
55075
USER o>
MANUAL

——LDSEPA CARR

6502 User's Manual

Joseph J. Carr

6502 User's Manual

A Reston Computer Group Book
Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia

Library of Congress Cataloging in Publication Data

Carr, Joseph J.
6502 user’s manual.

“A Reston Computer Group book.”
1. 6502 (Microprocessor) I. Title. II. Title: Six

thousand five hundred two user’s manual.
QA76.8.S63C37 1984 001.64 83-26887
ISBN 0-8359-7004-6
ISBN 0-8359-7002-7 (pbk.)

IBM® is a registered trademark of International Business Machines Corp.
Apple® is a registered trademark of Apple Computer, Inc.
AIM@ is a registered trademark of Data Processing Consulting, Inc., Boulder, Colorado
Touch-Tone™ is a trademark of American Telephone & Telegraph
DEC@® is a registered trademark of Digital Equipment Corporation
PDP-11™ is a trademark of Digital Equipment Corporation
Z-80™ is a trademark of Zilog, Corp.
TRS-80® is a registered trademark of Radio Shack, a division of the Tandy Corporation,

Fort Worth, Texas

© 1984 by Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book may be
reproduced in any way, or by any means, without
permission in writing from the publisher.

1098 765 43 2 1

PRINTED IN THE UNITED STATES OF AMERICA

Contents

Introduction ix

1. Introduction to Microprocessors and Microcomputers 1

Microprocessors 2
Microcomputers 2
Single-chip Computers 2
Single-board Computers 3
Minicomputers 3
Mainframe Computers 4
Advantages of Microcomputers 4
Microcomputer Interfacing 5
Microcomputers in Instrument and System Design 6
6502-based Machines
Synertek SYM-1 8
Ohio Scientific Superboard II 9
Apple II and Apple III 10
Microprocessor Fundamentals 10

Mythical Analytic Device (MAD) 11
Central Processing Unit (CPU) 14
Operation of MAD 16

2. 6502 Architecture 19

6502 Internal Structure 21
Memory Allocation Restraints 26

6502 Pinouts 29

. Timing and Control Signals 35

Data and Address Buses 35
R/W line 37
Data Bus Enable (DBE) 37
Ready (RDY) 37
Interrupt Requests (IRQ and NMI) 38
Reset (RES) 39
Synchronization (SYNC) 39
Set Overflow (SO) 39
6502 Clock Timing 39
Read/Write Cycle Timing 42

6502 Addressing Modes 45

Accumulator Mode Addressing 45
Relative Addressing Mode 45
Immediate Addressing Mode 47
Absolute Addressing Mode 49
Implied Addressing 50
Zero Page Addressing Mode 51
Indirect Absolute Addressing Mode 52
Absolute Indexed X and Y Addressing Mode 55
Zero Page Indexed (X and Y) Addressing Mode 60
Indirect Indexed Addressing Mode 60
Indexed Indirect Addressing Mode 62

. 6502 Status Flags 63

Flags 63
Manipulating PSR 66

General Instruction Set 67

Instructions 67
6502 Instructions 68
Group-I Instructions 69

Load and Store Instructions (LDA and STA) 69

Arithmetic Instructions (ADC and SBC) 78
Logical Instructions (AND, ORA, and EOR) 81
Compare Instructions (CMP) 83

Group-II Instructions 83
Group-III Instructions 86

65xx-Family Support Chips 101

6522 102
6530 105

Device Selection and Address Decoding 109

Address Decoding 109
Generating Read/Write Signals 116

Interfacing Memory to the 6502 121

Memory Hierarchy 122
Types of Memory Devices 122

4116 16K x 1-bit Dynamic RAM 125
Read-only Memory (ROM) Devices 131

Address Block Decoding 131

Interfacing I/O Devices to the 6502 139

Logic Families 140
TTL (Transistor-transistor Logic) 140
CMOS (Complementary Metal Oxide Semiconduc-
tors) 146
Tristate Devices 148

Interfacing Logic Families 149
Flip-flops 150
I/O Ports: Devices and Components 155
Interfacing Keyboards to the Microcomputer 163
Custom Keyboards, Switches, and LED Displays 169

Interfacing Peripherals to the 6502 185

Parallel Port Methods 185
Serial Digital Data Communications 185

RS-232 Interfacing 201

13.

14.

16.

Current Loop Ports 202
Serial Interfacing 205
Controlling External Circuits 213

Interrupts 227

Interrupt Vectors 228
Nonmaskable Interrupts 229
Maskable Interrupt Requests 230
Reset Line as Interrupt 232
Multiple Interrupts on 6502 234

Interfacing with the Apple II Bus 237

Interfacing with the KIM-1, AIM-65, and SYM-1 241

6502 Detailed Instruction Set 245

APPENDIX A. Instruction Addressing Modes and Related
Execution Times 279

APPENDIX 8B. 6502 Instructions Sorted by Op-codes
(Hexadecimal) 281

Introduction

This book is intended to be both an instruction guide and a tool... but
mostly a utilitarian tool for the programmer/interfacer of 6502-based
microcomputers. It is intended that this book become dog-eared and
worn from heavy use on a programmer’s table or a hacker’s work-
bench . .. use it and abuse it, that’s why I wrote it. There is no attempt
in this book to show you how much the author knows about com-
puters—you don’t have time for trash like that. The information in
this book was selected for its usefulness to a wide variety of readers.
Like its earlier companion volume, The Z80 User’s Manual (Joseph J.
Carr, Reston Publishing Company), the book is intended to collect into
one place most, perhaps all, the information you need for assembly
and machine language programming and for performing hardware
interfacing chores. Of course, with all of the different kinds of 6502-
based machines on the market today, it was impossible to provide
details of all machines, so I stuck pretty much to generic details
applicable to any 6502-based system.

New features in this book that are not in my earlier Z80 book
include a discussion of the different types of computers. My earlier
assumption (which was then almost true!) was that the reader already
possessed a basic knowledge of computers and at least BASIC pro-
gramming. But today, the microcomputer biz has doubled, tripled,
fourpled, and fippled in just a little while and there are now many
thousands in the market who do not necessarily possess the semi-
advanced background of the former readership. Back when the Altair
S-100 was king, and the “Great Woz” was taking his first byte out of
the Apple, anybody who wanted in on these microcomputer widgets

was, by definition, a genuine hacker. The market was self-defining to
an extent, because only those who would become hackers dared (that’s
right, dared!) buy a computer kit (shudder . . . the complexity of it all).
But today, with prices down and mass marketing technique up, every-
body can own a computer and do more with it than we late-sixties
engineering students could do with three-and-a-quarter tons of junk!
Being a semi-irreverent sort, I aim to tear off the robes of the modern
sacerdotal priests of “HIGH TECHNOLOGY” so that one and all can
enjoy and benefit from the marvelous little microcomputer. Toward
this end, Chapter One of this book contains several features. One is a
discussion of microcomputers as opposed to minicomputers, “main-
frame” computers, and so forth. Those descriptions will make you
conversant with the language of the technology even if you are scared
to death to “hit RETURN” on your new toy! We will also look at some
applications categories for microcomputers, and some of the more
popular 6502-based machines.

One feature most asked for by readers of my other books is a
discussion on the basic operation of any programmable digital com-
puter. It seems that most authors (myself included) have, in the past,
launched right into the discussion of chips and bytes and other such
wonders without ever stopping to ask the poor confused beginner
whether or not he or she actually knows how a programmable digital
computer functions. What does go on inside that boxP Toward that
end, I have created a hypothetical computer that is not based on any
microprocessor chip (that way I can use it in several more books!), but
it is based on the generic form of the computer. I call this device the
Mythical Analytical Device, or MAD (which acronym, by the way,
accurately describes the typical user after the umpteenth “bomb” and
the apparent state of us elderly hackers—as seen by computer new-
comers).

The book also contains a lot of material on interfacing to the 6502
microprocessor, and to computers that are based on the 6502. I have
also covered some of this material in my book Elements of Microcom-
puter Interfacing, also a Reston book. The material in that book is more
general in nature, but goes a lot deeper than was possible within the
length/cost constraints placed on the present work.

The 1980 companion volume to this book is Z80 User’s Manual.
That book was rejected by two other publishers before Reston took a
chance and published the work. That risk was apparently well taken,
however, because the Z80 User’s Manual turned out to be a popular
best-seller and was even recommended in the Timex/Sinclair T/S-
1000 User’s Manual. The success of that book startled me (and at least
one of the editors who rejected it), and I could never figure out why

anyone would buy it. Most of the material given in that book, and in
large sections of this book, is available elsewhere for free. So why, I
wondered, would anyone pay me good money for the information that
is in so many other sources? One reader of mine (who is also a friend
and fellow hacker) gave me the answer: that book (and this one) sums
up, explains, interprets, and collects into one volume instead of ten
what everyone needs to know about their machines. Rather than a
stack of books, you only need two: this book and the operating manual
for your computer! (well, you could buy a few more of my books if
you insist!)

Speaking of buying books. If you are just browsing right now, go
ahead and buy the book (please don’t shoplift it... that’s naughty!), I
need the money!

Joe Carr

Introduction to
Microprocessors and
Microcomputers

One of the most frequent questions the microcomputer owner asks is,
“What will it do?’ This question is exasperating because it has too
many answers. Indeed, what is the role of a microcomputer? For that
matter, what is a microcomputer?

At one time, definitions were simpler. As a freshman engineering
student, I was allowed to use an IBM® 1601-1620 machine; that was
a computer! There was no doubt in anyone’s mind about that machine’s

identity; it took up an entire room on the second floor of the engi-
neering school’s building. But, today, an engineering student can sit
at a small desk with an Apple® II (complete with video CRT display,
printer, and two disc drives) that has more computing power than that
old 1601! In fact, many engineering students find the cost of the typical
small system so affordable that they can own their own computer. Now
the student can have more computing power in a dorm room than we
had in the school of engineering. The cost of the modern microcom-
puter is less than one-tenth of what one of the lesser machines cost
only a decade ago—not counting the fact that 1971 dollars were bigger
than today’s dollars.

Before attempting to define the role of the microcomputer, let’s
first try to define what the microcomputer is. Terminology in the
computer field is often “O.B.E.”—overcome by events. For example,
consider the terms microcomputer and minicomputer. Some of us use

these terms interchangeably, because modern single-chip computers
(e.g., the Intel 8048) tend to make such usage seem reasonable. But,
for our purposes, we require sharply focused meanings for these two

2 INTRODUCTION TO MICROPROCESSORS AND MICROCOMPUTERS

terms and others: minicomputer, microcomputer, single-chip com-
puter, single-board computer, and mainframe computer.

MICROPROCESSORS

The microprocessor is a large scale integration (LSI) integrated circuit
(IC) that contains the central processing unit (CPU) of a programmable
digital computer. The CPU of a computer contains the arithmetic logic
unit (ALU) that performs the basic computational and logical operations
of the computer. The CPU also houses the control logic section, which
performs housekeeping functions, and may or may not have several
registers for the temporary storage of data. All CPUs have at least one
temporary storage register called the accumulator, or A-register. The
principal attribute of a microprocessor is that it will execute instructions
sequentially. These instructions are stored in coded binary form in an
external memory.

MICROCOMPUTERS

A microcomputer is a full-fledged programmable digital computer that
it built around a mi¢roprocessor “chip,” i.e., integrated circuit; the
microprocessor acts as the CPU for the computer. In addition to the
microprocessor chip, the microcomputer typically will have additional
chips; the number may vary from two to hundreds depending upon
the design and the application. These external chips may provide such
functions as memory (both temporary and permanent), input/output
(I/O), and other functions. The microcomputer may be as simple as a
KIM-1, or as complex as a 30-board professional machine with all the
electronic data processing “goodies.”

SINGLE-CHIP COMPUTERS

For several years we had no excuse for interchanging the terms mi-
croprocessor and microcomputer; a »P was an LSI chip and pC was a
computing machine. But with the advent of the 8048 and similar
devices, previously well-defined boundaries dissolved because these
devices were both an LSI IC and a computer. A typical single-chip
computer may have a CPU section, two types of internal memory
(temporary and long-term permanent storage), and at least two I/O
ports. Some machines are even more complex.

The single-chip computer does, however, require some external
components before it can do work. By definition, the microcomputer

Minicomputers 3

already has at least a minimum of components needed to perform a
job.

SINGLE-BOARD COMPUTERS

The single-board computer is a programmable digital computer, com-
plete with input and output peripherals, on a single printed circuit
board. Popular 6502-based examples are the KIM-1, SYM-1, and AIM®-
65 machines. The single-board computer might have either a micro-
processor or a single-chip computer at its heart.

The peripherals on a single-board computer are usually of the
most primitive kind (e.g., AIM-65), consisting of 7-segment LED nu-
merical displays and hexadecimal keypads reminiscent of those on a
handheld calculator or Touch-Tone™ telephone. The typical display is
capable of displaying only hexadecimal numeral characters because of
the form constraints of using 7-segment LED display devices. The
Rockwell International AIM-65 uses a regular ASCII keyboard and a
20-character display made of 5 x 7 dot matrix LEDs. In addition, the
AIM-65 has a built-in 20-column dot matrix thermal printer that uses
printing calculator paper.

Most single-board computers have at least one interface connector
that allows either expansion of the computer or interfacing into a
system or instrument design.

The manufacturers of SBCs, such as the KIM-1 and others, prob-

ably did not envision their wide application as a small-scale develop-
ment system. These computers were primarily touted as trainers for
use in teaching microcomputer technology. But for simple projects
such computers also work well as a mini-development system! More
than a few SBC trainers have been used to develop a microcomputer-
based product, only to wind up being specified as a “component” in
the production version. In still other cases, the commercially available
SBC has been used as a component in prototype systems, and then, in
the production version, a special SBC (lower cost) was either bought
or built.

MINICOMPUTERS

The minicomputer predates the microcomputer and was originally
little more than a scaled-down version of larger data processing ma-
chines. The Digital Equipment Corporation (DEC®) PDP-8 and PDP-
11™ machines are examples of “minis.” The minicomputer will use a
variety of small-scale (SSI), medium-scale (MSI), and large-scale inte-
gration (LSI) chips.

4 INTRODUCTION TO MICROPROCESSORS AND MICROCOMPUTERS

Minicomputers have traditionally been more powerful than mi-
crocomputers. They had, for example, longer length binary data words
(12 to 32 bits instead of 4 or 8 bits found in micros), and operated at
faster speeds (6 to 12 mHz instead of 1 to 3 mHz). But in this area,
distinctions are fading. Digital Equipment Corporation, for example,
offers the LSI-11 microcomputer that acts like a mini. Similarly, 16-
bit microcomputers are available, as are 6 mHz devices. It is sometimes
difficult to draw the line when a microcomputer is in the same size
cabinet as a minicomputer, and minicomputers can be bought in desk-
top configurations!

MAINFRAME COMPUTERS

The large computer that comes to mind when most people think of
computers is the mainframe computer. These machines are the com-
puters used in large-scale data processing departments. Microcom-
puterists who have an elitist mentality sometimes call mainframe
computers “dinosaurs.” But, unlike their reptilian namesakes, these
dinosaurs show no signs of extinction and are, in fact, an evolving
species. The IBM 370 is an example of a mainframe computer.

ADVANTAGES OF MICROCOMPUTERS

Microcomputers have certain advantages, as attested to by the fact
that so many are sold! But what are these advantages?

The most obvious advantage of the microcomputer is reduced
size; compared with dinosaurs, microcomputers are mere lizards! An
8 bit microcomputer with 64K bytes of memory can easily fit inside a
table-top cabinet. For example, Apple® III (Figure 1-1) fits the complete
computer (plus one optional disc drive) into the space inside a small
table-top cabinet! Another company packs a computer with 16K of
random access memory (RAM) inside a keyboard housing!

The LSI microcomputer chip is generally more complex than a
discrete components circuit that does the same job. However, the
interconnections between circuit elements are much shorter (microm-
eters instead of millimeters). Input capacitances are thereby made
lower. The MOS technology used in most of these ICs produces very
low current drain, hence the overall reduced heating. While a mini-
computer may require a pair of 100 cfm blowers to keep the temper-
ature within specifications, a microcomputer may be able to use a
single 40 cfm muffin fan or no fan at all!

Microcomputer Interfacing 5

Figure 1-1. Apple II! microcomputer

Another advantage of the LSI circuit is reduced component count,
which reduces size. In addition it also affects reliability. If the LSI IC
is just as reliable as any other IC (and so it seems), then the overall
reliability of the circuit is increased dramatically. Even if the chip re-
liability is lower than in lesser ICs, we would still achieve superior
reliability due to fewer interconnections on the printed circuit board,
especially if IC sockets are used. Some of the most invidious trou-
bleshooting problems result from defective IC sockets!

MICROCOMPUTER INTERFACING

The design of any device or system in which a microcomputer or
microprocessor is used is the art of defining the operation of the system
or device, selecting the components for the device or system, matching

6 INTRODUCTION TO MICROPROCESSORS AND MICROCOMPUTERS

and integrating those components (if necessary), and constructing the
device or system. These activities are known collectively as interfacing.

But let’s get down to a more basic level. Most readers of this book
are technical people with some knowledge of electronics and computer
technology. For most readers, therefore, interfacing consists of select-
ing and matching components, and then connecting them into a circuit
that does a specific job. These matters are addressed in later chapters.

MICROCOMPUTERS IN INSTRUMENT AND
SYSTEM DESIGN

In the past designers had to use analog electronic circuits, electro-
mechanical relays (which sometimes leads to a maintenance night-
mare), and other devices to design instruments, process controllers,
etc. These circuit techniques had their limitations and produced some
irritating results; factors like thermal drift loomed large in some of
these circuits. In addition, the design was cast in cement once the final
circuit was worked out. Frequently, relatively subtle changes in a
specification or requirement produced astonishing changes in the con-
figuration of the instrument; analog circuits are not easily adaptable
to new situations in many cases. But with the advent of the microcom-
puter, we gain the advantage of flexibility and solve some of the more
vexing problems encountered in analog circuit design. The memory
of the computer tells it what to do, and that can be changed relatively
easily. We can, for example, store program code in a read only memory,
or ROM, which is an integrated circuit memory. If a change is needed,
then the software can be modified and a new ROM installed. If the
microcomputer was configured well, then it is possible to redesign only
certain interface cards (or none at all) to make a new system config-
uration! For example, an engineer built an anode heat computer for
medical X-ray machines. A microprocessor would compute the heating
of the anode as the X-ray tube operated, and would sound a warning
if the limit of safety was exceeded—thus saving the hospital the cost
of a $10,000 X-ray tube! But different X-ray machines require different
interfacing techniques, a problem that previously had meant a new
circuit design for each machine. But by intelligent engineering, the
anode heat computer could be built with a single interface card that
married the “universal” portion of the instrument with each brand of
X-ray machine. Thus, the company could configure the instrument
uniquely for all customers at a minimal cost.

Another instrument that demonstrates the universality of the
microcomputer is a certain cardiac output computer. This medical
device is used by intensive care physicians to determine the blood

Synertek Sym-1 7

pumping capability of the heart in liters per minute. A “bolus” of iced
or room tempterature saline solution is injected into the patient at the
“input” end of the right side of the heart (the heart contains two pumps,
right side and left side, with the right-side output feeding the left-side
input via the lungs). The temperature at the output end of the right
side is monitored, and the time integral of temperature determined.
This integral, together with some constants, is massaged by the com-
puter to calculate the cardiac output.

These machines come in two versions, research and clinical. The

researcher will take time to enter certain constants that depend upon
the catheter used to inject saline, temperature, and other factors, and
will be more vigorous in following the correct procedure. But in the
clinical setting, technique suffers as the patient is cared for, resulting
in “machine error,” which is actually operator error. To combat this
problem, the manufacturer offers two machines. One is a research
instrument and is equipped with front panel controls that allow the
operator to select a wide range of options. The other, a clinical model,
allows no options to the operator and is a “plug and chug” model. The
interesting thing about these instruments is that they are identical on
the inside! The only difference is the front panel and the position of
an on-board switch! The manufacturer’s program initially interrogates
a switch to see if it is open or closed. If it is open, then it “reads” the
keyboard to obtain the constants. On the other hand, if it is closed,

then the program branches to a subprogram that assumes certain pre-
determined constants that are loaded on the buyer’s prescription when
the instrument is delivered. The cost savings of using a single design
for both instruments are substantial! |

6502-BASED MACHINES

We are going to examine some of the different 6502-based machines
found on the market. Inclusion in here does not connote endorsement
of the product, nor that another manufacturer’s product isn’t as good.

SYNERTEK SYM-1

Several years ago, the original manufacturer of the 6502 microproc-
essor, MOS Technology, Inc., produced a small, single-board computer
that contained a hexadecimal keyboard and LED readouts. Originally
conceived as a trainer, the KIM-]1 microcomputer became something
of a standard among single-board computers, and its “bus” is now
sometimes referred to as the “KIM-bus.” The KIM inspired a large

8 INTRODUCTION TO MICROPROCESSORS AND MICROCOMPUTERS

collection of magazine articles, books, and accessory products. For
many advanced computer scientists, the litthe KIM-1 was their first
introduction into the world of microcomputer technology.

Although the SYM-1 microcomputer shown in Figure 1-2 is based
on the original KIM-1 machine of another manufacturer, it extended
the machine’s capabilities and provides more features than the original
design. Synertek Systems Corporation of Santa Clara, CA is the man-
ufacturer of the SYM-1 machine.

Although the principal application for the SYM-1 is to train en-
gineers and students in microcomputer interfacing and programming
technology, applications have expanded into engineering laboratory
work, prototyping of devices based on the 6502 microprocessor, in-
strumentation, and conducting both experimenting and testing in en-
gineering and scientific laboratories. As the SYM-1 uses the same
identical hardware interface bus as the earlier KIM-1 device, it may
be “plugged into” applications previously reserved to the KIM-1
machine.

The SYM-1 device has a 4K byte on-board monitor program, 1K
byte of on-board RAM (expandable to 4K bytes), and provision for up
to 28K bytes of on-board ROM or PROM. The applications port has
15 bidirectional, TTL-compatible I/O lines, which, again, is expand-
able. The machine also offers data storage and program storage on

Figure 1-2. SYM-1 microcomputer

Ohio Scientific Superboard Il 9

Figure 1-3. Ohio Scientific Superboard II

audio cassettes (an ordinary cassette tape player that has both “MIC”
and “EAR” jacks can be used), and will accommodate a full duplex
teletypewriter (TTY) 20 milliampere loop. This last feature makes the
SYM-1 compatible, not just with TTY machines, but also with a wide
variety of hard-copy printers now on the market. The machine includes
one other I/O port, the common RS-232 serial interface port. The RS-
232 port makes the SYM-1 compatible with a variety of video terminals
and other peripherals. An on-board video terminal capability allows
you to use either a TV monitor or, if an R.F. modulator is provided, a
home TV receiver to receive output data (32 character line of video).

OHIO SCIENTIFIC SUPERBOARD Il

The microcomputer in Figure 1-3 solves some of the problems inherent
in other single-board designs such as inconvenient keyboard format.
This machine also uses the same microprocessor (6502) as the KIM-1
and SYM-1 machines, although it does not use the KIM-1 bus. Pro-

10 INTRODUCTION TO MICROPROCESSORS AND MICROCOMPUTERS

gramming and data entry are through a full ASCII keyboard like those
found on video CRT terminals and larger computers.

The Superboard II can interface with TTY, CRT video terminals,
and other peripherals. It is probably one of the simplest of the so-
called “advanced” single-board computers and offers much that the
lesser machines cannot, for example, more memory and programming
in BASIC.

APPLE I! AND III

The Apple II and its later cousin, the Apple III, shown in Figure 1-1,
have become the byword in personal computers, partially because
these computers make available a “full-service” microcomputer in a
small package. A system that includes 48K bytes of memory, color TV
graphics, color TV monitor, a teletypewriter, and two 5.25 inch disc
drives can take up little more space than a table top.

The Apple II comes with a plug-in BASIC, with a more extensive
version of BASIC available as an option. It also has an assembly language
and built-in disassembler capability. The ordinary Apple II is available
with an audio cassette interface, although for any serious work it is
recommended that at least one disc be acquired.

Also built into the Apple II is a video display circuit that will
drive an ordinary television monitor. The regular video format is 40
characters per line, with a total of 24 lines on the CRT screen at any
one time. An interesting feature of the Apple II video monitor is that
either regular (white characters on black background) or inverse (black
characters on white background) modes can be used, and some of the
characters can be programmed to flash on and off. The color graphics
video display is capable of 15 different colors on a normal color video
monitor.

A high-resolution video display provides 280h x 192v capability,
allowing the programmer to draw graphs and other displays on the
CRT screen.

MICROPROCESSOR FUNDAMENTALS

The microprocessor chip literally revolutionized the electronics in-
dustry. Although initially thought of as either a small logic controller
or as a data processing machine (depending upon your perspective
and the first chip you saw), the microprocessor blossomed in less than
a decade into a major force with hundreds of applications.

Microprocessor Fundamentals 11

What is a microprocessor? How does it relate to a microcomputer?
We will explore these questions here, and hopefully present a good
grounding in computer technology basics. But first, we will study com-
puters in general by describing a “typical’’ programmable digital com-
puter in block diagram form. In chapters to follow we will study the
6502 device.

Mythical Analytical Device (MAD)

Rather than mold our discussion around any one manufacturer’s prod-
uct, let’s make up one that is general enough to cover a large number
of actual devices. Our “computer” will be nicknamed the Mythical
Analytical Device, or MAD, because the acronym MAD adequately
describes both the emotional state of programmers (whose frustrations
mount geometrically with each passing “bomb-out”) and the mental
health of computer sciences “freaks” (who are often seen wandering
aimlessly through university corridors muttering the arcane glossolalian
prayers of their modern religion, “Hail, microprocessor, from whom
all bits and bytes emanate. . .”).

Figure 1-4 shows the block diagram of MAD. Like any program-
able digital computer, MAD has three main parts: central processing
unit (CPU), memory, and input/output (I/O). There are certainly other
functions in some machines, but many are either special applications
of these main groups or are too unique to be described in a general
machine.

The central processing unit controls the operation of the entire
computer. Memory can be viewed as an array of “cubbyholes,” such
as those used by postal workers (Figure 1-5) to sort mail. Each cub-
byhole represents a specific address on the letter carrier’s route. An
address in the array can be uniquely specified (identifying only one
location) by designating the row and column in which the cubbyhole
is found. If we want to specify the memory location (i.e., cubbyhole)
at row 3 and column 2, then we could create a row X column “address

number” which, in this example, would be 32.

Each cubbyhole represents a unique location in which to store
mail. In the computer, the memory location stores a binary word of
information. In an 8-bit computer, each location will store a single 8-
bit binary word. The different types of memory devices are discussed
in another chapter.

The three lines of communication between the memory and the
CPU are address bus, data bus, and control logic signals. These avenues
of communication control the interaction between memory and I/O

INTRODUCTION TO MICROPROCESSORS AND MICROCOMPUTERS 12

(
Q
V
W
)

89
1A
9p

je
on

Aj
eu

e
je
ol
uj
AW

eu
}

10
}

We
sB
eI
p

yO
0|

g
+

“p
-4

eu
nB
i4

£98q-08qa
sng

e1eq

joujU04)

uo, sng ssouppy

Uog
sng

e1eGg

J
a
U
N
O
D

wesbold

Jaysibay

uolonsjsul
o
a
W
U

iy

u
e
d

A
i
o
w
a
y

indino/jndu|

U01198g
91607

G
L
V
-
O
V

Sud

sng
ssauppy

Microprocessor Funddmentals 13

Location
"32"

Row 3 EVvGeZizZeee
BeBeizeieeizie
Hb Mb Hbuo

1 2 3 4 5 6 7 8 9

Column

Figure 1-5. “Memory”

on the one hand, and the CPU on the other. Therefore they also control
the functioning of the entire computer.

The address bus (bits Af through A15 in Figure 1-4) communicates
to the memory bank the address of the exact memory location being
called by the CPU, regardless of whether a read or write operation is
taking place. The address bus consists of parallel data lines, one for
each bit of the binary word that is used to specify the address location.
In most 8-bit microcomputers, for example, the address bus consists of
16 bits. A 16-bit address bus can uniquely specify 2"*, or 65,536, different
locations. This size is called “64K” not “65K” as one might expect. It
seems that “k” represents the metric prefix kilo, which denotes 1,000.

Since 2'° is 1,024, however, computer people long ago decided that
kilo would be 1,024, not 1,000. The “big k’’ (1,024) is represented with
an uppercase K rather than k, which is used for real kilo.

The size of memory which can be addressed doubles for every
bit added to the length of the address bus. Hence, adding one bit to

our 16-bit address bus creates a 17-bit address bus which can designate
up to 128K locations. Some 8-bit machines which have 16-bit address
buses can be made to look like bigger machines by certain tactics that
make a longer pseudo-address bus. In those machines, several 64K
memory banks are used to simulate continuously addressable 128K,
256K, or 512K memories.

The data bus is the communications channel over which data
travels between the main register (called the accumulator or A-register)
in the CPU and the memory. The data bus also carries data to and

14 INTRODUCTION TO MICROPROCESSORS AND MICROCOMPUTERS

from the various input and/or output ports. If the CPU wants to “read”
the data stored in a particular memory location, then that data is passed
from the memory location over the data bus to the accumulator register
in the CPU. Memory write operations are exactly the opposite direc-
tion, but otherwise the same.

The size of the data bus is usually cited as the “size” of the
computer. Therefore, an 8-bit microprocessor/microcomputer is one
that has an 8-bit data bus; a 16-bit microcomputer will have a 16-bit
data bus. Do not be confused by salesmen such as the bozo who told
me his 6502-based machine (8-bit data bus) was “in reality” a 16-bit
machine because it had a 16-bit address bus!

The last memory signal is the control logic or timing signal. These
are one or more binary logic signals that tell memory if it is being
addressed, and whether the request is a read or write operation. The
details of control logic signals differ between different microprocessor
chips, so only those of the 6502 will be discussed in this book (for Z80
signals see Z80 User’s Manual, by J. J. Carr, Reston Publishing Co.).

The input/output (I/O) section is the means by which the CPU
communicates with the outside world. An input port will bring data
in from the outside world and then pass it over the data bus to the
CPU where it is stored in the accumulator. An output port reverses
that data flow direction.

In some machines, separate I/O instructions are distinct from
memory instructions. The Z80 is one such machine. The Z80 will pass
the port address over the lower 8 bits of the 16-bit address bus (8-bit
I/O address used in the Z80 can uniquely address up to 256 different
ports). In other machines, such as the 6502, there are no distinct I/O
instructions. In those machines, the I/O components are treated as
memory locations; this technique is called memory-mapping or mem-
ory-mapped I/O. Input and output operations then become memory-
read and memory-write operations, respectively.

Central Processing Unit (CPU)

The CPU is literally the heart and brains of any programmable digital
computer, including MAD. Although there are some different “whistles
and bells” features in certain machines, all will have the features shown

in our MAD computer (Figure 1-4). The principal subsections of the
CPU include (at least) the following: accumulator or A-register, arith-
metic logic unit (ALU), program counter (PC), instruction register,
status register, and control logic section.

The accumulator is the main register in the CPU, and will have
the same bit length as the data bus. All instructions executed by the
CPU involve data in the accumulator, unless otherwise specified in the

Microprocessor Fundamentals 15

description of that instruction. Therefore, an ADD instruction causes
an arithmetic addition of the data cited by the instruction to the con-
tents of the accumulator.

Although there are often other registers in the CPU, the accu-
mulator is the main register. The main purpose of the accumulator is
the temporary storage of data operated on by the instruction being
executed. Data transfers to and from the accumulator are nonde-
structive. In other words, data “transfers” are not really transfers at
all, but are, instead, “copying” operations. Suppose, for example, the
hexadecimal number 8F,, is stored in the accumulator when an in-
struction is encountered requiring that the contents of the accumulator
be stored at memory location A008,,. After the instruction is executed,

we will find 8F,, both in memory location A008 and in the accumulator.

If we have the opposite operation (i.e., transfer contents of accumulator
to location A008,,), then we will see the same situation; after the
transfer, the data will be in both locations. Since the accumulator

contents change every time an instruction is executed, we will have
to use such transfers to hold critical data some place in memory.

The arithmetic logic unit (ALU) contains the circuitry that per-
forms the arithmetic operations of addition and (sometimes) subtrac-
tion, plus the logical operations of AND, OR, and XOR.

The program counter (PC) contains the address of the next in-
struction to be executed. The secret to the success of a programmable
digital computer is its ability to fetch and execute instructions se-
quentially. Normally, the PC will increment appropriately (1, 2, 3, or
4) while executing each instruction: 1 for 1-byte instructions, 2 for 2-
byte instructions, etc. For example, the instruction “LDA,n” is a 6502

instruction mnemonic that loads the accumulator with the number
“n.” In a program, we will find the code for LDA,n followed by “n.”

Location Code Mnemonic

0100 LDA,n

0101 “n” “ny”

0102 (next instruction)

At the beginning of this operation, PC = 0100, but after execution
it will be PC = 0102 because LDA,n is a 2-byte instruction.

There are other ways to modify the program counter. For ex-
ample, executing any form of JUMP instruction modifies the contents
of PC to contain the address of the “jumped to” location. Another way
to modify the PC contents is to activate the reset line. The computer
sees reset as a hard-wired JUMP to location 0000.

16 INTRODUCTION TO MICROPROCESSORS AND MICROCOMPUTERS

The instruction register is the temporary storage location for
instruction codes stored in memory. When the instruction is fetched
from memory by the CPU, it will reside in the instruction register
until the next instruction is fetched.

The instruction decoder is a logic circuit that reads the instruction
register contents and then carries out the intended operation.

The control logic section takes care of housekeeping chores within
the CPU, and issues or responds to control signals from the outside
world. These signals are not universally defined (which is one reason
why we will consider two chips later in this chapter), but control such
functions as memory requests, I/O requests, read/write signaling, in-
terrupts, etc.

The status register, also sometimes called status flags, is used to
indicate the status of the CPU at any given instant to the program,
and sometimes to the outside world. Each bit of the status register
represents a different function. Different microprocessor chips use
slightly different status register architectures, but all will have a carry
flag (C) to indicate when an instruction execution caused a “carry,”
and a zero flag (Z) that indicates when an arithmetic or logic instruction
resulted in zero or nonzero in the accumulator (typically, Z = 1 when
the result is zero).

We have now developed the CPU for our MAD computer. This
discussion in general terms also describes a typical microprocessor chip;
a microprocessor (as opposed to a single-chip computer) is essentially
the CPU portion of a MAD.

Operation of MAD

A programmable digital computer such as MAD operates by sequen-
tially fetching, decoding, and then executing instructions stored in
memory. These instructions are stored in the form of binary numbers.
Some early machines had two memories, one each for program in-
structions and data. The modern method, however, uses the same
memory for both data and instructions.

How does the dumb computer know whether the binary number
stored in any particular location is an instruction, data, or an alpha-
numeric character representation (e.g., ASCII or Baudot codes)? The
answer to this important question is the key to the operation of MAD:
The MAD operates in cycles.

A computer will have at least two cycles: instruction fetch and
execution, and in some machines these cycles are subcycles. The details
differ even though general scenarios are similar.

Instructions are stored in memory as binary numbers called op-
eration codes, or op-codes. During the instruction fetch cycle, an op-

Microprocessor Fundamentals 17

code will be retrieved from the memory location specified by the
program counter and stuffed into the instruction register. The CPU
assumes that the programmer was smart enough to arrange things such
that an op-code will be stored at that location when the PC increments
to that address.

During the first cycle, an instruction is fetched and stored in the
instruction register. During the second cycle, the instruction decoder
will read the IR, and then carry out the indicated operation. When
these two cycles are completed, an instruction wil] have been fetched
and executed, the program counter incremented to reflect the memory
location that will contain the next instruction, and the CPU made ready
for the next instruction. The CPU will then enter the next instruction
fetch cycle and the process repeats itself.

This process continues over and over again as long as the MAD
is working. Each step is synchronized by a train of clock pulses so that
events remain rational.

This description illustrates what a computer can or cannot do.
The CPU can shift data around, perform logical operations (e.g., AND,
OR, XOR), add two N-bit numbers (sometimes subtract as well), all in
accordance with a limited repertoire of binary word instructions. These
chores are performed sequentially through a series of discrete steps.
The secret to whether a problem is amenable to computer solution
depends upon whether a plan of action (called an algorithm) can be
written that will lead to a solution by a sequentially executed series of
steps. Most practical instrumentation, control, or data processing chores
can be so solved—a factor which accounts for the meteoric rise of the
microprocessor. A field of endeavor that studies sequential solutions
to practical (and some not so practical) problems is called numerical
methods.

The MAD computer is merely a hypothetical construct used as a
teaching aid. Let’s examine a real microprocessor—the 6502.

6502 Architecture

The 6502 is one of the two most popular microprocessor chips on the
market. Originated by MOS Technology, Inc., maker of the KIM-1
microcomputer, the 6502 is now available from more than 15 secondary
sources. Among these secondary sources are Synertek and Rockwell
International, who make the SYM-1 and AIM-65 microcomputers, re-
spectively. The 6502 is widely used in applications which range from
small Original Equipment Manufacturer (OEM) single-board com-
puters and process controllers to elaborate data processing systems.

The 6502 is actually only one member (albeit the most popular
member) of a family of microprocessor chips. Other members of the
65xx family include 6500/1, 6503, 6504, 6505, 6506, 6507, 6512, 6513,
6514, and 6515 devices. All members of the 65xx family (except 6502
and 6512) are housed in the 29-pin DIP IC package. The 6502 and
6512 come in the 40-pin DIP IC package. The 6502 and 6512 are very
similar to each other, except that 6512 has a data bus enable (DBE)
terminal which the 6502 lacks. The 6500/1 is a single-chip computer
that includes, in addition to the CPM circuitry, internal ROM, read/
write memory, two timers, and four 8-bit input/output ports. The
6500/1 recognizes several timer and I/O instructions in addition to
the regular 6502 instruction set.

The two basic philosophies behind third-generation microproc-
essor architecture are: (1) register-oriented, and (2) memory-oriented.

The popular Zilog, Inc. Z80 (which grew out of Intel’s 8080a) is an
example of a register-oriented microprocessor. The companion volume
to this book, Z80 User’s Manual, is available from Reston Publishing

19

20 6502 ARCHITECTURE

Company. The 6502 grew out of the philosophy used to develop the
6800, and is an example of a memory-oriented machine.

The differences between the two philosophies are best seen in
the structure of the I/O functions and the registers. The Z80 has
numerous internal registers, while on the 6502, register functions are
performed in external memory. Also, there are no Z80-like I/O in-
structions for 6502. All I/O ports are treated as memory locations. Such
a system is often termed memory-mapped I/O.

The specific I/O instructions and internal registers of the Z-80-
type chip are advantageous in some applications, but for the most part
confer only little advantage over 6502-style systems. In fact, since 6502
can perform certain logical and arithmetic operations directly on mem-
ory (without the need for intervening data transfers), some types of
program will execute considerably faster on 6502 than on Z80. Both
types of chip architecture have their optimum applications, as wit-
nessed by the huge success of both Z80 and 6502 devices.

Figure 2-1 shows the block diagram for the 6502. Like most micro-
processors of the era, the 6502 uses an 8-bit bidirectional data bus
(DBO-BD7) and a 16-bit address bus (A0-A15); the address bus is uni-
directional (output). Since there are 16 bits to the address bus, the

ABO-AB15

ABL

ADL

RDY RES IRQ NMI

P|P R/W SO SYNC Interrupt

L]H Logic

r FE

Arithmetic
Logic
Unit 7

,
and Control ic

Stack a
$2 %

tac
Pointer

Input Data Instruction Processor
Latch Register Status

Register

Data Bus
Butfer

Internal Data Bus

DBO-DB7 System Data Bus

Figure 2-1. Block diagram for the 6502 microprocessor

6502 Internal Structure 21

6502 can uniquely address 2'°(65,536) different memory locations. Such
a computer is a 65K machine.

6502 INTERNAL STRUCTURE

The 6502 is a complete central processing unit (CPU), which contains
the following sections and registers: Arithmetic logic unit (ALU), ac-
cumulator (A-register), instruction register, instruction decoder/con-
trol logic section, interrupt control logic, processor status register,
timing section, input data latch, stack pointer, index X register, index
Y register, program counter (PCH and PCL), and data bus buffer. These
are described here:

Arithmetic Logic Unit (ALU). The ALU is the internal logic that
performs all arithmetic (ADC, SBC) and logical (AND, ORA, EOR)
operations. The programmer does not have direct access to the ALU,
except that the ALU is automatically implied by the instructions which
affect the ALU.

The ALU is the heart of any CPU, and is one primary factor that
distinguishes a computer or microprocessor from all other digital elec-
tronic circuits. This circuit performs the data manipulation including
addition, subtraction, comparison, logical-AND, logical-OR, logical-
XOR, left-shift, left-rotate, right-shift, right-rotate, bit set or reset, in-
crement, decrement, and bit-test.

Accumulator. The accumulator, also called the A-register in some
texts, is the main internal storage register in the 6502. Its function is
to temporarily store data being operated on by the ALU. In the 6502,
the accumulator is an 8-bit register that corresponds with the data bus
on a bit-for-bit basis (i.e., bit 0 of the accumulator will travel to/from
the CPU over DBO of the data bus, bit 1 over DBI, etc.). Unless

otherwise specified, all instructions executed by the 6502 use the ac-
cumulator. The addition-with-carry (ADC) instruction, for example,
performs binary addition between an 8-bit data word fetched from
memory and the contents of the accumulator.

Instruction Register (IR). The instruction register is the internal 6502
register where the instruction op-code is temporarily stored after it is
fetched from memory.

Instruction Decoder/Control Logic. This section contains the logic
circuits that will examine the contents of the instruction register, de-
termine what operation is intended, and then permit the CPU to
execute that instruction.

22 6502 ARCHITECTURE

Interrupt Control Logic (ICL). An interrupt is a means by which an

external device can gain control of the program. There are two active-
LOW interrupt input lines on the 6502: NMI and IRQ. The NMI input
is a nonmaskable interrupt. When NMI is brought LOW, the processor
will switch control to a predetermined subroutine after the current
instruction is executed. The IRQ is a maskable interrupt request input.
Whether or not CPU recognizes the request is determined by the state
(1 or 0) of an interrupt masking bit in the program status register. The
programmer can cause IRQ to be enabled by executing SEI and CLI
bits. The subject of interrupts will be discussed in greater detail in
Chapters 12 and 13. For now, we will simply state that the logic for
handling the interrupt function is the business of the ICL section. The
system reset (RES) line also is part of the ICL. The system reset is
activated manually by the user, or automatically by a power-on reset
circuit. The RES line on many computers is nothing more than a
hardware “Jump to 0000” instruction. On the 6502, however, RES is

a vectored jump, meaning that it will jump to a location specified by
the contents of memory locations FFFCH and FFFDH.

Processor Status Register (PSR). The PSR is an 8-bit/internal register

that is used to indicate that status of certain processor functions. Each
bit of the PSR is a “flag” and is independent of the other bits of the
PSR. The flags tell the world the CPU status by being either set (1) or
reset (0). The state of each flag is determined either by program control
or by the result of the last operation. For example, the interrupt mask
flag (I-flag) can be set or reset directly by SEI or SLI instructions,
respectively. However, the Zero Flag (Z) is set or reset according to
the results of operations on accumulator data. Arithmetic and logical
instructions, for example, will leave Z = 0 if the result stored in the

accumulator is non-zero, and Z = 1 if that result is zero. The six flags
of the PSR are:

Negative result (bit 7 = 1)

Zero result (all bits = 0)

Carry Flag (arithmetic produced a result, carry)

Interrupt mask flag

Decimal mode flag

< 0D" ON Z Overflow flag

Timing Section. Computers operate synchronously with one or more
system clocks. The 6502 uses three clock signals: ®,, ®,, and ®,. The
®, and ®, clock signals are internally generated by the timing section,

6502 Internal Structure 23

and are available as outputs (see Chapter 3). The ®, clock is the master
system clock, and is generated externally to the 6502.

Stack Pointer (SP). The SP register contains the low order byte within
Page One (0100H to 01FFH) where the stack is located. The push (i.e.,
PHA and PHP) and pull (i.e., PLA and PLP) instructions operate the
stack. The higher order byte of the stack start address is always 01H,
with the low order byte (OOH to FFH) being supplied by the SP.

Index Registers X and Y. The X and Y index registers are 8-bit internal
registers used in the indirect indexed addressing. In that form of ad-
dressing, the contents of either X or Y registers are added to a 2-byte
address fetched from memory as a part of the instruction. The X and
Y registers can also be operated on by certain instructions, such as
load, store, increment, decrement, and exchange data.

Program Counter (PCL and PCH). The program counter is a pair of
8-bit registers which contain the address where the next instruction
to be executed is stored in memory. When taken together, PCL and
PCH form a 16-bit address. When the reset line on the 6502 is brought
LOW, either by the power-on reset circuit or by a manual reset button,
the program counter is loaded with the address bytes stored at locations
FFFCH and FFFDH. In other microprocessors, the reset causes a jump
to location O000H.

The program counter is altered in several ways. Every time an
instruction is executed, the program counter is incremented by the
number of bytes required for that instruction: a 1-byte instruction
increments PC by 1, a 2-byte instruction by 2, etc. For example, in
Figure 2-2, the main program encounters an add with carry (ADC)
instruction at location 0201H. This particular form of ADC uses a form
of addressing in which the operand is stored at a location denoted by
the 2 bytes following the ADC. The op-code is stored at location 0204H.
Thus, the program counter increments directly from 0201H to 0204H
as ADC is being executed.

Instruction Program Counter

Figure 2-2. Operation of the program counter (an example)

24 6502 ARCHITECTURE

Main Program Program

Address | Instruction Counter

Program
Counter

(A)

Figure 2-3. Operation of the program counter during the BNE (branch on
not-equal to zero) instruction A) forward branch.

Another way to alter the contents of the program counter is to
execute a branch instruction such as BNE, BEQ, BCC, and BCS. These
instructions use relative addressing. This term means that the program
counter will be modified by an amount denoted by the second byte
of the instruction. Forward branches are determined by using a positive
hexadecimal number, while backward branches are denoted by a two’s-

6502 Internal Structure 25

Main Program
Program

Address | Instruction Counter

Not Equal

(B)

Figure 2-3 (continued). B) backward branch

complement equivalent negative hexadecimal number. For example,
consider the branch on result not equal to zero (BNE) instruction shown
in Figures 2-3A and 2-3B.

The BNE instruction examines the Zero Flag (Z) in the Processor
Status Register for Z = 0, which indicates that the result of a previous
operation was not equal to zero. BNE will fall through to the next
instruction in sequence (e.g., 0209H in Figure 2-3A) if the result was

26 6502 ARCHITECTURE

zero (Z = 1). If the result was non-zero (Z = 0), then BNE forces a
jump forward or backward a number of steps denoted by the second
byte of the instruction. It does this neat trick by altering the program
counter contents. Two situations are given in the figures; a forward
branch is shown in Figure 2-3A, while a backward branch is shown in
Figure 2-3B. Let’s consider the forward branch first.

Figure 2-3 shows a forward branch BNE operation from location
0207H. The op-code for BNE is stored at 0207H and the operand 06H
is a positive hexadecimal number, so the program will branch six steps
forward when the branch condition (i.e., Z = 0 for BNE) is satisfied.
Consider first the situation where the condition is not satisfied
(Z = 1). When BNE is encountered, it reads Z to determine status (1
or 0). If Z = 1, then the condition is not satisfied, so the program “falls
through” to the next instruction. Since BNE is a 2-byte instruction,
the next location is 0207H +2, or 0209H. When the condition is not
met, therefore, the program counter is incremented from 0207H to
0209H.

The alternate situation in Figure 2-3A is when the condition is
satisfied (Z = 0). Since the second byte is 06H, the instruction BNE
will cause a branch forward by six steps; the program counter is altered
by +6 to 020EH. Notice that the six steps are counted from the next
step following the BNE and its operand, i.e., 0209H is the base for the
count, not 0207H.

The backward branch situation is shown in Figure 2-3B. The
situation for condition not satisfied is exactly the same as the other
case. The program counter will be advanced from 0207H to 0209H.
For example, for a backward branch of six steps we would use the
two’s complement of —6, which is FAH, in the second byte. Counting
from the address of the next instruction (0209H), six steps would bring
us to 0209H; the program counter is altered to 0203H.

One final way to alter the program counter is to execute either
a jump instruction or an interrupt. In both cases, the operation transfers
control to some other memory location by altering the PC contents.

The 6502 program counter is divided into two 8-bit registers
called PCL and PCH. The PCL register outputs the low byte of the
16-bit address, while PCH outputs the high byte of the address. PCL
and PCH forms the 16-bit address.

MEMORY ALLOCATION RESTRAINTS

Memory space in microcomputers is usually divided into “pages” of
256 bytes each. Page zero is 0000H to OOFFH, page one from 0100H
to O1FFH, page two from 0200H to 02FFH, etc. On the 6502, we are

Memory Allocation Restraints 27

constrained from using locations in page zero, page one, and page
FFH.

