AN MCS6502-BASED MICROCOMPUTER—THE KIM-1

INTRODUCTION

This chapter is written for persons who need to become acquainted with the KIM-1® microcomputer. This chapter uses the programmed instruction approach. Beginning with a discussion of the actual power supply connections, the chapter then proceeds to discuss the function of each key on the KIM-1 keyboard. The function of each key is highlighted by tables showing keys pressed and the corresponding display. After the keyboard entry of a simple problem is discussed, the use of the Teletype® model ASR33 as an input/output terminal is presented. The use of the Teletype is discussed in detail with reproductions of actual printed outputs and punched paper tapes being provided. Next the use of an audio cassette tape recorder is presented. Examples illustrate the detailed step by step procedure for recording onto magnetic tape from the microcomputer, and vice versa. Simple programming examples are used in all cases so that the reader can focus his attention on the operation of a microcomputer at machine or assembly language levels.

This chapter provides detailed information on the interaction between a user and a microcomputer when assembly level (or machine) language is used. After studying this chapter the reader will be in a position to decide whether this detailed level of interaction is acceptable,

[®] KIM-1 is a registered trademark of the MOS Technology Corporation

or whether he should consider the use of a microcomputer equipped with a higher level language. A higher level language, such as BASIC, makes the computer much more transparent to the user. (The reader should be forewarned, however, that there are literally hundreds of different versions of BASIC, so purchase of a microcomputer with a resident BASIC does not solve all of the user's problems.)

8.1 WHAT IS A KIM-1?

A KIM-1 (Keyboard Input Monitor) is a microcomputer built around the 6502 microprocessor presently manufactured by MOS Technology and Rockwell. The KIM-1 presently (1977 - 1978) sells for a little over \$200 and is a complete microcomputer which includes the following:

- * The microprocessor
- * 2048 ROM bytes
- * 1024 + 128 RAM bytes
- * 30 input/output pins
- * 2 timers
- * Interface for audio cassette
- * Interface for a Teletype
- * 23 key keyboard
- * Display consisting of 6 seven bar characters

The KIM-1 is an example of the so-called single-board micro-computers, because, except for the power supplies, it is fabricated on a single printed circuit board measuring approximately 20 by 28 cm, (8½ by 11 inches). Figure 8.1-1 is a photograph of the KIM-1 and the single 5 volt power supply which is required when using only the keyboard, a Teletype, or other compatible terminal. An additional 12 volt power supply is required if an audio cassette tape recorder is added. The KIM-1 circuit board is shown in Figure 8.1-2.

The KIM-1 is typical of the many microprocessor based microcomputers which are presently being sold. It is the authors' opinion that this chapter will be of more use to the reader if one microcomputer is presented in depth as opposed to discussing several microcomputers in more general terms. Somewhat like learning to drive an automobile, or to ride a bicycle, the carryover from the use of one microcomputer to another is large so the adjustment period in learning to use a different microcomputer is surprisingly short.

Figure 8.1-1(a) The KIM-1 microcomputer

(b) The KIM-1 microcomputer connected to a 5 volt power supply (Note Teletype mode switch.)

Figure 8.1-2 Identification of the major components on the KIM-1 microcomputer printed circuit board (Courtesy RCC News)

8.2 THE KIM-1 SYSTEM: (A Micro versus a Mini)

A microcomputer system, such as the KIM-1, differs from a minicomputer system in much more than just cost. With a minicomputer, such as the Digital Equipment Corporation PDP-11, the documentation provided by the manufacturer is extensive, diversified, and quite specialized. It is not unusual to find all of the following documents:

- 1. An Installer's Manual provides unpacking information and power supply connections for the electrician.
- 2. An Operator's Manual provides front panel information for the operator.
- 3. A Software Manual provides information for the programmer.
- 4. A Hardware Manual provides information about the theory of operation.
- 5. A Maintenance and Trouble Shooting Manual provides the technician with schematic diagrams and periodic maintenance requirements, such as air filters which need to be changed or cleaned.

In the case of a microcomputer, the documentation is frequently very limited. (Fortunately, in the case of the KIM-1, rather extensive documentation is provided with three manuals; a Hardware Manual, a Software Manual, and a KIM-1 User's Manual.) Furthermore, in the case of the microcomputer, the installer, electrician, operator, programmer, and technician for maintenance and trouble shooting, are one and the same person.

8.3 AN EXAMPLE PROGRAM (EXAMPLE 8.1)

The purpose of this example program is to serve as a vehicle for illustrating the steps which are involved in going from the statement of a problem to a functioning computer program on the KIM-1 microcomputer. These steps will be the same, in principle, for any microprocessor; only the details will change from one particular microprocessor to another. These steps may be summarized as follows:

- * statement of problem
- * conversion to assembly language program
- * conversion to machine language program
- * entry of program into computer
- * execution and debugging of program
- * modification of program

The following additional steps are sometimes involved:

- * entry and execution from a Teletype (includes use of paper tape)
- * recording and playing back from an audio cassette tape recorder

Example 8.1. Add two positive numbers located intially in two memory locations and store the sum into a third memory location.

Comments. In order to keep this example as simple as possible:

- 1. We are considering only positive, one byte numbers.
- 2. We will not check for a carry out (overflow).

8.3.1 Example 8.1 - Assembly Language Program

The assembly language program for Example 8.1 is given in Table 8.3-1. The assembly language program is also frequently referred to as the "source code" and this designation is used in Table 8.3-1. The reader should note that the lefthand 4 columns are blank. At this time we could also insert the object code for all of the op codes, such as LDA, CLC, STA, etc. This has been done, and is shown in Table 8.3-2.

TABLE 8.3-1 Source Code for Example 8.1.

Note that the object code columns are blank.

	OBJEC	T CODI	5			CE CODE	
MEMORY ADDRESS	BYTE 1	BYTE 2	BYTE 3	LABEL	OP CODE	OPERAND	COMMENT
				NUM1			Designate one of the two numbers to be added as NUM 1.
				NUM2			Designate the second of the two numbers to be added as $NUM2$.
				SUM			Designate the sum of the two numbers to be SUM.
						:	
					SED		Set decimal Mode.
					LDA	NUMI	Load the accumulator with the numerical value of NUM1
					CLC		Clear Carry.
					ADC	NUM2	Add with carry NUM1 + NUM2. (There is no ADD instruction.)
					STA	SUM	Store the sum of two numbers into memory location SUM
				WAIT	JMP	WAIT	The 6502 microprocessor has no halt or stop command. This is a jump to itself.

TABLE 8.3-2 Source Code but Only Partial Object Code for Example 8.1. The Memory Map is needed in order to complete this table.

	OBJ.	ECT CO	DE		SOURCE CODE			
MEMORY ADDRESS	BYTE 1	BYTE 2	BYTE 3	LABEL	OP CODE	OPERANL	COMMENT	
				NUM1			Designate one of the two numbers to be added as NUM1	
				NUM2			Designate the second of the two numbers to be added as NUM2. $\label{eq:NUM2} % \begin{center} $	
				SUM			Designate the sum of the two numbers to be SUM	
						:		
	F8				SED		Set Decimal Mode.	
	A 5	ØØ			LDA		Load the accumulator with the numerical value of NUM1.	
	18				CLC		Clear carry.	
	65	Ø1			ADC	NUM2	Add with carry NUM1 + NUM2. (There is no ADD instruction.)	
	85	Ø 2			STA	SUM	Store the sum of two numbers into memory location SUM.	
	4C			WAIT	JMP	WAIT	The 6502 microprocessor has no halt or stop command. This is a jump to itself.	

In order to complete Table 8.3-2, we need to decide where to store the program and where to store (or look for) data (the two numbers to be added and the sum). In other words, we need to know where RAM is located and if it is available to the user. Frequently, some bytes of RAM are reserved for use by the Monitor program in the microcomputer. As we shall see later, in the case of the KIM-1, 17 bytes ($\emptyset\emptyset$ EF to $\emptyset\emptyset$ FF in hex) are reserved for the KIM-1 Monitor program. (The user may still decide to use these reserved memory locations, but with the caution that the Monitor program will store its own data in these memory locations.

We are now ready to proceed to the next section in order to learn more about the KIM-1 hardware. In particular, we are anxious to study the KIM-1 Memory Map, which will tell us how much memory we have, what type it is, and where it is located.

8,4 KIM-1 MEMORY MAP AND TABLE

In order to be able to use any microcomputer (including the KIM-1) at the assembly language (or machine code) level, the user

must know the answers to the following questions:

- * How much memory is there?
- * What type is it; (ROM, RAM, PROM, etc.)
- * Where is it in memory? (i.e., What is its address?)

The answers to these questions are provided in the memory map and the memory table. The memory map for the KIM-1 is shown in Figure 8.4-1. For convenience of notation, memory is divided into pages. Each page is 256_{10} bytes long. For example, page \emptyset encompasses \emptyset through \$FF while page 4 encompasses \$4 \emptyset \emptyset through \$4FF. We will use decimal page numbers throughout this material. The reader will note that a user generated program may make use of the following areas of memory:

- * all of page Ø except for ØØEF to ØØFF which are reserved for the KIM-1 Monitor program
- * all of page 1 with the caution that the stack will use some of page 1
- * all of page 2 and page 3
- * in page 23 all input/output locations from 1700 to 173F
 - all 64 bytes of RAM from 1780 to 17BF
 - an additional 44 bytes of RAM from 17C0 to 17EB

The memory table for the KIM-1 is given in Table 8.4-1. The reader will note that some of the information is the same as that provided in the memory map of Figure 8.4-1, but additional and more detailed address information is also provided. When using the KIM-1 the user will need to refer frequently to both of these memory information sources.

We will now use the information provided by the memory map and the memory table to complete the coding for Example 8.1 so that we may enter the program into the KIM-1 memory. This will be the subject for the next section.

8.5 MACHINE CODE FOR EXAMPLE 8.1

If we now refer back to Table 8.3-2, the reader will note that in order to complete that table, we need to decide where to store the program and where to store the data that will be used by the program in the RAM memory. It is usually a good programming technique to store the numerical data in page \emptyset because then we can use the so-called zero page instructions which require only two, rather than three, bytes

Figure 8.4-1 Memory map for the KIM-1 microcomputer (MOS Technology)

TABLE 8.4-1 Memory Table for the KIM-1 Microcomputer (Courtesy MOS Technology, Inc.)

ADDRESS	AREA	LABEL	FUNCTION
00EF 00F0 00F1 00F2 00F3 00F4 00F5	Machine Register Storage Buffer Application	PCL PCH P SP A Y X PAD	Program Counter - Low Order Byte Program Counter - High Order Byte Status Register Stack Pointer Accumulator Y-Index Register X-Index Register 6530-003 A Data Register 6530-003 A Data Direction Register
1702 1703	I/O 1	PBD PBDD	6530-003 B Data Register 6530-003 B Data Direction Register
1704 170F	Interval Timer		6530-003 Interval Timer (see Table 3.7.1-1, page 144)
17F5 17F6 17F7 17F8 17F9	Audio Tape Load & Dump	SAL SAH EAL EAH ID	Starting Address - Low Order Byte Starting Address - High Order Byte Ending Address - Low Order Byte Ending Address - High Order Byte File Identification Number
17FA 17FB 17FC 17FD 17FE 17FF	Interrupt Vectors	NMIL NMIH RSTL RSTH IRQL IRQH	NMI Vector - Low Order Byte NMI Vector - High Order Byte RST Vector - Low Order Byte RST Vector - High Order Byte IRQ Vector - Low Order Byte IRQ Vector - High Order Byte
1800 1873	Audio Tape	DUMPT LOADT	Start Address - Audio Tape Dump Start Address - Audio Tape Load
1C00	STOP Key + SST		Start Address for NMI using KIM "Save Machine" Routine (Load in 17FA & 17FB)
17F7 17F8	Paper Tape Dump (Q)	EAL EAH	Ending Address - Low Order Byte Ending Address - High Order Byte

of code, and hence less memory. Also, these two byte, zero page, instructions require less time to execute. We will not use this programming technique here because we require only three bytes of memory for the numerical data and the program itself is so short.

Using the memory map data given in Figure 8.4-1, we decide to:

- * store NUM1, NUM2, and the SUM into memory locations \$\phi\phi\phi\$, \$\phi\phi\phi\$, and \$\phi\phi\phi\$ (base 16), respectively
- * store the machine code into memory locations beginning with memory location $\emptyset\emptyset1\emptyset$ (base 16)

As a result of making these memory allocation decisions, the machine code for Example 8.1 may now be completed and it is shown in Table 8.5-1.

We are now ready to load the machine code for Example 8.1 into the KIM-1 memory. This is the subject of the next section.

TABLE 8.5-1 Assembly and Machine Code for Example 8.1

OBJECT CODE					SOURCE CODE			
MEMORY ADDRESS	BYTE 1	BYTE 2	BYTE 3	LABEL	OP CODE	OPERAND	COMMENT	
φφφφ				NUM1			Designate one of the two number to be added as NUM1.	
ØØØ1				NUM2			Designate the second of the two numbers to be added as NUM2	
ØØØ2				SUM			Designate the sum of the two numbers to be SUM.	
					:			
ØØ1Ø	F8				SĒD		Set Decimal Mode.	
ØØ11	A 5	ØØ			LDA	NUM1	Load the accumulator with the numerical value of NUM1.	
ØØ13	18				CLC		Clear Carry.	
ØØ14	65	Ø1			ADC	NUM2	Add with carry NUM1+NUM2 (There is no ADD instruction.)	
Ø Ø16	85	Ø 2			STA	SUM	Store the sum of two numbers into memory location SUM.	
ØØ18	4C	18	ØØ	WAIT	JMP	WAIT	The 6502 microprocessor has no halt or stop command. This is a jump to itself.	

Comment 1: We have arbitrarily decided to store NUM1, NUM2, and SUM into memory locations 0000, 0001, and 0002, respectively.

Comment 2: We have also arbitrarily decided to begin storing the object code into memory locations beginning with memory location 0010.

8.6 ENTERING EXAMPLE 8.1 CODE INTO KIM-1

We are now ready to enter the machine code for Example 8.1 (as given in Table 8.5-1) into the KIM-1 memory locations we selected in Section 8.4.

The first step is to apply power to the KIM-1 microcomputer printed circuit board. In this case, we need 5 volts, \pm 5%, with a current rating of at least 0.75 amperes. The circuit connections are shown in Figure 8.6-1. It is strongly recommended that these connections be checked very carefully each time the KIM-1 is used. Power supply polarity reversals can be catastrophic.

Table 8.6-1 presents a detailed key by key stroke entry of the machine code for Example 8.1 into the KIM-1 memory according to the decisions made and presented in Table 8.5-1. Table 8.6-1 also gives the information that the user will see on the display following the depression of the various keys. Comments are supplied, where necessary.

TABLE 8.6-1 Key by Keystroke Entry of Example 8.1 Code per TABLE 8.5-1 into KIM-1 Memory

Press Keys	See on Display	Comments
	blank	Apply 5 volts, ±5%, 0.75 amp. per Figure 8.6-1. There is no power ON-OFF switch on the KIM-1. The SST-ON switch is for selecting the single-step mode.
RS	xxxx xx	x implies an unpredictable display.
AD	no change	Puts KIM into address mode.
0010	0010 xx	Contents of memory location 0010 are displayed.
DA	no change	Puts KIM into DATA mode.
F 8	0010 F8	Enters F8 code into memory location 0010.
Ð	0011 xx	Increments the memory address displayed by one. This is easier than pressing the four keys for location 0011, which would accomplish the same thing.
A [5]	0011 A5	Enters A5 code into memory location 0011.
700	0012 00	Enters 00 code into memory location 0012.
TITIB	0013 18	Similarly, enters 18 code into memory location 0013
+65	0014 65	etc.
Ŧ0 <u>0</u>	0015 01	
+85	0016 85	
+02	0017 02	
+4C	0018 4C	
+118	0019 18	
+00	001A 00	This completes the loading of the code for Example 8.1 It is suggested that the user go back to memory location 0010, and then, using the + key, check sequentially through memory location 001A for possible errors

Figure 8.6-1 When used without Teletype, CRT, or audio tape recorder, the KIM-1 requires only one power supply connected as shown

8.7 EXECUTION OF EXAMPLE 8.1 FROM THE KIM-1 KEYBOARD

Table 8.7-1 presents a key by key stroke sequence for entering the numerical values of NUM1 and NUM2 and then executing the program using the GO key. We have arbitrarily selected NUM1 = 43 and NUM2 = 25. Again, we have presented the displays which the user will see after depressing the various keys and appended comments, where necessary. The resulting SUM is displayed in the last step of the table and is seen to be equal to 68, which is the correct answer in the decimal mode.

It is suggested that the user modify the program by changing the SED (set decimal mode) op code to CLD (clear decimal mode) and try different numerical values for NUM1 and NUM2 in order to gain a greater understanding of what the decimal and binary modes in the KIM-1 really mean. Problems are provided at the end of this chapter to help guide the user in this endeavor.

8.7.1 Single Step Execution of Example 8.1 Program

Table 8.7-2 presents a key by key stroke sequence for entering the numerical values for NUM1 and NUM2 and then executing the program

TABLE 8.7-1 Execution of the Example 8.1 Program from the KIM-1 Keyboard

NUM1 + NUM2 = SUM where NUM1 = 43; NUM2 = 25

Press Keys	See on Display	Comments
RS	xxxx xx	Reset. x implies display is not predictable.
AD	no change	Puts KIM-1 into ADDRESS input mode.
0000	0000 xx	Present contents of memory location 0000 are displayed.
DA	no change	Puts KIM-1 into DATA input mode.
4 3	0000 43	Enter 43 as the numerical value of NUM1 into location 0000.
+ 2 5	0001 25	Enter 25 as the numerical value of NUM2 into location 0001.
+00	0002 00	Clears memory location 0002 where the SUM will be placed.
AD 0 0 1 0	0010 F8	Prepares to run program by loading the beginning address (0010) of our program.
GO	blank	Program executes in literally a few microseconds.
RS	0010 F8	Reset KIM-1.
AD 0 0 0 0	0000 43	NUM1 is still equal to 43.
+	0001 25	NUM2 is still equal to 25.
+	0002 68	SUM is 68 and is the correct answer in the decimal mode. Recall that we had previously cleared this memory location.

TABLE 8.7-2 Single Step Execution of Example 8.1 Program from the KIM-1 Keyboard

NUM1 + NUM2 = SUM where NUM1 = 43; NUM2 = 25

Press Keys	See on Display	Comments
RS	xxxx xx	Reset.
AD [] 7 F A DA 0 0	17FA xx 17FA 00	This sequence of 3 lines must be performed in order to use the ST key and/or the single step mode. To be more
	17FB IC	specific: memory location 1C00 is stored into interrupt vector locations 17FA and 17FB.
AD 0 0 0 0	0000 xx	Present contents of memory location 0000 are displayed.
DA 43	0000 43	Enter 43 for NUM1 into location 0001.
+ 25	0001 25	Enter 25 for NUM2 into location 0002.
+ 00	0002 00	Clear location 0002 where SUM will be placed.
AD 0 0 1 0	0010 F8	Loads beginning address (0010) of our program.
GO	0011 A5	Each time the GO key is depressed, a single line of code is
GO	0013 18	executed and the memory address of the next line of code is
GO	0014 65	displayed. A "line of code" is defined in TABLE 8.5-1. Note: The same numbers are missing here as in column 1 of
GO	0016 85	TABLE 8.5-1.
GO	0018 4C	
GO	no change	
•		
AD 0 0 0 0	0000 43	NUM1 is still equal to 43.
(+)	0001 25	NUM2 is still equal to 25.
<u>+</u>	0002 68	SUM is 68 again. Recall that we had previously cleared this memory location to zero.
		Do not forget that the SST-ON switch is in the ON position.

for Example 8.1 in the *single step mode*. We have again selected NUM1 = 43 and NUM2 = 25. The usual display information and comments are given.

An important item for the reader to note in Table 8.7-2 is the need to properly initialize the interrupt vector locations 17FA and 17FB. This must always be done if the ST key and the single step switch mode are to function properly. For more information, please refer to the NMI section of the 6502 microprocessor discussion.

The KIM-1 user will find that the single step mode is used primarily during program debugging.

8.8 DECIMAL OR BINARY CODE

Any system which uses the 6502 microprocessor has the option of operating in either the decimal mode or the binary mode. In the case of the KIM-1, the designers choose not to include a CLD or SED command in the reset programs, so it is not possible to predict whether the KIM-1 will be in the decimal mode or in the binary mode when first energized. (These writers' experiences with about a dozen KIM-1s conform with this observation; about half come up on the binary mode and about half in the decimal mode; unfortunately, it is not always the same half.)

This uncertainty - decimal or binary mode - is responsible for most of the problems encountered by first-time KIM-1 users. These problems appear to the user to be one of the following two major types:

- 1. The numerical results to arithmetic operations do not appear to be correct.
- 2. Programs recorded on audio cassette tapes do not load.

Problems of the first type are solved if the user (programmer) develops the habit of preceding each arithmetic operation with a CLD or SED command. (The reader will recall that our solution to Example 8.1 in Table 8.2-1 followed this suggestion.)

Problems of the second type are solved if the user (operator) sets the KIM-1 into the binary or decimal mode immediately after powerup. This may be done by loading all 0s or all 1s into the memory location $\emptyset\emptyset$ F1. When we press the Go button, the contents of this location will be loaded into the P register. Actually only the decimal bit in the status register needs to be set to a 1 for the decimal mode and set to 0 for the binary mode, but it is much easier for the user to set all 1s or all 0s. (There are 64 different ways to set one bit to a 1 or to a 0 in a byte.)

8.9 KIM-1 KEYBOARD KEY FUNCTIONS

The KIM-1 keyboard key functions are summarized in Figure 8.9-1.

Figure 8.9-1 Summary of KIM-1 keyboard key functions and cautions

8.10 OPERATING THE KIM-1 VIA A TELETYPE

Before energizing a KIM-1 system that is using a serial teleprinter such as the TELETYPE[®] Model 33ASR (<u>Automatic Send and Receive</u>)* the following items should be verified.

- 1. The Model 33 is wired for full duplex 20 mA operation.
- 2. The 5 volt power supply is connected to the KIM-1 application connector as shown in Figure 8.6-1. Be sure a jumper is connected between pins 1 and K.

^{*} Models 33KSR or RO can also be used.

3. Pins R, U, S, and T of the KIM application connector are connected to the Teletype as follows:

R X-7 or P2-8 U X-6 or P2-7 S X-3 or P2-5 T X-4 or P2-6

X denotes Terminal Block X and P2 denotes Plug 2. (On the 33ASR Teletype terminal block X can be located by noting the ac line cord connected to X1 and X2. It is the second receptacle from the left on the top row as viewed from the rear of the machine.

