ThelB ESil, ai
VIICRO

4 SUPER JOLT 5
M65 o5 pam.1 Dmell

ﬂﬂﬂﬂﬂﬂjﬂﬂﬂﬂﬂjﬂﬂﬂﬂﬂﬂﬂ

(] —_ — — — — f— — — —_— —_—

@@@@@@@@@@@@@@@@@@@@@

NNNNNNNNNNNNNNNNNNNN
mmmmmmmmmmmmmmmmmmmm

2 ;_DATA HANDLER ? cballe,, o&

? ¢ P nATAC 1008, .

VBIITeE l

The 3337 @E
VIIIGIRIO

Copytronics (05700-31895)
Burg. w. Suchtelenstraat 46 -
7413 XP DEVENTER -

The BEST of MICRO
Copyright (c) 1978 The Computerist® Inc.
P.O.Box 3
Chelmsford, MA. 01824

MICRO is a publication devoted to the world of
the 6502 microprocessor: the 6502 based micro-
computers, peripheral hardware, software, ideas,
applications and so forth.

MICRO began publication with the Oct/Nov 1977
issue and was published reqularly on a bi-
monthly basis for the first year. This volume,
"The BEST of MICRO - Volume 1", contains all of
the significant material from the first year of
MICRO.- Cnly the advertising, a few minor arti-
cles, and a few dated .articles have been omit-
ted. Any errors which were discovered after the
initial publication of the articles have been
corrected in this collection.

MICRO obtains most of its material from it's
readers: users of 6502 based systems - hobbyists
and professionals alike. Authors are paid a
modest fee for articles which appear in MICRO,
and will obtain additional royalities for re-
printing such as this collection.

MICRO is interested in promoting the use of the
6502 and feels that this can best be accomplish-
ed by presenting material that is of a useful,
informative nature as opposed to lots of games
or vague "think" pieces.

MICRO has, in its first year which is covered in
this volume, focused primarily on the KIM, PET,
and APPLE microcomputers. This is because the
material we received was about these three sys-
tems. We would welcome material about the 0CSI
systems, or any of the myriad of other 65C2
based syst i fAei? . We also
anticipz;{te’%’gi;;s %@&“@%ﬁ:&? 6502 sys-
tems that are®HJISETRGRMI ~ailitfe at the end
of the first ye&iGTihs' SUWMSINand-the AIM 65.

MICRO covers all of the 6502 based systems be-
cause we feel that ideas generated on one system
may often be useful to users of other related
systems. Therefore, do not just read the stuff
in the section on your particular machine, but

find out about the other machines as well, and
see what you can adapt to your own uses.

MICRO is now published monthly by MICRO Ink, Inc.
For information on subscriptions and back issues,
write to:

MICRO

P.0. Box 64

So. Chelmsford, MA 01824

USA

Editor/Publisher
Robert M. Tripp

COMBINED TABLE OF CONTENTS
KIM-1 Pages 5 to 50

Improving KIM-1 Keyboard Reliability

Hypertape and Ultratape

A Block Hex Dump and Character Map Utility Program for the KIM-1
Important Addresses of KIM-1 and Monitor - Reference Cards

A Debugging Aid for the KIM-1

Employing the KIM-1 Microcomputer as a Timer and Data Logging Module
A Simple Frequency Counter Using the KIM-1

Digital-Analog and Analog-Digital Conversion Using the KIM-1

Making Music with the KIM-1

A Complete Morse Code Send/Receive Program for the KIM-1

PET Pages 51 to 80

The PET's IEEE-488 Bus: Blessing or Curse?

Power from the PET

PET Composite Video Output

Design of a PET/TTY Interface

The PET Vet Examines Some BASIC Idiosyncrasies

The PET Vet Tackles Data Files

A Partial List of PET Scratch Pad Memory - Reference Card
LIFE for Your PET

A Simple 6502 Assembler for the PET

A BASIC 6502 Disassembler for APPLE and PET

APPLE II Pages 81 to 118

Inside the APPLE II

A Worm in the APPLE; Half a Worm in the APPLE; EDN Blasts the 6502
APPLE Pi

The APPLE II Power Supply Revisited

Printing with the APPLE II, APPLE II Printing Update
A Slow List for APPLE BASIC

An APPLE II Programmer's Guide - with a Reference Card
APPLE Integer BASIC Subroutine Pack and Load

APPLE II Variables Chart

Ludwig von APPLE II

Machine Language Used in "Ludwig von APPLE II"

Applayer Music Interpreter
APPLE II Starwars Theme

Shaping Up Your Apple
Brown and White and Colored All Over

12
16A
17
21
26
30
34
38

53
54
55
56
61
63
64A
65
73
78

83
84
85
87
88
94
96
98
102
103
104
105
113
114
116

GENERAL Pages 119 to 176

We're Number One!

Computer Controlled Relays

6502 Interfacing for Beginners:

Typesetting on a 6502 System

Terminal Interface Monitor (TIM) for the 6500 Family
TIM Meets the S100 Bus

The Challenge of the 0SI Challenger
Rockwell's New R6500/1

Rockwell's AIM is Pretty Good

Synertek's VIM-1

The MICRO Software Catalog

Programming a Micro-Computer: 6502 - A Review
6502 Information Resources

6502 Bibliography

6502 Reference Card

121
122
123
130
136
138
140
142
143
144
145
150
151
153
176A

Commodore Business Machines, Inc.
901 California Avenue
Palo Alto, CA 94304
415/326-4000

5

Improving the KIM-1 Keyboard 7
by MOS Technology - A hardware modification for your KIM-1

Hypertape and Ultratape 8
by Robert M. Tripp, Editor of MICRO, author of PLEASE and
other software and hardware for the KIM-1

A Block Hex Dump and Character Map Utility Program 12
for the KIM-1
by J. C. Williams

Important Addresses of KIM-1 and Monitor* 16A
(two reference cards)
by William Dial - A Programmer's Reference Card for the KIM-1

A Debugging Aid for the KIM-1 17
by Albert Gaspar

Employing the KIM-1 Microcomputer as a Timer and Data 21
Logging Module
by Marvin L. DeJong

A Simple Frequency Counter Using the KIM-1 26
by Charles R. Husbands

Digital-Analog and Analog-Digital Conversion Using the KIM-1 30
by Marvin L. DeJong - Experiments with a KIM-1 controlled
DAC/ADC

Making Music with the KIM-1 34
by Armand L. Camus - How to write music for a DAC, with
the complete score for '"Deck the Halls with Boughs of Holly"

A Complete Morse Code Send/Receive Program for the KIM-1 38
by Marvin L. DeJong

* two perforated "tear-out" reference cards

IMPROVING KIM-1 KEYBOARD RELIABILITY

KIM Agplication Note
MOS Technology
950 Rittenhouse Road
Norristown, PA 19401

The keyboard on some KIM-1's has a
"bouncy" key problem and the "9", "D",
or "C" keys may fail entirely. The
problem is due to the use of the outer
edge of the snap-action discs to Jjump
over the center contact line on the
keyboard pc. Since the discs are only
held against the pc board with tape,
the contact is poor. There are five of
these jump-overs in series for the "C"
key (four for the "9" key), thereby
compounding the problem. To check for
the problem, measure the resistance
from keyboard pin 3 to pin 15 (numbered
from left to right as shown) with the
ncr key depressed. It should be less
than about 10 ohms.

Fortunately, this problem can be easily
corrected. The solution is to solder a
thin wire jumper across these poor con-
tacts as follows. Disassemble the key-
board by first removing the four screws
on the back of the keyboard at the cor-
ners. Then remove the two remaining
screws that hold the keyboard to the
KIM-1 (note for reassembly that they
are longer), being careful not to pull
the keyboard pc board away from the
KIM~1 board--it's only attached by the
solder at one end. With the KIM-1 up-

side down, separate the black keyboard
panel from the keyboard pc board. You
may wish to cover the keyboard with
masking tape to hold the keys in place.
After cutting four small holes through

the clear Mylar at the locations indic-~
ated by an X in the figure, the lines
fr.om the "Cll tO "9"’ "Dll tO "9", "All to
nrn and the line to "B" are exposed.
Connecting these points by soldering a
thin wire between them routed as shown
is sufficient to bridge the five poten-
tially poor contacts.

4+ ¢ 10 1T 14
0006000

on

:0
50

~Q
wo
“LO
<9
;\o

\oo

®® 00 ®®
©©® G1® ® @
©®©® 0|0 @
® 0 06 0 ®

HYPERTAPE AND ULTRATAPE

Robert M. Tripp

P. O

Box 3

So. Chelsford, MA 01824

‘While the cassette tape I/O of the KIM-1 is one
of its best features, it is terribly slow,
Waiting a couple of minutes to load a 1K program
can be a real pain. Jim Butterfield showed how
to speed up the tape process by writing KIM com-
patible tapes which were up to six times as fast
as the normal KIK (-dupertapei®, nim-| user
Notes, Vol. 1, Issue 2, Page 12, or "Hypertape",
The First Book of KIM, Page 119). For the COMP-
UTERIST HELP packages--Editor, Mailing LIst, and
Information Retrieval--I doubled this rate by
writing a byte of data as a byte, not converting
it into two ASCII characters. This "Ultratape"
is not KIM compatible and requires a special
loading program. The DUMP routine presented
here combines both Hypertape and Ultratape. The
LOAD rouytine is used to load an Ultratape.
These two routines, as presented here, assume
that your system has a means of turning the cas-
sette tape units on and off under program con-
trol. (See "Computer Controlled Relays",
Page 122).

Dumping Hypertape

Eight locations in page zero are used to hold
-the arguments for DUMP. For Hypertape they are:

00D8
00D9
00DA
00DB
00DC
00DD
O00DE
00DF

Select Hypertape Mode 02

Program Identification No.(ID) 01-FE
Starting Address Low (SAL)

Starting Address HIgh (SAH)

Low Memory Address of Data

High Memory Address of Data

Low Count of Bytes to Dump

High Count of Bytes to Dump

A feature of this version of Hypertape is that
the data to be dumped does not have to reside
in its normal memory locations. The Starting
Address stored on the tape is provided by
00DA and 00DB independently from the actual mem-
ory address which is provided by 00DC and 00DD.

Four additional locations are used on page zero
to control the rate at which the data is dumped.

00E8 3700 Hz Speed Control 02 = 6X
(04 = 3X, 06 = 2X, OC = 1X)

00E9 3700 Hz Pulse Duration = C3

O00EA 2400 Hz Speed Control 03 = 6X
(06 = 3%, 09 = 2X, 12 = 1X)

O0EB 2400 Hz Pulse Duration = 7E

Locations OOEC and OOED are used for temporary
storage. Note that you must change the values
of both O00E8 and OOEA to change the dump speed
to three, two, or one times the normal KIM dump
rate,

DUMP starts at location 0120. The first inst-
ruction is a subroutine call to turn on the cas-
sette unit via a relay. If your system is not
equiped for automatic control of the cassette,
then simply put NOP's in place of this instruc-
tion (EA, EA, EA) and the matching subroutine
call at location 01A0. The two NOP's at 0123
replace an instruction that was used in the HELP
version but which is not required generally.
Location 0146 is the end of the DUMP., This may
be either a JMP instruction (as shown) or can be
an RTS instruction if DUMP is called as a sub-
routine.

Hypertape Format

Hypertape uses the standard KIM cassette tape
format.

100 SYNCs/Start of Header/ID/SAL/SAH/2 ASCII
characters for each byte of data.../Term-
inator/CHKL/CHKH/EOT/EQOT

SYNC is the ASCII SYNC character = 16 hex.
Start of Header is the ASCII * = 24 hex.
ID is the Program Identification Number = 01 to

FE hex.

SAL and SAH are the Start Address Low and Start
Address High which are used by the KIM Loader.
Each byte of data is converted into two ASCII
characters such that a 3F would be stored as
ASCII 3 (33) and ASCII F (46).

The Terminator is an ASCII / = 2F hex. CHKL
and CHKH are the Check Digit Low and Check Digit
High which are generated by the KIM CHKT sub-
routine during the DUMP and are tested during
the LOAD routine. ,
EOT is the ASCII character = 04 hex.

Loading Hypertape

Since Hypertape is KIM compatible, all you need
to load it is the standard KIM Monitor load rou-
tine. Set your arguments in 17F5 through 17F9,
make sure that the status bits in OOF1 are zero,
and start the loader at 1873. That's all there
is to it.

Dumping Ultratape

The same eight page zero locations that were
used to hold the arguments for the Hypertape
DUMP are used for the Ultratape DUMP, but 00DA
and O0ODB have a different usage.

00D8 Select Ultratape Mode 01
00D9 Program Identification Number 01-FE
00DA Low Count of Bytes Dumped

00DB High Count of Bytes Dumped

00DC Low Memory Address of Data

00DD High Memory Address of Data

00DE Low Count of Bytes to Dump

00DF High Count of Bytes to Dump

The Ultratape Routine produces a tape that is
not compatible with the KIM Monitor. The basic
difference is that it stores a byte of data dir-
ectly without converting it into two ASCII char-
acters. This results in a two-to-one data com-
pression over the KIM method. Since any date
value is valid, there must be some way to deter-
mine how much data there is in a record. The
Terminator character (/=z2F) cannot be used since
there is no way to distinguish between it and a
2F hex data byte. The problem is solved by put-
ting a count of the number of data bytes into
the Header of the tape record. Since the LOAD
routine will provide the Starting Address infor-
mation, the SAL and SAH bytes are not needed.
Ultratape uses these two positions in the header
to store a two byte count which will be used by
LOAD to know how many bytes of data to load.
Because the LOAD routine uses a portion of the
KIM Monitor to get into sync, to test the Pro-
gram ID, and to pick up the header information
(two byte counter), and does not regain control
until after the first byte of data has been
picked up and packed by the KIM, the first data
byte of Ultratape is actually stored as two
ASCII characters, just as in Hypertape. All
other data bytes are stored without conversion.
A Terminator character follows the last valid
data byte so that LOAD can test it and make sure
it has not missed or added a character. The
remainder of the Header and Trailer are ident-
ical to the KIM standard.

100 SINCs / Start of Header / ID / Count Low/
Count High / 2 ASCII characters for the first
data byte / one byte for each data byte.../
terminator / CHKL / CHKH / EOT / EOT

Loading Ultratape

Since Ultratape is not KIM compatilbe, it re-
quires a special LOAD routine. The LOAD routine
uses four locations in page zero to hold its
arguments:

00D8 Select Load Function 00
00D9 Program Identification Number 01-FE
00DA Starting Address Low
00DB Starting Address High

(00DC is used internally by LOAD)

Locations 00E8 to OOEB which were required to
set the speed in the dump routines are not reqg-
uired for LOAD. LOAD starts at 0200 with a sub-
routine call to the routine to turn on the cas-
sette under program control. This should be
NOP'ed if you do not have your cassettes under
program control. Similarly the call at location
224C should be NOP'ed. Since it is possible to
zet and detect an error during a LOAD, there
nust be .some way to signal this back to the cal-
ling routine. 1In the HELP programs which this
code comes from, a location called STEPNO is in-
cremented on good loads and not incremented on
bad loads via the instruction at location 024A..
To make LOAD a more general subroutine you can
change this to increment location 00D8 which
should be set to zero before calling LOAD. Then
upon return from LOAD this location can be test-
ed and some action taken if an error has occurr-
ed. ‘Location 024F is the end of LOAD. It may
be either a JMP instruction (as shown) or can be
an RTS instruction if LOAD is called as a sub-
routine.

In addition to being faster than loading via the
KIM monitor, LOAD has the feature that when the
load is complete control returns to the user
program, not the KIM Monitor. This makes it
possible to load data from the cassette under
program control without ending up in the KIM
Monitor with location 0000 staring you in the
face. The data loaded may be ASCII data as in
the HELP programs, or may be program data that
is overlaying part of the RAM under program con-
trol. This feature considerably expands the
che usefulness of the KIM cassette interface.

Cassette On/Off Routines

TWRITE at 0252 toggles the direction bit for
PB1. This turns a relay on and off on success-
ive calls. DUMP calls TWRITE to control the
WRITE cassette. TREAD at 0256 toggles the dir-
ection bit for PBO to control the action of a
second relay. TREAD is called by LOAD to con-
trol the READ cassette unit.

3NOQ ST dLXE STHL
0 01 JHOW

YIINNOD 114

HONYYE "TYNOILIANOONN
0¥3Z 1IndLno

13S 4T 1 IndIno
1I9 IX3N HOd LJIHS
SANOQ 1Td INIWHND
{INFWOIS QYIHL
ISdL 4001

LA [URCE: (eNASCL |

HILNNOD J3d

H3LVT 404 SNIVIS JAVS
SOLYLIS 1I0dlnO

118 34Vl 4174

JLVIS INIHYND 13D
YAWTL 13S

ANTVA ONIWIL 13D

Xavay Y04 1I1VM
V1Va 3AVS
SISTINd 40 HAAWNN

HIINTOd FTGVIL
S1T9 8 IndInO

SYUBLIOVHYHD 6 - 0
YALOVHVHD d - ¥

IIDSV Ol LY3ANOD

J1X9 J4TYH OL V1v¥Q MNSVW
YIVQ JHOLS3H

YILOVHVHD X3FH SY 1ndino

"HYHD INVOTJINDIS ISOW
139 Ol VIVa 1J4IHS
AIVIS NO YIVA JAVS
WNS ¥DFHD WIY

dTdH INNTINOD
SONTHIL LINI-3Y

440 ¥3qY0D03Y N¥nl
dWNa aNg ol

JOTML 103 3IIHM
NOISSIWSNVYI 40 AON3

ADIHD LOAOHIIM F1x9 SY
SYILOVUVHD XO3HD JIIUM
H3IOVYYHD SY 10d1no
HILOVEYHD HOIYNIWYAL

X4l
4INNOD
NOZ

0

NOZ

1NoH
Z13S
j238:41

LNOZ

ONVD
avs

08
ONVD
1IN0
OHIL
LNOZ
TQYIT10

NN
a1yl

4
HINNOD
8

o€
L0
ZX3H

vo
40

LNOX3H

INHD

dISIXN
LIINT
JLIYML
YHOINO
4HOLNO
103
141n0
HYHD
141n0
TIHD
HHOLNO
\:

SIy
aNd
Z2ad
0ag
WIXa1
208
v¥sT
IHd
oci:d
2034
vd
and
i
V1S
vis
WIHOd
zval
VIS
XZvan
1449
1149
VHd
XZX41
ZX1S
WIXAa1
ZXIS
HIXa

WIDaV
WIdaV
IWd
o710
WIdWO
WIQNY
vV1d
use
VHST
vysT
v¥s1
VEST
VHd
4se

dWe
yse
4se
ysr
ysr
WIVA
4sr
vanl
use
vai
4ysr
WIVQ]

138

LNOZ

NOZ

IHL

HHOLNO

¢X3H

INOXIH

14100

0l181n0

TIVHL

Lt

Lt

Ll

tq
oa
6d
00
aa

Lo
S0
aa

va

a3
ch
0R
ad
fh
63
a4
i

839
aq
c0
aa
80

o€
Lo
<0

VO
40

ad

09
0a
93
04
44
06
Vi
o€
04
92
89
od
28
68
as
bk
sy
as
14
ot
22
8h
hd
98
2y
98
4]

69
69
1}3
8l
60
62
89
02
v
Vi
i
h
8h
02

on
(4
0c
[¢74
0e
6V
(¢14
ay
02
av
oe
6V

£410
Ldio
Jato
adaio
a3i0
6310
2310
9310
hato
2310
130
Jaio
3qio
adio
6410
L4Lo
SaLo
caLo
oqLo
3010
4010
voLo
8310
9010
7010
2lio
00L0
(211
FdLo
odio
vdio
6410
L4110
sdLo
hdl0
Ldato
odio
avio
avio
avio
Jovio
6Y10
(2112
9vi0
£YL0
ovio
asio
610
8610
5610
2610
4810
2810
6810
LgLo

OY3Z ION 4T BONIINOD
SONTW 4T 3NOd

AONTINOD

Lnd1No VIV INNOD
YAIOVHYHO/SALXET 2
FONO ISHIJ XTINO
HONVYE TVNOTITANOONN
HILOVHVHO/AIRG |

2 = drnay

L = dWna

dWNG WIX HO dWNQ IS3L
JLK9 LSYIJ ¥04 dWnay 3sn
IS3l J1X9 ISYId
ANTLINOY WAS ¥OIHD WIN

YAINIOd YIVA dkng
HIINIOd VIVQ

NORHD HIIM 3IXE INdinO
THIND HO HYS

MOFHD HITM H1Xd IndINO
01IND ¥O IVS

XOFHD ON ‘dIIXE 1ndin0
¥ITHAN aT

YFLOVHYHO

YAQYEH J0 IHVIS

INOQ TIINN ¥IINNOD
ONXS 1S3l ANV 23a
SYILOVHVHD SV
SONXS 1ndl1no
HALNNOD ONXS 13§
SONXS 40 HIGWON 139D

1ndIN0 3I4VL dn 13S
SLIOIQ ¥O3HDO LINT
YALINTIOd SV FAVS
S$SI4AAY XHOWIW HOTH
HIINTOd SV JAVS
SSIHAAY XYOWIRW MOT
SHILIWYYVd MIAC dWng
HAQYOIAY NO NHNL

11dWna and
TIVHL Hd
THIND Z03d
11dWna and
OTIND Z03d ISAL
14100 ¥Se dWnay Lo
INNOD ZONI 1SHIJ
1831 vad
HHOINO ¥se L0
dWnay aNd
pecicl
OWYdvd ZXa1
1SuT3 nad
INNOD ZXa7
IYHD ¥SP NJOFHD 6L
HOIH ONI L0
X0FHO ANg
MOT ONI L0
[HOTH‘MOT] Va1 LIdWng 00
214100 use L0
EWYHYd ZVan
214100 usr 10
ZWYHYd ZVa1
14100 yse]
LWYdYd Zval
¥HOLNO use L0
sn WIVAT Y3IAYIH
SONXS INg
INNOD ZDHd
¥HOLNO yse]
ONXS WIVAT SONXS
INNOD ZVIS
SONASN WIVAT
ONYD ZVIS
L2 WIval
aadd LARS Ll
J9 WIVQT
NHOINT gse 61
HOTH LARS Lo
GWYHYd Zval
MOT LARS L0
wWYHYd Z¥Q]
ONJ3IS ZONI
ALTUMI yse drna 20
auT3noy dung
IdVIVYLIN/3dVIYIdAH

od
ot
90
0a
92
0c
93
o4
0e
od
Vo
9y
od

[s14
k)
od
a3
av

0e
14
02
1
02
Qv
02
6V

oa
92
02
6Y
S8
6v
a8
6Y
as
6Y
0z
ag
Sy
as
sy
93
0e

6810
€810
1gL0
Jlio
alio
v.ii0
gLi0
9410
£L10
LLL0
0Ll0
3910
2910
vgio
L9L0
h9to
29io
4st0
2610
(111
6si0
LS10
nsLo
2sLo
anio
awto
Vhio
ghio
(111}
gnto
fhio
LhiO
dEL0
acio
acLo
6EL0
LELO
hELO
2EL0
4210
2210
vZio
L210
GZLO
€210
0eio

10
VIIICIRID]

ONVD
INNOD

ADVHOLS dWAL 00$

Y= INNOD 00$

XONANDIYA HOIH qL$

*03Yd HOTH LV SISTINd "ON £0$
HIONET XONINDAUA MOT £0¢
dWNa AdYL 404 $3SINd ON 20$

OWIL
0dN

8300$ DHO

HYEAWAN dALS LXAN 00$ ONd3Ls

©300$ DYO
THIND 00$ HAYEYd
01IKD 00$ OWYHYd

ANYYYd
AWYEYd
auydvd
OWYHYd
ANYHYd
VWYHYd

HOTH SSIEAQY AMOWIW 00$
MO SSAUAAY XHOWIW co$
IHIND HO HYS 00$

OTIND HO T¥S 00$

YIGHON QI AdVl 00$
HILIAYEY ANVHWOD 00$

[T T}

8000$ QYO
SNOILYOOT O¥HZ HDYd
ANIINOY dWnd
AHING d3IS IX3N ALADEXE HOL0$ % dLSIXN
NOTIIVOOT HOLINOW d73H

gdVl WO¥d HIKE Avad Ed6L$

¥3INNOD HOIH WIN 33LL$

YIINOOD MOT WIN Q3LL$

‘00T TAVS HILOYHYHO VELLS
¥IIOVEVHD FdVL QV3¥ h2YL$
NOLIVZTTVIIINI V07 WIX GL8L$
NOIIYO0T QI 3d¥L 64LL¢ a1z

¥AISIOZY VIVA € L¥Od WAISKS ehli¢ a¥s

» 1XQQY
]
*
»
*
]
»
*
NOIIYO01 ISIL HNOQ HAWIL htli$ + 1INTD
*
*
*
*
*
»
]

THLINOX
OTINDY
YXAYS
LHOQY
ayom

HANIL LhLL$ et bl

@ZTTYILINI WIN OgdL$ LLINI

HDIH WOS XD3HO gaLL$ HYHD

MOT WNS H0FHD LALL$ THHO

FNILNOH WNS XDEHO O#61¢ IAHD
NOILOZYIA ¥LVQ & I¥0d Enll$ aaead
S1TDIQ ¥03HO HZITYILINI En6L$ AHOINT

SNOILYD0T HOLINOW WIN

IdYIVHLTN/HdYIYIdXH

00
00
aL
€0
£0
<0

00

00
00
00
a0
00
00
00
00

aaoo
01800
4300
Y300
6300
8300

8300
300
#300

4000
@00
aqaoo
3400
4a00
¥aco
6000
8400

800

WLINM = L9d4/av3Y = 0€d
119 AIVINdOMddY 79001
av3y Hod | LI9 HTHHOL
HIONYYY TYNOTITANOINN
ALTHM ¥0J 2 119 379001

WYHDO¥d ANNTINOD

J40 MAQYOIIY F4VI NYNL
avo1 qooH NO d3IS dWnd
HOYYWE YIVQ 3573
&LOA¥HOD 1T ST

1THTA MOFHD HOHIH 13D
YOHYT VYIVQ JS713
£103¥H¥0D 1T ST

L19Td ¥J3HD MOT 139D
Youyd DNTINNOD 3IST3
HSYTS 39 QT00HS

“MYHO YOIVNIWYIL avad

0 NVHI YJLYIYD JI FHOW
OHIZ HO SOANIW 41 ANOQ
THIND = 2+43A
HALIYHYHD ILX3N 13D
O71IND = L+G3A

YAINTOd HOTH dWngd
YAIINTOd MOT ISAL
HILNIOd MO7T dWNd
ANTINOY UVHO FYOIS
WS ¥OFHD WIN 3Sn
HALOVHVHD wMVM 138D
HIALOVHYHO LXIN qQvay
GI¥I0Vd ST "HYHO ISHTJ
INTLIAOW FHOLS IFLVIWD
WIY WOHJA NYNIIY NO

WNS NITHD LINT
ANTLNOY YAINTOd 4T3H
NOTIJNHISNT N¥NIIH L3S
YAAYOT WIN MOJ AHOIS
YFAWON 4T 24VI 139D
¥AAYOOIY NO N¥NL

S1¥

SoLL Vis L
£oLL yo3 FdVL LL
L WIvVal aQvadL
dVL 144
2 WIVAT JITUML
JLSIXN dWr £0
avIdl yse youyas 20
ONd3LIS ZONT
HOUYA INd
HJHD dWo L
1x9ay yse 6L
youys InNd
TIHD dwWo Ly
1x4a4 Hse 6l
HOHHT INd
/nw WIdWO
LROQH yse ISIANI YL
139 ING
ISIaNg IWa
THIND Dda Lt
139 aNg
OTLND 234 2130 Lt
CHYHYd ZONT
2Lao INg
ZWYHVd ZONT
LWYHYd gse LL3D 00
I¥HO use 6L
L+XAVS van Ly
LHOQH use 139 Vvi
L1390 aNg
LWYYYd ZX1S
VIS WIXAT NYALAM
NHIINT Hsre gl
HWYHYd YA AR
SI¥ WIVQ1
a1 VIS I
LWYHYd Zvan
aQvaul ¥se avo1 <20
auT1noYy peoT
3dY1VU11N/3dV1d3dAH

®0
9%
L&
20
!4
£d
Vo

£d
4!
d2
he

23
20
Kl
63
aa
aq
c0
va
6a
N
va
he

6a
as

Sl
oldl
09
64
6G
94

as
ah
6V
ol
6Y

on
02
93
oa
ad
0e
oa
a2
0e
oa
60
0oc

oa
o€
a0
0a
30
93
0a
93
0c
0e
av
oe
od
98
44

02
58
6V
as
Sv

4520
8620
9620
7520
2620
(2137}
d420
oheo
Y20
gheo
Sheo
Zhel
oneo
aseo
¥£20
[£20
9£20
££20
(3131}
L£20
Jeeo
J220
veeo
L2eo
G220
£220
Lzeo
aLeo
a120
gLco
SL2o
£120
1i¢0
4020
nany
2020
V020
8020
5020
£020
0020

11

_WN@@@

A BLOCK HEX DUMP AND CHARACTER HAP
UTILITY PROGRAM FOR THE KIM-1

J. C. Williams
35 Greenbrook Drive
Cranbury, NJ 08512

Here's a useful, fully relocatable
utility program which will dump a spec-
ified block of memory from a KIM to a
terminal. At the user's option, a hex
dump with an ASCII character map is
produced.

The hex dump will allow the programmer
to rapidly check memory contents
against a "master" listing when loading
-or debugging programs. With a printing
terminal, the hex dump produces docu-
mentation of machine code to complement
an assembly listing of a program.

A character map is useful if the block
being dumped is an ASCII file. An
example would be source code being pre-
pared with an editor for later assem-
bly. The map shows what the file is
and where it is in case a minor correc-
tion is needed using the KIM monitor.
To use this utility program:

1. Load the code anywhere you want it,
in RAM or PROM memory.

2.
as

Define the block to be dumped just
for a KIM-1 tape dump:

BLOCK STARTING ADDRESS 17F5 (low)
17F6 (high)
17F7T (low)
17F8 (high)

BLOCK ENDING ADDRESS+1

Select the MAP/NOMAP option:

MAP mode
NOMAP mode

00 in 17F9
FF in 17F9

SYMBOL TABLE

CRLF 1E2F DOMAP 026E
EAL 17F7 EXT 1CUF
LINE 020D LINEA 0217
MODE 17F9 NXLN 0285
POINTH OOFB POINTL OOFA
PTBT 0243 SAH 17F6
TMODE 0O0F9 TSTEND 0247

12

monitor. The examples following the
assembly listing will give you the
idea.

The program as listed dumps 16 decimal
bytes per line. [Users with TVT's may
want to initialize the line byte count-
er for 8 decimal bytes per line to al-
low the hex with MAP format to fit the
display. To make this change, replace
the $0F at $021E with $07.

Another possible change is to have the
program exit to a location other than
the KIM-1 monitor. Exit to a text ed-
itor or tape dump may be convenient.
Since the MAP/NOMAP option is deter-
mined by the most significant (sign)
bit of what is stored at $17F9, a suit-
able tape ID number can be placed there
for use of the KIM-1 tape dump or
Hypertape. Use ID's from $01-$7F for
files needing no character map and ID's
from $80-$FE for ASCII files. Start
the tape recorder in RECORD when the
dump to the terminal is a few seconds
from completion.

The flowchart will assist users wanting

to make major alterations. Of neces-
sity, ASCII non-printable characters
are mapped as two hex digits. If other

ASCII codes have special meaning for
the user's terminal, a patch will be
necessary to trap them. Single-step-
ping through this program can't be done
because it uses the monitor's "display"
locations. This is a small price to
pay in order to use the monitor's sub-
routines. If use with a non-KIM 650X
system is desired, the subroutines used
must preserve the X register.

DONE 028A EAH 17F8
INCPT 1F63 INIT 0200
LINEB 0228 LNTST 0279
OUTCH 1EAO OUTSP 1E9E
PRTBYT 1E3B PRTPNT 1E1E
SAL 17F5 SPO 0262

BLOCK HEX DUMP WITH CHARACTER MAP

INITIALIZE POINTER
START ’[PBINT CRLF

TSET "NOMAP" TEMPORAR

PRINT CRLF

LINE

SAVE POINTER ON STACK
SET BYTE COUNTER FOR 16
PRINT 3 SPACES

‘ LINEZ }‘ﬁ

PRINT 1 SPACE

PRINT BYTE @ (POINTL) AS 2
HEX DIGITS OR 1 CHARACTER
AS REQUIRED BY TEMP. MODE
AND PRINTABILITY

[INCREMENT POINTER]

BLOCK
FINISHED

NEEDED

OF LINE
EGMENT
2

IPRINT CRLF
FIX STACK
EXIT TO MONITOR

SET "MAP" TMODE

RESET POINTER TO
LINE START

13 FROM STACK

REMOVE SAVED POINTER

0200

0200
0200
0200
0200
0200
0200
0200
0200
0200

0200
0200
0200
0200
0200
0200

0200
0203
0205
0208
0204

020D
020F
0211
0214
0217
0219
0214
021C
021D
021F
0222
0225
0228
022B
022D
022F
0230
0232
0234
0236
0238
023A

AD
85
AD
85
20

A9
85
20
20
A5
u8
A5
48
A2
20
20
20
20
A0
B1
48
24
10
29
c9
30
68

F5
FA
F6
FB
2F

00
F9
2F
1E
FA

FB

oF
9E
9E
9E
9E
00
FA

F9
OF
TF
20
09

17
17

1E

1E
1E

1E
1E
1E
1E

BLOCK HEX DUMP AND
UTILITY PROGRAM FOR

J. C. WILLIAMS - 19
ORG $0200

MEMORY LOCATIONS

TMODE # $00F9
POINTL * $00FA
POINTH * $00FB
SAL * $17F5
SAH % $17F6
EAL ® $17F7
EAH # $17F8
MODE * $17F9
EXT * $1CUF

SUBROUTINES IN KIM

OUTCH # $1EAOQ
CRLF # $1E2F
OUTSP * $1EQE
PRTBYT ¥ $1E3B
PRTPNT #* $1E1E
INCPT * $1F63
INIT LDA SAL
STA POINTL
LDA SAH
STA POINTH
JSR CRLF
LINE LDAIM $00
STA TMODE
JSR CRLF
JSR PRTPNT
LINEA LDA POINTL
PHA
LDA POINTH
PHA
LDXIM $0F
JSR OUTSP
JSR OUTSP
JSR OUTSP
LINEB JSR OUTSP
LDYIM $00
LDAIY POINTL
PHA
BIT TMODE
BPL. PTBT
ANDIM $7F
CMPIM $20
BMI PTBT
PLA

CHARACTER MAP
KIM-1

78

TEMPORARY MODE FLAG
POINTER

BLOCK STARTING ADDRESS
BLOCK ENDING ADDRESS + 1

00 FOR NO MAP, FF FOR HEX AND MAP
EXIT TO KIM MONITOR

MONITOR

PRINTS BYTE IN A AS ONE ASCII CHARACTER
CARRIAGE RETURN AND LINE FEED

PRINTS ONE SPACE

PRINTS BYTE IN A AS TWO HEX DIGITS
PRINTS POINTER

INCREMENTS POINTER

INITIALIZE POINTER

START A LINE
INTI TMODE

PRINT POINTER
START A LINE SEGMENT

INIT BYTE COUNTER
OUTPUT SOME SPACES

GET THE BYTE
AND SAME ON STACK

IN MAP MODE?

NO
YES. TEST FOR PRINTABLE
CHARACTER

PRINT AS TWO HEX DIGITS

14

023B
023E
0241
0243
0244

0247
024A
024C
024F
0251
0254
0256
0259
025B
025D
025F
0260
0262
0265
0268
026B
026C

026E
0270
0271
0273
0274
0276
0277

0279
0274
027C
027F
0281
0283

0285
0286
0287
0288

028A
028D
028E
028F

20
20
10
68
20

20
A5
CD
A5
ED
90
2C
10
24
30
CA
30
20
20
20
CA
10

Cé6
68
85
68
85
38
BO

CA
10
2C
10
24
10

68
68
38
BO

20
68
68
4c

AO
9E
o4

3B

63
FA
F7
FB
F8
23
F9
2F
F9
2B

0C
9E
9E
9E
FY4
F9
FB

FA

9E

AC
F9
o4
F9
E9

83

1E
1E
1E
1F
7
17

17

1E
1E
1E

17

PTBT

TSTEND

SPO

DOMAP

LNTST

NXLN

2F 1E DONE

YF

1C

JSR
JSR
BPL
PLA
JSR

JSR
LDA
CMP
LDA
SBC
BCC
BIT
BPL
BIT
BMI
DEX
BMI
JSR
JSR
JSR
DEX
BPL

DEC
PLA
STA
PLA
STA
SEC
BCS

DEX
BPL
BIT
BPL
BIT
BPL

PLA
PLA
SEC
BCS

JSR
PLA
PLA
JMP

OUTCH
OUTSP
TSTEND

PRTBYT

INCPT
POINTL
EAL
POINTH
EAH
LNTST
MODE
DONE
TMODE
DONE

DOMAP
OUTSP
OUTSP
OUTSP
SPO
TMODE
POINTH
POINTL
LINEA
LINEB
MODE
NXLN

TMODE
DOMAP

LINE

CRLF

EXT

PRINT AS ONE ASCII CHARACTER
AND A SPACE

UNCONDITIONAL BRANCH

RECOVER BYTE AND

PRINT AS TWO HEX DIGITS

INCREMENT POINTER
AND TEST AGAINST ENDING
ADDRESS + 1

NOT BLOCK END. TEST FOR LINE END
END OF BLOCK REACHED. IS MAP
NEEDED. DONE IF NOT.

HAS MAP BEEN DONE?

YES, EXIT

NO SPACES NEEDED
SPACE OVER TO CHARACTER MAP

DO THE MAP. FIRST SET THE
MAP FLAG AND RESET POINTER TO
START OF LINE

AND PRINT THE MAP SEGMENT

TEST FOR END OF LINE

NOT AT END. DO THE NEXT BYTE

END OF LINE SEGMENT REACHED. IS MAP NEEDED?
NO, DO THE NEXT LINE

HAS THE MAP SEGMENT BEEN DONE?

NO, DO IT NOW

DO THE NEXT LINE
FIRST FIXT THE STACK

DO THE NEXT LINE

DONE
REMOVE SAVED POINTER FORM STACK

EXIT TO KIM MONITOR

15

KIM

2880
17F5
17F6
17F7
17F8
17F9
17FA
021E
021F
0200

2800
2808
2810
2818
2820
2828
2830
2838
2840
2848
2850
2858
2860
2868
2870
2878

KIM

17F5
17F5
17F6
17F7
17F8
17F9
17FA
021E
021F

0200

2800
2810
2820
2830
2840
2850
2860
2870

52
00
28
80
28
00
FF
OF
20

00
28
80
28
FF
FF
07
20
AD

17F5
00.
28.
80.

FF.
021E
07.
0200

0D 00
4F 43
44 55
20 43
45 52
20 20
49 5
52 41
4B U9
0D 00
20 43
49 41
39 37
60 20
32 30
80 20

00.
28.
80.
28.
60.
021E
OF.
0200

0D 00
44 55
45 52
49 54
4B 49
20 43
39 37
32 30

BLOCK STARTING ADDRESS = 2800

BLOCK ENDING ADDRESS + 1 = 2880

SELECT MAP OPTION

SELECT 8 LOCATIONS PER LINE

START

10
uB
4p
48
20
20
59
4D
4p
40
2E
4D
38
LF
30
20

20
20
50
41
4D
20
20
20
2D
20
20
53
0D
52
)]
20

BLOCK

BLOCK

PROGRAM AT 0200

20

48
20
52
i1
55
50
46
31
20
57
20
00
u7
00
4p

20
45
i1
41
50
54
52
4F
0D
20
U9
2D
50
20
70
45

42
58
4E
43
0D
49
4F
52
00
4a
4c
20
0D
24
0D
4D

4C
20
uYy
5
00
4C
47
20
30
2E
4C
31
00
30
00
4F

O WK 3]

O H

QO OOo

~N OO0 Hpe A
o

(o]

== S

COOX: ™I ¢

STARTING ADDRESS = 2800

0D

0D

ENDING ADDRESS + 1 = 2880

SELECT NOMAP OPTION

SELECT 16 LOCATIONS PER

START

10
4D
20
59
4p
2E
38
30

20
50
4D
20
2D
20
0D
0D

PROGRAM AT 0200

20
20
41
50
31
57
00
00

20
41
50
52
0D
49
50
70

42
4E
oD
4F
00
4c
0D
0D

4c
Ly
00
W7
30
4C
00
00

16

4F
20
20
52
oD
kg
60
80

43

20
41
00
41
20
20

LINE

4B
48
20
4D
4o
4p
4F
20

20
41
20
20
20
53
52
20

48
52
55
46
20
20

47

jas]

- My G o

00

00

45
41
54
4F
20
2D
20
45

OO m

H

o

[ea el

[w)
Qrolu
o

(=]

LW O0MOHOOZ2 MW
o

20
54
4C
20
2E
31
30
LF

=

IMPORTANT ADDRESSES CGF KIM-1 AND MONITOR

William R. Dial
438 Roslyn Avenue
Akron, CH 44320

Address Label Function

OOEF PCL Program Counter - Lo Byte

00FO PCH Program Counter - Hi Byte

00F1 P (PREG) Status Register of Processor Set '""00" for Binary
00F2 SP (SPUSER) Stack Pointer

00F3 A (ACC) Accumulator

00F4 Y Y-Register

00F5 X X~Register

00F6 CHKHI Checksum on Tape, Hi

00F7 CHKSUM Checksum on Tape, Lo

00F8 INL Input Buffer, Lo - Display Buffer

00F9 INH Input Buffer, Hi - Display Buffer

OOFA POINTL Pointer, lo - Display

00FB POINTH Pointer, Hi - Display

00FC TEMP Temporary Storage Byte

00FD TMPX Temporary Storage Byte

OOFE CHAR Current Character for TTY

OOFF MODE Byte Indicating KYBD or TTY Mode on KIM

Detail of Processor Status Register P (00F1)

Bit No. 7 6 5 &4 3 2 1 0 Flags (1 = set)
N V B D I Z C
L_____Carry
b Zero Result
Interrupt Disable
Decimal Mode

Break Command

Reserved for Expansion

Overflow

Negative Result

O1lFF
O1FE :& STACK Needed to Process Interrupts, save Addresses, etc.
01F8 etc.

16A

_E‘.ﬂﬂ@ﬁ)@

1/0 Ports, Interval Timers, and 6530 RAM Usage

Address Label Function

1700 PAD Port A Data (user 1/0)
1701 PADD Port A Data Direction (1 = Output)
1702 PBD Port B Data (User 1/0)
1703 PBDD Port B Data Direction (0 = Input)

1704 / 1744 CLKIT INTERVAL TIMER

1705 1745 CLK8T 1704 et seq User

1706 1746 CLK64T 1744 et seq KIM MONITOR
1707 1747 CLK1024T

1707 1747 CLKRDI Read Time Out Bit

1706 1746 CLKRDT Read Time

170C 174C 1T TIMER USED when IRQ Interrupt at PB7 needed
170D 174D 8T

170E 174E 64T

170F 174F 10247

1740 SAD Port A Data (KIM MONITOR)
1741 PADD (SADD) Port A Data Direction
1742 SBD Port B Data (KIM MONITOR)
1743 PBDD (SBDD) Port B Data Direction

1780 Available Memory Block (Program PLEASE, etc.)

17E7 CHKL Checksum for Tape Monitor

17E8 CHKH

17E9 SAVX Storage Location

l 7EA 13 1"

17EB " 1"

17EC VEB Volatile Execution Block

17F2 CNTL 30 TTY Delay

17F3 CNTH 30 TTY Delay

17F4 TIMH

17F5 SAL Starting Address - Lo (Audio and Paper Tape)

17F6 SAH - Hi

17F7 EAL Ending Address - Lo

1778 EAH - Hi .
17F9 i) ID Number (Program No. on Tape)

17FA/FFFA NMIV (NMIL) Stop Vector (Stop = IC00) Load 00

FB/FFFB (NMIH) 1C
FC/FFFC RSTV (RSTL) RST Vector 00
FD/FFFD (RSTH) 1C
FE/FFFE 1RQV (IRQL) IRQ Vector (BRK = ICOO) 00
FF/FFFF (IRQH) 1C

N ———

SUB-ROUTINES - 6530-003

Address Label Function

1800 DUMPT Dump Memory to Tape

1873 LOADT Load Memory from Tape

1932 INTVEB Initiate Volatile Execution Block

194C CHKT Compute CHKSUM for Tape Load

195E OUTBTC Output One Byte

196F HEXOUT Convert LSD of A to ASCII and Output to Tape

197A OUTCHT Output to Tape One ASCII CHAR (Use Subs ONE & ZRO)

199E ONE Output to Tape

1 (9 pulses 138)\ sec each)

19¢4 ZRO Output O to Tape (6 pulses 207 m sec each)

19EA INCVEB Sub to INC VEB + 1, 2

19F3 RDBYT Sub to read Byte from Tape

1A00 PACKT Pack A = ASCII into SAVX as Hex Data

1A24 RDCHT Get 1 Character from Tape and Return with
Character in A (Use SAVX + 1 to ASM Char)

1A41 RDBIT Gets one bit from Tape and returns it in
sign of A

1A6B PLLCAL Diagnostics: PLL calibrate Output, 166 j sec
pulse string

SUB-ROUTINES -~ 6530-002

1C00 SAVE KIM Entry vis STOP (NMI) or BRK (IRQ)
Also SST

1Cc22 RST KIM Entry via RST (Reset)

1C2A DETCPS Count Start Bit

1C4F START Make TTY/KB Selection

1CpC PCCMD Display Program Counter by Moving PC to POINT

1C64 CLEAR Clear Input Buffer INL, INH

1C6A READ Get Character

1C77 TTYKB Main Routine for Keyboard and Display

16C

;—-—Em@m@

Address Label -

1CE7 LOAD

1D42 DUMP

1E1E PRTPNT

1E2F CRLF

1E3B PRTBYT

1E5A GETCH

1E88 INITS

1E9E OUTSP

1EAQ OUTCH

1ED4 DELAY

1EEB DEHALF

1EFE AK

1F19 SCAND

1F1F SCANDS (DISPLA)

1F48 CONVD

1F63 INCPT

1F6A GETKEY

1F91 CHK

1F9D GETBYT

1FAC PACK

1FD5 TOP

1FE7 TABLE

Function

Load Paper Tape from TTY

Dump to TTY from Open Cell Address to LIMHL,
LIMHH Limit High, H and L

Sub to Print POINTL, POINTH

Print String of ASCII Characters from
TOP + X to TOP

Print 1 Hex Byte as Two ASCII Characters

Get 1 Character from TTY, Return from Sub with
Char in A. X is preserved and Y returned = FF.

Initialization for SIGMA

Print One Character CHAR =
X is preserved, Y returned
OUTSP Prints One Space.

A.
= FF.

This loop simulates DETCPS Section and will
delay 1 Bit Time.

Delay half Bit Time - Double right shift of
Delay Constant for a Div by 2.

Sub to Determine if Key is depressed or
Condition of SSW
(Key not dep or TTY Mode A = 0)
(Key dep or KB Mode A = not zero)

Output to 7 Segment Display

Lights 7 Segment Display

Convert and Display Hex - Used by SCAND only

Sub to Increment POINT

Get Key from Keyboard, Return with A = Key
value. If A GT. than 15 then illegal or no Key.

Sub to Compute Check Sum

Get 2 Hex Characters and Pack into INL, INH.
X preserved, Y returned = 0.

Shift Character in A into INL, INH

Table

Table Hex to 7 Segment

16D
_mu@t‘;}@

A DEBUGGING AID FOR THE KIM-1

Albert Gaspar
305 Wall Street
Hebron, CT 06248

DEBUG is a program designed to assist the user
in debugging and manipulating programs. It re-
sides in memory locations 1780 - 17E6 and pro-
vides a means for inserting breakpoints in a
user program, moving blocks of bytes throughout
memory, filling memory with repetitious data,
and calculating branch values. It uses selected
KIM monitor subroutines.

Operating Modes
DEBUG has three operating modes:

1. Keyboard Mode: DEBUG remains in a wait loop
anticipating keyboard entry which will be recog-
nized as either data or command characters.
This mode is initiated either by using the KIM
monitor to start at location 178E, or by the
execution of a previously inserted breakpoint in
a user program.

2. [Execute Mode: DEBUG executes logic to ser-
vice a user command. This mode is completed in
microseconds and will not be noticeable by the
user.

3, Non-Control Mode: DEBUG relinquishes con-
trol when the user keys in "RS", or "ST" during
Keyboard Mode, or uses the CONTINUE Command.

To start, the user must first load "B5" into
17FE and "17" into 17FF using the KIM. Then the
user begins DEBUG by starting at location 178E.
This puts DEBUG into Keyboard Mode. The user
then keys in combinations of the 16 data char-
acters available on the keyboard. Input data is
displayed in a manner similar to that of the KIM
- from right to left - except that only the
left-most five display positions are utilized
(exceptions are noted below).

The user must continue to key in characters un-
til he is satisified that the required data is
input. Then one of the several Command code
characters available (B, C, D, E, or F) is keyed
in. At this point, or at any time previous to
this, if the input is not correct and the user
wishes to change the display, he merely contin-
ues to enter data until the display string is
correct. When the display concatenation is sat-
isfactory (either 2 or 4 data characters and 1
Command character) he keys in "AD". Now DEBUG
will go into Execute Mode (without echoing the
entry of "AD") and immediately examines the
last previous character input. If this char-
acter is not a legitimate Command character (B,
Cc, D, E, or F), DEBUG becomes confused and will
transfer to unpredictable memory locations.
Thus the user is held wholly responsible for the
validity of his input. He should always check
that either his keyed-in data is correct before
hitting "AD", or that his Command was indeed ex-
ecuted. Note: if a key other than "AD", the 16
data characters, "RS", or "SI" is depressed, its
high order 4 bits are stripped and the remaining
low order 4 bits are displayed and evaluated as
whatever the combination happens to represent.

Assuming that the character input immediately
prior to "AD" is a legitimate Command character,
DEBUG - still in Execute Mode - will process
the data which was input prior to the Command
code (either 2 or Y4 characters). Note that the
‘Command values (B, C, D, E, of F) if found in

17

the data field are processed as standard hex
values.

BREAK This command allows the user to insert
a breakpoint anywhere desired in his pro-
gram. When this point is subsequently reached
during execution of his program, control will be
passed to Keyboard Mode of DEBUG and further
execution of the user program will effectively
be temporarily discontinued. Also at this time
the user area will be restored to the original
configuration existing at the time of the break-
point insertion.

Input Sequence:

Press Keys See on Display

4 Data Characters 'B "AD" U4 char B1
The Y4 Data Characters define the Breakpoint
location desired. The BREAK Command saves the
user byte at the Breakpoint and deposits a BRK
instruction in place of it. Thus, that user
area should not be altered by the user while
DEBUG is in Non-Control Mode and a Breakpoint
is eminent, or the Breakpoint return will not
work. More than one Breakpoint can be eminent
at one time; however since DEBUG will store only
one byte at a time, multiple simultaneous
Breakpoints should be applied only at user loca-
tions containing the same instruction. This way
it is immaterial which BRK triggers a return to
DEBUG - the user area will be properly replaced.

This Command includes 1 of 2 instances where the
sixth .display position is used. If the sixth
position contains a 1, the Command has been cor-
rectly processed. If the position contains any
other value, it indicates that depression of the
"AD" key has caused multiple bounces and the
byte stored by DEBUG within itself is now "00" -
not the original user byte. Thus DEBUG will
still function correctly but will not correct-
ly restore the user position when a Breakpoint
return is initiated. The user must restore the
location manually (using KIM) after the return
has been performed -~ otherwise "00" will be left
in the iocation.,

CONTINUE This Command causes DEBUG to pass
execution to a user specified loca-
tion. It is similar to the passing of control

through KIM and either method may be used to ex-
ecute user code.

Input Sequence:

Press Keys See on Display

4 pata Characters C "AD" 4 char co
The Y4 Data Characters define the address to
which control is to be passed. The above dis-
play is only momentary since control is immedi-
ately passed to a user area (Non-Control Mode)
The purpose of the Continue Command will usually
be to execute to a previously inserted Break-
point. When this occurs, as previously stated,
control returns to Keyboard Mode, of DEBUG.
At this point, the leftmost ¥4 display digits
will contain the address at which the Breakpoint
was located. See QOverall Notes #1 for a con-
tinuation warning.

MOVE This Command will move a block of up to
256 bytes to another memory area. It is
non-destructive (unless, of course, a shift is

performed).
Input Sequence:

Press Keys See on Display

4 Data Characters F "AD" 4 char Fo
(F for From)

4 Data Characters D "“AD" 4 char DO
(D for Destination)

2 Data Characters E "AD" XX 2 char EOQ
(E for Execute)

The 4 Data Characters above represent the loca-
tions one less than the locations, respective-
ly, from which and to which the data is to
moved. The 2 Data Characters above represent
the hex value of the number of bytes to be

moved. If the user desires to move 256 (dec.)
bytes, he must input "00" in the "E" Command.
"F" and "D" execution may be input in either
order - "F" then "D" or "D" then "F".

MOVE will correctly move blocks of bytes
from one area of memory to another. However it
will correctly shift bytes only in an upward
direction. Attempting downward shifts will re-
sult in the repeating of as many of the last
bytes in the original block as there is a dif-
ference in the block positions. For example -
shifting a block of =say (n) bytes starting at
0200 to a new area starting at 0202 will cor-
rectly shift the (n) bytes upward 2 locations.
Attempting to shift a block of (n) bytes start-
ing in 0202 to a new area starting in 0200 will
result in the last 2 bytes of the original
block to be repeated downward from their orig-
inal locations continuing to 0200. This may not
be completely undesireable since - 1) normally
the user will be interested in expanding an
area, not in compressing it (for example, to add
instructions); and, 2) this serves as a useful
tool to provide filler bytes in memory when
desired.

BRANCH This Command assists in calculating

Branch values.
Input Sequence:

1. Enter the necessary 12 bytes of Branch Over-
lay, either through KIM or by tape overlay.
(These will, of course, have to be restored to
the original configuration when through with
BRANCH) .

1. Put DEBUG into Keyboard Mode.

Press Keys See on Display

2 char/2 Char, E "AD" 2 char/2 char/D-VALUE
The first 2 characters are the 2 least signifi-
cant values of the Branch Address. The next 2
characters are the 2 least significant values of
the Branch to Address. The "E" stands for
Evaluate. The correct Displacement VALUE will
appear in the 5th and 6th display positions.
The displacement is calculated assuming that the
two addresses are in the same page. For page
overlap, entry will have to be done twice. We
believe that different users will have different
preferential methods for doing this, so our own
method, which is somewhat involved, is not
described. If both entries are on the same page
but are separated by a distance greater than the
standard branch range, the value calculated will
be incorrect. It is the user's responsibility
to check for out-of-range values.

18

Overall Notes

1. When a Breakpoint has been executed, DEBUG
doe§ not store and then restore accumulator,
register, and status values. Thus, the user
must take care in continuing from a Breakpoint
if any of these parameters have a subsequent
bearing in further user program execution.
(Though this and other omissions are glaring de-
fects, no apology is made - there was just in-
sufficient memory available for inclusion of any
refinements,)

2. When returning from a "BRK" instruction,
DEBUG pulls the status register information from
the stack and ignores it. If this DEBUG version
is used in conjunction with an interrupt system,
locations 17FE - 17FF must contain the address
of the user interrupt handler. The beginning of
the handler must be similar to that shown on
page 144 of the KIM Programming Manual. The
logic listed in example 9.7 must be utilized as
shown. "BNE BRKP" will point to the DEBUG loca—
tion defined below. If the user handler deter-
mines that the interrupt was caused by "BRK",
then the handler must jump to location 17B5.
DEBUG will then obtain the "BRK" address and
perform subsequent logic to return the user byte
to its original configuration and continue on
into Keyboard Mode.

3. This version of DEBUG uses page zero loca-
tions 0000, 0001, 0002, 0003, and 0004, but only
as scratch areas during Keyboard and Execute
Modes. The user can use these areas as tempo-
rary scratch areas when DEBUG is not being ex-
ecuted.

4. Due to limited instruction space, DEBUG is
particularily susceptible to key bounce. The
user should remain watchful of such occurrences,
especially during BREAK execution as previously
described.

5. My goal here was to fit as much DEBUG power
into locations 1780 ~ 17E6 as possible - not. to
write a great breakpoint/move/branch calculate
routine. (That has already been done by others)
Thus DEBUG had to be written in relatively con-
cise and tight code, using data as instructions,
instructions as data, overlapping instructions,
using the same code to do different things,
instruction modification, position instructions
in prescribed relative locations, use of "write-
only-memory", etc. I do not approve of this
type of programming - in fact I strongly recom-
mend against it. However, in this case I hope
the goal I had justifies the mess that DEBUG has
turned out to be. 1In any event I would like to
point out that as tight as the code is, it is
still possible to add other functions heré and
there. For example the version I usually use
displays the value of the accumulator in display
locations 5 and 6 when returning back from a
Breakpoint. At times I also use another version
which doesn't require the "BRK" instruction at
all. This is convenient when debugging inter-
rupt programs since no additional interrupt is
needed for DEBUG. However, both versions penal-
ize me in other areas, which makes it all a
trade-off decision.

[Editor's Note: Gaspar seems to be suggesting
a collection of specialized DEBUG progranms,
each customized to provide a particular set of
capabilities while residing in minimal memory.
Using his code as a starting point, a "program-
wise" reader should be able to construct his own
set of DEBUG aids.]

1780
1782
1784
1785
1787
1788
178A
178C
178E
1791
1794
1796
1799
179B
179E
1740
1742
17A4
1746
17A8
17A9
17AB
17AD
1TAF
17B0
17B2
17BY
17B6
1787
17B8
17B9
17BB
17BD
17BE
17C0
17C2
17CH
17C6
17C8
17CA
17CD
17D0
17D2
17DY
17D6
17D9
17DC
17DE
17DF
1TE0
17E1
17E2
17E3
17EY

ZERO
ONE
WO
THREE
FOUR

INH
POINTL
POINTH

RETURN
TBLOFF
JUMPER

INITI
SCANDS
GETKEY
02
00

8C 1E
1F 1F

1F 1F

6A 1F

02
FA

00

ocC
F9
00
FA
DC 17
DB 17
FA
oD

D4 17

DD 17
FF

FA 00

EXEC

DANDF

START

KEY

SHIFT

PROCE.

TABLE

$0000 LOCATION 0000

$0001
$0002
$0003
$0004

$00F9 KIM DISPLAY POINTERS

$00FA
$00FB

$17B5 INTERNAL ADDRESS
$17D4 TABLE OFFSET
$17DD INTERNAL ADDRESS

$1E8C KIM INITIALIZE ROUTINE

$1F1F

$1F6A KIM GET
LDAIY TWO
STAIY ZERO
DEY
BNE EXEC
TYA

STAZX $00F3
LDAZ POINTH
STAZX $00F4

JSR INITI
JSR SCANDS
BNE START
JSR SCANDS
BEQ KEY
JSR GETKEY
LDXZ FOUR
CMPIM $10
BEQ PROCES
STAZ FOUR
LDXIM $04
ASLA

ROL INH
ROL POINTL
ROL POINTH
DEX

BNE SHIFT
STA INH
BEQ START
SEC

PLA

PLA

SBCIM $02

STAZ POINTL
PLA
SBCIM $200
STAZ POINTH
LDXIM $0C
INC INH
LDYIM $00
LDAIY POINTL
STAX $17DC
LDAX $17DB
STAIY POINTL
LDXIM $0D

S LDYZ POINTL
LDAX TBLOFF

STA $17DD
BNE JUMPER
NOP

= $E6

= $06

= $49

H $A2

= $A9
JMI POINTL

19

KIM SCAN DISPLAY ROUTINE

KEYBOARD CHARACTER

GET CHAR TO BE MOVED
MOVE IT

CONTINUE UNTIL DONE
GET TO OR FROM ADDRESS
STORE IT IS SCRATCH

SET FLAGS AND INIT.
DISPLAY BUFFER

NEW CHARACTER INPUT?

NO, CONTINUE TO DISPLAY

YES, GET THE CHARACTER

PICK UP LAST CHAR. INPUT

IS THE NEW CHAR. "AD"?

YES. PROCESS CURRENT COMMAND
NO. STORE IT

AND SHIFT IT INTO THE DISPLAY

SHIFT THE DISPLAY LEFT

DONE SHIFTING
YES. ADD NEW CHAR TO DISPLAY
UNCONDITION RETURN

IGNORE STATUS

GET "FROM" ADDRESS
SUBTRACT 2

DISPLAY LOW ORDER

SUBTRACT CARRY, IF ANY
DISPLAY HI ORDER

CHEAT ON RX

COUNT KEY BOUNCES

GET USER BYTE
STORE IT

GET "BRK"

STORE IN USER AREA
CHEAT ON RX

PREPARE TO GO TO COMMAND LOGIC
ALTER INSTRUCTION

JMP TO COMMAND LOGIC

FUTURE EXPANSION

BRANCH TO "B"

BRANCH TO "C"

BRANCH TO "D"

BRANCH TO "E"

BRANCH TO "F"

00 OR ADDRESS USED AS "BRK"

BRANCH CALCULATION OVERLAY

ORG $1780
INH * $00F9
POINTL #* $00FA
POINTH #* $00FB
1780 38 EXEC SEC INITIALIZE SUBTRACT
1781 A5 FA LDAZ POINTL
1783 69 FD ADCIM $FD CORRECTION CONSTANT
1785 E5 FB SBCZ POINTH
1787 85 Fg STAZ INH STORE RESULT IN DISPLAY
1789 4C 8E 17 JMP $178E JUMP TO START
Examples This shifts bxtes in 0241-0250 to 0244-0253.
1. Load DEBUG. Load "B5" into 17FE and "17" User can now insert his 3 new instructions into

into 17FF.
2. Start execution at location 178E.

3. Depressing any of the 16 keyboard characters
will cause the 5 leftmost display digits to
shift left and the new character to be inserted
into the fifth position.

4. Assume that there is a program in 0200-0250.
Now, to execute from 0200-0240:

02408BAD Display is 0240 B1
0200C AD 0200 CO
0240 XX

When the user program executes to location 0240,
it will return to DEBUG which then will replace
the original byte at 0240 and will return to
Keyboard Mode.

5. User wishes to add a 3 byte instruction in
0241-0243. Thus he must shift his program from
0241-0250 to 02u4-0253.

0240 B1

02L40BAD Display is

0.240FaD 0240 FO

(Remember that MOVE requires addresses 1 less

than the actual values.)

XX 10EAD Display is XX10 EO

(10 = 0250 - 0241 + 1)

20

locations 0241, 0242, and 0243.
6. User wishes to load NOP into locations 0300-

O03FF. Load "EA" into O3FF using KIM. Return to
DEBUG.

0300F AD Display is 0300 FO

02FFDAD 02FF DO

0 0E AD XX00 EO

(Move 256 decimal bytes.)
7. User wishes to calculate the value required
for a HERE BCC START where HERE = 0204 and
START = 0250.
First, load overlay (12 bytes) and return to
DEBUG.

0450EAD Display is 0450 4a

Thus the branch value is U4A and the branch in-
struction will be BCC 4A.

Remember that if further DEBUG usage is planned,
the original 12 bytes starting at 1780 have to
be replaced.

Program Notes

1. The instruction listings at 17B4 and 17E4
are NOT errors and must be placed in memory
exactly as shown.

2. Locations 17E7 and 17E8 are used by the KIM
monitor for tape checksum. However, their usage
in DEBUG will not interfere with KIM since the
two programs do not, of course, use them at the
same time,

EMPLOYING THE KIM-1 MICROCOMPUTER
AS A TIMER AND DATA LOGGING MUDULE

Marvin L. De Jong
Dept. of Mathematics-Physics
The School of the Ozarks
Point Lookout, MO 65726

The interval timers on the 6530 on the
KIM-1 microcomputer provide a conven-
ient way to measure the time between
two or more events. Such events might
include the start and end of a race,
the exit of a bullet from a gun and its
arrival at a measured distance along
its trajectory, the interruption of
light to a series of phototransistors
placed along the path of a falling ob-
ject, an animal arriving at this feed-
ing station, the arrival of telephone
calls, etc. Some of these measurements
will be described in more detail below.
Each event must produce a negative
pulse which the microcomputer detects
and records the time at which the event
occurred. The time is stored in memory
and later displayed on the 6-digit KIM
display.

Description of the Programs

The data logging, timer, and display
programs are listed in Tables 1, 2, and
3, respectively. The programs must be
used together for the applications des-
eribed in this paper, but each might be
used with other applications, for exam-
ple pulse generators, frequency count-
ers, temperature logging, light flash-
ing, etc. The events to be timed must
produce either a one-shot pulse (posi-
tive-zero-positive) whose duration is
at least 50 microseconds or a zero to
positive transition which must be reset
to zero before the next event. These
signals are applied to pin PAO on the
KIM applications connector. The pro-
grams could easily be modified to de-
tect positive pulses.

The first pulse starts the timer which
continues to operate on an interrupt
basis. The first pulse is not recorded
by the data logging program since it
corresponds to t 0. Successive pul-
ses cause the data logging program to
store the six digit time counter in
memory. The number of events (not
counting the first event) N, to be
timed must be stored in location 0003.

21

Remember to convert the number of
events, N, to base 16 before entering
it in memory. As the program is writ-
ten, N must be less than 75. = 4B hex.

The function of the timer program is to
load the interval timer, increment the
six digit time counter, and return to
the data logging program. At the end
of each timing period the timer causes
an interrupt to occur (pin PB7 on the
application connector must be connected
to pin 4 on the expansion connector),
the computer Jjumps to the timer pro-
gram, does its thing, and returns to
the main data logging program to wait
for events.

Table 4 lists several timing intervals
which are possible and the numbers
which must be loaded into the various
timers to produce the given interval.
For example, if one wishes to measure
time in units of 100 microseconds, then
49 hex must be stored in the divide-by-
one counter whose address is 170C. In
this case, the numbers which appear on
the display during the display portion
of the program represent the number of
100 microsecond intervals between the
first event and the event whose time is
being displayed. To put it another
way, multiply the number on the display
by 0.0007 to get the time in seconds.
The other possibilities listed in the
table are treated in the same way.

When all N events have been logged, the
program automatically Jjumps to the dis-
play program. When one is ready to re-
cord the data, key #1 on the keyboard
is depressed. The time of each event,
excepting the first which occurred at t
= 0 is displayed on the six digit read-
out for several seconds before the dis-
play moves to the time of the next
event. This gives the experimenter
time to record the data on paper. If
more time is required, increase the
vaéue of the number stored in location
0289.

Table 4 also lists the measured time
interval and gives the percent error
between the stated interval (say 100
microseconds) and the actual measured
interval (99.98 microseconds). The
measurements were made by connecting a
frequency counter (PASCO SCIENTIFIC
Model 8015) to pin PB7 while the pro-
gram was running and after the first
event had started the timer. If great-
er accuracy is required for the 10 mil-
lisecond and 100 millisecond intervals,
then experiment with putting NOP in-
structions between the PHA instruction
and the LDA TIME instruction in the
timer program.

Experiments and Applications

The simplest application for the pro-
gram is a simple stopwatch with memory.
Any suitably debounced switch can be
used. See pages 213 and 280 in CMOS
COOKBOOK by Don Lancaster, published by
Howard W. Sams & Co., Inc., 4300 West
62nd St., Indianapolis, Indiana 46268
for some suitable switching circuits.

