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Introduction 

This book is intended to be both an instruction guide and a tool... but 
mostly a utilitarian tool for the programmer/interfacer of 6502-based 
microcomputers. It is intended that this book become dog-eared and 
worn from heavy use on a programmer’s table or a hacker’s work- 
bench . .. use it and abuse it, that’s why I wrote it. There is no attempt 
in this book to show you how much the author knows about com- 
puters—you don’t have time for trash like that. The information in 
this book was selected for its usefulness to a wide variety of readers. 
Like its earlier companion volume, The Z80 User’s Manual (Joseph J. 
Carr, Reston Publishing Company), the book is intended to collect into 
one place most, perhaps all, the information you need for assembly 
and machine language programming and for performing hardware 
interfacing chores. Of course, with all of the different kinds of 6502- 
based machines on the market today, it was impossible to provide 
details of all machines, so I stuck pretty much to generic details 
applicable to any 6502-based system. 

New features in this book that are not in my earlier Z80 book 
include a discussion of the different types of computers. My earlier 
assumption (which was then almost true!) was that the reader already 
possessed a basic knowledge of computers and at least BASIC pro- 
gramming. But today, the microcomputer biz has doubled, tripled, 
fourpled, and fippled in just a little while and there are now many 
thousands in the market who do not necessarily possess the semi- 
advanced background of the former readership. Back when the Altair 
S-100 was king, and the “Great Woz” was taking his first byte out of 
the Apple, anybody who wanted in on these microcomputer widgets 



was, by definition, a genuine hacker. The market was self-defining to 
an extent, because only those who would become hackers dared (that’s 
right, dared!) buy a computer kit (shudder . . . the complexity of it all). 
But today, with prices down and mass marketing technique up, every- 
body can own a computer and do more with it than we late-sixties 
engineering students could do with three-and-a-quarter tons of junk! 
Being a semi-irreverent sort, I aim to tear off the robes of the modern 
sacerdotal priests of “HIGH TECHNOLOGY” so that one and all can 
enjoy and benefit from the marvelous little microcomputer. Toward 
this end, Chapter One of this book contains several features. One is a 
discussion of microcomputers as opposed to minicomputers, “main- 
frame” computers, and so forth. Those descriptions will make you 
conversant with the language of the technology even if you are scared 
to death to “hit RETURN” on your new toy! We will also look at some 
applications categories for microcomputers, and some of the more 
popular 6502-based machines. 

One feature most asked for by readers of my other books is a 
discussion on the basic operation of any programmable digital com- 
puter. It seems that most authors (myself included) have, in the past, 
launched right into the discussion of chips and bytes and other such 
wonders without ever stopping to ask the poor confused beginner 
whether or not he or she actually knows how a programmable digital 
computer functions. What does go on inside that boxP Toward that 
end, I have created a hypothetical computer that is not based on any 
microprocessor chip (that way I can use it in several more books!), but 
it is based on the generic form of the computer. I call this device the 
Mythical Analytical Device, or MAD (which acronym, by the way, 
accurately describes the typical user after the umpteenth “bomb” and 
the apparent state of us elderly hackers—as seen by computer new- 
comers). 

The book also contains a lot of material on interfacing to the 6502 
microprocessor, and to computers that are based on the 6502. I have 
also covered some of this material in my book Elements of Microcom- 
puter Interfacing, also a Reston book. The material in that book is more 
general in nature, but goes a lot deeper than was possible within the 
length/cost constraints placed on the present work. 

The 1980 companion volume to this book is Z80 User’s Manual. 
That book was rejected by two other publishers before Reston took a 
chance and published the work. That risk was apparently well taken, 
however, because the Z80 User’s Manual turned out to be a popular 
best-seller and was even recommended in the Timex/Sinclair T/S- 
1000 User’s Manual. The success of that book startled me (and at least 
one of the editors who rejected it), and I could never figure out why 



anyone would buy it. Most of the material given in that book, and in 
large sections of this book, is available elsewhere for free. So why, I 
wondered, would anyone pay me good money for the information that 
is in so many other sources? One reader of mine (who is also a friend 
and fellow hacker) gave me the answer: that book (and this one) sums 
up, explains, interprets, and collects into one volume instead of ten 
what everyone needs to know about their machines. Rather than a 
stack of books, you only need two: this book and the operating manual 
for your computer! (well, you could buy a few more of my books if 
you insist!) 

Speaking of buying books. If you are just browsing right now, go 
ahead and buy the book (please don’t shoplift it... that’s naughty!), I 
need the money! 

Joe Carr 





Introduction to 
Microprocessors and 
Microcomputers 

One of the most frequent questions the microcomputer owner asks is, 
“What will it do?’ This question is exasperating because it has too 
many answers. Indeed, what is the role of a microcomputer? For that 
matter, what is a microcomputer? 

At one time, definitions were simpler. As a freshman engineering 
student, I was allowed to use an IBM® 1601-1620 machine; that was 
a computer! There was no doubt in anyone’s mind about that machine’s 

identity; it took up an entire room on the second floor of the engi- 
neering school’s building. But, today, an engineering student can sit 
at a small desk with an Apple® II (complete with video CRT display, 
printer, and two disc drives) that has more computing power than that 
old 1601! In fact, many engineering students find the cost of the typical 
small system so affordable that they can own their own computer. Now 
the student can have more computing power in a dorm room than we 
had in the school of engineering. The cost of the modern microcom- 
puter is less than one-tenth of what one of the lesser machines cost 
only a decade ago—not counting the fact that 1971 dollars were bigger 
than today’s dollars. 

Before attempting to define the role of the microcomputer, let’s 
first try to define what the microcomputer is. Terminology in the 
computer field is often “O.B.E.”—overcome by events. For example, 
consider the terms microcomputer and minicomputer. Some of us use 

these terms interchangeably, because modern single-chip computers 
(e.g., the Intel 8048) tend to make such usage seem reasonable. But, 
for our purposes, we require sharply focused meanings for these two 
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terms and others: minicomputer, microcomputer, single-chip com- 
puter, single-board computer, and mainframe computer. 

MICROPROCESSORS 

The microprocessor is a large scale integration (LSI) integrated circuit 
(IC) that contains the central processing unit (CPU) of a programmable 
digital computer. The CPU of a computer contains the arithmetic logic 
unit (ALU) that performs the basic computational and logical operations 
of the computer. The CPU also houses the control logic section, which 
performs housekeeping functions, and may or may not have several 
registers for the temporary storage of data. All CPUs have at least one 
temporary storage register called the accumulator, or A-register. The 
principal attribute of a microprocessor is that it will execute instructions 
sequentially. These instructions are stored in coded binary form in an 
external memory. 

MICROCOMPUTERS 

A microcomputer is a full-fledged programmable digital computer that 
it built around a mi¢roprocessor “chip,” i.e., integrated circuit; the 
microprocessor acts as the CPU for the computer. In addition to the 
microprocessor chip, the microcomputer typically will have additional 
chips; the number may vary from two to hundreds depending upon 
the design and the application. These external chips may provide such 
functions as memory (both temporary and permanent), input/output 
(I/O), and other functions. The microcomputer may be as simple as a 
KIM-1, or as complex as a 30-board professional machine with all the 
electronic data processing “goodies.” 

SINGLE-CHIP COMPUTERS 

For several years we had no excuse for interchanging the terms mi- 
croprocessor and microcomputer; a »P was an LSI chip and pC was a 
computing machine. But with the advent of the 8048 and similar 
devices, previously well-defined boundaries dissolved because these 
devices were both an LSI IC and a computer. A typical single-chip 
computer may have a CPU section, two types of internal memory 
(temporary and long-term permanent storage), and at least two I/O 
ports. Some machines are even more complex. 

The single-chip computer does, however, require some external 
components before it can do work. By definition, the microcomputer 
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already has at least a minimum of components needed to perform a 
job. 

SINGLE-BOARD COMPUTERS 

The single-board computer is a programmable digital computer, com- 
plete with input and output peripherals, on a single printed circuit 
board. Popular 6502-based examples are the KIM-1, SYM-1, and AIM®- 
65 machines. The single-board computer might have either a micro- 
processor or a single-chip computer at its heart. 

The peripherals on a single-board computer are usually of the 
most primitive kind (e.g., AIM-65), consisting of 7-segment LED nu- 
merical displays and hexadecimal keypads reminiscent of those on a 
handheld calculator or Touch-Tone™ telephone. The typical display is 
capable of displaying only hexadecimal numeral characters because of 
the form constraints of using 7-segment LED display devices. The 
Rockwell International AIM-65 uses a regular ASCII keyboard and a 
20-character display made of 5 x 7 dot matrix LEDs. In addition, the 
AIM-65 has a built-in 20-column dot matrix thermal printer that uses 
printing calculator paper. 

Most single-board computers have at least one interface connector 
that allows either expansion of the computer or interfacing into a 
system or instrument design. 

The manufacturers of SBCs, such as the KIM-1 and others, prob- 

ably did not envision their wide application as a small-scale develop- 
ment system. These computers were primarily touted as trainers for 
use in teaching microcomputer technology. But for simple projects 
such computers also work well as a mini-development system! More 
than a few SBC trainers have been used to develop a microcomputer- 
based product, only to wind up being specified as a “component” in 
the production version. In still other cases, the commercially available 
SBC has been used as a component in prototype systems, and then, in 
the production version, a special SBC (lower cost) was either bought 
or built. 

MINICOMPUTERS 

The minicomputer predates the microcomputer and was originally 
little more than a scaled-down version of larger data processing ma- 
chines. The Digital Equipment Corporation (DEC®) PDP-8 and PDP- 
11™ machines are examples of “minis.” The minicomputer will use a 
variety of small-scale (SSI), medium-scale (MSI), and large-scale inte- 
gration (LSI) chips. 



4 INTRODUCTION TO MICROPROCESSORS AND MICROCOMPUTERS 

Minicomputers have traditionally been more powerful than mi- 
crocomputers. They had, for example, longer length binary data words 
(12 to 32 bits instead of 4 or 8 bits found in micros), and operated at 
faster speeds (6 to 12 mHz instead of 1 to 3 mHz). But in this area, 
distinctions are fading. Digital Equipment Corporation, for example, 
offers the LSI-11 microcomputer that acts like a mini. Similarly, 16- 
bit microcomputers are available, as are 6 mHz devices. It is sometimes 
difficult to draw the line when a microcomputer is in the same size 
cabinet as a minicomputer, and minicomputers can be bought in desk- 
top configurations! 

MAINFRAME COMPUTERS 

The large computer that comes to mind when most people think of 
computers is the mainframe computer. These machines are the com- 
puters used in large-scale data processing departments. Microcom- 
puterists who have an elitist mentality sometimes call mainframe 
computers “dinosaurs.” But, unlike their reptilian namesakes, these 
dinosaurs show no signs of extinction and are, in fact, an evolving 
species. The IBM 370 is an example of a mainframe computer. 

ADVANTAGES OF MICROCOMPUTERS 

Microcomputers have certain advantages, as attested to by the fact 
that so many are sold! But what are these advantages? 

The most obvious advantage of the microcomputer is reduced 
size; compared with dinosaurs, microcomputers are mere lizards! An 
8 bit microcomputer with 64K bytes of memory can easily fit inside a 
table-top cabinet. For example, Apple® III (Figure 1-1) fits the complete 
computer (plus one optional disc drive) into the space inside a small 
table-top cabinet! Another company packs a computer with 16K of 
random access memory (RAM) inside a keyboard housing! 

The LSI microcomputer chip is generally more complex than a 
discrete components circuit that does the same job. However, the 
interconnections between circuit elements are much shorter (microm- 
eters instead of millimeters). Input capacitances are thereby made 
lower. The MOS technology used in most of these ICs produces very 
low current drain, hence the overall reduced heating. While a mini- 
computer may require a pair of 100 cfm blowers to keep the temper- 
ature within specifications, a microcomputer may be able to use a 
single 40 cfm muffin fan or no fan at all! 
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Figure 1-1. Apple II! microcomputer 

Another advantage of the LSI circuit is reduced component count, 
which reduces size. In addition it also affects reliability. If the LSI IC 
is just as reliable as any other IC (and so it seems), then the overall 
reliability of the circuit is increased dramatically. Even if the chip re- 
liability is lower than in lesser ICs, we would still achieve superior 
reliability due to fewer interconnections on the printed circuit board, 
especially if IC sockets are used. Some of the most invidious trou- 
bleshooting problems result from defective IC sockets! 