4. The toggle switch TTY-KB (keyboard) is in the TTY (TELE-TYPE) position.

8.10.1 The KIM-1 Prompting Message

If you have checked all of the electrical connections specified in Sec. 8.1, you may now proceed to do the following:

- 1. Energize the 5 volt power supply.
- 2. Plug the TELETYPE into a 115 volts, 60 Hz. power outlet and turn the switch marked LINE-OFF-LOCAL to LINE. This switch is located at the right side of the small vertical front panel strip which bears the letters TELETYPE as shown in Figure 8.10.1.

Figure 8.10-1 Closeup view of LINE-OFF-LOCAL switch on model 33ASR TELTEYPE

The following steps are most important because the KIM-1 system adjusts to the bit rate of the serial teleprinter and requires this sequence of key strokes to establish the proper bit rate:

Press KIM key Press TTY key See printed

RS RUB KIM

xxxx xx

where xxxx xx denotes an arbitrary, unpredictable set of six (6) printed characters. If everything is working properly, you should immediately observe the message KIM xxxx xx being typed in the two line format shown above. This is a prompting message telling you that the TTY is on-line and that the KIM-1 system is ready to accept commands from the TTY keyboard.

If the "KIM" prompting message is not typed, repeat the two key sequence given above; that is, press the RS key on the KIM-1 keyboard and the RUB key on the TTY. If the "KIM" message is still not typed, recheck all connections and try again. If the problem still persists, obtain assistance.

8.10.2 Possible Input and Output Modes

Immediately after the "KIM" prompting message is typed on the TTY, the KIM-1 system is ready to accept commands from the TTY keyboard. As soon as you decide what type of input and/or output you desire, you may refer to Figure 8.10.2 and determine what sections describe the procedure you must follow.

8.10.3 Another Simple Example (Example 8.2)

The purpose of this simple example is to explain and to illustrate the different possible input and output modes using the TELETYPE Model 33ASR. It also illustrates another way of terminating a program. Rather than just jumping to itself, the program jumps into the Monitor Program and displays the numerical value of the SUM and its memory location.

Example 8.2. Add two positive integers located in two memory locations and store the sum into a third memory location. Output and display the sum and its memory location. It is not necessary to check for overflow. The solution to Example 8.2 is presented in Table 8.10-1.

Figure 8.10-2 Pictorial view of possible input/ouput modes using a TELETYPE 33ASR with the KIM-1

TABLE 8.10-1 Source code and machine code for adding two numbers, storing, and displaying the sum. Refer to Example 8.2 for more details.

Memory	Byte	Byte	Byte	SO	URCE COL	
Мар	1	2	3	LABEL	OP CODE	OPERAND
ØØ				NUM1		
Ø1				NUM2		
Ø 2				SUM		
Ø 3	18			PROGRAM	CLC	
Ø 4	F8				SED	
Ø 5	A 5	ØØ			LDA	NUM1
Ø 7	65	Ø1			ADC	NUM2
Ø 9	85	Ø2			STA	SUM
ØВ	A 9	Ø2			LDA	# Ø2
ØD	85	FA			STA	\$FA
ØF	A9	ØØ			LDA	#\$ØØ
11	85	FB			STA	\$FB
13	4C	4F	1C		JMP	1C4F

8.10.4 Using the TELETYPE Keyboard to Enter a Program

While using the TELETYPE keyboard to enter a program, you may perform the following operations:

To Select an Address

- 1. Type four hex keys (0 to F) to define the address.
- 2. Press the SPACE bar.

The TTY will respond by typing the address code selected followed by a two hex digit code corresponding to the data stored at the selected address location.

Example:

Type:

TTY printer responds:

showing that data 8D is stored at memory location 1802, which is in ROM, so its contents cannot be changed.

Time saving hint: Leading zeros need not be entered.

Examples:

EF SPACE selects address 00EF

A SPACE selects address 000A

SPACE selects address 0000

To Modify an Address

- 1. Select an address as above. Don't forget to press the SPACE bar.
- 2. Type two hex characters to define the data to be stored at this address.
- 3. Press the TTY period key, hereafter denoted by ①.

Example:

Type:

Ø234 SPACE

TTY printer responds:

Ø234 xx

Type:

6D 🕥

TTY printer responds:

Ø235 xx

Note: The selected address \$\psi 234\$ has been incremented automatically by one to the next address \$\prep235\$ and the contents xx of memory location \$\psi 235\$ have been displayed.

Time saving hint: Leading zeros need not be entered.

Examples:

A O enters data ØA

• enters data ØØ

(This is a frequent source of errors for even experienced programmers who clear memory locations inadvertently by using this short-cut.)

To Step To Next Address (Without modifying the contents of the current address)

Example:

See printed:

1234 xx

RE

TURN

TURN

Type:

1235 xx

Printer responds:

Type:

Printer responds:

1236 xx

etc.

To Step to Preceding Address (Without modifying the contents of the current address)

1. Press key (LF)

Example:

See printed:

Type:

Printer responds:

Type:

Printer responds:

1232 xx

etc.

To	Abort	Current	Operation
----	-------	---------	-----------

1. Press key (RUB)

Example:

See printed:

1264

Type:

KIM

Printer responds:

xxxx xx

Type:

1234 SPACE

Printer responds:

1234 xx

In this example, the

key was used to correct an erroneous

address selection.

Note: The

RUB OUT

key must be depressed after each depression of

the KIM-1 RST key in order to allow the operating program to define the serial bit rate for the particular Teletype being used.

8.10.5 Using the TELETYPE Keyboard to Execute a Program

To Execute a Program (From the TTY keyboard)

- 1. Enter the starting address of the program followed by SPACE.
- 2. Type **(G)** .[This is analogous to the **(GO)** key on the KIM-1 keyboard.]

Example 8.2 may be executed as follows:

Type:

ØØØ3 SPACE

See printed:

0003 18

Type:

(on TELETYPE keyboard!)

Comments: In this example, program execution begins from location $\emptyset\emptyset\emptyset3$ and will continue until memory location $\emptyset\emptyset15$ is reached. In other cases, program execution continues until the \boxed{ST} or \boxed{RS} keys on the KIM-1 keyboard are depressed.

Actual TTY output for Sec. 8.10.3 Example 8.2 stored in the KIM-1 with 8 stored in memory location $\emptyset\emptyset\emptyset\emptyset$ and 9 stored in memory location $\emptyset\emptyset\emptyset1$. As you may recall, the sum = 17 and is stored in memory location $\emptyset\emptyset\emptyset2$. The Teletype output is shown in Figure 8.10.3

COMMENTS

øøø3	18	ØØØ3 G	Program begins in memory location \$003. Note that G is typed on the same line as the
KIM			previous response.
Ø Ø Ø 2	17		Sum = 17 and is stored in memory location 0002.

Figure 8.10-3 Actual TELETYPE output for Example 8.2 NUM1 + NUM2 = SUM for NUM1 = 8 and NUM2 = 9 SUM = 17

To Execute a Program (Single step from TTY keyboard)

- 1. Enter the starting address of the program followed by SPACE.
- 2. Slide switch on KIM-1 keyboard marked SST-ON to ON.
- 3. Type key **(G)** once for each step of program you wish to have executed.

Example 8.2 may be executed from the TELETYPE keyboard in the single-step mode as follows:

Type: $\emptyset \emptyset \emptyset 3$ SPACE See printed: $\emptyset \emptyset \emptyset 3$ 18

Type: G and continue depressing the G

key until output does not change. See Figure 8.10.4 for the actual output as well as comments.

8.10.6 Using the TELETYPE Keyboard to Punch a Paper Tape

To Punch Paper Tape

- 1. Load and thread blank paper tape into the punch unit.
- 2. Decide on the starting address and ending address of the data block to be punched on the paper tape.

A paper tape for *Example 8.2* may be punched as follows:

Figure 8.10-4 Actual TELETYPE output for the execution of Example 8.2 in the *single-step* mode

Numerical values: 8 + 9 = 17

Comments:

a) Load the program's ending address \$\phi\$15 into KIM-1 memory locations 17F7 (EAL) and 17F8 (EAH) where

EAL = Ending Address - Low Order Byte EAH = Ending Address - High Order Byte

- b) A starting address = $\emptyset\emptyset\emptyset\emptyset$ has been selected. We could have selected a starting address of $\emptyset\emptyset\emptyset3$, if we did not wish to include the numerical values of NUM1, NUM2, and SUM.
- c) The key by key stroke sequence for Example 8.2 are:

Type:	17F7 SPACI	∃ [
See printed:	17F7 xx		
Type	15 O		
See printed:	17F8 xx		
Type:	øø ⊙		
See printed:	17F9 xx	Comment:	Ignore this memory location because our next step is to specify the starting memory location.
Type:	ØØØØ SPACE	3]	
See printed:	ØØØØ xx		ate punch by depressing but- n punch marked ON.
Press key:	0	Comment:	Watch and listen to the tape being punched!
Diagon ma	for to Pierre 9	10 5 fam +1-	natural mulicipal disease of the control of the con

Please refer to Figure 8.10.5 for the actual printed output corresponding to Example 8.2. Figure 8.10.6 presents the actual punched paper tape for Example 8.2.

Q;18ØØØØØ8Ø91718F8A5ØØ65Ø185Ø2A9Ø285FAA9ØØ85FB4C4F1C22Ø4Ø812;ØØØØØ1ØØ01

Figure 8.10-5 Actual printed output for Example 8.2

Figure 8.10-6 $\,$ Actual punched paper tape for Example 8.2

A Handy Hint:

It is convenient to have a leader on each paper tape which has the minimum number of holes punched so that you can write your name, date, and other information. You can do this in three steps:

1. Press keys in this order and hold down until about 2 inches of tape extends out of the punch.

- 2. Tear off and discard this paper tape. The "V" cutting bar will form the tip of an arrow so that you will know in what direction the tape is to move. The sprocket holes, which are offcenter, will prevent you from placing the tape in up-side-down.
- 3. Repeat Step 1 until you have the desired amount of leader at the front of your tape.

8.10.7 Using the TELETYPE Keyboard to List a Program

A printed record of the contents of the KIM-1 memory may be typed on the TELETYPE. The procedure is the same as for punching a paper tape *except* that the punch mechanism is not activated. This is assured if you press the OFF button located on top of the punch mechanism.

8.10.8 Using the TELETYPE Keyboard to List KIM-1 Memory

There is no difference between using the TELETYPE keyboard to list the contents of the KIM-1 memory and to list a program as described in Sec. 8.10.7.

8.10.9 KIM-1 Paper Tape Format

The paper tape DUMP and LOAD routines in the KIM-1 Monitor store and retrieve data in a format designed to reduce errors. Each byte of data is converted to two half bytes (nibbles). Each half byte (in hex) is translated to its ASCII equivalent and written out onto paper tape in ASCII form.

Each line of the output begins with a ";" character (ASCII 3B) to indicate the start of a valid record. The next byte (18 in hex) is the number of data bytes in that line. Then the starting address lower order

byte (1 byte, 2 characters), starting address higher order byte (1 byte, 2 characters), and then then data (18_{16} bytes, 30_{16} characters) follow. Each record (line) is terminated by its checksum (2 bytes, 4 characters), a carriage return (ASCII \emptyset D), line feed (ASCII \emptyset A), and six "Null" characters (ASCII \emptyset \emptyset).

The last record (line) has zero bytes of data (indicated by $;\emptyset\emptyset$). The starting address field is replaced by a four digit hex number representing the total number of data records (lines), followed by the checksum. A "XOFF" characters ends the transmission.

During a load, all incoming data is ignored until a ";" character is encountered. The receipt of nonASCII data or a mismatch between the calculated checksum and the checksum read from the tape will cause an error condition and the KIM-1 Monitor Program will cause the message "KIM ERROR" to be printed. The checksum is calculated by adding all data in each record (line) except the ";" character.

Figure 8.10.7 illustrates and interprets how the above description of the paper tape format applies to the Example 8.2 TELETYPE printed output.

Figure 8.10-7 Illustration and interpretation of the KIM-1 paper tape format as it applies to Example 8.2 output

8.10.10 Reading a Paper Tape into the KIM-1

Paper tapes read into the KIM-1 system must have the format specified in Section 8.10.9. Paper tapes generated by the KIM-1 have, of course, this format. To read a paper tape with the proper format, proceed as follows:

- 1. Set the Paper Tape Reader switch to FREE.
- 2. Insert the tape into the tape reader mechanism being careful to align the sprocket holes. Move the tape slightly back and forth to make sure it is free.
- 3. Press RS on the KIM-1 keyboard and RUB key on TELE-TYPE.
- 4. Type (1) on TELETYPE (mnemonic for Load).
- 5. Move the tape reader switch to START and remove your hand. Switch will automatically return to its center position, and the reader will begin to read the tape.

Caution: Keep fingers away from the paper tape reading mechanism!

Figure 8.10.8 illustrates the Teletype output corresponding to Example 8.2.

```
LQ;18ØØØØ8Ø91718F8A5ØØ65Ø185Ø2A9Ø285FAA9ØØ85FB4C4F1C22Ø4Ø812;ØØØØØ1ØØ1 KIM
KIM
ØØØ1 Ø9
```

Figure 8.10-8 Actual TELETYPE printed output when paper tape for Example 8.2 is loaded into the KIM-1

8.11 ADDING AN AUDIO TAPE RECORDER TO THE KIM-1

8.11.1 Why Add an Audio Tape Recorder?

There are at least four reasons to add an audio tape recorder to the KIM-1 microcomputer:

- 1. Programs and data which the user has stored in the KIM-1 RAM may be saved before the power is turned off.
- 2. An audio tape recorder is much less expensive (as low as \$20) compared to a paper tape punch and reader.

- 3. Computer programs and data which are stored on magnetic tape may be readily duplicated and exchanged with other KIM-1 users.
- 4. Magnetic audio tape, as compared to paper tape, permits a storage density, a smaller more convenient package to handle, and is reusable.

Although both reel-to-reel and cassette tape recorders may be used, the cassette type is used in almost all KIM-1 applications because of its small size, portability, and cost. The discussion that follows will apply to both reel-to-reel and cassette types. (Other types of tape recorders, such as miniaturized recorders without external jacks, are usually intended primarily for dictating applications and require internal modifications. Recorders requiring internal modifications will not be discussed here.)

8.11.2 The Audio Tape Recorder Connection

The audio tape recorder unit to be used should possess the following features:

- 1. A jack, usually labeled microphone or input, to permit recording the electrical signal provided by the KIM-1 circuit board onto the magnetic tape.
- 2. A jack, usually labeled earphone or external speaker, to supply the electrical signal of the appropriate level to the KIM-1 circuit board for loading into the microcomputer memory.
- 3. The standard control switches for PLAY, RECORD, REWIND, and STOP. Other features, such as FAST FORWARD or FAST REVERSE, are convenient for locating programs when more than one program is stored on a tape side.

With the power off to all of the components, check that all of the cables and jumpers are present as shown in Figure 8.11.1. All wires, except for the shielded wires, should be as short as possible and kept away from other wires which might introduce electrical noise.

The Audio Data Out (LO) at pin M has a level of approximately 15 mv peak. The Audio Data Out (HI) at pin P has a level of approximately 1 volt peak. Pin P is used with some of the more expensive tape recorders which have an input (usually labeled "LINE") that accepts higher voltage input signals. The lower level Audio Data Output at pin M is the one which is used with most small inexpensive audio cassette tape recorders.

Figure 8.11-1 With an audio tape recorder, the KIM-1 system requires one 5 volt power supply, one 12 volt power supply, one jumper, and two shielded wires connected as shown above

8.11.3 How to Record On an Audio Tape

Before we list the steps to be followed for recording a program and/or data from memory on an audio magnetic tape, let us document the assumptions we are making:

- a) There is a program and/or data stored in memory with a known starting and a known ending address.
- b) The program and data have been thoroughly tested and the program produces known results given specific data. This prevents confusing program errors with recording/playback errors.
- c) The special addresses for the Audio Tape Load and Audio Tape Dump subroutines are known or obtained from Figure 8.11.2.

The procedure for recording on an audio magnetic tape from the KIM-1 memory is:

(If not already on, turn on the 5 volt and the 12 volt power supplies and check power to the tape recorder, if it is not battery powered)**

Step 1.* Verify that the 6502 microprocessor is in the binary mode. This may be done by inspecting the contents of memory location \$00F1 and recalling that the decimal mode bit (1 = True) is bit three (b3 of b0 - b7) of the processor status word (which is stored in memory location \$00F1). Since bit 3 is zero for so many different hexadecimal numbers, it is frequently easier just to *clear* the decimal mode and place into the binary mode by performing the following steps:

Press Keys Display Comments

AD 0 0 F 1 00F1 xx Selects the address mode and displays the contents of memory location \$00F1.

DA 0 0 00F1 00 Stores 00 into memory location \$00F1.

- Step 2. Store the starting address in memory locations 17F5 and 17F6. Be sure the place the low order byte into 17F5 and the high order byte into 17F6.
- Step 3. Store the ending address into memory locatins 17F7 and 17F8. Be sure to place the low order byte into 17F7 and the high order byte into 17F8.

The ending address is defined to be one greater than the last actual memory location of our program.

^{*} If it were financially acceptable, we could add CLD instructions to the Audio Tape subroutines, manufacture new ROMs, and remove the need for Step 1.

^{**} Some users have reported erratic operation when using the internal batteries in some of the tape recorders and they suggest using 115 volt 60 Hz adaptors instead.

Figure 8.11-2 Special memory addresses for Audio Tape Load (1873) and Audio Tape Dump (1800), starting address, ending address, and ID

Step 4. Pick a two digit hexadecimal number as the file identification number (ID) and store into memory location 17F9.

Do *not* choose ID = $\emptyset\emptyset$ or ID = FF.

For an explanation, please refer to Section 8.11.6, Hint #4.

Step 5. Refer to Figure 8.11.2 and note that the starting address for the Audio Tape Dump subroutine is 1800. Load 1800 into the field of the KIM-1. Do not press the GO key because the tape is not moving at this time.

Step 6. Select the RECORD mode of the tape recorder and wait a few seconds for the tape to start moving and to attain a constant speed.

Press GO key.

Comment: The display will become dark for a time and then the display will light and show

 $0000 \ xx$

where xx is arbitrary

The amount of time during which the display is dark varies with the length of the program. In our example, which involves only about a dozen memory locations, the display is dark for about 16 seconds.

The recording is complete as soon as the display relights.

- Step 7. STOP the tape recorder.
- Step 8. (optional) REWIND the tape cassette to its starting position.
- Step 9. (optional) Listen to the tape. With experience, you will be able to identify the beginning 100 sync pulses, the program in the middle, and the terminating characters at the end of each record by their distinctive sounds.

8.11.4 How to Read an Audio Tape into the KIM-1

Before we list the steps to be followed for reading from an audio tape into the KIM-1 microcomputer, let us list the assumptions we are making:

- a) The file identification number (ID) of the record we wish to transfer into the KIM-1 memory is known.
- b) The starting address of the Audio Tape Load (LOADT) subroutine is known to be \$1873.

The procedure for transferring information from an audio magnetic tape into the KIM-1 memory is:

- (If not already on, turn on all power supplies.)
- Step 1.* Verify that the 6502 microprocessor is in the binary mode and not in the decimal mode. Please refer to Section 8.11.3, Step 1, for details on how to do this.
- Step 2. Place the cassette into the tape recorder and REWIND the tape, if necessary, so that the tape will start to move and will attain a constant speed about 3 seconds before reaching the spot where the record with the desired ID exists on the tape.
- Step 3. Store the known file identification number (ID) into memory location \$17F9.
- Step 4. Load \$1873 (the starting address of the Audio Tape Load subroutine) into the address field of the display.
- Step 5. Press the GO key.
- Comment: The display will become dark and the KIM-1 will search for a tape input with the specified ID number. The tape is not moving so the search is not successful.
- Step 6. Set the volume control on the tape recorder to approximately its midpoint position.
- Step 7. Place the tape recorder into the PLAY mode. The tape should begin to move forward.
- Comment: As soon as the data record with the specified ID number is located and completely read in, the display will relight and show

0000 xx

where xx is arbitrary

Step 8. STOP the tape recorder after the display relights.

In reading an audio tape into a KIM-1, three types of problems may be encountered.

- Trouble #1. In step 7, the display relights and shows FFFF xx. This means that the record with the specified ID was located but the check sum test failed as a result of either a record or a playback error.
- FIX: Repeat the entire recording and playback procedures checking each step carefully. In a short program, step through all of the

^{*} If is were financially acceptable, we could add CLD instructions to the Audio Tape subroutines, manufacture new ROMs, and remove the need for Step 1.

memory locations involved and compare with your written program. If the problem still persists, refer to the KIM USERS MANUAL, Appendix C, "In Case of Trouble."

- Trouble #2. In step 7, the tape continues to run to the end and the display remains dark. This usually means that the record with the specified ID number was not "found."
- FIX: a) Verify that the record was actually on this cassette and on the correct side. (Cassettes have side A and side B recordings.) Repeat the entire recording and playback procedure checking each step carefully.
 - b) Actually listen to the recording through the speaker or an earphone. With some practice, you will be able to identify the beginning 100 sync pulses, the program in the middle, and the terminating characters at the end of each record by their distinctive sounds.
 - c) Verify again that the 6502 microprocessor is in the binary mode and not in the decimal mode.
- Trouble #3. If you use the tape recorder to erase a tape, you may record a "noise" which seems to be related to a subharmonic of the clock frequency.
- FIX: Disconnect the tape recorder from the KIM-1 board while using the tape recorder to erase the tape.

8.11.5 An Example of Record and Playback

The purpose of this example is to illustrate the procedure for recording programs and/or data on audio magnetic tape from the KIM-1 system, and vice versa.

Example 8.11.1. Record and play back into the KIM-1 memory a program which will add two decimal numbers located in two memory locations and will store the sum in a third memory location.

Solution: The source program code and machine code for this example are given in Table 8.11-1. Because the 6502 microprocessor has no stop, wait, or halt instructions, the last instruction in the program is an absolute jump to itself. Pressing the RESET key will cause the KIM-1 system to exit from this infinite loop. In subsequent examples, we will jump to a display subroutine.

TABLE 8.11-1 Source Program Code and Machine Code for Adding Two Numbers and Storing the Sum

Memory Map		Byte		S	OURCE COD	Comments	
	1	2	3	LABEL	OP CODE	OPERAND	
ØØ				NUMI			First number in location 00.
Ø1				NUM2			Second number in Ø1.
Ø2				SUM			Sum in location Ø2.
Ø3	F8			PROGRAM	SED		Set decimal mode.
04	A5	ØØ			LDA	NUMI	Load NUM1 into accumulator.
Ø6	18				CLC		Clear carry.
Ø 7	65	Ø1			ADC	NUM2	Add NUM2 to NUM1 with carry
09	85	02			STA	SUM	Store SUM into location Ø2.
ØB	4C	ØB	ØØ	HALT	JMP	HALT	Jump to itself over and over
ØE							again.

