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ABSTRACT 

A low-level language, GRASSHOPPER, was developed for use as a 

systems programming language on the MOS 6502 microcomputer. 

GRASSHOPPER was designed as an alternative to assembly language for 

systems programming, and its use requires some knowledge of the MOS 

6502 hardware. To facilitate the writing of correct and readable 

programs, GRASSHOPPER includes three control structures used in the 

higher level structured languages, and provides five distinct data 

types. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Project 

This project is divided into two parts: the design of a 

structured, low-level language, GRASSHOPPER, for use on the MOS 6502 

microcomputer; and the development of a GRASSHOPPER compiler which 

produces MOS 6502 assembly language. 

The purpose of the development of GRASSHOPPER has been to 

provide an alternative to assembly language programming on the 6502. 

Assembly language is still a popular choice for systems programming 

for micro-computers because of its flexibility and efficiency in 

Comparison to high-level languages. However the disadvantages of 

assembly language programming are well documented for mini and micro 

computers, namely, that correctness is more difficult to guarantee and 

that readability is poor. In particular the writing of structured and 

intelligible programs is almost impossible to achieve. On the other 

hand, high-level languages are designed to be readable, to encourage 

the writing of correct and structured programs, but are usually not 

easily translated into highly efficient code. In this project I have 
y6 

attempted to design a low-level language that combines the advantages 

of assembly language and high-level languages while substantially 

minimizing the disadvantages. 

To be attractive to the user there must be a minimal loss of 



flexibility in programming. For this reason, GRASSHOPPER provides 

some access to the processor status register, to the accumulator and 

to the X and Y registers. All core addressing methods used by the MOS 

6502 are available to GRASSHOPPER. The ability to embed assembly 

language code is provided for those cases when the desired code cannot 

be written in GRASSHOPPER. 

Another criterion of my language design is that the writing of 

readable and correct code should be facilitated. Control statements 

have therefore been provided which help the reader to wmnderstand the 

logical structure of the GRASSHOPPER programs. These statements have 

been designed to be wmderstandable with minimal explanation so they 

can be learned quickly and remembered easily. 

Finally, the language design has been strongly influenced by 

consideration of ease of parsing and compilation. 

The overall design of the GRASSHOPPER compiler reflects the 

goal of not doing anything the assembler already does adequately. The 

principal design criteria are: 

1/ Economy of space. This is of major importance when 

working with a micro-computer. In designing the structured 

Statements and their translation I have attempted to produce 

object *eode with little increase in size over what would have been 

eendanad if the source code had been written in assembly language 

to start with. 

2/ Speed of translation. This was a sedi deinen in the 

design of the symbol tables, but was otherwise of much lower 



priority then space. 

3/ Expandability and adaptability. These are important 

considerations because it should be possible to adapt GRASSHOPPER 

to future needs. Where practical, I have applied the principles 

of modularity and structured design, and have made the assembler 

source code for the compiler as easy to read as_ possible. 

Frequent use has been made of constants to make certain changes 

easier and to enhance readability. 

1.2 The Report 

Chapter 2 of this report introduces the language, GRASSHOPPER, 

discussing its data types and identifier declaration, its statements 

and constructs, and finally precisely describing its syntax using 

syntax graphs. In Chapter 3, the semantics of GRASSHOPPER is 

described in terms of the MOS 6502 assembly language, which is the 

object code of the compiler. In Chapter 4 the GRASSHOPPER compiler is 

described in general, including a discussion of error detection and 

diagnostics. Chapters 5, 6 and 7 discuss three major areas in the 

implementation: 1/0 and file management; the lexical scan; and _ the 

format and generation of the object code. Finally, Chapter 8 

summarizes the testing of the translator, discusses the usability of 

GRASSHOPPER, and presents some ideas for further language 

developement. 

Throughout this report I have illustrated the structure of 

sections of the compiler using subroutine maps. Each node of such a 

Map represents a named routine. Each leaf will be enclosed in an 



ellipse if it can call no other routines, or in a rectangle if it may. 

In many cases a leaf node appearing on one tree will be a root node in 

another tree. Appendix B indicates where each referenced routine is 

described. The text accompanying a subroutine map will indicate wder 

what circumstances each root node routine may be called. 

FIGURE 1.1 Example Of A Subroutine Ma 

AIN 

In the sample map show in Figure 1.1 the root routine MAIN may call: 

SUB1 which calls no more routines; SUB2 which may call SUB3 and SUB4; 

and ALT1, ALT2 or ALT3 which are called using indirect addressing 

where the address is stored in a pre-set location. SUB3 may call one 

or more other routines, not listed here. 

All algorithm descriptions are given in pseudo-GRASSHOPPER. 

The extra features of this notation include; the procedure header and 

parameter passing capability in subroutine calls; complex expressions 

as conditions in the IF construct; and the WITH construct. 

The WITH construct is similar to that found in Pascal, but is 

used to access individual bits of a byte, instead of fields of a 



record. In conjunction with this, the identifiers BITO, BIT1,..,BIT7 

will represent boolean variables. BIT i will be true when the i’th 

bit of the identified value is 1 and false otherwise. Thus: 

with CHRFLG do 

if BIT7 then statement list 1 endif; 

if not BITS then statement list 2 endif; 

endwith 

may be described as follows: 

if the seventh bit of CHRFLG = l 

then execute statement list 1 endif 

if the fifth bit of CHRFLG = 0 

then execute statement list 2 endif 



CHAPTER 2 

THE LANGUAGE GRASSHOPPER: SYNTAX 

GRASSHOPPER has been written as an extension to the existing 

assembler with little attempt made to add to the primitive operations 

and data types already provided by the hardware. 

Currently the scope rules for a GRASSHOPPER program are those 

of an assembly language program, that is all identifiers declared in a 

program are global to that program. Some structure has been 

introduced in that all identifiers must be declared at the beginning 

of the program. 

Sequence control statements and conditional statements have 

been provided to aid in designing and wumnderstanding the logical 

structure of a GRASSHOPPER program. Simple one-to-one translatable 

commands have been included to allow the use of subroutine calls but 

parameter lists and more elaborate subprogramming capabilities have 

not been implemented. This is a prim area for extending GRASSHOPPER. 

A GRASSHOPPER program consists of: 

1/ A header line giving the starting address for the executable 

code, for example: 

program ADDRESS; 

where ADDRESS is an integer in the range o..246_), 

2/ A declaration section in which all identifiers used must be 

listed and assigned a type. Constants must be given values, and 

variables may be given initial values. Line labels are not 

oe 



declared; 

3/ The key word begin; 

4/ The statement list, which consists of the executable 

statements of the program; 

5/ The key word end. 

Several general aspects of GRASSHOPPER are briefly commented 

on here. Declarations and Data Types will be discussed in Section 

2.1. Section 2.2 will describe the data manipulation and comparison 

operations. Sequence control will be discussed in Section 2.3. 

Statement delimiters will be discussed in Section 2.4 and Section 2.5 

describes the use of line labels. Finally a summary of the syntax of 

GRASSHOPPER will be given in Section 2.6. 

Reserved words are not extensively used, instead, key words 

are delimited by single quotes or are in lower case letters. The 

letters "A", "x", "y'", "S" and "P' are reserved as variable names by 

the OSI resident assembler/editor. "S" and "P" are not directly 

accessible using GRASSHOPPER so their use is illegal. "A", "X" and 

"Y" represent the accumulator and the X and Y registers respectively. 

In addition, "X", as the first letter in an identifier with two or 

more characters, is reserved by the compiler for system line labels, 

[Sections 3.4 and 7.2]. 

Identifiers are made up of digits and upper case letters and 

must start with a letter. Only the first six characters will be used 

by the compiler so these must uniquely define the identifier. 

Numerical literals may be base 2, 8 or 16, and each value must 



be immediately preceded by the character %, @ or $ respectively, to 

indicate the number base. .Thus %1010, @12 and SOA all equal 10, (base 

ten). Note that the letters used in hexadecimal numbers must be in 

upper case. 

Character and string constants must begin and end with double 

quotes, ("), for example: "This is a string", and the strings may not 

exceed 28 characters in length. 

Statements are separated by statement delimiters or by 

semi-colons. This will be further discussed i Section 2.3. A single 

statement may extend over one or more lines, and more than one 

statement may occur on a line. A single item within a statement, such 

as an identifier or key word, may not be split between two lines. 

Comments begin and end with "!", may extend over several 

lines, and may be inserted between items in a statement: 

if ZERO then ! empty list ! $00 -> FOUND;... 

Assembly language inserts may be placed anywhere a statement 

may. Each insert is enclosed in square brackets and is copied 

unchanged into the compiler output. In the following example, an 

insert is used to comment the object code: 

if LENGTH > MAX then [; overflow ]... 



2.1 Data Types, And Identifier Declaration 

The smallest addressable piece of information on the MOS 6502 

is the 8-bit byte. Addressing one byte requires a 16-bit address, 

mless it is on the zero page, in which case an 8-bit address is 

required. The data types available in GRASSHOPPER reflect these 

facts. In this section I will discuss the declaration of identifiers, 

and the addressing of data. The kinds of operations which may be 

performed are discussed in Section 2.2. 

There are two primitive data types: the Byte and the Word. 

The type Byte corresponds to an 8-bit computer byte and contains a 

subrange ere a | of the integers. ASCII characters are considered to 

be a subset of Byte, from 00..$7F. The type Word corresponds to 16 

bits, or 2 computer bytes, and contains the subrange 0.216) of the 

integers. 

In addition to these two primitive types there is one 

structured data type, the Array. Arrays are one dimensional with up 

to 28 elements; the base type is always Byte. 

Except for line labels, each identifier in a GRA SSHOPPER 

program must be declared. The declaration section of a program 

consists of a list of declaration statements, each of which begins 

with a key word identifying the declaration type followed by a list of 

identifiers separated by commas and ending with a semi-colon. For 

example: 

byte NAME1, NAME2, NAME3; 

There are six declaration types, which can be grouped into three 
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classes, as in Table 2.1 

TABLE 2.1: The Three Classes of Declaration Statements 

Declaration Class Declaration Type 

Constant constant 

Variable byte 
word 
array 

zeropage 

Read-Only Variable condition 

2.1.1 Constant Identifers 

Each constant identifer must be assigned a value when it is 

declared. The value assigned may either be a literal or a previously 

de fined constant identifier, for example: 

constant TRACK = $65, OTHER = TRACK; 

Byte and Word constant identifiers may be declared in the same 

declaration statement, and type assignment will depend on the size of 

the literal assigned. Table 2.2 gives examples of constant 

declarations and of the type and values that result from these 

declarations. 

A constant of type Word followed by the selector lo or hi will 

specify the least or most significant part of the value respectively. 
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TABLE 2.2: Examples of Constant Declarations 

Declaration : Type Value 

ONE = $12 BYTE $12 

TWO = $0012 WORD $0012 

THREE = $1234 WORD $1234 

FOUR = 211111111 BYTE SFF 

FIVE = 4111111111111 WORD SOFFF 

SIX = ONE BYTE - $12 

SEVEN = TWO WORD $0012 

EIGHT = THREE hi BYTE $12 

NINE = THREE lo BYTE $34 

TEN = "A" BYTE 41 

Preceding a constant identifier or numeric literal with the 

key word loc in any expression indicates that the value given is to be 

interpreted as the core address of the operand. For example, assuming 

that SIZE has been declared as a Byte variable: 

loc $5A -> SIZE; 

will assign the value found at the address $5A to the variable SIZE, 

while: 

$5A -> SIZE; 

will assign the value $5A to this variable. In the first case loc $5A 

is the absolute address of the operand, and in the second case $5A is 

the immediate operand. 
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2.1.2 Byte and Array Variables 

Byte and Array variables may be either local or external. 

Local variables are located in the data space which precedes the 

executable code in the object program, their absolute addresses in 

core need not be know by the programmer. External variables are 

declared within the Byte or Array declaration in the following way: 

NAME at ADDRESS 

where NAME is the variable identifier and ADDRESS-the absolute address 

in core of the variable. The address must be given as a numeric 

literal or a predefined constant. These variables may not be 

initialized in the declarations, and the dimension of an external 

array is not declared. Otherwise, there is no difference between the 

use of an external variable and the use of a local variable of the 

same type. 

A byte declaration statement may be used to declare local and 

external variables of type Byte. Literals or pre-defined Byte 

constants may be used to initialize the local variables but 

initialization is not required. Thus: 

byte COUNT, MAX = $2A, FLAG at $35B0; 

declares COUNT and MAX to be local Byte variables and stores the value 

$2A in MAX. FLAG is declared as an external Byte variable whose 

absolute address is $35B0. 

An array declaration is used to declare all local and external 

variables of type Array. Arrays are one dimensional, are indexed 
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upwards from zero and each element is of the type Byte. The largest 

possible array has 28 elements. The maximum index of a local array is 

declared as a numerical literal in parentheses immediately after the 

identifier. If all elements of an array are initialized, declaration 

of the length is optional, but the parentheses are still required. 

Items used to initialize an array are enclosed in parentheses: 

NAME(LENGTH) = (ITEM 1, ITEM 2...) 

and may include Byte literals, pre-declared Byte constants, and 

string constants. Thus, in this example: 

array ARRAY1 at $4900, ARRAY2(SOF), 

ARRAY3($05) = ("HELLO", $05), 

ARRAY4 ($05) = ($1, $2), 

ARRAY5S() = ("STRING") ; 

ARRAY] is external, ARRAY2 is local with $10 elements indexed from 

$00 to $OF and is not initialized. ARRAY3 and ARRAY4 both have $06 

elements, indexed from $00 to $05. ARRAY3 is fully initialized but 

only the first two elements of ARRAY4 are. ARRAYS is fully 

initialized with no declaration of length. 

The individual elements of an array are of type Byte and are 

addressed within the array using the X or Y register: 

ARRAY1,X <-> ARRAY2,Y; 

2.1.3 Word Variables 

Local and external Word variables are declared with a word 

declaration statement. Local Word variables may be given initial 

values in the declarations using numerical literals or constant 
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identifiers, but not character constants. External Word variables are 

declared in the same way that external Byte and Array variables are, 

{Section 2.1.2]. 

In the current implementation of GRASSHOPPER, the operations 

which are outlined in Section 2.2.2 may not be used on operands of 

type Word. Instead, the least and most significant bytes of Word 

variables and constants may be addressed by using the selectors lo and 

hi, respectively. The high or low part of a Word variable may be used 

anywhere a Byte variable may. Thus, given the following declarations: 

word NAME1, NAME2 = $4000; byte NAME3; 

then one can write, for example: 

$50 -> NAME2 hi; NAME3 -> NAME2 lo; 

but not: 

NAME] -> NAME2; NAME3 -—> NAME2; 

2.1.4 Zeropage Variables 

Zeropage variables are special variables located on the zero 

page, which are used for indirect addressing. These variables are 

declared as follows: 

zeropage at $40, ZNAME1; 

zeropage at $50, ZNAME2, ZNAME3, ZNAME4; 

The value immediately following the key word at is the address of the 

first variable in the declaration statement. The address of each 

succeeding variable is obtained by incrementing the value of the 

address of the previous one by _ two. Hee example, the second 

declaration above is analogous to: 
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word ZNAME2 at $50, ZNAME3 at $52, 

ZNAME4 at $54; 

There are two types of indirect addressing modes used for 

accessing data: indexed indirect which uses the X index register and 

indirect indexed which uses the Y index register. In both cases the 

key word ind is used as a prefix, for example: 

ind ZNAME1,X -> ind ZNAME2,Y; 

Both of these methods require locations on the zero-page in which 

sixteen bit addresses may be stored. The address is always stored 

with the low order byte first, followed by the high order byte. 

For indexed indirect addressing, the Zeropage variable is an 

implied external array, located on the zero page. It contains a 

series of addresses, such that the n’th address begins at the 

displacement 2(n-1) in the array. The values stored in this array 

May be accessed using either the X or Y index register for absolute 

indexed addressing. Thus, given the above declarations: 

$04 => X; 

$00 =—> ZNAME1,X; inc X; 

$45 -> ZNAMEL1,X; 

assigns the value $4500 as the third address stored in the Zeropage 

array ZNAME1. Then an operand whose address is stored in this array 

May be accessed using the X index register for indexed indirect 

addressing, Thus: 

$04 -—> X; 

ind ZNAME1,X -> A; 

results in the value found at address $4500 being loaded into the 
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accumulator. In this example the effective address was stored in zero 

page locations $44 and $45. 

For indirect eaaacus addressing of data, the Zeropage variable 

is a external word variable, located on the zero page. The value 

stored in this variable is accessed by absolute addressing, using the 

selectors lo and hi to address the least and most significant bytes, 

respectively. This value is the address in core of an implied array 

of operands. Thus, an operand within this implied array is accessed 

using the Y index register for indirect indexed addressing. For 

example, given the above declarations: 

$04 -> Y; 

$00 => ZNAME2 lo; 

$45 -> ZNAME2 hi; 

ind ZNAME2,Y -> A; 

results in the value found at address $4504 being loaded into the 

accumulator. In this example, the effective address was found by 

adding the Y register to the address stored in zero page locations $50 

and $51. 

Table 2.3 summarizes the addressing modes in which Zeropage 

variables are used. 
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TABLE 2.3: Uses of the Zeropage Addressing Constants 

Operand Addressing Mode 

ZEROPAGE hi Absolute Addressing 

ZEROPAGE lo Absolute Addressing 

ZEROPAGE,X Absolute Indexed Addressing 

ZEROPAGE,Y Absolute Indexed Addressing 

ind ZEROPAGE,X Indexed Indirect Addressing 

ind ZEROPAGE,Y Indirect Indexed Addressing 

2.1.5 Condition Identifiers 

These are special identifiers used to access the individual 

bits of the processor status register. Each bit of this register is 

used to indicate the status of a particular condition in the 

processor. 

TABLE 2.4: Processor Status Register 

Bit Number Name Significance 

0 Carry 1 = True 

ik Zero 1 = Zero Result 

2 Interrupt 1 = Disable 

3 Decimal Mode 1 = True 

4 Break Command 1 =A BRK has been executed 

5 - None 

6 Over flow 1 = True 

fs Negative 1 = Negative Result 
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Four of the processor status bits or flags shown in Table 2.4 are 

accessible through GRASSHOPPER: 

The Carry flag, which is adjusted during each arithmetic 

operation. During addition it is set to one if there is a carry, 

and cleared to zero if there is not. During subtraction it is set 

for result greater than or equal to zero, and cleared otherwise, 

indicating a borrow. 

The Zero flag, which is set when any data transfer or 

calculation operation results in a zero, otherwise it is cleared. 

The Overflow flag, which is important during signed number 

arithmetic and is set whenever the result is outside the range of 

-127 to +127 decimal. 

The Negative flag will always be equal to the seventh bit 

of the result of any data transfer or calculation operation. This 

is important during signed number arithmetic since the seventh bit 

gives the sign. 

The Condition identifiers represent Boolean variables which 

give information on the state of specific bits of the status register. 

Each must be declared to equal, or not equal one of the bits. For 

example: 

condition CARRY = $0, NOTCARRY /= $0, 

ZERO = $l, NOTZERO /= $1, 

OVER = $6, NOTOVER /= $6, 

NEG = $7, NOTNEG /= $7; 

Thus, CARRY, which has been declared to be equal to bit zero, will be 

true when bit zero is set to one, and false when bit zero is cleared. 
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Conversely, NOTCARRY will be false when bit zero is set and true when 

bit zero is cleared. The use of these variables will be discussed in 

Section 2.3.1. 

