURN OFF THE LEDS
EOR $60

:
COMPLEMENT DATA (A IS FF)

STA $60
LSR $60

:
GET 1 BIT OF PARALLEL DATA

ROR
BRK

$AOOO
:
MOVE BIT TO SERIAL OUTPUT PORT

PROGRAM E-1

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0200 A2 LDX #7F
0201 7F

0202 9A TXS
0203 A9 LDA #FF
0204 FF

0205 80 STA A002
0206 02

0207 AO
0208 80 STA AOOO
0209 00
020A AO
020B 45 EOR 60
020C 60

0200 85 STA 60
020E 60

020F 46 LSR 60
0210 60

0211 6E ROR AOOO
0212 00

0213 AO
0214 00 BRK

Program E-1 transmits 1 bit. Exeeute it eight times starting with (0060) = AA
(10101010 binary). After the first time, start at 020E to skip the initialization instruetions.

LED 7 should alternate between off and on, sinee the data eonsists of alternating 0 and 1

bits, starting with a 0 in bit 0. ROR $A000 shifts the previous serial outputs right so you

ean see all the bits.

Serial Input/Output 269

PROBLEM E-1

Make Program E^-1 use LKD 0 as the serial output. The data now appears oii tlie

LEL^s ill reverse order, starting with bit 0 at the far left.

Converting inputs from serial to parallel is also simple. Lhe following program

(Program E-2 is a mnemonic-entry version) fetches a serial input from bit 7 of port A and

combines it with the dafa in 0061. We assume that bit 0 is recci\ed first. Executing

Program E-2 repeatedly makes the data bits move right on the LEDs and end up in their

normal order.

Clear 0061 initially and execute Program E]-2 eight times to assemble a data byte.

After the first time, start at 020B to skip the initialization. Vary the switch position to end

up with (0061

)

II >>

LDX #$7F INITIALIZE USER STACK POINTER

TXS
LDA #$FF
STA $A002 V MAKE PORT B OUTPUT
STA SAGOO TURN OFF THE LEDS
ASL SA001 MOVE SERIAL INPUT TO CARRY
ROR $61 AND COMBINE WITH PREVIOUS INPUTS

LDA $61 SHOW DATA ON LEDS
EOR #$FF IN POSITIVE LOGIC

STA $AOOO
BRK

PROGRAM E-2

Memory

Address

(Ilex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

0200 A2 LDX #7F
0201 7F

0202 9A TXS
0203 A9 LDA #FF

0204 FF

0205 80 STA A002
0206 02

0207 AO
0208 80 STA AOOO
0209 00

020A AO
020B OE ASL A001

020C 01

0200 AO
020E 66 ROR 61

020F 61

270 Microcomputer Experimentation with the AIM 65
«

PROGRAM E-2 (continued)

Memory

Aclclre.ss

(Ilex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

210 A5 LDA 61

211 61

212 49 EOR #FF
213 FF

214 8D STA AOOO
215 \

216 AO
217 BRK

PROBLEM E-2

Make Program E-2 start with data bit 7 and use switeh 0 as the serial input.

GENERATING BIT RATES

In real applications, the computer must wait between bits. One way to do this is with a

delay routine. The next program (see Program E-3 for a mnemonic-entry version) uses a

routine that waits for one-eighth of a second times the value in register Y. No registers

change except the status. Run the program with (0060) = AA and with (0060) = 55.

UTB

LDX #$7F
: INITIALIZE USER STACK PDINTER

TXS
LDA #$FF
STA $A002 MAKE PDRT B DUTPUT
STA SAOOO TURN DFF THE LEDS
EOR $60 CDMPLEMENT DATA (A IS FF)

STA $60
LDY #16 BIT TIME = 2 SECDNDS
LDX #8 NUMBER DF BITS = 8

LSR $60 MDVE SERIAL OUTPUT TO CARRY
ROR SAOOO AND ON TO LEDS
JSR DLYE WAIT A BIT TIME
DEX
BNE DUTB COUNT BITS

BRK

* = $0300 DELAY 1/8 S TIMES CY)

PHA SAVE ACCUMULATOR
TXA SAVE X REGISTER
PHA

LYE

Serial Input/Output 271

TYA
: SAVE Y REGISTER

PHA
: Y COUNT ENDS UP IN A

DLY1 LDY #$7D : DELAY 1/8 SECOND
DLY2 LDX #$C8
DLY3 EX

BNE DLY3
EY
BNE 'DLY2
SEC :

COUNT 1/8THS OF A SECOND
SBC #1

BNE DLY1

PLA : RESTORE Y REGISTER

TAY
PLA :

RESTORE X REGISTER

TAX
PLA :

RESTORE ACCUMULATOR
RTS

PROGRAM E-3

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

02QQ A2 LDX #7F

0201 7F

202 9A TXS

Q203 A9 LDA #FF

0204 FF

0205 80 STA A002
0206 02

0207 AO
0208 80 STA AOOO

0209 00

020A AO

020B 45 EOR 60

020C 60

0200 85 STA 60

020E 60

020F AO LDY #10
0210 10

0211 A2 LDX #08
0212 08

0213 46 OUTB LSR 60

0214 60

0215 6E ROR AOOO
0216 00

0217 AO

272 Microcomputer Experimentation with the AIM 65
«

PROGRAM E-3 (continued)

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

218 23 JSR 333
219 3 *•

21A 3
21 B A EX
21 G 3 BNE 213
21 D F5

21 E 3 BRK

0300 48 LYE PHA
321 8A TXA
3^2 48 PHA
333 98 TYA
334 48 PHA
335 A3 DLY1 LDY #7D
336 7D
337 A2 DLY2 LDX #C8
338 8
3339 CA DLY3 EX
33A 3 BNE 339
33B FD
333 88 DEY
33D D3 BNE 337
33E F8

33F 38 SEC
313 E9 SBC #31
311 1

312 D3 BNE 335
313 FI

314 68 PLA
315 A8 TAY
316 68 PLA
317 AA TAX
318 68 PLA
319 63 RTS

PROBLEM E-3

Write a reception program that waits between bits using a 2-second delay. Assume
that the data starts with bit 0 and comes from switch 7. Run the program, setting the

switch to produce (0061) = AA. If you need more time, either increase DLYE’s param-
eter or replace it with an RTS instruction and use the STEP mode. Don’t use a break-

point, since it will make the AIM step through the delay. ’Phis will take a very long time!

Serial Input/Output 273

USING THE REAL-TIME CLOCK

Wc can also use a real-time clock to wait between bits. I he follow ing i)rograin initializes

the clock and transmits a bit each time 0040 increases by 100 (i.e., at 1-s inter\als, since

the clock is 100 Hz). Program K-4 is the mnemonic-entr\ \ersion. Phe clock serxiee

routine is from Program D-6.

Kilter and run Program K-4 with (0060) = AA and with (0060) = \\4iat

happens if adding 100 to the current clock count produces a carry?

PROGRAM E-4

Meniorv’ Memory

Address Contents Instruction

(He.\) (Hex) (Mnemonic)

0200 A2
0201 7F

0202 9A

0203 A9
0204 FF

0205 8D
0206 02

0207 AO
0208 8D
0209 00

020A AO
020B 45

0200 60

020D 85

020E 60

020F A9

0210 00

021

1

85

0212 40

0213 A9

0214 40

0215 8D
0216 OB

0217 AO

0218 A9

0219 10

021A 8D

021 B 04

0210 AO

021 D A9

021 E 27

021 F 8D

0220 05

0221 AO

LDX #7F

TXS
LDA #FF

STA A002

STA AOQO

EOR 60

STA 6Q

LDA #00

STA 40

LDA #40

STA AOOB

LDA #10

STA A004

LDA #27

STA A005

274 Microcomputer Experimentation with the AIM 65
t

PROGRAM E-4

Mc'iiiory Memory
Address Contents * Instruetion

(Ilex) (Ilex) (Mnenionie)

222 A9 LDA #C8
223
224 8D STA ACCE
225 E
226 A8
227 A9 'LDA #88
228 88
229 80 STA A488
22A
22B A4
22C A9 LDA #82
22D 2
22E 8D STA A481
22F 1

23^ A4
231 58 LI
232 A2 LDX #88
233 8
234 46 UTB LSR 68
235 68
236 6E R8R A888
237
238 A8
239 A5 LDA 48
23A 48
23B 18 CLC
23C 69 ADC #64
23D 64
23E 5 WTCLK CMP 48
23F 48
249 BNE 23E
241 FC
242 CA DEX
243 BNE 234
244 EF

245 78 SEI
246 BRK

286 E6 INC 48
281 48
282 2C BIT A884
283 4
284 A8
285 48 RTI

Serial Input/Output 275

UTB

WTCLK

LDX #$7F INITIALIZE USER STACK POINTER

TXS
LDA #$FF
STA $A002 MAKE PORT B OUTPUT
STA SAQDO TURN OFF THE LEDS
EOR $6Q
STA $60
LDA Vo CLEAR CLOCK COUNT INITIALLY

STA $40

LDA #o/o01000000 TIMER 1 IN FREE-RUNNING MODE
STA $A00B
LDA #$10 SET TIMER 1 FOR 10 MS
STA $A004
LDA #$27
STA $A005
LDA #%1 1 000000 ENABLE TIMER 1 INTERRUPT

STA $A00E
LDA #$80 LOAD INTERRUPT VECTOR
STA $A400
LDA #$02
STA $A401

CLI ENABLE CPU INTERRUPT

LDX #8 NUMBER OF BITS = 8

LSR $60 MOVE SERIAL OUTPUT TO CARRY
ROR $A000 AND ON TO LEDS
LDA $40 GET STARTING CLOCK COUNT
CLC CALCULATE TARGET VALUE
ADC #100
CMP $40 TARGET VALUE REACHED?
BNE WTCLK NO. WAIT

DEX YES. COUNT BITS

BNE DUTB
SEI DISABLE CPU INTERRUPT

BRK

* = $028D CLOCK SERVICE ROUTINE

INC $40 INCREMENT CLOCK COUNT
BIT $A004 CLEAR TIMER 1 INTERRUPT

RTI

PROBLEM E-4

Make the serial reeeption program wait for 100 eloek interrupts between bits.

Sample cases

a. All inputs Is (leave the switeb open).

Result: (0061) = FF

276 Microcomputer Experimentation with the AIM 65 «

b. All inputs Os (Icax'c the switch closed).

Result: (0061) = 00

PROBLEM E-5 *

^

Make Program E-4 use Program D-8 as the service routine. Now time is kept in

minutes, seconds, and hundredths of seconds. Make the time between bit outputs 1 s.

Remember that we have not stopped the clock or disabled timer I’s interrupt. You
can do both by resetting the AIM, since that clears all VIA registers.

START AND STOP BITS

So far, we have assumed that reception can occur at any time. Of course, in practice, the

receiver (computer or peripheral) must determine when the data starts and ends.

One approach is to put markers around the data. Figure E-2 shows a popular

format with a start hit (0) ahead of each 8-bit character and two stop bits (Is) afterward.

Note that the data line is normallv 1.

Although this approach is simple and easy to implement, it does have disadvan-

tages. Noise can produce false start bits; we will discuss methods for detecting them later.

Adding start and stop bits reduces the actual data rate (since more bits must be transmitted)

and increases the overhead for each character. An alternative is to group the characters

into blocks and synchronize only on a hlock-hy-block basis. Most protocols (see J. E.

McNamara's lechnical Aspects of Data Communications) use this approach to increase

speed and reliability.

We can easily modify Program E-3 to produce a start bit. We must clear CARRY
initially and shift 0060 at the end of the loop instead of at the beginning. Now the

program transmits a 0 first and data bit 0 second. Of course, the bit count must be 9

instead of 8. Program E-5 is the mnemonic-entry version.

MARK(one)'

SPACE (zero)

START DATA DATA DATA DATA DATA DATA DATA PARITY STOP
I
STOP

BIT
I

BITBIT BIT BIT BIT BIT BIT BIT BIT BIT
0 1 2 3 4 5 6 1 1 2

1

Each character requires 1 1 bits.

FIGURE E--2. Serial data format with a start bit and two stop bits.

LDX #$7F
: INITIALIZE USER STACK POINTER

TXS
LDA #$FF
STA $A002

; MAKE PORT B OUTPUT
STA SAOOO

: TURN OFF THE LEDS
EOR $6Q

; COMPLEMENT THE DATA
STA $60

Serial Input/Output 277

PROGRAM E-5

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instrnetion

(Mnemonie)

200 A2 LDX #7F

0201 7F

0202 9A TXS

203 A9 LDA #FF

0204 FF

0205 80 STA A002

0206 02

0207 AO
0208 80 STA AOOO

0209 00

020A AO
020B 45 EOR 60

020C 60

0200 85 STA 60

020E 60

020F AO LDY #10

0210 10

021

1

A2 LDX #09

0212 09

0213 18 CLC

0214 6E OUTB ROR AOOO

0215 00

0216 AO
0217 20 JSR 0300

0218 00

0219 03

021A 46 LSR 60

021 B 60

021 C CA DEX
0210 DO BNE 0214

021 E F5

021 F 00 BRK

LDY #16
LDX #9
CLC

UTB ROR SAOOO
JSR DLYE
LSR $60
DEX
BNE
BRK

BIT TIME = 2 SECONDS
NUMBER OF BITS = 9

FORM START BIT

MOVE SERIAL OUTPUT TO LEDS
WAIT A BIT TIME

MOVE NEXT SERIAL OUTPUT TO CARRY
COUNT BITS

OUTB

278 Microcomputer Experimentation with the AIM 65 *

Kilter Program K-5 into memory and run it with (0060) = 00 and with (0060) =
AA. d'lie start bit appears as a light in front of the aetiial data, since 0 lights an LED. By
making the following changes to Program E-5, we can also generate two stop bits.

«

1. Make the bit count 11 instead of 9.

2. Replace LSR $60 with SEC (SE 1 CARRY), ROR $60. This sequence automat-
ically shifts Is in at the left as it shifts the data right. The Is form the stop bits.

PROBLEM E-6

Write and run a transmission program that generates a start bit and two stop bits.

How could you make your program produce one stop bit instead of two? Many terminals

use a 10-bit format with one stop bit.

Receiving data with start and stop bits is more difficult than transmitting it. The
next program (see Program E—6 for a mnemonic-entry version) first detects the 1-to-O

transition that indicates the beginning of a start bit. It then waits half a bit time to center

the reception. 1 his delay makes the computer read the data bits near the centers of the

pulses rather than at the edges, thus avoiding the transition areas. Centering also makes
precise bit times unnecessary, since a slight drift from the center does not matter.

LDX #$7F INITIALIZE USER STACK POINTER
TXS

WTSTB LDA $AQ01 WAIT FOR A START BIT

BMI WTSTB
LDY #8 WAIT HALF BIT TIME TO CENTER
JSR DLYE
LDY #16 BIT TIME = 2 SECONDS
LDX #8 NUMBER OF BITS = 8

INBIT JSR DLYE WAIT A BIT TIME
ASL $A001 MOVE SERIAL INPUT TO CARRY
ROR $61 AND COMBINE WITH PREVIOUS DATA
DEX COUNT BITS

BNE INBIT

BRK

Enter and run Program E-6. The STEP mode will give you time to set the switch

for each data value. The program will not leave the initial loop until you close the switch

and form a start bit. Remember to replace the delay routine with an RTS instruction in

0300. Set the switch after the computer executes JSR DLYE but before it executes ASL
$A001. Try the following sample cases:

1. Start with the switch closed and mov'e it each time the computer enters DLYE.
Result: (0061) = 55 hex

2. Close the switch to form the start bit and then immediately open it and leave it

open.

Result: (0061) = EE

Serial Input/Output 279

PROGRAM E-6

Memory

Address

(Hex)

Memory

Contents

(Ilex)

Instruetion

(Mnemonie)

2Q0 A2 LDX #7F

Q2Q1 7F

202 / 9A TXS

203 AD WTSTB LDA A001

204 1

205 AO

206 30 BMI 203
207 FB

208 AO LDY #08

209 8
20A 20 JSR 300
20B
20C 3
20D AO LDY #10

20E 10

20F A2 LDX #08

210 8
211 20 INBIT JSR 300
212
213 3
214 E ASL A001

215 1

216 AO

217 66 ROR 61

218 61

219 CA DEX

21A DO BNE 211
21 B F5

21 C BRK

PROBLEM E-7

Make Program E-6 check if two stop bits follow the data. The revised program

should set 0062 to 00 if the two stop bits are present and to EE otherwise. Lack of the

proper number of stop bits is called a framing error.

DETECTING FALSE START BITS

Many errors occur in communications, particularly over noisy connections (such as

telephone lines) or long distances. One problem is that noise may make the input briefly

0, thus producing a false start hit. T he receiver can tell a short noise pulse from a start bit

280 Microcomputer Experimentation with the AIM 65

by sampling the line several times and requiring that a majority of the samples he Os. 'ITiis

approaeh is ealled majority logic; it works like voting—the value that oeeurs most often

wins.

d1ie following program samples the data at one-quarter, one-half, and three-quar-

ters of a hit time after the initial deteetion of a 0. It requires that at least two samples be Os.

Program E-7 is the mnemonie-entry version. If the eompnter aeeepts the start hit, it must
wait one-quarter of a hit time to reaeh the beginning of data bit 0 (see Figure E-2).

Run Program E-7 in the STEP mode so that you ean eontrol the switeh and traee

the sampling. Remember to replaee DLYE with an RTS instruction in location 0300. Try
the following cases (starting with the switch closed to form the start bit):

1. Mo\'c the switch every time the computer executes JSR DLYE (reaching 0300).

I he sample values will he 1, 0, and 1. Since only one is 0, the computer should
reject the start bit and return to address WTSdT (0205).

2. Leav^e the sw itch closed until the computer enters DLYE for the second time. Then
move it after each entry. The sample values will be 0, 1, and 0. Since two are 0, the

computer should accept the start bit and return to the monitor.

LDX #$7F
: INITIALIZE USER STACK POINTER

TXS
LDY #4

: SET DELAY FOR 1/4 BIT TIME
WTSTB LDA $Aom

: WAIT FOR A START BIT

BMI WTSTB
LDX #0

: CLEAR ZERO COUNT TO START
LDA #3

; NUMBER OF SAMPLES = 3
STA $30

CHBIT JSR DLYE
: WAIT 1/4 BIT TIME

LDA $A001
: IS DATA ZERO?

BMI eSAMP
INX

: YES. INCREMENT ZERO COUNT
eSAMP DEC $30

: COUNT SAMPLES
BNE CHBIT

CPX #2
: WAS MAJORITY OF SAMPLES ZERO?

BCC WTSTB
: NO. FALSE START BIT

JSR DLYE
: YES. WAIT 1/4 BIT TIME TO FINISH

BRK

PROGRAM E-7

Memory Memory
Address Contents Instruction

(Hex) (Hex) (Mnemonic)

200 A2 LDX #7F
0201 7F

0202 9A TXS
0203 AO LDY #04
0204 04

Serial Input/Output 281

PROGRAM E-7 (continued)

Memory

Address

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonie)

0205 AD WTSTB LDA A001
0206 01

0207 AO
0208 30 BMI 0208
0209 FB

020A A2 LDX #00
020B 00
0200 A9 LDA #03
020D 03
020E 85 STA 30
020F 30
0210 20 CHBIT JSR 0300
021

1

00
0212 03
0213 AD LDA A001
0214 01

0215 AO
0216 30 BMI 0219
0217 01

0218 E8 INX

0219 06 eSAMP DEC 30
021A 30

0218 DO BNE 0210
0210 F3

021 D EO CPX #02
021 E 02

021 F 90 BOO 0205
0220 E4

0221 20 JSR 0300
0222 00

0223 03
0224 00 BRK

PROBLEM E-8

Revise Program]i-l to eheck the input at intervals of one-eighth of a hit time. At

least four of the seven samples must be 0 to aeeept the start bit. 'Lhe program should wait

for the end of the start bit.

PROBLEM E-9

Write a reeeption program that cheeks each bit at one-fourth, one-half, and three-

fourths of a hit time and determines the actual value by majority logic, d’hat is, the hit

282 Microcomputer Experimentation with the AIM 65 *

\ aluc is the v alue of at least two samples. Make the program start at the beginning of data

hit 0, assuming that the initialization routine has cleteeted a start bit but has not eentered

the reeeption.

GENERATING AND CHECKING PARITY

Still another way to avoid errors is to add error-deteeting or -eorreeting eodes to the data.

1 hese eodes show whether the data was reeeived eorreetly and, if not, where the errors

were; they eontain no additional information and thus rednee the rate at whieh actual data

can be sent.

Parity is a simple error-detecting code. It is a single bit added to each character,

whieh makes the total number of 1 bits even (if even parity) or odd (if odd paritv). Note the

following examples:

1. Data = 01101101 : even paritv — 1, since the data contains an odd number of 1 bits

(5).

2. Data = 00010001: even parity = 0, since the data contains an even nnmber of 1

bits (2).

Parity has the following features:

1. It allows the receiver to detect single but not double errors. T wo erroneous bits

result in the same parity as the correct data.

2. It does not allow for error correction. If the parity is wrong, the receiver knows that

an error occurred but not which bit is wrong. All the receiver can do is request

retransmission.

One way to generate parity is to count the 1 bits. The least significant bit of the

count is 1 if the data contains an odd number of 1 bits and 0 if it contains an even

nnmber. That bit is even parity, since it makes the total number of 1 bits (including itself)

even. We can readily combine the counting of 1 bits with serial transmission (Program E-
3). The following program (Program E-8 is the mnemonic-entry version) generates even

parity and sends it after the data from 0060. Since Program E-8 does not complement the

data (to avoid confusion in generating parity), the serial outputs appear inverted (0 = light

on, 1 = light off).

LDX #$7F
TXS
LDA #$FF
STA $A0Q2
STA SAOOO
LDA #0
STA $40
LDY #16

: INITIALIZE USER STACK POINTER

MAKE PORT B OUTPUT
TURN OFF THE LEOS
START PARITY AT ZERO

:
BIT TIME = 2 SECONOS

Serial Input/Output 283

UTB

SENDS

PROGRAM E-8

Memory
Address

(Hex)

Memory

Contents

(Hex)

Instruetion

(Mnemonic)

20G A2 LDX #7F
0201 7F

0202 9A TXS
0203 A9 LDA #FF
0204 FF

205 8D STA A002
0206 2
0207 A0
0208 8D STA A000
Q209
2QA A0
02QB A9 LDA #
2QC
20D 85 STA 50

20E 50

02QF A0 LDY #10
210 10

0211 A2 LDX #08
0212 8
213 46 UTB LSR 60
214 60

215 90 BCC 219
216 2
217 E6 INC 50

218 50

219 6E SENDB R0R A000
21A
21 B A0
21 C 20 JSR 300
21 D
21 E 3

LDX #8
LSR $60
BCC SENDB
INC $50
R0R $A000
JSR DLYE
DEX
BNE . OUTB
LSR $60
R0R $AO00
JSR DLYE
BRK

NUMBER QF DATA BITS = 8

MDVE SERIAL DUTPUT TD CARRY
IS SERIAL DUTPUT 1?