Using the KIM-1 keyboard, load the program given in Table 8.11-1 into memory locations \$\psi 3\$ through \$\psi D\$. If you do not know how to do this, or have forgotten how, please refer to Section 8.6.

Now thoroughly test and verify that this program is correctly loaded and that it performs as expected. Be sure to load two numbers, run the program, and inspect the contents of memory location $\$\emptyset 2$ to see if the correct sum is present there.

To record a program from the KIM-1 on audio tape. Please refer to Section 8.11.3 and note that we have satisfied all of the assumptions stated there and we are ready to proceed with performing Steps 1 through 8. The results are summarized in Table 8.11-2.

To playback the audio tape into the KIM-1. The assumptions which we have made require us to know that:

- a) The desired tape record ID is \$11;
- b) The starting address of the Audio Tape Load subroutine is \$1873.

Recall that in this example, we have arbitrarily chosen \$11 as the file ID. However, the starting address \$1873 is fixed for the KIM-1 Monitor Program and will always have this value.

Please refer to Section 8.11.4 and note that we have satisfied all of the assumptions stated there and we are now ready to proceed with performing Steps 1 through 6. The results are given in Table 8.11.3.

TABLE 8.11-2 Solution to Example 8.1 for the case of recording on an audio tape from the KIM-1 Microcomputer. The step numbers corresond with those given in Section 8.11-3

Press Keys	Display	Comments
RS AD 0 0 F 1 DA 0 0	xxxx xx 00F1 xx 00F1 00	Step 1: Places in binary mode by clearing decimal mode.
AD 1 7 F 5 DA 0 3 + 0 0	17F5 xx 17F5 03 17F6 00	Step 2: Stores starting address \$\phi\phi\$3 into memory locations 17F5 (low byte) and 17F6 (high byte).
+ 0E + 00	17F7 OE 17F8 OO	Step 3: Stores ending address \$\phi\phi\text{E}\$ into memory locations 17F7 (low byte) and 17F8 (high byte).
+ 11	17F9 11	Step 4: Loads ID = 11 into location 17F9.
AD 1 8 0 0 On Tape Recorder RECORD	1800 A9	Step 5: Loads the starting address of the subroutine Audio Tape Dump.
wait about GO 3 seconds On Tape Recorder STOP	dark (about 16 sec.) 0000 xx	Step 6: Program is being recorded. Recording is complete.
	0000 xx 0000 xx	Step 7: Tape recorder is stopped. Step 8: (optional) Rewind tape.

TABLE 8.11-3 Solution to Example 8.11.1 for case of reading from an audio tape into the KIM-1 microcomputer memory.

The step numbers correspond with those given in Section 8.11.4

Press Keys	Display	Comments
RS AD 0 0 F 1 DA 0 0	xxxx xx 00F1 xx 00F1 00	Step 1: Places KIM-1 into binary mode by clearing the decimal mode.
	00F1 00	Step 2: Place cassette into tape recorder and rewind tape, if necessary.
AD 17 F 9	17F9 xx	Step 3:
DA 11	17F9 11	Load ID = 11 into memory location \$17F9.
AD 1873	1873 A9	Step 4: Loads the starting address of the subroutine Audio Tape Load.
GO	dark	Step 5: KIM-1 is searching for ID = 11.
On tape recorder	dark	Step 6: Set volume control to midpoint.
PLAY	dark	Step 7: Places recorder into PLAY mode and tape begins to move.
STOP	(about 16 sec.) 0000 xx	Playback is complete.
<u></u>		Step 8: Stops tape recorder.

8.11.6 Some Helpful Tape Hints

The following hints are offered to help you make the most effective use of your cassette tapes without encountering some of the more commonly associated problems:

- Hint #1. Voice messages may be added between the record data blocks on the tape. The KIM-1 system will ignore these audio messages when the tape is read back provided the voice messages occur only between record blocks. However, you will have to install an earphone or speaker in parallel with the KIM-1 audio tape data pin in order to hear the voice messages.
- **Hint #2.** If more than one data block is to be recorded per cassette side, proceed as follows:
 - Case 1. Data blocks are to be recorded in sequence without rewinding between blocks.

You need only to specify the parameters of each new block (ID, SAL, SAH, EAH, EAL) and proceed with recording each block following the standard steps listed in Section 8.11.3. It is best to use unique ID numbers for each block.

Case 2. Tape has been rewound or the location of the end of the last data block has been lost.

You must know the ID number of the last recorded data block. Rewind the tape to well before the anticipated starting point and set up the parameters to read the last data block following the steps given in Section 8.11.3, Step 4.

If the data transfer is successful (as indicated by the display showing 0000 xx), you may proceed to load the next data block. Refer to Section 8.11.3.

- Hint #3. Avoid placing a data block between two existing data blocks or in an area of the tape which has previously been used for recorded data. You may recall that data blocks may be of arbitrary length and hence variations in block length and tape speed may result in overlapping of recorded data blocks.
- Hint #4. Recall that when recording on a magnetic tape, you cannot select $ID = \emptyset \emptyset$ or ID = FF. However, when reading from a magnetic tape into the KIM-1 memory, we can use these ID numbers as follows:

Case 1. If we select $ID = \emptyset\emptyset$, the ID number recorded on the tape will be ignored and the system will read the first valid data block encountered on the tape. The data read from the tape will be loaded into memory addresses as specified on the tape.

Comment: This is useful if you forget your ID number or if the ID number was not provided to you. Note that you still need the original starting and ending addresses in order to locate and execute the program.

Case 2. If we select ID = FF, the ID number recorded on the tape will be ignored and the system will read the first valid data block encountered on the tape. In addition, the data block will be loaded into successive memory locations beginning at the address specified in locations 17F5 and 17F6 (starting address low, SAL, starting address high, SAH) instead of the locations specified on the tape.

Comment: This is useful if you forget, or do not know, the ID number and the starting address. Note that you still should know the maximum length of the program so that you don't "write over" and destroy other data stored in memory.

8.12.1 Manipulating the KIM-1 Display (Example 8.12.1)

The KIM-1 display is controlled by the 6530-002 I/O ports. A diagram of the KIM-1 display and 6530 RAM ROM I/O interface is shown in Figure 8.12.1. This diagram is simplified to the point where it does not show any of the drivers, inverters, or pin connections. The primary purpose of Figure 8.12.1 is to help to explain how the KIM-1 six character, 7 segment LED display may be used to display many of the alphabetical characters. In addition, it will be found that it is possible to blink and to shift the characters which are displayed.

The A-side data determines which of the seven segments are illuminated for the character selected by the B-side data. Segments A through G are selected by bits Ø through 6, respectively.

Example 8.12.1. Determine A-side and B-side data which will cause

to be displayed in the first four character positions.

Figure 8.12-1 Simplified diagram of KIM-1 display and control by the 6530-002

Comment 1. A-side data are determined as follows:

	Segments On	Hex Code
	G F E D C B A	
Character E	1111001	79
Character r	1 Ø 1 Ø Ø Ø Ø	5 Ø
Character o	1 Ø 1 1 1 Ø Ø	5C

Comment 2. Computation of the B-side data may appear to be confusing at first. Because PB1, PB2, PB3, PB4 (instead of the more typical PB \emptyset , PB1, PB2, PB3) are sent to the 1-0F-10 decoder, the decoder supplies an output which is only one-half of the actual input. In other words, we have to supply an input which is twice as large so that character positions \emptyset 4, \emptyset 5, \emptyset 6, \emptyset 7, \emptyset 8, \emptyset 9 actually require as B-side data inputs: \emptyset 8, \emptyset A, \emptyset C, $1\emptyset$, and 12.

The specific memory addresses associated with the 6530-002 I/O ports are as follows:

174Ø	SAD	A-side Data
1741	PADD	A-side Data Direction
1742	SBD	B-side Data
1743	PBDD	B-side Data Direction
1173	IDDD	D blue Buta Biret.

A clearer perspective of the relative memory locations may be obtained by referring to Figure 8.12-2 which is Figure 8.4-1 with the above memory locations added. It may be seen that some pins on both data direction registers must be set for output. (Remember 1 = output and \emptyset = input.) Just exactly which pins ports A and B are set for input and which pins are set for output is given in Figure 8.12-3.

A program which will load the A and B data direction registers with 7F and 1E respectively, is as follows:

Op	Codes	Source Codes
A9	7 F	LDA #7F
8D	41 17	STA PADD
A9	1E	LDA #1E
8D	43 17	STA PBDD

Example 8.12.2. Write a program which will display the letters "EE" in the two left-handmost characters of the KIM-1 display. The remaining four characters are to be dark.

The solution to Example 8.12.2 is shown in Table 8.12-1.

Figure 8.12-2 MEMORY MAP with 6530-002 ports A and B added (Courtesy MOS Technology)

Figure 8.12-3 Input/Output pin configuration for ports A and B in Example 8.12.1 1 = output; 0 = input

TABLE 8.12-1 Source and Op Codes which display the letters "EE" in the KIM-1 display

Memory	Byte	Byte	Byte		S	OURCE CO	ODE
Map	1	2	3	LABEL	OP CODE	<i>OPERANI</i>	O Remarks
ØØ 30	A9	7F			LDA	#7F	Set output pins on
32	8D	41	17		STA	PADD	Port A.
35	A 9	1E			LDA	#1E	Set output pins on
37	8D	43	17		STA	PBDD	Port B.
3 A	A 9	79			LDA	#79	Load the letter E.
3C	8D	40	17		STA	SAD	
3F	A 9	Ø 8		AGAIN	LDA	#Ø 8	Display the letter E
41	8D	42	17		STA	SBD	in the first position.
44	A 9	ØΑ			LDA	#ØA	Display the letter E
46	8D	42	17		STA	SBD	in the second position
49	4C	3F	ØØ		JMP	AGAIN	Jump back and display EE again.

8.12.2 Generating a Variable Frequency Square Wave (Example 8.12.3)

The purpose of this example is to illustrate one of the many different ways of defining the Input/Output interface ports of the KIM-1 microcomputer for both input and output. In order to be more specific and practical as well, we will use Example 8.12.3, which may be stated as follows:

Example 8.12.3*. Write a computer program for the KIM-1 which will generate a variable frequency square wave with amplitudes of 0 and +5 volts.

As shown in Figure 8.12-4, the eight pins of Port A are programmed such that one pin $(PA\emptyset)$ is the output and the other seven pins (PA1) to and including PA7 are connected to seven switches which serve as the input control to determine the frequency of the square wave.

It is further desired that the switch connected to PA1 is to be the least significant bit (LSB) and the switch connected to PA7 is to be the most significant bit (MSB). We would also like each switch to act as a 1 when closed, and as a 0 when open. If this is done, the status of the switches define binary numbers from zero (all switches open) to 127₁₀ (with all switches closed).

Figure 8.12-4 Input/Output connections for the variable frequency square wave generator (Example 8.12.3)

A Solution to Example 8.12.3. One of the many possible solutions to Example 8.12.3 is given in Figure 8.12-5, which presents in a modified form, both the assembly language program as well as the machine code. It is said to be "modified" form because of the additional column labeled MACHINE CYCLES. This column has been added because of the importance of determining exactly how much time (number of machine cycles) are required to execute each line of code.

^{*} Example 8.12.3 is similar to the "Real Application" example given on page 55 of the KIM-1 USER MANUAL. (MOS Technology Inc.)

	INST	RUCT	ION					MACHINE CODE
Memory Map	Byte 1	Byte 2	Byte 3	MACHINE CYCLES	LABEL	OP CODE	OPERAND -	Remarks
0200	A9	Ø1		2	INIT	LDA	#\$01	Define I/O. PAØ=Output=1. PA1-PA7=Input=0.
0202	8D	Øl	17	4		STA	PADD	PADD = Port A Data Direction Register
0205	EE	ØØ	17	6	START	INC	PAD	Toggle PAØ pin only on Port A.
Ø2Ø8	AD	ØØ	17	4	READ	LDA	PAD	Read switch settings into accumulator.
Ø2ØB	49	FF		2		EOR	#\$FF	Complement switch value because closed = 1.
Ø2ØD	4A			2		LSR	Α	Shift accumulator one bit to right.
Ø2ØE	AA			2		TAX		Transfer COUNT into X-Index Register.
020F	CA			2	DELAY	DEX		Loop to delay by amount specified by
0210	10	FD		3,2	BPL	DELAY		COUNT stored in the X-Index Register.
Ø212	3Ø	FI		3		BMI	START	Go back to START.
					PADD =	\$1701		Defines absolute address of Port A Data Direction
					PAD =	\$1700		Register. Defines absolute address of Port A Data Register as specified by the KIM Monitor.

Figure 8.12-5 Assembly language, Machine code, and MACHINE CYCLES for a variable frequency square wave generator (Example 8.12.3)

Execution of Example 8.12.3. Enter the program as usual, but before executing the program, load the NMI vector locations 17FA and 17FB with 00 and 1C respectively, so that the ST key will function properly. The program begins in memory location \$\psi 200\$, so load this memory location, and press the GO key. The display will remain dark and the output square wave will be available at pin 14 of the Applications Connector. This output may now be connected to an audio amplifier to serve as a tone generator; or it may be applied to the horizontal input of an oscilloscope and used to calibrate the horizontal sweep of the oscilloscope.

The Output Square Wave. The square wave output is shown in Figure 8.12-6 along with equations for the frequency and period of the square wave as a function of the switch settings. When numerical values are substituted, the resulting frequencies and periods are:

Input Swi	itch Settings	Frequency	Period
Binary	Decimal	(f=1/T)	T = 1/f
-		<i>Hz</i> .	μsec
Φ ØØØØØ	0	21,740	46
111111	12710	760	1362

Input Swit	tch Settings	Frequency	Period	
Binary	Decimal	f = 1/T (Hz)	$T = 1/f (\mu s)$	
000000	0	21,740	46	
111111	127 ₁₀	760	1,362	

Figure 8.12-6 Output square wave for Example 8.12.3. Note that the period is T, the frequency is 1/T, and COUNT is determined by the input switch setting with $0 \le \text{COUNT} \le 127_{10}$

PROBLEMS

- 1. Use the KIM keyboard and display to inspect the contents of memory locations (in hex) \$\phi \phi \phi \phi\$, \$\phi 400\$, \$1800\$, and FFFF. Record the contents as observed. Refer to Figure 8.4.1, the memory map for the KIM-1 microcomputer, and the 6530 Monitor listings to explain your observations.
- 2. List the contents of the following addresses: $1C\emptyset\emptyset$ through $1C\emptyset A$, 1746, $\emptyset\emptyset\emptyset\emptyset$ through $\emptyset\emptyset1\emptyset$, and $178\emptyset$ through $179\emptyset$.
- 3. Sketch and label all MCS6502 μ P registers. Briefly describe their functions.
- 4. List the addresses where the following can be found in KIM: ROM, RWM, TIMERS, and I/O.
- 5. Use KIM keyboard and data keys to clear memory locations \$\$\phi\$EF through \$\$\phi\$FE. If this is not possible, explain.
- 6. Where are the internal registers (A, X, Y, S, P and Z) stored during a single-step operation?

- 7. Explain why it is necessary to load memory locations 17FA and 17FB before the KIM-1 microcomputer may be used in the single-step mode. Refer to 6530-002 listing between lines 600 and 620 and correlate with the use of the above two memory locations.
- 8. Refer to Table 8.7-2 which presents the single step execution of Example 8.1 and fill in the table below for each step.

PC P A X Y S

9. Study the program below and understand how it works. (There is at least one error.) The intention of the program is to set the contents of locations $\$\emptyset\emptyset\emptyset\emptyset$ through $\$\emptyset\emptysetFF$ to all ones (\$FF).

ADDR	CODE			PRC	GRAM
Ø2ØØ	AE FF			LDX	#\$FF
Ø2Ø2	18			CLA	
Ø2Ø3	95 Ø Ø		LOOP	STA	Ø, X
Ø2Ø5	CA			DEX	
Ø2 Ø 6	DØ FB			BNE	LOOP
0208	4C 4F	1 C		JMP	\$1C4F

- 10. If you use the KIM-1 microcomputer in the binary mode, what result would you expect if you added 34 and 27? What would you expect in the decimal mode? Use the solution to Example 8.1 and verify your answers using the KIM-1 microcomputer.
- 11. Modify the source code for Example 8.1 which is given in Table 8.3-1 so as to check for possible overflow. What would you suggest doing in the event of an overflow?
- 12. Modify the source code for Example 8.1 which is given in Table 8.3-1 so as to display the sum instead of "jumping to itself" at the end of the program. Display the sum in the four leftmost locations of the display. You will need to study the Monitor Listing for the 6530s in order to do this.
- 13. Modify the source code for Example 8.1 which is given in Table 8.3-1 for the case where the two positive numbers are each three bytes long. Your program should check for overflow and allow enough memory locations to store the sum. Use the decimal mode. Repeat for binary mode.
- 14. Write a program for execution on the KIM-1 microcomputer which will output all of the printable ASCII characters to a printer such as the Teletype Model ASR33. In the next line printed, move

- all of the characters one character to the right and bring the character shifted off to the right back to the leftmost position. (In other words, circular shift right.) Repeat printing new lines until all characters have been printed in all possible positions. (This is a program which printer technicians find very useful when making printer adjustments.)
- 15. Punch a paper tape for Example 8.2 and compare to the punched paper tape shown in Figure 8.10-6. Explain any differences.
- 16. Write a program for execution on the KIM-1 which will display the characters as they are "read in" from a magnetic tape recorder. Display the character which has just been read in the leftmost position of the display and then shift the characters to the right to make room for each new character. (The characters will appear at a rate which may be too fast to permit reading every character reliably.)
- 17. Write a program for execution on the KIM-1 which will generate a very long string of sync characters, an ASCII SYN character (\$16). Record approximately five minutes of only sync characters on a magnetic tape and then play them back using the program written in Problem 16. Vary the volume control and tone control (if your recorder has one) and determine the range for which synchronization is maintained. Determine the optimum settings for your tape recorder.
- 18. Modify the program given in Table 8.12-1 for Example 8.12.2 so that the two characters E E blink on and off at the rate of about once per second. Although the timers in the 6530s might be used, write a program which will accomplish the same thing. (Not all microcomputers have timers.)
- 19. Modify the program given in Table 8.12-1 for Example 8.12.2 so that six characters (all of which may be different) will be displayed on the KIM-1 display. (Caution: Be sure to turn off a character before proceeding to turn on the next character.) In order to demonstrate that your program works, display the six characters E, R, R, O, R, and a blank.
- 20. Modify the program given in Table 8.12-1 for Example 8.12.2 so that more than six characters may be displayed at the rate of six at a time and then shifted one character to the right and displayed again in an endless loop.

- 21. Add steps to your program for Problem 20 so that the display blinks on and off at the rate of about once per seond with on and off times being equal.
- 22. The solution to Example 8.12.3 in Figure 8.12-5 provides a frequency range from 760 to 21,740 Hz. What changes would be necessary to provide frequencies up to 50,000 Hz? What about for frequencies below 760 Hz?
- 23. Modify the program given in Figure 8.12-5 for Example 8.12.3 so that the postiive portion of the square wave represents only 10% of the period instead of 50%.

B

OPERATING PRINCIPLES OF THE KIM-1 MONITOR AND ON-BOARD I/O HARDWARE

B.1 INTRODUCTION

In Chapter 8, detailed methods for operating the KIM-1 system and associated peripheral units are described. This appendix will present some of the principles underlying these methods of operation. There are two principal reasons for such a presentation. First, the KIM-1 is an excellent example of a microprocessor-based system, and the underlying design principles present a useful case study for one who aspires to do such design himself. Second, the KIM-1 user will find an understanding of these principles very helpful in actual operation. For example, the user who wishes to use the on-board peripherals, such as the keyboard and the display for nonmonitor functions, will find an understanding of monitor subroutines an invaluable aid.

Figure 4.2-1 is a flow chart of the KIM-1 monitor program. It will serve as an important reference for most of the discussion in this Appendix.

Another important reference is the KIM-1 monitor listing itself, which is included herein as Section B.8.

B.2 SINGLE STEP OPERATION OF THE KIM MICROCOMPUTER

The normal mode of operation for any digital computer, including the KIM, is that in which instructions are executed sequentially at high speed. Automatic high-speed sequencing accounts for most of the unique capability of such systems. It is often desirable, however, to execute a sequence of instructions at manual speed, either to examine step-by-step program execution and thereby verify program integrity, or to diagnose reasons for program malfunction, i.e., to perform "debugging." The KIM system permits manual sequencing via the keyboard switch labeled SST (single step).

The 6502 CPU chip used in the KIM system has several built-in features which make single-step operation convenient to perform. One such feature is the control output designated as SYNC. The 6502 produces a pulse from this terminal during each machine cycle which, if completed, constitutes the fetch of an instruction op code from memory. Since such a cycle signals the end of an instruction execution, the ability to stop the computer when SYNC occurs would accomplish the single-step operation desired (assuming, of course, that the system can be restarted).

One other feature of the 6502 which could be used to accomplish single-step operation is the RDY (READY) control input. If, during the PHASE ONE clock of any machine cycle when a memory read is being performed, the RDY input is pulled low, the completion of the cycle will be inhibited at PHASE TWO clock time. (A memory write cycle will not be inhibited, but the subsequent read cycle will be.) The principal use of the RDY control is in managing transfers between the CPU and slow memory or I/O devices which may not respond to read requests with sufficient speed to keep up with the 6502 clock. Such devices can, by properly energizing the RDY input, force the CPU to wait until it is ready to deliver the requested data. A second use of this input is implemented by inverting and feeding back the SYNC pulse to the RDY input. This will cause the system to stop each time a SYNC pulse occurs. Therefore the system stops after the execution of each instruction. (Actually the SYNC pulse must be stored in a separate flip-flop. The flip-flop will inhibit system operation until it is cleared, at which time the system will fetch and execute the next instruction. Refer to Section 3.1, page 124, of the MOS HARDWARE MANUAL, reference 2, for a detailed description of one mechanization of this scheme.)