2.1.6 The Registers 

The Accumulator and the X and Y index registers, referred to 

as A, X and Y respectively, are 8-bit registers in the MOS 6502 

microcomputer. The accumulator will be involved in most 

data-manipulation operations even if it is not specifically referenced 

in the GRASSHOPPER code, and will be altered in almost all 

arithmetic, Boolean and comparison operations. The index registers are 

used in three modes of addressing: absolute indexed; indexed 

indirect and indirect indexed. These modes have already been 

discussed in Sections 2.1.2 and 2.1.4. 

The registers may also be used as explicit operands in the 

same way that any byte variable may be with two restrictions which 

will be discussed in the next section. 
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2.2 Data Manipulation 

2.2.1 The Operands 

The preceding discussion has concentrated on the declaration 

of identifiers and their data types. For the remainder of this 

chapter an understanding of their use is more important, and for this 

purpose the word term will refer to any possible operand which 

represents one byte of information. Terms may be subdivided further 

into Byte Variables and Byte Constants. 

Byte Byte 

Variables Constants 

loc CONST1 CONST1 

loc CONST2 CONST2 hi 

loc Numerical Literal CONST2 lo 
<= SFFFF 

VAR8 Numerical Literal <= SFF 

ARRAY ,X Literal Character 

ARRAY , Y 

VARL6 hi 

VAR16 lo 

ZEROPG,X 

ZEROPG,Y 

ind ZEROPG,X 

ind ZEROPG,Y 

ZEROPG hi 

ZEROPG lo 

Registers A, X and Y 
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The registers A, X and Y have been included wnder Variables 

with the following stipulations. They may appear anywhere a declared 

byte variable may except that there may be no more then one register 

as operand on the left hand side of any assignment statement and that 

one register may not be directly compared to another. The reason for 

this is that in both cases translation would require the use of an 

extra holding variable since there are no assembler code instructions 

for performing these operations directly. Assigning to and using A, X 

and Y will be further discussed in the next section. 

2.2.2 The Operations 

The operators which may act on a term may be divided into the 

three classes: arithmetic operators; relational operators and 

prefix operators. 

The arithmetic operators are: (+) plus; (-) minus; and; or 

and eor. These are hardware implemented operations, the operations 

of multiplication and division, which would require software 

implementation, are not available in GRASSHOPPER. These operators are 

used in the assignment statement, which is in this form: 

Arithmetic 
Term Operator Term -> Byte Variable; 

The right assignment form was chosen since it is easier to translate 

than the left assignment form. There is only one operation allowed 

per statement. If several are required then as many assignment 

statements must be written with assignment to the akcumatites in each 

of the intermediate steps. 
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The relational operators are: (=) equal to; (/=) not equal 

to; (<) less then; (<=) less then or equal to; (>) greater then; 

and (>=) greater then or equal to. These operators are used in the 

relational expression which is in this form: 

Relational 
Term Operator Term 

This expression may be used as the condition in the IF construct which 

will be described in Section 2.3.1. 

The prefix operators are a special class of operators which 

only have one operand, and which proceed that operand. They are the 

increment, ince and the decrement, dec, which will increase or decrease 

the value of the operand by one, respectively. The statements in 

which they are used are of this form: 

inc Byte Variable; 

dec Byte Variable; 

One additional data-manipulation statement is the comparison 

statement: 

Term 7 Term; 

which loads the first factor into the accumulator and compares it to 

the second. The important effect of this operation is on the status 

register. The use of this statement is further discussed in Section 

Die 3 ee 

2.3 Sequence Control 

There are four simple sequence control statements in 

GRASSHOPPER: 
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1/ goto Destination; which transfers control to the address in 

core indicated by Destination. 

2/ gosub Destination; which calls the code at Destination as a 

subroutine. | 

3/ return; which causes a return from the subroutine. 

4/ exitloop; which is used to exit the loop construct. This will 

be discussed in Section 2.3.3. 

The destination of the GOTO and GOSUB statements may be given 

as: a word constant or literal representing the absolute address of 

the destination; or as an identifier which is used as a statement 

label elsewhere in the program. Statement labels are discussed in 

Section 2.5. 

In addition to these there are three control structures: Tr’s 

CASE and LOOP, each of which has associated with it a specific 

terminating delimiter: endif; endcase and endloop respectively. 

This format was chosen over the begin ... end compound statement found 

in Pascal because the latter leads to a confusing multiplicity of 

end’s when statements are nested. 

2.3.1 The IF Construct 

The complete GRASSHOPPER IF construct is of the form: 

if condition then statement list 

orif condition then statement list 

orif condition then statement list 

-_-— == = = = = ee ee ewe ew Ke eH = 

else statement list endif 
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where a condition is either a relational expression as described in 

Section 2.2.2, or a Condition identifier, Section 2.1.5. No more 

then one statement list will be executed in an IF construct. Lf =a 

condition is found to be true, its accompanying statement list will be 

executed, then control will be transferred to the next executable 

statement after the endif, no succeeding condition in the construct 

will be tested. The presence of one or more ORIF portions is 

optional. The ELSE portion is also optional and when it is present 

its statement list is executed only if none of the previously tested 

conditions is true. Thus, the simplest form of the IF construct is: 

if condition then statement list endif 

in which the statement list is executed if the condition is true, and 

nothing is executed if the condition is false. 

Given the following declarations: 

condition NLESSTHAN = $00, LESSTHAN /= $00, 

EQUAL = $01, NEQUAL /= $01; 

byte AA, BB; 

Table 2.5 shows equivalent conditions using relational expressions and 

Condition variables. The first is more explicit, but the second is 

preferred if more then one condition is to be tested on the same 

comparison. 
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TABLE 2.5: Equivalent Conditions; Relational Expressions 
and Condition variables where the IF is proceeded 
by the statement: AA _: BB; 

Relational Expression condition variable 

if AA = BB then if EQUAL then 

if AA /= BB then if NEQUAL then 

if AA < BB then if LESSTHAN then 

if AA >= BB then if NLESSTHAN then 

if AA > BB then if NEQUAL then 

if NLESSTHAN then 

Thus the following two segments of GRASSHOPPER code will be logically 

equivalent: 

if AA = BB then gosub TRANSFER endif 

and 

AA : BB; 

if EQUAL then gosub TRANSFER endif 

and the same object code will be generated in both cases. This will 

be discussed further in Section 3.5.1. 

The case of AA <= BB is not included in this table because 

there is no straight forward equivalent using Condition variables. If 

GRASSHOPPER is ever extended to allow more complex conditions for the 

IF statement, then: 

if AA<= BB then..... 

and 

if EQUAL or LESSTHAN then..... 

will be equivalent. 
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2.3.2 The CASE Construct 

The CASE construct names a selector, which must be a Byte 

variable, followed by a eertas of statement lists each of which is 

guarded with one or more terms. The selector will be compared to each 

guard, if a match is foumd the statement list following that guard 

will be executed. Control will then be transferred to the next 

statement after the CASE construct. If more then one guard is equal 

to the selector, only the first one encowtered will be matched, so 

only one statement list may be selected for execution. The CASE 

statement is of this form: 

case Byte Variable 

of Term (, Term): statement list 

of Term (, Term): statement list 

other statement list 

endcase 

The OTHER portion is optional; if it is absent and there is no match 

made then there is no action. The translation of this construct 

results in the selector being loaded into the accumulator and compared 

to each guard. Since the X and Y registers may not be compared to the 

accumulator, these registers are not legal as case guards, however, 

they are legal as the selector. The accumulator may never be a case 

guard. 

2.3.3 The LOOP Construct 

There is only one looping constuct available in GRASSHOPPER, 
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and it was designed to be as simple as possible. This allows the 

programmer to use one construct to write the iterative or conditional 

loop required for the problem. The format of the LOOP construct is: 

loop statement list endloop 

The EXITLOOP statement is used to exit the loop to the next executable 

statement after endloop. Generally, exitloop is part of a statement 

list in an IF or CASE construct. For example; where CURRNT and 

LENGTH are Byte variables: 

loop 

if CURRNT = LENGTH then exitloop endif 

gosub TRANSFER; 

endloop 

2.4 Statement Delimiters 

The structured statements: CASE, LOOP and IF each have a 

leading and a terminating delimiter. The IF and CASE statements also 

have intermediate delimiters which separate statement lists. The two 

other sets of delimiters which are important to the logical structure 

of a GRASSHOPPER program are: the square brackets which enclose 

assembler code inserts; and the key words begin and end which precede 

and terminate the complete statement list of a GRASSHOPPER program. 

Table 2.6 summarizes these statement delimiters. 
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TABLE 2.6: Statement Delimination in GRASSHOPPER 

Structure Leading Intermediate Terminating 

Delimiter Delimiters Delimiter 

Verb list begin end 

LOOP statement loop endloop 

IF statement it orif, else endif 

CASE statement case of, other endcase 

Assembler code [ J 

Insert 

The simple statement types in GRASSHOPPER have been described 

in the preceding sections, they are: 

1/ The Assignment Statement; 

2/ The Comparison Statement; 

3/ The Sequence Control Statements. 

An intermediate or terminating statement delimiter must occur after 

each simple statement. Where the end of a statement list has been 

reached, the appropriate intermediate or terminating delimiter from 

table 2.6 is used. In all other cases the semi-colon is used as the 

terminating statement delimiter. An example of a GRASSHOPPER program 

is given in figure 2.1 which should clarify this. Note that a 

semi-colon which occurs at the end of a statement list and before one 

of the intermediate or termination delimiters in table 2.6 is ignored. 

This means that a semi-colon preceding an else is not illegal, just 

unnecessary. Similarily, a semi-colon following an a terminating 

delimiter such as endif is ignored. 
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2.5 Statement Labels 

A statement label is a special identifier which is not listed 

in the declarations and which is used to reference an executable 

Statement. The label and the statement are separated with a comma. 

Any executable statement in a GRASSHOPPER program may be prefixed by a 

label, except for the first statement in a statement list of a LOOP, 

IF or CASE control structure. For example, where COUNT is a Byte 

variable and LABEL a statement label: 

if COUNT = $FF then exitloop endif 

LABEL1, ine COUNT; 

is legal, but: 

if COUNT = S$FF then exitloop 

else LABEL1, inc COUNT endif 

is illegal. 

A statement label may be used for the destination part of a 

GOTO or GOSUB statement. Figure 2.1 illustrates the use of statement 

labels in a GRASSHOPPER program. Note that a section of code in the 

program has been labeled and used as a subroutine by another part of 

the program. 

I ce a 

a 
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FIGURE 2.1: Example Of A GRASSHOPPER Program 

10 ’“PROGRAM’ GRSHOP $4000; 

20 ! This is a simplified version of the program 
30 I used to store and retrieve the assembled version 

40 of GRASSHOPPER. ! 

50 
60 “CONSTANT’ DOS = $2A51, INWEKO = $2340, 

70 OUTSTR = $2D73, SEEKA = $26BC, 

80 LDREAD = $2Bl1A, SAVE = $2C3A, 

90 
100 GR: =<$0)), LF = SOA, TOTAL = $02; 

110 
120 ’BYTE’ DSRNO ’AT’ $265E, DSRLEN “AT’ $265F, SAVX; 

130 
140 ’ARRAY’ ADDRESS() = ($91, $9D, $A9), 
150 TRACK () = ($16, $18, $20); 

160 
170 “WORD’ ZADDRESS ’AT’ SFF; 

180 

190 “BEGIN’ $00 -> SAVX; 

200 
210 -- ASK, “GOSUB’ OUTSTR; 

220 [ »BYTE CR,LF, ’1/LOAD 2/UPDATE ?°,$00 ] 

230 *“GOSUB’ INWEKO; 

240 
250 “CASE” A 

260 SOps Sie = -b00r- ! retrieve from disk ! 
270 *GOSUB’ NEXT; 

280 “GOSUB’ LDREAD; 
290 “ENDLOOP’ 

300 
310 “GETo "S225 LOOP= ! save on disk ! 
320 “GOSUB’ NEXT; 

330 SOC -> DSRLEN; “GOSUB’ SAVE; 

340 “ENDLOOP’ 

350 
360 * OTHER’ “GOTO” ASK; 

370 “ENDCASE’” 

380 
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390 ! The following code is called as a subroutine to PERE 

400 for either a read from, or a write to disk ! 

410 
420 NEXT, SAVX -> X; 

430 “TR x = TOTAL “CHEN = GOTO DOS ! end of run ! 

440 “ELSE 

450 ADDRESS,X -> ZADDRESS “HI’; ! address in core ! 

460 $00 -> ZADDRESS ’L0O’; 

470 $01 -> DSRNO; ! sector number ! 
480 X + $1 -> SAVX; 

490 TRACK,X -> A; 
500 “GOSUB’ SEEKA; ! finds track, number in A ! 

510 “ ENDIF’ 
520 “RETURN’ ; 

530 “END’. 
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2-6 Summary 

This section presents a description of the syntax of 

GRASSHOPPER. The basic symbols will be defined first, followed by 

Syntax graphs which will describe the constructs of GRASSHOPPER. The 

Syntax graph notation used here is based on that used by Wirth: 

((Wirth 76], pp 288-295). Each terminal symbol in a graph is enclosed 

in an ellipse, and each non terminal is enclosed in a rectangle. 

Letter = Upper case letter or Lower case letter. 

Upper case letter = A, B, C, D, E, F, G, H, I, J, K, L, M, 

O,--P55Qy RS oS ts Us VS Wo ho ee ee 

Lower case letter wa, <b Cy Oemewt sees. Ny aks: 15 Ko eens 

Os Ps Gs Ty Ss Cyl, Vy Wy Xs Vp Se 

Binary Digit = 0, l 

Metal Digit = 0,a15 32350459 5) wOsrel 

Hex Digit oO oe Pe Ss SOR) 6 SOs Os es “Ose Ds 

E, F. 

Arithmetic Operators = +, -, and, or and eor. 

Relational Operators = <, <=, >, >=, =, /=- 

Prefix Operators = inc, dec. 
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Identifier 

Upper case 

letter, /= X. 

Upper case Letter = 

Letter Keyword 

Lower Case Letter 5 

Number 

) Hex Digit 

B e yte a 

Byte Variable 

Number, <= SFF 

O)—f{iiaracter} —© 
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Byte Variable 

Identifier 

a 

Number <= SFFFF 

Constant Identifier 

Number, 

$0 to SFFFF 

Destination 

(SD 

Constant 

Condition 

Identifier 

Relational 
Operator 
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Declarations 

“hi te Constant - 

Word Constant 

(=) 

@ t= 

a PETE Ss 
C)) 

: Number 

<= $100 (=) &% 

a Constant 

2 ae a 
6 eee 

Ge) 

zeropage Number, <=FF age eet 

Assembler Code Insert 
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Simple Statement 

Destination 
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CHAPTER 3 

THE LANGUAGE GRASSHOPPER: SEMANTICS AND TRANSLATION 

In this chapter, the result of compiling GRASSHOPPER source 

code is completely described. Thus, a description of GRASSHOPPER 

semantics is given in terms of the MOS 6502 assembly language which is 

the object language of the compiler. In addition, the task of the 

GRASSHOPPER compiler is also described. 

The object file must begin with a five byte header and be 

formatted in a way which is suitable for a source file for the 0S-65D 

assembler. The formats of the GRASSHOPPER source code and the 

generated object code will be more fully discussed in Chapter 5. 

The GRASSHOPPER program header statement contains the address 

in core where the executable code will be placed. The header 

statement: 

program address; 

is translated into three lines of object code: 

*= address 

JMP XS0000 

XMO000 .BYTE $00 

The line labelled XS0000 will be the first line of executable code 

generated in the object program. The variable XM0000 is a system math 

variable used in some mathematical expressions, but is never directly 

referenced by the user. [Section 3.3]. 

The object code generated by the translation of the 

38 
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declarations and the verb list of a GRASSHOPPER program will be 

discussed in Sections 3.1 to 3.5. There are two lines of assembler 

code added to the end of the object file: 

JMP $2A51 

-END 

The jump instruction returns control to the Disk Operating System 

(DOS), and " .END " is an assembler directive, indicating the end of 

the assembler source code. 

3.1 Translation Of The Declarations 

With the exception of Condition identifiers, object code will 

be generated for every identifier declared; allocating storage to 

each variable and assigning a literal value to each constant 

identifier. The results of compiling the Constant, Byte, Word, 

Zeropage and Word declarations are summarized in Table 3.1. 

All of the information required regarding a Condition variable 

is stored in its type flag. The value of the type flag is calculated 

using the number of the bit in the status register it represents, and 

whether it is declared to be equal or not equal to that bit, [Section 

2.1.5]. Thus, for this declaration: 

condition NAME = bit#; 

the type flag is calculated: 

$c8 or bit# -> type flag; 

and for 

condition NAME /= bit#; 

the type flag is calculated: 

$CO or bit# -> type flag; 



e
e
 

e
e
 

O000VS 
= 

A
N
V
N
 

3® 
A
W
V
N
 

E
S
t
i
t
+
x
 

=% 

,
O
T
T
H
H
,
 

F
L
A
G
’
 

¥= 
AWNVN 

*
(
,
O
T
I
T
A
H
,
)
 

= 
(L$) 

4
W
V
N
 

O
L
T
R
R
,
 

B
A
G
:
 

¥= 
FTWVN 

*
(
,
O
T
I
H
H
,
)
 

= 
(
7
$
)
A
W
V
N
 

Z@$ 
A
L
A
G
 

I$ 
a
L
A
G
 

o$ 
A
L
A
’
 

¥= 
T
W
V
N
 

*
(
Z
$
*
1
S
$
‘
0
$
)
 

= 
(7$) 

A
W
V
N
 

O
T
q
Q
e
T
r
e
A
 

OTS$t+I+x 
=*% 

A
V
U
U
V
 

Aerziy 
x= 

AINVN 
*
(
O
1
$
)
A
W
V
N
 

A
e
i
i
e
 

e
T
Q
e
E
r
e
A
 

Z
+
1
T
U
W
V
N
 

= 
Z
A
W
V
N
 

)
d
0
U
d
Z
 

a
3
e
g
 

o1297 
0S$ 

= 
T
H
W
V
N
 

ZTAWVN 
‘THUWVN 

‘OSS 
78 

a
8
e
d
o
i
o
z
 

(<= 
}
 

w
t
 

O
O
O
V
S
 

= 
A
W
V
N
 

‘
o
o
O
V
S
 

38® 
A
W
V
N
 

addda$ 
(aOmM’ 

A
W
V
N
 

‘iddd4$ 
= 

A
W
V
N
 

O
T
U
V
A
 

e
T
Q
e
T
I
e
A
 

P
A
O
M
 

00$ 
G
Y
O
M
*
 

A
W
V
N
 

‘
A
W
V
N
 

p1ioa 

OOoOoVs 
= 

A
W
V
N
 

‘oOoOVS 
328 

A
W
V
N
 

d4$ 
F
L
A
G
’
 

A
W
V
N
 

‘da$ 
= 

U
W
V
N
 

S
U
V
A
 

e
t
T
q
e
t
a
e
a
 

3
7
4
g
 

0
0
$
 

A
L
A
G
*
 

AWNVN 
“
a
A
W
V
N
 

aahkq 

Z
L
S
N
O
O
 

q
u
e
j
s
u
o
j
 

p
i
o
m
 

O
O
O
V
$
 

= 
A
W
V
N
 

‘ooOvVs 
= 

A
N
V
N
 

T
L
S
N
O
O
 

q
u
e
q
j
s
u
o
g
 

3
3
4
g
 

ddi$ 
= 

A
W
V
N
 

‘aa$ 
= 

A
W
V
N
 

q
u
e
j
s
u
o
z
d
 

3
e
 
T
a
 

a
d
k
y
 

e
3
7
e
Q
G
 

g
n
d
3
n
o
 

o3pog9 
g
n
d
u
j
t
 

o
p
o
9
 

a
d
k
y
 

a
d
k
y
,
 

a
2
9
0
f
q
o
 

J
o
 

e
T
 
d
u
e
x
q
g
 

a
o
a
n
o
s
 

j
o
 

e
t
T
d
u
e
x
g
 

u
o
t
T
}
z
e
r
e
y
p
o
o
q
g
 

S
u
o
T
 

e
A
e
T
O
O
d
 

A
O
T
J
F
I
U
V
S
P
]
 

JO 
U
O
T
J
I
e
T
S
u
e
I
]
T
 

S
y
T
 

JO 
A
r
e
u
U
N
S
 

*
T
°
€
 

A
T
A
V
L
 



41 

3.2 Translation Of The Operands 

3.2.1 Byte And Word Operands 

The large variety of operands possible has been outlined in 

Section 2.2.1. In Table 3.2, the translation of GRASSHOPPER operands 

not used as destinations in sequence control statements, is 

summarized. The following declarations are assumed: 

constant CONST1 = $50, CONST2 = $9A40; 

byte VAR8; word VARI16; array ARRAY($5); 

zeropage at $50, ZEROPG; 

TABLE 3.2: Summary Of The Translation Of Operands. 