Page Zero. Memory locations from 0000H to OOFFH are in page zero,
and are used in two different addressing modes: zero page and indirect.
In zero page addressing, the CPU assumes that the high order byte of
the address is 00H, while the low order byte is the second byte of the
instruction. In indirect addressing, the second byte of the instruction
points to a location in page zero where the low order byte of the
intended address is stored; the high order byte will be stored at the
next higher memory location. Since there are 256 locations in page
zero, we can store up to 128 pairs of address bytes.

Page One. The “stack” is a section of memory used by the processor
for such chores as the temporary storage of program counter contents
when the processor goes to a subroutine. In the 6502, the stack is in
page one (from 0100H to 01FFH). Usage of either page zero or page
one addresses should be done cautiously because of these pre-emptory
uses.

Page FFH. The six highest bytes in page FFH are predesignated for
certain vectors, arranged in three pairs. These vectors are the addresses
where the computer goes on reset and on both types of interrupt.
These locations are pre-allocated as shown in Figure 2-4.

Memory Location Use Comment

FFFFH IRQ Interrupt request line (IRQ) low causes processor
FFFEH to jump to the memory location specified in these

two bytes. The high order byte of the 16-bit address
is stored at FFFFH, while the low order byte is at

FFFEH.

FFFDH RESET Reset low causes jump to address specified by the
FFFCH contents of these locations: FF DH contains the

high order byte, FFCH contains the low order byte.

FFFBH NMI Nonmaskable interrupt request. See IRO above.
FFFAH High order byte is stored at FFFBH, low order byte

at FFFAH.

Figure 2-4. Vector locations for IRQ, RESET, and NMI

6502 Pinouts

The 6502 microprocessor is housed in a 40-pin Dual Inline Package
(DIP). This package is shown in Figure 3-1 with the pinout designations
that apply to the 6502. Note that most microprocessor chips use NMOS
technology, so appropriate anti-static handling procedures must be
followed lest the IC be zapped into never-never land.

6502 Pinouts by Pin Number

1 V.. 0 to +7 volts
2 RDY Ready
3 ®, (out) Phase-1 clock output
4 IRQ Interrupt request
5 N.C (no connection)
6 NMI Nonmaskable interrupt
7 SYNC Synchronization
8 Vn. +5 volts
9 ABO Address bus bit 0

10 AB1 Address bus bit 1

11 AB2 Address bus bit 2

12 AB3 Address bus bit 3

13 AB4 Address bus bit 4

14 AB5 Address bus bit 5

15 AB6 Address bus bit 6
16 AB7 Address bus bit 7

17 AB8 Address bus bit 8
18 AB9 Address bus bit 9

19 AB10 Address bus bit 10

29

30

Figure 3-1.

6502 PINOUTS

6502 pinouts

6502 Pinouts by Pin Number (continued)

20 ABI1
21 V3.
22 AB12
23 AB13
24 AB14
25 ABI15
26 DB7
27 DB6
28 DB5
29 DB4
30 DB3

_ RES
$¢ (OUT)

ona wt oo ono F&F W ND

10

—_ —_

R6502

Address bus bit 11
0 to +7 volts

Address bus bit 12
Address bus bit 13
Address bus bit 14

Address bus bit 15
Data bus bit 7
Data bus bit 6

Data bus bit 5

Data bus bit 4
Data bus bit 3

31
32
33
34
35
36
37
38
39
40

Designation

DBO — DB7

DBO

DB1

DB2

DB3

DB4

DB5

DB6

DB7

ABO — ABI5

ABO

AB1

AB2

AB3

AB4

ABS

6502 Pinouts 31

6502 Pinouts by Pin Number (continued)

DB2 Data bus bit 2
Data bus bit 1
Data bus bit 0
Read/Write
(no connection)
(no connection)

Phase-0 clock input
Set overflow flag
Phase-2 clock output
RESET

6502 Pinout Descriptions

Pin

(below)

(below)

Description

Eight-bit bidirectional data bus.
LOW (logical-0) is V,, to V,, + 0.4
volt; input HIGH is V,, + 2.4 volts
to V,,,

data bus bit 0
data bus bit 1
data bus bit 2
data bus bit 3
data bus bit 4
data bus bit 5
data bus bit 6
data bus bit 7
Sixteen-bit address bus capable of ad-

dressing up to 65,536 (64K) unique
memory locations. These lines are
all outputs, and produce the same
HIGH and LOW voltage levels as
the data bus lines will respond to;
ie., output-LOW (logical-0) is V,,
to V, +0.4 volt, while output-
HIGH (logical-1) is V,, +2.4 volt to

Vc

address bus bit 0

address bus bit 1

address bus bit 2

address bus bit 3
address bus bit 4

address bus bit 5

32 6502 PINOUTS

6502 Pinout Descriptions (continued)

Designation Pin Description

AB6 15 address bus bit 6
AB7 16 address bus bit 7

AB8 17 address bus bit 8
AB9 18 address bus bit 9
AB10 19 address bus bit 10

ABI1 20 address bus bit 11

AB12 22 address bus bit 12

ABI13 23 address bus bit 13

AB14 24 address bus bit 14

ABI15 25 address bus bit 15

®, 37 Phase-0 system clock input. Either
an RC timing network (not rec-
ommended) or an external crystal
clock oscillator will supply a 1 mHz
signal (2 mHz in some versions) to
this pin

®, 3 Phase-1 clock output; generated in-

ternally from ®, clock; comple-
ment of phase-2 clock

ob, 39 Phase-2 clock output; generated in-
ternally from ®, clock; comple-
ment of phase-1 clock

R/W 34 Indicates the direction of the data on
the data bus; when this line is
HIGH, the CPU is processing a
read (input) operation; when this
line is LOW the CPU is processing
a write (output) operation

Interrupt request, this active-LOW
input is used to interrupt the, pro-
gram being executed so that a sub-
routine can be executed instead.
This interrupt input is maskable,
so it will cause a response ‘only if
the internal interrupt flag of the
Processor Status Register is ena-
bled

Nonmaskable interrupt; similar to

the interrupt request line (IRQ),
except that this active-LOW input
is always active, and cannot be dis-

E- O rN

Z o>)

Designation

SO

6502 Pinouts 33

6502 Pinout Descriptions (continued)

Pin Description

40

38

abled by the programmer. Pro-
gram will execute an interrupt
subroutine instead of the main
program as soon as the current in-

struction is finished execution
Reset; active-LOW reset input. Es-

sentially a hardware jump instruc-
tion to a location in memory
designated by a reset vector in
page FFH

Ready; this signal is an input that will
insert a wait state into the normal
machine-cycle sequence. The
RDY line is normally held HIGH,
and must make a HIGH-to-LOW
(negative-going) transition during

the phase-1 = HIGH clock cycle
in any operation other than a write

Set overflow flag; this input will set
(HIGH) the overflow flag if it
makes a HIGH-to-LOW (negative-
going) transition during the trail-
ing edge of the phase-1 clock cycle

Active-HIGH output that is used to
indicate the instruction-fetch ma-
chine cycle

no connection

0 to +7 volts DC; usually grounded
(0-volts)

0 to +7 volts; usually +5 volts DC

(makes system TTL compatible)

Timing and Control
Signals

If your interest in computers is only to program in BASIC or assembly
language, then you have little need to understand the workings of the
chip. If, however, your needs and interests are in interfacing, computer
design, or design of microprocessor-based instruments, then a thorough
knowledge of the chip is necessary. Of critical importance are the
control signals and timing system for the chip. These matters intimately
affect design and interface efforts. For the 6502 microprocessor chip
we need to consider the following:

Data Bus

Address Bus

R/W

Data Bus Enable

Ready

Interrupt Request

Nonmaskable Interrupt

Reset

Synchronization

Set Overflow

DATA AND ADDRESS BUSES

The two independent buses on the 6502 microprocessor are data and
address. Each of these buses is a multi-bit parallel data path; the data

35

36 TIMING AND CONTROL SIGNALS

bus is 8-bits long, while the address bus is 16-bits long. Each bus op-
erates with TTL-compatible voltage levels, which are:

Logical - 0 (LOW): 0 to + 0.8 volts

Logical - 1 (HIGH): +2.4 to + 5 volt

Each bus is a parallel path, so we find one 6502 terminal for each
bit (see Figure 4-1). For both data and address buses, the 6502 will
drive capacitance of at least 130 pF and one standard TTL input (i.e.,
it has a “fan-out” of 1 into 130 pF); one “TTL load” equates to a drive

current of 1.8 mA at TTL voltage levels as given here, and is the
specification for the load imposed by the input circuit of a TTL device.
Thus, a fanout of 1 means the 6502 bus pins can each drive only one
TTL device. To overcome this limitation, which 6502 shares with all

other microprocessor chips, we must use high power bus driver chips
between the 6502 and its two buses. These chips have a fan-in of 1,
and fan-outs of 30, 100, or even 200. Most bus driver chips are arrays

of noninverting TTL buffers.
The data bus consists of 8 parallel bits labelled DBO through DB7.

The data applied to DBO-DB7 must be stable (i.e., valid and unchang-
ing) for the last 100 nanoseconds (100 nS) of the phase-two (2) clock
pulse. The data bus is said to be bidirectional because data flows both
into and out of the 6502 via this route.

The address bus consists of 16 parallel data tracks which carry
the address of the location in memory where the data or instruction

Data Bus Address Bus

Bit Pin Bit Pin

DBO 33 A@ 9

DBI1 32 Al 10

DB2 31 A2 11

DB3 30 A3 12

DB4 29 A4 13

DB5 28 A5 14

DB6 27 AG 15

DB7 26 A7 16

A8 17

AQ 18

A10 19

All 20

A12 22

A13 23

Atl4 24

A15 25

Figure 4-1. Address and data bus pinouts

Ready (RDY) 37

is located. During phase-1 of the clock cycle, the contents of the pro-
gram counter are output to address bus bits A@ through A15. The data
on the address bus are valid from 300 nS after the beginning of phase-
1, and remain valid until the beginning of the next phase-1 cycle. The
address bus is said to be unidirectional because data only flows in one
direction, i.e., from the 6502 to memory. Since there are 16 bits on

the address bus, the 6502 can uniquely address 2”°, i.e., 65,536 (64K)
different memory locations.

R/W LINE

The read/write (R/W) line tells memory and all who are interested
whether a read or write operation is taking place. The line will be
HIGH for a read, and LOW for a write. Like the bus lines, R/W line

can drive one TTL load (i.e., 1.8 mA into 130 pF of capacitance).
The R/W line remains HIGH for all processor operations except

a write. The operation of this line is coincident with the address bus,
so all transitions on R/W line occur during the phase-1 clock pulse.

The R/W line is used in controlling the operation of memory
I/O devices and other devices. This timing protocol will be discussed
later in this chapter.

DATA BUS ENABLE (DBE)

The DBE line is not used on the 6502, but is used on the companion
6512 device. The DBE is found on pin 36 of 6512, which is N.C. (no
connection) on 6502. This line is used to lengthen the phase-2 clock
long enough for an external device to input data to the 6502. Most
peripheral devices operate at slower speeds than the 6502, so will not
be compatible unless a DBE signal, or software equivalent, is provided.

READY (RDY)

The RDY line on the 6502 is similar in function to the WAIT line on
the Z-80 chip. The function of the RDY line is to delay execution of
a read operation long enough to permit slower devices to catch up.
Certain types of memory—EPROMs, for example—have long access
times. An older EPROM (1702A) has an access time of approximately
1 mS. This specification means that stored data will not be available
at the EPROM output until 1000 microseconds after a stable address
appears on the address bus and the chip select is activated. Since the
6502 operates at 1 mHz (on some versions, 2 mHz), the memory has

38 TIMING AND CONTROL SIGNALS

to respond much faster than 1mS. The RDY line will cause the 6502
to delay, i.e., wait, to allow the slow memory device or peripheral to
catch up.

Transitions on the RDY line should take place during phase-1, so
they can be recognized during phase-2. RDY only affects read cycles.
If the line is active (i.e., it sees a HIGH-to-LOW transition) during a
write cycle, the 6502 will continue to function but will stop executing
during the next read cycle.

INTERRUPT REQUESTS (IRQ AND NMI)

The interrupt lines cause the program to cease executing the current
program and switch instead to executing a secondary program. When
either interrupt line goes LOW, the 6502 will:

I. Finish executing the current instruction.

2. Increment the Program Counter to the next location that
would normally be used.

3. Push the address in the PC out to the internal stack so that it

may be saved.

4. Jump to the location of the interrupt subroutine pointed to by
vectors stored in Page-FF.

5. If the last instruction in the subroutine is RTI (return from
interrupt), then the 6502 will retrieve the address stored on
the external stack (in page-1) and return to the main program
where it would have gone if no interrupt had occurred.

Interrupts are used for a variety of purposes including serving
very slow peripherals, responding to alarms, or servicing devices or
events which occur but rarely.

The two active-LOW interrupt lines on the 6502 are NMI and
IRQ. The NMI is a nonmaskable interrupt. When this line is brought
LOW, the interrupt will occur regardless of anything the program has
done. The other line IRQ (interrupt request) is maskable by the pro-
gram. Before responding to IRQ, the 6502 interrogates the interrupt
disable (I) flag in the Processor Status Register. If the I-flag is set
(HIGH), then the 6502 will not respond to IRQ. The 6502 sets the
I-flag whenever a reset is activated or when an SEI instruction is
executed. The CLI instruction will reset the flag, and thereby enable
the 6502 to respond to interrupts.

6502 Clock Timing 39

RESET (RES)

The reset line forces the 6502 to initialize the PC at a location specified
by reset vectors stored at locations FFFCH (low-order address byte)
and FFFDH (high-order address byte). On most 6502-based micro-
computers, there are two ways to activate (bring LOW momentarily)
the RES line: manually (by pushbutton switch) and during the power-
on period when power is first applied to the 6502.

The RES line is essentially a hardware JUMP-Indirect instruction
whose argument is FFFCH and FFFDH.

SYNCHRONIZATION (SYNC)

The SYNC is an active-HIGH output signal that goes HIGH during
phase-1 cycles in which an op-code fetch operation is taking place. The
purpose of SYNC, therefore, is to identify op-code fetch cycles.

SET OVERFLOW (SO)

The SO terminal will cause the overflow flag (V) of the Processor Status
Register to be set (made HIGH). This active-LOW line looks for a
HIGH-to-LOW transition, and is TTL compatible. The SO line is in-
tended to work with special I/O interface chips, so will not normally
be used elsewhere.

6502 CLOCK TIMING

The three clock pins on the 6502 are: ®, (pin 37), ®, (pin 3), and ®,
(pin 39). Programmable digital computers operate in a synchronous
mode in which the master system clock keeps operations in proper
step.

The phase-0 (i.e. ®)) clock is an input on the 6502, and receives
the signal from an external clock oscillator circuit. The phase-1 and
phase-2 clocks are derived from phase-0, and are complementary to
each other. Figure 4-2 shows the relationship between phase-1 and
phase-2. Since these signals are complementary, one will be HIGH
(logical-1) when the other is LOW (logical-0), and vice versa. The clock
outputs are TTL compatible, so are between 0 and 0.9 VDC when
LOW, and between + 2.4 and +5 VDC when HIGH. The total duration
of these pulses—(Phase-1) + (Phase-2)—is the cycle time (Tyce) of the
6502. If the normal clock speed of 1 mHz is used, then the cycle time
is 1 pS (one microsecond) and each phase is 500 nanoseconds. In any

40 TIMING AND CONTROL SIGNALS

(
— Phase 1—»1<—— Phase 2 —»+<—— Phase 1——-»}-~«—4 Phase 2 >

I

+———— Tevete

Figure 4-2. Two-phase system clock

given system, of course, the actual cycle time will be the reciprocal of
the clock frequency—T.,a. = 1/F cc. 6502 devices are available with
clock frequencies up to 2 mHz, although the standard device operates
at 1 mHz.

Figure 4-3 shows four different clock circuits used on 6502 mi-
crocomputers. Three of these clock oscillators are crystal controlled,
while one is RC times. Crystals are piezoelectric devices which mimic
the behavior of LC resonant tank circuits, and exhibit generally better
frequency stability than RC networks. The RC version is sometimes
preferred in low-cost applications, even though the unit cost of crystals
is now low enough to make such considerations suspect except in the
cheapest mass market products.

(A)

Figure 4-3. Typical main clock circuits A) RC operated.

6502 Clock Timing 41

(B)

(C)

R3 R2 R1
3.3 K 1.8K 1.8K

a
Y To Input

Y1
1-5 MHz

(D)

Figure 4-3 (continued). 8B) crystal controlled, C) alternate crystal controlled,
D) external crystal controlled. Y1: CTS-Night M-P Series (or equivalent)

42 TIMING AND CONTROL SIGNALS

The active element in each of the four circuits is a TTL inverter,

in these cases a 7404 device. The 7404 is a hex inverter (six inverters
in one package), of which two are used. Other TTL devices can also
be used as inverters. If one or two 7400 or 7402 devices are available
in the design, then they can be wired as inverters. The 7400 is a quad
two-input NAND gate, while the 7402 is a quad two-input NOR gate.
On either device, if both inputs of any one section are shorted together
that section becomes an inverter. Additionally, the following circuit
configurations also provide inverter action:

I. On 7400, tie one input HIGH (to +5 VDC through 2.7 kohm)
and the remaining input works as an inverter input.

2. On 7402, tie one input LOW (to ground) and the remaining
input works as an inverter input.

Figures 4-3A and 4-3B are connected to the phase-0 and phase-
2 pins of 6502. The resistors will be between 0 and 500 kohms, while
the capacitors are 2 to 12 pF.

Figure 4-3D shows a circuit that is totally external to the 6502.
This circuit is also based on TTL inverters and is crystal controlled.
The crystal used for this circuit, and certain other similar clocks, is a

CTS-Knight MP-series device operating at 1 mHz, unless a 2 mHz CPU
is used! The exact frequency is not critical unless a lot of timing loops
in programming are anticipated.

READ/WRITE CYCLE TIMING

Data are input or output from the 6502 over the data bus during read
and write operations. External memory and I/O port devices must be
addressed and turned on at the appropriate time to supply or receive
data. This operation is controlled by the system clocks and the R/W
line. In this section we will discuss the action of the control signals
during both forms of operation.

The timing for a write cycle is shown in Figure 4-4. Keep in mind
that data direction statements are always made from the CPU point
of view. Thus, a data write operation is the transfer of data from the
CPU to some external memory location or I/O port. Since the 6502
uses memory-mapped I/O, the same write timing scheme serves for
both memory write operations and writes to output ports.

When the CPU executes a write operation, the R/W line drops
LOW and the address of the intended destination is output to the
address bus. This action occurs during phase-1, which begins at time
tp in Figure 4-4. Neither the R/W line nor the address are stable

Read/Write Cycle Timing 43

+

1
0

+

$2
0

+

R/W
0 .

AddressBus EE ees

|
|
|
I
|
|

+ I
Data Bus | \ € Data >
DB@-DB7 0 Valid

|

>
To T, To Ts Ty

|+—— Phase 1 —+|+— Phase 2

Figure 4-4. Write cycle timing diagram

immediately after the onset of phase-1, but rather require a time delay
of about 300 nanoseconds (time t, in Figure 4-4). Following t,, the
address will remain valid, and the R/W line remains LOW during the
remainder of phase-1 and all of phase-2. The actual data transfer takes
place during the last 100 nanoseconds of phase 2. The entire cycle
(sum of phase-1 and phase-2) requires 1 microsecond, or 1000 nano-
seconds, when the clock operates at 1 mHz. In that case, the memory
or I/O devices have approximately 575 nanoseconds between the ini-
tiation of a valid address and the onslaught of data from the 6502 to
the data bus. This time period consists of the 1000 nS cycle time less
address set-up time (300 nS), data valid time (100 nS), and transition
times (about 25 nS). In a later chapter we will discuss address decoding

44 TIMING AND CONTROL SIGNALS

and device select signal generation based on the waveforms of Figures
4-4 and 4-5.

The read cycle waveforms are shown in Figure 4-5. During a
read cycle, data is transferred from some external memory location or
I/O port to the 6502 CPU. The read cycle is exactly like the write
cycle described above, except that the R/W line goes, or remains
HIGH. The timing is otherwise approximately the same as for writes.

Logic circuits for selecting the memory or I/O device addressed
will be discussed later.

+

>; (| \ f
|

b2

A@-A15

+ l
Data <j s p—

0 | | l]
+300 ns! } +1109 ns be

T, T, T, T, 1,

met ah ma |
Figure 4-5. Read cycle timing diagram

6502 Addressing Modes

One way to judge the potential usefulness of a microprocessor is to
examine the addressing modes, i.e., the number of different ways data

can be addressed. Depending upon how you define address modes, we
find the 6502 offering from 10 to 13 different modes. This fact makes
6502 either equal to Z80, or better by three modes.

Having a large number of addressing modes permits the pro-
grammer a certain degree of flexibility that is lacking on more limited
processors. Figure 5-1 is a brief summary of 6502 addressing modes
and the normal assembly language operand form. Following are sum-
maries of the addressing modes for 6502.

ACCUMULATOR MODE ADDRESSING

The accumulator mode of addressing is an implied form that is unique
to the rotate and shift instructions (ASL, LSR, ROR, and ROL). The
shift instructions cause data in either the accumulator or a memory
location to shift 1 bit right (LSR) or left (ASL). The rotate instructions
are similar to the shifts, except that the rotated data is placed back
into the accumulator and carry bit.

RELATIVE ADDRESSING MODE

Relative addressing mode is used for the branch instructions (i.e., BNE
and BEQ). In relative addressing, the contents of the program counter
are altered by a displacement factor, which can be either positive or

45

46 6502 ADDRESSING MODES

Accumulator A

Relative nn, nann

Immediate nn

Absolute annn

Zero Page nn

Implied -

Indirect Absolute (nnnn)

Absolute Indexed, X nnnn, X

Absolute Indexed, Y annn, Y

Zero Page Indexed, X nn, X

Zero Page Indexed, Y nn, Y

Indexed Indirect (nn, X)

Indirect Indexed (nn), Y

(“‘n” is a Hexadecimal Number @-A)

Figure 5-1. 6502 addressing modes

negative. The purpose of this mode is to allow shift of program control
using only a 2-byte instruction. The first byte is the op-code, while the
second byte is a signed two’s complement number that represents the
displacement integer e. Since this is a 2-byte instruction, and the branch
cannot occur until the instruction is finished, the program counter will
increment twice before the branch occurs. This accounts for the dif-
ference between the two jump ranges (+127 and — 128).

Let’s consider some examples. In both, the effective address is
computed by adding the displacement integer e, the second byte, to
the program counter at the end of instruction execution. Figure 5-2
shows an example of a forward branch operation. The instruction con-
sists of 2 bytes at 0200H and 0201H; the op-code is at 0200H, while

the displacement integer is at 0201H. The jump will occur at the end
of instruction execution, if the condition for the branch is satisfied. If

the condition is not satisfied, then the program counter contents will
be 0202H. In this particular example, the displacement integer e is
06H, which designates a forward branch of +6. If the condition is
satisfied, the program counter will jump to 0206H. This means that
the next instruction to be executed will be that at 0206H. The maxi-

Immediate Addressing Mode 47

0200 (Byte-1) OP-CODE

0201 (Byte-2) 06H

0202 (PC if Condition not Satisfied)

0203

0204

0205
0206 (PC if Condition is Satisfied)

0207

0208

Figure 5-2. Forward branch operation

mum values allowed for the displacement integer are 7FH (+127,,)
for forward branches, and 80H (—128,,) for backward branches.

The backward branch situation is shown in Figure 5-3. The 2-
byte instruction is located at 0208H and 0209H; the op-code is at
0208H, while the displacement integer is at 0209H. The jump will
occur when this instruction has completed execution. If the condition
for the branch is not satisfied, then the program “falls through” to
location 020AH; the program counter will then contain 020A rather

than 0208H. But if the condition is satisfied, the program counter will
contain the backward branch displacement integer, which in this case
is the two’s complement of —5,9, or FBH.

IMMEDIATE ADDRESSING MODE

The immediate addressing mode permits the use of a 2-byte instruction
to operate on either the accumulator or an index register. Examples
of instructions which have immediate mode addressing are ADC and
LDA. The second of the 2 bytes is used as the operand, and is therefore
the data which operates on the contents of the register or accumulator
addressed; no additional data fetches from memory are needed. The
mnemonic form used to write immediate mode instructions is ADC,

0200
0201

0202

0203

0204

0205 (PC if Condition is Met)

0206

0207

0208 (Byte-1) OP-CODE

0209 (Byte-2) FBH (—5)

020A (PC if Condition is not Satisfied)

Figure 5-3. Backward branch operation

48 6502 ADDRESSING MODES

n or ADC, #n (the latter is preferred in order to distinguish immediate
mode from relative or zero page mode instructions).

We used ADC and LDA as examples here. Let’s see how those
instructions work with immediate mode addressing. The LDA instruc-
tion loads accumulator with data. In LDA, #n, the operand n is the
next byte in sequence following the op-code:

Byte 1 op-code

Byte 2 (n)

If we load the hexadecimal number 80H into the accumulator,
what would the instruction look like? Since A9H is the op-code for
LDA when immediate addressing is used, we would see:

Location Code

Byte 1 0500 A9 op-code
Byte 2 0501 80 (n = 80H)

assuming this program segment is stored at 0500H in memory.
This program segment will load the accumulator with the hex-

adecimal number 80H. Since this 2-byte instruction only requires two
clock cycles, it will execute in only 2 pS.

The ADC instruction adds a data byte from memory to the con-
tents of the accumulator, and generates a carry if indicated. The op-
code for ADC when immediate mode addressing is used is 69H. Let’s
assume that the accumulator contains A7H when the following code
is encountered:

Location Code

Byte 1 0500 60 ADC, #n

Byte 2 0501 07 n=07H

This program segment means that the instruction fetched (69H)
is the ADC, #n instruction, and that operand n is the next sequential

memory location, 07H. After the execution of this 2-byte instruction,
the contents of the accumulator will be:

Acc = (Acc)+n

Acc = A7H + 07H

Acc = AEH

Absolute Addressing Mode 49

Immediate mode addressing permits addition by a constant when
ADC is used.

ABSOLUTE ADDRESSING MODE

The absolute addressing mode used to provide an operand from any
location within the 64K is addressable by the 6502. The mnemonic
form of the 3-byte absolute mode instruction is (using the ADC): “ADC,
nnnn.” As usual, the “n” represents a hexadecimal digit (a hexadecimal
digit represents a 4-bit binary number). Since 4 bits is half a byte, some
wags call it a “nybble.” A 4-digit hexadecimal number—e.g., nnnn—
represents a total of 16 bits needed to address 64K of memory.

The operand is fetched from a memory location determined by
the 3-byte instruction. The first byte of the instruction is the op-code,
which tells the computer what is to be done and which addressing
mode is used. The second byte is the low-order byte of the address,
while the third byte is the high-order byte of the address. For example,
the address EF05H will be stored in the format:

Byte 1 (op-code)

Byte 2 05H Low-order address

Byte 3 EFH High-order address

Consider the example in Figure 5-4. Here, we are instructing the
6502 to load the accumulator with the contents of memory location
EFO5H, which is the hex number 80H. The operation is:

1. The program encounters the instruction LDA, EFO5H at
0600H. CPU goes to EFO5H to retrieve number.

| Accumulator

0600 AD (LDA, EFO5) (3)
0601 os nn, | 8 | o |

0602 EF nny,

EFO3
EFO4
EFOS 80H ,

(2) EFOS

Figure 5-4. Absolute addressing mode example

50 6502 ADDRESSING MODES

2. Data from EFO5H is fetched.

3. It is stuffed into the accumulator.

When the operation is finished, the hexadecimal number 80H
will be in the accumulator.

IMPLIED ADDRESSING

In the implied addressing mode there is no external operand, and the
address is implied by the instruction. For example, the decrement x
(DEX) instruction causes the contents of the x-register to be decre-
mented, i.e., reduced by 1; implied is the x-register. No additional
addressing is needed to identify the data because it is the contents of
X.

Other examples of instructions which use implied addressing are:

BRK Force Break

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

DEX Decrement X

DEY Decrement Y

INX Increment X

INY Increment Y

NOP No operation

PHA PUSH Accumulator on Stack

PHP PUSH PSR on Stack

PLA PULL Accumulator from Stack

PLP PULL PSR from Stack

RTI Return from Interrupt

RTS Return from Subroutine

SEC Set Carry Flag

SED Set Decimal Mode

SEI Set Interrupt Disable Bit

TAX Transfer Accumulator to X

TAY Transfer Accumulator to Y

TSX Transfer SP to X

Zero Page Addressing Mode 51

TXA Transfer X to A

TXS Transfer X to SP

TYA Transfer Y to A

ZERO PAGE ADDRESSING MODE

The zero page addressing mode is an abbreviated-absolute mode that
uses only 2 bytes to designate memory locations in page zero (O000H
to OOFFH). In this mode, the high-order byte designating the address
is always 00H. Thus, to address location 0052H using zero page ad-
dressing, we would use the form:

Byte 1 op-code

Byte 2 (n) OOH-FFH

Note that we may still use absolute mode addressing in page zero.
The advantage of zero page addressing is that, for the first 256 bytes
of memory, we can use a more rapid 2-byte instruction. The main
function is to reduce the program time, especially for frequently called
data.

Let’s use ADC for our example. The op-code for ADC in the zero
page addressing mode is 65H. Figure 5-5 illustrates an example where

Accumulator

050 ©
A= A

—_— + 0052 (Oog D

© Oo? mela rele} E

0600 65 ADC, nn

0601 51 nn

0602

0603

Figure 5-5. Zero page addressing mode example

52 6502 ADDRESSING MODES

the contents of the accumulator (A7H) are added to the contents of
memory location 0051H. Our rotation for this operation is:

Ace = Acc + (0051H)

Acc = A7H + 07H

Acc = AEH

(Note: The parenthesis around “0051H” indicate the contents of mem-
ory location 0051H). The operation is:

1. The program encounters an ADC, 51H zero page addressing
instruction at location 0600H; the op-code (65H) is at 0600H
and the zero page address is at 0601H. The contents of the
accumulator are A7H.

2. The 6502 responds to the instruction by going to location
0051H and retrieving the data stored there (i.e., 07H).

3. The 6502 adds the contents of the accumulator (A7H) to the
number fetched from memory location 0051H (i.e., 07H) and
stores the result (AEH) in the accumulator.

Page zero should not routinely contain programming instructions
in complex programs because the zero page addressing mode makes
page zero an ideal place to store frequently called data, temporary
data, short tables, and other data.

INDIRECT ABSOLUTE ADDRESSING MODE

This addressing mode is a subset of absolute mode, but is used only by
the unconditional JUMP (JMP) instruction; JMP also uses absolute ad-
dressing. The indirect absolute mode is a 3-byte instruction with the
mnemonic form:

JMP, (nnnn)

The operand (nnnn) is a 16-bit address at which the actual “jump-to”
address is located. The low-order byte of the destination address is that
actually specified by (nnnn), while the high-order byte of the desti-
nation is found at the next higher address (nnnn +1). Thus, if we want
to store the destination address at memory location EFO5H, we would
write the JMP instruction as follows:

Indirect Absolute Addressing Mode 53

Byte 1 6C Op-code for JMP (indirect)

Byte 2 05 (nn,)

Byte 3 EF (nn,)

Let’s consider an example (see Figure 5-6). Suppose we need to
use indirect absolute addressing for a JMP instruction located at 0601H,
and the destination address is located at EFO5H. Let’s see what
happens:

I. At 0601H, the program counter is JMP (EF05). At the end of
this instruction execution, the PC will contain “EF05.”

2. In response to the change in PC contents, the computer will
jump to EFO5H where it finds the actual destination address,
A008H.

3. The computer now jumps to A008H where an LDA #47H
instruction is encountered. The PC now contains hexadecimal
number 47H. When execution of this instruction is completed,
the PC contents will be A008H +2, or AOOAH.

Why would we want a program in which indirect absolute ad-
dressing is used? Isn’t absolute addressing more reasonable? Under
many circumstances that would be true. The exception is where the
“jump-to” address changes under program control, perhaps in response

Program

CQ) Counter Accumulator

0601 6C JMP, (nnn)

0602 @5 nn

0603 EF nn

EFO2 Ago6
EFO3 A007
EFO4 (3) AQO8 LDA, #47H
EFOS5 08 9 47H
EFO6 AO AQOA
EFO7 AQOB

Figure 5-6. Indirect-absolute addressing mode example

54 6502 ADDRESSING MODES

to different conditions. Consider the hypothetical security alarm in
Figure 5-7. Here we have a computer monitoring both fire and burglar
alarm sensors. Obviously, the response to a fire on the premises requires
a different response than to an intruder. Three different conditions
can occur:

1. Fire alarm.

2. Burglar alarm.

3. No alarm.

The sensors are designed to input to the computer a hexadecimal
number that serves the function of identification. This hex number
code serves as the high-order byte for the subroutine that services that
sensor. Note that either hardware initiated or software initiated
schemes are used to obtain the code. The operation of this program
is:

0200 6C JMP@300
0201 00

0202 03

(2) | Fire Sensor
0300 00 Load 0301

with AQ

Burglar Sensor

Load 0301
with Al

Fire Alarm No Alarm Burglar Alarm
Subroutine Subroutine

A000 A200 (Load 0301 with A100
AQG1 A201 A2H and Jump A101
AQG2 A202 to 9200) A102

A203

A204

d@ }
)-——_____——

Figure 5-7. “Fire alarm” problem

6.

Absolute Indexed X and Y Addressing Mode 55

. The program encounters a JMP (indirect absolute) instruction
at 0200H.

. The operand for the JMP at 0200H is 0300H, so the program
goes to 0300H to fetch the actual address of the destination.
The low-order byte (at 0300H) is always 00H, while the high-
order byte is determined by the sensor that is active.

. The sensor has input appropriate code.

. The program branches to either AOOOH, A100H, or A200H,
depending upon course of action required.

. If either the burglar or fire alarms were activated, the program
will go to the no-alarm subroutine to reset the system after
the alarm clears.

The sequence starts over.

In addition to these examples, the JMP (nnnn) mode can be used
to designate peripherals. If we label the peripheral ports 1, 2,3...
etc., then we can load the JMP operand bytes with the address of the
subroutine that services that particular device.

ABSOLUTE INDEXED X AND Y ADDRESSING
MODE

The absolute indexed addressing mode is used for such purposes as
accessing data stored in an array or look-up table. The effective address
of the instruction using this mode is the sum of the operand and the
contents of either X or Y index registers. The form of such instructions
is:

Byte 1 op-code

Byte 2 (nn,) low-order address byte

Byte 3 (nn,) high-order address byte

The actual address of the data will be either:

or,

nnnn + X

nnnn + Y

If, for example, the X register contains 24H, and the instruction
“LDA, 0400X” is encountered, the accumulator will be loaded with

56 6502 ADDRESSING MODES

the data stored at 0400H + 24H, or 0424H. Another example (shown
in Figure 5-8) is:

I. At 0200H the program encounters LDA EFOOX.

2. The contents of the X register (08H) are added to EFOOH to
form the effective address EFO8H.

3. Program goes to EF0O8H to fetch data (43H) to be stuffed into
the accumulator.

4, Data is loaded into the accumulator (accumulator contents are
now the data which had been at location EFO8H).

There are several uses for the absolute indexed addressing mode,
especially where tables or data arrays are concerned. A sample appli-
cation is code conversion. Most modern computers use ASCII code to
represent alphanumeric characters. ASCII is a 7-bit code (b0-b6), with
the eighth bit (b7) always LOW. But suppose we want to interface an
old Baudot-encoded teletypewriter (TTY) machine to an ASCII com-
puter? The solution is a code conversion subroutine.

Figure 5-9 shows the flow of a code conversion program that
takes an ASCII symbol from a keyboard and then converts it to a
Baudot word that represents the same character (in this case “Q”’)
before outputting it to a printer or TTY (Note: “Q” is represented by
51H in ASCII and 17H in Baudot). Since this scheme is an ASCII-to-
Baudot routine, the argument of the “LDA, 0800X” instruction is the

X register Accumulator

Y

0200 BD LDA, nnnnX (4)

0202 «EF (2) 1
EF

EF@2

EFQ3

(3) EFO4

EF@5

EF@6

EFQ7

EF@8 43

EF@9

EFOA

Figure 5-8. Absolute indexed (X or Y) addressing mode example

Absolute Indexed X and Y Addressing Mode

“Q”

=)
Keyboard (2)

Baudot Look-up
Table

@ | oeap | ic | w

| 18 [0]

Input
Subroutine

Input 51H
to X Register

® ote
0852 @A

AQO1 Output Port

57

Printer or TTY

Figure 5-9. Code conversion scheme

68 6502 ADDRESSING MODES

ASCII for Q, i.e., 51H. The look-up table is stored in page 8 so that a
character’s Baudot representation will be located at O800H + ASCII.
Thus, since “Q” in ASCII is 51H, the Baudot code for “Q” (17H) will
be located at 0800H + 51H, or 0851H. The operation of this program
is:

I. Operator presses the “Q” on the keyboard .. .

. Thereby sending 51H to the computer.

3. Since the 6502 uses memory mapped I/O, we can use the LDX
instruction to directly input 51H from the port serving the
keyboard to the x-register.

4. The computer sees an “LDA, 0800X”’ instruction so fetches
data (17H) from 0800H + 51H (i.e., 0851H.)

5. Data from 0851H (17H) is loaded into the accumulator.

6. The 17H data loaded into the accumulator is stored at AO01H,
which is the memory location for the output port serving the
printer/TTY machine.

bo

7. The TTY machine sees 17H and responds by typing a “Q”.

Code conversion is not the only application of a table look-up
routine. We can also use this method to process data arrays. For ex-
ample, we could input up to 256 bytes of data in say, page 7, ie.,
0700H to O7FFH. The X-register could be loaded with a number up
to FFH, and then be decremented sequentially until the X-register
contains 00H. After each datum from 0700H-07FFH is fetched, it is

processed and another datum is fetched (see Figure 5-10).
The system shown in Figure 5-10 is an supersimplified “evoked

potentials” computer. In evoked potentials studies, a stimulus (e.g.,
light flash) is applied to the subject repeatedly. By averaging the EEG
(brainwave) signal in a time-coherent manner, we can eliminate the
randomness and lull out only that portion of the signal which is due
to the stimulus. The idea is to average or sum the data occurring at
the same interval after the stimulus with each other. Thus, we must
average all S+10 ms data together, all S+11 ms data together, S+12
ms, S+13 ms, etc., to 500-1000 ms. The system shown in Figure 5-10

is to average all sequential data at the same post-stimulus instant (for
example, $+ 100 ms). The operation is:

1. Analog data is continuously acquired and converted (A/D) to
a representative binary 8-bit word and is input to the com-
puter.

Lamp
Stimulus

— pee _—

Absolute Indexed X and Y Addressing Mode 59

EEG
Amplifier

Victim Input 256-Bytes
of Data and

Store in Page-7

LDX #FF

0700, X

D

Averaging
Subroutine

Figure 5-10. Hypothetical evoked potentials application example

WN GO

. An array of 256 samples of S+ 100 ms data are input and stored
sequentially in 0700H to O7FFH.

. The index register X is loaded with #FFH.

. Data is fetched from 07FFH and stored in the accumulator.

. The X-register is decremented by 1, becoming
FFH—1H=FEH.

. Data in the accumulator is used in an averaging subroutine.

. The X-register is checked for 0 (BNE instruction used).

. Since X # 0, the program branches back to pick up data from
O7FFH—1H, or O0O7FEH. This looping continues until all data
is processed, as indicated by X = 0 condition.

X = 0, so program is ended.

60 6502 ADDRESSING MODES

ZERO PAGE INDEXED (X AND Y) ADDRESSING
MODE

Zero page indexed addressing is a subset of indexed addressing that
uses a 2-byte instruction to designate locations in page 0 (i.e., 0000 to
OOFFH). The effective address is calculated by adding the contents of
either the X or Y index register to a base location specified by the
second byte of the instruction. The form of the instruction is:

Byte 1 op-code

Byte 2 nn (page 0 base address)

The actual effective address will be either:

0OnnH + X (e.g., LDA nn,X)

or,

0OnnH + Y (e.g., LDA nn,Y)

depending upon which index register is specified by the op-code. For
example, suppose we encounter LDA 50, X when the contents of the
X-register are OAH. The effective address is:

0OnnH + X

0050H + OAH = 005AH

Like its cousin, the zero page indexed addressing mode is par-
ticularly useful for lists, arrays, and tables.

INDIRECT INDEXED ADDRESSING MODE

This addressing mode combines the indirect with the indexed mode.
In this mode, the effective address is calculated from the contents of

a location in page zero that is pointed to by an indirect zero page
instruction. The form is:

Byte 1 op-code

Byte 2 nn (page zero address)

The operand (nn) is a location in page zero where the low-order
byte of the indirect address is stored; the high-order byte is stored at
the next higher location. For example, LDA (40), X means that the
low-order byte is at 0040H and the high-order byte is at 0041H.

Indirect Indexed Addressing Mode 61

Consider the example in Figure 5-11. The flow is as follows:

I. At 0200H the LDA (52), X” instruction is encountered.

2. The program jumps to 0052H where it finds the address
EFO5H.

3. The indirect address EF05H is combined with the contents of

the X-register to...

4. Form the sum EF05H + 03H = EFO8H.

5. The effective address is EF08H, so the processor goes to that
location and fetches the contents (3AH).

6. Since this is an LDA instruction, the contents (3AH) of EFO8H
are stuffed into the accumulator.

The technique of indirect indexing is called post indexing.

@

LDA (nn), X

X Register

Accumulator

apt
Figure 5-11. Indirect indexed addressing mode example

62 #6502 ADDRESSING MODES

INDEXED INDIRECT ADDRESSING MODE

This method is related to indirect indexed addressing, except that the
contents of the index register (X or Y) are added to the zero page
address specified by the second byte of the instruction. The form is:

Byte 1 op-code (e.g., LDA (nn,x)
Byte 2 nn

The effective address is the contents of memory location nn+X or
nn+Y. This is usually written:

(nn + X)

and

(nn + Y)

The parentheses mean “the contents of. . .” the argument inside (_).

6502 Status Flags

The processor status register (PSR) is an 8-bit internal 6502 register
which contains information concerning the results of previous opera-
tions. Figure 6-1 shows the details of the PSR, which are summarized
here.

FLAGS

Negative (N) Flag. The N-flag is used by the 6502 to indicate that
the result of executing an instruction is negative. The value of the

B7 B6 B5 B4 B3 B2 B1 BO

Carry Flag (1 = True)

Zero Flag (1 = Result Zero)

Interrupt Disable Flag (1 = Disabled)

Decimal Mode Flag (1 = True)

Break Command Flag (1 = BRK)

Overflow Flag (1 = True)

Result Negative Flag (1 = NEG)

Figure 6-1. 6502 Processor status register flags

63

64 6502 STATUS FLAGS

N-flag is always equal to the value of the MSB (bit 7) in the accumulator.
Thus, the N-flag can also be used in any operation which results in a
change in bit 7. A common example is inputting the 7-bit ASCII data
from a keyboard or other peripheral. In that case, bit 7 will be used
as a strobe to let the computer know that new data are available. The
N-flag can be used to record this fact. The following instructions affect
the N-flag:

ADC CPY EOR LDX PLP TAX

AND CPX INC LDY ROL TAY

ASL DEC INX LSR- ROR TSX

BIT DEX INY ORA RTI TXA

CMP DEY LDA PLA SBC TYA

The N-flag cannot be directly affected by the user, but there are
schemes which programmers can use to indirectly affect the N-flag.
Since LDA, LDX, and LDY affect the N-flag, we can perform a dummy
load operation whose only purpose is to set the N-flag. If, for example,
the Y-register is not being used, then we can set N = 0 using “LDY,
#00” or to N = 1 by using “LDY #80H.” If all three registers are
being used, then we can temporarily store the contents of the selected
register somewhere in page zero of memory, to be retrieved after the
dummy load is completed. We must be sure that the restoration does
not alter the N-flag.

Overflow (V) Flag. The V-flag can be used in two ways by the 6502.
First, it is used in signed binary arithmetic operations to indicate that
the result could not be stored in the low-order 7 bits of the accumulator.
Second, the V-flag is used with the BIT instruction. In that case, the

V-flag is set to the value of B6 in the accumulator. The following
instructions will affect the V-flag:

For signed binary: ADC, SBC

For other operations: BIT, CLV, PLP, and RTI

Break Command (B) Flag. The B-flag will indicate whether an in-
terrupt was the result of a BRK instruction or the result of an interrupt
signal from the outside world. Only the BRK instruction affects the
B-flag. The B-flag will be HIGH (i.e., B = 1) if a BRK is executed, and
LOW (ie., B = 0) at all other times.

Decimal Mode (D) Flag. The D-flag indicates whether the CPU is
operating as a straight binary adder or as a binary coded decimal (BCD)
adder. If the D-flag is set (i.e., D = 1), the D-flag is reset, and the 6502

Flags 65

CPU is in binary mode. The instructions which affect the D-flag are:
SEO, CLD, RTI, and PLP. The SEO (set decimal mode) causes the
D-flag to be directly set to 1; the CLD causes the D-flag to be directly
reset to 0.

Interrupt Disable (I) Flag. The I-flag is used to mask or permit the
operation of the interrupt request (IRQ) line. If the I-flag is set (i.e.,
I = 1), then the 6502 will ignore interrupt requests on the IRQ line
(Note: interrupt requests made on the NMI line are nonmaskable, so
are not affected by the I-flag status). If, on the other hand, the I-flag

is reset (I = 0) then the 6502 will honor interrupt requests. A low on
IRQ will cause the 6502 to switch to the interrupt subroutine pointed
to by interrupt vectors in page FFH.

In normal operation, the I-flag will be set to I = 1 by operation
of the 6502 reset (RES) line. Thus, when power is first applied, and a
power-on reset pulse generated, the I-flag will be set. If the program-
mer wishes to allow interrupts, then the program must clear the I-flag
(i.e., reset to I = 0) using the CLI (clear interrupt) instruction. The
I-flag is also reset to I = 0 by the PLP (pull processor status from stack)
instruction and during an RTI (return from interrupt) if the I-flag was
already zero prior to going to the interrupt subroutine. This latter
condition is necessary because, otherwise, the program would have to
re-execute the CLI instruction or be content with permitting only one
interrupt.

Zero (Z) Flag. The Z-flag is used to indicate whether the result of
the previous instruction was either zero or non-zero. If the result is
zero (OOH), then the Z-flag is 1; if the result is anything other than
00H, then the Z-flag is 0. The main use for the Z-flag is in the test-
and-branch operations, most often involving the BNE (branch on result
not equal zero) and BEQ (branch on result equal zero) instructions.
Note that the Z-flag is not affected during decimal mode (D-flag = 1)
additions (ADC) or subtractions (SBC). The following instructions can
affect the Z-flag:

ADC CPY EOR LDX PLP TAX

AND CPX INC LDY ROL TAY

ASL DEC INX LSR- ROR TXA

BIT DEX INY ORA RTI TSX

CMP DEY LDA PLA SBC TYA

The programmer cannot directly affect the Z-flag, but there are
schemes by which the programmer can indirectly cause the Z-flag to
be set or reset. We can use LDA, LDX, or LDY to load one of the

66 6502 STATUS FLAGS

registers with 00H if we want Z = 1, or any other number (except
OOH) if we want Z = 0. If the register is in use, then temporarily
transfer the contents to a location in page zero. As with the N-flag,
however, one must be careful not to affect the Z-flag when data are
recovered.

Carry (C) Flag. The C-flag is used to indicate a carry or borrow
situation resulting from an arithmetic operation. In some cases (the
shift/rotate instructions), the C-flag becomes a ninth bit in the accu-
mulator. Instructions affecting the C-flag are:

ADC PLP

ASL ROL

CLC ROR

CMP RTI

CPX SBC

CPY SEC

LSR

The carry flag can be set (C = 1) by SEC, and reset (C = 0) by
CLC. Sometimes, when arithmetic or logical operations do not produce
the expected result, a little investigation reveals that the C-flag had
been set on a previous operation and will therefore affect the current
result. In that case, a CLC is executed to clear the carry flag.

MANIPULATING PSR

Two instructions will help us manipulate the processor status register
(PSR) flags: PHP and PLP. The PHP instruction pushes the contents
of the PSR onto the stack indicated by the 6502 Stack Pointer (SP)
register. The PLP reverses the order, and pulls the next value off the
stack and places it in the PSR. The effect of PLP can be profound,
especially if the stack is used again after PHP. Be careful!

6502 General

Instruction Set

The 6502 instruction set is not as extensive as, say, the Z-80™ instruc-

tion set, but is sufficiently flexible to permit al] functions expected of
a microprocessor. In this chapter we will discuss the instructions gen-
erally, leaving specific details for the tables in Chapter 16.

INSTRUCTIONS

An instruction tells the computer what operation is to be performed.
To the computer, these instructions are binary numbers (sometimes

written as a 2-digit hexadecimal number) stored in memory. These
instructions look like all other binary numbers in memory. The way
the computer knows that a given number is an instruction, rather than
a data word or alphanumeric character representation, is that it is
fetched during an instruction fetch machine cycle. For example, sup-
pose the 6502 encounters 69H (01101001,) at some memory location
specified by the program counter. This same pattern could be binary
for the base-10 number 105,,, or the ASCII character i, or the instruc-
tion ADC, immediate. It is the job of the programmer to ensure that
binary numbers at any location are necessary.