YES. ADD 1 TD PARITY

SEND SERIAL DUTPUT TD LEDS
WAIT A BIT TIME

CDUNT DATA BITS

parity = LSB DF NUMBER DF 1 BITS

TRANSMIT EVEN PARITY

WAIT A BIT TIME

284 Microcomputer Experimentation with the AIM 65 «

PROGRAM E-8 (continued)

Memory Memory

Address Contents Instruction

(Ilex) (Hex)
> (Mnemonidl

021 F CA DEX
220 DO BNE 0213
221 FI

0222 46 LSR 50
0223 50

0224 6E ROR AOOO
0225 00

0226 AO
0227 20 JSR 0300
0228 00

0229 03

022A 00 BRK

Enter and run Program E-8 for the following examples:

(0060) = 41 (ASCII A)

Result: Ev'en parity bit = 0, since the data has two 1 bits (41 hex = 01000001

binary).

(0060) = 43 (ASCII C)

Result: Even parity bit = 1, since the data has three 1 bits (43 hex = OIOOOOII

binary).

The results of Program E-8 are confusing, since bit 0 has been lost off the end. You
restore positive logic by complementing the final data as follows:

22A AD LDA AOOO
022B 00

0220 AO
022D 49 EOR #FF
22E FF

022F 8D STA AOOO
0230 00

0231 AO
0232 00 BRK

Regardless of whether you complement the data, the final values on the LEDs
should be, starting with bit 7: even parity bit, data bit 7, data bit 6, data bit 5, data bit 4,

data bit 3, data bit 2, and data bit 1. In example 1 above, the values are 0, 0, 1, 0, 0, 0, 0,

0, since 41 hex = 01000001 binary. In example 2, the values are 1,0, 1, 0, 0, 0, 0, 1,

since 43 hex = 01000011 binary.

Serial Input/Output 285

PROBLEM E-10

Many computers and peripherals use 7-bit ASCII cliaracters and rcser\e bit 7 for

parih'. Make Program E-8 transmit 7-bit characters followed by even parity.

Examples:

a. (0060) = 41 (ASCII A)

Result: 'rransmitted data is 41, since its parity is even.

b. (0060) = 43 (ASCII C)

Result: Transmitted data is C3, since 43 has odd parih'.

PROBLEM E-1

1

Write a serial reception program that ebecks parity. The program should plaee the

parallel data in 0061 and set 0062 to 0 if the parity is even and to 1 if it is odd.

Examples:

a. Receixed data: 41 hex = 01000001 binary.

Result: (0061) == 41 (parallel data)

(0062) = 00, since 41 hex has an even number of 1 bits.

b. Received data: Cl hex = 11000001 binary.

Result: (0061) = Cl (parallel data)

(0062) = 01, since Cl hex has an odd number of I bits.

KEY POINT SUMMARY

1. Serial I/O requires such functions as parallel/serial conversion, the addition and

detection of start and stop bits, clocking, and parity' generation and checking. Either

hardware such as UARTs or softw'are can perform these functions.

2. Shift instructions can easily convert data between serial and parallel forms. Changes

in the initial and final conditions are all that is needed to generate or detect start and

stop bits.

3. Serial data can be cloeked using software delay loops, programmable timers, or a

real-time clock.

4. You can reduce the number of errors in serial communications by centering the

reception, by sampling bits several times and using majority logic, or by including

an error-detecting or -correcting code such as parity. Parity can be generated by

counting the number of 1 bits in the data; even parity is the least significant bit of

the count.

LABORATORY F
J

MICROCOMPUTER

TIMING AND CONTROL

PURPOSE

To learn how the 6502 mieroproeessor exeeutes instruetions and how the addresses in the

memory and I/O seetions of 6502-based mieroeornputers are deeoded.

PARTS REQUIRED

A dnal-traee oseilloseope with a bandwidth of at least 5 MMz.

REFERENCE MATERIALS

L. A. LEVENd'HAL, Introduction to Microprocessors: Hardware, Software, Program-

ming, Prentiee-Hall, Englewood Cliffs, NJ, 1978, pp. 284-316.

286

Microcomputer Timing and Control 287

j. B. PEATMAN, Digital Hardware Design, McGraw-Hill, New T ork, 1980.

J. B. PEATMAN, Microcomputer-based Design, McGraw-Hill, New T’ork, 1977, Gliap-

tcr 3.

R.]. T’OGGI and L. P. LASKOW^SKl, Microprocessors and Microcomputers: Hardware

and Software, 2nd ed., Prentice-Hall, Faiglewood Glifts, N), 1982, pp. 35-36 (tristate

logic), 38-39 (clock signals), 39-30 (flip-flops), 52-53 (tristate registers), 53-58 (data

bus), 58-59 (decoders), 60-62 (multiplexers and denuiltiplexcrs), 63-64 (ineinory

devices), 65-73 (semiconductor memories), 73-79 (combining memory chips), 99-101

(instruction words), 101-105 (program example), 105-109 (operating cycles), 109-112

(instruction word formats), 127-137 (microcomputer structure), 137-142 (read and

write operations), 142-146 (address allocation), 146-1 54 (address decoding), 160-162

(timing and control section).

AIM 65 User’s Guide, Dynatem, Irvine, GA, 1978, Sections 7, 10.

R6500 Microcomputer System Hardware Manual, Rockwell International, Semiconduc-

tor Products Division, Newport Beach, GA, 1978, Sections 3, 4, Appendix A.

WHAT YOU SHOULD LEARN

1. How' the 6502 executes instructions.

2. How' to decode address lines to select memories and I/O devices.

3. What tradeoffs the designer can make between a computer’s memory capacity and

the number of parts required to decode addresses.

4. How to decode I/O addresses efficiently using linear select.

TERMS

Address bus the bus the GPU uses to select a memory location or I/O port.

Address spaee the total range of addresses to which a computer may refer.

Bus parallel lines that connect devices.

Bus eontention more than one device trying to put data on a bus at the same time.

Decoder a device that produces unencoded outputs from coded inputs.

Instruction a group of bits that defines a computer operation.

Linear select using coded bus lines individually for selection rather than decoding

them. Linear select requires no decoders but can address with n lines only n devices rather

than 2”.

Logic analyzer a piece of test equipment that detects, stores, and displays parallel digital

signals.

Memory capacity the total number of memory locations that may he attached to a

computer.

288 Microcomputer Experimentation with the AIM 65 «

Tristate logic outputs with three states—high, low, and inactive (high-impedance or

opcu-circuit). Inactive (disabled) outputs can be combined without gates.

«

SPECIAL PROBLEMS IN MICROCOMPUTER HARDWARE DESIGN

Describing the flow of signals in a micToeomputer is not simple. Not only does data move
in parallel (typically 8, 16, or 32 bits at a time), but the clock rate is high and few periodic

sequences occur, d’he result is that microprocessor-based products are difficult to debug,

maintain, and repair. In practice, engineers often buy board computers rather than

designing their own, and companies often have service people 'replace entire circuit

boards rather than trying to pinpoint a malfunction.

Of course, the designer must understand how a microcomputer operates and how
its parts arc connected. I’his laboratory can provide only a brief overview of hardware

design. We assume that you have a dual-trace oscilloscope with a bandwidth of at least 5

MHz. Unfortunately, even a good oscilloscope is inadequate for design or troubleshoot-

ing. 'ho diagnose hardware faults, you must be able to examine simultaneously the clock,

data bus, address bus, and control signals. This requires a test instrument called a logic

analyzer that can display many lines in a comprehensible form. Since logic analyzers are

expensive, we will content ourselves with examining signals one at a time on an

oscilloscope.

TIMING AND CONTROL FUNCTIONS

To design or understand a microcomputer, we must ansvver the following questions:

1. How does the processor transfer data to or from memory and I/O ports? Clearly

timing is a critical factor.

2. How does the processor decode and execute instructions? Although this is an

internal function, an understanding of it is important, since it governs the com-

puter’s operations.

3. How does the processor distinguish different types of cycles? The designer must use

the processor’s signals to control external hardware and monitor system operation.

4. How are memory addresses and I/O ports selected? Address lines and control signals

must be decoded properly.

5. How can memories, I/O ports, and other devices share system buses? Most micro-

processors have a tristate data bus. Only one memory or input port is enabled at a

time; the disabled ones do not affect the bus, since they are in the high-impedance

state.

The microcomputer designer must, of course, consider economic and physical factors

such as cost, speed, board size, and power consumption. Other important factors include

consistency with other applications and standards and how easy the computer is to test,

expand, update, and maintain.

Microcomputer Timing and Control 289

SYSTEM CLOCK

Let us now look at processor signals on the oscilloscope. Figure F-1 and T ables F-1 and

F-2 give the pin assignments for the 6502 microprocessor and the AIM 65’s Application

Vss

RDY

01 (OUT)

N.C.

Nl^

SYNC

Vec

ABo

ABi

AB2

AB3

AB4

AB
5

ABg

AB 7

ABg

ABg

AB

AB

10

11

4
»

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

6502

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

RESET

02 (OUT)

SET OVERFLOW

0o(IN)

N.C.

N.C.

R/W

DBo

DBi

DB2

DB,

DB.

DBp

DB,

DB-

AB 15

AB 14

AB

AB

13

12

Vss

N.C. = NO CONNECTION

FIGURE F-1. Pin assignments for the 6502 microprocessor.

290 Microcomputer Experimentation with the AIM 65 •

and Expansion Connectors. Attach the oscilloscope ground to pin 22 of the Expansion
Connector. Put your oscilloscope in the CHOP mode so that it maintains timing rela-

tionships rather than retriggering when you switch channels; do not use the ALTER-
NAd’E mode.

>•

Attach one probe to pin 3 ((|)j) of the Expansion Connector and the other to pin U
hhese are the two phases of the system clock (see Figure F—2). During phase 1, the

processor puts a new value on the address bus and determines all control signals. This is a

setup period. During phase 2, the processor actually transfers data to or from memory or

I/O ports; all control and address signals are stable.

TABLE F-1 AIM 65 APPLICATION (J1) CONNECTOR PIN

ASSIGNMENTS

Pin Signal Pin Signal

22 Z
21 CA2 Y SERIAL INPUT
20 CAl X
19 CB2 W TAPE I

A

18 CBl V TAPE 2A
17 PB6 u TTY PRINTER
16 PB5 T TTY KEYBOARD
15 PB7 s TTY PRINTER RETURN (-h)

14 PAO R TTY KEYBOARD RETURN
{ +)

13 PB4 P AUDIO OUT HIGH
12 PB3 N + 12V

11 PB2 M AUDIO OUT LOW
10 PBl L AUDIO IN

9 PBO K
8 PA7

J TAPE 2B

7 PA6 U TAPE 2B RETURN
6 PA 5 F TAPE IB

5 PA4 E TAPE IB RETURN
4 PAl D R/W
3 PA2 C 4>2

2 PA3 B

1 GNLT A -1-5V

Source: D\iiateni, Irvine, Calif.

—ri_Ji_ru^_n n

FIGURE F-2. Two-phase 6502 system elock.

Microcomputer Timing and Control 291

TABLE F-2 AIM 65 EXPANSION (J3) CONNECTOR
ASSIGNMENTS

Pin Signal Pin Signal

22 GND Z RAM R/W
21 + 5\'

<t)2

20 eSA X TEST’

19 GS9 W' R/W'

18 ^S8 SYS R/W'

17 + 12V u SYS (J)2

16 -12V T A15

15 DO S A14

14 D1 R A13

13 D2 P A12

12 D3 N All

11 m M AlO

10 D5 L A9

9 D6 K A8

8 D7) A7

7 RESET H A6

6 NMl E A5

5 SET OVERELOW E A4

4 IRQ D A3

3 <1)1 C A2

2 RDY B A1

1 SYNC A AO

Source: Dynatem, Irvine, Calif.

Many devices, including the microprocessor, memories, input ports, and output

ports, must share the data bus. Control signals must prevent bus contention, an attempt by

more than one device to control the bus at a given time.

Bus contention can occur when the microprocessor changes its address outputs (that

is, when it finishes reading one address and begins reading another). Since clcetronie

de\ ices have finite switching times, both the old address and the new one will be active

briefly after the changeover. Tlie designer can prevent contention during this period by

gating the outputs from each memory or input port with clock phase 2 as shown in Figure

F-3. T hen the data bus is in use only during phase 2. Remember, however, that the

processor changes its address outputs during phase 1; by the time phase 2 begins, the old

address will be inactive.

CLOCK PHASE 2 (02)

DATA FROM A MEMORY TO PROCESSOR DATA BUS

OR AN INPUT PORT

{Note: the output of the gate is 0 unless clock phase 2 is high.)

FIGURK F-3. Gating clock phase 2 with data from memory or an input port.

292 Microcomputer Experimentation with the AIM 65 «

TRACING INSTRUCTION EXECUTION

Put the following insfriictioii in locations 0200 through 0202:

HERE JMP ' HERE

\ his instruction transfers control to itself, thus producing a repetitive sequence of signals.

Program F-1 is the mnemonic-entry version.

PROGRAM F-1

Memory

AcIcItcss

(Hex)

Memory

Contents

(Hex)

Instruction

(Mnemonic)

2Q0 40 HERE JMP 0200
201 0
0202 2

Attach one probe to clock phase 2 and the other to SYNC, pin 1 of the Expansion

Connector. SYNC is active (high) during each cycle in which the processor is fetching an

operation code, dims the rising edge on SYNC marks the beginning of eaeh exeeution of

JMP. Note that SYNC is high about one-third of the time while Program F-1 is exeeut-

ing. Phus the processor spends one-third of its time fetehing JMP’s operation eode from

memory and two-thirds fetehing the destination address and performing internal opera-

tions.

Now' attaeh your seeond probe to address line ABq (pin A of the Expansion Con-
neetor). This line is high during the seeond eloek eyele of JMP, when the proeessor is

fetehing the less signifieant byte of the address from 0201. Similarly, ABj (pin B of the

Expansion Conneetor) goes high during JMP’s third eloek eyele, when the proeessor is

fetehing the more signifieant byte of the address from 0202.

11ie proeessor thus exeeutes instruetions in a series of eloek eyeles. Eaeh eyele

eonsists of one phase used to ehange and stabilize addresses and one used to transfer data.

Appendix A of the R6500 Microcomputer System Hardware Marjual deseribes in detail

the exeeution of all instruetions.

1 he 6502 exeeutes JMP with absolute addressing in three eloek eyeles as follows:

1. During the first eyele, it fetehes the operation eode (4C hex). It does this by putting

the program eounter (0200 hex) on the address bus and reading the data from

memory, d he proeessor adds I to the program eounter after eaeh use.

2. During the seeond eyele, it fetehes the less signifieant byte (00) of the destination

address. Here again, the proeessor puts the program eounter (now 020 1 hex) on the

address bus and reads the data from memory. As in the first eyele, the proeessor adds

I to the program eounter, making its final value 0202.

Microcomputer Timing and Control 293

3. During the third cycle, the Cl’U fetches the more significant byte (02) of the

destination address, hdnally, tlie CPU puts the address in the program counter, thus

executing JMP.

Can yon recognize an instruction cycle on the oscilloscope? Note that SYNC is

high during the clock cycle in which the CPU fetches the operation code.

PROBLEM F-1

Determine how long ABq is high. How long is ABj high? Explain these results.

PROBLEM F-2

How long is SYNC high? Suggest some uses for SYNC.

The CPU always accepts data at the end of clock phase 2. T he memory address is

always stable before the end of clock phase 1. How much time does this allow for a

memory access? The only way to allow more is to reduce the clock frequency.

EXECUTION OF ADDRESSING MODES

Enter Program F-2 into memory and execute it.

PROGRAM F-2

Memory
Address

(Hex)

Memory'

Contents

(Hex)

Instruction

(Mnemonic)

0200 A9 HERE LDA #
201
202 4C JMP 200
203
204 2

PROBLEM F-3

What happens to SYNC during Program F-2? Explain its appearance.

The 6502 executes instructions with immediate addressing in two clock cycles:

1. During the first cycle, it uses the program counter to fetch the operation code from

memory. As usual, it adds 1 to the program counter after using it.

2. During the second cycle, it uses the program counter to fetch the data from mem-
ory. It performs the operation and adds 1 to the program counter again.

294 Microcomputer Experimentation with the AIM 65 ,

SYNC is high during the first cycle to indicate the operation code fetch.

PROBLEM F-4
*

What happens to SYNC if yon replace A9 (LDA immediate) in 0200 vvith A5 (LDA
zero-page)? Explain the result. What instruction is the processor executing?

I he 6502 performs all register instructions 'with zero-page (direct) addressing in

three clock cycles as follows:

1. During the first cycle, it uses the program counter to fetch the operation code from
memory.

2. During the second cycle, it uses the program counter to fetch the address on page 0
from memory. In zero-page modes, the processor simply clears the more significant

byte of the memory address internally.

3. During the third cycle, it uses the memory address to transfer the data. It then
performs the operation. Since the program counter is not used in this cycle, it is not
changed.

Instructions that store data in memory must produce a signal that indicates when
data is available. READ/WRITE (Expansion Connector pin V) serves this purpose. In the
program s we have run so far, this line should always be I (READ). Examine READ/
WRITE during the execution of Program F-2 and verify this.

PROBLEM F-5

What happens to SYNC and READ/WRITE if you replace A9 in 0200 with 85?
What instruction is now in 0200 and 0201? Verify your answer by loading the
accumulator and 0000 initially and checking the results.

In relative addressing, the processor adds the offset to the program counter to obtain
the destination address. The 6502 minimizes the execution time of relative branches by
not doing the addition if the condition is false. Furthermore, it performs a 16-bit addition
(taking one extra cycle) only if the branch crosses a page boundary.

Enter Program F-3 into memory. CLC simply makes the branch condition true.

Examine SYNC and determine how many cycles BCC takes. Here the branch (from 0203
to 0201) does not cross a page boundary.

PROGRAM F-3

Memory
Address

(Ilex)

Memory

Contents

(Hex)

Instruetion

(Mnemonie)

0200 18 CLC
0201 90 HERE BCC 0201
0202 FE

Microcomputer Timing and Control 295

PROBLEM F-6

What happens to S"i NC if you move Program K-3 to through 0500? How
many eyeles does BCC take now? pAplain the ehange.

DECODING ADDRESS LINES

The AIM 65 cleeodes the upper half of memory (addresses 8000 through KFKF) as

deseribed in T able F-3 using a 74158 5-to-8-line deeoder (see Figure F-4 and T able F-

4). Sinee ABj^ enables the deeoder, all its outputs are inaetive unless that line is 1.

The lower half of memory is partially deeoded using a 74155 dual 2-to-4 decoder

(see Figure F-5 and T able P-5). Half of this decoder is enabled through two NOR gates

(7455; Z15) and an inverter (7404; Z16), making it active only when the four most

TABLE F-3 AIM 65 ADDRESS DECODING FOR UPPER 32K BYTES

OF MEMORY*

AB|4 AB„ AB,2 Symbol Device Activated

0 0 0 CS8 Available for memory expansion

0 0 1 CS9 Available for memory expansion

0 1 0 eSA I/O

0 1 1 CSB Optional on-hoard BASIC Z26

1 0 0 CSC Optional on-board BASIC Z25

1 0 1 CSD Optional on-board assembler

1 1 0 CSE AIM monitor ROM Z23

1 1 1 CSF AIM monitor ROM Z22

* Figure F-6 shows the decoding circuit.

OXTA OUTPUTS

Vcc YO Y1 Y2 Y3 Y4 Y5 Y6

SELECT ENABLE

SELECT OUTPUTS
DATA STROBE INPUT s

Vcc C2 02 A 2Y3 2Y2 2Y1 2Y0

PUT ' V

B OUTPUTS

FIGURF F-T. Pin assignments for the 74138

3-to-8-linc decoder.

FIGURE F-5. Pin assignments for the 74155 dual

2-to-4-line decoder/demultiplcxer.

296 Microcomputer Experimentation with the AIM 65 •

significant address lines (ABj
2 ,

AB|
3 ,

ABj^, and ABj
5) are all Os. This half seleets the

RAM, vvhieh therefore oeeupies addresses 0000 through 03FF. Figure F-6 shows the

entire deeoding eireuit.

TABLE F-4 FUNCTION TABLE FOR THE 74138 3-TO-8-LINE

DECODER

Enable

Inputs

Select
Outputs

G1 G2* C B A YO Y1 Y2 Y3 Y4 Y5 Y6 Y7

H — — — H H H H H H
>

H H
L - - — H H H H H H H H
H L L L L L H H H H H H H
H L L L H H L H H H H H H
H L L H L H H L H H H H H
H L L H H H H H L H H H H
H L H L L H H H H L H H H
H L H L H H H H H H L H H
H L H H L H H H H H H L H
H L H H H H H H H H H H L

H — high level, L = low level.

*G2 = G2A + G2B

TABLE F-5 FUNCTION TABLES FOR
THE 74155 DUAL 2-TO-4-LINE

DECODER/DEMULTIPLEXER

Inputs

Select Strobe Data

B A IG 1C
lYO

Outputs

lYl 1Y2 1Y3

— — H — H H H H
L L L H L H H H
L H L H H L H H
H L L H H H L H
H H L H H H H L
- - - L H H H H

Inputs Outputs

B

Select

A
Strobe

2G
Data

2C
2Y0 2Y1 2Y2 2Y3

— — H — H H H H
L L L L L H H H
L H L L H L H H
H L L L H H L H
H H L L H H H L
— — — H H H H H

H = high level, L = low level.

Microcomputer Timing and Control 297

Al5

29
CPU

R6502

AlO

Ai I

AI2

AI3

AI4

AI5

19

20

22

23

24

25

AIA 3

Al3 2

A12 L

+ 5V-

Y3 >

Y4 >

Z27
I OF 8

DECODER

y5 >

Y6 >

SN74LSI38 Y7p-

VCC

GND YO

G2B Yl >
4
-C G2A Y2

JO £21.