Source Code Object Code 

Operand Operand Addressing Mode 

$50 #$50 Immediate 
TAY #°A Immediate 

$9A40 #$9A40 Immediate 
CONST1 #CONST1L Immediate 

CONST2 lo #CONST2*$100/$100 Immediate 
CONST2 hi #CONST2/$100 Immediate 
CONST2 #CONST2 Immediate 

loc CONST1 CONST1L Absolute 

loc CONST2 CONST2 Absolute 

loc $9A40 $9A40 Absolute 
VAR8 VAR8 Absolute 

VAR16 lo VAR16 Absolute 

VAR16 hi VAR16+1 Absolute 

ZEROPG lo ZEROPG Absolute 

ZEROPG hi ZEROPG+1 Absolute 

ARRAY, X ARRAY, X Absolute Indexed 

ARRAY , Y ARRAY , Y Absolute Indexed 

ind ZEROPG,X (ZEROPG, X) Indexed Indirect 

ind ZEROPG,Y (ZEROPG) ,Y Indirect Indexed 

ZEROPG,X ZEROPG, X Zero Page Indexed 

ZEROPG,Y ZEROPG ,Y Zero Page Indexed 
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Where the operand is the destination of a GOTO or GOSUB 

statement, the addressing mode is always absolute, thus: 

Source Code Object Code 

gosub CONST2; JSR CONST2 

gosub LABEL; JSR LABEL 

goto $9A40; JMP $9A40 

3.2.2 Registers As Operands 

The use of the accumulator and the X and Y index registers has 

been briefly discussed in Sections 2.1.6 and 2.2. The accumulator 

will be involved in most data-manipulations even if it is not 

specifically referenced in the GRASSHOPPER code, and the index 

registers are used when any form of indexed addressing is required. 

This section deals with the case where a register has been used as an 

explicit operand in a GRASSHOPPER statement. In this case, the 

assembler code instruction mst be choosen according to which register 

is to be operated on, and on what operation is to be performed. 

The MCS6500 assembler language has many register specific 

instructions. Nine of these instructions specify an action and a 

register and require an operand field. For example: 

LDA #$55 

LDX #$55 

LDY #$55 

instruct that the accumulator, the X and the Y register, respectively, 

be loaded with the value in the operand field, $55. These 

instructions may be divided up into three groups: 
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1/ The comparison instructions: CMP; CPX; CPY. 

2/ The load register instructions: LDA; LDX; LDY. 

3/ The store register instructions: STA; STX; STY. 

There are four additional instructions which require no 

operand field since the operand is implied in the instruction. These 

instructions are used to transfer between the accumulator and one of 

the index registers: 

1l/ a transfer from the accumulator to an index register: 

TAX; TAY. 

2/ a transfer from an index register to the accumulator: 

TXA; TYA- 

The choice of instruction will be more thoroughly discussed in 

Sections 3.3 and 4.2.2. 
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3.3 The Data Manipulation Statements 

The translation of the three data-manipulation statements: 

the prefix operator statement; the assignment statement; and the 

comparison statement; will be described in this section. The 

relational expression is only used as the condition portion of the IF 

construct, so discussion of the translation of this expression will be 

reserved for Section 3.5.1. 

Translation of these statements is complicated by two factors. 

The first is the use of registers as explicit operands. As was 

mentioned in Section 3.2.2, there are thirteen register specific 

instructions which must be used in these cases. 

The second problem is that there are many cases where an 

operand’s addressing mode is illegal for a desired assembler code 

instruction. Table 3.3 summarizes the illegal addressing modes which 

had to be dealt with when compiling the data-manipulation statements. 

Each column is labelled with the mnemonic for an assembler code 

instruction, and each row with a type of operand. An: -"X"" “in ‘the 

table represents an illegal addressing mode, where alternate code must 

be generated. 
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TABLE 3.3: Illegal Addressing Modes For Assembler Code 

Instructions. 
a 

INC, CPX, 

Operand DEC CPY LDX LDY STX STY 

ARRAY, X xX x x x 

ARRAY, Y Xx Xx x x X 

ZEROPG, X xX xX xX 

ZEROPG, Y x xX x x 

ind ZEROPG,X x Xx Xx x xX xX 

ind ZEROPG,Y xX xX x x xX : xX 

i 

In the tables that follow, the identifier GENERAL will 

represent all non-register operands whose addressing modes are legal 

for the assembler code instruction desired. The identifier SPECIAL 

will represent all non-register operands whose addressing modes 

require that alternative object code be generated. 

There are several cases, in the translation of 

data-manipulation statements, where a temporary holding variable is 

needed. At the beginning of this chapter it was mentioned that space 

is allocated to a system math variable, XMO0000. This variable will 

never be referenced by the user when writing a GRASSHOPPER source 

program, but will be used in the object code under certain 

circumstances. Examples of its use may be seen in Tables 3.7 and 3.8. 

3.3.1 The Prefix Operator Statements 

Statements in which prefix operators are used are of the 

following form: 
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inc Byte Variable; 

dec Byte Variable; 

The results of compiling these statements depend on the nature of the 

operands and are summarized in Table 3.4. 

TABLE 3.4: Translation Of The Prefix Operations 

Translation of Translation of 

Operand inc Operand dec Operand 

A CLC SEC 
ADC #1 SBC #1 

xX INX DEX 

Y INY DEY 

GENERAL INC GENERAL DEC GENERAL 

SPECIAL LDA SPECIAL LDA SPECIAL 
CLC SEC 
ADC #1 SBC #1 
STA SPECIAL STA SPECIAL 

3.3.2 The Assignment Statements 

The results of compiling simple assignment statements, where 

there is no calculation performed, have been summarized in Table 3.5. 

In this table, each row is labelled with the operand being assigned, 

and each column with the operand being assigned to. By examination of 

this table, and of Table 3.3, it can be seen that the following 

translation will occur: 

Source Code Object Code 

A -> X; TAX 

ARRAY1,X -> Y3 LDY ARRAY1,X 

ARRAY2,X -—-> X; LDA ARRAY2,X 
TAX 
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The results of compiling assignment statements which include 

calculations: 

TERM OPERATOR TERM => RESULT; 

have been summarized in Tables 3.6 and 3.7. Table 3.6 summarizes the 

simplest case where none of the operands are registers. 

TABLE 3.6: The Translation Of The Assignment Statement: 
TERM OPERATOR TERM -> RESULT 

Where None Of The Operands Is A Register. 

Assignment Statement Object Code 

OPERAND1 + OPERAND2 -> RESULT CLC 
LDA OPERAND1 
ADC OPERAND2 
STA RESULT 

OPERAND 1 - OPERAND2 -> RESULT SEC 

LDA OPERAND1 
SBC OPERAND2 

STA RESULT 

OPERAND 1 and OPERAND2 -> RESULT LDA OPERAD1 
AND OPERAND2 

STA RESULT 

OPERAND 1 or OPERAND2 => RESULT LDA OPERAND1L 
ORA OPERAND2 
STA RESULT 

OPERAND 1 exor OPERAND2 -> RESULT LDA OPERAND1 
EOR OPERAND2 
STA RESULT 

Table 3.7 summarizes the translation of the calculation part 

of the assignment statement when one of the terms is a register. EE 

is not legal in this implementation of GRASSHOPPER to have registers 

for both terms. The Boolean and the addition operations are all 

commutative, so that the same code may be produced whether the 
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register is the first or the second term. Only the addition operation 

is illustrated in Table 3.7, but the Boolean operations involving 

registers are compiled similarly. Since the assembler code 

instruction mst operate on the accumulator the value in the register 

operand is first transferred into the accumulator. The non-register 

operand is is then added to the accumulator. 

The subtraction operation is not commtative, so that the 

first term in the statement must be loaded into the accumulator then 

the second term mst be subtracted from it. When the second term is a 

register it is first stored in the temporary variable XM0000 so that 

this subtraction may take place. In Table 3.7 subtraction with the 

accumulator and with the X register have _ been illustrated. 

Subtraction with the Y register is compiled similarly. 

The translation of the actual assignment part of the 

assignment statement corresponds to the first row in Table 3.5, since 

the result of any of the boolean or arithmetic operations will be 

stored in the accumulator. Thus, by examining Tables 3.5, 3.6 and 

3.7, it can be seen that the following translation will occur: 

Source Code Object Code 

X and SFO -> Y; TXA 

AND #SFO 
TAY 



TABLE 3.7: The Translation Of The Calculation Part Of 

The Assignment Statement: 
TERM OPERATOR TERM <-> RESULT; 

Where The Terms Include Registers. 

Assignment Statements Object Code 

A + NAME -> RESULT CLC 
NAME + A -> RESULT ADC NAME 

x + NAME -> RESULT CLC 
NAME + x -> RESULT TXA 

ADC NAME 

Y - NAME -> RESULT CLC 
NAME + Y -> RESULT TYA 

ADC NAME 

A - NAME -> RESULT SEC 
SBC NAME 

NAME - A -> RESULT SEC 
STA XM0000 
LDA NAME 
SBC XM0000 

x - NAME -> RESULT TXA 
SEC 
SBC NAME 

NAME ~ X -> RESULT SEC 
STX XM0000 
LDA NAME 
SBC XMO000 

3.3.3 The Comparison Statement 

The comparison statement is of the form: 

TERM :; TERM; 

It compares two terms by subtracting the second term from the first 
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term without storing the result. The purpose of this statement is to 

set the Carry, Zero and Negative bits of the processor status register 

which were described in Section 2.1.5. The translation of this 

statement is summarized in Table 3.8, note that the order of the terms 

must be preserved in the translation. 

TABLE 3.8: Object Code Emitted For The Comparison Statement 

TERM] : TERM2; 

TERM1 : TERM2 Instructions 

GENERAL1 GENERAL2 LDA GENERAL1 

CMP GENERAL2 

A GENERAL CMP GENERAL 

GENERAL A STA XMO000 
LDA GENERAL 

CMP XM0000 

xX GENERAL CPX GENERAL 

xX SPECIAL TXA 

CMP SPECIAL 

GENERAL xX STX XM0000 

LDA GENERAL 

CMP XM0000 

34 GENERAL CPY GENERAL 

Y SPECIAL TYA 

CMP SPECIAL 

GENERAL 36 STY XM0000 

LDA GENERAL 

CMP _XM0000 
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3.4 Line Labels 

There are two kinds of line labels which may appear in the 

object code. The statement line label which originates in the 

GRASSHOPPER source code is described in Section 2.5. When it is 

encountered it is entered into the label field of a line of object 

code. It may appear in an output line containing an assembler code 

instruction, for example: 

LABEL, A : NAME; 

will be compiled to: 

LABEL CMP NAME 

Or it may appear as an assembler code directive, for example: 

LABEL; 

is a label on an empty statement and will be compiled to: 

LABEL =x 

The second kind of label is the system line label which is 

generated by the compiler, usually in the translation of the sequence 

control constructs. System line labels consist of: the letter "X"; 

a letter which indicates what construct generated the label; and a 

four place hexidecimal number which gives the sequence in which the 

labels were generated. The generation and use of these labels will be 

more thoroughly discussed in Section 7.2. The second character 

identifies the kind of label according to the following 

classifications: 
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TABLE 3.9: Summary Of System Line Labels. 

Identifying Class Class 
Letter Name Description 

S XSTART Program Start 
M XMATH System Math Variable 

L XLOOP Beginning Of A Loop 
E XLOPEX End of a Loop 

F XIF Steps in an If Construct 

G XEND IF End of an If Construct 
C XCASE Steps in a Case Construct 

D XENDCS End of a Case Construct 

In this report, system line labels which appear in examples 

will be represented by their class name. Sequence numbers will only 

be used when more then one label of a class appears in the same 

example. 

3.5 Sequence Control Statements and Constructs 

The four simple sequence control statements and the three 

sequence control constructs have been described in Section 2.3. The 

former are very simply compiled and have been summarized in Table 

3.10. The EXITLOOP statement will also be illustrated in the 

discussion of the LOOP construct. 

TABLE 3.10: The Translation Of The Simple 

Sequence Control Statements. 

Statement Object Code Generated 

goto LABEL; JMP LABEL 

gosub LABEL; JSR LABEL 

return; RTS 

exitloop; JMP XLOPEX 
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3.5.1 Translation Of The IF Construct 

The format of this construct has been described in Section 

2.3.1. The result of compiling the initial phrase of the construct: 

if condition then 

will depend on: 

1/ whether the condition is given as a Condition 

variable, or as a relational expression. In the latter case 

comparison code will be generated; 

2/ what the condition is. In all cases a branching 

instruction will be generated. 

Table 3.11 compares the object code code generated when 

relational expressions and Condition variables are used as_ the 

condition. Note that there is no equivalent using Condition variables 

to the relational expression AA <= BB. 

In the relational expression, the occurrence of a register as 

one of the terms is handled differently than in the comparison 

Statement. The two terms are compared in the same way as was 

summarized in Table 3.8, except that they are always compared as if 

the register was the first term. The order in which the terms 

actually occurred will be reflected in the branch instruction which is 

generated. For example, the following two phrases: 

if A < BB then... if BB < A then... 

will be compiled to the following segments of code: 

CMP GENERAL CMP GENERAL 

BCS XIF BCC XIF 
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Thus, the second phrase is compiled as if it had been stated: 

if A >= BB then... 

The translation of the IF construct, without the comparison 

and branch instructions, has been summarized in Table 3.12. 

TABLE 3.12: Summary Of The Translation Of The IF Construct 

Source Code Phrase Object Code Generated 

if condition then Comparison Code 
Branch to XIF 

orif condition then JMP XENDIF 
XIF =* ~ 

Comparison Code 
Branch to XIF 

else JMP XENDIF 

XIF =* 

endif XENDIF =* 

This table can be clarified with two examples, one of the 

simplest form of the IF construct: 

Source Code Object Code 

if xX = $FF then CPX #SFF 

BNE XIF 

inc loc $2A67 INC $2A67 
endif XIF =* 

XENDIF =* 

and a second example with all the possible elements of the IF 

construct: 

Source Code Object Code 

if X < $3F then CPX #S$3F 

: BCS XIF1 

gosub FIRSTQUARTER JSR FIRSTQ 
orif X < $7F then JMP XENDIF 
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XIFl =* 

CPX #S$7F 
BCS XIF2 

gosub SECONDQUARTER JSR SECOND 

orif X <= $FF then © JMP XENDIF 
XIF2 = 

CPX #SFF 

BEQ XIF3 
BCX XIF4 

XIF3 =% 

gosub LASTHALF JSR LASTHA 
else JMP XENDIF 

XIF4 =*% 

goto CRASH JMP CRASH 
endif XENDIF =* 

3.5.2 Translation Of The CASE Construct 

The format of this construct has been discussed in Section 

2.3.2. The selector is first loaded into the accumulator, then each 

guard encountered is compared to the accumulator. The translation of 

the remainder of the construct is best described using an example: 

Source Code Object Code 

case DEVICE LDA DEVICE 
of CRT: CMP #CRT 

BNE XCASEL 
gosub CATHODE JSR CATHOD 

of PRINT1, PRINT2: — JMP XENDCS 
XCASE1 =* 

CMP #PRINT1 
BEQ XCASE2 
CMP #PRINT2 
BNE XCASE3 

XCASE2 =* 
gosub PRINTERS JSR PRINTE 

other JMP XENDCS 

XCASE3 =* 
goto BADOUT JMP BADOUT 

endcase XENDCS =* 

In this example, if there had been no OTHER portion, then the’ XCASE3 

=* label would have appeared immediately before the XENDCS =* label. 
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3.5.3 Translation Of The Loop Construct 

The format of this construct has been described in Section 

2.3.3. Its translation is far simpler then that of the constructs 

previously described, and may be illustrated by showing the 

translation of the example given in Section 2.3.3: 

Source Code Object Code 

loop XLOOP =* 

if CURRENT = LENGTH then LDA CURRNT 

CMP LENGTH 

BNE XIF 

exitloop JMP XLOPEX 

endif XIF =% 

XENDIF =* 

gosub TRANSFER; JSR TRANSF 

endloop JMP XLOOP 
XLOPEX =* 

In the case of nested constructs, the exitloop will refer to the 

innermost loop. 

3.6 Summary 

Figure 2.1, given at the end of Chapter 2 is an example of a 

GRASSHOPPER program which has been compiled, assembled and 

successfully run. The compiled version is shown in Figure 3.1, 

illustrating the assembler source code which is actually generated. 

In this figure, comments have been inserted which describe most of the 

original GRASSHOPPER code. 
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FIGURE 3.1: Translation Of Figure 2.1 

10 *= $4000 
20 JMP XS0000 

30; ’PROGRAM’ GRSHOP $4000: 

40 XMOO00 .BYTE 00 

50; *“CONSTANT’ DOS = $2A51, INWEKO = $2340, 

60; OUTSTR = $2D73, SEEKA = $26BC, 

70; LDREAD = $2B1A, SAVE = $2C3A, 

80; CR = SOD, LF = SOA, TOTAL = $02; 

90 DOS = $2A51 

100 INWEKO = $2340 
110 OUTSTR = $2D73 

120 SEEKA = $26BC 

130 LDREAD = $2Bl1A 

140 SAVE = $2C3A 

150 CR = $OD 
160 LF = SOA 

170 TOTAL = $02 

180; BYTE’ DSRNO “’AT’ $265E, DSRLEN ’AT’ $265F, 

190; SAVX; 
200 DSRNO = $265E 
210 DSRLEN = $265F 
220 SAVX -BYTE 00 
230; ” ARRAY’ ADDRESS() = ($91, $9D, $A9), 

240; TRACK () = ($16, $18, $20); 
250 ADDRES =* 

260 -BYTE $91 

270 -BYTE $9D 

280 «BYTE $A9 

290 TRACK =* 

300 -BYTE $16 

310 -BYTE $18 

320 “BYTE $20 

330; “WORD ’ ZADDRESS ‘AT’ SFF; 

340 ZADDRE = SFF 

350; “BEGIN’ $00 -> SAVX; 

360 XSO000 =* 

370 LDA #$00 
380 STA SAVX 

390; ASK, “GOSUB’ OUTSTR; 

400 ASK JSR OUTSTR 

410 .BYTE CR,LF,’1/LOAD 2/UPDATE ?’,$00 
420; “GOSUB’ INWEKO; 

430 JSR INWEKO 

440; ‘CASE’ A 
450; SOR — $s “LOOP” ! retrieve ! 