The KIM system does not use the RDY control to achieve single-step operation. Recall that one of the principal motivations for establishing single-step operation was to permit a leisurely examination of the result of executing each instruction. The KIM monitor affords a powerful mechanism for performing such an examination because the KIM system implements a procedure whereby, after each step of the program under study is executed, system control is passed back to this

monitor. The monitor is then used to examine register contents, data values, etc. To understand the actual mechanization built into the KIM system, refer to Figure B.1. Gate U26, a two-input NAND gate, has as its inputs SYNC from the 6502 and a signal labeled K7. For the time being, assume that K7 is high or at the "1" level. If the single-step switch SST is closed, the occurrence of SYNC will pull the NMI input low, constituting a nonmaskable interrupt input to the 6502. Service of this interrupt is in the form of execution of the monitor routine which lights the display and scans the keyboard. This mode reflects the transfer of control to the monitor as described above. Pushing the GO key on the keyboard will cause other monitor routines (see the discussion of the KIM keyboard below) to be called. These routines will fetch the next user instruction, giving the desired result of stepping through one more step. At this point the process will be repeated.

The perceptive reader will have detected a logical flaw in the above operation. He will ask, "Since the execution of the monitor program is conceptually identical to the execution of the user program, why doesn't the system halt after the execution of each step in the monitor program?" This is the point where the role of the K7 signal must be considered. Examination of the logic diagram will confirm that the K7 signal is produced when an address in page 7 (address range 1CØØ to 1CFF) is present on the KIM address bus. Since the 74145 decoder which generates K7 produces active-low outputs, when such an address is present, the K7 signal is at a low level. Thus the NAND gate driving the NMI input will not produce its active low output when a page 7 address is on the address bus, even though the SYNC signal denoting completion of instruction execution is generated. Since the keyboard/ display monitor is located in page 7, it will be executed in uninterrupted fashion. This also has the effect of preventing one from stepping through any of the monitor routines located in page 7.

One final point about single-step operation in the KIM should be mentioned. As discussed more fully in Section B.3 on RESET and STOP operation in the KIM, proper execution of the STOP routine in response to an NMI request demands that the user, as a necessary step in system initialization, load the proper interrupt vectors into the system. Since single-step operation depends on this routine, such loading is necessary to properly enable this mode of operation. In plain English, this means that locations 17FA and 17FB must be loaded with address 1COO, the beginning location of the STOP monitor routine.

Figure B.1 KIM-1 control and timing circuitry

B.3 RESET AND STOP OPERATIONS

These two operations bear considerable similarity to one another and will therefore be discussed together. Each of them is initiated by depressing a keyboard key. Referring to the logic diagram of Figure B.1 it may be observed that pushing the ST (STOP) key introduces a positive-going voltage onto pins 2 and 6 of U25, a dual timer. This circuit's characteristics are such that this input will produce a negative-going transition at pin 1, which is delivered to the NMI input of the CPU. Before examining the effect of this input, let us digress and point out the principal function of the dual timer circuit. Its characteristics are such that, even if the ST keystroke manifests switch bounce (which is typically the case), the timer output will respond only to the initial positive transition at its inputs, effectively debouncing the switch.

Let us return now to an examination of the sequence of events which occur when the NMI input is energized. This constitutes a nonmaskable interrupt request and results in a somewhat feverish interval of activity by the CPU. The steps which constitute this activity are:

- 1. When the NMI request arrives, the current contents of the program counter and the status (P) register are pushed onto the system stack. This allows return to the interrupted routine when the interrupt has been serviced.
- 2. The contents of memory locations 1FFA and 1<u>F</u>FB are fetched from memory and placed in the program counter. This is an automatic step performed by the 6502 hardware in response to the NMI request. Locations 1FFA and 1FFB are ROM locations, which collectively contain the address 1C1C. (The actual addresses are FFFA and FFFB, but, in the KIM-1, the high-order three address bits are ignored in an unexpanded system.)
- 3. Normal processor activity resumes. This activity consists of placing the program counter contents on the address bus and performing a memory read. The contents of location 1C1C are thus fetched as an instruction op code.
- 4. Location 1C1C, also a ROM location, contains 6C, a jump indirect op code. The next two locations, 1C1D and 1C1E, are thus accessed by the CPU, producing address 17FA, also preprogrammed in ROM. The nature of the jump indirect instruction is such that this address (along with the next consecutive location 17FB) contains the actual address of the next instruction to be executed. Since 17FA and 17FB are RAM locations,

- they must be previously loaded by the system user with the address of the first step in the NMI service routine he wishes to call. The STOP routine provided with the KIM monitor begins at location $1C\emptyset\emptyset$, and, if this is the desired routine, that value should have been loaded into 17FA and 17FB during system initialization.
- 5. The CPU begins execution of the STOP routine. Its details will not be discussed, but it generally consists of a continuous scan of the keyboard combined with a continuous display of the last memory location referenced by the user program along with the data stored at that location. (See the monitor listing of Section B.8 for details.)

This rather lengthy list of activities can be confusing and some care is necessary to sort out some of the terminology encountered. The various elements of 6502 literature refer to the contents of addresses FFFA and FFFB (which translate into 1FFA and 1FFB in limited address space of the unexpanded KIM) collectively as an *interrupt vector*, since they point into memory toward the requested service routine. In the particular case of the KIM, however, the desire to permit the system user to choose not only the monitor STOP routine but any other routine of his choosing as a response to an NMI request results in several of the extra steps outlined above. Since the 17FA, 17FB locations contain the actual address of the first location of the desired service routine, the contents of these locations are referred to in the KIM literature as the NMI interrupt vectors.

The RST (RESET) key on the KIM results in a sequence of activity which closely resembles that discussed above. The other half of the U25 dual timer debounces the switch, applying a request input to the RST input of the 6502. Once again, a sequence of activity ensues, involving fetching interrupt vectors from locations 1FFC and 1FFD. These locations contain the address 1C22, which, when sent to memory as a request for op code, yields not a jump indirect op code, but the actual first instruction in the RESET routine, which is a system initialization routine.

It is interesting to reflect on the fundamental difference between the NMI and RST responses to service requests. The most obvious difference is that the user has some flexibility in the use of the NMI routine, since by loading interrupt vectors of his choice into the appropriate RAM locations, he can control the response to such requests. It may seem that this flexibility is missing relative to the RST routine because the KIM designers saw no need for substitution of a userdefined response in place of the one provided by the system monitor. The actual reason for the difference is, however, more fundamental. Note that the resources of the monitor program must be used to load the appropriate interrupt vectors into the NMI locations. In order to call upon these resources, the sytem must enter a state in which a scan of the keyboard is performed. Once this state is entered, the keys can be used to call monitor routines to perform desired activities. Placing the system into this state requires the use of the system initialization routine. If this routine also depended upon the preloading of interrupt vectors, note that, somewhat embarrassingly, there would be no way to perform this preloading. The fixed interrupt vectors for RESET are therefore necessary in order to initiate proper system activity. This general procedure is one of several types most often described as bootstrap procedures.

B.4 OPERATION OF THE KIM KEYBOARD AND DISPLAY

Chapter 8 describes in some detail the operational manner in which the user can interact with the KIM system via the keyboard and display units. Beyond considerations of simply being able to operate the KIM system, however, it is of considerable educational value to examine in some detail the methods by which these system elements are interfaced to the KIM system, because they constitute excellent examples of peripheral units and their interface to a microprocessor system.

As the management of the display and keyboard interfaces is discussed, reference will be made to the routines which comprise the KIM operating system. The reader will find it useful to refer to the listing of these programs (included in Section B.8) as the discussion proceeds, not only to understand the actual KIM software mechanization, but also to learn by example how such software is written. The KIM designers achieved considerable efficiency by sharing one I/O port for the dual functions of display output and keyboard input and by sharing keyboard scan routines between manual keyboard and Teletype interfaces. This achievement of efficiency is, unfortunately, at the expense of simplicity of understanding in some cases, particularly to one who is examining such methods for the first time. An attempt will be made in this discussion to avoid some of the detail of the implementation which tends to obscure a basic understanding of the system. For example, in the discussion, the display drive mechanization will be separated from the keyboard scan mechanization.

B.4.1 Display Drive in the KIM System

Figure B.2 shows the principal elements in the display drive system. The diagram is simplified by omitting the electrical interface elements. The logical information flow is correct. The peripheral interface adaptor labeled 6530-002 is the key I/O element in this system. The display itself consists of six seven-segment display elements and, as configured, may conveniently be thought of as a two-dimensional array. Control over which character is displayed is provided by the A port of the 6530. Lines PAØ through PA6 are routed (through display drivers not shown in the diagram) to the seven LED segments (A through G, as shown in the figure) of each display unit. The other display selection dimension is activated by a 74145 BCD decoder as shown. The active output of this decoder (active-low) is a function of the four-bit code at the ABCD inputs. Any one of 10 binary codes (regular BCD decoding) produces an output from one of the decoder terminals. Thus, to drive a particular display element, the CPU must place the appropriate four-bit code in the SBD (Side B Data Register) positions 1 through 4. If these 4 bit positions are programmed as outputs (by appropriate loading of the Port B Data Register, PBDD), then this code is present on the PB1 through PB4 lines, and will appropriately drive the display array.

Output positions \emptyset through 3 of the decoder of Figure 4.3 are not used in the display drive. They function as part of the keyboard scan system and as part of the Teletype/keyboard selection control.

Table B.1 indicates the data which must be loaded into the B port Data Register (SBD) to appropriately select any one of the display elements.

TABLE B.1 KIM Display Character Position Selection Codes

To Select Character Position (Left-to-Right)	Active Decoder Output Must Be	Decoder Inputs Must Be D C B A	Port B Data Register Contents Must Be* (In Hex)	
1	4	Ø 1 Ø Ø	Ø 8	
2	5	Ø 1 Ø 1	ØΑ	
3	6	Ø 1 1 Ø	ØС	
4	7	Ø 1 1 1	ØE	
5	8	1 Ø Ø Ø	1 Ø	
6	9	1 Ø Ø 1	12	

*Since only bits 1 through 4 of the Port B data register affect the decoder, there are a number of other hex values which could be used in each of these postions. The only requirement is that bits 1 through 4 must be identical to the pattern for the values shown.

Since only output positions 1 through 4 affect the display, there are a number of redundant combinations which may be used. The hex values shown in the table are those which assume that \emptyset s are to be used in output positions \emptyset , 5, 6, and 7. (Actually, the 6530-002 has no PB6 output.) In the KIM, these other outputs are used for other interfacing functions and it may be that in some cases some value other than \emptyset might be desired.

Figure B.2 Simplified block diagram of KIM-1 display drive interface

Table B.2 is a listing of some of the possible 128 characters which can be produced by a seven-segment display. In each case, the ABCDEFG element combination which produces the character is expressed in terms of the hex value which, when produced by the PA \emptyset -6 output bus, will light the appropriate segments. Once again, since the PA7 output does not participate in the display drive, it is assigned the value \emptyset in the table. Since this terminal is used by the KIM system as a serial Teletype input port, its actual output assignment is immaterial.

In summary, to display a desired character in one of the display positions, the following steps must be performed:

- 1. Program the peripheral Data Direction Registers PADD and PBDD to configure PAØ-6 and PB1-4 as outputs.
- 2. Load the B side Data Register (SBD) with a value appropriate for the selection of the desired display element, as given in Table B.1.
- 3. Load the A side Data Register (SAD) with a value appropriate to the desired character, as given by Table B.2.

A program for performing the above steps is quite simple to write, but is very limited in application, since only one display position is affected by it. A more complex program is used by the KIM monitor, and is designated as SCAND (for Scan Display).

B.4.2 Scand, The KIM Display Drive Program

This program is written as a subroutine and begins on line 1057, page 25, of the KIM monitor listing (Section B.8). The first three steps of the program fetch a byte (two characters) to be displayed and stored in INH, the location reserved for the high byte of the input buffer. The next two steps program the A side of the 6530 port as an output. Next index register X is loaded with $\emptyset 9$ to serve as a pointer to the rightmost digit position of the display. Index register Y is loaded with $\emptyset 3$ preparatory to counting the number of characters to be displayed (6 characters, three bytes). Then routine SCAND1 is entered.

SCAND1 starts by fetching the first byte to be displayed, shifts it right four positions to isolate a single character, and then jumps to subroutine CONVD (Convert Display) which starts at line 1085. CONVD searches a conversion table (line 1202) similar in function to Table B.2. It places the appropriate data value found in the table on the PAØ-6 outputs, moves the preset value of index register X (set to Ø9 previously) to SBD, selecting the rightmost digit position of the display, and exe-

TABLE B.2 KIM Display Character Codes

Character	Symbol Displayed	Segments Lit	Hex Code
1		BC	Ø 6
2	卢	ABDEG	5B
3	1	ABCDG	4F
4	디	BCFG	66
5	5	ACDGF	6D
6	is in the second	ACDEFG	7D
7	计	ABC	Ø7
8	A	ABCDEFG	7 F
9	百	ABCDFG	6F
Ø	ī	ABCDEF	3F
A	百	ABCEFG	77
В	<u> </u>	CDEFG	7 C
C		ADEF	39
D	4	BCDEG	5E
E	Ē	ADEFG	79
F	F	AEFG	71
G		?	?
Н	H	BCEFG	76
I		BC	Ø6
J		BCDE	1E
K		?	?
L		DEF	38
M		?	?
N		?	?
O		CDEG	5C
P	P	ABEFG	73
Q		?	?
R		EG	5Ø
S	5	ACDFG	6D
T	<u> -</u>	EFG	7Ø
U	U	CDE	1 C
V		?	?
W		?	?
· X		?	?
Y	凹	BEFG	72
Z		?	?

cutes a delay routine which lights the display for 500 instruction cycles. CONVD finally increments index X by 2 (to prepare a pointer to the next leftmost digit position the next time around the loop), restores the value in index register Y, and returns to the calling routine SCAND1. This routine refetches the same byte, masks out the most significant 4 bits to isolate the *other* character in the byte and calls CONVD again to display the second character. Upon return, index Y is decremented, and, if it is not zero, (zero signifies that all characters have been displayed) routine SCAND1 is reentered to display the next two characters.

When all six characters have been displayed, signified by Y having been decremented to \emptyset , the display is turned off by forcing SBD bits 1 through 4 to \emptyset , so that no display element is selected. Peripheral port A is next reconfigured as an input and a jump to AK (get any key) is performed, initiating a scan of the keyboard.

B.4.3 Operation of the KIM Keyboard

The keyboard mounted on the KIM circuit board, like the display, is in a very real sense nothing more than a peripheral unit which interacts with the CPU via the 6530-002 peripheral interface unit. The function of the various keys in providing system control will not be discussed here because Chapter 8 covers this in great detail. However, a somewhat detailed examination of the control of this keyboard will be made, to promote understanding of the more general problem of peripheral control, in this case, the control of an input device.

Figure B.3 is a simplified logic diagram which illustrates the principal components which are involved in KIM keyboard interaction. The 74145 decoder is the same one previously discussed relative to display management. In that case the active decoder outputs were those labeled 4 through 9, but, as mentioned there, outputs Ø through 3 are the important ones in connection with keyboard interaction. Actually, output 3 is reserved for use as an indicator that the Teletype (rather than the KIM keyboard/display) is the selected controlling device, see Section B.6. Outputs Ø through 2 are connected to rows Ø through 2 of the KIM keyboard, as shown in Figure B.3. Basic keyboard operation consists of sequentially selecting rows \emptyset , 1, and 2 of the keyboard via an operating program. Any depressed key in a selected row will couple this activelow selection signal (through the vertical keyboard bus line connected to that key) back into one of the port A inputs (assuming that port A is programmed to serve as an input). After the sequential scan of the three rows is complete, the information gathered from the port by the CPU

Figure B.3 Simplified block diagram of KIM-1 keyboard scan system

during the scan can be interpreted and the depressed key identified. The CPU can then branch to a routine designed to service that key. Note that the programmer has complete liberty in assigning each key its role in the system, since the software he provides to service each keystroke is whatever he chooses it to be.

B.4.4 AK (Get Any Key) Keyboard Service Routine

To examine one implementation of a keyboard scan routine, we will examine the principal steps found in the KIM keyboard service routine. Recall that, upon completion of the display management routine (SCANDS) the KIM monitor software, after reconfiguring the port A I/O interface as an input, performs a subroutine jump to a routine called AK (any key), which may be found in the KIM monitor listing beginning on line 1037.

The first pair of steps in AK set index register Y and index register X values to $\emptyset 3$ and $\emptyset 1$, respectively. The Y value is used to count through the 3 rows of the display and the X value is used, via the BCD decoder and port B output, to sequentially select the three rows. The accumulator is loaded with all 1s (FF hex), and row \emptyset selected by storing the X value in SBD. The X value is then incremented by 2 to prepare for selection of row 2 during the next pass. Any key depressed on row \emptyset will send a low-level signal (a "0") back to the corresponding port A input line. Thus, when the next monitor instruction forms the logical AND of SAD contents with the accumulator, the corresponding accumulator bit will become \emptyset . After this operation, Y is decremented and tested for zero, with a branch back to the scan routine if Y is not zero. Thus three such scans, one for each row will be performed. Any key depression will change the original FF value in the accumulator to some other value.

The next three program steps are included to set up the Teletype selection for potential future use and to take care of the possibility that the Teletype, even though not being used, may have transferred data to the KIM.

A final EOR (exclusive-or) instruction complements the entire accumulator. Thus, if no keys were depressed during the scan, an all-zero accumulator state will be reached. If one or more keys were depressed, the accumulator will contain a nonzero value.

After the AK routine is finished, a RTS (Return from Subroutine) instruction is executed. This transfers control back to the SCAND routine. Reexamination of this routine, however, discloses that the JSR (Jump to Subroutine) to AK was its last step. However, SCAND, as it turns out, is reached via JSR instructions itself, so the actual return will be to the routine which called SCAND in the first place. There are several such calls in the monitor, all on page 17 of the listing. In particular, note the pair of calls on lines 662 and 664. A return from SCAND the first time with a nonzero accumulator value will result in a second call of SCAND, again followed by a test for zero accumulator. Once again the problem of unreliable logical outputs from mechanical switch contacts is being addressed. The KIM CPU refuses to believe the answer given by just one pass of SCAND, so it calls it one more time just to make sure the key is still depressed during the second scan. If it is, the routine designated GETK (line 667) is entered. This routine has as its function the determination of what key was pressed, information AK does not yield.

B.4.5 GETK and GETKEY Monitor Routines

GETK begins with a jump to subroutine GETKEY, beginning on line 1114 of the monitor listing. GETKEY is a moderately involved routine and its details will not be expounded here. Figure B.4 is a flow chart of GETKEY. Suffice it to say that when it is entered, it scans the KIM keyboard in a manner similar to that done during the AK routine, except that much more processing of the data is performed. The result of this processing is that, when a return from GETKEY occurs, a code is left in the accumulator which uniquely specifies the key that was depressed. Table B.3 shows the association between the keyboard keys and the codes produced by GETKEY. Note that a code with a hex value greater than 15 represents a so-called "illegal" code, and is an indicator that the key was not steadily depressed during the execution of the scan, or that two keys or more were depressed. Such an illegality is rare, because it is extremely difficult to create a keystroke so short as to not appear rather slow to the KIM monitor program. Also, two keys would have to be depressed with near-perfect simultaneity to be detected as an illegal activity by the GETKEY routine.

Returning to the flow of events engendered by the original keystroke, return from GETKEY is back to GETK. The key code having been placed in A, the next few steps of GETK are simply comparisons with code values corresponding to NO KEY, PC, ADDRESS MODE, DATA MODE, STEP (+), and GO key depressions. In each of these cases a jump to a subroutine for handling that particular activity is performed, after which a return to normal keyboard scan will be made. If none of the above codes are found, the code must be a data value held in the lower 4 bit positions of A. In this case, two principal activi-First, a determination ties must be performed by routine DATA. as to whether the keystroke was intended to affect Data or Address portions of the display is made. The routine accomplishes this by examining the MODE value (held at the reserved address ØØFF). If ADDRESS mode is selected, the routine loads the display buffer area with the proper characters, shifts the characters around in such a way as to reflect a right-to-left insertion of new characters to the display, and fetches the data at the resulting memory address. This data is loaded into the display buffer area so that when a return is made to the SCAND routine, the display will indicate the new address and the data stored there. If DATA mode is selected, the address presently held in the display buffer will be used to read memory, shift the low-order data

Figure B.4 Flow chart - GETKEY monitor routine

TABLE B.3 KIM Monitor Keystroke Codes

Key	Code Placed in A
Depressed	by GETKEY (hex)
NONE	15
PC	14
AD	10
DA	11
+	12
GO	13
1	01
2	02
3	03
4	04
5	05
6	06
7	07
8	08
9	09
0	00
A	A 0
В	OB
C	0C
D	0D
E	0E
F	0F
Illegal	> 15

character left one hex position and insert the new value (obtained by GETKEY) in the vacated position. The modified value is then rewritten into memory and a return to SCAND (via START, line 636) is performed.

In reading the KIM monitor listing, it is easy to become confused by some program activities which appear to be meaningless or at least obscure. This is a common reaction when trying to obtain an understanding of another programmer's thought processes via a listing of his program. Novice programmers should remember this when writing their own programs, and should try to follow the following two rules:

1. Be very liberal in your use of comments in your programs.

2. Try to avoid being too clever. It may cost a little extra code to to things in a straightforward manner as opposed to developing short but intricate routines. Be forewarned that such "cleverness" will not only be confusing to another worker trying to understand your program listing, but to yourself when you are trying to use or debug the routine a couple of days after having written it.

B.5 USE OF KIM SUBROUTINES

The discussions of the previous sections involved examinations of some of the activity managed by the KIM monitor. In looking over this operation, you may have noticed that much use is made in the KIM monitor of subroutines performing desired operations. This rather fortunate implementation, one which is a good model for programmers in general, makes available to the KIM user a variety of routines for use outside the normal monitor usage. Table B.4 is a listing of those subroutines included in the portion of the KIM monitor provided for management of display, keyboard, and Teletype. The user can call these routines by simply using the JSR instruction and providing the starting location of the desired routine. They may be thought of as a rather limited "library" available to the system user. The only difference between these subroutines and those you might write for yourself lies in their behavior during the single-step operation of the KIM. Since they all lie in page 7 of memory, you cannot step through them. This does not mean that you cannot use them, however, in programs you might like to step through. The only effect will be that in stepping through a JSR instruction which calls one of these routines, you will find that the entire subroutine will be executed before the KIM stops and waits for the next instruction in sequence, the one following the JSR. Note that, in such a case, you are using the subroutine for your own purposes, and the KIM monitor is using the same subroutine, without any conflict between the two uses.

This concept of use of a subroutine library is a very important one. You will find in your future use of microcomputers that the establishment of such a library for use by yourself or others will greatly enhance your ability to use your system without the necessity to develop all software "from the ground up" each time a new and different problem or application is to be examined. You will also find the use of subroutines developed by other users to be an important aid.