Being a physics teacher, I originally
designed the program to collect data
for an "acceleration of gravity" exper-
iment in the introductory physics lab.
The technique may be applicable to
other problems so it is described here-
in., Nine phototransistors (Fairchild
FPT 100 available from Radio Shack)
were mounted on a meter stick at 10 cm
intervals. An incandescent (do not try
fluorescent lighting) 150 watt flood
lamp provided the illumination. The
interface circuit is shown in Figure 1.

The 555 timer serves as a Schmitt trig-
ger and buffer which produces a nega-
tive pulse when an object passes be-
tween the 1light and the phototransis-
tor. The 500 kilo ohm potentiometer is
adjusted so that an interruption of the
light to any of the phototransistors
increases the voltage at pin 2 of the
555 from about 1.5 volts to at least
3.5 volts; a very simple adjustment
which should be made with a VIVM or
other high impedance meter.

In the case of a simple pendulum, the
relationship between the period and the
amplitude can be investigated by allow-
ing the pendulum to "run down" while
logging the times when the bob inter-
rupts the light to a single phototrans-
istor. With only one phototransistor

22

the timer-data logging program can also
be used as a tachometer if a rotating
system of some kind is involved.

Lancaster, in the CMOS COOKBOOK, des-
cribes a tracking photocell pickoff
which could be used in conjunction with
the program for outdoor races and other
sporting events. See page 346 in the
"COOKBOOK". A simple light beam-photo-
transistor system could be placed in a
cage and the apparatus would record the
times at which an animal interrupted
the beam, giving a measurement of ani-
mal activity.

If you want to measure the muzzle vel-
ocity of your rifle or handgun, you
will have to be more devious. First, I
would modify the program so that one
pin, say PAO, is used to start the tim-
ing while another pin, say PBO, is used
to stop the timing. This can be ac-
complished by changing instructions
0226 and 022D in Table 1 from AD 00 17
to AD 02 17. Then I would use a fine
wire foil to hold the clock input of a
T4T4 flip-flop low until the wire foil
was broken by the exit of the bullet
from the gun. The Q output going high
would start the timing, so it would be
connected to PAO. To end the timing
one could pse a microphone to detect a
bullet hitting the backstop. of
course, the microphone signal would
have to be amplified and used to trig-
ger say the other flip-flop of the TuUTy
to signal the second event. So as not
to take all your fun away, that is the
last hint except that the distance be-
tween start and stop should be at least
10 feet. Please be careful.

I would like to acknowledge the educa-
tion and inspiration I received at an
NSF Chautauqua Type Short Course and a
KIM workshop, both conducted by Dr.
Robert Tinker.

[Editor's Note: For a related KIM-1
application, see "A Simple Frequency
Counter Using the KIM-1", by Charles R.
Husbands, on page 26 of this issue.]

0200
0201
0202
0204
0206
0209
020B
020E
0210
0212
0214
0216
0219
021B
021D
0220
0222
0224
0225
0226
0227
. 022A
022C
022E
0231
0233
0235
0236
0238
0234
023C
023E
0240
0242
0244
0246
0247

78
F8
A2
A9
8D
A9

A9
85

85
AD
29
DO
AD
29
FO
58
00
EA
AD
29
DO
AD
29
FO
E8
A5
95
A5
95
A5
95
EY4
DO
78
4c

00
50
FE
02
FF
99
00
01
02
00
01
F9
00
01
F9

00
01
F9
00
01
F9

00
03
01
53
02
A3
03
E1

7
17

17

17

17

17

71 02

DLOG

LOW
MID
HIGH

N

LO

MI

HI

INH
POINTL
POINTH
KEY
PAD
GETKEY
SCANDS

INIT

START

FLIP

CHEK1

CHEK2

DISPLA

ORG

%k ok %k sk ok k3K ok ok ok M A ak X

SED
LDXIM
LDAIM
STA
LDAIM
STA
LDAIM
STAZ
STAZ
STAZ
LDA
ANDIM
BNE
LDA
ANDIM
BEQ
CLI
BRK
NOP
LDA
ANDIM
BNE
LDA
ANDIM
BEQ
INX
LDAZ
STAZX
LDAZ
STAZX
LDAZ
STAZX
CPXZ
BNE
SEI
JMP

$0200

$0000
$0001
$0002
$0003
$0003
$0053
$0043
$00F9
$00FA
$00FB
$0271
$1700
$1F6A
$1F1F

$00
$50
$17FE
$02
$17FF
$99
LOW
MID
HIGH
PAD
$01
START
PAD
$01
FLIP

PAD
$01
CHEK1
PAD
$01
CHEK2

LOW
LO
MID
MI
HIGH
HI

CHEK1

KEY
23

Table 1

Data logging program

DISABLE INTERRUPT

SET DECIMAL MODE

SET X = 0

SET INTERRUPT VECTOR = 0250

INIT COUNTER BY STORING 255 (FF)
INT THE THREE, TWO DIGIT

MEMORY LOCATIONS OF THE

COUNTER

READ INPUT PIN PAO

LOGICAL AND WITH PAC

LOOP IF PIN IS 1

IF PIN IS NOT 1, READ AGAIN
LOGICAL AND WITH PAO

LOOP IF PIN IS O

ELSE, ENABLE INTERRUPT AND JUMP TO
TIMER PROGRAM THEN RETURN
PADDING FOR BRK COMMAND

THESE INSTRUCTIONS ARE THE SAM
AS THE START AND FLIP SEQUENCE

INCREMENT X FOR EACH DATA POINT
COUNTER CONTENTS ARE STORED IN A
SEQUENCE OF LOCATIONS INDEXED

BY X

COMPARE X TO N. RETURN TO CHEK1
IF X IS LESS THAN N

ELSE GO TO DISPLAY AFTER
DISABLING INTERRUPTS

0250
0251
0253
0256
0258
025A
025C
025E
0260
0262
0264
0266
0268
0269

48
A9
8D
A9
65
85
A9
65
85
A9
65
85
68
4o

49
0C 17
01
00
00
00
01
01
00
02
02

TIMER ORG

TIME
TIMEX
LOW
MID
HIGH

INTRPT

*
*
*
*

PHA

LDAIM

STA

LDAIM

ADCZ
STAZ

LDAIM
ADCZ .

STAZ

LDAIM

ADCZ
STAZ
PLA
RTI

+5V

500K

$0250

$0049
$170C
$0000
$0001
$0002

Table 2

Timer program

PUSH ACCUMULATOR ON STACK
TIME START TIMER FOR 49(16) CYCLES

TIMEX

$01 INCREMENT COUNTER BY ADDINT 1
LOW TO THE TWO LOW DIGITS

LOW AND STOR RESULT

$00 ADD CARRY FROM PREVIOUS

MID ADDITION TO MID DIGITS. IF
MID CARRY OCCURS FROM THE TWO MID
$00 FROM THE TWO MID DIGITS, THEN
HIGH ADD THIS TO THE TO HIGH DIGITS

HIGH

PULL ACCUMULATOR FROM STACK
RETURN TO DATA LOGGER

“

24

8 4

2 3
» L~ paf

555
6 5
&o—
—__ olmf
.—_“_‘

Figure 1

Interface circuit using
up to 10 phototransis-
tors. The dashed 1line
represents other photo-
transistors. The time
at which the light to
any of the phototransis-
tors 1is interrupted is
recorded by the timer-
data logging program.

0271
0274
0276
0278
0274
027C
027E
0280
0282
0284
0286
0287
0288
0284
028B
028¢C
028E
0291
0294
0297
0299
029C
029D
029E
029F
0241
0244
0245
0246
0248
02AA
02AB
02AE

Table 4

20
€9
DO
A2
B5
85
B5
85
B5
85
8A
48
A0
98
u8
A9
8D
20
AD
30
ke
68
A8
88
FO
4c
68
AA
EY
FO
E8
4c
4C

6A
01
F9
01
03
F9
53
FA
A3
FB

10

FF
07
1F
07
03
91

03
8A

03
04

TA
00

Timing intervals
for the program.

1F

17
1F
17

02

02

02
02

DISPLA ORG

N *

LO *

MI *

HI *

INH *

POINTL *

POINTH *

INIT *

TIME *

GETKEY *

SCANDS *

KEY JSR
CMPIM
BNE
LDXIM

NXPNT LDAZX
STAZ
LDAZX
STAZ
LDAZX
STAZ
TXA
PHA
LDYIM

AGN TYA
PHA
LDAIM

' STA

REPEAT JSR
LDA
BMI
JMP

OVER PLA
TAY
DEY
BEQ
JMP

HOP PLA
TAX
CPXIM
BEQ
INX
JMP

BEGIN JMP

$0271

$0003

$0003

$0053

$0043 Table 3
$00F9 .

$00FA Display program
$00FB

$0200

$1707

$1F6A

$1F1F

GETKEY JUMP TO KIM KEYBOARD MONITOR

$01 TEST VALID INPUT

KEY IF NOT, WAIT FOR INPUT

$01 INIT X REGISTER TO INDEX

LO DATA POINTS

INH PUN IN KIM DISPLAY REGISTERS

MI

POINTL

HI

POINTH
SAVE X WHILE IN SUBROUTINE BY
PUSHING IT ON THE STACK

$10 TIME TO DISPLAY EACH POINT
SAVE Y WHILE IN SUBROUTINE BY
PUSHING IT ON THE STACK

$FF

TIME

SCANDS SCANDS IS KIM ROUTINE WHICH
TIME DISPLAYS DATA IN OOF9, OOFA
OVER AND OOFB. REPEATED JUMPS TO
REPEAT SCANDS PRODUCES A CONSTANT DISPLAY

HOP
AGN

N

RESTORE Y REGISTER

DECREMENT Y BY 1 AND REPEAT
DISPLAY UNTIL Y = O

RESTORE X REGISTER

COMPARE X WITH N. IF X IS LESS

BEGIN THAN N INCREMENT X AND DISPLAY

NEXT POINT. ELSE, RETURN TO

NXPNT THE BEGINNING
INIT

Time Interval Value Address Measured Interval % Error

100 microsec
1 millisec
10 millisec
100 millisec

4q 170C 99,98 microsec 0.02%
TA 170D 0.9998 millisec 0.02%
9C 170E 10.007 millisec 0.07%
62 170F 100.5 millisec 0.5%

25

A SIMPLE FREQUENCY COUNTER
USING THE KIM-1

Charles R. Husbands
24 Blackhorse Drive
Acton, MA 01720

A piece of test equipment that is oc-
cassionally very useful in the computer
laboratory is a frequency counter.
This article explains how to use the
capabilities of the KIM-1, with a mini-
mum of additional hardware, to provide
the functions of such an instrument.
The frequency counter described oper-
ates over the audio range from 500 Hz
to above 15 KHz. To reduce the amount
of external hardware needed, the design
assumes TTL level input signals. How-
ever, the addition of a small amount of
analog hardware to the design presented
would allow the counter to be used with
analog signal sources.

Basic Counter Mechanization

In order to develop a frequency counter
from the KIM~1 microcomputer it is nec-
essary to count and display the number
of input pulses detected over a specif-
ic time interval. The basic time in-
terval chosen was 100 milliseconds.
This time interval is established by
using one of the two interval timers
available on the KIM-1. Transitions in
the applied waveform are sensed by the
external logic and force non-maskable
interrupts to the KIM. As each inter-
rupt is detected a memory location is
incremented. Because of the availabil-
ity of the decimal mode in the 6502 in-
struction set, the count can be main-
tained in decimal rather than binary or
hexadecimal form. At the conclusion of
the 100 millisecond interval the accum-
ulated count is loaded into the display
registers and the process is repeated.
Figure 1 is a flow chart of the freg-
uency counter program,

Detailed Software Description

As shown in the flow chart (Figure 1)
and in the program listing (Figure 2)
the program is started at location 0005
and the frequency counter memory loca-
tion and display locations are initial-
ized to zero. A Value of 99. is loaded
into the interval counter at location
1747. A value stored at this location

26

is decremented every 1024 microseconds.
Under these conditions a zero register
value will then be realized 101.376
milliseconds after the register is
loaded.

After the initialization process the
program goes into an idle loop called
DISPLAY and waits for an interrupt to
occur. The DISPLAY program consists of
repeated calls to the KIM display rou-
tine which presents the contents of the
display registers O0OFA and O0O0F9 on the
seven segment display LEDs.

When an IRQ interrupt is sensed, the
KIM logic forces program control to the
address stored in memory locations 17FE
and 17FF. In this mechanization, the
value stored in these locations will
direct program control to be trans-
ferred to the start of the interrupt
routine (location 0021). The interrupt
program first stores away the values of
A and X from the intérrupted program.
The contents of the interval timer reg-
ister, location 1746, is then read to
establish if the 100 millisecond inter-
val has been completed. A non zero
number indicates that the counter is
still counting and an input pulse
transition has been detected. The log-
ic sets the processor into the decimal
mode and adds one to the contents of
the frequency counter location. As we
wish to detect values above 1 KHz, a
second frequency counter register must
be employed to count the overflow from
the least significant two decimal dig-
its. Having completed the incrementa-
tion process, the program restores the
the values of A and X and returns to
the interrupted program by executing
the RTI instruction.

If a 2zero value is observed when the
interval timer register is read, then
the 100 millisecond timing interval has
been completed. The program reloads
the 100 millisecond value into the in-
terval counter, loads the accummulated
count in the frequency counter memory
locations into the appropriate display

<:7 START j)
v

INITIALIZE COUNTERS AND DISPLAYS

v

SET INTERVAL COUNTER FOR 100 MS

'
—»(DISPL*AY)

EXECUTE KIM DISPLAY ROUTINE

YES
SET INTERVAL COUNT
FOR 100 MS

v

LOAD FREQ COUNTER
SET DECIMAL MODE INTO DISPLAY REG.

i v

INCREMENT FREQUENCY COUNTER ZERO FREQ COUNTER

£' LOCATIONS

RETURN FROM INTERRUPT

FLOW DIAGRAM FOR FREQUENCY COUNTER PROGRAM

Figure 1

27

0005
0007
0009
000B
000D
000F
0012
0014

0017
0014

0021

0021
0022
0023
0024
0027

0029
002A
002B
002D
002F
0031
0033
0035
0037

0034
003C
003F
0041
0043
0045
0047
0049
004B

004D
O0LE
O0LUF
0050

0051
0052

A9
85
85
85
85
8D
A9
8D

20
4c

00
51
52
FA
F9
03
62
47

1F
17

L6
11

51
01
51
52
00
52
4D

62
47
51
F9
52
FA
00
51
52

17
17

1F
00

17

00

17

INTGE
FRACT
PBDD

CLOCKX

CLOCK
SCAND

START

R

S

DISPLA

INTRPT

COUNT

MILLI

EXIT

ORG $0005
¥ $00FA
* $00F9
* $1703
* $1746
* $1T747
* $1F1F
LDAIM $00
STAZ CNTONE
STAZ CNTTWO
STAZ INTGER
STAZ FRACT
STA PBDD
LDAIM $62
STA CLOCK
JSR SCANDS
JMP DISPLA
ORG $0021
PHA

TXA

PHA

LDA CLOCKX
BMI MILLI
SED

CLC

LDAZ CNTONE
ADCIM $01
STAZ CNTONE
LDAZ CNTTWO
ADCIM $00
STAZ CNTTWO
JMP EXIT
LDAIM $62
STA CLOCK
LDAZ CNTONE
STAZ FRACT
LDAZ CNTTWO
STAZ INTGER
LDAIM $00
STAZ CNTONE
STAZ CNTTWO
PLA

TAX

PLA

RTI

= $00

= $00

Figure 2

INIT COUNTERS AND DISPLAY

SET UP 100 MILLISECOND TIMER

DISPLAY DATA
CONTINUOUSLY

SAVE A REGISTER
SAVE X REGISTER

TEST CLOCK TIMED OUT
TEST OF 100 MILLISECONDS

SET DECIMAL MODE
CLEAR CARRY BIT

GET FRACTIONAL PART
INCREMENT

ADD CARRY BIT IF SET

RESET CLOCK

MOVE DATA TO DISPLAY

RESET COUNTERS

RESTORE X REGISTER

RESTORE A REGISTER
RETURN FROM INTERRUPT

FRACTIONAL COUNTER
INTEGER COUNTER

registers, and then zeros the contents
of the frequency counter locations.
The interrupt program is exited by re-
storing the values of A and X and re-
turning via the RTI instruction.

The Hardware Configuration

Figure 3 illustrates the additional
logic required to use the KIM as a fre-
quency counter and shows how that logic
is connected to the KIM Expansion con-
nector. The purpose of the 74121 mono-
stable multivibrator is to produce a
negative going pulse of short duration
onto the IRQ interrupt lines whenever
the input to that chip experiences a
high-to-low transition. It should be
noted that the IRQ is a level rather
than an edge sensitive interrupt and
that the interrupt line must be held
low only long enough to allow the pro-
cessor to sense the interrupt. There-
fore, with the addition of this flip-
flop the KIM will experience an IRQ in-
terrupt each time the input source ex-
hibits a high-to-low transition. If a
periodic pulse train is being applied
to the input, then an IRQ interrupt
will be experienced on each cycle.

e VCC +5 volts
(E-21)
r—

2K { .01 ufd
e Lﬂ

™ 74127 V—/——=__ 71 IRQ
L bl (E-w)
INPUT Ir

SIGNAL

GND (E-22)

Figure 3

29

The accuracy of this hardware/software
on a KIM-1 for measuring frequencies is
shown in the table (Figure 4). A very
accurate frequency meter was used to
obtain the meter measurements. Since
there are probably slight variations in
the speed of different KIM-1s, you
should calibrate your own unit before
using it for any "real!" measurements.

Frequency Calibration

Meter KIM
14.960 15.00
13.961 14.00
12.960 13.00
11.968 12.00
10.966 11.00
9.965 10.00
8.970 9.00
7.977 8.00
6.984 7.00
5.983 6.00
4,985 5.00
3.992 4,00
2.991 3.00
2.003 2.00
1.003 1.00
.902 0.90
.801 0.80

. 705 0.70
.608 0.60
507 0.50

Figure 4

Additional Comments

In addition to entering the values
shown in the accompanying listing, the
values 0010 should be stored 'in loca-
tions 17FA and 17FB, and 2100 should be
stored in locations 17FE and 17FF. The
latter value directs program control to
the beginning of the interrupt routine
when an IRQ is sensed.

The results displayed on the seven seg-
ment indicators will be in the form

XX.XX KHz. This format was chosen for
convenience and the range can be shift-
ed for higher accuracy by software mod-
ifications. Additional improvements
are left to the reader to create. The
author would appreciate being informed
of any interesting improvments you come
up with.

DIGITAL-ANALDE AND ANALOG-DIGITAL CONVERSION

USINE THE

KIM-1

Marvin L. De Jong
Department of Math-Physics
The School of the Czarks
Point Lookout, MO 65726

A Motorola 1408 8-bit digital to analog conver-
ter is connected as shown in the circuit dia-
gram. (The 1408 is available from James Elec-
tronics, 1021 Howard Ave., San Carlos, CA 94070,
as are the op amps used in these experiments.)
The PAD port of the KIM is used to provide the
digital input to the 1408. The analog output of

Circuit Diagram for
Digital to Analog Converter

15K +5Y
PA7 i]4
6 13
PAE —
0
oas 1| 1496 |
s £ o
N 7077
paz 2
 paz L2] L/\N\,__..
R
pas L4 z
PAG LE] L
15V

the 1408 is a current sink at pin 4, which we
converted to a voltage by means of the RCA CA-
3140 operational amplifier. The feedback resis-
tor R is adjusted to give the desired voltage
output . For example, an R of about 500 ohms
gives a voltage range from 0 volts when PAD is
00000000 to 1 volt when PAD is 11111111.

PBE — SCOPE SINC
T0 SCOPE

+5Y

1K
NV

»PE7

SV ZENVER

1. Generation of a Ramp Voltage Waveform

For the first experiment do not connect the sec-
ond op amp, simply connect the output of the

first op amp to an oscilloscope as shown. Load

the following program.

Program to Generate a Ramp Voltage Waveform

ADDRESS OPCODE LABEL
0300 A9 FF START
0302 8D 01 17
0305 EE 00 17 BACK
0308 4¢c 05 03

Running this program should cause a ramp wave-
form to be observed on the oscilloscope screen.
A close examination of the ramp will show that
it consists of 28 = 256 steps rather than a
straight line.

2. A DAC as an Analog to Digital Converter

The second op amp acts as a comparator. It com-
pares the voltage from the output of the first
op amp (which we shall call the digital signal)
with a voltage from some source to be applied to
pin 3 (which we shall call the analog signal).
The output is connected to PB7 on the KIM. If
PB7 1, the analog signal 1is greater than the
digital signal. If PB7 0, the analog signal
is less than the digital signal. The digital
signal is, of course, produced by the contents
of PAD.

30

INSTRUCTION COMMENTS

LDAIM FF 255 in Accumulator

STA PADD Port A is Output Port
INC PAD Increment number in PAD
JMP BACK Increment in a Loop

A flow chart showing what we intend to do is
-shown below. Output port PAD is set to zero. If
the analog signal is positive the PB7 = 1. PAD
is now incremented until the comparator indi-
cates that the analog signal is less than the
digital signal, i.e., PBT = 0. At that instant
the digital and analog signals are the same to
within one bit, the least significant bit, on
PAD. The digital value of PAD is then displayed
and the cycle continues.

If the feedback resistor is adjusted so that a
value of PAD 25540 FFie produces a voltage
of 2.55 volts, then we have constructed a simple
digital voltmeter with a full scale reading (in
hex) of 2.55 volts. The extremely high imped-
ance of the 3140 op amp makes this a rather good
voltmeter. A simple program to convert from hex
to base ten would make the meter easier to read.

Flow Chart for
Analog to Digital Converter

Set PAD=0

DISPLAY PAD
CONTENTS ON
KIM

Program for Analog to Digital Converter
(Ramp Approximation)

ADDRESS OPCODE LABEL INSTRUCTION COMMENTS

0300 A9 FF START LDAIM FF 255 in Accumulator

0302 8D 01 17 STA PADD Make Port A Output Port
0305 A2 00 AGN LDXIM 00 Start PAD at zero

0307 8E 00 17 RAMP STX PAD Output Value of X register
0304 AD 02 17 LDA PBD Read Port B

030D 10 04 BPL DISP Branch if bit 7 = 0

030F E8 INX Increment X register

0310 4c 07 03 JMP RAMP Continue loop

0313 86 F9 DISP STX INH Put X into Display register
0315 20 1F 1F JSR SCANDS Use KIM Display Subroutine
0318 4¢C 05 03 JMP AGN and start again at zero

3. Successive Approximavioa Analog to Digital
Used as a Storage Scope.

The ramp approximation is quite slow and there
18 a faster technique known as "successive ap-
proximation." It works as follows: the most
significant bit to the DAC is set to one and all
the others are set to zero. If the comparator
indicates that the analog signal is greater than
the digital signal, the next lower bit is set
to 1 and the test is repeated. If the compara-
actor indicates that the analog signal is less
than the digital signal, the highest bit is made
zero, and the next lower bit is set to 1 and the
test is repeated. This iterative process is re-
peated until all eight bits have been tested,
starting with the MSB and ending with the LSB.
The flow chart indicates how this will be accom-
plished.

This analog to digital conversion scheme will
be used in a program which digitizes 256 points
on a waveform and then stores the results, to be
displayed at a convenient time and with as many
repetitions as desired on an oscilloscope. It
is useful for examining slow waveforms with an

31

oscilloscope with a low persistance screen, for

example ECG waveforms, and it is useful for ex-
amining non-periodic waveforms such as a one-
shot impulse from an accelerometer. The program
has triggering built in, and the output scan
portion synchronizes the oseilloscope with a
sync signal, turning an inexpensive scope into
something more useful. A flow chart for the
program is given below.

A short description of the behavior of the eir-
cuit and program follows. tThe experimenter
chooses the desired trigger level and loads this
into location 0306. When the analog signal is
greater than this, the comparator makes PB7 go
high and the scan begins. The sampling rate
and the scan time is determined by the number
loaded into the timer and the timer used; loca-~
tions 0314 and 0316, respectively. It takes at
least 200 microseconds to digitize so there is
no point in choosing time intervals smaller than
this. X is used as an index to identify each of
the 256 points on the scan. Arter the timer 1s
started the analog signal is digitized and the
timer is watched until it is finished. X is
then incremented and a new point is digitized

Flow Chart for
Successive Approximation
Analog to Digital Conversion

PAD = 8016 = 100000002

PGZZ = 8016 = 100000002

YES

NO

PAD - PGZZ|

v

LOGICAL SHIFT RIGHT PGZZ.
(Shifts all bits one bit
right and zero bit is

shifted intoLS?rrv bit,)

|pap =

[PAD = PAD + PGZZ|

IS PGZZ CARRY
BIT SET?

APPROX.
FINISH

until all 256 points are finished and stored in
TABLE, X.

X is then zero again. This entire process will
repeat unless the 1 key is depressed, in which
case the program displays the data on the oscil-
loscope, connected as before to the output of
the first op amp. The display will repeat, com-
plete with SYNC signal output from PBO, until
the program is halted. In our case we loaded
the vector 17FA and 17FB with the starting add-
ress of the program (0300) so a depression of
the ST key caused the entire program to start
over.

A listing of the program is shown on the follow-
ing page. Notice that the data is stored in
TABLE,X located in page 2 of memory, PGZZ is at
location 0000, the trigger level is in 0306 and
the scan time variable is in 0314 and 0316. The
scan time should not be shorter than 200 micro-
seconds. As far as display is concerned, we
found that a sweep rate of 200 to 500 micro-
. seconds per cm gave good results.

A few other comments may be in order. First,
most of the ideas for this project were obtained
in a KIM workshop offered by Dr. Robert Tinker.
The software implementation is the author's
work. There are some obvious improvements, such
as a sample and hold device between the analog
source and the comparator or a faster approxim-

32

Flow Chart for Storage Scope

X=X+1

ation routine. These improvements arc iett tor
the reader to implement. The author would be
glad to be informed if such improvements are
made.

Flow Chart for Display

SET X = 0

e

(SYNC SCOPE)

——
PUT

TABLE (X)
INTO PAD

1)

IS
X=07?

JES

ADDRESS OPCODE

0300
0302
0305
0307
0304
030C
030D
030E
0311
0313
0315
0318
0314
031C
031F
0322
0324
0325
0327
0329
032B
032D
0330
0333
0336
0337
0339
033¢C
033E
0341
0344
0346
0348
034B
034D
0350
0352
0355
0357
0354
035D
0360
0361
0363

A9
8D
A9
8D
A2
EA
EA
AD
10
A9
8D
A9
85
8D
AC
30
38
E5
46

FF
01
10
00
00

02
FB
co
05
80
00
00
02
03

17

17

17

17

17
17

03
17
02
17
03
1F
03
17
17
17

17

03

Program for Storage Scope

LABEL

BEGIN

START

TRIG

STIME

TEST

FWRD

ouT

CHEK

DISPLY

SINC

RPT

SCAN

INSTRUCTION
LDAIM FF
STA PADD
LDAIM TSET
STA PAD
LDXIM 00
NOP

NOP

LDA PBD
BPL TRIG
LDAIM CO
STA TIMER
LDAIM 80
STAZ PGZIZ
STA PAD
LDY PBD
BMI FWRD
SEC

SBCZ PGZZ
LSRZ PGZZ
BCS ouT
ADC PGZZ
JMP TEST
STA PAD
STAX TABLE
INX

BEQ DISPLY
LDA TCHEK
BPL CHEK
JMP STIME
JSR GETKEY
CMPIM 01
BEQ SINC
JMP START
LDAIM 01
STA PBDD
LDXIM 00
LDA PBD
EORIM 01
STA PBD
LDAX TABLE
STA PAD
INX

BNE SCAN
JMP RPT

NOTE: This material was submitted by the author
and has also been dis-
tributed by MOS Technology as "KIM Application

to the KIM-1 User Notes

33

COMMENTS
Initialize Port A to Output
Trigger Voltage Set

Initialize X register

Tinput and test PBT7

Wait if PB7T = 0

Set Scan Time here

Select Interval Timer

Start Digitize Sequence

Store Initial Value

OQutput Value

Test PBT

Branch if PB7 = 1

Clear Borrow Flag

Subtract bit 7

Set PGZZ for Next Lower Bit
Out of Digitize Loop if Finished
Set Next Lower Bit = 1

Return to Test all Lower Bits

‘Final Approximation in PAD

and in TABLE(X) in Page 2

Bump Table Index

Go to Display if Table Complete
Test if Timer is Finished

If not, Wait in Loop

Digitize another Point

Is Key 1 Depressed?

Yes. Display the Data
No. Return to Start

Set up PBO as Syne
Output Pin

Init X to Display Table
Toggle PBO for Sync
Signal to Scope

Output Table(X) for

Display on Scope

Increment X register

Continue until all Points Done
Then Repeat

Note #11701." It is printed here with the per-
mission of the KIM-1 User Notes and MOS Technol-

0ogy.

MAKING MUSIC WITH THE KIM-1

Armand L. Camus
P.0. Box 294
Westford, MA 01886

What kind of music can you make with the help of
a microcomputer, namely the KIM-1 with its 1.1K
bytes of memory? Well, it certainly will not
sound like the Boston Symphony Orchestra, live
or on records, but with the right type of music
it will give an acceptable rendition of a chosen
piece of music. Many elements of good music
will be missing, especially the timbre of the
different instruments of the orchestra, but on
the positive side the notes will be on tune, you
will be able to compose in four-part harmony,
the tempo will be adjustable, and the whole pro-
cess will permit some of the artistic creativity
which may hide in each of us to emerge to the
surface. Last, but not least, it will be a lot
of fun.

This elementary article explains the "HOW-TO"

rather than the "WHY" in making music. with a
CASSETTE [
_
RECORDER
-
SP.

microcomputer. Many of the hobbyists who may
find it too simple may refer to the excellent
article by Hal Chamberlin which dwells in detail
on the subject.

An easy way for the beginner to start his musi-
cal career is to acquire a minimum of equipment
besides the KIM-1 and cassette recorder it is
assumed are already in his possession.

The DAC unit is a printed circuit board contain-
ing a complete audio output system for the
KIM-1. This board also comes with a cassette
tape, an instruction sheet listing the songs
which can be loaded in the KIM, and reprint of
the reference article including the interconnec-
tions to be made between the two connectors.

Ce KIM-1

g

DAC r2

2l

+5V +12V

Common.
J1, J2 connectors: Vector R6UY, Winchester
HKD2250, or equivalent. J2 will be too long,

but will work just the same.

Speaker, 2 1/2", 8 ohm, 0.3W, from Radio Shack,

or equivalent.

———

Now that we have described the hardware we will
concentrate on what to do in order to get some
music out of the system. The simplest way at
this time is to load File 1 and File 2 of the
tape and to see if the Star Spangled Banner
comes out clear and patriotic. The procedure is
simple:

Start the KIM-1 and press the appropriate keys
‘to get:

AD O0F1 DA 00
AD 17F9 DA 01
AD 1873 Press GO
Start the cassette until you get 0000 in the ad-

dress display, which indicates that the loading
was done properly. After stopping the cassette,
press the keys to get:

AD
AD

17F9 DA 02
1873 Press GO

34

——

Start - the cassette again until you get 0000.
Stop the cassette. Now you are ready. Press AD
0100, press GO and the song will be played. As
it stops, the program resets the address AD to
0100, so by pressing GO again, the song will
repeat itself.

In the same manner you could load Files 3 and 4
to get a rendition of Exodus. The sound quality
may be changed by loading File 5 or File 6.
Personally, I prefer File 6 which has a much
more mellow timbre.

Transcribing a Song

Now that we have gone through the above steps,
we will learn to code a song. For our purpose,
a particular note of music will have two charac-
teristic elements:

its piteh, represented by its position -on
the staff;
its duration, relative to other notes.

1. Duration Code:

We will assign a two-digit code to the
duration of a note:

o=FF d=80 &=60 &=40
Q=30 &'=20 L=10

2. Pitch Code:

Q B a ba o boe o La _
S = ——

i 4
4
Jvoe ¢ 8 ® A Ab & Gb F E Eb b C
cope 62 60 SE SC S5A 58 56 54 52 So 4LE 4C 4R
N
=6 $6 o bo o
N
NoTE ¢ 8B eb A AL 6 Gb F E € p Db ¢
CoDE 4A 48 46 44 42 4o 3E 3C 3R 238 36 34 32
S N bo ~ b o 3 i
. \= A4 " [« DTS P I
NoTE ¢ B 6b R Ab G Gb F E EbLb D Db
copE 32 20 26 2¢ 2R 28 26 24 22 20 1E Ic
o) F € €bp pb €& —
- S—>0— i.(:i. r=y E.::; — j>1=;. !’ — .
c @ eb A Ab G Gb S T 0 &
cope A 18 e 14 12 {o OE O0¢C OR o8 06 o4 02

What we mean is that a half note lasts twice as
long as a quarter note, a quarter note lasts
twice as long as an eighth note, etc...We are
not talking about tempo yet, this will come
later.

With the help of this lookup table we can find
quickly the code for any note within the limits
of C6 and C2, the high and low C's. However,
the very low notes may not be reproduced too
well with a small speaker and it may not be ad-
visable to go below C3 (Code 14).

Coding a Song

The program given at the end of this article is
a coding of the well-known carol "Deck the
Halls", which we thought would be appropriate
for the Christmas Issue. If you look at this
coding, you will observe that it is done line by
line. FEach line is composed of six elements.
For example, the first line is:

0200 60 4A 4L 32 24

- the 0200 is the memory address of the ele-
ment 60. The next element, 44, would then
have an address 0201, and so on.

- the 60 is the duration of the group of four
notes which follow. A 60 means a dotted
quarter note.

- the UA is the

- the 44 is the

- the 32 is the

- the 24 is the

first voice.
second voice.
third voice.
fourth voice.

note C, for the
note A, for the
note C, for the
note F, for the

35

This is an F major chord which could be repres-
ented as in (1), and it corresponds to the word
"DECK" of the song.

Now we will code the first bar of the song.
Remember . that each line will have the same for-
mat :

address (4 digits), duration (2 digits), 1st
voice (2 digits), 2nd voice (2 digits), 3rd
voice (2 digits), and 4th voice (2 digits)
for a total of fourteen (14) digits. If a
voice is quiet, use 00 at the appropriate
location.

The first vertical group of notes (C,A,C,F) cor-
responding to the word "DECK" has already been
explained above.

The second vertical group of notes corresponding
to the word "THE" is made of B flat, G, C, and
E. Looking up the pitch code table, we find the
following codes:

Bb = 4, G = 40, C = 32, and E = 22. Each
note is an eighth note so the duration code
is 20. The address of the duration code is
0205 so our second line will be:

0205 20 46 40 32 22

In the same fashion the two other vertical
groups are made of quarter notes (code 40) and
we get for the first bar:

0200 60 4A 44 32 24 (DECK)
0205 20 46 40 32 22 (THE)

020A 40 44 3C 32 24 (HALLS)
020F 40 40 3A 2E 1A (WITH)

Remember that there is a Key Signature in this
carol and that all the B's, wherever located on
the staff, are flat, unless otherwise indicated,
which explains the 46 of the second line and the
2E of the fourth line.

m

Another part of that song is shown in the -examp-
le (3). The first voice plays two notes (4 and
B natural), while the other voices play only
one. We solve this problem by writing two

lines, one for the A and one for the B natural,
repeating the other notes to extend their dura-
We get:

tion to a quarter note.

02D2 20 44 3C 32 24
02D7 20 48 3C 32 24

. SR ¢ BT C— _
U peck DECK THE HALLS WITH
< < & &4
: x G >
- j? | 4 bL A | i?:, | rl

Both A note (code 44) and B natural note (code
48) have only the duration of one eighth note
each (code 20), and we have to write two sep-
prate lines for them, but the three other notes
will be repeated so that their total duration is
a quarter note. Fortunately, the lower notes,
even when repeated, will blend together and
and sound more like a quarter note than two con-
secutive eighth notes.

Now we should be abie vo code a song, bulL as a
preliminary exercise, you may want to load "Deck
the Halls"™ and see how it works out. Here is
the procedure:

Load Files 01 and 02 of the DAC tape, as expl-
ained at the beginning of this article. You may
also want to load File 06 to give a more mellow
timbre. Then go to address 0200 and start in-
putting the data. The addresses in the left
side give you a check on your progress and catch
possible omissions of data. What we are doing
here is using the main program and writing over
the song already in memory. At any time it is
possible to go back to AD 0100, push GO and lis-
ten to what is already in memory. Somewhere at
about 2/3 of the song, we run out of memory
(0200 to 02F9), but we have enough left to tell
our microcomputer that it is the end of that
particular segment (02FA 01), and that we wish
+~ continue at address 0083 (02FB and 02FC).
At the very end, check address 00DD 00. The
data 00 indicates the end of the piece and this
will reset the KIM-1 to address 0100, ready to
"GO", so to speak.

After you have loaded the code and pushed the GO
‘key, the carol should start, sounding good if no
mistake was made, but perhaps a little bit on
.the slow side. To change the tempo. either way,
go to address 001D and the data will probably

show 60. Change the data to 40, go back to aa=
dress 0100, push GO and the tempo will be much
faster. Experiment with the data at AD 001D and

find the tempo you prefer.

I have found out that while I am coding I like
to listen to what is already in memory, because
a simple mistake at the beginning, especially

36

forgetting one voice or the duration code, will
throw the rest out of whack. Starting the song
at the beginning, when it is already correct is
a waste of time, but it is possible to start the
song at some other point. However, it must al-
ways be at one of the duration addresses shown
at the end of this article. If not, the KIM-1
would interpret the duration code as a musical
note and vice-versal The starting address is
contained in locations 0017 and 0018. To start,
for example, at address 0237, go to address 0017
read 00, 0018 read 02. This means that the song
normally starts at 0200. All we have to do is
change the data to read:

AD 0017 DA 37
AD 0018 DA 02

Then setting address 0100 and pushing GO will
cause the song to start at location 0237 every
time.

Available Memory

The memory available to the user is divided in
two groups, each group not necessarily in con-
secutive order. First group is associated with
the music program, trequency table or tne notes,
KIM, etc...Second group is associated with the
song. The actual layout of the memory is as
follows:

0000
001F
0083
- 00EF
0100
01AB
01F4
0200
0300
1780

to
to
to
to
to
to
to
to
to
to

001E
0082
OOEE
OOFF
01AA
01F3
01FF
02FF
03FF
17E4

Program variables

Note frequency table
Song, second part

KIM variables

Music program

Song, third part

6502 Stack

Song, first part
Waveform (voice) table
Sone, fourth part

score extends beyond the first

you have to provide room for
Assuming a score uses all of the
the

If your music
part locations,
continuation.
available memory space for coding a song,
following locations are important:

Use of Location

Beginning of Part (Song)

Beginning of Last Line
Last note of Last Line
End ‘of Sequence (Song)

Low Address Next Segment

High Address Next Segment

Reference:

0200:
0205:
020A:
020F:
0214;:
0219:
021E:
0223:
0228:
022D:
0232:
0237:
023C:
0241
0246:
024B:
0250:
0255:
025A:
025F:
0264:
0269:
026E:
0273:
0278:
027D:
0282:
0287:
028¢C:
0291:
0296:
029B:
02A0:
02A5:
02AA:
02AF:
02B4:

ha

o
40
3C

By
3¢
40
By
46
50

4o
3C
34
3C
62

5E

58
54
58
5¢C

58
5C

58
5C

5k
52
54
50
yYy
46

32
32
32
2E
2C
32
32
2C
32
32
32
32
32
2E
2C
28
2C
32
32
32
2E
2C
32
32
2C
32
32
32
32
32
2E
2C
28
2C
32
32
32

Part

0200
02F5
02F9
02FA
02FB
02FC

[

(o1)
(83)
(00)

Part 2

0083
00E7
00EB
00EC (01)
OOED (AB)
00EE (01)

Score for "Deck the Halls"

24
22
24
1A
1E
14
24
24
14
1A
14
14
24
16
14
14
24
24
22
24

37

02B9:
02BE:
02C3:
02C8:
02CD:

02b2:

02D7:
02DC:
02E1:

02E6:

02EB:

02F0:
02F5:
02FA:
02FB:
02FC:

0083:
0088:
008D:
0092:
0097:
009¢cC:
00A1:
00AG:
00AB:
00BO:
00BS:
Q00BA:
Q0OBF:
00CH:
00C9:
00CE:
00D3:
00D8:
00DD:

Part

01AB
01EC
01F0

3

01F1 (01)
01F2 (80)
01F3 (17)

34
3C
3C

40
3C
3¢
40
Yy
uYy
By
40
3C

3A
Ly
40
3C
34
32
3A
3C
32
3C
3C
3C
3C
3C
3C
3C
© 3A
32

32
32
28
2C
32
32
32
32

32
32
32
30

Chamberlin, Hal, "A sampling of Techniques for Computer Performance
of Music", BYTE Magazine, Sept. 1977, Dp. 62-83.

Part 4

1780
17DF
17E3
17E4 (00)

A COMPLETE MORSE CODE SEND/RECEIVE
PROGGRAM FOR THE KIM-1

Marvin L. De Jong, KOEI
Dept. of Math-Physics
The School of the 0zarks
Point Lookout, MO 65726

I. INTRODUCTION

The program described below will con-
vert ASCII from a keyboard to a Morse
code digital signal which can be used
to key a transmitter. It will also
convert a Morse code digital signal to
ASCII for display on the user's video
system. Suitable references for cir-
cuits to convert the audio signal from
a communications receiver to a digital
Morse signal are also given. [1,2]

The entire program resides in the mem-
ory on the KIM-1, and has the following
features:

1. The precise code speed in words per
minute can be entered at any time from
the keyboard.
ed by any two-digit decimal number from
05 to 99 words per minute.

2. The operator can type as many as
256 characters ahead of the character
currently being sent. One page of mem-
ory is devoted to a FIFO buffer.

2. When there are less than 16 charac-
ters left in the buffer, the KIM-1 dis-
play indicates how many characters are

left (F to 0 hex).

y, Backspace capability is provided.
CONTROL B erases the last character en-
tered into the buffer, and the operator
then enters the correct character.

5. The buffer can be pre-loaded with
as many characters (up to 256) as de-
sired while the program is in the re-
ceive mode. Pressing CONTROL G starts
the program sending code as soon as the
operator is ready.

6. CONTROL R sends the program from
the send mode to the receive mode.

7. While in the receive mode the dis-
play on the KIM-1 informs the operator
to either increase the code speed (F,
for faster, on the display) or decrease
(8, for slower) the speed for proper
reception. The receive program actual-
ly tolerates a large range in code
speeds with no adjustment.

Key in CONTROL S follow-.

38

8. The feature just mentioned can be
used to measure the "other guy's" code
speed.

9. If the receive mode is not used,
any CONTROL key not mentioned above
will put the program in an idle loop so
the buffer can be 1loaded. CONTROL G
starts the message.

10. The carriage return key restarts
the send program, or it can be returned
from the receive mode to the send mode
with CONTROL G.

The KIM-1 was first programmed to send
code by Pollock [3], and some of the
features of his program are found here.
Pollock [4] has also described a micro-
processor controlled keyboard using the
6504, It has more features than his
original program written for the KIM-1,
but the program described here has some
additional features which are very at-

tractive, especially the receive pro-
gram.
II. BACKGROUND

A. Sending Morse Code (ASCII to Morse)

A negative going 10 microsecond strobe
pulse from the keyboard is connected to
the NMI pin on the KIM-1. Whenever a
key is pressed an NMI interrupt occurs
and the ASCII code from the keyboard is
read at the lowest 7 pins of port A
(PAD). The eighth bit is held high, so
the number read is actually the ASCII.
code pius 80 hex. This number is
stored in the FIFO buffer which is page
2 of memory on the KIM-1. The send
routine uses the numbers in the FIFO
memory to index a location in page zero
which contains the information to con-
struct the Morse character.

An illustration will make this clear.
The ASCII hex representation of the
letter C is 43, The strobe pulse
causes port A to be read, which results
in the number C3 (C3 = 43 + 80) being
stored in the FIFO. When the send rou-
tine gets to the location in the FIFQ
where C3 is stored, it uses it to

locate the contents of address 00C3.
Tn location C3 in zero page is found 1A
which is 00011010 in binary. The most
significant 1 is simply a bit which in-
dicates that all lesser significant
bits contain the code information,
namely 1 = dash and 0 = dot. Thus, C
is dash-dot-dash-dot (1010).

The program causes the 00011010 to be
rotated left (ROL) until & 1 appears in
the carry position. The carry flag set
causes the program to analyze the re-
maining bits for their code content.
It does this by successively rotating
them (ROL) into the carry position. If
a 1 appears in the carry position, PBC
is held at logical 1 for the appropri-
ate time followed by a space while PBO
is at logical 0. If a 0 appears in the
carry position a dot is sent, followed
by a space. When a total of 8 ROL com-
mands have been completed, counting
those needed to find the leading 1,
then PBO is held at logical 0 for an
additional time to give a character
space. The space bar produces still
more time at logical 0 to produce a
word space.

CONTROL S changes the NMI interrupt
vectors so that the next two characters
(hopefully decimal digits) from the
keyboard are read, converted from base
ten to hex [5], and converted to the
basic time unit (see below). The in-
terrupt vectors are then restored so
that further characters from the key-
board are read as usual. Control char-
acters are obtained by pressing the
control key followed by the appropriate
control character.

B. Timing Considerations.

Before going much further, the timing
calculations will be described. Morse
code is a variable length code. That
is, the number of bits is variable as
contrasted to a fixed bit-length code
such as ASCII. Its structure is based
on the time duration of the various
components as follows:

Mark Elements:

Dot = 1t
Dash = 3t

39

Space Elements
Element space = 1t

(time between dots and dashes)
Character space = 3t

(time between letters)
Word space = Tt

(time between words)
The time t depends on the code speed.
According to The Radio Amateur's Hand-
book a code speed of 24 words per min-
ute (wpm) corresponds to 10 dots per
second. Since there are 10 element
spaces included in the 10 dots per sec-

ond, there are a total of 20 t in one
second: that is, t = 1/20 second at 24
wpm. At any other speed then
t = (1/20)(24/8)
= (50 ms)(24/83)
= (1200/8) in milliseconds (ms)
where S is the code speed in wpm. If

the divide-by-1024 timer on the KIM is
used, 1 count corresponds to 1.024 ms.
The number T {(called TIME in the pro-
gram) to be loaded into the timer is
then

T = (1172/8) base ten or
= (494/8) hex.
The speed S in wpm is entered in deci-

mal from the keyboard, converted to
base 16 (hex), sent to a divide routine
to find T, and T is stored at 0000 in
memory. 99 wpm gives 0C hex in TIME
while 05 wpm gives EB hex. Care was
taken in developing the above calcula-
tions because of a discrepancy between
it and the results given by Pollock[4].

The system timing was tested by compar-
ing it with code sent by W1AW. The
speeds are the same to better than one
word per minute from 5 wpm to 35 wpm.

In the receiving program a word space
is detected when a space counter ex-
ceeds 5T. At moderate code speeds 5T
is greater than 255 resulting in an
overflow. Consequently, in the receive
program 1/2T is used as the basic time
unit. In this case, speeds as low as
12 wpm can be received. At slower
speeds the system still works, but word
spaces occur between each letter.

C. Receiving Morse Code (Morse to

ASCII)

To receive Morse code and convert it to
ASCII, the inverse of the above process
is carried out. It is assumed that a
suitable audio detection circuit [1,2[
produces a logical 1 for a space ele-
ment and a logical 0 for a mark ele-
ment. This digital Morse signal is ap-
plied to PB7 and the IRQ pin on the
KIM-1. A character register begins
with a 1 in the zero bit position.
Each time a dot is received the charac-
ter register is shifted left and a zero
is loaded into the character register.
Each time a dash is received the char-
acter register is shifted left and a
one is loaded into the zero bit posi-
tion. Thus, when a character space is
detected, and a C (for example) has
been received, the character register
will contain 1A, just as in sending a
C. However, the 1A is used to index a
zero page location which contains the
ASCII code for C, namely 43. The vari-
ous components are identified by timing
their duration.
III. THE PROGRAMS
A detailed listing of the programs is
given below. The detailed comments
should allow the reader to understand,
modify, and trouble-shoot the program.
A. The Send Program
Some important variables, their mean-
ings, and their locations in zero page
are given:
Name Location Use
TIME - 0000 TIME is the quantity T
mentioned in the section on timing con-
siderations. It is the time, in units
of 1.024 ms, of the dot or element
space components.

SPEED 0013 SPEED is the hex equi-
valent of the number entered for the
speed by the operator.

PNTR 0015 PNTR is a number which
points to the location in the FIFO mem-
ory which contains the character cur-
rently being sent. The program idles
as long as Y = PNTR, but begins to send
when Y exceeds PNTR.

40

Name Location Use

LO 001E Scratchpad location
for division of 494 by SPEED to give
TIME.
HI 001F Same use as LO.

CNTR 0022 CNTR keeps track of
how many characters are left in the
FIFO memory. A character entered de-
crements CNTR; a character sent incre-
ments CNTR.

CHEK 0024 Scratchpad location to
count the number of numbers which have
been entered after the control § has
been entered.

YREG OOF4 The Y register is used
to point to the location in the FIFO
memory where the last character entered
from the keyboard is, namely 0200,Y.
B. The Receive Program

Some important variables, their mean-
ings, and their locations are given:
Name Location Use

XREG 00F5 The X register is the
character register. It begins with a 1
in the 0-bit. It is shifted left for
each mark element received and loaded
with a 1 for a dash and a zero for a
dot. Later it is used to index a table

in zero page which has the ASCII code
for the character.

MCNTZ 0054 If a mark element (dot
or dash) is being received (PB7 and IRQ
at logical 0) the mark counter is in-
cremented at a rate of 1 count every
2.048 ms.

SCNTZ OOEE Same as mark counter
except the incrementing occurs when a
space 1is being detected (PB7 high and

IRQ high). Rate is also 1 count every
2.048 ms.
HALFT 0051 if the SPEED is set

correctly, the number of counts during
a dot should be exactly 1/2 TIME. This
is the "dot length". If MCNTZ exceeds
1/2 the dot length the program decides
that a valid mark character has been
received. HALFT is 1/2 the dot length.
A valid space element occurs when SCNTZ
exceeds HALFT.

Name Location Use

TWOT 0052 TWOT is twice the aot

length and is used to ‘decide if a dot
or a dash has been received. If MCNTZ
exceeds TWOT the element is a dash,
otherwise it is a dot.

FIVET 0053 FIVET is five times
the dot length and is used to decide
when a word space has been received.

IV. INTERFACE

The keyboard strobe -is connected to the
NMI pin on the expansion connector on
the KIM-1, and the 7 bit ASCII code
from the keyboard goes to pins PAO-PA6,
the low order bit to PAO0 and the high
order bit to PA6. PA7 should be pulled
up with a 10K resistor.

The author's transmitter is a solid-
state Triton IV and can be keyed with
TTL IC's. The circuit diagram below
indicates how it was connected to the
KIM-1. Transmitters using grid-block
keying or cathode keying cannot use
this circuit. A relay driven by a Dar-
lington pair connected to pin PBO
should work. The KIM-1 manuals give
the appropriate details.

+5V

From PBO

The audio from the receiver must pro-
duce a logical 0 at pin PB7 and the IRQ
pin when a tone is detected, and a log-
ical 1 at the same pins when a space is
detected. The reader is urged to try
either of the circuits found in refer-
ences 1 and 2. I used a half-baked
scheme in which the audio from the re-
ceiver was fed to a half-wave recti-
fier (diode), filtered slightly, and
connected to the inverting input of a
CA3140 op amp. The voltage at the non-
inverting input was adjustable. The op

41

amp was operated as an open-loop com-
parator with the output connected to
pin PB7 and IRQ. An oscilloscope was
necessary to monitor the output and
make the necessary adjustments for var-
ious signal levels. I am not recom-
mending this circuit for general use.

I have also tried using the tape-input
PLL system on the KIM-1 to convert the
receiver audio to a digital signal. To
lower the free-running frequency of the
VCO a shunt capacitor must be added.
The digital signal appears at address
1742, bit 7. I had only marginal suc-
cess, the problem being that the digi-
tal signal tends to drop out for very
short periods of time, which clears the
mark counter (instructions 039F-03A2).
Substituting NOP's for these instruc-
tions seems to improve the performance,
but receiver tuning and volume control
adjustments are sensitive. Some users
may wish to experiment with deleting
the aforementioned instruectigns in
whatever interface circuit they may
use.

V. MISCELLANEQUS REMARKS

To get the entire Send/Receive program
in the KIM-1 memory extensive use was
made of page 1. This is also used as
the stack. Care was taken to leave
enough room for the stack operations,
and for insurance, there are several
points in the program where the stack
pointer is initialized to FF. No prob-
lems should be encountered once the
program is up and running. If you have
any debugging to do I suggest using the
single-step mode (be sure to set the
NMI vectors) to check the jumps and
branches. My experience has been that
errors in branches generally result in
about half the program being wiped out,
especially if it is in page 1 of
memory.

Wouldn't it be nice if some outfit like
The COMPUTERIST would offer an inter-
face board which would provide an audio
to digital Morse circuit, a relay
driver and relay (reed type) for trans-
mit, a DIP socket for a ribbon cable
from the keyboard, and a DIP socket for
the ASCTT out (see appendix), all on a
single board which would mate with the
KIM-1 application socket.

The first time I operated the system, I
answered a CQ on 40 meters from WB2GMN,

Hank, who has Army Signal Corps exper-
ience. Even though he rated his speed
at 55 wpm he copied me at 60 wpm. Hank
reported that the code sounded like
perfect code (which it should be) and
that it was very crisp at 60 wpm. 1t
was a real coincidence to contact some-
one who had the capability to appreci-
ate the keyboard system and to give an
evaluation of its performance.

I hope that you enjoy working these
programs. If you do not want the re-
ceive program, simply put in a JMP 0300
instruction (4C 00 03) starting at
0300. If you have any gquestions, feel
free to write, enclonsing a SASE for a
response. I will try to answer any
questions about interfacing the system
to your station.

‘Ham Radio, January,

References:

{1] Steber, G. R., and Reyer,
"The Morse-A-Letter",
tronics, January, 1977.

[2] Riley, T. P., "A Morse Code to
Alphanumeric Converter and Display", in
three parts, QST for October, Novem-
ber and December, 1975.

[3] Pollock, James W., "1000 WPM Morse
Code Typer", T3 Magazine, January,
1977.

[4] ©Pollock, James, W., "A Micro-
processor Controlled CW Keyboard",

1978.

"Manipulating ASCII
1978.

S. E.,
Popular Elec-

[5] Ward, Jack,
Data", Kilobaud, February,

ACSII to MORSE and MORSE to ASCII
Lookup Tables in Page Zero

00 XX 20 45 54 49 41 4E
10 48 56 46 XX 4C XX 50
20 35 34 XX 33 XX XX XX
30 36 3D 2F XX XX XX XX
40 XX XX XX XX XX XX XX
50 XX XX XX XX XX 2E XX
A0 80 XX XX 2A 45 XX XX
BO 3F 2F 27 23 21 20 30
CO XX 05 18 1A 0C 02 12
DO 16 1D OA 08 03 09 71

Special Morse Characters

BT
SK

AR

Space (Word)

4D
4a
32
XX
XX
XX

XX
38
OE
0B

53
42

XX

37
XX

XX

XX
3C
10
19

42

55
58
XX
XX
XX
XX

XX
3E
o4
1B

52
43
XX
XX
XX
XX

XX
XX
17
1C

57
59
XX
XX
XX
XX

XX
XX
0D
XX

by
5A
XX
38
3F

XX

73
XX
14
XX

4B
51
XX
XX
XX
XX

XX
31
07
XX

b7
XX
XX
39
XX
XX

55
XX
06
XX

L4F
XX
31
30
XX
XX

32
4c
OF
XX

Keyboard Character

$
#

Space Bar

0056

0056
0057
0059
005B
005C
005E
005F
0061
0064
0066
0069
006B
O06E
0071
0073
0076
0078
007B
007D
0080

40
00

FF

20
FA
01
FB
00
01
02
01
03
TF
41
1E
43
08

17

17
17

17
17

17

TIME
ZTB
SPEED
PNTR
LO

HI
CNTR
CHEK
HALFT
TWOT
FIVET
MCNTZ
SCNTZ
FIFO
CuLo
CUHI
DATA
NMIL
NMIH
IRLO
IRHI
PAD
PADD
PBD
PBDD
SAD

"SADD

SBD
SBDD
TIM
TMER
TAB

INIT

RTN

$0000
$0000
$0013
$0015
$001E
$001F
$0022
$0024
$0051
$0052
$0053
$0054
$00EE
$0200
$13F9
$13FA
$13FB
$17FA

WM M ok ok e K M ok kN sk Kk e ok oK sk ok ok ok 3 ok ok ok ok MK ok ok K kK ok

$17FB
$17FE
$17FF
$1700
$1701
$1702
$1703
$1740
$1741
$1742
$1743
$1706
$1707
$1FET
ORG $0056
CLD
LDAIM $40
STAZ TIME
SEI
LDXIM $FF
TXS
LDAIM VCTL
STA NMIL
LDAIM VCTL
STA NMIH
LDAIM $00
STA PADD
STA PBD
LDAIM $01
STA PBDD
LDAIM $7F
STA SADD
LDAIM $1E
STA SBDD
LDAIM $08

43

MORSE CODE SEND PROGRAM

1/2 DOT TIME
TWICE DOT TIME
FIVE TIME DOT TIME

AUTHORS DISPLAY DEVICE
REGISTERS

NON-MASKABLE INTERRUPT LOW
NON-MASKABLE INTERRUPT HIGH
INTERRUPT REQUEST LOW
INTERRUPT REQUEST HIGH

PORT A DATA

PORT A DATA DIRECTION

PORT B DATA REGISTER

PORT B DATA DIRECTION REGISTER
KIM DISPLAY

KIM DISPLAY DIRECTION

DIVIDE BY 64 TIMER
DIVIDE BY 1024 TIMER
KIM ROM CHARACTER TABLE

INIT SEQUENCE. CLEAR DECIMAL

INITIAL CODE SPEED OF 18 WPM
PREVENT INTERRUPTS

FROM RECEIVER

SET STACK POINT TO TOP $01FF
SET NIM VECTORS FOR KEYBOARD

/

PORT A IS INPUT PORT
PORT B, PIN PBO, WILL BEGIN AT O
PORT B, PIN PBO, IS OUTPUT PIN

SET UP DISPLAY PORTS
PINS 0 - 6 ARE OUTPUT PINS

PINS 1 - 4 ARE QUTPUT PINS
INIT LEFTMOST DIGIT

0082
0085
0087
0084
008C
008E
0090
0092
0094
0096
0098
009B

0100

0100
0102
0104
0106
0108
010B
010E
0111
0114

0115
0118
011A
011D

0120
0121
0122
0123
0124
0127
0128
0124
012C
012D
012E
0131
0134
0136
0137
0138
0139
013A

013B
013C
013E

8D
A9
8D
A0
84
84
Ch
FO
E6
Ab
BD
4c

A6
EO
90
A9
8D
uc
BD
8D
60

20
E6
20
4C

48
8A
48
08
AD

29
FO
68
c8
99
20
c6
28
68
AA
68
4o

68
29
¢9

L2
80
40
FF
15
22
15
FC
15
15
00
15

22
10
08
80
4o
14
E7
Lo

80
22
00
90

00

60
oF

00
00
22

TF
02

17

17

02
01

17
01
1F
17

17

01
00

17

02
01

LOOP

STA
LDAIM
STA
LDYIM
STYZ
STYZ
CPYZ
BEQ
INCZ
LDXZ
LDAX
JMP

SBD
$8¢C
SAD
$FF
PNTR
CNTR
PNTR
LOOP
PNTR
PNTR
FIFO
LOOPX

DISPLAY SUBROUTINE

DISP

OVER

THER

LOOPX

ORG

LDXZ
CPXIM
BCC
LDAIM
STA
JMP
LDAX
STA
RTS

JSR
INCZ
JSR
JMP

$0100

CNTR
$10
OVER
$80
SAD
THER
TAB
SAD

SEND
CNTR
DISP
LOOP

INTERRUPT ROUTINES

VCIL

BACK

CNTRL

PHA
TXA
PHA
PHP
LDA
PHA
ANDIM
BEQ
PLA
INY
STAY
JSR
DECZ
PLP
PLA
TAX
PLA
RTI

PLA
ANDIM
CMPIM

PAD
$60
CNTRL

FIFO
DISP
CNTR

$7F
$02

44

ON KIM-1 DISPLAY

BLANK DISPLAY BY PUTTING 80
IN PORT SAD

INIT Y POINTER

INIT SEND POINTER

INIT BUFFER COUNTER

IS Y = PNTR?

YES, IDLE UNTIL DIFFERENT
NO, INCR PNTR TO LOOKUP
CHARACTER. PNTR = X INDEX
GET CHARACTER FROM FIFO
CONTINUE AT LOOPX

TRANSFER CNTR TO X

IS CNTR LESS THAN 10 HEX
YES, DISPLAY CNTR

NO, BLANK DISPLAY

FIND VALUE FROM KIM ROM
TO DISPLAY CNTR
RETURN

GO TO SEND TO OUTPUT CODE
INCR CNTR

DISPLAY IF LESS THAN 10
CONTINUE LOOP

SAVE A, X AND STATUS
ON STACK

READ KEYBOARD

SAVE ON STACK

MASK ALL BUT TOP BITS
CONTROL CHARACTER?

NO. RECALL A AND INCR Y

STORE A CHAR IN FIFO
DISPLAY CNTR IF LESS THAN 10
UPDATE CNTR

RESTORE REGISTER

RETURN FROM INTERRUPT

RECALL A FROM STACK
MAKS OFF HIGHEST BIT
BACKSPACE?

0140
0142
0143
0145

0148
014A
014C
014E
0151
0153
0155

0158
0159
0154
015B
015C
015F
0161
0162
0164
0166
0168
0169
0164
016C
016D
016E
016F
0171
0173
0175

0178
017A
017B
017¢C
017E
0180
0181
0183
0185
0187
0189
018B
018D
018F
0191
0193
0195
0197
0198
0194
019C
019E

DO
88
E6
uC

¢9
DO
AS
8D
A9

4c

48
84
48
08
AD
29
AA
A5
C9
FO
84
0A
85
0A
0A
18
65
85
E6
4c

Cé
8A
18

65 13
85 1

A2
A9
85
A9
85
A5
E5
85
A5
E9
85
E8
BO
86
A9
8D

06

22
26 01

13
58
58
FA 17
00
24

36 01

00 17
OF

24
01
10

13

13
13

24
36 01

24

00
94
1E
o4
1F
1E
13
1E
1F
00
1F

F1
00
20
FA 17

CNTX

FIX

AHD

UpP

BNE
DEY
INCZ
JMP

CMPIM
BNE
LDAIM
STA
LDAIM
STAZ
JMP

PHA
TXA
PHA
PHP
LDA
ANDIM
TAX
LDAZ
CMPIM
BEQ
TXA
ASLA
STAZ
ASLA
ASLA
CLC
ADCZ
STAZ
INCZ
JMP

DECZ
TXA
CLC
ADCZ
STAZ
SEC
LDXIM
LDAIM
STAZ
LDAIM
STAZ
LDAZ
SBCZ
STAZ
LDAZ
SBCIM
STAZ
INX
BCS
STXZ
LDAIM
STA

CNTX

CNTR
BACK

$13
ARND
FIX
NMIL
$00
CHEK
BACK

PAD
$0F

CHEK
$01
AHD

SPEED

SPEED
SPEED
CHEK
BACK

CHEK

SPEED
SPEED

$00
$94
LO
$ou
HI
LO
SPEED
LO
HI
$00
HI

UP

TIME
VCTL
NMIL

TEST OTHER CHARACTER

YES. DECR Y TO DELETE CHARACTER
FIX COUNTER

RETURN

CONTROL S = SPEED

NO TEST OTHERS

CHANGE INTERRUPT SO NEXT
INTERRUPTS GO TO FIX
INIT CHEK TO 00

RETURN

SAVE REGISTERS

READ FIRST DIGIT
MASK TO DIGIT

MOVE TO X
CHEK = 0 = FIRST DIGIT
CHEK = 1 = SECOND DIGIT

FIRST DIGIT BRANCH
GET DIGIT BACK

TIMES 2

SAVE

TIMES 4

TIMES 8

PREPARE TO ADD SPEED
3 4 ¥2 = #10

STORE

SET FOR SECOND DIGIT
RETURN

RE-INIT CHEK

ADD ONES DIGIT TO

TENS DIGIT ANS STORE
DIVIDE 49u(HEX)/SPEED
CLEAR X FOR QUOTIENT

LOW ORDER BYTE OF DIVIDEND

HIGH ORDER BYTE OF DIVIDEND

START SUB. FROM DIVIDEND

UNTIL BORROW

FROM HIG BYTE, IE CARRY IS SET
IF BORROW OCCURS FROM LOW ORDER
BYTE, SUB 1 FROM HIGH

ORDER BYTE

INCR X FOR EACH SUB.

BORROW FROM HI? NO. GO BACK
AND SUB. OTHERWISE DONE

RESET NMI VECTORS FOR VCTL

45

01A1

01A4
0146
01A8
01AB
01AD
O1AF
01B2
01BY4
01B6
01B9
01BB
01BC

0300
0302
0305
0307
030A
030C
030D

030F

0311
0313
0315
0317
0318
0319
0314
031C
031E
0320
0322
0324
0325
0327
032A
032D
032F
0331
0333
0335
0338
0334

033D
033E
033F

4c

9
DO
4c
C9
DO
4c
C9
FO
4c
A2
9A
4C

A9
8D
A9
8D
A5
4a
85

85
06
85
0A
oA
18
65
85
A9
85
85
58
A2
uc
20
E6
A5
C5
BO
AD
10
uc

8A
OA
AA

36

12
03
00
0D
03
5B
o7
03
B6
FF

90

90
FE
03
FF
00

51
51
52
52
53

53
53
00
54
EE

01
27
84
EE
EE
51

07
FB
27

01

00

17
17

03
03

17

03

ARND

TREE

BUF

IDLE
BRR

JMP

CMPIM
BNE
JMP
CMPIM
BNE
JMP
CMPIM
BEQ
JMP
LDXIM
TXS
JMP

BACK

$12
TREE
RCV
$0D
BUF
RTN
$07
BRR
IDLE
$FF

LOOP

RETURN TO MAIN PROGRAM

REMAINDER OF VCTL

CONTROL R?

YES. GO TO RECEIVE PROGRAM
CARRAIGE RETURN?

BRANCH IF NOT

YES. START MAIN PROGRAM
CONTROL G?