460; 

470; 
480; 
490 cMp #$1 
500 BNE XC0002 
510 XLO004 =* 
520 JSR NEXT 
530 JSR LDREAD 
540 JMP XLO004 

550 XE0003 =* 
560; 
570; 
580; 

590; 
600; 
610 JMP XDOOOL 

620 xcO002 =* 
630 CMP #$2 

640 BNE XC0005 

650 XLO007 =* 
660 JSR NEXT 

670 LDA #$0C 
680 STA DSRLEN 
690 JSR SAVE 

700 JMP XL0007 

710 XEOQ006 =* 
720% 

7303 
740 JMP XDOOO01 
750 xcO005 =* 
760 JMP ASK 

770 xDOOO1 =* 
780; NEXT, SAVX -> X; 
790 NEXT LDX SAVX 
800; 

810; 

820; 

830; 
840; 

850; 

860; 
870; 

880; 

890 CPX #TOTAL 
900 BNE XFO009 

910 JMP DOS 
920 JMP XG0008 
930 XFOQ009 =* 
940 LDA ADDRES,X 

60 

“GOSUB’ NEXT; 
’GOSUB’ LDREAD; 

“ENDLOOP’ 

“OF = $232 “LOGR: ! save ! 
’GOSUB’ NEXT; 

$OC -> DSRLEN; 

“GOSUB’ SAVE; 

“ENDLOOP’ 

“OTHER’ “GOTO” ASK; 

“ ENDCASE’ 

‘IF’ X = TOTAL “THEN’ ‘GOTO’ DOS 
‘ELSE’ 

ADDRESS,X -> ZADDRESS ‘HI’; 
$00 -> ZADDRESS ’LO’; 
$01 => DSRNO; 
X + $1 -> SAVX; 
TRACK,X -> A; 
“GOSUB’ SEEKA; 

‘ENDIF’ 



950 
960 
970 
980 

990 
1000 

1010 

1020 
1030 
1040 

1050 
1060 XGO0008 
1070; 

1080; 

1090 

1100 
1110 

STA 
LDA 
STA 

LDA 

STA 

CLC 

ADC 
STA 

LDA 
JSR 
=k 

RTS 

JMP 
- END 

61 

ZADDRE+1 

#$00 
ZADDRE 

#$01 
DSRNO 

#$1 
SAVX 

TRACK ,X 
SEEKA 

’RETURN’ ; 

“END’. 

$2A51 



CHAPTER 4 

A GRASSHOPPER COMPILER 

The GRASSHOPPER compiler is written mostly in the assembly 

language of the MOS 6502 microcomputer, with two portions: SRCMGR 

[Section 5.3] and FATAL [Section 4.5] written in GRASSHOPPER. 

‘The lexical analysis of a GRASSHOPPER source program is 

supervised by the routine, ADVANC which will be described in Chapter 

6, and which is based on the basic scan used in Halstead’s Pilot 

compiler, [Halstead 1974, p. 36]. The source code is treated as a 

series of operands and symbols which can be examined as groupings of 

symbol-operand-symbol triplets. The purpose of ADVANC is to obtain 

from the source code the next symbol-operand-symbol triplet and place 

representative tokens in the three Byte variables: CURSYM, CURITM and 

NXTSYM. 

Symbols which may be returned in CURSYM and NXISYM may be 

grouped into three categories: 

1/ single characters from the ASCII character set. The only 

such characters to be returned in CURSYM and NXTSYM are those in 

the general category in Table 6.2; 

2/ arithmetic, relational or comparison operators as 

described in Table 6.5; 

3/ or the tokens associated with the key words used in 

Grasshopper. These tokens are listed in Table 4.1. 
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TABLE 4.1: The Key Words Used In GRASSHOPPER, 
And Their Tokens 

Key Word Token Identifier Token 

and LOGAND $8D 

array ARRAY $B8 
at AT ; SA8 

begin BEGIN $A2 

byte VAR8 $B6 
case CASE $D3 

condition CONDI $co 

constant CONST $B2 

dec KEYDEC $91 

else ELSE SE2 

end END _$FF 
endcase ENDCA $SF3 
endif ENDIF SFl 

endloop ENDLOP $F2 
exitloop EXITLP $D5 
exor EXOR $8F 

gosub GOSUB $D6 
goto GOTO SD1 
hi HI $A6 

if IF $D2 

inc KEY INC $90 

ind IND $A9 
lo LO SA5 
loc LOC $A7 

loop LOOP $D4 

of OF SE1 

or OR $8E 

orif ORIF SE4 
other OTHER $E3 
program PROGRM $A0O 
return RETURN $D7 

then THEN $DO 

word VAR16 SBA 

zeropage ZEROPG $B4 

The token placed in CURITM identifies the next operand type, 

in almost all cases additional information is stored in other 

variables to describe and identify the operand. This is summarized in 

Table 6.1, if there is no operand, CURITM is zero. 
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Syntactic and Semantic analysis are done in the translating 

routines supervised by: HEADER; DCLARE and VRBLST, which will be 

described in Sections 4.1, 4.3 and 4s. The source code is' scanned 

by repeatedly calling ADVANC and analyzing the current symbol-operand- 

symbol triplet. There is some error detection, covering syntax 

errors, nesting errors and operand type errors, this is the subject of 

Section 4.5. 

As this scan proceeds, the translating routines generate 

object code using the format and routines discussed in Chapter 7. The 

operand field is generated by the routines outlined in Section 4.2. 

The operator field of the object code, which was briefly discussed in 

Section 7.1.2, will always contain either an opcode mnemonic, or an 

assembler directive. All possible operators are contained in the 

array OPLIST. The translating routines to be discussed in Sections 

4.3 and 4.4 mst set the operator field by placing the displacement of 

the desired operator in OPLIST into the byte variable OPDISP. 

While efficiency of object code was an objective when writing 

the compiler, separate optimization of object code has not been 

attempted in this implementation. 

4.1 Overview Of The GRASSHOPPER Compiler 

The whole process of compilation is supervised by the routine 

DRIVER, which may be considered to be the ultimate root of all the 

subroutine maps shown in this report. 
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Figure 4.1: Subroutine Map Of The Translator 

DRIVER 

PRIME : FINISH 

DRIVER activates PRIME at the beginning of a translation to: 

initialize the disk 1/0 buffers [section 5.1]; reserve the first five 

bytes of the object file for the header described in Table 5.2; to 

set all variables in the data space used by the compiler to zero; and 

to enter the key words into the symbol tables. 

The array, KEYLST, contains all the key words used, preceded 

by their tokens. The contents of this array are first read into 

STBUF1 then entered into TABLES using the routine INKEY discussed in 

section 6.2.2. The keys are not transferred directly from KEYLST to 

TABLES because INKEY uses the same table building routines as INNAME 

and these routines expect to find each new item in the statement 

buffer. 

HEADER simply reads the program header statement and generates 

the three lines of object code described at the beginning of Chapter 

3. If subroutine capabilities are extended in GRASSHOPPER the routine 

HEADER will become more extensive. 
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DCLARE compiles the variable and constant declarations and 

will be more thoroughly discussed in section 4.3. All identifier 

Names are entered into the symbol table under the supervision of this 

routine. 

After DCLARE has been executed DRIVER sets the variable DCLFLG 

to 1 so that subsequently the symbol tables may be referenced but not 

altered. [Section 6.2] 

VRBLST compiles the executable body of the program, hereafter 

refered to as the verb list. This will be further discussed in 

section 4.4. 

After the program has been compiled, DRIVER calls the routine 

FINISH to complete the object program and to finish transferring it to 

the disk file. 

A jump to the Disk Operating System (DOS) is placed at the end 

of the object code, followed by the assembler directive "  .END ¥ 

FINISH then completes the transfer of the object disk 1/0 buffer, 

[section 5.1], and inserts the header described in Table 5.2 at the 

Gicinnins of the object file, [section 5.4]. 

After FINISH has been executed the file in OBJECT will be in a 

form suitable for processing as source by the assembler/editor. 

DRIVER then returns control to the operating system. 
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4.2 Translating The Operand 

The task of translating an operand has, with two exceptions, 

been delegated to the six routines which will be discussed in Sections 

4.2.1 and 4.2.2. Which of these routines will be called will depend 

on the kind of operand which is legal for the context. 

The first exception is a character string used to initialize 

an array in the declarations, and in this case, the routine INSTRG is 

called directly by the routine which translates array declarations. 

The second exception is the case of a conditional identifier being 

used as the condition in an IF statement. This operand is translated 

in the routine STIF, since there is no other context, outside of the 

declarations, where a conditional identifier is legal. 

Examination of Table 6.1 will show that for several possible 

values of CURIIM which may be returned by ADVANC, there will be 

information on the operand stored in other variables. The most 

important of these is the Byte variable NAMFLG. When an identifier is 

read by RDNAME, its type flag will be put into NAMFLG, the different 

possible values of which are summarized in Table 4.2. Also, when the 

operand is the accumulator, or the X or Y register, then the ASCII 

code value for "A", "X" or "Y" respectively will have been put into 

NAMFLG by SRCHNM, [Section 6.2.1]. 
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TABLE 4.2: Summary Of The Possible Values Of NAMFLG. 

NAMFLG Actual Value Corresponding Type of Operand 

Of NAMFLG CURIIM 

sg $41 ACC Accumulator 

2b epee be: $58,$59 REG Index Register 

CONST1 $B2 NAME Byte Constant 

CONST2 $B3 NAME Word Constant 

ZEROPG $B4 NAME Zero Page Variable 

VAR8 $B6 NAME Byte Variable 

ARRAY $B8 NAME Array Variable 

VAR16 SBA NAME Word Variable 

CO to $CF NAME Condition Variables 

4.2.1 Byte and Word Operands 

There are five routines which translate the non-register 

operands discussed in Section 3.2.1. Each of these routines will 

return $FF in the accumulator if an appropriate operand was found and 

has been translated, and returns $00 otherwise. The source code 

Operands which can be translated, and the required results of 

translation have already been summarized in Table 3.2. 

OPBILT is called when a Byte constant is expected, in every 

case the addressing mode will be immediate. OPBIVR is called when a 

Byte variable is expected, and will translate legal operands in all 

the addressing modes, other then immediate, which are shown in Table 

3.2. OPBYT1 is called when a Byte variable or constant is expected 

and corresponds to the Term syntax graph given in Section 2.6. 
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OPB2LT is called when the expected operand is a Word constant 

identifier, or a literal. OPJMP is called when the destination of a 

GOTO or GOSUB statement is expected, and will except the same kinds of 

operands as OPB2LT, as well as a statement label. 

4.2.2 Registers As Operands 

The routine QPREG is called when the operand may be the 

accumulator, or the X or Y register. The MCS6500 assembler language, 

which is the language of the object code, has many register specific 

instructions, thirteen of these have been outlined in “Section 3.2.2. 

The mnemonics for related instructions have been arranged together in 

OPLIST so that they always occur with the accumulator specific 

instruction first and the Y register specific instruction last. 

The task of OPREG is to determine whether the operand is one 

of the three registers, and if it is, to store a value in the Byte 

variable, REGFLG, which can be used to choose the appropriate assembly 

code instruction from OPLIST. The accumulator is set to zero if a 

register is found, and to the value of CURITIM if not. 

procedure OPREG; 

begin case CURIIM 

of REG : if NAMFLG = X then $4 -> REGFLG 

else $8 -> REGFLG endif $0 -> A; 

of ACC : $0 -> REGFLG; $0 -> A; 

other CURIIM -> A; 

endcase; 

end 
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The thirteen register specific instructions are broadly 

divided into two groups: those which require an operand field; and 

those which do not. 

The first group consists of: the comparison instructions; 

the load register instructions; and, the store register instructions. 

A specific instruction within one of these groups can be chosen using 

the register mapping routine, REGMP1, which will expect to find the 

OPLIST displacement for the first of one of these series in the 

accumulator. REGMP1 will store a value in OPDISP using the following 

function: 

A + REGFLG -> OPDISP; 

Thus, if before REGMPl was called the accumulator contained the 

displacement for " LDA ", and REGFLG contained the value $4, then 

OPDISP will be set to the displacement for " LDX " in OPLIST. [Section 

3.2.2) 

The second group consists of transfers: from the accumulator 

to an index register; and from an index register to the accumulator. 

When the corresponding register mapping routine, REGMP2, is called, it 

will expect to find the displacement minus four of either " TAX " or 

" TXA " in the accumulator. If REGFLG = $0, the operand is the 

accumulator and there is no action. Otherwise the following code is 

executed: 

A + REGFLG -> OPDISP; gosub PUTLIN; 

Thus REGMP2 will emit a line of object code, except in the trivial 

case of a transfer from the accumulator to to the accumulator. 
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4.3 Compilation Of The Declarations 

The routines DCLARE and DCLST together supervise the process 

of compiling the declarations. DCLARE supervises the compilation of 

each declaration statement, DCLST supervises the compilation of each 

new identifier in a declaration statement. The subroutine map for 

this process is shown in Figure 4.2. 

Figure 4.2: Subroutine Map For The Translation 

Of The Declarations 

ST OPBILT 

DCLCON DCLCOP DCLV8 DCLARR DCLV16 DCLZER 

The syntax graph for the declarations, given in Section 2.6, 

shows an initial seven way choice between the six kinds. of 

declarations statements and the assembler code insert. The six 

routines which may be indirectly called from DCLST correspond to the 

first six of these choices and will do the actual compilation. The 

assembler code insert is detected by DCLARE, resulting in a call te 

INSERT, which transfers the insert directly to the object program. 
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Throughout this phase of the compilation there is a _ short 

routine, ADVPRO, used as a stepping stone to ADVANC: 

procedure ADVPRO; 

begin 

$01 -> DCLFLG; gosub ADVANC; $00 -> DCLFLG; 

end 

ADVPRO is used when the expected operand is a numeric literal or a 

pre-declared constant, used, for example, to assign a value to a new 

constant. This is necessary because if DCLFLG is pai: ADVANC will 

attempt to enter any identifier into the symbol tables instead of 

reading from them. 

The token associated with the key word which identifies each 

type of declaration statement serves two additional purposes. ris 

stored in the byte variable TYPFLG, to be used either as the type flag 

stored with each identifier, [Section 6.2], or as a factor in the 

calculation of this value. Secondly, the four least significant bits 

are used as a displacement in the array DCLBFl which contains the 

addresses of the routines required to specifically translate each type 

of declaration statement, and in the array DCLBF2 which contains the 

displacements in OPLIST of the assembler directives used for part or 

all of the compilation of each declaration statement type. For 

example, the value of the token for ARRAY is $B8, the address of 

DCLARR which translates array declarations is located in DCLBFl at 

displacements 8 and 9. DCLBF2(8) contains the displacement in OPLIST 

of oe uy 
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DCLARE examines the beginning of each statement to determine 

whether it is: 

1/ an assembler code insert, - in which case INSERT is called; 

2/ the beginning of the verb list, in which case control is 

returned to DRIVER; 

3/ a GRASSHOPPER declaration statement. The address of the 

specific translating routine required is read from DCLBFl into the 

word variable REST, to be used for an indirect jump to that routine 

by DCLST. The variable OPDISP is set from the array DCLBF2. 

TYPFLG will be set equal to the token value of the identifying key 

word, for example $B8 for the translation of an Array declaration 

statement. The routine DCLST will then be called. 

4/ an illegal statement for the declaration section, in which 

case an error stop is issued. 

procedure DCLARE; 

condition SUCCESS /= $1; 

begin 

loop 

if NXTSYM = BEGIN then return ! end of the declarations ! 

orif NXTISYM = "[{" then ! assembler code insert ! 

gosub INSERT; "3" => NXTSYM; gosub ADVANC 

else ! new declaration statement ! 

NXTSYM -> TYPFLG; NXTSYM and SOF -> Y; 

DCLBF2,Y -> OPDISP; 

DCLBF1,Y -> REST lo; ines; DCLBF1,Y -> REST hi; 



74 

case NXTSYM 

of CONDI : ! Condition Variables ! 

of ZEROPG : ! Zeropage Variables ! 

gosub ADVANC; gosub ADVPRO; 

if (CURSYM = AT) then © 

gosub OPBILT; 

if SUCCESS and (CURITM /= STRING) 

then gosub SETIIM 

else goto FATAL($08) endif 

else goto FATAL($13) endif 

other ! Array, Constant, Byte or Word ! 

if (NXTSYM and $FO) = $BO 

then gosub SETIIM 

else goto FATAL(S$17) endif 

endcase ; 

gosub DCLST 

endloop 

DCLST sets each newly declared identifier as a line label then 

calls the routine which is specific for the kind of declaration 

statement in which it occurred. The address of this routine is stored 

in the word variable REST. When the end of the declaration statement 

is reached, control is returned to DCLARE. 
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procedure DCLST; 

begin 

"i" -> NXTSYM; 
! loop for each identifier declared ! 

loop 

$00 -> ITMBFY; gosub ADVANC; 

if CURSYM = ";" then return ! end declaration statement ! 

orif (CURSYM = ",") and (CURITM = NAME) then 

! set the new identifier as a line label, then 

call the routine specific to that data type ! 

gosub STNMLB; gosub loc REST 

else ! syntax error in declaration statement ! 

gosub FATAL($11) 

endif 

endloop 

end 
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4.4 Compilation Of The Statement List 

The brief routine, VRBLST initiates the compilation of the 

entire verb list of a GRASSHOPPER program. Using the routine, XPLLAB, 

described in Section 7.2, VRBLST emits the line: 

xs0000 =* 

to the object file, thereby labeling the beginning of the executable 

code. 

procedure VRBLST; 

begin 

XSTART -> A; gosub XPLLAB; 

"3" => NXTSYM; gosub ADVANC; goto STMLST; 

end; 

There are three routines which supervise the rest of the 

compilation process, these are: STMLST, STMNXT and STDELM. Control 

passes between these according to what area of the Statement List 

syntax graph a compilation is in, [Section 2.6]. Thus, SIMLST is 

called when entering the statement list syntax graph; STMNXT is 

called when the next statement in a statement list is required; and 

STDELM is called when an intermediate or terminating statement 

delimiter is expected. 