TABLE B.4 KIM Monitor Subroutines

Subroutine Name	Starting Address	Description	Comments
INITS	1E88	Initializes system, performing the following steps: 1. Set keyboard to address mode. 2. Program 6530 A port terminals as inputs. 3. Program the lower 6 6530 B port terminals as outputs, and the upper bit as an input (for TTY mode). 4. Loads Ø3 into B port data register (setting up test for TTY mode). 5. Clear decimal mode of KIM arithmetic unit.	
INIT1	1E8C	Same as INITS, except does not affect keyboard mode.	
SCAND	1F19	Drives KIM display, displaying 4-character address and data stored in memory at that address. Branches to AK routine at completion to test for occurrence of KIM keyboard depression. Returns to calling program after AK.	Address to be displayed stored at POINTL, POINTH.
SCANDS	1F1F	Identical to SCAND, except simply displays data at POINTL, POINTH, INH.	6 hex digits to be displayed must be stored at POINTL, POINTH,
AK	1EFE	Scans KIM keyboard to see if any key is depressed. Loads A with \emptyset if no key, with some nonzero number if key.	AND INH. PA port must be programmed as input.
GETKEY	1F6A	Scans KIM keyboard, producing code (in A) identifying key depressed (see Table B.4).	
INCPT	1F63	Increments the 16-bit value in POINTL, POINTH.	

TABLE B.4 (Continued)

Subroutine Name	Starting Address	Description	Comments
OPEN	1FCC	Moves data from INL to POINTL and from INH to POINTH.	
CONVD	1F48	2. Selects display element with contents of X (see section on	in lower half of A, with upper half cleared. X contains code selecting display element. X will be modified (incremented
GETCH	1E5A	Get one character from Teletype, placing it in A.	X unchanged, Y=FF on return.
GETBYT	1F9D	Get two hex characters from Teletype (as one byte) and pack into INH and INL (See PACK).	X unchanged, $Y=\emptyset$ on return.
PACK	1FAC	Shift character in A into the INH, INL string. Loses the high-order character of INH. If A does not contain a hex digit, return with no execution.	Clears A on return (if transfer successful).
CHK	1F91	Computes check sum (used with paper tape routine).	
PRTST	1FD5	Prints (via Teletype) a string of ASCII characters from TOP + X to TOP (TOP is a table prestored in ROM).	into table.
CRLF	1 E2F	Prints (via Teletype) a carriage return and line feed.	
OUTCH	1EAØ	Prints (via Teletype) one character (in A).	A contains character to be printed, X unchanged Y=FF on return.

OUTSP	1E9E	Prints (via Teletype) a space. X unchanged, Y=FF on
PRTPNT	1E1E	Prints (via Teletype) the contents of POINTL and POINTH as 4 hex characters.
PRTBYT	1E3B	Prints (via Teletype) a byte (in A contains byte at start A) as two hex characters. and at return.
HEXTA	1E4C	Extracts lower 4 bits of A, prints (via Teletype) as hex character.
DELAY	1ED4	Delay one Teletype bit time. Delay depends on baud rate constant (CNTL30, CNTLH30) stored during initialization.
DEHALF	1 EEB	Like DELAY, except delays one-half bit time.

B.6 KIM KEYBOARD/TELETYPE SELECTION CONTROL

The KIM system permits the user to select as his primary I/O device either the integral keyboard/display or a console device such as an ASR33 Teletype. It is instructive to examine the means by which the KIM system goes about implementing the choice of option for I/O.

If one reads only the bare operating procedures for the KIM, he finds that the steps involved in setting up the TTY option include wiring of a connector jumper or a switch which is used to select the option. This may suggest that some wiring of hardware is being accomplished, but in fact the selection is performed almost entirely in software. Refer to Figure B.5 which shows a logic drawing of the 6530-002 peripheral interface unit and the switch wired in to permit implementation of the TTY option. Note that output number \$\psi 3\$ is tied through this switch to PAØ of the 6530. PAØ should be configured as an input. During the initialization program executed during a RESET operation (a small portion of which is shown in both listing and flow chart form in Figure 4.7), the Port B data register (SBD) is loaded with Ø7, producing an active-low output at the \$\psi 3\$ terminal of the BCD decoder. If the TTY mode switch is closed, this signal will be coupled into the PAØ input. When the program shown executes a BIT (bit test) instruction, (comparing the contents of PA to Ø1) and then follows this with a BNE (branch on nonzero), the branch will not be taken, since the zero

Figure B.5 KIM-1 keyboard/Teletype mode selection circuitry

flag will have been cleared by the bit test operation. Thus the program sequence will not be broken, and the monitor will enter a Teletype handling software mode. If, on the other hand, the BIT, BNE sequence resulted in a zero flag set, indicating that $PA\emptyset$) was 1, a branch to monitor routine START would result, corresponding to keyboard/display selection. (Note that this means that an unconnected input to $PA\emptyset$ is interpreted as a high level or a "1").

There are several branch points in the monitor program which require testing for TTY mode. In each case, a procedure similar to the one described is executed by the software. (See, for example, lines 614, 637, and 659 of the KIM monitor listing.)

B.7 TELETYPE I/O INITIALIZATION

Figure B.6 is a diagram which shows the interface circuitry required to properly connect the 6530-002 to a 20-milliampere current-loop

Figure B.6 Teletype current-loop interface circuitry

interface such as is found in a standard ASR33 Teletype. (Also shown is a portion of the audio cassette interface, which will not be discussed here.)

Chapter 5 discusses asynchronous communication principles in some detail, so it is assumed that basic Teletype operation is understood. From the diagram it can be seen that 6530 initialization to support this interface requires that:

- 1. PBØ be programmed as an output.
- 2. A high or "1" value be sent to PBØ.
- 3. PA7 be programmed as an input.
- 4. PB5 be programmed as an output.

- 5. PB5 be programmed as an output.
- 6. A low or "0" value be sent to PB5.

The KIM-1 monitor established the 6530-002 interface during an initialization sequence called INITS (lines 966-977). The reader should verify that the steps listed here are performed during this routine.

B.8 KIM-1 MONITOR PROGRAM LISTING

This section consists of a reproduction of the KIM-1 Monitor listing, included with permission of MOS Technology, Inc.

CARD # LDC	CODE	CARD				
3	3		666666	555555	333333	000000
4	;		6	5	3	0 0
5	;		6	5	3	0 0
6	;		666666	555555	33333	0 0
7	;		6 6	5	3	0 0
8	;		6 6	5	3	0 0
9	;		666666	555555	333333	000000
10	;					
11	;					
12	;					
13	ţ			000000	000000	333333
14	;			0 0	0 0	3
15	;			0 0	0 0	3
16	;			0 0	0 0	333333
17	;			0 0	0 0	3
18	;			0 0	0 0	3
19	;			000000	000000	333333
20	:					
≥1	;					
22	;					
23	;					
24	;					
25	;	COPYRIG	HT			
26	;	MOS TEC	HNOLOGY,	INC		
27	;	DATE OC	T 18 1975	5 REV D		
28	;					
29	,					
30	ÿ					
31	;	6530-00	IS AN	AUDIO CASS	ETT TAPE	
35	;	RECURDE	R ENTENS	ION OF THE	BASIC	
33	;	KIM MON	ITOR			
34	;					
35	;	IT FEAT	URES TWO	BASIC ROL	TINES	
36	;	LOADT-L	DAD MEM	FROM AUDIO	TAPE	
37	;	DUMPT-S	TOR MEM	ONTO AUDIO	TAPE	
38	;					
39	;	LOPDT				
40	;	ID=00		ORE ID		
41	;	ID=FF	IGN	. ID USE S	A FOR STA	ART ADDR
42	;	ID=01	-FE IGN	. ID USE AI	DR ON TAR	E
43	;					
44	;	DUMPT				
45	;	ID=00		ULD NOT BE		
46	;	ID=FF	SHO	ULD NOT BE	USED	
47	;	ID=01	-FE NOR	MAL ID RAM	1GE	
43	,	SAL		STARTING		
49	•	SAH	MSB			
50	;	EAL	LSB	ENDING A	DRESS	
51	;	EAH	MSB			
52	į	-				

```
CARD # LOC
                                 CARD
                   CODE
                                      EQUATE:
    56
57
                                      SET UP FOR 6530-002 I/O
    58
59
60
                             SAD
                                      =$1740
                                                            6530 A DATA
                                                             6530 A DATA DIRECTION
                                      =$1741
=$1742
                             PADD
                                                             6530 B DATA
                             SBD
    61
                             PBDD
                                      =$1743
                                                             6530 B DATA DIRECTION
                                                            DIV BY 1 TIME
DIV BY 8 TIME
    62
                             CLK1T =$1744
    63
64
65
66
67
                             CLKST
                                      =$1745
                                                            DIV BY 64 TIME
DIV BY 1024 TIME
                             CLK64T =$1746
                             CLKKT =$1747
CLKRDI =$1747
                                                            READ TIME OUT BIT
                             CLKRDT =$1746
    68
   69
70
71
72
73
74
75
76,
77
79
         0000
                                       +=$00EF
                             ş
                                      MPU REG. SAVX AREA IN PAGE 0
                             ;
PCL
                                      +=++1 PROGRAM CNT LOW
         DOFF
         0060
                             PCH
                                      +=++1 PROGRAM CHT HI
                             PPEG +=++1 CURRENT STATUS REG.
SPUSER +=++1 CURPENT STACK POINT
         00=1
         00F2
00F3
                                      +=++1 ACCUMULATOR
+=++1 % INDEX
+=++1 Y INDEX
                              ACC
         00F4
                              XREG
         00F5
                              YREG
    30
                                      KIM FIXED AREA IN PAGE 0
    31
    38
         00F6
                              CHKHI +=++1
    83
         00F7
                              CHK3UM +=++1
    34
35
36
37
38
         00F8
                              INL
                                       +=++1 INPUT BUFFER
         00E9
                              INH +=++1 INPUT BUFFER
POINTL +=++1 LSB OF OPEN CELL
         OOFR
                              POINTH +=++1 MSB OF OPEN CELL
         OOFB
         OOFC
                              TEMP
                                       *=++1
    99
90
         OOFD
                              TMPX
                                       +=++1
         COFE
                              CHAR
                                       +=++1
    91
92
93
94
         OUFF
                              MODE
                                       +=++1
                                       KIM FIXED AREA IN PAGE 23
    95
         0100
                                       +=£17E7
    96
         17E7
                              CHKL
                                       +=+1
    97
         1753
                              CHKH
                                       +=++1
                                                             CHKISUM
    98
         17E9
                              SAVX
                                       +=++3
         17EC
17F2
    99
                                                             AGRATICE EXECUTION BROCK
                              VEB
                                       *=++6
                                                             TTY DELAY
   100
                              CNTL30 +=++1
         17F3
   101
                              CNTH30 +=++1
         17F4
                              TIMH
   108
                                       +=++1
   103
         17F5
                                       *=++1
                                                             LOW STARTING ADDRESS
                              SAL
                                                             HI STARTING ADDRESS
LOW ENDING ADDRESS
HI ENDING ADDRESS
         17F6
                              SAH
                                       +=++1
   105
         17F7
                              EAL
                                       +=++1
   106
         17F8
                              EAH
                                       +=++1
   1 07
         17F9
                              ID
                                       *=++1
   108
                                       INTERRUPT VECTORS
   109
   110
                                                             STOP VECTOR (STOP=1000)
RST VECTOR
IRQ VECTOR (BRK= 1000)
         17FA
                              NMIV
                                       +=++2
   112
         17FC
17FE
                              RSTV
                                       +=++2
                              IRQV
                                       +=++2
   113
   114
         1800
                                       +=$1800
   116
   117
                                       INIT VOLATILE EXECUTION BLOCK
   118
                                       DUMP MEM TO TAPE
   119
   120
                              DUMPT
                                      LDA
                                              #$AD
                                                             LOAD ABSOLUTE INST
         1800 A9 AD
   121
```

CARD #	UB 0	CODE	CAR	D		
122	1802	SD EC :	17	STA	VEB	
123	1805	20 32 3	19	JSR I	NTVEB	
124			;			
125	1808	A9 27		LDA	#\$27	TURN OFF DATAIN P35
126	180A	8D 42	17	STA	ZBD	
127	180D	A9 BF		LDA	#\$BF	CONVERT PB7 TO OUTPUT
128	180F	8D 43	17	STA	PBDD	
129			;			
130	1812	A2 64		LDX	#\$64	100 CHARS
131	1814	A9 16	DUMPT1	LDA	#\$16	SYN CHAR'S
132	1816	20 7A		JSR	DUTCHT	
133	1819	CA		DEX		
134	181A	D0 F8		BNE	DUMPT1	
135			;			
136			;			
137	1810	A9 2A		LDA	# *	START CHAR
138	181E	20 7A	19	JSR	DUTCHT	
139		• • • • • • • • • • • • • • • • • • • •	;			
140	1821	AD F9		LDA	ID	DUTPUT ID
141	1824	20 61		JSR	DUTBT	
142			;			
	1827	AD F5		LDA	SAL	DUTPUT STARTING
144	182A	30 SE	19	JSR	DUTBTC	ADDRESS
145	182D	AD F6		LDA	SAH	
146	1830	20 SE		JSR	DUTBTC	
147						
148	1833	AD ED	17 DUMPTS	LDA	VEB+1	CHECK FOR LAST
149	1836		17	CMP	EAL	DATA BYTE
150	1839	AD EE	17	LDA	VEB+2	
151	1830		17	SBC	EAH	
152	1835	90 24	• '	BCC	DUMPT4	
153			;	200	23	
154	1841	A9 2F	,	LDA	0'/	DUTPUT END OF DATA CHR
155	1843	20 7A	19	JSR	DUTCHT	
156	1846		17	LDA	CHKL	LAST BYTE HAS BEEN
157	1349		19	JSR	DUTBT	OUT PUT NOW OUTPUT
158	184C	AD E8		LDA	CHKH	CHKSUM
159	184F		19	JSR	DUTBT	
160			,			,
161			í			
162	1852	S0 SA		LDX	\$02	2 CHAR'S
163	1854	A9 04	DUMPT:		#\$ 04	EDT CHAR
164	1856	20 7A		JSR	DUTCHT	
165	1859	CA		DEX		
166	1859	D0 F8		BNE	DUMPT3	
167			;			
168	1850	A9 00		LDA	#100	DISPLAY 0000
169	185E	85 FA		STA	POINTL	FOR NORMAL EXIT
170	1860	85 FB		STA	POINTH	
171	1862	4C 4F	1C	JMP	START	
172			;			
173	1865	30 EC	17 DUMPT4	JSR	VEB	DATA BYTE OUTPUT
174	1868	20 SE		JSR	DUTBTO	
175			;			
176	186B	20 EA	19	JSR	INCVEB	
177	186E	4C 33	18	JMP	DUMPTE	
178			;			
179			;	LOAD	MEMORY FROM	TAPE
180			;			
181			;			
182	1871	0F 19	TAB	.WORI	LOAD12	
183	1873	A9 8D	LOADT	LDA	#\$8D	INIT VOLATILE EXECUTION
184	1875	8D EC	17	STA	VEB	BLOCK WITH STA ABS.
185	1878	50 35	19	JSR	INTVEB	
186			;			