Instructions, then, are binary codes which tell the computer what
to do, i.e., what operation must be carried out.

For the convenience of programmers, each instruction is given

a descriptive mnemonic. When we see the mnemonic ADC, #nn, we

know immediately what is meant, whereas 69H could be quite mean-
ingless without a look-up chart of instructions sorted by op-code.

67

68 6502 GENERAL INSTRUCTION SET

6502 INSTRUCTIONS

The 6502 instruction set is broken into three main categories: Group-
I, Group-II, and Group-III. The Group-I instructions tend to be the
most flexible, and have the most addressing modes. Examples of Group-
I instructions include load, add, and store. The Group-I instructions
include:

ADC. Add with carry

AND Logical-AND

CMP Compare

EOR Exclusive-OR

LDA _ Load Accumulator

ORA Logical-OR

SBC Subtract with borrow

STA Store Accumulator

All of the Group-I instructions respond to the following addressing
modes:

Immediate

Zero Page
Zero Page, X
Absolute

Absolute Indexed, X
Absolute Indexed, Y
Indexed Indirect

Indirect Indexed

Group-II instructions are those such as shift, increment register,

decrement register, and the register-X movement instruction. Group-II

is broken into two subgroups which we will call Group-IIa and Group-
IIb. The instructions in Group-IIa are the shift and rotate instructions.

LSR Shift Right

ASL _ Shift Left

ROL Rotate Left

ROR Rotate Right

Group-IIb instructions include the following:

INC Increment

DEC Decrement

Group-| Instructions 69

LDX _ Load-X

STX Store-X

The available addressing modes for Group-II instructions include:

Zero Page

Zero Page, X

Absolute

Absolute Indexed, X

Accumulator

Group-III instructions are all of those which do not fall into either
Group-I or Group-II, including stack operations, Register-Y operations,
and X-Y compares.

In the rest of this chapter we will consider the instructions, their
operation, and the associated mnemonics. Much of the information
here will be repeated in Chapter 16 where we will tabulate the in-
formation, as well as giving the op-codes in hexadecimal, binary, and
octal forms.

GROUP-I| INSTRUCTIONS

The Group-I instructions include ADC, AND, CMP, EOR, LDA, ORA,
SBC, and STA. We will consider these instructions according to the
following functional groups:

1. LOAD and STORE.
2. ARITHMETIC.

3. LOGICAL.
4. COMPARE.

Similar functional groups will be found in the Group-II and Group-
III categories (for example, LDA is very similar to LDX and LDY,
despite being in different groups).

Load and Store Instructions (LDA and STA)

The load and store instructions refer to data in the accumulator or A-
register, and their movement to and from memory. A load instruction
moves data from a memory location to the accumulator. The mne-
monic for the load instruction is LDA, or LoaD Accumulator. When

an LDA instruction is executed, the result is that some datum will be

placed in the accumulator either directly or by transfer from some

70 6502 GENERAL INSTRUCTION SET

designated memory location. Let’s step through the operation of the
various LDA instructions in the various addressing modes.

LDA #nn (Immediate). This instruction uses the immediate address-
ing mode, and is a 2-byte instruction. The first byte will be the op-
code (A 9H), while the second byte is the number which will be placed
in the accumulator. Thus, when the following is encountered:

A9H

34H

the 6502 will load the accumulator with the hexadecimal number 34H

(see Figure 7-1). In most assembly language formats, the above instruc-
tion would be written LDA #34.

LDA nn (Zero Page.) The zero page version of LDA is a 2-byte
instruction that will operate only on locations in page zero, i.e., the
256 bytes from 0000H to OOFFH. The first byte of the instruction is
the op-code (A5H), while the second byte defines the address in page
zero where the data to be loaded will be found. For example, suppose
the program encounters the following instruction:

ASH

52H

The op-code A5H tells the 6502 to load the accumulator with page
zero data found at location 0052H. Figure 7-2 shows the operation of
this instruction. The action is:

1. While executing the program the LDA (52H) instruction is
encountered.

2. The 6502 goes to memory location 0052H, where it finds data
67H.

Accumulator

© [iowons |

(1) 0200 = ASH ~—sLDA #nn
0201 34H nn

0262 (Next Instruction)

Figure 7-1. LOAD-immediate (LDA #nn) instruction

Group-l Instructions 71

Accumulator

©
6

GQ) 0200 ASH ©

0952 67H

Figure 7-2. LOAD-zero page instruction

3. The data from 0052H (i.e., the number 67H) is loaded into the
accumulator.

LDA nn,X (Zero Page, X)._ This instruction has a bit more flexibility
than simple zero page addressing. For the LDA nn,X instruction, the
effective address of the page zero address where the data are found
is computed by adding the contents of the X-register in the 6502 to
the second byte of the instruction.

For example, assume that the X-register contains 03H when the
following instruction is encountered:

Byte 1 BS5H (LDA nn,X)

Byte 2 50H nn

The 6502 will compute the zero page address by adding byte 2
to the contents of the X-register:

nn+x=

50H + 03H

53H

Thus, the 6502 will load into the accumulator the data stored in

zero page loation 0053H.

LDA nnnn (Absolute Addressing). The 3-byte absolute LDA loads the
accumulator with the data stored in the two bytes that follow the op-
code.

72 6502 GENERAL INSTRUCTION SET

Byte 1 ADH (LDA,nnnn)

Byte 2 Low-order address byte

Byte 3 High-order address byte

Suppose we encounter the code:

Byte 1 ADH _ op-code LDA

Byte 2 53H nn

Byte 3 OFH nn

The 6502 will load the accumulator with the contents of the

memory location specified by (byte 3) + (byte 2), which in this case
is OF53H.

LDA nnnn,X (Absolute,X). The absolute-X mode LDA instruction
uses three consecutive bytes to designate an address defined by the
sum of the contents of the X-register and the absolute address given
in bytes 2 and 3 of the code. For example, assume that the X-register
contains the number 05H when the following code is encountered
during program execution:

Byte 1 BDH LDA nnnn,X

Byte 2 OOH nn

Byte 3 OEH nn

The absolute address is defined by (byte 3) + (byte 2), so is OEOOH.
Since BD is the hexadecimal op-code for LDA nnnn,X, the actual

address is O0EOOH + X, or O0EOOH + 05H, which is OEO5H.

The LDA nnnn,X instruction is particularly useful for accessing
look-up tables. In the example here, we could store a 256-element
table from OEOOH to OEFFH, and either step through the table or
access specific data by manipulating the data in the X-register. This
type of strategy is used in programs such as code conversion (e.g.,

ASCII to Baudot) or in the linearization of transducer or instrumen-
tation data.

LDA nnnn,Y (Absolute Y). The Absolute-Y LDA instruction is the
same as the Absolute-X LDA instruction, except that the effective
address is computed by adding the contents of the Y-register to the
absolute address specified by the second and third bytes of the code.

Address = (Byte 3 + Byte 2) + Y

For example if the contents of the Y-register in the 6502 are EAH,
and the following code is encountered:

Group-I Instructions 73

Byte 1 B9H LDA nnnn, Y

Byte 2 00H nn

Byte 3 02H nn

the effective address is computed as 0200H + EAH, or 02EAH. The
uses of the Absolute-Y LDA instruction are the same as the Absolute-

X LDA instruction.

LDA (nn,X) Indirect, X. The indirect indexed LDA instruction com-
bines the indirect and indexed addressing modes in a technique called
pre-indexing. The effective address of the data to be stored in the
accumulator is stored in two successive locations in page zero. An

indirect indexed instruction is a 2-byte instruction and uses the X-
register. The page zero address containing the low-order byte of the
effective address is computed by adding the second byte of the in-
struction to the contents of the X-register.

Figure 7-3 shows an example of how the /ndirect, X instruction

Main Program
X Register

@200H —

@201H AIH

0202H 55H
0203H

Accumulator

Figure 7-3. Operation of an Indirect-X instruction (pre-indexing technique)

74 6502 GENERAL INSTRUCTION SET

operates. The contents of the X-register are 2FH, and the 6502 is

executing a program in page two when, at 0201H, it encounters:

Byte 1 Al1H LDA (nn,X)
Byte 2 55H nn

The 6502 interprets “A1H” as the LDA (nn,X) instruction, so the
following sequence (see Figure 7-3) takes place:

1. The LDA (55,X) instruction is fetched and decoded.

2. The 6502 adds together byte 2 of the instruction (55H) and
the contents of the X-register (2FH) to obtain a result of:

55H + 2FH = 84H

3. Step 2 tells the 6502 that the low-order byte of the effective
address of the data to be loaded into the accumulator will be
found at location 0084H in page zero; the high-order byte of
the effective address is stored at the next sequential location
(0084H + 01H), which is 0085H.

4, The address stored at 0084H and 0085H is EF22H, so the
program counter of the 6502 will be loaded with EF22H.

5. The contents of memory location EF22H (26H) are stored in
the accumulator.

LDA (nn), Y Indirect, Y. The Jndirect, Y LDA instruction is similar to
Indirect, X but uses post-indexing rather than pre-indexing. Whereas
pre-indexed addressing involves indexed indirect addressing, the post-
indexing method uses indirect indexed addressing. Sound confusing?
Well, Figure 7-4 may help a little. You may wish to reexamine Figure
7-3 after you read the description below, and compare these two similar
LDA modes. The Y-register contains the hexadecimal number ACH,
and the main program is executing instructions in page two when the
following is encountered:

Byte 1 0201H BIH LDA (nn), Y
Byte 2 0202H 4CH nn

The 6502 interprets this code as an LDA (4CH), Y instruction, so
the following operations take place:

1. The LDA (4CH), Y instruction is encountered and decoded,

telling the 6502 that the indirect address is stored in locations
004CH (low-order byte) and 004DH (high-order byte) of page
Zero.

Group-! Instructions 75

Main Program
Y Register

0200H —
CQ) 9201H_ BIH

0202H 4CH
0203H —

@C41H + ACH

©) Accumulator

Figure 7-4. Operation of an Indirect-Y instruction (post-indexing technique)

2. The 6502 goes to 004CH and 004DH and finds address 0C41H.
This is not the effective address, but must be added to the

contents of the Y-register.

3. The indirect address (0C41H) is added to the contents of the
Y-register (ACH) to yield the actual effective address:

0C41H + ACH = 0CEDH

4. The address OCEDH is loaded into the 6502 program counter.

5. The contents of memory location OCEDH (34H) are loaded
into the accumulator.

Summary of LDA. All versions of the LDA instruction have the effect
of fetching data from some point in memory and storing it in the
accumulator of the 6502. In some cases, discovering the location of the
actual data is complex (as in Indirect,X or Y), while in others it is very
simple, e.g., in the LDA, Immediate instruction. In all cases, however,

the end result is that data from some specified or computed location
in memory wind up in the accumulator.

Note: This data transfer is nondestructive! If we execute an LDA

76 6502 GENERAL INSTRUCTION SET

nnnn (Absolute) instruction, we will copy the data at the location spec-
ified by nnnn into the accumulator. Following execution of this in-
struction, the same data will appear at both locations, i.e., nnnn and
the accumulator. Figure 7-5 shows the situation for both pre- and post-
execution of an instruction.

The STA instructions are exactly the opposite of LDA. Whereas
the LDA instruction will cause data to be loaded into the accumulator,

the STA causes data to be copied from the accumulator to some spec-
ified location in memory. Once again, we find the operation is non-
destructive. In other words, if an instruction causes data to be
transferred from the accumulator to some memory location, then after

O@200H —

*$201H LDAnnnn

0202H 8CH
0203H FH } address @FBCH

0204H

Accumulator

eo (Old Data)
4CH -—

@FBDH

* = Instruction being Executed

(A)

0200H

0201H LOAnnnn

9202H BCH
0203H FH } dress OFBCH

*@204H —

OFBAH Accumulator

OFeBH Pac
@FBCH 4C

@FBDH
Same Data at
Both Places

* = Instruction being Executed

(B)

Figure 7-5. Status A) pre-execution and B) post-execution shows the non-
destructive nature of data transfer

Group-I Instructions 77

execution of this instruction the data will appear in both the accu-
mulator and the designated memory location.

The STA instructions use all of the addressing modes of the LDA,
except for the immediate addressing mode (which would be illogical
for STA since “STA” stands for Store Accumulator). It will serve little
purpose to reiterate the lengthy descriptions of instruction action as
given above for LDA, because the only difference is the direction of
data transfer with respect to the accumulator.

The STA and LDA instructions are frequently used together,
especially in computer I/O operations. For example, one popular 6502-
based microcomputer memory maps an input port at location A001H.
Suppose we want to input this data and then save it by storing it in
some location in memory. This may be necessary (in fact, it usually is!)
because some subsequent instruction may alter the contents of the
accumulator where the input data from the port is at AO0O1H and store
it at location EFO5H. A typical program fragment to accomplish this
trick would be:

Mnemonic Code_ Comment

LDA (A001) ADH _ Load accumulator with contents
nn-low 01H of location A001H
nn-high AOH
STA (EFO5H) 8DH Store contents of accumulator at
nn-low 05H EFOSH
nn-high EFH

We might also use STA and LDA in conjunction with each other
to temporarily store accumulator data which will be used again. A brief
example is:

I. LDA (A001H0).

2. STA (0050H).

3. (Other programming).

4. LDA (0050H).

o. (Other programming using retrieved data).

In step 1 we loaded data into the accumulator from our input
port at location A001H. During step 2 that data was temporarily stored
at location 0050H in page zero. Step 3 has the 6502 doing other things
for awhile, a phase which might take from one to any number of
instructions. Step 4 has the data stored in 0050H retrieved by reloading

78 6502 GENERAL INSTRUCTION SET

it into the accumulator. Step 5 shows the program continuing, using
the retrieved data.

The STA instructions affect none of the PSR flags. However, the
LDA affects the N-flag to indicate whether the loaded data are negative
(N = HIGH) or positive (N = LOW). The Z-flag is also affected by
LDA and indicates whether the loaded data is zero (Z = HIGH) or
non-zero (z = LOW).

Arithmetic Instructions (ADC and SBC)

The arithmetic instructions form another subset of the Group-I instruc-
tion block. Computers are really dumb devices because all they can
do is add and subtract. Even when subtracting, the computer is really
using addition, but fools the computer into thinking it’s adding instead
of subtracting by making the subtrahend a two’s complement equiv-
alent of the number being subtracted. Multiplication and division are
handled using either software algorithms or specialized external hard-
ware. The 6502 has the add-with-carry (ADC) and subtract-with-carry
(SBC) instructions.

The ADC instruction will add the contents of the accumulator to
data specified by the instruction. All eight Group-I addressing modes
are allowable for ADC. Let’s consider the rules for binary arithmetic:

0+0=0

0+1=1

1+0=1

1+ 1 = 0 Carry-1

A simple example follows: Add the binary numbers 10000101, (i-e.,
85H) and 10011001, (i.e., 99H):

1

10000101

10011001

(Carry-1)00011110

The answer is 00011110, (IEH) plus a carry-1. On the 6502, the
accumulator would contain 1EH and the carry flag (C) would be set
to equal HIGH or 1 following this operation. Note: if you have a hexa-
decimal calculator, such as the TI Programmer, the display will read
“11E” (hex).

The immediate addressing mode is a 2-byte instruction that will
add the contents of the accumulator with the data in the second byte

Group-I Instructions 79

of the instruction, and then store the result in the accumulator. For

example, suppose the accumulator contains 3FH when the following
instruction is encountered:

Byte 1 69H ADC #nn
Byte 2 24H nn

Since 69H is the op-code for the ADC, immediate instruction,
and the accumulator contents are 3FH, the following addition takes
place:

3FH (accumulator data)
+24H (Byte 2 data)
63H (answer stored in accumulator)

In the above example, the carry flag would be reset (C = LOW).
The other seven addressing modes allowed the ADC instruction

will add to the contents of the accumulator data retrieved from mem-
ory in the manner defined by the protocol for the specific addressing
mode.

The symbolic notation for the ADC instruction is:

A+M+C A

which means, “The contents of the accumulator are added to data

retrieved from memory (M) and the carry flag (C).” The carry flag may
be set prior to the addition operation, and remains set when new
instructions are encountered. Let’s look at an example of how this
could affect an addition problem. If we add 5FH and 42H, the answer
should be AlH. But suppose the carry flag had been previously set
(C = 1) by another operation? Although you might believe that the
problem being worked is:

5FH + 42H = AlH

the actual problem is:

5FH + 42H = 01H = A2H

The solution will be in error because the programmer failed to account
for the 01H represented by the carry flag. The answer is to clear the
carry flag (i.e., make C = 0) prior to the addition. For example, suppose
we do not want the C-flag to affect an addition such as above, we could
write the following (assume 5FH is the accumulator data):

80 6502 GENERAL INSTRUCTION SET

CLC Clear carry flag

ADC #42H Add #42H to accumulator data

Since the carry flag was cleared prior to the ADC #42H instruc-
tion, the result will be the desired AlH.

The subtraction with carry (SBC) instruction is actually a sub-
traction with BORROW, if we use mathematically correct terminology.
The symbolic operation for SBC is:

A-M-C-A

This notation says that the value fetched from memory (M) and
the complement of the carry flag (C) is subtracted from the contents
of the accumulator, and the result is stored in the accumulator. Note

that the carry flag will be set (HIGH) if a result is equal to or greater
than zero, and reset (LOW) if the results are less than zero, i.e.,
negative.

The SBC instruction has all eight Group-I addressing modes avail-
able, as was also true of ADC.

The SBC instruction affects the following PSR flags: negative (N),
zero (Z), carry (C), and overflow (V). The N-flag indicates a negative
result and will be HIGH; the Z-flag is HIGH if the result of the SBC
instruction is zero and LOW otherwise; the overflow flag (V) is HIGH
when the result exceeds the values 7FH (+127,,.) and 80H with
C = 1 (ie, —128,,).

The 6502 manufacturer recommends for single-precision (i.e., 8
bit) subtracts that the programmer ensure that the carry flag is set
prior to the SBC operation to be sure that true two’s complement
arithmetic takes place. We can set the carry flag by executing the SEC
(set carry flag) instruction.

The rules for binary subtraction are:

0-0=0
0-1=0 Carry-1
1-0=1
1-1=0

The SBC instruction complements the ADC instruction and is
used in arithmetic operations. The one additional instruction used in
arithmetic operations is the set decimal mode instruction that permits
binary coded decimal (BCD) arithmetic. But since it is not a Group-I
instruction, it will be discussed elsewhere.

Group-l Instructions 81

Logical Instructions (AND, ORA, and EOR)

The 6502 microprocessor can perform three logical functions: AND,
OR (ORA), and the exclusive-OR (EOR). The 6502, as with other mi-
croprocessor chips, performs these operations on multibit binary words
on a bit-by-bit basis. In other words, the results of a logical operation
on one pair of bits (e.g., bO and a0) will not affect operations on the
next higher (e.g., bl and al) or lower order bit.

The logical-AND operation obeys the following rules:

0 AND 0 =0

0 AND 1=0

1 AND 0 = 0

1 AND 1= 1

A fact worth remembering for the AND operation is that the
result is always LOW (0) unless both bits are HIGH (1). We use this
fact in bit making operations. For example, we often tell whether or
not a 7-bit ASCII keyboard is sending new data by applying the strobe
bit to bit 7 of an input port. We could mask all bits except bit 7 and
test for non-zero. The ASCII for the character “M” is 4 DH, which in

7-bit binary notation is 1001101,, or if a strobe (data valid) bit is added
at bit 7, the code becomes 11001101, (CDH). To test this data for
validity, we could AND CDH with 80H. Here it is shown in binary to
illustrate the principle:

11001101

AND 10000000
10000000

This is for the data valid condition—the result is non-zero and that is

testable, or, for the data-not-valid condition, when bit 7 is LOW:

01001 01001

AND 10000000
00000000

the result is zero.
The 6502 AND instruction performs on a bit-by-bit basis, stores

the result in the accumulator, and enjoys all eight Group-I addressing
modes. The AND instruction affects the N-flag and Z-flag.

The logical-OR instruction (ORA) is the complement of the AND
instruction. Whereas the result of the AND instruction was true (1)

82 6502 GENERAL INSTRUCTION SET

only when both bits are true, the OR will be true when either or both
bits are true:

0OR0 =

0OR1 =

1 OR 0

1OR1 = — ot OSS

Again, the operation is performed on a bit-by-bit basis in the
6502, so no operation between bits of any order will affect operation
of ORA command and on any other set of bits.

The ORA instruction affects the N-flag and Z-flag. The N-flag will
be HIGH if bit 7 of the result is HIGH, and low otherwise. The Z-flag
will be HIGH if the result is zero, and LOW if the result is non-zero.

Exclusive-OR (EOR) instruction is interesting. The result is true
(1) if either bit is true, but not if both bits are true. The rules for the
exclusive-OR are:

0 XOR 0 = 0

0XOR1=1

1 XORO = 1

1 XOR 1 = 0

Note that any time the two bits are the same (both 0 or both 1), the
result will be 0. The Logical Exclusive-OR function is called “XOR”
in digital electronics texts, but the 6502 Exclusive-OR instruction is
EOR.

The EOR instruction can use all eight Group-I addressing modes,
and will affect the N-flag and Z-flag.

EOR is used in arithmetic operations and others, but one use is
complementing the accumulator. This is done by using the EOR in-
struction in the immediate addressing mode will all one’s; for example,
B1H XOR FFH (using binary notation for illustration):

10110001

XOR]J1111111
01001110

Some single-board computers used as OEM boards, or for indus-
trial control applications, use inverters on the input and output ports—
a design feature considered ill-advised by some engineers. On those

Group-Il Instructions 83

machines, we need to use the EOR #FF instruction to complement

data on all I/O operations.

Compare Instructions (CMP)

The compare (CMP) instruction compares data fetched from memory
with data stored in the accumulator without altering the data in the
accumulator. CMP can use all eight Group-I addressing modes, and
three of the PSR flags: C, N, and Z. The use of the flags is different
for this instruction than for others, and operates as follows:

1. C-flag is set HIGH (1) when the value in memory is Jess than
the value in the accumulator, and is reset LOW (0) when the
value in memory is greater than the value in the accumulator.

2. N-flag is set HIGH (1) or reset LOW (0) according to the result
of bit 7.

3. Z-flag is set HIGH (1) on equal comparison, reset for unequal
comparison.

The compare instruction can be used for several applications, but
one quoted in most of the textbooks determines which peripheral is
using the interrupt capability of the 6502 to gain the attention of the
processor. We can have each peripheral input a unique code, and then
have the interrupt subroutine compare this code in the accumulator
with several constants. By monitoring the Z-flag for “equal compari-
son” status, we can tell which device demands service.

GROUP-II INSTRUCTIONS

The Group-II instructions are used primarily for data manipulation and
arithmetic applications. This group contains the decrement, increment,

rotate, shift, and the load/store instructions for the X-register. Group-
II is broken into two subgroups called Group-IIa and IIb. The former
group contains the shift and rotate instructions, while the latter con-
tains the increment, decrement, plus load/store register-X instructions.

Certain Group-II instructions use the so-called “accumulator” ad-
dressing mode in which the data used for the operand are the accu-
mulator data. The “‘accumulator” addressing mode is, therefore, a

special case of implied addressing.
The shift instructions are used to shift data in the accumulator

either to the left (ASL) or right (LSR). Both forms of shift instruction
use the following addressing modes: accumulator, zero page, zero page
X, absolute, and absolute X.

84 6502 GENERAL INSTRUCTION SET

The arithmetic shift left (ASL) instruction will shift the data in
either the accumulator or the indicated memory location one position
left every time it is executed; bit 7 will be transferred to the carry
flag, and a 0 is stored in bit 0. This operation is shown pictorially in
Figure 7-6A.

An example using the accumulator addressing mode is shown in
Figures 7-6B and 7-6C. The initial condition is shown in Figure 7-6B.
.The data word D3H (1101001,) is stored in the accumulator, and the
“state of the C-flag is irrelevant. Following execution of the ASL in-
struction, a 0 has been entered into the bit 0 position, and bit 7 has
been moved to the C-flag. The accumulator data is not A6H
(10100110,), and the carry flag is set.

The branch on carry clear and branch on carry set instructions
in Group-III can be used to alter program direction after each shift
according to the condition of the C-flag. These branch instructions will
be discussed with other Group-III instructions.

In addition to the C-flag (which always takes on the previous
value of bit 7), the ASL instruction also affects the Z- and N-flags. The
Z-flag is set (1 or HIGH) if the result of the shift produces a zero result.
While this condition could occur at any time if the correct data were

Carry Accumulator or

Flag Designated Memory Location

[87 |+—|87| 86] 85/84 /63| 82/51] 80|~— 0
(A)

C-Filag Accumulator

Xx 110160 0601 ~«1

Before ASL Execution

X = Doesn't Care

(B)

C-Flag Accumulator

1+~19019090116 ~——9

After ASL Execution

(C)

Figure 7-6. Operation of the Arithmetic Shift Left (ASL) instruction A) op-
eration, B) status before execution, C) status after execution

Group-ll Instructions 85

present, it will always occur on the eighth shift of the same data because
we have been entering zeros into bit 0 each time execution occurs.
After this operation occurs eight times, all bits will be zero. The N-
flag will take on a value that is determined by the condition of bit 7
following execution. Since bit 6 is shifted to the bit 7 position, the N-
flag is set according to the previous value of bit 6. If the result bit 7
is 1, then N = 1; if result bit-7 is 0, then N = 0.

Accumulator mode instructions operate on data in the accumu-
lator, while the other addressing modes will modify memory location
data without affecting other registers in the 6502.

The logical shift right, or LSR, instruction is similar to, but exactly
the opposite of, ASL. The LSR instruction shifts data to the right, rather
than the left. In execution of LSR, bit 0 is stored in the C-flag and a
zero is entered into the bit 7 position.

Two principal uses for ASL and LSR instructions are in multi-
plication/division arithmetic operations, a parallel-to-serial data con-
version (serial-to-parallel conversion is also possible, but is more
involved). We gain the arithmetic capability because each left shift
(ASL) will multiply the data by two, while each right shift divides the
data by two.

The rotate left (ROL) and rotate right (ROR) instructions are
similar to the shift instructions, except that data are recirculated back
into the accumulator or memory location addressed by the instruction.
In both cases, data are shifted one bit position left or right according
to which rotate instruction is being executed. The difference between
rotate and shift instructions is illustrated by the following:

I. ROR (rotate right). Each bit is shifted one bit to the right, the
contents of the C-flag are shifted into bit 7, and bit 0 is shifted
to the C-flag. Thus, after nine shifts, the contents of the ac-
cumulator (or designated memory location) will be exactly the
same as before, as will be the C-flag.

2. The ROL (rotate left) instruction works exactly the opposite
of ROR: bit 7 goes to the C-flag and the C-flag goes to bit 0.

The rotate instructions have uses similar to the shift instructions,
but the data can be recirculated back into the accumulator (or memory
location); thus the operation is nondestructive of data.

The Group-IIb instructions are: Increment (INC), Decrement
(DEC), load X (LDX), and store X (STX). The DEC and INC instructions
are used for addressing modes: zero page, zero:page X, Absolute, and
Absolute X. The LDX and STC instructions recognize these same four
addressing modes plus the immediate addressing mode.

86 6502 GENERAL INSTRUCTION SET

The INC affects a designated memory location, and will increase
the value of the data word at that location by 1. In other words, the
operation is:

M+1-M

The increment INC instruction does not affect the accumulator,
but does affect the N and Z-flags. The N-flag will be 1 when bit 7 of
the result after execution of INC is 1, and 0 if bit 7 is 0. The Z-flag
will be 1 when the result is zero (e.g., where FFH + 1 = 00H), and
0 if the result is non-zero.

The DEC instruction is exactly the opposite of the INC instruc-
tion. DEC causes the contents of the designated memory location to
be reduced by one, or symbolically:

M-1-M

The N and Z-flags are affected in exactly the same manner as in
INC.

The LDX (load X-register) and STX (store X-register contents in
a designated memory location) are analogous to LDA and STA dis-
cussed earlier. The LDX uses the following addressing modes: im-
mediate, zero page, zero page X, Absolute, and Absolute X.
Symbolically, the operation is:

M-> X

In other words, a data word from memory is loaded into the 6502
internal X-register. The N and Z-flags are set according to the result,
i.e., the value of the data word stored in the X-register.

The STX (store X) instruction has the effect of storing the contents
of the X-register at a designated memory location. Only the zero page,
zero page Y, and Absolute addressing modes are permitted this in-
struction. No PSR flags are affected by the STX instruction.

Thus far we have discussed the Group-I and Group-I] instructions.
The Group-IlI instructions include all other instructions in the 6502
repertoire.

GROUP-III INSTRUCTIONS

The Group-III instructions include the following:
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Result equal to Zero

Group-lll Instructions 87

BIT Bit Test
BMI Branch on Result Minus
BNE Branch on Result not equal Zero
BPL Branch on Result Plus
BRK Force Break
BVC Branch on Overflow Clear
BVS Branch on Overflow Set
CLC Clear Carry Flag
CLD Clear Decimal Mode
CLI Clear Interrupt Disable Flag
CLV Clear Overflow Flag
CPX Compare Memory with X-register
CPY Compare Memory with Y-register
DEX Decrement X-register
DEY Decrement Y-register
INX Increment X-register
INY Increment Y-register
JMP Jump to New Memory Location

JSR Jump to Subroutine
LDY Load Y-register
NOP No Operation

PHA Push Accumulator on Stack
PHP Push Processor Status from Stack

RTI Return from Interrupt
RTS Return from Subroutine

SEC Set Carry Flag
SED Set Decimal Mode

SEI Set Interrupt Disable
STY Store Y-register in Memory
TAX Transfer Accumulator to X-register
TAY Transfer Accumulator to Y-register
TYA Transfer Y-register to Accumulator
TSX Transfer Stack Pointer to X-register
TXA Transfer X-register to Accumulator
TXS Transfer X-register to Stack Pointer

Let’s briefly describe these instructions and their operation. Chap-
ter 16 contains op-codes and other details on instructions.

BCC (Branch on Carry Clear). This instruction uses relative address-
ing to branch forward and backward in the program if the carry flag
is clear (0). BCC doesn’t affect the PSR flags.

This instruction is the first of several branch instructions which
we will consider. Since all use similar protocols regarding the direction

88 6502 GENERAL INSTRUCTION SET

and distance of the relative addressed branch, we will cover BCC in
detail but delete the detail in discussion of the other instructions.
Previously, we did the same thing by covering all eight addressing
modes for LDA, but not the Group-I instructions which followed.

The BCC instruction tests the carry flag in the Processor Status
Register (PSR) of the 6502. The C-flag can have only two states, set
(1) or clear (0). If the C-flag is set, then the BCC instruction will not
cause a branch. The program is said to “fall through” the BCC, which
is jargon for the program will execute the next instruction in sequence,
rather than branching.

BCC is a 2-byte instruction with the mnemonic form “BCCnn,”
where “nn” will specify the direction and distance of the branch. This
instruction will be encountered in the form:

Byte1 90H BCC nn

Byte 2 nn

Relative addressing means that the program will branch or
“jump” to a location relative to the instruction. The 6502 will permit

104 105

120 121

8

9

A

8

c

D

E

F

(8)

Figure 7-7. A) forward branch table, B) backward branch table

Group-Ill Instructions 89

branches of up to 127 spaces forward (+127,,), or 128 spaces backward
(—128,,) as counted from the next instruction following BCC. Forward
branches will use values for nn that are positive hexadecimal numbers,
while backward branches will use the hexadecimal notation for the
two’s complement representation of the negative number. Forward
and backward hexadecimal codes are given in Figures 7-7A and 7-7B,
respectively.

Let’s look at three examples: a no-branch, a forward branch of
+6, ., and a backward branch of —6, 9. Figure 7-8 shows the no-branch
condition.

Recall that BCC is branch on carry clear (C = 0). At location
E003H the program encounters BCC 06H, so it goes to the C-flag to
determine whether it is set (1) or reset (0). In this case, C = 1, so no
branch will occur.

The program “falls through” to execute the instruction at EO05H.
The no-branch conditon may be the trivial case, but essentially it
permits continued execution of a program unless some specified cri-
terium (e.g., C = 0) is met.

An example of a forward branch BCC instruction is shown in
Figure 7-9. In this case the instruction is BCC 06H, which means that
the program will jump six steps forward when the carry flag is zero.

A fundamental error made by many beginning programmers in-
volves the counting of the six steps. Counting begins at the location
following the second byte of the instruction, since the instruction is at
E003H and E005H, in the branch condition, the next instruction will

be at E004H+ 06H, or EOOAH. In this example, the BCC 06H instruc-
tion is encountered at E003H, so the 6502 checks the C-flag, finds that

it is zero, and jumps six steps ahead to fetch the next instruction at
EOOAH.

Figure 7-8. Operation for the NO BRANCH condition

90 6502 GENERAL INSTRUCTION SET

E003 BCC 06H }

aonrhwhd =

m s oO

EQOA Next Inst

Figure 7-9. Forward branch

Figure 7-10 shows an example of a backward branch version of
the BCC instruction. The relative branching distance is still six, but in
this case it is —6. The two’s complement notation for —6 in hexa-
decimal form is FAH, so the second byte will be FAH. Once again,
the counting takes place from the location following the second byte.
Since in Figure 7-10 the BCC FAH instruction is located at EO008H
and E000H, EOOAH is the point where counting is referenced. Thus,
six back from E0Q0QAH will be E004H. When the program encounters
BCC FAH (BCC —06) at E008H, the 6502 tests the C-flag, finds it
zero and transfers program control to E004H.

Of course, in both forward and backward branch cases, the change
in program control is implemented within the 6502 by altering the
contents of the program counter register.

E000
E001

EQ04 (Next Instruction) Flag

=-=-N Wh 0

mmm sss ~ o
a

E008 BCC FAH
E09 FAH
EQOA
EQOB

Figure 7-10. Backward branch

Group-tll Instructions 91

The —127,, to +128,,. locations’ range for the relative branch

can be increased by having the instruction at the branch-to location
be at jump instruction; for example.

E001 BCC 06H
E002 06H
E003
E004
E005
E006
E007
E008 JMP F008H
E009 08H
E00A FOH

F008H

In the case above, BCC 06H branches to E008H, where a JMP
FO08H is found. Thus, this BCC 06H instruction causes a much larger
branch, i.e., to FOO8H. The use of a JMP instruction, then, can make
the range of any conditional branch instruction equal to the available
memory.

There is a bit of confusion among some new programmers re-
garding the relative branch distance. In some cases, the distance is
listed as +129 and — 126, while in others, the +127 and —128 figures
are listed. The difference is merely a matter of where one starts mea-
suring. The 129/126 protocol is from the current program counter
contents, while the 127/128 figure is derived from counting from the
next instruction following the conditional branch instruction. The dif-
ference is due to the 2-byte instruction. If you add to lower figures
you get the other figures:

(+127) + (2) +129
(—126) + (—2) = —128

We will not discuss the rest of the conditional branch instructions
in the detail of the BCC instruction because the branching protocols
are the same. The branch conditions and flags affected will be discussed
briefly.

BCS (Branch on Carry Set). This instruction is the exact inverse of

the BCC instruction. Branching occurs when the carry flag is set (1),

92 6502 GENERAL INSTRUCTION SET

rather than reset. No flags are affected by the BCC instruction. The
program counter (PC) will be affected only if C = 1. Addressing mode
is relative.

BEQ (Branch on Result Equal Zero). Branch occurs if the result of

an operation is zero, i.e., if the zero flag is set (Z = 1). No flags are
affected, and PC is affected only for Z = 1 (i.e., result is zero). Ad-
dressing mode is relative.

BIT (Bit-Test between Memory and Accumulator). A logical-AND is

performed between the contents of the accumulator and the contents
of a specified memory location. The result of the comparison is not
stored in the accumulator, so the accumulator contents remain unaf-

fected. The contents of the Processor Status Register (PSR) are affected
as follows:

I. N-flag is set to the value of bit 7 of the data in the selected
location.

2. V-flag is set to the value of bit 6 of the data in the selected
memory location.

3. Z-flag is set (Z = 1) if the result of the logical-AND is zero,
and reset (Z = 0) if the result is non-zero.

The BIT instruction uses only the zero page and Absolute ad-
dressing modes.

The BIT instruction performs a logical-AND between the accu-
mulator and the contents of the designated memory location on a bit-
by-bit basis.

Recall that the result of a logical-AND will be 1 only if both bits
are 1:

0 AND 0 = 0

0 AND 1=0

1 AND 0 = 0

1 AND 1=1

Thus, we can test any of the 8 bits by manipulation of the data
in the memory location. For example, suppose we want to test bit 4
of the accumulator data. Suppose the accumulator data is 93H
(10010011,) and we want to detect a 1 in bit 4. The operation of BIT
is shown in Figure 7-11. In order to determine if bit 4 is 1, we AND

10H from 00f1H with the contents of the accumulator. Since, in this

case, the tested bit (b4) is 1, the result is non-zero, so the Z-flag is 0.

Group-Ill Instructions 93

0950
0051 19H

24H Bit nn

51H nn

Accumulator

bit-4

10010011

And 00010000

Result 00010000

Processor Status Register

N Z2 CG 1 OD VV

oo x x x @
X = Don’t Care

Figure 7-11. Operation of the BIT instruction

If bit 4 had been zero, then the result would have been zero, and the

Z-flag would be set (Z = 1). Depending upon the desired result, a
BEQ (branch on equal zero) instruction or a BNE (branch on not equal
zero) instruction could be used to take action, depending on the result
of BIT.

BMI (Branch on Result Minus). This instruction causes a branch op-
eration if the result of an operation is minus, as indicated by the N-
flag being set (N = 1). The N-flag will be 1 when the result bit 7 is 1.
No flags are affected, but the program counter will be affected if N
= 1. The relative addressing mode is used. See BCC for other oper-
ational details and examples.

BNE (Branch on Result Not Equal to Zero). This instruction is the

complement of BEQ. The branch will occur if the result of an operation
is non-zero, as indicated by the Z-flag being reset (Z = 0). No flags
are affected, but the program counter will be affected if Z = 0. The
relative addressing mode is used. See BCC for other operational details
and examples.

BPL (Branch on Result Plus). This instruction is the complement of
BMI. The branch occurs if the result of an operation is positive, as
indicated by the N-flag being zero (N = 0). No flags are affected if
N = OQ; N-flag is zero when bit 7 of the result is zero. The relative

94 6502 GENERAL INSTRUCTION SET

addressing mode is used. See BCC for other operational details and an
example.

BRK (Force Break). This instruction is a software interrupt command.
When a BRK instruction is encountered, the address, the next instruc-

tion, and the contents of the Processor Status Register are pushed onto
the external stack. The rectors for the BRK command are stored at
FFFEH and FFFFH as follows:

FFFEH low-order address byte

FFFFH high-order address byte

Notice that BRK uses the same rector location as the hardware
interrupt (IRQ) line. The sole difference that distinguishes the BRK
command from a hardware interrupt is that the B-flag is set (B = 1)
if the interrupt is due to a BRK command, and reset (B = 0) if IRQ
is brought LOW (0). An interrupt subroutine must contain a brief
subroutine that pulls the previous PSR contents from the external stack
and then tests it for B = 1 (bit 4 of the PSR) using either the AND or
BIT instructions; ANDing with 10H will do the trick.

BVC (Overflow Flag Clear). This instruction is a conditional branch
that will branch using relative addressing if the overflow (V) flag is
clear, i.e., zero (V = 0). No flags are affected, and the program counter
is affected only if V = 0. See BCC for other operational details and
examples.

BVS (Overflow Flag Clear). The BVS instruction is the complement
of BVC, and will branch if the overflow flag is set (V = 1). The relative

addressing mode is used. No flags are affected, but the program counter
will be altered if V = 1. See BCC for other operational details and
examples.

CLC (Clear Carry Flag). The CLC instruction uses implied addressing
and has the effect of setting the C-flag in the PSR to zero (C = 0). No
other flags are affected.

CLD (Clear Decimal Mode). The CLD flag has the effect of setting
the D-flag of the PSR to zero (D = 0). Implied addressing mode is
used. Following execution of CLD, all subsequent ADC and SBC arith-
metic operations will take place in straight binary. No flags other than
the D-flag are affected.

CLI (Clear Interrupt Disable Flag). This 1-byte instruction clears the
interrupt disable, or I-flag, of the PSR. Execution of this instruction
causes the I-flag to become zero (I = 0). The implied addressing mode
is used. The purpose of the CLI instruction is to permit the 6502 to

Group-lll Instructions 95

respond to interrupt requests on the IRQ line. The I-flag is normally
set to I = 1 when the 6502 is first turned on and RST is activated.
The programmer must inset a CLI instruction somewhere in the
program before interrupts are permitted.

CLV (Clear Overflow Flag). The CLV instruction is used to set the
overflow (V) flag to zero, (V = 0). Implied addressing is used for this
1-byte instruction. No other PSR flags are affected.

CPX (Compare Memory with X-register). The CPX instruction com-

pares the contents of the X-register with the contents of a designated
memory location. Immediate, zero page, and Absolute addressing
modes are used. The N, Z, and C-flags are affected. The contents of

the X-register are not affected by CPX. The comparison is performed
by subtracting the contents of the addressed memory location from
the contents of the X-register, but the result is not stored in either the
X-register or the memory location. The PSR flags are affected as follows:

1. The C-flag will be set (C = 1) if the absolute value of the
X-register is equal to or greater than the value fetched from
memory (X M). The C-flag is reset (C = 0) if X is less than the
value from memory.

2. If bit 7 of the comparison result is 1, then the N-flag is set
(N = 1), but if bit 7 is 0, then the N-flag is reset (N = 0).

3. The Z-flag is set (Z = 0) if the value memory is equal to the
value from the X-register, otherwise it is reset (Z = 0).

The CPX instruction can be used for setting the PSR flags, etc.

CPV (Compare Memory with Y-Register). This instruction is identical
with the CPX instruction with the exception that the Y-register is used
instead of the X-register. Read the discussion on CPX for details that
also affect CPV.

DEX (Decrement X-Register). The DEX is a 1-byte instruction that
uses implied addressing, i.e. X-register is implied. Execution of DEX
will cause the X-register to be reduced, i.e., decremented by 1. Sym-
bolically, this instruction acts as follows:

X—-1->X

Thus, we can see that the result of DEX is stored in the X-register.
The DEX instruction affects only the N and Z-flags of the PSR. If the
result of DEX is such that bit 7 is 1, then the N-flag is set (N = 1). If
bit 7 of the X-register is 0, then the N-flag is reset (N = 0). The Z-flag

96 6502 GENERAL INSTRUCTION SET

is set (Z = 0) if the result of DEX is zero. If the result is non-zero,
then the Z-flag will be reset (Z = 0).

DEY (Decrement Y-register). This instruction is exactly like DEX,
except that the Y-register is used instead of the X-register. Read the
DEX description for details which also apply to DEY.

INX (Increment X-register). The INX instruction is a l1-byte, implied
addressing instruction which increases the value stored in the X-reg-
ister by 1, with the result stored in the X-register. Symbolically:

X+17>X

The C and V-flags are not affected by the INX instruction. The
N-flag will be set (N = 1) if bit 7 of the X-register is 1, and reset
(N = 0) if bit 7 is 0. The Z-flag will be set (Z = 1) if the result of INX
is zero, and reset (Z = 0) if the result is non-zero.

INY (Increment Y-register). This instruction is the same as INX, except

that the Y-register is used instead of the X-register. See the discussion
of INX for details which also apply to INY.

JMP (Jump to Another Memory Location). The JMP instruction

causes an immediate transfer of program control to another memory
location. Both Absolute and Indirect addressing modes can be used.
Symbolically, the JMP instruction is:

(PC + 1) > PCL

(PC + 2) ~ PCH

Let’s consider an example of each form of the JMP instruction.
In the Absolute addressing mode, the program counter is loaded with
the address given in the following two bytes. Recall that the contents
of the program counter determine the location of the next instruction
to be executed; for example:

Byte 1 0500H 4CH JMPnnnn

Byte 2 0501H 52H nn (low-byte)

Byte 3 0502H EFH nn (high-byte)

In this example, a JMP EF52H instruction is encountered at mem-
ory location 0500H. Immediately after the execution of JMP EF52H,
the contents of the PC will be EF52H and that will be the location of
the next instruction to be executed.

An indirect JMP example is:

Group-Ill Instructions 97

Byte 1 0500H 6CH JMP (nnnn)

Byte 2 0501H B4H nn

Byte 3 0502H EFH nn

EFB4H 55H low-order byte

EFB5H 06H high-order byte

In this case, a JMP (nnnn) instruction is encountered at 0500H. The
parenthesis around the address “nnnn” tells us that the 6502 program
counter is loaded not with “nnnn,” but rather with the contents of
“nnnn” and “nnnn+1.” In this case, the “nnnn” described by nnnn
is EFB4H. This location in memory contains the low-order byte of the
Jump destination address, while EFB5H contains the high-order byte
of the destination address. The data bytes in these locations are stuffed
into PCL and PCH of the program counter, respectively, to form
address 0655H as the destination address.

JSR (Jump to Subroutine). A subroutine is a program or program

segment which may be used frequently or only if certain special con-
ditions are met (among other applications). An example is a printer
output routine. In a typical scenario, we would load the hexadecimal
equivalent code of an ASCII alphanumeric character to be printed
into the accumulator, and then jump to the printer subroutine with a
JSR instruction. Only Absolute addressing is allowed, and no PSR flags
are affected.

The difference between JMP and JSR is that the JSR will store
the two bytes of the last instruction address to be executed on the
stack, and decrement the Stack Pointer by 2. When the program re-
turns from the subroutine (by encountering an RTS instruction), the
program counter will be loaded with the address of the next instruction
to follow JSR. Symbolically, on return from subroutine:

PCL + 1 > PCL

PCH + 2 > PCH

An RTS is always the last instruction in the subroutine, and causes
restoration of the main program LDY (Load Y-Register). The LDY
instruction is the same as LDX, except that the Y-register is used instead
of the X-register. The symbolic notation is:

98 6502 GENERAL INSTRUCTION SET

M- Y

Addressing modes used by LDY are Immediate, Absolute, zero page,
zero page X, and Absolute indexed X. Only the N and Z-flags are
affected. LDY will set (N = 1) the N-flag if the result makes bit 7 of
the Y-register 1, otherwise, N = 0. The Z-flag is set (Z = 1) if the
value loaded into the Y-register is zero, otherwise Z = 0.

NOP (No Operation). This 1-byte instruction uses the Implied ad-
dressing mode, and does nothing to anything in the 6502 but use up
two clock cycles of time and increment the program counter by 1.

PHA (Push Accumulator on Stack). This instruction pushes the con-
tents of the accumulator onto the external stack in memory. The ad-
dressing mode is Implied. The Stack Pointer is decremented by 1. No
flags are affected, and PHA is a single-byte instruction.

PHP (Push Processor Status on Stack). This instruction is exactly like

the PHA instruction, except that the contents of the Processor Status
Register are pushed to the stack, instead of the accumulator contents.

PLA (Pull Accumulator from Stack). The PLA instruction is opposite
PHA. The Stack Pointer is incremented by 1, and the values stored at
that point in the external memory stack are transferred back into the
accumulator of the 6502. Addressing mode is Implied. The PLA in-
struction affects the N and Z-flags of the PSR. The N-flag is set
(N = 1) if bit 7 of the accumulator is 1, and reset (N = 0) if bit 7 is
0. The Z-flag will be set (Z = 1) if the value restored to the accumulator
is zero, and reset (Z = 0Q) if the accumulator contents are non-zero.

PLP (Pull Processor Status from Stack). This instruction is similar to
PLA, except that the contents of the PSR are restored instead of the
accumulator contents. All PSR flags are affected, and will take on the
values stored on the stack. PLP increments the Stack Pointer by 1.

RTI (Return from Interrupt). The purpose of this instruction is to
restore the 6502 to its previous status, i.e., the status before the inter-

rupt occurred. When the 6502 responds to an interrupt, it pushes the
contents of the program counter and Processor Status Register onto
the external stack. The RTI instruction pulls these data back from the
stack, and restores them to the PC and PSR. Thus, RTI will force the

6502 to restart in the program where the interrupt occurred. The RTI
instruction, therefore, should be the last instruction in the interrupt
service subroutine program. Otherwise, the 6502 will not return to
the main program.

RTS (Return from Subroutine). This instruction is analogous to the
RTI, except that it is used at the end of a subroutine called by a JSR

Group-lll Instructions 99

instruction. The 6502 saves PC and PSR data on the stack in response
to the JSR instruction. RTS will restore these data to the 6502 PC and
PSR. The RTS must be the final instruction in the subroutine program.

SEC (Set Carry Flag). The SEC instruction causes the Processor Status

Register carry flag (C-flag) to be set (C = 1). No other flags or registers
are affected. Addressing mode is applied.