STMLST supervises the compilation o£ the simple 

statements; the assembler code inserts; and the first phase of the 

structured statements. 
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procedure STMLST; 

begin 

case statement 

of empty statement : goto STDELM; 

of simple statement : translate; _ goto STDELM; 

of assembler code insert : transfer; goto STMNXT; 

of structured statement : translate up to where a 

new statement list is expected; goto STMLST; 

other error, unidentified statement, goto FATAL ($18) 

endcase 

end ; 

STMNXT corresponds to a continuation of the cycle of the 

Statement List syntax graph. When STMNXT is called, CURSYM is a 

statement terminating delimiter, and may be followed by a statement 

label. 

procedure STMNXT; 

begin 

if CURITIM = LINLAB then place label in line label field of 

current line of object code; 

if of form " LABEL; " then 

generate object code " LABEL =* "; goto STDELM 

orif of the form " LABEL,... " then 

continue scan... goto STMLST 

else syntax error..-goto FATAL($19) .endif 

else goto STMLST endif 

end; 
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STDELM is called when an intermediate or terminating statement 

delimiter is expected to follow. 

procedure STDELM; 

begin 

case CURSYM 

of END : if system line label stack is empty 

then return to DRIVER; 

else goto FATAL($31) endif 

of terminating statement delimiter : translate; - goto STMNXT; 

of intermediate statement delimiter : translate; goto STMLST; 

other missing statement delimiter, goto FATAL($20) 

endcase 

end 

Two points should be clarified before these routines are more 

completely described. At the beginning of the compilation of any 

statement, when NXTSYM is the first symbol in the new statement, 

CURITM will be equal to zero on all but two occasions: when the new 

Statement is an arithmetic, comparison or prefix operator statement, 

to be compiled by the routine STEXPR; and when the new statement is 

labelled. 

The second point is that the token values for intermediate and 

terminating statement delimiters are in the ranges $EQ to SEF and 

$FO to $FF respectively. 

For the purposes of this description, the routines SIMPLE and 

STRUCT may be considered to call the routines required to translate 
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the simple and the structured statements, respectively. 

procedure STMLST; 

begin 

loop 

if CURITM /= 0 then 

gosub STEXPR; gosub ADVANC; goto STDELM; 

else gosub ADVANC; 

if CURSYM = ";" then goto STMNXT 

orif CURSYM and $EOQ = $EO then goto STDEIM 

else 

case CURSYM 

of GOTO, GOSUB, EXITLP, RETURN : 

gosub SIMPLE; gosub ADVANC; goto STDELM; 

of IF, CASE, LOOP : gosub STRUCT; 

of "(" : gosub INSERT; ",;" => NXTSYM; 

gosub ADVANC; goto STMNXT; 

other goto FATAL($18) 

endcase 

endif 
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procedure STMNXT; 

begin 

loop 

if CURIIM = LINLAB then 

if NXTSYM = ";" then 

gosub SETLAB; 

XEQUST -> OPDISP; gosub PUTLIN; gosub ADVANC 

orif NXTSYM = "," then gosub ADVANC; goto STMLST 

else goto FATAL($19) endif 

else goto SITMLST endif 

endloop 

end 

For the purposes of this description, the routines DINTER and 

DMTERM may be considered to translate the intermediate and terminating 

statement delimiters, respectively. 

procedure STDELM; 

begin 

case CURSYM 

of END : if XPOINT /= 0 then 

else return endif 

of ";", ENDLOP, ENDIF, ENDCA : 

gosub DMTERM; goto 

of ELSE, ORIF, OF, OTHER : 

gosub DINTER; goto 

other goto FATAL($20) 

endcase 

end. 

goto FATAL($31) 

STMNXT ; 

STMLST 
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4.5 Error Detection And Diagnostics 

In the current implementation of GRASSHOPPER, the handling of 

errors in the source code is rather primitive. A wide range of errors 

are detectable, but, with one exception, there is no error recovery 

attempted, so that the compilation ceases on the first error detected. 

The single exception is the case of the same identifier being declared 

more then once. In this case a warning is issued by the routine WARN, 

called from INNAME, and all but the first declaration are ignored. 

When a fatal error is detected, an error identifier is put 

into the accumulator, and the routine FATAL is called. In the 

algorithm descriptions given in this report, this is represented as: 

goto FATAL(identification) ; 

but in the compiler the transfer to fatal is always a subroutine jump. 

FATAL prints out the error identifier, then pulls the return address 

saved in the stack used by the MOS 6502 for subroutine jumps and 

prints this out. The line of source code currently being scanned is 

printed followed by a selected core dump of global variables and 

arrays. The contents of ITMBUF and the statement label buffer, 

LABELS, are also printed in their ASCII characters. 

This information will just fit on the CRT terminal screen. If 

a printer is activated for the run, then a hardcopy of this dump can 

be obtained. Since NEXTLN always displays each line it enters into 

STBUF1, the source program, up to the error, will also be printed. 

Figure 4.3 gives an example of a compilation run, where the source 

code is the example given in Figure 2.1, with SAVX in the declarations 
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istyped resulting in a second declaration of SAVE and then a fatal 

error in the verb list. 

The most important output to a user are the contents of the 

statement buffer, and the error identification. This identifier may 

be either a letter or a decimal number. “These are summarized in 

Tables 4.3 and 4.4, respectively. 

With the exception of "B", a letter will indicate a bug in the 

compiler. The code to detect these errors was left in the compiler 

assuming that there will be further developement. 

TABLE 4.3: Compilation Error Summary: Letters. 

Detecting 

Error Routine Cause Of Error Stop 

A NEXTLN STBUF1 has been overflowed. 

B NEWREC Symbol table overflow, Need to increase 

Space alloted 

C OPSAVE Save Buffer overflow 

D OPREST Save buffer underflow 

E RDNUMX, Expecting number symbol, $, @, %. 
RDVALX 

G RDNMIN Overflow of STBUF1, or ITMBUF 

There are thirty-one possible error numbers covering a wide 

range of scanning, syntactic and semantic errors. Table 4.4 largely 

summarizes the causes of these errors, only -two of them require 

further comment. 
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Error number 1 will only result if there is a character 

detected that has no legal context in the source code, except perhaps 

in a comment, string or insert. Completely illegal characters include 

"&" and most of the characters with ASCII values less then $20. 

The absence of a right delimiter on keys, comments, inserts 

and strings can result in a wide variety of error messages, only one 

of which is number 3. If it happens with the “KEY” format, the error 

message number 2 will result, since the first following character is 

taken as an illegal character for this format. The other three cases 

result in scanning errors. The following code will be read as part of 

the comment, insert or string until one of two things happen. A 

right delimiter may be encountered, for example: 

! comment gosub ANYTHING; ! another comment ! 

In this example, the subroutine call will be read as comment and there 

will be an attempt to read the second comment as_ code. The error 

numbers which may result include, but are not limited to: 2, 4, 10, 

11, 17, 18, 19, 20 and 23. This will not happen with the insert 

because the left and right delimiters are not the same- In this case, 

unless there is a nesting error, or a declaration missed, the error 

May not be detected by the compiler. It will be during assembly 

because GRASSHOPPER code will have been inserted into the object ies: 

If no right delimiter is detected before the end of file is 

read, then error number 3 will result, since SETSTR, INSERT and NEXTLN 

all check for the escape character inserted as an end of file flag by 

SRCMGR, [Section 3.2]. 
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TABLE 4.4: Compilation Error Summary: Numbers. 

Error Cause of Error Stop Detecting Routine 

1 Illegal character found during CHRTYP 
scan of source code. 

2 Unrecognizable key found. RDKEY 

3 Missing right delimiter for: 

String(") SETSTR 
Insert(]) INSERT 

Comment (!) NEXTLN 

4 Decimal numbers not implemented. RDNUMX 

5 Empty string not allowed. INSTRG 

6 Incomplete file, missing "end". ADVANC 

7 Word literal is required for HEADER 
program header statement. 

8 Bad or missing initialization in DCLCON, DCLV8, 

a declaration statement. May be a DCLARR, DCLV16, 

word value where byte value needed. DCLCOP 

9 Bad array length declared. DCLARR 

10 A, X, Y, S, P are reserved as SRCHNM 

variable names by assembler, "X" as 
first letter reserved by compiler 

val Error in declaration statement, may DCLST 

be missing "," between identifiers, 
or ";" at end of statement. 

£2 Error in Constant declaration, DCLCON 

expect "=", 

13 Error in Zeropage declaration, DCLARE 
expect: at Byte Value. 

14 Error in Byte or Word declaration DCLV8, DCLV16 
expect at, Tells See or Ost. 

> Error in Array declaration, expect DCLARR 
ek Daa sear. 

16 Error in Condition declaration, DCLARR 
expect mw" or U falls 
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TABLE 4.4: continued. 

Error Cause of Error Stop Detecting Routine 

17 Unrecognizable declaration statement, DCLARE 
May be a missing begin. 

18 Unrecognizable statement in the STMLST 
Verb list. 

19 May be undeclared identifier, or STMNXT 

bad syntax in statement label. 

20 Expect intermediate or terminating STDELM 
statement delimiter, probably ";". 

21 Bad or missing operator. STEXPR, STCOND, 
STIF 

22 Bad or missing destination in STGOSB, STGOTO 
GOTO or GOSUB statement. 

Zo Bad or missing operand. May be STEXPR, STCOND, 
wrong data type or undeclared STIF; STCASE, 
identifier. STOF 

24 Missing or bad index on indexed OPINDX 
data type, Arrays and Zeropage. 

25 Error in IF or ORIF statement, STILE, STORIF 
expect then 

26 Error in CASE statement, expect of STCASE 

27 Error in OF phrase of CASE STOF 
statement, expect "," or ":",. 

28 System line label stack overflow, XPUSH 

the limit of nesting has been passed. 

29 Nesting error, probably overlap of XPULL, XFNDJP 
stuctured statements. STDELM 

30 Nesting error, attempt to pull from XPULL, XFNDJP 
empty sytem line label stack, may 

be too many structure termination 
delimiters, i.e. an extra endif. 

at End of file before system line label STDELM 
stack is empty, structured statement 
incomplete, i.e. missing endif. 
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FIGURE 4.3: Example Of An Error Dump 

“PROGRAM” GRSHOP $4000; 

! This is a simplified version of the program 
I used to store and retrieve the assembled version 

of GRASSHOPPER. ! 

* CONSTANT’ DOS = $2A51, INWEKO = $2340, 
OUTSTR = $2D73, SEEKA . = $26BC, 
LDREAD = $2B1A, SAVE = $2C3A, 

CR = SOD, LF = $0A, TOTAL = $02; 

“BYTE” DSRNO “AT’ $265E, DSRLEN “AT’ $265F, SAVE; 

x*ARKX RE-DECLARATION OF: SAVE 

“ ARRAY’ ADDRESS() = ($91, $9D, $A9), 
TRACK () = ($16, $18, $20); 

“WORD’ ZADDRESS ‘AT’ $SFF; 

“BEGIN’ $00 -> SAVX; 

**kkK*KERROR #23 AT SAD9F, FOUND IN: 
‘BEGIN’ $00 -> SAVX; 

VARIABLES 

OF 00 BA 53 89 3B 07 00 74 02 OD 00 80 O01 O1 09 

OD 10 08 71 BO 15 00 00 00 00 53 00 00 00 O1 O1 
01 00 00 00 52 95 CE 9F 

ITEM BUFFER 
24 30 30 35 46 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 
$O05F 

LABELS 
00 00 00 00 00 00 53 41 56 58 00 00 
SAVX 

VECTORS 
71 SF 71 32.-71 7A°71 BO* 71°68 71 9E 71 A7 71°95 

00 00 71 05 70 99 71 29 70 90 71 17 70 EA 71 OE 

DONE, T= Ol 
Ax 



CHAPTER 5 

INPUT/OUTPUT AND FILE MANAGEMENT 

5.1 Disk Input/Output Buffers 

The compiler must read from a source file written in 

Grasshopper and write to an object file in assembler code. Since the 

memory available could be quickly exhausted if these files were kept 

in core during translation, a system has been chosen which requires 

only part of each of these files in core at a time. This is done 

using the OS-65D supported disk input/output buffers [Ohio Scientific 

1978,pp. 57-59]. 

For each disk I/O buffer used there is a area on the disk 

which contains the complete file being accessed. The buffer itself is 

long enough to contain the amount of information to be stored on each 

track of this file, usually $C pages. When the input or output flag 

has been set to indicate this buffer a call to a system I/O routine 

will input from or output to that buffer. When the end of the buffer 

has been reached, a track boundary has been crossed and transfer 

between core and disk will be initiated and performed by the system. 

Thus only one track of the file is in core at a time. 

Before the translation begins, the disk buffer parameters, 

which are described in Table 5.1, are initialized by PRIME to the 

values shown. The first disk I/O buffer is used for reading from the 

source file while the second is used to write the object file. After 

translation is complete, the second disk I/0 buffer may contain 
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information which has not yet been transferred to disk so FINISH 

outputs zeros to the object file buffer until the last track has been 

transferred. 

TABLE 5.1: Parameters Required For The Disk I/O buffers 

Location = Initialized Value 

Parameter Disk Buffer l Disk Buffer 2 

Buffer Start Low $2326 = $00 $232E = $00 

Hi $2327 = $42 $232F = S4E 

Buffer End Low $2328 = $00 “$2330 = $00 

Hi $2329 = S4E $2331 = $5A 

First track, (BCD) $232A = $65 $2332 = $68 

Last track, (BCD) $232B = $67 $2333 = $76 

Current track, (BCD) 232C = $64 2334 = $67 

The input and output flags previously mentioned are used to 

specify the I/0 devices to be used by a system input/output routine. 

Each bit of an I/O flag refers to a different device, the disk 1/0 

buffers l and 2 are specified by bits 5 and 6 respectively. The 

values of these flags before translation are saved in the variables 

SINFLG and SOTFLG by PRIME. When either of the disk I/0 buffers is 

used the appropriate flag is set to that buffer. Immediatly after use 

the flag is reset from SINFLG or SOTFLG. 

5.2 Origins Of The Source File 

Using the OS-65D assembler/editor, a source file is created 

which includes line numbers, a carriage return (CR) at the end of each 

line, and in which all repeated character strings have been packed 
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into a two character code. The source file is positioned in core, 

usually starting at $317E, with a five byte header beginning at $3179 

which gives information regarding the length and position of the file, 

[Ohio Scientific 1976, p-4]. This header is outlined in Table 5.2. 

SRCMGR pre-processes the source file to remove all line numbers, 

unpack repeated character strings and add the ASCII escape character 

($1B) as an end of file flag. As the file is processed it is placed 

on the disk using Disk 1/0 buffer two. 

TABLE 5.2: Source File Header, 

(Ohio Scientific 1978, app. p- 4] 

Byte # Memory Address Parameter 

0 $3179 Source Start, Hi 
1 $317A Source Start, Low 

Zz $317B Source End, Hi 
3 $317C Source End, Low 

4 $317D Number Of Tracks 

5 $317E Usual starting address 
of the source file 

5.3 Input From Source 

The compiler expects to find the source file on disk as 

pre-processed and placed by SRCMGR, and accesses it using Disk 1/0 

buffer one. Reading of the source file is restricted to three 

routines: NEXTLN, SETSTR and INSERT. 

NEXTLN performs the first step in the lexical scan which is 

supervised by the routine ADVANC [Chapter 6]. It reads one line of 

code, terminated by a carriage return, from the source file into the 
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buffer STBUF1. All comments are deleted and only one space of any set 

of consecutive spaces is included. When a character string or 

assembler code insert is encountered the leading delimiter (" or [ 

respectively) is stored, followed by a carriage return to end line 

input. This is done because the character string and insert are 

special cases which are read by SETSTR and INSERT respectively. 

SETSTR is called from INSTRG which is called when a character 

string is to be read from the source file where it is delimited by 

double quotes, into the object file where single quotes are to be 

used. SETSTR reads the string from the source file into the buffer 

ITMBUF in portions of no more then 40 characters. On returning from 

SETSTR the accumulator is set to indicate: 00/ that the end of the 

string was reached with no new characters transferred; 0O1/ that the 

end of the string was found after reading one or more characters into 

ITMBUF; or 02/ that the end of the string was not encountered. 

INSERT transfers an assembler code insert from the source 

where it is enclosed in square brackets, [ text ], to the object. The 

removal of brackets is the only change made to such inserts and it is 

the user’s responsibilty to insure that the insert is reasonable. 

If the right delimiter of a comment, character string or 

assembler code insert is missing then the left and right delimiters 

will not match up and eventually the escape character [Section 5.2] 

will be encountered. In this case an error stop is issued. 
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5-4 Output To Object 

The first five bytes of the object file mist be reserved for 

the header described in Section 5.2, this is done in PRIME. After the 

object file has been written FINISH retrieves the first track, 

calculates and places the values of the header parameters then returns 

this back to disk. This manipulation of the first track is done using 

the OS-65D routines for reading and writing a single track. 

During the translation process itself the writing of a 

character into the object file is restricted to PUTACC man is called 

from: PUTLIN, INSERT, PUTXLB, and FINISH. PUTACC contains PUTOUT 

which writes each character using system routine OUTCH and increments 

the variable COUNT. COUNT is a two byte variable which always 

contains the current length of the object file, it is used by FINISH 

to calculate the end address for this file when it is loaded as the 

source for the assembler. PUTACC calls PUTOUT for three different 

purposes; 

1/ to output the character received in the accumulator; 

2/ to output two null characters ($00) after each 

carriage return (CR), as blank line numbers; 

3/ to output the repeat count when packing repeated 

character strings into the two character code used 

by the assembler/editor. 

PUTACC will now be more precisely described: 
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procedure PUTACC(ACC) ; 

procedure PUTOUT(ACC) ; 

condition ZERO = $1; 

begin OUTCH(A); inc COUNT lo; 

if ZERO then inc COUNT hi endif 

end 

begin 

A -> SAVA; 

case LASTCH 

of CR: ! blank line label ! 

gosub PUTOUT(S$00) ; gosub PUTOUT($00) ; 

SAVA -> LASTCH; gosub PUTOUT(SAVA) ; 

of SAVA: dec REPEAT; !repeated character ! 

other if REPEAT/=$00 then ! last character was the end 

of a repeated character string ! 

gosub PUTOUT (REPEAT) ; $00 -> REPEAT; 

endif 

! output the current character ! 

SAVA -> LASTCH; gosub PUTOUT(SAVA) 

endcase 

end 
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CHAPTER 6 

DESCRIPTION OF THE LEXICAL SCAN 

The routines discussed in this chapter are used for the 

lexical analysis of the source code. These routines operate on code 

placed in the buffer STBUFl1 by NEXTLN and the X register is reserved 

for the indexed addressing of this buffer. The routine ADVANC 

supervises the lexical scan and is based on the basic scan used in 

Halstead’s Pilot compiler, [Halstead 1974, p. 36], the purpose of 

which is to obtain the next symbol-operand~symbol triplet. Each item 

is inspected and the appropriate routine is called for reading an item 

of its type- When a carriage return is encountered the routine NEXTLN 

is called to extract the next line from source and place it in STBUF1. 

The following algorithm gives a crude outline of what ADVANC does: 

begin 

NEXTSYM -> CURSYM; 

if there is an operand then 

read it and put its kind into CURIIM; will 

call one of: RDNAME, INNAME or RDNUMX 

endif 

Read next symbol into NXTSYM; may call one of: 

RDKEY1, RDKEY2 or GETSYM 

end 

This algorithm will be discussed in more detail in Section | 

6.4. After execution of ADVANC, CURSYM will contain the previous 
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value of NXTSYM, NXTSYM will contain the next operator and CURIIM 

will identify the next operand type. Table 6.1 summerizes the types 

of operands which may be found. An operator may be the token 

associated with a key word or may be a function of the CHRFLG value 

for a single ASCII character as discussed in the next section. 