CAPD 187	* LOC 187B	CODE 89 40	CA	RD LDA	#\$4 C	JUMP TYPE RTRN
188	1871	8D EF 17		STA	VEB+3	3577 1772 37707
189 190	1880 1883	AD 71 18 8D F0 17		LDA STA	TAB VEB+4	
191	1886	AD 72 18		LDA	TAB+1	
192 193	1889	8D F1 17	;	STA	VEB+5	
194	1880	A9 07		LDA	\$\$07	RESET PB5=0 (DATA IN)
195 196	188E	8D 42 17	;	STA	SBD	
197	1891	A9 FF	SYNC	LDA	#\$FF	CLEAR SAVX FOR SYNC AREA
199 199	1893	8D E9 17	•	STA	SAVX	
200	1896	20 41 1A	SYNC1	JSR	RDBIT	GET A BIT
201	1899	4E E9 17		LSR	SAVX	SHIFT BIT INTO CHAR
203 203	1890 1895	0D E9 17 8D E9 17		ORA	SAVX	
204	1892	8D E9 17 AD E9 17		STA LDA	SAVX SAVX	GET NEW CHAR
205	1885	C9 16		CMP	# \$ 16	SYN CHAR
206 207.	1887	DO ED		BHE	SANCT	
203	1889	A2 0A	;	LDX	⇔\$0A	TEST FOR 10 SYN CHARS
209	18AB	20 24 1A	SYNCS	JSR	SECHT	TEST TEN TO STIT CHARS
210	18AE	C9 16		CMP	≎\$16	
211 212	18B0 18B2	DO DE CA		BME	SANC	IF NOT 10 CHAR RE-SYNC
213	18B3	D0 F6		BNE	SYNCE	
214			•			
215 216	1885	20 24 1A	; LOADT4	199	RDOHT	LOOK FOR START OF
217	1888	C9 2A	CUMBIA	CMP	#10CH1	DATA CHAR
218	18BA	F0 06		BEO	LOAD11	
219 220	1880	09 16		CMP	#\$16	IF NOT → SHOULD BE SYN
22U 221	18BE 1800	DO D1 FO F3		BNE	SYNC LOADT4	
555			;	DLO	CONDIA	
223	1802	20 F3 19	COADII		RDBYT	READ ID FROM TAPE
224 2 25	180 5 1808	CD F9 17 F0 OD		CMP BEO	ID LJADT5	COMPARE WITH REQUESTED ID
988	18CA	AD F9 17		LDA	ID	DEFAULT OF READ RECORD
227	18CD	C9 00		CMP	002	ANYWAY
8SS 8SS	180F 1801	F0 06 C9 FF		BEQ	LOADT5 ≎\$FF	DEFAULT FF IGNOR SA ÓN
230	18D3	F0 17		BEQ	LDADT6	TAPE
231	18D5	DO 9C	_	BHE	LOADT	
232 233	1807	20 F3 19	; LOADT5	JSR	RDBYT	GET SA FROM TAPE
234	18DA	20 40 19		JSR	CHKT	oct sa raar tare
235	18DD	8D ED 17		STA	VEB+1	SAVX IN VEB+1,2
236 237	18E0 18E3	20 F3 19 20 40 19		JSR JSR	RDBYT CHKT	
538	18E6	8D EE 17		STA	VEB+2	
239	18E9	40 F8 18		JMP	LOADTZ	
249 241	18EC	20 F3 19	; LOADT6	JSR	RDBYT	GET SA BUT IGNORE
248	18EF	20 40 19	-6	JSR	CHKT	GET SIL EGT TOMAKE
243	18F2	20 F3 19		JSR	RDBYT	
244 245	18F5	20 40 19	;	JSR	CHKT	
246			,			
247	18F8	95 0S	LOADTZ		\$02	GET 2 CHARS
248 249	18FA 18FD	20 24 1A C9 2F	LOAD13	JSR CMP	RDCHT #1/	SET CHAR(X)
250	18FF	F0 14		BEQ	LUADTS	LOOK FOR LAST CHAR
251	1901	20 00 1A		JSR.	PACKT	CONVERT TO HEX

```
CODE
                               CARD
CARD # LOC
                                                         Y=1 NON-HEX CHAR
        1904
               D0 53
                                    BNE
                                           LOADT9
  252
253
        1906
                                    DEX
                                           LOAD13
        1907
               00 F1
                                    BNE
  255
                                                         COMPUTE CHECKSUM
                                            CHKT
                                     JSR
  256
        1909
               20 40 19
                                                         SAVX DATA IN MEMBRY INCREMENT DATA POINTER
               40 EC 17
20 EA 19
                                            VEB
                                     JMP
  257
        1900
1905
                            LOADI2 JSR
                                            INCVEB
  253
        1913
               40 F8 18
                                     JMP
                                            LOADT?
   259
  260
                                                         END OF BATA COMPARE CHKSUM
   261
        1915
                20 F3
                            COADTS
                                    JSR
                                            RDBYT
                                     CMP
   268
        1918
                00 E7 17
                                            CHKL
                                            LOADT9
                                     BNE
   263
        191B
               00 00
20 F3 19
                                            RDBYT
                                     JSR
  264
        191D
                                     CMP
                                            CHKH
                CD €8 17
  24,5
        1980
        1983
                DO 04
                                     BNE
                                            COADT9
   266
                                                         NORMAL EXIT
   267
         1925
                A9 00
                                     LDA
                                            ** 100
                                            LOADIO
   269
        1927
               F0 02
                                     BEQ.
  269
270
271
                                            #SFF
                                                          ERROR EXIT
         1989
1988
                eg FF
                            LOADIS LDA
                35 FA
                            LOAD10.STA
                                            POINTL
   272
         192D
                85 FB
                                     STA
                                            POINTH
  273
274
                4C 4F 1C
                                     JMP
                                            START
  276
277
278
279
                                    SUBROUTINES FOLLOW
                                    SUB TO MOVE SA TO VEB+1.2
   280
                            INTVEB LDA
                                            SAL
               AD F5 17
   281
         1932
                                            VEB+1
                                     STA
                8D ED 17
AD F6 17
   282
         1935
                                     LDA
   283
         1938
                                            VEB+2
         193B
                8D EE 17
   284
                                                         RTS INST
   285
         193E
                                     LDA
                                            #$60
                                            VEB+3
   286
         1940
                8D EF 17
                                     STA
                                                          CLEAR CHKSUM AREA
                                            #$00
   287
         1943
                A9 00
                                     LBA
                                            CHKL
                8D E7 17
                                     STA
   288
         1945
                                            CHKH
                8D E8 17
                                     STR
   289
         1948
   290
         194B
                60
   291
                                     COMPUTE CHKSUM FOR TAPE LOAD
RTN USES Y TO SAVX A
   292
   293
   294
                                     TAY
   295
         1940
                88
                            CHKT
         194D
194E
                                     CLC
   296
                18
                                     ADC
                                             CHKL
                6D E7 17
   297
         1951
                8D E7 17
                                     STA
                                             CHKL
   298
         1954
                AD E8 17
                                     LDA
                                             CHKH
   299
                                            #¥00
   300
         1957
                                     ADC
                                     STA
BYT
   301
         1959
                 8D E8 17
                                             CHKH
   302
         1950
                 98
                                     RTS
   303
         195D
                 60
   304
                                     DUTPUT ONE BYTE USE Y
   305
                                      TO SAVE BYTE
    306
    307
                                                          COMP CHKSUM
SAVX DATA BYTE
SHIFT OFF LSD
                                     JSR
         195E
                 20 40 19
                             OUTBTO
                                             CHKIT
    308
    309
          1961
                 A8
                             DUTBT-
                                     TAY
                                      LSR
    310
          1962
                 4A
                                      USR
          1963
1964
    311
                 46
                 46
                                      LSR
    312
          1965
                                      LSR
                 46
    313
                                                           OUT PUT MSD
                 20 6F 19
                                      JSR
                                             HEXOUT
    314
315
          1966
          1969
                 98
                                      TYA
                                                           OUT PUT USD
                                             HEXOUT
          1958
                 20 6F 19
                                      JSR
    316
                                      TYA
          196D
                 98
```

```
CARD
CARD * LOC
                  CODE
  319 196E
               60
                                    RTS
  319
                                    CONVERT LSD OF A TO ASCII
  320
  321
                                    AND OUTPUT TO TAPE
  388
  383
        196F
                           HEXOUT AND
                                           ## OF
  324
        1971
               C9 0A
                                    OMP
                                           ##0A
  325
        1973
                                    cuc
               18
        1974
               30 02
                                           HEX1
  326
                                    BM I
  327
        1976
               69 07
                                    ABC
                                           #807
  388
                           HEX1
       1979
               69 30
                                   ADC
                                           #$30
  329
  330
                                   OUTPUT TO TAPE ONE ASCII
  331
                                    CHAR
                                          USE SUB'S ONE + ZRO
  332
333
       1978
1970
              8E E9 17
8C EA 17
                                           SAVX
                           DUTCHT STX
                                           SAVX+1
  334
                                    STY
  335
        1980
               A0
                                                        START BIT
                  08
                                   LDY
                                           802
       1982
1985
1986
                  9E 19
                           CHT1
                                           DNE
                                                        GET DATA BIT
  337
               46
                                   LSR
              B0 06
                                    BCS
                                           CHTS
  338
  339
        1988
               50
                  9E 19
                                    JSR
                                           ONE
                                                        DATA BIT=1
  340
        198B
               40 91 19
                                    JMP
                                           CHT3
  341
        198E
               20 04
                      19
                           CHTS
                                    JSR
                                           ZRO
                                                        DATA BIT=0
  342
343
        1991
               20 04 19
                           CHT3
                                    JSR
                                           ZRD
       1994
1995
               88
                                    DEY
  344
               DO FB
                                    BNF
                                           CHT1
  345
        1997
               AE E9 17
                                   LDX
                                           SAVX
  346
        1999
               AC EA 17
                                    LDY
                                           SAVX+1
  347
        199D
  348
  349
350
                                   QUIPUT 1 TO TAPE
9 PULSES 138 MICROSEC EACH
  351
  353
        199E
               90 SA
                           DNE
                                    LDX
                                           #$09
       1980
1981
1984
  354
355
               48
                                    PHA
                                                         P XVA2
               20 47 17
                           DHE1
                                    BIT
                                           CLKRDI
                                                        WAIT FOR TIME OUT
  356
               10 FR
                                    BPI.
                                           ONE1
  357
        1986
               A9 7E
                                    LDA
                                           :126
  358
        1988
                                    STA
               8D 44 17
                                           CLK1T
  359
        19AB
               A9 A7
                                    LDA
                                           $$87
  360
        19AD
               8D 42,17
                                    STA
                                           SBD
                                                         SET PB7=1
               2C 47
  361
        1980
                     17
                           DNE2
                                    BIT
                                           CLKRDI
  362
        19B3
                                           DNE 2
                                    BPL
  363
        1985
               89 7E
                                    LDA
                                           #126
  364
        1987
               8D 44 17
                                    STA
                                           CLK1T
  365
        19BA
               A9 27
                                    LDA
                                           #$27
  366
        1980
               8D 42 17
                                    STA
                                           SBD
                                                         RESET PB7=0
  367
        19BF
               CA
                                    DEX
  368
        1900
               DO DE
                                           ONE1
                                    BHE
  369
        1902
               68
                                    PLA
  370
        1903
                                    RTS
  371
  372
  373
374
375
                                    OUTPUT 0 TO TAPE
6 PULSES 207 MICROSEC EACH
               A2 06
                           ZRO
                                    LDX
                                           #$06
       1906
1907
               48
                                                         SAVX A
  378
               20 47 17
                                    BIT
                                           CLKRDI
       190A
1900
                                    BPL
CDA
STA
  379
330
               10 FB
49 C3
                                           ZR01
0195
  331
        190E
               30 44
                                           CLK1T
  332
       1901
               A9 47
                                    LDA
                                           #8A7
```

```
CARD # LDC
                 CODE
                              CARD
               8D 48 17
80 47 17
        1903
1906
                                   STA
                                          SBD
CLKRDI
  333
                                                        96T PB7=1
                           ZRGS
                                   BIT
  334
               10 FB
  335
        1909
                                           zeoa
                                   BPL
        19DB
               A9 03
  336
                                   _DA
                                           #195
  337
        1900
               9D 44 17
                                   STA
                                           CLKIT
  338
        1950
               99 27
                                   €.DA
                                           #$27
  389
        1968
               8D 42 17
                                   STA
                                           \mathbb{S}\,B\,D
                                                       RESET P87=0
  390
               CA
                                   DEX
  391
               DO DE
        1956
                                           3201
                                   BME
  392
        1968
                                                        RESTORE A
               68
                                   PLA
  393
        1969
                                   RTS
  394
  395
                                   SUB TO INC VEB+1.2
  396
  397
        195A
                           INCVEB INC
               EE ED 17
                                           VEB+1
  393
        1960
               DO 03
                                   BNE
                                           INCVE1
  399
        19EF
               EE EE 17
                                   INC
                                           VEB+S
  400
        19F8
               60
                           INCVE1 RTS
  4 0 1
  403
                                   SUB TO READ BYTE FROM TAPE
  403
  404
        1963
               20 24 1A
                           RDBYT
                                   JSR
                                           RDOHT
        19F6
19F9
  4 05
               20 00 1A
                                   JSR
                                          PACKT
  406
               20 24 19
                           RDBYTS
                                   JSR
                                          RECHT
  407
        19FC
                                   JSR
               20 00 18
                                           PACKT
  4.08
        19FF
                                   RTS
               60
  409
  410
                                   PACK A=ASCII INTO SAVK
  411
                           ţ
                                   AS HEX DATA
  412
413
               C9 30
30 15
C9 47
        1900
                                   CMP
                           PACKT
                                           **30
        1808
  414
                                   BMI
                                           PACKT3
        1804
  415
                                   CMP
                                           #$47
  416
        1806
                                           PACKTS
               10 18
                                   BPL
  417
        1808
               C9 40
                                   CMP
                                           # $40
  418
        1808
               30
                  03
                                   BMI
                                           PACKT1
  419
        1900
               18
                                   CLC
  420
421
       1800
1805
               69 09
28
                                   ADC
                                           #$09
                           PACKT1 ROL
                                           Α
  422
        1910
               28
                                   ROL
                                           A
  423
        1811
               28
                                   ROL
  424
        1912
               28
                                   ROL
  425
        1913
               A0 04
                                   LDY
                                           #$04
        1815
  426
                           PACKTE ROL
               8A
                                   ROL
       1916
1919
               2E E9 17
  427
                                           SAVX
  428
               88
  429
        1818
               DO F9
                                           PACKTS
                                   BNE
  430
       1810
               AD E9 17
                                   LDA
                                           SAVX
                                                       Y=0 VALID HEX CHAR
 431
432
       181F
1821
                                   LDY
RTS
               90 0e
                                           #$00
              60
 433
       1822
                          PACKT3 INY
                                                       Y=1 NOT HEX
              C8
 434
       1883
 435
                          ţ
 436
                          ţ
                                   GET 1 CHAR FROM TAPE AND RETURN
 437
                                  WITH CHAR IN A LUSE SAVX+1 TO ASM CHAR
 438
 439
              BE EB 17
       1824
                          RDCHT
                                   SIX
                                          SHVX+2
 440
       1987
              80 SA
                                                       READ B BITS
                                   CDX
                                          8040
 441
       1889
              20 41 19
                                  JSR
                                          RDBIT
                                                       GET NEXT DATA BIT
              46 66 17
00 66 17
                                                       RIGHT SHIFT CHAR
OP IN SIGN BIT
 442
       1880
1886
                                   LSR
                                          SAVX+1
 443
                                   ORA
                                          SAVX+1
 444
       1933
              SD 68 17
                                  STA
                                          SAVX+1
                                                       REPLACE CHAR
       1835
              OA.
                                   DEX
 446
              DO F1
       1836
                                   BNE
                                          RDCHT1
 447
                          ;
```

5.00 D 4	1.515	20.00	CAR	n		
649D 0	1938	000E AD 68 17	Suk	u ⊆Da	SAVX+1	MOVE CHAR INTO A
449	1936	9A				SHIEL GEE EURLLA
450		_		୧୯୯	A	ZHIEL GEE EMELLA
	1930	49		LSR	4	
451	1630	AE 68 17		CDX	24AX+5	
452	1940	50		812		
453			; ,			
454			;			NE BIT FROM
455			;	TAPE	AND RETURN	S IT IN SIGN OF A
456			;			
437	1941	20 43 17	RDBIT	BIT	SBD	WAIT FOR END OF START BIT
453	1844	10 €8		BPL	RDBIT	
459	1646	9D 46 17		UDA	CLKRDT	GET START RIT TIME
460	1849	AO FF		LDY	##FF	A=256~T1
461	1948	80 46 17		STY	CLK64T	SET UP TIMER
468			;			
463	1A4E	A0 14		LBY	#\$14	
464	1850	99	RDBITS			DELAY 100 MICROSEC
465	1951	DO FD		BNE	PDBIT3	1.12.11 200 115.45.50
466			;	D. 14		
457	1853	20 48 17	RDBITS	RIT	SBD	
468	1856	30 FB		BMI	RDBITS	WALT FOR NEXT START BIT
469	******	30 . 0	; '	10.11	ROBLIC	WHILE CON DONE STORE BILL
470	1958	38	•	SEC		
471	1859	ED 46 17		2BC	CLKRDT	(256-T1)-(256-T2)=T2-T1
472	1850	AN FF		LDY	OSFF	(636-11)-(636-16)-16-11
473	145E					OCT US TIMES FOR MOUT BUT
474	שינורו	80 46 17		SIA	CLK64T,	SET UP TIMER FOR NEXT BIT
475	1861	A0 07	;			
476				LDY	#\$ 07	
	1863	89	RDBIT4			DELAY 50 MICRQSEC
477	1964	DO FD	2	BHE	RDBIT4	
478 479	1000	40 55	;			
480	1866	49 FF		EOR	#SFF	COMPLEMENT SIGN OF A
481	1968	29 80		AND	#\$80	MASK ALL EXCEPT SIGN
483	1868	60	;	RTS		
484			;	DIREN	ds ties	
485			, ;		MORY	
486			;		LCAL	
487						
438			•			
489			:			
490			:	011.00	. GUTOUT 4	66 MICROSEC
491			:			PP WICK02EC
492			:	LOT 2E	STRING	
493	1A6B	A9 27	PLLCAL	1.00	****	
494	186D	8D 42 17	FELLUNC	STA	#\$27	TUDE DEE DAYLU GAR A
495	1870	9 BF			SBD	TURN OFF DATIN PBS=1
496				CDA	#BBF.	CONVERT PB7 TO OUTPUT
497	1872	8D 43 17	:	STA	PBDD	
498	1975	20 47 47	-			
		20 47 17	PLL1	BIT	CUKRDI	
499.		10 FB		BPL	PLL1	
500	1878	A9 9A		LDA	0154	WAIT 166 MICRO SEC
501	1970	8D 44 17		STA	CLK1T	
502	197F	A9 A7		LDA	#\$A7	QUTPUT PB7=1
503	1981	8D 42 17		STA	ZBD	
504			;			
505	1A84	20 47 17	PLLS	BIT	CLKRDI	
506	1A87	10 FB		BPL	PLLZ	
507	1889	A9 9A		LDA	#154	
508	188B	8D 44 17		STA	CUK1T	
509	148E	A9 27		LDA	#\$27	PB7=0
510	1890	8D 42 17		STA	SBD	
511	1893	40 75 1A		JMP	PLL1	
512			;			
513			;			

```
CARD
                   CODE
CARD # LOC
                                        INTERRUPTS PAGE 27
  514
515
                               RESERVED FOR TEST
  516
517
         1896
                 6B 1A
         1BFA
   518
         1BFC
                 6B 1A
   519
          1BFE
                 68 1A
   520
522
   523
   524
   525
                                                                                         000000
                                                                             333333
                                                    666666
                                                                 555555
   526
                                                                                    3
                                                    6
                                                                 5
   527
                                                                                                0
                                                    6
   528
                                                                 555555
                                                                             333333
                                                                                         Ð
                                                                                                0
                                                    666666
   529
                                                                                    3
                                                                                         0
                                                                                                0
                                                    6
    530
                                                                                    3
                                                                                         O
   531
                                                                                         000000
                                                                             333333
                                                     666666
                                                                 555555
   533
534
    535
                                                                                         555555
                                                                 000000
                                                                             000000
    536
                                                                             0
                                                                                    Ω
                                                                                                2
    537
                                                                 0
                                                                        0
                                                                             0
                                                                                    0
    538
                                                                             0
                                                                                    0
                                                                                         555555
                                                                 n
                                                                        0
    539
                                                                        Õ
                                                                                          2
                                                                 0
    540
541
                                                                                          2
                                                                 0
                                                                                          222222
                                                                 000000
                                                                             000000
    542
    545
    546
547
548
                                                   COPYRIGHT
                                                  MOS TECHNOLOGY INC.
DATE OCT 13 1975
    549
                                                                               REV E
    550
     551
                                                   :TTY INTERFACE
                                          KIM
                                                   :KEYBOARD INTERFACE
:7 SEG 6 DIGIT DISPLAY
     553
     554
     555
     556
                                          TTY CMDS:
     557
                                                   6
                                                        GOEXEC
     558
                                                        OPEN NEXT CELL
OPEN PREV. CELL
     559
                                                   LF
     560
                                                        MODIFY OPEN CELL
     561
                                                   SP
                                                        OPEN NEW CELL
LOAD (OBJECT FORMAT)
DUMP FROM OPEN CELL ADDR TO HI LIMIT
RUB OUT - RETURN TO START (KIM)
((ALL ILLEGAL CHAR ARE IGNORED))
     562
     564
                                                   RO.
     565
     566
     567
                                           KEYBOARD CMDS:
                                                        SETS MODE TO MODIFY CELL ADDRESS
SETS MODE TO MODIFY DATA IN OPEN CELL
INCREMENTS TO NEXT CELL
     568
                                                 ADDR
     570
     571
572
573
                                                         SYSTEM RESET
                                                 RST
                                                         GDEXEC
                                                 RUN
                                                         $1000 CAN BE LOADED INTO MMIV TO
                                                 STOP
                                                         USE STOP FEATURE
                                                         DISPLAY PC
                                                 PC
     577
                                                 CLOCK IS NOT DISABLED IN SIGMA 1
     578
      579
      580
```

CARD :	Lac	CODE	CAR	D		
581			;			
582			;			
584	1000			+= \$1€	000	
585 586			;			
587	1000	85 F3	; SAVE	STA	ACC	KIM ENTRY VIA STOP (NMI)
588	1002	68	31176	PLA	HUC	OR BRK (IRQ)
589	1003	85 F1		STA	PREG	OF BEK (IRW)
590	1005	68	SAVE1	PLA		KIM ENTRY VIA JSR (A LOST)
591	1006	85 EF		STA	PCL	
592	1008	85 FA		STA	POINTL	
593	100A	68		PLA		
594 595	100B	85 F0 85 FB		STA	PCH	
596	1C0F	94 F5	SAVE2	STA Sty	POINTH YREG	
597	1011	86 F4	30762	STX	XREG	
598	1013	BP		TSX	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
599	1014	86 F2		STX	SPUSER	
600	1016	20 88 1E		JSR	STIMI	
601	1019	40 4F 10		JMP.	START	
602 603	1010	60 FA 17	; NMIT	DATE:	75 164 T 1 15	New Marines - Comment of the Comment
604	101F	60 FE 17	IRQT	9ML 9ML	(MMIV) (IRQV)	NON-MASKABLE INTERRUPT TRAP INTERRUPT TRAP
605	1011	00 (21	:	JUL	(TERMA)	INTERROPT TRAP
6.06	1082	AS FF	RST	LDX	#\$FF	KIM ENTRY VIA RST
607	1024	9 8		TXS		7217 1121
608	1025	86 F2		STX	SPUSER	
609	1027	50 88 1E		JSR	INITS	
610 611			; ;			
612	102A	A9 FF	DETCPS	L DO	#\$FF	COUNT START BIT
613	1020	8D F3 17	DETOFS	STA	CNTH30	ZERO CNTH30
614	102F	A9 01		LDA	#\$01	MASK HI ORDER BITS
515	1031	2C 40 17	DET1	BII	SAD	TEST
516	1034	DO 19		BHE	START	KEYBD SSW TEST
617	1036	30 F9		BMI	DET1	START BIT TEST
619 619	1033	A9 FC		LDA	##FC	
620 619	103A 103B	18 69 01	DETB	CLC		THIS LOOP COUNTS
621	103D	90 03		ADC BCC	##01 DET2	THE START BIT TIME
688	103F	EE F3 17		INC	CNTH30	
623	1048	AC 40 17	DETS	LDY	SAD	CHECK FOR END OF START BIT
624	1045	10 F3		BPL	DETS	
625	1047	3D F2 17		STA	CHTL30	
526 63 7	1049	A2 03		LDX	#\$08	
627 628	1040	20 6A 1E	;	JSR	GET5	GET REST OF THE CHAR
529			;			TEST CHAR HERE
630						
631			;			
632			;			
633			;			
634 635			;	MAKE	TTYZKB SELE	ECTION
	104F	20 8C 1E	; START	JSR	INIT1	
637	1052	A9 01		LDA	\$\$01	
638	1054	20 40 17		BIT	SAD	
639	1057	DO 1E .		BNE	TTYKB	
	1059	20 SE 1E		JSR	CRLF	PRT CR LF
	1050	A2 0A		LDX	#\$0A	TYPE OUT KIM
	1056 1061	20 31 1E 40 AF 1D		JSR	PRTST	
644	1001	40 MF 10	:	JMP	SHOW1	
	1064	A9 00	CLEAR	LDA	#\$00	T T
646	1066	85 F8		STA	INL	CLEAR INPUT BUFFER

```
CARD
                 CODE
CARD # LOC
               85 F9
20 5A 1E
                                   STA
                                           INH
  647
        1068
  648
        106A
                           READ
                                    JSR
                                           GETCH
                                                        GET CHAR
                                    CMP
                                           $$01
  649
        106D
               09
                   01
  650
        106F
               F0 06
                                    BEQ
                                           TTYKB
  651
        1071
               20 AC 1F
                                    JSR
                                           PACK
  652
        1074
               4C DB 1D
                                    JMP
                                           SCAN
  653
654
                                    MAIN ROTINE FOR KEY BOARD
  655
                                    AND DISPLAY
  656
                                                        IF A=0 NO KEY
  657
        1077
               20 19 1F
                           TTYKB
                                    JER
                                           SCAND
        107A
107C
107E
                                           START
  659
659
               DO D3
                                    BNE
               A9 01
                                   LDA
                                           #$01
               20 40 17
                                    BIT
                                           SAD
  660
        1081
               F0 CC
                                           START
  661
                                    BEQ
  668
        1083
               20 19 1F
                                    JSR
                                           SCAND
  563
        1086
               F0 F4
                                    BEQ
                                           TTYKB1
  664
        1088
               20 19 1F
                                    JSR
                                           SCAND
  665
               FR FF
                                           TTYKB1
        103B
                                    BEQ
  666
   667
         1C8D
               20 6A 1F
                           GETK
                                    J$R
                                           GETKEY
   668
        1090
               09 15
                                    CMP
                                           #$15
                                           START
   669
        1092
               10 BB
                                    BPL
   570
        1094
               09 14
                                    CMP
                                           #$14
  671
672
                                           PCCMD
                                                        DISPLAY PC
                                    BEQ
         1096
               F0 44
                                                         ADDR MODE=1
         1098
               C9 10
                                    CMP
                                           #$10
   673
         109A
               F0 2C
                                    BEQ
                                           ADDRM
               C9 11
F0 2C
                                           #$11
                                                         DATA MODE=1
   674
         1090
                                    CMP
   675
         109E
                                    BEO
                                           DATAM
                                                        STEP
   576
677
               C9 12
F0 2F
                                           #$12
STEP
         1080
                                    CMP
         1092
                                    BEQ
   678
         10A4
                                           #$13
                                                         RUN
                09
                   13
                                    CMP
   679
         1086
                F0 31
                                    BEQ
                                           GOV
                                                         SHIFT CHAR INTO HIGH
   630
         1088
                0A
                            DATA
                                    ASL
                                                         DRDER NIBBLE
   681
         1089
                0A
                                    ASL
                                           Α
                ne
   682
         1099
                                    ASL
                                           A
         1CAB
   633
                08
                                    ASL
                85 FC
                                           TEMP
                                                         STORE IN TEMP
   584
         1080
                                    STA
         10AE
                A2 04
                                           $04
   635
                                    LDX
   686
         1080
                94 FF
                            DATA1
                                    LDY
                                           MODE
                                                         TEST MODE 1=ADDR
   637
         1082
                D0 0A
                                    BNE
                                           ADDR
                                                         MODE=0 DATA
                                                        SET DATA
SHIFT CHAR
SHIFT DATA
                                           (POINTL) Y
   688
         1CB4
                B1 FA
                                    LDA
                06 FC
                                           TEMP
   689
         10B6
                                    ASL
   690
         1CB8
                                    ROL
                AS
                                           Α
   691
         1CB9
                91 FA
                                           (POINTL) , Y
                                                        STORE OUT DATA
                                    STA
   692
         1CBB
                40 03 10
                                    JMP
                                           DATAS
   693
                                                        SHIFT CHAR
                            ADDR
                                    ASL
   694
         10BE
                0A
                26 FA
                                           POINTL
                                                        SHIFT ADDR
         10BF
1001
1003
   695
                                    ROL
                                                        SHIFT ADDR HI
                26 FB
                                    ROL
                                           POINTH
   696
   697
                            DATAS
                CA
                                    DEX
   698
         1004
                DO EA
                                    BNE
                                           DATA1
                                                        DO 4 TIMES
   699
700
701
         1006
                F0 08
                                    BEQ
                                           DATAME
                                                        EXIT HERE
         1008
                89 01
                            ADDRM
                                    LDA
                                           ##O1
                                           DATAM1
   702
         1CCA
               DO 05
                                    BNE
   703
   704
         1000
                A9 00
                            DATAM
                                           $00
   705
         1CCE
                85 FF
                            DATAM1 STA
                                           MODE
                4C 4F 1C
   706
707
                                    JMP
         1CD0
                            DATAMS
                                           START
   708
                                           INCPT
         10D3
                20 63 1F
                            STEP
                                    JSR
                40 4F 10
                                    JMP
                                           START
   709
         1CB6
   710
   711
         10D9
                40 08 10
                            60V
                                    JMP
                                           GUEXEC
```

```
CARD # LOC
                   CODE
                                CARD
  712
  713
  714
                                      DISPLAY PC BY MOVING
  715
716
717
                                     PC TO POINT
         1000
                A5 EF
                             POOMD
                                     LDA
                                             PCL
  718
719
         10DE
                85 FA
                                      STA
                                             POINTL
         1CE0
                85 FO
                                             PCH
                                      LDA
  720
721
722
723
         10E2
                85 FB
                                      STA
                                             POINTH
         1084
                40 4F 10
                                      JMP
                                             START
                                      LOAD PAPER TAPE FROM TTY
  724
  725
         10E7
                20 5A 1E
                             LOAD
                                      USR
                                             SETCH
                                                            LOOK FOR FIRST CHAR
  726
         1CEA
                C9 3B
                                      CMP
                                             #$3B
                                                            SMICDLON
  727
         1CEC
                DO F9
                                      BHE
                                             LOAD
                A9 00
85 F7
  728
729
        10EE
10F0
                             COADS
                                      LDA
                                             #$00
                                             CHKSUM
                                      STA
  730
731
732
733
734
735
736
737
738
739
         10F2
                85 F6
                                             CHKHI
                                      STA
         10F4
                20 9D 1F
                                      126
                                             GETBYT
                                                            GET BYTE ONT
                                                           SAVE IN X INDEX
         10F7
                AA
                                      TAX
                20 91 1F
         10F8
                                      JSR
                                             CHK
         10FB
                20 9D 1F
                                                            GET ADDRESS HI
                                             GETBYT
         10FE
                35 FR
                                      STA
                                             POINTH
                20 91 1F
20 9D 1F
         1000
                                      JSR
                                             CHK
                                             GETBYT
                                                           GET ADDRESS LO
                                      JSR
         1003
         1006
  740
741
                95 FA
                                      STA
                                             POINTL
                20 91 1F
         1008
                                      JSR
                                             CHK
  742
  743
744
745
746
         100B
                                                           IF CNT=0 DONT
         1 D 8 C
                F0 0F
                                      BEQ
                                             LOADS
                                                           GET ANY DATA
                20 9D 1F
91 FA
         100E
                             COADS
                                      JSR.
                                             GETBYT
                                                           GET DATA
  747
         1011
1013
                                      STA
                                             (POINTL), Y STORE DATA
  748
                20 91 1F
                                             CHK
  749
                                             INCPT
                                                           NEXT ADDRESS
         1016
                20 63 1F
                                      JSR
  750
751
752
753
754
755
756
757
758
759
         1D19
                                      DEX
         1 D 1 A
                D0 F2
                                      BNE
                                             COADS
                                                           X=1 DATA RECORD
X=0 LAST RECORD
         1D10
                E8
                                      INX
         1 P 1 D
                20 9D 1F
                             LOADS
                                      JSR
                                                           COMPARE CHKSUM
                                             GETRYT
         1026
                05 F6
                                      CMP
                                             CHKHI
         1D22
                DO 17
                                      BNE
                                             LOADE1
                20 90 1F
C5 F7
         1D24
                                      JSR
                                             GETBYT
         1027
                                      CMP
                                             CHKSUM
         1029
                DO 13
                                      BNE
                                             LOADER
  760
  761
         1D2B
                                      TXA
                                                            X=0 LAST RECORD
  762
763
764
765
         1020
                DO B9
                                             LOAD
                                                           X-OFF KIM
         1D2E
                92 00
                             LOBDZ
                                     LIDX
                                             #$0C
                A9 27
         1D30
                             LOADS
                                      LDA
                                             #$27
  766
767
768
769
770
         1032
                8D 42 17
                                      STA
                                             SBD
                                                            DISABLE DATA IN
         1D35
                20 31 1E
                                      JSR
                                             PRIST
         1D38
                40 4F 10
                                      JMP
                                             START
                20 9D 1F
                             LOADE1 JSR
         1D3B
                                             GETBYT
                                                            DUMMY
  771
772
                                                            X-OFF FRR KIM
         1D3E
                82 11
                             LOADER LDX
                                             ##11
         1D40
                DO EE
                                      BNE
                                             LOAD8
  773
774
775
776
                                      DUMP TO TTY
                                      FROM OPEN CELL ADDRESS
                             :
                                      TO LIMHL, LIMHH
```