YES. RESET STACK POINTER AND GO
TO LOOP. OR, IDLE HERE
WHILE BUFFER IS LOADED
RESET STACK TOP

AND CONTINUE

MORSE CODE RECEIVE PROGRAM

RCV

CRK

IDL
AGN

WAIT

CHECK

ORG

LDAIM
STA
LDAIM
STA
LDAZ
LSRA
STAZ
LSRZ
STAZ
ASLZ
STAZ
ASLA
ASLA
CLC
ADCZ
STAZ
LDAIM
STAZ
STAZ
CLI
LDXIM
JMP
JSR
INCZ
LDAZ
CMPZ
BCS
LDA
BPL
JMP

TXA
ASLA
TAX

$0300

IRQ
IRLO
IRQ
IRHI
TIME

HALFT
HALFT
TWOT
TWOT
FIVET

FIVET
FIVET
$00

MCNTZ
SCNTZ

$01
IDL
TIMSET
SCNTZ
SCNTZ
HALFT
CHECK
TMER
WAIT
AGN

46

SET IRQ VECTORS
/ PAGE ADDRESS

SET DOT LENGTH BY GETTING
TIME AND DIVIDING BY 2

HALFT HALFT IS 1/2 DOT LENGTH
TWOT IS TWICE DOT LENGTH

MULTIPLY BY 4

AND ADD 1 TIMES TO GET
5 TIMES DOT LENGTH
CLEAR MARK AND SPACE

COUNTERS

ALLOW INTERRUPTS TO START
INIT CHARACTER REGISTER

IDLE HER UNTIL MARK OCCURS
START TIMER FOR SPACE COUNT
INCR SPACE COUNTER :
DOES IT EXCEED 1/2 DOT LENGTH?

YES, JUMP TO SET CHAR REGS
OTHERWISE WAIT FOR TIMER

AND COUNT SPACES

SHIFT CHAR REGISTER LEFT

0340
0342
0344
0346
0347
0349
0344
034C
034E
0350
0353
0355
0357
0354
035C
035E
0361
0363
0366
0368
0364
036C
036E
0371
0373
0376
0378
037B
037D
037F
0381
0383
0386
0387

0384
038C
038F

0390
0391
0392

0395
0398
0394
039D
039F
03A1
0343
0345
0346
0347

A5
C5
90
E8
BO
04a
C5
BO
A9
8D
90
A9
8D
A9
85
AD
10
20
E6
A5
C5
90
20
A2
AD
10
20
E6
A5
C5
90
20
78
4C

A9
8D
60

08
48
20

AD
10
AD
10
A9

E6
68
28
ko

54
52
03

1

00
07
F1
Lo
05
ED
4o
00
54
07
FB
84
EE
EE
52
FO
CA
01
07
FB
84
EE
EE
53
FO
ca

OA

20
06

8A

o7
FB
02
09
00
54
EE

17

17

17
03

03
17
03

03
03

17

03
17

17

SKIP

CAT
FAT

HOLD

DOZE

TIMSET

IRQ

LOAF

LDAZ
CMPZ
BCC
INX
BCS
ASLA
CMPZ
BCS
LDAIM
STA
BCC
LDAIM
STA
LDAIM
STAZ
LDA
BPL
JSR
INCZ
LDAZ
CMPZ
BCC
JSR
LDXIM
LDA
BPL
JSR
INCZ
LDAZ
CMPZ
BCC
JSR
SEI
JMP

LDAIM
STA
RTS

PHP
PHA
JSR

LDA
BPL
LDA
BPL
LDAIM
STAZ
INCZ
PLA
PLP
RTI

MCNTZ

TWOT
SKIP

FAT

TIME
CAT
$F1
SAD
FAT
$ED
SAD
$00

MCNTZ

TMER
HOLD

TIMSET
SCNTZ
SCNTZ

TWOT
HOLD
CHAR
$01

TMER
DOZE

TIMSET
SCNTZ
SCNTZ
FIVET

DOZE
CHAR

CRK

$20
TIM

TIMSET

TMER
LOAF
PBD
OVER
$00

MCNTZ
SCNTZ

47

IF MARK COUNTER EXCEEDS TWICE
THE DOT LENGTH, PUT ONE IN
CHAR REGISTER, OTHERWISE A ZERO

IF A DASH, SKIP DISPLAY
IF A DOT, COMPARE WITH TIME
FOR SPEED INDICATOR

SHOW "F" IS DISPLAY

SHOW "S" IN DISPLAY
CLEAR MARK COUNTER
WAIT FOR TIMER

START TIMER AGAIN
INCR SPACE COUNTER AGAIN

DOES SPACE COUNTER EXCEED TWICE
THE DOT LENGTH. IF NOT, HOLD

IF YES, PRINT CHARACTER

RESET CHAR REGISTER

WAIT FOR TIMER

START TIMER AGAIN
INCR SPACE COUNTER

DOES SPACE COUNTER EXCEED FIVE TIMES
DOT LENGTH. IF LESS, DOZE AGAIN
OTHERWISE PRINT SPACE

PREVENT INTERRUPTS WHILE

CHECKING SPEEDP SETTING

LOAD TIMER FOR 2.048 MS

RETURN TO RCV PROGRAM

SAVE REGISTERS
START TIMER
WAIT FOR TIMER

IS MARK SIGNAL PRESENT

YES, GO TO OVER

NO, MUST HAVE BEEN NOISE

WHICH CAUSED INTERRUPT. RETURN
TO COUNT SPACE AFTER RESETTING
MARK COUNTER TO ZERO

RETURN FROM INTERRUPT

03A8
03AB
034D
03AF
03B1
0383
03B5
03B7
03BA
03BC
03BF
03C1
03C2
03CH
03C5
03C6
03C7

03CA
03CC
03CF
03D1
03D4
03D6
03D8
03DA
03DD
03DE
03E0Q
03E2
03EY4
03Eb6
03E9
03EC

1780

1780
1781
1783
1785
1786
1788
1789
178B
178C
178E
1791
1792
1793
1794
1795

20
E6
A5
C5
90
A9
85
AD
10
AD
10
8a
A2
9A
AA
58
4C

B5
8D
A9
2D
c9
90
A9
2D
18
69
C9
90

8D
EE
60

AA
B5

18
A2
2A
BO
CA
FO
uc
CA
2A
48
8A
48

8A
54
54
51
E2
00

07
FB
02
E7

FF

2A

0o
FB
3F
F9
3F
11
1F
FA

01
20
02

FA
F9

00
3F

08
06

35
88

03 OVER

17 KILTIM

17

03

CHAR
13

13

13

UP
AHD

13
13

JSR

INCZ MCNTZ
LDAZ MCNTZ
CMPZ HALFT
BCC LOAF
LDAIM $00
STAZ SCNTZ
LDA TMER
BPL KILTIM
LDA PBD
BPL OVER
TXA

LDXIM $FF
TXS

TAX

CLI

JMP AGN
LDAZX ZTB
STA DATA
LDAIM $3F
AND CULO
CMPIM $3F
BCC AHD
LDAIM $1F
AND CUHI
CLC

ADCIM $01
CMPIM $20
BCC UP
LDAIM $10
STA CUHI
INC CULO
RTS

SEND SUBROUTINE

SEND

RPT

17
DWN
BACK

ORG $1780
TAX

LDAZX ZTB
BMI WDSP
CLC

LDXIM $08
ROLA
BCS
DEX
BEQ
JMP
DEX
ROLA
PHA
TXA
PHA

DWN

ouT
RPT

48

TIMSET START TIMER AGAIN

INCR MARK COUNTER

DOES MARK COUNTER EXCEED
1/2 THE DOT LENGTH?

NO, GO LOAF AND CHECK MARK
YES. CLEAR SPACE COUNTER

CHECK TIMER

KILL TIME

CHECK MARK SIGNAL ON PB7

LOOP AGAIN IF STILL ON

SAVE S WHILE STACK POINTER IS SET
RESET TO TOP OF STACK

RESTORE X
CLEAR INTERRUPT FLAG SET EARLIER
RETURN TO COUNT SPACE

LOOKUP ASCII SYMBOL

DATA IS VIDEO PORT IN AUTHORS
SYSTEM. THE REMAINDER OF THIS
SUBROUTINE INCREMENTS THE
POSITION OF THE CURSOR TO PREPARE
FOR THE NEXT CHARACTER

A CONTAINS CHAR FROM FIFO

USE THIS TO LOOKUP MORSE

SPACE BAR CHAR HAS 1 IN BIT 7

IF NOT MINUS, CLEAR CARRY FLAG AND
SET UP X FOR 8 ROL INSTRUCTIONS

ROTATE LEFT UNTIL 1 APPEARS IN CARRY

BRANCH IF 1 IN CARRY

ELSE, DECREMENT X -

IF X = 0, THEN DONE

ELSE CONTINUE

KEEP TRACK OF BITS TESTED
ROTATE A LEFT AND SAVE ON STACK

SAVE X ON STACK ALSO

1796 BO 18 BCS DASH DID ROTATE SET CARRY? IF YES,

1798 A2 01 LDXIM $01 SEND DASH, ELSE SEND DOT

179A EE 02 17 DAH INC PBD PBO WILL BE .LOGICAL 1 FO 1T

179D 20 C9 17 SPA JSR TIMER TIME GIVES DELAY OF TIME (1.02u4MS)

17A0 CA DEX ONE TIME UNIT IS UP

17A1 DO FA BNE SPA IS X = 0?7 DELAY ANOTHER UNIT
17A3 AD 02 17 LDA PBD YES. NOW CHECK PBO. IF A 1
17TA6 U4A LSRA A SHIFT WILL SET CARRY FLAG
17AT 90 0C BCC DONE IF CARRY CLEAR, THEN DONE

17A9 CE 02 17 DEC PBD OTHERWISE, SET PBO = O FOR ELEMENT
17AC E8 INX SPACE FOR A DELAY OF 1 UNIT BY
17TAD 4C 9D 17 JMP SPA RESETTING X AND LOADING TIMER
17B0 A2 03 DASH LDXIM $03 DASH TAKES 3 TIME UNITS

17B2 4C 94 17 JMP DAH SEND 3 UNITS FOLLOWED BY SPACE
17B5 68 DONE PLA THEN ELEMENT IS DONE SO

17B6 AA TAX RESTORE A AND X AND GO BACK
17B7 68 PLA IF X IS NOT ZERO

17B8 CA DEX OTHERWISE ADD CHARACTER SPACE
17B9 DO D7 BNE BACK BY RUNNING TIMER FOR

17BB A2 Q2 LDXIM $02 2 MORE TIME UNITS

17BD 20 C9 17 AGAIN JSR TIMER

17C0 CA DEX

17C1 DO FA BNE AGAIN IF X = 0, THEN DONE

17C3 60 ouT RTS OR ELSE DELAY MORE

17C4 A2 04 WDSP LDXIM $04 WORDSPACE REQUIRES 4 MORE TIME UNITS
17C6 4C BD 17 JMP AGAIN SO USE TIMER FOR THIS

17C9 A5 00 TIMER LDAZ TIME GET TIME FROM ZERO PAGE

17CB 8D 07 17 STA TMER LOAD DIVIDE BY 1024 TIMER

17CE 2C 07 17 CHK BIT TMER IS TIMER FINISHED?

17D1 10 FB BPL CHK NO, WAIT FOR IT

17D3 60 RTS YES, RETURN

49

APPENDIX:
Using the KIM-1 Ports to
Output the ASCII

Most readers will not have the same
addressable video system used by the
author. To use the receive portion of
the program, some provision must be
made to output the ASCII along with a
strobe pulse. Below you will find a
suggested program to do this. It makes
use of ports SAD and SBD addresses 1740

and 1742 respectively. These are
available on the application connector.
The ASCII code appears at the KB COL
A-G pins, while the strobe should ap-
pear at the TTY PTR pin.

NOTE: While this program should work
it has not been tested.

03Ca ZTB * $0000

03CA SAD ¥ $1740

03CA SADD ¥ $1741

03Ca SBD * $1742

03Ca SBDD ¥ $1743

03CA A9 20 CHAR LDAIM $20 ENABLE OUTPUT PULSE PINS
03CC 8D 42 17 STA SBD

03CF A9 21 LDAIM $21

03D1 8D 43 17 STA SBDD

03D4 AD 40 17 LDA SAD SAVE CONTENTS OF CURRENT
03DT7 48 PHA DISPLAY ON KIM-1
03D8 AD 41 17 LDA SADD

03DB 48 PHA

03DC BS 00 LDAZX ZTB GET ASCII CODE

O3DE 8D 40 17 STA SAD OUTPUT ASCII

03E1 A9 FF LDAIM $FF

03E3 8D 41 17 STA SADD ENABLE OUTPUT PORT
03E6 EE 42 17 INC SBD STROBE PULSE WILL BE
03E9 EA NOP LENGTHEN PULSE

O3EA CE 42 17 DEC SBD NEGATIVE

03ED 68 PLA RESTORE SADD AND SAD
O3EE 8D 41 17 STA SADD

O03F1 68 PLA

03F2 8D 40 17 STA SAD

03F5 A9 1E LDAIM $1E RESTORE SBDD AND SBD
03F7 8D 43 17 STA SBDD

O3FA A9 08 LDAIM $08

O3FC 8D 42 17 STA SBD

03FF 60 RTS

ALTERNATIVE ASCII OUTPUT
ORG $03CA

¥%¥ THIS ROUTINE HAS NOT BEEN TESTED ###

50

Commodore Business Machines, Inc.
901 California Avenue
Palo Alto, CA 94304
415-326-4000

51

The PET's IEEE-488 Bus: Blessing or Curse? 53
by Charles Floto, Editor of Buss and Yankee Bits and freelance
writer and photographer whose work has appeared in Byte,
Personal Computing, and Kilobaud

Power from the PET 54
by Karl E. Quosig

PET Composite Video Output 55
by Cal E. Merritt

Design of a PET/TTY Interface 56
by Charles K. Husbands

The PET Vet Examines Some BASIC Idiosyncrasies 61
by Charles Floto

The PET Vet Tackles Data Files 63
by Charles Floto

A Partial List of PET Scratch Pad Memory* 64A
by Gary A. Creighton

LIFE for Your PET 65
by Dr. Frank H. Covitz

A Simple 6502 Assembler for the PET 73
by Michael J. McCann

A BASIC 6502 Disassembler for APPLE and PET 78
by Michael J. McCann

* a perforated "tear-out" reference card

52

THE PET'S IEEE-488 BUS: BLESSING OR CURSE?

Charles Floto
267 Willow -Street
New Haven, CT 06511

Copyright 1977 by Charles Floto

IEEE-488 (usually pronounced I-triple-E four-
eighty-eight) is the number of a standard for
information exchange adopted by the Institute of
Electrical and Electronics Engineers. Given
that a major complaint of microcomputer users
has been that the lack of industry standards
prevents the exchange of information, the react-
ion when it ‘was announced that Commodore's PET
2001 would support the IEEE bus should perhaps
not be surprising.

However a few people have been surprised by this
488 mania. Pickles & Trout accompanied announ-
cement of an I/0 board for the S-100 bus with
with the offhand remark that they planned to
produced a 488 adapter for it. When they found
that enthusiasm for this incidental feature
overwhelmed interest in the basic board they de-
cided to develop an I/0 card exclusively to sup-
port the IEEE-488 bus. It is expected to retail
in the $200 range. Which makes the fact that
Commodore is including a similar interface in
the $800 PET (8KRAM version) all the more won-
derful.

Just how easy will it be for a PET owner to
design a system around the IEEE-U488 bus? It can
be compared to solving the following problem;
You are to design a computer with provision for
more than one CPU card. Its bus shall be limit-
ed to 16 signal lines, with several ground lines
but no power lines. You are to build a separate
power supply for each card in the system and,
since it is to be spread all over your home or
office, a separate case as well.

The difference between this problem and using
the IEEE-488 bus is that in the latter case the
design of the bus has been done for you and to
use it you must be prepared to abide by certain
specified and rather complex conventions. In
short, you shouldn't even attempt to design a
peripheral interface to the PET's 488 I/0 bus
unless you feel capable of designing internal
circuit cards for other computers. Even then
you may have problems if all your experience has
been with a bus each of whose lines has a fixed
purpose, rather than some being shared between
data and either address or control functions.

53

If the IEEE-488 bus presents such difficulty in
designing peripherals, why would Commodore want
to use it? The first thing to realize is that
design represents a fixed cost, the same whether
you build one unit or 100,000. While design
cost per unit is absurdly exorbitant for the in-
dividual making a single 488-compatible compon-
ent, it becomes trivial for the mass producer.

For a second consideration suppose you were put-
ting together your own system and Pickles &
Trout offered you a circuit card to link your
computer to the IEEE bus for $200. That's a lot
to pay for one I/0 port, but it's a bargain if
it's the only one you'll ever have to buy. Thus
the IEEE-488 format makes the PET less expensive
than including an impressive number of serial
and parallel ports.

Third, why expect PET to make things easy for
individual hardware designers when that isn't
the market it's aimed at?

At this point perhaps it's worth noting that the
PET is only claimed to be electrically and logi-
cally compatible with the IEEE-488 bus--physical
compatibiltiy is lacking as signals come out on
printed circuit fingers rather than the standard
connector. Standard interconnection cable con-
sists of 16 signal lines, seven grounds, and a
shield; it has male and female connections at
each end. The corporate purchaser of a large
system might pay as much for a single cable as
the hobbyist pays for a circuit card.

We can't really judge the value of the PET's
IEEE-488 bus until we see what becomes available
to connect to it, and at what price. For now
we may conclude that it presents a problem to
those who want to design their own peripherals,
but the potential for a competitive market in
sophisticated mass-produced peripherals which
will "plug in and go" in a wide variety of sys-
tems. And those who already own IEEE-488
products will be able to add the PET's computer
power- at an unprecedented price.

POWER FROM THE PET

Karl E. Quosig
2038 Hartnell Street
Union City, CA 94587

It is by now well known that the PET has no
source of power for use outside of itself. The
only source available is at the second Cassette
Interface. This +5 VDC line will not source
very much current; in fact, it will not even run
a second cassette recorder. Also, all the +5
VDC regulators inside the PET are already run-
ning quite warm. If you want to experiment with
the PET, say with the Parallel User Port (Mos
Technology 6522 VIA), then where do you get the
power without a complicated power supply inter-
face? The answer is simple. I found the fol-
lowing inside the PET. One, the bridge recti-
fier is good for 3 Amperes. Two, the PET draws
1.5 Amperes worst case load. Conclusion: it
should be possible to get 1 Ampere out of the
PET without straining a thing.

To do this, all we need to do is run a line from
the + (positive) side of the PET's filter capac-
itor and make it available at the rear of the
PET (I put a test lead Jack between the Parallel
and IEEE Ports). This is +8 VDC Unregulated and
by attaching a 3-point Regulator (see diagram
below), say at our project board, we have plenty
of power for all sorts of home projects. As an
example, I brought all of the Parallel User Port
pinouts down a 24" pribbon cable along with the
+8 VDC line to a chassis which has the +5 VDC
regulator and other circuitry, and terminated
this on a homebrew mother board comprised of
22-pin edgecard connectors. I can now experi-
ment with things such as noise makers, joy-
sticks, ete. and have plenty of power for them.

I believe this should be of great benefit for
those of you who like to mess around with the
hardware. Warning #1: 1If you are going to
drill a hole in the PET as I did, disconnect all
connectors (very, very gently) to the PET's Main
Board and remove it before going to work. Clean
inside thoroughly before re-installation.
Warning #2: In your projects, do not connect
inductive 1loads directly to any output of the
PET. Inductive loads must be fully buffered.

* . +S (REG)
c 8 (UNREG) = E—3dT) LM=309K —2
1A MAX
REAR
o 25 pF
21,000 yF Fl~ R
1Sv F=z PET 31050\,0}‘ =< 15vP -~
(IN PET)
> COM - _com_
= -t

54

PET COMPOSITE VIDED OUTPUT

Cal E. Merritt
R. 1, & Richfield Lane

Danville,

I used one of the existing PET 5 volt sources.
The easiest way to steal the video and drives is
to carefully scrape clean the foils next to the
monitor plug and tack solder a twisted pair to
each signal and to the closest ground buss.
Other variations would work equally well.

To avoid metal shavings and such falling on the
main board, I removed the back cover from the
monitor (Power OFF) and mounted a BNC Jjack two
inches to the right of the brightness control

IN 46122

The circuit is very simple and can be put to-
gether with a wire wrap tool in a few minutes.

Video monitors seem very tolerant and the two
units I have used work fine. The only problem
encountered was in attempting to do all white
screen or very dense graphics which caused sync
tear in one of the monitors. Normal or dense
listings worked well.

OUTPUT WAVEFORM

!

+
Sv
‘\ / +
VIDEO Ovolts
A DOTS — 1
e
e
(HORIZONTA L‘\ VERTICAL
SYNC PULSES INTERVAL

and fed it with a twisted pair. I mounted the
board under one of the bolts that hold the mon-
itor to the main chassis and attached the drive
twisted pairs to the existing ones for the mon-
itor.

This c¢ircuit provides composite video output
from the PET. I have used the output to drive
two different video monitors with good success.

All three monitors I tried worked with this vid-
eo output. The appearance of the video will be
a function of the quality of the monitor. Some
of the scrapped out commercial units available
with the 10MHz and more bandwidths look excel-
lent with the PET video. I have had a number of
people comment that my 12" commercial monitor
looks better than the built-in unit. The add-on
does not alter the existing PET display in any
way.

01 :.oun 3
2
= cb4oll
10K
PET VIDEO - il
4 L 6 +5v O’—"']H l;; 2 [u 0]1 1 /
Tcsu:;“;r;wrs*r £D cD 4066
O =N o ‘,-; P Pran PV, +5V ‘_—Iz b —;
J NS G g \./:_L ‘BN,(:\ A AAAN
- L LT i W e e T
PETD\é$\$QICAL COMPOSITE viDEO A 680

55

DESIGN OF A PET/TTY INTERFACE

Charles R. Husbands
24 Blackhorse Drive
Acton, MA 01720

With the recent acquisition of a PET Computer
one of the facilities that was immediately need-
ed was a method of obtaining hard copy listings
of programs under development. In addition to
the PET, I had an ASR 33 Teletype Unit available
which had been interfaced to my KIM-1. This
article describes the hardware interface and as-
sociated software necessary to use the ASR 33
TTY as a printing facility for the PET. An im-
portant design goal for the interface was to de-
velop the software to remain resident in the
computer in such a manner that the program under
development could be loaded, run and listed
without disturbing the listing program.

The Interface Circuit

Figure 1 shows the 20 ma current loop circuit
required to interface the ASR 33 to the PET.
The circuit consists of an open collector NAND
gate to provide the proper buffering, a diode
and a pull up resistor. The completed circuit
was built on a small perforated board. The PET
supplies power and ground to the interface board
from the second Cassette Interface. The input
signal is delivered from PAQ on the PET parallel
user port. The interface board is connected to
the teletype by means of the PRINTER and PRINTER
RETURN lines. These lines attach to terminals 6
and 7 respectively on the ASR 33.

+5YV

| I -~ -

| | [

| I I

| R1 | I

| |

| o |£§$QERUNEI 7

I | [

| RNT |

| 1 i

| | |
o ' I &
1NPUTI I PRINTER |

: : LINE :PRWTER

i I |

| I |

L J b

Parts List

IC1 7438 Quad 2 Input NAND Open Collector
CR1] 1N#001 1A 50V Diode
R1 }150 ohm 1/2 Watt Resistor

Figure 1.

A fairly simple circuit for buffering the con-
trol signal from the PET Computer and converting
that signal to a current level capable of driv-
ing the printer mechanism on an ASR 33 TTY Unit.

56

Program Design

In order to allow the listing program to remain
resident in the machine to list other programs
under development, the program was written in
machine language to be stored in Tape Buffer 2.
Figure 2 shows a simple memory map of the PET
random access memory allocations. Without a
second tape cassette unit, a memory buffer of
198 bytes is available. When another program is
loaded from tape or the NEW instruction is exe-
cuted the operating system zeros out memory lo-
cations 1024 and above. However, it leaves the
memory locations below 1024 undisturbed. To ex-
ecute a machine language program the USR in-
struction must be called. The USR command uses
a pair of memory location pointers stored in
memory locations 1 and 2 to extablish the first
location in machine language code to be process-
ed. Locations 1 and 2 are not modified by the
loading of a program from tape or the execution
of the NEW instruction.

8102 it i e e e e e, $1200
Program Storage
L2 $0500
Tape Buffer 2
. 74 T $0334
Tape Buffer 1
o3 Lt $027A
BASIC and Operating System Working Space
2 it it ettt et e e et $0002
USR Control Pointers
0ttt iitttttetttttticceanannn $0000

Figure 2.

A Map of the PET Random Access Memory Space.
The Listing Program resides in machine language
in Tape Buffer 2.

A flow diagram of the Listing Algorithm is shown
in Figure 3. The program after proper initia-
tion examines the first character of the third
line in the display for a value corresponding to
the letter "R". It is the letter R appearing in
the first display column which is used by the
Listing Program to exit the listing algorithm
and return control of the program to the calling
routine. The R in the first column would nor-
mally correspond to the READY displayed by the
computer at the end of a requested listing block
or at the completion of an executed RUN. If the
character in the first column is anything but an
R the program executes a carriage return and
then a line feed. The program examines the next
displayed character and translates it from dis-
play format to ASCII format. The subroutine
PRINT is then called.

(START)

l INIT

LS
FIRST CHAR
ANR?

NO
[PRINT CR/LF]

(To0P2)

NEXT CHAR |

[EXAMINE

| CONVERT TO ASCII AND PRlNTJ

INIT FOR A NEW LINE

Figure 3.

A general listing algorithm for use with the TTY
Listing Program. The software control of the
output port is done in the PRINT subroutine.

The subroutine PRINT* is a machine language pro-
gram which times out the proper serial bit pat-
tern to the TTY to execute the printing of the
designated letter. After each character is
printed a counter is incremented and tested to
determine if the 40 character line has been com-
pleted. If 40 characters have not been printed
the next display character is examined. At the
end of each line the first character of the next
line is examined for an R before a carriage re-
turn and line feed is executed.

A listing of the program in BASIC format is
shown in Listing 1. The program was originally
hand assembled in 6502 machine language. The
machine language program was then converted from
hexadecimal to decimal and formatted as a series
of POKE instructions. The machine language mem-
ory address pointers were also POKED into loca-
tions 1 and 2 by the BASIC program. The print-
out appearing in Listing 1 was produced on the
authors TTY using the Listing Program.

¥ The PRINT subroutine is a modified version of
the "PRINT 1 CHAR" program developed by MOS
Technology for the KIM-1.

57

Using the Listing Program

The program as shown in Listing 1 is loaded into
the machine in the normal manner. A RUN command
then executed and the program will be POKED
in machine format into Tape Buffer 2. The BASIC
program to be listed is then loaded into the
machine. The LIST-N instruction is then execut-
ed to allow the operator to preview the initial
lines of code. When the operator is satisfied
with the 15 to 18 lines of code to be printed,
as displayed on the screen, the command X=USR(R)
is entered and the RETURN key is depressed. The
USR instruction transfers control to the machine
language code located at the address specified
by memory locations 1 and 2.

13

The teletype printer will then print the display
on the PET CRT from the beginning of display
line 3 to the word READY. The operator then
uses the LIST M-X command to preview the next
series of 1lines to be printed. It should be
noted that the PET listing format leaves a blank
line between the last line number selected and
the READY response if the last line requested is
not the last line in the program. The preview
function allows the operator to block out the
lines to be printed regardless of the line num-
bering technique employed when the program was
composed. If the program being listed has an R
in column 1 due to a line length in excess of 40
characters, the operator must take some action
to remove this condition before executing the
listing of that portion of the program.)

Conclusions and Recommendations

The hardware and software illustrated in this
article can be used to permit the listing of
programs and recording the results of program
runs on a conventional TTY unit. In using the
program to print the results of computer runs it
should be noted that the results should be for-
matted to begin on the third line of the dis-
play. An improved version of this program could
be designed to look ahead when an R was discov-
ered to extablish if an RE or REA string was
present. As only 3 bytes were not used in Tape
Buffer 2 in writing this program, that feature
could not be included. Additional space could
be freed if the program was redesigned to use
the parallel to serial conversion facility
available with the 6522 VIA output port. Using
this facility the 90 bytes required to do the
conversion from parallel to serial and timing
out this information could be greatly reduced.

Listing 1.

A listing of the PET Listing Program as printed
on the author's TTY unit. The program was hand
assembled in 6502 language then converted to
decimal format and entered as a series of BASIC
"POKE" instructions. When executed the program
will reside in Tape Buffer 2 in machine code
format.

- C X RO WS WX -

AN
BN

[
O

iin
S
(a7]
T
=i

jeZe]
89
Qi
10
il
15
16
17
16
1s
1o
20
21
z2e
23
24
25
26

27
24
29
3u
31
3z
33

REMxk*xTELETYPE LISTING ROUTI MEX%kskkkk
FbM CHARLES K. HUSEBANLS
REM
KEM THIS PROGKAM LISTS THE DATA
HEM APPRARING ON THE SCHREEN IN
HEM SkERIAL TELRTYPE FORMAT. THE
REM PROGHAM IS5 STORED INM MACHINE
il CODE IN TAPE WKUFFEK #2. THE
HKEM PROGKAM IS EXECUTELD USING "USH",
POKE(®1), 58
POKEC(GU2),13
HEMe o INIT.s o INITALIZE VARIABLES
POKE(EZ6), 169
POKE(BZ2T), 06
FOKE(BE28), 14l
POKE(HZ24), 251
PUKE(B3W) , 3
POHE(B31), 170

REM« LOOPL .o TEST FPIKST CHAR OM EACH
Kb LItk FOkR AN "k,
POKE(B32), 1689

9 POXKE(B33),588

B PUKE(H34), 128

¥ PUKE(R35),20]

¥ PURE(B3E6)Y, IX

B POKRE(BST), 240

PORKE(835),83

9 REM.JLOOP3. PRINT CR/LF
 PORKE(B3%), 169

o POKE(B4AW) L 13

¥ PUKE(R4Aal), 141
 PURE(HB4r2),255

¥ POKE(B43),03

v POKE(B844),32

¥ POKE(B45), 166

¥ POKE(BAL)Y, 13

i POKE(B47),169
B POKE(B48), 1w
v PORE(H549), 14l
¢ PUKE(854),255
b POKE(B51),03
v POKE(B52),32
¥ POKE(853),166

345 POKE(BS4) , 113
348 REM..LOOPZ2. EXAMINE &ND PRINT THE

34

9 RElM OTHER CHARACTEKS Ow THE LINE.

358 POKE(E55), 189
3606 POKE(B56),8¥
370 POKE(EST), 128

38
39

i PUKE(8Dn8), 141
v PUOKE(859),252

490 POKE(B6U),63

41
4¢

¥ POKE(B61),56
¥ POKE(B62),233

43¢ POKE(H63),32
44 POKE(864),48
450 POKE(E65), 12
46 PUKL(E66),173
47¢ POKE(B67),252
484¥ POKE(B68),03
49y PUOKE(869),14]
S FOKE(8T76),255

51

¥ POKE(871),63

524 PUOKE(8T2),32
530 POKE(BT73),166

58

54¢
550
566
574
579
58¢
580
594
609
610
620
631
649
650
660
678
686

690
698
699
'y
7146
720
730
740
750
760
770
780
790
s06
810
820
536
B4y
856
866
461

B62
863
870
BE@
890
899
1)
916
911

91y
913
94

917
9ls
Qle
Qzb
Szl
9e!
922
923
Qz4
925
926
9z
9ezy
929
93w

POKE(B874),03
POKE(B75),76
POKE(BT76),122
POKE(877),63
REM..ALPHA..PRINT ALPHABETIC CHAR
POKE(878),173
POKE(B78)>,173
POKE(879),252
POKE(888),03
POKLE(B81),24
POKE(882), 165
POKE(883),64
POKE(884),14])
POKE(885),255
POKE(B886),03
POKE(B887), 32
POKE(BES),166

PUOKE(889),03
REM. .CLNUFP..COUNT CHAKACTERS &4ND
REM TEST FOR END OF LINE.
POKE(898),238
POKE(891),251
POKE(892),83
POKE(893),173
POKE(H894),251
POKE(895),03
POKE(896),201
POKE(E97), 40
POKE(B98),240
POKE(899),13
POKE(QOW) , 232
POKE(981),138
POKE(912),208
POKE(983), 66
POKE(YB4),238
POKE(925),89
POKE(S©6),03
POKE(987),238
POKE(9BK), 66
POKE(919),03
POKE(910),76
POKE(911),47
POKE(912),03

KEMo e NEWL e « INITALIZES NEW LINE.
POKE(913), 169
POKE(914), 00
POKE(915),141
POKE(916),251
POKE(917),03
POKE(918),232

POKE(919),76
PUKE(920),64

POKE(921),03

REM. FINDR,. sPROGRAM -COMES HERE IF
REM AN “R" IS FOUND IN 1ST COLM.
POKE(922), 169

POKE(922),169

POKE(923), 125

PUOKE(924), 141

POKE(925),66

PUKE(926),03

POKE(Q27), 141

PUKE(928),89

PUKE(9E9), &3

PUKE(931),96

949
954
960
961
962
963
964
965
966
976
984
93¢
16
16ly
1826
1630
127
lgebp
1064
1679
1886
9@
1100
111¢
1129
1130
114w
1150
1162
1170
1189
1190
1199
1200

1214
1220
1230
1240
1254
1260
1270
1280
1294
1506
131
1324
1331
1340
1359

1360
1379
1380
1398
taun
14148
lazuy
1430
laay
1458
lasn
1470
1asw
lady
R R-171%

HEMe s PRINT. o THIS SUBROUTINE PRINTS
REM THE CHARACTER IN

POKE(934),169
PUOKE(93%5),255
POKE(936), 14l
POKE(937),67
POKE(938),232
POKE(939), 173
POKE(9406),255
POKE(941), 43
POKE(Y42), 141
POKE(943),252
POKE(944), 83
POKE(945), 142
PUKE(946),253
POKE(947),63
PUKE(948), 32
POKE(949), 230
POKE(956), 03
POKE(951),169
POKE(952), 79
POKE(953),232
POKE(954),41
POKE(955),254
POKE(956), 141
POKE(957),79
POKE(958),232
POKE(959), 32
POKE(962),230
POKE(961),83
POKE(962), 162
FOKE(963), 08
REM. OUTI
POKE(964),173

PUOKE(965), 79
PUKE(966),232
PUKE(96T7), 41
PUKE(G68),254
POKE(969), 78
POKE(970),252
POKE(971),643
POKE(972), 185
POKE(973), 40
POKE(9T4), 141
POKE(S75), 79
POKE(9T76),232
POKE(ST7T7), 32
POKE(978),23¥
POKE(9T79),63

POKE(S8B), 2082
POKE(981), 208
POKE(982),237
POKE(983),173
POKR(984), 79
PUOKE(985),232
POKE(GE6E)»¥Y
POKE(S87)501
PURE(9B8), 14l
POKE(989), 709
POKRE(991), 232
PUKE(9G]1), 32
PUORKE(992),236
FOKE(993),083
PUOKE(994), 174

TTY FORMAT.

LABEL

INIT

LOOP1

LOOP3

LOOP2

59

iS1p
1526
1530
1539
1540
155¢@
1560
1570
1580
159y
1669
1669
16ip
1619
1620

1630
1640
1650
1666
le7a
1686
1689
1699
17606
1718
1720
1738
1740
1754
1760
1779
1784
1790
18480

POKE(995),253
POKE(996), 13
POKE(997),96
KEM. « DELAY
POKE(998),169
POKE(999),p2
POKEC1o0®), 141
POKE(1601),254
POKE(1062),03
POKE(1863),169
POKEC1084),82
REM. .DE2
POKE(1005),56
REM. s DE4
POKE(1066),233

POKEC1067), @1
POKEC1988),176
POKECIG09),03
POKEC1@O14),206
POKECI@B11),254
POKE(1612),@3
REM. .DE3
POKE(1#13),172
POKE(l®Yl4),254
POKEC1815),93
POKE(1016),16
POKE(1617),243
POKE(1#18),96
REM..COUNTC1019>
KREM. CHAR (lu2¢)
REM..TMPX (1621
REM. .TIMH (1¢22)
REM. .PCHAR(1623)
END

OP FIELD LocC

LDA #0 826
STA COUNT 828
TAX 831
LDA 32848,X 832
CMP #18 835
BEQ FINDR 837
LDA #0D 839
STA PCHAR 841
JSR PRINT 844
LDA #04 847
STA PCHAR 849
JSR PRINT 852
LDA 32848,X 855
STA CHAR 858
SEC 861
SBC #20 862
BMI . ALPHA 864
LDA CHAR 866
STA PCHAR 869
JSR PRINT 872
JMP CLNUP 875

oP

169
141
170
189
201
240
169
141

32
169
141

32
189
141

233
18
173
143
32
76

1

00
251

80
18
83
13
255
166
10
255
166
80
252

32
12
252
255
166
122

F2

03
128

03
03

03
03
128
03

03
03
03
03

ALPHA

CLNUP

NEXTC
NEWL

FINDR

PRINT

ouT1

DELAY

DE2
DE4

DE3

COUNT
CHAR
TMPX
TIMH
PCHAR

LDA CHAR
CLC
ADC #40
STA PCHAR
JSR PRINT
"INC COUNT
LDA COUNT
CMP #28
BEQ NEWL
INX
TAX
BNE NEXTC
INC 869
INC 834
JMP LOOP2
DA #0
STA COUNT
INX
JMP LOOP1
LbA #80
STA 834
STA 860
RTS
LDA #FF
STA PADD
LDA PCHAR
STA CHAR
STX TMPX
JSR DELAY
LDA SAD
AND #FE
STA SAD
JSR DELAY
LLX #08
LDA SAD
AND #FE
TSR CHAR
ADC #00
STA SAD
JSK DELAY
LEX
BNE ouT1
LDA SAD
ORA #01
STA SAD
JSR DELAY
1DX TMPX
RTS
LDA #02
STA TIMH
LDA #52
SEC
SBC #01
BCS DE3
DEC TIMH
LLY TIMH
BPL DE2
KTS
(1019)
(1020)
(1021)
(1022)
(1023)

878
881
882
884
887
890
893
896
898
900
901
902
904
907
910
913
915
918
919
922
924
927
930
934
936
939
942

945
948
951
954
956
959
962
964
967
969
972
974
977
980
981
983
986
988
991
994
997

1000
1003
1005
1006
1008
1010
1013
1016
1018

60

173

24
105
141

32
238
171
201
240
232
138
208
238
238

176
206
172

16

252

64
255
166
251
251

13

251

253

254
82

01
03
254
254
243

03

03
03
03
03

03
03
03
03
03
03
03

232
03
03

03
03
232

232
03

232
03
232
03
232
232
03

03

03
03

THE PET

VET EXAMINES

SOME BASIC IDIOSYNCRASIES

Charles Floto
325 Pennsylvania Ave., S.E.
Washington, DC 20003

Richard Rosner has supplied a program
listing produced using his RS-232
printer interface for the PET. As it's
well commented I'll only point out ex-
amples of some of the unusual features
of PET BASIC.

Line 1 is an example of the OPEN state-
ment. The first number specifies that
it applies to logical file number 5.
This is the name by means of which
other statements in the program will
use this data file. The second number

specifies that physical device number 5
is being used. Which device is number
5 is determined by the wiring of the
system.

The PET, as sold, is wired for device 0
the keyboard; 1, the built-in tape
drive; 2, the auxiliary drive connector
on the back; and 3, the screen. Refer-
ring to a physical device that hasn't
been electrically connected will result
in a DEVICE NOT PRESENT . ERROR. Rich-
ard's system does contain a physical
device 5: his RS-232 output port.

If the third number in the OPEN state-
ment is 0, reading the file is enabled.
Writing is prepared for by 1, while a 2
here enables file writing with an end-
of-tape character to be added when the
file is CLOSEd.

Line 2 illustrates the use of CMD. It
allows program commands to be applied
to a device specified by the logical
file connected with it (not by the
physical device number). Note that RUN
will merely cause a listing to be pro-
duced. RUN 5 calls the rest of the
program into action.

Line 200C¢ demonstrates use of the OPEN
statement with a variable. Lines 2000-
2300 print data either on the tape
drive or on the screen depending on
which device number is the current val-
ue of variable D. In each case logical
file 8 is used.

Another idiosyncrasy comes up here:
while PRINT may be entered as ?, PRINT#
cannot be entered as ?# - it must be
spelled out. Otherwise a SYNTAX ERROR
will result when the program is run,
even though the listing will look al-
right.

But you can still save a good deal of
typing entering these lines. Once 2110
is in simply move the cursor up to
change the line number to 2111 and NA
to AD. Then hit RETURN and you'll have
both 2110 and 2111 in memory.

I suggest you make a few changes in
Richard's program. Add 105 DIM ST$(CO)
Consider storing the zip code as a
string rather than as an integer. Re-
peat lines 2000-2300 as 5000-5300 (by
changing the first digit in each line
number) and change line 4500 according-
ly. Then you can alter the display
format without messing up the tape for-
mat. And remember that you can slow
screen printing by holding the RVS key
down.

A final note: I understand Commodore
is now using a different tape drive and
recording system. This may create
compatibility problems in exchanging
programs between the early PETs and the
later ones.

I OPEN 5,5,1,"Mailing List Program (Incomplete)"

2 CMD5 ¢PRINT"" s I ST3END

5 REM THE ABOVE LINES LIST THE PROGKAM ON THE HARD COPY UNIT

USING A PET ADA AVAILABLE FKOM THE AUTHOR.

19 REM

11 REM WRITTEN BY RICHARD ROSNEK

12 REM BROOKFIELD, CONN.
13 REM FOR THE COMMODORE PET.

14 REM PRINTED ON A GE PRINTER

15 REM

49 REM D=DEVICE CODE

61

50 D=

=i tREM TAPE DRIVE #1

90 C0O=50

91 R
100
121
102
103
1o
997
998
1 000
1210
1020
1925
1930
1040
1050
1060
1070
180
1100
1189
1998
2000
2009
2010
2109
2119
2111
2112
2113
2115
2120
2130
2150
2200
2300
3007
3997
3998
4000
4010
4011
4109
4119
4120
4130
4131
4132
4135
4140
4150
4160
4190
4200
4309
4500
READY

EM CO=MAX NO. OF RECORLCS IN LIST
DIM NAS(CO),ADS(C0O),CI$(CO)
REM NA$=NAME,AD$=ADDRESS,CI$=CITY
REM ST$=STATE,Z=ZIP CODE
REM KC=KEY CODE. UP TO 14 FOR EACH ADDRESS
DIM Z(CO) ,KC%(12,CO)
REM ENTER RECORDS FOR MAILING LIST
REM EXIT ON “!/ FOR NAME
FOR N=@ TO CO

INPUTYNAME" s NAS (N)
IF NAS(N)=#1n GOTO 2009
LN=N

INPUT"ADDRESS" § ADS(N)
INPUT"CITY ,STATE"3CI$(N),STS(N)
INPUT"ZIP CODE"s Z(N)

FOR NI1=@ TO 10

PRINT "KEY#"3$N13ssINPUT KCZ(NI,N)
IF KC%(NI,N)=00 GOTO 1180

NEXTNI

NEXT N

PRINT ON TAPE DRIVE(D=1) OR SCREEN (D=3)
OPEN 8,D,1 ,"ADDRESS FILE"

REM LN=NUMBER OF RECORDS

PRINT#8,LN

FOR N=@& TO LN

PRINT#8,NAS (N)

PRINT#8,AD$(N)

PRINT#8,CIS$(N)

PRINT#8,ST$ (N)

PRINT#8, Z(N)

FOR N1=0 TO 10

PRINT#8,KC% (NI ,N)

NEXT NI

NEXT N

CLOSE 8

END

REM ENTER AT 409¥¥ TO READ IN FROM TAPE
REM DRIVE N@. | AND THEN PRINT ON SCREEN
OPEN 8,1 ,0,"ADDRESS FILE"
INPUT#8,LN

PRINTLNsREM PRINT RECORD COUNT

FOR N=0 TO LN

INPUT#8 ,NAS(N)

REM IF ST! AND 64 GOTO 4397
INPUT#8,ADS$(N)

INPUT#8,CI $(N)

INPUT#8,STS$(N)

INPUT#8, Z(N)

FOR Ni=¢g TO 10

INPUT#8 ,KC% (NI ,N)

NEXTNI

PRINTN:REM PRINT RECORD NO. AS READ
NEXT N

CLOSE 8

[=3:GOTO 2009

62

THE PET

VET TACKLES

DATA FILES

Charles Floto
325 Pennsylvania Ave., S.E.
Washington, DC 20003

Several people have contacted the PET
Vet about their difficulties in record-
ing data files on tape and reading the
information back in. Preliminary in-
formation on PET BASIC lists the com-
mands to be used, but doesn't tell how
to put them together. This makes for a
frustrating situation, especially as
file handling should be one of the
PET's strong points.

The following program is offered as a
starting point for development accord-
ing to your specific application.
Reading and writing have been combined
in one program for two reasons. First,
modifications to one process may call
for corresponding changes in the other.
Second, this minimizes the need to jug-
gle two cassettes while saving programs
on one and data on the other. I rec-
ommend that a separate cassette be used
for data-storage. If you use this pro-
gram please save it on tape before you
try to run it. I have found that while
I'm experimenting with data files, the
PET is especially liable to go out of
control, forcing me to turn off the
power, The same memory location that
controls the tape drive apparently con-
trols a function essential to BASIC.

To write a data file“load this progranm,
have a blank cassette in the tape drive
and type RUN. Line 50 clears the
screen. Lines 60-300 build a string
consisting of: a file name or record
number followed by two asterisks; data
to be saved that may be broken into
data fields by delimiters of your
choice; and three consecutive back-
slashes that mark the end of the re-
cord. Lines 90 and 100 cause the key-
board to be read until a key is struck.
Then 105 echoes it to the screen and
110 adds it to the string. Use of GET
rather than INPUT allows the data file
to contain commas and carriage returns.
Line 190 warns when C$ is approaching
the maximum size; you may wish to have
a later or less frequent warning. At

63

the end of the record type three back-
slashes. These will be detected in
line 300, causing 320 to be executed
rather than going back to 90 for an-
other character.

Lines 320-400 write C$ onto the tape.
You will be instructed (on the screen)
to press play and record on the tape
drive if you have not already done so.
In line 320 the first two numbers in-
dicate that device #1 is tape drive 1.
The third 1 indicates a write opera-
tion. Compare this to line 1000
where the 0 indicates a read command.

Line 450 provides for creation of the
next record in the file. To create the
last record simply input the record
number and type three backslashes,
Then, after it has been written, BREAK
IN 500 will appear on the screen.

At this point you're ready to rewind
the tape and type RUN 900. Lines 910
to 990 initialize 256 empty strings.
Lines 1000-1090 read the tape and build
up C$ until three consecutive back-
slashes are found. Line 2000 prints
what has been read while 2850 displays
available memory. Then in 3000-3020 C$
is broken down into its individual ele-
ments. These can be manipulated fur-
ther by adding your own lines between
3050 and 9000, Line 9000 will head
back to read the next record unless
3050 has detected the last record in a
file.

To record numeric data generated in
a program rather than entered from the
keyboard it must be converted to a
string with the STR$ function. Then
when it's read back the VAL function
can be used on data fields representing
numbers. For example, N=VAL(B$(8)+
B$(9)+B$(10)) might be used if you knew
the eighth, ninth and tenth elements of
C$ represented a three-digit number.
Of course, it usually won't be nearly
so simple as that.

50

60

70

80

90

100
105
110
190
300
320
350
4oo
450
500
900
910
920
930
990
100
101
102
103
104
105
109
200
285
300
301
302
303
305
900

If you have any problems with specific
applications of your PET, drop me a
note, preferably giving a phone number
where you can be reached evenings and
weekends. I'd also be interested to
see any information you've been able to
pry out of Commodore or discover on

your own.,

PRINT CHR$(147)
PRINT "ENTER FILE NAME OR RECORD #"
INPUT C$
C$=C$+"**"
GET A%

IF A$=""THEN 90

PRINT A$;

C$=C$+A$

IF LEN(C$)>200 THEN PRINT 255-LEN(C$);
IF RIGHT$(C$,3)<>"\\\" THEN 90
OPEN 1,1,1,"NAILFILE"

PRINT#1,C$

CLOSE 1

IF RIGHT$(C$,5)<>"*%\\\" THEN 50
STOP

DIM B$(255)

FOR J=1 TO 255

B$(J)=nn

NEXT J

C$=""

0 OPEN 1,1,0,"NAILFILE"

0 GET#1,A$

0 C$=C$+A$

0 IF A$<>"\" THEN SL=0:GOTO 1010

0 SL=SL+1

0 IF SL<3 THEN 1010

0 CLOSE 1

0 PRINT C$

0 PRINT FRE(0); "BYTES FREE"

0 FOR J=1 TO LEN(C$)

0 B$(J)=MID$(C$,Jd,1)

0 NEXT J

0 PRINT FRE(0); "BYTES FREE"

0 IF RIGHT$(C$,5)="%*¥\\\" THEN END
0 GOTO 910

64

"BYTES AVAILABLE™"

M(LOC)

M(0)
FN IND(1)
M(3)
M(5)
FN IND(8)

M(10-89)
M(90-98)

M(91)

M(98)

FN IND(113)
FN IND(115)
FN IND(122)
FN IND(124)
FN IND(126)
FN IND(128)
FN IND(130)
FN IND(132)
FN IND(134)
FN IND(136)
FN IND(138)
FN IND(140)
FN IND(142)
FN IND(144)
FN IND(146)
M(148)
M(149)

FN ND(150)
FN IND(152)
M(156)

FN IND(157)
M(157-161)
M(163-165)
FN IND(164)
M(166-170)
M(171-175)
M(176-181)
M(181)
M(184-189)
M(192)

M(194-217)

FN IND(201)
M(218-222)
FN IND(224)
M(226)

A PARTIAL LIST OF PET SCRATCH PAD MEMORY

Gary A. Creighton
625 Orange Street, No. 43
New Haven, CT 06510

A function and a symbol defined:
DEF FN IND(LOC) = PEEK(LOC+!)¥*2564+PEEK(LOC)
Which specifies an indirect address in the form:LOC+1=(Page)

LOC =(Item)
specifies contents of a memory location.

JMP instruction

USR jump location

Present I/0 Device Number (suppress printout)
POS function store

Arguments of commands with range 0 to 65535

"(PEEK,POKE,WAIT,SYS,GOT0,GOSUB,Line Number,RAM check)

Input Buffer
Flags for MISMATCH, Distinguishing between similar
subroutines, etec.

Ignore Code Value and do direct (between quotes, etec.)
(0 INPUT, 64 GET/GET#, 152 READ) Flag

Transfer Number pointer

Number pointer

Begin Basic Code pointer

Begin Variables pointer

Variable List pointer

End Variables pointer

Lowest String Variables pointer

Highest String Variables pointer

First Free After Strings pointer

Present Line Number (if M(137)=255, no line number)
Line Number at BREAK

Continue Run pointer (if M(141)=0, can't continue)
Line Number of Present DATA line

Next DATA pointer (for READ)

Next Data/Input After Last Comma pointer

Coded 1st Character of Last Variable

Coded 2nd Character of Last Variable

Variable pointer (all variables)

Variable pointer

Comparison Symbol Accumulator (<=>)

Pointer to FN pointer

Number Store/Work area (SQR)

JMP (FN IND(164))

Function Jump address

Number Store/Work area (Transcendentals (not EXP) & SQR)
Number Store/Work area (Transcendentals & SQR)

Main Number Store/Work area

Number Sign

Secondary Number Store/Work area

Length of things in Input Buffer M(10-89) or

Length of things in Output Number M(256-)...other
Subroutine: Point through code one at a time, RTS with
code value in accumulator and Carry Flag Clear if

0 if end of line. 1Ignore Spaces. ASC(0-9)
Code Pointer

Number Store/Work area (RND)

Screen Memory Row location
Screen Column position

FN IND(227)
M(234)
M(238)
M(239)
M(240)
M(241)
M(242)
FN IND(243)
M(245)

FN IND(247)
M(251)
M(256)
M(256-)

M(3112-511)
M(512-514)
M(515)
M(516)
M(517-518)
M(521) or
M(59410)

M(523)
M(524)
M(525)
M(526)
M(527-536)
FN IND(537)
FN IND(539)
M(547)

M(548)
M(549)
M(550)
M(551)
M(553-577)
M(578-587)
M(588-597)
M(598-607
M(608)
M(610)
M(611)
M(612)
M(616)
M(634-825)
M(826-1023)

Move Memory (from or to) pointer
Quote flag (0 end quote){(1 begin quote)
Length of File name after SAVE,VERIFY etc.

File #
I/0 Option (0 read, 1 write, 2 write/EOT)
Device # (0 keyboard, 1 tape#t, 2 tpae#2, 3 screen)

Wraparound flag (39 single line, 79 2nd of double line)
Tape #1 or #2 Buffer pointer

Scereen Row (0 - 24)

Load into/ Verify from? Save into pointer
Insert Counter (INST)

Minus sign or Space for Qutput Number
Qutput Number ASC Digits til a Null (0) or
Tape Read Working Storage

Stack area

TI clock

Only One Value per Keypush flag

SHIFT flag (0 no shift, 1 shift)

TI Update Interrupt Counter

Bit Cancel Keys

Turns bits off under the following rules:

BIT KET DECIMAL #

0 RVS 254

1 253

2 Space 251 More than one key

3 247

4 stop 239 may be pushed at once.
5 (none)

6 191 Decimal # is Binary

7 127

equivalent.

VERIFY/LOAD flag (0 LOAD, 1 VERIFY)

ST Status

Key Pushed Counter (MOD 10)

RVS flag (0 RVS off, 1 RVS on) or any key pushed)
Input Run Buffer (keys stored during a RUN

Interrupt Vector (normally at: Store Keypush

BRK instruction Vector (User loaded) in Input Run Buffer)
Keyboard Input Code

(Stays equal to Input code til finger off key,
Matches up one to one with M(59228-59307) which is
Keyboard Input Code to ASC Code Table)

Blink Cursor flag (if 0 (no key pushed))

Cursor Blink Duration counter (20 interrupts)

Screen Value of Input Char. when Cursor moves on
Insure no Cursor Breadcrumbs left behind

Screen Page Array / single or double Line flags

File # of one of 10 files
Device # of one of 10 files
I/0 option one of 10 files

Input from screen/Input from keyboard flag

Number of Open Files

Device Number of Input Device (0 keyboard normally)
Device Number of Output Device (3 screen normally)
Tape Buffer Item Counter
Tape #1 Buffer area

Tape #2 Buffer area

VIIICIRID]

648

LIFE FOR YOUR PET

Dr. Frank H. Covitz
Deer Hill Road
Lebanon, NJ 08833

Since this is the first time I have
attempted to set down a machine lang-
uage program for the public eye, I will
attempt to be as complete as practical
without overdoing it.

The programs 1 will document here are
concerned with the game of "LIFE", and
are written in 6502 machine language
specifically for the PET 2001 (8K ver-
sion). The principles apply to any
6502 system with graphic display capa=-
bility, and can be debugged (as I did)
on non-graphic systems such as the
KiM-1.

The first I heard of LIFE was in Martin
Gardner's "Recreational Mathematics"
section in Scientific American, Oct-Nov
1970; Feb. 1971. As I understand it,
the game was invented by John H. Con-
way, an English mathematician. In
brief, LIFE is a "cellular automation"
scheme, where the arena is a rectang-
ular grid (ideally of infinite size).
Each square in the grid is either occu-
pied or unoccupied with "seeds", the
fate of which are governed by relative-
ly simple rules, i.e. the "facts of
LIFE". The rules are: 1. A seed sur-
vives to the next generation if and on-
ly if it has two or three neighbors
(right, left, up, down, and the four
diagonally adjacent cells) otherwise it
dies of loneliness or overcrowding,
as the case may be. 2. A seed is born
in a vacant cell on the next genera-
tion if it has exactly 3 neighbors.

With these simple rules, a surprisingly
rich game results. The original Scien-
tific American article, and several
subsequent articles reveal many curious
and surprising initial patterns and
results. I understand that there even
has been formed a LIFE group, complete
with newsletter, although I have not
personally seen it.

The game can of course be played man-
ually on a piece of graph paper, but it
is slow and prone to mistakes, which
have usually disasterous effects on the
final results. It would seem to be the
ideal thing to put to a microprocessor
with bare-bones graphics, since the
rules are so simple and there are es-

65

sentially no arithmetic operations in-
volved, except for keeping track of ad-
dresses and locating neighbors.

As you know, the PET-2001 has an excel-
lent BASIC interpreter, but as yet very
little documentation on machine lang-
uage operation. My first stab was to
write a BASIC program, using the entire
PET display as the arena (more about
boundaries later), and the filled
circle graphic display character as the
seed. This worked just fine, except
for one thing - it took about 2-1/2
minutes for the interpreter to go
through one generation! I suppose 1
shouldn't have been surprised since the
program has to check eight neighboring
cells to determine the fate of a par-
ticular cell, and do this 1000 times to
complete the entire generation (H40x25
characters for the PET display).

The program following is a 6502 version
of LIFE written for the PET. It needs
to be POKE'd into the PET memory,
since I have yet to see or discover a
machine language monitor for the PET.
I did it with a simple BASIC program
and many DATA statements (taking up
much more of the program memory space
than the actual machine language pro-
gram!). A routine for assembling, and
saving on tape machine language pro-
grams on the PET is sorely needed.

The program is accessed by the SYS com-
mand, and takes advantage of the dis-
play monitor (cursor control) for in-
serting seeds, and clearing the arena.
Without a serious attempt at maximizing
for speed, the program takes about 1/2
second to go through an entire genera-
tion, about 300 times faster than the
BASIC equivalent! Enough said about
the efficiency of machine language pro-
gramming versus BASIC interpreters?

BASIC is great for number crunching,
where you can quickly compose your pro-
gram and have plenty of time to await
the results.

The program may be broken down into
manageable chunks by subroutining.
There follows a brief description of
the salient features of each section:

MAIN (hex 1900)

In a fit of overcaution (since this was
the first time I attempted to write a
PET machine language program) you
will notice the series of pushes at the
beginning and pulls at the end. I de-
cided to save all the internal regis-
ters on the stack in page 1, and also
included the CLD (clear decimal mode)
Jjust in case. Then follows a series of
subroutine calls to do the LIFE genera-~
tion and display transfers. The zero
page location, TIMES, is a counter to
permit several loops through LIFE be-
fore returning. As set up, TIMES is
initialized to zero (hex location 1953)
so that it will loop 256 times before
Jumping back. This of course can be
changed either initially or while in
BASIC via the POKE command. The return
via the JMP BASIC (4C 8B C3) may not be
strictly orthodox, but it seems to work
all right.

INIT (hex 1930) and DATA (hex 193B)

This shorty reads in the constants
needed, and stores them in page zero.
SCR refers to the PET screen, TEMP is
a temporary working area to hold the
new generation as it 1is evolved, and
RCS 1is essentially a copy of the PET
screen data, which I found to be neces-
sary to avoid "snow" on the screen dur-
ing read/write operations directly on
the screen locations. Up, down, ete.
are the offsets to be added or subtrac-
ted from an address to get all the
neighbor addresses. The observant
reader will note the gap in the addres-
ses between some of the routines.

TMPSCR (hex 1970)

This subroutine quickly transfers the
contents of Temp and dumps it to the
screen, using a dot (81 dec) symbol for
a live cell (a 1 in TEMP) and a space
(32 dec) for the absence of a live cell
(a 0 in TEMP).

SCRTMP (hex 1984)
This is the inverse of TMPSCR, quickly
transferring (and encoding) data
from the screen into TEMP.

RSTORE (hex 19A6)
This subroutine fetches the initial

addresses (high and low) for the SCR,
TEMP, and RCS memory spaces.

66

NXTADR (hex 19RD)

Since we are dealing with 1000 bytes of
data, we need a routine to increment to
the next location, check for page cros-
sing (adding 1 to the high address when
it occurs), and checking for the end.
The end is signaled by returning a 01
in the accumulator, otherwise a 00 is
returned via the accumulator.

TMPRCS (hex 19E6)

The RCS address space is a copy of the
screen, used as mentioned before to
avoid constant "snow" on the screen if
the screen were being continually ac-
cessed. This subroutine dumps data
from TEMP, where the new generation has
been computed, to RCS.

GENER (hex 1A00)

We finally arrive at a subroutine where
LIFE is actually generated. After
finding out the number of neighbors of
the current RCS data byte from NBRS,
GENER checks for births (CMPIM $03 at
hex addr. 1A0E) if the cell was prev-
iously unoccupied. If a birth does not
occur, there is an immediate branch to
GENADR (the data byte remains 00). If
the cell was occupied (CMPIM 81 dec at
hex 1A08), OCC checks for survival
(CMPIM $03 at hex 1AlA and CMPIM $02 at
hex 1AlE), branching to GENADR when
these two conditions are met, otherwise
the cell dies (LDAIM $00 at hex 1A422).
The results are stored in TEMP for the
1000 cells.

NBRS (hex 1A2F)

NBRS is the subroutine that really does
most of the work and where most of the
speed could be gained by more efficient
programming. Its job, to find the tot-
al number of occupied neighbors of a
given RCS data location, is complicated
by page crossing and edge boundaries.
In the present version, page crossing
is taken care of, but edge boundaries
(left, right, top, and bottom of the
screen) are somewhat "strange". Above
the top line and below the bottom line
are considered as sort of forbidden re-
gions where there should practically
always be no "life" (data in those re-
gions are not defined by the program,
but I have found that there has never
been a case where 81's have been pres-~
ent (all other data is considered as
"unoccupied™ characters). The right
and left edges are different, however,

and lead to a special type of '"geom-
etry". A cell at either edge is not
considered as special by NBRS, and so
to the right of a right-edge location
is the next sequential address. On the
screen this is really the left edge
location, and one line lower. The in-
verse is true, of course for left ad-
dresses of left-edge locations. Topo-
logically, this is equivalent to a
"helix". No special effects of this
are seen during a simple LIFE evolution
since it just gives the impression of
disappearing off one edge while appear-
ing on the other edge. For an object
like the "spaceship" (see Scientific
American articles), then, the path
eventually would cover the whole LIFE
arena. The fun comes in when a config-
uration spreads out so much that it
spills over both edges, and interacts
with itself. This, of course cannot

happen in an infinite universe, so that

some of the more complex patterns will

language on the PET. One confession,
however - 1 used the KIM-1 to debug
most of the subroutines. Almost all of
them did not run on the first shot!
Without a good understanding of PET
memory allocation particularly in page
zero, I was bound to crash many times
over, with no recovery other than pul-
ling the plug. The actual BASIC pro-
gram consisted of a POKING loop with
many DATA statements (always save on
tape before running!).

Although the LIFE program was designed
for use on the PET (8K version), no
references are made to PET ROM loca-
tions or subroutines, and except for
MAIN and SUBROUTINE address, are fully
relocatable. The PET screen addresses
(8000 - B83E8 hex) are treated as RAM.
For anyone (with a 6502-based system)
trying to convert the PET program, the
following points need to be watched:

not have the same fate in the present 1. The BLANK symbol = 20 hex
version of LIFE. Most of the "blink- 2. The DOT symbol = 51 hex
ers", including the "glider gun" come 3. The OFFSETs in DATA must be set
out OK. for the user's display.
This 40x25 version of LIFE can undoubt-
edly be made more efficient, and other
edge algorithms could be found, but I
chose to leave it in its original form
as a benchmark for my first successful-
ly executed program in writing machine
A Brief Introduction 2. A cell dies from overcrowding if it

to the Game of Life
by Mike Rowe

One of the interesting properties of

the game of LIFE is that such simple

rules can lead to such complex activ-
ity. The simplicity comes from the
fact that the rules apply to each in-
dividual cell. The complexity comes
from the interactions between the indi-
vidual cells. Each individual cell is
affected by its eight adjacent neigh-
bors, and nothing else.

The rules are:

1. A cell survives if it has two or
three neighbors. .

has four or more neighbors. It dies
from isolation if it has one or zero
neighbors.

3. A cell is born when an empty space
has exactly three neighbors.

With these few rules, many different
types of activity can occur. Some pat-
terns are STABLE, that is they do not
change at all. Some are REPEATERS,
patterns which undergo one or more
changes and return to the original
pattern. A REPEATER may repeat as fast
as every other generation, or may have
a longer period. A GLIDER is a pattern
which moves as it repeats.

REPEATERS
- *
GLIDERS
STABLE P % ¥ PR
. % ¥ ™ PR~ .
P x » s »a *F * * ¥
P o ¥ on * * *
PR XN R E RS

67

1900

1900
1900
1900
1900

1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900

1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
190A
190D
1910
1913
1916
1919
191B
191D
191E
191F
1920

08
48
8A
48
98
48
BA
8A
48
D8
20
20
20
20
20
E6
DO
68
AA
9A
68

30 19
84 19
E6 19
00 1A
70 19
38

F3

LIFE

BASIC
OFFSET
DOT
BLANK

SCRL
SCRH
CHL
CHH
SCRLO
SCRHO
TEMPL
TEMPH
TEMPLO
TEMPHO
Uup
DOWN
RIGHT
LEFT
UR

UL

LR

LL

N
SCRLL
SCRLH
RCSLO
RCSHO
T™MP
TIMES
RCSL
RCSH

MAIN

GEN

ORG

" W W W

LR R B B B BE B R BE BE BN BE BN R B R T R R

PHP
PHA
TXA
PHA
TYA
PHA
TSX
TXA
PHA
CLD
JSR
JSR
JSR
JSR
JSR
INCZ
BNE
PLA
TAX
TXS
PLA

$1900

$C38B RETURN TO BASIC ADDRESS
$002A PAGE ZERO DATA AREA POINTER
$0051 DOT SYMBOL = 81 DECIMAL
$0020 BLANK SYMBOL = 32 DECIMAL

$0020 PAGE ZERO LOCATIONS
$0021
$0022
$0023
$0024
$0025
$0026
$0027
$0028
$0029
$002A
$002B
$002C
$002D
$002E
$002F
$0030
$0031
$0032
$0033
$0034
$0035
$0036
$0037
$0038
$0039
$003A

SAVE EVERYTHING
ON STACK

CLEAR DECIMAL MODE
INIT
SCRTMP
TMPRCS
GENER
TMPSCR
TIMES REPEAT 255 TIMES
GEN BEFORE QUITTING
RESTORE EVERYTHING

68

1921
1922
1923
1924
1925
1926

1930

1930
1932
1935
1937
1938
1934

193B
193C
193D
193E
193F
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1944
1948
194C
194D
194E
194F
1950
1951
1952
1953

1970

1970
1973
1975
1977
1979
197B
197D
197F
1981
1984

A8
68
AA
68
28
ic

A2
BD
95
CA
Do
60

00
80
00
15
00
80
00
1B
00
1B
D7
28
01
FE
D8
D6
29
27
00
E8
83
00
15
00
00

20
B1
DO
A9
91
DO
A9
91
20
FO

8B C3

19
34 19
1F

F8

A6 19
26
06
20
20
ol
51
20
BD 19
ED

TAY
PLA
TAX
PLA
PLP
JMP

ORG

BASIC

$1930

RETURN TO BASIC

MOVE VALUES INTO PAGE ZERO

INIT
LOAD

DATA

TMPSCR
TSLOAD

TSONE

TSNEXT

LDXIM $19
LDAX DATA
STAZX $1F

DEX
BNE
RTS

ORG

JSR

LDAIY

BNE

LDAIM
STATY

BNE

LDAIM
STAIY

JSR
BEQ

69

LOAD

$00
$80
$00
$15
$00
$80
$00
$1B
$00
$1B
$D7
$28
$01
$FE
$D8

$D6

$29
$27
$00
$E8
$83
$00
$15
$00
$00

$1970

RSTORE
TEMPL
TSONE
BLANK
SCRL
TSNEXT
DOT
SCRL
NXTADR
TSLOAD

MOVE 25. VALUES
-01
STORE IN PAGE ZERO

SCRL
SCRH
CHL
CHH
SCRLO
SCRHO
TEMPL
TEMPH
TEMPLO
TEMPHO
UpP
DOWN
RIGHT
LEFT
UR

UL

LR

LL

N
SCRLL
SCRLH
RCSLO
RCSHO
T™MP
TIMES

GET INIT ADDRESSES
FETCH BYTE FROM TEMP
BRANCH IF NOT ZERO
BLANK SYMBOL

DUMP IT TO SCREEN

DOT SYMBOL
DUMP IT TO SCREEN
FETCH NEXT ADDRESS

1986
1989

1984
198D
198F
1991
1993
1995
1997
1999
199B
199D
19A0
1942
19A5

1946
1948
1949
19AA
19AC
19AE
19B0
19B2
19B4
19B6
19B8
19BA
19BC

19BD
19BF
19C1
19C3
19CY
19C6
19C8
19CA
19CC
19CE
19D0
19D2
19D4
19D6
19D8
19DA
19DC
19DD
19DF

19E6
19E6

19E9
19EB

20
B1
DO

A6 19

A6 19
20
51
06
00
26
ol
01
26
BD 19
EB
A6 19

00

20
26
39
25
21
29
27
36
3A

26
20
39

33
ocC
00
OE
27
21
3A
06
34
21
03
00

01

A6 19
26
06

SCRTMP
STLOAD

STONE

STNEXT

RSTORE

NXTADR

PAGECH

NALOAD

NADONE

TMPRCS
TRLOAD

JSR RSTORE RESTORE INIT ADDRESSES
RTS

JSR RSTORE GET INIT ADDRESSES
LDAIY SCRL READ DATA FROM SCREEN
CMPIM DOT TEST FOR DOT

BEQ STONE BRANCH IF DOT

LDAIM $00 OTHERWISE ITS A BLANK
STATY TEMPL STORE IT

BEQ STNEXT UNCOND. BRANCH

LDAIM $01 A DOT WAS FOUND

STAIY TEMPL STORE IT

JSR NXTADR FETCH NEXT ADDRESS
BEQ STLOAD

JSR RSTORE RESTORE INIT ADDRESSES
RTS

LDAIM $00 ZERO A, X, Y
TAX

TAY

STAZ SCRL INIT VALUES
STAZ TEMPL

STAZ RCSL

LDAZ SCRHO

STAZ SCRH

LDAZ TEMPHO

STAZ TEMPH

LDAZ RCSHO

STAZ RCSH

RTS

INCZ TEMPL GET NEXT LOW ORDER
INCZ SCRL BYTE ADDRESS

INCZ RCSL

INX

CPXZ SCRLL IS8 IT THE LAST?