MICROCOMPUTER INTERFACING 

The design of any device or system in which a microcomputer or 
microprocessor is used is the art of defining the operation of the system 
or device, selecting the components for the device or system, matching 
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and integrating those components (if necessary), and constructing the 
device or system. These activities are known collectively as interfacing. 

But let’s get down to a more basic level. Most readers of this book 
are technical people with some knowledge of electronics and computer 
technology. For most readers, therefore, interfacing consists of select- 
ing and matching components, and then connecting them into a circuit 
that does a specific job. These matters are addressed in later chapters. 

MICROCOMPUTERS IN INSTRUMENT AND 
SYSTEM DESIGN 

In the past designers had to use analog electronic circuits, electro- 
mechanical relays (which sometimes leads to a maintenance night- 
mare), and other devices to design instruments, process controllers, 
etc. These circuit techniques had their limitations and produced some 
irritating results; factors like thermal drift loomed large in some of 
these circuits. In addition, the design was cast in cement once the final 
circuit was worked out. Frequently, relatively subtle changes in a 
specification or requirement produced astonishing changes in the con- 
figuration of the instrument; analog circuits are not easily adaptable 
to new situations in many cases. But with the advent of the microcom- 
puter, we gain the advantage of flexibility and solve some of the more 
vexing problems encountered in analog circuit design. The memory 
of the computer tells it what to do, and that can be changed relatively 
easily. We can, for example, store program code in a read only memory, 
or ROM, which is an integrated circuit memory. If a change is needed, 
then the software can be modified and a new ROM installed. If the 
microcomputer was configured well, then it is possible to redesign only 
certain interface cards (or none at all) to make a new system config- 
uration! For example, an engineer built an anode heat computer for 
medical X-ray machines. A microprocessor would compute the heating 
of the anode as the X-ray tube operated, and would sound a warning 
if the limit of safety was exceeded—thus saving the hospital the cost 
of a $10,000 X-ray tube! But different X-ray machines require different 
interfacing techniques, a problem that previously had meant a new 
circuit design for each machine. But by intelligent engineering, the 
anode heat computer could be built with a single interface card that 
married the “universal” portion of the instrument with each brand of 
X-ray machine. Thus, the company could configure the instrument 
uniquely for all customers at a minimal cost. 

Another instrument that demonstrates the universality of the 
microcomputer is a certain cardiac output computer. This medical 
device is used by intensive care physicians to determine the blood 
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pumping capability of the heart in liters per minute. A “bolus” of iced 
or room tempterature saline solution is injected into the patient at the 
“input” end of the right side of the heart (the heart contains two pumps, 
right side and left side, with the right-side output feeding the left-side 
input via the lungs). The temperature at the output end of the right 
side is monitored, and the time integral of temperature determined. 
This integral, together with some constants, is massaged by the com- 
puter to calculate the cardiac output. 

These machines come in two versions, research and clinical. The 

researcher will take time to enter certain constants that depend upon 
the catheter used to inject saline, temperature, and other factors, and 
will be more vigorous in following the correct procedure. But in the 
clinical setting, technique suffers as the patient is cared for, resulting 
in “machine error,” which is actually operator error. To combat this 
problem, the manufacturer offers two machines. One is a research 
instrument and is equipped with front panel controls that allow the 
operator to select a wide range of options. The other, a clinical model, 
allows no options to the operator and is a “plug and chug” model. The 
interesting thing about these instruments is that they are identical on 
the inside! The only difference is the front panel and the position of 
an on-board switch! The manufacturer’s program initially interrogates 
a switch to see if it is open or closed. If it is open, then it “reads” the 
keyboard to obtain the constants. On the other hand, if it is closed, 

then the program branches to a subprogram that assumes certain pre- 
determined constants that are loaded on the buyer’s prescription when 
the instrument is delivered. The cost savings of using a single design 
for both instruments are substantial! | 

6502-BASED MACHINES 

We are going to examine some of the different 6502-based machines 
found on the market. Inclusion in here does not connote endorsement 
of the product, nor that another manufacturer’s product isn’t as good. 

SYNERTEK SYM-1 

Several years ago, the original manufacturer of the 6502 microproc- 
essor, MOS Technology, Inc., produced a small, single-board computer 
that contained a hexadecimal keyboard and LED readouts. Originally 
conceived as a trainer, the KIM-]1 microcomputer became something 
of a standard among single-board computers, and its “bus” is now 
sometimes referred to as the “KIM-bus.” The KIM inspired a large 
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collection of magazine articles, books, and accessory products. For 
many advanced computer scientists, the litthe KIM-1 was their first 
introduction into the world of microcomputer technology. 

Although the SYM-1 microcomputer shown in Figure 1-2 is based 
on the original KIM-1 machine of another manufacturer, it extended 
the machine’s capabilities and provides more features than the original 
design. Synertek Systems Corporation of Santa Clara, CA is the man- 
ufacturer of the SYM-1 machine. 

Although the principal application for the SYM-1 is to train en- 
gineers and students in microcomputer interfacing and programming 
technology, applications have expanded into engineering laboratory 
work, prototyping of devices based on the 6502 microprocessor, in- 
strumentation, and conducting both experimenting and testing in en- 
gineering and scientific laboratories. As the SYM-1 uses the same 
identical hardware interface bus as the earlier KIM-1 device, it may 
be “plugged into” applications previously reserved to the KIM-1 
machine. 

The SYM-1 device has a 4K byte on-board monitor program, 1K 
byte of on-board RAM (expandable to 4K bytes), and provision for up 
to 28K bytes of on-board ROM or PROM. The applications port has 
15 bidirectional, TTL-compatible I/O lines, which, again, is expand- 
able. The machine also offers data storage and program storage on 

Figure 1-2. SYM-1 microcomputer 



Ohio Scientific Superboard Il 9 

Figure 1-3. Ohio Scientific Superboard II 

audio cassettes (an ordinary cassette tape player that has both “MIC” 
and “EAR” jacks can be used), and will accommodate a full duplex 
teletypewriter (TTY) 20 milliampere loop. This last feature makes the 
SYM-1 compatible, not just with TTY machines, but also with a wide 
variety of hard-copy printers now on the market. The machine includes 
one other I/O port, the common RS-232 serial interface port. The RS- 
232 port makes the SYM-1 compatible with a variety of video terminals 
and other peripherals. An on-board video terminal capability allows 
you to use either a TV monitor or, if an R.F. modulator is provided, a 
home TV receiver to receive output data (32 character line of video). 

OHIO SCIENTIFIC SUPERBOARD Il 

The microcomputer in Figure 1-3 solves some of the problems inherent 
in other single-board designs such as inconvenient keyboard format. 
This machine also uses the same microprocessor (6502) as the KIM-1 
and SYM-1 machines, although it does not use the KIM-1 bus. Pro- 
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gramming and data entry are through a full ASCII keyboard like those 
found on video CRT terminals and larger computers. 

The Superboard II can interface with TTY, CRT video terminals, 
and other peripherals. It is probably one of the simplest of the so- 
called “advanced” single-board computers and offers much that the 
lesser machines cannot, for example, more memory and programming 
in BASIC. 

APPLE I! AND III 

The Apple II and its later cousin, the Apple III, shown in Figure 1-1, 
have become the byword in personal computers, partially because 
these computers make available a “full-service” microcomputer in a 
small package. A system that includes 48K bytes of memory, color TV 
graphics, color TV monitor, a teletypewriter, and two 5.25 inch disc 
drives can take up little more space than a table top. 

The Apple II comes with a plug-in BASIC, with a more extensive 
version of BASIC available as an option. It also has an assembly language 
and built-in disassembler capability. The ordinary Apple II is available 
with an audio cassette interface, although for any serious work it is 
recommended that at least one disc be acquired. 

Also built into the Apple II is a video display circuit that will 
drive an ordinary television monitor. The regular video format is 40 
characters per line, with a total of 24 lines on the CRT screen at any 
one time. An interesting feature of the Apple II video monitor is that 
either regular (white characters on black background) or inverse (black 
characters on white background) modes can be used, and some of the 
characters can be programmed to flash on and off. The color graphics 
video display is capable of 15 different colors on a normal color video 
monitor. 

A high-resolution video display provides 280h x 192v capability, 
allowing the programmer to draw graphs and other displays on the 
CRT screen. 

MICROPROCESSOR FUNDAMENTALS 

The microprocessor chip literally revolutionized the electronics in- 
dustry. Although initially thought of as either a small logic controller 
or as a data processing machine (depending upon your perspective 
and the first chip you saw), the microprocessor blossomed in less than 
a decade into a major force with hundreds of applications. 
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What is a microprocessor? How does it relate to a microcomputer? 
We will explore these questions here, and hopefully present a good 
grounding in computer technology basics. But first, we will study com- 
puters in general by describing a “typical’’ programmable digital com- 
puter in block diagram form. In chapters to follow we will study the 
6502 device. 

Mythical Analytical Device (MAD) 

Rather than mold our discussion around any one manufacturer’s prod- 
uct, let’s make up one that is general enough to cover a large number 
of actual devices. Our “computer” will be nicknamed the Mythical 
Analytical Device, or MAD, because the acronym MAD adequately 
describes both the emotional state of programmers (whose frustrations 
mount geometrically with each passing “bomb-out”) and the mental 
health of computer sciences “freaks” (who are often seen wandering 
aimlessly through university corridors muttering the arcane glossolalian 
prayers of their modern religion, “Hail, microprocessor, from whom 
all bits and bytes emanate. . .”). 

Figure 1-4 shows the block diagram of MAD. Like any program- 
able digital computer, MAD has three main parts: central processing 
unit (CPU), memory, and input/output (I/O). There are certainly other 
functions in some machines, but many are either special applications 
of these main groups or are too unique to be described in a general 
machine. 

The central processing unit controls the operation of the entire 
computer. Memory can be viewed as an array of “cubbyholes,” such 
as those used by postal workers (Figure 1-5) to sort mail. Each cub- 
byhole represents a specific address on the letter carrier’s route. An 
address in the array can be uniquely specified (identifying only one 
location) by designating the row and column in which the cubbyhole 
is found. If we want to specify the memory location (i.e., cubbyhole) 
at row 3 and column 2, then we could create a row X column “address 

number” which, in this example, would be 32. 

Each cubbyhole represents a unique location in which to store 
mail. In the computer, the memory location stores a binary word of 
information. In an 8-bit computer, each location will store a single 8- 
bit binary word. The different types of memory devices are discussed 
in another chapter. 

The three lines of communication between the memory and the 
CPU are address bus, data bus, and control logic signals. These avenues 
of communication control the interaction between memory and I/O 
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Location 
"32" 

Row 3 EVvGeZizZeee 
BeBeizeieeizie 
Hb Mb Hbuo 

1 2 3 4 5 6 7 8 9 

Column 

Figure 1-5. “Memory” 

on the one hand, and the CPU on the other. Therefore they also control 
the functioning of the entire computer. 

The address bus (bits Af through A15 in Figure 1-4) communicates 
to the memory bank the address of the exact memory location being 
called by the CPU, regardless of whether a read or write operation is 
taking place. The address bus consists of parallel data lines, one for 
each bit of the binary word that is used to specify the address location. 
In most 8-bit microcomputers, for example, the address bus consists of 
16 bits. A 16-bit address bus can uniquely specify 2"*, or 65,536, different 
locations. This size is called “64K” not “65K” as one might expect. It 
seems that “k” represents the metric prefix kilo, which denotes 1,000. 

Since 2'° is 1,024, however, computer people long ago decided that 
kilo would be 1,024, not 1,000. The “big k’’ (1,024) is represented with 
an uppercase K rather than k, which is used for real kilo. 

The size of memory which can be addressed doubles for every 
bit added to the length of the address bus. Hence, adding one bit to 

our 16-bit address bus creates a 17-bit address bus which can designate 
up to 128K locations. Some 8-bit machines which have 16-bit address 
buses can be made to look like bigger machines by certain tactics that 
make a longer pseudo-address bus. In those machines, several 64K 
memory banks are used to simulate continuously addressable 128K, 
256K, or 512K memories. 

The data bus is the communications channel over which data 
travels between the main register (called the accumulator or A-register) 
in the CPU and the memory. The data bus also carries data to and 
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from the various input and/or output ports. If the CPU wants to “read” 
the data stored in a particular memory location, then that data is passed 
from the memory location over the data bus to the accumulator register 
in the CPU. Memory write operations are exactly the opposite direc- 
tion, but otherwise the same. 

The size of the data bus is usually cited as the “size” of the 
computer. Therefore, an 8-bit microprocessor/microcomputer is one 
that has an 8-bit data bus; a 16-bit microcomputer will have a 16-bit 
data bus. Do not be confused by salesmen such as the bozo who told 
me his 6502-based machine (8-bit data bus) was “in reality” a 16-bit 
machine because it had a 16-bit address bus! 