9SE_

J3C

n

$2 15

SEE^ I

TIMING i CONTROL I

[SCHEI^ATI_C
1

C(2C

All B

IGp

2Y3

AlO O ZI9

A dual 2Y2 0 CSOSL
2 TO 4 10

DECODER 2yi |o

—

2Y0>

master module
prom/rom

Z26 -20

Z25-20

Z24-20

Z23-20 SI

Z22-20 ST

MASTER MODULE
RAM

:Zl7-8
iZl8-8
:ZII-8
1ZI2-8

’Z6-8
.Z7-8
•Z2-8
.Z3-8

Z32
CS2 VIA

R6522

Z33
C52 RIOT

R6532

CSAO

l_

CS2 VIA
R6522

18

19

20

J3
EXPANSION

fTrSEE DISPLAY
SCHEM

fsEE TIMING AN^
ICONTROL SCHEM|
I

I

CSAC

J5
DISPLAY

[see KEYBOARD ~1

1
INTERFACE SCHEMI

[see USER 6522 "1

I

INTERFACE SCHEM|

I23

FIGURK F-6. Decoding circuit for AIM 65 memory and I/O. (Reprinted courtesy of

Dynatem, Irvine, CA.)

Execute Program F-1 and examine CSOO (74155 decoder pin 9). What happens to

it? Note that Program F-1 is in the lowest IK of user RAM.
The 74138 decoder divides the upper 32K of address space into eight 4K sections.

CSS and CS9 are uncommitted and can be used for off-board expansion; CSA is used for

on-board I/O; and CSB through CSF enable the on-board ROM/PROM slots (sec Figure

F-7).

PROBLEM F-7

What happens to CSOO if you put Program F-1 in A400 through A402? Rcmcmher

to change the destination address in JMP to A400. What happens to output CSA4 from

the 74155 decoder? What happens to CSOO and CSA4 if you execute the following

program?

298 Microcomputer Experimentation with the AIM 65 «

Memory
Address

(Hex)

Memory
Contents

(Hex)

Instruction

(Mnemonic)

0200 AD HERE « LDA A400
0201 00
0202 A4
0203 40 JMP 0200
0204 00
0205 02

ADDRESS RANGE

figure F-7. aim 65 PROM/ROM interface schematic. (Reprinted courtesy of
D\iiatem, Irvine, CA.)

PROBLEM F-8

'I'hc following program uses the printer dot-generation table in the monitor (starting
in F2PZ1).

Microcomputer Timing and Control 299

HERE
LDX #0 :

DIGIT = ZERO
LDA $F2E1,X :

CONVERT TO DOT-GENERATION CODE
JMP HERE

In mnemonic-entry form this is

McMiiory

.\ddrcss

(Hex)

r

Memory
Contents

(Hex)

Instrnetion

(Mnemonic)

2Q0 A2 LDX #00

201 00

0202 BO HERE LDA F2E1.X

0203 E1

204 F2

0205 4C JMP 0202

0206 02

0207 02

FAamine CSF (pin 7 of deeoclcr Z27). 'This output signal activates tlie upper

monitor ROM. How long is it active? Describe the execution of a register instruction

using absolute indexed addressing. Describe the behavior of SYNC.

MULTIPLE ADDRESSES AND MEMORY EXPANSION

CS8 and CS9 from the 74138 decoder can be used to add 8K bytes of external RAM.

When adding memory, we must ensure that one address never selects two locations.

Reading that address would produce bus contention.

On the other hand, no contention occurs if many addresses select the same loca-

tion. This sounds odd, but it does not affect the microcomputer’s operation, any more

than the practice of assigning a large building several street addresses (corresponding to

different entrances) creates problems in mail delivery. For example, say we want to add an

extra lK-by-8 (IK-byte) RAM to the AIM. Rather than decode the address space further,

we could simply enable the RAM with CS8. T he IK RAM would then occupy 4K of

address space, and each location in it would have four addresses. Since ABjo and ABjj are

not connected to the RAM or to the decoder, their values would not affect selection.

The advantage of multiple addresses is obvious. To decode the 4K fully would

require another 2-to-4-line decoder (decoding ABjq and ABjj in the same way as decoder

Z19). This would mean an additional part, more connections, and more board space.

300 Microcomputer Experimentation with the AIM 65
«

1 he disadvantage of multiple addresses is that they rediiee the eomputer’s memory
eapaeity. In the example, IK bytes of memory oeeupy an address spaee that eould hold 4K
bytes, ddiis reduees the memory eapaeity by 3K bytes. The reduetion does not matter, of

eoiirse, if we have no further expansion plans.

d’he tradeoff here is elear. Deeoding all address lines allows us to attaeh the max-
imum amount of memory. On the other hand, it requires additional parts (deeoders). In

simple applieations, the extra parts are an unneeessary expense. Thus designers typieally

deeode all address lines in large systems sueh as personal eomputers, graphies terminals,

and robots. I hey typieally leave address lines undeeoded in small systems sueh as printers,

eleetronie games, and simple instruments.

PROBLEM F-9

If we add a Ik-byte RAM as proposed (enabling it with CSS), whieh addresses does
it oeeupy? List the addresses that refer to the same memory loeation as 8000 hex.

ADDRESSING I/O DEVICES

The 74155 deeoder in Figure F-6 divides the I/O address spaee into IK sections. The I/O
part of the decoder is activated by CSA, so the sections start at AOOO. This still leaves us
with the problem of addressing individual I/O devices. 6522 VIAs, for example, occupy
only 16 bytes apiece. Thus IK of address space could hold 64 VIAs, far more than most
microcomputers need.

There is obviously no need to decode the I/O address space fully. After all, to

decode 64 VIAs with 74138 devices fully would require eight chips. A less costly alter-

native is simply to use the available address lines without decoding.

This is easy to do with a VIA, since it has chip select inputs (see the pin assignments
m Figure F-8). The RS (register select) lines decode the internal registers and are nor-
mally tied to ABq through AB

3
. The CS (chip select) lines can be used for selection. For

example, we cou ld tie a decoder output from Figure F -6 (say, CSAO) to the active-low
chip select (CS2). That VIA would then occupy the entire address space from AOOO
through A3FF. Address lines AB,q through AB 15 are decoded in Figure F-6

,
ABq through

AB
3 select internal VIA registers, and AB^ through ABg are unconnected.
The advantage of this approach is obvious: We have attached a VIA without a

decoder. The disadx antage is that we have used IK of address space. Addresses differing

only in AB4 through ABg select the same VIA register. For example, AOOO, AO 10, A020,
A040, A080, AlOO, and A200 all select I/O port B. We can readily observe this in

practice, since the AIM 65 decodes the user VIA this way. Make port B output by loading
FF into A002 and turn all the LEDs on by loading 00 into AOOO. Now examine AOIO.
What happens when you place FO in AOIO? Try changing A020, A040, A080, AlOO, and
A200. If the AIM complains (with a MEM EAIL message) when you try to change VIA
registers from the keyboard, use a program instead.

Microcomputer Timing and Control 301

^ss 1 40 CA,

PAo 2 39 CA,

PA, 3 38 BSo

PAj 4

•

37 RS,

PA
3 5 36 RS,

PA4 6 35 RS3

PA, 7 34
1

RESET

PA, 8 33 n BB„

PA
7 9 32 db,

'’BoC 10 31

6522

DB,

P8
,

11 30 DB
3

PB, 12 29 DB^

13 28 DB,

PB.,
[2 14 27 DB,

PB
5

15 26 DB
7

BBe 16 25 02

PB, 17 24 cs,

CB, 18 23 CSj

UCM

CO0 19 22 R/W

^cc 20 21

FIGURE F-8. Pin assignments for the

6522 VIA. (Reprinted courtesy of Rockwell

International, Semiconductor Products

Division, Newport Beach, CA.)

PROBLEM F-10

Which VIA registers oeeupy the following addresses?

a. A030

b. AIFB
e. A30E

302 Microcomputer Experimentation with the AIM 65 ,

W'c could use the address spaee more effieieutly by partially deeoding AB4 through
ABt). For example, we eould plaee two VlAs in IK of memory hy tying CSl on one VIA
to AB9 and CSl on the other to AB9 .

A more elever way of deeoding VlAs is to tie the ehip seleets direetly ^o undeeoded
address lines, d’his approaeh is ealled linear select. It lets us plaee 6 VlAs in IK of
memory, thus providing suffieient I/O for many applications.

PROBLEM F-1

1

Linear seleet results in diseontinuous addresses. Eaeh 1 bit in the seleetion lines

aetivates an I/O deviee, so only addresses with one 1 bit in those lines are oecupied.
Whieh addresses do VlAs oceupy if we attaeh six of them using linear seleet and tie CSA8

from Figure F-6 to CS2 on each device?

PROBLEM F-1

2

One outgrowth of the discontinuous addresses in Problem F-11 is that we can
actually send data to several VlAs at once. This is done by storing the data in an address

with 1 hits in several selection lines, lliis multiple transmission is called a broadcast,

since it is like a general broadcast on a communications network. Assuming that we have
six VlAs addressed as in Problem F-11, write a program that makes all A ports input and
all B ports output and stores 55 hex in all B ports. Note that port B, port A, data direction

register B, and data direction register A are addresses 0, 1,2, and 3, respectivelv, inside

the VIA.

KEY POINT SUMMARY

1. A logic analyzer is needed for full understanding or debugging of the hardware in

microprocessor-based systems. The analyzer can display many signals simul-

taneously in a comprehensible format.

2. The 6502 executes instructions in a series of clock cycles consisting of a setup period

followed by a transfer period. All address and control signals are stable during the

transfer period.

3. The 6502 differentiates behveen operation code fetches and other cycles with the

SYNC signal. SYNC is high when the processor is fetching an operation code from
memory.

4. Instruction execution takes at least two clock cycles. During the first cycle, the CPU
fetches an operation code. It puts the program counter on the address bus and loads

the data from memory into the instruction register. The CPU adds 1 to the program
counter after each use.

5. The processor executes instructions with different addressing modes in different

ways. For immediate addressing, it uses the program counter to fetch the data. For
zero-page and absolute (direct) addressing, it uses the program counter to fetch the

Microcomputer Timing and Control 303

data’s address and then uses that address to access memory. For indexed and relative

addressing, it must first perform an addition to calculate the effective address.

6. The more significant address lines arc usually decoded to form enabling signals.

These signals select a particular memory or I/O device. In general, only one

memory or I/O device can be selected at a time.

7. The designer can make tradeoffs between a computer’s memory capacity and the

complexity of its decoding system. Full decoding of addresses maximizes memory

capacity but increases parts count. Partial decoding is often sufficient in small

systems.

8. I/O addresses are seldom decoded fully because few applications require more than

a small fraction of the available capacit}’. Linear select (using an address line

directly to select an I/O device) is a convenient way to provide a reasonable I/O

capacity without decoders.

t

APPENDIX 1—6502 MICROPROCESSOR INSTRUCTION SET*

Table Al-1

MICROPROCESSOR OPERATION CODES AND OBJECT CODES

INSTiUCTlORS lMMC(N4Tf ABSOLUTE 2EB0 FAGE ACCUM IMFLIEO (INO. II

BHmOMtC OFfXATlOR 0 F n • 0 F n 9 01> n • 0 P n • Of* n • 0 » n s

ADC A M C A |4) (1 et 2 2 SC) 4 3 6* 3 2 6 6 2

AND A A M -• A (V 2 2 2C 4 3 2* 3 2 2 6 2

A S L C -0 Bl-0 OE B 3 Ot 5 2 04 2 1

B C C BRANCH ON C s 0 (2)

B C S BRANCH ON C = 1 (2)

B E 0 BRANCH ON z = 1 (2)

B 1 r AA M 2C 4 3 24 3 2

B M 1 BRANCH ON N s 1 (2)

B N E BRANCHONZsO IZ)

B P L BRANCH ON N s 0 121

B R K 8REAKlS#tF.g / 00 f 1

B V C branch on V : 0 (2|

B V S BRANCH ON V :) (2)

C L C 0-C 18 2 1

C L D 0-D OB 2 I

C L 1 0-1
5B 2 1

C L V 0 - V BB 2 1

CMP A . M CB 2 2 CO 4 3 C5 3 2 Cl 6 2

C P X X - M £0 2 2 EC 4 3 E4 3 2

C p Y Y . M CO 2 2 cc 4 3 C4 3 2

DEC M - 1 M CE 6 3 CB 5 2

D E X X - 1 - X CA 2 1

D E Y Y - 1 - Y
88 2 1

E 0 R A » M - A (1) 4« 2 2 40 4 3 45 3 2 41 6 2

1 N C M 1 -M EE 6 3 E6 5 2

1 N X X 1 - X E8 2 1

1 N Y Y 1 - Y CB 2 1

J M P JUMP TO NEW LOC 4C 3 3

J S R JUMP Sub ($•• F.g A! 2I 20 6 3

L 0 A M-A (1) A9 2 2 AO 4 3 A5 3 2 A1 fi 2

L D X 01 A2 2 2 AE 4 3 A6 3 2

L D V 0> AO 2 2 AC 4 3 A4 3 2

L S R 0 -P~ e>- e 4E 6 3 4B 5 2 4A 2 1

NOP NO OPERATION EA 2 t

ORA A VM - A 09 i 2 00 4 3 05 3 2 01 6 2

P H A A-M« S - 1-S 48 3 1

P M P P-Mg S - 1 - S 06 3

P L A S 1 - S Ms - A 88 4 1

P L P

R 0 L

S < - S M« - P

Cf' oHCP 2E 6 3 26 5 2 2A 2 1

28 4 1

R 0 R BE a 3 BB 5 2 8A 2 1

R T I RTRN INT (Sm F>g A1 1) 40 8 !

RTS RTRN SUB (S«« Fig A1 2) 80 8 1

SBC A - M - C-A (1) E9 2 2 ED 4 3 E5 3 2 El 8 2

SEC 1 -c 18 2 1

S E D 1-0 F8 2 1

S E 1 1 - 1 T9 2 1

S T A A-M ID 4 3 B5 3 2 61 8 2

S T X X - M IE 4 3 80 3 2

sty Y-M 1C 4 3 84 3 2

Tax A-X AA 2 1

T A Y A - Y AB 2 1

T s X s-x lA 2 1

T X A X - A lA 2 1

T X S x-S »A 2 1

T Y A Y-A i M 2 1

(1) ADO Mo N IfPAGCSOUNOARYlSCAOSSEO
t2) AOOITO N IP BRANCH OCCURS TO SAME PAGC

AOO 2 TO N IF BRANCH OCCURS TO DIFFERENT PAGE
(3) CARRY not « BORROW
(4) IF IN DCCIMAL MODE 2 FLAG IS INVALID

ACCUMULATOR MUST BE CHECKED FOR 2ERO RESULT

(INOl. V

n

31

I FAGi 1

OP

05

B5

OP

to

RElATivf

OP

FAOCfSSOA STATUS
I face T cooes

^ 6 5 4 3 2 t 0
N V « 8 0 I 2 C

N V

N .

N .

2 C

2

2 C

2 C

2 C

2 C

N 2

(RESTORED!

N 2 C

N 2 C

(RESTORED)

2 (3)

ADC
and
A S L

8 C C

6 C S

B E O

B I T

6 M I

6 N E

8 P L

B R K

B V C

6 V S

C L C

C L C

C L I

C L V

CMP
CP*
C P Y

DEC
0 E X

0 E Y

E O fl

1 N C

I N X

I N Y

J M P

J S R

L 0 A

L 0 X

L 0 Y

L S R

NOP
ORA
P M A

P H P

P L A

P L P

R O L

R 0 R

fl T 1

R T S

SBC
SEC
S E 0

S E I

S T A

S T X

sty
Tax
T A Y

T S X

T X A

T X S

V A

X INDEX X

Y INDEX Y

A ACCUMULATOR
M MEMORY PER EFFECTIVE ADDRESS
Ms memory per stack POINTER

ADO

SUBTRACT

AND

OR

EXCLUSIVE OR

MEMORY BIT 7

MEMORY Bit 6

NO cycles

NO BYTES

“Courtesy of Semiconductor Products Division, Rockwell International, Newport Beach, CA.

304

MNEMONIC

EQUIVALENTS

OF

HEXADECIMAL

OPERATION

CODES

-

K K H »> W M
i/i ^ 1/t Ji ^ »/)• •«««•» «

< <<<<<<
M XkOOoOsss«?£

0

"w'xxkk****
<<<<<<<<^^”^<<<<
S»ZZOOOO>-i.OOlS«A

«/)
**

• Q lA c/)c/)c/> c/>

£ 4 ^ a (BCDS s
5 a i < < < < <
2 j a K
1 S 1 •- 00 a a.

A ^ -3 tO 0

•

<
< < < «

5 f '5 § ?22!?S S

• ?5?2s??5 ;???2?5<400aaoosszzoooo *.ooS1a«00<<<WWJ<< 4/)^wOU</>W)

• a-oau<-<->'<*'>>.o*o
aoac/ta<j(ikftOi-*>o:utu)

-

•

X K " > > * X

oooooo^ OOOOOOoO<^<<<<2 X4<<<<wx^Q,aa<^^ao.
»S(»SJ •« 'S< »S| »SI

-1 -J ^ <X (X ® xkXxOOqu</)c/)0Ot/></)0<<sawwa «/)v>wwOOt£W*WKkK»*X
'cWUJWJUJuJUJWJWJaJUiMtW^^WJCW00000000c5000^^00<<<<<<<<<4<<55<<aaaa.aaa.a.aa&a^^aa
<<Ooaaou<<<<^^uuasZZOOOOi>i>0032A900 < < ujuj< <(/)i/)'^ wOUc/>c/)

«

K X
V • • ® ® ®

s ??????
• a a a a &
a

>M *sj ISJ *SJ ^
> X

^ ^ 0 0 ^ 0.

£ u> ^ 0 0

n

r«

3
3
X
0

'

K>X>XXX>-x>-K>'*<^»>-00000000000099^^ZZZZZZZZzzZZ^^ZZ<<oosaoo<<<<^^ooSSZZOOOO»>k>OOS2o«00<<UJWJ<<(/)c/)w^OOU)</)

e

3 3 3
3 3 3

saS)3i->t-> oouazawjAO^ACCOSA AwAUAOA

Id
O^r^r^*^A^Aak<A00uJU.

Is
^ *»

« 2
<n ~
2 c

« £
® r!
> o

9 >^
S: -o
® ^
iE

I I
Q T3
UJ C
X R
uj o
Og
£ ®
LU S
t: oD —
_J X
O 5
(O ?
CO £
< «

^ o
> c

CD ®
< >.

. n

T3 § XO 5 ®
« « =
® o ®

o ®
O 225
^ 5 ®
« C £
.£ or
9 a o
£ = «
•' 3 .t:

•> -o
° 5 -® ^ ®
£^ ® -D

O

C J
0 w 2
® O® Bj® ® ® t;
® x: 2 XJ

K O 2 ®

1
- 5 ^I TJ 2 o

O o O O
UJ « o ~

Q.£

X ^ ® 2
Sls§
Z o S *— ^ Q. ®

I
T3 c >.

> ® O X>

n m ®
EcS
aSo
C *0

o y =— 0X3

i: O .9

2 E ®

c ®® t -n

£.2 0
o£ *

2o^
>K 0)

£> ^

p?

"O c
c 2 a
0 c -£

t-t- 2
1 2 ;
Q S£

5 o®
0 Si

m .r ^
oc ® o

1

I °2

to
CD
<

o
z

o
z

(/}

UJ

o

O
Z

UJ

cr

Q
o
<

T3
C
o
u
®
«
®£

c
<0

c
o
o

*D
c
(0

oa
o

c.

c ®
o
o n
c -D
o .b

£i
U
2 ®
0) ^
C ^
© «

^ © ST

O © *D

ill
c ® o
o ~
® i«2
®c

O
z
(0 •

(/) E
UJ o

I?Q ^< <n

UJ.E

< £
or
UJ o
5 2

2
2

$
o

® o

c2
8e
25
.o o
£
G»5 .^

O £
Poow m

o
©
3
E
3
O
o
©
©

c
o

c

®£
- ®£ o
I r 2
OB

I

o OC

©

i®
(/) 5
(A ®

(T >
Q •=

O ®
•o -c X

Z © kx.

^ ©
</) XJ -D

</J >= O
UJ

LJ O
9 j®^ 2 ®
i- CO tz

3 ® n
-I x: c
O 'T

'*

CO ® -
CD E §<28

CO
CD
<

UJ ®
O ®
<2
0. ^

OC .t;

UJ X3N w
.

®
I 2
UjO
o
<
Q.

M

CJ
3w
®
C
®

X3

®
C
O

OC

o

r>

2
3
o
o
<

305

Z

PAGE,

X
-

Z

PAGE,

Y
—

ZERO

PAGE

INDEXED

—

The

second

byte

of

the

in-

^

carry

from

this

operation

is

added

to

the

contents

of

the

next

struction

is

added

to

the

index

(carry

is

dropped)

to

form

the

low

order

page

zero

location,

the

result

being

the

8
high

order

bits

of

the

EA

byte

of

the

EA.

The

high

order

byte

of

the

EA

Is

zero.

«

>*

N

FIGURE Al-1, Response to IRQ and

NMI inputs and operation of the RTI and

BRK instruetions.

FIGURE A 1-2. Operation of the JSR
and RTS instructions.

306

6502

MICROPROCESSOR

INSTRUCTION

SET-ALPHABETIC

SEQUENCE

i/i

C/3

k.

a
<

(U

a:

00
_c
’>

cn

c
_o

03
O
O
-J

Z

Q,

E
3

-2
3
E
3

>> o
U- CJ

i t
o> o

>-

O
E
OJ

>.
1-1

O
>. E
o ^
E ^
<sj JZ

S •

-

x:
^

•t; X
^ k-

O t/5

003̂
ac

E
3 ^—* flj^ -ao ^< ^
"3 T3 "O
CO 03 03 ^3
O O O ^^ J J C/3

O .3^

OQ

00 o
« c
Qi O
X
<u s:
TZ 00

J5 1:5

c
o
•4-^

Ui

Oa
o
o
z

J2

E
3
(J
O
<

>. ^
O
E
<u

Dd,

o

o
03

on
c-

C/D O
c ^
o 3
1-1 CO

3 ^
CO

3
E
3
3
CJ

<
x: x:
t/5 t/3

3 3
a. cu

CJ
03

cj c/3

E^ o
E
O c/5

t-i

w C/D

J2

E
3
cj
o
<

CO

J2 3
E

E 5
3 U
o ^

< ^
Uh O
° >>

u? o

§ ^
c <u

4> *5 <U

.Ea *-

3 3
k-

<l> n
-k-* c E- •- x; c/3

^ x:
Ck- 00
<u -J 0^

3 3
CX CU

CQ QQ

<U (U

c c
O O
<U OJ
4-> k-

>

CO CO
kJ »->

O O
ai od

E E
o o
I- l-l

c c
k- k-

3 3
4—> *->

<u <u

ai Dd

o
Ui
u.