Character strings and assembler code inserts are not read by ADVANC, 

instead the leading delimiter is stored as NXTSYM, and in the case of 

a string, CURIITM is set to STRING. 

TABLE 6-1: Summary of Operand Types 

CURITM Operand Type Additional Information Stored 

NAME Identifier Stored in TABLES 
Data Type -> NAMFLG 

Record Location -> ZNAMFG 

STRING Character string 

NUMBER Number, Stored in ITMBUF 

larger then BYTE2 Length -> ITMLEN 

BYTE1 One Byte Number Same as for NUMBER 

BYTE2 Two Byte Number Same as for NUMBER 

LINLAB Statement Label Stored in LABLIN 
as line label 

JMPLAB Statement Label Stored in LABJMP 

as operand 

REG X or Y Register Stored in NAMFLG 

ADDRES Constant used as Operand not yet read, CURITM set 

Address when ind or loc is encountered 

ACC Accumulator 

PREOP Operand preceded Operand not yet read, CURIITM set 
by Prefix Operator when a Prefix operator is encountered 
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In this chapter, descriptions of several routines will be 

given using pseudo-GRASSHOPPER. In these descriptions, constant 

declarations corresponding to the constant identifiers described in 

Tables 4.1, 6.1 and 6.6 may be assumed, as well as the following 

declarations: 

byte CURITM, CURSYM, NXTSYM, CHRFLG, FOUND, 

SAVX, SAVHI, TYPFLG ; 

word LEGAL; 

array LABJMP at $9060, LABLIN at $905A, 
NAMVCT at $9066, KEYVCT at $9076, 

STBUF1 at $5A00; 

zeropage at $50, ZRECRD, ZNAMFG, ZNEXT; 

6-1 Character Recognition 

Recognition of the type and range of each item requires 

recognition of character types and specification of what character 

types are legal for what items. 

Recognition of a character’s type is accomplished by the 

routine CHRTYP. The ASCII value of the character is used to find a 

number which has been encoded to give information on that character’s 

type and use. This is done by subtracting $20 and using the result as 

a displacement in the array CHRBUF, the value found at this 

displacement is then placed in the byte variable CHRFLG. If ‘the 

CHRFLG value found is equal to zero an illegal character has been read 

and an error stop occurs. 

The value placed in CHRFLG ‘has been encoded to give 

information as shown in Tables 6.2 and 6.3. 
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TABLE 6.2: CHRFLG Values For Character Types 

Character Type CHRFLG ~ Characters 

Illegal $00 

Operator $00 < CHRFLG < SOF {/<>=-+%:; 

General SOF et denied CS 
carriage return, 

escape and space. 

Number Type $10 SG 
Symbol 

Letters and $60 < CHRFLG < SEO AveoeZy AvoeZ,y 

Digits Ort 2234 SeGe7. S29 

TABLE 6.3: CHRFLG Values For Letters and Digits 

BIT # CONTENTS 

i 1 letter 0 not a letter 

6 t"a-=>5 0 g ->z it digit, “0 "to 9 

5 1 UPPER CASE 0 lower case 1 

Q -> 4 0 

The information encoded into CHRFLG is used mostly to detect 

the type and range of an item being scanned, and, in the case of 

operators, to give information to be used during the translation of 

expressions. The four actual uses of CHRFLG will now be described. 

I/ ADVANC, which determines how each item in source is to be 

read in, will first test for special symbols then use CHRFLG to 

differentiate between identifiers, lower case keys, decimal numbers 

and other numbers. The algorithm for making this distinction is as 
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follows ; 

with CHRFLG do 

if BIT7 = $1 then “ft Tare 1 

if BITS = $1 then read an identifier 

else read key in lower case endif 

orif BIT6 = $1 then read decimal number 

orif BIT4 = $1 then read a number with base 2, 8 or 16 

else store symbol in NXTSYM 

endif 

endwith 

The complete algoritm for ADVANC is listed in Section 6-4. 

II/ CLEGAL is called when scanning an identifier or a key word 

to determine whether the current character is part of that item. 

CLEGAL first calls CHRTYP to set CHRFLG, then makes an indirect jump 

to the routine whose address is stored in LEGAL. This routine then 

tests the specific bits of CHRFLG significant to the item being 

scanned. The subroutine map for CLEGAL is given in Figure 6.1. Table 

6.4 describes specifically what is being tested in each case- 

FIGURE 6-1: Subroutine Map For CLEGAL 

CLEGAL 
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TABLE 6.4: Summary of CHRNAM, CHRKY1 and CHRKY2 

Routine Item Legal Character Type 

CHRNAM Identifier %XX1X0000 numeral, or upper case letter 

CHRKY1L * KEY’ 41XXX0000 letter, upper or lower case 

CHRKY2 key %1X0X0000 lower case letter. 

After execution of any of these routines, the second, or "Z" 

bit of the processor status register will be set to 1 if the character 

is legal or re-set to 0 if illegal. 

III/ GETSYM uses CHRFLG to calculate a token value for each 

operator and stores this value in NXTSYM. In Table 6.2 the CHRFLG 

value of an operator is listed as between $00 and SOF. Table 6.5 

shows the actual CHRFLG values for the operators, as well as the 

values which must be entered into NXTSYM. NXTSYM for all the single 

character operators is found by adding $80 to CHRFLG, the value for 

two character operators is found by doing this calculation for the 

first character and adding one. In the algorithm given below, note 

that STBUF1,X is the character immediately following that for which 

CHRFLG was found. The full algorithm for GETSYM is listed in Section 

6.4. 

if CHRFLG /= SOF then 

if ((CHRFLG < $06) and (STBUF,X = "=")) or 

((CHRFLG = $08) and (STBUF,X = ">")) 

then inc CHRFLG; inc X; endif 

CHRFLG or $80 -> NXTSYM; 

endif 



99 

Table 6.5 only lists the operators represented by symbols, as 

opposed to key words, which are included in Table 4.1. The operators 

for mltiplication (*) and division (/) are included, but are not 

available in this implementation of GRASSHOPPER. 

TABLE 6.5: CHRFLG and NXTSYM Values For The Operators 

Operator CHRFLG NXTSYM Operator CHRFLG NXTSYM 

aafaie Tettegi then thggpase calculation Ie ggyt co gee 

/= $82 - $08 - $88 

< $03 $83 -> $89 

<a $84 + SOA $8A 

> $05 $85 * $OB $8B 

>= 06 86 : $OC 8C 

IV/ RDNUMH, which transfers a hexadecimal number from STBUF1 

to ITMBUF, recognizes the end of the number when an illegal character 

is read. A character is legal if it is a digit, 0 to 9, or an upper 

case letter, A to F, so CHRFLG must be %X110 0000, thus: 

if ( CHRFLG and Z%01110000 ) = Z01100000 

then legal for hexadecimal number 

else not legal, end of number endif 
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6-2 The Symbol Tables 

The symbol tables are maintained in two very simple hash 

tables using a method similar to that found in [Lewis 1976,p.79]. The 

first two letters of an item are added together and the lowest three 

bits are extracted from the sum. The resulting number is multiplied 

by two to give a displacement in a list pointer vector. If the item 

only has one letter then the same calculation is performed without the 

initial addition. These calculations are performed by the routine 

MAP. ; 
If the value found at this displacement is zero there is no 

corresponding list and the item has not been tabulated. Otherwise the 

value found is the address of the first record in a linked list which 

is searched until there is a match or the end of the list is reached. 

In the latter case the item has not been tabulated. 

The buffer TABLES contains all language key words, followed by 

all user identifier names, no line labels are tabulated. There are 

separate list pointer vectors maintained for keys (KEYVCT), which are 

entered by PRIME, and for identifiers (NAMVCT), which are entered 

during translation of the declarations. The individual records are 

formated as shown in Figure 6.2. Constants are used for key positions 

in a record so that the record format may be easily changed. These 

constants are described in Table 6.6. 

The routines which search and build these tables are designed 

so whenever possible the same code can be used on both tables; for 

this reason the record format is the same for keys as for identifiers. 
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The addressing method allows access to all of core, but by adjusting 

the = of TABLES and OVER the table space can be placed and its 

size limited. The lowest three bytes are used in the mapping function 

so that the result will be the same whether upper or lower case 

letters are used. 

I felt that a more elaborate method was not required for this 

implementation but tried to program so that the method could be easily 

refined or altered without side effects. 

FIGURE 6.2: Record Format For The Symbol Tables 

Up to six characters of the 
key word or identifier name. 

High address of next record. 
Low address 

Type fla name token (ke WIN DIN & WM © 

TABLE 6.6: Constants Describing Format of 

Symbol Table Records 

Identifier Value Meaning 

TABLES $7000 Address for Start of Tables 

TABLHI $70 High Part of Start Address 

OVER $7B High Part of Overflow Address 

MAX $05 Maximum of six characters stored 

LINK $06 Address for next record stored in 
Positions seven and eight 

FLAG $08 Key Word Token, or Identifier Type 
is Stored in the ninth position 

SIZE 09 Size of Record 
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Figure 6.3 is a subroutine map for the routines which access 

TABLES. INKEY is called by PRIME, the other root routines of this map 

are called from ADVANC. 

FIGURE 6.3: Subroutine Map For The Symbol Tables 

RDKEY1 RDKEY2 

INNAME 

NEWREC 

MAP CLEGAL 

CLEGAL CMPARE CLEGAL 

CLEGAL 

These routines can be subdivided into three groups; l1/ Table 

NEWREC CLEGAL 

CLEGAL 

Searching Routines: SRCHKY, SRCHNM, SEARCH and CMPARE; 2/ Table 

Building Routines: NEWREC, INKEY and INNAME; 3/ and Table Reading 

Routines: RDKEY1, RDKEY2, RDKEY and RDNAME. 

6.2.1 Table Searching Routines 

Three Zeropage variables are used- for indirect indexed 

addressing of the contents of the symbol tables; ZRECRD points to 

the record currently being examined; ZNAMFG points to the last 
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identifier record found by the list searching routine, SEARCH; and 

ZNEXT indicates the next empty record to be used in building the 

tables. 

The variable FOUND is a flag which is set to indicate the 

result of a search for a key word or identifier in the symbol tables. 

There are two possible values: 

00/ The item was found, ZRECRD has been set to point to 

its record in the tables. 

01/ The item has not been found in the symbol tables. 

SRCHKY, which supervises the search for a key word, and SRCHNM 

which supervises the search for an identifer, both use the routine MAP 

to identify a linked list. If that list is not empty, they will set 

ZRECRD to the address of its first record, and call the list searching 

routine, SEARCH. SRCHNM differs from SRCHKY in that it must first 

determine if the variable is a reserved or illegal name, [discussed at 

the beginning of Chapter 2]. A fatal error is issued if: an attempt 

is made to declare one of the reserved identifiers: A, X, Y, S or P; 

if an attempt is made to use S or Pin the statement list; or if an 

identifier beginning with "X" is encountered. When A, X or Y is 

encountered in the statement list, CURITM is set to REG for the X and 

Y registers, and to ACC for the accumulator. 

The process of searching a single linked 1tee for 2. ‘Keys or 

identifier is supervised by the routine SEARCH. ZRECRD initially 

points to the head of the list, SEARCH will reset ZRECRD from the 

link field of the record it points to until the comparison routine, 
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CMPARE, returns FOUND = 0 or the list has been completely checked. 

procedure SEARCH; 

begin 
loop 

gosub CMPARE; 

if FOUND = 0 then exitloop 

else LINK -> Y; ! try next record ! 

if ind ZRECRD,Y /= 0 then 

ind ZRECRD,Y -> SAVHI; ineccy; 

ind ZRECRD,Y -> ZRECRD lo; SAVHI -> ZRECRD hi; 

else exitloop endif ! end linked list ! 

endif 

endloop 

return 

end 

The actual comparison of an item in STBUFl1 with the contents 

of a table record is done by CMPARE. Before execution ZRECRD will 

point to the record, X and SAVX will indicate the item’s position in 

STBUF1. If the item does not match, X will be restored to this value, 

so that the item can be compared to the next record. The variable 

FOUND will be set to indicate whether or not a match was made. 

6.2.2 Table Building Routines 

The key words are entered into TABLES by INKEY which is called 

from PRIME, [Section 4.1], during the initialization of the compiler. 

MAP is used to find the required linked list then the routine NEWREC 
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discussed below is called to enter the key word into that list. 

Identifiers are entered by INNAME during the translation of 

the declarations. SRCHNM is called to determine whether the 

identifier has already been entered, if it has a warning is issued and 

the initial declaration will stand. Otherwise NEWREC is called to 

enter the new record. 

Every key and identifier in TABLES is entered by the routine 

NEWREC into the next available record. The records used have been 

outlined in Figure 6.2 and consist of: a six byte name field; a two 

byte link field and a single byte flag field. 

The key word or identifier will be read from the STBUF1 into 

the name field. If the name is shorter the rest of this field is 

filled with zeros, if it is longer the rest of the name is ignored. 

The new record is entered at the beginning of a linked list by 

putting its address into the pointer vector NAMVCT or KEYVCT and by 

loading its link field with the address of its succeeding record in 

that linked list. NEWREC also puts the address of the new record into 

ZNAMFG. 

Lastly, the value in TYPFLG is put into the FLAG field of the 

new record. TYPFLG will have been set to a key word’s token by PRIME 

or an identifiers type flag by DCLARE. 

6.2.3 Table Reading Routines 

The three routines which access the completed tables are: 

RDKEY1 which searches for a key word which has occurred in the source 

code delimited by single quotes; RDKEY2 which searches for a key word 
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which has been given in lower case letters; and RDNAME which searches 

for an identifier. 

RDKEY1 and RDKEY2 simply set LEGAL to the address of CHRKY1 or 

CHRKY2 respectively, then call RDKEY. 

procedure RDKEY; 

begin gosub SRCHKY; 

if FOUND = $00 then FLAG -> Y; 

ind ZRECRD,Y -> NXISYM; ! key token ! 

else goto FATAL($02) endif 

return 

end 

The function of RDNAME is complicated by the fact that 

statement labels are not declared, and are therefore not stored in the 

symbol tables. RDNAME assumes any undeclared identifer, which is not 

a reserved name, [Section 6.2.1], is a statement label. Thus: 

if the identifier is found in the tables then 

put its type into NAMFLG; 

put the address of its record in the tables into ZNAMFG. 

orif CURSYM is a terminating statement delimiter, [Section 2.4] then 

put the name in the buffer LABLIN to be used as line label; 

LINLAB -> CURITITM; 

else put the name in the buffer LABJMP to be used as an operand; 

JMPLAB -> CURITM; 

endif 



107 

6.3 Reading Numeric Literals 

Each numeric literal encountered is copied from the buffer 

STBUF1 to the buffer ITMBUF under the supervision of RDNUMX which is 

called from ADVANC. When RDNUMX is called the variable ITMBFY will 

contain the displacement of the next available position in ITMBUF. 

This value is put in the Y register which is then used for indexed 

addressing of ITMBUF. After RDNUMX has been executed, the variable 

CURITM will be set to BYTE1, BYTE2 or NUMBER, [Table 6.1]. 

6.4 Scanning The Source Code 

A crude algorithm for ADVANC was given at the beginning of 

this chapter. The use of CHRFLG for recognition of the type of each 

item to be read was developed in Section 6-1, and the routines for 

reading each item type have been discussed in Sections 6-l to 6.3. 

There is an additional routine within ADVANC, called ADVKEY which is 

called after both RDKEY1 and RDKEY2 to detect: the prefix operators, 

dec and inc; and the absolute or indirect addressing operators, loc 

and ind. In the case of prefix operators the operand will not be read 

during the current call of ADVANC, but CURITM will be set to PREOP- 

procedure ADVKEY; 

begin 

if CURITM = $00 then 

if (NXTSYM = LOC) or (NXTSYM = IND) then ADDRESS -> CURITM 

orif (NXTSYM and $FO) = $90 then PREOP -> CURIIM endif 

endif 

end 
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NXTSYM will be given a new value every time ADVANC is called. 

This value may be: a key word token found by RDKEY1 or RDKEY2; an 

ACSII character such as ";" read by GETSYM; or an operator such as "+" 

or "=>" for which the token mst be calculated by GETSYM. This last 

case has already been discussed in Section 6.1. GETSYM must also set 

CURITM to STRING when the string flag (") is encountered. 

procedure GETSYM; 

! finds NXTSYM when the next symbol is not a ae word ! 

constant STRFLG = $22; PWASCLI Meade: for iC")! 

begin 

STBUF1,X -> NXISYM; itic x; 

if NXTISYM = STRFLG then ! literal character string ! 

if CURITM = $0 then STRING -> CURITM endif 

orif CHRFLG /= SOF then 

if ((CHRFLG < $06) and (STBUF1,X = "=")) or 

((CHRFLG = $08) and (STBUF1,X = ">")) 

then inc CHRFLG; inc X; endif 

CHRFLG or $80 -> NXTSYM; 

endif 

end 

The algorithm for ADVANC will now be completely described. 

The basic function of this routine is to obtain the next 

symbol-operand-symbol triplet, and it will be used by virtually every 

translating routine discussed in Chapter four. 
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procedure ADVANC; 

begin 

$0 -> CURIIM; NXTSYM -> CURSYM; 

if (CURSYM /= "[") and (CURSYM /= END) then 

loop 

case STBUFI1,X 

of CR: gosub NEXTLN; 

of ESC: goto FATAL($06) ; 

of KEY: inc X;  gosub RDKEY1; ! “KEY’ format found ! 

gosub ADVKEY; exitloop; 

of SP: inc X;3 

other gosub CHRTYP(STBUF1,X); 

with CHRFLG do 

if BIT7 = 1 then ! letter ! 

if BIT5 = 1 then NAME -> CURIIM; 

if DCLFLG = 1 then gosub RDNAME 

else gosub INNAME- endif 

else gosub RDKEY2; gosub ADVKEY; exitloop 

endif 

orif BIT6 = 1 then goto FATAL(S$04) 

orif BIT4 = 1 then gosub RDNUMX 

else gosub GETSYM; exitloop endif 

endwith 
endcase 

endloop 

endif 

end 
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GENERATION OF OBJECT CODE 

The final step in the translation of any portion of a 

GRASSHOPPER program is the output of code to the object program. The 

output of each line of object code is supervised by the routine PUTLIN 

except where an assembler code insert has been used, in which case 

INSERT is called. A major part of the task of the translating 

routines discussed in chapter four is the preparation of information 

to be used by PUTLIN. 

The format of object code produced by the translator, and its 

output using PUTLIN is discussed in this chapter. Figure 7.1 shows a 

Subroutine map for the routines used by PUTLIN. In addition to these 

there are two groups of utility routines discussed in sections 7.2 and 

7.3 which are used by the translating routines to to prepare a line of 

object code. 

FIGURE 7.1: Subroutine Map For PUTLIN 

o
e
 

putacc| PUTXLB 

[putace PUTBYT 

Com) Fre] on 
110 
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7.1 The Object Code 

Each line of code output by PUTLIN contains the following 

fields: a blank line sees consisting of two bytes of value zero; 

a line label field which may simply be eight spaces, or a space then a 

line label of up to six letters followed by enough spaces to fill the 

eight byte field; an operator field of variable length followed by a 

single space; an operand field of variable length; and finally a 

carriage return to indicate end-of-line. 

Before PUTLIN is called by a translating routine, information 

regarding the label, operator and operand fields must be placed in the 

variables ZLABEL, ZITEM, ITMLEN and OPDISP, and often in one or more 

of the buffers: ITMBUF, LABLIN or LABJMP. 