The last memory signal is the control logic or timing signal. These 
are one or more binary logic signals that tell memory if it is being 
addressed, and whether the request is a read or write operation. The 
details of control logic signals differ between different microprocessor 
chips, so only those of the 6502 will be discussed in this book (for Z80 
signals see Z80 User’s Manual, by J. J. Carr, Reston Publishing Co.). 

The input/output (I/O) section is the means by which the CPU 
communicates with the outside world. An input port will bring data 
in from the outside world and then pass it over the data bus to the 
CPU where it is stored in the accumulator. An output port reverses 
that data flow direction. 

In some machines, separate I/O instructions are distinct from 
memory instructions. The Z80 is one such machine. The Z80 will pass 
the port address over the lower 8 bits of the 16-bit address bus (8-bit 
I/O address used in the Z80 can uniquely address up to 256 different 
ports). In other machines, such as the 6502, there are no distinct I/O 
instructions. In those machines, the I/O components are treated as 
memory locations; this technique is called memory-mapping or mem- 
ory-mapped I/O. Input and output operations then become memory- 
read and memory-write operations, respectively. 

Central Processing Unit (CPU) 

The CPU is literally the heart and brains of any programmable digital 
computer, including MAD. Although there are some different “whistles 
and bells” features in certain machines, all will have the features shown 

in our MAD computer (Figure 1-4). The principal subsections of the 
CPU include (at least) the following: accumulator or A-register, arith- 
metic logic unit (ALU), program counter (PC), instruction register, 
status register, and control logic section. 

The accumulator is the main register in the CPU, and will have 
the same bit length as the data bus. All instructions executed by the 
CPU involve data in the accumulator, unless otherwise specified in the 



Microprocessor Fundamentals 15 

description of that instruction. Therefore, an ADD instruction causes 
an arithmetic addition of the data cited by the instruction to the con- 
tents of the accumulator. 

Although there are often other registers in the CPU, the accu- 
mulator is the main register. The main purpose of the accumulator is 
the temporary storage of data operated on by the instruction being 
executed. Data transfers to and from the accumulator are nonde- 
structive. In other words, data “transfers” are not really transfers at 
all, but are, instead, “copying” operations. Suppose, for example, the 
hexadecimal number 8F,, is stored in the accumulator when an in- 
struction is encountered requiring that the contents of the accumulator 
be stored at memory location A008,,. After the instruction is executed, 

we will find 8F,, both in memory location A008 and in the accumulator. 

If we have the opposite operation (i.e., transfer contents of accumulator 
to location A008,,), then we will see the same situation; after the 
transfer, the data will be in both locations. Since the accumulator 

contents change every time an instruction is executed, we will have 
to use such transfers to hold critical data some place in memory. 

The arithmetic logic unit (ALU) contains the circuitry that per- 
forms the arithmetic operations of addition and (sometimes) subtrac- 
tion, plus the logical operations of AND, OR, and XOR. 

The program counter (PC) contains the address of the next in- 
struction to be executed. The secret to the success of a programmable 
digital computer is its ability to fetch and execute instructions se- 
quentially. Normally, the PC will increment appropriately (1, 2, 3, or 
4) while executing each instruction: 1 for 1-byte instructions, 2 for 2- 
byte instructions, etc. For example, the instruction “LDA,n” is a 6502 

instruction mnemonic that loads the accumulator with the number 
“n.” In a program, we will find the code for LDA,n followed by “n.” 

Location Code Mnemonic 

0100 LDA,n 

0101 “n” “ny” 

0102 (next instruction) 

At the beginning of this operation, PC = 0100, but after execution 
it will be PC = 0102 because LDA,n is a 2-byte instruction. 

There are other ways to modify the program counter. For ex- 
ample, executing any form of JUMP instruction modifies the contents 
of PC to contain the address of the “jumped to” location. Another way 
to modify the PC contents is to activate the reset line. The computer 
sees reset as a hard-wired JUMP to location 0000. 
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The instruction register is the temporary storage location for 
instruction codes stored in memory. When the instruction is fetched 
from memory by the CPU, it will reside in the instruction register 
until the next instruction is fetched. 

The instruction decoder is a logic circuit that reads the instruction 
register contents and then carries out the intended operation. 

The control logic section takes care of housekeeping chores within 
the CPU, and issues or responds to control signals from the outside 
world. These signals are not universally defined (which is one reason 
why we will consider two chips later in this chapter), but control such 
functions as memory requests, I/O requests, read/write signaling, in- 
terrupts, etc. 

The status register, also sometimes called status flags, is used to 
indicate the status of the CPU at any given instant to the program, 
and sometimes to the outside world. Each bit of the status register 
represents a different function. Different microprocessor chips use 
slightly different status register architectures, but all will have a carry 
flag (C) to indicate when an instruction execution caused a “carry,” 
and a zero flag (Z) that indicates when an arithmetic or logic instruction 
resulted in zero or nonzero in the accumulator (typically, Z = 1 when 
the result is zero). 

We have now developed the CPU for our MAD computer. This 
discussion in general terms also describes a typical microprocessor chip; 
a microprocessor (as opposed to a single-chip computer) is essentially 
the CPU portion of a MAD. 

Operation of MAD 

A programmable digital computer such as MAD operates by sequen- 
tially fetching, decoding, and then executing instructions stored in 
memory. These instructions are stored in the form of binary numbers. 
Some early machines had two memories, one each for program in- 
structions and data. The modern method, however, uses the same 
memory for both data and instructions. 

How does the dumb computer know whether the binary number 
stored in any particular location is an instruction, data, or an alpha- 
numeric character representation (e.g., ASCII or Baudot codes)? The 
answer to this important question is the key to the operation of MAD: 
The MAD operates in cycles. 

A computer will have at least two cycles: instruction fetch and 
execution, and in some machines these cycles are subcycles. The details 
differ even though general scenarios are similar. 

Instructions are stored in memory as binary numbers called op- 
eration codes, or op-codes. During the instruction fetch cycle, an op- 
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code will be retrieved from the memory location specified by the 
program counter and stuffed into the instruction register. The CPU 
assumes that the programmer was smart enough to arrange things such 
that an op-code will be stored at that location when the PC increments 
to that address. 

During the first cycle, an instruction is fetched and stored in the 
instruction register. During the second cycle, the instruction decoder 
will read the IR, and then carry out the indicated operation. When 
these two cycles are completed, an instruction wil] have been fetched 
and executed, the program counter incremented to reflect the memory 
location that will contain the next instruction, and the CPU made ready 
for the next instruction. The CPU will then enter the next instruction 
fetch cycle and the process repeats itself. 

This process continues over and over again as long as the MAD 
is working. Each step is synchronized by a train of clock pulses so that 
events remain rational. 

This description illustrates what a computer can or cannot do. 
The CPU can shift data around, perform logical operations (e.g., AND, 
OR, XOR), add two N-bit numbers (sometimes subtract as well), all in 
accordance with a limited repertoire of binary word instructions. These 
chores are performed sequentially through a series of discrete steps. 
The secret to whether a problem is amenable to computer solution 
depends upon whether a plan of action (called an algorithm) can be 
written that will lead to a solution by a sequentially executed series of 
steps. Most practical instrumentation, control, or data processing chores 
can be so solved—a factor which accounts for the meteoric rise of the 
microprocessor. A field of endeavor that studies sequential solutions 
to practical (and some not so practical) problems is called numerical 
methods. 

The MAD computer is merely a hypothetical construct used as a 
teaching aid. Let’s examine a real microprocessor—the 6502. 





6502 Architecture 

The 6502 is one of the two most popular microprocessor chips on the 
market. Originated by MOS Technology, Inc., maker of the KIM-1 
microcomputer, the 6502 is now available from more than 15 secondary 
sources. Among these secondary sources are Synertek and Rockwell 
International, who make the SYM-1 and AIM-65 microcomputers, re- 
spectively. The 6502 is widely used in applications which range from 
small Original Equipment Manufacturer (OEM) single-board com- 
puters and process controllers to elaborate data processing systems. 

The 6502 is actually only one member (albeit the most popular 
member) of a family of microprocessor chips. Other members of the 
65xx family include 6500/1, 6503, 6504, 6505, 6506, 6507, 6512, 6513, 
6514, and 6515 devices. All members of the 65xx family (except 6502 
and 6512) are housed in the 29-pin DIP IC package. The 6502 and 
6512 come in the 40-pin DIP IC package. The 6502 and 6512 are very 
similar to each other, except that 6512 has a data bus enable (DBE) 
terminal which the 6502 lacks. The 6500/1 is a single-chip computer 
that includes, in addition to the CPM circuitry, internal ROM, read/ 
write memory, two timers, and four 8-bit input/output ports. The 
6500/1 recognizes several timer and I/O instructions in addition to 
the regular 6502 instruction set. 

The two basic philosophies behind third-generation microproc- 
essor architecture are: (1) register-oriented, and (2) memory-oriented. 

The popular Zilog, Inc. Z80 (which grew out of Intel’s 8080a) is an 
example of a register-oriented microprocessor. The companion volume 
to this book, Z80 User’s Manual, is available from Reston Publishing 
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Company. The 6502 grew out of the philosophy used to develop the 
6800, and is an example of a memory-oriented machine. 

The differences between the two philosophies are best seen in 
the structure of the I/O functions and the registers. The Z80 has 
numerous internal registers, while on the 6502, register functions are 
performed in external memory. Also, there are no Z80-like I/O in- 
structions for 6502. All I/O ports are treated as memory locations. Such 
a system is often termed memory-mapped I/O. 

The specific I/O instructions and internal registers of the Z-80- 
type chip are advantageous in some applications, but for the most part 
confer only little advantage over 6502-style systems. In fact, since 6502 
can perform certain logical and arithmetic operations directly on mem- 
ory (without the need for intervening data transfers), some types of 
program will execute considerably faster on 6502 than on Z80. Both 
types of chip architecture have their optimum applications, as wit- 
nessed by the huge success of both Z80 and 6502 devices. 

Figure 2-1 shows the block diagram for the 6502. Like most micro- 
processors of the era, the 6502 uses an 8-bit bidirectional data bus 
(DBO-BD7) and a 16-bit address bus (A0-A15); the address bus is uni- 
directional (output). Since there are 16 bits to the address bus, the 

ABO-AB15 

ABL 

ADL 

RDY RES IRQ NMI 

P|P R/W SO SYNC Interrupt 

L]H Logic 

r FE 

Arithmetic 
Logic 
Unit 7 

, 
and Control ic 

Stack a 
$2 % 

tac 
Pointer 

Input Data Instruction Processor 
Latch Register Status 

Register 

Data Bus 
Butfer 

Internal Data Bus 

DBO-DB7 System Data Bus 

Figure 2-1. Block diagram for the 6502 microprocessor 
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6502 can uniquely address 2'°(65,536) different memory locations. Such 
a computer is a 65K machine. 

6502 INTERNAL STRUCTURE 

The 6502 is a complete central processing unit (CPU), which contains 
the following sections and registers: Arithmetic logic unit (ALU), ac- 
cumulator (A-register), instruction register, instruction decoder/con- 
trol logic section, interrupt control logic, processor status register, 
timing section, input data latch, stack pointer, index X register, index 
Y register, program counter (PCH and PCL), and data bus buffer. These 
are described here: 

Arithmetic Logic Unit (ALU). The ALU is the internal logic that 
performs all arithmetic (ADC, SBC) and logical (AND, ORA, EOR) 
operations. The programmer does not have direct access to the ALU, 
except that the ALU is automatically implied by the instructions which 
affect the ALU. 

The ALU is the heart of any CPU, and is one primary factor that 
distinguishes a computer or microprocessor from all other digital elec- 
tronic circuits. This circuit performs the data manipulation including 
addition, subtraction, comparison, logical-AND, logical-OR, logical- 
XOR, left-shift, left-rotate, right-shift, right-rotate, bit set or reset, in- 
crement, decrement, and bit-test. 

Accumulator. The accumulator, also called the A-register in some 
texts, is the main internal storage register in the 6502. Its function is 
to temporarily store data being operated on by the ALU. In the 6502, 
the accumulator is an 8-bit register that corresponds with the data bus 
on a bit-for-bit basis (i.e., bit 0 of the accumulator will travel to/from 
the CPU over DBO of the data bus, bit 1 over DBI, etc.). Unless 

otherwise specified, all instructions executed by the 6502 use the ac- 
cumulator. The addition-with-carry (ADC) instruction, for example, 
performs binary addition between an 8-bit data word fetched from 
memory and the contents of the accumulator. 