O
OQ

cn

3
E
3
CJ
o
<
E
o

>.
1-1

o
E
(L>

4—

>

CJ
03
Ui
4—

>

X3
3
C/3

00
03

00 ^
JO
^

Uu 'c3

>4 E
I:: u)

CO u>

U Q
4-1 4—1

O) <u
c/3 c/3

O
oo ^— 5
U-

1.M ^n 4 k-

U, -r
0)

~o
O

23
CO
t/3

Q
Q.
3
k4
k4

<u
4—

•

C

o
4-4

JO
3
E
3
cj
CJ

<

>4 >4
k4 k4
o o
E E
(U (U

E ,c

X >-

kn k-

<u <u
•«—» W
C/5 C/5

*5i) ’5b
0) 0^

aiJ ai

X X
0) (U

T3 -a
c c

X > X
CJ O) CO CO

.2 .2
^

'oo 'oo
(U 0) d)

ai cxi

X X ^
t) (U ^
"O "O ^
c jc ^
o o 2

o
4-4

CO

3
E
3
o
u
<
O

d)
4-4

c
o
cu

CJ
CO
4—1

C/3

O

O
4—4

JO

3
E
3
u
u
<
o

X X >-

. . k- d> d) ai

3 3 a> 4-4 4-1 4-4

O O ^ (/: 1/5 j/3

03 3 3 '5o 'ob 'oo
-—•—•3d) d) a>

c E c2 oi oci

^ ^ ^ X X X
CJ d) <U d)

CO T3 ’O T3
3 3
3 CJ
CJ CJ

_ C C CC C/3 —4 —1 —

d> 4-4

c/3 C/3

k-k4 4)a)a/D4)D
avflj
kiS: CCCCCCOO cocococococok-k-k-lt-l)-lU4

C/3C/3 HH't—'HHH

Od
c/3

< X >- ai cu < < cu < Cu
J ac — c/3 U u Q < X > X >- X <

Q Q Q c/3 0 ac X X kJ X 0 0 H H OQ u U U H H H < < c/3 X
kJ -J -J -J Z 0 Cu Oh Cu cu aC ac ac ac c/3 c/3 c/3 c/3 c/3 c/3 00 H H H H

C/3

X
H
<
>-

H

>4 J2
3
E
3
CJ
CJ

<
1-1

O
>4
1-1

o
E
d)

CO

u
k-

S= o

'M
o e

3
CJ
CJ

<3
E
3 ^
CJ

<
O

5 S

>4 ’c5

d)

c
O

o
Ek« k.

O <1^

E ^
QJ

S b
~a Z ^
•o < ^
< 3 c/3

d)J

CO

3
E >
3
CJ
CJ

CO k-

d) -kk d)

rU c/3

>4 >4 -3
^ E

k4 k- c/5

CO CO a/

U U Dei

c c c
O O O
j= x: j:
CJ CJ CJ

C C C
CO cd

Urn

OQ a>CQ

CO
00
d>

z
x: ^
k- cn

£ 3
d) 3;

s
cd

c
•- c
C43 O

m o
4-4 c
c/5 03
d) k-

H OQ

d>

N
O
Z

d)
>

c/5

O
Cu

c/5

3

3 3
c/5 C/5

d) d)

ai od

c c
o o
x: x:
CJ CJ

c c
CO 03
k4 k4

QQ CQ

CO
d) -kk
—1 (UU c/3

o
c

o
C

d) d)
> >
o o

S C
kH o® r- ^x: x:
d) CJ CJ
CJ c 3

c
o

3 03 COO k4 k4

Uh CQ OQ

00
CO

00

—
U4

aj
U- -r

aj

TD
O

00 5
ti, 3
>>.§
t: 3
CO *3->

U Q
kH Ik

CO CO
aj d)

CO

3
E
3
CJ
CJ

X)
CO 00
J2 CO

Q Uu

3 3
kn CQ
I- k,
QJ OJ

3 ^
3 o
Ik kH

CO CO

d) d)

X >-

Ui
0>

c/5 C/5

*5t) *5b
O 0)

OeC ac

03

X
d)

T3

X
d)

T3

u u u u

< 3 .S

"O "O 73
3 C C
CO cO CO

>4 >4 >4
Ik U Ik000
EES
aj aj aj

S S S
^ (L> CJu u u
cd C3

Cl Cl CX

EES000
u u u

d) d)

c c
O O
>4 >4X X

aj X ^
c Ik Ik

O <1^
u* ^

s- c/5 c/5
,!>> 4 «M • P-<

X) DO bfi

CJ CJ

b od od

g X X
E aj a;

d) "O T3

S 3 kS
w »

c c c
d) aj aj

E E E
d) d) aj
Ik kk Ik
CJ CJ CJ
d) d) aj

Q Q Q

3 dJ

3
d)

3
CJ
CJ 0 0
< >4 >4

X X X
4—1

aj X >-
c kH Ik

>4 0 d)
4-4

d>
4-4

Ik

0 >4
t/5

•

t/5
•

(k X 00 00
E
aj >4U

aj

Qd
aj

Cd
S 0 X X
•k B aj d>

U OJ T3 73

0
1

S 3 3
aj 4—4 4—4
> c 3 3
t/5 aj d> d)

_3 3 3 3
3 Ik

aj
kH
OJ

Ik
d>

X kH Ik Ik

tu
'hJ CJ CJ

3 3 3

c
o

•

u»
CO
CJ

O
J

aj

Z

a
E
3

Q
<

a
z
<

kJ u c/3 a kk UJ X U C/l U 0 1 1 > Cu X >-
C/3 u U U Z CU Od > > -1 kJ kJ kJ cu cu
< CQ QQ CQ 5 CQ OQ QQ CQ QQ CQ u u u u u U u

U X >H

U UQ UL)

a Q a
od

O
u

U X
z z z

cu

s

307

Table A 1-4

«

SUMMARY OF 6502 ADDRESSING MODES

Accumulator addressing. This form of addressing is represented with a one byte instruction,

implying an operation on the accumulator.

Immediate addressing. In immediate addressing, the operand is contained in the second byte of
the instruction, with no further memory addressing required.

Absolute addressing. In absolute addressing, the second byte of the instruction specifies the 8 low-
order bits of the effective address while the third byte specifies the 8 high-order bits. Thus the
absolute addressing mode allows access to the entire 64K bytes of addressable memory.

Zero page addressing. The zero page instructions allow for shorter code and execution times by
only fetching the second byte of the instruction and assuming a zero high'address byte. Careful
use of the zero page can result in a significant increase in code efficiency.

Indexed zero page addressing (X, Y indexing). This form of addressing is used in conjunction with
an index register and is referred to as “Zero Page, X” or “Zero Page, Y.” The effective address
is calculated by adding the second byte to the contents of the index register. Since this is a

form of “Zero Page” addressing, the content of the second byte references a location in page
zero. Additionally, due to the “Zero Page” addressing nature of this mode, no carry is added to
the high-order 8 bits of the effective address, so it is always in page zero.

Indexed absolute addressing (X, Y indexing). This form of addressing is used in conjunction with
index register X or Y and is referred to as “Absolute, X” and “Absolute, Y.” The effective
address is formed by adding the contents of X or Y to the address contained in the second and
third bytes of the instruction. This mode allows the index register to contain the index or count
value and the instruction to contain the base address. This type of indexing allows any location
referencing and the index to modify multiple fields resulting in reduced coding and execution
time.

Implied addressing. In the implied addressing mode, the address containing the operand is impli-
citly stated in the operation code of the instruction.

Relative addressing. Relative addressing is used only with branch instructions and establishes a

destination for the conditional branch. The second byte of the instruction becomes the operand
which is an Offset added to the contents of the lower 8 bits of the program counter when the
counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the
next instruction.

Indexed indirect addressing. In indexed indirect addressing (referred to as (Indirect,X)), the
second byte of the instruction is added to the contents of index register X, discarding the
carry. The result of this addition points to a memory location on page zero whose contents is

the low-order 8 bits of the effective address. The next memory location in page zero contains
the high-order 8 bits of the effective address. Both memory locations specifying the high- and
low-order bytes of the effective address must be in page zero.

Indirect indexed addressing. In indirect indexed addressing [referred to as (Indirect), Y] the
second byte of the instruction points to a memory location in page zero. The contents of this
memory location is added to the contents of index register Y, the result being the low-order
8 bits of the effective address. The carry from this addition is added to the contents of the next
page zero memory location, the result being the high-order 8 bits of the effective address.

Absolute indirect. The second byte of the instruction contains the low-order 8 bits of a memory
address. The high-order 8 bits of that memory address is contained in the third byte of the
instruction. The contents of the fully specified memory location is the low-order byte of the
effective address. The next memory location contains the high-order byte of the effective
address, which is loaded into the 16 bits of the program counter.

308

APPENDIX 2—ASCII CHARACTER TABLE

HEX-ASCII TABLE

00 NUL 21 ! 42 B 63 c

1 SQH 22 43 C 64 d

Q2 STX 23 # 44 D 65 e

3 ETX 24 $ 45 E 66 f

4 EGT 25 °/o 46 F 67 g

5 END 26 & 47 G 68 h

6 ACK 27 / 48 H 69 i

7 BEL 28 C 49 1 6A
j

08 BS 29 } 4A J 6B k

9 HT 2A -tt- 4B K 6C 1

A LF 2B 4C L 6D m
OB VT 2C 1 4D M 6E n

OC FF 2D - 4E N 6F 0

OD CR 2E , 4F 70 P

OE SO 2F / 50 P 71 q

OF SI 30 0 51 Q 72 r

10 OLE 31 1 52 R 73 s

11 DC1 (X-ON) • 32 2 53 S 74 t

12 DC2 [TAPE] 33 3 54 T 75 u

13 03 CX-OFF) 34 4 55 U 76 V

14 DC4 35 5 56 V 77 w

15 NAK 36 6 57 w 78 X

16 SYN 37 7 58 X 79 y

17 ETB 38 8 59 Y 7A z

18 CAN 39 9 5A z 7B {

19 EM 3A ! 5B [7C
1

1A SUB 3B 1
5C \ 7D }

IB ESC 3C < 5D]
~ (ALT MODE)

1C FS 3D = 5E (T) 7E

ID GS 3E > 5F — C^] 7F DEL

IE RS 3F ? 60 (RUBDUT)

IF US 40 @ 61 a

20 SP 41 A 62 b

309

t

APPENDIX 3—BRIEF DESCRIPTIONS OF 6502 FAMILY DEVICES

>1% Rockwell
R6500 Microcomputer System

DATA SHEET

R6500 MICROPROCESSORS (CPU)

SYSTEM ABSTRACT FEATURES

The 8-bit R6500 microcomputer system is produced with N-
Channel, Silicon Gate technology. Its performance speeds are

enhanced by advanced system architecture. This innovative

architecture results in smaller chips — the semiconductor threshold

is cost-effectivity. System cost-effectivity is further enhanced by
providing a family of 10 software-compatible microprocessor
(CPU) devices, described in this document. Rockwell also pro-

vides memory and microcomputer system— as well as low-cost

design aids and documentation.

R6500 MICROPROCESSOR (CPU) CONCEPT

Ten CPU devices are available. All are software-compatible.

They provide options of addressable memory, interrupt input,

on-chip clock oscillators and drivers. All are bus-compatible
with earlier generation microprocessors like the M6800 devices.

The family includes six microprocessors with on-board clock

oscillators and drivers and four microprocessors driven by external

clocks. The on-chip clock versions are aimed at high performance,
low cost applications where single phase inputs, crystal or RC
inputs provide the time base. The external clock versions are

geared for multiprocessor system applications where maximum
timing control is mandatory. All R6500 microprocessors are

also available in a variety of packaging (ceramic and plastic),

operating frequency (1 MHz, 2 MHz and 3 MHz) and temperature

(commercial and industrial) versions.

• Single -t-BV supply

• N channel, silicon gate, depletion load technology

• Eight bit parallel processing

• 56 Instructions

• Decimal and binary arithmetic

• Thirteen addressing modes
• True indexing capability

• Programmable stack pointer

• Variable length stack

• Interrupt capability

• Non-maskable interrupt

• Use with any type of speed memory
• 8-bit Bidirectional Data Bus

• Addressable memory range of up to 64K bytes

• "Ready" input

• Direct Memory Access capability

• Bus compatible with M6800
• 1 MHz, 2 MHz, and 3 MHz versions

• Choice of external or on-chip clocks

• On-the-chip clock options

— External single clock input

— Crystal time base input

• Commercial and industrial temperature versions

• Pipeline architecture

MEMBERS OF THE R6500 MICROPROCESSOR
(CPU) FAMILY

Microprocessors with Internal Two Phase Clock Generator

Model Addressable Memory

R6502 64K Bytes

R6503 4K Bytes

R6504 8K Bytes

R6505 4K Bytes

R6506 4K Bytes

R6507 8K Bytes

Microprocessors with External Two Phase Clock Input

Model Addressable Memory

R6512 64K Bytes

R6513 4K Bytes

R6514 8K Bytes
R6515 4K Bytes

Ordering Information

Order Number: R65XX

Temperature Range

No suffix =0OC to +yO°C
E = -40°C to -t-85°C

(Industrial)

• Package C = Ceramic

P = Plastic

Frequency Range:

No suffix = 1 MHz
A = 2 MHz
B = 3 MHz

Model Designator

XX = 02, 03, 04, . 15

310

R6500

MICROPROCESSORS

(CPU

address
BUS

AO

A1

A2

A3

A4

AS

A6

A7

A8

A9

A10

All

A12

A13

A14

AIS

Note 1. Clock Generetor it not included on R6512, 13, 14, IS

2. Addretting Cepebllity end control optiont very eech

of the R6500 Productt.

R6500 Internal Architecture

I he specification sheets on pages 310-323 are reprinted with the permission of Semicon-

ductor Products Division, Rockwell International, Newport Beach, CA.

311

R6500 Signal Description

«

Clocks {(t>y

The R651X requires a two phase non-overlapping clock that runs

at the
QQ voltage level.

The R650X clocks are supplied with an* internal clock generator.

The frequency of these clocks is externally controlled.

Address Bus (A0-A15)

These outputs are TTL compatible, capable of driving one standard
TTL load and 130 pF.

Data Bus (D0-D7)

Eight pins are used for the data bus. This is a bidirectional bus,

transferring data to and from the device and peripherals. The out-
puts are tri-state buffers capable of driving one standard TTL load
and 130 pF.

Data Bus Enable (DBE)

This TTL compatible input allows external control of the tri-state

data output buffers and will enable the microprocessor bus driver
when in the high state. In normal operation DBE would be driven
by the phase two clock, thus allowing data output from
microprocessor only during (p^- During the read cycle, the data
bus drivers are internally disabled, becoming essentially an open
circuit. To disable data bus drivers externally, DBE should be held
low.

Ready (RDY)

This input signal allows the user to halt or single cycle the micro-
processor on all cycles except write cycles. A negative transition

to the low state during or coincident with phase one (<t>^) will halt

the microprocessor with the output address lines reflecting the
current address being fetched. If Ready is low during a wr'te
cycle, it is ignored until the following read operation. This con-
dition will remain through a subsequent phase two (02 ^ which
the Ready signal is low. This feature allows microprocessor inter-

facing with the low speed PROMs as well as Direct Memory
Access (DMA).

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence begin
within the microprocessor. The microprocessor will complete the
current instruction being executed before recognizing the request.
At that time, the interrupt mask bit in the Status Code Register
will be examined. If the interrupt mask flag is not set, the micro-
processor will begin an interrupt sequence. The Program Counter
and Processor Status Register are stored in the stack. The micro-
processor will then set the interrupt mask flag high so that no fur-

ther interrupts may occur. At the end of this cycle, the program
counter low will be loaded from address FFFE, and program
counter high from location FFFF, therefore transferring program
control to the memory vector located at these addresses. The
RDY signal must be in the high state for any interrupt to be rec-

ognized. A 3KH external resistor should be used for proper
wire-OR operation.

Non-Maskable Interrupt (NMD

A negative going edge on this input requests that a non-maskable
interrupt sequence be generated within the microprocessor.

NMI is an unconditional interrupt. Following completion of the

current instruction, the sequence of operations defined for IRQ
will be performed, regardless of the state interrupt mask flag. The
vector address loaded into the prograjjn counter, low and high, are

locations FFFA and FFFB respectively, thereby transferring pro-

gram control to the memory vector located at these addresses.

The instructions loaded at these locations cause the microproc-
essor to branch to a non-maskable interrupt routine in memory.

NMI also requires an external 3K 12 register to for proper
wire-OR operations.

Inputs IRQ and NMI are hardware interrupts lines that are sam-
pled during 0^ (phase 2) and will begin the appropriate interrupt

routine on the 0^ (phase 1) following the completion of the cur-

rent instruction.

Set Overflow Flag (S.O.)

A negative going edge on this input sets the overflow bit in the
Status Code Register. This signal is sampled on the trailing edge of

01 and must be externally synchronized.

SYNC

This output line is provided to identify those cycles in which the
microprocessor is doing an OP CODE fetch. The SYNC line goes
high during 0^ of an OP CODE fetch and stays high for the
remainder of that cycle. If the RDY line is pulled low during the

0
.|

clock pulse in which SYNC went high, the processor will stop
in its current state and will remain in the state until the RDY line

goes high. In this manner, the SYNC signal can be used to control
RDY to cause single instruction execution.

Reset

This input is used to reset or start the microprocessor from a

power down condition. During the time that this line is held low,
writing to or from the microprocessor is inhibited. When a posi-
tive edge is detected on the input, the microprocessor will imme-
diately begin the reset sequence.

After a system initialization time of six clock cycles, the mask
interrupt flag will be set and the microprocessor will load the pro-
gram counter from the memory vector locations FFFC and FFFD.
This is the start location for program control.

After Vqq reaches 4.75 volts in a power up routine, reset must be
held low for at least two clock cycles. At this time the R/W and
(SYNC) signal will become valid.

When the reset signal goes high following these two clock cycles,
the microprocessor will proceed with the normal reset procedure
detailed above.

312

vss C= 1 40 Z3 RES
RDY 2 39 ^02 (OUT)
<t>i (ouT)c; 3 38 :zs.o.
IRQ cq 4 37 ^00 <IN)

N.C. cz 5 36 N.C.

NMI 1= 6 35 Z] N.C.

SYNC cz 7 34 : R/w
VCC cz 8 33 Z3 DO
AO cz 9 32 ZD D1
A1 cz 10 31 ZD D2
A2 cz 11 30 Z D3
A3 cz 12 29 ZD D4
A4 cz: 13 28 IZ 05
A5 cz 14 27 Z D6
A6 cz 15 26 ZJD7
A7 cz 16 25 Z A15
A8 (Z 17 24 ZD A14
A9 cz 18 23 Z3 A13
A10 cz 19 22 ID A12
All cz 20 21 Z VSS

R6502 — 40 Pin Package

Features of R6502

• 64K Addressable Bytes of Memory (A0-A15)

e IRQ Interrupt

• On-the-chip Clock

TTL Level Single Phase Input

RC Time Base Input

Crystal Time Base Input

• SYNC Signal

(can be used for single instruction execution)

• RDY Signal

(can be used to halt or single cycle execution)

• Two Phase Output Clock for Timing of Support Chips

• NMI Interrupt

t

Rockwell R6500 Microcomputer System

DATA SHEET

VERSATILE INTERFACE ADAPTER (VIA)

• Two 8-Bit Bidirectional I/O Ports

• Two 16-Bit Programmable Timer/Counters

• Serial Data Port

• Single -rSV Power Supply

• TTL Compatible

• CMOS Compatible Peripheral Control Lines

• Expanded “Handshake" Capability Allows Positive

Control of Data Transfers Between Processor and

Peripheral Devices ^

• Latched Output and Input Registers

• 1 MHz and 2 MHz Operation

The R6522 Versatile Interface Adapter (VIA) is a

very flexible I/O control device. In addition, this de-

vice contains a pair of very powerful 16-bit interval

timers, a serial-to-parallcl/parallel-to-serial shift re-

gister and input data latching on the peripheral ports.

Expanded handshaking capability allows control of

bi-directional data transfers between VIA’s in multiple

processor systems.

Control of peripheral devices is handled primarily

through two 8-bit bi-directional ports. Each line can

be programmed as either an input or an output. Several

peripheral I/O lines can be controlled directly from

the interval timers for generating programmable fre-

quency square waves or for counting externally gen-

erated pulses. To facilitate control of the many power-

ful features of this chip, an interrupt flag register, an

interrupt enable register and a pair of function con-

trol registers are provided.

Figure 1. R6522 Block Diagram

314

R6522

VERSATILE

INTERFACE

ADAPTER

(VIA)

R6522/R6522A

PIN DESCRIPTIONS
RES (Reset)

The reset input clears all internal registers to logic 0

(except T1 and T2 latches and counters and the Shift

Register). This places all peripheral interface lines in

the input state, disables the timers, shift register, etc.

and disables interrupting from thephip.

02 (Input Clock)

The input clock is the system 02 clock and is used to

trigger all data transfers between the system processor

and the R6522.

R/W (Read/Write)

The direction of the data transfers between the

R6522 and the system processor is controlled by the

R/W line. If R/W is low, data will be transferred out

of the processor into the selected R6522 register

(write operation). If R/W is high and the chip is selett-

ed, data will be transferred out of the R6522 (read

operation).

DB0-DB7 (Data Bus)

The eight bi-directional data bus lines are used to

transfer data between the R6522 and the system

processor. During read cycles, the contents of the sel-

ected R6522 register are placed on the data bus lines

and transferred into the processor. During write

cycles, these lines are high-impedance inputs and data

is transferred from the processor into the selected re-

gister. When the R6522 is unselected, the data bus

lines are high-impedance.

CS1, (Chip Selects)

The two chip select inputs are normally connected to

processor address lines either directly or through de-

coding. The selected R6522 register will be accessed

when CS1 is high and CS2 is low.

RS0-RS3 (Register Selects)

The four Register Select inputs permit the system pro-

cessor to select one of the 16 internal registers of the

R6522, as shown in Figure 6.

Register

Number

RS Coding Register

Desig.