SED (Set Decimal Mode). The SED instruction places the 6502 in

the decimal mode by setting the decimal flag in the PSR (D = 1).
Following this instruction, all SBC and ADC instructions will use BCD
arithmetic. No other flags or registers are affected.

SEI (Set Interrupt Disable). The SEI instruction sets the Interrupt
Disable flag in the PSR (I = 1). The effect is to prevent the 6502 from
responding to interrupt requests on the IRQ line (requests on NMI are
not affected). Addressing mode is implied. No other flags or registers
are affected.

STY (Store Y-Register in Memory). This instruction stores the contents

of the Y-register in a memory location specified by the bytes following
the op-code. Allowable addressing modes are Absolute, zero page, and
zero page X. No PSR flags are affected.

TAX (Transfer Accumulator to X-Register). This instruction transfers
the contents of the accumulator to the X-register. Implied addressing
is used. Only the N and Z-flags of the PSR are affected. The N-flag is
set (N = 1) if bit 7 of the X-register becomes 1, and reset (N = 0) if
bit 7 becomes 0. The Z-flag is set (Z = 1) if the result is zero, and
reset (Z = 0) if the result is non-zero. No other flags or registers are
affected.

TAY (Transfer Accumulator to Y-Register). This instruction is exactly

the same as TAX, except that data destination is the Y-register instead
of the X-register.

TYA (Transfer Y-Register to Accumulator). This instruction transfers

the contents of the Y-register to the accumulator. Addressing mode is
Implied. Only the N and Z-flags of the PSR are affected (see discussion
on TAX).

TSX (Transfer Stack Pointer to X-Register). The TSX instruction will
transfer the contents of the 6502 Stack Pointer (SP) register to the
X-register. Only the N and Z-flags of the PSR are affected (see dis-
cussion on TAX). Implied addressing is used.

TXA (Transfer X-Register to the Accumulator). This instruction trans-

fers the contents of the X-register to the accumulator, and is exactly

100 6502 GENERAL INSTRUCTION SET

the opposite of TAX. Only the N and Z-flags are affected (see discussion
on TAX).

TXS (Transfer X-Register to Stack Pointer). This instruction is opposite

the TSX instruction, and will transfer the contents of the X-register to
the 6502 Stack Pointer register. Only the N and Z-flags are affected
(see discussion on TAX).

We can sometimes use TSX and TXS to relocate the external
stack. A typical sequence might be:

TSX Save SP at location

STX,nnnn nnnn

LDS #aa Load new SP top location (#aa) in X-reg-
ister

TXS Transfer X-register to SP

65xx-Family Support
Chips

The manufacturers of the 65xx (6502) microprocessor chips also offer
certain special I/O and other chips which will aid in making an effi-
cient, low-cost computer. In this chapter, we will examine a few of the
most common and popular of these chips.

6522

The 6522 Peripheral Interface Adapter (PIA) is 40-pin DIP integrated
circuit that contains all the logic to implement I/O functions, with
complex handshaking routines, and timer functions. In addition to the
standard pair of 8-bit I/O ports, the 6522 also offers a pair of interval
timers, a shift register that is useful for serial-to-parallel and parallel-
to-serial data conversions.

The 6522 is designed to operate with the 6502 microprocessor,
so is often encountered in microcomputers from small single-board
OEM models intended to be installed in larger instruments, to full-
scale microcomputers with the regular complement of peripheral de-
vices. As a 6502 adjunct, the 6522 is intended for memory-mapped
operation. The four address lines on the 6522 are identified in Figure
8-1 as RSO through RS3. These lines form a 4-bit address that is capable
of uniquely addressing up to 16 different internal memory-mapped
functions. The 6522 functions are located at the following internal
addresses:

101

102 65XX-FAMILY SUPPORT CHIPS

R6522

Figure 8-1. 6522 pinouts

Address Register
S2 RSO Designation Comments

0 ORB
1 ORA Controls handshaking
0 DDRB
1
0

RS3 -.

DDRA
TIL-L, T1C-L Timer-l write latch and read

counter

TIC-H Trigger T1L-L/T1C-L transfer
TIL-L
TIL-H

0
0
0
0
0

bt pet pe ~oo00|

-*)

— — onmroo ls” oo Oo = Om

6522 103

Address Register
RS3 RS2 RSI RSO Designation Comments

1 0 0 0 T2L-L/T2C-L Timer-2 write latch and read
counter

1 0 0 1 T2C-H Trigger T2L-L/T2C-L transfer
1 0 1 0 SR
1 0 1 1 ACR
1 1 0 0 PCR
1 1 0 1 IFR
1 1 1 0 IER
1 1 1 1 ORA No effect on handshake

The 6522 is memory-mapped, so will be treated by the micro-
processor chip as if it were a bank of 16 bytes of memory. In the AIM-
65 microcomputer, for example, the 6522 is memory-mapped at
locations A000 through AOOF (hex addresses). If we want to write a
word to port-A, then we would want to address ORA at location 0001,
which in the AIM-65 is AOO1H.

The configuration of the 6522 ports is interesting and most useful.
The port registers are designated ORA (port-A) and ORB (port-B).
These Output Registers can be configured as either input or output,
on a bit-by-bit basis, under program control. The control mechanism
resides in the related Data Direction Registers A and B (DDRA and
DDRB). If we want to make all bits of either register an output, then
we will write a “1” to the corresponding DDR. Similarly, if we want
the register to act as an input, then a “0” is written to the DDR. Thus,

to make ORA an output port, we will write FFH to location 0011
(DDRA) of the 6522. If we want the port to be an input port, then we
would have written 00H to location 0011H instead of FFH.

The interesting thing about the 6522 output registers is that we
may make the ports either inputs or outputs on a bit-for-bit basis. Thus,
we can make BO an input, B1 an output, etc. All we need do is write
the correct word to the selected DDR that will configure the individual
bits as needed. Suppose, for example, we wanted to configure the bits
of ORB as follows:

ORB Bit Function DDRB State

PB7 Input 0
PB6 Input 0
PB5 Output 1
PB4 Input 0
PB3 Output 1
PB2 Output 1

104 65XX-FAMILY SUPPORT CHIPS

ORB Bit

PBl
PBO

Function DDBB State

Output 1
Input 0

Thus, if we write the binary word 00101110, (i.e., 2EH) to DDRB
at location 0010H of the 6522, ORB will be configured as shown. We
can also configure ORA as needed using a similar scheme modified to
meet the needs of the user. This is done under program control. If the
function of each bit of both ports remains immutable, then the pro-
gramming chores can be accomplished once when the computer is
first turned on, or reset. The initial program steps will be housekeeping
in nature, and may well include setting up ORA and ORB by pro-
gramming DDRA and DDRB.

The 6522 pinouts are discussed here:

Designation Pin

CS1,CS2 24, 23

RSO-RS3 38, 37,
36,
35

R/W 22

D0-D7 33-26

RES 34

TRO 2)

Description

Phase-2 clock input. This clock regulates the
transfer of data between the PIA and the
system (transfer on d, = HIGH), and serves
as the timer base for on-chip timers and ‘shift
registers (SR).

Chip-select lines. CS1 is active-HIGH, CS2 is
active-LOW. Both lines must be active for
chip to be on.

Register-select lines. These lines address the
internal functions of the 6522, and are nor-

mally connected to bits of the address bus as
dictated by system memory map.

Read/write line. A HIGH indicates that data
are being transferred out of the 6522 to the
system; a LOW indicates data will be trans-
ferred into the system. This line is a control
input, and will not affect the 6522 unless CS1
is HIGH and CS2 is LOW.

Data bus lines. Data will be transferred to and
from the 6522 over these lines if the chip-
select, R/W and ¢, = HIGH criteria are met.

Reset. Active-LOW input that will clear (i.e.,
set = 0) all registers except Tl, T2, and SR.

Interrupt request. This active-LOW output will
go LOW when both the interrupt enable bit
and interrupt flags of the 6522 are set (= 1).
This pin is used for such purposes as signalling

6530 105

Designation Pin Description

the processor that a timer interval has ex-
pired.

PAO-PA7T 2-9 Peripheral interface for port-A. The input and/
or output pins for port-A.

PBO-PB7 10-17 Peripheral interface for port-B. The input and/
or output pins for port-B.

CAI, CA2 40,39 Peripheral control lines for port-A. These lines
act as either interrupt lines or as handshaking
lines. Operation is controlled through the In-
ternal Control Register (ICR).

CB1, CB2 18,19 Peripheral control lines for port-B (see above
CA1, CA2). In addition, these lines act as the
serial port for the shift register (SR).

6530

The 6530 device is a ROM-RAM-I/O timer integrated circuit. The
device contains a mask-programmable read only memory (ROM) that
will store up to 1024 8-bit words. It also contains a 64 byte 8-bit random
access memory (RAM), two 8-bit bidirectional I/O ports, and a pro-
grammable interval timer. The 6530 device is, therefore, extremely

versatile. The interval timer will time various intervals from 1 to
262,144 clock periods, and is under software control in the I/O con-
figuration. The 6530 device contains an 8-bit bidirectional data bus for
communication between the “outside world” and the 8-bit data bus
of the microprocessor. There is also a pair of 8-bit buses for commu-
nication with external peripheral devices. All lines are both TTL- and
CMOS-compatible.

The 6530 architecture is divided in four main sections within the
IC: RAM, ROM, I/O, and timer. The I/O section consists of the two
8-bit portions discussed here, and are controlled by a pair of data
direction registers (DDR), designated “A” and “B.” This form of ar-
chitecture permits us to configure both ports as either input or output
on a bit-for-bit basis. Thus, a HIGH (logical-1) written to a bit of the
DDR will cause the corresponding bit of the associated port to be
configured as an output. Similarly, writing a LOW to the DDR bit
makes the corresponding port bit an input.

The 6530 device contains two forms of internal memory. There
is a 64-byte by 8-bit RAM, which will permit both read and write
operations. This memory can be used as a “scratchpad” memory. There

106 65XX-FAMILY SUPPORT CHIPS

is also a 1K by 8-bit ROM which is addressed by A0-A9 and RSO (see
Figure 8-2). By using CS1 and CS2, we can parallel up to seven different
6530 devices.

Pinouts for the 6530

Designation Pin Description

RES 16 Reset. This active-LOW line will cause all I/O
registers to clear, causing all I/O lines to act
as inputs. The RES line must remain LOW
for not less than one complete clock cycle.

Vss PAI

PAO PA2

b2 PA3

RSO PA4

AQ PAS

A8 PAG

A7 PA7

AG DBO

R/W DB1

AS DB2

A4 DB3

A3 DB4

A2 DB5

Al DB6

AO DB7

RES PBO

IRQ/PB7 PB1

CS1/PB6 PB2

CS2/PB5 PB3

Vec PB4

R6530 Pinout Designation

Figure 8-2. 6530 pinouts

Designation

®,

R/W

IRQ

DBO-DB7
PAO0-PA7

PBO-PB7

6530 107

Pinouts for the 6530 (continued)

Pin Description

Phase-two clock. This line connects to the
phase-2 clock of the 6502 microcomputer sys-
tem. The LOW state of the clock will be any
potential from 0 volts to 0.4 volt, while a
HIGH will be +2.4 or more volts.

Read/Write. When this line is HIGH, the 6502

will be able to read data from the 6530, while
a LOW allows the 6502 to write data to the
6530.

Interrupt Request. Also used as PB7 in non-
timer modes.

Data bus
Peripheral data bus “A”

Peripheral data bus “B”

Device Selection and

Address Decoding

The control and timing signals synchronize the operation of the 6502-
based microcomputer. Such an arrangement is necessary when nu-
merous (up to 65,536) devices can share a common 8-bit data bus. The
information provided by the control signals concerns what device is
being called upon and what it is supposed to do. The control and
timing signals arbitrate the use of the bus in response to the instructions
provided by the programmer. In this section, we will discuss how these
signals are used to designate and instruct the memory and peripheral
devices connected to the 6502 bus.

Two jobs must be done by the 6502 control signals: First, it must
designate the device that is selected, and second, tell it whether a read

or a write is to take place. The address bus designates not only memory
locations but also I/O ports (the 6502 uses memory-mapped I/O). Since
the address bus contains 16 parallel bits, the bus can uniquely address
2'°, or 65,536,0, different memory locations or peripherals. Valid mem-
ory addresses range from 00000000, (OOH) to 11111111, (FFH). The
designation of read or write is indicated by the status of the R/W line
on the 6502 during phase 2. Thus, we can select any device, whether
memory or memory-mapped peripherals by using the address bus, the
R/W line, and the phase-2 clock signals.

ADDRESS DECODING

The purpose of an address decoder is to provide a signal that becomes
active only when the correct address is on the address bus. Decoders

109

110 DEVICE SELECTION AND ADDRESS DECODING

may use all 16 bits (A0-A15) of the bus, or just 1 or 2 bits. In one
scheme only a single bit is needed to turn on a teletypewriter. In that
case, the computer only had 26K of memory so the A15 bit never
came on to address active memory. The A15 bit defines the 32K
boundary (80H = 32K), so will come on only when addressing a location
of 32K or higher. Thus, since there is no memory or other peripherals
above 26K, we can use A15 to joggle the teletypewriter/printer on
and off. An example will be given in Chapter 11. Most address decoders
require more than a single bit.

An address decoder requires some means of examining multiple-
bit lines and deciding which of two possible outputs to issue. The
address decoder may have an active-HIGH output (goes HIGH when
the correct address is present) or an active-LOW output (LOW on
correct address). The 7530 TTL chip is a popular device in decoder
circuits (see Figure 9-1).

The 7430 is an 8-input NAND gate. The rules which govern the
operation of any NAND gate are:

1. If any one input is LOW, then the output is HIGH.

2. All 8 inputs must be HIGH for the output to be LOW.

Thus, in order to use the 7430 as an 8-bit address decoder, we

must somehow conspire to make all 8 bits HIGH (logical-1) when the
correct address is on the bus. The only combination where that situation
arises naturally is 11111111, (FFH). For all other addresses we must
provide inverters on each address line where zeros are expected. Fig-
ure 9-2 shows a sample 7430 decoder circuit for address 11001011,
(CBH). Since bits AO, Al, A3, A6, and A7 are already 1 when this

address is presented, nothing else need be done—the address lines can
be connected directly to the inputs of the 7430. For bits A2, A4, and

Figure 9-1. Eight-bit address decoder based on the 7430 chip

Address Decoding 111

Figure 9-2. Practica! version of Figure 9-1

AS, however, a different tactic is required. These bits will be LOW
when the correct address is presented, so must be inverted. Thus, an
inverter is provided in each of these address bus lines so that the 7430
will see 11111111, when 11001011 is present on the address bus.

The output of the 7430 is an active-LOW signal which we des-
ignate SELECT. When the correct 8-bit address appears on the bus,
this signal drops LOW; at all other times it is HIGH.

The circuit in Figure 9-2 is capable of seeing only 8 bits of the
16-bit address bus. If we want to examine all 16 bits, then some other

tactic is needed; an example is shown in Figure 9-3. In this circuit,

two 7430 devices are used in combination. One 7430 examines bits
A0-A7 while the other examines A8—-A15. The outputs are combined
in a 2-input NOR gate. The rules for a NOR gate are:

1. If either input is HIGH, then the output is LOW.

2. Both inputs must be LOW for the output to be HIGH.

Since both 7430s have active-LOW outputs, output of the 7402
will be HIGH only when the correct address is present on the inputs
of the 7430 devices. All other but the correct inputs will cause one or
the other 7430 output (or both!) to be HIGH, thereby forcing the 7402
output LOW. The circuit in Figure 9-3 would not be used very often
for several reasons. Among them is the fact that we could sometimes
use schemes which reduce the number of address bus lines needed to
uniquely designate a memory or I/O port location.

Another type of address decoder is shown in Figure 9-4. This
device is based on the TTL 7442 device which is known as a BCD-to-

112 DEVICE SELECTION AND ADDRESS DECODING

A15 ©

A14 ©

A113 ©

A12 ©

7430 A110

A10 ©

AS CO

AB 0 L
}7402)0 O SELECT

A7 JS _ L
AS OC

A4 ©

7430
A3 ©

A2 O

A1 oO

AON Oo

Figure 9-3. Eight-bit decoders expanded to sixteen-bit operation

@

1

2

3
4 Ten

Active-Low
5 Outputs
6

7

8

9

Figure 9-4. 7442 used as an address decoder

Address Decoding 113

1-of-10 decoder. The 7442 was originally designed to provide decimal
(1-of-10) output in response to Binary Coded Decimal (BCD) input.
The BCD code uses a 4-bit binary number to represent decimal digits.
The normal weighting for the 4 bits is the 8-4-2-1 weighting of any
4-bit binary “word.” The BCD codes and their decimal equivalents ,
are:

BCD Decimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001 OMAN DWIA WON ©

There are ten unique output lines on the 7442 decimal, one for
each decimal digit. When a 4-bit BCD word is applied to the inputs,
the corresponding decimal output will drop LOW. Thus, when the
binary (BCD) code 0011, is applied to the inputs, output 3 drops LOW;
all other outputs remain HIGH.

Figure 9-4 shows a 7442 device connected to the low-order 4 bits
of the address bus. The following devices are selected:

A3 A2 Al AO Device

He OOSCCCOCOCSO COrPeFerHoCoOooo COrPrFCORFKFCO KHOrOrororse OCWONIBHNUAWNEHO

We can, therefore, select up to ten devices using a single 7442.
They do not have to be on the A0—-A3; we can use any four bits of the
address bus if we want to locate the device elsewhere. We could, for

example, connect the “8” input of the 7442 to the A1L5 bit, and then

114 DEVICE SELECTION AND ADDRESS DECODING

+5 V DC

A15

Al4

A113

Al2

e

SELECT

Figure 9-5. 7485 chips used in 4-bit banks for address decoding

connect AO, Al, and A2 to the 1-2-4 inputs of the 7442. In this way
we could locate ten I/O ports starting at the 32K boundary.

Two or more 7442 devices can be used together to provide the
ability to look at 4, 8, 12, or 16 bits. We could combine the selected

outputs in a 2, 3, or 4-input NOR gate, as in Figure 9-3. We could also
use a cascading arrangement, which will be discussed in Chapter 10
under the heading of “banking.”

Another device which is sometimes used as an address decoder
is the 7485 four-bit magnitude comparator, or its CMOS pin-for-pin
equivalent, the 4063. These devices examine two 4-bit binary words,

designated A and B, and issue unique outputs that indicate whether
A equals B, A is less than B, or A is greater than B. If we program one
set of inputs (e.g., B) with the desired address code, then we can use
the A = B output as a SELECT signal. In that case, the A inputs are

Address Decoding 115

connected to the address bus lines. Figure 9-5 shows the circuit which
can be used for any bit length (16 bits are shown).

The 7485 is equipped with cascade inputs that are used to join
two or more devices together to form longer words. If an increment
of 4 bits is desired, then all inputs of the 7485 are used. We can use
less than 4 bits by strapping the same unused inputs on both A and B
words to the same level. It doesn’t matter whether you strap them
HIGH or LOW, so long as corresponding inputs on both sides of the
same chip are at the same level. Each additional 7485 will extend the
address word length from 1 to 4 bits.

In some cases the programmed inputs will be permanently wired
HIGH or LOW according to the bit pattern required by the designated
address. In other cases, we will want to vary the address occasionally,
so will use switches as in Figure 9-5. Each input is equipped with a
pull-up resistor to V+ and a switch; when the switch is open, the input
is HIGH; when the switch is closed, the input is LOW (grounded).

Rarely do we need all 16 bits to designate an address. Figure 9-
6 shows a method using an 8-bit decoder (any of the circuits can be
used, not just the 7430) combined with a 2-bit (7400) decoder to per-
form a specific chore, e.g., I/O decoder. The address that this circuit
responds to will be above 49,152,, because the Al4 and A15 bits must
be on. In addition, the SELECTL signal for 00110111, must also be

SELECTH

MAINSELECT

Figure 9-6. Simplified address decoding when not all memory is used

116 DEVICE SELECTION AND ADDRESS DECODING

true (LOW). If both SELECTL and SELECTH are LOW, then the
output of the 7402 NOR gate will be HIGH (a signal designated as
“MAIN-SELECT?!’).

GENERATING READ/WRITE SIGNALS

The 6502 indicates read and write conditions by the coincidence of
the phase-2 signal with the state of the R/W line. For a read operation,
both the phase-2 line and the R/W are HIGH. For a write operation,
the phase-2 clock is HIGH and R/W is LOW. In order to generate
unique and discrete READ and WRITE signals, we must take into
account both phase-2 and R/W lines. These new signals must also be
capable of driving enough TTL roads for the planned size of the com-
puter. Given the nature of some machines, the total fan-out might be
100 or more. For most applications, however, the standard fan-out of
10 offered by most TTL devices is sufficient. Where higher drive
capability is needed, we can use bus driver ICs, which have high
fan-outs.

Figure 9-7A shows a simple READ and WRITE signal generator
circuit that has a fan-out of 10. Both outputs are produced by TTL
7400 NAND gate sections (the 7400 contains four independent 2-input
NAND gates). The usual rules apply:

1. A LOW on any one input will cause the NAND output to be
HIGH.

2. Both inputs must be HIGH for the output to be LOW.

Since both phase-2 and R/W outputs are HIGH to read operations,
we can generate our system READ by connecting these lines to the
inputs of the NAND gate. The output of that NAND gate will drop
LOW, forming a READ signal, but only when phase-2 and the R/W
line are both HIGH.

The system WRITE signal is also generated by the phase-2 and
R/W lines, but requires the R/W line be inverted first. Figure 9-7B
shows the timing diagram for both read and write operations. Note
that the R/W line is shown in both normal (A) and inverted (B) forms.
The times for this diagram are the same as those in Chapter 4.

The phase-1 clock cycle starts at time T,. The address of the
selected memory location is output on the address bus (AO through
A15) during this period, and becomes stable in about 300 nanoseconds
(T,). The address remains valid until the end of the phase-2 clock cycle.
At time T,, the phase-2 cycle begins, and finds the R/W line HIGH
(see A). At this time the READ output drops LOW, and remains LOW

Generating Read/Write Signals 117

+ a ss es cee | BF
WRITE 0 | l |

| l Data | |
| | | Valid | Valid

Data | |
Bus | l | |

| | | | |

oo Bus = Address Valid Pp Address Valid

| | | I \ |
T, Tp T T, T, Te

(B)

Figure 9-7. Generating system READ and WRITE signals (A) circuits, (B) timing
diagram

118 DEVICE SELECTION AND ADDRESS DECODING

Figure 9-8. A) Buffered phase-2 clock, READ and WRITE signals, B) decoding
for system READ and WRITE signals

throughout the phase-2 cycle. At the end of phase-2, the READ line
returns to the inactive HIGH state.

The write operation follows a similar routine, but the inverted
R/W line (B) must be HIGH for the WRITE signal to be active. At
time T;, the WRITE line goes LOW.

Figure 9-8A shows another method for generating discrete READ
and WRITE signals. This method, or one closely related to it, is used

extensively in 6502-based microcomputers. The READ signal is buf-
fered by a noninverting buffer device such as the 4050 CMOS device.
The WRITE signal is formed, also from the R/W output of the 6502,
by an inverter (the example shown is a CMOS 4949). Like the R/W
line, the phase-2 line is also buffered by a 4050 CMOS device.

Generating Read/Write Signals 119

The use of the signal generated by the circuit in Figure 9-8A in
creating system READ and system WRITE is shown in Figure 9-8B.
A pair of 7400 (or equivalent) NAND gates is used in this circuit. One
input from each gate is connected together at the phase-2 line. Thus,
when the phase-2 clock is HIGH, the gates are enabled. If the READ
signal is HIGH, then the system-READ signal will go LOW. Similarly,
if the WRITE signal is HIGH, then the system-WRITE will go LOW.

A slightly different version of this circuit is made by inserting an
inverter in the WRITE input line to A2, and then joining the inverter
input to the READ input at R/W (see Figure 9-7A).

Figure 9-9 shows the use of a 7442 to create device-select signals
in 6502 systems. Recall from our earlier discussion that the 7442 is a
BCD-to-1-of-10 decoder. If we apply the control signals to the BCD
inputs of the 7442, then we can generate device-select signals. In the
scheme shown, the phase-2 signal is applied to the A input (weight =
1), R/W to B (weight = 2), and the SELECT is applied to the C input
(weight = 4). We can either ground the D input (weight = 8) or use
it as an active-LOW chip select (CS) signal. The coding that the 7442
responds to is:

Active

DCBA Output Signal

0 0 0 O 0 (none)
0 0 0 1 1 (none)
0 0 1 0 2 (none)
0 0 1 1 3 (none)

Figure 9-9. 7442 used for system READ and WRITE signal generation

120 DEVICE SELECTION AND ADDRESS DECODING

Active

DCBA Output Signal
01 0 0 4 (none)
01 0 1 5 WRITE
0 1 1 =0 6 (none)
0111 7 READ
100 0 8 Chip not selected
100 1 9 Chip not selected

In the case where an active-LOW SELECT signal is used, the C
input will be LOW when the address is selected. In those cases a READ
will look like 0011 input to the 7442, so the 3 output would be the
READ signal. The WRITE signal would create the code 0001, so the

1 output would be used.

10
Interfacing Memory to
the 6502

The very nature of the programmable digital computer, no matter
how large or how small, requires memory. No sequential or serial
processing machine could work unless there were some way to store—
or remember—data and programming instructions. Hence, memory
devices are inherent in digital computer design.

The principal difference between large mainframe computers
and even the smallest single-board computer is essentially one of scale.
In terms of memory, this difference translates into certain restrictions
on the microcomputer regarding the types of memory devices that
are used. The generally slower 8-bit microcomputer, for example, has
little need for 20-nanosecond ECL memory elements because the CPU
will never operate fast enough to make either efficient or cost-effective
use of such memory.

Similarly, the microcomputer probably has no need for multiple
disk packs such as found in almost all large mainframe computer in-
stallations. For most microcomputers, the simple floppy disk (diskette)
is sufficient. As the lines blur between classes of computer, however,
the situation may radically change. There are already multi-megabyte
large single-disk drives on the market made especially for microcom-
puters. Several manufacturers offer microcomputers in upright 19-inch
racks that look for all the world like minicomputers of not long ago,
and these are equipped with “hard disk” drives. One wonders whether
the traditional definitions that distinguish minicomputers from micro-
computers are still valid. This industry moves too fast for “tradition”
to have much meaning; reality keeps changing.

121

122 INTERFACING MEMORY TO THE 6502

MEMORY HIERARCHY

Various types of memory are still available, and they differ markedly
as to the time required to read or write data. We can classify memory
into several very broad categories according to approximate access
time: cache memory, short-term or “working store” memory, medium-
term memory, and long-term memory.

A cache memory is one that operates at ultrahigh speeds, and is
used where the memory must keep up with a high-speed central
processor. Typical technologies used to form semiconductor cache
memories are all high frequency devices: emitter-coupled logic (ECL),
high-speed TTL, and current injection logic (IIL or I?L). As with any
circuit that operates in ultrashort periods of time (i.e., 5 to 100
nanoseconds), cache memory designers must be aware of such matters
as VHF/UHF circuit layout practices, matching of input and output
impedances, and the transmission-line properties of electrical
conductors.

Cache memories are usually limited to a small portion of a main-
frame computer’s total memory array. Data is transferred in and out
of the small “cache” as needed.

Short-term memory is the main volatile memory of a microcom-
puter and consists mostly of semiconductor random access memory
(RAM) chips. Short-term memory devices usually operate with access
times on the order of 100 nanoseconds to 5 microseconds.

The working store of most microcomputers consists of an array
of high-speed short-term devices comprising as few as 32 bytes and as
much as hundreds of kilobytes.

The “typical” (if that word can have meaning in this context)
8-bit microcomputer has a 16-bit address bus, so can access 2'° (65,536)
different 1l-byte (i.e., 8-bit) memory locations. Of course, 16-bit
machines will have 2-byte circuits at each memory location.

TYPES OF MEMORY DEVICES

Solid-state computer memory devices can be divided into RAM and
ROM. RAM is random access (read/write) memory, while ROM is read
only memory. The latter type is programmed once, and then installed
into the computer as a permanent program or data, while the RAM
can be used to either read from or write to; RAM can contain program
instructions, data, look-up table entries, etc. RAM devices can be fur-
ther broken down into static RAM and dynamic RAM.

Figure 10-1 shows both static and dynamic RAM devices in model
form. The static RAM is shown in Figure 10-1A. Such a memory device

Types of Memory Devices 123

will consist of a flip-flop that can be set to either 1 (HIGH) or 0 (LOW).
In this case, a Type-D flip-flop is used, and such a flip-flop will obey
the following rules:

1. When the clock (CLK) line is active (LOW, in this case), the
data on the D-input will be transferred to the Q-output.

2. When the CLK input is HIGH (inactive), the data on the
Q-output remains at the level it took the last time thé CLK
line was active. In other words, if a HIGH was present on
D-input when the CLK line underwent the transition from
LOW to HIGH, then the Q-output will remain at HIGH. Thus,
the Type-D flip-flop will “remember” the HIGH condition
(convenient? After all, that’s what a memory element is sup-
posed to do).

In the case of Figure 10-1A, the D-input of the flip-flop becomes
the D,, line of the memory cell, and the CLK line becomes a R/W
line. The Q-output becomes the data output (D,,,) but only after being
passed through a tri-state noninverting buffer stage. This stage is used
to keep the Q-output from loading the data bus of the computer unless
the computer directs it to be active by issuing the active-LOW chip
enable (CE) signal. There will also be a similar gate at the data input
to keep the flip-flop from operating every time the R/W line on the
6502 is LOW. In other cases, the R/W line on the memory element
is connected to a device select circuit rather than the system R/W
signal.

The static memory device offers the advantage that it will re-
member the bit of data input to it until it is either rewritten or power
is lost on the computer system. But the static memory also suffers from
requiring relatively large amounts of electrical current, which can
increase considerably the current requirements of the machine. The
dynamic memory generally requires less current, and is described here.

Figure 10-1B shows the basic 1-bit memory cell inside a dynamic
memory chip. We can model the dynamic memory as a switch-con-
trolled leaky capacitor, in which Q1 (of Figure 10-1B) is the switch.
The addressing of the memory cell is made a little easier by arranging
them in a row-column matrix in which any one cell is uniquely accessed
via a specific BIT line and WORD line. We will discuss addressing
more in a moment.

The leakage factor means that the dynamic memory will not hold
data indefinitely, but must be refreshed every so many milliseconds.
In some cases, the CPU will have to handle that chore, while in others

124 INTERFACING MEMORY TO THE 6502

Tri-State
Noninverting

Buffer

(A)

Bit Line

a

£

5 Memory
co} Cell
= “Capacitor”

Vag “‘Precharge”’

(B)

Figure 10-1. A) Type-D flip-flop used as a single-bit memory cell in static
RAM, B) dynamic RAM memory cell

Types of Memory Devices 125

on-board refresh capability will be provided that does not require the
attention of the 6502.

Figure 10-2A shows an example of a static memory device called
by Intel the 8102A, and others the 2102A device. This is 1024 x 1-
bit chip, so a bank of eight 2102As will make a 1K 8-bit computer
memory. There are ten address lines (AQ-A9), as needed, to address
1024 different cells (2'° = 1024). There are also data input (D,,) and
data output (D,,,) lines on this chip, as well as the CE and R/W lines.
Figure 10-2B shows the truth table for the operation of these pins.

The read cycle (see Figure 10-2C) outputs data from pin D,,, of
the 2102A to the system data bus. There is a certain access time (T,)
required to read data. The read cycle must be at least this long, or
data will be lost. For 2102A devices, the nominal T, is 450 nanoseconds,

with selected devices available with 250 nanosecond capability. The
450 nanosecond devices cannot be operated with microprocessor chips
whose read cycle is less than 450 nS duration—a very real possibility
given the clock speeds of some modern CPU chips. For those cases,
the faster chips are mandatory.

The read cycle requires a HIGH on the R/W line, and a LOW
on the CE line. In a real computer, it is likely that the CE line will
be connected to some sort of bank selector circuit and the R/W line
to the device select line (see Chapter 9).

The write cycle permits the 6502 to input data into the memory
device. In this case, we also require a LOW on the CE line, but the
R/W line must be LOW.

4116 16K x 1-Bit Dynamic RAM

Dynamic RAM provides certain advantages over static RAM, especially
in systems with large RAM arrays. For small systems, i.e., those of only
a few thousand bytes of memory, static RAM is probably most eco-
nomical. The DRAM device usually has a density of at least four to
one over the static versions, so can be configured in a large array that
occupies little space. This factor makes it possible to make small desk-
top computers that don’t generate too much heat to raise the room
temperature. The reliability of the computer is also improved when
DRAM devices replace static memory in large arrays. The lower heat
generation has a lot to do with the reduction in failures, as does the
lower parts count, since there are fewer components to fail. As a result
of these factors, the use of DRAM devices permits a lower cost, more

reliable unit when large arrays are used. The extra cost of the external
refresh circuitry does not increase proportionally with memory size,

(uoissiwied
Aq pesn

‘jeu;
Aq £

2
6

| }4B1sAdod)

diyd A
s
o
w
a
u

911818 119-1
X

P
Z
O
L

(WY
“Z-OL

eunBi4

sunasid O/] uwNjOD

s
u
L
N
|
O
D

ZE

S
M
O
Y

ZE
A
e
u
y

1?D

wesbeig
42019

(v)

s@qUINN
Nid = C

)

up eve

W
u
 "y by ay

(A S+)
Jam0d

i
n
d
i
n
g

B
e
g
 aiqeug
diyd

¢-V2018

joquiAs 91607

D
A

in
du
y

aW
4M
/p
ee
y

W
H

1N
0q

si
nd
yj

ss
ai

pp
y

=

Sy
-%
y

3
9

yn
du

Be
g

Ni
g

sawen
Ulg

y-VcOLB

u
o
n
e
s
n
b
i
y
u
o
s

Uldg

126

Types of Memory Devices

(Device not Selected)

WRITE @

2102A Truth Table

H = High

L = Low

X = Don’t Care

(B)

Waveforms

Read Cycle

Address

oo a2 a

Chip
Enable

out _X@_}
4) 1.5 Voits Oto,
(2) 2.0 Volts
(3) 0.8 Volts

(c)

127

Figure 10-2 (continued). B) 2102/8102 truth table, C) READ cycle timing

128 INTERFACING MEMORY TO THE 6502

Write Cycle

Address

Chip
Enable

Read/
Write

Data Data can Data can
In Change Change

(D)

Figure 10-2 (continued). D) WRITE cycle timing

so is distributed over the entire 64K—making the DRAM more
economical in higher order arrays.

Although we are going to discuss one of the most popular DRAM
devices, be aware that many offer greater than 16K size. The Fairchild
4164 device is a 64K single-chip DRAM, as is the MCM6664A by
Motorola Semiconductor, Inc.

The 4116 device is shown in Figure 10-3. The block diagram of
the internal circuitry is shown in Figure 10-3A, while the logic symbol
used in schematics is shown in Figure 10-3B and the pinouts/ pin names
are in Figure 10-3C. Note that the 4116 device only has 7 address bits
(AO through A6). The 16K memory contained within the chip, however,
would normally require 14 bits on the address bus. The 4116 overcomes
this problem by using a multiplexed addressing scheme in which a row
address select (RAS) and a column address select (CAS) alternately
select half of the total address bits required. When the RAS line is
LOW, the 7 address lines input the lower order 7 bits into a special
7-bit latch that holds the data. Similarly, when the CAS is made LOW,
the high order 7 bits are input to another 7-bit register. Of course, the
microcomputer must be designed to connect bits AO through A6 of
the system address bus to the AO-A6 lines of the 4116 on one cycle,
and A7 through A13 of the address bus to AO—A6 of the 4116 on the
next cycle.

The organization of the 4116 device is an X-Y matrix in which a
storage array of 128 horizontal rows contains 128 memory cells each.

129 Types of Memory Devices

1no0g

4ajjng
n
d
i
n
g

Bune O/I
Z401

sayyng yndu}

e1eq

A
e
u
y

A
o
w
a
y
 8
D

8ZL
X ¥9

syapos9g

U
L
U
I
N
|
O
D

$9 $0 |

ssaijiduiy
asuasg

BZL

A
s
s
y

A
s
o
w
a
y

lil8D BCL
X ¥9

‘diyo
A
s
o
w
e
w

oiweUuAp
y
O
,

B® 10}
WesBeIp

,90/g
(yy

‘E-OL
eunBiy

(v)

Zé “ON
10}@J9Ua5)

49019

s1
ap

os
eq

M
O
Y

v9

JO
}

}

|

$J
9p

o0
eq

/

7

Mo
y 795°

1

L ‘ON
Joyes9Uay

490}D

(uwnjod)
yore Ward

sng ssauppy

Ma 3M svo

SVU

Sy Sy *"y ty fy y oy

130 INTERFACING MEMORY TO THE 6502

Logic Symbol

(B)

Pin Names

Ao-Ag Address Inputs

Data Input

Write Enable Input (Active LOW)

Row Address Strobe Input
(Active LOW Clock)

Column Address Strobe Input
(Active LOW Clock)

Data Output

+5 V Power Supply

0 V Power Supply

—5 V Power Supply

+12 V Power Supply

Figure 10-3 (continued). B) circuit symbol, C) IC package

Address Block Decoding 131

Each cell in any given row is connected to its own vertical column (or
bit line) that serves to connect it to a sense amplifier (Figure 10-4).

The DRAM read cycle is shown in Figure 10-5. The operation of
RAS and CAS with respect to the address data passed to the 4116 is
shown. The write enable (WE) is an active-LOW input that must be
kept HIGH during the read operation. After all of these timing actions
take place, the data out line will contain a valid data signal.

The refresh cycle for the 4116 is shown in Figure 10-6. The
arrangement of this chip allows us to refresh all cells using only the
row address line. Either the CPU (in the case of the Z-80), the program
(in 6502 and almost every other microprocessor), or an in-memory
computer will supply a row address to AO through A6 at the same time
an RAS signal is generated. During this period, the data out line is
open (i.e., tri-stated). This process must be accomplished not less often
than every two milliseconds.

Read Only Memory (ROM) Devices

The read only memory is a semiconductor device that will store a
program or data, and may be treated in the circuit as if it were a
semiconductor RAM device. The difference, of course, is that the ROM

will not accept data from the CPU during write operations—it allows
only read operations (hence the name). The write only memory (WOM)
is a joke that made the rounds of the microcomputer /semiconductor
industries a few years ago and referred to an imaginary device that
will accept data and never give it up again. Of course, an open con-
ductor accomplishes the same neat trick!

Several different types of ROM are on the market. Some are
permanently programmed and cannot be reprogrammed. These de-
vices use internal fuse links that are either left intact or blown with a
high current input from the external world. In one condition, the
internal transistor is made LOW, while in the other, the transistor is

HIGH. Another type of ROM is the erasable programmable read only
memory (EPROM). This device is programmed in a manner similar to
the other type, except the internal mechanism is different and allows
the device to be reprogrammed. There is a quartz window in the top
of the IC package that allows the chip to be exposed to an ultraviolet
light source that will erase (set to HIGH) the EPROM.

ADDRESS BLOCK DECODING

Most microcomputers use more than 1K of memory, yet many of the
memory chips available are only 1024-byte (with some being 256-byte).

132 INTERFACING MEMORY TO THE 6502

Vag

Vss Vag Vag Word

Precharge Line
63

Figure 10-4. Simplified internal circuitry

Although there are more modern devices capable of very large byte
arrays, many users still prefer the older, smaller devices. The question
arises, “How does the memory device allocated to a location greater
than the maximum address in each individual chip know when it is
being addressed?” The solution seems to be ordering of the memory
in 1K blocks, and then the use of some form of address decoding to
tell which 1K block is being designated.

Figure 10-7 shows a selection scheme used by several manufac-
turers of 8K memory banks. Each block of this memory is an array of
1024 bytes, so every location can be addressed by bits AO-A9 of the
address bus. The address pins for all devices are connected together
to form the address bus (AO-A9). We must, however, select which of
the eight blocks is addressed at any given time. One way to do this is
to use a data selector IC. The 7442 device shown in Figure 10-7 is a
BCD-to-1l-of-10 decoder. It will examine a 4-bit binary (BCD) input
word, and issue an output condition that indicates the value of that
word. In this simplified example, we are going to limit the memory

133 Address Block Decoding

uoINpUuoD
3Nduj}

auey
1,U0g

=

r
e
 duy

H
O
U

uwinjog

u
a
d
o

OWE)

HV9)

@dIA@P
OL

Lp
10}

wesBelp
Buiwiy

“g-OL
eunbig

Sou)

H
V
d
)

Ode)

M
O
Y

I
S
,

i
|

i uSV)

T
O
A

1
n
0
g

H
O
A

W
a

aM

S
H
I

A

V
A

S
e
s
s
o
i
p
p
y

HI

a

W
a

sv
o

SH
I

A

W
A

S
V
U

OH
I

A

INTERFACING MEMORY TO THE 6502 134

B
u
i
n

ysesjoy
“9-01

eunBi4

aed
3,U0g

=
3
M

‘"'A

=
S
V
9

‘AON

1
0

A

1
N
0
g

H
O
A

uedo

W
A

t
n
o
”

mone
MOY

sassauppy

u
S
V
)

d
u

H
V
)

SV,

o
u
)

Address Block Decoding 135

Block-0
1024 BYTES

Block-1
142 1024 BYTES

.
>
©

4
Q

o
¢
a

nN A a & WN — ©

Block~2
1024 BYTES

(a)

A13 A12 Ali1 A10

Block-@ 0-1K 0 0) 0
1K-2K 0 0 0 1
2K-3K 0 0 1 0
3K-4K @ @ 1 1

4K-5K) 1 @ @

5K-6K] 1 @ 1

6K-7K 6 1 1 @

7K-8K) 1 1 1

(b)

Figure 10-7. Using 7442 in bank selection of memory: code for above

136 INTERFACING MEMORY TO THE 6502

size to 8K, so only the 1, 2, and 4 inputs of the 7442 are needed. The
input weighted 8 is grounded (set = 0). The 7442 indicates the active
output by going LOW, exactly the right condition for the RAM devices
in the memory blocks. The code that will exist on the Al0-A12 bits
of the address bus for the various memory addresses in the range
0-8K is shown here:

Memory 7442 7442

Locs. Al3 Al2 All Al0O Block Output Pin

OK-1K 0 0 0 0 0 0 1

1K-2K 0 0 0 1 1 1 2

2K-3K 0 0 l 0 2 2 3

3K-4K 0 0 1] 3 3 4

4K-5K 0 1 0 0 4 4 5

5K-6K 0] 0 1 5 5 6

6K-7K 0 1 1 0 6 6 7

7K-8K 0 1 1 1 7 7 9

A100 _—

A110 [——] _ —BANKO
A120 fr | 7442 -—— 0-8K

A ___ —
FS

IL ——] BANK 1 7442 [— ‘
AA I Eq

!
|
|
I
|
1

A130
A140
A150 7442

|
| — |

Td

————- BANK 7 7442 +; 56-64K

fd

Figure 10-8. Multiple bank selection

Address Block Decoding 137

For an 8K memory, then, the lower 10 bits of the address bus
(AO-AQ9) select which location in the individual chips is wanted, and
A10-A12 select which block of 1024 bytes contains the address.

In Figure 10-7 we limited the memory size to 8K. This was done
intentionally to keep the circuit simple. But how do we select memory
in ranges higher than 8K? The answer is to use the 7442 input weighted
“8” as a bank select control. Recall from Figure 10-7 that this input
was kept grounded. If it is HIGH, then none of the eight outputs of
the 7442 will go LOW. But if it is LOW, then the circuit will work.
Figure 10-8 shows a simplified selection scheme for all 65K, using the
“8” weighted inputs of the 7442 block selectors as a bank select ter-
minal. Each bank of 8K contains its own block select 7442, and one
additional 7442 is used to select the bank of 8K that will become active.
The codes existing on address lines Al3-Al15 for each 8K bank of
locations are:

7442
Memory 7442 Pin
Locs. Bank Als Al4 Al13 Output Low

OK-8K 0 0 0 0 0 1

8K-16K 1 0 0 1] 2

16K-24K 2 0 1 0 2 3

24K-32K 3 0] 1 3 4

32K—40K 4 1 0 0 4 5

40K-48K 5 1 0 1 5 6

48K-56K 6 1 1 0 6 7

56K-64K 7 1 1 1 7 9

11
Interfacing I/O Devices
to the 6502

The topic of input and output devices, components, and circuits is
often overlooked by texts on microcomputers because I/O devices are
not quite as exotic and interesting as the details of some of the micro-
processor chips. But the I/O section of the computer is vitally important
to the overall functioning of the machine because it determines how
data are transferred in and out of the machine. In other words, the

utility of the device is often determined, or more often limited, by the
structure of the I/O circuitry used. After you purchase a microcom-
puter and decide to expand its capability, it is almost inevitable that
the question of I/O ports will come up: there will probably be too few
to support the extra peripherals and devices that you want to add!

The input and output functions are operated by the control signals
of the microcomputer, and may take either of two forms: (1) direct
I/O and (2) memory-mapped. Some microprocessor chips provide for
direct I/O in the form of I/O instructions; the Z-80 is one such machine

(see Z-80 Users Manual by Joseph J. Carr, Reston Publishing Co.). In
the Z-80 device, the address of the port will be passed over the low
order 8 bits (AO-A7) of the address bus, while the data from the ac-
cumulator are passed simultaneously over both the data bus (DBO-
DB7) and the high order 8 bits of the address bus (A8-A15). The 8-bit
memory address will support up to 256 different I/O ports that can
be numbered 0 through 255. The Z-80 device control signals allow for
I/O operations and are combined to produce unique IN and OUT
commands to the I/O devices.

Other microprocessor chips, such as the 6502, do not provide
input and output commands in the instruction set, so will not have the

139

140 ~=INTERFACING I/O DEVICES TO THE 6502

control signals and capabilities for direct I/O. In 6502-based machines,
the input and output ports are treated as if they were memory locations:
Such ports are called memory-mapped I/O ports.

While admitting that the I/O is not necessarily the most inter-
esting aspect of microprocessor technology, we must study some of
these mundane details to understand how the microcomputer deals
with the outside world. To begin this study we will consider some
elementary digital electronics theory and some of the devices used to
form I/O ports. From an understanding of these topics you should be
able to progress to designing I/O ports and interfacing techniques for
the 6502.

LOGIC FAMILIES

Digital electronic circuits use assorted logic blocks, called gates (AND,
OR, NOT, NAND, NOR, XOR, etc.), and flip-flops to perform the
various circuit functions. On initial inspection, it seems that digital
logic circuit design is made simpler because all of the logic blocks are
available in integrated circuit form and can be easily connected to-
gether with impunity. The reason why this situation exists is that the
IC logic devices are part of various families of similar devices. A digital
logic family will use standardized input and output circuits that are
designed to work with each other, use the same voltage levels for both
power supply and logical signals, and generally use the same technology
in construction of the devices. Common logic families in current use
are TTL, CMOS, NMOS, PMOS, and MOS, with subgroups within each.

Obsolete forms, such as RTL and DTL, although interesting to the

owner of older equipment, are of too little interest to justify inclusion
here. Also certain devices will mix technologies, e.g., an NMOS mi-
croprocessor chip that uses TTL input and output circuits to gain some
of the advantages of both families.

TTL (Transistor-Transistor-Logic)

Transistor-transistor-logic (TTL, also called T?L) is probably the oldest
of the currently used IC logic families and is based on bipolar transistor
technology. The bipolar transistors are the ordinary PNP and NPN
types, as distinguished from the field effect transistors.

The TTL logic family uses power supply potentials of 0 and +5
volts DC, and the +5-volt potential must be regulated for proper
operation of the device. Most specifications for TTL devices require
the voltage to be between +4.5 VDC and 5.2 VDC, although there

appear to be practical limitations on even these values. Some complex

Logic Families 141

function ICs, for example, will not operate properly at potentials below
+4.75 volts, despite the manufacturer’s protestations to the contrary.
Also, at potentials above 5.0 volts, even though less than the +5.2-volt
maximum potential is “allowed,” there is an excess failure rate probably
due to the higher temperatures generated inside the ICs. The best
rule is to keep the potential of the power supply between + 4.75 and
+5.0 volts; furthermore, the potential must be regulated.

Figure 11-1 shows the voltage levels used in the TTL family of
devices to represent logical-]1 and logical-0. The logical-1, or HIGH,
condition is represented by a potential of + 2.4 volts or more (+5 volts
maximum). The device must be capable of recognizing any input po-
tential over +2.4 volts as a HIGH condition. The logical-0, or LOW,
condition is supposedly zero volts but most TTL devices define any
potential from 0 to 0.8 volt as logical-0. The voltage region between
+0.8 volt and +2.4 volts is undefined; the operation of a TTL device

in this region is not predictable. Some care must be exercised to keep
the TTL logical signals outside the undefined zone—a source of prob-
lems in some circuits that are not properly designed.

The inverter, or NOT gate, is the simplest form of digital logic
element and contains all of the essential elements required to discuss
the characteristics of the family. Figure 11-2A shows the internal circuit
of a typical TTL inverter. The output circuit consists of a pair of NPN
transistors connected in the “totem pole” configuration in which the
transistors form a series circuit across the power supply. The output
terminal is taken at the junction between the two transistors.