Instruction Register (IR). The instruction register is the internal 6502 
register where the instruction op-code is temporarily stored after it is 
fetched from memory. 

Instruction Decoder/Control Logic. This section contains the logic 
circuits that will examine the contents of the instruction register, de- 
termine what operation is intended, and then permit the CPU to 
execute that instruction. 
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Interrupt Control Logic (ICL). An interrupt is a means by which an 

external device can gain control of the program. There are two active- 
LOW interrupt input lines on the 6502: NMI and IRQ. The NMI input 
is a nonmaskable interrupt. When NMI is brought LOW, the processor 
will switch control to a predetermined subroutine after the current 
instruction is executed. The IRQ is a maskable interrupt request input. 
Whether or not CPU recognizes the request is determined by the state 
(1 or 0) of an interrupt masking bit in the program status register. The 
programmer can cause IRQ to be enabled by executing SEI and CLI 
bits. The subject of interrupts will be discussed in greater detail in 
Chapters 12 and 13. For now, we will simply state that the logic for 
handling the interrupt function is the business of the ICL section. The 
system reset (RES) line also is part of the ICL. The system reset is 
activated manually by the user, or automatically by a power-on reset 
circuit. The RES line on many computers is nothing more than a 
hardware “Jump to 0000” instruction. On the 6502, however, RES is 

a vectored jump, meaning that it will jump to a location specified by 
the contents of memory locations FFFCH and FFFDH. 

Processor Status Register (PSR). The PSR is an 8-bit/internal register 

that is used to indicate that status of certain processor functions. Each 
bit of the PSR is a “flag” and is independent of the other bits of the 
PSR. The flags tell the world the CPU status by being either set (1) or 
reset (0). The state of each flag is determined either by program control 
or by the result of the last operation. For example, the interrupt mask 
flag (I-flag) can be set or reset directly by SEI or SLI instructions, 
respectively. However, the Zero Flag (Z) is set or reset according to 
the results of operations on accumulator data. Arithmetic and logical 
instructions, for example, will leave Z = 0 if the result stored in the 

accumulator is non-zero, and Z = 1 if that result is zero. The six flags 
of the PSR are: 

Negative result (bit 7 = 1) 

Zero result (all bits = 0) 

Carry Flag (arithmetic produced a result, carry) 

Interrupt mask flag 

Decimal mode flag 

< 0D" ON Z Overflow flag 

Timing Section. Computers operate synchronously with one or more 
system clocks. The 6502 uses three clock signals: ®,, ®,, and ®,. The 
®, and ®, clock signals are internally generated by the timing section, 
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and are available as outputs (see Chapter 3). The ®, clock is the master 
system clock, and is generated externally to the 6502. 

Stack Pointer (SP). The SP register contains the low order byte within 
Page One (0100H to 01FFH) where the stack is located. The push (i.e., 
PHA and PHP) and pull (i.e., PLA and PLP) instructions operate the 
stack. The higher order byte of the stack start address is always 01H, 
with the low order byte (OOH to FFH) being supplied by the SP. 

Index Registers X and Y. The X and Y index registers are 8-bit internal 
registers used in the indirect indexed addressing. In that form of ad- 
dressing, the contents of either X or Y registers are added to a 2-byte 
address fetched from memory as a part of the instruction. The X and 
Y registers can also be operated on by certain instructions, such as 
load, store, increment, decrement, and exchange data. 

Program Counter (PCL and PCH). The program counter is a pair of 
8-bit registers which contain the address where the next instruction 
to be executed is stored in memory. When taken together, PCL and 
PCH form a 16-bit address. When the reset line on the 6502 is brought 
LOW, either by the power-on reset circuit or by a manual reset button, 
the program counter is loaded with the address bytes stored at locations 
FFFCH and FFFDH. In other microprocessors, the reset causes a jump 
to location O000H. 

The program counter is altered in several ways. Every time an 
instruction is executed, the program counter is incremented by the 
number of bytes required for that instruction: a 1-byte instruction 
increments PC by 1, a 2-byte instruction by 2, etc. For example, in 
Figure 2-2, the main program encounters an add with carry (ADC) 
instruction at location 0201H. This particular form of ADC uses a form 
of addressing in which the operand is stored at a location denoted by 
the 2 bytes following the ADC. The op-code is stored at location 0204H. 
Thus, the program counter increments directly from 0201H to 0204H 
as ADC is being executed. 

Instruction Program Counter 

Figure 2-2. Operation of the program counter (an example) 
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Main Program Program 

Address | Instruction Counter 

Program 
Counter 

(A) 

Figure 2-3. Operation of the program counter during the BNE (branch on 
not-equal to zero) instruction A) forward branch. 

Another way to alter the contents of the program counter is to 
execute a branch instruction such as BNE, BEQ, BCC, and BCS. These 
instructions use relative addressing. This term means that the program 
counter will be modified by an amount denoted by the second byte 
of the instruction. Forward branches are determined by using a positive 
hexadecimal number, while backward branches are denoted by a two’s- 
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Main Program 
Program 

Address | Instruction Counter 

Not Equal 

(B) 

Figure 2-3 (continued). B) backward branch 

complement equivalent negative hexadecimal number. For example, 
consider the branch on result not equal to zero (BNE) instruction shown 
in Figures 2-3A and 2-3B. 

The BNE instruction examines the Zero Flag (Z) in the Processor 
Status Register for Z = 0, which indicates that the result of a previous 
operation was not equal to zero. BNE will fall through to the next 
instruction in sequence (e.g., 0209H in Figure 2-3A) if the result was 
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zero (Z = 1). If the result was non-zero (Z = 0), then BNE forces a 
jump forward or backward a number of steps denoted by the second 
byte of the instruction. It does this neat trick by altering the program 
counter contents. Two situations are given in the figures; a forward 
branch is shown in Figure 2-3A, while a backward branch is shown in 
Figure 2-3B. Let’s consider the forward branch first. 

Figure 2-3 shows a forward branch BNE operation from location 
0207H. The op-code for BNE is stored at 0207H and the operand 06H 
is a positive hexadecimal number, so the program will branch six steps 
forward when the branch condition (i.e., Z = 0 for BNE) is satisfied. 
Consider first the situation where the condition is not satisfied 
(Z = 1). When BNE is encountered, it reads Z to determine status (1 
or 0). If Z = 1, then the condition is not satisfied, so the program “falls 
through” to the next instruction. Since BNE is a 2-byte instruction, 
the next location is 0207H +2, or 0209H. When the condition is not 
met, therefore, the program counter is incremented from 0207H to 
0209H. 

The alternate situation in Figure 2-3A is when the condition is 
satisfied (Z = 0). Since the second byte is 06H, the instruction BNE 
will cause a branch forward by six steps; the program counter is altered 
by +6 to 020EH. Notice that the six steps are counted from the next 
step following the BNE and its operand, i.e., 0209H is the base for the 
count, not 0207H. 

The backward branch situation is shown in Figure 2-3B. The 
situation for condition not satisfied is exactly the same as the other 
case. The program counter will be advanced from 0207H to 0209H. 
For example, for a backward branch of six steps we would use the 
two’s complement of —6, which is FAH, in the second byte. Counting 
from the address of the next instruction (0209H), six steps would bring 
us to 0209H; the program counter is altered to 0203H. 

One final way to alter the program counter is to execute either 
a jump instruction or an interrupt. In both cases, the operation transfers 
control to some other memory location by altering the PC contents. 

The 6502 program counter is divided into two 8-bit registers 
called PCL and PCH. The PCL register outputs the low byte of the 
16-bit address, while PCH outputs the high byte of the address. PCL 
and PCH forms the 16-bit address. 

MEMORY ALLOCATION RESTRAINTS 

Memory space in microcomputers is usually divided into “pages” of 
256 bytes each. Page zero is 0000H to OOFFH, page one from 0100H 
to O1FFH, page two from 0200H to 02FFH, etc. On the 6502, we are 
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constrained from using locations in page zero, page one, and page 
FFH. 

Page Zero. Memory locations from 0000H to OOFFH are in page zero, 
and are used in two different addressing modes: zero page and indirect. 
In zero page addressing, the CPU assumes that the high order byte of 
the address is 00H, while the low order byte is the second byte of the 
instruction. In indirect addressing, the second byte of the instruction 
points to a location in page zero where the low order byte of the 
intended address is stored; the high order byte will be stored at the 
next higher memory location. Since there are 256 locations in page 
zero, we can store up to 128 pairs of address bytes. 

Page One. The “stack” is a section of memory used by the processor 
for such chores as the temporary storage of program counter contents 
when the processor goes to a subroutine. In the 6502, the stack is in 
page one (from 0100H to 01FFH). Usage of either page zero or page 
one addresses should be done cautiously because of these pre-emptory 
uses. 

Page FFH. The six highest bytes in page FFH are predesignated for 
certain vectors, arranged in three pairs. These vectors are the addresses 
where the computer goes on reset and on both types of interrupt. 
These locations are pre-allocated as shown in Figure 2-4. 

Memory Location Use Comment 

FFFFH IRQ Interrupt request line (IRQ) low causes processor 
FFFEH to jump to the memory location specified in these 

two bytes. The high order byte of the 16-bit address 
is stored at FFFFH, while the low order byte is at 

FFFEH. 

FFFDH RESET Reset low causes jump to address specified by the 
FFFCH contents of these locations: FF DH contains the 

high order byte, FFCH contains the low order byte. 

FFFBH NMI Nonmaskable interrupt request. See IRO above. 
FFFAH High order byte is stored at FFFBH, low order byte 

at FFFAH. 

Figure 2-4. Vector locations for IRQ, RESET, and NMI 





6502 Pinouts 

The 6502 microprocessor is housed in a 40-pin Dual Inline Package 
(DIP). This package is shown in Figure 3-1 with the pinout designations 
that apply to the 6502. Note that most microprocessor chips use NMOS 
technology, so appropriate anti-static handling procedures must be 
followed lest the IC be zapped into never-never land. 

6502 Pinouts by Pin Number 

1 V.. 0 to +7 volts 
2 RDY Ready 
3 ®, (out) Phase-1 clock output 
4 IRQ Interrupt request 
5 N.C (no connection) 
6 NMI Nonmaskable interrupt 
7 SYNC Synchronization 
8 Vn. +5 volts 
9 ABO Address bus bit 0 

10 AB1 Address bus bit 1 

11 AB2 Address bus bit 2 

12 AB3 Address bus bit 3 

13 AB4 Address bus bit 4 

14 AB5 Address bus bit 5 

15 AB6 Address bus bit 6 
16 AB7 Address bus bit 7 

17 AB8 Address bus bit 8 
18 AB9 Address bus bit 9 

19 AB10 Address bus bit 10 

29 
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Figure 3-1. 