Description

RS3 RS2 RSI RSO Write Read

0 0 0 0 0 ORB/IRB Output Register ”B" Input Register "B"

1 0 0 0 1 ORA/IRA Output Register "A" Input Register "A"

2 0 0 1 0 DDRB Data Direction Register "B"

3 0 0 1 1 DDRA Data Direction Register "A"

4 0 1 0 0 T1C-L T1 Low-Order Latches T1 Low-Order Counter

5 0 1 0 1 T1C-H T1 High-Order Counter

6 0 1 1 0 T1L-L T1 Low-Order Latches

7 0 1 1 1 T1L-H T1 High-Order Latches

8 1 0 0 0 T2C-L T2 Low-Order Latches T2 Low-Order Counter

9 1 0 0 1 T2C-H T2 High-Order Counter

10 1 0 1 0 SR Shift Register

11 1 0 1 1 ACR Auxiliary Control Register

12 1 1 0 0 PCR Peripheral Control Register

13 1 1 0 1 IFR Interrupt Flag Register

14 1 1 1 0 lER Interrupt Enable Register

15 1 1 1 1 ORA/IRA Same as Reg 1 Except No “Handshake"

Figure 6. R6522 Internal Register Summary

315

R6522/R6522A

IRQ (Interrupt Request)

The Interrupt Request output goes low whenever an

internal interrupt flag is set and the corresponding in-

terrupt enable bit is a logic 1. This output is "r len-

drain" to allow the interrupt request signal to be

"wire-or'ed" with other equivalent signals in the

system.

PA0-PA7 (Peripheral A Port)

The Peripheral A port consists of 8 lines which can

be individually programmed to act as inputs or out-

puts under control of a Data Direction Register. The

polarity of output pins is controlled by an Output

Register and input data may be latched into an in-

ternal register under control of the CA1 line. All of

these modes of operation are controlled by the sys-

tem processor through the internal control registers.

These lines represent one standard TTL load in the

input mode and will drive one standard TTL load in

the output mode. Figure 7 illustrates the output

circuit.

CAT, CA2 (Peripheral A Control Lines)

The two Peripheral A control lines act as interrupt in-

puts or as handsfiake outputs. Each line controls an

internal interrupt flag with a corresponding interrupt

enable bit. In addition, CA1 controls the latching of

data on Peripheral A port input lines. CA1 is a high-

impedance input only while CA2 represents one stan-

dard TTL load in the input mode. CA2 will drive one

standard TTL load in the output mode.

5V

PA0-PA7
CA2

Figure 7. Peripheral A Port Output Circuit

PB0-PB7 (Peripheral B Port)

The Peripheral B port consists of eight bi-directional

lines which are controlled by an output register and a

data direction register in much the same manner as the

PA port. In addition, the polarity of the PB7 output

signal- can be controlled by one of the interval timers
'A

while the second timer can be programmed to count

pulses on the PB6 pin. Peripheral B lines represent one

standard TTL load in the input mode and will drive

one standard TTL load in the output mode. In addi-

tion, they are capable of sourcing 1.0mA at 1.5VDC
in the output mode to allow the outputs to directly

drive Darlington transistor circuits. Figure 8 is the

circuit schematic.

N

C81, CB2 (Peripheral B Control Lines)

The Peripheral B control lines act as interrupt inputs

or as handshake outputs. As with CA1 and CA2, each

line controls an interrupt flag with a corresponding in-

terrupt enable bit. In addition, these lines act as a

serial port under control of the Shift Register. These

lines represent one standard TTL load in the input

mode and will drive one standard TTL load in the

output mode. Unlike PB0-PB7, CB1 and CB2 cannot

drive Darlington transistor circuits.

INPUT/
OUTPUT

CONTROL

rO-

OUTPUT
DATA

OH
PRO P07
CB1 CB2

INPUT DATA

Figure 8. Peripheral B Port Output Circuit

FUNCTIONAL DESCRIPTION

Port A and Port B Operation

Each 8-bit peripheral port has a Data Direction Reg-

ister (DDRA, DDRB) for specifying whether the peri-

pheral pins are to act as inputs or outputs. A 0 in a

bit of the Data Direction Register causes the corres-

ponding peripheral pin to act as an input. A 1 causes

the pin to act as an output.

Each peripheral pin is also controlled by a bit in the

Output Register (ORA, ORB) and an Input Register

(IRA, IRB). When the pin is programmed as an out-

put, the voltage on the pin is controlled by the cor-

R6522/R6522A

responding bit of the Output Register. A 1 in the Out-

put Register causes the output to go high, and a "0"

causes the output to go low. Data may be written into

Output Register bits corresponding to pins which are

programmed as inputs. In this case, hv^wever, the out-

put signal is unaffected.

Reading a peripheral port causes^the contents of the

Input Register (IRA, IRB) to be transferred onto the

Data Bus. With input latching disabled, IRA will always

reflect the levels on the PA pins. With input latching

enabled, IRA will reflect the levels on the PA pins at

the time the latching occurred (via CA1).

The IRB register operates similar to the IRA register.

However, for pins programmed as outputs there is a

difference. When reading IRA, the level on the pin

determines whether a 0 ora 1 is sensed. When reading

IRB, however, the bit stored in the output register ,

ORB, is the bit sensed. Thus, for outputs which have

large loading effects and which pull an output "1"

down or which pull an output "0" up, reading IRA
may result in reading a "0" when a "1” was actually

programmed, and reading a "1" when a “0" was pro-

grammed. Reading IRB, on the other hand, will read

the "1" or "0" level actually programmed, no matter

what the loading on the pin.

Figures 9, 10, and 1 1 illustrate the formats of the port

registers. In addition, the input latching modes are

selected by the Auxiliary Control Register (Figure

16.)

Handshake Control of Data Transfers

The R6522 allows positive control of data transfers

between the system processor and peripheral devices

REG 0 - ORB/IRB

PBO

PBl

PB2

PB3

PB4

PBS

PBS

PB7

OUTPUT REGISTCR B " lORBI

OR

INPUT REGISTER B" lORBI

P»n

D«U Dirtclion

Scl«ciK>n

WRITE READ

OORB • 1" (OUTPUT) MPU writes Output Level

(ORB)
MPU reads output register bit

in ORB Pm level has no affect

DORS - 0*‘ (INPUT)
(Input latching diMbledI

MPU writes into ORB. but

no effect on pin level, until

DDRB changed

MPU reads input level on PB
pin

DDRB 'O ' (INPUT)
(Input latching enabled!

MPU reads IRB bit, which is

the level of the PB pm at the

time of the last CB1 active

transition

Figure 9. Output Register B (ORB),

Input Register B (IRB)

REG 1 - ORA/IRA

PAO

PAl

PA2

PA3

PA4

PAS

PA6

PA 7

OUTPUT REGISTER "A (ORAI

OR

INPUT REGISTER A“ (IRA)

Pin

Data Direction

Select ion

WRITE READ

DDRA V' (OUTPUT)
(input latching diubled)

MPU writes Output Level

(ORA)
MPU reads level on PA pm

DORA • • r* (OUTPUT)
(Input latching enabled)

MPU reads IRA bit which is

the level of the PA pm at the

time of the last CA1 active

transition

ODRA • "O’* (INPUT)
(Input latching d'sabled)

MPU writes into ORA. but

rso effect on pm level until

ODRA changed

MPU reads level on PA pm

ODRA - -O ' (INPUT)
(Input latching enabled)

MPU reads IRA bit which is

the level of the PA pm at the

time of the last CA1 active

transition

Figure 10. Output Register A (ORA),

Input Register A (IRA)

REG 2 IDDRBI AND REG 3 (DDRA)

7 6 6 4 3 2 10

P80/PA0

PBl /PAl

PB2/PA2

PB3/PA3

PB4/PA4

PB5/PA5

PB6/PA6

PB7/PA7_

DATA DIRECTION REGISTER
B " OR • A * (OORB/OORA)

0 ASSOCIATED PB/PA PIN IS AN INPUT
(HIGH IMPEDANCE!

"1 ASSOCIATED PB/PA PIN IS AN OUTPUT.
WHOSE LEVEL IS DETERMINED BY
ORB'ORA REGISTER BIT

Figure 11. Data Direction Registers (DDRB, DDRA)

through the operation of "handshake” lines. Port A
lines (CA1, CA2) handshake data on both a read and

a write operation while the Port B lines (CB1, CB2)

handshake on a write operation only.

Read Handshake

Positive control of data transfers from peripheral de-

vices into the system processor can be accomplished

very effectively using Read Handshaking. In this case,

the peripheral device must generate the equivalent of

a "Data Ready" signal to the processor signifying that

valid data is present on the peripheral port. This signal

normally interrupts the processor, which then reads

the data, causing generation of a "Data Taken" signal.

The peripheral device responds by making new data

available. This process continues until the data trans-

fer is complete.

317

t

R6522/R6522A

' _ri_ri_j-i_r-uj-i_n_r
^OATA READY

| V:^y/7///////A ^
'

>»

IRODUTPUT
1

RE AO IRA DPERATIDN
|

“

DATA TAltFM „ ,

HANDSHAKE MODE
1CA2)

DATA TAKEN
PULSE MODE
(CA2)

Figure 12. Read Handshake Timing (Port A, Only)

l'2

WRITE ORA ORB
OPERATION

• DATA READY
HANDSHAKE MODE
ICA2. CB2I

DATA READY
PULSE MODE
ICA2. CB2I

DATA TAKEN
ICA1, CB1I

IRO OUTPUT

Figure 13. Write Handshake Timing

In the R6522, automatic "Read” Handshaking is

possible on the Peripheral A port only. The CA1 in-

terrupt input pin accepts the "Data Ready" signal

and CA2 generates the "Data Taken" signal. The

"Data Ready" signal will set an internal flag which

may interrupt the processor or which may be polled

under program control. The "Data Taken" signal can

either be a pulse or a level which is set low by the sys-

tem processor and is cleared by the "Data Ready"

signal. These options are shown in Figure 12 which

illustrates the normal Read Handshaking sequence.

Write Handshake

The sequence of operations which allows handshaking

data from the system processor to a peripheral device

is very similar to that described for Read Handshaking.

However, for Write Handshaking, the R6522 gener-

ates the "Data Ready" signal and the peripheral de-

vice must respond with the "Data Taken" signal. This

can be accomplished on both the PA port and the

PB port on the R6522. CA2 or CB2 act as a "Data

Ready" output in either the handshake mode or pulse

mode and CA1 or CB1 accept the "Data Taken" sig-

nal from the peripheral device, setting the interrupt

flag and cleaning the "Data Ready" output. This

sequence is shown in Figure 13.

Selection of operating modes for CA1, CA2, CB1,

and CB2 is accomplished by the Peripheral Control

Register (Figure 14).

Timer Operation

Interval Timer T1 consists of two 8-bit latches and a

16-bit counter. The latches are used to store data

which is to be loaded into the counter. After loading,

the counter decrements at 02 clock rate. Upon reach-

ing zero, an interrupt flag will be set, and I RQ will go

low if the interrupt is enabled. The timer will then

disable any further interrupts, or will automatically

transfer the contents of the latches into the counter

and will continue to decrement. In addition, the timer

may be programmed to invert the output signal on a

peripheral pin each time it "times-out". Each of

these modes is discussed separately below.

The T1 counter is depicted in Figure 15 and the

latches in Figure 16.

REG 12 - PERIPHERAL CONTROL REGISTER

7 6 5

CB2 CONTROL 1

7 6 5 OPERATION
0 0 0 INPUT NEGATIVE ACTIVE EDGE
0 0 INDEPENDENT INTERRUPT

INPUT NEG EDGE
0 1 0 INPUT POSITIVE ACTIVE EDGE
0 1 1 INDEPENDENT INTERRUPT

INPUT POS EDGE
1 0 0 HANDSHAKE OUTPUT
1 0 1 PULSE OUTPUT
1 1 0 LOW OUTPUT
t 1 1 HIGH OUTPUT

CB1 INTERRUPT CONTROL

0 • NEGATIVE ACTIVE EDGE
1 • POSITIVE ACTIVE EDGE

CA1 INTERRUPT CONTROL

y* NEGATIVE ACTIVE EDGE
1 » POSITIVE ACTIVE EDGE

CA2CONTROL

3 2 1 OPERATION
0 0 0 INPUT NEGATIVE ACTIVE EDGE
0 0 1 INDEPENDENT INTERRUPT

INPUT NEG EDGE
0 1 0 INPUT POSITIVE ACTIVE EDGE
0 1 1 INDEPENDENT INTERRUPT

INPUT POS EDGE
0 0 HANDSHAKE OUTPUT

1 0 1 PULSE OUTPUT
1 1 0 LOW OUTPUT
1 1 } HIGH OUTPUT

Figure 14. CA1, CA2, CB1, CB2 Control

318

R6522/R6522A

Two bits are provided in the Auxiliary Control Reg-

ister (bits 6 and 7) to allow selection of the T1 oper-

ating modes. The four possible modes are depicted

in Figure 17.

REG 4 - TIMER 1 LOW-ORDER COUNTER REG 5 - TIMER 1 HIGH-ORDER COUNTER

LATCHES LATCH CONTENTS ARE
TRANSFERRED INTO LOW ORDER
COUNTER AT THE TIME THE HIGH
ORDER COUNTER IS LOADED (REG 51

COUNT
VALUE

READ - 8 BITS FROM T1 LOW ORDER COUNTER
TRANSFERRED TO MPU IN ADDITION
T1 INTERRUPT FLAG IS RESET (BIT 6
IN INTERRUPT FLAG REGISTER)

COUNT
VALUE

WRITE - 8 BITS LOADED INTO T1 HIGH ORDER
LATCHES ALSO. AT THIS TIME BOTH
HIGH AND LOW ORDER LATCHES
TRANSFERRED INTO T1 COUNTER
T1 INTERRUPT FLAG ALSO IS RESET

READ - 8 BITS FROM T1 HIGH ORDER COUNTER
TRANSFERRED TO MPU

Figure 15. T1 Counter Registers

REG 6 - TIMER 1 LOW-ORDER LATCHES

-

1

- 2

- 4

- 8

• 16

•32

- 64

128

_ COUNT
value

REG 7 -TIMER 1 HIGH-ORDER LATCHES

7 6 5 4 3 2 1 0

• 256

- 512

- 1024

- 2048

- 4096

8192

• 16384

• 32768

COUNT
VALUE

WRITE - 8 BITS LOADED INTO T1 LOW ORDER
LATCHES THIS OPERATION IS NO
DIFFERENT THAT A WRITE INTO
REG4

READ - 8 BITS FROM T1 LOW ORDER LATCHES
TRANSFERRED TO MPU UNLIKE REG4
OPERATION THIS DOES NOT CAUSE
RESET OF T1 INTERRUPT FLAG

WRITE - 8 BITS LOAOED INTO T1 HIGH ORDER
LATCHES UNLIKE REG 4 OPERATION
NO LATCH TOCOUNTER TRANSFERS
TAKE PLACE

READ - 8 BITS FROM T1 HIGH ORDER LATCHES
TRANSFERRED TO MPU

Figure 16. T1 Latch Registers

REG 11 - AUXILIARY CONTROL REGISTER

T1 TIMER CONTROL -

7 6 OPERATION P87

0 0 TIMED INTERRUPT
EACH TIME T1 IS

LOADED DISABLED

0 1 CONTINUOUS
INTERRUPTS

1 0 TIMED INTERRUPT
EACH TIME T1 IS

LOADED

ONE SHOT
OUTPUT

1 CONTINUOUS
interrupts

SQUARE
WAVE
OUTPUT

T2 TIMER CONTROL

S OPERATION
0 TIMED INTERRUPT
1 COUNT DOWN WITH
PULSES ON P86

PA

PB

LATCH ENABLE/OISABLE

DISABLE
ENABLE LATCHING

SHIFT REGISTER CONTROL
4 3 2 OPERATION
0 0 0 DISABLED
0 0 1 SHIFT IN UNDER CONTROL OF T2
0 1 0 SHIFT IN UNDER CONTROL OF 02

0 SHIFT IN UNDER CONTROL OF EXT CLK
1 0 0 SHIFT OUT FREE RUNNING AT T2 RATE
1 0 SHIFT OUT UNDER CONTROL OF T2
1 0 SHIFT OUT UNDER CONTROL OF 02

1 1 1 SHIFT OUT UNDER CONTROL OF EXT CLK

Figure 17. Auxiliary Control Register

Note: The processor does not write directly into the low order counter (T1C-L). Instead, this half of the counter is loaded auto-

matically from the low order latch when the processor writes into the high order counter. In fact, it may not be necessary to

write to the low order counter in some applications since the timing operation is triggered by writing to the high order counter.

319

R6522/R6522A

Timer 1 One-Shot Mode

The interval timer one-shot mode allows generation

of a single interrupt for each timer load operation. As

with any interval timer, the delay between the "write

T1C-H" operation and generation of the processor

interrupt is a direct function of the data loaded into

the timing counter. In addition to generating a single

interrupt. Timer 1 can be programmed to produce a

single negative pulse on the PB7 peripheral pin. With

the output enabled (ACR7=1) a "write T1C-H" oper-

ation will cause PB7 to go low. PB7 will return high

when Timer 1 times out. The result is a single pro-

grammable width pulse.

In the one-shot mode, writing into the high order

latch has no effect on the operation of Timer 1. How-

ever, it will be necessary to assure that the low order

latch contains the proper data before initiating the

count-down with a "write T1C-H" operation. When

the processor writes into the high order counter, the

T1 interrupt flag will be cleared, the contents of

the low order latch will be transferred into the low

order counter, and the timer will begin to decrement

at system clock rate. If the PB7 output is enabled,

this signal will go low on the phase two following the

write operation. When the counter reaches zero, the

T1 interrupt flag will be set, the IRQ pin will go low

(interrupt enabled), and the signal on PB7 will go

high. At this time the counter will continue to decre-

ment at system clock rate. This allows the system

processor to read the contents of the counter to de-

termine the time since interrupt. However, the T1

interrupt flag cannot be set again unless it has been

cleared as described in this specification.

Timing for the R6522 interval timer one-shot modes

is shown in Figure 18.

Timer 1 Free-Run Mode

The most important advantage associated with the

latches in T1 is the ability to produce a continuous

series of evenly spaced interrupts and the ability to

produce a square wave on PB7 whose frequency is

not affected by variations in the processor interrupt

response time. This is accomplished in the "free-

running" mode.

In the free-running mode, the interrupt flag is set and

the signal on PB7 is inverted each time the counter

reaches zero. However, instead of continuing to decre-

ment from zero after a time-out, the timer automati-

cally transfers the contents of the latch into the

counter (16 bits) and continues to decrement from

there. The interrupt flag can be cleared by writing

T1C-H, by reading T1C-L, or by writing directly into

the flag as described later. However, it is not neces-

sary to rewrite the timer to enable setting the inter-

rupt flag on the next time-out.

All interval timers in the R6522 are "re-triggerable".

Rewriting the counter will always re-initialize the

time-out period. In fact, the time-out can be prevent-

ed completely if the processor continues to rewrite

the timer before it reaches zero. Timer 1 will operate

in this manner if the processor writes into the high

order counter (T1C-H). However, by loading the

latches only, the processor can access the timer dur-

ing each down-counting operation without affecting

the time-out in process. Instead, the data loaded into

the latches will determine the length of the next time-

out period. This capability is particularly valuable in

the free-running mode with the output enabled. In

this mode, the signal on PB7 is inverted and the in-

terrupt flag is set with each time-out. By responding

to the interrupts with new data for the latches, the

processor can determine the period of the next half

cycle during each half cycle of the output signal on

PB7. In this manner, very complex waveforms can be

generated. Timing for the free-running mode is shown
in Figure 19.

R6522/R6522A

•'•2

W«IT£ TIC M
OPERATION

IRQ OUTPUT

P87 OUTPUT

N • 1 SCYCLES »+-• N » 2CYCLES

Note; A precaution to take in the use of PB7 as the timer output concerns the Data Direction Register contents for PB7. Both
DDRB bit 7 and ACR bit 7 must be 1 for PB7 to furtction as the timer output. If one is 1 and the other is 0, then PB7 functions
as a normal output pin, controlled by ORB bit 7.

Figure 19. Timer 1 Free-Run Mode Timing

Timer 2 Operation

Timer 2 operates as an interval timer (in the "one-

slot" mode only), or as a counter for counting nega-

tive pulses on the PB6 peripheral pin. A single con-

trol bit is provided in the Auxiliary Control Register

to select between these two modes. This timer is com-

prised of a "write-only" low-order latch (T2L-L),a

"read-only" low-order counter and a read/write high

order counter. The counter registers act as a 16-bit

counter which decrements at 4>2 rate. Figure 20 illus-

trates the T2 Counter Registers.

Timer 2 One-Shot Mode

As an interval timer, T2 operates in the "one-shot"

mode similar to Timer 1. In this mode, T2 provides a

single interrupt for each "write T2C-H" operation.

After timing out, the counter will continue to decre-

ment. However, setting of the interrupt flag will be

disabled after initial time-out so that it will not be set

by the counter continuing to decrement through zero.

The processor must rewrite T2C-H to enable setting

of the interrupt flag. The interrupt flag is cleared by

reading T2C-L or by writing T2C-H. Timing for this

operation is shown in Figure 18.

REG 8 - TIMER 2 LOW-ORDER COUNTER REG 9 - TIMER 2 HIGH-ORDER COUNTER

. 1

- 2

4

• 8

-16

32

-64

•128

COUNT
VALUE

7|e S 4|3|2|l 0

T 2S6

512

1024

2048

4096

8192

16384

32768

COUNT
VALUE

WRITE - 8 BITS LOADED INTO T2 LOW ORDER
LATCHES

READ - 8 BITS FROM T2 LOW ORDER COUNTER
TRANSFERRED TOMPU T2 INTERRUPT
FLAG IS RESET

WRITE - 8 BITS LOADED INTO T2 HIGH ORDER
COUNTER ALSO. LOW ORDER LATCHES
TRANSFERRED TO LOW ORDER
COUNTER IN ADDITION, T2 INTERRUPT
FLAG IS RESET

READ - 8 BITS FROM T2 HIGH ORDER COUNTER
TRANSFERRED TO MPU

Figure 20. T2 Counter Registers

321

t

R6522/R6522A

Timer 2 Pulse Counting Mode

In the pulse counting mode, T2 serves primarily to

count a predetermined number of negative-going

pulses on PB6. This is accomplished by first loading a

number into T2. Writing into T2C-H clears the

Interrupt flag and allows the counter to decrement

each time a pulse is applied to PB6. The interrupt flag

will be set when T2 counts down past zero. At this

time the counter will continue to decrement with

each pulse on PB6. However, it is necessary to

rewrite T2C-H to allow the interrupt flag to set on

subsequent down-counting operations. Timing for

this mode is shown in Figure 21 . The pulse must be

low on the leading edge of 02.

Shift Register Operation

The Shift Register (SR) performs serial data transfers

into and out of the CB2 pin under control of an in-

ternal modulo-8 counter. Shift pulses can be applied

to the CB1 pin from an external source or, with the

proper mode selection, shift pulses generated inter-

nally will appear on the CB1 pin for controlling ex-

ternal devices.

The control bits which select the various shift register

operating modes are located in the Auxiliary Control

Register. Figure 22 illustrates the configuration of the

SR data bits and the SR control bits of the ACR.