CARD *	LOC	CODE	CARD			
778	1048	A9 00	•	LDA	#\$00	
779	1D44	85 F8	DOT!	STA	INL	
780	1044	85 F9		STA	INH	CLEAR RECORD COUNT
791	1D48	A9 00	DUMP 0	LDA	#\$00	
782	1D48	85 F6	DOM: 0	STA		CLEAR CHKSUM
783	1D4C	85 F7		STA	CHKSUM	
784	1040	93 F1	:	21.1	0.1	
78 5	1D4E	20 2F 1E	DUMP 1	JSR	CRLF	PRINT CR LF
786	1051	A9 3B	DO: 11 1	LDA	#\$3B	PRINT SMICOLON
787	1053	20 A0 1E		JSR	DUTCH	
788	1056	AS FA		LDA	POINTL	TEST POINT GT OR ET
789	1D58	CD F7 17		OMP	EAL	HI LIMIT GO TO EXIT
790	1D5B	AS FB		LDA	POINTH	
791	1050	ED F8 17		SBC	EAH	
798	1060	90 18		BCC	DUMP4	
793			;			
794	1062	A9 00		LDA	\$ 00	PRINT LAST RECORD
795	1064	20 3B 1E.		JOR.	PETRYT	O BYTES
796	1067	80 CC 1F		JSR	OPEN	
797	106A	20 1E 1E		JSR	ORTPHT	
798			;			COTHE CHICALIN
799	106D	A5 F6		LDA	CHKHI	PRINT CHKSUM
800	1D6F	20 3B 1E		J3R	PRTBYT	FOR LAST RECORD
801	1072	A5 F7		LDA	CHKSUM	
808	1074	20 3B 1E		JSR	PRIBAL	
803	1D77	40 64 10		JMP	CLEAR	
804			;	1 20	w# + O	PRINT 24 BYTE ONT
805	1579	A9 13	DUMP4	CDA TA⊻	* \$ 18	SAVE AS INDEX
806	1070	99		JSR	PRTBYT	SHAC do Innes
307	1D7D	20 3B 1E		35R	CHK	
303	1D80	20 91 1F 20 1E 1E		JSR	PRIPHT	
809	1083	S0 1E 1E		3.24	E-STEILI	
810	1000	A0 00	DUMPS	LDY	# 800	PRINT 24 BYTES
811	1D86 1D88	81 FA	DOM S	LDA		GET DATA
812 813	1000 108A	20 3B 1E		JSR	PRTBYT	PRINT DATA
814	108D	20 91 1F		JSR	CHK	COMP CHKSUM
815	1D90	20 63 1F		JSR	INCRT	INCREMENT POINT
816	1093	CA CO		DEX		
817	1094	DO FO		BNE	DUMP2	
918			;			
819	1096	A5 F6		LDA	CHKHI	PRINT CHKSUM
820	1098	20 3B 1E		JSR	PRTBYT	
821	1098	A5 F7		LDA	CHKISUM	
888	1D9B	20 3B 1E		JSR	PRTBYT	THE PERSON AND THE PE
883	1 DA 0	E6 F8		INC	INL	INCREMENT RECORD CNT
824	1DA2	DO 02		BME	DUMP3	
885	1D84	E6 F9		INC	INH	
886	1DA6	40 48 1D	DÜMB3	JMP	DUMP0	
827			;			OPEN NEW CELL
858	1049	20 CC 1F	SPACE	JSR	OPEN	PRINT OR LF
829	1 DAC	20 2F 1E	SHOM	JSR ISB	CRLF	PRINT OR CF
830	1 DAF	20 1E 1E	SHGW1	JSR	PRTPNT	PRT SPACE
831	1 DB2	20 9E 1E		JSR LTO	QUTSP #\$00	PRINT DATA SPECIFIED
838	1DB5	A0 00		LDY		Y BY POINT AD = LDA EXT
833	1DB7	B1 FA		LDA JSR	PRIBYT	, 5, 102.11 .12
834	1DB9	20 3 B 1E		JSR JSR	OUTSP .	PRT SPACE
835	1DBC	20 9E 1E 40 64 1C		JWb 124	CLEAR	
836	1DBF	40 64 10	:	3117	- Cale 1977.	
937 938	1008	20 63 1F	RTRN	JSR	INCPT	OPEN NEXT CELL
538 839	1005	40 AC 1D	12.1.21.1	JMP	SHOW	
340	1000	70 /10 ID	;	- · · ·		•
841	1008	96 F2	GOEXEC	LDX	SPUSER	
12 - 1				100000000000000000000000000000000000000		

```
CARD # LOC
                 CODE
                               CARD
                                    ZXT
               98
85 FB
  843
        100A
                                           POINTH
                                                         PROGRAM RUNS FROM
                                    LDA
  843
344
        1DOB
1DOD
                                    PHA
                                                         OPEN CELL ADDRESS
                48
  845
        1DCE
               AS FA
                                    LDA
                                           POINTL
  346
        1000
                48
                                    PHA
  347
        1 D D 1
               A5 F1
                                    LDA
                                           PREG
  848
        1003
               48
                                    PHA
               86 F4
                                           XREG
                                                         RESTORE REGS
  849
        1DD4
                                    LDX
  850
851
               84 F5
                                            YREG
        1006
                                    LDY
        1008
               A5 F3
                                    LDA
                                           ACC
  352
853
854
        1DDA
               09 20
                            SCAN
                                    OMP
        1DDB
                                                         DPEN CELL
                                           #$20
  855
856
        1DDD
1DDF
               FO CA
                                    BEO
                                           SPACE
               C9 7F
                                    CMP
                                           #$7F
                                                         RUB OUT (KIM)
  957
        1 DE 1
               F0 1B
                                    BEQ
                                           STV
  858
        1DE3
                                    CMP
                                            #BOD
                                                         NEXT CELL
  359
        10E5
               FO DB
                                    BEQ
                                           RTRN
  360
861
        1DE7
1DE9
                                                         PREV CELL
               09 08
                                    CMP
                                            #$0A
                                           FEED
               F0 10
                                    BEQ
  368
        1DEB
                                    CMP
                                                         MODIFY CELL
  863
        1 DE D
               FO 26
                                    BEQ
                                           MODIFY
  864
865
        1DEF
               09 47
                                    CMP
                                           016
                                                         GD EXEC
                                           GUEXEC
        1DF1
               E0 05
                                    BEO
  966
        1DF3
               09
                                    CMP
                                                         DUMP FROM OPEN CELL TO HI LIMIT
                  51
                                           010
  367
        1DF5
               F0 0A
                                    BEQ
                                           DUMPY
  368
        1DF7
                                    CMP
                                                         LOAD TAPE
  869
870
871
872
873
        1DF9
               F0 09
                                    BEQ
                                           LOADY
        1 DFB
               40 6A 10
                                           READ
                                                         IGNORE ILLEGAL CHAR
        1DFE
               40 4F 10
                            STV
                                    JMP
                                           START
               4C 42 1D
4C E7 1C
        1E01
                            DUMPY
                                    JMP
                                           DUMP
  974
        1E04
                            LOADY
                                    JMP
                                           LOAD
  975
  976
        1€07
               38
                            FEED
                                    SEC
  377
        1E08
               AS FA
                                    LDA
                                           POINTL
                                                         DEC DOUBLE BYTE
  979
37<del>9</del>
        1E 09
               E9 01
                                    SBC
                                            $801
                                                         AT POINTL AND POINTH
                                           POINTL
        1E 00
               95 FA
                                    STA
  330
        1605
               B0 08
                                    BCS
                                           FEED1
  931
        1610
               C6 FB
                                    DEC
                                            POINTH
  932
        1612
                            FEED1
                40 AC 10
                                    JMP
                                            SHOW
  333
  334
        1615
               A0 00
                            MODIFY
                                    UDY
                                            *$00
                                                         GET CONTENTS OF INPUT BUFF
        1517
1519
               95 F8
                                            INC INC AND STOR IN COC
(POINTL), Y SPECIFIED BY POINT
  335
                                    LDA
                                           INL
                                    STA
  335
  387
        1E18
               40 08 1D
                                    JMP
                                           RTRN
   388
                                    END OF MAIN LINE
SUBPOUTINES FOLLOW
  389
  891
  892
893
  894
  395
                                    SUB TO PRINT POINTL, POINTH
  896
  897
                            PRIPHT LDA
                                           POINTH
         1E1E
               20 3B 1E
20 91 1F
A5 FA
  398
         1E20
                                    JSR
                                           PRTBYT
  899
900
        1E23
                                    JSR
                                            CHK
                                           FOINTL
        1E26
1E28
                                    LDR
  901
               20 3B 1E
                                    JSR
                                           PRIBYT
  902
               20 91 1F
                                    JSR
        1E2B
  903
        1E2E
  904
                                    PRINT STRING OF ASCII CHAR FROM
  905
  906
                                    TOP+X TO TOP
  907
```

```
CARD # LOC
                CODE
                             CARD
              AS 07
                         CRLF
                                 LBX
                                        0807
  908 1E2F
              BD D5 1F
                         PRTST
  909
       1E31
                                 LDA
                                        TOP,X
                                        DUTCH
  910
        1E34
              20 AO 1E
                                 128
                                 DEX
  911
        1E37
              CA
                                                     STOP ON INDEX ZEPO
              10 F7
                                 BPL
                                        PRTST
  912
       1E38
  913
                          PRT1
                                 RTS
        1E39
              60
  914
                                 PRINT 1 HEX BYTE AS TWO ASCII CHAR'S
  915
  916
                         PRTBYT STA
                                        TEMP
  917
        1E3B
              85 FC
                                                     SHIFT CHAR RIGHT 4 BITS
                                 LSR
  918
       1E3D
1E3E
              4A
                                 LSR
  919
              46
                                 LSR
  920
        1E3F
              48
  921
        1E40
              48
                                 LSR
                                                     CONVERT TO HEX AND PRINT
                                        HEXTA
  988
        1E41
              20 40 1E
                                  15P
              95 FC
20 40
                                                     GET OTHER HALF
                                        TEMP
  983
        1544
                                 LDA
                                  JSR
                                        HEXTA
                                                     CONVERT TO HEX AND PRINT
                    1 F
  924
       1546
1549
              A5 FC
                                        TEMP
                                                     RESTORE BYTE IN A AND RETURN
                                 LDA
  935
  926
        154B
              60
  927
                                                     MASK HI 4 BITS
                                 AND
                                        STREET
  938
        1840
              29 OF
                          HEXTA
       1E48
1E50
                                  OMP
                                        ≎$0⊖
  923
              09 0A
                                  ŏúc.
  930
              19
                                         HEXTAL
  931
              30 03
                                  IMS
        1651
  932
        1552
              69 07
                                  900
                                         #$07
                                                     ALPHA HEX
                                                     DEC HEX
  933
        1E55
              69 30
                          HEXTA1
                                 abo
                                         ≎ £30
                                                     PRINT CHAP
  934
        1657
              40 A0 1E
                                  JMP
                                         GUTCH
  935
                                 SET 1 CHAP FROM TTY
  936
937
                                  RETURN FROM SUB WITH CHAR IN A
                                  X IS PRESERVED AND Y RETURNED = FF
  933
   140
        1659
                          GETCH
                                  STX
                                         TMPX
                                                     SAVE K REG
                                                     SET UP 8 BIT CHT
  94!
        1850
               A2 03
                                  LDX
                                         ##UB
  949
        195E
                                  LDA
               99 01
                                         2861
               20 40 17
                          SET1
                                         CAS
  943
        1E60
                                  RIT
                                         GET6
   944
        1663
              DO 22
                                  BNE
               30 F9
                                                     WAIT FOR START BIT
   945
                                  BMI
                                         GET1
        1E65
                                                     DELAY 1 BIT
DELAY 1/2 BIT TIME
                                         DELAY
   946
               20 D4 1E
                                  JER
        1667
  947
              20 EB 1E
                          GET5
                                  JSR
                                         DEHALF
        1E6A
   948
               AD 40 17
                          SETS
                                  LDA
                                         SAD
                                                     GET 8 BITS
        1E6D
                                                     MASK OFF LOW ORDER BITS
                                         9880
  949
        1E70
               29 80
                                  AND
                                                     SHIFT RIGHT CHARACTER
  950
        1E72
               46 FE
                                  LSR
                                         CHAR
               05 FE
                                  BRA
                                         CHAR
   951
        1E74
  952
                                  STA
                                         CHAR
        1E76
               85 FE
                                                     DELAY 1 BIT TIME
   953
                                  JSR
                                         DELAY
        1E78
               20 D4 1E
  954
        1E7B
               CA
                                  BEX
                                                     GET NEXT CHAR
                                         GET2
   955
        1870
               DO EF
                                  BNE
                                                     EXIT THIS RTN
   956
                                         DEHALF
        1E7E
               20 EB 1E
                                  JSR
   957
                                  LIDX
                                         TMPX
   958
        1E81
               96 FD
   959
        1683
               95 FE
                                  LDA
                                         CHAR
                                                     SHIFT OFF PARITY
   960
               38
                                  ROL
                                         А
        1885
   961
        1E86
               49
                                  LSR
                                  RTS
   962
        1E87
               60
                          GET6
   963
  964
                                  INITIALIZATION FOR SIGMA
   965
                                                     SET KB MODE TO ADDR
   966
                                  LDX
                                         ≎$01
        1E88
        1E8A
               86 FF
                                  STX
                                         MODE
   963
                                         *$00
   969
970
        1680
               A2 00
                          INIT1
                                  LIDX
               8E 41 17
92 3F
                                                     FOR SIGMA USE SADD
                                  STX
                                         PADD
        1EBE
   971
                                  LIBX
                                         #$3F
        1E91
               8E 43 17
                                         PBDD
                                                     FOR SIGMA USE SBDD
        1E93
```