6502 PINOUTS 

6502 pinouts 

6502 Pinouts by Pin Number (continued) 

20 ABI1 
21 V3. 
22 AB12 
23 AB13 
24 AB14 
25 ABI15 
26 DB7 
27 DB6 
28 DB5 
29 DB4 
30 DB3 

_ RES 
$¢ (OUT) 

ona wt oo ono F&F W ND 

10 

—_ —_ 

R6502 

Address bus bit 11 
0 to +7 volts 

Address bus bit 12 
Address bus bit 13 
Address bus bit 14 

Address bus bit 15 
Data bus bit 7 
Data bus bit 6 

Data bus bit 5 

Data bus bit 4 
Data bus bit 3 



31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

Designation 

DBO — DB7 

DBO 

DB1 

DB2 

DB3 

DB4 

DB5 

DB6 

DB7 

ABO — ABI5 

ABO 

AB1 

AB2 

AB3 

AB4 

ABS 
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6502 Pinouts by Pin Number (continued) 

DB2 Data bus bit 2 
Data bus bit 1 
Data bus bit 0 
Read/Write 
(no connection) 
(no connection) 

Phase-0 clock input 
Set overflow flag 
Phase-2 clock output 
RESET 

6502 Pinout Descriptions 

Pin 

(below) 

(below) 

Description 

Eight-bit bidirectional data bus. 
LOW (logical-0) is V,, to V,, + 0.4 
volt; input HIGH is V,, + 2.4 volts 
to V,,, 

data bus bit 0 
data bus bit 1 
data bus bit 2 
data bus bit 3 
data bus bit 4 
data bus bit 5 
data bus bit 6 
data bus bit 7 
Sixteen-bit address bus capable of ad- 

dressing up to 65,536 (64K) unique 
memory locations. These lines are 
all outputs, and produce the same 
HIGH and LOW voltage levels as 
the data bus lines will respond to; 
ie., output-LOW (logical-0) is V,, 
to V, +0.4 volt, while output- 
HIGH (logical-1) is V,, +2.4 volt to 

Vc 

address bus bit 0 

address bus bit 1 

address bus bit 2 

address bus bit 3 
address bus bit 4 

address bus bit 5 
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6502 Pinout Descriptions (continued) 

Designation Pin Description 

AB6 15 address bus bit 6 
AB7 16 address bus bit 7 

AB8 17 address bus bit 8 
AB9 18 address bus bit 9 
AB10 19 address bus bit 10 

ABI1 20 address bus bit 11 

AB12 22 address bus bit 12 

ABI13 23 address bus bit 13 

AB14 24 address bus bit 14 

ABI15 25 address bus bit 15 

®, 37 Phase-0 system clock input. Either 
an RC timing network (not rec- 
ommended) or an external crystal 
clock oscillator will supply a 1 mHz 
signal (2 mHz in some versions) to 
this pin 

®, 3 Phase-1 clock output; generated in- 

ternally from ®, clock; comple- 
ment of phase-2 clock 

ob, 39 Phase-2 clock output; generated in- 
ternally from ®, clock; comple- 
ment of phase-1 clock 

R/W 34 Indicates the direction of the data on 
the data bus; when this line is 
HIGH, the CPU is processing a 
read (input) operation; when this 
line is LOW the CPU is processing 
a write (output) operation 

Interrupt request, this active-LOW 
input is used to interrupt the, pro- 
gram being executed so that a sub- 
routine can be executed instead. 
This interrupt input is maskable, 
so it will cause a response ‘only if 
the internal interrupt flag of the 
Processor Status Register is ena- 
bled 

Nonmaskable interrupt; similar to 

the interrupt request line (IRQ), 
except that this active-LOW input 
is always active, and cannot be dis- 

E- O rN 

Z o>) 
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SO 
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6502 Pinout Descriptions (continued) 

Pin Description 

40 

38 

abled by the programmer. Pro- 
gram will execute an interrupt 
subroutine instead of the main 
program as soon as the current in- 

struction is finished execution 
Reset; active-LOW reset input. Es- 

sentially a hardware jump instruc- 
tion to a location in memory 
designated by a reset vector in 
page FFH 

Ready; this signal is an input that will 
insert a wait state into the normal 
machine-cycle sequence. The 
RDY line is normally held HIGH, 
and must make a HIGH-to-LOW 
(negative-going) transition during 

the phase-1 = HIGH clock cycle 
in any operation other than a write 

Set overflow flag; this input will set 
(HIGH) the overflow flag if it 
makes a HIGH-to-LOW (negative- 
going) transition during the trail- 
ing edge of the phase-1 clock cycle 

Active-HIGH output that is used to 
indicate the instruction-fetch ma- 
chine cycle 

no connection 

0 to +7 volts DC; usually grounded 
(0-volts) 

0 to +7 volts; usually +5 volts DC 

(makes system TTL compatible) 





Timing and Control 
Signals 

If your interest in computers is only to program in BASIC or assembly 
language, then you have little need to understand the workings of the 
chip. If, however, your needs and interests are in interfacing, computer 
design, or design of microprocessor-based instruments, then a thorough 
knowledge of the chip is necessary. Of critical importance are the 
control signals and timing system for the chip. These matters intimately 
affect design and interface efforts. For the 6502 microprocessor chip 
we need to consider the following: 

Data Bus 

Address Bus 

R/W 

Data Bus Enable 

Ready 

Interrupt Request 

Nonmaskable Interrupt 

Reset 

Synchronization 

Set Overflow 

DATA AND ADDRESS BUSES 

The two independent buses on the 6502 microprocessor are data and 
address. Each of these buses is a multi-bit parallel data path; the data 

35 
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bus is 8-bits long, while the address bus is 16-bits long. Each bus op- 
erates with TTL-compatible voltage levels, which are: 

Logical - 0 (LOW): 0 to + 0.8 volts 

Logical - 1 (HIGH): +2.4 to + 5 volt 

Each bus is a parallel path, so we find one 6502 terminal for each 
bit (see Figure 4-1). For both data and address buses, the 6502 will 
drive capacitance of at least 130 pF and one standard TTL input (i.e., 
it has a “fan-out” of 1 into 130 pF); one “TTL load” equates to a drive 

current of 1.8 mA at TTL voltage levels as given here, and is the 
specification for the load imposed by the input circuit of a TTL device. 
Thus, a fanout of 1 means the 6502 bus pins can each drive only one 
TTL device. To overcome this limitation, which 6502 shares with all 

other microprocessor chips, we must use high power bus driver chips 
between the 6502 and its two buses. These chips have a fan-in of 1, 
and fan-outs of 30, 100, or even 200. Most bus driver chips are arrays 

of noninverting TTL buffers. 
The data bus consists of 8 parallel bits labelled DBO through DB7. 

The data applied to DBO-DB7 must be stable (i.e., valid and unchang- 
ing) for the last 100 nanoseconds (100 nS) of the phase-two (2) clock 
pulse. The data bus is said to be bidirectional because data flows both 
into and out of the 6502 via this route. 

The address bus consists of 16 parallel data tracks which carry 
the address of the location in memory where the data or instruction 

Data Bus Address Bus 

Bit Pin Bit Pin 

DBO 33 A@ 9 

DBI1 32 Al 10 

DB2 31 A2 11 

DB3 30 A3 12 

DB4 29 A4 13 

DB5 28 A5 14 

DB6 27 AG 15 

DB7 26 A7 16 

A8 17 

AQ 18 

A10 19 

All 20 

A12 22 

A13 23 

Atl4 24 

A15 25 

Figure 4-1. Address and data bus pinouts 
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is located. During phase-1 of the clock cycle, the contents of the pro- 
gram counter are output to address bus bits A@ through A15. The data 
on the address bus are valid from 300 nS after the beginning of phase- 
1, and remain valid until the beginning of the next phase-1 cycle. The 
address bus is said to be unidirectional because data only flows in one 
direction, i.e., from the 6502 to memory. Since there are 16 bits on 

the address bus, the 6502 can uniquely address 2”°, i.e., 65,536 (64K) 
different memory locations. 

R/W LINE 

The read/write (R/W) line tells memory and all who are interested 
whether a read or write operation is taking place. The line will be 
HIGH for a read, and LOW for a write. Like the bus lines, R/W line 

can drive one TTL load (i.e., 1.8 mA into 130 pF of capacitance). 
The R/W line remains HIGH for all processor operations except 

a write. The operation of this line is coincident with the address bus, 
so all transitions on R/W line occur during the phase-1 clock pulse. 

The R/W line is used in controlling the operation of memory 
I/O devices and other devices. This timing protocol will be discussed 
later in this chapter. 

DATA BUS ENABLE (DBE) 

The DBE line is not used on the 6502, but is used on the companion 
6512 device. The DBE is found on pin 36 of 6512, which is N.C. (no 
connection) on 6502. This line is used to lengthen the phase-2 clock 
long enough for an external device to input data to the 6502. Most 
peripheral devices operate at slower speeds than the 6502, so will not 
be compatible unless a DBE signal, or software equivalent, is provided. 

READY (RDY) 

The RDY line on the 6502 is similar in function to the WAIT line on 
the Z-80 chip. The function of the RDY line is to delay execution of 
a read operation long enough to permit slower devices to catch up. 
Certain types of memory—EPROMs, for example—have long access 
times. An older EPROM (1702A) has an access time of approximately 
1 mS. This specification means that stored data will not be available 
at the EPROM output until 1000 microseconds after a stable address 
appears on the address bus and the chip select is activated. Since the 
6502 operates at 1 mHz (on some versions, 2 mHz), the memory has 
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to respond much faster than 1mS. The RDY line will cause the 6502 
to delay, i.e., wait, to allow the slow memory device or peripheral to 
catch up. 

Transitions on the RDY line should take place during phase-1, so 
they can be recognized during phase-2. RDY only affects read cycles. 
If the line is active (i.e., it sees a HIGH-to-LOW transition) during a 
write cycle, the 6502 will continue to function but will stop executing 
during the next read cycle. 

INTERRUPT REQUESTS (IRQ AND NMI) 

The interrupt lines cause the program to cease executing the current 
program and switch instead to executing a secondary program. When 
either interrupt line goes LOW, the 6502 will: 

I. Finish executing the current instruction. 

2. Increment the Program Counter to the next location that 
would normally be used. 

3. Push the address in the PC out to the internal stack so that it 

may be saved. 

4. Jump to the location of the interrupt subroutine pointed to by 
vectors stored in Page-FF. 

5. If the last instruction in the subroutine is RTI (return from 
interrupt), then the 6502 will retrieve the address stored on 
the external stack (in page-1) and return to the main program 
where it would have gone if no interrupt had occurred. 

Interrupts are used for a variety of purposes including serving 
very slow peripherals, responding to alarms, or servicing devices or 
events which occur but rarely. 

The two active-LOW interrupt lines on the 6502 are NMI and 
IRQ. The NMI is a nonmaskable interrupt. When this line is brought 
LOW, the interrupt will occur regardless of anything the program has 
done. The other line IRQ (interrupt request) is maskable by the pro- 
gram. Before responding to IRQ, the 6502 interrogates the interrupt 
disable (I) flag in the Processor Status Register. If the I-flag is set 
(HIGH), then the 6502 will not respond to IRQ. The 6502 sets the 
I-flag whenever a reset is activated or when an SEI instruction is 
executed. The CLI instruction will reset the flag, and thereby enable 
the 6502 to respond to interrupts. 
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RESET (RES) 

The reset line forces the 6502 to initialize the PC at a location specified 
by reset vectors stored at locations FFFCH (low-order address byte) 
and FFFDH (high-order address byte). On most 6502-based micro- 
computers, there are two ways to activate (bring LOW momentarily) 
the RES line: manually (by pushbutton switch) and during the power- 
on period when power is first applied to the 6502. 

The RES line is essentially a hardware JUMP-Indirect instruction 
whose argument is FFFCH and FFFDH. 

SYNCHRONIZATION (SYNC) 

The SYNC is an active-HIGH output signal that goes HIGH during 
phase-1 cycles in which an op-code fetch operation is taking place. The 
purpose of SYNC, therefore, is to identify op-code fetch cycles. 

SET OVERFLOW (SO) 

The SO terminal will cause the overflow flag (V) of the Processor Status 
Register to be set (made HIGH). This active-LOW line looks for a 
HIGH-to-LOW transition, and is TTL compatible. The SO line is in- 
tended to work with special I/O interface chips, so will not normally 
be used elsewhere. 

6502 CLOCK TIMING 

The three clock pins on the 6502 are: ®, (pin 37), ®, (pin 3), and ®, 
(pin 39). Programmable digital computers operate in a synchronous 
mode in which the master system clock keeps operations in proper 
step. 

The phase-0 (i.e. ®)) clock is an input on the 6502, and receives 
the signal from an external clock oscillator circuit. The phase-1 and 
phase-2 clocks are derived from phase-0, and are complementary to 
each other. Figure 4-2 shows the relationship between phase-1 and 
phase-2. Since these signals are complementary, one will be HIGH 
(logical-1) when the other is LOW (logical-0), and vice versa. The clock 
outputs are TTL compatible, so are between 0 and 0.9 VDC when 
LOW, and between + 2.4 and +5 VDC when HIGH. The total duration 
of these pulses—(Phase-1) + (Phase-2)—is the cycle time (Tyce) of the 
6502. If the normal clock speed of 1 mHz is used, then the cycle time 
is 1 pS (one microsecond) and each phase is 500 nanoseconds. In any 
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( 
— Phase 1—»1<—— Phase 2 —»+<—— Phase 1——-»}-~«—4 Phase 2 > 

I 

+———— Tevete 

Figure 4-2. Two-phase system clock 

given system, of course, the actual cycle time will be the reciprocal of 
the clock frequency—T.,a. = 1/F cc. 6502 devices are available with 
clock frequencies up to 2 mHz, although the standard device operates 
at 1 mHz. 

Figure 4-3 shows four different clock circuits used on 6502 mi- 
crocomputers. Three of these clock oscillators are crystal controlled, 
while one is RC times. Crystals are piezoelectric devices which mimic 
the behavior of LC resonant tank circuits, and exhibit generally better 
frequency stability than RC networks. The RC version is sometimes 
preferred in low-cost applications, even though the unit cost of crystals 
is now low enough to make such considerations suspect except in the 
cheapest mass market products. 