Interrupt Operation

Controlling interrupts within the R6522 involves

three principal operations. These are flagging the in-

terrupts, enabling interrupts and signaling to the pro-

cessor that an active interrupt exists within the chip.

Interrupt flags are set by interrupting conditions

which exist within the chip or on inputs to the chip.

These flags normally remain set until the interrupt

has been serviced. To determine the source of an in-

terrupt, the microprocessor must examine these flags

in order from highest to lowest priority. This is ac-

complished by reading the flag register into the pro-

cessor accumulator, shifting this register either right

or left and then using conditional branch instructions

to detect an active interrupt.

Associated with each interrupt flag is an interrupt

enable bit. This can be set or cleared by the proces-

sor to enable interrupting the processor from the cor-

responding interrupt flag. If an interrupt flag is set to

a logic 1 by an interrupting condition, and the corres-

ponding interrupt enable bit is set to a 1, the Inter-

rupt Request Output (IRQ) will go low. IRQ is an

"open-collector” output which can be "wire-or'ed"

with other devices in the system to interrupt the

processor.

In the R6522, all the interrupt flags are contained

in one register. In addition, bit 7 of this register will

Figures 23 and 24 illustrate the operation of the vari-

ous shift register modes.
be read as a logic 1 when an interrupt exists within

the chip. This allows very convenient polling of sev-

eral devices within a system to locate the source of

an interrupt.

WRITE T2CH
1

1

OPERATION 1

PB6 INPUT U LT u u
iRQ OUTPUT

^

N
1

N-1
1

N-2 //
1

1
0

1

-1

Figure 21. Timer 2 Pulse Counting Mode

REG 10 - SHIFT REGISTER
REG 11 - AUXILIARY CONTROL REGISTER

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

SHIFT
- REGISTER

BITS

SHIFT REGISTER
MODE CONTROL

NOTES
V WHEN SHIFTING OUT BIT 7 IS THE FIRST BIT
OUT AND SIMULTANEOUSLY IS ROTATEO BACK
INTO BIT 0

2. WHEN SHIFTING IN. BITS INITIALLY ENTER
BIT 0 AND ARE SHIFTED TOWARDS BIT 7

4 3 2 OPERATION
0 0 0 DISABLED

0 0 1 SHIFT IN UNDER CONTROL OF T2

0 1 0 SHIFT IN UNDER CONTROL OF I'j

0 1 1 SHIFT IN UNDER CONTROL OF EXTCLK
1 0 0 SHIFT OUT FREE RUNNING AT T2 RATE
1 0 1 SHIFT OUT UNDER CONTRDL OF T2

1 1 0 SHIFT OUT UNDER CONTROL OF I j

1 1 1 SHIFT OUT UNDER CDNTROL OF EXT CLK

Figure 22. SR and ACR Control Bits

322

R6522/R6522A

The Interrupt Flag Register (IFR) and Interrupt En-

able Register (lER) are depicted in Figures 25 and

26, respectively.

The IFR may be read directly by the processor. In ad-

dition, individual flag bits may be cleared by writing

a "I" into the appropriate bit of the IFR. When the

proper chip select and register signals are applied to

the chip, the contents of this register are placed on

the data bus. Bit 7 indicates the status of the I RQ out-

put. This bit corresponds to the logic function; IRQ =

IFR6 X IER6-HFR5 X IER5-HFR4 X IER4 IFR3 X

IER3 -HFR2 X IER2 -t- IFR1 X IER1 IFRO X lERO.

Note: X = logic AND, -t- = Logic OR.

The IFR bit 7 is not a flag. Therefore, this bit is not

directly cleared by writing a logic 1 into it. It can

only be cleared by clearing all the flags in the register

or by disabling all the active interrupts as discussed

in the next section.

REG 13 - INTERRUPT FLAG REGISTER

by writing to address 1110 (lER address). If bit 7 of

the data placed on the system data bus during this

write operation is a 0, each 1 in bits 6 through 0

clears the corresponding bit in the Interrupt Enable

Register. For each zero in bits 6 through 0, the cor-

responding bit is unaffected.

Setting selected bits in the Interrupt Enable Register

is accomplished by writing to the same address with

bit 7 in the data word set to a logic 1. In this case,

each 1 in bits 6 through 0 will set the corresponding

bit. For each zero, the corresponding bit will be un-

affected. This individual control of the setting and

clearing operations allows very convenient control of

the interrupts during system operation.

In addition to setting and clearing lER bits, the pro-

cessor can read the contents of this register by placing

the proper address on the register select and chip

select inputs with the R/W line high. Bit 7 will be

read as a logic 1

.

7 6 5 4 3 2 10
REG 14 - INTERRUPT ENABLE REGISTER

SET BY CLEARED BY

-CA2-

CA1

SHIFT REG

CB2-
LCB1

^TIMER 2-

l-TIMER 1 —
-IRQ

CA2 ACTIVE EDGE READ OR WRITE
REG 1 (ORAI-

CAl ACTIVE EDGE READ OR WRITE
REG 1 (ORA)

COMPLETE 8 SHIFTS READ OR WRITE
SHIFT REG

CB2 ACTIVE EDGE READ OR WRITE ORB*
CB1 ACTIVE EDGE READ OR WRITE ORB
TIME OUT OF T2 READ T7 LOW OR

WRITE T2 HIGH
TIME OUT OF T1 READ T1 LOW OR

WRITE T1 HIGH
ANY ENABLED
INTERRUPT

CLEAR ALL
INTERRUPTS

IF THE CA2 CB2 CONTROL IN THE PCR IS SELECTED AS
•INDEPENDENT " INTERRUPT INPUT. THEN READING OR
WRITING the output REGISTER ORA/ORB WILL NOT
CLEAR THE FLAG BIT INSTEAD. THE BIT MUST BE
CLEARED BY WRITING INTO THE IFR. AS DESCRIBED
PREVIOUSLY

Figure 25. Interrupt Flag Register (IFR)

-CA2

-CA1

-SHIFT REG

-CB2

-CB1

- TIMER 2

- TIMER 1

-SET/CLEAR

0 • INTERRUPT DISABLED

1 INTERRUPT ENABLED

NOTES
1 IF BIT 7 IS A "O ". THEN EACH "V IN BITSO-6 DISABLES THE
CORRESPONDING INTERRUPT

2 IF BIT 7 IS A 1. THEN EACH I" IN BITS 0 - 6 ENABLES THE
CORRESPONDING INTERRUPT

3 IF A READ OF THIS REGISTER IS DONE. BIT 7 WILL BE "1“ AND
ALL OTHER BITS WILL REFLECT THEIR ENABLE/DISABLE STATE

Figure 26. Interrupt Enable Register (lER)

For each interrupt flag in IFR, there is a corres-

ponding bit in the Interrupt Enable Register. The

system processor can be set or clear selected bits in

this register to facilitate controlling individual inter-

rupts without affecting others. This is accomplished

323

t

APPENDIX 4—LABORATORY INTERFACES AND PARTS LISTS

I’hese are the interfaees required to perform the experiments in this manual. Explanations

of the functions and operations of the individual interfaces are contained in the experi-

ments. Table F-1 contains the pin assignments for the AIM’s Application (Jl) Connector.

+5V

APPLICATION
CONNECTOR

FIGURE A4-1. Attachment of switches

to the Application Connector.

324

470n
-AAA/

APPLICATION CONNECTOR

[1>-

[To>—

/ HU /

4>-
7407

[]]>-

PB3

PB4 fl3^

PBS

PB6 [T7^

PB7 pfs^

7407

7407

7407

7407

7407

7407

470n
-A/Vv

470n
-^WV

470^2

-AA/V

470n
-AVv

470n
-AAA

470n
-AAV

470n
-AAV

FIGURE A4-2. Attachment of LEDs to the Application Connector.

«

+5V

APPLICATION
CONNECTOR

FIGURE A4-3. Attachment of switches and encoder to port A of the user VIA.

326

IkH

^vW ^ +5V

1kH
FIGURK A4-4. Attachment of switches

to user VIA control lines CAl and CBl.

327

IkH
0+5V

CA2

APPLICATION
CONNECTOR

CB2

^kn

FIGURE A4-5. Attachment of switches to user VIA control lines CA2 and CB2.

APPLICATION
CONNECTOR

CA2 (2i> [^>

+5V
O

470n

7407

CB2[i9> P>
470f2

7407

FIGURE A4-6. Attachment of LEDs to user VIA eontrol lines CA2 and CB2. (Note:

Jumper wires are an easy way to select between the eircuits in Figures A4-5 and A4-6; if

you are not eareful, using CA2 and CB2 as outputs eould damage the AND gates in

Figure A4-5.)

+5V

—

O

10 kfl

20 kn

3

0.001 /jF

o

. GND

EXTERNAL
CLOCK

FIGURE A4-7. Simple circuit for generating a low-frequency clock from a 555 timer

chip. The frequency is approximately 83 Hz.

EXTERNAL
CLOCK

APPLICATION CONNECTOR

<f6~| PA5

HGURE A4-8. Connection of the external clock to bit 5 of port A of the user VIA.

(Note: Jumper wires can be used to select either this input or the switch input shown in

Figure A4-1.)

329

EXAMPLE LABORATORY SETUP

«

'The example laboratory setup was construeted on a Vector 3677-2 prototyping board.

Figure A4-9 shows the prototyping board and its eqnnection to the AIM. Figures A4-1
through A4-8 and 4’ahle A4-1 describe the eircuitry on the hoard in detail. A complete

laboratory interface hoard (MICROLAB is also available from Cambridge Develop-

ment Laboratory, 36 Pleasant St., Watertown, MA 02172.

330

HGURE A4-9. The AIM 65 microcomputer connected to the laboratory experiment

board. (Courtesy of Carter Stafford.)

TABLE A4-1 PARTS LIST FOR LABORATORY EXERCISES

Item Description Quantih' Laboratories User \TA Port

SPOT' switch Alco 111TG-\VW-2T 8 2,7.B,C.E A
I-kfl resistor pack Bourns 898-1-RlK 1 2.7,B.C.E A
or 1-kll resistors 8 2,7,B.C,E A
LED display Red 7 3,C,D.E B

500-0 resistor pack Bourns 898-1-500 1 3,C,D,E B

or 500-0 resistors 7

7407 IC Hex Buffer/Driver 2 3,C,D,E B

Decimal switch 1 4 A
74148 IC Priorit)’ Encoder 1 4 A
1-kO resistor pack Bourns 898-1-RlK 1 4 A
SPDT switch Alco n 11DG-WW-2T 4 B,C CA1.CA2.CB1.CB2
1-kO resistor pack Bourns 898-1-RlK 1 B.C CA1.CA2.CB1.CB2
or 1-kO resistors 4

7400 1C Quad NAND 1 B,C CA1.CA2.CB1.CB2
LED display Red 2 B.C CA2.CB2
500-kO resistor 2 B.C CA2.CB2
7407 1C Hex Buffer/Driver 1 B.C CA2.CB2
lO-kO resistor 1 D
20-kO resistor 1 D
0.001-p.F capacitor 1 D
555 timer IC 1 D A (bit 5)

Miscellaneous:

\'ector prototyping board 3677-2

44-pin connector 2

8-pin wire-wrap sockets 1

14-pin wire-wrap sockets 12

16-pin wire-wrap sockets 3

331

«

APPENDIX 5—SUMMARY OF THE AIM 65 MONITOR

The following descriptions are taken from the AIM 65 Summary Card and'are reprinted

here with the permission of Dynatem, Irvine, CA.

AIM 65 MONITOR COMMANDS
MAJOR FUNCTION ENTRY COMMANDS

(RESET) — Enter and Initialize Monitor
ROCKWELL AIM 65

E— Enter and Initialize Editor

<E>
T— Re-enter Text Editor at Top of Text

<T>
TOP LINE OF TEXT

N — Enter Assembler
<N>

5 — Enter and Initialize BASIC Interpreter

<5>

6 — Re-enter BASIC Interpreter

AIM 65 MONITOR COMMANDS (Continued)

EXECUTION/TRACE CONTROL COMMANDS
G— Start Execution of User s Program

<G>/(DECIMALNUMBER]
Z— Toggle Instruction Trace Mode

<Z> ON/OFF X

V— Toggle Register Trace Mode
<V> ON/OFF

H— Trace Program Counter History

<H>
AAAA

AAAA

CONTROL PERIPHERAL DEVICES

INSTRUCTION ENTRY AND DISASSEMBLY COMMANDS CTRL PRINT - Toggle Printer On/Off
<CTRLXPRINT>

1 — Enter Mnemonic Instruction Entry Mode PRINT- Print Display Contents
<l> <PRINT>
AAAA (

*) = (ADDRESS)
AAAA XX (OPCODE) (HEX OPERAND) LF- Advance Printer Paper

<LF>AAAA XX XX XX

K — Disassemble Memory 1 — Toggle Tape 1 Control On/Off

<1><K> • = (ADDRESS)
/(DECIMALNUMBER) 2- Toggle Tape 2 Control On/Off

AAAA XX OPCODE HEX OPERAND <2>

DISPLAY/ALTER REGISTER COMMANDS 3- Tape Verify Block Checksum
<3>IN = (T)F = (FILENAME)T = (1,2

• — Alter Program Counter
<•> = (ADDRESS) USER FUNCTION COMMANDS

A — Alter Accumulator FI - Call User Function 1 (through loc S010C)
<A> = (BYTE) <F1>

X — Alter X Register F2- Call User Function 2 (through loc S010F)

<X> = (BYTE) <F2>

Y — Alter Y Register F3- Call User Function 3 (through loc $0112)

<Y> = (BYTE) <F3>

P— Alter Processor Status
<P> = (BYTE)

S— Alter Stack Pointer

<S> = [BYTE]

R — Display Register Values
<R>
•*** PS AA XX YY
0200 00 00 01 02

SS
FF

(ADDRESS)

(BYTE)

(DECIMALNUMBER)
(FILE NAME)
[HEX OPERAND)

DISPLAY/ALTER MEMORY CONTENTS
M — Display Specified Memory Locations

<M> = (ADDRESS) XX XX XX XX

SPACE — Display Next 4 Memory Locations

< >AAAA XX XX XX XX

/ — Alter Current Memory Locations
</>AAAA XX XX XX XX

LOAD/DUMP MEMORY COMMANDS
L — Load Object Code into Memory

<L>IN = (INPUT DEVICE)

D — Dump Memory
<D>
FROM = (ADDRESS) TO = (ADDRESS)
OUT = (OUTPUT DEVICE)
MORE?(Y, N)

BREAKPOINT MANIPULATION COMMANDS
— Clear All Breakpoints

<#>OFF
4 — Toggle Breakpoint Enable

<4> OFF/ON

B — Set/Clear Breakpoint Address
BRK/(0, 1,2,3) = (ADDRESS)

? — Display Breakpoint Addresses
<?>
AAAA AAAA AAAA AAAA

AIM 65 COMMAND DEFINITIONS
Hexadecimal address, one to four characters

Two-digit hexadecimal value from 00 to FF.

A two-digit decimal number in the range 00 to 99

A string of 1 to 5 characters

The instruction operand

Addressing Mode Operand Format

Accumulator A
Immediate #HH
Zero Page HH
Zero Page, X HH,XorHHX
Zero Page, Y HH.YorHHY
Absolute HHHH
Absolute, X HHHH.XorHHHHX
Absolute, Y HHHH, YorHHHHY
Relative HH or HHHH
(Indirect. X) (HH,X) or(HHX) or (HH,X or(HHX
(Indirect), Y (HH),Y or(HH)Y
(Absolute lndirect)(HHHH)

RETURN or SPACE— AIM 65 Keyboard (S2 = KB)
or TTY Keyboard (S2 = TTY)

(INPUT DEVICE)

M — Memory
T — Audio Tape, AIM 65 format

K — Audio Tape, K(M-1 format

L — TTY Paper Tape Reader
U — User-defined input device

[MNEMONIC OPCODE
)
A three-letter mnemonic abbreviation

[OUTPUT DEVICE) RETURN or SPACE — AIM 65 Display/Printer(S2 =
KB) or TTY Printer (S2 = TTY)

P — AIM 65 Printer

X — Dummy
T — Audio Tape, AIM 65 format

K — Audio Tape, KIM-1 format

L — TTY Paper Tape Punch
U — User-defined output device

332

AIM 65 SUBROUTINE SUMMARY
Sub
Name

Entry

Addr
Registers

Altered Function

BLANK E83E A Outputs one SP to D/P

BLANK2 E83B A Outputs two SP's to D/P

CLR EB44 A Clears D/P pointers

CRCK EA24 A Outputs print butter to Printer

CRLF E9F0 A Outputs CR. LF & NUL to AOD
CRLOW EA13 Outputs CR & LF to D/P

CUREAD FE83 A Inputs one ASCII character trom KB to A.

displays cursor

DEBK1 ED2C A Generates a live millisecond delay

DUMPTA E56F Opens Audio Tape output tile

EQUAL E7D8 A Outputs " = " to D/P

PROM E7A3 A.X.Y Outputs FROM = " to D/P and enters
address

GETTAP EE29 A.Y Inputs one character trom Audio Tape

HEX EA7D A Converts a hex number in A trom ASCII to

binary, and puts result in the LSD ol A. with

zero in MSD ot A

INALL E993 A Inputs one ASCII character trom AID to A

INLOW E8F8 A Selects KB input in INFLG

LL E8FE A Selects input trom KB and output to D/P

LOADTA E32F Searches tor audio input liie

NOUT EA51 A Converts a hex number in LSD ot A trom
binary to ASCII, and outputs it to AOD

NUMA EA46 A Converts two hex numbers in A trom binary

to ASCII, and outputs them to AOD. MSD
tirst

OUTALL E9BC Outputs ASCII character in A to AOD
OUTLOW E901 A Selects output to DIP

OUTPUT E97A Outputs ASCII character in A to D/P

PACK EA84 A Converts a hex number in A trom ASCII to

binary, and puts result in the LSD ot A. with

the result ot the last call to PACK or HEX in

the MSD ot A

PHXY EB9E Push X and Y Registers onto Stack

PLXY EBAC X,Y Pull X and Y Registers trom Stack

PSL1 E837 A Outputs "/" to D/P

QM E7D4 A Outputs "?' to D/P

RBYTE E3FD A Inputs two ASCII characters trom AID, it

hex, converts to binary with result in A

RCHEK E907 A.X.Y Scans KB, returns to Monitor on ESC, to

caller on no entry, wait on SP
RDRUB E95F A.Y Inputs one ASCII character trom KB to A,

with echo to D/P Allows DEL, it Y * 0

READ E93C A Inputs one ASCII character trom KB to A

REDt FE96 A Inputs one character trom KB to A, with

echo to DIP

REDOUT E973 A Inputs one ASCII character trom KB to A,

with echo to D/P, displays cursor

SEMI E9BA A Outputs to AOD
TAISET EDEA Sets up Audio Tape input, detects tive SYN

characters

TAOSET F21D Sets up Audio Tape output, issues (GAP) x 4

SYN characters

TIBY1 ED53 Loads a block ot 80 bytes trom Audio Tape

TO E7A7 A.X.Y Outputs "TO" to DIP and enters address

WHEREI E848 A.X.Y Sets up the AID and loads INFLG
WHEREO E871 A.X.Y Sets up the AOD and loads OUTFLG
ABBREVIATIONS
DIP = Display/Pnnter

AOD = Active Output Device
AID = Aclive Input Device

AIM 65 MEMORY MAP

USER R6522

not available

MONITOR ram

AIM 65 R6532
KEYBOARD I/O

NOT available

AIM 65 R6522
PRINTER TTY AND tape I/O

NOT AVAILABLE

AIM 65 R6520
DISPLAY I/O

not available

AIM 65 USER-ALTERABLE ADDRESSES
Location Name
0108 UIN
010A UOUT
0100 KEYF1
010F KEYF2
0112 KEYF3
A400 IRQV4

A402 NMIV2
A404 IRQV2
A406 DILINK
A408 TSPEED

A409 GAP

By1«s D*«cnptlon
2 Vector to User Input Handler
2 Vector to User Output Handler
3 JMP to User Function 1

3 JMP to User Function 2

3 JMP to User Function 3

2 Vpctor to IRQ after Monitor Interrupt

Routine
2 Vector to NMI Interrupt Routine
2 Vector to IRQ Interrupt Routine
2 Vector to Display Routine
1 Audio Tape Speed

Default = $C7(AIM65)
Options = $5A(KIM-1x1)

$5B(KIM 1 x3)
1 Audio Tape Gap

Default = $08 = 32 SYN characters
Option = $80 for Assembler input &

Editor update

USER R6522 VERSATILE INTERFACE ADAPTER (VIA)

RS522 MEMORY ASSIGNMENTS
Location Function

AOOO Port B Output Data Register (ORB)
A001 Port A Output Data Register (ORA) Controls handshake
A002 Port B Data Direction Register (DDRB)) 0 = Input
A003 Port A Data Direction Register (DDRA)j 1 = Output

A004

Timer R/W = L

T1 Write TIL L

R/W = H

Read t1c-L

A005 T1 Write T1L-H & T1C-H
Clear T1 Interrupt Flag

ReadTiC-H

A006 T1

TIL L- T1C-L
Clear T1 Interrupt Flag

Write TIL L Read TIL L
A007 T1 Write TIL-H Read TiL-H

A008 T2
Clear T1 Interrupt Flag

Write T2L-L Read T2C-L

A009 T2 Write T2C-H
Clear T2 Interrupt Flag

Read T2C-H

AOOA Shift

T2L-L- T2C-L
Clear T2 Interrupt Flag

Register (SR)

AOOB Auxiliary Control Register (ACR)
A(X)C Peripheral Control Register (PCR)
A(X)D Interrupt Flag Register (IFR)

A(X)E Interrupt Enable Register (lER)

AOOF Port A Output Data Register (ORA) No effect on handshake

R6522 AUXILIARY CONTROL REGISTER (ACR), LOC. SA(X)B

7 6 5 4 3 2 1 0

Port A Latch Enable

Port B Latch Enable

Shift Register Control

Timer 2 Control

Timer 1 Control

PORT A LATCH ENABLE
ACRO = 1 Port A latch is enabled to latch input data when CA1 Interrupt

Flag (IFR1) is set

= 0 Port A latch IS disabled, reflects current data on PA pins

PORTS LATCH ENABLE
ACR1 = 1 Port B latch is enabled to latch the voltage on the pins for the

input lines or the ORB contents for the output lines when CB1
Interrupt Flag (IFR4) is set

= 0 Port B latch is disabled, reflects current data on PB pins

SHIFT REGISTER CONTROL
ACR4 ACR3 ACR2 Mode

0 0 0 Shift Register Disabled

0 0 1 Shift in under control of Timer 2

0 1 0 Shift in under control of 02
0 1 1 Shift in under control of ex<ernal clock

1 0 0 Free-running output at rate determined by Timer 2

1 0 1 Shift out under control of Timer 2

1 1 0 Shift out under control of 02
1 1 1 Shift out under control of external clock

TIMER 2 CONTROL
ACR5 = 0 T2 acts as an interval timer in the one-shot mode

= 1 T2 counts a predetermined number of pulses on PB6

TIMER 1 CONTROL

ACR7 ACR6 Mode

0 0 T1 one-shot mode — Generate a Single time out interrupt

each time T1 is loaded Output to PB7 disabled

0 1 T1 free-running mode — Generate continuous interrupts

Output to PB7 disabled

1 0 T1 one-shot mode — Generate a single time-out interrupt

and an output pulse on PB7 each time Tils loaded

1 1 T1 free-running mode — Generate continuous interrupts

and a square wave output on PB7

R6522 PERIPHERAL CONTROL REGISTER (PCR). LOC. SAOOC
7 6 5 4 3 2 1 0

CA1 Control

CA2 Control

CB1 Control

CB2 Control

CA1 CONTROL
PCRO = 0 The CA1 Interrupt Flag (IFR1) will be set by a negative

transition (high to low) on the CA1 pin

= 1 The CA1 Interrupt Flag (IFR1) will be set by a positive transition

(low to high) on the CA1 pin

CA2 CONTROL
PCR3 PCR2 PCR1 Mode

0 0 0 CA2 negative edge interrupt (IFRO/ORA clear) mode
— Set CA2 interrupt flag (IFRO) on a negative transi-

tion of the CA2 input signal. Clear IFRO on a read or

write of the ORA or by writing logic 1 into IFRO

0 0 1 CA2 negative edge interrupt (IFRO clear) mode —
Set IFRO on a negative transition of the CA2 input

signal Clear IFRO by writing logic 1 into IFRO

0 1 0 CA2 positive edge interrupt (IFRO/ORA clear) mode
— Set CA2 interrupt flag (IFRO) on a positive transi-

tion of the CA2 input signal Clear IFRO on a read or

write of the ORA or by writing logic 1 into IFRO

0 1 1 CA2 positive edge interrupt (IFRO clear) mode —
Set IFRO on a positive transition of the CA2 Input

signal Clear IFRO by writing logic 1 into IFRO

1 0 0 CA2 handshake output mode — Set CA2 output
low on a read or write of the Peripheral A Output
Register Reset CA2 high with an active transition

on CA1

1 0 1 CA2 pulse output mode — CA2 goes low for one
cycle following a read or write of the Peripheral A
Output Register

1 1 0 CA2 low output mode — The CA2 output is held
low in this mode

1 1 1 CA2 high output mode — The CA2 output is held
high in this mode

CB1 CONTROL
PCR4 = 0 The CB1 Interrupt Flag (IFR4) will be set by a negative

transition (high to low) on the CB1 pin
= 1 The CB1 Interrupt Flag (IFR4) will be set by a positive transition

(low to high) on the CB1 pin.