The HIGH state on the output terminal will find transistor Q4
turned off and Q3 turned on. The output terminal sees a low impedance
(approximately 130 ohms) to the +5-volt line. In the LOW output

Undefined

Figure 11-1. TTL logic levels

142 INTERFACING I/O DEVICES TO THE 6502

state, exactly the opposite situation exists: Q4 is turned on and Q3 is
turned off. In that condition, the output terminal sees a very low
impedance to ground.

The input terminal of the TTL inverter is a transistor emitter
(Q1). When the input is LOW, the emitter of Q1] is grounded. The
transistor is forward biased by resistor Rl so the collector of Q1 is
made LOW also. This condition causes transistor Q2 to be turned off,
so the voltage on its emitter is zero and the voltage on its collector is
HIGH. In this situation, we have the conditions required for a HIGH

output: Q4 is turned off and Q3 is forward biased, thereby connecting
the output terminal through the 130-ohm resistor to the +5-volt DC
power supply terminal.

Exactly the opposite situation obtains when the input terminal is
HIGH. In that case, we find transistor Q1 turned off and the voltage
applied to the base of Q2 HIGH. Under this condition, the collector
voltage of Q2 drops and its emitter voltage rises. Transistor Q4 is turned
on, grounding the output terminal, and transistor Q3 is turned off. In
other words, a HIGH on the input terminal produces a LOW on the
output terminal.

Figure 11-2B shows the current path when two TTL devices are
connected together in cascade. The emitter of Device A input is con-
nected to the output terminal of Device B. The input of a TTL device
is a current source that provides 1.6 milliamperes at TTL voltage levels.
The output transistors are capable of sinking up to 16 milliamperes.
Therefore, we may conclude, for regular TTL devices, the output
terminal will provide current sinking capability to accommodate up
to 10 TTL input loads. Some special “buffer” devices will accommodate
up to 30 TTL input loads.

The input and output capabilities of TTL devices are generally
defined in terms of fan-in and fan-out. The fan-in is standardized in
a unit, or standard, input load rather than current and voltage levels.

This convention allows us to interconnect TTL devices simply without
being concerned with matters such as impedance matching. In inter-
facing TTL devices it is merely necessary to ensure that the number
of TTL input loads does not exceed the fan-out of the driving device.
In brief, the fan-in is one unit TTL input load, while the fan-out is the

output capacity expressed in the number of standard input loads that
a device will drive. In the case of the regular TTL devices, the output
current capacity is 16 mA, while the standard input load is 1.6 mA, so
a fan-out of 16/1.6, or 10, exists.

Asking a TTL device to drive a number of TTL loads in excess
of the rated fan-out will result in reduced noise margin and the pos-
sibility that the logic levels will be insufficient to reliably drive the

Logic Families 143

+5 V DC
O

Input Output

LoL LL Ee He

(A)

(B) (C)

Figure 11-2. A) TTL inverter, B) TTL interface, C) multiple-emitter inputs for
TTL gate.

144 INTERFACING I/O DEVICES TO THE 6502

inputs connected to the output. Some devices will provide a fan-out
margin but most will not. When it is necessary to drive a large number
of TTL loads, it is wise to use a high fan-out buffer.

Multiple TTL inputs are formed by adding extra emitters to the
input transistor (see Figure 11-2B). This type of circuit is used on
multiple input devices such as NAND gates, etc.; each emitter is ca-
pable of sourcing 1.6 mA of current and represents a fan-in of one
standard TTL load.

Open-Collector Output. The standard TTL output circuit shown in
Figure 11-2A must be connected to a standard TTL input in order to
work properly. At times, however, it becomes necessary to interface
the TTL device with some other type of device than TTL. In some
cases, the external load will be at the same voltage level as TTL, but
in others the voltage level might be considerably higher than +5 volts.
The open-collector circuit of Figure 11-3 will accommodate such loads.

Figure 11-3 shows only the output stage of the open-collector
device; all the other circuitry will be as in Figure 11-2A. Transistor
Q] is arranged so that its collector is brought out to the output terminal
of the device. Since there is no current path to the V+ terminal of
the power supply, an external load must be provided for the device
to work. In the case of the situation shown, an external “pull-up re-
sistor”’ is connected between the output terminal (i.e., Q1 collector)
and +5 volts DC; for most TTL open-collector devices the value of
the pull-up resistor is 2 kohm to 4 kohms. Other loads and higher
voltages can be accommodated, provided that the DC resistance of

Input

r

I
|
i
!
I
!
I

|
I
I
t
I
I
t
I
!
Lu

Figure 11-3. Open-collector TTL devices

Open
Collector TTL

Logic Families 145

the load is sufficient to keep the collector current in Q1 within specified
limits.

Speed vs. Power. The TTL logic family is known for its relatively fast
operating speeds. Most devices will operate to 18-20 MHz, and some
selected devices operate to well over 30 MHz. But the operating speed
is not without a concomitant trade-off: increased operating power.
Unfortunately, higher speed means higher power dissipation. The prob-
lem is the internal resistances and capacitances of the devices. The
operating speed is set in part by the RC time constants of the internal
circuitry. To reduce the time constant and thereby increase the op-
erating speed, it is necessary to reduce the resistances and that will
necessarily increase the current drain and power consumption.

TTL Nomenclature. Each logic family uses a unique series of type
numbers for the member devices so that users can identify the tech-
nology being used from the number. With very few “house number”
exceptions, TTL type numbers will have either four or five digits
beginning with the numbers 54 or 74. The normal devices found most
commonly are numbered in the 74xx and 74xxx series, while the higher
grade “military specification” devices carry 54xx and 54xxx numbers.
The 54 and 74 series retain the same “xx” or “xxx” suffix for identical
devices. For example, the popular NOR gate will be numbered 7402
in commercial grade components and 5402 in military grade. In gen-
eral use, we can substitute the more reliable 54xx devices for the

identical 74xx devices.

TTL Subfamilies. Certain specialized TTL devices are used for cer-
tain purposes, such as increased operating speed, lower power con-
sumption, etc. These family subgroups include (in addition to regular
TTL) low power (74Lxx), high speed (74Hxx), Schottky (74Sxx), and
low power Schottky (74LSxx) devices. A principal difference between
these groups that must be addressed by the circuit designer or inter-
facer is the input and output current requirements. In most cases, the
following levels apply:

Subfamily Input Current Output Current

74xx 1.6 mA 16 mA

74Lxx 0.18 mA 3.6 mA

74Hxx 2.0 mA 20 mA

74Sxx 2.0 mA 20 mA

74LSxx 0.4 mA 8.0 mA

146 = INTERFACING I/O DEVICES TO THE 6502

CMOS (Complementary Metal Oxide Semiconductor)

The complementary metal oxide semiconductor, or CMOS, digital IC
logic family is based on the metal oxide semiconductor field effect
transistor (MOSFET). In general, CMOS devices are slower in operating
speed than TTL devices, but have one immensely valuable property:
low power dissipation. The CMOS device presents a high impedance
across the DC power supply at all times, except when the output is
undergoing transition from one state to the other. At all other times,
the CMOS device draws only a few microamperes of electrical current,
making it an excellent choice for large systems where speed of oper-
ation is not the most important specification.

Figure 11-4 shows two CMOS devices which are at least repre-
sentative of the large family of related logic elements. Figure 11-4A
illustrates a simple CMOS inverter. Note that it consists of N-channel
and a P-channel MOSFETs connected such that their respective
source-drain paths are in series, while the gate terminals are in parallel.
This arrangement is reminiscent of push-pull operation because the
N-channel and P-channel devices turn on and off with opposite polarity
signals. As a result, one of these two transistors will have a low channel
resistance with the input LOW, while the other will offer a very high
resistance (megohms). When the input is made HIGH, then the role
of the two transistors is reversed: the one with the low channel re-
sistance becomes high resistance, while that with the high resistance
goes LOW. This operation has the effect of connecting the output
terminal to either V,, or V,, depending upon whether the input is
HIGH or LOW. Since, in both cases, one of the series pair is high

resistance, the total resistance across the V,,-V,, power supply is HIGH.
Only during the transistion period, when both transistors have a me-
dium range source-drain resistance, will there be any appreciable load
in the power supply. The output terminal will not deliver any current
because it will be connected to another CMOS input, which has a very
high impedance. As a result, there is never any time when the CMOS
IC, operated only in conjunction with other CMOS devices, will draw
any appreciable current. An example of the difference between TTL
and CMOS current levels is seen by comparing the specifications for
a common quad 2-input NAND gate in both families. The TTL version
needs 25 milliamperes, while the CMOS device requires only 15
microamperes.

Figure 11-4B shows a typical CMOS AND gate. The two inputs
are connected to independent inputs of a pair of series-connected
N-channel MOSFETs. The output of this stage will not change state
unless both inputs are active, a result of the series connection.

Logic Families 147

V+

Vag

> 21 Output

Input Output

Vss

(A) (B)

Figure 11-4. A) CMOS inverter circuit, B) CMOS gate

The operating speed of typical CMOS devices is limited to 4-5
MHz, although some 10-15 MHz devices are known. The speed is the
principal disadvantage to the CMOS line; typical TTL devices operate
to 20 MHz but require more current.

Another problem with the CMOS device is sensitivity to static
electricity. The typically very thin insulating layer of oxide between
the gate element and the channel has a breakdown voltage of 80 to
100 volts. Static electricity, on the other hand, can easily reach values
of 1,000 volts or more! Whenever the static is sufficient to cause a

biting spark when you touch a grounded object, you can bet that it
was generated by a potential of 1,000 volts or more! This potential is
sufficient to destroy CMOS devices. This problem is especially critical
in dry climates or during the low humidity portions of the year. How-
ever, methods of working with CMOS allow us to minimize damage
to the device. In general, the CMOS working rules require use of a
grounded working environment, grounded tools, and that we avoid
wearing certain wool or artificial fiber garments. Also, the B series
(e.g., CA-4001B) have built-in zener diodes to protect the delicate gate
structure by shunting dangerous potentials around the gate.

148 INTERFACING I/O DEVICES TO THE 6502

Tri-state Devices

Ordinary digital IC logic devices are allowed only two permissible
output states: HIGH and LOW, corresponding to TRUE/FALSE logic
or 1/0 of the binary system. In the HIGH state, the output is typically
connected through a low impedance to a positive power supply, while
in the LOW state the output is connected to either a negative power
supply or ground. While this arrangement is sufficient for ordinary
digital circuits, a problem exists when two or more outputs are con-
nected together but must operate separately. Such a situation exists in
a microcomputer on the data bus. If any one device on the bus stays
LOW, then it more or less commands the entire bus: No other changes
on any other device will be able to affect the bus so the result will be
chaos. Also, even if we could conspire to make all bits HIGH when
not in use, there would still be a loading factor as well as ambiguity
as to which device is turned on at any given time.

The answer to the problem is in tri-state logic, as shown sche-
matically in Figure 11-5. Tri-state devices, as the name implies, have
a third permissible output state. This third state effectively disconnects
the output terminal from the workings of the IC. In Figure 11-5, switch
Sl represents the normal operating modes of the device. When the
input is LOW, switch S1 is connected to R1 so the output would be

DC
+8V R3 >> R1, R2

EL Output

|
|

\ |
\ |

R2 \ |
‘

|
|
\

— Driver

Input

Figure 11-5. Tri-state output equivalent circuit

Interfacing Logic Families 149

HIGH. Similarly, when the input is HIGH, switch S1 is connected to

R2 so the output is LOW. The third state is generated by switch S2.
When the active-LOW chip enable (CE) terminal is made LOW, then
switch S2 is closed and the output terminal is connected to the output
of S1. When the CE terminal is HIGH, however, switch S2 is open so
the output floats at a high impedance (represented by R3). Because of
this operation, the tri-state device can be connected across a data bus
line and will not load the line except when CE is made LOW.

An advantage of tri-state digital devices is that the chip enable
terminals can be driven by device select pulses, creating a unique
connection to the data bus that is not ambiguous to the microcomputer.
In other words, the computer will “know” that only the data from the
affected input port or device is on the bus whenever that CE is made
LOW.

INTERFACING LOGIC FAMILIES

One of the defining characteristics of a logic family is that the inputs
and outputs of the devices within the family can be interconnected
with no regard to interfacing. A TTL output can always drive a TTL
input, and a CMOS output can always drive a CMOS input without
any external circuitry other than a conductor. But when we want to
interconnect logic elements of different families, then some consid-
eration must be given to proper methods. In some cases, it will suffice
to simply connect the output of one device to the input of the other,
while in other cases some external circuitry is needed.

Figure 11-6A shows a series of cascade inverters. The CMOS
device is not comfortable driving the TTL input, and the TTL input
is not happy with the CMOS output. As a result, we must use a special
CMOS device that will behave as if it has a TTL output while retaining
its CMOS input: 4050 and 4049. The 4049 device is a hex inverting
buffer, while the 4050 is the same in noninverting configuration. The
special character of these devices is the bipolar transistor output that
will mimic the TTL output if the package V+ potential is limited to
+5 volts DC. The 4040/4050 will operate to potentials up to +15
volts, but is TTL compatible only at a V+ potential of +5 volts DC,
with the other side of the device power supply grounded. The input
of the 4049/4050 is CMOS, so is compatible with all CMOS outputs.

The TTL input is a current source, so the TTL output depends
for proper operation on driving a current source (naturally). The CMOS
input, however, is a very high impedance because the CMOS family
is voltage-driven. If we want to interface an ordinary TTL output to

160 INTERFACING I/O DEVICES TO THE 6502

a CMOS input (see Figure 11-6B), then we must provide a pull-up
resistor between the TTL output terminal and the +5-volt DC power
supply. A value between 2 and 4 kohms is selected to make the current
source mimic a TTL input current level.

The method in Figure 11-6B works well in circuits where both
CMOS and TTL devices operate from a +5-volt DC power supply.
While this is the usual situation in most circuits, on occasion the TTL
and CMOS devices operate from different potentials; the correct in-
terfacing method is shown in Figure 11-6C. Here we use an open-
collector TTL output with a resistance to the Vz, power supply (used
by the CMOS device) that is sufficiently high to keep the current
flowing in the TTL output at a level within tolerable limits.

We can use a single 4049/4050 device to drive up to two regulator
TTL inputs (Figure 11-6D), and an ordinary CMOS device will drive
a single “LS” series TTL input. The 4001 and 4002 CMOS devices are
capable of directly driving a single regular TTL input. With the ex-
ception of the 4049/4050 device, these methods depend upon the
CMOS and TTL devices operating from a common +5-volt DC power
supply. If the CMOS devices are operated at higher potentials, then
all bets are off and we will be forced into using the 4049/4050 method
discussed previously to prevent burnout of the TTL input.

Most microprocessor chips have limited output line capacity, most
being limited to one or two TTL input loads. Most of the MOS series
microprocessor chips use MOS logic internally, but have TTL-com-
patible output lines. In the case of a two loads output, the total allowable
output current is 3.2 milliamperes. However, many TTL-compatible
inputs may be connected to the data bus or address bus of the micro-
computer. We need a high current bus driver on each line of the bus
to accommodate these higher current requirements. Figure 11-7 shows
a series of eight noninverting bus drivers interfacing the data bus of
a microcomputer (DBO-DB7) with the data bus outputs of the micro-
processor chip (BO-B7). This circuit will increase the drive capacity of
the microcomputer from a fan-out of 2 to a fan-out of 30 or even 100,
depending upon the bus driver selected.

FLIP-FLOPS

All of the gates used in digital electronics are transient devices. In
other words, the output state disappears when the input stimulus dis-
appears; the gate has no memory. A flip-flop, however, is a circuit that
is capable of storing a single bit, one binary digit, or data. An array of
flip-flops, called a register, can be used to store entire binary words in

Flip-Flops 161

Veg +5V DC +5 V DC

(B) (C)

TTL: Regular,
Lor LS

(D)

ame
(E) (F)

Figure 11-6. IC logic element interfacing A) any-CMOS-to-4049/4050-to-
single TTL, B) TTL-to-CMOS operated from +5 VDC, C) TTL-to-CMOS other
than +5 VDC, D) 4049/4050 to drive TTL, E) CMOS-to-LS TTL (i.e., 74LS
series), F) 4001/4002 CMOS to TTL

152 INTERFACING I/O DEVICES TO THE 6502

Bus Drivers

(Noninverting)

DBO

DB1

DB2

DB3

To Data Bus

DB4

DBS

DB6

VVV VV VV \ DB7

Figure 11-7. Using bus driver stages to increase the bus power capacity

the computer. All of these circuits can be built with discrete digital
gates, even though few modern designers would do so because the
various forms of flip-flop are available as discretes in their own right.

Figure 11-8 shows the basic reset-set, or RS flip-flop. The two
versions are based on the NOR and NAND gates, respectively. An RS
flip-flop has two inputs, S and R for set and reset. When the S input is
momentarily made active, then the output terminals go to the state
in which Q = HIGH and NOT-Q = LOW. The 2 input causes just
the opposite reaction: Q = LOW and NOT-Q = HIGH. These inputs
must not be made active simultaneously, or an unpredictable output
state will result.

Figure 11-8A shows the RS flip-flop made from a pair of 2-input
NAND gates. In each case, the output of one gate drives one input of
the other; the gates are said to be cross-coupled. The alternate inputs
of each gate form the input terminals of the flip-flop.

The inputs of the NAND gate version of the RS flip-flop are active-
LOW. This means that a momentary LOW on either input will cause
the output action. For this reason, the NAND gate version is sometimes

designated an RS FF, and the inputs designated S and R, respectively.

Flip-Flops 153

The NOR gate version of the RS flip-flop is shown in Figure
11-8B. In this circuit, the inputs are active-HIGH so the output states
change by applying a HIGH pulse momentarily. The circuit symbol
for the RS flip-flop is shown in Figure 11-8C. In some instances, the
NAND version will be indicated by the same circuit, while in others
there will be either R and S indications for the inputs or circles indi-
cating inversion at each input terminal.

“LU
Ss

:
(A)

;
(B)

(C)

Figure 11-8. A) NAND-based RS flip-flop, B) NOR-based RS flip-flop, C) RS
flip-flop circuit symbol

154 INTERFACING I/O DEVICES TO THE 6502

The RS flip-flop operates in an asynchronous manner, i.e., the
outputs will change any time an appropriate input signal appears.
Synchronous operation, which is required in most computer-oriented
circuits, requires that output states change only coincident with a
system clock pulse. The circuit in Figure 11-9 is a clocked RS flip-flop.
Gates G3 and G4 form a normal NOR-based RS flip-flop. Control via
a clock pulse is provided by gates G1 and G2. One input of each is
connected to the clock line. These two gates will not pass the R and
S pulses unless the clock line is HIGH. The input lines can change all
they want between clock pulses, but an output change is effected only
when the clock pulse is HIGH.

A Type-D flip-flop (Figure 11-10A) is made by using an inverter
to ensure that the S and R inputs of a clocked RS flip-flop are always
complementary. The S input of the RS flip-flop and the input of the
inverter that drives the R input of the RS FF are connected in parallel.
When the S input is made HIGH, therefore, the R input will be LOW.
Similarly, a LOW on the S input will place a HIGH on the R input.
The circuit symbol for the Type-D FF is shown in Figure 11-10B.

The rule for the operation of the Type-D flip-flop is: The input
data applied to the D terminal will be transferred to the outputs only
when the clock line is active. Figure 11-10C shows a typical timing
diagram for a level-triggered Type-D flip-flop that has an active-HIGH
clock. The output line of this flip-flop will follow the input line only
when the clock line is HIGH. Trace D shows the data at the D-input,
while trace Q shows the output data; CLK shows the clock line, which

is presented with a series of regular pulses.
At time T,, the data line goes HIGH, but the clock line is LOW,

so no change will occur at output Q. At time T,, however, the clock
line goes HIGH; the data line is still HIGH so the output goes HIGH.
Note that the Q output remains HIGH after pulse T1 passes, and it
will continue to remain HIGH even when the data input drops LOW
again. In other words, the Q output of the Type-D flip-flop will re-

RO

Figure 11-9. Clocked-RS flip-flop

\/0 Ports: Devices and Components 155

member the last valid data present on the D input when the clock
pulse went inactive. At time T, we find another clock pulse, but this
time the D input is LOW. As a result, the Q output drops LOW. The
process continues for times T, and T,. Note that, in each case, the
output terminal follows the data applied to the input only when the
clock pulse is present!

The example shown here is for a level-triggered Type-D flip-flop,
which will allow continuous output changes while the clock line is
HIGH. An edge triggered Type-D flip-flop timing diagram is shown
in Figure 11-10D. In this case, the data on the outputs will change
only during either a rising edge of the clock pulse (positive edge trig-
gered) or on the falling edge of the clock pulse (negative edge trig-
gered). The flip-flop will respond only during a very narrow period of
time.

I/O PORTS: DEVICES AND COMPONENTS

A number of devices on the market can be used for input and output
circuitry in microcomputers. Some devices are merely ordinary TTL

or CMOS digital integrated circuits that are adaptable to I/O service.
Still others are special-purpose integrated circuits that were intended
from the inception as I/O port devices. Most of the microprocessor
chip families contain at least one general-purpose I/O companion chip
that is specially designed to interface with that particular chip. In this
chapter, we will study some of the more common I/O components.
Keep in mind, however, that there are many other alternatives that

may be better than those shown here. You are advised to keep abreast
of the integrated circuits that are available from various manufacturers.

Figure 11-11 shows the TTL 74100 device. This integrated circuit
is a dual 4-bit latch circuit. When we connect the latch strobe terminals
together (pins 12 and 23), we find that the device is usable as an 8-bit
latch. The 74100 device can be used as an output port.

The input lines of the 74100 device are connected to bits DBO
through DB7 of the data bus. The Q outputs of the 74100 are being
used as the data lines to the external device. The two strobe lines are
used to gate data from the data bus onto the Q outputs of the 74100.
The data latch (including the 74100) will transfer data at the D inputs
to the Q outputs when the strobe line is HIGH (note the similarity to
the operation of the Type-D flip-flop—the data latch is a special case
of the Type-D FF in which the clock line is labelled strobe). When the
WRITE signal goes HIGH, therefore, the data on the bus is transferred
to the Q outputs of the 74100. The data will remain on the Q outputs

+—----— Data
Data : Data

- | ! !
| | | |

| | l
+ 7 7 7 1]

CLK {

° to !t Itz its 1tg

po
! !

+ | !
Q 0 | | | |

! |
7 + I i ! I

a ee nn Pa 0)

(C)

Data Wy Cave WY : Data Valid : Yy on" YH

| | !
Rising | |

Edge | |

l |
|
le Data ping Data _ -
| Set-up | Hold |

(D)

Figure 11-10. A) Type-D flip-flop made from RS flip-flop, B) circuit symbol,
C) timing diagram, D) timing diagram expanded

156

1/0 Ports: Devices and Components 157

16 17
DBO Dd

15 18
DB1 D1

10 9
DB2 D2

"1 8

21 20
DB4 74100 D4

22 19
DB5 D5

3 4 DB6 . D6
2 5

DB7 , D7

WRITE o

Figure 11-11. 74100 chip used as an output port

even after the WRITE signal goes LOW again. This type of output,
therefore, is called a latched output.

It is not necessary to use a single integrated circuit for the latched
output circuit. For example, we could use a pair of 7475 devices, or
an array of 8 Type-D flip-flops, although one wonders why!

Input ports cannot use ordinary 2-state output devices because
there may be a number of devices sharing the same data bus lines. If
any one device, whether active or not, develops a short to ground then
that bit will be permanently LOW, regardless of what other data are
supposed to be on the line. In addition, it is possible that some other
device will output a HIGH onto the permanently LOW line and
thereby cause a burn-out of another IC. Similarly, a short-circuit of
any given output to the V+ line will place a permanent HIGH on that
line. Regardless of the case, placing a permanent data bit onto a given
line of the data bus always causes a malfunction of the computer or
its resident program. To keep the input ports “floating” harmlessly
across the data bus lines, we must use tri-state output components for
the input ports; such components were discussed earlier in this chapter
(see Figure 11-5).

A number of 4-bit and 8-bit tri-state devices on the market can
be used for input port duty. Figure 11-12A shows the internal block
diagram for the 74125 TTL device. This device is a quad noninverting
buffer with tri-state outputs. A companion device, 74126, is also useful

for input port service if we want or need an inverted data signal. The

158 INTERFACING I/O DEVICES TO THE 6502

74126 device is a quad inverter with tri-state outputs. Each stage in
the 74125/74126 devices has its own enable terminal (C1 through C4)
that is active-LOW. When the enable terminal is made LOW, therefore,
the stage will pass input data to the output and operate in the manner
normal to TTL devices. If the enable terminal is HIGH, however, then
the output floats at a high impedance so will not load the data line to
which it is connected.

Figure 11-12B shows a pair of 74125 devices connected to form
a single 8-bit input port. The output lines from each 74125 (i.e., pins
3, 6, 8, and 11) are connected to lines DBO through DB7 of the data
bus. The input pins of the 74125 (pins 2, 5, 9, and 12) are used to
accept the data from the outside world.

The READ signal generated by the microprocessor chip and the
device select circuits is used to turn on the 74125 devices. Note that
all four enable lines of each 74125 device are parallel-connected so
that all stages will turn on at the same time.

The output lines of the input port are not latched. Therefore, the
data will disappear when the READ signal becomes inactive, exactly
the requirements of an input port on a shared bus!

Another useful input port device is the 74LS244 TTL integrated
circuit. Like the 74125 device, the 74LS244 has tri-state outputs. The
74LS244 is an array of eight noninverting buffer stages arranged in a
2-by-4 arrangement in which four devices share a common enable
terminal. In Figure 11-13A, we find that stages Al through A4 are
driven by chip enable input CEI (pin 1), while Bl through B4 are
driven by chip enable input CE2 (pin 19). In the circuit in Figure
11-13B we strap the two chip enable terminals together to force the
74LS244 device to operate as a single 8-bit input port. The eight input
lines are connected to the respective input terminals of the 74LS244,
while the output lines are connected to their respective data bus lines.
When the READ signal becomes active (LOW), then data on BO
through B7 will be gated onto data bus lines DBO through DB7.

The techniques used thus far in this chapter require separate
integrated circuits for input and output functions. While this is often
satisfactory, it involves an excessive number of chips for some appli-
cations. We can, however, make use of combination chips in which
the input and output functions are combined. Several devices on the
market are classified as bidirectional bus drivers. These devices will
pass data in either direction depending upon which is selected by the
control signals. Typical devices used for several years in microcomputer
designs are the 4-bit 8216/8226 devices and the 8-bit 8212 device, all
by Intel. Originally, these devices were intended for use in the 8080A
microprocessor circuit. Even though the 8080A has been long since

\/O Ports: Devices and Components 159

=) —>— DO1

Ci

C2

DI3 —1>— DO3

DO4

DBO

DB1

DB2

DB3

DB4

DB5

DB6

DB7

(B)

Figure 11-12. A) internal circuit of 75125 chip, B) 74125 as an input port

160 INTERFACING !1/O DEVICES TO THE 6502

20

40

110

150

(A)

Figure 11-13. A) 74LS244 internal circuit.

018

O 16

O 14

\/O Ports: Devices and Components 161

+5 V DC
O

20

BOO DBO

B10 DB1

B20 DB2

B3 O IC1 DB3

B40 74LS244 pB4

B50 DB5

B6 O DB6

B70 CE1 CE2 DB7

(B)

Figure 11-13 (continued). B) 74LS244 as input port

superseded by newer and more powerful microprocessors, some of the
support chips still find wide application.

Figure 11-14 shows the internal structure (simplified) for the 8216
and 8226 devices. The principal difference between the 8216 and the
8226 is that the 8216 uses noninverting stages while the 8226 uses
inverting stages. Note that the two buffers in each stage are facing in
opposite directions with respect to the data bus line (DBO). In other
words, the output line of I is connected to the data bus so stage I can
be used as an input port line. Similarly, the input of O is connected
to the data bus, thereby allowing use of O as an output line. The DI

and DO lines are for input and output, respectively.
Control of the 8216 and 8226 devices is through the DIEN and

CS inputs. Figure 11-15 shows the truth table that applies to these
chips. The chip select line (CS) is active-LOW, so we find that the
output will be in the high impedance state if CS is made HIGH. The
CS line must be LOW for the device to operate. The data direction
(DIEN) line will connect the input lines (DI) to the data bus (DB) when
the DIEN is LOW, and connect the data bus lines to the output lines
(DO) when DIEN is HIGH.

162 INTERFACING 1/0 DEVICES TO THE 6502

Dly

(Input)

DBy
(To Data Bus)

DOp o

(Output)

Figure 11-14. One segment from 8216/8226 chips

Figure 11-16 shows two alternate plans for connecting the 8216
and 8226 devices to actual microprocessor circuits. Figure 11-16A
shows the basic connections to make these devices work properly, while
Figure 11-16B shows a method for using a pair of 8216 devices with
a 6502 microprocessor chip. The control signals from the micro-
processor chip are specifically designed for use with the 8216/8226
devices.

8216/8226

s [oen| stave |
ro tO DI-— DB

He
x High-Z

Hee
Figure 11-15. 8216/8226 truth table

Interfacing Keyboards to the Microcomputer 163

INTERFACING KEYBOARDS TO THE MICRO-
COMPUTER ’

The microcomputer is able to communicate with humans through
means of various displays (e.g., video CRT, strip-chart recorder, seven-
segment LEDs). The so-called “real world” can communicate with the
computer through transducers and data converters. But humans have
to communicate with the computer through a device such as a key-
board. The purpose of the keyboard is to allow the human operator
to send uniquely encoded binary representations of alphanumeric char-
acters, special symbols, or that denote special functions to the com-
puter. If the computer has been programmed to recognize these special
codes, then the human operator can direct the operation of the com-
puter, feed it data, etc.

There are at least three general types of keyboard. First is the
simple hexadecimal keypad, which will have 16 keys that are labelled
0 through 9 and A through F. The “hex” keypad will produce either

+5 V DC

DIO DBO

DI1 DB! pata
DI2 DB2 Bus

DI3 DB3

DOO

DO1

DO2

DO3

* Two Required for 8-Bit
D
ata Bus cS —sCDIEN

(A)

Figure 11-16. A) 8216 as input port (4-bit), B) two combined for 8-bit op-
eration

164 INTERFACING I/O DEVICES TO THE 6502

Data
Bus

DB4

DBS

DB6

DB7

(B)

the 4-bit binary representations of the hex numbers 0000 through 1111
or the ASCII representation (note that the ASCII is a 7-bit code of
which the lowest order 4 bits are the same as the binary code for
hexadecimal). The second form of keyboard is the full ASCII keyboard
that contains all of the alphanumeric characters and outputs unique
7-bit ASCII binary codes representing those characters. The several
different forms of this type of keyboard offer 56, 64, or 128 characters
(the maximum number allowable with 7-bit codes). The 7-bit ASCII
code is ideal for 8-bit microcomputers because the binary word length
of the character code is only 1 bit less than the word length of the
microprocessor. When the strobe or data valid bit is added to the code
bits then a single 8-bit word is totally filled and there are no
wasted bits.

Interfacing Keyboards to the Microcomputer 165

The third type of keyboard is the custom or special-purpose key-
board used on electronic instrument panels, for point-of-sale terminals
designed to be operated by quickly trained Christmas and summer
replacement clerks, etc. The custom keyboard may be merely a series
of switches that set some input port bits HIGH or LOW depending
upon the situation or it may be a general purpose or hexadecimal
keyboard with special keycaps that denote special functions. The com-
puter would be programmed to look for the special symbol and then
jump to the program that performs the requisite function when the
signal is received.

Figure 11-17 shows the circuit for a typical type of keyboard that
is based on a Read Only Memory. Addressing the locations of the
memory IC (JC1) is by shorting together specific row (“X’’) and column
(“Y’’) input pins. When the “@” key is pressed, for example, the key
switch that denotes “@” is used to short together row “XO” and column
“Y8” (see character table in Figure 11-17). This combination uniquely
addresses the memory location inside IC] that contains the binary
code that represents the ASCII character “@.”

Lines DBO through DB6 are the data lines for the ASCII code,
and DB7 is the strobe line. The strobe line is used to tell the outside
world that the data on the other seven lines are valid. Normally, “trash”
signals will be on those other lines until a key is pressed and the ASCII
code appears. By using the strobe line judiciously, we can create a
signal that tells the computer when to believe the DBO-DB6 data.
In the case of Figure 11-17, the strobe is a pulse that is created by
monostable stable multivibrator (i.e., one-shot) [C2.

The two different types of strobe signal are shown in Figure
11-18. The level type of signal is simply a voltage level that becomes
active when the key is closed, and remains active until the key is
released. In Figure 11-18A, the signal is active-HIGH so pops HIGH
when key closure occurs and drops LOW again when the key is re-
leased. The alternate form of strobe signal is the pulse as shown in
Figure 11-18B. This signal will snap HIGH only for a brief period (often
measured in microseconds) and then go LOW again. By the time the
operator releases the key (i.e., after dozens of milliseconds), the com-
puter has input the data and gone on to grander and more wonderful
things.

It is important to ensure that the type of strobe signal matches
the computer and the software being used. Problems that can make
an otherwise normal keyboard appear to malfunction involve the du-
ration of the strobe pulse, software that is looking to find one type of
strobe signal but the keyboard supplies the other, and inverted strobe

INTERFACING I/O DEVICES TO THE 6502 166
pueoghey

||DSV
seIndwoD

“Zb-Lt
eanBi4

saul]
j
e
U
O
Z
U
O
H

pueoqdhay

(
3
@
O
U
L
S
)

298d 980

s
a
a

s
n
g
m
e
g
o
,

v
a
d

y
n
d
i
n
o

e
a
d

IIDSv
zaaq

t
a
d

S
O
U
]

[
B
N
U
G
A

p
s
e
o
g
d
s
y

esa

Tey d yy dy bye)

372

[37

10°0

47

LOO]

37

Ly

19

g9

v9

99

Jd
AZ?I-

90
ASt+

Interfacing Keyboards to the Microcomputer 167

Level | |

Type

Pulse

Type | a

| |
Key Closure Key Opened

Figure 11-18. Types of strobe signal (A) level, (B) pulse

signals (i.e., the keyboard is active-LOW and the program wants to see
active-HIGH so no data-valid strobe signal is received—except when
the data is trash). We will discuss possible “fixes” for these problems
shortly.

The keyboard is most easily interfaced to the microcomputer that
has a spare input port to accommodate it. We can then connect DBO-
DB6 to the low order 7 bits of the input port and the strobe signal to
the highest order bit of the port. A program is then written to con-
tinuously examine that high order bit and branch to the input routine
when it sees an active strobe signal. In that case, simple interconnection
is all that is needed.

Where there is no available input port, then we may create one
using one of the methods shown earlier or some special function I/O
port IC device. The I/O port circuitry could then be used to input
data from the keyboard directly to the data bus.

Most of the methods for interfacing keyboards will work fast
enough that the computer can pick up the valid data each and every
time a key is pressed. But at times we will want the computer to come
back later and pick up the data (note that “later” could mean 500 ms,
but the key would have been released by that time), so that some other
program task is not interrupted. In that case, we would want a latched-
output keyboard. If the output data on any given keyboard is not
latched, then a circuit such as in Figure 11-19 may be used. Here we
see the use of another 74100 8-bit data latch. Seven of the latch inputs
are used to accommodate the ASCII data lines, and the eighth is not
connected. The ASCII strobe signal is used to activate the 74100 strobe
lines and will transfer valid ASCII data from the inputs to the outputs
of the 74100 so that the computer always sees a valid data signal.

In the case shown in Figure 11-19, the computer must periodically
interrogate the input port and take the data each time. Unless there
is some reason why the computer must know that the data is new, the

168 INTERFACING I/O DEVICES TO THE 6502

Keyboard

Figure 11-19. Latch circuit for keyboard

strobe is not necessary. We could, however, add a flip-flop that changes
state when the strobe signal is received and is then reset when the
computer takes the data. In that case, the READ signal generated to
activate the input port also could be used to deactivate the strobe FF,
provided that the timing could be worked out.

Figure 11-20 shows the fixes for several problems. When the
strobe signal is of the wrong polarity, we can interpose an inverter
between the strobe output of the keyboard and the strobe line of the
computer input port (see Figure 11-20A).

The same basic idea is used when the voltage levels from the
keyboard are not compatible with the input level requirements of the
microcomputer. It is almost universally true that microcomputers want
to see TTL-compatible voltage levels for all signals (i.e., 0-volts and
2.4-5.2 volts for LOW and HIGH, respectively). If the keyboard pro-
duces something else, for example, a CMOS logic level, then some
form of level translation must be used. The interface device in that
case could be a CMOS 4049 or 4050 (depending upon whether inver-
sion is desired) operated from a +5-volt power supply. When the IC
is operated from +5 volts DC, then the output lines are TTL-
compatible while the input will still accommodate CMOS levels.

Figure 11-20B shows one fix for the situation where the keyboard
strobe signal is too short for the microcomputer being used. In many
cases, the keyboard used on a microcomputer will seem to malfunction
intermittently. The operator will notice that it will not always be picked
up by the computer. The problem in that case may well be that the
strobe pulse is too short. Microcomputer programs typically loop

Custom Keyboards, Switches, and LED Displays 169

through several steps that input the data at the port, mask all bits but
the strobe, and then test the strobe for either 1 or 0, depending upon
whether active-HIGH or active-LOW is desired, and then act accord-

ingly. If the strobe is active, then the program jumps to the input
subroutine that will accept the data and stuff it someplace. If, on the
other hand, the strobe test shows that it is inactive, then the program
branches back to the beginning and inputs the data to test again. It
will continue this looping and testing until valid data is received. The
problem is that the looping requires a finite period of time to execute—
not much time, but still finite. If the strobe pulse comes alive and
disappears while the loop program is in another phase than input data,
then it will be lost forever. To the operator, it will appear that the
computer ignored the keystroke—and much complaining and calling
of service technicians will ensue. An example of such a situation is
where the computer requires 22 microseconds to execute the loop
program, and the keyboard has a 500-nanosecond strobe (they exist).
In that case, we can use the pulse stretcher circuit in Figure 11-20B.
The circuit is merely a one-shot, and does not actually stretch any-
thing—it only looks that way to the naive. Actually it uses the strobe
pulse from the keyboard as the trigger signal for the one-shot, and
then the output of the one-shot becomes the new, longer, and pre-
sumedly “stretched,” strobe pulse that is sent to the computer. The
duration of the pulse is given approximately by 0.7R,C, and these
values can be any normal values under 10 megohms and 10 pF, select
values that will make the strobe pulse duration at least long enough
that the loop program will catch it, but not so long as to require several
loops to outrun it.

Where the low-cost keyboard outputs a level strobe signal, and
the computer wants to see a pulse strobe signal, use an arrangement
such as in Figure 11-20C. Here we have a 74121 one-shot similar to
the one used previously. The difference is that the trigger input is
connected to the keyboard strobe line through an RC differentiator
(R2 and C2). The purpose of the differentiator is to produce a pulse
signal when the level becomes active. Note that, sometimes, one-shot
devices will respond to both rising and falling edges, so some sort of
diode suppression might be needed in the differentiator output (i.e.,
trigger input) to eliminate the unwanted version of the signal.

CUSTOM KEYBOARDS, SWITCHES, AND LED
DISPLAYS

Custom keyboards may be ordinary keyboards with special keycaps or
they may be specially designed sets of switches that tell the computer

170 INTERFACING I/O DEVICES TO THE 6502

Keyboard

STROBE STROBE

(A)

STROBE

(C)

Figure 11-20. A) inverting strobe pulse, B) lengthening strobe pulse, C) circuit
for positive-level-to-pulse type strobe signal

Custom Keyboards, Switches, and LED Displays 171

to do some neat thing or another. In this section we will consider some
of the techniques used to interface and construct these keyboards.

Perhaps the simplest method is that shown in Figure 11-21A. The
active element of the keyboard is an input port with switches con-
nected to set each bit either HIGH or LOW. In some cases, especially
those where a special-purpose I/O port IC is used, the bits of the port
might be ordinarily maintained HIGH by internal pull-up resistors to
+5 volts DC, but in most cases we will have to supply the pull-up
resistors externally. The resistors are designed to ensure that the open
bit of the input port remains HIGH and is not erroneously driven LOW
by noise or other factors. The switches will produce a HIGH on the
bit line when they are open, and a LOW when they are closed.

Where there is no available input port, then we create one by
using a 74LS244 or some similar device to interface the switches to
the data bus line. A READ] signal is used to turn on the 74LS244
when the computer wants to read the setting of the switches. The read
operation can be either periodic, as in the case of the keyboards, or it
may occur just once when the computer is first turned on or the
program first begins execution. In this latter case, the computer is
asking the keyboard what modes are selected or some similar question.
Some designers use this same method to tell the computer which
options the customer has purchased. For example, suppose we have a
scientific or medical instrument that has eight optional modes that the
customer pays for separately from the main instrument. The designer
might put a circuit such as in Figure 11-21A on the printed circuit
board (the switches are DIP switches) so that the customer engineer
or production staff can set them according to which options are pur-
chased. The program to support those options could already be built
into the software supplied via ROM to the customer, but only becomes
activated when the switch is set to the correct position. Of course, the
setting protocol of these switches would be kept confidential lest
the customer set them himself, thereby avoiding payment of the
license fee.

The example in Figure 11-21B also shows an opto-isolator switch,
which is sometimes used to indicate the position of an object. In a
popular printer, for example, there is a little metal flange on the print
head assembly that will fit into the space between the LED and the
phototransistor, thereby blinding the transistor when the print head
assembly is at the end of its travel. As long as the transistor sees light,
it will be turned on and the state of DB7 will remain LOW. When the
print head assembly reaches the limit of travel, however, it will blind

the transistor causing it to turn off, and DB7 goes HIGH. The micro-
processor used to control the printer carriage will then know to issue

172 INTERFACING I/O DEVICES TO THE 6502

the signal that returns the carriage to the left side of the page and
issue a line feed signal to advance the paper.

Switches don’t make and break in a clean manner; there is almost

always some “contact bounce” to contend with. In the case of toggle
switches that we set and forget, this “bounce” is not too much of a
problem. But in the case of pushbutton switches that are operated
regularly, then the contact bounce will produce spurious signals that
may erroneously tell the computer to do something besides what the
operator intended. The two circuits in Figure 11-22 can be used to
“debounce” the pushbutton switches. Figure 11-22A shows the so-
called half-monostable circuit, which will produce an output pulse
with a duration set by Rl and Cl every time the pushbutton switch
is operated. The inverter is CMOS type, such as the 4049 or 4050
devices (again, depending upon the desired polarity of the signal). The
alternate circuit (see Figure 11-22B) is merely the one-shot circuit used
earlier but with a pushbutton switch and pull-up resistor forming the
trigger input network. In either case, the output will be a pulse with
a duration long enough to allow the bounce signals to die out.

Figure 11-23 shows the methods for interfacing LEDs and LED
7-segment displays to the microcomputer. In both cases, an output
port is needed. If none exists, a 74100 or some other device may be

+5 VDC

All 3.3 K

S1

$2

$3

$4

(A)

Figure 11-21. A) interfacing switches for “custom keyboard”

Custom Keyboards, Switches, and LED Displays

+5 V DC

Pull-up
Resse

18

(B)

Figure 11-21 (continued). B) with eight inputs

173

174 INTERFACING I/O DEVICES TO THE 6502

O Active-High

O Active-Low

R2
3.3 K

Figure 11-22. Debounced keyboards A) monostable multivibrator type B)
half-monostable type

Custom Keyboards, Switches, and LED Displays 175

used to form an output port. In the case of Figure 11-23, a single output
port is used. Figure 11-23A shows the method for interfacing individual
LEDs to the port. Each light-emitting diode is driven by an open-
collector TTL inverter. The LED and a current limiting resistor is used
to form the collector load for the inverters. The value of the resistor
is selected to limit the current to a level compatible with the limits of
the LED and the output of the inverter. With the value shown, the
current is limited to 15 milliamperes, which is within the capability of
most of the available open-collector TTL inverters on the market, and
will provide most LEDs with sufficient brightness to be seen in a well-
lighted room .. . although not outdoors in direct sunlight.

When the input signal of the inverter in Figure 11-23A is HIGH,
then the output is LOW, thereby grounding the cathode of the LED.
This condition will turn on the LED. Alternatively, when the input of
the inverter is LOW, its output will be HIGH so the cathode of the
LED will be at the same potential as the anode and no current will
flow. Therefore the LED will be off.

Figure 11-23B shows a similar method for interfacing 7-segment
LEDs to the microcomputer output port. Here we drive the 7 segments
of the LED numerical display device with open-collector TTL inverters
in exactly the same manner as with the individual LEDs. This method
assumes that the LED numerical display is of the common anode
variety with the anode connected to the +5-volt DC power supply.

A constraint on this method is that the computer must generate
via a software method the 7-segment code. For example, when the
number to be displayed is “4,” we will want to light up the following
segments: f, g, b, and c. These segments are controlled by bits B5, B6,
Bl, and B2, respectively. Since the segment is turned on when the
output port level is HIGH (as in the previous case), we will want to
output the binary word 01100110 to turn on the segments that indicate
“4.” In this case, the decoding of the number “4” into 7-segment code
is performed in software, probably using a look-up table.

Figure 11-24 shows a method for interfacing the display through
an ordinary TTL BCD-to-7-segment decoder integrated circuit, in this
case the 7447 device. The 7447 will accept 4-bit Binary Coded Decimal
data at its inputs, decode the data, and turn on the segments of the
LED display as needed to properly display that digit. The 7447 outputs
are active-LOW, i.e., they drop LOW when a segment is to be turned
on and are HIGH at all other times. We therefore would use a common
anode 7-segment LED display for this application.

The BCD code applied to the inputs is weighted in the popular
8-4-2-1 method, and according to our connection schema shown in
Figure 11-24: BO = 1, B1 = 2, B2 = 4, and B3 = 8.

176 INTERFACING I/O DEVICES TO THE 6502

330 or 390 2

(B)

Figure 11-23. A) Interfacing light-emitting diodes (LED), B) interfacing light-
emitting diode seven-segment numerical displays

177 Custom Keyboards, Switches, and LED Displays

Ae\dsiq

quawbasg
“UBAIS

ap
o)

q
u
a
w
b
a
g

Ud
AB
S

00
A St+

Aejdsip
ay}

JO}
sapoodep

jeuseyxe
Buis~,

“pZ-L
| eanbig

uol99UUOD
ON

=
X

y
n
d
i
n
g

Wa-8

178 INTERFACING I/O DEVICES TO THE 6502

Three control terminals are available on the 7447 device. We
have a lamp test (LT, pin 3) that will turn on all 7 segments when it
is LOW; at all other times LT is kept HIGH. One function of this
terminal is to provide a test of the LED readout to ensure that no
burned-out segments exist. The nature of 7-segment readouts allows
erroneous readout if one or more segments is burned out or otherwise
inoperative. For example, if segment g is defective, an 8 output will
read 0! There may be no way for a user to find that defect unless there
is a lamp test performed. In some cases, the LT is performed on demand
by the user. In that case, a pushbutton switch will ground pin 3 and
the user will note whether or not an 8 appears. Of course, all LT
terminals of the entire multidigit display can be connected together
in one bus to light up all at the same time. In a 6-digit display, grounding
the common LT line would produce 888888. The other alternative is
to connect the LT line to an output bit of the microcomputer. The
program would then display all 8s for a few seconds when the computer
or instrument is first turned on, with the idea that the user will observe

any defective segments. Be careful when connecting the LT terminals
to the output port lest the drive capability of the port bit be exceeded.
Most computer output port lines will drive no more than two or three
TTL loads, and the LT input represents one such load. In the case
where more drive is needed, a noninverting buffer with an appropriate
fan-out can be used.

The RBI input is for ripple blanking. If the RBI input is LOW,
then the display will turn off if the BCD word applied to the data
inputs is zero, i.e., 0000. The purpose is to blank leading zeroes. In
other words, without ripple blanking the number “432” displayed on
a 6-digit display would read “000432.” If we used ripple blanking,
however, those three leading zeroes would be extinguished and the
display would read “---432.” Complementary to the RBI is the ripple
blanking output (RBO), which tells the next display that zero blanking
is desired. Note that the RBO being grounded will turn off the display,
and thus can be used in multiplexing applications.

When using the display in Figure 11-24, a program will load the
accumulator with the correct binary coded decimal representation for
that digit, and then output it to the port that controls the display. Since
microcomputer data words (hence, accumulator registers) tend to be
8 bits or longer, it will be necessary to mask the data to provide zeroes
in the high order half-byte of the word. By eliminating the lamp test
and blanking features, we can pack the bits in order to make a single
8-bit word contain 2 BCD digits, or, up to 4 BCD digits in a 16-bit
word. In the case of the 8-bit accumulator, we could pack the least
significant digit (in BCD form) into BO-B3, and the most significant

Custom Keyboards, Switches, and LED Displays 179

digit into B4—B7 of the 8-bit word. Most common microprocessors have
the instructions to automatically accomplish the packing and unpacking
of BCD data.