BEQ PAGECH IS IT THE LAST PAGE?
CPXIM $00 IS IT A PAGE BOUNDARY?
BNE NALOAD IF NOT, THEN NOT DONE
INCZ TEMPH OTHERWISE ADVANCE TO
INCZ SCRH NEXT PAGE

INCZ RCSH

BNE NALOAD UNCONDITIONAL BRANCH
LDAZ SCRLd CHECK FOR LAST PAGE
CMPZ SCRH

BEQ NADONE IF YES, THEN DONE
LDAIM $00 RETURN WITH A=0

RTS

LDAIM $01 RETURN WITH A=1
RTS

ORG $19Eb6

JSR RSTORE INIT ADDRESSES
LDAIY TEMPL FETCH DATA FROM TEMP
BNE TRONE 1IF NOT ZERO THEN ITS ALIVE

70

19ED
19EF
19F1
19F3
19F5
19F7
19FA
19FC
19FF

1A00
1A03
1406
1408
1ACA
1A0C
1AQE
1A10
1412
1414
1416
1418
1A1A
1A1C
1A1E
1A20
1A22
1424
1426
1429
1A2B
1A2E

1A2F
1430
1A31
1A32
1A33
1A35
1A37
1439
1A3B
1A3D
1A3F
1841
1A42
1844
1A46
1A48
1A4A
1A4C
1ALE
1450
1A52
1453
1455

A9
91
DO
A9
91
20
FO
20
60

20
20
B1
C9
FO
A5
c9
DO
A9
91
DO
A5
C9
FO
C9
FO
A9
91
20
FO
20
60

98

8A
48
A0
84
A2
B5
10
49

38
A5
E5
85
A5
85
BO
c6
DO
18
65
85

20
39
ol
51
39
BD 19
ED
A6 19

A6 19
2F 1A
39
51
0cC
32
03
14
01
26
OE
32
03
08
02
o4
00
26
BD 19
D8
A6 19

TRONE

NEWADR

GENER
AGAIN

BIRTH

occ

DEATH

GENADR

NBRS

OFFS

ADD

LDAIM
STAIY
BNE
LDAIM
STAIY
JSR
BEQ
JSR
RTS

JSR
JSR
LDAIY
CMPIM
BEQ
LDAZ
CMPIM
BNE
LDAIM
STAIY
BNE
LDAZ
CMPIM
BEQ
CMPIM
BEQ
LDAIM
STAIY
JSR
BEQ
JSR
RTS

TYA
PHA
TXA
PHA
LDYIM
STYZ
LDXIM
LDAZX
BPL
EORIM
STAZ
SEC
LDAZ
SBCZ
STAZ
LDAZ
STAZ
BCS
DECZ
BNE
CLC
ADCZ
STAZ

BLANK
RCSL
NEWADR
DOT
RCSL
NXTADR
TRLOAD
RSTORE

RSTORE
NBRS
RCSL
DOT
occC

N

$03
GENADR
$01
TEMPL
GENADR
N

$03
GENADR
$02
GENADR
$00
TEMPL
NXTADR
AGAIN
RSTORE

$00

N

$08
OFFSET
ADD
$FF
T™MP

RCSL
T™MP
CHL
RCSH
CHH
EXaM
CHH
EXAM

RCSL
CHL

71

BLANK SYMBOL

STORE IT IN SCREEN COPY
THEN ON TO A NEW ADDRESS
THE DOT SYMBOL

STORE IT IN SCREEN COPY
FETCH NEXT ADDRESS

IF A=0, THEN NOT DONE
ELSE DONE. RESTORE

INIT ADDRESSES

FETCH NUMBER OF NEIGHBORS
FETCH CURRENT DATA

IS IT A DOT?

IF YES, THEN BRANCH
OTHERWISE ITS BLANK

SO WE CHECK FOR

A BIRTH

IT GIVES BIRTH

STORE IT IN TEMP
INCONDITIONAL BRANCH
FETCH NUMBER OF NEIGHBORS
IF IT HAS 3 OR 2
NEIGHBORS IT SURVIVES

IT DIED!

STORE IT IN TEMP

FETCH NEXT ADDRESS

IF 0, THEN NOT DONE
RESTORE INIT ADDRESSES

SAVE Y AND X ON STACK

SET Y ANDN =0

CHECK 8 NEIGHBORS

=01

ADD TIF OFFSET IS POSITIVE
OTHERWISE GET SET TO
SUBTRACT

SET CARRY BIT FOR SUBTRACT

SUBTRACT TO GET THE
CORRECT NEIGHBOR ADDRESS

OK, FIND OUT WHAT'S THERE
PAGE CROSS

UNCOND. BRANCH

GET SET TO ADD

ADD

STORE THE LOW PART

1A5T7 A5 3A LDAZ RCSH FETCH THE HIGH PART

1A59 85 23 STAZ CHH
~1A5B 90 02 BCC EXAM OK, WHAT'S THERE
1A5D E6 23 INCZ CHH PAGE CROSSING
1A5F B1 22 EXAM LDAIY CHL FETCH THE NEIGHBOR
1461 C9 51 CMPIM DOT DATA BYTE AND SEE IF ITS
1463 DO 02 BNE NEXT OCCUPIED
1A65 E6 32 INCZ N ACCUMULATE NUMBER OF NEIGHBORS
1A67 CA NEXT DEX
1468 DO CF BNE OFFS NOT DONE
1A6A 68 PLA RESTORE X, Y FROM STACK
1A6B AA TAX
1A6C 68 PLA
146D A8 TAY
1A6E 60 RTS

SYMBOL TABLE 2000 2186

BLANK 0020 SCRL 0020 SCRH 0021 CHL 0022
CHH 0023 SCRLO 0024 SCRHO 0025 TEMPL 0026
TEMPH 0027 TEMPLO 0028 TEMPHO 0029 OFF3SET 0024

up 0024 DOWN 002B RIGHT 002C LEFT 002D
UR 002E UL 002F LR 0030 LL 0031
N 0032 SCRLL 0033 SCRLE 0034 RCSLO 0035

RCSHO 0036 T™P 0037 TIMES 0038 RCSL 0039
RCSH 003A DOT 0051 LIFE 1900 MAIN 1900
GEN 1910 INIT 1930 LOAD 1932 DATA 193B
TMPSCR 1970 TSLOAD 1973 TSONE 197D TSNEXT 1981
SCRTMP 1984 STLOAD 198D STONE 1999 STNEXT 199D
RSTORE 19A6 NXTADR 19BD PAGECH 19D NALOAD 19DA
NADONE 19DD TMPRCS 19E6 TRLOAD 19E9 TRONE 19F3
NEWADR 19F7 GENER 1A00 AGAIN 1A03 BIRTH 1A12
ocC 1418 DEATH 1A22 GENADR 1A26 NBRS 1A2F
OFFS 1A39 ADD 1A52 EXAM 1ASF NEXT 1467
BASIC C38B

SYMBOL TABLE 2000 2186

ADD 1852 AGAIN 1A03 BASIC C38B BIRTH 1A12
BLANK 0020 CHH 0023 CHL 0022 DATA 193B
DEATH 1A22 DOT 0051 DOWN 002B EXAM 1ASF
GENADR 1A26 GENER 1A00 GEN 1910 INIT 1930
LEFT 002D LIFE 1900 LL 0031 LOAD 1932
LR 0030 MAIN 1900 N 0032 NADONE 19DD
NALOAD 19DA NBRS 1A2F NEWADR 19F7 NEXT 1467
NXTADR 19BD occC 1418 OFFS 1A39 OFFSET 002A
PAGECH 19D4 RCSH 003A RCSHO 0036 RCSL 0039
RCSLO 0035 RIGHT 002C RSTORE 19A6 SCRH 0021
SCRHO 0025 SCRL 0020 SCRLH 0034 SCRLL 0033
SCRLO 0024 SCRTMP 198A STLOAD 198D STNEXT 199D
STONE 1999 TEMPH 0027 TEMPHO 0029 TEMPL 0026
TEMPLO 0028 TIMES 0038 TMPRCS 19E6 TMPSCR 1970
TMP 0037 TRLOAD 19E9 TRONE 19F3 TSLOAD 1973
TSNEXT 1981 TSONE 197D UL 002F UP 0024
UR 002E

72

Most computer hobbyist
programming in BASIC.

s do all or most of their
This is unfortunate since

Michael J. McCann
28 Ravenswood Terrace
Cheektowaga, NY 14225

A SIMPLE 6502 ASSEMBLER FOR THE PET

There are two ways of returning control to BASIC
from machine language.

The RTS (Return from

there is much to be gained from machine code
level programming. On the average, machine lan-
guage programs are 100 times faster than their
BASIC equivalents. In addition, machine lang-
uage programs are very compact, making efficient
use of memory. I have written a simple 6502
assembler in Commodore BASIC (see listing) with
the following functions:

Input source code and assemble

Save object code on tape

Load object code from tape

Run machine language program with SYS
Run machine language program with USK
List machine language program

VI W N —
« e e e e o

INPUT SOURCE CODE AND ASSEMBLE
-Symbolic addresses and operands are not per-
mitted
-Al1 addresses and operands must be supplied
in base 10
~-Each 1line of source code
entry
-Source code 1is
format:
(mnemonic) (one or more spaces)(operand)
_Three pseudoinstructions are supported
ORG-Start with this address
NOTE:if the user does not specify the origin,
it will be set at 826 base 10
DC-Define constant, place the operand value
in the next location in umemory
END-End of program source code

is assembled after

inputted in the following

SAVE OBJECT CODE ON TAPE

~Object code saved under file name supplied by
user

-Origin address saved with program

LOAD OBJECT CCDE FROM TAPE

-Loads object program under file name supplied
by user

-Object code is stored in memory with the same
origin address used when the program was
assembled

RUN MACHINE LANGUAGE PROGRAM WITH SYS
-Transfers control of the 6502 to an address
supplied by the user

RUN MACHINE LANGUAGE PROGRAM WITH USR

-Transfers a user supplied value to the
6502 accumulator

-Transfers control of the 6502 to an address
supplied by the user

LIST MACHINE LANGUAGE PROGRAM

-Listing is produced by disassembling object
code

-Disassembly is in the following format:
(decimal address)(hexadecimal address)(byte#1)
(byte#2)(byte#3)(mnemonic) (operand)

The following areas of memory are available for
your machine language programs when this assem-
bler is in memory: locations 7884-8184 and, if
tape #2 is not used, locations 826-1024.

73

Subroutine) instruction may be used at any time
a;zept when in a user machine language subrou-
tine. RTS returns control to the calling BASIC
program. In contrast the BRK (Force Break) in-
struction does not return control to the calling
BASIC program; instead control is returned
to the user, i.e. system prints READY with the
cursor.

I have included a short machine language pro-
gram. When run this program will leave a pat-
tern of small white dots on the upper half of
PET's CRT.

SAMPLE MACHINE LANGUAGE PROGRAM LISTING

826 0334 A9 66 LDAIM 102
828 033C A2 00 LDXIM 0
830 033E 9D 00 80 STAX 32768

833 0341 E8 INX
834 0342 FO 03 BEQ 3
836 0344 4C 3E 03 JMP 830

839 0347 EA NOP
840 0348 EA NOP
841 0349 9D 00 81 STAX 33024
844 034C E8 INX

845 034D FO 03 BEQ 3
847 O34F 4C 49 03 JMP 841
850 0352 00 BRK

SAMPLE MACHINE LANGUAGE PROGRAM
AS INPUTTED FROM THE KEYBOARD

ORG 826
LDAIM 102
LDXIM 0
STAX 32768
INX

BEQ 3

JMP 830
NOP

NOP

STAX 33024
INX

BEQ 3

JMP 841
BRK

END

] D 4D D 0D D) D D o) o) D D)))

Two additional thoughts before you start:

1. After entering the program from the
keyboard you must save it on tape before going
through "RUN" again. If you don't EN and ZZ are
set to zero.

2. When using the "BRK" command the system out-
puts the error statement "ILLEGAL QUANTITY
ERROR IN 10020", READY.

1 REM 6502 ASSEMBLER PROGRAM
2 REM BY MICHAEL J. MCCANN

3 REM FOR USE ON THE COMMODORE PET

10 DIM MN$(256),BY%(256),C0$(16)

20 FOR E=0 TO 255

30 READ MN$(E),BY%(E)

40 NEXT

60 FOR E=0 TO 15

70 READ CO$(E)

80 NEXT

90 PRINT CHR$(147) :PRINT

100 PRINT"1-INPUT SOURCE CODE AND ASSEMBLE" :PRINT
110 PRINT"2-SAVE OBJECT CODE ON TAPE":PRINT

120 PRINT"3-LOAD OBJECT CODE FROM TAPE":PRINT

130 PRINT"4-RUN MACHINE LANGUAGE PROGRAM WITH SYS"
140 PRINT"5-RUN MACHINE LANGUAGE PROGRAM WITH USR"
150 PRINT"6-LIST MACHINE LANGUAGE PROGRAM"

180 GET A$:IF A$="" GOTO 180

190 IF VAL(A$)=0 OR VAL(A$)>6 GOTO 180

200 ON VAL(A$) GOSUB 14000,20000,9000,10000,11000,2900
210 GOTO 90

1000 SX=INT(DC/16)

1010 UN=DC-(SX*16)

1020 SX$sC0$(SX)

1030 UN$=CO$(UN)

1040 HX$=SX$+UN$

1050 RETURN

2900 PRINT CHR$(147)

2910 INPUT"START ADDRESS";AD:I=0

3000 IF I=24 GOTO 5050

3001 I=I+1

3005 IB=PEEK(AD)

3015 IF MN$(IB)<>"NULL" GOTO 3050

3025 DC=IB:GOSUB 1000:GOSUB 13000

3030 PRINT AD;AD$ TAB(12) HX$ "#n

3040 AD=AD+1:GOTO 3000

3050 ON BY%(IB) GOTO 3060,3090,4050

3060 DC=IB:GOSUB 1000:GOSUB 13000

3070 PRINT AD;AD$ TAB(12);HX$;TAB(21) ;MN$(IB)
3075 AD=AD+1

3080 GOTO 5030

3090 DC=IB:GOSUB 1000

4000 B1$=HX$

4010 DC=PEEK(AD+1):GOSUB 1000

4011 B2$=HX$

4024 GOSUB 13000:P=DC

4030 PRINT AD;AD$ TAB(12);B1$;" ";B2$;TAB(21);MN$(IB);TAB(27);F
4035 AD=zAD+2

4040 GOTO 5030

4050 DC=IB:GOSUB 1000

4060 B1$=HX$

4070 DC=PEEK(AD+1) :GOSUB 1000

4080 B2$=HX$

4090 DC=PEEK(AD+2) :GOSUB 1000

74

5000
5010
5011
5020
5025
5030
5050
5051
5052
5070
5080
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
9000
9010
9020
9030
9040
9050
9060
9070
9080
9090
3100

B3$=-HX$

OP=PEEK(AD+1)+(PEEK(AD+2)*¥256)

GOSUB 13000

PRINT AD;AD$ TAB(12);B1$;" ";B2$;" ";B3$;TAB(21);MN$(IB) ;TAB(27);0P
AD=AD+3

GOTO 3000

GET A$:IF A$="" GOTO 5050

IF A$=CHR$(19) THEN I=0:RETURN

IF A$<>CHR$(13) GOTO 5050

I=0:PRINT CHR$(147)

GOTO 3000

DATA BRK,1,0RAIX,2,NULL,0,NULL,0,NULL,0,0RAZ,2,ASL,2,NULL,0,PHP,1
DATA ORAIM,2,ASLA,1,NULL,0,NULL,0,ORA,3,ASL,3.NULL,0.BPL,.2.0RAIY.2
DATA NULL,O,NULL,0,NULL,0,ORAZX,2,ASLZX,2,NULL,0,CLC, 1,0RAY,3

DATA NULL,0,NULL,0,NULL,0,ORAX,3,ASLX, 3,NULL,0,JSR, 3, ANDIX,2,NULL,0
DATA NULL,0,BITZ,2,ANDZ,2,ROLZ,2,NULL,0,PLP,1,ANDIM,2,ROLA,1,NULL,0
DATA BIT,3,AND,3,ROL,3,NULL,0,BMI,2,ANDIY,2,NULL,0,NULL,0,NULL,0
DATA ANDZX,2,ROLZX,2,NULL,0,SEC,1,ANDY,3,NULL,0,NULL,0, NULL,O0,ANDX,3
DATA ROLX,3,NULL,0,RTI,1,EORIX,2,NULL,0,NULL,0,NULL,0,EORZ,2,LSRZ,2
DATA NULL,0,PHA,1,EORIM,2,LSRA,1,NULL,0,JMP,3,EOR,3,LSR, 3,NULL,0
DATA BVC,2,EORIY,2,NULL,0,NULL,0,NULL,0,EORZX,2,LSRZX,2,NULL,0

DATA CLI,1,EORY,3,NULL,0,NULL,0,NULL,0,EORX,3,LSRX,3,NULL,0,RTS,1
DATA ADCIX,2,NULL,0,NULL,0,NULL,0,ADCZ,2,RORZ,2,NULL,0,PLA,1,ADCIM,2
DATA RORA,1,NULL,0,JMPI,3,ADC,3,ROR,3,NULL,0,BVS,2,ADCIY,2,NULL,0
DATA NULL,0,NULL,0,ADCZX,2,RORZX,2,NULL,0,SEI, 1,ADCY,3,NULL,0,NULL,0
DATA NULL,O0,ADCX,3,RORX,3,NULL,0,NULL,0,STAIX,2,NULL,0,NULL,0,STYZ,2
DATA STAZ,2,STXZ,2,NULL,0,DEY,1,NULL,0,TXA,1,NULL,0,STY,3,STA,3

DATA STX,3,NULL,0,BCC,2,STAIY,2,NULL,0,NULL,0,STYZX,2,STAZX,2,STX2Y,2
DATA NULL,0,TYA,1,STAY,3,TXS,1,NULL,0,NULL,0,STAX,3,NULL,0,NULL,0
DATA LDYIM,2,LDAIX,2,LDXIM,2,NULL,0,LDYZ,2,LDAZ,2,LDXZ,2,NULL,0

DATA TAY,1,LDAIM,?2,TAX,1,NULL,0,LDY,3,LDA,3,LDX,3,NULL,0,BCS,2

DATA LDAIY,2,NULL,0,NULL,0,LDYZX,2,LDAZX,2,LDXZ2Y,2,NULL,0,CLV, 1

DATA LDAY,3,TSX,1,NULL,0,LDYX,3,LDAX,3,LDXY,3,NULL,0,CPYIM,2,CMPIX,2
DATA NULL,O,NULL,O,CPYZ,2,CMPZ,2,DECZ,2,NULL,0,INY,1,CMPIM,2,DEX,
DATA NULL,O,CPY,3,CMP,3,DEC,3,NULL,0,BNE,2,CMPIY,2,NULL,0,NULL,0
DATA NULL,0,CMPZX,2,DECZX,2,NULL,0,CLD, 1,CMPY,3,NULL,0,NULL,0,NULL,O0
DATA CMPX,3,DECX,3,NULL,0,CPXIM,2,SBCIX,2,NULL,0,NULL,0,CPXZ,2,SBCZ,2
DATA INCZ,2,NULL,O,INX,1,SBCIM,2,NOP,1,NULL,0,CPX,3,SBC,3,INC,3

DATA NULL,0,BEQ,2,SBCIY,2,NULL,0,NULL,0,NULL,0,SBCZX, 2,INCZX,2,NULL,0, SED, 1
DATA SBCY,3,NULL,0,NULL,0,NULL,0,SBCX, 3, INCX,3,NULL,0

DATA 0’1!2’31“1516’798’9:A7B:CvD1E7F

PRINT CHR$(147)

INPUT "ENTER FILE NAME";N$

OPEN 1,1,0,N$

INPUT#1,22

INPUT#1,EN

FOR AD=ZZ TO EN

INPUT#1,DA%

POKE AD,DA%

NEXT

CLOSE 1

RETURN

75

10000 PRINT CHR$(147)
10010 INPUT "ENTER ADDRESS IN BASE 10";AD
10015 IF AD>65535 GOTO 10000
10020 SYS(AD)
10030 RETURN
11000 PRINT CHR$(147)
11010 INPUT"ENTER ACCUMULATOR VALUE";AC
11015 IF AC<0 OR AC>255 GOTO 11010
11020 INPUT"ENTER ADDRESS IN BASE 10";AD
11030 POKE 2,INT(AD/256)
11040 POKE 1,AD-(INT(AD/256)%256)
11050 X=USR(AC)
11060 RETURN
13000 A=AD:S3=INT(AD/4096)
13002 A=A-S3%4096
13010 S2=INT(A/256)
13012 A=A-S2%256
13020 S=INT(A/16)
13060 U=AD-(S3*4096+S2%256+S%16)
13070 S3$=C0$(S3)
13080 S24$=C0$(S2)
13090 S$=C03$(S)
13100 U$=CO$(U)
13110 AD$=S3$+5S2$+S$+U$
13120 RETURN
14000 PRINT CHR$(147):AD=826:72=826
14010 PRINT "(MNEMONIC) (SPACE) (OPERAND)"
14020 GOSUB 15000
14030 F=0
14040 FOR E=0 TO 255
14050 IF MN$=MN$(E) THEN BY=BY%(E):F=1:CD=E:E=256
14060 NEXT
14070 IF F=0 GOTO 14260
14080 ON BY GOSUB 14100, 14130,14180
14090 GOTO 14020
14100 POKE AD,CD
14110 AD=AD+1
14120 RETURN
14130 IF OP>255 OR OP<O THEN PRINT "ERROR" :RETURN
14140 POKE AD,CD
14150 POKE AD+1,0P
14160 AD=AD+2
14170 RETURN
14180 1IF OP>65535 OR OP<0 THEN PRINT "ERROR":RETURN
14190 POKE AD,CD
14200 B2=INT(OP/256)
14210 B1=0P-(B2¥256)
14220 POKE AD+1,B1
14230 POKE AD+2,B2
14240 AD=AD+3
14250 RETURN
14260 IF MN$="ORG" OR MN$="END" OR MN$="DC" GOTO 14280
14270 PRINT "ERROR":GOTO 14020
14280 IF MN$="ORG" GOTO 14300
14290 GOTO 14340
14300 IF FO=1 THEN PRINT "ERROR":GOTO 14020
14310 FO0=1
14320 AD=OP:ZZ=0P
14330 GOTO 14020
76

14340
14350
14360
14370
14480
14510
14520
15000
15010
15020
15030
15040
15050
15060
15070
15080
15090
20000
20010
20020
20030
20040
20050
20060
20070
20080
20090
20100
20110
20120
20130
20140
20150
20160
20170
20180

IF MN$="END" GOTO 14360

GOTO 14480

EN=AD-1

RETURN

POKE AD,OP

AD=AD+1

GOTO 14020

INPUT A$

IF LEN(A$)<3 THEN PRINT "ERROR":GOTO 15000
IF LEN(A$)=3 THEN MN$ A$:0P=0:RETURN
S=0:FOR M=1 TO LEN(A$)

IF MID$(A$,M,1)=" " THEN S=M:M=LEN(A$)
NEXT

IF S=0 THEN MN$=A$:RETURN
MN$=LEFT$(A$,S-1)
OP=VAL(RIGHT$(A$,LEN(A$)-58))
RETURN

PRINT CHR$(147):52=0

INPUT "ENTER PROGRAM NAME";N$
OPEN 1,1,1,N$
PRINT#1,ZZ:DA%=ZZ:GOSUB 20110
PRINT#1,EN:DA%=EN:GOSUB 20110
FOR AD=ZZ TO EN

DA%=PEEK(AD)
PRINT#1,DA%:GOSUB 20110

NEXT

CLOSE 1

RETURN

SZ=LEN(STR$(DA%))+SZ+1

IF SZ<192 THEN RETURN

POKE 59411,53

T=TI

IF (TI-T)<6 GOTO 20150

POKE 59411,61

SZ=8Z-191

RETURN

77

A BASIC 6502 DISASSEMBELER
FOR APPLE AND PET

Michael J. McCann
28 Ravenswood Terrace
Cheektowaga, NY 14225

A disassembler is a program that ac-
cepts machine language (object code) as
input and produces a symbolic represen-
tation that resembles an assembler
listing. Although disassemblers have a
major disadvantage viz., that they can-
not reproduce the labels used by the
original programmer, they can prove
very useful when one is attempting to
transplant machine code programs from
one 6502 system to another. This ar-
ticle describes a disassembler program
written in Commodore BASIC.

The disassembler (see listing and sam-
ple run) uses the mnemonics listed in
the "Best of MICRO", on page 176A. The
output is in this format: (address)
(byte#1) (byte#2) (byte#3) (mnemonic)
(bytes #2 and #3)

The address is outputted in decimal
(base 10). The contents of the byte(s)
making up each instruction are printed
in hexadecimal (base 16) between the
address and the mnemonic. In three
byte instructions the high order byte
is multiplied by 256 and added to the
contents of the low order byte, giving
the decimal equivalent of the absolute
address. This number is printed in the
(bytes #2 and #3) field. 1In two byte
instructions the decimal equivalent of
the second byte is printed in the
(bytes #2 and #3) field.

SAMPLE RUN

- RUN

START ADDRESS

? 64004

64004 4C TE E6 JMP

Programming Comments

Lines 10-40 initialize the BY% and MN$
arrays {(BY% contains the number of
bytes in each instruction and MN$ con-
tains the mnemonic of each instruction)

Lines 60-80 initialize the decimal to
hexadecimal conversion array (C0$)

Lines
dress

100-120 input the starting ad-

Lines 1000-1050 decimal to hexadecimal
conversion subroutine

Lines 3000-5030 do the disassembly

Lines 3010-3030 take care of illegal
operation codes

Line 3050 transfers control to one of
three disassembly routines, the choice
is determined by the number of bytes in
the instruction

Lines 6000-6290 contain the data for
the arrays

Although this was originally written in

Commodore BASIC, it will work with the
APPLESOFT BASIC of the APPLE computer.

59006

64007 AD OA 02 LDA 522

64010 FO 08

64012 30 o4

BEQ 8

BMI &4

78

1 REM A 6502 DISASSEMBLER
2 REM BY MICHAEL J. MCCANN
2 REM WILL RUN ON AN 8K PET OR AN APPLE WITH APPLESOFT BASIC

10 D

IM MN$(256)BY%(256),C0$(16)

20 FCR E=0 TO 255

30 R

EAD MN$(E),BY%(E)

40 NEXT E

60 F
70 R
80 N
100

110

120

120

140

150

1000
1010
1020
1030
1040
1050
3000
3005
3010
3015
3020
3030
3035
2040
3050
3060
3070
3075
3080
3090
4000
4010
4020
4030
4035
4ouo
4os50
4060
4070
4080
4090
5000
5010
5020
5025
5030
5050
5060
5070
5080

OR E=0 TO 15
EAD CO4$(E)
EXT E
PRINT CHR&$(147)
PRINT:PRINT "STAKT ADDRESS"
INPUT AD
PRINT
1=0
GOTO 2000
SX=INT(DC/16) Note: The two PRINT statements with
UN=DC~(SX¥16) an * are required by APPLESOFT to
SX$=C0$(SX) prevent the first output line from
UN$=CO$(UN) being mis-aligned. They may not be
HX$=SX$+UN$ required by the PET BASIC.
RETURN
IF I=16 THEN 5050
1=1+1
IB=PEEK(AD)
IF MN$(IB)<>"NULL" GOTO 3050
DC=IB:GOSUB 1000
PRINT AD;TAB(8) ;HX$;"*"
AD=AD+1
GOTO 5030
ON BY%(IB) GOTO 2060,3090,4050
DC=1B:GOSUB 1000
PRINT AD;TAB(8);HX$;TAB(17);MN$(IB)
AD=AD+1
GOTO 5020
DC=IB:GOSUB 1000
B1$=HX$
DC=PEEK(AD+1) :GOSUB 1000
B2$=HX$
PRINT AD;TAB(8);B1$;" ";B2$;TAB(17) ;MN$(IB);TAB(21) ;PEEK(AD+1)
AD=AD+2
GOTO 5030
DC=IB:GOSUB 1000
B1$=HX$
DC=PEEK(AD+1) : GOSUB 1000
B2$=HX$
DC=PEEK(AD+2) :GOSUB 1000
B3$=HX3$
OP=PEEK(AD+1)+(PEEK(AD+2)%¥256)
PRINT AD;TAB(8);B1$;" ";B2$;" ";B3$;TAB(17);MN$(IB);TAB(21);0P
AD=AD+3
GOTO 32000
INPUT A
PRINT
I=0
GOTO 3000
79

6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

BRK,1,0RAIX,2,NULL,O,NULL,O,NULL,0,0RAZ,2,ASLZ,Z,NULL,O,PHP,1
ORAIM,Z,ASLA,1,NULL,O,NULL,0,0RA,3,ASL,3,NULL,O,BPL,2,0RAIY,2
NULL,O,NULL,O,NULL,0,0RAZX,Z,ASLZX,Z,NULL,O,CLC,1,0RAY,3
NULL,O,NULL,O,NULL,0,0RAX,3,ASLX,3,NULL,O,JSR,3,ANDIX,2,NULL,O
NULL,0,BITZ,2,ANDZ,2,R0LZ,2,NULL,0,PLP, 1,ANDIM,2,ROLA, 1,NULL,0
BIT,3,AND, 3,ROL,2,NULL,0,BMI,2,ANDIY, 2, NULL,0,NULL, 0, NULL,0
ANDZX,2,ROLZX,2,NULL,0,SEC, 1,ANDY, 3,NULL,0,NULL,0,NULL, 0, ANDX, 3
ROLX,3,NULL,0,RTI,1,EORIX,2,NULL,0,NULL,0,NULL,O0,EORZ,2,LSRZ,2
NULL,0,PHA, 1,EORIM,2,LSRA,1,NULL,0,JMP, 3,EOR, 3,LSR, 3,NULL,0
BVC,2,EORIY,2,NULL,0,NULL,0,NULL,0,EORZX, 2, LSRZX,2,NULL, 0
CLI,1,EORY,3,NULL,O,NULL,O,NULL,O,EORX,3,LSRX,3,NULL,0,RTS,1
ADCIX,2,NULL,O,NULL,O,NULL,O,ADCZ,Z,RORZ,Z,NULL,O,PLA,1,ADCIM,Z
RORA, 1,NULL,0,JMPI, 3, ADC, 3,ROR, 3,NULL,0,BVS,2,ADCIY,2,NULL,0
NULL,O,NULL,O,ADCZX,Z,RORZX,Z,NULL,O,SEI,1,ADCY,3,NULL,O,NULL,O
NULL,O,ADCX,3,RORX,3,NULL,O,NULL,O,STAIX,2,NULL,0,NULL,O,STYZ,2
STAZ,2,S8TXZ,2,NULL,0,DEY, 1,NULL,0,TXA,1,NULL,0,STY, 3,STA,3
STX,3,NULL,O,BCC,2,STAIY,2,NULL,O,NULL,O,STYZX,Z,STAZX,Z,STXZY,Z
NULL,O,TYA,1,STAY,3,TXS,1,NULL,O,NULL,O,STAX,3,NULL,O,NULL,O
LDYIM,2,LDAIX,2,LDXIM,2,NULL,0,LDYZ,2,LDAZ,2,LDXZ,2,NULL,0
TAY,1,LDAIM,Z,TAX,1,NULL,O,LDY,3,LDA,3,LDX,3,NULL,O,BCS,2
LDAIY,2;NULL,0,NULL,0,LDYZX,2,LDAZX,2,LDXZY,2,NULL,0,CLV, 1
LDAY,3,TSX,1,NULL,O,LDYX,3,LDAX,3,LDXY,3,NULL,0,CPYIM,Z,CMPIX,Z
NULL,O,NULL,O,CPYZ,2,CMPZ,2,DECZ,2,NULL,0,INY,1,CMPIM,2,DEX,1
NULL,O,CPY,B,CMP,B,DEC,3,NULL,O,BNE,Z,CMPIY,Z,NULL,O,NULL,O
NULL,O,CMPZX,Z,DECZX,2,NULL,0,CLD,1,CMPY,3,NULL,O,NULL,0,NULL,O
CMPX,3,DECX,3,NULL,O,CPXIM,Z,SBCIX,Z,NULL,O,NULL,O,CPXZ,2,SBCZ,2
INCZ,2,NULL,0,INX,1,SBCIM,Z,NOP,1,NULL,O,CPX,3,SBC,3,INC,3
NULL,O,BEQ,2,SBCIY,2,NULL,O,NULL,O,NULL,O,SBCZX,2,INCZX,2,NULL,O,SED,1
SBCY, 3,NULL,0,NULL,0,NULL, 0, SBCX, 3, INCX, 3,NULL,0
0,1,2,3,”,5,6,7,8,9,A,B,C,D,E,F

80

Apple Computer Inc.
10260 Bandley Drive
Cupertino, CA 95014

81

Inside the APPLE II 83
by Arthur Ferruzzi, a confirmed "computer nut" who owns a
number of 6502 microcomputers - assembled, kit, and
homebrew

A Worm in the APPLE 84
by Mike Rowe

Half a Worm in the APPLE; EDN Blasts the 6502 84
by Mike Rowe

APPLE Pi 85
by Robert J. Bishop

The APPLE II Power Supply Revisited 87
by Rod Holt

Printing with the APPLE II es

by C. R. (Chuck) Carpenter W5USJ

APPLE II Printing Update 92
by C. R. Carpenter

A Slow List for APPLE BASIC 94
by Bob Sander-Cederlof

An APPLE II Programmer's Guide* 96
by Rick Auricchio

APPLE Integer BASIC Subroutine Pack and Load 98
by Richard F. Suitor

APPLE II Variables Chart 102
by C. R. Carpenter

Ludwig von APPLE II 103
by Marc Schwartz - How to write music for the APPLE II

Machine Language Used in "Ludwig von APPLE II" 104
by C. R. Carpenter

Applayer Music Interpreter 1G5
by Richard F. Suitor

APPLE II Starwars Theme 113
by Andrew H. Eliason

Shaping Up Your APPLE 114
by Michael Faraday

Brown and White and Colored All Over 116
by Richard F. Suitor

* includes a perforated "tear-out" reference card
82

INSIDE THE APPLE 11

Arthur Ferruzzi
69 Hauman Street
Revere, MA 02151

If you've seen the colorful Apple II ads, you
know that this is a fun machine. However, with
a typical system price roughly equal to a trip
to Europe, I suspect that the real computer nuts
are going to let the wife and kids "byte" into
the fun features while they make use of the
Apple's extensive software and hardware power.
Let's look at the Apple II as a complete, yet
easily expandable, system on a board.

There's Memory

There are three rows of RAM memory sockets, each
of which will hold 4K or 16K bytes of dynamic
RAM for a maximum of U8K bytes of RAM. There
are six sockets each of which will hold 2K of
ROM. Four ROMs are supplied, containing a 6K
integer BASIC and a 2K System Monitor. The full
feature System Monitor supports commands that
examine and deposit data into memory, move and
cmmmbbﬂsﬁmmwwlwdmd&weﬂmm
on cassette, assemble and disassemble op codes,
run trace and single step programs, display and
modify 6502 registers, and perform hexadecimal
arithmetic. In addition, the monitor is chock
full of user accessible subroutines including a
floating point package and simulated 16 bit
microprocessor.

One of the more interesting possibilities for
the Apple II is expansion of the software in
ROM. The 8K supplied is in 2K byte 9316B ROM
chips. A check of the pinouts shows that these
ROMs are nearly identical to the 2716/2708
EPROM. Check the manual at your nearest Apple
dealer before you burn in your favorite version
of PASCAL, APL, or ANIMATION.

There's Video

The second 1K block of memory is shared by the
processor (during phase 2 of the clock) and the
display (during phase 1 of the clock, when it is
also refreshing every dynamic RAM chip on the

board) . Thus, the display is fast, and it is
colorful. Options are 24 lines of U0 upper -case
characters, or 40 x U0 graphies in 15 colors

plus four lines of text, or 40 x 48 graphics in
15 colors. Colors, point plotting and line
plotting are also accessible from BASIC. With
an 8K chunk of memory, you have high resolution
280 horizontal by 192 vertical graphics in four
colors, or 32 fewer vertical lines with four
lines of text at the bottom of the screen. The
speed of the video display and the 6502 itself
as well as the machine language subroutines in
the monitor and available on cassette tape make
the 8K graphics extremely useful.

There's 1/0

First, of course, is a- full typewriter style
ASCII keyboard and a 1500 bits per second cass-
ette interface. But these are only the obvious
I/0 devices. 1In addition there are four 8 bit
analog inputs which measure resistance by timing
a variable delay generator. Normally set up as
four game paddles, you might set them up as two
joysticks to control the parameters in an inter-
active system which provides feedback via the

display.

Before considering some of the I/0

83

possibilities, it is worth noting that the Apple
II has a lot of address decoding done directly
on the board. For example, writing to the eight
addresses (058--COS5F sets or clears four TIL
output lines. Reading from addresses C061--C063
tests three switch inputs. Further, . keyboard
input and strobe, cassette input and output,
speaker ‘output, paddle timers, and eight "soft-
ware switches" which set the graphics and text
modes, are all accessible by reading and writing
specific memory locations. Thus, all ports may
be set or tested by user programs including BAS-
IC (peek and poke).

If you want to expand the system, there are
eight peripheral connectors on a 50 pin (x .10")
fully buffered bus. Accessing any address in
the range C800--CFFF sends an I/0 strobe to pin
20 on all cards (0 through 7). Accessing add-
resses C1xx--C7xx sends an I/0 select pulse to
pin 1 on the appropriate cards (1 through 7).
Accessing addresses C(C08x--COFx sends a device
select pulse to pin 41 on the appropriate card
(0 through 7). Thus, the 8 peripheral cards are
fully decoded, saving the overhead of address
decoding 1logic. Provision is made for daisy-
chained interrupt and DMA. Presumably Apple
will be supplying low cost peripherals making
use of these features.

There's the Power Supply

While the peripheral bus makes it easy to design
custom I/0 devices, the major limitation appears
to be the power supply. It is a switching type
supply where the AC is rectified and sent to an
oscillator whose frequency varies with the load
so that the 45 volt DC line is never more than
3% off. The other voltages basically respond to
the loading on the +5 volt line and are not as
well regulated. I/0 cards should draw less ‘than
1.5 watts and the power cord MUST BE VERY WELL
GROUNDED.

The Bottom Line

In terms of serious applications, here is what
you get: a fast 6502 microprocessor with all of
its inherent features, U4 to U8K of RAM, a fast
6K integer BASIC in ‘ROM, a classy 2K System Mon-
itor in ROM, a "transparent" 1K color video with
graphics, 8K color graphics, an ASCII keyboard
with interface, four analog inputs, a fast cass-
ette interface, three digital I/0 bits, an audio
"beeper", eight decoded peripheral connectors, a
stylish package, and a (small) power supply.

Just add up what all that good stuff costs sepa-
rately. Then, if your application falls within
or near these specifications, the Apple II will
be a better buy than a homebrew system. 1In
shopping for a computer, remember to try before
you buy, from a reputable dealer. The Apple II
is up and running at many computer stores a-
cross the country. (For the dealer nearest you
see the dealer list on page 16 of the October
1977 issue of BYTE, or write.to Apple Computer
Inc., 20863 Stevens Creek Boulevard, Cupertino,
CA 95014.) With a little savvy and careful
picking, we can have the fine products we want
and put the squeeze on the lemons.

A WORM IN THE APPLE?

Mike Rowe
P.0. Box 3
S. Chelmsford, MA 01824

There may be a serious problem hidden
deep within the Apple II according to
John Conway and Jack Hemenway of EDN
magazine. As part of their system de-
sign project based on a bare-board
Apple - "Project Indecomp" -~ they tried
to interface a 6820 PIA to the Apple,
and uncovered a potentially serious
problem. The normal way to operate a
6502 based system is to provide an ex-
ternal clock [phase 0] to the 6502
which then generates two non-overlap-
ping clock signal [phase 1 and phase 2]
which are used to control all system
timing. For some reason, the design of
the Apple 1I violated this basic clock
scheme and uses the phase 0 external
clock instead of the 6502 generated
phase 2 clock. While these two clocks

are very similar, they are not identi-
cal. Phase 1 and phase 0 have an over-
lap of about 50 nanoseconds. For many
parts of the system this is not import-
ant, as indicated by the fact that the
Apple II works. For other devices,
however, such as the 6820 PIA, this
difference 1is critical to the extent
that the device simply will not work.
A report in EDN scheduled for 20 May
will cover this problem in detail, and
we will try to get more info for the
next issue of MICRO. Is the problem
serious? Critical? Fatal? It is
probably too early to judge the effect
of this problem. It may not have an
adverse effect in many systems. It may
be possible to correct. Or it may be a
very serious system problem.

HALF A WORM IN THE APPLE

Mike Rowe
P.0. Box 3
S. Chelmsford, MA 01824

Last issue we reported a potential
problem that had been discovered in the
Apple II, relating to using PIA'a. The
problem had been uncovered by the staff
of EDN in the course of developing a
system based on an Apple II board. The
matter is not totally resolved, but the
following is what we have heard.

I called Steve Wozniak of Apple and
asked about the problem. He said that
he had sent a chip to EDN which had
cleared up the problem. He did not in-
dicate that there was any more to it.

I then talked to John Conway of EDN.
He maintained that a problem still does
exist with Apple II interfacing to 6520
or 6522 PIAs. It can be done, but re-
quires the addition of a chip to slow
down the phase 0 signal to make it the
equivalent of the phase 2 signal. The

84

PIA can not be directly interfaced, as
would normally be expected in a 6502-
based system. John stated that the
chip required costs about $7.00.

Another angle on the picture was also
reported to me by John. He had found a
company on the West Coast that is mak-
ing interfaces for the Apple II. The
engineer there had discovered the same
problem.

There is a fairly complete discussion
of the problem and the solution in the
May 20, 1978 edition of EDN. If anyone
has additional information to shed on
the situation, MICRO will be happy to
publish it. The problem does not seem
to be all that serious, and we do not
want to dwell on it, but we hope that
this discussion has prevented some of
our readers from going nuts trying to
add a PIA to their Apple II.

APPLE PI

Robert J. Bishop
1143 W. Badillo, Apt E
Covina, CA 91722

Everyone knows that the value of Pi is about
3.1416. 1In fact, its value was known this accu-
rately as far back as 150 A.D. But it wasn't
until the sixteenth century that Francisco Vieta

succeeded in calculating Pi to ten decimal

places.

Around the end of the sixteenth century the
German mathematician, Ludolph von Ceulen, worked
on calculating the value of Pi until he died at
the age of 70. His efforts produced Pi to 35
decimal places.

During the next several centuries a great deal
of effort was spent in computing the value of PI
to evern greater precision. In 1699 Abraham
Sharp calculated Pi to 71 decimal places. By
the mid 1800's its value was known to several
hundred decimal places. Finally, in 1873, an
English mathematician, Shanks, determined Pi to
707 decimal places, an accuracy which remained
unchallenged for many years.

I was recently rereading my old copy of Kasner &
Newman"s Mathematics and the Imagination

I was recently rereading my old copy of Kasner &

Newman's Mathematics and Imagination (Simon &
Schuster, 1940), where I found the series expan-

sion:
i 4(_” K+t
(zk-1) 239*

k=1

e -1~
2kl
N

T=

The book indicated that this series converged
rather quickly but "... it would require ten
years of calculation to determine Pi to 1000
decimal places." Clearly this statement was
made before modern digital computers were avail-
able. Since then, Pi has been computed to many
thousands of decimal places. But Kasner &
Newman's conjecture of a ten-year calculation
for Pi aroused my curiousity to see just how
long it would take my little Apple-II computer
to perform the task.

Program Description

My program to compute the value of Pi is shown
in Figure 1. It was written using the Apple II
computer's Integer BASIC and requires a 16K
system (2K for the program inself; 12K for data
storage). The program is fairly straightforward
but a brief discussion may be helpful.

The main calculation loop consists of lines 100
through 300; the results are printed in lines
400 through 600. The second half of the listing
contains the multiple precision arithmetic sub-
routines. The division, addition, and subtrac-
tion routines start at lines 1000, 2000, and
3000, respectively.

In order to use memory more efficiently, PEEK
and POKE statements were used for arrays instead
of DIM statements. Three such arrays are used
by the program: POWER, TERM, and RESULT. Each
are up to 4K bytes long and start at the memory
locations specified in line 50 of the program.

85

The three arrays mentioned above each store par-
tial and intermediate results of the calcula-
tions. Each byte of an array contains either
one or two digits, depending on the value of the
variable, TEN. If the number of requested
digits for Pi is less than about 200, it is
possible to store two digits per byte; other-
wise, each byte must contain no more than one
digit. (The reason for this distinction occurs
in line 1070 where an arithmetic overflow can
occur when trying to evaluate higher order terms
of the series if too many digits are packed into
each byte.)

The program evaluates the series expansion for
Pi until the next term of the series results in
a value less than the requested precision. Line
1055 computes the variable, ZERO, which can be
tested to see if an underflow in precision has
occurred. This value is then passed back to the
main program where, in line 270, it determines
whether or not the next term of the series is
needed.

Results

Figure 2 shows the calculated value of Pi to
1000 decimal places. Running the program to get
these results took longer than it did to write
the program! (The program ran for almost 40
hours before it spit out the answer.) However
it took less than two minutes to produce Pi to
35 decimal places, the same accuracy to which
Ludolph von Ceulen spent his whole life striving
for!

Since the program is written entirely in BASIC
it is understandably slow. By rewriting all or
part of it in machine language its performance
could be vastly improved. However, I will leave
this implementation as an exercise for anyone
who is interested in pursuing it.

Note: You must set HIMEM:4096.
Figure 1.
Program Listing
SLIST

8 REM ik APPLE-PI #oek
WRITTEN BY: BOB BISHOFP

5 CALL -936: YTAB 18: TAB 5: PRINT
"HON MANY DIGITS L0 YOU WANT

19 INPUT SIZE
15 CALL -936
M TEN-LO: IF SIZED280 THEN 58

3 TEN-L88: SIZE=(SIZEH)/2

53 POMER=489: TERH=8192: RESULT=
12288 T

68 DIV=1880: ADD=2080: SUE=3060:
INIT=4888: COPY=5888

78 DIH CONSTANT (23 CONSTRNT (LY
=25: CONSTANT(23=233

188 REM MAIM LO0P

15 FOR PRSS=1 1D 2

156 GOSUE IMIY

26 GOSUE CORY

28 g'rl;?IHT:TEFﬁ: DIVIDE=EXF: GOSUR
38

IF SIGHDE THEN GOSUE ADD

IF SIGHIE THEN GOSUE SUB
ERP=EXP+2 SIEN=-S 10N

POINT = POER: DIVIDE=DONSTRNT
FRSSY: BOSLE DIV

IF PRSS=2 THEM GOSUE DIV

IF ZER(I6 THEN 203

MEXT PRSS

REM PRINT THE RESULY

PRINT : PRINT

FRINT “THE VRLUE OF PI TD

; CTER/L1UB+1 »4SI2E: * DECIMAL BLAC
ES:": PRINT ‘

PRINT PEEK CRESULTX " %

FOR PLACE=RESULT+L TO RESULT+
SIZE

IF TEM=18 THEN 578

£§.PEEK (PLACEX{13 THEN PRINT
PRINT PEEK (PLACEY;

MEXT PLRCE

PRINT

ENG

REM DIVISION SUBROUTIME
1618 DIGIT=0: ZERD=0

1828 FOR PLRCE=FOINT TO POINT+S1ZE
41638 DIGIT=RI6IT+ PEEK (PLACE)
1848 QUOTIENT=DIBIT/DIVIDE

1858 RESIDUE=DIGIT MOD DIVIDE

1855 ZERD=ZERD OR (QUOTIEMTHRESILUE

168 POKE PLACE, QUOTIENT

1676 DIGIT=TENCRESIDUE

1888 NERT PLACE

1896 RETURN

2086 REM RUDITION SUBROUTINE
20168 CARRY=8

26028 FOR PLACE=SIZE TO B STEF -1

2838 SUR= PEEK (RESULT+PLACE)+ PEEK
CTERM+PLACE 2+CARRY

2046 CARRY=H

2858 IF SUMCTEM THEN 2859

2068 SUR=SUM-TEN

2878 CRRRY'=1

2808 POKE RESULT+FLACE, SUM

2098 MEXT PLACE

2188 RETURN

3080 REM SUBTRRCTION SUBROUTINE

308 LOAN=13

3028 FOR PLACE=CIZE TO @ STEP -1

g8

EEfENE ¥

BRE8Y €T 9%

(Ev’en "Apple Pi" isn't simple any more! - Neil [N

Lipson of the Philadelphia Apple Users Group
writes that "The Pi article by Bob Bishop (MICRO
6:15) is missing one thing. Add HIMEM:4096."
But, that's not all! John Paladini writes that:
"The value of Pi was not computed to 1000 deci-
mal places, but rather 998. Such inaccuracies
occur when computing a series where billions of
calculations are required. My best guess is that
in order to calculate Pi to 1,000 places using
the given series one would have to compute to

1,004 places. The last two digits should ri:-]dj

\89 not 96."

86

3835 DIFFERENCE= PEEK (RESUL THRFLACE:
= PEEX (TERMSPLACE X-LOAN

38365 LORN=8

3858 TF DIFFEREMCED=0 THEM 28tk

3068 D IFFEREMCE=DIFFERENCESTEN

3878 LoAt=1 ,

3008 FOKE RESULTHPLACE. DIFFERENCE

2898 MERT PLACE

3188 RETURNM

4800 REM INIVIALIZE REGISTERS

4818 FOR PLLACE=R8 7O S17E

4626 FOKE POKER+FLACE, 8

4835 POKE TERMHPLACE, &

4845 IF PASS=1 THEN POKE RESULT+
PLRCE, B

4858 NEXT PLACE

4868 POKE POMER: 16/PASS T 2

4876 IF PASS=1 THEM DIVIDE=S

4888 IF PRSS=D THEN DIYIDE=239

4898 POINT=PONER: GOSUE DIV

4188 EXP=1: SIGN=3-1PESS

4148 RETURM

08 REM COPY "FOWER™ INTO “TERM®

2816 FOR PLACE=8 T0 SIZE

580 POKE TERMHFLACE. PEEK (POMER+
PLACE

SE38 NEST FLACE

5848 RETURM

THE YALUE OF PI TO 1868 DECIMAL PLACES:

3. $415026535897932384626433632 7950280419
716039937518582697 4944532307 81646 256208
29B67B03482534211 70679521 4508651 32823066
478938446095505622 31725359485 12548111745
B284182781938521.18555%644622.948954930381
S6MIBE1BY7566T9334461284756482237867831
602712813091 45648566923460248618454 32664
8213383687 268240 4127372456 7806606315568
174881 528920002825 254R91 71526436 78925963
60811338526548020466521 384146351 94151160
43307 P3RS ISR 95209210611 7381932641
7951831 1854807946 237996274956 7 AT BESPSRT
24892275204 83011 9491 2983367336 244P65664
3086021 394946 3002247 371 907021 7986024 3702
FPBRR17ATE2R3 P67 5238467981846 766940851
SO 14526 10627 7EST 71242757 TESEN
173637178721 468440001.7249534 38146549585
3718567 222 TICE0ESE 235428199561 121290219
68648344181 3081 3629774771 205960510 870721
134999000837 297884 9951059731 732016096318
2582445005 39600E30264252230E2523446850
392619311881 718160021 3783675280650753328
B3B2BE1 71776691 473625952524 90428755468
¢ S95E B0 3BRIIS 7B 7593751957 7B185 77 005
3217122688661 2001 32 78766111955a921642019
r .

(8}

Figure 2.
Pi to 1000 Decimal Places

THE APPLE II POWER SUPPLY
REVISITED

Rod Holt
Chief Engineer
Apple Computer Inc.
20863 Stevens Creek Blvd., B3-C
Cupertino, CA 95014

Your review of the Apple II ("Inside
the Apple II" by Arthur Ferruzzi,BESTof
MICRO,p.83) was most gratifying. How-
ever, your comment about the "small"
power supply invites a reply.

The power supply has no function other
than running the Apple II and its pe-
ripherals, and as it does this very
well, then what's "small"? Apple Com-
puter is far enough along in peripheral
card development to state categorically
that with an EPROM card, a ROM card, a
parallel printer card, a floppy disk
card, and several more all plugged in,
the power supply isn't even breathing
hard.

We do. recommend that users keep their
designs to a reasonable minimum power.
But the reason for this is the same as
one of the reasons Apple designed a
switching regulator in the first place:
to keep temperature rises to a minimum.
The general rule of thumb is that a 25
degree C increase in ambient will drop
the mean time between failures by a
factor of 10. For the user, the watts
saved mean literally thousands of hours
more of trouble free system operation.
The switcher design cuts the input pow-
er nearly in half over conventional
regulators and the overall temperature
rise is reduced by approximately 25 C.

87

And, of course, the use of low-power
schottky and a tight and economic hard-
ware design is key as well.

A second point needs to be made. It's
quite common to have well over a thous-
and dollars in semiconducters in an
Apple II system. The Apple switcher is
designed to protect those semiconduct-
ers under all fault conditions (includ-
ing possible failure modes internal to
the power supply itself). Never has an
Apple II been damaged by its own power
supply. In contrast, Apple can docu-
ment many cases of blown RAM and other
IC's where customers have used homemade
or "off the shelf" power supplies. See
the sad story in EDN, November 20, 1977
page 232. There are many more such sad
stories. The power supply manufactur-
ers of the world are just beginning to
see that a supply failure means much
more than just an equipment shut-down
nuisance. Thus it's important to know
what happens when, for example, the +12
volt supply is shorted to the -5 volt
supply. What happens to the +5 volts?
With the Apple switcher, all supplies
neatly go to zero, and they all recover
smoothly when the short is removed.

I close by murmuring -

"Small is Beautiful".

PRINTING WITH THE APPLE II

C. R. (Chuck) Carpenter W5USJ
2228 Montclair Place
~ Carrollton, TX 75006

Hardcopy output from your Apple II is a
practical reality. All you need is a
TELPAR thermal printer, a simple one-
transistor adapter circuit and a
machine language printing routine. The
printing routine slows the data rate
down to 110 (or 300) baud and directs
the data stream to ANO (the game pad-
dle connector - annunciator output,
port zero). I have the TELPAR PS-40-3C
(now PS-48) connected to my Apple II
and I am printing everything from Bio-
rhythms to Manpower Planning programs.
Here are the details for hooking up the
printer.

The TELPAR PS-40-3C

The PS-40 (Photo 1) is a 48 column
thermal printer using 5.5 inch width
paper. The model I have is a 3 chip F8
controlled unit. The current, more
compact models use a single chip

F8/3870. Inputs are provided for
serial TTL, RS 232 and 20 MA current
loop. You can also connect a parallel

port to the printer and software con-
trollable options are available. The
printer can be used as the only I/0 if
a keyboard is connected as the parallel
source. The paper is not too expensive
at $3.00 per 164 foot roll.

Power supply voltages are critical and
‘several are required. (This is the
only shortcoming I found with this gen-
eral purpose printer.) Good regulation
is a must from your power supply. Es-
pecially the printhead supply voltage
(16). Excessive positive deviations
here can blow the printhead. Telpar
can supply a switching type power sup-
ply that will do the job. The connec-
tions to the 56 pin edge connector are
shown in Figure 1. The connector act-
"ually has numbers and letters to des-
ignate pins. Somewhere along the line,
numbers were assigned to both sides.
Be sure you transpose the numbers cor-
rectly and connect it to the circuit
board properly. Telpar has good repair
service, but it still takes time.

~shown in Figure 3.

88

Interface Adapter

All that is needed to connect the Apple
IT to an RS 232 printer input is the
adapter circuit shown in Figure 2 (from
an Apple application note). I built
this circuit on a 16 pin IC header and
plugged it in. There is some inconven-
ience if you want to use the game pad-
dles too, but I think there is a way
around this if you choose to do some
rewiring.

You can get the =12 volts for this cir-
cuit from the main power connector. A
short lead and a small connector pin
will work. If the pin is small enough,
it will slide down inside the -12 volt
terminal on the power connector. There
are other places like the keyboard
where -12 volts is also available. Use
caution making this connection.

Making it Print

Now the only part left is a way to get
the data slowed down and directed to
the ANO output port. Apple has taken
care of this detail with the routine
You can key in this
routine and save it on tape. Each time
you have a printing task the program is
easily loaded using Apple's system mon-
itor commands. I've used it with mach-
ine language programs and both forms of
BASIC: Apple's Integer BASIC and
Applesoft Floating Point 8K BASIC. The
routine is called as follows:. \

$380G and RETURN in machine language

CALL 896 in Apple Integer BASIC

X=USR(896) in Applesoft 8K BASIC
Note: A line number is not needed to

call the print routine. (380 hex = 896
decimal).

Using RESET will stop the print routine
in machine language and in Apple Inte-
ger BASIC (return to BASIC with the
soft entry CONTROL-C). With Applesoft

in RAM, exiting via RESET and re-entry
the soft way with OG works sometimes
but usually causes a gliteh in BASIC
and messes up the program. I avoid
this problem by waiting to do any
printing until the last thing. Any
further changes are made at the slower
speed. I would speculate that things
like this will clear up when Applesoft
is in ROM. I'm still looking for a way
to get out of the print routine direct-
ly from the BASIC program.

The Tale is Told

As I indicated at the beginning, I'm
printing most anything I want to. The
5.5 inch paper width presents some lim-
itations but most programs can be for-
matted to work okay. There are several
features and details I've alluded to
but an article to do them justice would
take several issues of MICRO to cover.

Telpar has a technical paper that des-
cribes them and would be happy to send
you one, For a simple, effective, gen-
eral purpose printer, I have not found
a better choice than my Telpar thermal.
I think you would find it a good choice
too.

For more info, write to:

Telpar Inc.

4132 Billy Mitchell Road
P.0. Box 796

Addison, TX 75001

[Editor's Note: One problem I have
found with this thermal printer is that
the print is light blue. This can
cause great difficulty if you want to
copy the output since most xerox-type
copiers and many plate-making films are
"blind" to light blue.]

Photo 1 (by Jim Chamberlain)

APPLE II and TELPAR Thermal Printer

18v
Gnd

Stand
By

+ 18v

Logic
Gnd.

+ 16v

- 12v

Up or
Component Side

B A
1
1 1
2 2
3 3
L 4 Serial In
!rf 5 5 (RS 232)
f{;_ 6 6
//’ —7 7 Serial In
8 8 (TTL)
9 9
i0 10
11 11
—12 12
13 13
14 *—14 1
5 s |1
16-J 16—40
17 17 &
18 18
19 19
20—¢ 20
21 21 — + 5v
22 22
—23 23 H Gnd(16v)
24 24
— 25 25
26 26
27 27
28 28— + 12v
Figure 1

PS-U40 Connector Diagram:
Input and Power Connections

=12 v

[

DYy]

P9 Serial Out

2700 (RS 232)

P16

L N

B O
Cai b 1 :E':l'

g o 0

SR E XTI

o Serial In
e (ANO)

A N TR AR YY)

I
Ot}

ey

%

WA
LR
e
et

[o 000 (T 60 T 00 T

H
S
i

O e

i

SuRnN
AA]

o R
b

R

ey ;3-; 1

L
AR sY)

Lo T
‘1:‘

Q0

g
-

H '.:_-1

+5v

F)
o W) T gt
L]

Resistors are in Ohms, 1/2 Watt, 5%
P No's refer to game connector pins -
P9 and P16 are used a tie points.

Figure 2

Single Transistor Adapter Circuit
and Interface

Apple II ANO output routine in machine
language to provide serial data output

at 110 and 300 baud. Change location [Note: This listing and dump were made
$3B4 to $4D for 300 baud. on the Telpar printer.]

Figure 3

Machine Language Print Routine
and HEX Dump

91

APPLE II PRINTING UPDATE

C. R. (Chuck) Carpenter W5USJ
2228 Montclair Place
Carrollton, TX 75006

"printing with the Apple II" [Page #88]
included information that has been re-
vised. Since the article was written,
I've improved some things and I'd like
to pass them along.

The Adapter Didn't

After using the adapter circuit for a
couple of months, I took a good look at
what was happening. The conclusion was
nothing! Initially, it didn't work
when I connected it to the RS-232 re-
ceiver on the PS-U40. I connected it to
the serial TTL input (pin A7) and it
worked. The voltage swing wasn't ex-
cessive (clamped with some diodes), so
I left it hooked-up. Should have been
a-clue. But at the time I didn't see
it, and anyway, it worked.

During one of our (infrequent) snowed-
in days here in Texas, I had time to
think about it. There wasn't any ap-
parent reason not to hook it up direct-
ly; and I did. It worked the way it
should so I had a no-interface-required
computer to printer system. When I re-
ceived my new Apple Operator's Manual I
noticed a new interface circuit, not
the one I used as originally provided.

All that is needed is to connect a sig-
nal lead and ground from the Apple to
the printer. The signal lead connects
to Pin 15 of Apple's game paddle con-
nector. Also to Pin A7, TTL serial
data in, on the printer. I soldered
the game paddle connector to the 16 pin
header. No other connections needed.

Now You Can Start and Stop

Ted Spradley, a programmer/engineer at
work, helped me with the machine lang-
uage print program. His analysis sug-
gested restoring the page zero regis-
ters to make the print routine stop.
As you more experienced programmers
would know, it worked. I rewrote the
program to store and restore the page
zero data and now the routine turns on
and off under program control. The
program, shown in Figure 1, was a re-
velation to me. Again, my thanks to
Ted for his assistance.

92

The Blues Are Gone

Most of my programs are printed on the
paper that turns blue (and fades).
Telpar has a black on off-white paper
now. This new paper makes a much
sharper copy too. The blue paper was
also susceptible to smearing. This did
not help the copy quality either,
photographically or Xerographically.

There!l Now that the problems are re-
solved, what's holding you back? Let's
get printing.

Author's Note: Even if you don't have
a printer, the print routine is useful.
Use it to slow the screen speed down.
This way you can read a listing during
a slow scroll.

Getting Decimal Values
From Hex Data

For some other program, POKE was used
to enter machine 1language from BASIC.
I did this for the print routine. All
the HEX values have to be converted to

decimal. At first I did this with the
TI Programmer. Then I "discovered"
what PEEK is all about. A BASIC pro-

gram to print the decimal values simp-
lifies the job. Convert the first and
last addresses (to do a range of ad-
dresses) to their decimal values
These values are 875 and 967 for the
print program. Then use them in a FOR-
NEXT routine like this:

100 FOR I=875 TO 967:PRINT PEEK(I);:
PRINT" ";:NEXT I:END

This reduced a two hour job to about
ten minutes. Hooray for progress.

Listing HEX Dump

RS ZE LIF
S0 CE BT ETH
RS 37 LIA
=00 CF B3 =TH
EIEE, LI
%? STH
£37

KRN

-1
i

£
RN

s
AR E

T 0 Tt

T (T

Lon iR e B

IO

=
L1
~
i
=]

=5 A7 =TH
i RETS

LER}
oh
LA
-
H
H
]

cE AT B LIRS FRIAS
i FLA
O iF =D

=t
bt Ty
Dl ay]
[e
A
pEy
]

Ch ®#36BG ¥3TEG
FFIFG >CALL 875 >CALL 894
HEOE 1SP=USR(875) JEP=USR(894)

£ T
IR 8
-
o
s
:"n“

0 0 b T D O T
-
[ap]
l——-
[y
e n]

S R e JER B Print Routine
L LIF :
o H Sk START Print STOP Print
HT LIA
F
5

;I
fan]
i
=

b CLC
- b FHA Type in one of above and then type
H- B . FETEG RETURN to activate the command.

- Al HES

A
FHD ¢
HY

(e

)
LER)

X]
bt
[}
X 3]

e LA

[En]

% .__[! G o

AN I
R R

l

from Apple Monitor
from Integer BASIC
from Applesoft BASIC

B LDR 005 >

en

(K
o
I
I X £

X

Hr

]

LN

[S}

Change 03BY4 to 4D for 300 baud.

-
o}
A
==
#
1
by

LT T O T T T T
o g 0
T}

Lo

Ll]
[RN

1 71

4

Tt

[¥2]

tr

a1

FA

T T T T
T
D
AT
[
A LM
ag
0
o B2
Al

0T T e T e T
y SRR
=
=

AR B
[B ke R n]

T T T T ST T T
i
-—
-
m
4
153
1:1
T
[x]

—
£

R
;
i
T

H
il

FIi EBEL FEZCS
Figure 1

Listing and HEX Dump of Machine Language Print Routine

93

A SLOW LIST FOR APPLE BASIC

Bob Sander-Cederlof
8413 Midpark Road No. 3072
Dallas, TX 75240

One of the nicest things about Apple
BASIC is its speed. It runs circles a-
round most other hobby systems! Yet
there are times when I honestly wish it
were a little slower.

Have you ever typed in a huge program,
and then wanted to review it for er-
rors? You type "LIST", and the whole
thing flashes past your eyes in a few
seconds! That's no good, so you list
it piecemeal -- painfully typing in a
long series like:

LIST 0,99
LIST 100,250

LIST 21250,21399

As the reviewing and editing process
continues, you have to type these over
and over and over . . Ouch!