CB2 CONTROL
PCR7 PCR6 PCR5 Mode
0 0 0 CB2 negative edge interrupt (IFR3/ORB clear) mode

— Set CB2 interrupt flag (IFR3) on a negative transi-

tion of the CB2 input signal Clear IFR3 on a read or
write of the ORB or by writing logic 1 into IFR3

0 0 1 CB2 negative edge interrupt (IFR3 clear) mode —
Set IFR3 on a negative transition of the CB2 input

signal Clear IFR3 by writing logic 1 into IFR3

0 1 0 CB2 positive edge interrupt (IFR3/ORB clear) mode
— Set CB2 interrupt flag (IFR3) on a positive transi-

tion of the CB2 input signal Clear IFR3 on a read or
write of the ORB or by writing logic 1 into IFR3

0 1 1 CB2 positive edge interrupt (IFR3 clear) mode —
Set IFR3 on a positive transition of the CB2 input

signal. Clear IFR3 by writing logic 1 into IFR3

1 0 0 CB2 handshake output mode — Set CB2 output
low on a write of the Peripheral B Output Register
Reset CB2 high with an active transition on CB1

1 0 1 CB2 pulse output mode — CB2 goes low for one
cycle following a read or write of the Peripheral B
Output Register

1 1 0 CB2 low output mode — The CB2 output is held
low in this mode

1 1 1 CB2 high output mode — The CB2 output is held
high in this mode

335

R6522 INTERRUPT FLAG REGISTER <IFR), LOG. SAOOO
7 6 5 4 3 2 1 0

CA2 Interrupt Flag

CA1 Interrupt Flag \

SR Interrupt Flag

CB2 Interrupt Flag

CB1 Interrupt Flag

T2 Interrupt Flag

T1 Interrupt Flag

IRQ Has Occurred

IFR Bit Set By Cleared By

0 Active transition on CA2 Reading or writing the ORA ($A001

or $A00F)

1 Active transition on CA1 Reading or writing the ORA ($A001

or SAOOF)

2 Completion of eight shifts Reading or writing the SR ($A00A)

3 Active transition on CB2 Reading or writing the ORB (SAOOO)

4 Active transition on CB1 Reading or writing the ORB (SAOOO)

5 Time-out of Timer 2 Reading T2C-L (SA008) or writing

T2C-H (SA009)

6 Time-out of Timer 1 Reading TIC-L (SA004) or writing

T1L-H(SA005or SA007)

7 Any IFR bit set with its

corresponding lER bit

also set

Clearing IFR0-IFR6 (SA(X3D) or

IER0-IER6(SA00E)

R6522 INTERRUPT ENABLE REGISTER (lER), LOG. $AOOE

CA2 Interrupt Enable

CA1 Interrupt Enable

SR Interrupt Enable

CB2 Interrupt Enable

CB1 Interrupt Enable

T2 Interrupt Enable

T 1 Interrupt Enable

lER Set/Clear Control

INTERRUPT ENABLE BITS (IERO-6)

lERn = 0 Disable interrupt

= 1 Enable interrupt

lER SET/CLEAR CONTROL (IER7)

IER7 = 0 For each data bus bit set to logic 1, clear corresponding lER bit

= 1 For each data bus bit set to logic 1, set corresponding lER bit

Note: IER7 is active only when R/W = L; when R/W = H. IER7 will read
logic I.

INDEX

* (alter program counter) command, 24
* = (Set Origin) pseudo-operation, 151,

164
* to change addresses, 8, 14

(designating program counter), 23

$ (indicating hexaaecimal number), 13

* (clear all breakpoints) command, 1 36,

141

* (indicating immediate addressing), 33,

34

? (display breakpoints) command, 136,

141

??? (invalid operation code indicator),

142

% (indicating binary number), 33

/ (change memory) command, 7-8

A register {see Accumulator)
Absolute (direct) addressing, 19, 26, 308

execution, 292-93

order of address bytes, 19

Absolute indexed addressing, 82, 299,

308

Accepting an interrupt, 221

response, 221

time required, 262
Accessing elements in an array, 116-18

requirements, 90
16-bit index, 123

Accumulating counts, 116-17, 118-19

Accumulator (A register), 13, 20, 26

position in register display, 23

saving in stack, 174

Acknowledging data, 200-3, 210-15

Activation codes for on-board character

displays, 70, 73

Active transition in a 6522 \'IA, 207
Adaptive programs, 244-48

ADC (add witn carry), 70, 76, 1 58

CARRY, exclusion of, 76, 1 52

decimal mode, 155-56

examples, 154-55

result, 76, 79

validity of data, 156

Addition;

BCD, 155-58

binar>', 92-99, 151-53

decimal, 155-58

8-bit, 92-99, 1 51-53, 155-58

multiple-precision, 161-64

16-bit, 158-60

Address, 5

arrays, 119-22, 187-90

data, distinction from, 16, 140, 146
keyboard entry, 116
length, 5, 6, 13

map, 4, 334

storage format (less Significant byte

first), 19

used in examples, 5

Address bus, 291, 292
Address decoding in AIM 65, 295-99

diagrams, 297, 298
8K expansion, 299-300

I/O decoding, 300-2

memory expansion, 299-300
memory map, 334
RAM decoding, 295-99

ROM decoding, 295-99
Address map for aim 65, 334
Address space, 299-300
Addressing modes, 11, 14, 308

absolute (direct), 19, 34, 292-93

absolute indexed, 83, 299
default (absolute), 13

direct, 16, 19, 292-93, 294
execution, 292-95

flexible, 90-91

formats in mnemonic entry mode,
15

immediate, 33, 34, 293-94

indexed, 82-83, 299
indexed indirect (preindexed),

119-22

indirect, 188

indirect indexed (postindexed),

102-3, 122-23

postindexed, 102-3, 122-23

preindexed, 119-22

relative, 34-35, 294-95

summary, 308
zero page (direct), 16, 25, 294

Alarm handling (in monitoring system).

Alphanumeric display, 69
AND (logical), 21-23

clearing bits, 50-51, 212-14
flags, 36-37

masking, 33

testing bits, 33

truth table, 22, 50

Anode, 42, 43
Apostrophe indicating ASCII character, 13

Application Connector:
attachments, 324-29

pin assignments, 290
Arithmetic, 149-68

applications, 151

BCD, 153-58, 160, 163-64

binary, 92-99, 151-53, 158-60

decimal, 153-58, 160, 163-64

8-bit, 92-99, 151-53, 155-56

lookup tables, 164-67

mod 60, 260-61

multiple-precision, 161-64

16-bit, 158-160

summation, 92-99, 157-160

Arithmetic shift, 1 12

Arrays, 88-124

addresses, 119-22

characterization, 90
clearing, 108-9

filling, 109-16

formation, 107-8

initialization, 109-12

long versions, 122-23

matbematical description, 90
processing, 88-104

summation, 92-99, 157-60

two-dimensional, 90-91

variable base address, 102-3

ASCII characters, 73, 309
assembler notation (apostrophe), 13

bit 7, 73, 183

337

338 Index t

ASCII characters (ctd.)

decimal digits, 74
hexadecimal digits, 78
table, 309

ASCII conversions, 76-80

decimal, 76-78

hexadecimal, 78-80
ASL (arithmetic shift left), 12, 20, 35,

112, 269
Assembler, 13, 146

defaults, 13

format, 13

pseudo-operations, 151, 164-65,

166

purpose, 1

1

Assembly language, 14

mnemonic entrv, differences from,
15

(alter program counter) command, 24
* = (Set Origin) pseudo-operation, 151,

164
* to change addresses, 8, 14

Asterisks indicating program counter
value, 23

Asynchronous input/output, 196-97

examples, 198-200, 206-210
interrupt-driven, 226-30
serial version, 267-79
6522 VIA, 206-215

Automatic mode of 6522 via, 210-11,
214-15

Auxiliarv control register (in 6522 via),

250-5'l

B (set or clear breakpoint) command,
136, 141

Backward through an array, 91, 108
Balancing stack operations, 174
Base address of an array or table, 82, 90

variable, 102-3

BCC (branch if carry clear), 29, 35

BCD (decimal) arithmetic, 153-58, 160,

163-64

BCD representation, 153-55

decimal digits, 153

hpical numbers, 154

BCS (branch if carry set), 29, 35

BEQ (branch if equal to zero), 29
Binary-coded-decimal (BCD)

representation, 153-55

Binary numbers, indicator of, 33

Binarv-to-hexadecimal conversion, 20,
34'

table, 5

BIT (bit test), 30

addressing modes, 30

dummy read, 255, 256
flags, 30, 36

input instruction, 30

polling viAs, 235
Bit-by-bit operations, 38-39, 40
Bit manipulation, 50-51

Bit numbering, 32

Bit rate generation, 270-76
Bit testing, 32-36, 40
Blanking a display character, 86
Block {see Arrays)

BMi. (branch if minus), 29, 35

BNE (branch if not equal to zero), 29,

33, 34, 39

Boolean algebra, 21-23, 50-51

Borrow, 79, 97, 146

Bounce, 58

BPL (branch if plus), 30, 35

Branch instructions, 29, 32-33

Break (B) flag, 37

Breakpoint, 135, 136-37, 141-45

clearing, 136

commands, 1 36

development systems, 13^-37
displaying, 136

examples of use, 141-46

implementation on AIM, 136

resumption of programs, 1 37
setting, 1 36

STEP mode only, 137

Brightness of displays, 51-53

BRK (force break), 2, 8, 13, 18, 306
Broadcast mode, 302

Buffer, 231-35

Buffered interrupts, 231-35

Buffer empty signal, 200, 201, 214
Bus, 288, 29

1

Bus contention, 291

Bvc (branch if overflow clear), 30
BVS (branch if overflow set), 30
Byte, 2, 3

BYTE OUT pulse, 2 1

1

B'iTE pseudo-operation, 151, 165

Byte-wide operations, 38-39, 40

C (Carry) flag, 32, 35

Call instruction, 171-72, 173-74 {see also

)SR)

Caret (A) cursor, 6

Carry (C) flag, 32

arithmetic, 1 52, 1 53, 1 58

branches, 33

CLC, 70
comparison, 79, 97
decimal subtraction, 153

decrement (no effect), 162

errors in use, 146, 147

increment (no effect), 122

inverted borrow, 146

LSR, 35

meaning, 32

multiple-precision arithmetic, 161

parallel to serial conversion, 267
SEC, 151

serial to parallel conversion, 269
shifts, 12, 35, 267
status register, position in, 37

subtraction, 146, 151, 261

Cassette interface, 4

Cathode, 42, 43

Centering serial data reception, 278
Central processing unit (CPu), 3

Changing memory, 7-8

leaving locations unchanged, 7

when actually changed, 8

Changing registers, 24
Character, 69
Characters, appearance on display, 7

Checksum, 94 {see also Parity)

CLC (clear carry), 70, 76, 276
CLD (clear decimal mode), 150, 155

Clearing an array, 108-9, 122-23

Clearing bits, 50-51

Clearing (removing) breakpoints, 1 36
Clearing elements, 116-17, 118, 123

CLI (clear interrupt disable), 220, 222
Clock, 196

measuring period, 246-49

real-time, 256-63

6502 system, 289-91

synchronization, 244-46

Clock circuit (for experiments), 242
Clock frequency of AIM (1 MHz), 47

Clock period, measurement of, 246-49

resolution, 247
Clock phases, 290, 291

Clock signals for microcomputer, 290,

291

Clock synchronization'* 244-46

CMP (compare accumulator), 30

CARRY flag, 79

input instruction, 30

operation, 57

use, 39

ZERO flag, 39

Code conversion, 66, 76-80

Coding, 127

Command register, 216 {see also Control
register)

Commancr summary, 332

Comment, 13

Common operating errors, 24-25

Common programming errors, 146-48

Communications between main program
and interrupt service routines, 230

Comparison instructions, 39

CARRY flag, 79

decimal mode, 156

equal values, 147

ZERO flag, 39

Complementing (inverting) bits, 50-51

Complementing the accumulator (eor
#$EE), 51, 6^5

Condition code {see Flag)

Conditional branch instructions, 29-30,

32-33

execution time, 47, 294-95

list, 33

operation, 33

page boundary, 294-95

relative offset, 34-35

Continuity of displays, 51-53, 101-2

Control lines (on 6^22 via), 205-15

Control register, 203, 205, 216
Control signal, 200-3

Correcting program errors, 147

Countdown, 46
Counter:

6522 timers, 249-52

software, 46-49, 270-71

Counting on the displays, 80-81

Counting switch closures, 118-19

CPU (central processing unit), 3

CPX(y) (compare index register), 70, 85
addressing modes, 70

Cross-coupled nand gates, 58, 59

CTRL key, 5

Cursor, 6

D (dump) command, 145
D (decimal mode) flag, 155
DATA ACCEPTED signal, 196, 200-2
Data-address distinction, 16, 140, 146
Data bus, 288, 291

Data direction register, 44-45
RESET, 45
6522 VIA, 44

Data file, 127

Data logger example, 263
DATA READY signal, 196, 198, 200-2
DDR {see Data direction register)

Debounce time, 58

Debouncing a switch, 58-60

Debugger (program), 126, 135-38
Debugging, 127, 135-48

correcting errors, 147
errors, typical, 146-48

Index 339

example, 138-45

tools, 135-38, 145-46

DEC (decrement memor>’ by 1), 42
Decimal (bcd) arithmetic:

addition, 155-58, 160, 163

comparison, 156

decrement, 1 56

8-bit, 155-56

factor of 6, 153-55

flags, 1 56

increment, 1 56

multi-bvte, 163-64

16-bit, 160

subtraction, 1 56

summation, 157-58

Decimal default for numbers in

assembler, 1

3

Decimal mode, 155, 156

DECIMAL MODE (d) flag:

CLD, 150, 155

initialization, 156

instructions, effect on, 155, 156

meaning, 155

reset, effect of (none), 1 56

SED, 151, 155

status register, position in, 37

Decimal-to-ASCll conversion, 76-78

Decoder, 287
74138 device, 295-97

74155 device, 295-97

Defaults:

addressing mode, 13

interrupt vectors, 222
numbers in assembler, 13

Delay program, 46-49

eighth of a second version, 270-71

millisecond version, 58-59

monitor subroutine, 177-78

nested version, 48-49

one second version, 8-26

6522 timer, 249-252

subroutine, 177-78

time budget, 46-47

DEL.\Y subroutine (in monitor), 182-83

Deleting instructions, 142, 146

DEL key, 1

5

Design of programs, 128-135

Development systems (breakpointing

features), 136-37

Device numbers, 120-21

DEX(y) (decrement index register by 1),

42, 46
Direct addressing, 11, 16

absolute version, 19, 292-93

immediate addressing, difference

from, 146

instruction execution, 292-93, 294

meaning, 1

1

use, 1

3

zero-page version, 16, 294

Direction of stack growth (toward lower

addresses), 173

Disabling 6522 via interrupts, 223-25

Disassembler, 136, 145-46

Displacements in mnemonic entry

mode, 15

Displav (on-board), 70-75

blanking, 86
character activation, 71, 73

counting, 80-81

features, 7

interface, 71

modules, 70, 72

monitor routine, 183-84

moving characters, 84-86

numbering, 70, 72

Display actisation patterns, 73

Displaying a message, 99-102

Displaying registers, 23

Display interface, 71

Display numbering, 70, 72
Display, special features of, 7

Display time constants, 51-53

Documentation of programs, 127

Dollar sign in front of hexadecimal

numbers, 13, 15

Double buffering with interrupts, 233-34

Doubling an element number, 118, 121,
' 188

Dummv operations on I/O ports, 208,
209, '215, 256

Dump, 136, 145

Duty cycle, 51-53

elapsed time interrupt, 258

real-time clock, 258
software delay, 51-53

Edge-sensitive interrupt (NMl), 220

Editing mnemonic entries, 15

Editor program, 146

Effective address, 82, 142

8086/8088 processors, differences from

6502, 79

Elapsed time interrupts, 253-56

Enable, 219

Enabling and disabling interrupts, 220,

221, 239
accepting an interrupt, 221

CLi (enable interrupt), 220, 222

interrupt status, saving and
restoring, 221

order in startup routine, 222,

224-25

reset, 221

RTi, 220, 221

SEi (disable interrupt), 220, 228
6522 VIA, 223-24

6522 timers, 253

when required, 239
Encoder, 64-66

Endless loop instruction, 74
execution, 292-93

Entering a program, 16-17

Entering data, 17-18

EOR (exclusive or), 12, 94
complementing accumulator (eor

#$ef), 51, 65

inverting bits, 50-51

truth taWe, 50

Equal values, comparison of, 147

Error-correcting codes, 282
Error-detecting codes, 282-85 {see also

Parih)

Error exit, 190

ERROR message from monitor, 15

Errors:

operating, 24-25

programming, 146-48

ESC (escape) key, 6, 23

Even parity, 282
Examining flags, 36-37

Examining memory, 5-7

moving to higher addresses, 7

Examining registers, 23

Examining results, 18

Executing data by accident, 25

Executing programs, 8-9, 18

single-step, 137

Execution times for instructions, 304
variations in branch instructions,

46, 294-95

Expansion Connector, 291

pin assignments, 291

Extension (of programs), 127

Eactor of 6 in decimal arithmetic,

154-55

Ealse start bit, 279-82

Eavored bit positions, 35-36

File. 146

Filling extra instruction bvtes, 142, 146

Flag, 29. 32

branches, 32-33

examination, 36-37

instructions, effects of, 32, 39, 40,

147, 304
organization in status register, 37

use, 32-33

Flag (F') register (see Status register)

Flexible addressing modes, 90-91

Flowcharting, 128-35

examples, 128-35

limitations, 128

methods, 128

recommended approach, 128

standard symbols, 129

Forming arrays, 107-24

Four (enable or disable breakpoints)

command, 136

Framing error, 279
F ree-running mode of 6522 timer 1,

250, 256

G (go) command, 8

Ground point (for oscilloscope), 290
Group select (cs), 65

CS (group select) output from encoder,

65

H (trace program counter history)

command, 138

Half-carry (from bit 3), 155-56

Handshake, 197, 201-3, 210-15, 226-30

diagrams, 202, 204
input, 201, 202, 211-14

interrupts, 226-30

output, 201, 203, 204, 214-15

procedures, 1 96-97

6522 VIA, 210-15, 226-30

Hardware design problems, 288
Hardware/sofhvare tradeoffs, 56, 60, 66,

67
debouncing, 60
encoding, 66
serial I/O, 267

timing, 249
Hardware stack, 172-75 {see also Stack,

Stack pointer)

Hexadecimal number system, 5

Hexadecimal subtraction, 34-35

Hexadecimal to ASCII conversion, 78-80

Hexadecimal to binary conversion, 20,

34

Hexadecimal to decimal conversion

table, 5

High-impedance state (of a tristate

device), 288
High volume applications, 66, 67

1 (Instruction Mnemonic Entry)

command, 14-16, 17, 146-47

1 flag {see INTERRUPT DISABLE flag), 220
Identification line in register di.^Iay, 23