As long as only 1 or 2 digits are required or sufficient output ports
are available, the method shown here will be satisfactory. But where
output ports must be created, or a large number of digits exist, then
we might want to consider multiplexing the displays. In a multiplexed
(MUX) display, each digit is turned on in sequence and no 2 digits are
on at the same time. If the multiplexed rate is rapid enough, the human
eye will blend the on-off transitions and will not notice the flicker.
The human eye has a persistence of approximately 1/13 second (i.e.,
80 ms), so we will want to switch through the displays at a rate that
allows each digit to be turned on before the eye persistence gives it
a chance to be recognized. In the case of 6-digit display, therefore, we
would want to switch at a rate faster than 80 ms/6, or 12.8 ms. If we

take the reciprocal of time, we will find the switching frequency, which
in this case would be 1/0.0128s or 78 Hz. We can, therefore, apply an
80 Hz or higher clock and still meet the persistence requirements of
the eye. In most cases, however, faster clock rates are used with the
attendant smoothing of the display.

So why multiplex? Besides the reduce complexity and chip count
of the circuit (hence, improved reliability), there is also the advantage
of improved current drain requirements. A typical LED device wants
to see 15 mA per segment. If the digit “8” is displayed, with all 7
segments lit, then the current per digit would be 15 mA x 7, or 105
mA. In the case of our hypothetical 6-digit display, then, we would
need 6 x 105 mA or 630 mA for the display alone! That’s more than
a half ampere to light display segments . . . and may well be greater
than the allowable current budget in many applications (hand-held
instruments, such as calculators, need to MUX the display to have a

battery life that is even reasonable).
Figure 11-25 shows a method of using a single 7447 device to

drive a larger number of 7-segment readouts. The a—g segment lines
are bused together so that all a lines, all b lines, etc., are connected
into a single line. Therefore, there will be 7 lines feeding the 7 segments
of all digits. In the case shown, we would need 21 lines to individually
address all 7 segments of all 3 digits. In this arrangement, only 7 lines
are used, and the anodes of each digit are connected to the power
through transistor switches that are turned on sequentially.

The BCD data is fed to the 7447 through output port 1, while
the MUX information is fed to the bases of the control transistors (Q1-
Q3) through output port 2. If 4 or less digits are used, then we can
conspire to use only one output port, with the BCD data supplied

INTERFACING I/O DEVICES TO THE 6502 180
Aejdsip

pexedninyy
“GZ-L Lb esnbig

161g
161g

1161g

s1
i6
ig

J9
Yy
IO

OL

Z “ON
uUod

3
n
d
i
n
o

£0

L
T
V

O
G

A
S
t

181 Custom Keyboards, Switches, and LED Displays

ucey,,
Aedsig

oL (v
)

"}
IN

DI
ND

(\

y
ej

dw
ex

e
Ae

jd
si

p
p
e
x
e
d
n
i
n
w
s

“9
7-

1,

e4
nB

ig

/Ae\dsiq

INTERFACING I/O DEVICES TO THE 6502 182

we
Jb
er
p

Bu
iw
i}

(g

‘(penunuos) 9Z LL
eanBiy

(¢39)

(Z39)

(L390)

(8)

(v) (2) (1)

Custom Keyboards, Switches, and LED Displays 183

through BO-B3, and the control bits through B4-B7. Alternatively, we
could also add a 7442 BCD-to-1-of-10 decoder to control up to 10
digits, thereby making fuller use of the binary nature of the output
port. In that case, the low-order 4 bits (BO-B3) would contain the BCD
code, while B4-B7 would contain a BCD word that sequences 0000
through 1001. Let’s see what would be needed to make Figure 11-25
display the number “432.” We know that the port 2 bits must be HIGH
to turn on a digit, so the sequence will be:

Decimal No. Port 1* Port 2**

4 0100 001

3 0011 010

2 0010 100

4 1000 001

3 0011 010

2 0010 100

4 1000 001

3 0011 010

2 0010 100

* Bits B4-B7 = 0
**Bits B3-B7 = 0

Figure 11-26A shows a method for connecting the display/de-
coder circuits to a single output port. In the case shown here, the
display /decoder might be an old-fashioned combination of 7447 and
an LED display or one of the new combination units that contain both
the decoder and the 7-segment LED in a single DIP integrated circuit
package (e.g., the Hewlett-Packard units). The 4 BCD lines of all dis-
plays are connected to a common 4-bit BCD data bus formed from
the 4 low-order bits of the output port. The high 3 bits of the port are
used as the MUX control signals. The displays are turned on by an
active-LOW chip enable (CE) line, so the control bits are required to
be LOW when the digit is turned on and HIGH at all other times. The
timing diagram for the multiplex display is shown in Figure 11-26B.
Note that the chip enable lines CEI through CE3 are active-LOW, so
will each be LOW one-third of the time, in sequence.

12
Interfacing Peripherals
to the 6502

A peripheral is a device external to the computer, and which usually
(but not always) functions to allow the computer to communicate with
the so-called “outside world.” Examples of peripherals include the usual
assortment of devices such as teletypewriters, printers, keyboards, card
readers, tape readers, and CRT video terminals. The peripheral rubric
can also be applied to such diverse devices as A/D or D/A converters,
electromechanical relays, sensors of one type or another, and lamps
or displays. In this chapter, we will consider general methods that
permit interfacing the 6502 with a majority of peripheral devices.

PARALLEL PORT METHODS

Occasionally, a device is found which will permit interfacing through
a standard 8-bit parallel port. An example is the standard ASCII key-
board. In that case, 7 of the 8 lines are used to carry data, while the

eighth line (usually B7) is used as a strobe signal that lets the computer
know when new data is available.

The parallel I/O port is usually very rapid, but also very expensive
except within the same computer or over a path of only a few meters
outside the computer. For almost all other cases, we will want to use
serial data communications methods.

SERIAL DIGITAL DATA COMMUNICATIONS

The interchange of data between machines requires some means of
data communication. As mentioned above, parallel communications

185

186 INTERFACING PERIPHERALS TO THE 6502

are probably the fastest method, but can be too expensive for practical
application. In parallel communications systems, there will be not less
than 1 line for each bit plus a common. For an 8-bit microcomputer,
therefore, at least 9 lines are required. In some cases, especially in
noisy environments, or where the data rate is very high, it may also
be necessary to add additional lines for control or synchronization
purposes. Parallel systems are practical over only a few meters distance
and are the method generally used in small computer systems for
intermachine local connections. But where the distance is increased
beyond a few meters or where it becomes necessary to use a trans-
mission medium other than hard wire, e.g., radio or telephone chan-
nels, then another method of transmission may be required. For the
8-bit system, for example, we would require not less than 8 separate
radio or telephone transmission links between sending and receiving
units; that is terribly expensive! The solution is to use only one com-
munications link and then transmit the bits of the data signal serially,
i.e., one after another sequentially, rather than simultaneously.

The two forms of serial data communications are diagrammed in
Figure 12-1: synchronous and nonsynchronous. The efficacy of serial
communications depends upon the ability of the receiver synchronized
with the transmitter. Otherwise, if they are out of sync, the receiver
merely sees a series of high and low shifts of the voltage level and
cannot make any sense out of the data. The main difference between
the synchronous and asynchronous data communications method is in
the manner that the receiver stays in step with the transmitter. In the
synchronous method, shown in Figure 12-1A, a separate signal is trans-
mitted to initialize the receiver register and let it know that a data
word is being transmitted. In some cases, the second transmission
medium path will be used to send a constant stream of clock pulses
that will allow operation of the receiver register only at certain times.
These times correspond to the time of arrival of the data signals. Each
bit will be sent simultaneously with a clock pulse. If the incoming signal
is LOW when the clock pulse is active, then the receiver knows that
a LOW is to be entered into the register, etc.

The problem with the synchronous method is that it requires a
second transmission medium path which can be expensive in radio
and telephone systems. The solution to this problem is to use an asyn-
chronous transmission system such as shown in Figure 12-1B. In this
system, only one transmission channel is required. The synchronization
is provided by transmitting some initial start bits that tell the receiver
that the following bits are valid data bits. In most systems, the data
line will remain HIGH when inert and will signal the intent to transmit
a binary word by initially dropping LOW.

Jaysibay
aniaoay

J9
A1
99
9

Y

0}

e1
eq

ja
yj

es
eg

(v)
WNIPa|W

UOISSIWUSUed

|

SUOIJBDIUNWILUOD
S
N
O
U
D
I
Y
O
U
A
S

(V7
pa

yy
iw

is
ue

s)

aq

02

bB
1e
G

ja
lj

es
ed

"b-ZE

esnbi4

187

S
U
O
H
B
O
I
U
N
W
W
O
D

SN
no
Ud
JY
yo
UA
Se

(g

‘(
pe
nu
Ij
Uu
Od
)

1-
71

u
n
i

(a)

UuO!JeZIUOIYIUAS

49019

J013U09

JaysiBay
aaiacey

JaysiBay
yiwsues)

a
e

e
e

L
E
E

E
D
.

Win pay)
uOIssiwSued
|

Ja
AI
a9
0y

02

pa
ij
ws
ue
s|

aq

0}

b1
eQ

ja
|}
e1
eg

B
e
g

ja
|j

es
eg

Serial Digital Data Communications 189

There are two ways to keep the clock of the receiver synchronous
with the transmitter. In one case, an occasional sync signal will be
transmitted that keeps the clock on the correct frequency. In most
modern systems, however, the receiver clock and the transmitter clock
are both kept very accurate, even though locally controlled. Most small
computer standards call for the receiver clock frequency to be within
either 1 percent or 2 percent of the transmitter clock frequency. As
a result, it is typical to find either crystal clocks or RC clocks made
with precision low temperature coefficient components.

The design of serial transmission circuits requires the construction
of Parallel-In-Serial-Out (PISO) registers for the transmitter, and a
Serial-In-Parallel-Out (SIPO) register for the receiver. Each register is
designed from arrays of flip-flops, so they can be quite complex.

Fortunately, we can also make use of a large-scale integration
(LSI) serial communications integrated circuit called a UART (universal
asynchronous receiver/transmitter). Figure 12-2 shows the clock dia-
gram for a popular “standard” UART IC. The transmitter section has
two registers: transmitter-hold register and transmitter register. The
transmitter hold register is used as a buffer to the outside world, and
is a parallel input circuit. The data bit lines from outside of the UART
input the data to this register. The output lines of the transmitter hold
register go directly to the transmitter register internally, and are not
accessible to the outside world. The transmitter register is of the PISO
design and is used to actually transmit the data bits. The operation of
the transmitter side of the UART is controlled by the transmitter
register clock (TRC) input. The frequency of the clock signal applied
to the TRC terminal must be 16 times the data transmission rate
desired.

The receiver section is a mirror image of the transmitter section.

The input is a serial line that feeds a receiver register (a SIPO type).
The output register (receiver hold register) is used to buffer the UART
receiver section from the outside world. In both cases, the hold registers
operate semi-independently of the other registers so can perform cer-
tain “handshaking” routines with other circuits to ensure that they are
ready to participate in the process.

Like the transmitter, the receiver is controlled by a clock that
must operate at a frequency of 16 times the received data rate. The
receiver clock (RRC) is separate from the transmitter clock (indeed,
the entire receiver and transmitter circuits are separate from each
other), so the same UART IC can be used independently at the same
time. Most common systems will use the UART in a half-duplex or full-
duplex manner so the receiver and transmitter clock lines will be tied
together on the same 16X clock line.

INTERFACING PERIPHERALS TO THE 6502 190

(LYN)
Je1y!1WSUeI/JeAIEDe1

SNOUOIYoUASe
jeSJEAIU)

“7-7
EsNBIY

4nd3noO
yndu|

(e148
(GST)

(GSW)
(GSW)

(S71)
1248S

O
U
L

8a
248

98
S&

va
EG

2A
14

1a
ca

€a
va

sa
98

2a
8a

IY

€
GZ

|92
|22 |

 82
|6Z

|O€
[LE

(Ze
|
 EE

ZL
{LL

jOt
j6

8
{Zz

4aysiBay
saysiBoy

IA
AZ

I—
-O

Z|

uo
ns

es

PI
O}

sa
xy
UW
sU
eL

PI
OH

J9
A1

a9
94

JO
MO
d

I
A

A
S
T
O

L
sa

ys
iB

ay

48
))
)W
Ss
Ue
s]

sa
ys
iB
ay

Ja
Al

a0
04

1
3
S
4
u

A
u0

11
99

g
U0
11
98
S

U0
1}
99
8S

4a
3s
eW

LZ
|

j
o
s
u
0
g

Ja
}

{t
ws

ue
d

|

JA
AN

99
94

GZ|EZ
O
v
 |
 VE| SE] 9E) GE}ZE |8E |7z

bv
j8t

jZt
|
 Ol

[St
HL

fel
FEL

O
o
o
d
o
d
g
d
d
o
0
d
g
a
o

a
o

O
o

Q
O

e

U

e

e

e

e

e

e

m
a
t
t

Q
2
g
g
z
e
t

2
3
2
3

A
m
m

&
G
n

2
a

r
O
m

&

3

3
2
0
0
"

7

Serial Digital Data Communications 191

The modes of transmission are (1) simplex, (2) half-duplex, and
(3) full-duplex. The simplex method transmits data in only one direc-
tion. A single UART will be used at the transmit end with the receiver
section disabled, while at the receive end another UART is used with

an active receive section and a disabled transmit section. In half-duplex
transmission, both sections of both UARTs will be used. The half-duplex
system is one that has the ability to transmit data in both directions,
but only in one direction at a time. The full-duplex method allows the
transmission of data in both directions at the same time. Note that,

with proper external circuit configuration, most UARTs will support
full-duplex communications.

Several control terminals and signals are available on the UART
and these aid in operation of the circuit. Some of them, however, may
be inactive in any given communications system. The master reset

terminal is used to set all registers to zero and return all signals to
their inert state. Table 12-1 shows the other signals and control inputs.
In a section to follow we will show a typical design for a UART interface
with a 6502 microcomputer / microprocessor; therefore we will define
only those that are used in that application.

TABLE 12-1

Pin Mnemonic Function

1 Vcc +5 volts DC power supply.

2 VEE —12 volts DC power supply.
3 GND Ground.

4 RRD Receiver Register Disconnect. A high on this pin
disconnects (i.e., places at high impedance) the
receiver data output pins (5 through 12). A low
on this pin connects the receiver data output
lines to output pins 5 through 12.

5 RB, LSB
6 RB,
7 RB,
8 RB; ; .
9 RB, Receiver data output lines.

10 RB,
11 RB,
12 RB, MSB

13 PE Parity error. A high on this pin indicates that
the parity of the received data does not match
the parity programmed at pin 39.

192

Pin
14

15

16

17

18

19

20

21

22

23

INTERFACING PERIPHERALS TO THE 6502

Mnemonic

FE

OE

SFD

RRC

DRR

DR

RI

MR

THRE

THRL

TABLE 12-1 (Continued)

Function

Framing Error. A high on this line indicates that
no valid stop bits were received.

Overrun Error. A high on this pin indicates that
an overrun condition has occurred, which is de-
fined as not having the DR flag (pin 19) reset
before the next character is received by the in-
ternal receiver holding register.

Status Flag Disconnect. A high on this pin will
disconnect (i.e., set to high impedance) the PE,
FE, OE, DR, and THRE status flags. This feature
allows the status flags from several UARTs to be
bus-connected together.

16 X Receiver Clock. A clock signal is applied
to this pin, and should have a frequency that is
16 times the desired baud rate (i.e., for 110 baud
standard it is 16 x 110 baud, or 1760 hertz).

Data Receive Reset. Bringing this line low resets
the data received (DR, pin 19) flag.

Data Received. A high on this pin indicates that
the entire character is received, and is in the

receiver holding register.

Receiver Serial Input. All serial input data bits
are applied to this pin. Pin 20 must be forced
high when no data are being received.

Master Reset. A short pulse (i.e., a strobe pulse)
applied to this pin will reset (i.e., force low) both
receiver and transmitter registers, as well as the
FE, OE, PE, and DRR flags. It also sets the TRO,

THRE, and TRE flags (i.e., makes them high).

Transmitter Holding Register Empty. A high on
this pin means that the data in the transmitter
input buffer has been transferred to the trans-
mitter register, and allows a new character to
be loaded.

Transmitter Holding Register Load. A low ap-
plied to this pin enters the word applied to TB1
through TB8 (pins 26 through 33, respectively)
into the transmitter holding register (THR). A

Pin

24

25

35

36

Mnemonic

TRE

TRO

PI

SBS

Serial Digital Data Communications 193

TABLE 12-1 (Continued)

Function

positive-going level applied to this pin transfers
the contents of the THR into the transmit reg-
ister (TR), unless the TR is currently sending the
previous word. When the transmission is finished
the THR -— TR transfer will take place auto-
matically even if the pin 25 level transition is
completed.

Transmit Register Empty. Remains high unless
a transmission is taking place, in which case the
TRE pin drops low.

Transmitter (Serial) Output. All data and control
bits in the transmit register are output on this
line. The TRO terminal stays high when no trans-
mission is taking place, so the beginning of a
transmission is always indicated by the first neg-
ative-going transition of the TRO terminal.

LSB

Transmitter input word.

MSB

Control Register Load. Can be either wired per-
manently high, or be strobed with a positive-
going pulse. It loads the programmed instruc-
tions (i.e., WLS1, WLS2, EPE, PI, and SBS) into

the internal control register. Hard wiring of this
terminal is preferred if these parameters never
change, while switch or program control is pre-
ferred if the parameters do occasionally change.

Parity Inhibit. A high on this pin disables parity
generator/verification functions, and forces PE
(pin 13) to a low logic condition.

Stop Bit(s) Select. Programs the number of stop
bits that are added to the data word output. A
high on SBS causes the UART to send 2 stop bits
if the word length format is 6, 7, or 8 bits, and

194 INTERFACING PERIPHERALS TO THE 6502

TABLE 12-1 (Continued)

Pin Mnemonic Function

1.5 stop bits if the 5-bit teletypewriter format is
selected (on pins 37-38). A low on SBS causes the
UART to generate only | stop bit.

37 WLS, Word Length Select. Selects character length,
exclusive of parity bits, according to the rules

38 WLS, given in the chart below:

Word Length WLS, WLS,
5 bits low low
6 bits high low
7 bits low high
8 bits high high

39 EPE Even Parity Enable. A high applied to this line
selects even parity, while a low applied to this
line selects odd parity.

40 TRC 16 x Transmit Clock. Apply a clock signal with
a frequency that is equal to 16 times the desired
baud rate. If the transmitter and receiver sec-
tions operate at the same speed (usually the case),
then strap together TRC and RRC terminals so
that the same clock serves both sections.

Data Received (DR). A HIGH on this terminal indicates that the data
have been received and are ready for the outside world to accept.

Overrun Error (OE). A HIGH on this terminal tells the world that

the data reset (DR) flag has not been reset prior to the next character
coming into the internal receive hold register.

Parity Error (PE). Parity error signal indicates that the parity (odd
or even) of the received data does not agree with the condition of the
parity bit transmitted with that data. A lack of such match indicates
a problem in the transmission path.

Framing Error (FE). A HIGH on this line indicates that no valid stop
bits were received.

B1-B8 Receiver. Ejight-bit parallel output from receiver (tri-state).

B1-B8 Transmitter. Eight-bit parallel input to transmitter.

Transmitter Hold Register Empty (THRE). A HIGH on this pin in-

dicates that the data in the transmitter hold register has been trans-
ferred to the transmitter register and that a new character may be
loaded from the outside world into the transmitter hold register.

Serial Digital Data Communications 195

Data Receive Reset (DRR). Dropping this line LOW causes reset of
the data received (DR) flag, pin 19.

Receiver Register Disconnect (RRD). A HIGH applied to this pin
disconnects (i.e., causes to go tri-state) the B1-B8 receiver data output

lines.

Transmitter Hold Register Load (THRL). A LOW applied to this pin
causes the data applied to the B1-B8 transmitter input lines to be
loaded into the transmitter hold register. A positive-going transition
on THRL will cause the data in the transmitter hold register to be
transferred to the transmitter register, unless a data word is being
transmitted at the same time. In that case, the new word will

be transmitted automatically as soon as the previous word is completely
transmitted.

Receiver (serial) Input (RI). Data input to the receiver section.

Transmitter Register (serial) Output (TRO). Serial data output from
the transmitter section of the UART.

World Length Select (WLS1 and WLS2). Sets the word length of the
UART data word to 5, 6, 7, or 8 bits according to the protocol given
in Table 12-1.

Even Parity Enable (EPE). A HIGH applied to this line selects even
parity for the transmitted word, and causes the receiver to look for
even parity in the received data word. A LOW applied to this line
selects odd parity.

Stop Bit Select (SBS). Selects the number of stop bits to be added to
the end of the data word. A LOW on SBS causes the UART to generate
only 1 stop bit regardless of the data word length selected by WLS1/
2. If SBS is HIGH, however, the UART will generate 2 stop bits for
word lengths of 6, 7, or 8 bits and 1.5 stop bits if a word length of 5
bits is selected by WLS1/2.

Parity Inhibit (PI). Disables the parity function of both receiver and
transmitter and forces PE LOW if PI is HIGH.

Control Register Load (CRL). A HIGH on this terminal causes the
control signals (WLS1/2, EPE, PI, and SBS) to be transferred into the

control register inside of the UART. This terminal can be treated in
one of three ways: strobe, hardwired, or switch controlled. The strobed
method uses a system pulse to make the transfer and is used if the
parameters either change frequently or are under program control. If
the parameters never change, then it can be hardwired HIGH. But if
changes are made occasionally, the control lines and CRL can be switch
controlled.

196 INTERFACING PERIPHERALS TO THE 6502

The UART chip is particularly useful because it can be pro-
grammed externally for several different bit lengths, baud rates, parity
(odd-even, receiver verification / transmitter generation), parity inhibit,
and stop bit length (1, 1.5, or 2 stop bits). The UART also provides six
different status flags: transmission completed, buffer register transfer
completed, received data available, parity error, framing error, and
overrun error.

The clock speed is 320 kHz (maximum) for the A and B versions,
480 kHz for the AO3/BO3 versions, 640 kHz for the AO4/BO4 ver-
sions, and to 800 kHz for the AO5/BO5 series. The receiver output
lines are tri-state logic, so will float at a high impedance to both ground
and the +5-volt line when inactive. The use of tri-state output allows
the device to be connected directly to the data bus of a computer or
other digital instrument.

The transmitter section uses an 8-bit parallel input register that
will accept data to be sent serially. It will convert the 8-bit data word
received in the input register to serial format that includes the 8-bit
word (also formattable to 5, 6, or 7 bits), start bit, parity bit, and
stop bits.

The receiver can be viewed as simply the mirror image of the
transmitter. It receives a serial input word containing start bits, data,
parity, and stop bits. This serial stream of data is checked for validity
by comparison with parity and for the existence of the stop bits.

The UART data format (serial) is shown in Figure 12-3. The trans-
mitter output pin will remain HIGH unless data are being transmitted.
Start bit BO is always HIGH-to-LOW transition, which tells the system
that a new data word is about to be sent. Bits Bl through B8 are the
data bits loaded into the transmitter on the sending end of the system.
All 8 bits of the maximum word length format are shown in the figure,
even though truncated word lengths of 5, 6, or 7 bits are also allowable.
The stop bit length can be programmed for 1, 1.5, or 2 bits, according
to the needs of the system designer.

The number of data bits, the parity, and the number of stop bits
are programmed onto the device using HIGH and LOW levels applied
to certain pins designated for that purpose. For example, the WLS]

Data Line Parity | Stop Data Line

B1 B2 B3 B4 BS B6 B7 BSB BY B10B11

Figure 12-3. Serial communications data word

Serial Digital Data Communications 197

and WLS2 pins are used as word length select pins, and will set the
data word length according to the following code system:

Word Length WLSI WLS2

5 bits 0 0

6 bits 1 0

7 bits 0 1

8 bits 1 1

Similarly, a 2-bit stop code is selected by connecting SBS HIGH,
but only when the data word is 6, 7, or 8 bits. If the data word is set
to 5 bits length, which is used on Baudot teletypewriters, then the
1.5-bit stop code is used. If SBS is LOW, then the stop code is 1 bit
in length. The parity is set by the EPE pin, and will be coded odd
for a LOW and even for a HIGH.

The clock on a UART system must be stable, so we cannot gen-
erally use RC timer-based clocks and expect proper performance, es-
pecially at high baud rates. The frequency of the clock must be 16
times the baud rate. If we want to transmit data of 300 baud, for
example, the oscillator frequency must be 300 x 16, or 4800 Hz. While
this frequency is well within the range normally competent RC oscil-
lators can produce, it is recommended that a crystal oscillator be used
to ensure the stability and accuracy of the clock. An attractive alter-
native is the CMOS 4060 device, which contains an internal crystal or
RC oscillator and a chain of binary divider stages.

The transmitter circuit is shown in Figure 12-4A. Note that only
the 8-bit input data, clock, and serial output are required to make this
circuit operational. The TRE, THRE, and THRL signals are status flags,
and are optional although they will probably be used in most practical
cases. They convey information about the status of the information
transfer, and are sometimes needed in the software used to control

the UART. A careful review of the meaning of each flag is necessary
for designers who wish to use the UART.

The basic receiver circuit for the UART is shown in Figure
12-4B. We have a similar simplicity in the receiver section (one of the
principal attractions held by LSI devices to equipment and instrument
designers). Only the clock, serial in/out, and 8-bit parallel output lines
are needed. Again, however, certain signals are available that will make

some applications either easier or possible; these are the DR, OE, FE,
and PE flags. Table 12-1 gives the meanings of these signals, and those
of the transmitter section.

Notice in the receiver section that we use an inverter from the
data received terminal to reset the DRR terminal. This signal tells the

INTERFACING PERIPHERALS TO THE 6502 198

ZOO
LHL

OU}
40} SUOID@UUOD

JeAIEdes
(g) SUONDEUUOS

J
e
}
W
S
U
E
T
-
L
H
V
A
Z
O
O
L
Y
L

(Vv)
“w-Zb

eanBig

(g)
(v)

490|D
ud
X OL

jeuondo,

yndu|
i
n
d
i
n
o

eeq
eeq

e
i
4
a
g

jeisasg

gs1
O

x
 O
P

sdHLO
ast

+
H
H
L

O

«
d
d

«
J
¥
Y
H
L

O

inding
ynduj

e2eQ
wad

B
e
g

«
3
0

asWw
oO gs
w

oe

DGAZI-

IAAS+

@

e

J
G
A
S
t

D
A
A
Z
S
L
-

Serial Digital Data Communications 199

UART to get ready for the next character and can be used to signal
a distant transmitter that the UART is ready to receive another
transmission.

One thing about the UART that appeals to many designers is that
the two sections (receiver and transmitter) can be used either inde-
pendently or in a common system. In a simplex communications chan-
nel (one direction only), a transmitter-wired UART is used on the
transmitter end, while a receiver-wired UART is used on the receiving
end. In a half-duplex system (bidirectional communication, but only
one direction at a time), both sections are used at each end, and the

status flags can be used in a handshaking system to coordinate matters.
Full-duplex operation is possible, but requires either a second channel
(especially in radio links) or a second set of audio tones in hard-wired
telephone line systems. Not all telephone lines, however, are amenable
to full duplex operation, especially over long distance lines.

In dedicated instrument applications, the programming pins will
probably be hard-wired in the proper codes, but in many case switches
are used to allow the user to program as needed. You can also connect
the UART control pins to an I/O port to permit programming of the
UART under software control of the computer.

An example of a “standard” UART configured for use with the
6502 microprocessor is shown in Figure 12-5. Because of the nature
of the UART, we can use it directly as an I/O port, and memory-map
it to the 6502 without the need for any external circuiting except
device select signals.

The transmitter input lines are high impedance, so can be con-
nected directly to the 6502 data bus. Similarly, the receiver output
lines are tri-state, so will float at high impedance (neither HIGH nor
LOW) until the receiver is turned on. Therefore, we can connect both
receiver and transmitter directly to the data bus (DBO-DB7). Also
connected to the data bus are the DR, OE, PE, FE, and THRE.

The UART is programmed by the CRL, PI, SBS, EPE, WLS1, and

WLS2 pins being made HIGH or LOW. The protocols governing these
control pins were given earlier. In Figure 12-5, the control pins are
set by switches. Each input is tied HIGH through 3.3K pull-up resistors.
If the corresponding switch is open, therefore, that input is HIGH, but
if the switch is closed, the input is shorted to ground (and therefore is
LOW).

The control input scheme of Figure 12-5 assumes that we need
variable control over the UART programming. The use of DIP switches
on the UART printed wiring board permits us to set these factors
almost at will. If such a capability is not needed, however, we can also

hard-wire the inputs HIGH or LOW as needed.

WLS1

Data 0B30 Receiver
Bus DB40

System
DB50 Clock

DBE oO
Serial

DB70 Output

Serial
Input

THRL WRITE1

Transmitter

RRD O READ2

O READ 1

System
Reset

Figure 12-5. Practical UART interfacing

200

Serial Digital Data Communications 201

A variation on the theme is to connect the control input lines to
a latched output port. We could, for example, use 6 bits of a 74100
device to contain our HIGH/LOW states. The inputs of the 74100
would be connected to the data bus, while the inputs are connected
to the UART control lines. If we memory-map the 74100, and provide
suitable device select circuitry, then simple write operations will allow
us to set the UART parameters under program control.

RS-232 Interfacing

The Electronic Industries Association (EIA) standard RS-232 pertains
to a standardized serial data transmission scheme. The idea is to use
the same connector (i.e., the DB-25 family), wired in the same manner
all the time, and to use the same voltage levels. Supposedly, one could
connect any two devices that provide RS-232 I/O without any problem;
it usually works.

Modems, CRT terminals, printers (i.e., Model 43 Teletypewriter),
and other devices will be fitted with RS-232 connectors. Some com-
puters provide RS-232 I/O; this feature can be added by using a set
of Motorola ICs called RS-232 drivers/receivers. An RS-232 driver IC
accepts TTL outputs from a computer or other device, and produces
RS-232 voltage levels at its output. The RS-232 receiver does just the
opposite. It takes RS-232 levels from the communications/interface
and produces TTL outputs.

Unfortunately, the RS-232 is a very old standard, and it predates
even the TTL standard. That is why it uses such odd voltage levels for
logical-1 and logical-0.

Besides voltage levels, the standard also fixes the load impedances
and the output impedances of the drivers.

There are actually two RS-232 standards—the older RS-232B and
the current RS-232C (see Figure 12-6). In the older version, RS-232B,
logical-1 is any potential in the —5- to —25-volt range, and logical-0
is anything between +5 and +25 volts. The voltages in the range —3
to +3 are a transition state, while +3 to +5 and —3 to —5 are

undefined.
The speedier RS-232C standard narrows the limits to +15 volts.

In addition, the standard fixes the load resistance to the range 3000
to 7000 ohms, and the driver output impedance is low. The driver
must provide a slow rate of 30 volts/microsecond. The Motorola
MC1488 driver and MC1489 receiver ICs meet these specifications.

The standard wiring for the 25-pin DBM-25 connector used in
RS-232 ports is shown in Table 12-2.

202 INTERFACING PERIPHERALS TO THE 6502

+25

Logic O< = +15 ——ARAoa-—- RS232B

(RS232C)

+5 Undefined

Volts 0

-3 Bas

“5 Undefined

(RS232C)

Logic 1< = —15 —_-_—_@-@£— RS232B

-—25

Figure 12-6. RS-232B/C serial communications logic levels

Current Loop Ports

The current loop port was designed specifically for use with tele-
typewriters, but it has been adopted over the years to a variety of
communications problems in digital instruments. The original 60 (and
later 20) milliampere current loop systems were intended for Baudot
Teletype machines, and were used to energize the solenoids in the
printer. But the same idea has also been adopted for use with a variety
of printers other than teletypes and is also found in certain other
instruments that must communicate with computers. The 60 mA ver-
sion of the current loop is obsolete but is included here because it is
often necessary to design into older existing systems.

Figure 12-7A shows the most basic circuit for a 60-mA machine.
An external 130-volt DC power supply is needed. The current loop
circuit consists of the DC supply, resistor R2, the teletypewriter
machine, and c-e path of transistor Q1.

Diode D1 is used as a spike suppressor. The solenoid coils will
produce a spike-like pulse (i.e., high amplitude, short duration) every
time the current flow in one of the coils is interrupted. Diode D1 is
connected to suppress these spikes, and is used mainly to protect
transistor Q1.

Transistor Ql can be any high-voltage power transistor that is
capable of handling a 60-mA collector current. Q1 acts as a switch to
turn the loop on and off.

Serial Digital Data Communications 203

If a HIGH appears on the LSB of the selected output port, then
Q1 is forward-biased. Its c-e path conducts current, closing the loop.
When the LSB of the output port is LOW, then Q1 is reverse-biased.
Under this condition, its c-e path is turned off, so the loop is open.

It is best to adjust resistor R2 to obtain a loop current to 60 mA.
Place a HIGH on the LSB of the selected port, and press one of the

TABLE 12-2

EIA RS-232 Pin-outs for Standard DB-25 connecta

Pin RS-232 Name Function

1 AA Chassis ground

2 BA Data from terminal

3 BB Data received from modem

4 CA Request to send

5 CB Clear to send

6 CC Data set ready

7 AB Signal ground

8 CF Carrier detection

9 undef

10 undef

11 undef

12 undef

13 undef

14 undef

15 DB Transmitted bit clock, internal

16 undef

17 DD Received bit clock

18 undef

19 undef

20 CD Data terminal ready

21 undef

22 CE Ring indicator

23 undef

24 DA Transmitted bit clock, external

25 undef

204 INTERFACING PERIPHERALS TO THE 6502

teletypewriter keys. A millimeter placed at the point indicated in
Figure 12-7A will show the current. Adjust the resistor (R2) for a flow
of 60 mA.

It is probably best if all high-voltage circuits are isolated from
your computer’s output. A fault in transistor Q1 could otherwise cause
damage to the output port circuits. An appropriate circuit for this is
shown in Figure 12-7B. The secret is to use an optoisolator device. On

0-100 mA DC

60 WPM
Bandot

Teletypewriter

Port + 130 Volt DC
LSB = = Power

=- ~~ ‘Supply

(A)

\ Old Circuit
_~ (Fig. 12-7 A)

Optoisolator

(B)

Figure 12-7. A) Simple circuit to interface old-style Baudot teletypewriters.
Adjust R2 for 60 mA in the loop, B) Circuit above modified to isolate the
teletypewriter from the computer output circuitry.

Serial Digital Data Communications 205

the computer side of the device is an LED, while on the teletypewriter
side is an optotransistor. The transistor will be turned off unless the
LED is turned on. The collector of the optoisolator transistor is con-
nected to the point in the previous circuit that connected to the com-
puter. This collector is also connected to a 5.6-volt DC power supply
that is derived from the +130-volt DC power supply used in the
current loop. On the computer side, the LED is connected through a
current-limiting resistor (R5) to the LSB of the selected port.

When the LSB of the output port is HIGH, then the LED is
turned on. This turns on the transistor in the optoisolator, shorting out
the bias to the current loop transistor. This action turns off the loop.
Similarly, the LOW on the LSB of the port turns off the transistor, so

Q]1 is turned on, closing the loop. The action in this circuit is inverted,
so it is necessary to complement the 6502 accumulator before out-
putting data. Alternatively, one other transistor inverter could be used,
between the isolator and QI, to invert the output of the isolator.

Figure 12-8A shows a circuit that is used to interface the model
33 to an output port. Looking from the front panel, there is a terminal
strip on the right-rear side of the Model 33. This terminal strip, shown
schematically in Figure 12-8B, contains the send/receive connections
for the teletypewriter.

The receive side of the machine (terminals 6 and 7) contains the
loop, so that the solenoids can be pulled in. The send side is merely a
set of contact closures. In my own experience, this circuit has produced
some problems. If the loop is turned on after the microcomputer is
loaded and ready to work, a random pulse seems to change a few
(important) bits in a few memory locations. The problem is partially
relieved by using +5-volt and —12-volt power supplies that are com-
pletely divorced from the computer power supply. But I like the ap-
proach shown in Figures 12-8B and 12-8C. We would use R1, R2, and
Cl (from Figure 12-8A), but replace Q1 with the transistor from the
optoisolator (connect the collector point A). The LED is connected,
again through a current-limiting resistor, to the LSB of the selected
output port.

We can use the —12-volt supply to drive the LED, or the +5-
volt supply, in which case the polarity is reversed. The isolator transistor
(Q1) drives an inverter stage (Q2). When the LED is turned on, Q2 is
turned off, so the LSB of the selected input port is HIGH. But if the
LED is off, then Q2 is turned on, dropping the LSB of the input port
to zero.

Serial Interfacing

The three basic forms of serial data line are: TTL, 20 mA Current loop,

and RS-232. In the TTL version, one bit of a TTL-compatible I/O port

206 INTERFACING PERIPHERALS TO THE 6502

(A)

Serial Digital Data Communications 207

is used as the serial output or, alternatively, the serial output of a TTL-
compatible UART is used. The 20-mA and RS-232C have already been
defined. With so many standard systems, we often face an interfacing
chore of trying to make two units with dissimilar serial ports play
together. We might, for example, want to connect a Model-33 Tele-
type® machine to the RS-232 output of a 6502-based computer. Or
alternatively, we might want to interface a TTL port with either (or
both) 20 mA or RS-232. This activity seems especially common among
hobbyists, universities, and other small users who obtain surplus equip-
ment or otherwise find themselves forced by budget constraints to mix
equipment.

The job of interfacing these various kinds of serial ports is basically
one of level translation. The TTL device, for example, produces 0 to

0.8 volt when LOW, and +2.4 volts or more when HIGH. Further-

more, the TTL port may be capable of sinking only 1.8 mA on LOW
(i.e., will drive only one TTL input) or it may be buffered sufficiently
to sink 50 to 100 mA. The RS-232 port, on the other hand, uses +5
to +15 volts (+12 is very common) for HIGH/LOW levels. The 20
mA loop presents still another translation problem, i.e., conversion of

a current level to either TTL or RS-232C voltage levels. In this section,
we will discuss some of the more popular conversion schemes. First,
however, we will take a closer look at the 20 mA current loop.

Figure 12-9 shows detail of a typical 20 mA current loop serial
data communications system. This system will only work when the
loop is closed. When both keyboard (transmitter) and printer (receiver)
are part of the same machine, we must either wire them in full duplex
(i.e., receiver and transmitter separate) or provide a send-receive
switch (S1) across the keyboard terminals. Also, if we want a local
capability, then we must either connect the TTY into a system with
another machine, or, provide a local switch that shorts the output. The
switch is shown in dotted line form in Figure 12-9. If this switch is
closed, then the teletypewriter keyboard will “talk” to its own printer
even though the equipment is disconnected from the network.

The transmitter is a keyboard, and can be modelled as a switch
that closes when the operator presses a key (the actual operation is
more complex than this simple model). The receiver (printer) can be

Figure 12-8. A) Circuit to connect computer output port to the Model 33
teletypewriter. Terminal block shown is found under the top cover of the Md.
33, on the right rear when viewed from the front of the keyboard. Use separate
+5 volt DC power supplies for best results, B) Modification of the standard
circuit to allow isolation of the computer from the teletypewriter, C) different
circuit to accomplish the same job

208 INTERFACING PERIPHERALS TO THE 6502

Transmitter

Keyboard
Switches (Loop must Current

“Local” Switch 20 mA

be Closed) “ Q Loop*
e

Send

Receive
20 mA
Current

Regulator
Receiver

* Logic @: <2mA

Solenoids Logic 1: ~ 20 mA

5to 15 VDC

Figure 12-9. Teletypewriter circuit

modelled as a solenoid coil in series with the line. This fact can be
important in digital circuits because the de-energized solenoid coil will
produce a voltage spike if the instant current flow in the coil ceases.
The diode, D1, is used to suppress that spike. The diode is normally
reverse biased when current flows, so the diode is effectively out of
the circuit. When current flow ceases, however, a reverse polarity
counterelectromotive force (CEMF) is generated that forward biases
the diode. Thus, the peak of the CEMF spike, which would otherwise
be hundreds of volts, reduces to 0.7 volt (the junction potential
of D1).

The power supply shown in Figure 12-9 usually produces a voltage
of 5 to 15 volts, and will include a 20-milliampere current regulator.
In some machines, the regulator is a solid-state circuit, but in most it

is a resistor.

Figure 12-10 shows a simple circuit that will convert 20-mA cur-
rent loop signals to either TTL (most common) or CMOS logic levels.
This circuit provides a high degree of isolation between the TTL and
20-mA sides. Without isolation, noise or simple dynamic load changes
caused by the 20-mA machine would affect the computer. Total iso-
lation requires that the 20-mA circuit have its own separate power
supply.

The 4N35 optoisolator contains a light emitting diode (LED) po-
sitioned such that its light falls on the base of a phototransistor (Q1).
The entire assembly is inside a DIP integrated circuit package. Diode
D1 protects the LED by suppressing spikes on the line. If the 20-mA
loop is well regulated, then resistor R is not needed. Its function is to

Serial Digital Data Communications 209

limit the current to a safe value to protect the LED, and its value is
set by the actual current in the loop.

The TTL side of the circuit consists of the optoisolator photo-
transistor (Q1), resistor Rl, and an inverter. If the circuit is TTL, then
R1 will be 470 ohms or so, and the supply voltage is +5 VDC. Of
course, IC2 will be a TTL inverter. Let’s consider how the circuit

works.
Recall that the HIGH current in the loop is 20 mA, while the

LOW current is 0 to 2 mA. During the HIGH periods, therefore, the
LED is on, and during LOW periods it is off. Transistor Q1 is controlled
by the LED when the LED is on; during LOW periods it is off. When
the LED is lighted, indicating a HIGH on the loop, transistor Q1 will
be on. This condition results in the collector-emitter resistance of Q1
being very low. The input of the inverter will be LOW under that
condition, so its output will be HIGH.

Similarly, a LOW on the loop turns off the LED, so the photo-
transistor is also off. Under this condition the Q1 collector-emitter
resistance is high, so the input of the inverter will see a HIGH. Thus,
the output of the inverter will be LOW. In both cases, the output of
IC2 is the same logical value as the current loop. The output of the
inverter is connected to one bit of an I/O port or to a TTL-compatible
serial data input.

If the circuit of Figure 12-10 interfaces to a CMOS circuit or
computer port, then it will be necessary to use a different power supply

+5 V DC*

i.) e

TTL or CMOS
Output*

R

(Optional)

IC1 *See Text
4N35

Opto-isolator

Figure 12-10. Isolated 20-milliampere loop interfacing (input to computer)

210 INTERFACING PERIPHERALS TO THE 6502

voltage, and must change R1 proportionally. The idea is to keep the
current flowing in Q1 at a safe value.

At some of the higher data rates, the anti-noise capacitor Cl may
tend to dampen the signal too much. The solution to that problem is
to remove Cl or, at least, reduce its value (perhaps to 0.001 uF).

The opposite interface circuit is shown in Figure 12-11; this circuit
converts TTL or CMOS data to 20-mA current loop signals. The in-
verter will be an open-collector TTL type or a Type-B CMOS device.
In the case of the CMOS device, no series resistor is needed, provided

that the supply voltage is +5 VDC.
When the data input line is LOW, the output of IC2 is HIGH.

Under this condition, the potential is the same at both ends of the
LED, so no current flows. The LED is turned off, so Q1 is also off.
The loop current will be zero, indicating a LOW bit.

When the data input line is HIGH, the opposite occurs. The output
of IC2 is LOW, so the cathode of the LED is effectively grounded.
The LED is therefore turned on, as is transistor Ql. The collector-
emitter resistance of Q1 is low at this point, so current flows in the
loop. In this circuit, you may have noticed, transistor Q1 acts as an
electronic switch; it will always be either fully on or fully off.

Diode D1 is used to suppress noise spikes on the 20 mA loop.
The 1N4007 selected for this application has a PIV rating of 1000 volts,
and a forward current rating of 1 ampere.

Figure 12-12 shows RS-232C versions of Figures 12-10 and 12-
11. Recall from earlier in the chapter that RS-232C is a standard which
uses —5 to —15 volts for logical-1 (HIGH) and +5 to +15 volts for

+5 V DC
O

Data

Input

Figure 12-11. Isolated 20-milliampere loop interfacing (output from com-
puter)

Serial Digital Data Communications 211

logical-O (LOW). When the current loop is LOW (less than 2mA), the
LED is turned off, so Q1 (Figure 12-12A) will be off, or if the switch
analogy is used, Q1 is open. Under this condition, point A will be at a
potential of +12 VDC, so the output level, according to the RS-232C
convention, is LOW. This level, of course, matches the logic level on
the 20 mA current loop. When the loop is HIGH, i.e., when 20 mA is
flowing, the LED is on, as is Q1. Under this condition, the collector-
emitter resistance of Q1 is very low so the voltage at point A will be
a little less than —12 VDC. This voltage is the RS-232C HIGH level.

The opposite number is shown in Figure 12-12B: This circuit
converts RS-232C serial data signals to 20 mA current loop signals.
When a LOW is applied to the RS-232C input line, the output of the
second inverter will also be LOW (+12 VDC). This condition means
that both ends of the LED are at the same potential; the LED is off.
Because the LED is off, the transistor Q1 is also off; current on the
loop is zero. When a HIGH is applied to the RS-232C input, the output
of the second inverter will be at —12 VDC, so current will flow and
turn on the LED. Since the LED is turned on, the collector-emitter

resistance of Q1 is low, so the “switch” is effectively turned on and
current flows in the loop. This condition is the HIGH for a 20-mA
current loop.

A TTL-to-RS-232C interface circuit is shown in Figure 12-13. This
circuit is based on the popular 741 operation amplifier, which connects
as a voltage comparator. The rules of voltage comparator operation
are:

1. When V1 = Vger, the output is zero.

2. When V1 is greater than Vp,,;, then the output will be at the
maximum negative output voltage.

3. When V1 is less than Vy, then the output will be at the
maximum positive output voltage.

Since Varr is +1.4 volts,.a V1 TTL HIGH logic level (i.e., over
+2.4 volts), will satisfy condition 2, so the output of the operational
amplifier will be high negative (approximately —8 to —10 VDC). This
voltage level corresponds to an RS-232C logical-1 (i.e., HIGH). When
a TTL LOW is applied to V1, condition 3 is satisfied, so the output of
the operational amplifier will be high positive (i.e., +8 to +10 VDC).
This logicl level corresponds to the RS-232C LOW condition.

A TTL-to-RS-232C interface is shown in Figure 12-14A which
does not depend upon an operational amplifier. When a HIGH is
applied to the TTL input, the LED inside the optoisolator will be
turned off. The switch Q] is turned off, presenting a very high collector-
emitter resistance. The voltage at the RS-232C output will be close to

212 INTERFACING PERIPHERALS TO THE 6502

+12 V DC

RS-232 ©
Input

fT +12 (Low)

“-— —12 (High) = *See Text

(B)

Figure 12-12. A) Isolated RS-232C output, B) isolated RS-232C input

—12 volts, which is the RS-232C HIGH condition. If, on the other

hand, the TTL input is LOW, the LED is turned on, and the transistor

is also on. The RS-232C output is now + 12 VDC, which is the condition
for LOW under the RS-232C convention.

A nonisolated TTL-to-RS-232C interface circuit is shown in Figure
12-14B. In this circuit, transistor Q] is the switch that selects the +12
VDC or —12 VDC RS-232C logical levels, while Q2 controls Q1. Since
Q1 is a PNP transistor, it will turn on when its base is more negative

Serial Digital Data Communications 213

(or less positive) than its emitter. Therefore, when transistor Q2 is
turned on, and its collector is at close to ground potential, then Q1 is
also turned on. If Q2 is turned off, however, its collector potential rises
to nearly +12 VDC, and Q1 is thereby turned off.

The key to switching between HIGH (— 12 VDC) and LOW (+12
VDC) RS-232C levels, then, is to turn Q2 on and off. If Q2 is on, then
the output is +12 VDC or LOW; if Q2 is off, then the output is —12
VDC or HIGH. If the TTL input is LOW, then the output of ICI is
HIGH, causing Q2 to be biased on through the 10 kohm resistor. Thus,
a LOW on the TTL input turns on, producing a LOW on the RS-232C
output. Similarly, a HIGH on the TTL input turns off Q2, thereby
producing a HIGH on the RS-232C output.

Finally, we have the RS-232C-to-TTL interface circuit, shown in

Figure 12-15. This circuit consists of a single transistor (Q1) and asso-
ciated collector load (R2) and base bias (R1) resistor. When an RS-232C
LOW (+12 VDC) is applied to the input, Q1 is turned on hard, so the
TTL output is at ground potential. Thus, an RS-232C LOW at the input
produces a TTL LOW on the output.

If an RS-232C HIGH (— 12 VDC) is applied to the input, transistor
QI is reverse biased, and is turned off. The collector potential rises to
+5 VDC, which is the TTL HIGH. Diode D1 clamps the negative
voltage to 0.7 VDC, which is safe for Q1.

When interfacing between TTL and RS-232C, do not overlook
the possibility of using the Motorola MC1488 and MC1489 devices.