At the March meeting of the Dallas area
"Apple Corps" several members expressed
the desire to be able to list long pro-
grams slowly enough to read, without
the extra effort of typing separate
commands for each screen-full. One
member suggested appending the series
of LIST commands to the program itself,
with a subroutine to wait for a car-
riage return before proceeding from one
screen-full to the next. For example:

9000 LIST 0,99:GOSUB 9500
9010 LIST 100,250: GOSUB 9500

9250 LIST 21250,21399:GOSUB 9500
9260 END
9500 INPUT A$:RETURN

While this method will indeed work, it
is time-consuming to figure out what
line ranges to use in each LIST com-
mand., It is also necessary to keep
them up-to-date after adding new lines
or deleting old ones.

94

But there is a better way! I wrote a
small machine language program which
solves our problem. After this little
64-byte routine is loaded and activated
the LIST command has all the features
we wanted.

1. The listing proceeds at a more lei-
surely pace, allowing you to see what
is going by.

2. The listing can be stopped tempor-
arily, by merely pressing the space
bar. When you are ready, pressing the
space bar a second time will cause the
listing to resume.

3. The listing can be aborted before
it is finished, by typing a carriage
return.

The routine as it is now coded resides
in page three of memory, from $0340 to
$037F. It is loaded from cassette tape
in the usual way: #340.37FR.

After the routine is loaded, you return
to BASIC. The slow-list features are
activated by typing "CALL 887". They
mag be de-activated by typing "CALL
878" or by hitting the RESET key.

How does it work? The commented assem-
bly listing should be self-explanatory,
with the exception of the tie-in to the
Apple firmware. All character output
in the Apple funnels through the same
subroutine: COUT, at location $FDED.
The instruction at $FDED is JMP ($0036)
This means that the -~ddress which is
stored in locations $0036 and $0037 in-
dicates where the character output sub-
routine really is. -Every time you hit
the RESET key, the firmware monitor
sets up those two locations to point to
$FDF0, which is where the rest of the
COUT subroutine is located. If char-
acters are supposed to go to some other
peripheral device, you would patch in
the address of your device handler at
these same two locations. In the case
of the slow-list program, the activa-
tion routine merely patches locations
$0036 and $0037 to point to $0340. The
de-activation routine makes them point
to $FDFO again.

Every time slow-list detects a carriage point ($E003). If you have typed a

return being output, it calls a delay space, slow-list goes into a loop wait-
subroutine in the firmware at $FCA8. ing for you to type another character
This has the effect of slowing down the before resuming the listing.

listing. Slow-list also keeps looking
at the keyboard strobe, to see if you That is all there is to it! Now go

have typed a space or a carriage re- turn on your Apple, type in the slow-
turn. If you have typed a carriage re- list program, and list to your heart's
turn, slow-list stops the listing and content!
jumps back into BASIC at the soft entry

0340 ORG $0340

ROUTINE TO SLOW DOWN APPLE BASIC LISTINGS

0340 C9 8D SLOW CMPIM $8D CHECK IF CHAR IS CARRIAGE RETURN
0342 DO 1A BNE CHROUT NO, SO GO BACK TO COUT

0344 48 PHA SAVE CHARACTER ON STACK

0345 2C 00 CO BIT $C000 TEST KEYBOARD STROBE

0348 10 OE BPL WAIT NOTHING TYPED YET

O34A AD 00 CO LDA $C000 GET CHARACTER FROM KEYBOARD

034D 2C 10 CO BIT $C010 CLEAR KEYBOARD STROBE

0350 C9 AO CMPIM $A0 CHECK IF CHAR IS A SPACE

0352 FO 10 BEQ STOP YES - STOP LISTING

0354 Cc9 8D CMPIM $8D CHECK IF CHAR IS A CARRIAGE RETURN
0356 FO 09 BEQ ABORT YES - ABORT LISTING

0358 A9 00 WAIT LDAIM $00 MAKE A LONG DELAY

0354 20 A8 FC JSR $FCA8 CALL MONITOR DELAY SUBROUTINE
035D 68 PLA GET CHARACTER FROM STACK

035E 4C FO FD CHROUT JMP $FDFO REJOIN COUT SUBROUTINE
0361 4C 03 EO ABORT JMP $E003 SOFT ENTRY INTO APPLE BASIC
0364 2C 00 CO STOP BIT $C000 WAIT UNTIL KEYBOARD STROBE

0367 10 FB BPL STOP APPEARS ON THE SCENE
0369 8D 10 CO STA $C010 CLEAR THE STROBE
036C 30 EA BMI ~ WAIT UNCONDITIONAL BRANCH

SUBROUTINE TO DE-ACTIVATE SLOW LIST

036E A9 FO OFF LDAIM $FO RESTORE $FDFO TO
0370 85 36 STAZ $36 LOCATIONS 36 AND 37
0372 A9 FD LDAIM $FD

0374 85 37 STAZ $37

0376 60 RTS

SUBROUTINE TO ACTIVATE SLOW LIST

0377 A9 40 ON LDAIM $40 SET $0340 INTO

0379 85 36 STAZ $36 LOCATIONS 36 AND 37
037B A9 03 LDAIM $03

037D 85 37 STAZ $37

037F 60 RTS

SYMBOL TABLE
ABORT 0361 CHROUT 035E OFF 036E ON 0377
SLOW 0340 STOP 0364 WAIT 0358

SYMBOL TABLE
SLOW 0340 WAIT 0358 CHROUT 035E ABORT 0361
STOP 0364 OFF 036E ON 0377

95

AN APPLE-II PROGRAMMER'S GUIDE
(You Can Get There From Here!)

Rick Auricchio
59 Plymouth Avenue
Maplewood, NJ 07040

Most of the power of the APPLE-II comes
in a "secret" form - almost undocument-
ed software. After several months of
coding, experimenting, digging, and
writing to APPLE, most of the APPLE's
pertinent software details have come to
light.

Although most of the ROM software has
been printed in the APPLE Reference
Manual, its Integer Basic has not been
listed; as a result, this article will
be limited to Monitor software. Per-
haps when a source listing of Integer
Basic becomes available, we'll be able
to interface with some of its many rou-
tines.

First Things First

When I took delivery of my Apple (July
1977), all I had was a "preliminary"
manual - no goodies like listings or
programming examples. My first letter
to Apple brought a listing of the Moni-
tor. Seeing what appeared to be a big
jumble of instructions, I set out div-
iding the listing into logical routines
while deciphering their input and out-
put parameters. Once this was done, I
could look at portions of the code
without becoming dizzy.

The Monitor's code suffers from a few
ills:

1 Subroutines lack a descriptive "pre-
amble" stating function, calling seq-
quences, and interface details.

2 Many subroutines have several entry
points, each of which does something
slightly different.

3 Useful routines are not documented
in a concise form for user access.

I will concede that, while using a
"shoehorn" to squeeze as much function
as possible into those tiny ROM's, some
shortcuts are to be expected. However,
those valuable Comment Cards don't use
up any memory 3space in the finished
product -~ 'nuff said.

96

The Good Stuff

The best way to present the Apple's
software interface details is to des-
cribe them in tabular form, with fur-
ther explanation about the more complex
ones. The following tables will be
found on the back cover of this issue:

Table 1 outlines the important data
areas used by the Monitor. These
fields are used both internally by the
Monitor, and in user communication with
many Monitor routines. Not all of the

data fields are listed in Table 1.

Table 2 gives a quick description of
most of the useful Monitor routines:
it contains Name, Location, Function,
Input/Output parameters, and Volatile
(clobbered) Registers.

Don't hesitate to experiment with these
routines - since all the important
software is in ROM, you can't clobber
anything by trying them out (except
what you might have in RAM, so beware).

Using the "User Exits"

The Monitor provides a few nice User
Exits for us to get our hands into the
Monitor. With these, it is a simple
matter to "hook in" special I/0 and
command-processing routines to extend
the Apple's capabilities.

Two of the most useful exits are the
KEYIN and COUT exits. These routines,
central to the function of the Monitor,
are called to read the keyboard and
output characters to the screen. By
placing the address of a user routine
in CSWH/L or KSWH/L, we will get con-
trol from the Monitor whenever it at-
tempts to read the keys or output to
the screen.

As an example of this exit's action,

try this: with no I/0 board in I/0
Slot 5, key-in "Ke5" (5, followed by
control K, then Return). You'll have

to hit Reset to stop the system.

AN APPLE II PROGRAMMER'S GUIDE

Rick Auricchio
59 Plymouth Avenue
Maplewood, NJ 07040

MONITOR Data Areas in Page Zero

Name Loc. Function

WNDLEFT 20 Serolling window: left side (0-$27)
WNDWDTH 21 Serolling window: width (1-$28)
WNDTOP 22 Serolling window: top line (0-$16)
WNDBTM 23 Serolling window: bottom line (1-$17)
CH 24 Cursor: horizontal position (0-$27)
cv 25 Cursor: vertical position (0-$17)
COLOR 30 Current COLOR for PLOT/HLIN/VLIN functions
INVFLG 32 Video Format Control Mask:

$FF=Normal, $7F=Blinking, $3F=Inverse
PROMPT 33 Prompt character: printed on GETLN CALL
CSWL 36 Low PC for user exit on COUT routine
CSWH 37 High PC for user exit on COUT routine
KSWL 38 Low PC for user exit on KEYIN routine
KSWH 39 High PC for user exit on KEYIN routine
PCL 3A Low User PC saved here on BRK to Monitor
PCH 3B High User PC saved here on BRK to Monitor
A1L 3C A1 to A5 are pairs of Monitor work bytes
A1H 3D
A2L 3E
A2H 3F
A3L 40
A3H 41
ABL 42
A4H 43
ASL 4y
ASH 45
ACC 45 User AC saved here on BRK to Monitor
XREG 46 User X saved here on BRK to Monitor
YREG 47 User Y saved here on BRK to Monitor
STATUS 48 User P status saved here on BRK to Monitor
SPNT 49 User Stack Pointer saved here on BRK

Page 2 ($0200-$02FF) is used as the KEYIN Buffer.

Pages 4-7 ($0400-$07FF) are used as the Screen Buffer.
Page 8 ($0800-$08FF) is the "secondary" Screen Buffer.

Table 1.

AN APPLE II PROGRAMMER'S GUIDE

MONITOR ROUTINES

Name Loc. Steps Function

PLOT F800 AC Plot a point. COLOR contains color in both halves
of byte ($00-$FF). AC: y-coord, Y: x-coord.
CLRSCR F832 AC,Y Clear screen - graphics mode,

SCRN F871 AC Get screen color. AC: y-coord, Y: x-coord.
INSTDSP F8Do ALL Disassemble instruction at PCH/PCL.

PRNTYX Fg40 AC Print contents of Y and X as 4 hex digits.
PRBL2 FoicC AC,X Print blanks: X is number to print.

PREAD FB1E AC,Y Read paddle. X: paddle number 0-3.

SETTXT FB39 AC Set TEXT mode.

SETGR FBY40 AC Set GRAPHIC mode (GR).

VTAB Fc22 AC VTAB to row in AC (0-$17).

CLREOP FC42 AC,Y Clear to end-of-page.

HOME FC58 AC,Y Home cursor and clear screen.

SCROLL FCT0 AC,Y Scroll up one line.
CLREOL FC9C AC,Y Clear to end-of-line.

NXTAY FCBY AC Increment A4 (16 bits), then do NXTA1.

NXTA1 FCBA AC Increment A1 (16 bits). Set carry if result >z A2.
RDKEY FDOC AC,Y Get a key from the keyboard.

RDCHAR FD35 AC,Y Get a key, also handles ESCAPE functions.

GETLN FDE2 ALL Get a line of text from the keyboard, up to the carriage

return. Normal mode for Monitor. X returned with number
of characters typed in.

CROUT FDBE AC,Y Print a carriage return.

PRBYTE FDDA AC Print contents of AC as 2 hex digits.

cout FDED AC,Y Print character in AC; also works for CR, BS, etc.
PRERR FF2D AC,Y Print "ERR" and bell.

BELL FF3A AC,Y Print bell.

RESET FF59 - RESET entry to Monitor - initialize.

MON FF65 - Normal entry to 'top' of Monitor when running.

SWEET16 F689 None SWEET16 is a 16-bit machine language interpreter.
[See: SWEET16: The 6502 Dream Machine, Steve Wozniak,]
[BYTE, Vol. 2, No. 11, November 1977, pages 150-159.]

Table 2.

Here's what happened: setting the key-
board to device 5 causes the Monitor to
install $C500 as the '"user-exit" ad-
dress in KSWH/L. This, of course, is
the address assigned to I/0 Sloct 5.
Since no board is present, a BRK opcode
eventually occurs; the Monitor prints
the break and the registers, then reads
for another command. Since we still
exit to $C500, the process repeats it-
self endlessly. Reset removes both
user exits; you must "re-hook" them
after every Reset.

These two exits can enable user editing
of keyboard input, printer driver pro-
grams, a2nd many other ideas. Their use
is limited to your ingenuity.

Another useful exit is the Control Y
command exit. Upon recognition of Con-
trol Y, the Monitor issues a JSR to
location $03F8. Here the user can pro-
cess commands by scanning the original
typed line or reading another. This
exit is often very useful as a short-
hand method of running a program. For
example, when you're going back and
forth between the Monitor and the Mini-
Assembler, typing "F666G" is a bit
tiresome. By placing a JMP $F666 in
location $03F8, you can enter the
Mini-Assembler via a simple Control Y.

Upon being entered from the Monitor at
$03F8, the registers are garbage. Lo-
cations A1 and A2 contain converted
values from the command (if any), and
an RTS gets you neatly back into the

Monitor. Figure 1 shows this in more
detail.
Figure 1: Control Y Interface

Command typed:
#1234, F5ATYe

Upon entry at $03F8,
the following exists:

A1L ($30C)
A1H ($3D)
A2L ($3E)
A2H ($3F)

contains $34
contains $12
contains $AT
contains $F5

97

Hardware Features

One of the best hardware facilities of
the Apple-II, the screen display, is
also the "darkest" - somewhat unknown.
Here's what I've found out about it.

The screen buffer resides in memory
pages 4 through 7, locations $0U400
through about $07F8. The Secondary
screen page, although not accessed by
the Monitor, occupies locations $0800
through $0BF8. Screen lines are not in
sequential memory order; rather, they
are addressed by a somewhat complex
calculation carried out in the routine
BASCALC. What BASCALC does is to com-
pute the base address for a particular
line and save it; whenever the cursor's
vertical position changes, BASCALC re-
computes the base address. Characters
are stored into the screen buffer by
adding the base address to the cursor's
horizontal position.

I haven't made too much use of directly
storing characters into the screen buf-
fer; usually Jjust storing new cursor
coordinates will do the trick via the
Monitor routines. Be careful, though -
only change vertical position via the
VTAB routine since the base address
must get recomputed!

Characters themselves are internally
stored in 6~bit format in the screen
buffer. Bit 7 ($80), when set, forces
normal (white-on-black) video display
for the character. If Bit 7 is reset,
the character appears inverse (black-
on-white) video. Bit 6 ($40), when
set.,, enables blinking for the charac-
ter; this occurs only if Bit 7 is off.
Thus an ASCII "A" in normal mode is
$81; in inverse mode, $01; in blinking
mode, $41.

Reading the keyboard via location $C000
is easy; if Bit 7 ($80) is set, a key
has been pressed. Bits 0 - 6 are the
ASCII keycode. In order to enable the
keyboard again, its strobe must be
cleared by accessing location $C010.
Since the keyboard is directly access-
ible, there is no reason you can't do
"special™ things in a user program
based on some keyboard input - if you
get keys directly from the keyboard,
you can bypass ALL of the Control and
Escape functions.

APPLE INTEGER BASIC SUBROUTINE PACK AND LODAD

Richard F.
166 Tremont Street
Newton, MA 02158

{Although this article is Copyrighted by The
COMPUTERIST, Inc., at the authors request
premission is hereby given to use the subroutine
and to distribute it as part of other programs.]

The first issue of CONTACT, the Apple Newslet-
ter, gave a suggestion for loading assembly
language routines with a BASIC program. Simply
summarized, one drops the pointer of the BASIC
beginning below the assembly language portion,
adds a BASIC instruction that will restore the
pointer and SAVEs. The procedure is simple and
effective but has two limitations. First, it is
inconvenient if BASIC and the routines are wide-
ly separated (and is very tricky if the routines
start at $800, just above the display portion of
memory). Second, a program so saved cannot be
used with another HIMEM, and is thus inconven-
ient to share or to submit to a software
exchange.

The subroutine presented here avoids these diff-
iculties at the expense of the effort to imple-
ment it. It is completely position independent;
it may be moved from place to place in core with
the monitor move command and used at the new
location without modification. It makes exten-
sive use of SWEET16, the 16 bit interpreter sup-
plied as part of the Apple Monitor ROM.

To use the routine from Apple Integer BASIC,
CALL MKUP, where MKUP is 128 (decimal) plus the
first address of the routine. The prompt shown
is "@"., Respond with the hex limits of the rou-
tine to be stored, as BBBB.EEEE (BBBB is the be-
ginning address, EEEE is the ending; the same
format that the monitor uses). Several groups
may be specified on one line separated by spaces
or several lines. Type S after the last group
to complete the pack and return to BASIC. The
program can now be saved.

To load, enter BASIC and LOAD. When complete,
RUN. The first RUN will move all routines back
to their original location and return control to
BASIC. It will not RUN the program; subsequent
RUNs will.

A LIST of the program after calling MKUP and be-
fore the first RUN will show one BASIC statement
(which initiates the restoration process) and
gibberish. If this is done, RESET followed by
CTRL C will return control to BASIC.

Editor's Note:

Suitor

WARNING #1: The routine must be placed in core
where it will not overwrite itself during the
Pack. The start of the routine must be above
HIMEM (e.g. in the high resolution display re-
gion) or $17A + U4*N + W below the start of the
BASIC program, where N is the number of routines
stored and W is the total number of words in all
of these routines. - Also, those routines that
are highest in memory should be packed first to
avoid overwriting during pack or restore. Oth-
erwise it is not necessary to worry about over-
writing during the restore process; only $14A
words just below the BASIC program are used.

WARNING #2: Do not attempt to edit the program
after calling MKUP. 1f editing is necessary,
RUN once to unpack, then edit and call MKUP
again.

The routine works as follows. It first packs
the restore routine just below the BASIC pro-
gram. It then packs other routines as request-
ed, with first address. and number of bytes
(words). When S is given, it packs itself with
the information to restore LOMEM and the begin-
ning of the BASIC program. The first $46 words
of the routine form a BASIC statement which will
initiate the restoration process when RUN is
typed.

If a particular HIMEM is needed by the program
(e.g. for high resolution programs) it must be
entered before LOADing. The LOMEM will be reset
by the restoration process to the value it had
when MKUP was called.

I do not have a SWEET16 assembler, hence all of
those op codes are listed as tables of data. 1In
the listing, comments indicate where constants
and relative displacements are differences be-
tween labels in the routine.

Some convenient load and entry points are:

BASO (load) MKUP (entry)

hex hex decimal
800 880 2176
A90 B10 2832
104C 10CC 4300
2050 20D0 8400
3054 30D4 12500

While we encourage the use and

distribution of this subroutine, we do request

that proper credit be given.

Please place the

following notice on any copies that you make:

"This PACK & LOAD Subroutine was written by:
Richard F. Suitor and published in MICRO #6."

98

ani1g S INT ERZIC ZUBR PRCK & LORD
o2 tCALL BRZO0+128C(DEC)

un3d ACCL LDL 0000

oo40 BEOL DL oooz

ons0 TRBL .DL 0004

npen TRBEL DL 0006

0070 HIMS .DL 0005 SYMEQOL TAELE
0020 LMRT DL DO0R RLCL boog
D030 EPRG .DL 000C E=OL nonz
p100 FRML .DL DOOE ¥g§t ﬁgg;
D110 MEYT .DL 0010 NS oone
0120 BPRZ .DL 0012 s
0130 PTLL .DL 0014 e onm

0140 XTAR .DL 0016 sl haoc
0150 SKPL .DL 0018 FRML 00oE
P160 MODE .DL 0031 NEYT 2010
D170 YIAY .DL 0034 EPR2 D0z
0180 PRMP .DL 0033 PTLL 0014
9130 LMML .DL 004R “TAB 0016
0200 HIML DL 004C =KPL 0018
0210 LMWL .DL 00CC MODE D031
Q220 BBRIL .DL O0CA ;;:g ﬂgg:
0230 JSRL .DL DOCE T nan
5240 BICe .DL E002 BASIC -

HIML o04c
LMWL nocc
BREL 0ocH
JERL 00CcE

0250 BUFF .DL 0Oz00
nzen GTHNM DL FFART
02vn PBLE DL FS4A
0230 COUT .DL FDED

0290 BELL .DL FF3A Bste EBOO3

220 B A BUFF 0200

D300 GTLN .DL FD&7

13 GTLN : 5TNM FFR?

0310 SWie DL F6S9 S

0320 :BASIC INST. TO RESTORE i 24R
0E00 460000 0330 BRSO .HE 46000064B101 couT - FDED
DE03 64B101 BELL FF3A
NS06 O06SB? 0340 \HE DOESET4CON0S64E2 Eﬁ%” iggz
0809 400003 ;;QE 05010
DBO0E 020065 D3SO .HZ D200652BZEIFBCA o 0
0511 3BEESF PTOR DS49
0514 B2CA PTO4 0870
0816 007212 D360 .HZ DO7212B74600721F :ng ggao
0219 B74600 : G
081C T21F Mkez OSB3
0S1E B200D1 D37 JHZ B200010364B30300 :ﬁg? zgg;
0221 (0364B3 'méé: D
0826 6S32E D380 .HZ 6538ZE3FB2CBOOT2 Mo ooEl
0529 3FB2CE s oo
n3EC DIvE MyS2 0SFS
0S2E 12382E 0390 .HS 12382E3FB2CANOTE e nous
0831 3FBECA : M P
0934 0072 =M D9 0B
0836 12B7T46 0400 .HT 1Z2B746007215B20D meas e
0229 DO7215 ziié 1R
083C B200 MK10 géég
DE3E 017203 041D .HZ 0172034DB1010001 e e
0341 4DB101 ;TLP 0952
nE44 0Q01 i

PLPO 0955

0420 :INIT. RESTORE OP FLP1 0958

0846 DS 0430 PTBK CLD :
D847 RAZ01 0440 LD% 01 e haee
0849 BSCA 0450 PT02 LDA #BBSLsX 5

ng4B 9502 0460 STR #BSOLsX

084D BS4C 0470 LDA #HIMLsX

084F 9508 0480 STR SHIMS,%

0851 CA 0430 DEX

0852 10FS 0500 BPL PT02

0854 2089F6 0510 JSR SW16

99

0asy
0a5h
0a8sD
03880
0363
0sé6
02e9
036B
036&D
N3RE

U]
nara
0374
0876
0373
087R
087B
087D

03880
nage
D384
nage
0888
028/
0Esc
088E
0890
D92
02394
08935

0897
0891
089D
0B8R0
03A3
D8HG
naR9
02RE
0BARE
03E1
08B3
08B4

08B6
08E8
08BA
G8RC
D8BF
08C1
08C2
0ace
oscs
08CH
08CD
08CF
naDn1
038D2
0302
n3D6
0808
08DB
03DE
08DF
08E1
08E3

105201
185701
B13767
256736
24B636
1R1100
BRIR
5733
oo
R201

BS0OR
954H
95CC
BSOC
95CAH
CH
10F3
6C1400

R201
BS54/
950R
B5CHR
9512
S50C
BSCE
9504
BS54C
3508
(]

10EB

2089F6
c4B939
118000
c2B131
105201
A13218
1800
AS33E3
1CS000
oCq2
o0
RSCD

8533
A900
8531
2067FD
8616
RO00
BOODO2
C9D3
Foe8
20RA7FF
CoR?
Fo10
]

AR
20D4AFS
RI5SE
c0EDFD
203RFF
18
S0Db3
E631
20R7FF

A520
0s30°
0540

0550
3360
0370
380
0590
nenn
0510
ne20
0630
0640
0es0
D660
1670
negn
0690
700
a7s1n
720
av3n
0740
a7s0
u7ve0
o770
0720
0720
03400
0g10
nsz20
0230
0340
0es50
0860
g7 o0
ngg0
0820

02409
0910
0320
0930
0340
0950
0960
0970
0930
0950
1000
i010
1020
1030
1040
1050
1060
1070
19080
1020
1100
1110
1120
1130
1140
1150
1160
1170

«HE 105201 PLTP-BRS O
-HE 185701 PLTP+5-BASD
-HZ R137V&7356726

.HS 24B526
.HEZ 1A1100 ST16+1-PLP1
.HS BA3A
LHE 6733
LHZ 00
LDX 01 ,
:SET LOMEM & BASIC PROG START
PT04 LDR *LMRT»X
STA SLMMLsX
STA +LMWLsX
LDA +BPRGsX
STR *BBSLsX
DEX’
EPL PT04
JMP (PTLLY TO RESTORE LP
:SUBR TO SET UP PRCK
MKUP LDX 01
MKZ1 LDA eLMMLsX
STR eLMRTsX
LDR *BBSLsX
STR *BPR2sX
STR *BPRGsX
LDR *JSRLsX
STR *TRABLsX
LDR *HIMLsX
STA #HIMS:X
DEX
BPL MK21
tINIT & PACK RESTORE LP
JSR SW16
.HS 24B939
.HS 118000 MKUP-BRSO
.HS 22B131
.HS 105201 PLTP-BRSO
.HS A132191800 ST16-PTLP

.HS AS33E3
.HS 1CS000
<HS 0C42 MYS2-MKe2
MK22 .HS 00
MK0O1 LDR 0CO
:GET LIMITS & PRCK PROGS
STR *PRMP
LDAR 0
STA eMODE
JSR GTLM
STX eXTAB
LDY 00
LDA BUFFsY
CMP 0D3 s
BER MK10
MK06 JSR GTNM
CHMP DA7 Feousy
BEQ MKO02
MERR TYHR
TAX _
JSR PBL2 ERROR INDICATOR
LDR <~
JSR cOuUT
JSR BELL
MK0S CLC
BCC MKO1
MK02 INC eMODE
JSR GTNM

100

0zte
03ES
03ER
NSEE
02F1
nsFa
N3FS
D2F8
02FE
02FE
oaan
0903
0304
(=11153
0309
030B
03 0C
030E
0310
ne1e
0314
0316
0218
091R
031B
03 iE
0920
nsee
034
o9ze
0928
092R
ne2Cc
092E
0930

0932
0335
093y
093f
093D
0940
0942
n344
0946
0943
0349
094E
094D
094F
0951

0952
0955
0958
095R
095D
0960
0962
0965
0966
0967
036R

2089F6
011E
1283C00
623268
33
B232E2
39622
D207FR
283219
ngon
289688
63896
2896
1)
JCEOQ
]
C9EC
Foz2
cece
FORD
Cco999
Foo3
DOR?
c8
BIOO02
C416
B9S2
C9ARN
FOF4
CoaD
FoaR
con3
Foo4
Ce31
F098

c089Fe
213e
185201
RB372R
Tresrv
2177
2733
ACRF
6666
0o
RS0C
85CH
R50D
85CB
60

2089F6
613361
3800
2089F6
4153F8
N4FR
21D605
EF

oo
4C03ED
on

1180
1190
1200
1210
1220
1230

1240
1250

1260

1270

1230
1290
1300
1310
13220
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1430
1430
1500
1510
1520
1530
1540

1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1661
1670

16810

1690

1700
1710
ivan
1730
1740
1750

A1 & A3 NOW HAYE 1ST =.A2 2D
:SET UP MOVE TO JUST BELOW (BBSLD
tAND LOWER BRBSL

JER EW16

-HZ 011E sMo2-MyS1
MyYS1 .HE 183C0068326833

-HS B23BE3
MyS2 .HE 839623D207FA

.HZ 2833180800

.HZ 889623896889688%

-HE OB
EMO2 .HE: OCED MVYS51-SMO3
EMO3 JHE 00
MK02 CMP QEC FCIE7D
BEQ MK1D
CMP 0Ce F<CRD
BER MKO1
cHMP 99 BLANK
BEQ MK1iz
BNE MERR
MK11 INY
MK12 LDR BUFFsY
CPY XTARB
BCE MKO1
CMP DRU BLANK
BER MK11
CMP 8D
BE® MKO1
CMP 0D3 N
BEG MK1D
DEC oMODE
BER MK(6 ALWAYS
tPACK 15T PART & CLERN UP
MK1O JSR SWié
-HE 2132
.HZ 185201 PTLP-BRASO
.HZ RAB3725772977

.H3 2177
<HE 2733
-HS 0OCHF MyS2-SM04
SM04 .HE BB66
LHE 00
LDR *BPRG
TR «BBSL
LDR «BPRG+01
STR +BB:EL+01
RTS
tRESTORE LOOP
PTLP JSR W16
PLPD .HE 6133613800 GET POINT

PLP1 JSR SW1e
-HE 4153F804FB

-HE 21D6035
.HS EF PLPO-PLP2

PLP2 .HE 00

JMP BIC2
5T1e .HE 0O
.EN

101

MZ AZ NZ 1Z SZ MZ BZ_d4Z _0Z NZ WZ 12 NZ 7 1Z Hz 97_42_37 0Z 37 82 ¥Z 67 87 L7 97

MA NA NA LA SA MA BA

SZ . vZ £2 CZ T2 02 Z

AA OA NA WA TA NACA TA HA OA AA FA A JA_HA VA 6A BA LA PA SA VA SA TA TA OA A

MX_AX_NX_LX_SX_MX_ UX _oX_0X_NX_WX_TX_NX_CX_IX_HX 9X_4X_3X _0X_JIX_AX_YX_6X 68X 2X 9X 6X X £X ZX IX OX X

I AT X7
T TA AAXA
ZX AX XX

AN XM
IO AN XA
Tz An xn
7L AL X4

7S AS XSG

_7ZM AM XM

70 AD XO

MR_AM NM LM S0 MM DM dM 0N NM WM M NM M IM HR 9M

M5 _AS NS LS S5 NS DS

T Yn 4m_8M Zm om

SM ¥M EM M IM OM M

MO AN NALA SANA DA dn 0N NA WA 1A NA Fa IAHA 9 3n 36 0A 94 H5A YN 40 BA ZA 90 BA bA £0 TH 1N O A

MO AN NN_1N SN M BN

NN WA TINNNCPRCINCHN. 9N 4 H0 QN 90 80 YN 6N_BN_N 9N _SN_wn. en.Zn tn oo o

ML AL NL AL SL ML BL oL 0L NL WL ILNL CL TL HL 91 41 AL 0L 0) 84 YL 61 8L £L 90 6L ¥4 €L £L 1L OL L

fAM_0M NM WY M NN CM TN HM OM._JM 3M 08 0N M. UM 6N BN. ¥ 9N

MM AN NN LN

DDA 0B _NO_WB_ 0 ND FO_T0 HO_ON_40 30 00 00 A0 Y048 80 48 98

Ma_AD ND_ LD S0

NS WS 1S NG 'S IS HS 95 45 35 08 05 45 YS 65 86 45 95 58 v6 £6 £S IS 05 8

,mmxrm.wz-nwzmmwmmwmuw

SD_pBD_£8 010 on_n

. Zd A Xd M Ad N Ld Sd N O dd Od Ned Wd_Td Nd_Fd Td Hd 94 3d Fd 0d 0d B4 Vd &d 8d £d 9d 5 bd £4 T4 Td 04 A
.20 AD X0.MO AO.NO L0 SO Y0 BO 40 DO NO WO 70 N0 £0.I0 HO 90 40 30 00 20 50 Y0 40 80 Z0 90 S0 +0 £0 £ 10 00 0

ol ZMLAR XMW
I AXTL
TINAN XN

70 _AC XC MO AN _LC SO NC_Br

ZN AN XN|

MN_AN NN LN SN MN BN N ON_NN_WN_IN NN CN_IN HN ON_AN_ 3N 1IN IN AN UN 6N 8N ZN 9N

COW NW MR TR MW W TR HW DWW 3R W OK HW UW 60 8H ZW PW

MW AW R AW S MW DR W

M7 AT ALY §7MT D7 47 071 NI_WI_TL N1 01 I H7.071_ 47 371 0719797 Y1 671 8727 97

ny AN AN LON NN WN INCNN PNUIN HN 0N AN AN 0N 0N 2N UN 6N 8N <N 9N &

AT AC NC_WC IE NC_OC_ I e ar_ &a Ar_aC_ar HC._YC 6C_8C /0 9r.

SN N EN ZN_IN ON N__

SH bW EW TH TH OW W

51 p1 £1. 211 1011
SN_EN_EN X IN ON N__

SO er £r Zr Ir. or.r__

_ZI AT XIMI_ALNI_LI SI ¥ BL A1 OL NI WI I NI L II_HI 91 41 41 01 01 HI 91 61 8L ZI 91 6L I £1 E£I 11 0L 1

H_XH _MH _AH_NH_IH_SH_MH BH_oH OH NH WH_TH_NH _CH _IH HH OH 4H _3H OH OH 8H YH 6H 8H <H SH SH bH £H ZH TH OH H__
70 A8 X9 MO A9 08 1O 80 N0 PO 49 09 N WO 10 Ne G 10 H9 99 49 39 09 09 HO 99 49 89 25 99 &9 va. £9.£9 19 09 9
74 A XA M 04 04 1A 83 M4 0 44 0 NA WA A N4 04 TA HA 94 4494 04 94 84 U4 64 84 ¢4 99 64 4 ¢4 24 14 04 4
T T7A A3 x3a md A3 N3 13 63 93 03 a_...d_,_,,cm_ NI 5_;,,,3 zj HM,,HM HA o._,n._mi..‘.b,‘_Hfﬁ,..ﬁ_i_.ﬁ., wu m..m.,mm WHWW r¢.m.>mm_. .mmeu.mﬁom! R

Z_AT_ X1

AT N0 L0 SO Mg B

:sexwo:»o:xu NIA_NAD_AD LD SI_ ¥ DD muucu N2 W2_T2.N2 3 I3 W82 _42 33 a9 02 99 D .60.89 £9. 90 69 3 £ 83 19 029

ZY AV XY MY AV NV LV 5V MY BY 49 0V NY WY TV MY 1Y TV HY Y 49 AV OY 99 §Y YU 4Y BY LY 9V GV by 0 20 1Y 0V U

LM A9 0T LA SH MA DA o 0 NI WE W N ra TH WA 9 dd FH 00 09 a9 9d 6d 84 /9 od

69 v9 £ 29 14 09 9

e O0ISYH LJOS HddY MOJ SITAVINYA I FddY_ ($) 00V - SIMYINYA ONINLIS ST TAVINUA TYIINIWAN _

102

LUDWIEG YON APPLE 1I

Marc Schwartz
220 Everit Street
New Haven, CT 06511

Owners of the Apple II know from the demonstrat-
ion tapes that the Apple can make sounds. Not THE APPLE II BUGLE CALL
all know that it can make music. Having prepar-
ed a horse racing program, I decided that it 10 REM MAKING MUSIC WITH THE APPLE II
would be fitting to start out the game with the 20 DIM A$(255)
bugle call heard at the track. The following 30 POKE 2,173
program does just that! %0 POKE 3’u8
’

A few words of explanation are in order. The 50 POKE 4,192
series of "pokes" in lines 30 to 240 set up a 60 POKE 5,165
musical tone subroutine that is called in line 70 POKE 6,0

460. 80 POKE 7,32

90 POKE 8,168

Each note is represented by a four digit code in 100 POKE 9,252
’

A$. The first three digits of the code deter-

mine the note, and the last digit determines the 110 POKE 10,165
the length of the note. Line 410 decodes the 120 POKE 11,1
first three digits by converting each digit to 130 POKE 12,208
ASCII (Apple ASCII), subtracting 176 from each 140 POKE 13,4
to give. three numbers, from zero to nine, and 150 POKE 14,198
then multiplying the first number by the second 160 POKE 15:24

and adding the third. This is one of many poss-

ible ways of generating all the numbers from 170 POKE 16,240

zero to a large number (ninety in this case) 180 POKE 17,5
using single digits. 190 POKE 18,198
200 POKE 19,1
Line 420 takes the number just generated and 210 POKE 20,76
subtracts it from forty. This is done because 220 POKE 21,2
the subroutine as written is a bit confusing if 230 POKE 22,0
you want to make music, since the tones go up as 240 POKE 23’96
the numbers go down. This step corrects for !
that . 300 A$="001100715211720172017201"
Line U440 determines how long each tone will be. 310 A$(25)="5211521152110071521100710012"
As "ASC(A$(Z + 3) - 176)" increases, the note
lengthens: a "1" produces a very short note, and 400 FOR Z=1 TO LEN(A$)-3 STEP 4
a "6" makes a very long note. For some reason, 410 Z1=(ASC(A$(Z))-176)*(ASC(A$(Z+1))=1T76)
higher tones come out more brief than lower +ASC(A$(Z+2))-176
tones. 420 72=40-21
: s 430 POKE 0,22
Line U450 determines the tempo. A larger number)
speeds up the tune; a smaller one slows it down. 440 POKE 24,ASC(A$(Z+3))-176
Tempo numbers can go from 1 to 255. 450 POKE 1,75
460 CALL 2
When the program reaches line U470, it returns to 470 NEXT Z
line 400 to begin decoding the next four digits 480 END

and playing the next note.
I don't think that Chopin would need to worry

about competition from anyone using this pro-
gram, but it is fun to have a musical computer.

103

MACHINE LANGUAGE USED IN
"LUDWIG VON APPLE II"™

C. R. (Chuck) Carpenter W5USJ]
2228 Montclair Place
Carrollton, TX
Carrollton, TX 75006

As an Apple II owner, I found the art-
icle "Ludwig von Apple II" (by Marc
Schwartz, MICRO #2, page 19) quite in-
teresting. The machine language rou-
tine used by Marc is put into the BASIC
program by use of the POKE statement
~and I was curious to see the type of
program used to activate the Apple II
on-board speaker. To do this, I con-
verted the decimal values used for the
POKE statements into HEX with my TI
Programmer. Then I loaded the values
into the computer using the system mon-
itor commands that are part of the
Apple II functions.

Once I had the program loaded, I used
the monitor commands to list an assem-
bled version of the routine, as shown
in Figure 1. The assembler provides a
listing of the program and the mnemon-
ics used with the machine language op-
codes. This made it easier to deter-
mine what was happening in Marec's pro-
gram. At this point I wanted to see
what would happen if I ran the program
by itself - as a machine language rou-
ine only.

0000- OF ???

0001- 00 BRK

0002- AD 30 CO LDA $C030
0005- A5 00 LDA $00
0007- 20 A8 FC JSR $FCA8
000A- A5 01 LDA $01
000C- DO 0b4 BNE $0012
000E- Ccé 18 DEC $18
0010~ FO 05 BEQ $0017
0012- C6 01 DEC $01
0014~ 4C 02 00 JMP $0002
0017- 60 RTS

0018~ 00 BRK

0019- 00 BRK

001A- 05 UB ORA $4B
001C- B6 00 LDX $00,Y
001E- OF 2?7

001F- 08 PHP

0020- 00 BRK

0021- 28 PLP

Figure 1.

Because it is somewhat easier to call
the routine from a BASIC routine, I en-
tered the BASIC routine shown in Figure
2. This way I could also change the
values stored in memory location $0000
by using the POKE statement. To init-
ialize the beginning of the routine, I
entered a value of $05 into location
$0000. According to Mare, this would
produce a high frequency output tone
and this turned out to be the case.

Now that I had everything set up, I was
curious to see why the duration of
playing time is not the same for the
different tones. To start with, I en-
tered the program with 3 different val-
ues at location $0000. As I ran the
program I timed the length of playing
with a stop watch. The value of 5
played for .18 min., 10 played for .45
min, and 15 played for .85 min. This
was in agreement with Marc's findings.
As it turns out, the length of time a
particular frequency plays is a func-
tion of the duration of a cyecle. The
output continues for a number of cycles
and the shorter cycles (higher frequen-
cies) get done sooner. To get the cor-
rect musical timing you would need to
include variable delay time for each
note played. (The time between zero
crossings adds up to the same total -
time per note.)

>LIST
10 POKE 0,5
99 END

>CALL 2

>10 POKE 0,10
>RUN

>CALL 2

>10 POKE 0,15
>RUN

>CALL 2

Figure 2.

104

APPLAYER HMUSIC

INTERPRETER

Richard F. Suitor
166 Tremont Street
Newton, MA 02158

There have been several routines for
making music with the APPLE II, includ-
ing one in MICRO and one in the APPLE
documentation. The program described
here is more than a tone-making rou-
tine, it is a music interpreter. It
enables one to generate a table of
bytes that specify precisely the half-
tone and duration of a note with a sim-
ple coding. Its virtue over the sim-
pler routines is similar to that of any
interpreter (such as Sweet 16, or, more
tenuously, BASIC) over an assembler or
hand coding - it is easier to achieve
one's goal and easier to decipher the
coding six months later.

The immediate motivation for this in-
terpreter was Martin Gardner's Mathe-
matical Games Column in the April 1978
Scientific American. Several types of
algorithmically generated music are
discussed in that column; this program
provides a means of experimenting with
them as well as & convenient method of
generating familiar tunes.

The program is written in 6502 assembly
language. It would be usable on a sys-
tem other than the APPLE if a speaker
were interfaced in a similar way. Ac-
cessing a particular address (C030)
changes the current through the APPLE
speaker from on to off or from off to
on; it acts like a push button on/off
switch (or, of course, a flip-flop).
Thus this program makes sound by acces-
sing this address periodically with an
LDA C030. Any interface that could
likewise be activated with a similar (4
clock cycles) instruction could be
easily used. A different interfacing
software procedure would change the
timing and require more extensive mod-
ification.

The tone is generated with a timing
loop that counts for a certain number
of clock cycles, N (all of the cycles
in a period including the toggling of
the speaker are counted). Every N
cycles a 24 bit pattern is rotated and
the speaker is toggled if the high or-
der bit is set. Four cycles are wasted
(to keep time) if the bit is not set.
There is a severe limit to the versa-
tility of a waveshape made from on/off
transitions, but tones resembling a

105

variety of (cheap) woodwinds and pipes
are possible, with fundamentals ranging
from about 20 Hz to 8 KHz.

Applayer interprets bytes to produce
different effects. There are two types
of bytes:

Note bytes
Control bytes

Bit 7 Not Set
Bit 7 Set to 1

A note byte enables one to choose a
note from one of 16 half tones, and
from one to eight eighth notes in dur-
ation. The low order nybble is the
half-tone; the high order nybble is the
duration (in eighth notes) minus one.

7 6 5 4 3 2 10
0 (Duration) (Half-Tone)

Bit
Note Byte

The control bytes enable one to change
the tempo, the tonal range which the 16
half-tones cover, rests, the waveshape
of the tone and to jump from one por-
tion of the table to another.

Control Byte Table

HEX DECIMAL
81
82

FUNCTION
129 The next three bytes are
the new waveshape pattern
JMP - New table address
follows. Low order byte
first , then page byte
JSR - new table address
follows. When finished,
continuing this table at:
byte after address byte

N is the number of 16th
notes to be silent at the
tail of a note. Controls
rests and note definition
Selects the tonal range.
Half-tone #0 is set to
one of 32 half-tones giv-
ing a basic range of four
octaves

Controls the tempo. Len-
gth of a note is propor-
tional to N. Largest
value gives a whole note
lasting about 3.5 sec.
RETURN. Stop interpret-
ing this table. Acts as
return for 83 JSR in-
struction or causes re-
turn from Applayer.

130

83 131

9N 144+N

AN 160+N<32

CN

1924N<62

FF 255

To use Applayer with sheet music, one
must first decide on the range of the
half tones. This must sometimes be
changed in the middle of the song. For
example, the music for "Turkey in the
Straw", which appears later, was in the

key of C; for the first part of
the song I used the following table.
NOTE ¢ D E F G A B C D

TONE #0 2 4 5 7 9 B C E

The tonal range was set with a control
byte, BO. In the chorus, the range of
the melody shifts up; there the tonal
range is set with a BT and the table is

NOTEE G A B C D E F G A

TONE# 0 2 4 5 7 9 A C E

(The actual key is determined by the
wave shape pattern as well as the tonal
range control byte. For the pattern
used, 05 05 05, the fundamental for the
note written as C would be about 346Hz,
which is closer to F.)

Rests can be accomplished with a 9N
control byte and a note byte. For ex-
ample, 94 10 is a quarter rest, 98 30
is a half rest etc. This control is
normally set at 91 for notes distinct-
ly separated, or to 90 for notes that
should run together.

Let's try to construct a table that
Applayer can use to play a tune. We
can start simply with "Twinkle, Twinkle
Little Star". That tune has four lines
the first and fourth are identical, as
are the second and third. So our table
will be constructed to:

1. Set up the tonal range, tone pat-
tern and tempo that we want

2. JSR to a table for the first line

3. JSR to a table for the second line

. Repeat #3

5. Repeat #2

6. Return

7. First line table and return

8. Second line table and return

106

Since unfortunately Applayer is not
symbolic, it will be easier to con-
struct the tables in reverse, so that
we can know where to go in steps 2-6.
The note table for the first line can
go at OB0OO and looks like:

0BOO-
0BO8-

10 10 17 17 19 19 37 15
15 14 14 12 12 30 FF FF

The second line can follow at OB10:

0B10- 17 17 15 15 14 14 32 FF

Now we can start on step 1. I'll sug-
gest the following to start; you'll
want to make changes:

0B20- BO 81 05 05 05 EO 91

The above determines the tonal range,
the tone wave shape, the tempo, and a
sixteenth note rest out of every note

to keep the notes distinct. To run
them together, use 90 instead of 91.

Steps 2 - 6 can follow immediately:
0B20- 83
0B28- 00 OB 83 10 OB 83 10 OB
0B30- 83 00 OB FF

That completes the table for "Twinkle,
Twinkle". We now have to tell Applayer
where it is and turn it on. From BASIC
we must set up some zero page locations
first and then JSR to Applayer:

(Don't forget to set LOMEM before run-
ning; 2900 will do for this table.)

100 POKE 19,32 (low order byte of the
table address, 0B20)

110 POKE 20,11 (high order byte of the
table address, 0B20)

120 POKE 1,8 (high order byte of 1st
pg of Applayer program)

130 POKE 17,8 (16 & 17 contain the
tone table address)

140 POKE 16,0

120 CALL 2346 (jump subroutine to

0924)

We can also make a short program in as-
sembly language to set up the zero page
locations. See routine ZERO, location
09CO in the listing.

This initialization can be used most
easily by reserving the A0O0 page, or
much of it, as a "Table of Contents"
for the various note tables elsewhere
in memory. To do this with "Twinkle,
Twinkle" we add the following table:

0A20- 82 20 OB

Which jumps immediately to the table at
0B20. With this convention, we can
move from table to table by changing
only the byte at 9D0 (2512 decimal).

We can use this initialization from
BASIC, too, by changing the last in-
struction to RTS:

100 POKE 2512,32 LOW ORDER TABLE BYTE
110 POKE 2538,96 CHANGE INST. AT O9EA

120 CALL 2496 TO RTS.
From the monitor: #9D0:20
%9C0G

will do.

If, as I, you quickly tire of "Twinkle,
Twinkle", you may wish to play with
"Turkey in the Straw". The table fol-
lows; its structure will be left as an

exercise.

From the monitor: ¥9D0:0
*¥9C0G

will play it.

107

0A0O:

QF00:
OF08:
OF10:
OF18:
0F20:
OF28:
0F30:
0F38:
OF40:
OF50:
0F58:
OF60:
OF68:
OFT0:
O0F78:
OF80:
0F88:
OF90:
0F98:
OFAQ:
OFAS8:
OFBO:

0800:
0808:
0810:
0818:
0820:
0828:
0830:
0838:
0840:
0848:
0850:
0858:

03

90
18
33
1C
38
1A
33
1F
94

81

81
15
16
1D
35
15
13
83
B7
60
83
OF

AO
EO
48
DO
70
24
E8
B8
92
T4
5C
49

83

92
1
1A

1A
91
1A
1A
FF
55
05
15
16
1D
33
18
15
D4
OF
50

OF

90
38

92
91
92
10
91
1C

FF
FF
78
TA
18
90
90
13
BO
83

68
FF

Tone Table

03
02
02
01
01
01
00
00
00
00
00
00

68
B8
28
BY
5C
14
DA
AE
8A
6D
57
45

03
02
02
01
01
01
00
00
00
00
00
00

38
90
08
9C
48
04
CE
A4
82
67
52
k1

OF

90
13
3C
1C
38
1
3C
18

FF
FF
18
1
18
13
83
50

OF

FF

18
13
3C
38
90
13
3F
92

18
13
15
71
50
OF

83

08
68
ES8
84
34
F4
c2
9A
TA

4p
3D

1A
33

18
18
53
90
3A

18
91
1"
FF
OF 83
83
OF
50

0860

0860
0861
0862
0863
0864
0866
0868
0864
086B
086C
086D
086F
0871
0872
0874
0875
0876
0878
087A
087C
087E
0881
0883
0885
0887
0889
0884
088B
088C
088E
0890

0893
0895
0897
0899
089B
089D
089E
0840
08A2
08AlL

EA
EA
EA
88
85
DO
FO

EA
EA
DO
24
38
30
EA
18
26
26
26
90
AD
C6
DO
C6
DO
60
EA
EA
Do
A4
6C

85
A9
85
85
A2
18
66
66
46
90

45
FB
05

Fu
oY

02

02
03
ol
03
30
06
05
07
05

00
05
00

45
00
06
07
05

07
06
45
ocC

co

00

APPLAYER MUSIC INTERPRETER

R. F. SUITOR

TIMING LOOP

APRIL 1978

LOCATIONS O THROUGH 7 ARE SET BY CALLING ROUTINE
8 CYCLE LOOP TIMES Y REG PLUS 0-7 CYCLES
DETERMINED BY ENTRY POINT

TIME

TIMEA

TIMEB

TIMEC

TIMED

TIMEE

TIMEF

TIMEG

ORG

NOP
NOP
NOP
DEY
STA
BNE
BEQ
DEY
NOP
NOP
BNE
BIT
SEC
BMI
NOP
CLC
ROL
ROL
ROL
BCC
LDA
DEC
BNE
DEC
BNE
RTS
NOP
NOP
BNE
LDY
JMI

$0860

$0045
TIMEA
TIMEC

TIMEA
$0004

TIMED

$0002
$0003
$0004
TIMEE
$C030
$0006
TIMEF
$0007
TIMEG

TIMEG
$0005
$0000

ANY INNOCUOUS 3 CYCLE INSTRUCTION
BASIC 8 CYCLE LOOP

START CHECK OF BIT PATTERN
IN 2, 3, AND &4

TOGGLE SPEAKER

DURATION OF NOTE IN

NO. OF CYCLES IN LOCATIONS
6 AND 7

TIMING EQUALIZATION

SCALING ROUTINE FOR CYCLE DURATION
CALCULATION LOC 6,7 = A REG * LOC 50,51

SCALE

SCALEX

STA $0045
LDAIM $00
STA $0006
STA $0007
LDXIM $05
CLC

ROR $0007
ROR $0006
LSR $0045
BCC SCALEA

108

0846 A5 06 LDA $0006

0848 65 50 ADC $0050

08AA 85 06 STA $0006

08AC A5 07 LDA $0007

08AE 65 51 ADC $0051

08B0 85 07 STA $0007

08B2 CA SCALEA DEX

08B3 10 E9 BPL SCALEX

08B5 E6 07 INC $0007 DUE TO SIMPLE LOGIC IN TIMING ROUTINE

08B7 60 RTS

08BE ORG $08BE
NOTE PLAYING ROUTINE
Y REG HAS HALF-TONE INDEX

08BE A5 12 NOTE LDA $0012 NOTE LENGTH

08CO 85 52 STA $0052

08C2 A5 OF LDA $000F NOTE TABLE OFFSET

08C4 85 10 STA $0010

08C6 B1 10 LDAIY $0010 LOW ORDER BYTE OF MACHINE

08C8 38 SEC CYCLES PER PERIOD

08C9 85 54 STA $0054

08CB E9 35 SBCIM $35 CYCLES USED UP TIMING OVERHEAD

08CD 85 08 STA $0008

08CF 8 INY

08D0 B1 10 LDAIY $0010 HIGH ORDER BYTE OF MACHINE

08D2 85 55 STA $0055 CYCLES PER PERIOD

08DY4 E9 00 SBCIM $00

08D6 85 09 STA $0009

08D8 A9 00 LDAIM $00

08DA 85 50 STA $0050

08DC 85 51 STA $0051

08DE 85 53 STA $0053

08E0 A0 10 LDYIM $10

08E2 20 86 FB JSR $FB86
THIS PART IS PARTICULAR TO APPLE. THE DIVIDE
ROUTINE AT FB86 IS USED. OR, PROVIDE A ROUTINE
WHICH DIVIDES LOCS 54,55 BY 52,53 AND LEAVES THE
RESULT IN 50,51 FOR THE SCALING ROUTINE.

08E5 A5 08 LDA $0008

08ET7 48 PHA

08E8 46 09 LSR $0009

08EA 6A RORA

08EB 46 09 LSR $0009

08ED 6A RORA

08EE 46 09 LSR $0009

08FO0 6A RORA

08F1 85 05 STA $0005 NO. OF 8 CYCLE LOOPS

08F3 68 PLA

08F4 29 07 ANDIM $07 LEFT OVER CYCLES DETERMINT

08F6 AA TAX ENTRY POINT

08F7 BD F8 09 LDAX TTABLE TABLE OF ENTRY POINTS FOR TIMING LOOP

08FA 85 00 STA $0000

109

08FC
O8FE
O8FF
0901
0903
0906
0908
0904
090C
090D
090F
0912
0914
0916
0919
091B
091D
091F
0921

0924

0924
0926
0928

0924
092C
092E
0930
0931
0933
0934
0935
0936
0938
0939
0934
093B
093D
093F

0942
o094y
0946

0947
0948
0949
094B
094C
094E
0950

E6
DO
E6

AO
B1
30
48
29
0A
A8
68
29

4a
4a
69
85
4C

C9
90
60

48
0A
10
68
29
85
BO

OE

0D
OF
93
02
OA
02

F9
6F
0D
OE
93

02
03
ol
6F

13
02
14

00
13
12

OF

70

02
OE
BE

FD
01

07

3F
12
b2

08

08

08

08

08

NOTEA

NOTEB

LDA
SEC
SBC
BEQ
JSR
LDXIM
LDAZX
STAZX
DEX
BPL
JSR
LDA
BEQ
JSR
LDAIM
STA
STA
STA
JSR

ORG

$000E

$000D
NOTEB
SCALE
$02
$0A
$02

NOTEA
TIMEC
$000D
MAIN
SCALE
$00
$0002
$0003
$0004
TIMEC

$0924

NOTE DURATION, QUARTER, HALF

REST PART OF NOTE
IF NOTHING TO DO
SCALING ROUTINE
START PATTERN LOAD

TIMING ROUTINE
REST PART OF NOTE
IF NOTHING TO DO
SCALING ROUTINE

ZERO OUT PATTERN FOR
REST PART

TIMING

MAIN PART OF INTERPRETER
ENTRY AT "ENTRY"

MAIN

ENTRY

MAINA

MAINB

INC
BNE
INC

LDYIM
LDATY
BMI
PHA
ANDIM
ASLA
TAY
PLA
ANDIM
LSRA
LSRA
LSRA
ADCIM
STA
JMP

CMPIM
BCC
RTS

PHA
ASLA
BPL
PLA
ANDIM
STA
BCS

$0013
ENTRY
$0014

$00
$0013
MAINA

$0F

$70

$02
$000E
NOTE

$FD
MAINB

MAINC

$3F
$0012
MAIN

110

TABLE ADDRESS

NEXT TABLE BYTE
TO CONTROL SECTION

TONE

DURATION

TOTAL DURATION IN 16THS
PAY NOTE

CO + 3D IS LONGEST NOTE FOR
FOR SCALING REASONS

NOTE LENGTH

UNCONDITIONAL BRANCH

0952
0953
0955
0956
0958
0959
095B

095D
095E
0960
0961
0963
0965

0967
0968
0964
096B
096D
096E
0970
0971
0973
0974
0975
0976
0978
0974
097C
097D
097F
0981
0982
0983
0985
0986
0987
0989
098B
098C
098E
098F
0990
0992
0995
0996
0998
0999
099B
099C

099E
099F
0941

0A
10
68
29
oA
85
90

0A
10
68
29
85
90

oa
10
68
90
0A
30
0A
10
68
AA
4a
90
A5
69
48
A5

48
c8
B1
48
c8
B1
85

85
8A
4a
90
20
68
85
68
85
18
90

68
A0
B1

08
1F
oF
C7
07
OoF
oD
BD
03
B7
FA

2B

0Aa
13
01

14
00
13
13
14
13
98
2A
14
13
86

03
13

09

MAINC

MAIND

MAINE

MAINF

MAING

MAINH

MAINI

ASLA
BPL
PLA
ANDIM
ASLA
STA
BCC

ASLA
BPL
PLA
ANDIM
STA
BCC

ASLA
BPL
PLA
BCC
ASLA
BMI
ASLA
BPL
PLA
TAX
LSRA
BCC
LDA
ADCIM
PHA
LDA
ADCIM
PHA
INY
LDATY
PHA
INY
LDAIY
STA
PLA
STA
TXA
LSRA
BCC
JSR
PLA
STA
PLA
STA
CLC
BCC

PLA
LDYIM

MAIND
$1F
$000F
MAIN
MAINE
$OF
$000D
MAIN
MAING
MAIN
MAINF

MAINI

MAINH
$0013
$01

$0014
$00

$0013
$0013
$0014
$0013
ENTRY
ENTRY
$0014
$0013

MAIN

$03

MAINJ LDAIY $0013

111

TONAL RANGE INDEX

UNCONDITIONAL BRANCH

REST FRACTION

UNCONDITIONAL BRANCH

DUMMY, CONTROLS NOT INTERPRETED

JSR AND JMP SECTION

JSR SECTION, PUSH RETURN TABLE
ADDRESS ON TO STACK

GET NEW ADDRESS

AND STORE IT FROM BEGINNING
OF SELECTICN

JMP

JSR

PULL ADDRESS AND STORE IT

UNCONDITIONAL BRANCH

GET NEW PATTERN AND
STORE IT

09A3 99
0946 88
09A7 DO
09A9 A5
09AB 69
094D 85
09AF 90
09B1 Eb6
09B3 4C

09COo

09CO D8
09C1 A9
09C3 85
09C5 A9
09C7 85
09C9 85
09CB A9
09CD 85
09CF A9
09D1 85
09D3 A9
09D5 85
09DT A9
09D9 85
09DB A9
09DD 85
09DF A9
09E1 85
09E3 85
09E5 85
09E7 20
09EA 4C

09F8

09F8 63
09F9 6A
09FA 62
09FB 6D
09FC 61
09FD 6C
09FE 60
O9FF 6B

ENTRY
MAINC
MAING
MAINK
SCALE
TIMEB
TIMEF

09 00

F8
13
03
13
02
14
24 09

00
10
08
1
01
0A
14
20
13
01
0D
20
12
20
OF
05
oA
0B
0ocC
2A 09
69 FF

0924
0952
096D
09B3
0893
0864
088a

STAY $0009
DEY

BNE MAINJ
LDA $0013
ADCIM $03
STA $0013
BCC MAINK
INC $0014

MAINK JMP MAIN

ORG $09CO

INITIALIZATION FOR

ZERO. CLD JUST IN CASE
LDAIM $00
STA $0010
LDAIM $08
STA $0011
STA $0001
LDAIM $0A
STA $0014 NOTE TABLE PAGE
LDAIM $20
STA $0013 NTOE TABLE BYTE
LDAIM $01
STA $000D REST 16THS
LDAIM $20
STA $0012 NOTE LENGTH, CONTROLS TEMPO
LDAIM $20
STA $000F TONAL RANGE INDEX
LDAIM $05
STA $000A WAVE SHAPE PATTERN
STA $000B
STA $000C
JSR ENTRY TO APPLAYER
JMP $FF69 TO MONITOR, AFTER THE BEEP
ORG $09F8

ZERO PAGE

JUMP OVER PATTERN

TABLE OF ENTRY POINTS FOR TIMING ROUTINE

TTABLE

MAIN

MAIND
MAINH 0982
NOTE 08BE
SCALEA 08B2
TIMEC 086F
TIMEG 088E

QO
O O
N
O =

$63
$6A
$62
$6D
$61
$6C
$60
$6B

MAINA
MAINE
MAINI
NOTEA
TIME
TIMED
TTABLE

112

0942
0967
099E
0908
0860
0876
09F8

MAINB
MAINF
MAINJ
NOTEB
TIMEA
TIMEE
ZERO

0947
0964
09A1
0912
0863
0881
09CO

APPLE II STARWARS THEME

Andrew: H. Eliason
28 Charles Lane
Falmouth, MA 02540

Just for the fun of it, here are some routines
to create something which sounds like the main
battle scene from STARWARS. Enjoy!

Apple 1I Startrek Sounds.Routine
Dis-assembler Listing

#3FAlL

3FAl- A0 0E LDY #$0E

3FA3- A2 00 LDX #5800

3FAS5- 8A TXA

3FA6- 18 CLC

3FA7- E9 01 SBC #3501

3FA9- D0 FC BNE $3FA7
3FAB- 8D 30 CO STA $C030
3FAE- E8 INX

3FAF- - E0 &C CPX #38C

3FBl~ D0 F2 BNE $3FAS
3FB3- 88 DEY

3FB4-~ D0 ED BNE $3FA3
3FB6- 60 RTS

3FB7- 00 BRK

3FB8- 00 BRK

3FB%- 00 BRK

3FBA- 00 BRK

3FBB- 00 BRK

3FBC- 00 BRK

3FBD- 00 BRK

*

Load via monitor starting at 3FA1:
3FAl.3FBé

3FAl- A0 OE A2 00 BA 18 E9
3FA8- 01 D0 FC 8D 30 CO E8 EO
3FB0-. 8C DO F2 88 DO ED 60

* .
Euver BASIC and set HIMEM:16288.
Enter this program »nd RUN:

10 PRINT "STAR BATTLE SOUND EFFECTS”
20 I= RND (15)+1: REM SHOTS

30 J= RBRND (11)*10+120: REM DURATION
40 POXE 16290,1: POKE 16304.J

50 CALL 16289

60 N= RND (1000): FOR K=1 TO N: NEXT K
70 GOTO 20
999 END

Try I = RND(30)+1 and J = RND(255).

The above material is based on the "Phaser"
sound effect from Apple II Startrek.

113

SHAPING UP YOUR APPLE

Michael Faraday
246 Bronxville Road
Bronxville, NY 10708

Even though, as a programming novice, it took me
a while to take on Apple II's Hi-Resolution
Graphics I have to admit that the seeming com-
plexity of constructing a Shape Table held a
certain fascination for me from the first time I
opened the Reference Manual. With Gary Dawkin's

delightful program appearing in Creative Com-
puting recently there is no longer any real
need to apply the original technique, but a good
understanding of something never hurt anyone, if
only to verify other working arrangements.

If you have a TI Programmer, or any convenient
way of converting from one base to another,
here's a simplified method of untangling that
unsightly jumble of arrows and binary digits on
page 53 of the "Big Red Book". The key is in
recognizing that the conversion chart is nothing
more than an OCTal representation of our 8-bit

A/B C OCT
4 000 00 0 To the Code list we
will add the 0OCTal
- 001 01 1 number that each
arrow represents.
' 010 10 2
- 011 M 3
‘ 100 4
o 101 5
‘ 110 6
- 111 7

byte. OCTal is binary broken into groups of
three just as HEX is binary broken into groups
of four. The fog lifts a little and we can now
see why the "C" digit is limited to two bits: we
only have a total of eight to start with. Look-
ing a little further along. the same page we come
to the Conversion Codes and it's here we can
begin to make things really easy.

114

c B A C B &
00 010 010 ’ '
00 111 Tt 11 - o
00 100 000 t *
01 100 100 -.-’ t

0o 101 101 - .

To the Code 1list we will add the OCTal number
each arrow represents.

Going back to the original example in the manual
we can replace the entire chart of binary digits
with an OCTal number put directly above our "un-
wrapped" arrows, like so:

ocT 227704404 15552666 7

e 1 1 1

We are going to construct either two- or three-
digit numbers from this list and now come the
only rules required to deal with in the whole
procedure:

1. While always trying to make a three-digit
number, the "last"™ digit of a three-digit group
can ONLY be a 1, 2 or 3 (remember that the "C"
digit is only 2 binary digits, which can repre-
sent the OCTal number three at most).

2. As usual, these numbers appear Least Signif-
icant Digit first and therefore the "last" digit
is, in reality, the first digit of the new 0CTal
number.

So we can now divide the long string of numbers
into two- and three-digit, reverse-order O0CTal
numbers with slashes:

0CTal 2 2/7 7/0 /4 4 1/5 5/5 2/6 6/6 3/7

"unwrap" this list, reversing digits as we go,
and converting to HEX:

oCT HEX
22 12
77 3F
40 20

144 64

Even this can be a bit tedious and since I find
the arrow Code conversion very easy to remember
- No Plot, Up Clockwise to Left = 0 to 3; Plot,
Up Clockwise to Left = 4§ to 7 - I draw my dia-
grims on graph paper using these OCTal numbers
only.

Thus, becomes
ererer § 15552
$ 4 4 6
A 4 2 6
4 Vv 3 4 2 6
teree 07773
Hexidecimal -

HEX 0 1 2 3 4 5 6

0 1 2 3 i 5 6
20 21 22 23 24 25 26
4o 41 42 B3 B4 45 46
60 61 62 63 64 65 66

100 101 102 103 104 105 106
120 121 122 123 124 125 126
140 141 142 143 144 145 146
160 161 162 163 164 165 166
200 201 202 203 204 205 206
220 221 222 223 224 225 226
240 241 242 243 244 245 246
260 261 262 263 264 265 266
300 301 302 303 304 305 306
320 321 322 323 324 325 326
340 341 342 343 344 345 3U6
360 361 362 363 364 365 366

mMEBOOWEOOONOONEWN-O0

Some caveats. It's still a good idea to draft
an original diagram with plain dots just to get
the shape and scale to your liking. This also
becomes a handy guide for the debugging you're
almost certain to have to do. And too, it makes
great fun for your non-computer friends who
might like to play Connect-the-Dots after a cou-
ple of beers.

A big problem keeps cropping up using the scale
feature. It seems that when blowing up the
original drawing the Apple II uses the direction
of mction associated with the plotted points as
a base reference for the additional points.
This often leads to strangely assymetrical pic-
tures in larger scale with "lines" of dots going
in unexpected directions. As always, a little
playing around can really make you feel good.
Have fun.

Octal Conversion Table

7T 10 N 12 13 14 15 16 17
27 30 31 32 33 3% 35 36 37
47 50 51 52 53 54 55 56 57
67 70 T1 72 73 T4 75 76 77

107 110 111 112 113 114 115 116 117
127 130 131 132 133 134 135 136 137
147 150 151 152 153 154 155 156 157
167 170 171 172 173 174 175 176 177
207 210 211 212 213 214 215 216 217
227 230 231 232 233 234 235 236 237
247 250 251 252 253 254 255 256 257
267 270 271 272 273 274 275 276 277
307 310 311 312 313 314 315 316 317
327 330 331 332 333 33% 335 336 337
347 350 351 352 353 354 355 356 357
367 370 371 372 373 374 375 376 377

115

BROWN AND WHITE AND COLORED ALL OVER

\
Richard F. Suitor
166 Tremont Street
Newton, MA 02158

This article consists of two parts. The first
is a brief discussion of the colors of the Apple
and their relationships to each other and to the
color numbers. Some of that information is used
in the second part to generate a random color
display according to .certain principles sugges-
ted by Martin Gardner in his mathematical games
column in Scientific American.