(A) 

Figure 4-3. Typical main clock circuits A) RC operated. 
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(B) 

(C) 

R3 R2 R1 
3.3 K 1.8K 1.8K 

a 
Y To Input 

Y1 
1-5 MHz 

(D) 

Figure 4-3 (continued). 8B) crystal controlled, C) alternate crystal controlled, 
D) external crystal controlled. Y1: CTS-Night M-P Series (or equivalent) 
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The active element in each of the four circuits is a TTL inverter, 

in these cases a 7404 device. The 7404 is a hex inverter (six inverters 
in one package), of which two are used. Other TTL devices can also 
be used as inverters. If one or two 7400 or 7402 devices are available 
in the design, then they can be wired as inverters. The 7400 is a quad 
two-input NAND gate, while the 7402 is a quad two-input NOR gate. 
On either device, if both inputs of any one section are shorted together 
that section becomes an inverter. Additionally, the following circuit 
configurations also provide inverter action: 

I. On 7400, tie one input HIGH (to +5 VDC through 2.7 kohm) 
and the remaining input works as an inverter input. 

2. On 7402, tie one input LOW (to ground) and the remaining 
input works as an inverter input. 

Figures 4-3A and 4-3B are connected to the phase-0 and phase- 
2 pins of 6502. The resistors will be between 0 and 500 kohms, while 
the capacitors are 2 to 12 pF. 

Figure 4-3D shows a circuit that is totally external to the 6502. 
This circuit is also based on TTL inverters and is crystal controlled. 
The crystal used for this circuit, and certain other similar clocks, is a 

CTS-Knight MP-series device operating at 1 mHz, unless a 2 mHz CPU 
is used! The exact frequency is not critical unless a lot of timing loops 
in programming are anticipated. 

READ/WRITE CYCLE TIMING 

Data are input or output from the 6502 over the data bus during read 
and write operations. External memory and I/O port devices must be 
addressed and turned on at the appropriate time to supply or receive 
data. This operation is controlled by the system clocks and the R/W 
line. In this section we will discuss the action of the control signals 
during both forms of operation. 

The timing for a write cycle is shown in Figure 4-4. Keep in mind 
that data direction statements are always made from the CPU point 
of view. Thus, a data write operation is the transfer of data from the 
CPU to some external memory location or I/O port. Since the 6502 
uses memory-mapped I/O, the same write timing scheme serves for 
both memory write operations and writes to output ports. 

When the CPU executes a write operation, the R/W line drops 
LOW and the address of the intended destination is output to the 
address bus. This action occurs during phase-1, which begins at time 
tp in Figure 4-4. Neither the R/W line nor the address are stable 
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Figure 4-4. Write cycle timing diagram 

immediately after the onset of phase-1, but rather require a time delay 
of about 300 nanoseconds (time t, in Figure 4-4). Following t,, the 
address will remain valid, and the R/W line remains LOW during the 
remainder of phase-1 and all of phase-2. The actual data transfer takes 
place during the last 100 nanoseconds of phase 2. The entire cycle 
(sum of phase-1 and phase-2) requires 1 microsecond, or 1000 nano- 
seconds, when the clock operates at 1 mHz. In that case, the memory 
or I/O devices have approximately 575 nanoseconds between the ini- 
tiation of a valid address and the onslaught of data from the 6502 to 
the data bus. This time period consists of the 1000 nS cycle time less 
address set-up time (300 nS), data valid time (100 nS), and transition 
times (about 25 nS). In a later chapter we will discuss address decoding 
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and device select signal generation based on the waveforms of Figures 
4-4 and 4-5. 

The read cycle waveforms are shown in Figure 4-5. During a 
read cycle, data is transferred from some external memory location or 
I/O port to the 6502 CPU. The read cycle is exactly like the write 
cycle described above, except that the R/W line goes, or remains 
HIGH. The timing is otherwise approximately the same as for writes. 

Logic circuits for selecting the memory or I/O device addressed 
will be discussed later. 

+ 

>; ( | \ f 
| 

b2 

A@-A15 

+ l 
Data <j s p— 

0 | | l ] 
+300 ns! } +1109 ns be 

T, T, T, T, 1, 

met ah ma | 
Figure 4-5. Read cycle timing diagram 



6502 Addressing Modes 

One way to judge the potential usefulness of a microprocessor is to 
examine the addressing modes, i.e., the number of different ways data 

can be addressed. Depending upon how you define address modes, we 
find the 6502 offering from 10 to 13 different modes. This fact makes 
6502 either equal to Z80, or better by three modes. 

Having a large number of addressing modes permits the pro- 
grammer a certain degree of flexibility that is lacking on more limited 
processors. Figure 5-1 is a brief summary of 6502 addressing modes 
and the normal assembly language operand form. Following are sum- 
maries of the addressing modes for 6502. 

ACCUMULATOR MODE ADDRESSING 

The accumulator mode of addressing is an implied form that is unique 
to the rotate and shift instructions (ASL, LSR, ROR, and ROL). The 
shift instructions cause data in either the accumulator or a memory 
location to shift 1 bit right (LSR) or left (ASL). The rotate instructions 
are similar to the shifts, except that the rotated data is placed back 
into the accumulator and carry bit. 

RELATIVE ADDRESSING MODE 

Relative addressing mode is used for the branch instructions (i.e., BNE 
and BEQ). In relative addressing, the contents of the program counter 
are altered by a displacement factor, which can be either positive or 

45 
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Accumulator A 

Relative nn, nann 

Immediate nn 

Absolute annn 

Zero Page nn 

Implied - 

Indirect Absolute (nnnn) 

Absolute Indexed, X nnnn, X 

Absolute Indexed, Y annn, Y 

Zero Page Indexed, X nn, X 

Zero Page Indexed, Y nn, Y 

Indexed Indirect (nn, X) 

Indirect Indexed (nn), Y 

(“‘n” is a Hexadecimal Number @-A) 

Figure 5-1. 6502 addressing modes 

negative. The purpose of this mode is to allow shift of program control 
using only a 2-byte instruction. The first byte is the op-code, while the 
second byte is a signed two’s complement number that represents the 
displacement integer e. Since this is a 2-byte instruction, and the branch 
cannot occur until the instruction is finished, the program counter will 
increment twice before the branch occurs. This accounts for the dif- 
ference between the two jump ranges (+127 and — 128). 

Let’s consider some examples. In both, the effective address is 
computed by adding the displacement integer e, the second byte, to 
the program counter at the end of instruction execution. Figure 5-2 
shows an example of a forward branch operation. The instruction con- 
sists of 2 bytes at 0200H and 0201H; the op-code is at 0200H, while 

the displacement integer is at 0201H. The jump will occur at the end 
of instruction execution, if the condition for the branch is satisfied. If 

the condition is not satisfied, then the program counter contents will 
be 0202H. In this particular example, the displacement integer e is 
06H, which designates a forward branch of +6. If the condition is 
satisfied, the program counter will jump to 0206H. This means that 
the next instruction to be executed will be that at 0206H. The maxi- 
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0200 (Byte-1) OP-CODE 

0201 (Byte-2) 06H 

0202 (PC if Condition not Satisfied) 

0203 

0204 

0205 
0206 (PC if Condition is Satisfied) 

0207 

0208 

Figure 5-2. Forward branch operation 

mum values allowed for the displacement integer are 7FH (+127,,) 
for forward branches, and 80H (—128,,) for backward branches. 

The backward branch situation is shown in Figure 5-3. The 2- 
byte instruction is located at 0208H and 0209H; the op-code is at 
0208H, while the displacement integer is at 0209H. The jump will 
occur when this instruction has completed execution. If the condition 
for the branch is not satisfied, then the program “falls through” to 
location 020AH; the program counter will then contain 020A rather 

than 0208H. But if the condition is satisfied, the program counter will 
contain the backward branch displacement integer, which in this case 
is the two’s complement of —5,9, or FBH. 

IMMEDIATE ADDRESSING MODE 

The immediate addressing mode permits the use of a 2-byte instruction 
to operate on either the accumulator or an index register. Examples 
of instructions which have immediate mode addressing are ADC and 
LDA. The second of the 2 bytes is used as the operand, and is therefore 
the data which operates on the contents of the register or accumulator 
addressed; no additional data fetches from memory are needed. The 
mnemonic form used to write immediate mode instructions is ADC, 

0200 
0201 

0202 

0203 

0204 

0205 (PC if Condition is Met) 

0206 

0207 

0208 (Byte-1) OP-CODE 

0209 (Byte-2) FBH (—5) 

020A (PC if Condition is not Satisfied) 

Figure 5-3. Backward branch operation 
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n or ADC, #n (the latter is preferred in order to distinguish immediate 
mode from relative or zero page mode instructions). 

We used ADC and LDA as examples here. Let’s see how those 
instructions work with immediate mode addressing. The LDA instruc- 
tion loads accumulator with data. In LDA, #n, the operand n is the 
next byte in sequence following the op-code: 

Byte 1 op-code 

Byte 2 (n) 

If we load the hexadecimal number 80H into the accumulator, 
what would the instruction look like? Since A9H is the op-code for 
LDA when immediate addressing is used, we would see: 

Location Code 

Byte 1 0500 A9 op-code 
Byte 2 0501 80 (n = 80H) 

assuming this program segment is stored at 0500H in memory. 
This program segment will load the accumulator with the hex- 

adecimal number 80H. Since this 2-byte instruction only requires two 
clock cycles, it will execute in only 2 pS. 

The ADC instruction adds a data byte from memory to the con- 
tents of the accumulator, and generates a carry if indicated. The op- 
code for ADC when immediate mode addressing is used is 69H. Let’s 
assume that the accumulator contains A7H when the following code 
is encountered: 

Location Code 

Byte 1 0500 60 ADC, #n 

Byte 2 0501 07 n=07H 

This program segment means that the instruction fetched (69H) 
is the ADC, #n instruction, and that operand n is the next sequential 

memory location, 07H. After the execution of this 2-byte instruction, 
the contents of the accumulator will be: 

Acc = (Acc)+n 

Acc = A7H + 07H 

Acc = AEH 
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Immediate mode addressing permits addition by a constant when 
ADC is used. 

ABSOLUTE ADDRESSING MODE 

The absolute addressing mode used to provide an operand from any 
location within the 64K is addressable by the 6502. The mnemonic 
form of the 3-byte absolute mode instruction is (using the ADC): “ADC, 
nnnn.” As usual, the “n” represents a hexadecimal digit (a hexadecimal 
digit represents a 4-bit binary number). Since 4 bits is half a byte, some 
wags call it a “nybble.” A 4-digit hexadecimal number—e.g., nnnn— 
represents a total of 16 bits needed to address 64K of memory. 

The operand is fetched from a memory location determined by 
the 3-byte instruction. The first byte of the instruction is the op-code, 
which tells the computer what is to be done and which addressing 
mode is used. The second byte is the low-order byte of the address, 
while the third byte is the high-order byte of the address. For example, 
the address EF05H will be stored in the format: 

Byte 1 (op-code) 

Byte 2 05H Low-order address 

Byte 3 EFH High-order address 

Consider the example in Figure 5-4. Here, we are instructing the 
6502 to load the accumulator with the contents of memory location 
EFO5H, which is the hex number 80H. The operation is: 

1. The program encounters the instruction LDA, EFO5H at 
0600H. CPU goes to EFO5H to retrieve number. 

| Accumulator 

0600 AD (LDA, EFO5) (3) 
0601 os nn, | 8 | o | 

0602 EF nny, 

EFO3 
EFO4 
EFOS 80H , 

(2) EFOS 

Figure 5-4. Absolute addressing mode example 
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2. Data from EFO5H is fetched. 

3. It is stuffed into the accumulator. 

When the operation is finished, the hexadecimal number 80H 
will be in the accumulator. 

IMPLIED ADDRESSING 

In the implied addressing mode there is no external operand, and the 
address is implied by the instruction. For example, the decrement x 
(DEX) instruction causes the contents of the x-register to be decre- 
mented, i.e., reduced by 1; implied is the x-register. No additional 
addressing is needed to identify the data because it is the contents of 
X. 