Controlling External Circuits

Control of external circuitry makes the microcomputer more useful.
Certain calculation or signal processing chores can be performed in
the machine, and then used to control external circuits. The simplest
forms of external control are on-off switches that are controlled by a

+12
O

Vaer
1.4V DC

—12

Figure 12-13. Op-amp forms TTL-to-RS-232 level translator

214 INTERFACING PERIPHERALS TO THE 6502

+12 VDC

TTL RS-232
Input Output

Regular Open-Collector 680 2
TTL Inverter TTL Inverter

-12V DC
*Value Depends upon V+ and
the Optoisolator used; 560 2
is Sufficient for the case shown

(A)

+12 V DC

TTL
Input

RS-232
Output

-~12V DC

(B)

Figure 12-14. TTL-to-RS-232 level translator A) isolated, B) nonisolated

Serial Digital Data Communications 215

+5 V DC

TTL
Output

RS-232
Input

Figure 12-15. RS-232-to-TTL level translator

single bit of the computer’s output port. More complex control appli-
cations will use devices such as amplifiers, digital-to-analog converts
(DACs), etc. Extremely complex feedback control systems have been
implemented using computers. The availability of microcomputers has
only accelerated the process, and has, in an interesting way, made the
design of computerized control circuits less a game for arcane areas
of engineering and more a game for all.

Some external control circuits have already been discussed in
Chapter 6, where we showed methods for connecting the computer
to digital display devices such as the 7-segment LED decimal display.
Some of the same methods are also used to interface other devices.
For example, Figure 12-16 shows methods of interfacing electrome-
chanical relays.

Why would we want to interface an electromechanical relay,
which is a century-old device, to a modern space-age device like a
microcomputer? The old relay may well be the best solution to many
problems, especially where a certain degree of isolation is needed
between the computer and the controlled circuit. An example might
be 115-volt AC applications, especially those that may require heavy
current loads. A typical “homeowner” application might be turning
on and off 115-volt AC lamps around the house. The computer could
be used as a timer and will turn on and off the lights according to
some programmed schedule, for example, when you are away. Another
application might be to use the computer to monitor burglar alarm
sensors, and then turn on a lamp if one of them senses a break-in.

Figure 12-16 shows two basic methods for connecting the relay
to the computer. Control over the relay is maintained by using 1 bit
of the computer output port, in this case BO. Since only 1 bit is used,
the other 7 bits are available for other applications, which may be

216 INTERFACING PERIPHERALS TO THE 6502

displays, other relays, or certain other devices. Only 1 bit is used, so
the others remain available and are not removed from use.

Most microcomputer outputs are not capable of driving heavy
loads. Some devices will have a fan-out of 10 (i.e., will drive 18 mil-
liamperes at +5 volts), while others have a low fan-out, typically 2 (3.6
mA). To increase the drive capacity and to provide a mechanism for
control, we use an open-collector TTL inverter stage, Ul. One end of
relay coil K1 is connected to the inverter output, and the other end
of the coil is connected to the V+ supply. Some TTL devices (7406,
7407, 7416, and 7417) will operate with potential greater than +5
volts DC on the output, so we can use 6-volt, 12-volt, or 28-volt relays.

Of course, the package DC potential applied to the inverter is still the
normal +5 volts required by all TTL devices. These inverters are
actually hex inverters, so will contain 6 individual inverter circuits in
each package. All 6 inverters can be operated independent of each
other.

The operation of the circuit revolves around the fact that the
relay (K1) coil is grounded when the inverter output is LOW, and
ungrounded when the inverter output is HIGH. As a result, we can
control the on-off states of the relay by applying a HIGH or LOW level
to the input of the inverter. If the inverter input is LOW, for example,
the output is HIGH so the relay coil is not grounded. In that case, the

V+

V+

al

Figure 12-16. Computer interfacing with relays

Serial Digital Data Communications 217

relay coil is not energized because both ends are at the same electrical
potential. When a HIGH is applied to the input of the inverter (i.e.,
when BO of the output port is HIGH), then the inverter output is LOW
and that makes the “cold” end of the relay coil grounded. The relay
will be energized, closing the contacts. We may turn the relay on,
then, by writing a HIGH (logical-1) to bit BO of the output port, and
turn it off by writing a LOW (logical-0) to the output port.

The inverter devices cited here have greater output current ca-
pability than some TTL devices, but are still low compared with the
current requirements of some relays. High current relays, for example,
may have coil current requirements of 1 to 5 amperes. If we want to
increase the drive capability of the circuit, we may connect a transistor
driver such as Q1 shown Figure 12-16.

In the case of relay K2, the cold end of the coil is grounded or
kept high by the action of transistor Q1. This relay driver will ground
the coil when the transistor is turned on (i.e., saturated), and will
unground the coil when the transistor is turned off. As a result, we
must design a method by which the transistor will be cut off when we
want the relay off, and saturated when we want the relay on.

For circuits such as K2, the TTL interface with the computer
output port (U1) may be an inverter or a noninverting TTL buffer. Of
course, the on/off protocol will be different for the two. Also, we need

not use an open-collector inverter for U1 as was the case previously.
If we want to use an open-collector device, however, then we can
supply 2.2 kohm pull-up resistor from the inverter output to the +5-
volt DC power supply. The idea in this circuit is to use the inverter
or buffer output to provide a bias current to transistor Q1. The value
of the base resistor (R1) is a function of the Q1 collector current and
the beta of Q1. This resistor should be selected to safely turn on the
transistor, all the way to saturation, when the output of Ul is HIGH.

The relay will be energized when the output of Ql] is HIGH.
Therefore, the BO control signal should also be HIGH if U1 is a non-
inverting buffer, and LOW if U1 is an inverter.

Both relays K1 and K2 in Figure 12-16 use a diode in parallel
with the relay coil. This diode is used to suppress the so-called inductive
kick spike created when the relay is de-energized. The magnetic field
surrounding the coil contains energy. When the current flow is inter-
rupted, the field collapses causing that energy to be dumped back into
the circuit. The result is a high voltage counter-EMF spike that will
possibly burn out the semiconductor devices or in the case of digital
circuits, create “glitches”——pulses that shouldn’t be! The diode should
be a rectifier type with a peak inverse voltage rating of 1000 volts,
and a current of 500 milliamperes or more. The 1N4007 diode has a

218 INTERFACING PERIPHERALS TO THE 6502

1000 PIV rating at 1 ampere. This diode will suffice for all but the
heaviest relay currents.

Figure 12-17 shows a method for driving a relay from a low fan-
out output port bit without the use of the inverter. The transistor
driver is a pair of transistors connected in the Darlington Amplifier
configuration. Such a circuit connects the two collectors together; the
base of Q1 becomes the base for the pair; the emitter of Q2 becomes
the emitter for the pair. The advantage of the Darlington Amplifier
is that the current gain is greatly magnified. Current gain, beta, is
defined as the ratio of the collector current to base current (J,/,). For
the Darlington Amplifier, the beta of the pair is the product of the
individual beta ratings:

B,_2 = BQ X BQ2

B,_2 = B°

This equation is used when the two transistors are identical. Since
the total beta is the product of the individual beta ratings, when two
identical transistors are used, this figure is the beta squared.

You can either use a pair of discrete transistors to make the
Darlington pair or use one of the newer Darlington devices that house
both transistors inside one T0-5, T0-66, or TO-3 power transistor case.

BO

Output
Port

Figure 12-17. Interfacing with high current relays and solenoids

Serial Digital Data Communications 219

Another method for isolating dangerous or heavy-duty loads from
the microcomputer output port was shown in Figure 12-8. In this case
we use an optoisolator as the interface media. The optoisolator uses
light flux between an LED and a phototransistor to couple the on-off
signal from input to output. The LED produces light when a current
is caused to flow in it, while the phototransistor is turned on (saturated)
when light falls on the base and is off when the base is dark (LED is
off). The transistor and LED are housed together, usually in a 6-pin
DIP package.

The LED in the optoisolator is connected to the output of an
open-collector TTL inverter. The cathode end of the LED is grounded,
and the LED thereby is turned on whenever the output of the inverter
is LOW. Thus, the LED is turned on whenever bit BO of the output
port is HIGH. At the instant the LED is turned on, transistor Ql
becomes saturated, so collector-emitter current flows in resistor R4,

thereby causing a voltage drop that can be used for control purposes.
The voltage drop across resistor R4 can be used to drive another

NPN transistor that actually controls the load. Or we can create an
RC differentiator (R2/C1) and use the leading edge of the voltage
across R4 (as it turns on) to trigger some other device. In Figure 12-
18, for example, we are using a triac to control the AC load. A triac

is basically a full-wave silicon controlled rectifier (SCR), and will gate-
on when a pulse is received at the gate (G) terminal. Most triacs or
SCRs will not turn off with gate signals, so some means must be pro-
vided to reduce the cathode-anode current to near zero when we want
to turn off the device. That is the purpose of switch $1. When we want
to turn the circuit off, switch S1 is opened long enough to allow the
triac/SCR to revert to its off condition. Some devices allow turn-off as
well as turn-on by external pulses.

A method for interfacing the microcomputer with display devices
such as an oscilloscope or a strip-chart paper recorder is shown in
Figure 12-19. In some instances, those devices are the most appropriate
means of display, so we will want to provide some means to convert
binary data to analog voltages for the ’scope or recorder. In Figure
12-19, the conversion is made by a digital-to-analog converter (DAC).
The DAC produces an output potential V, that is proportional to the
binary output. Since various coding schemes are available, they will
not be discussed here. We will assume for the purposes of our discussion
that straight binary coding is used in which the zero-volts state is
represented by a binary word of 00000000, and full-scale output is
represented by the binary word 11111111. States in between zero and
full-scale are represented by proportional binary words; half-scale, for
example, is represented by 10000000.

220 INTERFACING PERIPHERALS TO THE 6502

V+ (ISO)

Power Line

Open-Collector
TTL Inverter

Figure 12-18. Isolated interface to control 120 VAC power lines

We will want to be able to scale the output potential V,, to some
value that is compatible with the display device. Not all oscilloscopes
or paper recorders will accept any potential we apply, so some order
must be introduced. Some oscilloscopes used in special medical, sci-
entific, or industrial monitor applications, for example, come with fixed
1-volt inputs. Those instruments are often the most likely to be selected
for applications involving a computer, yet lack the multi-voltage input
selector of engineering models. For those we must select a DAC output
voltage V, that will match the ’scope input requirements. If the DAC
output is somewhat higher (0 to 2.56 volts is common), then some form
of output attenuation is needed. The operational amplifier used in
Figure 12-19 provides that attentuation.

The voltage gain of an ordinary operational amplifier connected
in the inverting follower configuration, as in the case of Al in Figure
12-19, is set by the ratio of feedback to input resistances (i.e., R2 and
Rl). For this circuit, the gain is (—R2/R1); the minus sign is an indi-
cation of polarity inversion. The inversion, incidentally, means that we
must either design the DAC output to be negative or the oscilloscope/
recorder input to be negative. We can re-invert the signal by following
the amplifier with another circuit that is identical, except that R2 is a

fixed resistor rather than a potentiometer. In that case, Rl = R2 =
10 kohms or any other value that is convenient. The product of two

221 Serial Digital Data Communications

jaaa7]
I
n
c
d
n
C

O
L

A.)

uolwsod

goejJe}U!
J
e
e
A
U
O
S

Boyeue-o7-(21!51q
 “6L-Zb

ainBi4

uog ndino s
a
y
n
d
w
o
g

222 INTERFACING PERIPHERALS TO THE 6502

inversions is the same as if none had taken place; V,, will be in phase
with V,.

A position control is provided by potentiometer R4. In this circuit,
we are producing an intentional output offset potential around which
the waveform V, will vary. The effect of this potential is to position
the waveform on the oscilloscope screen or chart paper where we want
it. Sometimes the baseline (i.e., zero-signal) position will be in the center
of the display screen or paper, while in other cases it will be at one
limit or the other.

An alternative system that would allow positioning of the baseline
under program control is to connect a second DAC (with its own R1)
to point A, which is the operational amplifier summing junction. The
program can output a binary word other than DAC, which represents
the desired position on the display. That position can be controlled
automatically by the program or manually in response to some key-
board action by the operator. That approach requires the investment
of one additional DAC, but that cost is now no longer so horrendous
as it once was—IC DACs are almost dirt cheap these days.

If the DC load driven by the DAC/computer combination is
somewhat more significant than an oscilloscope input, then the simple
op-amp method shown in Figure 12-19 may not suffice. For those
applications we may need a power amplifier to drive the load.

A power amplifier is shown in Figure 12-20. Here we have a
complementary symmetry class-B power amplifier. A so-called “com-
plementary pair” of power transistors is a pair, one NPN and the other
PNP, that are electrically identical except for polarity. When these
transistors are connected with their respective bases in parallel, and
their collector-emitter paths in series, the result is a simple push-pull
class-B amplifier. When the DAC output voltage V, goes positive, then
transistor Q] will tend to turn on, and current flowing through Q1
under the influence of V+ will drive the load also positive. If, on the
other hand, the output voltage of the DAC is negative, then PNP
transistor Q2 will turn on and the load will be driven by current from
the V— power supply. Since each transistor turns on only on one-half
of the input signal, the result is fullwave power amplification when
the two signals are combined in the load.

The “load” in Figure 12-20 can be any of several different devices.
If it is an electrical motor, for example, the DAC output voltage will
vary the speed of the DC motor, hence the computer will control the
speed because it controls V,. If we provide some means for measuring
the speed of the motor, then the computer can be used in a negative
loop to keep the speed constant, or change it to some specific value
at will.

Serial Digital Data Communications 223

Figure 12-20. High current DAC output

A method exists by which the motor can be controlled without
the DAC. If we use a transistor driver to turn the motor on and off,

we can effectively control its speed by controlling the relative duty
cycle of the motor current. By using a form of pulse width modulation,
we can set the motor speed as desired.

Pulse width modulation of the motor current works by setting
the total percentage of unit time that the motor is energized. The
current will always be either all on or all off, never at some intermediate
value. If we vary the length of time during each second that current
is applied, therefore, we control the total energy applied to the motor,
hence its speed. If we want the motor to turn very slowly, then we
arrange to output very narrow pulses through the output port to Ul
to the motor control transistor. If, however, we want the motor speed

to be very fast, then long-duration pulses, or a constant level, are
applied to the output port.

Can you spot the most common programming error that will be
made when you actually try to implement this circuit? It occurs at
turn-on. The DC motor has a certain amount of inertia that keeps it
from wanting to start moving when it is off. As a result, if we want to
start the motor at a slow speed, then the pulse width may not be great
enough to overcome inertia, and the motor will just sit dormant. The
solution is to apply a quick, one-time, long-duration pulse to get the
motor in motion any time we ask it to turn on from a dead stop. After
the initial “kick in the pants,” the normal pulse coding will apply.

If we want to actively control the speed of the motor, then we
will need some sort of sensor that converts angular rotation into some
kind of pulse train. On some motors this problem is less of a nuisance
because the motor is mechanically linked with an AC alternator housed

224 INTERFACING PERIPHERALS TO THE 6502

in the same case. There will be a pair of output terminals that exhibit
an AC sinewave whenever the motor shaft is rotating. If we apply this
AC signal to a voltage comparator (such as the LM-311 device), then
we will produce a TTL-compatible output signal from the comparator
that has the same frequency as the AC from the motor. A typical case
uses the inverting input of the comparator to look at the AC signal,
and the noninverting input of the comparator is at ground potential.
Under this condition, an output pulse will be generated every time
the AC signal crosses the zero-volt baseline. Such a circuit is called a
zero-crossing detector, appropriately enough.

If there is no alternator, then some other means of providing the
signal must be designed. One popular system is shown in Figure 12-

+5 V DC

vem

OOO0O0000

Output Port

OOOWOO00O

Input Port

Microcomputer

Figure 12-21. Motor control example

Serial Digital Data Communications 225

21, in which a wheel with holes in the outer rim is connected to the
motor output shaft, a light emitting diode (LED), and phototransistor
whenever a hole in the wheel is in the path. Otherwise the light path
is interrupted. Flashes of light produced when the wheel rotates trigger
the transistor to produce a signal that is, in turn, applied to the input
port bit as shown. A program can then be written to sample this input
port bit, and then determine the motor speed from the frequency of
the pulses, or, as is more likely with some microprocessors, the time
between successive pulses.

The sensor shown in Figure 12-21 may be constructed from dis-
crete components, if desired, but be aware that several companies
make such sensors already built into a plastic housing. A slot is provided
to admit the rim of the wheel to interfere with the light path.

The methods shown in this chapter are intended to be used as
guides only, and you may well come up with others that are a lot more
clever. The computer doesn’t need much in the way of sophisticated
interfacing in most cases, as can be seen from some of these examples.

Interrupts

The interrupt function on any computer allows external devices to
gain control of the computer. We might want to have such a capability
for several reasons. First, we might want to permit the computer to
do some other job while awaiting some alarm condition or another.
For example, the computer can be used as an environmental controller
in a home or business. Under most circumstances, the computer would
monitor temperature and humidity levels, and control heaters, air

conditioners, and humidifiers. But, if a fire or intruder sensor becomes
active, forcing an interrupt, then the computer will cease executing
the normal program and switch to the subroutine that serves that type
of alarm.

Another case might be to interface with peripherals that are
either too slow for the computer or only operate occasionally. Printers,
especially older mechanical teletypewriters, are particularly slow. We
find these devices are so slow that a 1-mHz 6502 can execute thousands
of instructions during the time required for sending one character to
a printer, i.e., about 100 milliseconds. We can, however, write a pro-
gram that will output a character and then go do something else until
the printer sends back a ready signal that interrupts the 6502.

Still another case involves devices such as A/D converter inter-
faces. Such a device will produce an n-bit binary word that is propor-
tional to some analog input voltage. Some A/D converters require
tremendous chunks of time to make the conversion. Some dual-slope
integration types, for example, require 50 milliseconds. We can, how-
ever, use the end of conversion (EOC)—also called status or data
ready—to interrupt the computer. That arrangement permits the com-

227

228 INTERRUPTS

puter to perform other chores, for example, process the A/D converter
data, while the A/D is “doing its thing.”

There are two interrupt lines on the 6502, IRQ and NMI. Both
of these pins are active-LOW TTL-compatible lines. This means that
they are LOW when the applied voltage is 0 to 0.8 volt, and HIGH
when the applied voltage is +2.4 volts or more.

There is a major difference between the two forms of interrupt.
The NMI is a nonmaskable interrupt. When NMI goes LOW, the com-
puter must go to the interrupt service routine. The IRQ, or interrupt

request line, is maskable. This interrupt request will be honored only
if the IRQ Disable (I-flag) bit in the 6502 processor status register is
reset (LOW). If the I-flag is HIGH, then the 6502 will not honor an
interrupt request on the IRQ line.

There are two ways to set the I-flag. First, we can execute a
software SEI (set interrupt disable status) instruction. The result of SEI
is to set I = 1. The other way to set the I-flag is to reset the computer.
When the RST line on the 6502 is brought LOW, the processor jumps
to a location set by a vector stored in page-FF of memory. During the
execution of this operation, the I-flag is set HIGH.

The only way to reset the I-flag, thereby permitting interrupts
on IRQ, is to execute a CLI (clear interrupt disable status) instruction.
When the CLI instruction is completed, the I-flag will be LOW. This
condition permits the 6502 to respond to interrupt requests.

One implication of the above discussion is that the programmer
must permit the IRQ line to be active. Almost all computers generate
a power-on reset pulse that momentarily brings RST LOW immediately
after power is applied to the system. Thus, the I-flag is set HIGH,
disabling IRQ, every time (1) power is applied, or (2) the operator
presses a reset button. If the program is to respond to interrupt requests
on IRQ, then the programmer must initialize the system by executing
CLI sometime prior to the time when interrupts are being sought. In
many cases, this chore is done when the program first begins execution.
There may also be times we want the program to turn the I-flag on
and off in response to different conditions.

INTERRUPT VECTORS

A vector is an operand stored at a specific location that is used to alter
the contents of the program counter. In 6502-based systems, the vec-
tors are stored in page-FF of memory, as follows:

FFFAH NMI low address byte
FFFBH NMI high address byte
FFCH _ reset low address byte

Nonmaskable Interrupts 229

FFFDH reset high address byte
FFFEH IRQ low address byte
FFFFH IRQ high address byte

If a nonmaskable interrupt request occurs, then the 6502 goes to
location FFFAH and fetches the low address byte and places it in the
low-order half of the program counter (PCL). It then goes to location
FFFBH and fetches the high address byte and stuffs it into the high-
order half of the program counter (PCH). The address of the next
instruction to be executed will be (PCH + PCL). This address is the
beginning instruction of the interrupt service subroutine. The last in-
struction in the subroutine must be RTI (return from interrupt). When
this instruction is encountered, the program counter will be loaded
with the address of the next instruction in the main program that
would have been executed if no interrupt had occurred.

NONMASKABLE INTERRUPTS

The nonmaskable interrupt does not depend upon the condition of
the I-flag in the processor status register. When the NMI line goes
LOW, the 6502 will jump to the nonmaskable interrupt subroutine, as
directed by the vector addresses stored at FFFAH and FFFBH. The
jump occurs when the instruction being executed (when NMI goes
LOW) is completed. Following execution of the interrupt subroutine,
as the RTS instruction is executed, the program jumps back to the next
sequential instruction of the main program.

Figure 13-1 diagrams the operation of the 6502 during a non-
maskable interrupt. In this hypothetical example, the computer is ex-
ecuting a program in page-03 when, at location 0353H, NMI signal is
received (i.e., NMI goes LOW). The operation is as follows:

1. An active (LOW) NMI is received while the 6502 is executing
an instruction at 0353H.

2. At the finish of executing the instruction at 0353H, the 6502
goes to FFFAH and fetches the low-order address byte (00H)
and places it in the PCL half of the program counter. It then
goes to FFFBH and fetches the high-order address byte (COH)
and places it in the PCH half of the program counter.

3. The contents of the program counter are not COOOH, so the
6502 goes to that location to pick up the first instruction of
the NMI service subroutine.

4. At the end of the service subroutine, an RTI instruction is

encountered. The address of the next instruction of the main

230 INTERRUPTS

NMI
Vector

RST
Vector |FFFD | 62
TRO

JFFFF | OF Vector

TRO
Subroutine

a
COIN)
|

Figure 13-1. Nonmaskable interrupt sequence example

program (0354H) is recovered from the stack in page 0. Control
is returned to the main program at location 0354H.

The nonmaskable interrupt is used where the system cannot tol-
erate ignoring an interrupt, for example, a critical alarm in a life-
threatening situation. The programmer cannot disable the NMI line.
The I-flag is disabled during the execution of the service subroutine,
and it will be re-enabled during RTI execution (provided that the
I-flag was enabled at the beginning of the subroutine).

MASKABLE INTERRUPT REQUESTS

The interrupt request (IRQ) is an active-LOW 6502 input which op-
erates in a manner similar to the nonmaskable interrupt discussed

Maskable Interrupt Requests 231

previously. The differences between IRQ and NMI are in the use of
the flag. Also, the NMI will be recognized if it is LOW for at least two
clock cycles, while IRQ must be held LOW until it is recognized. Most
devices connected to the interrupt request line will have a flip-flop
output which can be reset under program control. It is common prac-
tice to clear the interrupt request (cancelling the request) under pro-
gram control as part of the service subroutine. The 6502 sets the
I-flag HIGH when it responds to an IRQ so that the machine won’t
respond to the same interrupt more than once. The program must also
reset the I-flag by executing a CLI command if the intent is to respond
to eventual interrupt requests. Thus, the interrupt service subroutine
must (1) set any external interrupt flip-flops HIGH, and (2) execute a
CLI instruction to clear the I-flag. Most progammers prefer to perform
these chores immediately before the RTI (return from interrupt).

Figure 13-2 shows the operation of the interrupt request (IRQ)
line when the I-flag in the PSR is set (HIGH). The 6502 is executing
an instruction in the main program at location 0353H when IRQ goes
LOW. When the 6502 has finished executing the instruction at 0353H,
it tests the I-flag in the PSR (see step 2 in Figure 13-2). Since the
I-flag is HIGH, the 6502 sees that IRQ is to be ignored. Thus the
program counter is updated to the next step in the main program
(0354H) rather than the IRQ vector. The program will continue exe-
cuting as if no interrupt request had occurred.

Operation of IRQ when the I-flag is LOW is shown in Figure 13-
3. This condition indicates that the interrupt line is not disabled. Again,
the scenario is the same; the 6502 is executing an instruction at 0353H
in the main program when IRQ goes LOW. The following sequence
ensues:

1. An active (LOW) IRQ is sensed while the 6502 is executing
an instruction at 0353H.

2. When the 6502 is finished executing the instruction at 0353H,
it tests the I-flag in the processor status register (PSR) for HIGH
or LOW.

3. Finding the I-flag LOW, the 6502 goes to location FFFEH to
fetch the low address byte, and load it into the low-order half
(PCL) of the program counter. It then goes to FFFFH to fetch
the high address byte and store it in the high-order half of the
program counter (PCH).

4. The address in the program counter is (PCH + PCL), so the
6502 jumps to address OFOOH, which is the starting address of
the interrupt service program. During this period, the 6502

232 INTERRUPTS

Main
Program

NMI
Vector

RST
Vector

TRO
Vector

IRO
Subroutine

Figure 13-2. Maskable interrupt sequence example (masked)

has stored on the external stack the address of the location

where the main program will resume (in this case, 0354H).

5. At the end of the interrupt program, the 6502 encounters an
RTI (return from interrupt) instruction. This causes it to pop
the address of the next instruction (0354H) off the stack and
load it into the program counter. The main program resumes
at 0354H.

If the programmer makes no provision for clearing the I-flag some
time during the subroutine or subsequently on the main program, then
the 6502 will no longer respond to interrupt requests.

RESET LINE AS INTERRUPT

The reset input (RSI) of the 6502 is essentially a special limited form
of nonmaskable interrupt. When RST drops LOW, the 6502 goes to

Reset Line As Interrupt 233

the location indicated by the contents of FFFCH and FFFDH; the
low-order byte of the 2-byte address is stored at FFFCH, and the high-
order byte is at FFFDH. The main purpose of RST is to initialize the
computer. A reset pulse is generated when power is first applied to
the computer, and this action forces the computer to begin executing
the program at the address stored in the reset vector, FFFCH/FFFDH.
Normally, this vector address is the initial address of the program. If
that is where you want to transfer program control for some particular
class of interrupt, then you can “bootleg” an interrupt using the RST
input.

Main
Program

NMI
@ Vector

= RST

|= 3 Vector

3 IRQ
” Vector

Figure 13-3. Maskable interrupt sequence example (unmasked)

234 INTERRUPTS

MULTIPLE INTERRUPTS ON 6502

Unlike other microprocessors (e.g., Z-80), the 6502 has only one mask-
able and one nonmaskable interrupt line and/or mode. Without ex-
ternal circuitry, therefore, we can service only one device on each
interrupt input. There are special chips available which permit us to
add and/or prioritize multiple interrupts, but in this section we will
examine two simple schemes to accomplish this same job with discrete
logic elements.

The method shown in Figure 13-4 permits us to have up to 8
interrupts, and also permits us to software prioritize according to im-
portance. Obviously, if we receive two interrupts, one indicating a fire
and the other indicating that a new hot water temperature has been
commanded, we want the computer to look at the fire alarm first.

Figure 13-4 connects to the computer via an I/O port, here des-
ignated as port-1 for the sake of convenience. There are 8 interrupt
lines, designated as INTO through INT7, all of which are active-LOW.

Since the interrupt may be transient in nature, and the 6502 needs to
see a LOW level rather than a negative-going edge, we provide flip-
flops FF1-FF8 to “remember” the interrupt request until the 6502
recognizes it. Only two interrupt flip-flops are shown, again for the
sake of simplicity.

When any interrupt request line goes LOW momentarily, the Q-
output for its flip-flop will go HIGH (Note: The interrupt lines INTO-
INT7 are connected to the active-LOW set inputs on the flip-flops).
Each Q-output is connected to a single bit of the input port, and also
to 1 input of an 8-input NOR gate. When any input of NOR gate Gl
is HIGH, the output of G1 will be LOW. We can, therefore, use the
output of G1 to signal either INT or NMI on the 6502, as appropriate.

But how does the 6502 know which interrupt service? Except for
the case where any and all interrupts are served by the same program,
we must have some means for distinguishing among the 8 different
interrupt lines. That is the function of the input port.

When INT goes LOW, the 6502 will branch to the program whose
initial address is stored at FFFEH and FFFFH. The first instruction
in this subroutine will be to read input port-1 to determine which bits
are HIGH (active) and which are LOW (inactive). The program will
then clear the active flip-flops and then go to the portion of the program
segment that serves the active interrupt request lines.

The programmer can prioritize the interrupt requests by causing
the computer to respond to certain requests first, or by polling the
bits in order of highest-to-lowest priority.

Resetting the interrupt flip-flops occurs when the clear line is
brought LOW. Since each FF clear line is connected to an output port

Multiple Interrupts on 6502 235

Interrupt Request

Interrupt Acknowledge

To 6502

INT Line

Figure 13-4. Multiple interrupt hardware

236 INTERRUPTS

bit, we can reset, or “clear,” the interrupt by writing a LOW to the
correct output port bit. During the initialization sequence, right after
the computer is powered-up (or a reset button is pressed), we may
want to ensure that all interrupt lines are cleared by writing 00H to
port-1 for a few milliseconds, and then following the FFH. This action
will force all flip-flop clear lines LOW, forcing each Q-output LOW,
and then setting all clear lines HIGH (the inactive state).

In cases where the computer and the peripherals do not share a
common printed wiring board (or even the same cabinet), the interrupt
flip-flops are usually located in the peripheral’s circuitry, while gate
Gl and the I/O ports are with the computer. The input port lines
become interrupt request signals, while the output port lines are in-
terrupt acknowledge signals.

Interfacing with the
Apple II Bus

The Apple II microcomputer is probably one of the most popular
complete microcomputers on the personal computer market. It is used
by hobbyists, businesses, computer education instructors, and scientists.

It is a powerful little machine, and is available in several versions, such
as the Apple® II Plus and the enhanced Apple® IIe, which uses LSI
microcircuits to replace many of the microcircuits which were found
in the II and II Plus versions. The Apple II is found almost everywhere,
and it seems that there are more Apple retailers than for any other
computer except, perhaps, the TRS-80® by Radio Shack.

The Apple II is a self-contained microcomputer that is based on
the 6502 microprocessor chip. This computer comes complete with a
keyboard and up to 48K of internal random access read/write (RAM)
memory chips. The 6502 will support 64K, but the Apple II uses the
upper 16K for its own reserved purposes. Nevertheless, there are ways
around this limitation (which is often more imagined than real), and
some manufacturers offer Apple II 16K cards which bring the memory
size up to the full 64K. It is necessary to use either programming or
hardware tricks to let the computer use either the built-in read only
memory (ROM) or the add-on RAM when addressing the upper 16K
of memory.

The Apple II has been around a long time, and is now well-
entrenched as one of the basic microcomputers. One advantage of this
type of computer is that large amounts of software and hardware
accessories are on the market for it. There are many imitators of the
Apple II, most of which are software compatible with the Apple II for
obvious reasons! But the Apple II is bedeviled with not only imitators,

237

238 INTERFACING WITH THE APPLE !I BUS

some of which use seemingly exact copies of the Apple II printed
wiring board layout, but also counterfeits. Some unscrupulous manu-
facturers in Southeast Asia have offered for sale exact duplicates of the
Apple II without first bothering with the legal nicety of a license from
the U.S. manufacturer!

The Apple II is a single-board computer housed in a small case
about the size of a cheap typewriter. There are eight slots on the
motherboard that will accommodate accessories and interface devices.
The basic computer comes with 16K of memory, but we can configure
it with up to 48K of 8-bit memory by replacing the 4K memory chips
with 16K memory chips.

The Apple II uses software to replace hardware complexity. The
memory allocations above the 48K boundary are used for the monitor
program and for housekeeping functions, such as driving the disk
system.

The connectors for each of the plug-in cards have 50 pins, with
pins 1 through 25 on the component side of the inserted printed wiring
boards, and 26 through 50 on the “foil” side of the card. Several
companies offer either plug-in accessory cards (I/O cards or A/D con-
verter cards), or blank interfacing cards on which you may build your
own circuitry. The Apple II plug-in card pinouts are described here:

Pin Designation Function

1 I/OSELECT This active-LOW signal is LOW if and only if
one of the 16 addresses assigned to that partic-
ular connector is called for in the program. The
6502 used in the Apple II uses memory-mapped
I/O, so each I/O port number is represented
by a memory location in the range C800H and
C8FFH. Reference the Apple IJ memory-map
in the manual for specific locations.

2 AO Address Bus bit 0
3. Al Address Bus bit 1
4 AQ Address Bus bit 2
5 A3 Address Bus bit 3

6 A4 Address Bus bit 4
7 Ad Address Bus bit 5
8 A6 Address Bus bit 6

9 AT Address Bus bit 7

10 A8 Address Bus bit 8
11 AQ Address Bus bit 9
12 AlO Address Bus bit 10

13 ~All Address Bus bit 11

21

22

23

24
25

26
27

28

29

Designation

Al2

INTOUT

DMAOUT
+5

GND
DMAIN

INTIN

NMI

Apple II Pinouts 239

Function

Address Bus bit 12
Address Bus bit 13

Address Bus bit 14

Address Bus bit 15

Control signal from 6502 microprocessor is
HIGH during read operations, and LOW dur-
ing write operations.

No connection

Active-LOW signal that lets the world know
that an input or output operation is taking
place, this line will go LOW whenever an ad-
dress in the range C800H to C8FFH is on the
address bus.

Active-LOW input, if this line is LOW during
the phase-1 clock period, then the CPU will
halt (i.e., enter a wait state) during the following
phase-1 clock period. If RDY remains HIGH,
then normal instruction execution will occur
on the following phase-2 clock signal.

Active-LOW Direct Memory Access line allows
external devices to gain access to the data bus
and apply an 8-bit data word to the address it
places on the address bus.

Interrupt output signal allows prioritizing of
interrupts from one plug-in card to another.
The INTOUT line of each lower order card runs
to the INTIN pin of the next card in sequence
(see pin 28).

Direct Memory Access version of INTOUT
+5-volt DC power supply available from main
board to plug-in card

Ground
Direct Memory Input signal allows prioritizing
DMaA functions.

Interrupt Input (see DMAOUT, pin 24)

Active-LOW nonmaskable interrupt _line.
When brought LOW, this line will cause the
CPU to be interrupted at the completion of the
present instruction cycle. This interrupt is not
dependent upon the state of the CPU’s inter-
rupt flip-flop flag.

240

Pin
30

31

32

INTERFACING WITH THE APPLE II BUS

Designation

TRQ

02

Function

Interrupt Request. This active-LOW input will
cause the CPU to interrupt at the end of the
present instruction cycle, provided that inter-
rupt flip-flop is reset.
Reset line. This active-LOW input will cause
the program to return to the Apple II monitor
program.
Active-LOW input that disconnects the ROMs
of the monitor to permit custom software
stored in ROMs on the plug-in board to be ex-
ecuted.
—12-volt DC power from main board to plug-
in board
—5-volt DC power from main board to plug-
in board
No connection
7 mHz clock signal
2 mHz clock signal
Phase-1 clock signal
Similar to INH except that it disables all ROMs
including C800H to C8FFH used for I/O func-
tions

Phase-2 clock signal
Active-LOW signal indicates one of the 16 ad-
dresses assigned to that connector is being se-
lected.
Data Bus bit 7
Data Bus bit 6
Data Bus bit 5
Data Bus bit 4
Data Bus bit 3
Data Bus bit 2
Data Bus bit 1
Data Bus bit 0
+12-volt power from main board to plug-in
boards

Interfacing with the
KIM-1, AIM-65, and
SYM-1

The KIM-1 microcomputer was a single-board trainer that was intro-
duced by MOS Technology, Inc. of Norristown, PA, the originator of
the 6502 microprocessor chip. It was apparently intended to introduce
the world of microprocessing to engineers who would incorporate the
6502 into their instrument and computer designs. The KIM-1 com-
puter, however, blossomed into a popular starter computer as well as
a trainer. Many current computer experts began their careers with a

KIM-1 device.
The KIM-1 was a single-board computer that contained 1K of

8-bit memory, a 6522 Versatile Interface Adapter (VIA), a 20 mA TTY
current loop for making hard copies, and a cassette (audio) interface
to allow storage of programs on ordinary audio tape. One feature of
the KIM-1 tape interface not found on others of the era is the ability
to search for programs on the tape by a designator applied to the
beginning of the program on the cassette.

The SYM-1 is a more recent single-board trainer computer that
uses the KIM-1 bus. The SYM-1, however, is still easily obtained and

contains more features than the original KIM-1. For those members
of the KIM-cult, the SYM-I is a good substitute.

The AIM-65 is a more advanced microcomputer based on the
KIM bus, and is made by Rockwell Microelectronics, Inc. The AIM-65
computer uses a standard ASCII typewriter keyboard instead of the
hexadecimal pad of the KIM-1. It also has a 20-character 5 x 7 dot
matrix LED display and a 20-column 5 x 7 dot matrix thermal printer
instead of the standard 7-segment LED readouts of the KIM-1, which
require some imagination to read hexadecimal digits above 9. The

241

242 ~=INTERFACING WITH KIM-1, AIM-65, AND SYM-1

printer uses standard calculator printer paper available at stationery
stores.

The AIM-65 also has a sophisticated monitor program stored in
ROM, and has the ability to incorporate BASIC and a 6502 assembler
into other on-board ROMs. In contrast, the KIM-1 originally used a
relatively simple monitor. To write and input programs one had to
“fingerbone” instructions into the computer on a step-by-step basis.
The AIM-65 comes with a text editor. Also, the AIM-65 can be con-
figured with either 1K or 4K of memory, and external memory to 48K
can be added. .

The two interfacing connectors etched onto the boards of the
KIM-1, SYM-1, and AIM-65 computers are the applications connector,
basically an I/O connector, and the expansion connector, which is more
similar to a genuine bus connector. Both are of primary interest to
microprocessor users who must interface the computer with some
external device.

KIM-1/SYM-1/AIM-65 Applications Connector

Note: Numbered connector pins are on the top—component—side of
the printed wiring board; alphabetic pins are on the bottom—or
“foil” —side of the board.

Pin Designation Function

1 GND Ground
2 PA3 Port-A bit 3
3 PA2 Port-A bit 2
4 PAI Port-A bit 1
5 PA4 Port-A bit 4
6 PA5 Port-A bit 5
7 PAG Port-A bit 6
8 PAT Port-A bit 7

9 PBO Port-B bit 0
10 PBI Port-B bit 1
11 PB2 Port-B bit 2
12 PB3 Port-B bit 3
13. PB4 Port-B bit 4
14. +PAO Port-A bit 0
15 PB7 Port-B bit 7
16 PB5 Port-B bit 5
17 KBRO Keyboard Row 0
18 KBCF Keyboard Column F

Pin Designation

19 KBCB
20 KBCE
21 KBCA
22 KBCD

Decode

AUD IN
AUDOUTL

+12
AUDOUTH

XZ VZ Zr AMM MWoOOw>

A ~]

TTYKBD+

N TTYPNT+

TTYKBD—

TTYPNT—

KB R3
KB CG
KB R2
KB CC
KB R1 NXxe< G4

Applications Connector Pinouts 243

Function

Keyboard Column B
Keyboard Column E
Keyboard Column A
Keyboard Column D
+5-volt DC from main board power supply

Memory-bank select signals (Active-LOW)

Memory decode signal used to increase memory
capacity with off-board memory devices
Audio input from cassette
Low-level audio output to cassette with “micr”
input

+12-volt DC power from main board
High-level audio output to cassette player with
“line” input
Positive terminal of 20-mA teletype keyboard
loop
Positive terminal of 20-mA teletypewriter printer
loop
Negative terminal of 20-mA teletypewriter key-
board loop .
Negative terminal of 20-mA_teletypewriter
printer loop
Keyboard Row 3
Keyboard Column G
Keyboard Row 2
Keyboard Column C
Keyboard Row 1

The KIM-1 and related computers use the 6522 VIA device. The
6522 contains two 8-bit I/O ports—Port-A and Port-B. These ports are
represented by bits PAO-PA7 and PBO-PB7. Both ports can be con-
figured under software control for either input or output port service
on a bit-by-bit basis. In other words, PAO might be an input bit, while
PAI is an output port bit. Or we can configure all 8 bits of either or
both ports as either input or output.

244

Ol ® G

INTERFACING WITH KIM-1, AIM-65, AND SYM-1

KIM-1/SYM-1/AIM-65 Expansion Connector

Designation

SYNC

Function

Active-HIGH output line that goes HIGH during
the phase-1 clock signal during instruction fetch
operations. This line is used to allow the 6502 to
operate with slow memory, dynamic memory, or
in the Direct Memory Access mode.
Has the effect of inserting a wait state into the
CPU operating cycle. See similar description for
same signal in Apple II discussion
Phase-1 clock signal
Maskable interrupt request line. Active-LOW
Reset overflow input. A negative-edge triggered
input that will reset the overflow flip-flop in the
CPU
Active-LOW nonmaskable interrupt input line.
This interrupt line cannot be masked by the in-
ternal interrupt flip-flop.
In parallel with the reset line on the 6502 and
on the microcomputer. When brought LOW, this
line will cause the program counter inside the
6502 to be loaded with OOH. The effect of this
line is to form a hardware “JUMP to 00H” in-
struction.

Data Bus bit 7
Data Bus bit 6
Data Bus bit 5
Data Bus bit 4
Data Bus bit 3
Data Bus bit 2
Data Bus bit 1
Data Bus bit 0
Address decoder output that goes HIGH when-
ever the COU addresses a location from 1800H
to 1BFFH

6502 Detailed
Instruction Set

The 6502 instruction set is presented in this chapter, so that you can
study the instructions on a one-by-one basis. We will give you the
common assembly language mnemonic for each instruction, a brief
description to supplement the descriptions in Chapter 7, and the op-
erations code (op-code) for each. The codes are listed in hexadecimal
(HEX), binary, and octal formats to accommodate different computers.

ADC

Add Memory to Accumulator with Carry

A+M+C-A,C

Status Register Flags Affected: N, Z, C, V

Addressing ____Op-Code______— No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Immediate ADC #oper 69 01101001 151 2 2
Zero Page ADC oper 65 01100101 145 2 3
Zero Page,X ADC oper,X 75 01110101 165 2 4
Absolute ADC oper 6D 01101101 155 3 4*
Absolute,X ADC oper,X 7D 01111101 175 3 4*

Absolute, Y ADC oper,Y 79 01111001 171 3 6
(Indirect,X) ADC (oper,X) 61 01100001 141 2 5*
(Indirect), Y ADC (oper),Y 71 01110001 161 2

*Add 1 if a page boundary is crossed.

245

246 6502 DETAILED INSTRUCTION SET

The ADC instruction performs an addition with carry between
the contents of the accumulator, the carry flag, and the contents of a
memory location (specified or implied, depending upon the instruc-
tion). The status register flags are affected according to the following
protocols:

Carry Flag (C). The carry flag is set (C = 1) if the sum of a binary
addition exceeds FFH (255,,) or if the sum of a decimal (BCD) addition
exceeds 99,,. All other results will cause the carry flag to be reset
(C = 0).

Negative Flag (N). The negative flag will be set (N = 1) if bit 7 of
the result stored in the accumulator is 1, and reset (N = 0) if bit 7 of
the result is 0.

Overflow Flag (V). The overflow flag is set (V = 1) when the sign or
bit 7 changes because the result in the accumulator is greater than
+127,,(7FH) or —128,,. All other results cause the overflow flag to
be reset (V = 0).

Zero Flag (Z). The zero flag is set (Z = 1) if the result in the accu-
mulator is 0, and reset (Z = 0) for all other results.

AND

Logical-AND Operation Between Memory and the
Accumulator

AAM-A

Status Register Flags Affected: N, Z

Addressing ____Op-Code_____ No, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Immediate AND #oper 29 00100001 #£«=35i1 2 2
Zero Page AND oper 25 00100101 45 2 3
Zero Page,X AND oper,X 35 00110101 65 2 4
Absolute AND oper 2D 00100101 55 3 4
Absolute,X AND oper,X 3D 00110101 75 3 4*
Absolute, Y AND oper,Y 39 00110001 £71 3 4*

(Indirect,X) AND (oper,X) 21 00100001 41 2 6
(Indirect),Y AND (oper),Y 31 00110001 61 2 5*

*Add 1 if page boundary is crossed.

ASL 247

The logical-AND instruction is of Group One, and has the full
complement of addressing modes: Immediate, Absolute, Zero Page,
Absolute X, Absolute Y, Zero Page X, Indexed Indirect, and Indirect
Indexed.

The AND instruction causes the CPU to perform a logical-AND
on a bit-by-bit basis between the contents of the accumulator and a
data word fetched from memory. The results of the AND operation
are stored in the accumulator. The rules for the logical-AND operation
are:

0 AND 0 = 0

0 AND 1=0

1 AND 0 = 0

1 AND 1=1

In the logical-AND instruction, the operation is on a bit-for-bit
basis. The result of any operation on a given bit will not affect any
other bit.

The Zero Flag (Z) is set (1) if the result in the accumulator is zero
(00000000), otherwise it is reset (Z = 0). The Negative Flag (N) is set
(N = 1) if accumulator bit 7 of the result is 1, and reset (N = 0)
otherwise.

ASL

Shift Left 1-Bit Data in Either Accumulator or Memory

c~|7]6|5]4]3]/2]1}o}~0
Status Flags Affected: N, Z, C

Addressing ___—Op-Code_______ No, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Accumulator ASL A OA 00001010 12 1 2

Zero Page ASL oper 06 00000110 06 2 5
Zero Page,X ASL oper,X 16 00010110 26 2 6

Absolute ASL oper OE 00001110 16 3 6

Absolute,X ASL oper,X 1E 00011110 # £36 3 7

The ASL instruction will operate on either the accumulator or
an addressed memory location. In the ASL instruction, bit 7 is always
shifted to the carry flag (C), and bit 0 is made zero. The negative flag
(N) will be made equal to the result in bit 7. The zero flag (Z) will be

248 6502 DETAILED INSTRUCTION SET

set (Z = 1) if the result is zero, and reset (Z = 0) otherwise. The carry
flag contains the former bit 7 data (1 or 0).

BCC

Branch on Carry Clear (C = 0)

Status Register Flags Affected: None

Addressing _ Op-Code No, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Relative BCC oper 90 10010000 220 2 2*

*Add 1 if branch occurs to same page, add 2 if branch occurs to another
page.

This 2-byte instruction causes a relative branch forward or back-
ward a number of steps specified by the second byte of the instruction
code. Forward branches are specified by a positive hexadecimal num-
ber, while backward branches are represented by a two’s complement
equivalent hex negative number. For example, branching ahead 6
locations (+6) would be represented by 06H in the second byte, while
branching 6 steps backwards (—6) is represented by FAH. The branch
occurs if the Carry Flag is reset (C = 0).

BCS

Branch on Carry Set (C = 1)

Branch on C = 1

Status Register Flags Affected: None

Addressing __— Op-Code No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Relative BCS oper BO 10110000 260 2 2*

*Add 1 if branch occurs to same page, add 2 if branch occurs to next
page.

This 2-byte instruction is a relative branch forward or backward.
The branch occurs a number of bytes of memory specified by the
second byte of the instruction. Forward branches are specified by a
hexadecimal number, while backward branches are represented by a

BIT 249

two’s complement equivalent. For example, branching ahead 6 loca-
tions would be represented by 06H in the second byte, while branching
6 steps backwards is represented by FAH (—6,,). Branch will occur
when the carry flag of the Processor Status Register is set (C = 1).

BEQ

Branch on Result Equals Zero (Z = 1)

Branch on Z = 1

Status Register Affected: None

Addressing _____—Op-Code_____— Noo, No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Relative BEQ oper FO 11110000 360 2 2*

*Add 2 if branch occurs to the same page, add 2 if to another page,
ie., if page boundary is crossed.

The BEQ instruction is a conditional branch that will branch when
the result of an operation is zero (when the Z-flag is 1). If the result
of an operation is zero, then the Z-flag is set (Z = 1); the BEQ instruc-
tion tests the Z-flag. If the Z-flag is 0, indicating a non-zero result, then
no branch occurs and the program will execute the next instruction
in sequence after BEQ.

Branching is relative, meaning that the program will jump for-
ward or backward an amount specified by the second byte of the
instruction. Forward jumps are specified by a positive hexadecimal
number, while backward branches are specified by a two’s complement
hexadecimal equivalent number. For example, branching 6 steps for-
ward would be specified by 06H, while 6 steps backward (—6) is rep-
resented by FAH. BEQ is the complement of the BNE (Branch on Not
Equal) instruction.

BIT

Bit Test

Tests bits in memory with accumulator

AAM, M, > N, M, > V

Status Register Flags Affected: N, Z, V

250 6502 DETAILED INSTRUCTION SET

Addressing ___— Op-Code Noo, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Zero Page BIT oper 24 00100100 44 2 3
Absolute BIT oper 2C 00101100 54 3 4

The BIT instruction is a comparison operation used to test bits
from a memory location with bits in the accumulator. The contents of
the accumulator are not affected by this instruction. Hence, the BIT
instruction is termed “nondestructive.”