7.1.1 The Label Field 

A label on a line of object code may fall into one of three 

categories: identifiers as line labels; user statement labels; and 

System line labels. The first type only occurs during translation of 

the declarations when an identifier found in TABLE may be used as a 

line label to reserve its location in the data _ space. A user 

statement label originates in the GRASSHOPPER source code and will 

have been placed in the buffer LABLIN by RDNAME. 

System line labels are generated by the translator and are 

more thoroughly discussed in section 7.2. When encountered, PUTLIN 

calls the routine PUTXLB which outputs the letter "X", followed by the 

contents of the variables XKIND and XCRRNT. | 

The two-byte variable ZLABEL, located on page zero, gives 
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information on the existence and location of a line label in the 

following way: 

case ZLABEL hi ! PUTLIN ! 

of $0: no line label, output eight spaces; 

of SFF: system line label, call PUTXLB; 

other 

there is either a user statement label, or an identifier 

used as a line label. Its address in LABLIN or TABLE 

has been stored in ZLABEL. PUTLIN will access the label 

to be output by using ZLABEL for indirect indexed 

addressing; 

endcase 

7.1.2 The Operator Field 

The Operator field will always be used and will contain an 

item from the buffer OPLIST found at the displacement given in the 

variable OPDISP. The operator will be either an opcode mnemonic or an 

assembler directive. 

7.1.3 The Operand Field 

The contents of the operand field may be: 

1/ non-existent; 

2/ a system line label used as a branch operand; 

3/ a user statement label to be read from the buffer LABJMP; 

4/ the name of an identifier which is stored in TABLE; 

5/ the contents of ITMBUF which may be; a literal number; an 

identifier with additional characters for indexed addressing or for 
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indirect indexed addressing; or an identifier as part of a value 

calculation. 

In cases 3, 4 and 5 the address of the item to be used as operand will 

be stored in ZITEM which will be used for indirect indexed addressing 

of that item. In general, the variable ITMLEN characterizes the 

operand to PUTLIN in the following way: 

case ITMLEN 

of S$FF: there is no operand, no action; 

of SFE: system label is used as operand, call PUTXLB; 

other 
ITMLEN gives the length of the operand which is stored at 

the address given in ZITEM; 

endcase 

7-2 System Line Labels 

System line labels are labels which have been created by the 

translator to be inserted into the object code. The format of these 

labels must insure that the labels generated be unique, never conflict 

with user identifiers or labels, and that a very large number of 

labels be possible. A six character label format was chosen which 

consists of: first the letter "X"; second a letter which indicates 

what construct generated the label; followed by a four place 

hexidecimal number which gives the sequence in which the labels are 

generated. 

These labels are pushed into a F.I.L-0 stack, SYSTLB, when 

created, and pulled when needed. SYSTLB is a 28 byte buffer which can 
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contain up to 85 entries, overflow of this stack will result in an 

error stop. The variables required to use and maintain the stack are: 

XKIND which is assigned the classifying letter; XNEXT, a two byte 

variable which is incremented each time a new label is created; 

XCRRNT, a two byte variable which is given the value of the numerical 

part of a label being pulled from the stack; and XPOINT which gives 

the current displacement in the stack. 

The following nine routines are available for accessing and 

manipulating the stack, but only two of them operate directly on 

SYSTLB: XPUSH and XPULL. 

XPUSH pushes XKIND and XNEXT into the stack, increments XPOINT 

by three to point to the next available position, and increments XNEXT 

by one. If the stack will overflow then XPUSH causes an error stop. 

XPULL pulls the top label from the stack, placing it in XKIND 

and XCRRNT. XPOINT is decremented by three to point to the next label 

in the stack. An attempt to pull from an empty stack results in an 

error stop. 

XPSHLB and XPSHOP both set XCRRNT from XNEXT then call XPUSH, 

note that XNEXT mst be set before these routines are called. In both 

cases the new label is going to be used in the next line of object 

code, as line label in the first case and as operand in the second. 

Thus, XPSHLB sets ZLABEL hi to S$FF and XPSHOP sets ITMLEN to SFE. 

XPLJMP and XPLLAB are called with an expected value for XKIND 

in the accumulator. This value is saved then XPULL is called to pull 

the most recent label from the stack. If the type of the pulled label 

agrees with the saved expected value then one line of object code is 



115 

emitted, otherwise a nesting error has occured and an error stop 

results. The object code emitted is: 

JMP LABEL or 

LABEL =* respectively. 

XPLBNC performs the same functions as XPLLAB except that there 

is no check made of label kind. 

XFNDJP is called to search for the most recent occurence of a 

label of a particular type, the type specification is received in the 

accumulator. XFNDJP saves the current value of XPOINT and calls XPULL 

repetitively until a label of the required type is found or the stack 

is empty. The latter case is a nesting error and results in an error 

stop, otherwise a line of object code is emitted: 

JMP XLABEL 

then the original value of XPOINT is restored so that in effect no 

label is pulled from the stack. 

In addition to the above, there is a routine XNOPSH which sets 

XCRRNT from XNEXT, sets ITMLEN to $FE then calls PUTLIN to emit a 

line of object code with the new label as operand. The operator must 

be set before XNOPSH is called. Note that the new label is not pushed 

into the stack. 

7-3 To Output A Line Of Object Code 

PUTXLB is called from PUTLIN when a system line label is 

encountered either as an operand or line label. It will output to 

object; the letter "X"; the letter found in XKIND; then the four 

hexidecimal characters representing the value found in XCRRNT. HXCHRH 
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and HXCHRL are used to output the ASCII characters for the high and 

low parts respectively, of a hexidecimal number. 

procedure PUTXLB; 

procedure PUTBYT(A); 

begin gosub HXCHRH(A) ; gosub PUTACC(A); 

gosub HXCHRL(A) ; gosub PUTACC(A); 

end 

begin gosub PUTACC("X") ; gosub PUTACC(XKIND) ; 

gosub PUTBYT(XCRRNT hi); gosub PUTBYT (XCRRNT lo); 

end 

PUTLIN, which supervises the output of each line of object 

code, will now be more precisely described: 

procedure PUTLIN; 

begin 

$40 -> OTFLAG; gosub PUTACC(SP); 

case ZLABEL hi ! put the LABEL ! 

of $0: gosub PUTACC(SF9); ! put 8 spaces ! 

of SFF: gosub PUTXLB; ! system line label ! 

$0 -> ZLABEL hi; gosub PUTACC(SP); 

other ! user line label ! 

$O -> Y; 

loop 

if ind ZLABEL,Y = $0 then 

gosub PUTACC(SP); gosub PUTACC(Y + $FA); exitloop 
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else gosub PUTACC(ind ZLABEL,Y); 

if Y = MAX then’ gosub PUTACC(SP); exitloop 

else inc Y endif 

endif 

endloop 

$0 -> ZLABEL hi 

endcase 

! put the OPERATOR ! 

OPDISP -> Y; 

loop gosub PUTACC(OPLIST,Y); 

if OPLIST,Y = SP then exitloop else inc Y endif 

endloop 

! put the OPERAND, if any ! 

if ITMLEN = SFE then gosub PUTXLB 

orif ITMLEN /= S$FF then 

if IMMFLG = $0 then ! immediate operand ! 

gosub PUTACC("#") ; $01 -> IMMFLG endif 

$00 => Y; 

loop if ind ZITEM,Y = $00 or Y > ITMLEN then exitloop 

else gosub PUTACC(ind ZITEM,Y); inc Y endif 

endloop 

endif 

SFF -> ITMLEN; gosub PUTACC(CR) ; SOTFLG -> OTFLAG; 

end 

Note that the last character output is the carriage return 

which signals end-of-line, and that the flags ZLABEL and ITMLEN are 

both reset to indicate empty fields. 
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There are nine routines used by the translating routines when 

preparing a line of object code. These routines apply to frequently 

occurring types of operands and line labels and need only brief 

explanation here. 

SETITM puts the address of the buffer ITMBUF into ZITEM, so 

that the contents of ITMBUF will be the operand. 

SETLAB puts the address of the buffer LABLIN into ZLABHI, so 

that the line is labelled with a user line label. 

SETZOP stores "00" in ITMBUF as operand and sets ITMLEN to 

$Ol. 

STLBOP puts the address of the buffer LABJMP into ZITEM, and 

sets ITMLEN to 5 so that a user line label is the operand. 

STNMIT puts the identifier found in the TABLE record found at 

the address in ZNAMFG into the buffer ITMBUF, the current 

displacement in ITMBUF is put into ITMBFY, and the length of the 

identifier ( ITMBFY - 1 ) is put into ITMLEN. SETITM is then called. 

Thus an identifier name has been put in ITMBUF and set as the operand, 

this is done when the identifier name is only part of the operand to 

be output in the object code. 

STNMLB puts the address found in ZNAMFG into ZLABEL so that 

an identifier found in TABLE will be the line label. this is only used 

during the translation of the declarations. 

STNMOP puts the address found in ZNAMFG into ZITEM and sets 

ITMLEN to 5 so that an identifier found in TABLE will be the operand. 

STV16H is called when the high part of a WORD variable is to 
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be operand. This is done by using STNMIT to put the identifier into 

ITMBUF, then using LITITM to add the characters "+1" so that the 

second byte of the variable is referenced. 

LITITM is used to add strings of characters to the contents 

of ITMBUF. The character strings which may by used are found in the 

buffer LITBUF, each separated by the null character (00). The 

displacement of the string in LITBUF is to be put into the accumulator 

before LITITM is called. 



CHAPTER 8 

DISCUSSION 

8.1 Testing The Compiler 

The first part of the compiler to be written was the character 

recognition routine, [Section 6.1], followed by the routines required 

to search, build and read the symbol tables. These were tested with 

short, specific test routines, usually followed by a core dump of the 

symbol tables and of the zero page variables. Preliminary versions of 

ADVANC, DRIVER and FATAL were written and from this point on all new 

code could be tested in the environment of the current state of the 

GRASSHOPPER compiler. 

As each new section was added to the developing compiler, it 

was tested using source code written in the current state of the 

GRASSHOPPER language, designed to cause all paths of the new code to 

be executed. Appendix B contains two examples of these test programs, 

TESTXY and TESTIF. TESTXY is devoted to the special addressing 

problems involving indexed operands outlined in Section 3.3 and in 

Table 3.3. The object code required for both the general and special 

cases was outlined in Tables 3.4, 3.4, 3.6 and 3.8. In TESTXY, the 

relational expression, simple assignment statement and the comparison 

statement are tested for all cases where one operand is a register and 

the other is an indexed operand. TESTXY is successfully compiled to 

correct object code. 
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TESTIF tests the compilation of: 

if condition then 

where the condition may be a Condition variable or a _ relational 

expression, [Section 3.5.1]. The generation of comparison and 

branching code is tested for the eight kinds of Condition variables, 

as well as for all possible cases of: 

TERM RELATIONAL TERM; 

OPERATOR 

where both of the terms are variables, and where one or the other is a 

register. TESTIF is successfully compiled to correct object code, and 

an assembled listing of its object code is included in Appendix B. 

Error detection code was tested by attempting to compile bad 

code. After major revisions and additions were made, tested and 

debugged, the old test programs were brought up to date and 

re-compiled and their object codes quickly checked. At the time this 

chapter was being written, they were compiled again, and the object 

code checked in great detail: no errors in the compiler were found by 

this check. 

As the compiler became more advanced, working GRASSHOPPER 

programs were written, compiled, their object code examined and 

tested. The purpose of these programs was to test the usability of 

the language itself, and to test the compiler with real programs. 

These programs were generally re-written as the compiler became more 

powerful. The most important of these was the GRASSHOPPER version of 

SRCMGR, [Section 5.3], which eventually replaced the SRCMGR program 

originally written in assembler. 
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When I decided to re-write FATAL, [Section 4.5], to give a 

more readable error dump, I eure 4% in GRASSHOPPER. This was done 

mainly because there was no reason to continue writing in assembler 

when GRASSHOPPER had become a usable programming language, but also to 

show that programs originally written in assembler code and programs 

compiled from GRASSHOPPER could be successfully linked. Thus, the 

compiler has been tested successfully with two programs in practical 

use. 

The GRASSHOPPER program, GRSHOP, shown in eae 2el fis 

compiled to produce the assembler code object program shown in Figure 

3.1. Examination of the object code, and comparison to the same 

program written in assembler will show an increase of 13 bytes in the 

version compiled from GRASSHOPPER. This increase was caused by four 

unneccessary jumps generated in the object code and the inefficient 

compilation of one of the assignment statements. 

The first of the unneccessary jumps occurs in the following 

Section of source code: 

Source Code Object Code 

if X = TOTAL then CPX #TOTAL 

BNE XF0009 

goto DOS JMP DOS 

else... JMP XG0008 

XFO009 =* 

Obviously the second jump generated is redundant, as is the jump to 

the operating system inserted at the end of the program by FINISH, 

[Section 4.1], in this program. Both of these sous be easily found 

and eliminated by a second optimizing pass, saving six bytes in the 

object code. 
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The other two unneccessary jumps are not immediatlely obvious, 

and would not be easily found by at optimizing pass. Each of the two 

statement lists in the Case construct in Figure 2.1 when compiled, are 

terminated by a jump to the end of the Case construct, [Section 

3.5.2]. In this program these jumps are never executed because the 

statement lists are enclosed in Loop constructs which contain no 

Exitloop statements. NEXT, called in each loop, will transfer control 

to the operating system when the program is complete. 

The remaining extra byte results from the wa" the following 

piece of code is compiled. 

Actual Better 

Source Code Object Code Object Code 

X + $1 -> SAVX; TXA STX SAVX 

CLC INC SAVX 

Apc #$1 
STA SAVX 

It is possible to write the compiler to detect such cases and generate 

code accordingly, this was beyond the scope of this project but could 

be attempted as an extension to the compiler. The actual cost is 

small, but if a programmer is really cramped for space, the addition 

could be written: 

X -> SAVX; inc SAVX; 

which would be compiled to the object code listed as "Better Object 

Code", above. 

8.2 Use Of GRASSHOPPER 

The purpose of developing GRASSHOPPER was to provide a 

language which could be used for systems programming on the MOS 6502 
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microcomputer. It is a readable language, with the structured 

constructs and strict data-typing of many high-level languages. On 

the other hand it retains the flexibility and mch of the efficiency 

of assembler code, which is required in a language to be used for 

systems programming. As was mentioned in the previous’ section, 

GRASSHOPPER was used successfully in the re-writing and expanding of 

two compiler programs. 

GRASSHOPPER, in its current state, is not suitable as a 

teaching language. I have assumed that the user has a good 

understanding of assembler code programming, and a new programmer 

could too easily get into trouble using GRASSHOPPER. There are 

changes which would make it more suitable for the student programmer. 

HEADER could be altered to restrict the starting address to over 

$3179, so that the operating system is not over-written. 

The indirect indexed and indexed indirect operands are 

currently written: 

ind ZEROPG,Y; 

ind ZEROPG, xX; 

respectively, [Section 2.1.4]. This could be made more explicit by 

changing the syntax to: 

ZEROPG, ind, Y; 

ZEROPG, X, ind; 

While this would result in more fatal syntax errors, it may reinforce 

the difference in the addressing modes. | 

The direct access to the accumulator will be a dangerous 
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source of error if the user does not fully understand assembler code 

programming. If GRASSHOPPER. should ever be used for teaching 

purposes, it sould be altered so that the accumulator cannot be 

explicitly accessed by the user. 

With these changes, GRASSHOPPER could be useful as a_ teaching 

language, where the student has had experience programming in a high 

level language and is starting to learn the techniques. of 

microcomputer programming. It is a simple, readable language, which 

can be easily learned. Its data types, data addressing modes and data 

manipulation operations are those which are available to the assembler 

code programmer on the MOS 6502. Thus a student could be introduced 

to working in the environment of a microprocessor without having to 

learn the assembly language itself. 

8.3 How The Language Be Further Developed 

The greatest deficiency in the current implementation of 

GRASSHOPPER is the primitive state of subroutine calls. Parameter 

passing and the developement of function subprograms would both be 

useful. 

The data manipulation statements could be expanded in several 

ways, including the implementation: of Word operand arithmetic; of 

multiplication and division operations; and of complex assignment 

statements. In the relational expression and the comparison and 

assignment statements: 

REGISTER OPERATOR REGISTER 

is currently not allowed. It may be useful to extend the compiler to 
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permit two registers in such expressions. Another useful extension 

would be the implementation of a multiple assignment, so that: 

Expression -> RESULTL <-> RESULT2 -> RESULT3; 

would be a legal assignment format. Also, GRASSHOPPER could be easily 

extended to allow numbers of base ten. 

The WITH construct described in the introduction to this 

report, and used in algorithm descriptions, could be a _ useful 

addition. 

A second pass to the compiler should be written, both for the 

purposes of error checking and optimization. Error checking could 

then be done on line labels and for branch out of range, the latter of 

which could be corrected by the second pass. Optimization would 

include searching for consecutive jumps with no path to any but the 

first, and storing from a register then reloading the same operand 

into the same register. Checking for branch out of range and the 

separate optimization of object code would have been made difficult in 

the first pass by the assembler code inserts. A second pass which 

would read all of the assembler code object program, both compiled and 

inserted, would be easier to write. 

Error recovery should be attempted, so that a parsing scan of 

the source code can continue after a fatal error has been detected. 