The Color of Your Apple

The color of your Apple comes from your color
TV. The video signal has many components. Most
of the signal carries the brightness information
of the picture - a black and white set uses this
part of the signal to generate its picture.
Superimposed on this signal is the "color car-
rier:, a 3.58 MHz signal that carries the color
information. The larger tnis signal, the more
colorful that region of the picture. The hue
(blue, green, orange, etc.) is determined by the
phase of the color signal. Reference timing
signals at the beginning of each scan line syn-
chronize a "standard" color signal. The time
during a 3.58 MHz period that the picture color
signal goes high compared to when the standard
goes high determines the hue. A color signal
that goes high when the standard does gives or-
ange. One that goes low at that time gives
blue. Signals that are high while the standard
goes from high to low or om low to high give
violet and green. (This, at least, was the in-
tention. Studio difficulties, transmission
paths and the viewers antenna and set affect
these relations, so the viewer is usually given
final say with a hue or tint control.)

The time relation of the color signal to the
standard signal is expressed as a "phase angle",
is measured in angular measures such as degrees
or radians and can run from 0 to 360 degrees.
This phase angle corresponds to position on a
color circle, with orange at the top and blue at
the bottom, as shown in Figure 1.

The perimeter of the circle represents different
colors or hues. The radial distance from the
center represents amount of color, or satura-
tion. The former is usually adjusted by the
tint control, the latter by the color control.
A color that can be reproduced by a color TV can
be related to a point in this cirele. The angu-
lar position is coded in the phase of the 3.58
MHz color carrier signal; the radial distance
from the center is given by the amplitude of the
color carrier.

The numerical coding of the Apple colors can be
appreciated using this cirecle and binary repre-
sentation of the color numbers. The low order
bit corresponds to red (#1). The second bit
corresponds to dark blue (#2), the third to dark
green (#4) and the high order bit to brown (dark
yellow, #8). To find the color for any color
number, represent each 1 bit as a quarter-pie
piece centered over its respective color, as in-
dicated in Figure 1. The brightness or light-
ness of the color corresponds to the number of
pie pieces and the color corresponds to the
point where the whole collection balances.
Black, #0, has no bits set, no pie and no
brightness. White, #15, has four bits set, the
whole pie, is of maximum brightness and balances
in the center of the circle at neutral. Orange,

116

#9 or 1001 in binary, has pie over the top hemi-
sphere and balances on a point between neutral
and orange. The #5, binary 0101, has two sepa-
rate wedges, one over red and one over green.
Since it is symmetric, it balances at the cen-
ter. It represents a neutral gray of intermedi-
ate brightness. So does the #10. The #14 has
pie over every sector except the red one. TIt:.is
bright and balances on a line toward forest
green. It gives a light, somewhat bluish green.

ORANGE

YELLOW

1000

NEU-
TRAL

0001

GREEN

FOREST

0100 DEEP
GREEN BLUE

MID BLUE

Figure 1.

Color circle shows relations of
color to color number bit position.

A diagram representing the relations of all the
colors is given in Figure 2. Each of the one,
two.and three bit numbers form planes, each cor-
responding to a color circle. One can think of
these positions as points in space, with bright-
ness increasing with vertical position and hori-
zontal planes representing color circles of
differing brightness.

The colors of the Apple are thus coded by the
bit patterns of the numbers representing them.
You can think of them as additive combinations
of red, dark blue, dark green and brown, where
adding two colors is represented by ORing the
two numbers representing them. Subtractive com-
bination can be represented by ANDing the light
colors, pink, yellow, light green and light
blue. The ‘more bits set in a number, the
brighter; the fewer, the darker. The bit pat-
terns for 5 and 10 have no 3.58 MHz component
and so generate a neutral tone. At a boundary
between 5 and 10 however, this pattern is dis-
turbed and two bits or spaces adjoin. Try the
following program which has only grays disp-
played:

10 GR

20.. . =0 T0 9
p; ’O‘R:S

40 HLIN 0,39 AT 2#I

50 VLIN 20,39 AT 2¥%I

60 VLIN 20,39 AT 2%I+21

70 COLOR = 10

80 HLIN 0,39 AT 2%I + 1

90 VLIN 20,39 AT 2*I + 1
100 VLIN 20,39 AT 2%I + 20
110 NEXT I

120 RETURN

The top half of the display has HLIN's, alter-
nating 5 and 10. The bottom half has VLIN's,
alternating 5 and 10. What do you see? The bit
pattern for a number is placed directly on the
video signal, with the four bits occupying one
color carrier period. When two bits adjoin at a

1111
WHITE

1011;{.
0111

1101 YELLOW
L

‘\-§~§~§““‘-~\

LIGHT BLUE

1110 g

LIGHT GREEN

RED F—
%
0010 ®
DARK BLUE ‘ 0000 0100
BLACK DARK GREEN
Figure 2.

Color space locations of the Apple II colors.
Each horizontal plane forms a color circle
of different brightness.

5,10 boundary, a light band is formed. When two
spaces adjoin, a dark band is formed. The
slight tints are due to the boundaries having
some color component. Changing the 5,10 order
reverses this tint.

Now is perhaps a good time to consider just how
large a 3.58 MHz period is. The Apple text is
generated with a 5x7 dot matrix, a common method
of character generation. These same dots cor-
respond to individual bits in the high resolu-
tion display memory. One dot is one-half of a
3.58 MHz period and corresponds to a violet (#3)
or green (#12) color signal. This is- why the
test is slightly colored on a color TV and the
high resolution display has two colors (other
than black and white), green and violet. (But
you can make others, due to effects similar to
those seen in the BASIC program above.)

(The design of color TV has further implications
for the display. The video black and white sig-
nal is limited to about 4 MHz, and many sets
drop the display frequency response so that the
color signal will not be obtrusive. A set so
designed will not resolve the dots very well and
will produce blurry text. Some color sets have
adjustments that make the set ignore the color
signal. Since the color signal processing in-
volves subtracting and adding portions of the
signal, avoiding this can sometimes improve the
text resolution. Also reducing the contrast
especially and the brightness somewhat can help
with text material.)

The color TV design attempts to.remove the color
carrier from the picture (after duly providing
the proper color), but you may be able to see
the signal as 3 or U4 fine vertical lines per
color block. They should not be apparent at all
in the white or black or either gray (except
possibly on a high resolution monitor).

117

Tan is Between Brown and White

This section presents a brief application of the
concepts of the relationships in color space of
the Apple colors. Many of you, I suspect, are
regular readers of Martin Gardner's "Mathemati-
cal Games" column in Scientific American. I
strongly recommend it to those of you who have
not already been introduced. It publicized
"Life" (MICRO 5:5) and motivated "Applayer®
(MICRO 5:29), and was the motivation .for this
program. There's a lot of gold in the mine yet.

In April, the column discussed the aesthetic
properties of random variations of different
kinds. To summarize briefly, three kinds are:

WHITE Each separate element is chosen randomly
and is independent of every other ele-
ment. Called "white" because a fre-
quency spectrum of the result shows all
frequencies occur equally, a qQualitative
description of white light.

BROWN Each separate element is the previous
element plus a randomly chosen devia-
tion. Called "brown" because Brownian
montion is an example.

1/F So called because of its frequency
spectrum, intermediate between "white"
and "brown".

The column presented arguments, attributed to
Richard Voss, that 1/f variations are prevalent
and aesthetically more satisfying than "“white"
(not enough coherence) or %brown" (not enough
variation). An algorithm was given for generat-
ing elements with 1/f random variations. Brief-

ly, each element is the sum of N terms (three,
say). One term is chosen randomly for each ele-
ment. The next is chosen randomly for every ot-

her element. The next is chosen randomly for
every fourth element, and so forth.

With the Apple, one can experiment with these
concepts aurally (hence Applayer) and visually
with the graphic displays. Color is a dimen-
sion that was not discussed much in the column.
This section presents an attempt to apply these
concepts to the Apple display.

Most of us know what "white" noise is like on
the Apple display. An exercise that many try is
to choose a random point, a random color, plot
and repeat. For example:

10 GR

20 X = RND(40)

30 Y = RND(40)

40 COLOR = RND(16)
50 PLOT X,Y

60 GOTO 20

Dispite the garish display that results, this is
a "white" type of random display. Except for
all being within certain limits, the color of
one square has no relationship to that of its
neighbors and the plotting of one square tells
notﬁing about which square is to be plotted
next.

To implement the concept of "1/f", I used the
following:

1. X and Y are each the sum of three numbers,

one chosen randomly from each plot, one every 20
plots and the third every 200.

HLIET

(2]

10 1]

1o PLOT X.%: PLOT 38-xa.%: PLOT
AaZ8-Y:D PLOT 38-Xs38-¥: PLOT
) FLOT 28-'¢s FLOT ‘s
8- PLOT 22

110 RETLRH

120 Z=1%

125 L= REHD (Sx-2

130 U= RHD (93 :%= RMD (9

147 FOR E=1 TO 10

150 R=U+ REND (9 FHLDY (9%

1535 IF PEEE (-18226€1>127 THEM R

160 KE=sK+Ls IF E>1& THEM k=k-Z

165 IF K40 THEN K=K+Z

118

2. A table of color numbers was made (DIM(16)
in the program) so that color numbers near each
other would .correspond to colors that are near
each other. The choice given in the program
satisfies the following restrictions:

a. Adjacent numbers are from adjacent
planes in Figure 2.

No angular change (in the color planes)
is greater than 45 degrees between
adjacent numbers.

3. The color number is the same for 20 plots
and then is changed by an amount chosen randomly
from -2 to +2. This is a "brown" noise genera-
tion concept. However, most of the display
normally has color patches that have been gene-
rated long before and hence are less correlated
with those currently being plotted. I'll claim
credit for good intentions and let someone else
calculate the power spectrum.

4. Each "plot" is actually eight symmetric
plots about the various major axes. I can't
even claim good intentions here; it has nothing
to do with 1/f and was put in for a kaleidoscope
effect. Those who are offended and/or curious
can alter statement 100. They may wish then to
make X and Y the sum of more than three teras,
with the fourth and fifth chosen at even larger
intervals.

The program follows. A paddle and push buttons
are used to control the tempo and reset the dis-
play. If your paddle is not connected, substi-
tute 0 for PDL(0).

170 COLOR=RkED>
120 Q=0 POL <0x-2% ~ 2
1930 FOR I=-0 7O 0= IF PEEE <(~18zZE7
22127V THEM 2008 HERT 1
200 FOR I=1 TO 24
210 H=R+ RHD c&xzy=3+ EMD & GOZUE
1002 MEXET I
o2 HEXT E
220 2070 120
1010 E=1:1L=5
loen Z2=16
coon G070 120
000 GR O CALL -33&
2010 PRINMT "PADDLE O COMTROLE PARATTEEM
SPEED"
020 PRINT “USE BUTTOW o TO GO AT ONC
E TO HI =ZFEED"
2030 PRINT "HOLD BUTTOM 1 7O CLERR =C
REEM"
2040 O0TO 1010
S000 END
*CRLL 858

G3N3NAL

We 're Number One! 121
by Robert M. Tripp

Computer Controlled Relays 122
by Robert M. Tripp, Microprocessor consultant and lecturer

6502 Interfacing for Beginners: Address Decoding I 123
by Marvin L. DeJong

6502 Interfacing for Beginners: Address Decoding II 127
by Marvin L. DeJong

Typesetting on a 6502 System 130
by Robert M. Tripp

Terminal Interface Monitor (TIM) for the 6500 Family : 136

by Oliver Holt, "The Computer Doctor" for Microcomputers,
Inc., microcomputer teacher and consultant, micro-
systems designer

TIM Meets the S100 Bus 138
by Gary L. Tater

The Challenge of the 0SI Challenger 140
by Joel Henkel - An owner's impressions of the 0SI Challenger

Rockwell's New R6500/1 142
by Rockwell International, Electronic Devices Division

Rockwell's AIM is Pretty Good 143
by Rockwell International, Electronic Devices Division

Synertek's VIM-1 144
by Synertek Incorporated

The MICRO Software Catalog (I) 145
by Mike Rowe

The MICRO Software Catalog II 148
by Mike Rowe

The MICRO Software Catalog III 149
by Mike Rowe

Programming a Micro-Computer: 6502, by Caxton C. Foster 150
reviewed by James R. Witt, Jr.

6502 Information Resources 151
by William R. Dial

6502 Bibliography (I) 153

by William R. Dial, retired research chemist with a KIM-1
and several 6502-based 0SI boards

6502 Bibliography - Part II 160
by William R. Dial

6502 Bibliography - Part III 164
by William R. Dial

6502 Bibliography - Part IV 172
by William R. Dial

65C2 Bibliography - Part V 174
by William R. Dial

6502 Reference Card* 176A

* a perforated "tear-out" reference card
120

|

WE'RE NUMBER ONE!

An Editorial

We're number one in microcomputer systems. With over twelve thousand KIM-1}
microcomputers in the field and a thousand per month being ordered, plus a
good number of Apple I and Apple II systems, plus a variety of OSI units,
plus the Jolts, Data Handlers, and other 6502-based systems, plus the huge
numbers of PETs and Microminds that have been ordered, plus a lot of home-
brew 6502 systems - it all adds up to a tremendous number of 6502-based
microcomputer systems in use throughout the world. Adding to this number
are the one and one-half million 650x chips purchased by Atari for some of
their games. We've come a long way in the past year.

We're number one in microprocessor power. Microchess for the KIM-1 took
1.1K and for the 8080A took about 2.5K. Of thirty-one BASICs tested and
reported in Kilobaud, the four 6502 versions placed in the top five spots,
yielding only second place to the Z-80 running at 4 MHz. The 6502's many
addressing modes make it very efficient and easy to program.

We're number one in user participation. Maybe there is some process of
"natural selection" which attracts individuals who are industrious, able,
cooperative, adventurous and communicative to the 6502. While users of
other microprocessor chips have been "spoonfed" via company supported
user notes and user libraries, the 6502 users have been "doing their own
thing" as evidenced by the activity level of many local 6502 groups and

the success of the KIM~1/6502 User Notes.

We're number one since this is our first issue. We would like to really
become the most useful journal in the whole microcomputer field, not the
largest, just the best. We are undertaking the venture with the conviction
that there is a need for a journal to help bring all of the separate parts
of the 6502 world together and with the belief that 6502 users will each
do what they can to support the effort.

—-——-m@&}@

121

COMPUTER CONTROLLED RELAYS

Robert M. Tripp
P.0. Box 3
S. Chelmsford, MA 01824

One of the easiest ways to expand the capabili-
ties of a KIM-1 system is to provide a means of
turning cassette tape recorders on and off under
program control. This added capability permits
a KIM-1, without a lot of additional memory,
to perform editing, program assembly, mailing
list maintenance, information retrieval, and
other useful functions. One method of adding
this computer control is by using relays as
shown in the diagram below. To work reliably,
a few components are required besides the
relays.

The 7404 Hex Inverter is used to buffer the
signals from the KIM’s 6530 Port B I/O lines,
There are many other IC chips which can also
perform the buffering function. The 7404 was
selected because it is so readily available,

The clipping diodes on the coils of the relays
are there to prevent a reverse voltage spike,
generated when the relay is turned off, from
damaging the buffer chip. Note that some
relays may come with this diode already built-
in,

The resistor on the contact side of the relay
serves to limit the current drawn from the de-
vice connected to the relay. This is required
where the device does have a current source,
such as the “remote” switch in most cassette
tape recorders.

The capacitor on the contact side of the relay
serves to dump excess current that may occur
during the initial surge when the relay makes its
closure. Without this capacitor, many relays will
have their contacts “welded” shut after a few
operations.

Note that the contact side of relays which do

‘not carry significant current do not require

either the resistor or capacitor.

The KIM-1 circuitry is such that duringa READ
operation a signal is also present on the AUDIO
OUT lines. This will cause a problem on tape
recorders whose electronics are not turned off
in the “remote” state, since the record head is
active and the signal being generated by the
READ will be written on the tape. This can
wipe out data on the tape. A solution is pro-
vided by a third relay which is connected in
parallel with the WRITE REMOTE relay and
which is used to control the AUDIO OUT line.
The record head is now active only when the
WRITE REMOTE is selected. The AUDIO OUT
line should also be brought out to another
phono jack for use when writing tape using
the normal KIM-1 Dump routine which does not
know about the relays.

7\ +5v
S
loa.
p TR7
Pe i RELYY | M&d \Rend
‘ 1! T. ReMoTe
11~ 2 L . >
.Ps‘, 10-¢
Lo RELAY JHfd | WRITE
T REMoOTE
. —
GND weire
(1> A e
‘ Wweire
\ S .
A"/ Audio our LO £>-3 fte

122

6502 INTERFACING FOR BEGINNERS:
ADDRESS DECODING I

Marvin L. De Jong
Dept. of Math-Physics
The School of the Ozarks
Point Lookout, MO 65726

This is the first installment of a col-
umn which will appear on a regular
basis as long as reader interest, auth-
or enthusiasm and the editor's approval
exist. Your response will be vital for
our deciding whether to continue the
column. Do not be afraid to be criti-
cal or to make suggestions about what
subjects you would like to see. Hope-
fully, the column will be of interest
to anyone who owns a 6502 system. One
of the more challenging aspects of be-
ing a computer hobbyist is understand-
ing how your system works and being
able to configure and construct 1/0
ports. = Then one can begin to tie his
computer to the outside world. Perhaps
this column will give you the ability
to produce flashing 1lights, clicking
relays, whirring motors, and other re-
markable phenomena to amaze your fri-
ends and make your mother proud.

An educational column has to make some
assumptions about where the readers are
in terms of their understanding. A fa-
miliarity with .binary and hex numbers
will be assumed, as will a nodding ac-
quaintance with the TU400 series of in-
tegrated circuits. Lacking such a
background I would recommend that you
get a book like "Bugbook V" by Rony,
Larsen, and Titus; "TTL Cookbook" by
Lancaster; or an equivalent book from
your local computer shop or mail order
house. Ads in "Micro", "Byte",
"Kilobaud", "Ham Radio", "73 Magazine",
etec. will 1list places where both books
and parts may be ordered. My own pre-
ference for "hands-on" experience would
be "Bugbook V". Although this book has
some material on the 8080A chip, most
of the material is very general and the
chapters covering the basic TU00 series
integrated circuits are very good. An-
other indispensable book is the "TTL
Data Book" published by Texas Instru-
ments.

It would be a good idea to get a Proto
Board or equivalent breadboarding sys-
tem for the experiments which will be
suggested. One can even find wire kits
to go with the breadboards. I would
not purchase all the Qutboards from E &
L Instruments since the same circuits
can be constructed less expensively

123

from parts. Please regard these sug-
gestions as opinions which may not be
shared by all experimenters.

Finally, let me introduce the column by
saying that the title is not "Interfac-
ing Made Easy". If it were easy there
would be no challenge and no need for
this column. Like mountain climbing,
satisfaction comes from overcoming the
difficult rather than achieving the ob-
vious. The material which you see in
this column will usually be something
which I am in the process of learning
myself. I am a hobbyist like yoursel-
ves: I keep the wolf from the door by
teaching mathematics and physics, not
computer science or digital electron-
ies. Expert opinions from readers and
guest contributions will always be wel-
come.

We begin at the beginning. The 6502
pins may be divided into four groups:
power, address, data, and control pins.
Pins 1 and 21 are grounds, and pin 8 is
connected to the +5V supply, making the
power connections. Pins 9 through 20
and 22 through 25 are connected to the
address bus on the microcomputer, while
the data pins, 26 through 33, are con-
nected to the data bus. All of the re-
mainder of the pins may be lumped in
the general class of control pins. 1In
subsequent issues the data bus and the
control bus will be discussed. Our
concern in the first two issues is with
addressing.

The 6502 Address Bus

The 6502 receives data from a variety

of devices (memory, keyboard, tape
reader, floppy disc, etc.), processes
it, and sends it back to one or more

devices. The first process 1is called
READ and is accomplished by the LDA or
similar instruction. The last process
is called WRITE and is achieved by a
STA type instruction. The purpose of
the address pins is to put out.a signal
on the address bus to select the
device or location which is going to
produce or accept the data. 1In the
computer system, each device has a
unique address, and when the 6502 puts
that address on the address bus, the

device must be activated. Each 1line
on the address bus may have one of two
possible values (high or low, H or L,
1 or 0, +5V or OV are the names most
frequently given to these values). A
one-address-line system could select
two devices; one activated by a 0 on
the address line, the other by a 1.
Figure 1 shows how to decode such an
idiot microcomputer.

a0—> D——Device 2

evice 1

Figure 1. Decoding a One-Address Line
Microprocessor.

Any device which when connected to the
address bus puts out a unique signal
(1 or 0) for a unique address is called
a decoder. We have seen that a micro-
‘computer with a single address line can
select two devices, which could be
memory locations or I/0 ports. A some-
what smarter microprocessor might have
two address lines. It could be decoded
by the device shown in Figure 2, pro-
vided the truth table of the device
were the one given in Table 1. Such a
device could be implemented with NAND
OR NOR gates, or with a T4139.

3 __{>>.Device y
2 —-D—Device 3
A1 ~— B 1 evice 2
__£>>_7» -—{:>—D .
AO——£:>—q A 0 -—{>>Dev1ce 1

Figure 2. 74139 Decoder for a Two-
Address Line Microprocessor.

Inputs Outputs

A B {0 1 2 3

jo oliaelie off oo
e
= off audite off e of
romm

Table 1. Truth Table for Two-Line
Decoder T§139.

The point is that two address lines
allow the microprocessor to select four
devices; three address lines give eight
devices; four, 16; five, 32; six, 64;
and so on. The 6502, being very smart,
has 16 address lines. Anyone who can
calculate how many telephones can be
"addressed" by a T-digit, base-ten
phone number can also calculate how
many locations can be addressed by a 16
digit, base-two _address bus, The
a?swers are 10/=10 million and
2 6=65,536, respectively.

Earth people have not yet made a
single device to simultaneously decode
16 address lines to produce 65,536
device select signals. Such a monster
IC would need at least 65,554 pins.
Many integrated circuits are con-
structed to decode the ten, low-order
address lines (A0-A9) internally. For
example, the 6530 PIA chips on the
KIM and the 21L02 memory chips on my
memory board decode the ten lowest
address lines internally, that is, they
select any one of the 2/° =1024 flip-
flops to be written to or read. Con-
sequently, our problem is to decode the
high-order address lines, at least
initially. These lines are usually de-
coded to form blocks of address space
(not unlike home addresses in city
blocks)., Three address lines give
eight (29:-8) possible blocks, and the
three highest address lines (A15-413)
divide the address %Pace into _eight
blocks, each having 2 16-3) =272 1oca-
tions.

Now 1024 (1024=27°%) locations is usual-
ly referred to as 1K, so 2% locations
is 23 x 2’° locations, which is 8 x 2‘°
locations, which is 8K locations. Thus
the top three address lines divide the
address space into eight, 8K blocks.
See Table 2 for more details. Each of
these 8K blocks may be further divided

A15 A14 A13] Name | Hex Addresses
0 0 0 8K0 0000-1FFF

0 0 1 8K1 2000~3FFF

0 1 0 8K2 4000-5FFF

0 1 1 8K3 6000-TFFF

1 0 0 8KbY 8000~-9FFF

1 0 1 8K5 AOO0~BFFF

1 1 0 8K6 CO00-DFFF

1 1 1 8K7 EOQ0O-FFFF

Table 2. "Blocking" the Memory Space.

124

into 1K blocks by decoding address
lines A12-A10. Table 3 shows how block
8K4 is divided into eight, 1K blocks.
Finally, as mentioned before, many de-
vices decode the lowest 10 address
lines, and consequently we have decoded

all 16 address lines, at least on
paper.
A12 A11 A10 | Name | Hex Address

0 0 0 K32 8000-83FF

0 0 1 K33 8400-87FF

0 1 0 K34 8800-8BFF

0 1 1 K35 8C00~-8FFF

1 0 0 K36 9000-93FF

1 0 1 K37 9400-97FF

1 1 0 K38 9800-~9BFF

1 1 1 K39 9C00-9FFF
Table 3. Subdivision of 8KU Bloeck into
1K blocks.

To begin to see how this is done, con-
struct the circuit shown in Figure 3.

100 ohms

A13—{>15
A4l

A15__t,_13
12

Wire Probe

O «wMNW E=Uto~g
=it

)
¥ Computer Ground

Figure 3. Decoding the Highest Three
Address Lines.

(There are many decoding schemes and
circuits, the circuit of Figure 3 is
just one possible technique.) Here
is where your breadboard becomes
useful. Connect the address lines from
your 6502 system to the TU145., (KIM
owners can do this with no buffering
because lines A15-A13 are not used on
the KIM-1. Owners of other systems
should check to see if the address
lines are properly buffered.) Now per-
form the following experiments:

125

1. Load the following program somewhere
between 0100 and 1FFF. The progranm
is relocatable.

0200 18 CLC

0201 8D XX 60 LOOP STA 60XX

0204 9n FB BCC LOOP

This rcutine stores Accum. in location

60XX.
back.

X means "don't care." Then loop

2. Run the
probe shown
the output
Which ones

program and with the wire
in Figure 3, test each of
pins (pins 1-7 and 9).
cause the LED to glow?

3. Try to explain your results with the
help of the truth table, Table 4.

4. Change the STA instruction to a LDA
instruction (AD XX 60) and repeat steps
2 and 3 above.

5. In turn, change the location at
which you are getting the data to a
location in each of the 8K blocks in
Table 2, e.g. 00XX, 20XX, 4oxXX, etec.
and test the output pins on the 74145
to see if the LED glows. You should be
able to explain your results with the
truth table.

6. Stop the
pins again.

program and check the

Inputs Outputs
C B A 6 1 2 3 4 85 6 7
L L L L H H HHUHEH H
L L H H L H H HUHH H
L H L H HL HH HH H
L H H H H H L HHH H
H L L H H HH L HUHH
H L H H H HHHUL H H
H H L H H HBHEHHL H
H H H H HH HHUEHBGHL
Table 4. Truth Table for T4LS145 when

connected as shown in Figure 3.

In steps 2 and 4 the LED should glow
when the probe touches pin 1 and pin 4.
Why does it glow more brightly on pin
. 1?7 When the program is stopped, only
pin 1 should cause the LED to light.
The answers to these questions and the
answers to questions you never asked
will be given in the next issue.

What else is coming up in the next
column? We will s=ee how to take any
of the 8 signals from the TU4145 to
enable a T4LS138 which in turn will
decode address lines A12-A10, thus

dividing any 8K block of address space
which we may select into 1K blocks.
Into one of these 1K blocks we will put
some I/0 ports.

(The more precocious of my attentive
readers may already see that the scheme
of Figure 3 could also be used to pre-
set or clear a flip-flop to control an
external device, for example, a heater,
and all that without even using the
data lines. If you see all that, you
can take over this column.) See you
next issue.

126

6502 INTERFACING FOR BEGINNERS:
ADDRESS DECODING II

Marvin L. De Jong
Dept . of Math-Physics
The School of the Ozarks
Point Lookout, MO 65726

I hope you did not turn any expensive integrated
circuits into cinders with last month's experi-
ments. We will begin this month by considering
the questions raised in the last column. You
will need to refer to the circuits, tables, and
the program described there. The following

table describes the activity which takes place
on the address bus and the data bus while the
program is running. It is organized by clock
cycles, each one microsecond long, starting with
the op code fetch of the CLC instruction.

CYCLE ADDRESS BUS A15 A14 A13 DATA BUS COMMENTS
0 0200 0 0 0 CLC op code Pin 1 of L5145 is low because address
lines A13-15 are low.
1 0201 0 0 0 STA op code LED will glow when connected to pin 1,
) but not to other pins.
r 2 0201 0 0 0 STA op code A1l other pins on LS145 are high.
3 0202 0 0 0 XX Low order address of storage location
on data lines.
y 0203 0 0 0 60 High order address of storage location
on data lines.
5 60XX 0 1 1 accumulator LED will light for 1 microsecond if
contents connected to pin 4 on LS145.
6 0204 0 0 0 BCC op code Pin 4 high, pin 1 low. LED will glow
on pin 1 only.
7 0205 0 0 0 FB offset 6502 is now determing if and where to
branch. Branch is to 0201 because
— 8 0206 0 0 0 garbage carry was clear.

In the program loop address lines A14 and A13 go
high only during cycle 5. Thus, for six cyeles
output 0 (pin 1) of the LS145 is low. The LS145
is an open collector device and acts like a
switch to ground when the pin is in the L state,
allowing current to flow through the LED. Dur-
ing cycle 5, when the address of the storage
location is on the address bus, pin 4 is in the
low state and will cause the LED to glow. Earth
people do not perceive one microsecond flashes
spaced six microseconds apart, so the LED ap-
pears to glow rather than flash. Since the ma-
jority of the loop time is spent with pin 1 at
logic 0, a bright glow is observed on this pin.
Changing the instruction from STA to LDA has no
effect since the address bus goes through the
same sequence for a LDA as it does for 'a STA.
Changing the storage location from 60XX to some-
thing else will cause another pin of the LS145
to glow. The results of the LED test should
agree with the truth table given for the LS145.

The pulse from the decoder which occurs when it
responds to a particular address at its input
pins is called a device select pulse or an
address select pulse. The LS145 produces a
logic 0 or active-low device select pulse, some-
times symbolized by L_J~ or DS. This pulse is
used to select or activate or enable another de-
vice in the computer system such as a memory
chip, an I/0 port, a PIA chip, or another deco-
der. As mentioned in the last column, the de-
vice select pulse from the LS145 could be used
to enable a T4LS138 which would then decode ad-
dress lines A10-12, dividing an 8K block into 1K
blocks. Such a scheme is very similar to the
expansion circuit suggested in the KIM-1 USER
MANUAL, page 74. Similar circuits are also

127

used on memory expansion boards. In the present
circumstance I have decided to make a trade-off
between wasting address space and minimizing the
number of chips on the breadboard. Our purpose
here is to configure some I1/0 ports as simply as
possible.

The decoding circuit is shown in Figure 1. A
total of eight device select pulses are avail-
able for eight I/0 ports. Note that one of the
8K selects (8K4) from the LS145 enables the
LS138 which decodes the three low-order address
lines. All of the 8KU4 space is used to get
elght I/0 ports. Using a THLS154 instead of the
LS138 and decoding on more address 1line would
give 16 I/0 ports in the event we need more. Or
we could take another 8K select to enable anoth-
er L3138 or LS145, giving us 8 or 32 ports, re-
spectively. There is no doubt that address
space 1is being wasted, but few users use all
64K, or even 32K, so the waste may be justified.
In Figure 1, address lines A0-2 are extended
downward to indicate that they could be decoded
by other devices such as an LS138 or LS154.

The addresses which enable the device select
pulses DSO-7 are given in Figure 1. Note that
since not all sixteen lines have been decoded to
produce the pulses, the addresses shown are not
the only ones which will work. For example, de-
vice select pulse 0 will be produced whenever
the computer reads or writes to 8XX0 or 9XX0 (XX
means any hex numbeérs). This should cause no
difficulty unless we try to put other devices
into the 8K4 block, in which case we could sim-
ply decode some other lines. If your system
does not buffer the address lines, you should
buffer them with the circuit shown in Figure 2.

- AQOAL A2
0 AR,
o+5v +3v
HeXx
« . “ Address
-le YOb-2 8000 D
A13—— e 0K —iic b BOO1 3
Al14o—B 5 4B yopu 8002
Py — 1 48 ap yapz 8003 3
34 Y4 i 8004 +
s 7415138 0 8005 v
2R Y5p—=——— &
7415145 e 4 G2A Y6 L4 8006 @
D ol 4G Y7pr BT o
3
3)
= » Figure 1. 06 () =
Decoding Circuit to Select 1/0 Ports.
See text for details.

Construct the circuits of Figures 1, 2, and 3.
I managed to get them on one A P circuit board
with no difficulty, with room for several more
chips. I also found that the A P breadboard
jumper wire kit is very handy for making neat
layouts. Connect one of the device select lines
from the LS138 to the flip-flop preset input
(Test Circuit, Figure 3) and another device se-
lect line to the clear input. A pulse to the
preset input will cause the Q output to go high,
lighting the Q LED, whereas a pulse to the clear
input will cause the § output to go high, light-
ing the Q LED.

To test your decoding circuit write a one state-
ment program, for example:
0200 AD 00 80 LDA DSO
If the line labeled 8000 is connected to the
preset of the test circuit, the Q output will go
high, lighting the LED, when the program is run.

Running the program:
0200 AD 04 80 LDA DS}
will cause a switch of the flip-flop if the line
8004 is connected to the clear input. You
should test all 8 device select lines from the
LS138 with these programs by changing the con-
nections and the addresses. Note that no data
is being transferred since we have made no con-
nections to the data bus. It should also be ap-
parent that this scheme could be used to switch
a motor, light, cassette recorder or other de-
vice off and on in a computer program. Eureka!
We have made a simple I/0 circuit.

To continue a little further, repeat the above
experiments with a STA instruction replacing the
LDA instruction. The results should be identi-
cal because in both cases it is the address of

128

the device select on the address bus which
produces the pulse which flips the flop. One
more experiment: connect the R/W line from the
6502 to the G1 input on the LS138 after remov-
ing the connection from G1 (pin 6) to pin 16.
Now try the programs above, using first a LDA
instruection, then a STA instruction. You should
find that the program with the LDA instruction

+5v

1]
AQo——L 2 >AQ
At o—4 71S367 E—orad
A2c— € H— A2
Al3— 1 A 13
A 14 % A4
A15 oA 13_____>A1S

Gl G2

IL:“_JE

ok,
"—
-

Figure 2.

Buffering the Address Lines.
The arrows pointing into the chip are the
lines from the 6502, while those pointing
away go to the circuit in Figure 1.

o+ Sv
-5
Q 15
I
}
bk 7
4 PR 4
n hr—d
H CLR
m " K 6 14
7476
5 5
Figure 3. Test Circuit.

works, that is, the lights can be switched from
off to on and vice versa, but the STA instruc-
tion does not work. Why?

Keep your circuit, as the material in the next
column will refer to and make use of the circuit
you have just completed.

A Note About Figure 1: The ¥ lines in Figure 1
suggest that something should be done with them.
For the experiments described above, nothing
need be connected to these lines, however when

we try to put data on the data bus these lines
will become important. What you do depends on
the system you are using. Since the KIM-1 is
probably the most popular system among the read-
ers, and since my own system is a KIM (expanded
with a Riverside KEM and MVM-1024) the following
details will be of most interest to KIM owners.
Owners of other systems will have to dig into
their manuals to make sure they are not de-se-
lecting their on-board devices, or much worse,
selecting two devices to put information on the
data bus simultaneously. The KIM-1 has a T4145
decoder on-board which decodes lines A10-12;
lines A13-15 are not decoded. Consequently, the
lowest 8KO block is already decoded, and the de-
vice select pulse from the LS145 in Figure 1
should enable the decoder on the KIM for all ad-
dresses in the 8KO block. To do this simply
connect the device select pulse from pin 1 on
the 7u4LS145 in Figure 1 to pin K on the appli-
cation connector on the KIM, making sure that
the ground connection is first removed. A 10K
pull-up resistor between pin 1 and +5V will also
be necessary. The device select pulse from 8K7
should enable the device containing the restart
and interrupt vectors. In the case of the KIM,
pin 9 of the LS145 in Figure should enable the
6530-002 ROM by connecting it to pin J of the
application connector. No pull-up is necessary.

Next issue we will examine the other pins on the
6502 which will be wuseful in configuring I/0
ports, namely the bi-directional data bus, and
the control signals. Hopefully we shall finish
the circuitry needed to make an output port (8
bits), connect some LEDs to it, see if it works
or smokes, and maybe think of a use for it.

A couple of parting shots: First, there is a
very good educational series of articles in
KILOBAUD magazine called KILOBAUD KLASSROOM.
It assumes less experience than I have assumed
so far. Second, I hope you have obtained a "TTL
Databook™ from either Texas Instruments or
National so that you can study the truth tables
and other specifications of the chips we are

An Additional Experiment

The address decoding circuit of Figure 1 pro-
duces a one microsecond negative going one-shot
pulse when a LDA instruction addresses one of
the locations shown in Figure 1. This one-shot
can be used for a variety of purposes, one of
which is triggering the flip-flop shown in Fig-
ure 3. The program listed below makes use of an
interval timer (KIM-1 system addresses) to pro-
duce a square wave. By varying the time loaded
into the timer, the frequency can be changed,

<\\\‘?sing.

and the duty cycle can be changed. Thus, we
have produced a simple function generator with
programmable period and duty cycle. The LEDs
will show the results at low frequencies. Try
this program and watch the LEDs. Amplify the Q
output and connect it to a speaker; notice the
effect of changing the time, the duty cycle, the
wave shape (by filtering) or whatever else you
can think of. Notice that I used device selects
8007 and 8001.

DSEVEN # $8007 DEVICE SELECT 7

DSONE # $8001 DEVICE SELECT 1

TIMER * $1707 KIM TIMER

CLKRDI * $1707 KIM CLOCK DONE TEST
0200 AD 07 80 START LDA DSEVEN INIT DS7 DEVICE SELECT PULSE
0203 A9 FF LDAIM $FF INIT TIMER
0205 8D 07 17 STA TIMER START DIVIDE-BY-1024 TIMER FOR 256
0208 AD 07 17 BACK LDA CLKRDI CYCLES, NOW CHECK TO SEE IF IT
020B 10 FB BPL BACK IS FINISHED. IF NOT, CHECK AGAIN,
020D AD 01 80 LDA DSONE OTHERWISE TRIGGER DS1.
0210 A9 FF LDAIM §FF
0212 8D 07 17 STA TIMER START TIMER FOR SECOND HALF OF
0215 AD 07 17 AGN LDA CLKRDI CYCLE. IS TIMER READY?
0218 10 FB BPL AGN NO, CHECK AGAIN, OTHERWISE JUMP
021A 4C 00 02 JMP START TO START OVER.

129

TYPESETTING ON A 6502 SYSTEM

Robert M. Tripp
P.0. Box 3
S. Chelmsford, MA 01824

As Editor/Publisher of MICRO, I was
bothered by the need to have typeset-
ting done by an outside company for
several reasons. First, of course, was
the cost. A typeset page can cost from
$12 to $30.00. Second, it takes time
have a page set, anywhere from one to
five days. Third, once you have the
typeset material and are ready to paste
up the final copy, it is very difficult
to make any changes or corrections. It
occurred to me that I should be able to
do a reasonable job of typesetting with
my existing equipment - a KIM-1 and a
Diablo Hytype II based terminal. The
results of my efforts are described in
this article, and, this entire issue of
MICRO has been produced with the equip-
ment and program described.

Actually, "typesetting" is a misnomer
for what is being done here. "type" is
not being "set", Justification would
probably be a better term, but still
would not completely cover the features
currently implemented. For lack of a
term, I named this routine "JUSTIFY".

Features of Justify

JUSTIFY has four modes. The most use-
ful is Full Justification in which a
line is set justified at both the left
and right margins. The lines you are
reading now are an example of a Full
Justification. In this mode the width
of the column is specified as a param-
eter to the JUSTIFY routine which then
pads the text as necessary to make the
text exactly meet the right margin.

The second mode is No Justification.
There are a number of instances in
which you do not want the material to
be justified: the last line of a para-
graph, source listings, object 1list-
ings, any type of tables, and so forth.
The following listing makes the point
quite graphically:

0120 A6 DB JSTIFY LDXZ CMND

0122 B5 00 LDAZX $00

0124 ca DEX

which, if set with Full Justification
would come out as

0120 A6 DB JSTIFY LDXZ CMND
0122 B5 00 LDAZX $00
0124 ca DEX

Obviously not what was intended.

The third mode is Center. Title blocks
of articles, headers for sections, and
so forth need to be centered. The Cen-
ter mode calculates where to start the
text so that it will be properly cen-

tered, including spliting a character
space in half to get perfect centering.
A
AA
AAA

The last mode currently implemented is
actually not a form of Justification,
but is useful. It is an enhancement
in which characters may be printed
slightly bolder than the surrounding
text to make them stand out. This mode
is independent of the three justifica-
tion modes and can be combined with any
of them.

Although the JUSTIFY routine was made
for typesetting MICRO, we have found it
has many other uses. Since the editing
portion of the program permits you to
make corrections before printing, we
can type "perfect" letters.

Justification Algorithm

The Jjustification algorithm, or rules,
used is based on certain characteris-
tics of the Diablo printer, This
printer "thinks small" - it divides the
line into units which are 1/120th of an
inch. Each printed character is nor-
mally 10 units wide, including the
space around the character, giving 12

130

characters per inch. In TEXT mode,
there is no way to space the characters
other than next to each other as in
regular typing, or separated by a full
space. If this was the only method of
positioning characters, then the justi-
fication would consist of expanding the
spaces in a line to pick up the extra
units to justify a line. This is the
method required for a teletype printer.
It looks like this:

This is teletype mode justification.
Note that the spaces between words has
been doubled in the first three posi-
tions. This is not too bad, and as
long as there are not too many spaces
to distribute, can be acceptable.
Given the Diablo's capability of pad-
ding with as little as a space of 1/120
of an inch, much better Jjustification
be achieved. If there are only a few
units to be distributed over the line,
then each normal space may be stretched
just a little. For example, in a line
which is only one character short of
full, there are only ten units of space
remaining to be distributed, since each
character is 10 units wide. If the
line contained five normal spaces, then
each space would be stretched by two
units, an almost imperceptible amount.

Full justification with an extra unit.
Full justification with no extra units.

As the number of units to be distribu-
ted increases, there comes a point at
which the spaces become noticeably
wide. The way this can be solved on
the Diablo is to distribute spaces
among the characters as well as the
spaces. The calculation is done as:

1. Count number of extra units.

2. 1If there are more units than
characters and spaces, then
add one or more units to each
character and space.

3. If there are fewer units than
characters and spaces, then
test just the spaces. If
there are more units than
spaces, then add one or more
to each space.

4, When there are finally fewer
units than spaces, distribute
the remaining units over the
first spaces in the line.

Each character nas one unit added.
Characters have not had a unit added.

Close inspection will reveal that the
first line above has the individual
characters spaced slightly wider than
the second line. This algorithm will
handle most normal lines, but if a line

has too wmany units to fill, it will
1nok strange.
This is a very loose line.

The JUSTIFY Function

JUSTIFY is written in the form of a
HELP Function. HELP is a sort of high
level language I have developed and is
the basis of the Editor, Mailing List,
and Information Retrieval packages sold
by The COMPUTERIST, as well as a large
number of utilities we use internally
for such operations as printing labels
for cassette tapes, creating copies of
program tapes, and so forth. Each of
the Functions is, essentially, a sub-
routine which is called and passed a
set of parameters. If the arguments
required are placed in the proper loca-
tions - 00D9, DA, and DB - and if the
instruction at location 01AB is changed
from JMP NXTSTP to RTS, then JUSTIFY
may be called as a simple subroutine.

Operation of Justify

JSTIFY uses the pointer in CMND+03 to
pick up the full address of the buffer
which contains the material to be just-
ified, and stores it in BUFFER and
BUFFER+01.

CLEAR puts zero in each of the seven
counters, NULLS to TEMP, and then puts
a zero at the first location past the
end of the buffer as defined by the
start of the BUFFER and the length as
defined by the parameter CMND+0O1. This
zero guarantees a null for the end of
buffer test later on.

MORE starts at the end of the buffer
to pick up and test each character in
order to get a count of the number of
nulls, spaces, and other characters.
It also tests for a Control N (OE). A
Control N is used to signal that No
Justification is required on the cur-
rent line and control branches to NEXT.

131

0120
0122
0124
0126
0128

0124
012C
012E
0130
0131
0133
0135
0137

0138
013a
013C
013E
0140
0142
0144
0146
0147

0149
014A
014C
O14E
0150
0152
0154
0156
0158
0159
015B
015C
015E

A6 DB
B5 00
85 D4
B5 01
85 D5

A2 07
A9 00
95 CC

10 FB
A4 D9
91 D4

B1 D&
C9 OE
FO 59
C9 20
FO 1E
10 1E
E6 CC

10 EF

B1 D&
C9 OB
FO 16
C6 CE
A6 CC
FO 41
A5 DA

FO 22

65 DA
DO F8

JUSTIFY FUNCTION - 16 JAN 1978

JUSTIF

NULLS
SPACES
CHARS
COFSET
SOFSET
EXCESS
TEMP
POINT
BUFFER
MODE
CMND
OUTCH
NXTSTP

JSTIFY

CLEAR

MORE

AGAIN

TEST

MULT

ORG
*
*
*
*
*
*
*
*
*
»
*
*
*

LDXZ
LDAZX
STAZ
LDAZX
STAZ

LDXIM
LDAIM
STAZX
DEX
BPL
LDYZ
STAIY
DEY

LDAIY
CMPIM
BEQ
CMPIM
BEQ
BPL
INCZ
DEY
BPL

INY
LDAIY
CMPIM
BEQ
DECZ
LDXZ
BEQ
LDAZ
DEX
BEQ
CLC
ADCZ
BNE

$0120

$00cC
$00CD
$00CE
$00CF
$00D0
$00D1
$00D2
$00D3
$00D4
$00D6
$00D8
$1EAO
$0304

CMND
$00
BUFFER
$01
BUFFER

$07
$00
NULLS

CLEAR
CMND
BUFFER

BUFFER
$0E
NEXT
$20
SCOUNT
CCOUNT
NULLS

MORE

BUFFER
$0B
CENTER
CHARS
NULLS
NEXT
CMND

DIVIDE

CMND
MULT

132

+03

+01

+01

GET CHARACTER TO COUNT

NO JUSTIFICATION

TEST SPACE CHARACTER OR LESS
EQUAL SPACE

EQUAL CHARACTER

EQUAL NULL

DECREMENT STRING COUNTER

TEST ANY NULLS

NO NULLS

+02

CALCULATE UNITS TO EXPAND
GO TO DIVIDE

+02
MULT LOOP UNTIL DONE

0160
0162
0164

0166
0168
0164
016C
016E
016F

0172
0174
0177
0179
017B

017D
017F
0181
0182
0184
0186
0188

018a
018C
018E
018F
0191
0193

0195

0197
0199
019B
019D
019F
01a1
0143
01A5
01A7
01A9
01AB
01AE
01B1
01B3
01B5
01B7
01B9
01BC

01BE
01BF

E6
E6
DO

E6
46
90
A5
4a
20

A9
20
cé
DO
FO

c5
30

E5
E6
E6
DO

C5
30
38
E5
E6
DO

85

Al
Eb6
B1
C9
FO
C9
FO
C9
FO
10
uc
20
c6
30
A5
FO
20
FO

AA
A9

CD
CE
EO

D3
cC
06
DA

BE

20
A0
cc
F7
1A

CE
09

CE
CF
DO
F3

CD
07

CD
DO
F5

D1

D3
D3
DU
18
43
19
3F
20
29
03
ol
A0
CE
E2
CF
DE
BE
D9

10

01

1E

03
1E

01

SCOUNT INCZ
CCOUNT INCZ
BNE

CENTER INCZ
LSRZ
BCC
LDAZ
LSRA
JSR

SHIFT LDAIM
JSR
DECZ.
BNE
BEQ

DIVIDE CMPZ
BMI
SEC
SBCZ
INCZ
INCZ
BNE

DIVDON CMPZ
BMI
SEC
SBCZ
INCZ
BNE

SDONE STAZ

NEXT LDYZ
INCZ
LDAIY
CMPIM
BEQ
CMPIM
BEQ
CMPIM
BEQ
BPL
JMP

CHAR JSR
DECZ
BMI
LDAZ

NTEST BEQ
JSR
BEQ

OFFSET TAX
LDAIM

SPACES
CHARS
AGAIN

POINT
NULLS
SHIFT
CMND

OFFSET

$20
OUTCH
NULLS
SHIFT
NEXT

CHARS
DIVDON

CHARS

COFSET
SOFSET
DIVIDE

SPACES
SDONE

SPACES
SOFSET
DIVDON

EXCESS

POINT
POINT
BUFFER
$18
BOLD
$19
BOLD
$20
SPACE
CHAR
NXTSTP
OUTCH
CHARS
NEXT
COFSET
NEXT
OFFSET
NEXT

$10

133

BUMP SPACES AND CHAR COUNTERS

+02

TEST CHAR SPACING

UNITS < CHARS

UNITS >= CHARS

HOW MANY UNITS PER CHAR
BUMP COUNTERS

UNCOND. BRANCH

REMAINDER TO SPACES

REMAINDER TO EXCESS

GET STRING POINTER
BUMP FOR NEXT TIME
FETCH CHARACTER
BOLD?

NORMAL?

TEST SPACE

CORRECTION FOR LAST CHAR
LAST CHAR
FETCH OFFSET

01Ct1 20 A0 1E JSR
01CH4 A9 48 BUMP LDAIM
01C6 20 A0 1E JSR
01C9 ca DEX
01CA DO F8 BNE
01CC A9 1C LDAIM
01CE 20 A0 1E JSR
01D1 60 RTS
01D2 20 A0 1E SPACE JSR
01D5 A5 DO LDAZ
01D7 A6 D1 LDXZ
01D9 FO 05 BEQ
01DB C6 D1 DECZ
01DD 18 CLC
O1DE 69 01 ADCIM
01E0 C9 00 NOXCES CMPIM
01E2 10 D3 BPL
O1EY4 18 BOLD CLC
01E5 69 1E ADCIM
O01ET AA TAX
01E8 A9 1B LDAIM
O1EA 20 A0 1E JSR
01ED 8A TXA
O1EE 20 A0 1E JSR
01F1 DO A4 BNE

TEST first checks to see if the Center
Mode ha:i been specified by the Control
K (0B) character. It then checks to
determiiie if there are any nulls at the
end of che line. If there are no nulls
then the line can be printed with no
further justification required. It is
already justified.

MULT multiplies the number of nulls by
the character width provided by param-
eter CMND+02. This gives the number of
units that must be distributed through-
out the line to provide left and right
Jjustification.

CENTER handles the Center Mode of
Jjustification., It bumps over the Con-
trol K character and divides the nulls
by two so that the nulls will be evenly
divided. It tests for an odd or even
number of nulls using a BCC after the
LSRZ which does the divide. If there
are an even number of nulls, then it
branches to SHIFT. IF there are an odd
number of nulls, it picks up the char-
acter width from CMND+2, divides this
two to get a one-half character offset
to provide more accurate centering.
This is output via the OFFSET routine.

OUTCH

'H

OUTCH

BUMP
$1C
OUTCH

OUTCH

SOFSET FETCH SPACE OFFSET
EXCESS TEST EXTRA OUTPUT
NOXCES

EXCESS DECREMENT EXCESS

$01

INCREMENT OFFSET

$00
NTEST

$1E

$1B
OUTCH

OUTCH
NEXT

134

SHIFT moves the printer to the start of
the centered line by outputting spaces
equal to one-half the original number
nulls, When finished it branches to
NEXT which takes care of printing the
text.

DIVIDE allocates the excess units along
the line of text to produce the Full
Justification. It first tests to see
if it can allocate an additional unit
to each individual character and space.
If so, it increments both the character
offset counter (COFSET) and the space
offset counter (SOFSET). It then tests
whether another unit can be allocated,
until it finds that there are fewer
units to be allocated than characters
and spaces.

DIVDON takes care of any units remain-
ing after the DIVIDE allocation. These
are divided among the spaces, incre-
menting SOFSET until there are fewer
units than spaces. The remainder, if
any, is stored in EXCESS where it will
be used on spaces starting at the be-
ginning of the line.

NEXT handles the printing. It picks up
and examines the next character. It
branches to BOLD, SPACE, CHAR, or re-

turns to the calling program if a null
is encountered.

CHAR outputs the character using the
system subroutine, in this case the KIM
QUTCH subroutine. It tests for last
character and puts out the character
offset (COFSET) if non-zero.

OFFSET saves the offset in X, then puts
the Diablo printer into PLOT mode by
outputting a 10 hex. It then puts out
one 'H' for each unit of offset, and
finally returns the printer to TEXT
mode by printing a 1C hex.

SPACE outputs a space, then combines a
unit of EXCESS with the space offset
and goes to NTEST to output the offset
if not zero.

BOLD converts a Control X to '6' or a
Control Y to '7', and then outputs the
character after issuing an escape 1B
hex. This sets or clears the print
enhancement mode.

The DIRECT TYPESETTER

One use of JUSTIFY has been in a HELP
program for direct typesetting. In
this program a sheet of paper -is in-
serted sideways in the terminal. Mate-

DIRECT TYPESETTER

0004 OB1CO1OD 1 NEXT CPRINT CTLCMA
0008 081€0080 2 INPUT FILE
000C 0B090100 3 CPRINT TAB
0010 O1270A1E 4 JUSTFY 39.
0014 OB10014UE 5 CPRINT CTLP
0018 03010000 6 BRANCH NEXT
001C 20008017 T FILE FMAP

0020 00270000 8 FMAP 00. 39.

rial is entered and edited on the left
side of the page and typeset on the
right side.

The CPRINT Function outputs a Control
Comma (CTLCMA) 1C hex which sets the
printer in TEST mode, and then issues a
Carriage Return (CR) OD hex.

The INPUT Function accepts data from
the terminal, places it in the buffer
defined by FILE (starts at 1780 and is
39 decimal characters 1long), and sup-
ports some editing features.

The next CPRINT causes the printer to
TAB to the right side of the page, to
the left margin of the typesetting
area.

JUSTFY does the actual justification
and printing. Its parameters specify
that the set line has a maximum width
of 39 decimal characters; that the
width of each character is 10 units;
and the 1E is a pointer to the start of
the buffer - FFILE.

The last CPRINT sets the printer back
one horizontal unit to provide a closer
line spacing.

The BRANCH simply returns control to
NEXT and the system is ready for the
next line to be input.

- 16 Jan 1978
1 CR TEXT MODE, CARRIAGE RETURN
0 80 CLEAR AND INPUT TEXT
1 0 TAB TO TYPESET AREA
10. 1E 39 CHAR WIDTH, 10 UNITS PER CHAR
1 " PLOT MODE, UP ONE UNIT
READY FOR NEXT LINE
FFILE BUFFER AT 1780

135

FIELD STARTS OFFSET 0, 39. CHAR.

TERMINAL INTERFACE MONITOR (TIM)

FOR THE 6502 MICROPROCESSOR FAMILY
Oliver Holt

01d Nashua Road
Amherst, HN 03031

TIM is a unique monitor program for the 6500
microprocessor family. TIM is the forerunner to
KIM and is still used today in many configura-
tions--ready made and homebrew. TIM is supplied
by MOS Technology on a MCS36530 multi-function
chip. This chip contains ROM, RAM, an interval
timer, and I/0. Using this chip, MOS Technology
was able to squeeze the complete monitor func—
tion into a single IC. The 1K of ROM in the
6530 contains the monitor program; the 64 bytes
of RAM are used for storage and vector interrupt
addresses; the timer is used for timing the ser-
ial I/0; the 13 I/0 lines are used to communi-
cate with a serial I/0 device and a parallel de-
vice. The TIM part number is MCS6530-004.

TIM has a couple of unique features not incor-
porated in most monitors. The first feature is
the ability to reconfigure the TIM memory loca-
tions during resets. During reset all I/0 lines
on the 6530 are set up as inputs and look like
high signals to external devices. One of these
I/0 lines is used with address line A15 to make
A15 a "don't care" condition. 6500 type micro-
processors fetch the reset vector address from
FFFC and FFFD. Because A15 is a "don't care",
the vector address is fetched from 7FFD instead
of FFFC and FFFD. Locations 7FFC and 7FFD con-
tain the TIM entry point for a reset condi-
tion.

Figure 1 is a block diagram of a minimum TIM-
based system including the circuitry required to
accomplish the reset operation. The I/0 line
used is PBY4. This signal is inverted and NANDed
with A15. During reset PB4 is high making PBR
low. A low input to the NAND gate causes a high
output, always enabling CS1 on the 6530. When
the I/0) ports are initialized in the reset ser-
vice routine, PB4 goes low making PB4 a high.
Now the output of the NAND gate is K75 and CSt
is only high when A15 is low. CS1 along with
the other chip selects and the address 1lines
give the 6530 a set of unique addresses below
8000 but the software is set up for the address
space between 7000 and 73FF.

The other unique feature of the TIM is that the
terminal interface speed is adaptive. After the
system is reset, the user types a carriage ret-
urn. TIM measures the terminal speed using the
data stream generated by the carriage return
signal. This speed information is stored and
and used as the terminal speed for all following
communication with the external device until the
next time the system is reset.

After the reset and carriage return, TIM res-
ponds with an "#" and prints the contents of the
registers, followed by an automatic carriage
return and a ".". The period indicates that TIM
is now ready to accept user commands. TIM com-
mands allow displaying registers, executing pro-
grams, examining and altering memory, reading
hexadecimal data from either a high speed reader
or a TTY and writing either hexadecimal or BNPF
data to a TTY. (BNPF is a tape format used by
some of the older PROM programmers).

Using the BRK instruction the user can set up
breakpoints to monitor the execution of a pro-
gram. The user inserts a BRK instruction (00)
where the breakpoints are required. Upon execu-

tion of BRK instruction TIM is entered and the
registers are printed. The vector address for
a BRK instruction is stored in RAM at FFFE and
FFFF. The user may alter these locations and
write his own routine for handling debug operat-
ions.

All TIM operations are performed in hex unless
a BNPF tape is required. The memory is display-
ed in hex in groups of eight memory locations as
shown:

.M 0000 00 01 02.03 O4 05 06 07

command address ‘data

TIM will respond with a period "." after each
command is completed. If a user wants to modify
data, he first opens memory with the "M" command
and then types a colon ":" as follows: (Under-=
lined data is what the user types).

-M 0000 00 01 02 03 O4 05 06 07

Py

2 0000 00 01 25 03 99 (carriage return)

The carriage return terminates the operation.
The 6500 registers may be examined:

31 27 FO 01 FF

-R 7052
PC P A X Y 8P

"‘After the registers have been opened for examin-
ation, they may be changed using the colon ":"
‘as shown:

'sions.

136

.R 7052 31 27 FO 01 FF

- — e v e c—— —

The other commands for reading and punching
tapes operate in a similar manner., TIM also has
a switch which is set by the "H" command that
specifies whether or not a high speed reader or
TTY is the source of paper tape input.

TIM, like KIM, also has many useful subroutines
that can be called by a users program. A set of
useable subroutines to type characters, read
characters, type a line- feed and carriage ret-
urn, type a space, and to type a byte in hex are
completely documented in the TIM manual. There
are other subroutines that can be used that are
not documented and these include double precis-
ion addition, output a bit, input a bit, ASCII
conversion, and input eight bits.

The TIM manual contains a complete software
listing and a memory test program. The manual
also includes example programs to aid the user
in becoming familiar with the TIM commands. TIM
is a very useful building block for anyone in-
terested in building their own 6500 system. It
has been used as the monitor for a number of
systems available in kit and/or assembled ver-
These include the CGRS Microtech 6000
system, the DATAC 1000, and others.

If you are interested in building your own home-
brew system, Figure 1 is a block diagram for a
basic system. TIM is available from MOS Tech-
nology representatives.

dAddd - @Od4d = WY Wil
4039-09392 = 0/7
-¢009 =WV

dd€L - PPPL =WOY

wvabv/ia >0078
WILSAS WIL TWoIdAL

<

xe'c

2.

133

"G =

29A

.k|<l< by 280 350 3¥ = 0/1
‘by-ZSD ISP S mWwiyY
A Nmo.».w.w.nq 2 Woy
SNOILYNOE L2338 dIHY WiL
:310N .—.
v\ow% *\o\
29
/ 3Um9ij vq
obY . b«.w
b —(T
b 4 30
_ AYyowaw
Crosy -535 gou FSI—d 90r u : |
ANSIYnY ——™ T3S Z8D - v 3 m
3] e o
NmNm.QAI.II .wwﬁ.\ w<
dooy o tod -py
L:&%%S] Wixas SNe S$S3yaav
WiL
$06 ; V-PVY s
-0ES? My
sow
_ ANy,
NIDIY.L pi/Q 284 WY
- Aav3y vivdad £6d
1¥od / «M A AS§+—
1377V 8/ Laa
-$9a
sneg yiLva

137

ek
4

T

-§33 s T

TIM MEETS

Gary

THE S100 BUS

L. Tater

7925 Nottingham Way
Ellicott City, MD 21043

Hardly a computer meeting goes by with-
out a discussion of which bus structure
is best. While the S100 bus may not be
optimum for the 6502 microprocessor,
its use does make purchasing RAM and
ROM boards easy.

With this in mind, I purchased a 6502
CPU board for the S100 bus from CGRS
Microtech. This CPU board is almost a
complete system with its onboard 2K RAM
and 4K ROM. But in order to use my
CT-64 Southwest Technical Products
video terminal with this CPU, I needed
an S100 terminal interface monitor
(TIM) board. While CGRS markets a very
nice TIM board, I elected to build a
bare bones S100 TIM board which is des-
cribed in this article.

In addition to serving as a serial 1/0
port for a terminal, TIM contains an
operating system for 6500 microcompu-
ters. The OCT-NOV issue of MICRO (page
5) contains an article on the opera-
tion of the TIM program. In summary,
TIM is a read-only memory and I/0 de-
vice that is self adapting to terminal
speeds between 10 - 30 cps. With TIM
you can display and alter CPU and mem-
ory location using a keyboard and video
display; you can read and write hex
formatted data from a paper tape or a
cassette interface such as the South-
west Technical Products AC-30; and you
have an eight bit parallel I/0 port
where each bit of the eight can be pro-
grammed as either input or output.

As you can see from the schematic dia-
gram (Figure 2), only the TIM chip

(6530-004) and four integrated circuits
are needed, excluding voltage regula-
tors. For the perfectionist, buffering
could be added to the address 1lines,
data lines, and parallel output port,
but two CGRS Microtech systems are now
successfully using this TIM design.
Integrated circuits U2 and U3 are used
during resets to reconfigure TIM memory
locations as described in the previous-
ly referenced TIM article. The MC 1488
and MC 1489 are Motorola devices which
convert TTL levels to RS 232 levels and
RS 232 levels to TTL respectively.

138

A memory map of this TIM design is pro-
vided in Figure 1. For proper opera-
tion of a 6502 microprocessor and this
TIM board, you will need both page zero
and page one memory. Page one is need-
ed by the 6502 microprocessor for its
software stack. Page zero memory is
used in the TIM program to store the
baud rate of your terminal (locations
O0EA and OOEB).

To operate a TIM based system you need
only momentarily ground pin 16 of TIM
(pin #75 of the S100 bus) using a
switch on your front panel. After you
send a carriage return to the computer,
you should see a TIM message such as:

7052 30 2E FF 01 FF

This message contains first the program
counter (7052), processor status regis-
ter (30), accumulator (2E), X register
(FF), Y register (01), and stack point-
er (FF). The actual values will vary
from machine to machine.

7000 - 7T3FF TIM ROM
FFCO - FFFF TIM RAM
6E00 - 6EOF TIM I/0
6EQ2 Serial Port

Figure 1
TIM Board Memory Map

If you have a problem, first check all
of your wiring and the +5, +12, and -12
voltages. Then insure that your reset
switeh is controlling pin 16 of TIM.
Next, using an oscilloscope, check for
a carriage return character at pin 25
of TIM and pin 24 for the TIM message.
With a good signal at pin 25 but no an-
swer at pin 24, the last two things to
check are the address lines including
pin 21, PB4, and finally, check your
TIM chip in a working system. The two
systems built using this design on pro-
totype boards came up immediately.
Hopefully, you will have the same good
fortune.

143

SV
L

0 |17

ec Vss

of e
o1 [35>-

D2 [88>
038>

D¢ [38>
0537

D¢ [#>—

o7 [s>
a4 7>

4/!80>>
Ax[ar>

43!3/>
44 [30>—

A5 [27>
A6 [BD>—

A7IB3>

A8 [65>-

A9 [37>

55> A2 (35— RS
it —U3__aPsd mesa

114 [5e>—rFIA)
Als 32> [0 3
2

p) fo¥ S/ _PHY ¢
W 18 X7 13
ua

21 pp ré1

08/ /M
3 pga 63'633

D3

2N08¢ ppg

28 pgs Par

22 DR P42

261057 PA3

&1 Ag AaY

14 4/ PN EN

e => -%

3 AL AL 25

/2 43 27 |3¢ [2> ¢
/7 A4 U/
J; AS PR3 DATA READY

Ab

2147 PR DATA TJAKEN
€148

|go RW 7 47| MEMR
¢ 1RQ 177 —<73] /R4

RES 52 <3| RES

<1S100 BUS LINE NUMBER

o4
2
7

1

101(%
ga CLOCK

Figure 2.

d S100 TIM Board

139

THE CHALLENGE OF THE 0SI CHALLENGER

Joel Henkel
__01d County Road
Hillsborough, NH 03244

One of the factors that a purchaser of a micro-
computer system must consider is the degree of
“do it yourself”” hardware and software effort he
will have to exert to get his system doing what
he wants. This effort, not evident from manu-
facturers’ literature, can be critical for user
satisfaction, as became evident in our experience
with the OSI Challenger. These notes evaluating
the Challenger may be helpful to prospective
purchasers.

In any hobby industry, user skills are assumed.
This is emphasized for microcomputer firms that
formerly catered to electronic kit builders. OSI
is one of these, having supplied special PC board
kits to hams. They follow their own packaging
philosophy that differs from the ‘“standard”
S-100 bus configuration. Their brochure ex-
plains that the 100 pin S-100 connectors were
rejected because the fingers were subject to poor
contact. Instead, OSI uses MOLEX connectors,
which make positive contact. The brochure goes
on to describe the rejection of on-board voltage
regulators in favor of a self contained regulated
power supply.

OSI circuit boards are larger than standard S-100
bus boards. This accommodates their design
philosophy of packing many optional functions
into one foil pattern. For example, their 430B I/O
board supports: an eight channel multiplexed
eight bit analog to digital converter, two chan-
nels of eight bit digital to analog conversion and
a UART controlled cassette I/O interface or an
RS232/twenty mil loop I/O interface.

Our system came without keyboard or video
monitor. Interfacing for these is left to the user.
The computer cabinet has two holes in its rear
panel for user implemented I/O cabling from
individual boards. The keyboard DIP socket and
video output RCA connector are available at the
edge of the 440 video board. MOLEX connectors
on the edge of the 430 board provides access to
the various I/O options.

Hardware documentation consists of kit con-
struction manuals for individual boards, even if
the boards are purchased assembled. Various
options are treated separately. Overall hardware
system documentation is completely lacking.

140

For example, nowhere is there a description of
the bus convention and pinout. One must gen-
erate these from actual inspection of board foil
patterns. This exercise reveals interesting peculi-
arities, such as bringing the NMI (non-maskable
interrupt line) and IRQ (interrupt request line)
onto many boards and leaving them unconnected.

The software is sophisticated. One enters the
system by resetting. A prompter, D/M, comes up
on the video screen. To enter the video monitor,
styled after the KIM, enter M and the six hex
digits appear near the top of the screen. For
DOS (disc operating system), enter D and the
DOS is brought up through BASIC by a boot-
strap ROM. (Earlier versions required loading a
short sequence of memory locations using the
video monitor.) From BASIC one can enter the
DOS, from which it is possible to go to various
modules, such as an extended monitor, back to
BASIC, or to activate a few DOS commands,
such as loading and recalling disc files, executing
programs, or switching floppy disc drives (for
dual floppy discs). The EXTENDED BASIC by
MICROSOFT has many advanced features, such
as string functions, and is apparently much
faster than a comparable 8080 BASIC.