Identification numbers, array of, 109-11

340 Index

Identitving a switch, 61-66, 179-80

Immediate addressing, 33, 34

assembler notation, 33

direct addressing, difference from,

140, 146

exeeution, 293-94

use, 33

INC (inerement memorv location by 1),

42, 60
CARRY flag, effect on (none), 122
deeimal mode, 1 56

16-bit version, 122

Incrementing a 16-bit number, 122
Index, 90, 107-8, 117

16-bit, 123

Indexed addressing, 82-83, 308
absolute version, 82-83

exeeution, 299
indexed indirect (preindexed)

version, 119-22

indirect indexed (postindexed)

version, 102-3, 122-23

offset of one in base, 91, 141-42,

147

operation, 82-83

16-bit index, 123

subroutine calls, 187-90

table lookup, 82-83

use, 82
Indexed indirect addressing

(preindexing), 119-22

even-numbered elements only, 120
restrictions, 120

use, 119-20

Indexing arbitrary array elements, 116-19

Index registers, 14, 20
changing, 24

CPX(Y), 85

dex(Y), 46
differences between x and Y, 102,

119, 171

examination, 23

inx(y), 42
ldx(y), 12

length, 122

stacK pointer transfers, 171, 173,

175

stack transfers, 174

STX(Y), 12

table lookup, 82, 164-65, 188

transfer instruetions, 56, 171

Indireet addressing, 102-3, 119-23

absolute version, 188

indexed indirect version

(preindexing), 119-22

indirect indexed version

(postindexing), 102-3, 122-23

IMP, 188

subroutine calls, 187-90

Indirect indexed addressing

(postindexing), 102-3

variable base address, 102-3

Initialization;

arrays, 108-12

DECIMAL MODE flag, 1 56

interrupt system, 222, 223-25

output ports, 44-45

RAM, 108-12

6522 VIA, 44-45, 206-8, 223-25
6522 VIA timers, 249-51

stack pointer, 173

Input/output (I/O) instructions, 30
Inserting instructions, 146

Instruction, 287
Instruction cycle, 292-95

Instruetion execution times, 304

Instruction fetch, 292, 293, 294
Instruction length, 16

order of bytes, 19

table, 304

Instruction Mnemonic F,ntry^ (1)

command, 14-15, 17

Instruction set, 304

alphabetical order, 304
flags, effeets on, 147

meaning of table entries, 14 ,

numerical order, 305

Intelligent controller, 33

Interpolation in tables, 167

INTERRUPT DISABLE (1) flag:

accepting an interrupt, 221

CLI (enable interrupt), 220, 222
comparison with 6522 INTERRUPT

ENABLE, 228
meaning, 220
reset, effect of, 221

RTI, 221

SEl (disable interrupt), 220, 228
status register, position in, 37

Interrupt-driven, 219
Interrupt enable, 219, 222
Interrupt enable register (in 6522 V'Ia),

223-25

bit assignments, 223
clearing, 225

set/elear control, 223
testing, 238-39

Interrupt flag register (in 6522 via), 206,

207, 250

bit assignments, 206
elearing flags, 207, 208
IRQ (interrupt request) bit, 235
organization, 206
reset, 208

Interrupt mask, 219, 221 [see also

INTERRUPT DISABLE (1) flag]

Interrupt priority, 235-39

rotating,

Interrupt request (irq) bit in 6522 via,

235

Interrupt request (Tr^) signal, 220
Interrupt response, 221, 306
Interrupt response time, 262
Interrupt service routines, 226-39,

253-62

AIM vectors, 222
elapsed time, 253-56

programming guidelines, 239
real-time clock, 256-62
6502 vectors, 221

Interrupt vectors, 219, 221, 222, 239
AIM, 222
default values, 222
6502, 221

Interrupts, 218-40

advantages and disadvantages, 220
elapsed time, 253-56

enabling and disabling, 221, 239
flags, 206-7

handshake, 226-230
IRQ, 220, 222, 223-26
NMi, 220, 222-23

nonmaskable, 220, 222-23
order in stack, 221

polling, 235-39

power fail, 220
priority, 235-37

programming guidelines, 239
real-time clock, 256-62

response, 221, 306
response time, 262
6502, 220-21

6522 VIA, 223-26

6522 \'IA timers, 253-56

vectored, 239
Invalid BCD digits, 153, 156
Invalid operation codes, 142
Inverted borrow, 79, 97, 146
Inverting bits, 50-51

inx(y) (increment index register by one),

42, 122

I/O deviee table, 120

I/O instructions, 30

IRQ flag in 6522 via, 235
IRQ input, 220

jMP (jump), 43, 51

absollite addressing, 292-93

exeeution, 292-93

indireet addressing, 188

meaning, 43

JSR (jump to subroutine), 171

example, 173-74

offset of 1 in return address, 173

operation, 173-74, 306
variable addresses, 187-90

Jump instructions, 29 (see also Branch
instructions,)MP)

Jump-to-self (endless loop) instruction,

74

execution, 292-93

K (disassemble memory) command,
145-46

KB/rry switch, 5

Keyboard, 4
Keyboard entry of hexadecimal address,

il6

Label, 33

space required by assembler, 1

3

Laboratory setup (example), 330-31

Latch, 205, 207
LDA (load accumulator), 13

indexed, 83

input instruction, 30

NEGATIVE flag, 35

ldx(y) (load index register), 12

Leading zeros, omission of, 13, 15, 16

mnemonic entry, 1 5, 24
register changes, 24
when not allowed, 15

Least significant bit (bit 0), 32

LED (lignt-emitting diode), 43
LED connections, 43
Letters, appearance on displays, 7
Level-sensitive interrupt, 220
LIFO memory, 170 (see also Stack)

Limit checking, 97-99

Linear select addressing, 302
Linearization, 150

Logic analyzer, 288
Logical device, 120

Logical functions, 50-51, 212-14
truth tables, 50

Logical shift, 11, 12, 35

Logical sum, 94
Long arrays (more than 256 bvtes),

122-23

Lookup tables, 82-84, 164-67

advantages and disadvantages, 70
arithmetic applications, lM-67
interpolation, 167

subroutines, 187-90

timing applications, 258, 262

Index 341

l>ost program, 25

lx)w-voIume applications, 66, 67
LSR (logical shift right), 12, 35, 267

diagram, 12

M (Examine Memor>) command, 5-7

Machine language, 14

Mailbox, 230
Maintenance of programs, 127

Majorih logic, 279-82

Manual output mode (of 6522 via),

211-14

automatic mode, comparison with,

214
Mark state on a serial line, 276
Maskable interrupt, 220 (see also TT^

input)

Masking bits, 33, 50-51, 212-14

Maximum, 132-34

Mechanical components, 66
Memors:

addresses, 4-5, 334
changing, 7-8

clearing, 108-9, 122-23

decoding, 295-99

display, 6
examining, 5-7

expansion, 299-300
map (for AIM), 334
nonvolatile, 7, 9

RAM, 3, 4, 6, 108

ROM, 3, 7

stack, 170, 172-74

time, tradeoffs with, 70, 82, 164, 167

volatile, 6, 108

Memory capacitv, 299-300

Memory map of aim-65, 334

Memory-mapped input/output, 30

Memor\'/time tradeoffs, 70, 82, 164, 167

Message, display of, 99-102

Microcomputer, 2

Microprocessor, 2, 3

Millisecond delay program, 59

Misintepreting data as instructions, 25

Mnemonic, 14

Mnemonic entrv of instructions, 14-15,

17

assembly language, differences

from, 1

5

branches, 35

editing, 15

formats for addressing modes, 1

5

labels, 33

leading zeros, 15

names, 47
Mod 60 arithmetic, 261

Modular programming, 126

Module, 126

Monitor program, 4

determining data rate, 248

interrupt response time, 262

memory location, 334

RAM usage, 4

stack pointer value, 173

subroutines, 181-87

summary, 332-36

Monitor subroutines, 181-87

DELAY routine, 182-83

output routines, 183-84

STEP mode, 182

table, 184-87, 333

Monitoring system example, 263

Most significant bit (bit 7), 32

Moving characters across the display,

84-86

Moving (ncwspanel) display, 101-2

Multibvte entries (in arravs or tables),

90-91, 118

accessing, 123

addresses, 119-22

arithmetic applications, 166-67

timing applications, 262
Multiple addresses, 299-300

6522 \IA timer one, 249, 250
Multiple interrupts, 235-39

Multiple-precision arithmetic, 161-64

Multiplying by a small integer, 124

^lultitasking, 243

Murphy’s Law, 146

N flag (see negative flag)

NEGATIV E (n) flag:

ASL, 35

BIT, 30

branches, 33

decimal mode, 1 56

definition, 29, 32, 33

LDA, 35

status register, position in, 37

uses, 35

Negative logic, 56, 64, 65
Negative relative offsets, 34
Nested delay program, 48-49

Nesting, 48
Newspanel (moving) display, 101-2

NMl input, 220
edge-sensitive, 220
example, 222-23

priority over 225
response, 221, 306
use, 220
vector, 221, 222

No-op (no operation), 126, 142

Nonmaskable interrupt, 220 (see also

NMl input)

Nonvolatile memory, 2

NOP (no operation) instruction, 142

Numbering of bit positions, 32

difference from I/O devices, 32

Numbering of on-board displays, 70, 72

(clear all breakpoints) command, 1 36,

141

Numbers, appearance on display, 7

Number sign (indicating immediate
addressing), 33, 34

Odd parity, 282
On-board display, 70-75, 183-84 (see

also Display)

One-shot mode of 6522 timers, 249,
250-51

Operating errors, 24-25

Operating system, 263
Operation (op) aide, 14

alphabetical order, 304

fetch, 292, 293, 294
invalid indicator, 142

numerical order, 305
space required (afterward), 13

ORA (logical or), 12

decimal-to-ASCll conversion, 78
setting bits, 50-51

truth table, 50

Order in register display, 23
Order of bytes in a three-byte

instruction, 19

Order of two-byte entries, 19, 147

Drdering elements, 109-11

Origin (* =
)
pseudo-operation, 151, 164

os (see Operating system)

Oscilloscope, 288
Output ports, initialization of, 44-45

Output routines in monitor, 183-84

Overflow of a stack, 170, 175

0\ ERELOVV (v) flag;

BIT, 30

branches, 33

status register, position in, 37

P (alter processor status) command, 24
P (status) register, 36-37 (see also Status

(P) register)

Page, 12, 103, 122

Page boundary, 294-95

Page number, 12

Page 1, resened for stack, 171, 172

Page zero, 16, 25, 147

Parallel, 266
Parallel interfacing, 192-217

Parallel/serial conversion, 267-69

Parameters, 1 7

1

Parentheses around addresses, 21, 102,

119, 188

Parity, 282-85

examples, 282
features, 282
generation, 282-85

Parts list for experiments, 331

Passing parameters, 171

Patching a program, 147

PG (program counter) register, 23, 24
Percentage sign (indicating binary

number), 33

Peripheral Interface Adapter (pia), 70
PERIPHERAL READY signal, 196, 199, 209
PHA (store accumulator in stack), 170,

174, 177

PHP (store status register in stack), 170,

174, 177

Physical device, 120

PIA (Peripheral Interface Adapter), 70
PLA (load accumulator from stack), 171,

174, 177

PLP (load status register from stack), 171,

174, 177

Polling, 197, 235-39

6522 VIA, 235
Polling interrupt system, 235-39
Pop (pull) operations on the stack, 172,

173

Port, 29, 30

Postindexing (indirect indexed

addressing), 102-3, 122-23

Power fail interrupt, 220
Preindexing (indexed indirect

addressing), 119-22

Printer, 5

tolling, 5, 14

PRINT key, 5

Priority encoder (74148 device), 64-66
Priority interrupt system, 235-39

Problem definition, 127
Program counter (PC register), 23, 24

altering, 24

conditional branches, 32

increment (automatic), 292

JSR, 173-74

length, 23

position in stack after interrupt, 221
relative addressing, 34

RTS, 172, 173-74, 190

Program design, 127, 128-35 (see also

Flowcharting)

Program execution, 8-9, 18

342 Index «

Program file, 146

Programmable I/O devices, 216
Programmable timer, 249
Programming errors, 146-48

Programming model of 6502
microprocessor, 14

Programming reference card, 14, 504-8
Program relative addressing, 34-35

Programs, running of, 8-9, 18

Prompt character, 4
Protocol, 276
Prototyping board, 330
PS (processor status) register, 24, 36-37

Pseudo-operations, 151, 164-65, 166
Push operations (on stack), 172

? (display breakpoints) command, 1 36,

141

??? (invalid operation code indicator),

142

R (display register contents) command.
23. 138

from mnemonic entry (error), 25
RAM, 3

AIM addresses, 4

initialization, 108

volatility, 6
RAM used by monitor, 4
Random-access memory (ram), 3, 6,

108

Random starting point, 6, 108
Read-only memory (ROM), 3

attempt to change, 8

examination, 4-7

Read/write memory (r,am), 3

read/w'RITE signal, 294
READY flag (for use with interrupts), 228
READY FOR DATA signal, 196
Real-time, 243, 244
Real-time clock, 256-63

keeping time, 256
longer intervals, 259-60
serial I/O, 273-76

standard time units, 260-62
Real-time monitoring system example,

263
Real-time operating system, 263
Real-time requirements, 244, 263
Redesign of programs, 127
Reentrant suoroutines, 239
Register display, 23-24

designations, 23
order, 23

Registers, 14

changing, 24
display, 23

examination, 23
length, 23

programming model, 14

saving and restoring, 177
Relative addressing, 34-35

instruction execution, 294-95
relocatability, 35

Relative offsets, 34-35

calculation, 34-35

example, 34

mnemonic entry mode, 15, 35

negative value, 34

page boundaries, 294-95

positive value, 34

starting point (end of branch
instruction), 34

Relocatability, 35

Reset, 4

button, 4, 25

data direction registers, 45

DECIMAL MODE flag (iio effect), 156

interrupt system, 221

interrupt vectors, 222
6522 VIA, 315

Resetting the computer, 4

Resuming a program, 136, 143

RETURN key, 6, 24

ROL (rotate left) instruction, 106, 267
ROM (read-only memory), 3, 7

ROR (rotate right) instruction, 106, 112,

267, 268
Rotating interrupt priorities, 236-37

RTl (return from interrupt), 220, 221,

306

reenabling interrupt status, 221
RTS (return from subroutine), 171, 172

addition of 1 to return address, 173

execution, example of, 174

indexed jump, 190

operation, 173-74

Running (executing) a user program,

8-9, 18

Running count, 60-61

run/step switch, 5, 137

interrupts, 222-23

S (alter stack pointer) command, 24

S register {see Stack pointer)

Sampling an input line, 279-82

Saving and restoring registers, 177-78

SBC (subtract with carry), 151, 261

decimal mode, 155, 156

NEGATIVE flag, 156

operation, 151

Scheduler program, 263
Scratchpad, 4, 147

SEC (set carry) instruction, 151, 261,

278
Second delay program, 145

SEl (set interrupt disable), 220, 228
Semicolon (indicating comment to

assembler), 13

Sequential execution of instructions, 23
Serial, 266, 267
Serial I/O, 265-85

Serial/parallel conversion, 267-70

Set/clear control (in via interrupt enable

register), 223

Set Origin (* =
)
pseudo-op>eration, 151,

164

Setting bits to one, 50-51, 212-13

Setting breakpoints, 136, 141

Setting directions in 6522 via, 44-45

7F, producing of, 39

74138 3-to-8 decoder, 295, 296
74148 priority encoder, 64-66
74155 decoder, 295, 296
Shift instructions, 12, 20, 35

ASL, 12, 20, 35, 269
LSR, 12, 35, 267
ROL, 106, 267
ROR, 106, 112, 267, 268

SHIFT key, 8

Sign (negative) flag, 32-33, 35-36 {see

also negative flag)

Single-step (step) mode, 137
delay routine, 272, 278
example,. 138-45

number of instructions, 137
operation, 222
service routines, 225

tracing, 137-38

16-bit arithmetic, 158-60

16-bit counter, 122-23

16-bit increment, 122

6500 microprocessor family, 310-13

6502 output signals, ^2-95
read/write (Ft/ w), 294
synchronization (sync), 292-95

6502 pin assignments, 289
6502 programming model, 14

6502 registers, 14

6520 Peripheral Interface Adapter (pia),

70
6522 Versatile Interface Adapter (via), 4,

203-16, 314-23, 335-36

active edge control, 207
addresses, 315, 335

automatic control mode, 210-11,

214-15

auxiliary control register, 250-51

contents, 205

control lines, 206-215

data direction registers, 44-45

differences between port A and port

B, 215

dummy operations, 215, 256
initialization examples, 44-45, 207,

211

input control lines, 206-10

input/output control lines, 210-15

interrupt enable register, 223-25

interrupt flag register, 206
interrupts, 223-26

I/O ports, 30

linear select addressing, 302
manual mode, 211-14

on-board addresses, 44, 207, 224,

250, 315

peripheral control register, 205,

207. 210-11

pin assignments, 301

pulse (automatic mode), 214-15

register addresses, 315, 335
reset, 3 1

5

servicing when disabled, 239
summary, 335-36

6522 via timers, 249-51

addresses, 250
clearing interrupt flag, 250, 256
delay program, 251-52

free-running mode, 250, 256
interrupt, 253-62

interrupt enable, 253
interrupt flags, 250
latches, 249, 250
loading less significant bvte first,

250
one-shot mode, 250, 251-56

operation, 249-50

registers, 249-50

starting, 250
status, 250
10-ms delay, 251-56

6809 processor, differences from 6502,
79

68000 processor, differences from 6502,
79

/ (change memory) command, 7-8

Smart controller, 33

Software delay, 46 {see also Delay
program)

Software development, 125-48

debugging, 135-46

definitions, 127

design, 128-35

stages, 127

Index 343

Softvvare/hardware tradeoffs, 56, 67

debouncing, 60

encoding, 66
serial I/O, 267

timing, 249
SP register {see Stack pointer)

Space bar (to leave niemorv' unchanged).

Space state (on a telehpewriter line), 276

Special bit positions, 55-56

Splitting a bvte into hexadecimal digits,

20, 54

Square root tables, 166-67

Square table, 164-65

STA (store accumulator), 12

output instruction, 50

Stack, 172-75

addresses, 4, 172, 175

data transfers, 172-75

features, 172-75

guidelines, 174-75

location on page 1, 171, 172

lowest occupied address, 172

management, 174-75

overflow, 175

page 1, location on, 171, 172

pull (pop) instructions (pla, plp),

171, 174

push instructions (pha, php), 170,

174

pointer, 172-75

reentrant programs, 259

saving registers, 177-78

use, 172

Stack pointer, 172-75

automatic change when used, 172

contents, 172

loading, 171, 175, 175

monitor value (PF hex), 175

next available address, 172

page number (1), 172

storing, 171, 175

Stack transfers, 172-75

Standard (8, 4, 2, 1) BCD, 155-55

Standard time units, 260-62

Start bit, 276-82

Starting addresses, table of, 187-90

Starting (synchronization) character,

59-40

Status bit {see Flag, status register)

Status (P) register, 56-57

changing, 24

examination, 25

organization, 57

saving in the stack, 177

unused bit, 57

Status signal, 196, 198-200, 206-10

STEP mode, 157 {see also Single-step

mode)
Stop bit, 276-79

Structured programming, 127

STX(v) (store index register), 12

Subroutine call, 171 {see also |SK)

Subroutine linkage, 171, 172, 175-74

Subroutines, 169-91

instructions, 170, 171, 172, 175-74

monitor, 181-87, 555

terminology, 171

variable addresses, 187-90

Subtraction:

BCD, 155, 156, 164

binary, 155

CARRY flag, 151

decimal, 155, 156, 164

8-bit, 155, 155, 156

inverted borrow, 146

multiple-precision, 164

setting CARRY first, 261

Summation:
binary, 92-99, 151-52

decimal, 157-58

16-bit, 158-60

Suspend (a task), 265

Switch connections, 51

Switch identification, 61-66

Switch patterns, 57

Switch states, 55

Svnchronization (svnc) character, 59-40,

229-50

SYNCHRONIZATION (SYNC) Output signal,

292-95

Synchronous transfer, 196-97

Table, 69 {see also Lookup tables)

Table lookup, 70, 82-84, 164-67, 187-90

{see also Lookup tables)

Task, 265

tax(y) (transfer accumulator to index

register), 56, 112

Telephone analogy (to interrupts), 220

Telehpewriter monitor, 248

Terminator, 95-97

Testing bits, 52-56, 40

Testing for a value, 58-40

Testing programs, 127

Text file, 146

Time constants for displays, 51-55

Timekeeping, 245-64

Time/memor>' tradeoffs, 70

Time of day clock, 260-62

Times Square display, 101-2

Time-wasting programs, 46-49 {see also

Delay program)

Timing for instructions, table, 504

Timing requirements, 245-44

Top-down design, 127

Top of the stack, 171

Trace, 157-58, 159

commands, 157-58

recommended approach, 158

"Tradeoffs:

hardware/sofhvare, 56, 60, 66-67

parts count/memoiA capacity, 500

time/memory, 86, 164, 168

’Tristate, 288
TSX (transfer stack pointer to index

register x), 171 , 175

Two-dimensional arrays, 90-91

2114 RAMS, 5

tx(y)a (transfer index register to

accumulator), 56, 112

TXS (transfer index register x to stack

pointer), 171, 175

UART, 26/

Unsigned number, 127

Uppercase characters, ty ping of, 8

Upside-down addresses, 19, 54

llser VIA, 555

Utility (program), 245, 265

V (toggle register trace) command, 157

V (overflow) flag, 50, 55, 56

Valid data, 196

VALID DATA signal, 196

V'alidih’ checking, 97-99

\'ariable base addresses, 102-5

Variable subroutine addresses, 187-90

Vectored interrupt, 259
VIA, 4 {see also 6522 Versatile Interface

Adapter)

Volatile memory, 6

Waiting for a switch to close, 55-56

Word, 2

WORD pseudo-operation, 151, 166,

188

X (alter X register) command, 24

X register {see Index registers)

Y (alter Y register) command, 24

Y register {see Index registers)

Z (toggle instruction trace) command,
157-58

Z-80 processor, difference from 6502, 79

ZERO (z) flag, 52

branches, 55

CMP, 59

INC, 122

meaning, 52

status register, position in, 57

uses, 55, 59

Zero page (direct) addressing, 16, 294

execution, 294

'crocomputerexpoo/eve

'"'Croccp.terexpoote.e
O

lUimii

eve 0

4

K

k^-

r

0
0 '

1

; • h,

*

I %
i

HI
. !. .,P

)

MICROCOMPUTER
EXPERIMENTATION

WITH THE

This self-contained manual provides experimental training on the AIM 65

microcomputer and utilizes clear, well-written examples and well-

documented programs to do so. With this book, users from a wide variety

of backgrounds—including students of engineering and engineering

technology, computer science, physical sciences, and electronics—can

develop solid programming practices.

Microcomputer Experimentation emphasizes the control of systems with

software—specifically, the design of controllers for industrial and laboratory

use. What’s more. It utilizes realistic experiments that can be completed in

short time periods.

Here are some of the topics this book covers:

• How to operate the AIM 65

• An Introduction to assembly language programming

• How to perform simple controller functions

• Hardware/software tradeoffs

• How to design and develop programs

• Alternative approaches to input/output and timing

• Advantages and uses of programmable LSI devices

• An introduction to hardware design and development

PRENTICE-HALL, INC., Englewood Cliffs, N.J. 07632

ISBN -13-Sfl02fl3-D

IV