APPENDIX A 

INDEX OF ROUTINES 

Name Described Important References 

ADVANC 6.4 CH.4, 5.3, CH.6, CH.5, 8.1 
ADVKEY 6.4 
ADVPRO 4.3 

CHRKY 1 6.1 6.2.3 

CHRKY2 6-1 6.2.3 
CHRNAM 6.1 
CHRTYP 6-1 

CLEGAL 6-1 
CMPARE 6.2.1 

DCLARE 4.3 4.0, 4.1, 6.2.2 

DCLARR 4.3 
DCLCON 4.3 
DCLCOP 4.3 
DCLST 4.3 

DCLV8 4.3 
DCLV16 4.3 
DCLZER 4.3 
DRIVER 4.1 4.3, 4.4, 8.1 
FATAL “4.5 numerous 
FINISH 4.1 5-1, 5.4 
GETS YM 6.1, 6.4 6-0 
HEADER 4.1 4.0, 8.2 
INKEY 6.2.2 4.1 
INNAME 6.2.2 4.1, 4-5, 6-0, 6-4 
INSERT 323 4.3, 4.4, 4.5 

INSTRG 5.3 4.2 
LITITM 7-3 

MAP 6.2 
NEWREC 6.2.2 
NEXTLN 5.3 4.5, 6-0, 6-4 
OPBILT 4.2.1 4.3 
OPB1VR 4.2.1 
OPB2LT 4.2.1 

OPBYT1 4.2.1 

OP JMP 4.2.1 
OPREG 4.2.2 
PRIME 4.1 eds ets O62 

PUTACC 5.4 7.3 
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Index Of Routines, Continued 

Name Described Important References 

PUTLIN 404, 504, CHe7 
PUTOUT 
PUTXLB 
RDKEY 
RDKEY 1 
RDKEY2 
RDNAME 
RDNUMX 
REGMP1 
REGMP2 
SEARCH 
SETI TM 
SETLAB 
SETSTR 
SETZOP 
SRCHKY 
SRCHNM 
SRCMGR 
STDELM 
STEXPR 
STLBOP 
STMLST 
STMNXT 
STNMIT 
STNMLB 
STNMOP 
STV16H 
VRBLST 
WARN 
XFNDJP 
XNOPSH 
XPLBNC 
XPLJMP 
XPLLAB 
XPSHLB 
XPSHOP 
XPULL 
XPUSH 
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APPENDIX B 

EXAMPLES OF TEST PROGRAMS 

FIGURE B-l: Test Program, For Special Addressing Of 

Indexed Operands 

10 ’PROGRAM’ $4500; 

20[; TESTXY ] 
30 
40 ‘ARRAY’ ARRAY ($02) = ($01, $02); 
50 
60 “ZEROPAGE’ “AT’ $50, ZEROPG; 
70 
80 ’BEGIN’ 
90[; Relational Expressions ] 

100 “IF’ A = ARRAY,X ‘THEN’ [; A = ARRAY,X] ‘ENDIF’ 
110 “IF” ARRAY,X = A ’THEN’[; ARRAY,X = A] “ENDIF’ 
120 “IF’ X = ARRAY,X “THEN” [; X = ARRAY,X] ‘ENDIF’ 
130 “IF’ ARRAY,X = X “THEN’ [; ARRAY ,X = X] ’ENDIF’ 
140 
150[; Simple Assignment Statements ] 

160[; ARRAY,REG -> REG ] 
170 ARRAY ,X -—> A; ARRAY ,Y => A; 

180 ARRAY,X -> X;3 ARRAY,Y -> X;3 

190 ARRAY,X -> Y; ARRAY, Y -> Y; 
200 
210[; ZEROPG,REG -> REG ] 

220 ZEROPG,X -> A; ZEROPG,Y -> A; 
230  ZEROPG,X -> xX; ZEROPG,Y => X; 
240 #ZEROPG,X -> Y; ZEROPG,Y -> Y; 
250 
260[; “IND’ ZEROPG,REG -> REG ] 
270 ‘IND’ ZEROPG,X -> A; “IND’ ZEROPG,Y -> A; 
280 ‘IND’ ZEROPG,X => X; “IND’ ZEROPG,Y -> X; 
290 ‘IND’ ZEROPG,X -> Y; “IND’ ZEROPG,Y -> Y; 
300 
310[; REG -> ARRAY,REG ] 
320 A -> ARRAY,X; A -> ARRAY,Y; 
330 X -> ARRAY,X; X -> ARRAY,Y; 
340  Y -> ARRAY,X; Y -> ARRAY,Y; 
350 
360[; REG -> ZEROPG,REG ] 
370 A -> ZEROPG,X; A -> ZEROPG,Y; 
380 X -> ZEROPG,X; X -> ZEROPG,Y; 
390 Y => ZEROPG,X; Y -> ZEROPG,Y; 

129 



130 

410[; REG -> “IND’ ZEROPG,REG ] 
420 A-> “IND’ ZEROPG,X; A -> “IND’ ZEROPG,Y; 
430 X-=-> “IND’ ZEROPG,X; xX -> ’IND’ ZEROPG,Y; 
440 Y -> “IND’ ZEROPG,X; Y -> “IND’ ZEROPG,Y; 

460; Conditional Statements ] 

470[3 REG : ARRAY,REG ] 

480 A: ARRAY,X; A : ARRAY,Y; 

490 X : ARRAY,X; X : ARRAY,Y; 

500 Y :; ARRAY,X; ¥ .:3-ARBRAY, Ys 

510 
520[;3 REG : ZEROPG,REG ] 
530 A: ZEROPG,X; A : ZEROPG,Y; 

540 X: ZEROPG,X; X-:. ZEROPG,Y; 
550°. Y £=ZEROPG;X; Y : ZEROPG,Y; 
560 
S7OL; REG : “IND’ ZEROPG,REG ] 

580 A: “IND’ ZEROPG,X; A: “IND’ ZEROPG,Y; 
590 xX: “’IND’ ZEROPG,X; Xo “UND ZEROPG,.¥ 3 

600 Y : “IND’ ZEROPG,X; Y : “IND’ ZEROPG,Y; 

610 
620[; ARRAY,REG : REG ] 

630 ARRAY,X : A; ARRAY,Y : A; 

640 ARRAY,X : X; ARRAY ,Y =: “X: 

650 ARRAY,X : Y3 ABRAY,¥ 3. -Y3 

660 

670[; ZEROPG,REG : REG ] 
680 ZEROPG,X : A;~ ZEROPG,Y : A; 
690 ZEROPG,X : X; ZEROPG, Y : X; 

700 ZEROPG,X: Y; ZEROPG,Y : Y; 
710 

720[; “IND’ ZEROPG,REG : REG ] 
730 “IND’ ZEROPG,X: A; “IND’ ZEROPG,Y : A; 
740 “IND’ ZEROPG,X : X; “IND’ ZEROPG,Y : X; 

750 “IND’ ZEROPG,X : Y; “IND’ ZEROPG,Y : Y; 
760[; 
770; Prefix Operator Statements ] 

780[; DECREMENT ] 
790 “DEC” ARRAY,X; “DEC’ ARRAY,Y; 
800 “DEC” ZEROPG,X; DEC’ ZEROPG,Y; 
810 “DEC” “IND’ ZEROPG,X; ‘DEC’ “IND’ ZEROPG,Y; 

830[; INCREMENT ] 

840 “INC’ ARRAY,X; “INC’ ARRAY,Y; 
850 “INC” ZEROPG,X; “INC’ ZEROPG,Y; 
860 “INC’ “IND’ ZEROPG,X; ‘INC’ “IND’ ZEROPG,Y; 
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FIGURE B.2: Test Program, For The Translation Of: 
2 if condition then 

10 ’“PROGRAM’ $4500; 
20[; TESTIF ] 
30 “BYTE’ AA = $10, BB = $20, CC; 
40 ‘CONDITION’ CARRY = $0, NCARRY /= SO, 
50 ZERO = $1, NZERO /= $l, 
60 OVER = $6, NOVER /= $6, 

70 NEG = $7, NOTNEG /= $7; 

80 

90 “BEGIN’ 

100[; 
110; CONDITION variables ] 

120 AA : BB; 

130 ei CARRY ‘THEN’ [; CARRY +} 

140 “ORIF’ NCARRY “THEN’ [; NCARRY ] 

150 “ORIF’ ZERO ‘THEN’ [; ZERO _/] 
160 “ORIF’ NZERO ‘THEN’ [; NZERO ] 

170 “ORIF’ OVER “THEN” [; OVER ] 

180 “ORIF’ NOVER ‘THEN’ [; NOVER ] 
190 “ORIF’ NEG “THEN’ [; NEG ] 
200 “ORIF’ NOTNEG ’THEN’ [; NOTNEG ] “ENDIF’ 

2Y6{; 

220; Relational Expressions 

230; None-Register Terms ] 

240 ‘IF’ AA = BB ‘THEN’ [; AA = BB ] 
250 “ORIF’ AA /= BB ‘THEN’ [; AA /= BB ] 
260 “ORIF’ AA <-BB “THEN’ [; AA < BB ] 

270 “ORIF’ AA <= BB ‘THEN’ [; AA <= BB ] 

280 “ORIF’ AA > BB “THEN’ [; AA > BB ] 

290 “ORIF’ AA >= BB ‘THEN’ [; AA >= BB ] “’ENDIF’ 
300[; 

S735 With Register Terms 

320; TERM = TERM ] 
330 “IF’ A = BB ‘THEN’ [; A = BB ] 
340 “ORIF’ BB =A ‘THEN’ [; BB=A ] 
350 “ORIF’ X = BB “’THEN’ [; X = BB ] 

360 “ORIF’ BB = X “’THEN’ [; BB =X ] 

370 “ORIF’ Y = BB ‘THEN’ [; Y = BB ] 

380 “ORIF’ BB = Y ‘THEN’ [; BB = Y ]j] “’ENDIF’ 

390[; 
400; : TERM /= TERM ] 

410 Me A /= BB ’THEN’ [; A /= BB ] 
420 “ORIF’ BB /= A ‘THEN’ [; BB /=A ] 
430 “ORIF’ xX /= BB “THEN’ [; X /= BB ] 
440 “ORIF’ BB /= X ‘THEN’ [; BB /=X Jj 
450 “ORIF’ Y /= BB ’THEN’ [; Y /= BB ] 
460 “ORIF’ BB /= Y ‘THEN’ [; BB /= Y ] “’ENDIF’ 
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480; 
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540 
550[; 
560; 

570 
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650 
660 
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690 
700 
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720; 

730 
740 
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* THEN’ 
“ THEN’ 
’ THEN’ 
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] “ ENDIF’ 



4500 
4500 4€0745 

4503 00 

4504 10 
4505 20 

4506 00 
4507= 

4507 ADO445 
450A CD0545 
450D 9003 

450F 403245 
4512= 

4512 B003 

4514 4¢€3245 
4517= 
4517 D003 

4519 403245 
451C= 

451c F003 

451E 403245 
452l= 

4521 5003 

4523 4€3245 
4526= 
4526 7003 

4528 403245 
452B= 

452B 1003 

452D 403245 
4530= 
4530 3000 

4532= 
4532= 

4532 ADO445 
4535 CDO545 

XM0000 

BB 

cc 
XS0000 

XFO0002 

XF0003 

XF0004 

XF0005 

XF0006 

XF0007 

XF0008 

XFO009 = 
XG0001 = 
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FIGURE B.3: Translation of Figure B.2 

*= $4500 
JMP XS0000 

TESTIF 

-BYTE 00 

-BYTE $10 
-BYTE $20 

-BYTE 00 

CONDITION variables 

JMP XG0001 

BCS XF0003 
NCARRY 

JMP XGO001 
=* 

BNE XFO004 
ZERO 

JMP XGOOO1 
=x 

BEQ XFO005 
NZERO 

JMP XGO001 
=k 

BVC XF0006 
OVER 

JMP XGO001 

BVS XF0007 
NOVER 

JMP XGO001 
=k 

BPL XF0008 
NEG 

JMP XGO001 
=* 

BMI XFOO09 
NOTNEG 

Relational Expressions 

None-Register Terms 

LDA AA 
CMP BB 



4538 DO03 

453A 4€7545 
453D= 
453D AD0445 
4540 CDO0545 
4543 F003 

4545 407545 
4548= 
4548 ADO445 
454B CDO545 
454E B003 

4550 4¢7545 
4553= 

4553 AD0445 
4556 CDO545 
4559 F002 

455B B003 
455D= 

455D 4C€7545 
4560= 
4560 ADO445 
4563 CD0545 
4566 FOO5 
4568 9003 

456A 407545 
456D= 

456D AD0445 
4570 CD0545 
4573 9000 

4575= 
4575= 

4575 CD0545 
4578 DOO3 

457A 4CA245 
457D= 
457D CD0545 
4580 D003 

4582 4CA245 
4585= 

> 

XFOO0B 

XFO00C 

. 
> 

XFOOOD 

XFOOOE 

> 

XFOOOF 

. 
> 

XF0010 

XFOO11 
XGOO0A 

XF0013 

XF0014 

BNE 

JMP 
=* 

LDA 
CMP 
BEQ 

JMP 
=* 

LDA 

BCS 

JMP 

LDA 
CMP 
BEQ 
BCS 

=* 

LDA 
CMP 
BEQ 
BCC 

CMP 
BNE 

JMP 
=k 

CMP 

BNE 

JMP 
=x 
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XFOOOB 
= BB 

XGO00A 

BB 

XF000C 
AA /= BB 

XGOOO0A 

AA 
BB 
XFOOOD 

AA < BB 
XGOQ00A 

AA 
BB 
XFOOOE 
XFOOOF 

AA <= BB 

XGOOOA 

AA 
BB 
XFO0010 
XF0010 

AA > 

XGO00A 

BB 

AA 
BB 
XFO0O11 

AA >= BB 

With Register Terms 
TERM = TERM 

BB 
XF0013 

A = BB 

XG0012 

BB 

XF0014 
BB =A 

XG0012 



4585 ECO545 
4588 DO03 

458A 4CA245 
458D= 

458D EC0545 

4590 D003 

4592 4CA245 
4595= 
4595 CC0545 
4598 D003 

459A 4CA245 
459D= 
459D CCOQ545 
45A0 D000 

45A2= 
45A2= 

45A2 CDO545 
45A5 F003 

45A7 4CCF45 
45AA= 
454A CD0545 
45AD F003 

45AF 4CCF45 
45B2= 
45B2 EC0545 

45B5 F003 

45B7 4CCF45 

45BA= 
45BA EC0545 

45BD F003 

45BF 4CCF45 
45C2= 
45C2 CC0545 
45¢c5 F003 

45¢7 4CCF45 
45CA= 
45CA CC0545 
45CD FOOO 

XFOO015 

XF0016 

XF0017 

XF0018 

XG0012 

XFOO1A 

XFOO1B 

XFOO1C 

XFOOLD 

XFOOLE 

CPX 
BNE 

JMP 
=k 

CPX 

BNE 

=k 

CPY 
BNE 

JMP 
=k 

CPY 
BNE 

=* 

=k 

CMP 
BEQ 

JMP 

CMP 
BEQ 

CPX 
BEQ 

JMP 
=k 

CPX 
BEQ 

=k 

CPY 

BEQ 

JMP 
=* 

CPY 
BEQ 
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BB 
XFOO1L5 

X = 

XG0012 

BB 
XF0016 

BB = 

XG0012 

BB 

XF0017 
Y= 

XG0012 

BB 
XF0018 

BB = 

BB 
XFOOL1A 

A /= 
XG0019 

BB 
XFOO1B 

BB /= 
XG0019 

BB 
XFOOLC 

X /= 
XG0019 

BB 

XFOO1D 
BB /= 

XG0019 

BB 
XFOOLE 

Y /= 
XG0019 

BB 
XFOOIF 
BB /= 

BB 

x 

BB 

Y 

TERM /= TERM 

BB 

A 

BB 

BB 



45CF= 
45CF= 

45CF cD0545 
45D2 B003 

45D4 4C0246 
45D7= 
45D7 CDO545 
45DA FOO5 
45DC 9003 

45DE 4C0246 
45E1= 
45E1 EC0545 
45E4 B003 

45E6 400246 
45E9= 

45E9 ECO545 
45EC F005 
45EE 9003 

45FO 4€0246 
45F3= 
45F3 Cc0545 
45F6 BO03 

45F8 4C0246 
45FB= 
45FB CCO545 
45FE FOO2 
4600 9000 

4602= 
4602= 

4602 CD0545 
4605 F002 
4607 B003 
4609= 

4609 4C€3546 
460C= 
460C CD0545 
460F 9003 

4611 4€03546 

XFOOIF = 
XG0019 

> 

> 

XF0021 

XF0022 

XF0023 

XF0024 

XF0025 

XF0026 
XG0020 

XF0028 

XF0029 

H il + * 

CMP 
BCS 

=k 

CMP 

BEQ 
BCC 

=k 

CPX 
BCS 

JMP 
=k 

CPX 

BEQ 
BCC 

JMP 
=k 

CPY 
BCS 

CPY 
BEQ 
BCC 

=* 

CMP 
BEQ 
BCS 

=x 

CMP 

BCC 
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BB 
XFO021 
A< 

XG0020 

BB 

XF0022 
XF0022 
BB < 

XG0020 

BB 

XF0023 
X< 

XG0020 

BB 
XF0024 
XF0024 
BB < 

XG0020 

BB 
XFO0025 
Ys 

XG0020 

BB 

XF0026 
XF0026 
BB < 

BB 

XF0028 
XF0029 

A <= 

XG0027 

BB 

XFOO02A 

BB <= 

XG0027 

TERM < TERM 

TERM <= TERM 



4614= 
4614 EC0545 

4617 F002 
4619 B003 
461B= 

461B 4€3546 

461E= 
461E EC0545 

4621 9003 

4623 4C€3546 
4626= 
4626 CCO0545 

4629 FOO2 
462B B003 
462D= 

462D 4C3546 
4630= 
4630 CC0545 
4633 9000 

4635= 
4635= 

4635 CDO545 
4638 FOO5 

463A 9003 

463C 4C6846 
463F= 
463F CDO545 
4642 B003 

4644 406846 
4647= 
4647 ECO545 
464A FOO5S 
464C 9003 

464E 406846 
4651= 
4651 EC0545 
4654 BO003 

4656 4C6846 
4659= 
4659 CC0545 

. 
> 

> 

. 
? 

XFOO2A =* 
CPx 
BEQ 
BCS 

XF002B =* 

JMP 
XFOO2C =* 

CPX 
BCC 

XFO02D =* 
CPY 
BEQ 
BCS 

XFOO2E =* 

XFOO2F =* 
CPY 

BCC 

i *+ XF0030 
XG0027 =* 

CMP 
BEQ 
BCC 

XF0032 = 
CMP 
BCS 

JMP 
XF0033 =* 

CPX 
BEQ 
BCC 

JMP 
XF0034 =* 

CPX 
BCS 

XF0035 =* 
CPY 
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BB 

XF002B 
XF002C 

X <= BB 

XG0027 

BB 

XF002D 
BB <= X 

XG0027 

BB 

XF002E 
XF002F 

Y <= BB 

XG0027 

BB 

XF0030 
BB <= Y 

BB 

XF0032 
XF0032 

A > BB 
XG0031 

BB 
XF0033 
BB > A 

XG0031 

BB 
XF0034 
XF0034 

xo >- BB 

XG0031 

BB 
XF0035 
BS: > Xx 

XG0031 

BB 

TERM > TERM 



465C F005 
465E 9003 

4660 4C6846 
4663= 
4663 CC0545 
4666 BOOO 

4668= 
4668= 

4668 CDO0545 
466B 9003 

466D 4C9B46 
4670= 

4670 CDO545 
4673 F002 
4675 B003 

4677= 

4677 4C9B46 
467A= 
467A ECO545 
467D 9003 

467F 4C9B46 
4682= 
4682 EC0545 

4685 F002 
4687 B003 

4689= 

4689 4C9B46 
468C= 
468¢C CC0545 
468F 9003 

4691 4C9B46 
4694= 
4694 ¢cc0545 

4697 FOO2 
4699 BOOO 
469B= 

46 9B= 
469B= 

469B 4C512A 

> 

XF0036 

XF0037 

XG0031 

. 
> 

XF0039 

XF003A 

XF003B 

XF003C 

XF003D 

XF003E 

XFO03F 

XF0040 

” xF0041 

XG0038 

BEQ 
BCC 

JMP 
=k 

CPY 

BCS 

CMP 
BCC 

JMP 
=k 

CMP 

BEQ 
BCS 
=k 

ak 

CPX 
BCC 

JMP 
=* 

CPX 
BEQ 
BCS 
=* 

JMP 
=* 

CPY 

BCC 

JMP 
=k 

CPY 

BEQ 
BCS 
=* 

= 

=k 

JMP 
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XF0036 
XF0036 

eee 
XG0031 

BB 

XF0037 
BB > 

BB 
XF0039 

A >= 
XG0038 

BB 

XFO03A 
XF003B 

BB >= 

XG0038 

BB 

XFO03C 

X >= 

XG0038 

BB 
XF003D 
XF003E 

BB >= 
XG0038 

BB 
XFOO3F 

Y >= 
XG0038 

BB 
XFO0040 
XFO0041 

BB >= 

$2A51 
- END 

BB 

BB 

A 

BB 

BB 

TERM >= TERM 
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