The BIT instruction affects the N, V, and Z flags of the processor
status register. The N-flag is set to the value of memory word bit 7
(M,), while V is set to the value of memory word bit 6 (M,). The
Z-flag is set (Z = 1) if the result is zero, and reset (Z = 0) if the result
is non-zero.

BIT performs a comparison by executing a logical-AND operation
between the contents of the accumulator and the contents of a specified
memory location. If the result of this operation is zero, then Z = 1,
otherwise Z = 0.

BMI

Branch on Result Equals Minus (N = 1)

Branches when N = 1

Status Register Flags Affected: None

Addressing _____ Op-Code No. No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Relative BMI oper 30 00110000 60 2 2*

*Add 1 if branch occurs to same page, add 2 if branch crosses page
boundary.

The BMI instruction is a conditional branch instruction. The
branch is taken if the result of a previous operation is negative, as
indicated by the N-flag of the processor status register being set (N =
1). This test tells us that bit 7 of the previous result was 1.

The BMI instruction uses relative addressing. The branch occurs
forward or backward a number of steps specified by the second byte
of the instruction. A forward branch is denoted by a positive hexa-
decimal number, while a backward branch by an equivalent two’s
complement hexadecimal number. For example, a branch 6 spaces

BPL 251

forward (+6) would be designed by 06H in the second byte, while a
branch 6 steps backward (—6) by the hexadecimal equivalent FAH.

BNE

Branch on Result Not Equal to Zero (Z = OQ)

Branches on Z = 0

Status Register Flags Affected: None

Addressing ___— Op-Code No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Relative BNE oper DO 11010000 320 2 2*

* Add 1 if branch occurs to same page, add 2 if branch occurs to different
page.

The BNE instruction is a conditional branch that takes the branch
if the result of a previous instruction was not equal to zero. BNE tests
the Z-flag of the processor status register, and will branch if Z = 0.

The BNE instruction uses relative addressing. The branch causes
a jump forward or backward an amount specified in the second byte
of the instruction. A forward branch is denoted by a positive hexa-
decimal number in the second byte, while a backward branch is in-
dicated by a two’s complement hexadecimal number. For example, a
branch forward of 6 steps (+6) is denoted by 06H, while a branch
backward of 6 spaces (—6) is denoted by FAH.

BPL

Branch on Result Positive

Branch on N = 0

Status Register Flags Affected: None

Addressing ___—Op-Code_______— Noo, No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Relative BPL,oper 10 00010000 020 2 2*

*Add 1 if branch occurs to same page, add 2 if branch occurs to different
page.

252 $6502 DETAILED INSTRUCTION SET

This instruction causes a branch when the result of the previous
instruction was positive, as indicated by the N-flag being 0. Relative
addressing mode is used, with the jump displacement being given by
the second byte of the instruction. A positive jump will be indicated
by a positive hexadecimal number, while a backward branch is indi-
cated by a two’s complement hexadecimal number in the second byte.
For example, a forward branch of 6 steps is indicated by 06H in byte
2, while a backward branch (—6) is indicated by the hexadecimal
number FAH.

BRK

Force Break

Forced interrupt PC + 2! P4

Status Register Flags Affected: I

Addressing ___-Op-Code_____ No, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied BRK 18 00011000 030 1 7

The BRK command is a means for forcing the microprocessor to
execute the interrupt subroutine under program control. The address
of the first instruction of the interrupt subroutine is stored at locations
FFFEH (low-order byte) and FFFFH (high-order byte). The contents
of the program counter are incremented by 2 and then pushed onto
the external stack during the execution of the interrupt subroutine.
The BRK command is not disabled by the I-flag in the processor status
register. The I-flag, which is an interrupt disable flag, is set HIGH (1)
by the BRK instruction.

BVC

Branch on Overflow Clear

Branch on V = 0

Status Register Flags Affected: None

Addressing ___—Op-Code_____— Noo, No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Relative BVC oper 50 0101000 120 2 2*

* Add 1 if branch occurs to same page, add 2 if branch occurs to different
page.

CLC 253

The BVC instruction causes a jump when the overflow flag (V)
in the processor status register is clear (V = 0). Thus, BVC is a con-
ditional branch instruction that uses relative addressing. The BVC
instruction tests the V-flag of the processor, and will branch if V = 0.
The branch will jump forward or backward an amount specified in the
second byte of the instruction. A forward branch is denoted by a
positive hexadecimal number in the second byte, while a backward
branch is indicated by a two’s complement hexadecimal number.

BVS

Branch on Carry Set

Branch on V = 1

Status Register Flags Affected: None

Addressing ___—Op-Code___ Noo. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Relative BVS oper 70 01110000 160 2 2*

* Add 1 if branch occurs to same page, add 2 if branch occurs to different
page.

This instruction is exactly like BVC, except that the branch occurs
when the V-flag is set (V = 1).

CLC

Clear Carry Flag

0-C

Status Register Flags Affected: C goes to 0

Addressing ______Op-Code______— No, No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied CLC 18 00011000 030 1 2

The CLC instruction causes the carry flag of the processor status
register to become clear (C = 0).

254 6502 DETAILED INSTRUCTION SET

CLD

Clear Decimal Mode

0-D

Status Register Flags Affected: D

Addressing __—Op-Code_____ No. Ne.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied CLD D8 11011000 330 1 2

CLI

Clear Interrupt Disable Bit

0- I

Status Register Flags Affected: I

Addressing _:_Op-Code______ No, No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied CLI 58 01011000 130 1 2

The CLI instruction clears the interrupt disable flag (also called
the I-flag) in the 6502 CPU. Execution of this flag causes the I-flag to
go to zero (I = 0). The implied addressing mode is used because there
is only one possible destination, namely the I-flag of the processor
status register. The purpose of the CLI instruction is to permit the
6502 to respond to interrupt requests from the outside world that are
indicated by the IRQ line dropping LOW. The I-flag is normally set
to I = 1 when the 6502 is first turned on and the RST line is activated.
The programmer must insert a CLI] instruction somewhere in the
program before it is necessary to respond to maskable interrupts. This
instruction and the companion SEI (set interrupt flag) can be used to
turn the interrupt function on and off as needed.

CLV

Clear Overflow Flag

0-V

Status Register Flags Affected: V

Addressing _____—Op-Code__ Noo. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied CLV B8 10111000 270 1 2

The CLV instruction is used to clear the overflow flag (also called
the V-flag) of the processor status register to LOW (V = 0). Implied
addressing is used since there is only one possible destination for the
instruction. CLV is 1-byte instruction and affects no flags other than
the V-flag.

CMP

Compare Memory with Accumulator

A—-M

Status Register Flags Affected: N, Z, C

Addressing ____ Op-Code No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Immediate CMP # Oper C9 11001001 311 2
Zero Page CMP Oper C5 11000101 305
Zero Page,X CMP Oper,X D5 11010101 325
Absolute CMP Oper CD 11001101 315
Absolute,X CMP Oper,X DD 11011101 335
Absolute,Y CMP Oper,Y D9 11011001 331
(Indirect,X) CMP(Oper,X) Cl 11000001 301
(Indirect, Y CMP (Oper),Y D1 11010001 321

*Add 1 if page boundary is crossed.

2
3
4
4
4*
4*

6
5 NNWOWWANN

The compare (CMP) instruction compares data fetched from
memory with data stored in the accumulator without altering the data
in the accumulator. CMP can use all eight Group-I addressing modes,
and three of the PSR flags: C, N, and Z. The use of the flags is different

for this instruction than for others, and operates as follows:

1. C-flag. Set HIGH (1) when the value in memory is less than
the value in the accumulator, and is reset LOW (0) when the
value in memory is greater than the value in the accumulator.

2586 6502 DETAILED INSTRUCTION SET

2. N-flag is set HIGH (1) or reset LOW (0) according to the result
of bit 7.

3. Z-flag is set HIGH (1) on equal comparison, reset for unequal
comparison.

CPX

Compare Memory with Index X-Register

X—M

Status Register Flags Affected: N, Z, C

Addressing _____ Op-Code No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Immediate CPX #oper EKO 11100000 340 2 2
Zero Page CPX oper E4 11100100 344 2 3

Absolute CPX oper EC 11101100 354 3 4

The CPX instruction compares the contents of the X-register with
the contents of a designated memory location. Immediate, zero page,
and Absolute addressing modes are used. The N, Z, and C-flags are

affected. The contents of the X-register are not affected by CPX. The
comparison is performed by subtracting the contents of the addressed
memory location from the contents of the X-register, but does not store
the result in either the X-register or the memory location. The PSR
flags are affected as follows:

1. The C-flag will be set (C = 1) if the absolute value of the
X-register is equal to or greater than the value fetched from
memory (X M). The C-flag is reset (C = 0) if X is less than the
value from memory.

2. If bit 7 of the comparison result is 1, then the N-flag is set
(N = 1), but if bit 7 is 0, then the N-flag is reset (N = 0).

3. The Z-flag is set (Z = 0) if the value memory is equal to the
value from the X-register, otherwise it is reset (Z = 0).

The CPX instruction can be used for setting of the PSR flags,
among other uses.

DEC 257

CPY

Compare Memory with Index Y-Register

Y—M

Status Register Flags Affected: N, Z, C

Addressing _— Op-Code No, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Immediate CPY #oper CO 11000000 300 2 2
Zero Page CPY oper C4 11000100 304 2 3
Absolute CPY oper CC 11001100 314 4 4

The CPY instruction is exactly like the CPX instruction, except
that. the Y-register is used instead of the X-register. For a detailed
discussion of this instruction, read the text for the CPX instruction,
substituting “Y” for “X.”

DEC

Decrement Memory by One

M-1-7-M

Status Register Flags Affected: N, Z

Addressing ______ Op-Code______ No, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Zero Page DEC oper C6 11000110 306 2 5
Zero Page,X DEC oper,X D6 11010110 326 2 6
Absolute DEC oper CE 11001110 316 3 6
Absolute,X DEC oper,X DE 11011110 336 3 0

The DEC instruction causes the data in the addressed memory
location to be decremented, i.e., decreased by one; the DEC instruction

does not affect the accumulator data. The N and Z-flags of the processor
status register are affected as follows:

1. The N-flag will be 1 when bit 7 of the result is 1, and 0 when
the result is 0.

2. The Z-flag will be 1 when the result is zero (00000000), and
0 when the result is anything other than 00000000.

2688 6502 DETAILED INSTRUCTION SET

DEX

Decrement Index X-Register by One

X-1-7-X

Status Register Flags Affected: N, Z

Addressing ____— Op-Code Noo. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied DEX CA 11001010 312 1 2

The DEX instruction causes the data in the index X-register to
be decremented by 1; the DEX instruction does not affect the contents
of the accumulator or any memory location. The N and Z-flags of the
processor status register are affected as follows:

1. The N-flag will be 1 when bit 7 of the result in the X-register
is 1, and 0 when the result bit 7 is 0.

2. The Z-flag will be 1 when the result in the X-register is zero
(00000000) and 0 when the result in the X-register is anything
other than 00000000.

DEY

Decrement Index Y-Register by One

y-1-Y

Status Register Flags Affected: N, Z

Addressing ____ Op-Code | No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied DEY 88 10001000 210 1 2

The DEY instruction is identical in all respects to the DEX
instruction, except that the index Y-register is used instead of index
X-register.

EOR 259

EOR

Exclusive-OR (Logical Operation) Memory with
Accumulator

AVYVM-A

Status Register Flags Affected: N, Z

Addressing _____Op-Code_____— No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Immediate EOR #oper 49 01001001 i111 2 2
Zero Page EOR oper 45 01000101 105 2 3
Zero Page,X EOR oper,X 55 01010101 125 2 4
Absolute EOR oper 4D 01001101 115 3 4
Absolute,X EOR oper,X 5D 01011101 135 3 4*

Absolute, Y EOR oper,Y 59 01011001 131 3 4*
(Indirect,X) EOR (oper,X) 41 01000001 101 2 6
(Indirect), Y | EOR(oper),Y 51 01010001 121 2 5*

*Add 1 if page boundary is crossed.

The EOR instruction causes an exclusive-OR logical operation
between the contents of the accumulator and the contents of the
addressed memory location. The operation takes place on a bit-by-bit
basis, so the result of one operation will not affect the operation on
the next bit. The rules for EOR are as follows:

0 XOR 0 = 0

0XOR1 = 1

1 XORO = 1

1 XOR 1 = 0

Note that the result bit is true (1) if either bit is true, but not if both
bits are true. The EOR instruction affects the N and Z-flags of the
processor status register as follows:

1. The N-flag will be 1 if bit 7 of the result is 1, and 0 if bit 7 of
the result is 0.

2. The Z-flag will be 1 if the result of the operation stored in the
accumulator is 00000000, and 1 if the result stored in the

accumulator is anything other than 00000000.

260 6502 DETAILED INSTRUCTION SET

One application for the EOR instruction is in complementing the
accumulator, i.e., making all the 1s into Os and all the Os into ls.

INC

Increment Memory by One

M+1-M

Status Register Flags Affected: N, Z

Addressing ______Op-Code______ Noo, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Zero Page INC oper F6 11100110 346 2 5

Zero Page,X INC oper,X F6 11110110 366 2 6

Absolute INC oper EE 11101110 356 3 6
Absolute,X INC oper,X FE 11111110 9376 3 7

The INC instruction causes the data in the addressed memory
location to be incremented (increased) by one; the data in the accu-
mulator is not affected by INC. The N and Z-flags of the processor
status register are affected as follows:

1. The N-flag will be 1 if bit 7 of the result is 1, and 0 if bit 7 of
the result is 0.

2. The Z-flag will be 1 if the result is 00000000, and 0 if the result
is anything other than 00000000.

INX

Increment Index X-Register by One

X+17>X

Status Register Flags Affected: N, Z

Addressing _ Op-Code No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied INX E8 11101000 350 1 2

The INX instruction causes the data stored in the index X-register
to be incremented (increased) by one; the accumulator data is not
affected by INX. The N and Z-flags of the processor status register are
affected as follows:

JMP 261

1. The N-flag will be 1 if bit 7 of the result stored in the X-register
is 1, and 0 if bit 7 of the result is 0.

2. The Z-flag will be 1 if the result stored in the X-register is
00000000, and 0 if the result in the X-register is anything other
than 00000000.

INY

Increment Index Y-Register by One

Y+1-yY

Status Register Flags Affected: N, Z

Addressing ____Op-Code______—s Noo. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied INY C8 11001000 310 1 2

JMP

Jump to a New Location in Memory

(PC + 1) > PCL
(PC + 2) > PCH

Status Register Flags Affected: None

Addressing ___— Op-Code Noo, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Absolute JMP oper 4C. 01001100 114 3 3
Indirect JMP (oper) 6C 01101100 154 3 3

The JMP (jump) instruction causes an immediate, unconditional

transfer of program control to another memory location. Both Absolute
and indirect addressing modes can be used. The next instruction to be
executed after the JMP instruction will not be the next instruction in
sequence (except for the trivial case where someone gratuitously added
a “JMP to next location” instruction), but rather the instruction at the
memory location specified by the operand of the instruction. Consider
the following example:

262 6502 DETAILED INSTRUCTION SET

Step Location Instruction Comment

1 0200H JMP nnnn JUMP to location A008
2 0201H 08H (nn)
3 0202H AOH (nn)
4 0203H NOP Next instruction in sequence

In step 1, the 6502 encounters a 3-byte JMP AOO8H instruction
(step 2 is the low-order destination byte, while step 3 is the high-order
destination byte—the two together make up the 16-bit address). The
next instruction to be executed will not be the NOP (no operation)
found at location 0203H in step 4, but rather it will be the instruction
found at location A008H.

JSR

Jump to New Location for Subroutine (With Return
Address)

PC + 24

(PC + 1) > PCL

(PC + 2) ~ PCH

Status Register Flags Affected: None

Addressing _—Op-Code__ No. No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Absolute JSR oper 20 00100000 40 3 6

The JSR is a jump instruction similar to the JMP instruction, with
the exception that JSR will store the 2 bytes of the last instruction
address to be executed on the external stack (usually in page one of
memory), and will then decrement the Stack Pointer (SP) register by
2. When the program returns from the subroutine (which it does on
encountering an RTS instruction), the program counter will be loaded
with the address of the next instruction to be executed after the sub-
routine is completed (i.e., the next instruction in sequence after JSR).
On return from the subroutine, the following status exists:

PCL + 1 > PCL

PCH + 2 > PCH

LDA 263

The RTS (return from subroutine) must be the last instruction in
the subroutine, otherwise the program control will not return to the
main program.

LDA

Load Accumulator with Data Stored in Memory

M-A

Status Register Flags Affected: N, Z

Addressing ____—Op-Code___ Noo, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Immediate LDA #oper AQ 10101001 251 2 2
Zero Page LDA oper A5 10100101 245 2 3
Zero Page,X LDA oper,X B5 10110101 265 2 4
Absolute LDA oper AD 10101101 255 3 4
Absolute,X LDA oper,X BD 10111101 275 3 4*

Absolute,Y |= LDA oper,Y B9 10111001 271 3 4*
(Indirect,X) LDA (oper,X) Al 10100001 241 2 6

(Indirect),Y LDA (oper),Y Bl 10110001 261 2 5*

*Add 1 if page boundary is crossed.

The LDA instruction serves to load the accumulator with data
taken from defined memory locations. This transfer of data is nonde-
structive, i.e., the data will appear both in the accumulator and in the
original memory location when the instruction is executed. Thus, LDA
is a copying operation rather than a transfer in the strict sense of the
word. The LDA instruction uses all 8 addressing modes available to
Group-I instructions; the operation of LDA with respect to these modes
is described in Chapter 7. Only the N and Z-flags of the processor
status register are affected by the LDA instruction:

1. The N-flag will be 1 if the data transferred into the accumulator
has bit 7 = 1, and 0 if bit 7 = 0.

2. The Z-flag will be 1 if the data transferred into the accumulator
is 00000000, and 1 if the data transferred into the accumulator
is any number other than 00000000.

264 #6502 DETAILED INSTRUCTION SET

LDX

Load Index X-Register with Data Stored in Memory

M- X

Status Register Flags Affected: N, Z

Addressing _____ Op-Code No, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Immediate LDX #oper AO _ 10100000 240 2 2
Zero Page LDX oper A4 10100100 244 2 3

Zero Page,X LDX oper,X B4 10110100 264 2 4

Absolute LDX oper AC 10101100 254 3 4*

Absolute,X LDX oper,X BC 10111100 274 3 4*

*Add 1 if page boundary is crossed.

The LDX< instruction loads the index X-register with data fetched
from a defined memory location. The transfer of data is nondestructive,
i.e., the data will appear in both the accumulator of the 6502 and in
the original memory location after the execution of LDX. Thus, LDX
is a copying operation rather than a transfer in the strict sense of the
word. The LDX instruction uses only 5 of the 8 addressing modes
available on 6502. The N and Z-flags of the processor status register
are affected as follows:

1. The N-flag will be 1 if the data transferred into the X-register
has bit 7 = 1, and 0 if bit 7 = 0.

2. The Z-flag will be 1 if the data transferred into the X-register
is 00000000, and 0 if the data transferred is anything other
than 00000000.

LDY

Load Index Y-Register with Data Stored in Memory

M- Y

Status Register Flags Affected: N, Z

Addressing ______—Op-Code_____—s No, No.

_Mode__ = = Mnemonic Hex Binary Octal Bytes Cycles
Immediate LDY #oper AO 10100000 240 2 2
Zero Page LDY oper A4 10100100 244 2 3
Zero Page,X LDY oper,X B4 10110100 264 2 4
Absolute LDY oper AC 10101100 254 3 4
Absolute,X = LDY oper,X BC 10111100 274 3 4*

*Add 1 if page boundary is crossed.

The LDY instruction operates in exactly the same manner as the
LDX< instruction, except that the Y-register is the destination rather
than the X-register (see the discussion for LDX).

LSR

Shift Right One Bit (Memory or Accumulator)

0- b7 > b6 - b5 > b4 > b3 > 52> b1 > b0 C

Status Register Flags Affected: N, Z, C (Note: N goes to 0)

Addressing ______Op-Code____— No, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Accumulator LSR A 4A 01001010 112 1 2

Zero Page LSR oper 46 01000110 106 2 5
Zero Page,X LSR oper,X 56 01010110 126 2 6
Absolute LSR oper 4E 01001110 116 3 6

Absolute,X oper,X SE 01011110 136 3 7

The LSR, or logical shift right instruction, causes a 0 to be shifted
into bit 7 (also the N-flag of the processor status register) of the ac-
cumulator or memory location addressed; the contents of each bit is

moved one position to the right, and bit 0 (the LSB) is moved to the
carry flag. The LSR instruction uses the following addressing modes:
accumulator, zero page, zero page X, absolute, and absolute X. See

Chapter 7 for a discussion of the LSR (and the companion ASL instruc-
tion) and possible applications.

NOP

No Operation

Status Register Flags Affected: None

266 6502 DETAILED INSTRUCTION SET

Addressing ______— Op-Code Noo, No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied NOP EA 11101010 352 l 2

The NOP instruction carries out no operation in the 6502 and
affects no processor status register flags. The purpose of the NOP
instruction is to insert a 2-cycle “wait” into a program or to take up a
space.

ORA

Logical-OR Operation Between Accumulator and Memory
Location

AVM-A

Status Register Flags Affected: N, Z

Addressing _____Op-Code___— No. No.

_Mode__ = = Mnemonic Hex Binary Octal Bytes Cycles
Immediate ORA #oper 09 00001001 O11 2 2
Zero Page ORA oper 05 00000101 005 2 3
Zero Page,X ORA oper,X 15 00010101 025 2 4
Absolute ORA oper OD 00001101 015 3 4
Absolute,X ORAoper,X 1D 00011101 035 3 4
Absolute, Y ORA oper,Y 19 00011001 031 3 4
(Indirect,X) ORA (oper,X) 01 00000001 001 2 6
(Indirect),Y ORA (oper)Y 11 00010001 021 2 5*

*Add 1 if page boundary is crossed.

The ORA instruction performs a logical-OR operation on a bit-
by-bit basis between the accumulator and the addressed memory lo-
cation. The operation affects the contents of the accumulator. The
rules for a logical-OR operation are as follows:

0OR0=0

0OORI1=1

1OR0=1

1OR1=1

As you can see from this, the result of a logical-OR operation is
true (1) any time either of the bits being compared is 1. Since the ORA

PHP 267

instruction operates on a bit-for-bit basis, no operation between bits
of any order will affect the operation of the ORA instruction on any
other set of bits. The ORA instruction affects the N and Z-flags of the
processor status register as follows:

1. The N-flag will be 1 if bit 7 of the result in the accumulator
is 1, and 0 if bit 7 is 0.

2. The Z-flag will be 1 if the result in the accumulator is 00000000,
and 0 if the result is anything other than 00000000.

PHA

Push Accumulator Contents Onto External Stack

A}

Addressing ______Op-Code_____s No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied PHA 48 01001000 110 1 3

The PHA instruction serves to push the contents of the accu-
mulator out onto the external stack in memory. The PHA instruction
doesn’t affect any processor status register flags, but will cause the
Stack Point (SP) to decrement by one.

PHP

Push Processor Status Register Onto External Stack

Py

Status Register Flags Affected: None

Addressing ______ Op-Code___ Noo. No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied PHP 08 00001000 010 1 3

The PHP instruction is exactly like PHA, except that the contents
of the processor status register are transferred to the external stack,
rather than the accumulator contents. No PSR flags are affected, but
the instruction does cause the SP to decrement by 1.

268 6502 DETAILED INSTRUCTION SET

PLA

Pull Accumulator From Stack

At

Status Register Flags Affected: N, Z

Addressing ____ Op-Code No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied PLA 68 01101000 150 1] 4

The PLA instruction is used to pull data from the external stack
back to the accumulator. This instruction is thus the opposite of the
PHA instruction. The N and Z-flags of the processor status register are
affected by this operation as follows:

1. The N-flag will be 1 if the returned data has bit 7 = 1, and 0
if bit 7 is 0.

2. The Z-flag will be 1 if the returned data is 00000000, and 0 if
the returned data is anything other than 00000000.

PLP

Pull Processor Status From External Stack

Pt

Status Flags Affected: All

Addressing ___ Op-Code Noo, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied PLP 28 00101000 050 1] 4

The PLP instruction works exactly like the PLA instruction, ex-
cept that the data pulled from the stack are stored in the processor
status register instead of the accumulator. All of the PSR flags are
affected, and become whatever the corresponding bits were on the
external stack. One use of this instruction is to restore the PSR after
some alternative operation, such as a subroutine.

ROR 269

ROL

Rotate Data One Bit to the Left (Memory Location or
Accumulator)

b7 — b6 - bd — b4- 3 -— bD2- bI © bDO- Ce
(M or A)

Status Register Flags Affected: N, Z, C

Addressing ___—Op-Code__s No, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Accumulator ROL A 2A 00101010 052 1

Zero Page ROL oper 26 00100110 046 2 5

Zero Page,X ROL oper,X 36 00110110 066 2 6

Absolute ROL oper 2E 00101110 056 3 6

Absolute,X ROL oper,X 3E 00111110 076 3 7

The ROL instruction is like the ASL instruction, except that the
shifted-out data recirculates, i.e., the bit 7 datum is stored in the C-

flag, while the C-flag data is stored in BO. Either the accumulator or
a byte from memory can be handled with ROL. Each bit of the affected
byte is shifted 1 place to the left, as shown in the diagram. The N, Z,
and C-flags of the processor status register are affected as follows:

1. The N-flag will be 1 if bit 7 of the result is 1, and 0 if bit 7 is

0.

2. The Z-flag will be 1 if the result is 00000000, and 0 if the result
is anything other than 00000000.

3. The C-flag takes on the value (1 or 0) that was in bit 7 before
the shift occurred.

ROR

Rotate One Bit to the Right (Memory or Accumulator)

> b7 - b6 - b5 > b4 > b3 > bD2 > bDI - bO- C

(M or A)

Status Register Flags Affected: N, Z, C

270 6502 DETAILED INSTRUCTION SET

Addressing ____—Op-Code_ Noo. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Accumulator ROR A 6A 01101010 152 1 2
Zero Page ROR oper 66 01100110 146 2 i)
Zero Page,X ROR oper,X 76 01110110 166 2 6
Absolute ROR oper 6E 01101110 156 3 6
Absolute,X ROR oper,X 7E 01111110 176 3 7

The ROR instruction is similar to the LSR instruction, except that
the shifted-out data is recirculated back into the register. Bit 0 data
are right-shifted into the C-flag, while the previous contents of the C-
flag are shifted into bit 7. All other bits are shifted 1 place to the right,
as shown in the diagram above. The C, Z, and N-flags of the processor
status register are affected in the same manner as for the ROL
instruction.

RTI

Return From Interrupt

Pt

PC t

Status Register Flags Affected: All

Addressing _____ Op-Code Noo, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied RTI 40 01000000 100] 6

The RTI instruction allows the 6502 microprocessor to return
from serving an interrupt. When the 6502 encounters the RTI instruc-
tion, it will restore the previous program by pulling the previous
processor status register (P) and program counter contents from mem-
ory. Thus, the processor status register will return to its condition when
the interrupt was encountered, as will the PC. Since no other registers
are affected, the programmer may wish to save the contents of other
registers (if they are of importance) with other steps in the program.
RTI must be the last instruction in the interrupt service subroutine.

SBC 271

RTS

Return From Subroutine

PC t

PC +17 PC

Status Register Flags Affected: None

Addressing ____—Op-Code______ No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied RTS 60 01100000 140 1 6

The RTS instruction performs for subroutines (see instructions for
JSR) what RTI does for interrupt service routines. The purpose of the
RTS instruction is to restore the 6502 processor to the program being
executed when the subroutine instruction JSR was encountered. The
program counter is returned from the external stack and then incre-
mented by 1, the new value being stored in the PC of the 6502 to
point to the next instruction in sequence after the JSR was encountered.
The RTS instruction must be the last instruction in a subroutine pro-
gram, otherwise, the processor will not know how to return to the
main program.

SBC

Subtract Memory From Accumulator with Borrow

A-—-M-—C-A _§ (Note: “C” denotes a borrow operation)

Status Register Flags Affected: N, Z, Z, V

Addressing _____Op-Code__— Noo. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Immediate SBC E9 11101001 351 2 2
Zero Page SBC E5 11100101 345 2 3

Zero Page,X SBC F5 11110101 365 2 4

Absolute SBC ED 11101101 355 3 4

Absolute,X SBC FD 11111101 375 3 4*

Absolute,Y SBC F9 11111001 371 3 4*

(Indirect,X) SBC El 11100001 341 2 6

(Indirect), Y SBC Fl 11110001 361 2 5*

*Add 1 if page boundary is crossed.

272 $6502 DETAILED INSTRUCTION SET

The SBC (subtraction with carry) instruction is actually a sub-
traction with BORROW, if we use mathematically correct terminology.
The symbolic operation for SBC is

A-M-C-A

This notation says that the value fetched from memory (M) and
the complement of the carry flag (C) is subtracted from the contents
of the accumulator, and the result is stored in the accumulator. Note

that the carry flag will be set (HIGH) if a result is equal to or greater
than zero, and reset (LOW) if the results are less than zero, i.e., neg-
ative.

The SBC instruction has available all 8 Group-I addressing modes,
as was also true of ADC.

The SBC instruction affects the following PSR flags: negative (N),
zero (Z), Carry (C), and overflow (V). The N-flag indicates a negative
result and will be HIGH; the Z-flag is HIGH if the result of the SBC
instruction is zero and LOW otherwise; the overflow flag (V) is HIGH
when the result exceeds the values 7FH (+127,,.) and 80H with C =
1 (i.e., — 128,,).

The 6502 manufacturer recommends for single-precision (8-bit)
subtracts that the programmer ensure that the carry flag is set prior
to the SBC operation to be sure that true two’s complement arithmetic
takes place. We can set the carry flag by executing the SEC (set carry
flag) instruction.

The rules for binary subtraction are:

0-0=0

0-1=0 Carry — 1

1-0O=1

1-—1=0

The SBC instruction complements the ADC instruction and is
used in arithmetic operations. The additional instruction used in
arithmetic operations is the set decimal mode instruction that permits
binary coded decimal (BCD) arithmetic.

SEC

Set Carry Flag

1-C

Status Register Flags Affected: C goes to 1

Addressing __— Op-Code Noo, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied SEC 38 00111000 070 1 2

Sets processor status register C-flag to 1.

SED

Set Decimal Mode

1-D

Status Flags Affected: D goes to 1

Addressing _—Op-Code__ No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied SED F8 11111000 370 1 2

Sets processor status register D-flag to 1, thereby permitting dec-
imal operations (see Chapter 7).

SEI

Set Interrupt Disable Status Bit

1 - I

Addressing _____— Op-Code No. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied SEI 78 01111000 170] 2

Sets interrupt status bit (I-flag) of the processor status register to
1, thereby disabling the interrupt capability of the 6502.

STA

Store Accumulator Contents in Memory

A7M

274 1.6502 DETAILED INSTRUCTION SET

Status Register Flags Affected: None

Addressing _____ Op-Code Noo. No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Zero Page STA oper 85 10000101 205
Zero Page,X STA oper,X 95 10010101 225
Absolute STA oper 8D 10001101 215
Absolute,X STA oper,X 9D 10011101 235
Absolute,Y STA oper,Y 99 10011001 231
(Indirect,X) STA (oper,X) 81 10000001 201
(Indirect) Y STA(oper)Y 91 10010001 221 NNWGQaN bd a ® ota & hh G

The STA instruction stores the contents of the accumulator in a
location in memory. Seven modes of addressing are available, as de-
tailed here. The transfer is nondestructive, so the same data will appear
in both the accumulator and in the selected memory location imme-
diately after the execution of an STA instruction.

STX

Store Index X-Register in Memory

X—-M

Status Register Flags Affected: None

Addressing _____ Op-Code____ No, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Zero Page STX oper 86 10000110 206 2 3
Zero Page,Y STX oper,Y 96 10010110 226 2 4
Absolute STX oper 8E 10001110 216 3 4

The STX instruction stores the contents of the index X-register
in a location in memory. Three different addressing modes are allowed:
zero page, zero page-Y, and Absolute. The transfer is nondestructive,
so the same data will appear in both the X-register and the selected
memory location following the transfer.

STY

Store Index Y-Register in Memory

Y>-M

TYA 276

Addressing ______Op-Code__— No, No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Zero Page STY oper 84 10000100 204 2 3
Zero Page,X STY oper,X 94 10010100 224 2 4

Absolute STY oper 8C 10001100 214 3 4

The STY instruction stores the contents of the index Y-register
in a location in memory. Three different addressing modes are allowed:
zero page, zero page-X, and Absolute. The transfer is nondestructive,
so the same data will appear in both the Y-register and in the selected
memory location immediately after execution of the STY instruction.

TAX

Transfer Contents of Accumulator to Index X-Register

A-> xX

Status Register Flags Affected: N, Z

Addressing _____ Op-Code No". No.
Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied TAX AA 10101010 252 1 2

The TAX instruction transfers the data in the accumulator into
the index X-register. This transfer is nondestructive, so the same data
will appear in both the accumulator and the X-register following ex-
ecution of this instruction. The N and Z-flags of the processor status
register are affected as follows:

1. The N-flag will be 1 if bit 7 of the data transferred into the
X-register is 1, and 0 if bit 7 of the transferred data is 0.

2. The Z-flag will be 1 if the data transferred to the X-register
is 00000000, and 0 if the transferred data is anything other
than 00000000.

TYA

Transfer Contents of Index Y-Register to the Accumulator

YA

276 6502 DETAILED INSTRUCTION SET

Status Register Flags Affected: N, Z

Addressing _____Op-Code_____ No, No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied TYA 98 10011000 230 1 2

This instruction is the same as TAX, except that data is transferred
from the index Y-register to the accumulator. The treatment of the
flags is the same.

TSX

Transfer Stack Pointer to Index X-Register

S- xX

Status Register Flags Affected: N, Z

Addressing _______Op-Code____ Noo, No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied TSX BA 10111010 272 1 2

Transfers contents of the stack pointer (SP) to the X-register. The
N and Z-flags are affected in the same manner as for TAX.

TXA

Transfer Index X-Register to Accumulator

X-A

Status Register Flags Affected: N, Z

Addressing _____ Op-Code Noo. No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied TXA 8A 10001010 212 1 2

The TXA instruction transfers the contents of the X-register into
the accumulator. The TXA instruction is opposite of the TAX instruc-
tion, and affects the N and Z-flags in exactly the same manner.

TXS 277

TXS

Transfer Index X-Register to Stack Pointer

X > SP

Status Register Flags Affected: None

Addressing _____ Op-Code No. No.

Mode Mnemonic Hex Binary Octal Bytes Cycles

Implied TXS 9A 10011010 232 1 2

This instruction transfers the contents of the index X-register into
the accumulator.

Appendix A

APPENDICES

APPENDIX A

A

e8ed
9259029

v
o
n
e
s
e
d
o

Buiysussg
4!

jFUONIPPe
eul

ppYy
‘
U
e
y
R

81
YoUeIq

4)
S
A
D

s
p
u
n
e
a

Auepunog
efed

ssosse
Buixeput

3!
819A9

|

eaneoy
ponycusy

A ‘einjosay
x ‘BInjosay

einjosqy

(x "2208pul)

A ‘efeg 0182

X ‘e8eg 01072

o6eg 0207

evepewuy;

soreNwNsYy

FE sf z *

g

deuIpul eynjosay
A ‘(32021puy)
(x¢ ‘ro0a9pup)

s0VEjNUINIEY

(soj9A2
O
O
}

Ul)
S
A
W
I
L

N
O
I
L
N
D
S
X
3

G3LV1ISYH
G
N
V

S
J
G
O
W

O
N
I
S
S
S
Y
G
C
V

N
O
I
L
O
N
Y
I
S
N
I

279

Appendix B

APPENDIX B_ 6502 Instructions Sorted by Op-Code (Hex-
adecimal)

09 ~ BRK

@1 - ORA - (Indirect,X)

$2 - Future Expansion

@3 - Future Expansion

$4 - Future Expansion

$5 - ORA - Zero Page

@6 - ASL - Zero Page

@7 - Future Expansion

8 PHP

#9 - ORA - Immediate

QA - ASL - Accumulator

@B - Future Expansion

@C - Future Expansion

$D - ORA - Absolute

§E - ASL - Absolute

@F - Future Expansion

1p - BPL

11 - ORA - (Indirect) ,Y

12 Future Expansion

13 - Future Expansion

14

15

16

17

18

19

1A

1B

1c

1D

1E

1F

Future Expansion

ORA - Zero Page,X

ASL - Zero Page,X

Future Expansion

CLC

ORA - Absolute,Y

Future Expansion

Future Expansion

Future Expansion

ORA - Absolute,X

ASL - Absolute,X

Future Expansion

JSR

AND - (Indirect ,X)

Future Expansion

Future Expansion

BIT - Zero Page

AND - Zero Page

ROL - Zero Page

Future Expansion

PLP

AND - Immediate

ROL - Accumulator

Future Expansion

BIT - Absolute

AND - Absolute

ROL - Absolute

Future Expansion

BML

AND - (Indirect) ,Y

Future Expansion

Future Expansion

Future Expansion

AND - Zero Page,X

ROL - Zero Page,X

Future Expansion

SEC

AND - Absolute,Y

Future Expansion

Future Expansion

Future Expansion

AND - Absolute,X

ROL - Absolute,X

Future Expansion

281

282 APPENDIX B

APPENDIX B 6502 Instructions Sorted by Op-Code (Hex-
adecimal) Continued

49 - RTI 69 - RTS

41 - EOR - (Indirect ,X) 61 - ADC - (Indirect ,X)

42 ~ Future Expansion 62 - Future Expansion

43 = Future Expansion 63 - Future Expansion

44 - Future Expansion 64 - Future Expansion

45 - EOR - Zero Page 65 - ADC - Zero Page

46 - LSR - Zero Page 66 - ROR - Zero Page

47 - Future Expansion 67 - Future Expansion

48 - PHA 68 - PLA

49 - EOR - Immediate 69 = ADC - Inmediate

4A - LSR - Accumulator 6A - ROR - Accumulator

4B - Future Expansion 6B - Future Expansion

4C - JMP - Absolute 6C - JMP ~ Indirect

4D - EOR - Absolute 6D - ADC - Absolute

4E - LSR - Absolute 6E - ROR - Absolute

4F - Future Expansion 6F - Future Expaneton

S@ - BVC 79 - BVS

51 ~ EOR ~- (Indirect) ,Y 71 = ADC - (Indirect) ,Y

52 - Future Expansion 72 - Future Expansion

53 - Future Expansion 73 - Future Expansion

54 - Future Expansion 74 - Future Expansion

55 - EOR - Zero Page,X 75 = ADC ~ Zero Page,X

56 - LSR - Zero Page,X 76 - ROR - Zero Page,X

57 - Future Expansion 77 = Future Expansion

58 - CLI 78 - SEI

59 - EOR - Absolute,Y 79 - ADC - Absolute,Y

SA - Future Expansion 7A - Future Expansion

5B - Future Expansion 7B - Future Expansion

5C - Future Expansion 7C - Future Expansion

5D - EOR - Absolute,X 7D - ADC - Absolute,X

5E ~ LSR - Absolute,X 7E - ROR - Absolute,X

SF - Future Expansion 7F - Future Expansion

Appendix B 283

APPENDIX B_ 6502 Instructions Sorted by Op-Code (Hex-
adecimal) Continued

86 - Future Expansion

81 - STA ~ (Indirect ,X)

82 - Future Expansion

83 - Future Expansion

84 - STY - Zero Page

85 - STA - Zero Page

86 - STX - Zero Page

87 - Future Expansion

88 - DEY

89 - Future Expansion

8A - TXA

8B - Future Expansion

8C - STY - Absolute

8D ~ STA - Absolute

8E - STX - Absolute

8F - Future Expansion

99 - BCC

91 - STA - (Indirect) ,Y

92 - Future Expansion

93 - Future Expansion

94 - STY - Zero Page,X

95 - STA - Zero Page,X

96 - STX - Zero Page,Y

97 - Future Expansion

98 - TYA

99 - STA - Absolute,Y

9A - TXS

9B - Future Expansion

9C - Future Expansion

9D - STA - Absolute,X

9E - Future Expansion

9F - Future Expansion

Ag

Al

A2

A3

AG

AS

A6

A7

A8

SRReEZEERSE

LDY - Immediate

LDA - (Indirect ,X)

LDX - Immediate

Future Expansion

LDY - Zero Page

LDA - Zero Page

LDX - Zero Page

Future Expansion

TAY

LDA - Immediate

TAX

Future Expansion

LDY - Absolute

LDA - Absolute

LDX - Absolute

Future Expansion

BCS

LDA - (Indirect) ,Y

Future Expansion

Future Expansion

LDY - Zero Page ,X

LDA - Zero Page ,X

LDX ~ Zero Page,Y

Future Expansion

CLV

LDA - Absolute,Y

TSX

Future Expansion

LDY - Absolute,X

LDA - Absolute ,X

LDX - Absolute,Y

Future Expansion

284 APPENDIX B

APPENDIX B_ 6502 Instructions Sorted by Op-Code (Hex-
adecimal) Continued

ce

cl

C2

c3

C4

cs

C6

c7

c8

c9

CA

cB

cc

cD

CE

CF

Dg

D1

D2

D3

D4

DS

D6

D7

D8

CPY - Immediate

CMP - (Indirect ,X)

Future Expansion

Future Expansion

CPY - Zero Page

CMP - Zero Page

DEC - Zero Page

Future Expansion

INY

CMP - Immediate

DEX

Future Expansion

CPY - Absolute

CMP - Absolute

DEC - Absolute

Future Expansion

BNE

CMP - (Indirect) ,Y

Future Expansion

Future Expansion

Future Expansion

CMP - Zero Page,X

DEC - Zero Page,X

Future Expansion

CLD

CMP ~ Absolute,Y

Future Expansion

Future Expansion

Future Expansion

CMP ~ Absolute,X

DEC - Absolute,X

Future Expansion

CPX - Immediate

SBC - (Indirect,X)

Future Expansion

Future Expansion

CPX - Zero Page

SBC ~- Zero Page

INC - Zero Page

Future Expansion

INX

SBC - Immediate

NOP

Future Expansion

CPX - Absolute

SBC - Absolute

INC - Absolute

Future Expansion

BEQ

SBC - (Indirect) ,Y

Future Expansion

Future Expansion

Future Expansion

SBC ~ Zero Page,X

INC - Zero Page ,X

Future Expansion

SED

SBC - Absolute,Y

Future Expansion

Future Expansion

Future Expansion

SBC - Absolute,X

INC - Absolute,X

Future Expansion

Index

A

Absolute mode 49

Absolute indexed mode 55

Accumulator 14, 21, 83

Accumulator mode 45

Address block decoding 131
Address bus 35

Address decoding 109
Addressing modes 45
ADD-with-carry 78

AIM-65 241
Algorithm 17
ALU (see Arithmetic logic unit)
Apple II 1, 10
Apple II bus 237
Apple III 4

Arithmetic instructions 78

Arithmetic logic unit 14, 21

Arithmetic shift left 84

ASCII 58, 164

B

BASIC 10

Bidirectional bus drivers 158

Bit test 92

Branch 45
Branch instructions 24
Branch on carry clear 87
Branch on carry set 91
Branch on result equal zero 92
Break command flag 64
B1-B8 Receiver 194

B1-B8 Transmitter 194

Cc

Cache memory 122

Carry flag 66
Central processing unit 11, 14
CMOS 146, 149
CPU 11, 13, 14, 42
Compare instructions 83
Complementary Metal Oxide Semi-

conductor 146
Control logic section 14
Control logic 21
Control Register Load (CRL) 195
Control signals 35

Controlling external circuits 213
CRT video terminals 185
Current loop 67
Cycles 16

Index 285

DAC 222
Data bus 35
Data Bus Enable (DBE) 37
Data direction registers 105
Data write 42
Decimal mode flag 64
Data Received (DR) 194

Data Receiver Reset (DRR) 195
Decrement X 50
Device selection 109
Displacement integer “e” 46
DRAM 125, 128
Dynamic memory 123, 125

E

Even Parity Enable (EPE) 195

F

Fan-in 142
Fan-out 142
Flags 63
Flip-flops 150
Framing error 194

H

Half-monostable 172

I

1/O 11, 19, 20, 139
I/O ports 155

IRQ 230
Immediate mode 47, 48

Implied mode 50
Index registers 23
Indirect absolute mode 52

Indirect indexed mode 60, 73

Indexed indirect mode 62

Input/output 11

Instructions 67, 68

Instruction decoder 21
Instruction register 14, 21

Instruction set 245
Interfacing 201
Interfacing I/O 139
Interfacing logic families 149
Interfacing keyboards 163
Interfacing memory 121
Interfacing peripherals 185
Interrupts 227
Interrupt control logic 22
Interrupt disable flag 65
Interrupts, multiple 234
Interrupt requests 38, 230

Interrupt vectors 228

K

Keyboards 169
KIM-1 7, 241
KIM-bus 241

L

LED displays 169
Logical instructions 81
Logical shift right 85
Logic families 140

M

MAD 11
MAD, operation of 16
Mainframe computers 2, 4
Memory 11, 121

Memory allocation restraints 26
Memory devices, types of 122
Memory hierarchy 122
Memory-mapping 14

Memory-mapped I/O 14, 20
Microcomputer 1, 2, 4, 6, 101, 121

Microcomputer interfacing 5
Microprocessor 2

Microprocessor fundamentals 10
Minicomputers 1, 3

Mythical Analytic Device 11
Multiplexed display 180

N

Negative flag 63
N-flag 63
NMI 229
Nonmaskable interrupts 229
Nonsynchronous 186
Numerical methods 17
Nybble 49

O

Ohio Scientific 9
Op-code fetch 39

Open-collector output 144
Operation codes 16
Overflow flags 64
Overrun Error (OE) 194

P

Page-FF 27
Page-01 27
Page-00 27
Parallel port 185
Parity Error (PE) 194

Parity Inhibit (PI) 195
Processor status register 22, 66
Program counter 14, 23

R

RAM 105, 122, 131
Random Access Memory (see RAM)
Read Only Memory 6, 105, 131

Read/Write cycle timing 42
Read/Write signals 116
READY 37
Receiver input 195

Receiver Register Disconnect (RRD)
195

Index 287

Relative mode 45, 48

RESET 39
Reset line 232

ROM (see also Read Only Memory) 6,
105, 122, 131

Rotate 45

RS-232 201
R/W 37, 42

S

SELECT 114
Serial digital data communications

185
Serial interfacing 205
Set Overflow (SO) 39
Shift 45
Single-board computer 3, 213
Single-chip computer 2
Speed-vs-power 145
Stack Pointer (SP) 23, 66
Static memory devices 123
Status flags 63
Status register 14, 16
Stop Bit Select (SBS) 195
Subtract-with-carry 78
Switches 169
SYNC 39
Synchronous 186
Synchronization 39
Superboard II 9
Synertek 7
SYM-1 7, 8, 241

T

Teletypewriter 56, 185
Timing section 22

Timing signals 35
Touch-Tone 3
Transistor-transistor-logic 140
Transmitter Hold Register Empty

(THRE) 194
Transmitter Hold Register Load

(THRL) 195

288 = Index

Transmitter Register Output (TRO) 7
195

Tri-state logic 148 Zero-flag 65
TIL 140, 149 Zero-page indexed mode 60

TTL nomenclature 145 Zero-page mode 48, 51
TTL subfamilies 145

U

UART 189 6
Universal Asynchronous Receiver/ 6502-based machines 7

Transmitter 189 6502 clock timing 39

6502 instruction set 67

WwW 6502 internal structure 21
6502 pinouts 29

Word Length Select (WLS) 195 6522 101
WRITE 42 6530 105

6502® User's Manual,
Here is the perfect reference guide and pro-
gramming tool for programmers of 6502-
based microcomputers. The 6502® User's
Manual contains all the information you
need for assembly and machine language
programming, and for performing hard-
ware interfacing chores. Joseph Carr, also
the author of the popular Z-80™ User's
Manual, includes comparisons of micro,
mini, and main frame computers, and looks
at applications categories for microcompu-
ters in general and for the more popular
6502-based machines in particular. This
valuable guide covers: Introduction to
Microprocessors and Microcomputers; 6502
Architecture; 6502 Pinouts; Timing and Con-
trol Signals; 6502 Addressing Modes; 6502
Status Flags; 6502 Instruction Set (General);
65xx-Family Support Chips; Device Selection
and Address Decoding; Interfacing Memory
to the 6502; Interfacing 1/0 Devices to the
6502; Interfacing Peripherals to the 6502;
Interrupts; Interfacing with the Apple //
BUS; Interfacing with the K/M-1, AIM-65
and SYM-1; 6502 Instruction Set (Detail).

6502@ Is a registered trademark of Rockwell International
Corporation.

Z-80™ is a trademark of Zilog Corporation.

Apple® |i Is a registered trademark of Apple Computer, Inc.

2 1 8 9 8 7 0 0 2 0