Other examples of instructions which use implied addressing are: 

BRK Force Break 

CLC Clear Carry Flag 

CLD Clear Decimal Mode 

CLI Clear Interrupt Disable Bit 

CLV Clear Overflow Flag 

DEX Decrement X 

DEY Decrement Y 

INX Increment X 

INY Increment Y 

NOP No operation 

PHA PUSH Accumulator on Stack 

PHP PUSH PSR on Stack 

PLA PULL Accumulator from Stack 

PLP PULL PSR from Stack 

RTI Return from Interrupt 

RTS Return from Subroutine 

SEC Set Carry Flag 

SED Set Decimal Mode 

SEI Set Interrupt Disable Bit 

TAX Transfer Accumulator to X 

TAY Transfer Accumulator to Y 

TSX Transfer SP to X 
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TXA Transfer X to A 

TXS Transfer X to SP 

TYA Transfer Y to A 

ZERO PAGE ADDRESSING MODE 

The zero page addressing mode is an abbreviated-absolute mode that 
uses only 2 bytes to designate memory locations in page zero (O000H 
to OOFFH). In this mode, the high-order byte designating the address 
is always 00H. Thus, to address location 0052H using zero page ad- 
dressing, we would use the form: 

Byte 1 op-code 

Byte 2 (n) OOH-FFH 

Note that we may still use absolute mode addressing in page zero. 
The advantage of zero page addressing is that, for the first 256 bytes 
of memory, we can use a more rapid 2-byte instruction. The main 
function is to reduce the program time, especially for frequently called 
data. 

Let’s use ADC for our example. The op-code for ADC in the zero 
page addressing mode is 65H. Figure 5-5 illustrates an example where 

Accumulator 

050 © 
A= A 

—_— + 0052 (Oog D 

© Oo? mela rele} E 

0600 65 ADC, nn 

0601 51 nn 

0602 

0603 

Figure 5-5. Zero page addressing mode example 
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the contents of the accumulator (A7H) are added to the contents of 
memory location 0051H. Our rotation for this operation is: 

Ace = Acc + (0051H) 

Acc = A7H + 07H 

Acc = AEH 

(Note: The parenthesis around “0051H” indicate the contents of mem- 
ory location 0051H). The operation is: 

1. The program encounters an ADC, 51H zero page addressing 
instruction at location 0600H; the op-code (65H) is at 0600H 
and the zero page address is at 0601H. The contents of the 
accumulator are A7H. 

2. The 6502 responds to the instruction by going to location 
0051H and retrieving the data stored there (i.e., 07H). 

3. The 6502 adds the contents of the accumulator (A7H) to the 
number fetched from memory location 0051H (i.e., 07H) and 
stores the result (AEH) in the accumulator. 

Page zero should not routinely contain programming instructions 
in complex programs because the zero page addressing mode makes 
page zero an ideal place to store frequently called data, temporary 
data, short tables, and other data. 

INDIRECT ABSOLUTE ADDRESSING MODE 

This addressing mode is a subset of absolute mode, but is used only by 
the unconditional JUMP (JMP) instruction; JMP also uses absolute ad- 
dressing. The indirect absolute mode is a 3-byte instruction with the 
mnemonic form: 

JMP, (nnnn) 

The operand (nnnn) is a 16-bit address at which the actual “jump-to” 
address is located. The low-order byte of the destination address is that 
actually specified by (nnnn), while the high-order byte of the desti- 
nation is found at the next higher address (nnnn +1). Thus, if we want 
to store the destination address at memory location EFO5H, we would 
write the JMP instruction as follows: 
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Byte 1 6C Op-code for JMP (indirect) 

Byte 2 05 (nn,) 

Byte 3 EF (nn,) 

Let’s consider an example (see Figure 5-6). Suppose we need to 
use indirect absolute addressing for a JMP instruction located at 0601H, 
and the destination address is located at EFO5H. Let’s see what 
happens: 

I. At 0601H, the program counter is JMP (EF05). At the end of 
this instruction execution, the PC will contain “EF05.” 

2. In response to the change in PC contents, the computer will 
jump to EFO5H where it finds the actual destination address, 
A008H. 

3. The computer now jumps to A008H where an LDA #47H 
instruction is encountered. The PC now contains hexadecimal 
number 47H. When execution of this instruction is completed, 
the PC contents will be A008H +2, or AOOAH. 

Why would we want a program in which indirect absolute ad- 
dressing is used? Isn’t absolute addressing more reasonable? Under 
many circumstances that would be true. The exception is where the 
“jump-to” address changes under program control, perhaps in response 

Program 

CQ) Counter Accumulator 

0601 6C JMP, (nnn) 

0602 @5 nn 

0603 EF nn 

EFO2 Ago6 
EFO3 A007 
EFO4 (3) AQO8 LDA, #47H 
EFOS5 08 9 47H 
EFO6 AO AQOA 
EFO7 AQOB 

Figure 5-6. Indirect-absolute addressing mode example 
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to different conditions. Consider the hypothetical security alarm in 
Figure 5-7. Here we have a computer monitoring both fire and burglar 
alarm sensors. Obviously, the response to a fire on the premises requires 
a different response than to an intruder. Three different conditions 
can occur: 

1. Fire alarm. 

2. Burglar alarm. 

3. No alarm. 

The sensors are designed to input to the computer a hexadecimal 
number that serves the function of identification. This hex number 
code serves as the high-order byte for the subroutine that services that 
sensor. Note that either hardware initiated or software initiated 
schemes are used to obtain the code. The operation of this program 
is: 

0200 6C JMP@300 
0201 00 

0202 03 

(2) | Fire Sensor 
0300 00 Load 0301 

with AQ 

Burglar Sensor 

Load 0301 
with Al 

Fire Alarm No Alarm Burglar Alarm 
Subroutine Subroutine 

A000 A200 (Load 0301 with A100 
AQG1 A201 A2H and Jump A101 
AQG2 A202 to 9200) A102 

A203 

A204 

d@ } 
)-——_____—— 

Figure 5-7. “Fire alarm” problem 



6. 

Absolute Indexed X and Y Addressing Mode 55 

. The program encounters a JMP (indirect absolute) instruction 
at 0200H. 

. The operand for the JMP at 0200H is 0300H, so the program 
goes to 0300H to fetch the actual address of the destination. 
The low-order byte (at 0300H) is always 00H, while the high- 
order byte is determined by the sensor that is active. 

. The sensor has input appropriate code. 

. The program branches to either AOOOH, A100H, or A200H, 
depending upon course of action required. 

. If either the burglar or fire alarms were activated, the program 
will go to the no-alarm subroutine to reset the system after 
the alarm clears. 

The sequence starts over. 

In addition to these examples, the JMP (nnnn) mode can be used 
to designate peripherals. If we label the peripheral ports 1, 2,3... 
etc., then we can load the JMP operand bytes with the address of the 
subroutine that services that particular device. 

ABSOLUTE INDEXED X AND Y ADDRESSING 
MODE 

The absolute indexed addressing mode is used for such purposes as 
accessing data stored in an array or look-up table. The effective address 
of the instruction using this mode is the sum of the operand and the 
contents of either X or Y index registers. The form of such instructions 
is: 

Byte 1 op-code 

Byte 2 (nn,) low-order address byte 

Byte 3 (nn,) high-order address byte 

The actual address of the data will be either: 

or, 

nnnn + X 

nnnn + Y 

If, for example, the X register contains 24H, and the instruction 
“LDA, 0400X” is encountered, the accumulator will be loaded with 
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the data stored at 0400H + 24H, or 0424H. Another example (shown 
in Figure 5-8) is: 

I. At 0200H the program encounters LDA EFOOX. 

2. The contents of the X register (08H) are added to EFOOH to 
form the effective address EFO8H. 

3. Program goes to EF0O8H to fetch data (43H) to be stuffed into 
the accumulator. 

4, Data is loaded into the accumulator (accumulator contents are 
now the data which had been at location EFO8H). 

There are several uses for the absolute indexed addressing mode, 
especially where tables or data arrays are concerned. A sample appli- 
cation is code conversion. Most modern computers use ASCII code to 
represent alphanumeric characters. ASCII is a 7-bit code (b0-b6), with 
the eighth bit (b7) always LOW. But suppose we want to interface an 
old Baudot-encoded teletypewriter (TTY) machine to an ASCII com- 
puter? The solution is a code conversion subroutine. 

Figure 5-9 shows the flow of a code conversion program that 
takes an ASCII symbol from a keyboard and then converts it to a 
Baudot word that represents the same character (in this case “Q”’) 
before outputting it to a printer or TTY (Note: “Q” is represented by 
51H in ASCII and 17H in Baudot). Since this scheme is an ASCII-to- 
Baudot routine, the argument of the “LDA, 0800X” instruction is the 

X register Accumulator 

Y 

0200 BD LDA, nnnnX (4) 

0202 «EF (2) 1 
EF 

EF@2 

EFQ3 

(3) EFO4 

EF@5 

EF@6 

EFQ7 

EF@8 43 

EF@9 

EFOA 

Figure 5-8. Absolute indexed (X or Y) addressing mode example 
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“Q” 

=) 
Keyboard (2) 

Baudot Look-up 
Table 

@ | oeap | ic | w 

| 18 [0] 

Input 
Subroutine 

Input 51H 
to X Register 

® ote 
0852 @A 

AQO1 Output Port 

57 

Printer or TTY 

Figure 5-9. Code conversion scheme 
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ASCII for Q, i.e., 51H. The look-up table is stored in page 8 so that a 
character’s Baudot representation will be located at O800H + ASCII. 
Thus, since “Q” in ASCII is 51H, the Baudot code for “Q” (17H) will 
be located at 0800H + 51H, or 0851H. The operation of this program 
is: 

I. Operator presses the “Q” on the keyboard .. . 

. Thereby sending 51H to the computer. 

3. Since the 6502 uses memory mapped I/O, we can use the LDX 
instruction to directly input 51H from the port serving the 
keyboard to the x-register. 

4. The computer sees an “LDA, 0800X”’ instruction so fetches 
data (17H) from 0800H + 51H (i.e., 0851H.) 

5. Data from 0851H (17H) is loaded into the accumulator. 

6. The 17H data loaded into the accumulator is stored at AO01H, 
which is the memory location for the output port serving the 
printer/TTY machine. 

bo 

7. The TTY machine sees 17H and responds by typing a “Q”. 

Code conversion is not the only application of a table look-up 
routine. We can also use this method to process data arrays. For ex- 
ample, we could input up to 256 bytes of data in say, page 7, ie., 
0700H to O7FFH. The X-register could be loaded with a number up 
to FFH, and then be decremented sequentially until the X-register 
contains 00H. After each datum from 0700H-07FFH is fetched, it is 

processed and another datum is fetched (see Figure 5-10). 
The system shown in Figure 5-10 is an supersimplified “evoked 

potentials” computer. In evoked potentials studies, a stimulus (e.g., 
light flash) is applied to the subject repeatedly. By averaging the EEG 
(brainwave) signal in a time-coherent manner, we can eliminate the 
randomness and lull out only that portion of the signal which is due 
to the stimulus. The idea is to average or sum the data occurring at 
the same interval after the stimulus with each other. Thus, we must 
average all S+10 ms data together, all S+11 ms data together, S+12 
ms, S+13 ms, etc., to 500-1000 ms. The system shown in Figure 5-10 

is to average all sequential data at the same post-stimulus instant (for 
example, $+ 100 ms). The operation is: 

1. Analog data is continuously acquired and converted (A/D) to 
a representative binary 8-bit word and is input to the com- 
puter. 
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EEG 
Amplifier 

Victim Input 256-Bytes 
of Data and 

Store in Page-7 

LDX #FF 

0700, X 

D 

Averaging 
Subroutine 

Figure 5-10. Hypothetical evoked potentials application example 

WN GO 

. An array of 256 samples of S+ 100 ms data are input and stored 
sequentially in 0700H to O7FFH. 

. The index register X is loaded with #FFH. 

. Data is fetched from 07FFH and stored in the accumulator. 

. The X-register is decremented by 1, becoming 
FFH—1H=FEH. 

. Data in the accumulator is used in an averaging subroutine. 

. The X-register is checked for 0 (BNE instruction used). 

. Since X # 0, the program branches back to pick up data from 
O7FFH—1H, or O0O7FEH. This looping continues until all data 
is processed, as indicated by X = 0 condition. 

X = 0, so program is ended. 
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ZERO PAGE INDEXED (X AND Y) ADDRESSING 
MODE 

Zero page indexed addressing is a subset of indexed addressing that 
uses a 2-byte instruction to designate locations in page 0 (i.e., 0000 to 
OOFFH). The effective address is calculated by adding the contents of 
either the X or Y index register to a base location specified by the 
second byte of the instruction. The form of the instruction is: 

Byte 1 op-code 

Byte 2 nn (page 0 base address) 

The actual effective address will be either: 

0OnnH + X (e.g., LDA nn,X) 

or, 

0OnnH + Y (e.g., LDA nn,Y) 

depending upon which index register is specified by the op-code. For 
example, suppose we encounter LDA 50, X when the contents of the 
X-register are OAH. The effective address is: 

0OnnH + X 

0050H + OAH = 005AH 

Like its cousin, the zero page indexed addressing mode is par- 
ticularly useful for lists, arrays, and tables. 