Software documentation is poorly organized.
Perhaps with so many possible options, the job
of creating well organized system documenta-
tion was beyond OSI’s capability. Our experience
with software documentation availability was
sobering. The system comes with all OSI soft-
ware on discette. However, only a BASIC users
manual is included, beyond a general system
description. One has to order software user
manuals separately. We waited a long five
months after order for ours.

We have used two versions of the DOS, an ori-
ginal 1.1 version and an updated 2.0 version.
One interesting change has to do with copying
the DOS itself. The original version could not be
copied and an explicit notice to that effect was
included. An unfortunate set of circumstances
could come about, however, that would wipe
out track one, completely disabling any further
loads of the DOS. If computer power fails (or
one turns off the computer) with the disc in its
drive, out goes track one! Apparently a number

of users had this happen (including us). Version
2.0 has complete copying capability. According
to instructions the first thing one should do is
copy the DOS and store away one copy in case
of wipeout.

Another change from the original version is the
serial display output rate to the video monitor,
which was increased from ten characters per
second to several times that rate. A third change
in the DOS is an augmented facility to read and
write disc files.

The 440 board video display format chosen is
twenty four characters per line, which is too
small. One can only speculate on the reason for
the short line.

Many applications could readily use a real time
operating system, (RTOS). OSI does not offer a

RTOS, but has advertised that one, modelled on
DEC’s RTS11 is in the works. When contacted
recently, however, OSI reported that it has in-
definitely postponed development of its RTOS
in favor of development of a business system.
The contemplated RTOS may explain the inter-
rupt lines found in the foil patterns of several
boards mentioned earlier, and a foil pattern
option on the 470 floppy disc controller board,
a real time clock in the form of a divider chain
driven by the on-board crystal clock.

In summary, the OSI Challenger offers a lot of
computer for the money. The tradeoff is the
board orientation rather than system orienta-
tion, requiring a larger than average effort on
the part of the user to bring his system up. This
effort includes I/O interface cabling and ‘‘reading
between the lines” in the supporting documenta-
tion.

’IlIllllllIlllllllllllllllllIlllIlllllllIllllllIIllllllllllllIIlIllllllllllllllllllllllhW

MICRO Reviews:

This is one terrific book for anyone who has a KIM-1.

The First Book of KIM

It was assembled by Eric

Rehnke (Publisher of "KIM-1/6502 User Notes"), Jim Butterfield ("Hypertape" and
many other good utilities), and Stan Ockers (a regular "User Notes" contributor).
Over half of the book is devoted to "Recreational Programs", games you can play

on your basic KIM-1.
the price of the book by itself.

The section on "Diagnostic & Utility Programs"™ is worth
The remainder of the book contains tutorial

information on getting started with your KIM-1, expanding your system, and inter-

facing to the outside world.

This well produced, 176 page resource is now

published by Hayden Book Company and available at your computer book store

for $9.00.

e ——{THCIR O
141

ROCKWELL'S NEW R6500/1

Rockwell International
Electronic Devices Division
3310 Miraloma Avenue
P.0. Box 3669
Anaheim, CA 92803

ANAHEIM, CA., May 11, 1978 -- A single-
chip NMOS microcomputer (R6500/1) oper-
ating at 2 MHz with a 1 microsecond
minimum instruction execution time, has
been developed by Rockwell Int'l.

The U40-pin R6500/1 is fully software
compatible with the 6500 family. it
has the identical instruction set, in-
cluding the 13 addressing modes, of the
6502 CPU. It operates from a single 5V
power supply, and features a separate
power pin which allows RAM memory to
function on 10% of the operating power.
On-chip features include 2K x 8 ROM, 64

x 8 RAM, 16-bit interval timer/event
counter, and 32 bidirectional 1I/0
lines. Additionally, it has maskable

and non-maskable interrupts and an
event-in/timer-out line.

The 32 bidirectional I/0 lines are di-
vided into four eight-bit ports (A, B,
C and D). Each line can be selective-
ly used as an input or an output. Two
inputs to Port A can be used as edge
sensing, software maskable, interrupt
inputs -- one senses a rising edge;
the other a falling edge.

Four different counter modes of oper-
ation are programmable: (1) free run-
ning with clock cycles counted for real
time reference; (2) free running with
output signal toggled by each counter
overflow; (3) external event counter;
and (4) pulse width measurement mode.
A 16-bit latch automatically reinitial-
izes the counter to a preset value.
Interrupt on overflow is software mask-
able.

A 6U4-pin Emulator part, of which 40
pins are electrically identical to the
standard R6500/1 part and which comes
in either 1 MHz or 2 MHz versions, is
available now. Rockwell expects to be-
gin receiving codes from customers in
July for production deliveries in Sept.
Quantity prices for 6500/1 production
devices are under $10.00 for both the
1 MHz and 2 MHz models. Single-unit
prices for Emulator parts are $75.00
for the 1 MHz model and $95.00 for the
2 MHz version.

Contact: Leo Scanlon - 7T14/632-2321
Pattie Atteberry - 213/386-8600

S PROLRARAEE
IPUTIOUTFYT LINES

crocomgaier (REBG 1

142

g froam a singfe BV pow

ROCKWELL'S AIM

IS PRETTY GOOD

Rockwell International
Microelectronic Devices
P.0.Box 3669
Anaheim, CA 92803

714/632-3729

Rockwell's AIM 65 (Advanced Interface
Module) gives you an assembled, versa-
tile microcomputer system with a full-
size keyboard, 20-character display and
a 20-character thermal printer!

AIM 65's terminal-style ASCII keyboard
has 54 keys providing 69 different
alphabetic, numeric and special func-
tions.

AIM 65's 20-character true Alphanumeric
Display uses 16-segment font monolithic
characters that are both unambiguous
and easily readable.

AIM 65's 20-column Thermal Printer
prints on low-cost heat sensitive roll
paper at a fast 90 lines per minute.
It produces all the standard 64 ASCII
characters with a crisp-printing five-
by-seven dot matrix. AIM 65's on-board
printer is a unique feature for a low
cost computer.

The CPU is the R6502 operating a 1 MHz.
The basic system comes with 1K RAM, ex-
pandable on-baord to 4K. It includes
a 4K ROM Monitor, and can be expanded
on-board to 16K using 2332 ROMs or can
also accept 2716 EPROMs. An R6532 RAM-
Input/Output-Timer is used to support
AIM 65 functions. There are also two
R6522 Versatile Interface Adaptors.
Each VIA has two 8-bit, bidirectional
TTL ports, two 2-bit peripheral hand-
shake control ports and two fully pro-
grammable interval timer/counters.

The built-in expansion capability in-
cludes a U4l-pin Application Connector
for peripheral add-ons and a 44-pin Ex-
pansion Connector with the full system
bus. And, both connectors are totally
KIM-1 compatible!

TTY and Audio Cassette Interfaces are
part of the basic system. There is a
20 ma current loop TTY interface, just
like the KIM-1, and an Audio Cassette
Interface which has a KIM-1 compatible
format as well as its own special
binary blocked file assembler compat-
ible format.

The DEBUG/MONITOR includes a mini-as-
sembler and a text editor. Editing may
use the keyboard, TTY, cassette, print-
er and display. The Monitor includes a
typical set of memory display/modify
commands. It also has peripheral de-
vice controllers, breakpoint capability
and single step/trace modes of debug-
ging. An 8K BASIC Interpreter will be
available in ROM as an option.

AIM 65 will be available in August. It
will cost $375.

(E)
EDITOR
FR=300 T0=1000
IN=
QWERTYUIOPASDFGHJ
JKLLZXCVBNMI
(1)
0312 *#=600
0600 A2 LDX #FE
0602 E8 INX
0603 DO BNE 0602
0605 EA NOP
0606 EA NOP
0607 4C JNP 0600
0604
(

SYNERTEK'S VIM-1

Synertek Incorporated
P.0. Box 552
Santa Clara, CA 95052

Synertek has announced a new 6502-based
microcomputer system with the following
features:

FULLY-ASSEMBLED AND COMPLETELY INTE-
GRATED SYSTEM that's ready-to use as
soon as you open the box.

28 DOUBLE-FUNCTION KEYPAD INCLUDING UP
TO 24 "SPECIAL"™ FUNCTIONS.

EASY-TO-VIEW 6-DIGIT HEX LED DISPLAY.
KIM-1 HARDWARE COMPATIBILITY.

The powerful 6502 8-bit MICROPROCESSOR
whose advanced architectural features
have made it one of the largest selling
"micros" on the market today.

THREE ON-BOARD PROGRAMMABLE INTERVAL
TIMERS available to the user for timing
loops, watchdog functions, and real-
ime communication protocols.

4K BYTE ROM RESIDENT MONITOR and Oper-
ating Programs.

Single 5 Volt power capability is all
that is required.

AUX APPLICATIONS CONNECTOR

OPTIONAL AUX PORT

OPTIONAL AUX PORT

AUX PORT A

6522
EXPANSION

6522
VIA
{TIMER)

1K BYTES OF 2114 STATIC RAM on-board
with sockets provided for immediate ex-
pansion to 4K bytes on-board, with to-
tal memory expansion to 65,536 bytes.

USER PROM/ROM: The system is equipped
with 3 PROM/ROM expansion sockets for
2316/2332 ROMs or 2716 EPROMs.

ENHANCED SOFTWARE with simplified user
interface.

STANDARD INTERFACES INCLUDE:

- Audio Cassette Recorder Interface

with Remote Control (Two modes: 135

Baud KIM-1 compatible, Hi-speed 2400

Baud).

Full Duplex 20mA Teletype Interface

sttem Expansion Bus Interface
Controller Board Interface

CRT Compatible Interface

APPLICATION PORT: 15 Bi-directional TTL
lines for user applications with expan-
sion capability for added lines.

EXPANSION PORT FOR ADD-ON MODULES (50
I1/0 Lines in the basic system).

28-KEY
KEYPAD

144

As a service to the 6502 community,
MICRO will publish a continuing cata-
log of software available for 6502
based systems. The source of this in-
formation will normally be the authors
or distributors of the software. Since
there is only a limited amount of space
which can be devoted to this effort,
there will be some restrictions placed
on what is published. To qualify for
inclusion in the catalog the software
must be currently available, should
have been sold (or given) to at least
twenty-five customers, must be of gen-
eral interest, and must be significant.
nSignificant" means that the program is
not just a short utility which could be
presented as a one-page article in a
magazine, or a simple game, etc. The
intent of the catalog is not to promote
everyone selling everything, but rather
to highlight the important software
packages which do exist.

Name: ASSM/TED
System: Preconfigured for TIM
Can be modified for other systems.

Memory: 4K RAM
Language: Assembler
Hardware: CRT and Keyboard, tapes and

printer optional.

Description: A resident Assembler/Text
Editor. Syntax very similar to MOS
Technology. Produces relocatable ob-
ject code on tape and can store direct-
ly executable code in memory during as-
sembly. Programs can be assembled from
memory of tape. Includes 17 operating
commands and 16 pseudo ops. Editor has
auto line numbering, file formating,
and a manuscript feature.

Copies: Information not provided.
Price: $25.00
Includes: Hex Dump of ASSM/TED and Re-

locating Loader, and Operators Man-
ual. No tape provided.

Ordering Info: Specify memory limits:
0200-1200, 0O4OO-1400, 1000-2000, or
2000-3000. Select one.

Author: C. W. Moser

Available from:

C. W. Moser
3239 Linda Drive
Winston-Salem, NC 27106

THE MICRO SOFTWARE CATALGG

Mike Rowe
P.O.
S. Chelmsford, MA 01824

_WU@E}@

Box 3

Publication of information about any
software in this catalog does not imply
anything about its worth, capabilities,
documentation, etc. We depend on the
information supplied to us. We will
not knowingly include any software that
is not worthv. and we reserve the right
to publish additional information about
these products - be it good or bad -
that we receive from our readers or any
other valid source.

It is easy to get your package listed.
Just write to the above address and
provide the information required as
shown in the 1listings below. Please
write your own "description". If we
have to write the description from gen-
eral information you provide, we may
niss points which you think are import-
ant and emphasize things you think are
trivial. Also, material which is pre-
sented in the proper form will normally
get priority over other material.

COSMAC 1802 Simulator
KIM-1
Less than 1K RAM
Assembler
Hardware: Basic KIM-1
Description: Permits the KIM-1 to sim-
ulate the COSMAC 1802 by executing its
instruction set. The simulator "does
this by interpretting the COSMAC in-
structions in a normal program sequence
and making all internal COSMAC regis-
ters available for examination at any
time. They may be viewed statically in
a single step mode or dynamically in a
trace mode. All COSMAC software fea-
tures are supported with the exception
of DMA.
Copies: Just released. Will be dis-
cussed in an article in Kilobaud.
Price: $10.00
Includes: KIM-1 cassette tape, user
manual, and complete source listing.
Ordering Info: None required
Author: Dann McCreary
Available from:
Dann McCreary
4758 Mansfield St, #2M
San Diego, CA 92116

Name :

System:
Memory:
Language:

145

PLEASE

Basic KIM-1

Basic KIM-1 memory
Language: Assembler/PLEASE
Hardware: Basic KIM-1
Description: A collection of games and
demos. Includes a 24 hour clock, HilLo
game, Mastermind, Shooting Stars, Drunk
Test, Reaction Time Tester, Adding Ma-
chine, and more. Written in a "high-
level™ language - PLEASE. Permits the
user to modify and create his own pro-
grams. Let's you show off your KIM-1,
and teaches you how to use it.

Name:
System:
Memory:

Copies: Over 800 have been sold
Price: $15.00
Includes: Operators manual, complete

source listings, PLEASE language de-
scription, with object code on Hyper-
tape.
Ordering Info: None
Author: Robert M. Tripp
Available from:

The COMPUTERIST

P.0. Box 3

S. Chelmsford, MA 01824

Name: Micro-ADE
System: KIM-1 (easily modified for use
with other 6502 based systems)
Memory: 8K RAM or 4K EPROM + 4K RAM
Language: Assembler
. Hardware: Terminal - CRT or TTY, cas-
sette units optional
Description: A combination Assembler,
Editor, and Disassembler. Uses MICRO
6502 syntax. With automatic cassette
controls, any length file may be edited
and assembled. Object files may be
automatically dumped to cassette and
for short programs may be dumped to and
executed from memory. Includes many
useful commands for handling cassettes,
moving data in memory, and so forth.
Copies: Hundreds
Price: $25.00 without source listings
$25.00 for source listings
Includes: Extensive user manual which
includes source listings for the I/0
to permit user modification. Object
on Hypertape cassette.
Ordering Info: Specify with or without
the optional source listings.
Author: Peter Jennings
Available from:
Micro-Ware Ltd.
27 Firstbrooke Road
Toronto, Ontario
Canada MUE 2L2

The COMPUTERIST
P.0. Box 3

. d, MA 01824
S. Chelmsford, 146

_Wﬂ@@@

Name :
System:
Memory:

The 6502 Program Exchange
TIM and KIM-1
Depends on Program
Language: Assmebler, BASIC, FOCAL
Hardware: Depends on Program
Description: A large collection of
programs for 6502 based systems. These
include utilities, games, subroutines,
an assembler, editor, and a high level
language: FOCAL.
Copies: Few to Many depending on the
particular program.
Price: Depends on program. Many are
based purely on number of pages of

code. Major packages are priced
separately.
Includes: Normally includes source

listings, documentation, sheets of
sample run, and paper tape. KIM-1
cassettes at no additional charge if
user supplies cassettes.
Ordering Info: Write for catalog.
Author: Many different authors.

Available from:
The 6502 Program Exchange
2920 Moana
Reno, NV 89509

Name: Personal Savings Investment

Loan Repayment

Direct Reduction Loan Info.

APPLE II
At least 16K

Language: APPLESOFT BASIC

Hardware: Standard APPLE II

Description: Three separate programs.

PSI - compute future value of your in-

vestments; monthly amount needed to get

to a certain goal at a certain time.

LP - determine monthly payments for a

car, house or other type of load.

DRLI -~ find the total interest paid and

remaining balance is for a loan.

Copies: Over 25 combined

Price: $3.75 (including handling) each
of the three programs.

Includes: Object on cassette tape. A
listing of the program and examples
of program useage.

Ordering Info: Specify which program.

Author: Les Stubbs

Available from:

Les Stubbs
23725 Oakheath Place
Harbor City, CA 90710

System:
Memory:

Name: TINY BASIC

System: KIM, TIM, Jolt, Apple 1
Memory: Minimum of 2K

Language: Assembler

Hardware: User defines 1/0
Description: TINY BASIC is a subset of

regular BASIC, limited to 16-bit inte-
ger arithmetic [+, -, ¥, /, ()]. There
are 26 variables (A-Z), no stirngs and

no arrays. The following commands are
functional: LET PRINT INPUT IF-THEN
GOTO GOSUB RUN LIST CLEAR RETURN
REM END. TINY BASIC does not contain

any I/0 instructions; three JMPs link
TINY to the user's I/0 routines. These
are well documented in the manual.

Copies: "Several hundred 6502 version"
Price: $5.00
Includes: 26 page User Manual and a

paper tape in standard hex loader
format. Hex Dump may be substituted
upon request for paper tape.
Ordering Info: Specify version:
TB650K (0200-0AFF) KIM, TIM,
TB650J (1000-18ff) Jolt
TB650T (2000-28FF) KIM with 4K RAM
Author: Tom Pittman
Available from:
ITTY BITTY COMPUTERS
P.0. Box 23189
San Jose, CA 95153

s e 00

HELP Mailing List Package
Basic KIM-1
Basic KIM-1

Assembler/HELP

Terminal, Cassettes, Relays
A complete package for
creating, maintaining, and printing
mailing list information. A high speed
cassette routine reads/writes at 800
baud (twelve times the KIM-1 rate) and
can store about 900 names on one side
of a 60 minute tape. Selective print-
ing of mailing list. This package is
used to maintain the MICRO mailing list
This package is written in HELP, a
"high-level" language which makes it
easy to customize the package for your
own requirements.

Name:

System:
Memory:
Language:
Hardware:
Description:

Copies: Over 100
Price: $15.00
Includes: An extensive user manual, a

detailed discussion of the HELP
language, and complete source
listings. Object on Hypertape.
Ordering Info: None
Author: Robert M. Tripp
Available from:
The COMPUTERIST
P.0. Box 3
S. Chelmsford, MA 01824

147

—WU@@@

Name: ASM/TED
System: KIM~1 (may be modified for use
with other 6502 based systems)
Memory: 6K RAM
Language: Assembler
Hardware: TTY
Description: The text editor performs
line editing in RAM and can dump/load
to paper tape or audio cassette. The
resident assembler is single-pass using
the standard MOS Technology syntax.
Source code may be paper tape or memory
resident and object code is always
to memory.
Copies: Information not provided.
Price: $70.00
Includes: 50 page manual, source list-
ings, and object on KIM cassette or
paper tape.
Ordering Info: Send $2.00 for current
catalog of available software.
Author: Not specified
Available from:
ARESCO
450 Forest Ave., Q-203
Norristown, PA 19401

MicroChess
Basic KIM-1
Basic KIM-1
Assembler
Hardware: Basic KIM-1
Description: Plays a reasonably good
game of chess on a basic KIM-1. Has
programmed openings. User enters his
move via the KIM keypad and the KIM
Display shows the move. The computer
then makes its move and displays it.
Program may be set to play at different
speeds: 3, 10, or 100 seconds per move
average. A great way to demo your KIM.
Copies: Hundreds
Price: $10.00 without cassette
$15.00 with cassette

Includes: Operator's manual, source

listings, and a detailed discussion

of the operation of the program.

Object on cassette tape optional.
Ordering Info: Specify tape or not.
Author: Peter Jennings
Available from:

Micro-Ware Ltd.

27 Firstbrooke Road

Toronto, Ontario

Canada, MA4E 2L2

Name:

System:
Memory:
Language:

The COMPUTERIST
P.0. Box 3
S. Chelmsford, MA 01824

THE MICRO SOFTWARE CATALDG: II

Mike Rowe
P.0. Box 3
S. Chelmsford, MA 01024

Name: ZZYP-PAX for PET, #1,2, and 3 Name: A Variety of Programs

System: PET System: Apple II

Memory: 8K RAM Memory: Most 8K or less

Language: BASIC Language: Mostly Integer BASIC
Hardware: Standard PET Hardware: Mostly standard Apple II
vescription: Each of these three ZZYP- Description: A varied collection of
for PET includes a cassette with two short programs. Some utilities, some

games and a booklet designed to educate educational. Included are: ALPHA SORT
the beginning or intermediate level PET MUSIC ROUTINE, STOP WATCHBASIC DUMP,
programmer. #1 has IRON PLANET (Rescue MULTIPLY, ONE-ARM-BANDIT, ...

the Princess) and HANGMAN (Guess the Copies: Varies, up to about 20.

secret word). Included is a 12 page Price: $7.50 to $10.00 each.

booklet which not only contains game Includes: Apple II cassette and pro-

rules, but has 5 pages of useful pro- gram listing.

gramming techniques including: Direct Ordering Info: Write for catalog.
Screen Access Graphics, Flashing Mess- Author(s): Not specified.

ages, and Programmed Delays. #2 con- Available from:

tains BLACK BART (a mean-mouthed poker Apple PugetSound Prog. Lib. Exch.
player) and BLACK BRET (for blackjack - 6708 39th Avenue SW

one or two players). #3 contains BLOCK Seattle, WA 98136

and FOOTBALL both of which allow either

two-player or play-the-PET options.

Copies: Just released, U0 copies.

Price: $9.95 each

Includes: PET tape cassette, instruc- Name: HELP Information Retrieval
tions and educational manual with info System: KIM-1

for program modifications. Memory: Basic KIM-1

Ordering Info: Specify ZZYP-PAX number Language: Assembler and HELP

Author: Terry Dossey Hardware: KIM-1, terminal, cassettes

Available from: Description: Permits the user to cre-
Many PET dealers, or, ate a data base on cassette, and then
ZZYP Data Processing perform a variety of searches on the
2313 Morningside Drive data base. May make six simultaneous
Bryan, TX 77801 tests on FLAGS associated with the data

plus one test on each of the six data
fields. Permits very complex retrieval
from the data base. Includes ULTRATAPE

Name: BULLS AND BEARS (tm) which reads/writes at 100 char/sec, 12
System: Apple II times the normal KIM rate.
Memory: 16K Copies: 100+
Language: 16K BASIC Price: $15.00
Hardware: Apple II . Includes: Cassette tape, 36 page User
Description: A multi-player simulation Manual, a Source Listing book and a
of corporate finance. Involves deci- Functions Manual which explains the
sion-making regarding production lev- operation of the HELP language.
els, financing, dividends, buying and Ordering Info: Specify HELP Info Ret.
selling of stock, etc. Author: Robert M. Tripp
Copies: "Hundreds sold" Available from:
Price: $12.00 Many 6502 Dealers, or,
Includes: Game cassette and booklet. The COMPUTERIST, Inec.
Ordering Info: At computer stores only P.0. Box 3
Author: SPEAKEASY SOFTWARE LTD. S. Chelmsford, MA 01824

Box I200

Kemptville, Ontario
Canada KOG 1J0

[Dealer inquiries invited]

148
_WU@E}@

THE MICRE SOFTWARE CATALOG:

111

Mike Rowe
P.0. Box 3
S. Chelmsford, MA 01824

Name: LABELER

System: TIM based or any 6502 based system
Memory: 1K

Language: Assembly

Hardware: Paper Tape Punch on TTY

Description: This program punches legible char-

acters on a paper tape and is useful for the
labeling of punched paper tapes. A 64 character
sub-set of ASCII is used. There is limited
editing capability on the data. There are a
number of options for character size, starting
address and TIM or I/0 independent code.
Copies: Not Specified
Price: $4.00
Includes: Commented source listing, operating
and modifying instructions, and a hex tape.
Ordering Info: Specify the following:

Char Size 5x5 or 5x8

Starting address 0200 or 1000

System TIM or I/0 Independent
Author: Gil House
Available from:

Gil House

P.0. Box 158
Clarksburg, MD 20734

Name: HUEY
System: Any 6502 based system.
Memory: 2.5K

Language:
Hardware:

Assembly
ASCII I/0 device.
Description: HUEY-65 is a scientific calculator
program for the 6502 microprocessors. It oper-
ates from your ASCII keyboard like a calculator;
will output through your routines to a TV screen
or Teletype; is preprogrammed to do trig func-
tions, natural and common logs, exponential
functions and other goodies; and is programmable
for many other functions (financial, accounting,
mathematics, engineering, etc.) you would like
to call at the press of a single key.
Copies: Not Specified.
Price: Hex Dump at any even page - $5.00
Manual and Listings - $20.00

Ordering Info: Specify starting address.
Author: Don Rindsberg
Available from:

The BIT Stop

P.0. Box 973

Mobile, AL 36601

Name: Word Processor Program
System: PET

Memory: Not Specified.
Language: Not Specified.
Hardware: RS-232 printer addressed via a CmC

printer adapter.
Description: This program permits composing and
printing letters, flyers, advertisements, manu-
seripts, articles, etc., using the Commodore PET
and an RS-232 printer. Script directives in-
clude line length, left margin, centering, and
skip. Edit commands allow the user to insert
lines, delete lines, move lines, change strings,
save onto cassette, load from cassette, move up,
move down, print and type.
Copies: Not Specified.
Price: $29.50
Ordering Info: None.
Author(s): Not Specified.
Available from:

Connecticut microComputer

150 Pocono Road

Brookfield, CT 06804

—Wﬂ@@@

ZIP TAPE
KIM-1, may be easily modified for any
other 6502 system with programmable timer I/0

Name:
System:

Memory: 3/4 page each for read and write progs.
Hardware: Simple single IC audio to logic level
converter and output buffer/attenuator on 2" sq.

board. Directional control, U connections to
computer.
Description: A fast audio cassette data record-

ing and recovery system. Programmable to 4800
baud. Loads 8K in less than 15 seconds. Fol-
lows KIM-1 protocol of open ended record length
with start address, end address, and record ID
specified at usual KIM locations. Load by ID,
ignore ID, and relocate modes. Data recorded in
binary form with 2 byte checksum error detec-
tion. Easily relocated, can either stand alone
or be used as subroutines. Requires programm-
able timer 1/0.
Copies: About 12, just introduced.
Price: $22.50 +1.00 ship & hand.
for KIM cassette.
Includes: Assembled and tested interface, com-
mented listings, suggested changes to run on TIM
and other systems. Cassette has software recor-
ded at HYPERTAPE and standard KIM speeds plus 8K
test recording using ZIP TAPE.
Ordering Info: With or Without tape.
Author: Lewis Edwards, Jr.
Available from:

Lewis Edwards

1451 Hamilton Avenue

Trenton, NJ 08629

FOCAL¥* (*DEC Trademark)
Apple II
Not Specified.
Language: Assembler
Hardware: Apple II
Description: This is an extended version of the
high-level language called FOCAL. FOCAL was
created for the DEC PDP-8. It is similar to
BASIC. FCL65E, as this version is called, is
now available for the Apple II.
Copies: Not Specified.
Price: Apple II format cassette - $25.00
Mini-Manual - $6.00
FCL65E User's Manual - $12.00
Complete Source Listing - $35.00
Ordering Info: Specify parts desired.
Author(s): Not Specified.
Available from:
The 6502 Program Exchange
2920 Moana
Reno, NV 89509

WARLORDS

Apple II (PET version under devel.)

Not Specified
Language: Not Specified
Hardware: Apple II
Description: It is the Dark Ages, in the king-
dom of Nerd, and all is chaos. King Melvin has
died without an heir and a dire power struggle
is taking place to see who will emerge as the
new King. You and the other players are the
WARLORDS, and you will have to decide what com-
bination of military might and skillful diplom-
acy will lead you to victory.

$3.00 extra

Name :
System:
Menory:

Name:
System:
Memory:

Copies: Not Specified

Price: $12.00

Ordering Info: Specify Apple II Version
Author: Not Specified

Available from:
Dealers who carry software from
Speakeasy Software LTD.

Names:
System:
Memory:

E/65 and A/65

Any 6502 based system

Not Specified

Language: Assembly

Hardware: Terminal. Cassette optional.
Description: E/65 is primarily designed to edit
assembler source code. Line oriented commands
specify input/out or text and find specific
lines to be edited. String oriented commands
allow the user to search for and optionally
change a text string. Also character oriented
commands and loading and dumping to bulk device.
A/65 is a full two-pass assembler which conforms
to MOS Technology syntax. A full range of run-
time options are provided to control listing
formats, printing of generated code for ASCII
strings and generation of object code.

Copies: Not Specified

Price: $100 each

Includes: Object form on paper tape or KIM type
cassette. Listings of source code are available

for $25.00 each. Full documentation on the in-
stallation and use of each package is provided.
Buthor: Not Specified
Available from:
COMPAS - Computer Applications Corporation
P.0. Box 687
Ames, IA 50010

For those of you in the computing world who have
recently purchased or constructed a microcompu-
ter based on the 6502 microprocessor (the KIM-1
fits this description) and can't put it to rea-
sonably practical use, then perhaps your head-
aches are over! Programming a Micro-Computer:
6502 by Caxton C. Foster may be exactly what
you need to halt your frustrations. Foster pre-
sents the reader with a combination of reference
manual for programming and an introduction to
6502 systems, specifically using the KIM-1 as a
model.

The motivation behind Foster's work is practi-
cality. Right from the beginning of the first
chapter a hypothetical situation is introduced,
circumstances that one might face in the course
of an average day, and the microcomputer is sug-
gested as a solution. Initially, a simple prob-
lem is introduced, a problem one would not ex-
pect a computer to solve due to its simplicity.
Yet, this enables the reader to grasp the basic
operation of running an uncluttered program suc-
cessfully. Possible reasons as to why a certain
program fails are provided to lessen confusion.

With successful completion of one program, the
author wastes no time moving on to new situa-
tions. This may seem somewhat fast and confus-
ing to those who greet micros as a totally new
experience. Yet the situations do become more
interesting and more challenging to solve by
computer software. Such programs include:

—mu@a@

Name: Read/Write PET Memory

System: PET

Memory: 8K RAM

Language: BASIC

Hardware: Standard PET

Description: Permits user to key into memory
hex codes by typing hex starting address and
then typing the hex digits in sequence desired.
Display memory as both hex codes and assembly
language mnemonics (translatés relative address
into actual hex address). Stores memory on tape
and loads memory from tape into any desired mem-
ory location. Executes machine-language pro-

grams.
Copies: Just released - 32 sold first day.
Price: $7.95 - postpaid

Includes: Cassette tape; complete instructions

(including use of ROM subroutines to input and
output memory from keyboard and to screen).
Ordering Info: From author
Author:

Don Ketchum

313 Van Ness Avenue

Upland, CA 91786

(Dealer Inquities Invited)

PROGRANMING A MICRO-COMPUTER: 6502
by Caxton C. Foster

(Reviewed by James R. Witt, Jr.)

"Keybounce", "A Combination Lock", and "Digital
Clock" among others. Several of these programs
are completely legitimate and fully operable.

As noted before, Foster moves at a swift pace.
At certain points, various instructions and
KIM-1 anatomy are condensed into a mere page or
two. Basic understanding of digital electronics
is assumed often and may be required before
fully digesting some of this material. These
two minor weaknesses may tend to boggle the mind
of the newcomer and hinder his comprehension of
the purpose of programming and its make-up.

Suggestions: For those who are newcomers to the
"sport" of computing and digital electronies,
you may want to consider some other preliminary
instructions BEFORE undertaking this book. If
you have some sense of digital, but little know-
ledge of micros, you should tackle it, but
should make notes of important items the first
time through each chapter, and then reread the
chapter to pull the odds and ends together. If
you have written simple programs but have an
appetite for more complex proglem-solving, then
Programming A Micro-Computer: 6502 will be a
definite aid and resource in satisfying your
hunger.

Programming A Micro-Computer:
C. Foster,

6502,
published by Addison-Wesley,

by Caxton
1978.

€502 INFORKMATION RESOURCES

William R. Dial
438 Roslyn Ave.
Akron, OH 44320

Did you ever wonder just what magazines were the
richest sources of information on the 6502
microprocessor, 6502-based microcomputers, acc-
essory hardware and software? For several years
this writer has been assembling a bibliography
6502 references related to hobbv computers and
small business systems (see MICRO No's 1, 3,
4, 5, and 6). A review of the number of times
various magazines are cited in the bibliography
gives a rough measure of the coverage of these
magazines of 6502 related subjects. Even after
such a fequency chart is compiled, an accurate
comparison is difficult. Some of the magazines
have been published longer than others. Some
periodicals have been discontinued, others have
been merged with continuing publications. Some
give a lot of information in the form of ads,
others are devoted mostly to authored articles.
Regardless of the basis of the tabulation of
references, however, some publications are
clearly more useful sources of information on
the 6502 than others.

The accompanying list of magazines has been
compiled from the bibliography. At the top of
the list are several publications which special-
ize in 6502-related subjects. These include
this publication, MICRO, as well as the KIM-1
/6502 USER NOTES. Also in this category is
OHIO SCIENTIFIC'S SMALL SYSTEMS JOURNAL, a
publication which covers hardware and software
for the Ohio Scientific 6502-based computers.
KILOBAUD, BYTE and DR. DOBB'S JOURNAL all give
good coverage on the 6502 as well as other
microprocessors. KILOBAUD has more hardware and
constructional articles than most computer mag-
azines. ON-LINE is devoted mainly to new pro-
duct announcements and has very frequent refer-
ences to 6502 related items. Following these
come a group of magazines with somewhat less
frequent references to the 6502. Finally toward
the end of the list are those magazines with
only occasional or trivial references to the
6502. An attempt has been made to give up-to-
date addresses and subscription rates for the
magazines cited.

MICRO
$6.00 per 6 issues
MICRO
P.0. Box 3
S. Chelmsford, MA 01824

KIM-1/6502 USER NOTES
$5.00 per 6 issues
Eric Rehnke
P.0. Box 33077
Royalton, OH 44133

OHIO SCIENTIFIC--SMALL SYSTEMS JOURNAL
$6.00 per year (6 issues)

Ohio Scientific

1333 S. Chillicothe Rd.

Aurora, OH 414202

KILOBAUD

$15.00 per year
Kilobaud Magazine
Peterborough, NH 03458

151

BYTE

$12.00 per year
Byte Publications, Inc.
70 Main St.
Peterborough, NH 03458

DR. DOBB'S JOURNAL

$12.00 per year (10 issues)
People's Computer Co.
Box E
1263 E1 Camino Real
Menlo Park, CA 94025

ON-LINE

$3.75 per year (18 issues)
D. H. Beetle
24695 Santa Cruz Hwy
Los Gatos, CA 95030

PEOPLE'S COMPUTERS (Formerly PCC)
$8.00 per year (6 issues)
People's Computer Co.
1263 E1 Camino Real
Box E
Menlo Park, CA 94025

INTERFACE AGE

$14.00 per year
McPheters, Wolfe & Jones
16704 Marquardt Ave.
Cerritos, CA 90701

POPULAR ELECTRONICS
$12.00 per year
Popular Electronics
One Park Ave.
New York, NY 10016

PERSONAL COMPUTING (Formerly MICROTREK)
$14.00 per year

Benwill Publishing Corp.

1050 Commonwealth Ave.

Boston, MA 02215

73 MAGAZINE

$15.00 per year
73, Inc.
Peterborough, NH

CREATIVE COMPUTING

$15.00 per year
Creative Computing
P.0. Box 789-M
Morristown, NJ 07960

SSSC INTERFACE

(Write for information)
Southern California Computer Soc.
1702 Ashland)
Santa Monica, CA 90405

EDN (Electronic Design News)
$25.00 per year
(Write for subscription info)
Cahners Publishing Co.
270 St Paul St.
Denver, CO 80206

RADIO ELECTRONICS COMPUTER MUSIC JOURNAL

$8.75 per year $14.00 per year (6 issues)
Gernsback Publications, Inc. People's Computer Co.
200 Park Ave., South Box E

1010 Doyle St.

New York, NY 10003
’ Menlo Park, CA 94025

QST

$12.00 per year POPULAR COMPUTING
American Radio Relay League $18.00 per year
225 Main St. Popular Computing
Newington, CT 06111 Box 272

Calabasas, CA 91302
IEEE Computer

(Write for subscription info) MINI-MICRO SYSTEMS
IEEE $18.00 per year
345 E. 47th St. Modern Data Service
New York, NY 10017 5 Kane Industrial Drive
Hudson, MA 01749
ELECTRONICS
$14.00 per year DIGITAL DESIGN
Electronics $20.00 per year
MeGraw Hill Bldg. (Write for subscription info)
1221 Ave. of Americas Benwill Publishing Corp.
New York, NY 10020 1050 Commonwealth Ave.
. Boston, MA 02215
POLYPHONY
$4.00 per year ELECTRONIC DESIGN
PAIA Electronics, Inc. (26 issues per year)
1020 W. Wilshire Blvd. (Write for subscription info)
Oklahoma City, OK 73116 Hayden Publishing Co., Inc

50 Essex St.

CALCULATORS, COMPUTERS Rochelle Park, NJ 07662

$12.00 per year (7 issues)
Dynax
P.0. Box 310
Menlo Park, CA 94025

HAM RADIO

$12.00 per year
Communications Technology
Greenville, NH 03048

COMPUTER WORLD
$12.00 per year (trade weekly)
(Write for subscription info)
Computer World
797 Washington St.
Newton, MA 02160

Editor's Note: In addition to the magazines
regularly covered by the 6502 Bibliography, the
following magazines may also be of interest to
various 6502 readers:

PET GAZETTE THE PAPER
Free bi-monthly (Contributions Accepted) $15.00 per year (10 issues)
Microcomputer Resource Center The PAPER
1929 Northport Drive, Room 6 P.0. Box 43
Madison, WI 53704 Audubon, PA 19407
Robert Purser's REFERENCE LIST PET USER NOTES
OF COMPUTER CASSETTES $5.00 per year (6 or more issues)
Nov 1978 $2.00/Feb 1979 $4.00 PET User Group
Robert Purser P.0. Box 371
P.0. Box 466 Montgomeryville, PA 18936

El Dorado, CA 95623
CALL A.P.P.L.E

THE SOFTWARE EXCHANGE $10.00 per year (includes dues)

$5.00 per year (6 issues) Apple Puget Sound Program Library Exchange
The Software Exchange 6708 39th Ave. SW
P.0. Box 55056 Seattle, WA 98136

Valencia, CA 91355

152

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

6502 BIBLIOGRAPHY

William Dial
438 Roslyn Avenue
Akron, OH 44320

MOS Technology, Inc., 950 Rittenhouse Rd., Norristown, PA 19401 ¢“KIM-1 Microcomputer
Module Users Manual (1975)”

MOS Technology, Inc., 950 Rittenhouse Rd., Norristown, PA 19401 ‘6502 Programming

Manual”

MOS Technology, Inc., 950 Rittenhouse Rd., Norristown, PA 19401 “6502 Hardware Manual”

Fylstra, Daniel, “Son of Motorola (or the $20 CPU chip)” Byte 1 No. 2, pp. 56-62 (November

1975)

Notes on the introduction of the MOS Technology MCS 6500 series microprocessors.

MOS Technology, Inc., 950 Rittenhouse Rd., Norristown, PA 19401 ‘“MCS 6500 Microcom-

puter Family Cross Assembler Manual — Preliminary” (August 1975)

Rehnke, Eric C., Editor, “KIM-1/6502 Users Notes”, P.O. Box 33077, North Royalton, OH 44133
Published about 6 times per year. The single most useful source of programs and miscellan-
eous information on the KIM-1.

MOS Technology, Inc., 950 Rittenhouse Rd., Norristown, PA 19401 “Users Manual — Memory

Expansion Modules KIM-2 and KIM-3*’ (September 1976)

MOS Technology, Inc., 950 Rittenhouse Rd., Norristown, PA 19401 Flyer ca. March 1976 —

“MCS 6530 Memory, I/O, Timer, Array”

A description of the 6530 ROM used on KIM-1.

MOS Technology, Inc., 950 Rittenhouse Rd., Norristown, PA 19401 “TIM Manual ” (March 1976)

MOS Technology, Inc., 950 Rittenhouse Rd., Norristown, PA 19401 “KIM-1 Application Note

No. 2”

Describes Interval Timer Operation. Helps to clarify the use of the timer. See also examples in
the KIM monitor 6530-002 and -003,

Ohio Scientific Instruments, 11679 Hayden Ave., Hiram, OH 44234 ‘“Model 300 Computer —

Trainer Lab Manual”

A series of 20 programs for instruction on the 6502 microprocessor based Model 300 Trainer.
Programs are easily adapted to KIM-1 operation.

Ohio Scientific Instruments, 11679 Hayden St., Hiram, OH 44234 “OSI Application Note No.1”
Covers 6530 TIM Monitor.

Ohio Scientific Instruments, 11679 Hayden St., Hiram OH 44234 “Application Note No. 2”
OSI 480 Backplane and Expansion System.

Ohio Scientific Instruments, 11679 Hayden St., Hiram, OH 44234 “OSI Application Note No.

5”

Interfacing OSI Boards to other systems including KIM-1.

Ohio Scientific Instruments, 11679 Hayden St., Hiram, OH 44234 “OSI Model 430 Super I/O

Board Instruction Manual”

Ohio Scientific Instruments, 11679 Hayden St., Hiram, OH 44234 ‘Model 420C, 4K Memory

Expansion Board”

Instruction Manual — use together with OSI Application Note No. 2 on the 480 Backplane
and Application Note No. 5 on interfacing OSI boards to other systems including KIM-1.

ON-LINE, 24695 Santa Cruz Hwy., Los Gatos, CA 95030
This classified ad newsletter often announces KIM-1 and 6502 software and hardware acces-
sories. 18 issued $3.75.

Helmers, Carl, “There’s More to Blinking Lights Than Meets the Eye” Byte 1, No. 5, pp.52-54

(January 1976)

A program for creating patterns of flashing lights (LEDs).

Lloyd, Robert G., “There’s More to Blinking Lights, etc.” KIM-1/6502 Users Notes

A KIM-1 version of Carl Helmers earlier program in Byte.

Ziegler, John, “Breakpoint Routine for 6502” Dr. Dobbs Journal 1, No. 3, pp. 17-19 (1976)
Requires a terminal and a TIM Monitor. Upon entering, the program counter is printed,
followed by the active flags, accumulator, register, Y register and stack pointer.

153

21.
22.

23.

24.
25,

26.

27.
28.

29.

30.
31.
32.
33.

34.

35.

36.

37.

38.

39.

40.

Anon., “What’s New Kim-o-sabee?” Byte 1, No. 8, p. 14 (April 1976)
Brief notes on KIM-1.
Simpson, Richard S., “A Date with KIM” Byte 1, No. 9, pp. 8-12 (May 1976)
A description of the features of KIM-1.
Microcomputer Associates, 111 Main St., Los Altos, CA 94022 “Jolt Microcomputer’” Radio-
Electronics 47, No. 6, p.66 (June 1976)
Includes description of JOLT, based on 6502, and gives demonstration program using DEMON
Monitor.
Travis, T.E., “KIM-1 Microcomputer Module” Microtrek, pp. 7-16 (August 1976)
Notes and programs for KIM-1 including Drunk test and several useful routines.
Anon., “MOS Technology — KIM MCS 6502” Interface Age 1, No. 9, pp. 12, 14 (August 1976)
An announcement of the KIM-1.
Rankin, Roy and Wozniak, Steve, “Floating Point Routines for the 6502”’ Dr. Dobbs Journal 1,
No. 7, pp. 17-19 (August 1976)
Calculation from 10738 to 1073 # with 7 significant digits.
Bradshaw, Jack, ‘““Monitor for the 6502 Dr. Dobbs Journal 1, No. 7, pp. 20-21 (August 1976)
Monitor a la OSI.
Garetz, Mark, “Lunar Lander for the 6502” Dr. Dobbs Journal 1, No. 7, pp. 22-25 (August 1976)
A game requiring TIM Monitor and a terminal.
Gupta, Yogesh M., “True Confessions: How I Relate to KIM” Byte 1, No. 12, pp. 44-48
(August 1976)
A series of notes on KIM-1. Includes Clock Stretch and Random Access Memories, Bus Ex-
pansion and modification of drive capability using tristate drivers, Interrupt Prioritizing Logic
and Halt Instruction.
Thompson, Geo. L., “KIM on, Now” Byte 1, No. 13, pp. 93-94 (September 1976)
Notes on using KIM-1.
Wozniak, Steve, “Mastermind: A Number Game for the 6502’ DDJ 1, No. 8, pp. 26-27
(September 1976)
A number game adaptable to KIM-1 with terminal.
Baum, Allen and Wozniak, Stephen, “A 6502 Dissembler” Interface Age 1, No. 10, pp. 14-23
(September 1976)
Kjeldsen, Tony, “Next of KIM” (letter) Byte 1, No. 14, p. 136 (October 1976)
Pittman, Tom, “Tiny Basic for 6502 DDJ 1, No. 9, pp. 22-23 (October 1976)
Available from Itty Bitty Computers. TB650K (0200-OAFF) is for KIM and most homebrew
6502 systems with RAM in first 4K memory.
Anon., “Build a Simple A to D” Interface Age 1, No. 12, pp. 12-14 (November 1976)
Simple circuit, 6502 software, 16 locations. Use to interface a pot or a joystick.
Rankin, Roy and Wozniak, Stephen, “Floating Point Routines for 6502 Interface Age 1, No.
12, pp. 103-111 (November 1976) — See also DDJ 1, No. 7, pp. 17-19 (August 1976)
Contains good annotated listings. Loads 1DOO-1FEE.
Ohio Scientific Instruments, 11679 Hayden St., Hiram, OH 44234 Flyer: “OSIs New 8K Basic
for 6502”
Written by Microsoft. Has automatic string space handling and runs up to 8 times faster than
8080 Basic. Cost $50.
Cybersystems, Inc., 4306 Governors Drive West, Huntsville, AL 35805 Flyer: “The Microcyber
1000”7
A complete microcomputer system based on a repackaged KIM-1. Provides power supply,
two separate ports for I/O, TTY connector, Audio Cassette connector, room for expansion
board, etc.
Microsoftware Specialists, Inc., 2024 Washington, Commerce, TX 75428 Flyer: Assembler/
Text Editor Program (4K)
Compatible with MOS Technology Assembler. Documentation and cassette $19.50.

United Microsystems Corp., 2601 S. State St., Ann Arbor, MI48104 Flyer: “UMC KIM/ALPHA”
A modular system based on memory modules of 4K and 8K, full keyboards, modular back-
planes. Cost ca. $700. Video monitor extra.

154

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

53.

54,
55.

56.

57.

58.

59.

60.

Riverside Electronic Design, Inc., 1700 Niagara St., Buffalo, NY 14207 Flyer: “KEM, KIM-1
Expansion Module and MVM-1024, Microprocessor Video Module”

" Used for expansion of KIM-1 system with boards having S-1-- edge connectors ASCII key-
board interface. MVM-1024 is a video display board, scrolling, edit functions, 16 rows of
characters, blinking cursor, etc.

6502 Program Exchange, 2920 Moana, Reno, NV 89509 Flyer of April 1977 lists 7 programs for
KIM-1 with 1 to 4K of memory and keyboard facilities.
DATA1-K Assembler Flyer November 10, 1976
A resident assembler for KIM-1. Model DATA1-K is compatible with MOS Technology Cross
Assembler Language.

Pollock, James W., “1000 WPM Morse Code Typer” 73 Mag. No. 196, pp. 100-103 (January 1977)
Use of KIM-1 for sending code at 9-1000 WPM from a keyboard.
Robbins, Carl M., “The Microprocessor and Repeater Control” QST 61, No. 1, pp. 30-34
(January 1977)
KIM-1 control of repeater functions.

Inman, Don, “Data Handler Users Manual” Peoples Computer Co. 5, No. 4, pp. 10, 11, 13
(January-February 1977) Peoples Computer Co. 5, No. 5, pp. 16, 17, 18 (March-April 1977)
Peoples Computer Co. 5, No. 6, pp. 52, 53, 55 (May-June 1977)

A how-to course in 6502 programming.

Miller, Lindsay, “Found, A Use for Your Computer” Kilobaud, Issue No. 2, p. 80 (February 1977)
A clock program for the KIM-1.

Gordon, H.T., “Stringout Mods” DDJ 2, No. 2, p. 8 (February 1977)

A 6502 program applicable to KIM-1 to relocate blocks of instructions in RAMs.

Fugitt, Lemuel A., “A 6502 Op Code Table” Byte 2, No. 3, p. 36 (March 1977)

See also Allen, Syd, “6502 Op Code Table” in KIM-1/6502 Users Notes, Issue 4, p. 9
(March 1977). .

Kushnier, R., “A Partial KIM-1 Bibliography” KIM-1/6502 Users Notes No. 4, p. 7 (March 1977)

Cushman, Robert H., “Bare-bones Development Systems Make Good Learning Tools” EDN 22,

No. 6 (March 20, 1977) See also 22, No. 8, pp. 104-111 (April 20, 1977) 22, No. 4, pp. 89-92

(February 20, 1977) 22, No. 10, pp. 84-90 (May 20, 1977) 22, No. 12, pp. 79-84 (June 20,1977)
Use of KIM-1 in a music program is detailed in April 1977 issue.

Salter, Richard J. and Burham, Ralph W., “Navigation with Mini-0” Byte 2, No. 4, pp. 100-109

(April 1977); See also Byte 2, No. 2, p. 62 (February 1977) and Byte 2, No. 3, p. 70 (March 1977)
Several articles in a series on the Omega Navigation System and the Mini-0 Receiver driven
by a KIM-1 processor. Developed at the Ohio University Avionics Engineering Center.

Haas, Bob, “KIM-1 Memory Expansion” Kilobaud, No. 4, pp. 74-76 (April 1977)

Adding the S.D. Sales 4K Low Power RAM board to KIM-1.

Sherman, Ralph, ““A 650X Program Relocater” DDJ 2, No. 4, pp. 30-31 (April 1977)

Ockers, Stan, “TV Sketch Program” DDJ 2, No. 4, pp. 32-33 (April 1977)
A program for use with KIM-1 equipped with a Southwest Tech Prod Co. Graphics Board
GT 6144.

Jennings, Peter R., “Microchess” DDJ 2, No. 4, p. 33 (April 1977)
Description of chess playing program. Cost $10.

Wear, Tom, 380 Belaire, Punta Gorda, FL 33950, Private Communication April 20, 1977
Information on bringing up new memory boards with KIM-1, including OSI 420 and OSI 480
backplane. Includes a very nifty memory test routine for checking the operation of memory
boards. See also KIM-1/6502 Users Notes No. 5, p. 4 (May 1977).

Loffbourrow, Tod Interface Age (April 1977)
All about a robot named Mike -- based on KIM-1,

Tripp, Robert M., “PLEASE” Flyer: The Computerist, May 1977
Fun and Games with KIM-1. A cassette in Supertape for fast loading into KIM-1. Has a
number of interesting programs including clock, timer, billboard, travelling display, drunk
test, Hi-Lo number game, etc. Available for $10 from Robert M. Tripp, P.O. Box 3, S.
Chelmsford, MA 01824.

Jennings, Peter, “Microchess” The Computerist Flyer, May 1977
Play Chess with KIM-1 with no additional peripherals or memory. Availble from Robert M.
Tripp for $15.

155

61.

62.

63.

64.

65.

66.

617.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

The Computerist, P.O. Box 3, S. Chelmsford, MA 01824 Flyer May 2, 1977
Offers power supplies for KIM-1, also a relay kit to permit KIM to control two reed relays for
two cassette recorders.
Computer Shop, 288 Norfolk St., Cambridge, MA 02139 Adv. in The Computerist, p. 18,
May 1977
Offers a 4K RAM board for $74.50 that can be used with KIM-1.
Riverside Electronics, 1700 Niagara St., Buffalo, NY 14207 Advertisement. See KIM-1/6502
Users Notes No. 5 (May 1977)
Offers 5 Application Notes for $1 on the use of their MVM-1024 and KEM expansion boards.
Ask for MVM-1, 2, 3, 4, 5 and KIM-1.
Aresco, 314 Second Ave., Hahhon Hts., NJ 08035 See KIM-1/6502 Users Notes, Issue No. 5,
p.1 (May 1977)
Lists several programs available for KIM, TIM, etc.
Simpson, Rick, “Come Fly with KIM” Byte 2, No. 6, pp. 76-80 (June 1977)
Load 12K of memory in two minutes with a “Fly Reader” for paper tape.
Lancaster, Don, “A TVT for your KIM” Kilobaud, No. 6, pp. 50-63 (June 1977)
TVT-6L is a low cost method of providing a TV monitor for KIM-1. Uses minimum new hard-
ware but depends on asoftware program in KIM-1 memory for handling characters. Uses a low
cost TV (Pansonic T-126A) for monitor.
Lancaster, Don, “Build the TVT-6” Popular Electronics 12, No. 1, pp. 47-52
A low cost direct video display based on KIM-1 software and a minimum of added hardware.
Slightly different than the TVT-6L.
Pickles and Trout, P.O. Box 2270, Goleta, CA 93018 “TV Mod Kit”’
Detailed instructions and kit of parts for conversion of a low cost ($80 approx.) Hitachi SX
Chassis (Model P-04, P-08, PA-8, etc.) for a TV Monitor.
Forethought Products, P.O. Box 386, Coburg, or “KIMSI” The Computerist, p. 8 (June 1977)
KIMSI is a motherboard/Interface that allows KIM-1 to be interfaced to an S-100 bus; 8 slots.
MOS Technology /Commodore “PET” The Computerist, p. 17 (June 1977)
An announcement on PET, a new 6502 system with video monitor, ASCII keyboard, 12 K
ROM including 8 K Basic and 4 K RAM, audio cassette; price ca. $4.95, available September
19717.
Grater, Robert, “Giving KIM Some Fancy Jewels” Byte 2, No.7, pp. 126-127 (July 1977)
Adding a remote LED display for the KIM-1.
Runyan, Grant, “The Great TV to CRT Monitor Conversion” Kilobaud, No. 7, pp. 30-31 (July
1977)
Although not specific to KIM-1, this article is useful in adapting a monitor to KIM. Uses in-
expensive 127 Hitachi Model P-04, P-08, PA-4, PA-8. See also Sams Photofact Folder 1 Set
1601 or Folder 3 Set 1501.
Simpson, Richard, “KIM Forum” Kilobaud, No. 7, pp. 4, 19, 86 (July 1977)
KIM-5 will be a ROM expansion board with up to 8 MCS 6504 (2K x 8) mask programmed
ROMs. One ROM is KIMath, a set of subroutines for doing floating point arithmetic. Cost
$50. Programming Manual for KIMath purchased separately is $15. Also a resident assembler
and text editor are available as a set of 3 ROMs.
Tripp, Robert M., “The 6502 World” The Computerist, p. 16 (July 1977)
MOS Technology may offer a 16K RAM board for KIM-1. New KIM repair facility is KIM
Diagnostig Center 2967 W. Fairmont Ave. Phoenix, AZ 85017 Tele. 602-248-0769
4K Ram for KIM-1 assembled and tested for only $129 available from Tripp.

Tripp, Robert M., “HELP Relay Package” The Computerist Flyer July 5, 1977
Components for relay control of 2 cassette recorders. Includes control program subroutine.
Tripp, Robert M., “4K RAM Board” The Computerist Flyer July 5, 1977
4K for KIM-1, socketed chips, 5.25”” x 9.25” board, can separately address each 1K. Cost
$129 assembled.
Tripp, Robert M., “Digital to Analog Converter” The Computerist Flyer July 1977
Micro Technology Unlimited DAC board with audio output to drive 8/16 ohm speakers. Can
play 4 part harmony with only KIM-1. Includes cassette tape program for tunes.
Tripp, Robert M., “Mod to Improve the PLEASE Clock’ The Computerist July 5, 1977

156

79.

80.
81.

82.

83.

84.
85.
86.

87.

88.

89.
90.

91.

92.
93.

94,

95.

96.

97.

98.

Boyle, Peter, “The Gory Details of Cassette Storage” Kilobaud, No. 3, pp.116-119 (March 1977)
Comments on audio cassette problems. States that KIM runs at 133 baud but is capable of
1200 baud.

Johnson Computer, P.O. Box 523, Medina, OH 44256 “Basic for KIM-1”’ uP No. 4 (June 1977)
Resides in 2K at address 2000. Available in paper tape $5.

Johnson Computer, P.O. Box 523, Medina, OH 44256 “Harness Eliminator” uP No. 4 (June 1977)
Minimize wiring in connecting KIM 2 or 3 to KIM-1 with a rigid coupling.

Johnson Computer, P.O. Box 523, Medina, OH 44256 “KIM-1 Resident Assembler/Text Editor

Model DATA1-K”” uP No. 4 (June 1977)

Use with MOS Tech Cross Assembler Manual.
Johnson Computer, P.O. Box 523, Medina, OH 44256 “KIMath — Floating Point Math Package”
MuP No. 4 (June 1977)
Rom is $50. Documentation alone $15. Available from Johnson Computer.
Tripp, Robert M., “Is the KIM-1 for Every-1” Kilobaud, No. 8, pp. 56-57 (August 1977)
General description of KIM-1.
Fish, Larry, “Troubleshoot Your Software” Kilobaud, No. 8, pp. 112-113 (August 1977)
A trace program for 6502.
Severson, Gerald D., “Plaudits for MOS Technology” DDJ 1, No. 6, pp. 5 (June-July 1976)
Note on good service from MOS technology on the 6502.

Western Data Systems, 3650 Charles St., No. Z, Santa Clara, CA 95050 “Western Data’s 6502-

Based Data Handler” DDJ 1, No. 6, p. 43 (June-July 1976)

A $170 kit with hex keyboard, LED binary readout, 1 K ram, capability of addressing 65K,
uses 100 pin tustate bus and is compatible with a long list of Altair peripherals, 100 pin
connector.

Espinosa, Chris, “A String Output Subroutine for the 6502” DDJ 1, No. 8, p. 33 (September

1976)

This routine saves pointers, loops, etc. in outputting the string.

Meier, Marcel, “6502 String Output, Revisited”” DDJ 1, No. 10, p. 50 (November 1976)
Further mod of Espinosa’s earlier routine.

Anon., “That didn’t Take Long at All” Byte 1, No. 5, p. 74 (January 1976)

Note on 6502 product introduction and the JOLT computer kit.
Anon., “Control Logic for Microprocessor Enables Single Step” Electronic Design, p. 78 (Oct-
ober 11, 1976)
Uses 6502 system.
Anon., “6502 Disassembler”’ Interface Age, p. 14 (September 1976)
Butterfield, Jim, “KIM Goes to the Moon” Byte 2, No. 4, pp. 8-9, 132 (April 1977)
~ Alunar lander program; see also same program in KIM-1/6502 users notes.

Hybrid Technologies, P.O. Box 163, Burnham, PA 17009 “Ad for KIM-1 Peripherals” Byte 2,

No. 8, p. 157 (August 1977)
2K/8K ROM based, EProm Programmer, 2K/4K/8K Ram boards, assembler board, TV Inter-
face board, relay board, mother boards.

Simpson, Richard, “Circular Ad for 6502 Software” Aresco, 314 Second Avenue, Haddon

Heights, NJ 08035, July 26, 1977
Describes FOCAL, a 4K language similar to BASIC, and a 2.5K resident assembler suitable for
all 6502-based micro systems.

Commodore International, Ltd., 901 California Avenue, Palo Alto, CA 94304 Tele. (415) 326-
4000 ‘““The PET!” Peoples Computers 6, No. 1, p. 59 (July-August 1977)
An announcement of the PET computer based on 6502. Available early September 1977 for
$595.

Crow, Darrell — Microcomputer Associates, 2589 Scott Blvd., Santa Clara, CA 95050 Tele.
(408) 247-8940 ‘6502 Assembler, Tinz Basic on ROM’s” Peoples Computers 6, No. 1,p.60
(July-August 1977)
RAP is a 1.75K Resident Assembler Program on two 2K ROM’s together with 2.2K Tinz
Basic, pin compatible with 2708-type PRoms — price $200.
Inman, Don, “The Data Handler Users Manual Part 4 Peoples Computers 6, No. 1, pp. 42-46
(July-August 1977) (Cont. from Item 46)
Covers indexed addressing.

157

99.

100.

101.

102.

103.

104.

105.

106.

107.

108,

109.

110.

111.

112.

113.

Anon., “User Group Being Formed for Commodore PET 2001 Computer” ON LINE 2, No. 10,
p. 11 (August 3, 1977)
Membership is $5 including User Notes. Contact Gene Beals, P.O. Box 371, Montgomery-
ville, PA 18936.
Anon., “6502 Assembler/Text-Editor for KIM-1 and TIM” ON LINE 2, No. 10, p. 10 (August
3,1977)
Resides in 2K, requires Teletype or CRT and cassette recorder. $29.95. M.S.S., Inc., 1911
Meadow Lane, Arlington, TE 76010
Anon., “MICRO-ADE” ON LINE 2, No. 10, p. 6 (August 3,1977)
New Product Announcement by MICRO-WARE Ltd., 27 Firstbrooke Rd., Toronto, Canada,
M4E2L2 Micro-Ade, a 4K package is a compact development tool for all 6502 users in-
cluding KIM-1. User manual, hex dump, object program on paper tape or KIM cassette is
$25. Complete annotated source listing is available for another $25.
Ohio Scientific Instruments, 11679 Hayden, Hiram, OH 44234
OSI Small Systems Journal (first regular July 1977) is a new publication, $6 for six issues,
devoted to 6502 and OSI users.
Deckant, Gary, “Understanding and Using the 6502 Assembler” OSI Small Systems Journal 1,
No. 1, p. 8 (July 1977)

Explains use of assembler program.

Anon., “1K Corner” OSI Small Systems Journal 1, No. 1, p. 8 (July 1977)
The game of 23NIMB for OSI 65V systems. Requires terminal. Resides 0200-0332.

Cheiky, Mike and Meier, Marcel, “The Auto-Load Cassette System” OSI Small System Jour-
nal 1, No. 1, pp. 9-14, (July 1977)
For OSI 65V system.
Anon., “The 6502 Disassembler — From Object to Source End” OSI Small System Journal 1,
No. 1, pp. 14-15 (July 1977)
A disassembler is a program which attempts to convert machine code back into assembler .
source. Obviously it cannot reconstruct comments or labels. Points out other pitfalls in
using disassemblers.
Pyramid Data Systems, 6 Terrace Ave., New Egypt, NJ 08533 Ref :KIM-1/650X, Users Notes
No. 6, p. 1 (July 1977)
XIM is an extended I/O monitor package for Kim, residing in about 1K memory. Adds 17
commands to terminal equipped Kim. Has 45-page user manual. Cost $12.00 for manual
and KIM cassette.
ORB, P.O. Box 311, Argonne, Ill., 60439, “The First Book of KIM” Ref: KIM-1/650X,
Users Notes No. 6, p.1 (July 1977)
Ockers, Rehnke and Butterfield have collaborated in a 180-page new book to guide be-
ginners and others in the use and enjoyment of KIM-1. Cost $9.50 including postage.
Aresco, 314 Second Ave., Haddon Hts., NJ 08035, “Comprehensive 650X Assembler/Text
Editor” Ref: KIM-1/650X Users Notes No. 6, p. 4 (July 1977)
Designed for use with KIM-1 but can be used with other 650X systems such as TIM, Apple,
Baby, OSI, etc. — Occupies 6K, available on KIM cassette or KIM-TIM paper tape. Cost
$60.00.
Bates, Dan, Rt 7, Box 310, Claremore, Okla, 74017, “Small Microcomputer Board using 6505.
Ref: KIM-1/650X, Users Notes No. 6, p. 9 (July 1977)
Bates has developed a board around the 28 pin 6505 and sells the 6 x 4” PC board for
$15.00 including schematic and assembly instructions. Can handle ASCII to Baudot, micro-
controlled repeater/autopitch, etc.
Laabs, John, “Build a $20 EPROM Programmer” Kilobaud No. 9, pp. 70-77, (Sept 1977)
KIM-1 is used to run software and some external hardware to program the 5204 4K EPROM.
Ohio Scientific Instruments, Hiram, Ohio, 44234, “A Computer that Thinks in BASIC” Kilo-
baud No. 9, p. 10, (Sept 1977)
Announcement of OSI’s Model 500 CPU board built on 6502, Complete with 8K Basic in
ROM for $298.
Clarke, Sheila, “A PET for Every Home” Kilobaud No. 9, pp. 40-42, (Sept 1977)
A look at the Commodore PET 2001 based on the 6502. About $600 includes Video term-
inal keyboard, 12K, (8K Basic in ROM and 4K operating system).

158

114.

115.

116.

117.

118.

119,

120.

121.

122,

123.

124.

125.

126.

127,

128,

American Institute for Professional Education, Carnegie Bldg., Hillcrest Road, Madison, NJ,

07940, “Microprocessing Fundamentals” Circular Advertisement — approx. Aug. 15, 1977.
Dr. Joseph B. Ross, Purdue Univ. and Dr. Garnett Hill, Oklahoma State Univ. will present a
course in Fall of 1977 at several locations. Course is based on KIM-1 hardware together with
instruction in Digital Devices, Programing Fundamentals, Advanced Programing, Peripher-
als, 1/0 addressing, applications, etc. Cost about $600 including a KIM-1 to keep after the
course,

Gregson, Wilfred J. IL,“RTTY with the KIM” 73 Magazine 9, No. 204, p. 110-112 (Sept 1977)
A clever program for using KIM-1 and the 6-digit LED display as a readout for a RTTY
signal. Simply feed the audio from a receiver into the tape input of KIM-1 and read the
message as it flows across the display (about 45.5 baud, 60 wpm). Can also handle other
ratio to 100 baud). Can also use KIM-1 as a display only, operating from an already avail-
able terminal unit.

Synertek 3050 Coronado Drive, Santa Clara, CA 95051 Misc. Data Sheets received by mail.
Describes second source of 6502 and associated microprocessor chips by Synertek. SY6502
is updated to include ROR function. Other chips include SY6530, SY6522 (PIA), SY6532,
SY6520, etc.

Rockwell International, 3310 Miraloma Ave., P.O. Box 3669, Anaheim, CA 92803 Data Sheets
D39 thru D44 received by mail.
Describes Rockville R6502 microprocessor and other second source Microprocessor acces-
sory chips including R650X, R651X, R6520 (PIA) R6530 (ROM, RAM, 1/0, Timer)
R6532, etc. R6502 also available in 2 MHz option. R6502 has the updated ROR function.
Bumgarner, John O., “A-KIM-1 Sidereal/Solar Clock” Interface Age 2, No. 9, p. 36-37 (Aug
1977)

Atkins, R. Travis, ‘A New Dress for KIM” Byte 2, No. 9, p. 26-27 (Sept 1977)
Describes mounting the KIM-1 in a briefcase together with power supply, prototype boards,
etc.