CARD o	LOC	CODE	CAR	D		
973	1896	A2 07	2	LDX	\$\$07	ENABLE DATA IN
974	1E98	.8E 42 17		STX	SBD	DUTPUT
97 5 976	1E9B 1E9C	D8 78		SEI		
977	1690	60		RTS		
973			;	.,,,,		
979			;			HAR=A
980 981			;		PRESERVED	Y RETURNED = FF
982				DUTSE	PRINTS	1 SPHCE
983	1895	A9 20	QUTSP	LDA	*\$20	
984	1EA0	85 FE	DUTCH	STA	CHAR	
985 986	1EA2 1EA4	86 FD 20 D4 1E		STX	TMPX	10.44 DIT OFFE OURS
987	1EA7	AD 42 17		USR UDA	DELAY SBD	10/11 BIT CODE, SYNC START BIT
988	1EAA	29 FE		AND	#\$FE	311111 211
999	1EAC	3D 42 17		STA	SBD	
990 991	1EAF 1EB2	20 D4 1E A2 08		JSR	DELAY	
992	1EB4	AD 42 17	OUT1	L DX L DA	2BD ≎808	DATA BIT
993	1EB7	29 FE	40.1	AND	##FE	Diffit DIT
994	1EB9	46 FE		LSR	CHAR	
994. 994.	1EBB 1EBD	69 00 8D 42 17		auc sta	≎\$00 SBD	
997	1EC0	20 D4 1E		317 338	DELAY	
998	1E03	CA		DEX		
999	1504	DO EE		BHE	OUT 1	
1000 1001	1E06 1E09	AD 42 17 09 01		LDA ORA	SBD ##01	STOP BIT
1008	1ECB	8D 48 17		STA	SBD	
1003	1ECE	20 D4 1E		JSP	DELAY	STOP BIT
1004	1ED1	A6 FD		LDX	TMPX	RESTORE INDEX
100% 100%	1 ED 3	60	;	RT2		
1007			į	DELAY	1 BIT TIME	
1008			;	AS DE	TERMEND BY	DETCPS
1009 1010	1ED4	AD F3 17	; DELAY	LDA	CNTH30	TUTO 1 700 OTHU OTEO THE
1011	1607	8D F4 17	DECHY	STA	TIMH	THIS LOOP SIMULATES THE DETCPS BECTION AND WILL DELAY
1012	1EDA	AD F2 17		LDA	CNTL 30	1 BIT TIME
1013	LEDD	38	DES	SEC	2002000000	
1014 1015	1EDE 1EE 0	69 01 B0 03	DE4	BCS 808	##01 DE3	
-1016	1EE2	CE F4 17		DEC	TIMH	
1017	1EE5	AC F4 17	DEB	LDY	TIMH	
1018	16E8	10 F3		BPL	DES	
1019 1020	1EEA	60	;	RIZ		
1021						DELAY HALF BIT TIME
1038		AD F3 17	DEHALF		CNTH30	DOUBLE RIGHT SHIFT OF DELAY
1023	1EEE	80 F4 17		STA	TIMH	CONSTANT FOR A DIV BY 2
1024 1025	1EF1 1EF4	AD F2 17 4A		LDA LSR	CNTL30	
1026	1EF5	4E F4 17		LSR	TIMH	
1027	1EF8	90 E3		BCC	DES	
1028 1029	1EFA 1EFC	09 30 B0 E0		DRA Dec	#80 PE4	
1029	ICL	03 VG	;	BC2	DE4	
1031			;	SUB TO] DETERMINE	IF KEY IS
1032			•	DEPRES		DITION OF SSW
1033 1034			. ;		KEY DEP OR	PORTTY MODE A = 0.
1035			;		MEI DEF UK	KB MODE A NOT ZERO
1036			;	e energy		
1037	1EFE	A0 03	8K	LBY	\$ 03	3 ROWS

```
CAPD + LOC
                CODE
                             CARD
 1038
        1F00
               A2 01
                                  LIDX
                                         #$01
                                                      DIGIT 0
 1039
 1040
        1F02
               A9 FF
                          DNEKEY LDA
                                         ##FF
                                                      OUTPUT DIGIT
 1041
        1F 04
               8E 42 17
                          AK 1
                                  STX
                                         SBD
        1F 07
 1042
               E8
                                  INX
                                                       GET NYT DIGIT
 1043
        1F08
               E8
                                  INX
 1044
        1F09
               2D 40 17
                                  AND
                                         SAD
                                                     INPUT SEGMENTS
 1045
        1F00
               88
                                  DEY
 1046
        1F0D
               DO F5
                                         AK1
 1047
        1F0F
               80 07
                                  LDY
                                         ≎$07
 1043
 1049
        1F11
              80 42 17
                                  STY
                                         SBD
 1050
 1051
        1F14
              09 80
                                  DRA
                                         #$80
 1052
        1F16
               49 FF
                                  EDR
                                         SFF
 1053
1054
        1F18
              60
                                  RTS
 1055
                                  SUB
                                        QUIPUT TO 7 SEGMENT DISPLAY
 1056
                                         ©%00 GET DATA SPECIFIED
(POINTL),Y BY POINT
 1057
        1F19
               A0 00
                          SCAND
                                  LDY
                                         **00
        1F1B
1F1D
 1058
               B1 FA
                                  LDA
                                                     SET UP DISPLAY BUFFER
CHANGE SEG
 1059
              85 F9
                                  STA
                                         INH
        1F1F
               A9 7F
                          SCANDS LDA
                                         ##7F
 1060
 1061
                                                      TO OUTPUT
        1F21
              8D 41 17
                                  STA
                                         PADD
 1062
 1063
               A2 09
                                  LBX
                                         *$09
                                                      INIT DIGIT NUMBER
 1064
        1F26
               A0 03
                                  LBY
                                         #¥ 03
                                                     DUTPUT 3 BYTES
 1065
        1F28
               B9 E8 00
                          SCAND1 LDA
                                         INL Y
                                                     GET BYTE
 1066
                                  LSR
                                                     GET MSD
 1067
        1F2B
               4A
                                         А
        1F20
 1068
               4A
                                  LSR
 1069
        1F2D
 1\,07\,0
        1F2E
               48
                                  LSR
                                                     DUTPUT CHAR
 1071
        1F2F
               20 48 1F
                                  JSR
                                         CONVD
                                                     GET BYTE AGAIN
        1F32
 1072
               B9 F8 00
                                  LDA
                                         INL, Y
 1073
        1F35
               29 OF
                                         ## 0F
                                  AND
 1074
        1F37
               20 48 1F
                                  JSR
                                         CONVID
                                                      DUTPUT CHAR
                                                      SET UP FOR NXT BYTE
 1075
        1F3A
                                  DEY
 1076
        1F3B
               DO EB
                                  BNE
                                         SCAND1
        1F3D
1F40
 1077
               8E 42 17
                                  STX
                                         SBD
                                                      ALL DIGITS OFF
                                                      CHANGE SEG
TO INPUTS
 1078
1079
               A9 00
                                  LDA
                                         #800
        1F42
                                         PADD
               SD 41 17
                                  STA
 1090
        1F45
               40 FE 1E
                                                      GET ANY KEY
 1031
 1082
                                  CONVERT AND DISPLAY HEX
 1083
                          ;
                                  USED BY SCAND ONLY
 1034
 1085
        1F48
               84 FC
                          CONVD
                                  STY
                                         TEMP
                                                      SAVE Y
        1F4A
                                                      USE CHAR AS INDEX
 1086
               88
                                  TAY
                                                      LOOK UP CONVERSION
TURN OFF SEGMENTS
        1F4B
               B9 E7 1F
 1087
                                  LDA
                                         TABLE, Y
 1038
        1F4E
                                  LDY
                                         $800
               A0 00
 1089
        1F50
               30 40 17
                                  STY
                                         SAD
        1F53
 1090
               8E 42 17
                                  STX
                                         SBD
                                                      OUTPUT DIGIT ENABLE
        1F56
                                                      OUT PUT SEGMENTS
 1091
               8D 40 17
                                  STA
                                         SAD
 1092
                          ;
                                  LDY
                                                      DELAY 500 CYCLES APPROX.
 1093
        1F59
               80 7F
                                         #$7F
 1094
        1F5B
               88
                          CONVDI
                                  DEY
 1095
        1F50
               DO FD
                                  BNE
                                         CONVDI
 1096
                          ;
                                                      GET NEXT DIGIT NUM
 1097
        1F5E
               E8
                                  INX
        1F5F
                                  INX
 1098
               €8
                                                      ADD 3
               A4 FC
                                  LDY
                                         TEMP
                                                      RESTORE Y
 1099
        1F60
               60
 1100
        1F62
  1101
                           ţ
                                         SUB TO INCREMENT POINT.
  1102
```

```
CARD # LOC
                CODE
                             CARD
 1103
 1104
              E6 FA
                          INCPT
                                  INC
                                         POINTL
       1F65
1F67
 1105
              D0 02
                                  BNE
                                         INCPT2
 1106
              E6 FB
                                  INC
                                         POINTH
 1187
       1F69
              60
                          INCPT2 RTS
 1108
                                  GET KEY FROM KEY BOARD
RETURN WITH A=KEY VALUE
 1109
 1110
                                  A GT. 15 THEN ILLEGAL OR NO KEY
 1111
 1112
 1113
 1114
       1E68
              A2 21
                          GETKEY LDX
                                         #$21
                                                     START AT DIGIT 0
              A0 01
 1115
       1F60
                          GETKES LBY
                                         ## 01
                                                     GET 1 ROW
       1F6E
              20 02 1F
 1116
                                         ONEKEY
                                  JSR
 1117
       1F71
              DO 07
                                  BNE
                                         KEYIN
                                                     A=0 NO KEY
       1F73
1F75
1F77
 1118
              E0 27
                                  CPX
                                         $27
                                                      TEST FOR DIGT 2
              D0 F5
 1119
                                  BME
                                        GETKE5
 1120
              A9 15
                                  LDA
                                         #$15
                                                     15=NO KEY
 1121
       1F79
              60
                                  RTS
 1122
       1F7A
              A0 FF
                          KEYIN
                                         #SFF
                                  LDY
 1123
       1F70
              nΑ
                          KEYIN1
                                                      SHIFT LEFT
       1F7D
1F7F
 1124
              BO 03
                                  BCS
                                         KEAINS
                                                     UNTIL Y=KEY NUM
 1125
              08
                                  INY
 1126
       1F80
              10 FA
                                         KEYIN1
                                  BPL
 1127
       1F82
              8A
                          KEYINZ TXA
 1128
       1F83
              29 OF
                                  AND
                                         #$0F
                                                     MASK MSD
 1129
       1F85
              4Ĥ
                                  LSR
                                                     DIV BY 2
       1F86
 1130
              AA
                                  TAX
 1131
       1E87
              98
                                  TYA
 1132
       1F88
              10 03
                                  BPL
                                         KEYIN4
 1133
       1F8A
                          KEYIN3 CLC
              18
 1134
       1F8B
              69 07
                                                     MULT (X-1) TIMES A
                                         #$07
                                  ADC
 1135
       1F8D
              CA
                          KEYIN4
                                  DEX
              DO FA
 1136
1137
       1F8E
                                  BNE
                                         KEYIN3
       1F90
              60
                                  RTS
 1138
 1139
                                  SUB TO COMPUTE CHECK SUM
 1140
 1141
       1F91
              18
                          CHK
                                  CLC
 1142
       1F92
              65 F7
                                  ADC
                                        CHKSUM
       1F94
 1143
              85 F7
                                  STA
                                        CHKSUM
       1F96
 1144
              A5 F6
                                  LDB
                                         CHKHI
 1145
       1F98
              69 00
                                  ABC
                                         #$00
       1F98
              85 F6
 1146
                                  STA
                                        CHKHI
 1147
       1F90
              60
                                  RTS
 1148
 1149
                                  GET 2 HEX CHAR'S AND PACK
                                  INTO INL AND INH
X PRESERVED Y RETURNED = 0
 1150
1151
                                  MON HEX CHAP WILL BE LOADED AS MEAREST HEX EQU
 1158
 1153
 1154
       1F9D
              20 5A 1E
                                 JSR
                          GETBYT
                                        GETCH
 1155
       1FA0
              20 AC 1F
                                  JSR
                                        PACK
       1FA3
              20 5A 1E
20 AC 1F
 1156
                                  JSR
                                        GETCH
 1157
       1F86
                                  JSR
                                        PACK
 1158
       1FA9
              A5 F8
                                  LDA
                                        JML
 1159
              60
                                 RTS
 1160
1161
                                  SHIFT CHAR IN A INTO
1168
                         ;
                                  INL AND INH
1163
1164
       1FAC
              09 30
                                 CMP
                         PACK
                                        04.30
                                                     CHECK FOR HEX
1165
       1FAE
              30 1B
                                 BMI
                                        UPDATE
1166
       1FB0
              09 47
                                        0147
                                 CMP
                                                     NOT HEX EXIT
1167
       1F82
              10 17
                                  BPL
                                        STAGRU
```

```
CARD
CARD # UDC
                CODE
                                                     CONVERT TO HEX
                          HEXNUM CMP
       1FB4
1FB6
              09 40
30 03
 1168
                                  BMI
                                        UPDATE
 1169
                          HEXALP
                                  CLC
 1170
        1FB8
               18
                                        #809
 1171
        1FB9
                                  ADC
                          UPDATE ROL
 1172
        1FBB
                                        A
                                        A
                                  ROL
 1173
        1FBC
               SH
                                  ROL
  1174
        1FBD
               28
                                  ROL
 1175
1176
1177
        1FBE
1FBF
               28
                                                     SHIFT INTO I/O BUFFER
                                         #104
               A0 04
                                  LDY
        1FC1
               AS
                          UPDATI ROL
               26 FS
                                         TIN
  1178
        1F02
                                  ROL
                                  ROL
  1179
        1FC4
               26 F9
                                         INH
                                  DEY
  1180
        1FC6
1FC7
               88
               D0 F8
                                  BNE
                                         UPDAT1
 1181
                                                     A=0 IF HEX NUM
        1FC9
               A9 00
                                  LDA
                                         #B00
  1182
  1183
        1FCB
               60
                          UPDATS RTS
  1184
                                                     MOVE I/O BUFFER TO POINT
                          OPEN
                                         INL
                                  LDA
  1185
        1F00
               A5 F8
                                         POINTL
  1186
1187
                                  STA
        1FCE
1FD0
               85 FA
                                                     TRANSFER INH- POINTH
               A5 F9
                                  LDA
                                         INH
                                         HTMIDS
               85 FB
                                  STA
  1188
        1FD2
               60
                                  RTS
  1189
        1FD4
  1190
                          ş
  1191
                          ;
                                  END OF SUBROUTINES
  1198
  1194
                                  TABLES
  1195
  1196
                                  .BYTE $00,$00,$00,$00,$00,$00,$0A,$0D, 'MIK'
  1197
         1FD5
               00
                           TOP
  1197
         1FD6
               0.0
  1197
         1FD7
               0.0
  1197
1197
         1FD8
               0.0
         1FD9
               0.0
         1FDA
  1197
               0.0
  1197
         1FDB
               08
  1197
         1FDC
  1197
         1FDD
               4D 49 4B
                                   .BYTE / /,$13, 'RRE', ' /,$13
  1198
         1FE0
               50
         1FE1
  1198
               13
               52 52 45
20
  1198
         1FE2
         1FE5
  1198
         1FE6
               13
  1198
  1199
                           ş
                                         TABLE HEX TO 7 SEGMENT
  1200
                           .
                                                                    6
                                                      3
  1201
                           TABLE .BYTE $BF,$86,$DB,$CF,$E6,$ED,$FD,$87
         1FE7
               BF
  1202
         1FE8
               86
  1202
   1202
         1FE9
                DB
  1202
         1FEA
                CF
   1202
         1FEB
                E6
   1202
         1FEC
               ΕĐ
         1FED
               FD
   1202
         1FEE
               87
   1202
                                                                Ð
                                                           С
                                                  A
                                                      В
   1203
                                          8
                                   .BYTE $FF, $EF, $F7, $FC, $B9, $DE, $F9, $F1
   1204
         1FEF
         1FF0
   1204
   1204
         1FF1
                F7
                FC.
         1FF2
   1204
         1FF3
   1204
               B9
         1FF4
                DΕ
   1204
         1FF5
   1204
         1FF6
                F1
   1204
   1206
                           ;
   1207
   1208
```

SYMBOL TABLE

SYMBOL	VALUE	LINE DEFI	MED		CROSS	-REFE	RENCE	23		
9 00	00 F 3	76	587	851						
ADDR	1CBE	694	687							
ADDPM	1008	701	673							
AK	1 EFE	1037	1080							
AF1	1F04	1041	1046							
CHAR	OOFE	90	950	951	952	959	984	994		
CHK	1F91	1141	734	738	741	748	808	914	899	902
CHRH	17E8	97	158	265	289	299	301			
CHKHI	00F6	82	730	755	782	799		1144	1146	
CHKL.	17E7	96	156	362	288.	297	298			
CHKSUM	00F7	83	729	758	783		821	1142	1143	
CHKT	1940	295	234	237	242	244	256	308		
CHT1	1982	336	344							
CHT2	198E	341	338							
онтв	1991	342	340							
CLEAR	1064	645	803	836						
CLKKT	1747	65	****							
CLKRDI	1747	66	355	361	378	384	493	505		
CLKRDT	1746	67	459	471						
CLK1T	1744	62	358	364	381	387	501	508		
CLK64T	1746	64	461	473						
CLKST	1745	63	****							
CHTH30	17F3	101	613		1010	1022				
CHIFSO	17F2	100		1012	1024					
CONVD	1F48	1085		1074						
CONVDI	1F5B	1094	1095							
CRLF	1E2F	908	640	785	829					
DATA	10A8	680	****							
DATAM	1000	704	675							
DATAM1 DATAM2	100E 10D0	705	702							
DATA1	1CB0	706	699 698							
DATAS	1003	686 697	692							
DEHALF	1EEB	1022	947	956						
DELAY	1ED4	1010	946	953	986	990	997	1003		
DETOPS	102A	612	****	233	200	220	221	1003		
DET1	1031	615	617							
DETE	1042	623	621							
DET3	103A	619	624							
DES	1EDD	1013		1027						
DE3	1EE5	1017	1015	2001						
DE4	1EDE	1014	1029							
DUMP	1042	778	873							
DUMPT	1800	121	****							
DUMPT1	1814	131	134							
DUMPTS	1833	148	177							
DUMPT3	1854	163	166							

			DECTNO	- to		onee_	REFER	ENCES				
IAMBOF	VALUE	TIME	DEFINE	. 0		KU 33-	ACT CA	L115.C3				
DUMPT4	1865		173	152						,		
DUMPY	1E 01		873	867								
DUMP 0	1 D48		781	826								
DUMP1	1 D4E		785	817								
DUMPS	1086		811	817 824								
DUMP3	1096		926 805	792								
DUMP4	107A 17F8		106	151	791							
EAL EAL	17F7		105	149	789							
FEED	1507		876	861	1.5.							
FEED1	1618		982	880								
GETBYT	1F9D		1154	732	736	739	746	754	757	770		
GETCH	1E5A		948	643	725	1154	1156					
SETK	108B		667	****								
GETKEY	1F6A		1114	667								
GETKE5	1F60		1115	1119								
GET1	1E60		943	945								
GETS	1E6D		948	955 437								
GETS	1E6A		947 962	627 944								
GET6 GUEXEC	1587 1DC8		841	711	865							
60V	1009		711	679	000							
HEXALP	1588		1170	****								
HEXNUM	1FB4		1163	****								
HEXOUT	196F		383	314	316							
HEXTA	1E40		928	988	984							
HEXTA1	1655		933	931								
HEX1	1978		358	356								
ID	17F9		107	140	224	226						
INCRT	1F63		1104	708	749	815	938					
INCPT2	1F69		1107	1105	050							
INCVEB	19EA		397	176	258							
INCVE1	19F2 00F9		400 85	398 647	780	025	1059	1179	1187			
INH INITS	1688		966	600	609	263	1007	11.7				
INIT1	1E80		969	636	505							
INL	00F8		84	646	779	823	885	1066	1072	1158	1178	1185
INTVEB	1932		281	123	185							
IRGENT	1FFE		1215	****								
IRQP27	1BFE		519	****	1							
IROT	101F		604	1215								
IRQV	17FE		113	604								
KEYIN	1F7A		1122	1117								
KEYINI	1F70		1123	1126								
KEYINS	1F82		1127	1124 1136								
KEYIN3	1F8A		1133 1135	1138								
KEYIN4 LOAD	1F8D 1CE7		725	727	762	874						
LOADER	1D3E		771	759		0. 1						
LOADE1	1 D3B		770	756								
LOADS	1 CEE		728	****								
LOADT	1873		183	231								
LOADT4	1885		216	221								
LOADT5	18D7		233	225	558							
LOADT6	18EC		241	530								
LOADT7	18F8		247	239	259							
LOADT8	1915		261	250	20.2	200						
LOADT9	1929		270 874	252 869	263	566						
LOADV LOAD10	1E04 192B		271	268								
LOADIO	1802		553	218								
LOAD12	190F		258	182								
L09013	18FA		248	254								
LOADS	1 D0E		746	751								

SYMBOL	VALUE	LINE	DEFINE	ED	CI	ROSS-F	REFERE	NCES					
LOADS	1 D 1 D		754	744									
LOAD7	102E		764	****									
LDAD8	1 D3 0		765 91	772 686	705	967							
MODE	00FF 1E15		91 884	863	100	701							
MMIENT	1FFA		1213	****									
NMIP27	1BFA		517	****									
NMIT	1010		603	1213									
NMIV	17FA		111	6.03									
DHE	199E		353	336	339								
DNEKEY	1F02		1040	1116	0.00								
ONE1	19A1 19B0		355 361	356 362	368								
OPEN	1960 1FCC		1185	796	828								
DUTBT	1961		309	141	15.7	159							
DUTBTO	195E		308	144	146	174							
ритон	1EA0		984	787	910	934							
DUTCHT	1978		333	132	138	155	164						
OUTSP	1€9€		983	831	835								
DUT1	1EB4		992	999									
PACK	1FAC 1800		1164 413	651 2 5 1	1155 405	407							
PACKT PACKT1	1A0F		421	418	405	701							
PACKTS	1815		426	429									
PACKTS	1922		433	414	416								
PADD	1741		59	970	1061	1079							
PBDD	1743		61	128	496	972							
POOMB	1000		717	671									
PCH	00F0		73	594	719								
PCL	00EF		72	591	717	E40							
PLLCAL	186B		493 498	517 499	518 511	519							
PLL1 PLL2	1875 1884		970 505	506	511								
POINTH	00FB		87	170	272	595	696	720	737	790	843	881	897
. 21,,,,,,			•		1188								
POINTL	0.0FA		86	169	271	592	688	691	695	718	740	747	788
				812	833	845	877	879	886	900	1058	1104	1186
PREG	00F1		74	589	847		0.07		000	000	834	898	901
PRIBYT	1E3B		917	795 797	800 809	802	807	813	820	855	834	878	901
PRIPNI PRIST	1E1E 1E31		897 909	642	767	912							
PRT1	1E31		913	****	101	716							
RDBIT	1841		457	200	441	458							
RDBITS	1A53		467	468									
RDBITS	1850		464	465									
RDBIT4	1863		476	477									
RDBYT	19F3		404	553	533	236	241	243	261	264			
PDBYT2	19F9		406	200	216	248	404	406					
RDCHT RDCHT1	1A24 1A29		439 441	209 446	216	248	404	400					
READ	106A		648	870									
RST	1022		606	1214									
RSTENT	1FF0		1214	++++									
RSTP27	1.8F.C		518	***									
RSTV	17F0		112	****									
RTRN	1002		838	859	887								
SAD	1740		58	615	623	638	660	943	948	1044	1089	1091	
SAH	17F6		104	145	283								
SAL SAVE	17F5 1000		103 5 87	143	281								
SAVE1	1005		590	****									
SAVES	1005		596	****									
SAVX	17E9		98	198	201	202	503	204	233	334	345	346	427
				430	439	442	443	444	448	451			

SAMBOL	VALUE	LINE	DEFIN	ED	1	ROSS-	REFER	ENCES					
SBD	1748		60	126	195	360	366	383	389	457	467	494	503
				510	766	974	987	989	998	996	1000	1002	1041
				1049	1077	1090							
SCAN	1 DDB		854	652									
SCAND	1F19		1057	657	662	664							
SCANDS	1F1F		1060	****									
SCAND1	1F28		1066	1076									
SHOM	1 DAC		829	839	882								
SHOW1	1 DAF		830	643									
SPACE	1009		828	855									
SPUSER	00F2		75	599	608	841							
START	104F		636	171	273	601	616	658	661	669	706	709	721
				768	872								
STEP	1CD3		708	677								á	
STV	1 DFE		872	857									
SYMC	1891		197	211	550								
SYMO1	1896		200	506									
SYMOS	18AB		509	213									
TAB	1871		182	189	191								
TABLE	1FE7		1202	1087									
TEMP	0.0FC		88	684	689	917	953.		1085	1099			
TIMH	17F4		102	1011			1023	1026					
TMPX	0 OF D		89	940	958	985	1004						
TOP	1FD5		1197	909									
TTYKB	1077		657	639	650								
TTYKB1	1070		659	663	665								
UPDATE	1FBB		1172	1169									
UPDAT1	1FC1		1177	1181									
STAGRU	1FCB		1183		1167						(2007)		
VEB	17EC		99	122	148	150		184	188	190	192	235	538
				257	585	284	286	397	399				
XREG	00F4		77	597	849								
YREG	0.0F5		78	596	850								
ZRO	1904		376	341	342								
ZR01	1907		378	379	391								
Z808	19D6		384	385									

```
INSTRUCTION COUNT
            ADC
             AND
                                           9
7
4
5
26
             ASL
            BCC
BCS
BEQ
                                          12
9
44
15
0
0
8
1
0
             BIT
             BMI
             BNE
BPL
BRK
             BVC
             BVS
             CLC
            CLD
CLI
CLV
CMP
CPX
CPY
DEC
DEX
                                        38
1
0
2
14
8
2
7
5
2
31
115
108
25
25
26
6
5
0
6
5
0
             DEY
              EOR
              INC
              \mathsf{INX}
              INY
JMP
              JSR.
              LDA
              LDX
              LDY
LSR
NOP
ORA
PHA
              PLP
              ROL
                                            18
1
28
5
3
0
1
              RTI
RTS
SBC
SEC
              SED
SEI
STA
STX
STY
TAX
                                            81
14
7
3
3
1
3
4
               TAY
              TSX
TXA
TXS
TYA
                                                                                     ** BYTES = 1690 (LIMIT = 4096)
** XREFS = 646 (LIMIT = 900)
e SYMBOLS = 204 (LIMIT = 400)
c LINES = 1242 (LIMIT = 1500)
STOP 0
STOP
```