Chamberlin, Hal, “A Sampling of Techniques for Computer Performance of Music” Byte 2,
No. 9, p. 62-83 (Sept 1977)
General Discussion of Music Generation plus detailed information on application to KIM-1
and a description of the hardware and software for a D/A music board and software package
being marketed by Micro Technology Unlimited, 29 Mead St., Manchester, NJ 03104. PC
board alone is $6.00, assembled and tested D/A board $35.00, software package on KIM
cassette is $13.00 additional.
Beals, Gene, P.O. Box 371, Montgomeryville, PA 18936, “User Group for the Commodore
PET 2001 Computer” Ref: On Line 2, No. 11, p. 2 (Aug 24, 1977)
Yearly membership $5.00 brings Users Notes publication.
Cater, J., 11620 Whisper Trail, San Antonio TX 78230, “Run OSI 6502 8K Basic on your TIM
or JOLT” On Line 2, No. 11, p. 3 (Aug 24, 1977)
Cost $4.00 for annotated source and object code of patches for TIM or JOLT.”
Firth, Mike, 104 N. St. Mary, Dallas, Texas 75214, “Large Type Summary of Command Coder
for 6502 plus addresses.” On Line 2, No. 11,.p. 8 (Aug 24, 1977) Cost: $0.13 stamp plus
SASE.
House, Gil, P.O. Box 158, Clarksburg, Md., 20734, “6502 Legible Tape Labeler.” On Line 2,
No. 11, p. 9 (Aug 24, 1977)
A program for TIM (JOLT DEMON), Hex tape and documentation $4.00

Kushe, Willi, “KIM-1 Breakpoint Routines Plain and Fancy” DDJ 2, No. 6, pp. 25-26 (June-
July 1977)
A modified routine using KIM-1 Monitor allows size to be cut to only 124 Bytes.

F and D Associates, Box 183, New Plymouth, OH 45654 On Line 2,No.9,p.9(July13,1977)
New product Announcement: Video Display Board compatible with 6502. Two pages 16
lines x 64 characters, scrolling, screen erase. Bare Board $29 incl. software and documenta-
tion.

Staff Article “PET Computer” Peoples Computers 6, No. 2, p. 22-27 (Sept-Oct. 1977)

Chuck Peddle, father of the PET is interviewed. Interesting comments on the marketing of
this 6502 based microcomputer and accessories.

Inman, Don, “The Data Handler Users Manual: Part 5” Peoples Computers 6, No. 2, pp. 50-55

(Sept-Oct. 1977)

Covers Session VII — Writing Programs

159

6502 BIBLIOGRAPHY
PART II

William Dial
438 Roslyn Avenue
Akron, OH 44320

129. Torzewski, Joe, "Apple I Library" On_Line 2 No. 12 p. 11 (Sept 14, 1977)
Apple I owners interested in a library for software and hardware should
contact Joe Torzewski, 51625 Chestnut Rd., Granger IN 46530.
130. House, Gil, P.0. Box 158, Clarksburg, MO 20734, "6502 Tape Labeler"
On_Line 2 No. 12 p. 11 (Sept 14, 1977)
Man readable 6502 legible tape labeler for TIM, JOLT, DEMON
131. Cater, J., 11620 Whisper Trail, San Antonio, TX 78230, "Run 0SI 6502 8K
BASIC on your Tim or Jolt" On_Line 2 No. 11, p. 13 (Sept 14, 1977)
Full info and patches to run this super fast BASIC.
132. Staff Article "The PET Computer" Personal Computing 1 No. 5, pp 30-40
(Sept-Oct, 1977)
Interviews with Chuck Peddle of Commodore and with other micro-
computer experts.
133. Lancaster, Don, "Hex-to-ASCII Converter for your TVI-6" Popular Electronics
12 No. 4, pp 49-52 (Oct. 1977)
Simple module produces op-code display for entire computer. Describes
a board to be connected between the TVT-6 and the KIM-1 microcomputer.
134, Microcomputer Associates Inc., 2368-C Walsh Ave., Santa Clara, CA 95050
Popular Electronics 12 No. 4, p. 100 (Oct, 1977)
New Product Announcement: A 6502 RAP, resident assembler program and
TINY BASIC of ROM. Cost $200.
135. CGRS Microtech, P.0. Box 368, Southampton PA 18966, On_Line 2 No. 13, p 2
(Oct 5, 1977)
New Product Announcement: EX0OS and DATE are two new 6502 software
packages. EXOS is an Extended Operating System featuring a number
of useful commands and DATE is a disassembler, assembler, trace and
debug editor. Available on four programmed 2708 EPROMS or on TIM
format paper tape. Programs are each $150 or $295 for both, on EPROMS.
136, Pyramid Data Systems, 6 Terrace Ave., New Egypt, NJ 08533, On_Line 2 No 13,
p 6 (Oct 5, 1977)
New Product Announcement: XIM is a 1K software package for KIM that adds
17 commands to the KIM Monitor, including a Breakpoint routine. Cas-
sette and 45 page manual is $12 ppd., paper tape is $10.
137. K L Power Supplies, P.0. Box 86, Montgomeryville, PA 18936, On_Line 2,
No. 13, p. 11 (Oct 5, 1977)
New Product Announcement: Model 512 Power Supply is for the KIM with
enough capacity for an extra 8K and other accessories.
138. Matthews, K., "6502 Forum"™ Kilobaud No. 10, p 11, (Oct. 1977)
Mentions E.C.D. Micromind II based on the 6512 A (related to 6502).
139. Rugg, Tom and Feldman, Phil, "BASIC Timing Comparisons" Kilobaud No. 10
p. 20 (Oct, 1977)
Compares over 30 different hobby computer systems on seven different
Benchmark programs in BASIC. Fastest was OSI 8K BASIC using 6502 in
a Challenger running at 2 MHz. Actually a late entry which was still
a little faster was the HeathKit H-11 with a special Extended Instruc-
tion Set and a Floating Instruction Set which are to be offered as
accessories for the H-11.
160

140. Overstreet, Jim, "Try Your KIM-1 on RTTY" 73 Magazine No. 205 pp 88-91
(Oct, 1977)
Has a Baudot Receive Program that takes the output from an FSK con-
verter and runs a video terminal with the KIM board. A CW trans-
mit program is also given in the article.
141, Schawlow, Arthur L., "Search Subroutine for the 6502 Disassembler",
Interface Age 2 No. 1, p 146 (Oct, 1977)
A description, listing and sample run of an object code search sub-
routine for use with the 6502 Disassembler published in the September
1976 issue of Interface Age.

142, Simonton, John S., Jr., "What the Computer does ... an Introduction.",
Polyphony 3, No. 1, pp 5-7, 28 (July, 1977)
PAIA Electronics will shortly have a complete KIM-1 package showing
how to interface with their 8700 Computer Controller based on a
6503 processor. A large selection of programs for KIM is promised.

143, Simpson, Rick, "KIM Forum", Kilobaud No. 11, pp 16-17, 48 (Nov, 1977)
Caxton Foster of the Computer Sciences Dept. of the University of
Massachusetts is the author of a college text on microprocessors and
all programming examples use KIM-1. Also R.W. Burhans, E.E. Dept. of
Ohio University has some informative comments on the adjustment of
the PLL pot VR-1.

144, Butterfield, Jim, "Hyper about Slow Load Times", Kilobaud No 11, pp 66-69

(Nov, 1977)
Butterfield explains the development of his HYPERTAPE (Supertape)
program for loading or dumping to a KIM audio cassette at 50 bytes per
second, six times the normal KIM-1 rate.

145, Blankenship, John, "Expand Your KIM", Kilobaud No 11, pp 84-87 (Nov 1977)
The first of several articles on expanding KIM to use the S-100 bus to
give 13K memory, Cromenco Dazzler, a printer and keyboard, joysticks,etc.

146. Johnson Computer, P.O. Box 523, Medina, OH 44256, On_Line 2, No 14, p 7

(October 26, 1977)
New Product Announcement: KIM-1 8K Basic by Microsoft is available in
either a 6-digit or 9-digit precision version which includes full
printout of error messages. Prices are $97.50 and $129.00.

147. Rockwell International, P.0O. Box 3669, Anaheim, CA 92803, Product Bulletin
Rockwell now has available a number of 6500 family microprocessor chips
ineluding r6502, r6505 and others. They also are promoting SYSTEM 65,
a floppy disc based powerful development system.

148. Sneed, James R., "Adding an Interrupt Driven Real Time Clock", Byte 2

No. 11, pp 72-T4 (Nov, 1977)
An external board drives interrupts at 15 Hz which is used to
calculate time for use by the computer.

149, Brader, David, "A 6502 Personal System Design: KOMPUUTAR", Byte 2 No. "

pp 94-137 (Nov, 1977)
A very detailed constructional article.

150. NCE/CompuMart, 1250 N. Main St., Ann Arbor, MI 48104, Byte 2 No. 11,

p 140, (Nov, 1977)
New Product Announcement: A number of Accessories for the KIM-1
including backplane/S-100 adapter, 8K Seals memory, Poly Video term-
inal interface, Itty Bitty Tiny BASIC, Matrox Video RAMS, Graphics
and Alpha-Numerics Boards.

151. The Enclosures Group, 55 Stevenson St., San Francisco, CA 94105, Byte 2

No. 11, p 234 (Nov, 1977)
New Product Announcement: Offers an enclosure to dress up the KIM-1.

161

152. Apple Computer Inc., 20863 Stevens Creek Blvd., Cupertino, CA 95014, Byte
2, No. 11, p 252 (Nov, 1977)
Apple II is a new entry in the home computer market. At $1298 it
offers 6K Basic in ROM video graphies in 15 colors, 4K of program-
mable memory in RAM, a 2K monitor, cassette interface, floating point
package, etc.
153 Anon., "Get the most out of Basic", OSI Small Systems Journal 1, No. 2
pp 4-7 (Sept, 1977)
Note on Basic in general and the 0S-65D System.
154, Smith, Gary A., "Contributed Program", OSI Small Systems Journal 1, No. 2,
p. 12 (Sept, 1977)
Program displays the memory address and the data contained in HEX.
155. Anon., "0SI 6502 Cycle Time Test", OSI Small Systems Journal 1, No. 2,
pp 12-13 (Sept., 1977)
Measures the cycle time using a stop watch and program to record the
number of whole cycles.

156. Anon., "Memory Test", OSI Small Systems Journal 1, No. 2,pp15-17(Sept 1977)
A memory test for video and serial-based computers using the 6502.
157. Anon., "1K Corner: Close the Window", OSI Small Systems Journal 1, No. 2,
p 18 (Sept., 1977)
Close the Window is a dice game designed to be played on the 0SI
65V Computers.
158. The COMPUTERIST, P.O. Box 3, South Chelmsford, MA 01824
MICRO is a new bimonthly publication specializing in information
related to 6502 processor based systems.
159. Salzsieder, Byron, "Cheap Memory for the KIM-1", MICRO No. 1 pp 3-4,
Oct.-Nov., 1977)
You can add a Veras Systems 4K Byte memory board to your KIM-1 at
half the price of the KIM-2.
160. Holt, Oliver, "Terminal Interface Monitor (TIM) for the 6502", MICRO No. 1,
pp 1-7 (Oct.-Nov., 1977)
TIM is available on a MOS Technology ROM 6530.
161. Anon., "We're No. 1", MICRO, No. 1, p 6 (Oct-Nov, 1977)
An editorial points out that over 12,000 KIM-1 units are in the field
and a thousand more each month are being ordered. Apple I and Apple 11
systems, plus the OSI units, Jolts, Data Handlers, and other 6502 based
systems, plus the huge number of PETs and Microminds that have been
ordered, plus a lot of home-brew systems, it all adds up to a lot of
6502 systems. Also Atari has purchased one and one-half million 650X
chips for their game units.
162. Ferruzzi, Arthur, "Inside the Apple II", MICRO, No. 1, pp 9-10 (Oct-Nov 1977)
A detailed description of the Apple II.

163. Ferruzzi, Arthur, "Rockwell International and the 6502", MICRO, No. 1,
p 10, (Oct.-Nov., 1977)
Rockwell is now second sourcing the entire 6502 product line. They have
also developed SYSTEM 65, a fancy development system with dual mini
floppies, 16K static RAM, text editor, assembler and debug monitor on
ROM, serial and parallel interfaces for terminal and printer, hardware
breakpoint, etec.
164. Floto, Charles, "The PET's IEEE-488 Bus: Blessing or Curse?", MICRO, No. 1,
p 11 (Oct.-Nov, 1977)
Discussion of this feature mentions a rumor that Pickles and Trout may
offer a 488 adapter for their new S-100 I/0 board, as well as an I/0
board for the U488 bus.

’

162

165.
166.

167.

168.

169.

170.

171.

172.

173

174.

175.

176.

177.

178.

179.

Anon., "6502 Related Companies", MICRO, No. 1, p12 (Oct.-Nov., 1977)
Lists 28 companies serving 6502 processors.
Tripp, Robert M., "Hypertape and Ultratape", MICRO, No. 1, pp13-16,
(Oct.-Nov., 1977)
Ultratape runs at 12 times the normal KIM-1 speed, but requires special
programs for both loading and dumping.
Rowe, Mike, "KIM-Based Degree Day Dispatcher", MICRO, No. 1, pp 17-18,
(Oct.-Nov., 1977)
Hundley Controls of Hanover, Mass. is building a number of different
KIM-based systems to be used by fuel oil dealers to perform a variety
of functions such as meter ticket reading, basic accounting, calcu-
lating degree-days by measuring temperature and determining when oil
deliveries are to be made, etc.
Tripp, Robert M., "Computer Controlled Relays", MICRO, No. 1 p 19
(Oct.-Nov., 1977)
Relays can be used for control of audio assettes, and a variety of
other functions. A T4OU Hex Inverter is used to buffer the signals
from the KIM's 6530 Port B I/0 lines.
Dial, William R., "6502 Bibliography", MICRO, No. 1, pp 21-27, (Oct. -
Nov., 1977)
128 references to 6502 related articles, programs, etc.
Camus, Armand L., "Making Music with the KIM-1", MICRO, No. 2, pp 3-7,
(Dec. 1977-Jan. 1978)
How to write music for a DAC such as that recently described by
Chamberlain in Byte Magazine, Sept. 1977.
Floto, Charles, "Meet the PET", MICRO, No. 2, pp 9-10 (Dec 1977-Jan 1978)
An owners view of the PET 2001.
Dejong, Marvin L., "Digital-Analog and Analog-Digital Conversion Using
the KIM-1", MICRO, No 2, pp 11-15, (Dec. 1977-Jan 1978)
Experiments with a KIM-1 controlled DAC/ADC.
Wallace, Bob, "The PET Vs. the TRS-80", MICRO No. 2, pp 17-18,
(Dec. 1977 - Jan 1978)
A feature-by-feature comparison.
Schwartz, Marc, "Ludwig von Apple II", MICRO, No. 2, p 19 (Dec 77-Jan T78).
How to write music for the Apple II.
Anon., "MICROBES - Tiny Bugs in Previous MICRO", MICRO, No. 2, p 22,
(Dec. 1977 - Jan. 1978).
Some corrections for HYPERTAPE and ULTRATAPE and Computer Controlled
Relays.
Henkel, Joel, "The Challenge of the OSI Challenger", MICRO, No. 2,
pp 23-24 (Dec 1977 - Jan 1978)
An owners impressions of the OSI Challenger.
MOS Technology, "Improving Keyboard Reliability", MICRO, No. 2, p 25,
(Dec 1977 - Jan 1978)
A hardware modification for your KIM-1 to improve action of the "9, D,
or C" keys. Based on an Application Note by MOS Technology.
Dial, William, "Important Addresses of KIM-1 and Monitor", MICRO, No. 2,
pp 27-30, (Dec 1977 - Jan 1978)
A programmers reference card for the KIM-1.
Computer Shop, 288 Norfolk St., Cambridge, MA 02139, MICRO, No. 2,
p 26, (Dec. 1977 - Jan. 1978)
Advertisement for CS 100 Video Terminal Board for KIM. Includes
portable cabinet for the KIM with space for cassette recorder, ASCII
keyboard, power supply, extra memory boards, 3-slot motherboard,

TIM kit, ete.
163

180.

181.

182.

183.

184.

185.
186.

187.

188.

189.

190.

191.

192.

6502 BIBLIOGRAPHY
PART III

William Dial
438 Roslyn Avenuc
Akron, OH 44320

Gordon, H.T., "Decoding 650X Opcodes", Dr. Dobbs Journal 2, No. 7,
pp 20-22 (Aug. 1977)

Subroutines that can be used with KIM.
Butterfield, Jim F., "A High-Speed Memory Test Program for the 6502"
DDJ 2, No. 7, p 23 (Aug. 1977)

A memory test program written for the KIM system.

Anon. "Ohio Scientific's New Disc Operating System", DDJ 2, No. T,

p 32 (Aug. 1977)

The 0S-65D is a complete operating system for all disc based OSI computer
systems. Includes DOS, 8K Basic, Assembler, Editor, Extended Debugger
and a Disassembler.

Anon.., "OSI offers Computer that thinks in Basic for $298", DDJ 2, No. 7,

p 39 (Aug. 1977)

OSI's new Model 500 CPU board can be used as a stand-alone computer or
as the PCU in a larger system.

Moser, Carl W., 3239 Linda Dr., Winston-Salem, NC 27106, DDJ 2, No. 8,

p 28 (Sept. 1977)

Announcement of New Product: $25 for 6502 Editor and Assembler Hex
Listing and Manual. Configured for TIM Systems.

Anon.,"1K Corner", OSI Small Systems Journal 1, No. 4, p 3 (Oct. 1977)
Hex address and offset calculator program resides at ODDE to QEE.4.
Anon., "Now You Can Play Star Wars", OSI Small Systems Journal 1, No. y,

pp 11-13, (Oct. 1977)

Star Wars program by Robert L. Coppedge requires 8K Basic, OSI 4440
Video Board and at least 4K of RAM.

Anon., "Conventional Typewriter", 0SI Small Systems Journal 1, No. 4

pp 8-9 (Oet. 1977)

Gary Smith's program for using the 0SI-65V when interfaced to a printer
to be used as a conventional typewriter and also modify the text for
a data file.

Gordon, H.T., "OPLEGL Correction and a 6502 Scanning-Debugger", DDJ 2,

No. 9, pp 42-U44 (Oct. 1977)

Gordon offers a corrected version of his 650X subroutine, OPLEGL, and
gives a new byte-count subroutine, NUMBYT. A new scanning-debugger,
SIMBUG, is submitted.

Swope, J., "6502 Goodies", DDJ 2, No. 9, Issue 19, p 45 (Oct. 1977)
Swope, President of CGRS Microtech, PO Box 368, Southampton, PA 18966,
announces that his company has finished a 6502 computer board for the
S100 bus.

Wozniak, Stephen, "Sweet 16: The 6502 Dream Machine", Byte 2, No. 11,

pp 150-159 (Nov. 1977)

Sweet 16 is a 16 bit "metaprocessor" in software, intended as a 6502
enhancement package, not a stand-alone processor.

Shattuck, Bob and Schmidt, Bill, "Receive CW with a KIM-1", 73 Magazine,

No. 206, pp 100-104 (Nov. 1977)

A program for receiving CW with optional TTY or KIM display.
Johnson, Donald J., "KIM-1 Sidereal/Solar Clock Correction", Interface Age
2, No 12, p 9 (Nov. 1977)
164

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

A correction in the listing given in the August issue of Interface Age

permits 24-hour operation.

KL Power Supplies, PO Box 86, Montgomeryville, PA 18936, Interface Age 2, N

No. 12, p 140 (Nov. 1977)

The Model 512, 4.5 amp. power supply is designed for KIM-1.

Micro Technology Unlimited, Box 4596, Manchester, NH 03108, Interface Age 2,

No. 12, p 140 (Nov. 1977)

The MTU Model K-1000 power supply is designed to power the KIM-1.
Wasson, Philip A., "Trace", KIM-1/6502 User Notes, Issue 7/8, pp 2-3
(Sept & Nov 1977)

With this program and about $2.00 worth of hardware you can see dis-

played on an oscilloscope screen, all of the registers in the 6502

and three consecutive memory locations.

Ohsiek, Charles C., "ID on Audio Cassette for SUPERTAPE", User Notes,

Issue 7/8, p 4 (Sept & Nov 1977)

Program allows writing an ID on the audio cassette tape prefixing the

data SUPERTAPE writes out.

Hawkins, George W., "2-Task Alternating Scheduler Routine", User Notes,

Issue 7/8, p 5 (Sept & Nov 1977)

Program allows two programs to be run together in the KIM-1.

Gordon, Hal, "A Catalog of KIM-1 ROM Bytes", User Notes, Issue 7/8, p 5,

(Sept. & Nov. 1977)

A table of the location of ROM bytes.

Anway, Allen, "Program BRANCH", User Notes, Issue 7/8, p 6 (Sept & Nov 1977)
With this program you can go through your program, find the Branch in-
structions and force the branch to see where you will end up.

Pollock, Jim, "KIM-1 to S-100 Bus Adapter", User Notes, Issue 7/8,

p 7 (Sept. & Nov. 1977)

This adapter allows KIM-1 to be used with S-100 boards such as the $125

8K RAM board of Ithaca Audio.

Heinz, Harvey, "A Simple Music Program for KIM", User Notes, Issue 7/8,

pp 8-9 (Sept. & Nov. 1977)

This is an excellent tutorial program with basic level explanations.
Hapgood, Will, "An A/D Converter", User Notes, Issue 7/8, pp 10-11,
(Sept. & Nov. 1977)

A circuit for making very accurate A/D conversions using a Motorola

dual-slope conversion chip, MC 1405 or 1505.

Butterfield, Jim, "KIM Blackjack", User Notes, Issue 7/8, pp 11-13,

(Sept. & Nov. 1977)

Game uses the KIM display to good advantage in this program.
Strandtoft, B., "KIM-1 Resident Programs and Subroutines", User Notes,
Issue 7/8, p 14 (Sept. & Nov. 1977)

" A list of KIM Monitor routines with brief explanations.

Goenner, Markus P., "TTY Rapid Load", User Notes, Issue 7/8, p 15,

(Sept. & Nov. 1977)

Program starts at 0000 and is fully relocatable.

Parson, Charles H., "Read Temperature Once per Minute", User Notes,

Issue 7/8, pp 16-18, (Sept. & Nov. 1977)

Program for temperature control systems.

Oliver, John and Hall, Williamson, "A KIM-1 Binary Dump and Load Routine",

User Notes, Issue 7/8, pp 19-20, (Sept. & Nov. 1977)

SUPERDUMP/SUPERLOAD allows the use of the KIM-1 Cassette tape interface

to read and write data blocks under program control. 1K bytes are

dumped or loaded in less than 12 seconds.

165

208.

209.

210.

211.

212.

213.

214,

215.

216.

217.

218.

219.

220.

221.

The COMPUTERIST, PO Box 3, S Chelmsford, MA 01824, "MEMORY PLUS for KIM-1",
New Product Announcement, MICRO, No. 2, p 2 (Dec 1977-Jan 1978)
New board for fitting directly beneath the KIM-1 has 8K RAM, 8K EPROM
MOS Technology Versatile Interface Adapter, EPROM programmer, On Board
Voltage Regulators; fully assembled and tested $245; Intel 2716 2K EPROMS
extra $50 each.
Cole, Phyllis, "PET Update", Peoples Computers 6, No. 3, pp 6-7 (Nov-Dec1977)
Several rumors on the PET are answered.
Cole, Phyllis, "Our PET's First Steps", Peoples Computers 6, No. 3, pp 8-10,
(Nov-Dec 1977)
An account of bringing a PET on stream in spite of a few initial bugs
and limited documentation at the time.
Inman, Don, "The Data Handler Users Manual: Part 6", Peoples Computers 6,
No. 3, pp 11-15, 44 (Nov-Dec1977)
The latest contribution in this series covers multiplication and
division programs.
The 6502 Program Exchange, 2920 Moana, Reno, NV 89509, "Software Announce-
ment:, On Line 2, No. 15, p 7 (Nov. 16, 1977)
Recent software includes an extended version of FOCAL, a 4K resident
assembler and an efficient Mini-Editor.
MSS, Inc., "65XX Programs Available", New product announcement, On Line 2,
No. 17, p 2 (Dec. 30, 1977)
Programs available include Disassembler, Loader, Punch, Dump, Memory
Editor, Life Game, File Commands, Assembler/Text Editor, ete., MSS, Inc.,
3201 East Pioneer Parkway, Suite 40, Arlington, Texas 76010.
Rychlewski, Walter J., III, "PET Demonstration Tape", On Line 2, No. 17,
p 7, (Dec. 30, 1977), New Product Announcement. '
Ten BASIC programs demonstrate most of the features of the PET; includes
graphics and real time clock; $10 cassette. 603 Spruce St., Liberty,
MO 64068.
Purser, Robert Elliott, PO Box 446, El Dorado, CA 95623, On Line 2, No. 17,
p 9 (Dec. 30, 1977), New Product Announcement.
PET layout sheet with SASE, free.
Anon, "1K Corner: Cassette Loader and Memory Block Transfer", 0SI Small
Systems Journal 1, No. 5, p 3 (Nov. 1977)
With this program the user may record his own programs via the 430B Super
I/0 Board in a format that is recognizable to the auto-load function in
the 65V Monitor PROM.
Anon, "Two New Software Packages", 0SI Small Systems Journal 1, No. 5,
pp 4-7 (Nov. 1977)
0SI has released two major new Disc software packages, Word Processor
and 9-Digit BASIC which run under 0S-65D version 2.0
Anon, "Two New Video Games", OSI Small Systems Journal 1, No. 5, pp 8-12
(Nov. 1977)
SAM (Surface-to-Air Missile) and BOMBER require 0SI 8K BASIC, OSI u40
Video Board, terminal and Keyboard, and at least 4K of RAM.
Pfeiffer, Erich A., "Seasons Greetings", OSI Small Systems Journal 1, No. 5,
p 12 (Nov. 1977)
Program using PEEK and POKE instruction to present a video message.

Anon, "ASCII Files under 0S-65D", OSI Small Systems Journal 1, No. 5,

pp 13-15 (Nov. 1977)
Auxilliary assistance program for a file system.

Anon, "BASIC in ROMS", New Product Announcement, OSI Small Systems Journal,
No. 15 (Nov. 1977)

. The gAS?C in ROM set No 65AB including 4 ROMS, one EPROM fqr the 650?
system; Another version 65VB for U440 Video system also available. Either

version is $99.
166

222.

223.

224.

225.

226.

227.

228 *

229.

230.

231.

232.

233.

234.

235.
236.

237.
238.

239.

Struve, Bill, "A $19 Music Interface", Byte 2, No. 12, pp 48-69, 170-171
(Dec. 1977)
Some theory and a KIM-1 interface for computer/music addicts.

Gordon, H.T., "The XF and X7 Instructions of the MOS Technology 6502",

Byte Magazine 2, No. 12, p 72 (Dec. 1977)

A look at some of the unlisted instructions available in the 6502.

Forethought Products, PO Box 386, Coburg, OR 97401, Kilobaud, No. 12,

p 15 (Dec. 1977), New Product Announcement.

A new board that makes S-100 (Altair/Imsai) type boards compatible with
KIM. Motherboard has 8 slots, and does not alter the operation of
KIM in any way.

Lancaster, Don, "TVT Hardware Design", Kilobaud, No. 12, pp 30-34 (Dec1977)
Part 1; instruction decoder and scan. Taken from Lancaster's new book,
"The Cheap Video Cookbook" on the TVT-6L.

Blankenship, John, "Expand Your KIM!", Kilobaud, No 12, pp 36-42 (Dec 1977)
Part 2 discusses cabinet, nuts and bolts, in this series.

Byrd, David A., "TVT-6 Display Uncrowding", Popular Electronics 12, No. 6,

p 6 (Dec. 1977)

Gives a technique for correction of a crowding of the display in Lan-
caster's TVT-6 Video Display.

Pittelkau, Clifton W., "The Bionic Clock!", 73 Magazine, No. 208,

pp 102-105 (Jan. 1978)\

Software to add a real time clock to your KIM.

Eaton, John, "Growing with KIM", Kilobaud, No. 13, pp 36-39 (Jan. 1978)
Expansion PC Board provides compatibility with 3-100 bus.

Chamberlin, Hal, "Software Keyboard Interface", Kilobaud, No. 13, pp 98-

105 (Jan. 1978)

Shows how with a minimum of hardware and minimum cost.
Kraul, Douglas R., "Designing Multichannel Analog Interfaces", Byte 2,
No. 2, pp 18-23 (June, 1977)

Hardware and software for an 8-channel analog I/0.
Fylstra, Dan, "Interfacing the IBM Selectric Keyboard Printer-Teaching KIM
to Type", Byte 2, No. 6, pp 46-52, 133-139 (June 1977)

Hardware and software for hooking KIM up to a Selectric.
Jobs, Steven, "Interfacing the Apple Computer", Interface Age 1, No. 11,
pp 65-66 (Oct. 1976)

Interfacing with a printer.

Wozniak, Steve and Baum, Allen, "A 6502 Disassembler from Apple", DDJ 1,

No. 8, pp 22-25 (Sept. 1976)

Displays single or sequential 6502 instructions in mnemonic form.

Grater, Robert, "A Teletype Alternative", Kilobaud, No. 1, pp 114-116 (Jan77)
Convert parallel input TVT to serial operation, for KIM.

knon. "Eprrata to Zieglers 6502 Bug Program", DDJ 1, No. 8, p 33 (Sept. 1976)
Corrections for the listing given earlier in DDJ 1, No. 3.

Parks, Don, "Adding PLOP to your System", Kilobaud, No. 5, p 98 (May 1977)
A 6502 noisemaker for computer games.

Rankin, Roy, "Errata for Rankin's 6502 Floating Point Routines", DDJ 1,

No. 10, p 57 (Nov/Dec, 1976)

Correction of a bug found in his earlier routine published in DDJ 1, No.T.

Lancaster, Don, "Build the TVT-6, Part II", Popular Electronics 12, No. 2
pp 49-55 (August, 1977)

System debugging, software, and how to interface to KIM and other systems.

167

240.

241.

242.

243.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

The Data Mart, 914 East Waverly Drive, Arlington Heights, IL 60004, New
Product Announcement, "Real Time Clock", On Line 2, No. 18, p 11 (Jan 18,1978)

Real Time Clock and Calendar for 6502. Assembled $95.

Optimal Technology, Inc., Blue Wood 127, Earlysville, VA 22936, Hardware
Announcement: PROM Programmer, On Line 2, No. 18, p 11 (Jan 18, 1978)

Programmer for KIM programs both the 2708 and 2716 EPROMS. Runs on all

650X systems.

Trageser, Jim, "TVT-6L Correction", Kilobaud, No. 12, p 123 (Dec. 1977)

Corrections for the June 1977 article by Lancaster.

Meyers, Michael J., "Dedicated Controllers - There is Money to be Made",
Kilobaud, No. 10, pp 84-92 (Oct. 1977)

Hobbyists should take advantages of opportunities to make money with

their KIM or other micro.

Burhams, R.W., "Consider a MITE Printer", Kilobaud, No. 11, pp 38-42,
(Nov. 1977)

At $276, the Mite Expandor is an alternative to the ASR-33 TTY.
Penhollow, Bert G.H.. "Binary to BCD Conversion for Microprocessors",
Electronic Design, p 212 (Oct. 11, 1977)

Packs the units and tens into one byte.

Chamberlain, Hal, "Computer Bits: Computer Music Part II", Popular Elec-
tronics 10, No. 4, pp 88-91 (Oct. 1977)

A description of music techniques which have been implemented on the

KIM-1 DAC board. Also discusses generation of Touch Tone codes.
Chamberlain, Hal, "Computer Bits: Computer Music Part I", Popular Elec-
tronics 10, No. 3, pp 116-119 (Sept. 1977)

Timed loop techniques for computer music programs.

Anon., "T4 Megabyte Disc Review", OSI Small Systems Journal 1, No. 6, pp
pp 2-6 (Dec. 1977)

OSI offers the 74 megabyte CD-T4 disc drive for small computers. Has

four aluminum disc platters about 12" diameter. $6000. 6502 Related.
Anon., "Article Sponsorship Program", OSI Small Systems Journal 1, No. 6,
p 7 (Dec. 1977)

OSI will pay for and provide technical assistance for articles on 0SI

equipment or programs to be published in computer magazines. 6502 Related.
Anon., "1K Corner", OSI Small Systems Journal 1, No. 6, p 7 (Dec 1977)

Short Program for PRIME NUMBER GENERATOR.
Owens, Gerald, "Shoot the Gluck", OSI Small Systems Journal 1, No. 6
pp 8-10 (Dec. 1977)

A game for the 12K Challenger with video.
Anon., "Floppy Disk Users Group", OSI Small Systems Journal 1, No. 6
p 10 (Dec. 1977) .

OSI has formed a users group to redistribute user-contributed software

on diskettes. The first group of 6502 machine code programs (12 listings)

is now available.
Anon., "Terminal/Cassette DOS Input Routine", OSI Small Systems Journal 1,
No. 6 pp 11-12 (Dec. 1977)

Program for reloading or transferring program source code.

Anon., "New Diskette Software packages", OSI Small Systems Journal 1, No. 6,
p 12, (Dec. 1977)

Work Processor WP-1 and WP-1A is a complete word processor. 0S-65D Ver-

sion 2.0 with Nine-digit BASIC. Disk-Test provides a quick functional

check of the 6502 computer system.
Anon., "Bank Accounts", OSI Small Systems Journal 1, No. 6, pp13-15(Dec 1977)

Two practical programs: CHECKBOOK ACCOUNT and SAVINGS ACCOUNT.

168

256. Fylstra, Dan, "SWEETS for KIM", Byte 3, No. 2, pp 62-77 (Feb. 1978)
SWEETS, a Simple Way to Enter, Edit and Test Software, is a small text
editor and assembler which operates on hexadecimal code and which is
designed to fit in the KIM-1's 1K byte small memory while leaving room for
the user's programs.
257. Feagans, John, "A Slightly Sour SWEET 16", Byte 3, No. 2, p 93 (Feb. 1978)
Correction of a slight bug in the Wozniak article in Byte, Nov. 1977.
258. Leasia, John D., "Random Errors", Byte 3, No. 2, p 93 (Feb. 1978)
Correction of an error in the pseudorandom number generator shown
earlier in Byte, Nov. 1977, p 218.
259. Kathryn Atwood Enterprises, P.0. Box 5203, Orange, CA 92667, Byte 3, No. 2,
p 187 (Feb. 1978), New Product Announcement
4K RAM board, KIM interface and Mother Board.
260. Electronics Warehouse Inc., 1603 Aviation Blvd., Redondo Beach CA 90278,
New Product Announcement.
Apple II I/0 Board Kit plugs into slot of Apple II Mother Board.
261. Pittelkau, Clifton W., "KIM-1 Can Do It!", 73 Magazine, No. 209, pp 68-71
(Feb. 1978)
Adapting a KIM-1 to function as a versatile RTTY terminal at nominal cost.
262. O'Reilly, Francis J., "Looking for a Micro?", 73 Magazine, No. 209,
pp 76-77, (Feb. 1978)
Pro's and Con's of the KIM-1 as a micro.
263. Bridge, Theodore E., "A KIM-1 Disassembler", DDJ 2, No. 10, Issue 20,
pp 12-13 (Nov.-Dec. 1977)
A modification of Wozniak's earlier 6502 disassembler.
264, Eaton, John, "MATHPAC: A Kimath Supplement", DDJ 2, No. 10, Issue 20,
pp 15-21 (Nov.-Dec. 1977)
MATHPAC is designed to increase the power of a 6502 system. It takes
the power of KIMATH and gives it to the user. The user's I/0 ASCII
device turns the system into a scientific calculator.
265. Osborne, Adam, "War of the Processors", SCCS Interface 1, No. 6, pp 14-17,
(May, 1976)
Traces evolution of major microprocessors, including 6502 and compares
their computing power.
266. Anon., "KIM-1, A complete Microcomputer System for $245", SCCS Interface 1,
No. 6, pp 44-U45 (May, 1976)
A new products announcement for KIM-1.
267. Teener, Mike, "Bits and Byters", SCCS Interface 1, No. 6, p 58 (May, 1976)
Historical note recaps Motorola's suit against MOS Technology over
the 6502's predecessor.
268. MOS Technology, Inc., 950 Rittenhouse Road, Norristown, PA 19401, KIM
Application Note #107702, "S-100 to KIM-4 Bus Adapter",
Mechanical details of a simple adapter that will plug into the KIM-4
Mother Board and which will accept certain compatible S-100 boards such
as the Kent-Moore No. 60083 video display board or the Kent-Moore
No. 60082 4K static RAM board.
269. MOS Technology, Inc., 950 Rittenhouse Road, Norristown, PA 19401, KIM
Application Note #111477, "Using KIM as a Dedicated Controller"
The KIM itself can be used as a very low cost controller with the addition
of a PROM, a power-on-reset modification, and some additional circuitry
to transfer control to the added PROM upon power-up.
270. MOS Technology, Inc., 950 Rittenhouse Road, Norristown PA 19401, KIM
Application Note #117701, "Digital-Analog and Analog-Digital Conversion
Using the KIM-1"
This is essentially the same as Reference #172 on DedJong's article in
MICRO No. 2. Uses a 1408 D/A converter with KIM together with hardware
and software for D-A and A-D as well as software to store the A/D con-
verter output and recall converted data, emulating a storage oscilloscope.

169

271. MOS Technology, Inc., 950 Rittenhouse Road, Norristown, PA 19401, KIM
Application Note #771121, "Software Routines for TVT"
Machine Language program to use with external keyboard.
272. Optimal Technology, Inc., Blue Wood 127, Earlysville,VA 22936, On Line 3,
No. 1, p 1 (Feb. 8, 1978). New Product Announcement.
2708/16 EPROM PROGRAMMER for KIM-1. Requires 1-1/2 I/0 Ports.
Assembled and tested $59.95. Kit $49.95.

273. Purser, POB 466, El Dorado, CA 95623, On Line 3, No.1, p 3 (Feb. 8, 1978)
Free Guidelines for writing programs for the TRS-80 and PET and then
selling them to Radio Shack and Commodore. Send SASE.

274. Personal Software, P.0. Box 136-03, Cambridge MA 02138

On-Line 3 No 1 pg 4 (Feb. 8, 1987) New Product Announcement.
Four full length games on cassette for PET or TRS-80.
POKER, ONE QUEEN, KINGDOM, MATADOR; $9.95 for all four. STIMULATING
SIMULATIONS by Dr. C.W. Engel, and additional entertainment personal
finance/investment, and other systems programs including a 6502
Assembler in BASIC.

275. 6502 Program Exchange, 2920 Moana, Reno, NV 89509, Kilobaud, p 7 (Mar. 1978)
Announcement of new 6502 Software including an extended version of
FOCAL called FCL 65E (6.5K). Also a Mini-Manual to get you started
on TIM or KIM systems.

276. Eaton, John, "Corrections", Kilobaud, No. 15, p 12 (March, 1978)

Note on the availability of drilled PC boards for Eatons' KIM expansion
article in January 1978 Kilobaud.

277. Scogin, Tom, "AppleSOFT Benchmarks: Fast!", Kilobaud, No. 15, p 12 (Mar 78)
Gives times for seven benchmark programs using Apple-II Integer and
Apple~II AppleSOFT versions of BASIC.

278. Blankenship, John, "Expand Your KIM!", Part 4., Kilobaud, No. 15,

pp 84-88 (March, 1978)
Part four of this series uses a $10 circuit board with a SWTP keyboard
and a PR-40 printer as a miniature teletype.

279. Zaks, Rodney, "Micro History", Personal Computing 2, No. 2, pp 31-35,

(Feb., 1978)
History of microprocessors. Has a very small paragraph on the MOS
Technology 650X family.

280. DeJong, Marvin L., "Employing the KIM-1 Microcomputer as a Timer and Data

Logging Module", MICRO No. 3, pp 3-7 (Feb. - Mar., 1978)
System for logging the time of up to 75 events to the nearest 100 micro-
seconds or to other time increments, and later displaying these times on
the KIM-1 display.

281. Carpenter, C.R., "Machine Language used in 'Ludwig von Apple II'", MICRO,

No. 3, p 8 (Feb. - Mar. 1978)
Notes on an assembled version of the machine language used by
Schwartz, MICRO, No. 2, p 19 in his music program.
282. Carpenter, C.R., "Printing with the Apple II", MICRO, No. 3, pp13-16,
(Feb-Mar, 1978)
Hard-copy output from the Apple II using a TELPAR thermal printer, a simple
-one-transistor adapter circuit and a machine language printing routine.
283. Foreman, Evan H., P.0. Drawer F, Mobile, AL 36601, "The PET Shop", MICRO,
No. 3, p 10 (Feb. - Mar. 1978)
Foreman offers to trade five game programs for the PET on a one-for-one
basis.
284, Floto, Charles, "The PET VET Tackles Data Files", MICRO, No. 3, pp 9-10,
(Feb. - Mar. 1978)
Discusses problems some have encountered in recording data files on tape
and reading the information back in. Floto, in his capacity as the PET
VET, offers his services on problems met with specific applications of PET.
170

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

Tater, Gary L., "Hold That Data", MICRO, No. 3, p 11 (Feb. - Mar. 1978)
Program to stop data on the video terminal by pressing a key. Handy
for examining data during a disassembly or a long directory program.

Tripp, Robert M., "Typesetting on a 6502 System", MICRO, No. 3, pp 19-24,

(Feb.-Mar. 1978)

A program for "justification" of copy to be printed.

Tater, Gary L., "TIM Meets the S100 Bus", MICRO, No. 3, pp 25-26

(Feb.-Mar. 1978)

A bare-bones TIM S100 board to use with a terminal such as the CT-64
from SWTP.

Holt, Rod, "The Apple II Power Supply Revisited", MICRO, No. 3, p 28

(Feb.-Mar. 1978)

It is pointed out that the Apple II power supply, although small in
physical size, is a switching type which runs cool and is sufficient
to run an Apple II with several extra cards plugged into the system.

Anon, "Microbes-Tiny Bugs in Previous Micros", MICRO, No. 3, p 28 (Feb-Mar)
Corrections for Ultratape, MICRO No. 1, p 13; Making Music with the KIM,
MICRO No. 2, p 7; and Important Addresses of KIM-1, MICRO No. 2, p 30.

Husbands, Charles R., "A Simple Frequency Counter Using the KIM-1", MICRO

No. 3, pp 29-32 (Feb.-Mar. 1978)

The use of KIM-1 as a counter operating over the range of 500 Hz to
above 15KHz.

Dial, William, "6502 Bibliography-Part II", MICRO, No. 3, pp 33-36 (Feb-Mar)
The second segment of this bibliography covers references 129 to 179 of
the rapidly growing 6502 literature.

DeJong, Marvin L., "Lighting the KIM-1 Display", MICRO, No. 3, Back Cover.
Information on how to use the KIM-1 seven-segment display.

Anon, "Software Sources: 6502 Executive for KIM-1", Popular Electronics 13
No. 3, p 98 (March 1978)

Adaptable to any 6502 system, this Executive is designed for KIM-1 with 4K
or more and TTY or TVT interface. $25 for listing. From Innovative
Software, Inc., 3007 Casa Bonita Dr., Bonita, CA 92002.

Pollock, James W., "Microprocessors: A Microprocessor controlled CW Keyboard"

Ham Radio 11, No. 1, pp 81-87 (Jan. 1978)

A preprogrammed microcomputer is designed to function as a Morse Code
keyboard. Uses a MOS Technology MCS6504 which is a software compatible
cousin to the 6502.

Connecticut Microcomputer, 150 Pocono Rd., Brookfield, CT 06804, New
Product Announcement, "RS-232 Adapter for KIM", DDJ 3, No. 21, p 3 (Jan '78)
The ADApter converts KIM's 20 ma. current loop port to an RS-232 port

without affecting the baud rate. $24.50

Schick, Paul, "Unsupported OPCODE Pitfalls", DDJ 3, No. 21, p 3 (Jan 1978)
Comments on the earlier article on 650X Opcodes: DDJ, Aug 1977.

Moser, Carl, "Memory Test for 6502", DDJ 3, No. 21, pp 4-5, (Jan 1978)

A program which tests RAM memory in a 6502 based system. 1I/0 is arranged
for 6502 TIM based system but can be easily changed.

Smith, Stephen P., "Challenging Challenger's ROMS", DDJ 3, No. 21, p 6 (Jan)
Using the PREK function of the 0SI Microsoft BASIC, a disassembler to
convert stored bytes in the PROMs or ROMs has been devised.

Computers One, PO Box 7148, Honolulu, HI 96821, New Product Announcement,

On Line 3, No. 2, p 4 (March 1, 1978)

Pre-recorded programs for PET. "HUSTLERS" includes a number of business
oriented programs for checking accounts, rent accounts, legal dairy and
trust accounts.

Lufkin, C.R., 315 Dominion Dr., Newport News, VA 23602, On-Line 3, No 2,

p 5 (March 1, 1978)

FITABP is Federal Income Tax Program for PET owners with 8K. Prints
out form 1040 Schedule A and B.

171

301.

302.

303.

308.

309.

310.

311.

312.

313.

314,

315.

316.

6502 BIBLIOGGRAPHY
PART IV

William Dial
438 Roslyn Avenue
Akron, OH 44320

Michels, Richard E. "How to Buy an Apartment Building", Interface Age 3,
No. 1, pp 94-99 (Jan 1978)
A 6502 FOCAL based system for handling the many factors involved via
a computer decision making program.

Woods, Larry "How Are You Feeling Today?" Kilobaud No.14,pp24-30(Feb 1978)
Biorhythms with your KIM are displayed on the KIM readout.

Craig, John "Editor's Remarks" Kilobaud No. 14 p 22 (Feb 1978)
In a discussion of Microsoft Level II BASIC it is pointed out that Micro-
soft BASIC is being used on Altair 6800 and 8080, TRS-80, and 6502 based
systems 0SI, PET, KIM and Apple (floating-point version).

Bishop, Robert J. "Star Wars" Kilobaud No. 14 pp52-56 (Feb. 1978)
An Apple-II graphics game based on the 6502.

Blankenship, John "Expand Your KIM! Part 3" Kilobaud pp68-71 (Feb. 1978)
This installment covers bus control board and memory.

Burhans, R.W. "How Much Memory for a KIM?" Kilobaud p 118 (Feb. 1978)
Decoding the KIM for 28K.

Pearce, Craig A., p.6 suggestions for running graphics on the PET.

Julin, George, pp6-7, letter on PET graphics.

Stuck, H.L. p 7, more on the PET.
Above three are letters in Peoples Computers 6, No. 4, (Jan-Feb. 1978)

Wells, Edna H. "Program Abstract" Peoples Computers p 7 (Jan-Feb. 1978)

Program for the Commodore PET with 8K BASIC, entitled Graphics-to ASCII
Utility-~-ASCIIGRAPH.

Cole, Phyllis "SPOT-The Society of PET Owners and Trainers", Peoples
Computers No. 4, pp 16-19 (Jan-Feb 1978)
Notes for the Users of the PET.
Inman, Don "The Data Handler User's Manual: Conclusion" Peoples Computers
No. 4 pp24-31 (Jan-Feb 1978)
The final installment of this series covers simple and inexpensive
output devices.
Inman, Don "The First Book of KIM, Peoples Computers No. 4 p34 (Jan-Feb1978)
A good review of this excellent book.
Braun, Ludwig "Magic for Educators--Microcomputers" Personal Computing, 2
No. 1, pp 30-40 (Jan. 1978)
Discussion of micros includes the 6502 based Apple II and the PET.
Helmers, Carl "An Apple to Byte", BYTE 3, No. 3, p. 18-46 (Mar. 1978)
A user's reactions to the Apple II, with an example of a simple
"color sketchboard" application.
Fylstra, Dan "User's Report: The PET 2001", BYTE,pp114-127 (Mar. 1978)
A fairly comprehensive report on the PET.
Brader, David, "KOMPUUTAR Updates", BYTE pp131-132 (Mar. 1978)
In a letter Brader responds to some inquiries on his KOMPUUTAR system
based on 6502 which was published in BYTE, Nov. 1977.
Jennings, Peter R., "Microchess 1.5 versus Dark Horse", BYTE 3, No. 3
pp 166-167 (March 1978)
Microchess 1.5 is Jenning's new extended version of the original Micro-
chess. It occupies 2.5K and runs on KIM-1 with expanded memory. It is
still being developed but in a test game with Dark Horse, a 24K program
written in Fortran IV, the new version did very well indeed.

172

317. Rindsberg, Don "Here's HUEY!...super calculator for the 6502", Kilobaud,
No. 12, pp 94-99 (December 1977)
The calculating power of FORTRAN with trig functions, natural and
common logs, exponential functions, all in 2.5K.
318. Finkel, LeRoy "Every Home (School) Should Have a PET"
Calculators/Computers, page 83 (October 1977)
319. Anon, "12-Test Benchmark Study Results Show How Microprocessors Stack Up
(8080, 6800, 6502)", EDN, page 19 (November 20, 1977)
320. Gordon, H.T. ™"Decoding Efficiency and Speed", DDJ 3, Issue 2, No. 22,
pp 5-7 (Feb., 1978)
Pros and cons of table look-up in 650X microprocessors.

321. Green, Wayne "Publishers Remarks", Kilobaud, No. 16, p 4 (April 1978)

In a column on microprocessors, Green indicates that MOS Technology has
a SuperKIM being readied and also that books on expanding the KIM system
are coming out.

322. Carpenter, Chuck "Letters: KIM-1, ACT-1; The Scene", Kilobaud p 18 (Apr 1978)
A generally favorable report of one user's experience in interfacing and
using ACT-1 with the KIM-1.

323. Braun, Ludwig, "PET Problems", Personal Computing No. 3, pp 5-6 (March 1978)
Some observations by a PET owner.

324, Lasher, Dana "The Exterminator--for Buggy KIMs" 73 Magazine (April, 1978)
Hardware and Software for a debugging facility.

325. Eaton, John "Now Anyone Can Afford a Keyboard" 73 Magazine (April, 1978)
A melding of a surplus keyboard, KIM and software.

326. Foster, Caxton €. "Programming a Microcomputer: 6502" Addison-Wesley

Publishing Company, Reading, Mass. 1978
Caxton C. Foster of the University of Massachusetts, Amherst, has put
together a very helpful book on programming the 6502 using KIM-1 as a
lab tool.

327. Barden, William, Jr. "Computer Corner - 6502" Radio-Electronics (May 1978)
An in-depth look at the widely used 6502 microprocessor.

328. Wozniak, Steve "Renumbering and Appending Basic Programs on the Apple-II

Computer" DDJ Issue 3 (March 1978)
Comments and techniques for joining two BASIC programs into a single
larger one.

329. Eaton, John "A KIM Binary Calculator" DDJ Issue 3 (March 1978)

An easier way to solve binary math programs.

330. Wells, Ralph "PET's First Report Card" Kilobaud pp 22-30 (May 1978)
An objective evaluation of PET serial No. 171.

331. Blankenship, John "Expand you KIM" Kilobaud, pp 60-63 (May 1978)
Part 5:; A/D interfacing for joysticks. Four channels.

332. Holland, Hugh C. "KIM Notes" BYTE 3 No. 4, p 163 (April 1978)
Correction for Hal Chamberlin's Four Part Harmony Program published
in September 1977 BYTE.

333. Anon., "Byte's Bits", BYTE 3, No. 4, p 166 (April 1978)

Notes on picking the right color television for an Apple.
334, KIM-1 User Notes, Issue 9/10, (January - March 1978)

Rehnke, Eric "Have you been on the Bus" page 1.

Kushnier, Ron "Space War Phaser Sound" page 2.

Butterfield, Jim "Skeet Shoot" page 2.

Edwards, Lew "KIM D-BUG" page 3.

Flacco, Roy "Graphics Interface" page 4.

Wood, James "RPN Calculator Interface to KIM" page 6.

Bennett, Timothy "KUN Index by Subject, Issues 1 to 6" page 12.

Niessen, Ron "On Verifying Programs in RAM" page 12.

Pottinger, Hardy "Greeting Card Generator" page 13.

173

335.

336.

337.

338.

339.

3%40.

341.

342,

343.

344.

345.

346.

347,

6502 BIBLIOGRAPHY
PART V¥

William Dial
438 Roslyn Avenue
Akron, CH 44320

Smith, Stephen P. "6502 Disassembler Fix", DDJ 3, No. 23, Issue 3, Pg 3 (March 1978)
ROR and ROL instructions were omitted in the previously published disassembler -
DDJ 3, Issue 1. This offers a simple fix.

KIM-1 User Notes, Issue 9/10, (January - March 1978)
Butterfield, Jim "Dicey" page 17. A program to roll up to six dice.
Butterfield, Jim "Teaser" page 17. Jumbo version of Bob Albrecht's "Shooting Stars".
Lewart, Cass "Correction for Lancaster's TVI" page 20.
Oliver, John P. "Comments and Corrections for SUPERDUMP/LOAD" pg 21.

Quosig, Karl and Susan "Input/Output", Personal Computing 2, No. 4, pg 8 (April 1978).
Comments on PET problems.

Bishop, Robert J. "Rocket Pilot", Kilobaud No. 13, pg 90 (Jan. 1978)
And interactive game for the Apple II.

0SI-Small Systems Journal 2, No. 1 (January-February 1978)

Anon. "What's a USR Function". Via the USR function, one can have a 6502 BASIC program
which works in conjunction with one or several machine code programs.

Anon. "Quickie". A 6502 BASIC program for converting decimal to binary numbers.

Glasser, Daniel "Chessboard". Program in 6502 BASIC for a computer chessboard which
moves pieces and displays the new board. Not a chess program.

Anon. "DOS CNTRL". A BASIC program to perform transfers to or from 0SI's new hard
disk drive.

Anon. "Track Zero Writer". ' A Machine language program to modify track zero.

Anon. "9 Digit BASIC". A concise method for modifying 0SI 9 Digit BASIC for an
end-user 9 Digit BASIC.

Anon. "0S-65U Performs". A description of a new system said to be a new standard for
microcomputer operating systems.

Anon. "500/510 Breakpoint Utilities". A breakpoint program.

Anon. "510 Tracer". A tracer program which prints a disassemble of the next instruction
to be executed.

Bishop, Robert J. "Fiendish New QUBIC Program", 73 Magazine, No. 209, pg 78 (Feb 1978).
An attempt at producing an improved version of the original Qubic program.

Rosner, Richard "Daddy, Is It The PET?", ROM 1, No. 9, pg 26 (Mar/April 1978)
Description of many features and operations of the PET, including many "how to"
instructions.

Bishop, Robert J. "LOGAN - A Logic Circuit Analysis Program", Interface Age 2, No. 6,
pg 128 (May 1977). An Apple I BASIC program for analyzing networks of logic gates.

Bishop, Robert J. "“Apple Star Trek", Interface Age 2, No. 6, pg 132 (May 1977).
Star Trek written in Apple I BASIC.

Chamberlin, Hal "Microcomputer Input/Output", Popular Electronics 13, No. 5, pg 86 (May 1978).
Comments on the KIM's memory-mapped I1/0 system.

Peoples Computers §, No. 6 (May/June 1978)

Johnson, Ralph "Letters". The University of California at San Diego plans a Pascal
system for the 6502.

Cole, Phyllis "Apple II". A review of this 6502 based micro.

Voros, Todd L. "Sketchcode". A technique to minimize errors and simplify the process
of debugging. Listed in 6502 assembly code.

Offen, Dave "Kaleidoscope". A continuously running graphics program for the PET.

Hofheintz, M. C. "Tiny GRAPHICS". A short graphics program for the PET.

Gordon, H. T. "Editha", DDJ 3, Issue 5, No. 25, pg 34 (May 1978). A revision of the
Fylstra KIM-1 Editor program "SWEETS" published in BYTE.

Tullock, Michael "PET Files", Personal Computing 2, No. 5, pg 20 (May 1978). Things your
user's manual never told you about PET. How to use files.

174

348.

349.

350.

351,

352.

353.

354.

355.

356.

357.

358.
359.

O'Reilly, Francis J. "Instruction Search", Byte 3, No. 5, pg 153 (May 1978). Discussion
of 6502 op code 27 and the search for other as yet undefined instructions.

Carpenter, Charles R. "Tiny BASIC Shortcuts", Kilobaud, Issue 18, pg 42 (June 1978).
Suggests methods to expand the capabilities of Tom Pittman's Tiny BASIC for the 6502.

O*Haver, T. C. "More Music for the 6502", Byte 3, No. 6, pg 140 (June 1978). A music
composition and generation program.

O'Haver, T. C. "Audio Processing with a Microcomputer", Byte 3, No. 6, pg 166 (June 1978).
Adding a virtual tape loop. Uses a 6502 processor.

Eaton, John "Low Cost Keyboard - II", 73 Magazine, No 213, pg 100 (June 1978). Part II
of an article on the low-cost keyboard. Software is designed around the 6502.

Swindle, David "A Sensible Expansion: Atwood Memory for your KIM", Kilobaud, Issue 19,
pg 60 (July 1978). Description of a low cost method to add memory to KIM.

MICRO, Issue 4 (April/May 1978)

Carpenter, C. R. "Variables Chart". Chart to layout and keep track of string and
numerical variables for Apple II Applesoft BASIC.

Floto, Charles "The PET Vet Examines Some BASIC Idiosyncrasies". Includes suggestions
and modifications for a Mailing List Program by Richard Rosner.

DeJong, Marvin L. "A Complete Morse Code Send/Receive Program for the KIM-1". Converts
ASCII from a keyboard to a Morse code digital signal and also converts a Morse code
digital signal to an ASCII code for display on a video system.

0'Brien "PET Software from Commodore". New selected Application notes from Commodore.

Floto, Charles "Early PET-Compatible Products". A review of several new accessories
for the PET.

Rowe, Mike "The MICRO Software Catalog". A continuing catalog of software available
for 6502 based systems.

Carpenter, C. R. "Apple II Printing Update". Updated information and modifications of
the system described previously in MICRO No. 3.

Chamberlin, Hal “Standard 6502 Assembly Syntax?". A plea for standardization.

Rowe, Mike "A Worm in the Apple"™. Discussion of some problems encountered in inter—
facing the Apple to other devices such as the 6820 PIA.

Jenkins, Gerald C. "A KIM Beeper". A short blast or two of audio for load errors,
end-of-1line, etec.

Auricchio, Rick "An Apple II Programmer's Guide". Some of the previously undisclosed
details of the Apple Monitor.

0'Connor, Clint "Book Review: Programming a Microcomputer: 6502", Kilobaud, Issue 20,
pg 8 (August 1978). A very favorable review of Caxton C. Foster's book.

Grossman, Rick "KIM Plus Chess Equals Microchess", Kilobaud, Issue 20, pg 74 (August 1978).

A challenging game of Chess can be played in KIM's 1K of memroy using MicroChess by
Peter Jennings.

Palenik, Les "FINANC - A Home/Small-Business Financial Package", Kilobaud, Issue 20, pg 84
(August 1978). Programs include Calculations on investments, Depreciation, Loans, etc.

Braun, Ludwig "Commodore PET", Creative Computing 4, No. U, pg 24 (July/August 1978)

Creative Computing 4, No. U (July/August 1978).
Braun, Ludwig "Commodore Pet". an equipment profile which stresses the value of the
PET as a teaching machine.

North, Steve "Apple II Computer", An equipment profile points out that the Apple is
not a machine for the classroom or for the S-100 hardware buff but is one of the
most versatile micros on the market.

Dawkins, Gary D. "High-Resolution Graphics for the Apple II". Allows user to draw a
shape in high-resolution graphics mode from the keyboard.

Ahl, David H. "Atari Video Computer System". An equipment profile of a 6505 based
programmable game system.

175

360.

MICRO, Issue 5 (June/July 1978)

Covitz, Frank H. "Life for your PET". LIFE written in machine language for the PET.

Rockwell International ""Rockwell's New R6500/1". The 6500/1 is a single chip NMOS
microcomputer, 1 or 2 MHz, fully compatible with the 6500 family.

De Jong, Marvin L. "6502 Interfacing for Beginners: Address Decoding I". The first
installment in a continuing series.

Rowe, Mike "Half a Worm in the Apple". More on the controversy on interfacing the
Apple to PIA's. See also EDN May 20, 1978.

Sander-Cederlof, Bob "A Slow List for Apple BASIC". Program slows down the list
process so it can be more easily reviewed.

Rowe, Mike "The Micro Software Catalog: II". The second part of this continuing
series.

Synertek Inc. "Synertek's VIM~1". A good description of the many features of the
6502 based VIM-1. Similar to and compatible with KIM-1 with some new features.

Suitor, Richard F. "Applayer Music Interpreter". A music interpreter written in
6502 assembly language for the Apple, but can be used on other 6502 systems.

Dial, William "6502 Bibliography - Part IV". The fourth part of the continuing
bibliography of the 6502 literature (of which this is the fifth part!).

Williams, J. C. "A Block Hex Dump and Character Map Utility Prégram for the KIM-1".
A fully relocatable utility program which will dump a specified block of memory
from a KIM to a terminal in several formats.

Rockwell International "Rockwell's AIM is Pretty Good". Rockwell's AIM 65 is an
assembled versatile microcomputer system on one board plus keyboard. It has a
20-character display and a 20-character thermal printer, 4K ROM monitor, 1K RAM
expandable on board to 4K. Application and Expansion connectors are fully KIM-1
compatible. TTY and Audio Cassette, DEBUG/MONITOR/ ROM or EPROM on board up to
16K. 8K BASIC will be available in ROM.

Carpenter, Chuck "Apple II Accessories and Software". Items reviewed include a
renumber and append program, a serial interface board, a MODEM, Applesoft 11,
and the "APPLE II BASIC Programming Manual.

McCann, Michael J. "A BASIC 6502 Disassembler for Apple and PET". Accepts machine
language -object code- and produces a symbolic representation that resembles an
assembly listing. Originally written in Commodore BASIC, it will work with
Applesoft BASIC as well.

176

STA
ADC
SBC
AND
EOR
ORA
CMP
ASL
LSR
ROL
ROR
DEC
INC
BIT

LDX

CPX
DEX

LDY

CpY
DEY

BPL
CLC
JMP
IAX
PHA

MOST SIGNIFICANT DIGIT
MEOOWEP OOV EWN - O

LDATY
STAIY
ADCIY
SBCIY
ANDIY
EORIY
ORAIY
CMPIY

70 BCC
78
60 RTI

B1
91
71
F1
31
51
11
D1

98 ISX

LDAIM
8D STAZ 85 STAIX 81
6D ADCIM 69 ADCZ 65 ADCIX 61
ED SBCIM E9 SBCZ E5 SBCIX E1
2D ANDIM 29 ANDZ 25 ANDIX 21
UD EORIM 49 EORZ 45 EORIX 41
0D ORAIM 09 ORAZ 05 ORAIX 01
CD CMPIM C9 CMPZ C5 CMPIX C1
OE ASLA OA ASLZ 06
4F LSRA MUA LSRZ 46
2E ROLA 2A ROLZ 26
6E ‘RORA 6A RORZ 66
CE DECZ Cb6
EE INCZ Eb
2C BITZ 24
AE LDXIM A2 LDXZ A6
EC CPXIM EQ CPXZ EA
CA INX E8
AC LDYIM AO LDYZ A4
EC CPYIM CO CPYZ C4
88 INY c8
10 BMI 30 BVC 50 BVS
18 SEC 38 CLI 58 SEI
4C JMPI 6C JSR 20 RTS
AA TIXA 8A TAY A8 TyA
48 PLA 68 PHP 08 PLP
I = Indirect
IM = Immediate
X = absolute indexed by X
IX = Indexed indirect by X
ZX = Zero page indexed by X
No

BRK
BPL
JSR
BMI
RTI
BVC
RTS
BVS

BCC
LDYIM
BCS
CPYIM
BNE
CPXIM
BEQ

LDAZX
STAZX
ADCZX
SBCZX
ANDZX
EORZX
ORAZX
CMPZX
ASLZX
LSRZX
ROLZX
RORZX
DECZX
INCZX

LDXZY

LDYZX

90 BCS

CLV
40 BRK
BA TXS
28 (Flags Restored)

A
YA
Y

IY
ZY

B5
95
75
F5
35
55
15
D5
16
56
36
76
D6
Fb

B6

B4

BO
B8
00
9A

LDAX
STAX
ADCX
SBCX
ANDX
EORX
ORAX
CMPX
ASLX
LSRX
ROLX
RORX
DECX
INCX

LDYX

BD
9D
7D
FD
3D
5D
1D
bD
18
5E
3E
TE
DE
FE

BC

BNE
CLD D8 SED
NOP EA

LDAY
STAY

ADCY °

SBCY
ANDY
EORY
ORAY
CMPY

LDXY

o
(Vo]
=

~NzZzzZzZ22I2z2EmEsE=

BE

=2

DO BEQ

Accumulator
Zero page
absolute indexed by Y
Indirect indexed by Y
Zero page indexed by Y

LEAST SIGNIFICANT DIGIT

1 2 Y 5 6 8
ORAIX ORAZ ASLZ PHP
ORAIY ORAZX ASLZX CLC
ANDIX BITZ ANDZ ROLZ PLP
ANDIY ANDZX ROLZX SEC
EORIX EORZ LSRZ PHA
EORIY EORZX LSRZX CLI
ADCIX ADCZ RORZ PLA
ADCIY ADCZX RORZX SEI
STAIX STYZ STAZ STXZ DEY
STAIY STYZX STAZX STXZY TYA
LDAIX LDXIM LDYZ LDAZ LDXZ TAY
LDAIY LDYZX LDAZX LDXZY CLV
CMPIX CPYZ CMPZ DECZ INY
CMPIY CMPZX DECZX CLD
SBCIX CPXZ SBCZ INCZ INX
SBCIY SBCZX INCZX SED

_WU@E}@

176A

9

A

ORAIM ASLA
ORAY

ANDIM

ANDY

EORIM

EORY

ADCIM

ADCY

STAY
LDAIM
LDAY
CMPIM

ROLA

LSRA

RORA

TXA

CMPY

SBCIM

SBCY

XS
TAX
TSX
DEX

NOP

BIT
JMP
JMPI
STY
LDY
LDYX
CPY

CPX

ORA
ORAX
AND
ANDX
EOR
EORX
ADC
ADCX
STA
STAX
LDA
LDAX
CMP
CMPX
SBC
SBCX

N NN DN DN N NNNNDNNNN N
OO0 ao
< <

NN
(@]

extension for Relative, Implied or Absolute addressing modes.

ASL
ASLX
ROL
ROLX
LSR
LSRX
ROR
RORX
STX

LDX
LDXY
DEC
DECX
INC
INCX

HEX

"E!EIJUOUJb\DQ)\]O\U'IJ:wN

©O O O O 0o 0o o o

B I ST S S Gy

-_

BITS

- e O O O O
Rl = = R = B = I o T =
- O s O

e el e OO O O s

- - OO

—-\O-—SO-—JO—-\O—lO—-‘O

HEXIDECIMAL CONVERSION

y
y
20
36
52

68

000

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL.
BS
HT
LF
VT
FF
CR
SO
SI

5

1
001

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

6 7
6 7
22 23
38 39
54 55

ASCII CONVERSION TABLE

2
010

SPACE

8 9
8 9
24 25
o
56 57

3 i
011 100
0 @
1 A
2 B
3 C
y D
5 E
6 F
7 G
8 H
9 I

J
5 K
< L
= M
> N
? 0

A B C

10
26
42
58

11
27
43
59
75
91

12
28
Ly
60
76
92
108
124
140
156
172
188
204
220
236

107
123
139
155
171
187
203
219
235

5
101

> = S TN K M O S S WO Y

TABLE

D
13
29

45
61
77
93
109
125
141
157
173
189
205
221
237

6

110

’

S5m0 0 0 o o

o B B O~ ® w

E
14
30
46
62
78
94

110
126
142
158
174
190
206
222
238

15
31
47
63
79
95
111
127
143
159
175
191
207
223
239

7
111

el . T T - R ¢ T TN o W o |

3

DEL

00

0
256
512
768
1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3584
3840

000

0
4096
8192
12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440