INDIRECT INDEXED ADDRESSING MODE 

This addressing mode combines the indirect with the indexed mode. 
In this mode, the effective address is calculated from the contents of 

a location in page zero that is pointed to by an indirect zero page 
instruction. The form is: 

Byte 1 op-code 

Byte 2 nn (page zero address) 

The operand (nn) is a location in page zero where the low-order 
byte of the indirect address is stored; the high-order byte is stored at 
the next higher location. For example, LDA (40), X means that the 
low-order byte is at 0040H and the high-order byte is at 0041H. 
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Consider the example in Figure 5-11. The flow is as follows: 

I. At 0200H the LDA (52), X” instruction is encountered. 

2. The program jumps to 0052H where it finds the address 
EFO5H. 

3. The indirect address EF05H is combined with the contents of 

the X-register to... 

4. Form the sum EF05H + 03H = EFO8H. 

5. The effective address is EF08H, so the processor goes to that 
location and fetches the contents (3AH). 

6. Since this is an LDA instruction, the contents (3AH) of EFO8H 
are stuffed into the accumulator. 

The technique of indirect indexing is called post indexing. 

@ 

LDA (nn), X 

X Register 

Accumulator 

apt 
Figure 5-11. Indirect indexed addressing mode example 
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INDEXED INDIRECT ADDRESSING MODE 

This method is related to indirect indexed addressing, except that the 
contents of the index register (X or Y) are added to the zero page 
address specified by the second byte of the instruction. The form is: 

Byte 1 op-code (e.g., LDA (nn,x) 
Byte 2 nn 

The effective address is the contents of memory location nn+X or 
nn+Y. This is usually written: 

(nn + X) 

and 

(nn + Y) 

The parentheses mean “the contents of. . .” the argument inside (_ ). 



6502 Status Flags 

The processor status register (PSR) is an 8-bit internal 6502 register 
which contains information concerning the results of previous opera- 
tions. Figure 6-1 shows the details of the PSR, which are summarized 
here. 

FLAGS 

Negative (N) Flag. The N-flag is used by the 6502 to indicate that 
the result of executing an instruction is negative. The value of the 

B7 B6 B5 B4 B3 B2 B1 BO 

Carry Flag (1 = True) 

Zero Flag (1 = Result Zero) 

Interrupt Disable Flag (1 = Disabled) 

Decimal Mode Flag (1 = True) 

Break Command Flag (1 = BRK) 

Overflow Flag (1 = True) 

Result Negative Flag (1 = NEG) 

Figure 6-1. 6502 Processor status register flags 
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N-flag is always equal to the value of the MSB (bit 7) in the accumulator. 
Thus, the N-flag can also be used in any operation which results in a 
change in bit 7. A common example is inputting the 7-bit ASCII data 
from a keyboard or other peripheral. In that case, bit 7 will be used 
as a strobe to let the computer know that new data are available. The 
N-flag can be used to record this fact. The following instructions affect 
the N-flag: 

ADC CPY EOR LDX PLP TAX 

AND CPX INC LDY ROL TAY 

ASL DEC INX LSR- ROR TSX 

BIT DEX INY ORA RTI TXA 

CMP DEY LDA PLA SBC TYA 

The N-flag cannot be directly affected by the user, but there are 
schemes which programmers can use to indirectly affect the N-flag. 
Since LDA, LDX, and LDY affect the N-flag, we can perform a dummy 
load operation whose only purpose is to set the N-flag. If, for example, 
the Y-register is not being used, then we can set N = 0 using “LDY, 
#00” or to N = 1 by using “LDY #80H.” If all three registers are 
being used, then we can temporarily store the contents of the selected 
register somewhere in page zero of memory, to be retrieved after the 
dummy load is completed. We must be sure that the restoration does 
not alter the N-flag. 

Overflow (V) Flag. The V-flag can be used in two ways by the 6502. 
First, it is used in signed binary arithmetic operations to indicate that 
the result could not be stored in the low-order 7 bits of the accumulator. 
Second, the V-flag is used with the BIT instruction. In that case, the 

V-flag is set to the value of B6 in the accumulator. The following 
instructions will affect the V-flag: 

For signed binary: ADC, SBC 

For other operations: BIT, CLV, PLP, and RTI 

Break Command (B) Flag. The B-flag will indicate whether an in- 
terrupt was the result of a BRK instruction or the result of an interrupt 
signal from the outside world. Only the BRK instruction affects the 
B-flag. The B-flag will be HIGH (i.e., B = 1) if a BRK is executed, and 
LOW (ie., B = 0) at all other times. 

Decimal Mode (D) Flag. The D-flag indicates whether the CPU is 
operating as a straight binary adder or as a binary coded decimal (BCD) 
adder. If the D-flag is set (i.e., D = 1), the D-flag is reset, and the 6502 
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CPU is in binary mode. The instructions which affect the D-flag are: 
SEO, CLD, RTI, and PLP. The SEO (set decimal mode) causes the 
D-flag to be directly set to 1; the CLD causes the D-flag to be directly 
reset to 0. 

Interrupt Disable (I) Flag. The I-flag is used to mask or permit the 
operation of the interrupt request (IRQ) line. If the I-flag is set (i.e., 
I = 1), then the 6502 will ignore interrupt requests on the IRQ line 
(Note: interrupt requests made on the NMI line are nonmaskable, so 
are not affected by the I-flag status). If, on the other hand, the I-flag 

is reset (I = 0) then the 6502 will honor interrupt requests. A low on 
IRQ will cause the 6502 to switch to the interrupt subroutine pointed 
to by interrupt vectors in page FFH. 

In normal operation, the I-flag will be set to I = 1 by operation 
of the 6502 reset (RES) line. Thus, when power is first applied, and a 
power-on reset pulse generated, the I-flag will be set. If the program- 
mer wishes to allow interrupts, then the program must clear the I-flag 
(i.e., reset to I = 0) using the CLI (clear interrupt) instruction. The 
I-flag is also reset to I = 0 by the PLP (pull processor status from stack) 
instruction and during an RTI (return from interrupt) if the I-flag was 
already zero prior to going to the interrupt subroutine. This latter 
condition is necessary because, otherwise, the program would have to 
re-execute the CLI instruction or be content with permitting only one 
interrupt. 

Zero (Z) Flag. The Z-flag is used to indicate whether the result of 
the previous instruction was either zero or non-zero. If the result is 
zero (OOH), then the Z-flag is 1; if the result is anything other than 
00H, then the Z-flag is 0. The main use for the Z-flag is in the test- 
and-branch operations, most often involving the BNE (branch on result 
not equal zero) and BEQ (branch on result equal zero) instructions. 
Note that the Z-flag is not affected during decimal mode (D-flag = 1) 
additions (ADC) or subtractions (SBC). The following instructions can 
affect the Z-flag: 

ADC CPY EOR LDX PLP TAX 

AND CPX INC LDY ROL TAY 

ASL DEC INX LSR- ROR TXA 

BIT DEX INY ORA RTI TSX 

CMP DEY LDA PLA SBC TYA 

The programmer cannot directly affect the Z-flag, but there are 
schemes by which the programmer can indirectly cause the Z-flag to 
be set or reset. We can use LDA, LDX, or LDY to load one of the 
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registers with 00H if we want Z = 1, or any other number (except 
OOH) if we want Z = 0. If the register is in use, then temporarily 
transfer the contents to a location in page zero. As with the N-flag, 
however, one must be careful not to affect the Z-flag when data are 
recovered. 

Carry (C) Flag. The C-flag is used to indicate a carry or borrow 
situation resulting from an arithmetic operation. In some cases (the 
shift/rotate instructions), the C-flag becomes a ninth bit in the accu- 
mulator. Instructions affecting the C-flag are: 

ADC PLP 

ASL ROL 

CLC ROR 

CMP RTI 

CPX SBC 

CPY SEC 

LSR 

The carry flag can be set (C = 1) by SEC, and reset (C = 0) by 
CLC. Sometimes, when arithmetic or logical operations do not produce 
the expected result, a little investigation reveals that the C-flag had 
been set on a previous operation and will therefore affect the current 
result. In that case, a CLC is executed to clear the carry flag. 

MANIPULATING PSR 

Two instructions will help us manipulate the processor status register 
(PSR) flags: PHP and PLP. The PHP instruction pushes the contents 
of the PSR onto the stack indicated by the 6502 Stack Pointer (SP) 
register. The PLP reverses the order, and pulls the next value off the 
stack and places it in the PSR. The effect of PLP can be profound, 
especially if the stack is used again after PHP. Be careful! 
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Instruction Set 

The 6502 instruction set is not as extensive as, say, the Z-80™ instruc- 

tion set, but is sufficiently flexible to permit al] functions expected of 
a microprocessor. In this chapter we will discuss the instructions gen- 
erally, leaving specific details for the tables in Chapter 16. 

INSTRUCTIONS 

An instruction tells the computer what operation is to be performed. 
To the computer, these instructions are binary numbers (sometimes 

written as a 2-digit hexadecimal number) stored in memory. These 
instructions look like all other binary numbers in memory. The way 
the computer knows that a given number is an instruction, rather than 
a data word or alphanumeric character representation, is that it is 
fetched during an instruction fetch machine cycle. For example, sup- 
pose the 6502 encounters 69H (01101001,) at some memory location 
specified by the program counter. This same pattern could be binary 
for the base-10 number 105,,, or the ASCII character i, or the instruc- 
tion ADC, immediate. It is the job of the programmer to ensure that 
binary numbers at any location are necessary. 

Instructions, then, are binary codes which tell the computer what 
to do, i.e., what operation must be carried out. 

For the convenience of programmers, each instruction is given 

a descriptive mnemonic. When we see the mnemonic ADC, #nn, we 

know immediately what is meant, whereas 69H could be quite mean- 
ingless without a look-up chart of instructions sorted by op-code. 
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6502 INSTRUCTIONS 

The 6502 instruction set is broken into three main categories: Group- 
I, Group-II, and Group-III. The Group-I instructions tend to be the 
most flexible, and have the most addressing modes. Examples of Group- 
I instructions include load, add, and store. The Group-I instructions 
include: 

ADC. Add with carry 

AND Logical-AND 

CMP Compare 

EOR  Exclusive-OR 

LDA _ Load Accumulator 

ORA Logical-OR 

SBC Subtract with borrow 

STA Store Accumulator 

All of the Group-I instructions respond to the following addressing 
modes: 

Immediate 

Zero Page 
Zero Page, X 
Absolute 

Absolute Indexed, X 
Absolute Indexed, Y 
Indexed Indirect 

Indirect Indexed 

Group-II instructions are those such as shift, increment register, 

decrement register, and the register-X movement instruction. Group-II 

is broken into two subgroups which we will call Group-IIa and Group- 
IIb. The instructions in Group-IIa are the shift and rotate instructions. 

LSR Shift Right 

ASL _ Shift Left 

ROL Rotate Left 

ROR Rotate Right 

Group-IIb instructions include the following: 

INC Increment 

DEC Decrement 



Group-| Instructions 69 

LDX _ Load-X 

STX Store-X 

The available addressing modes for Group-II instructions include: 

Zero Page 

Zero Page, X 

Absolute 

Absolute Indexed, X 

Accumulator 

Group-III instructions are all of those which do not fall into either 
Group-I or Group-II, including stack operations, Register-Y operations, 
and X-Y compares. 

In the rest of this chapter we will consider the instructions, their 
operation, and the associated mnemonics. Much of the information 
here will be repeated in Chapter 16 where we will tabulate the in- 
formation, as well as giving the op-codes in hexadecimal, binary, and 
octal forms. 

GROUP-I| INSTRUCTIONS 

The Group-I instructions include ADC, AND, CMP, EOR, LDA, ORA, 
SBC, and STA. We will consider these instructions according to the 
following functional groups: 

1. LOAD and STORE. 
2. ARITHMETIC. 

3. LOGICAL. 
4. COMPARE. 

Similar functional groups will be found in the Group-II and Group- 
III categories (for example, LDA is very similar to LDX and LDY, 
despite being in different groups). 

Load and Store Instructions (LDA and STA) 

The load and store instructions refer to data in the accumulator or A- 
register, and their movement to and from memory. A load instruction 
moves data from a memory location to the accumulator. The mne- 
monic for the load instruction is LDA, or LoaD Accumulator. When 

an LDA instruction is executed, the result is that some datum will be 

placed in the accumulator either directly or by transfer from some 
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designated memory location. Let’s step through the operation of the 
various LDA instructions in the various addressing modes. 

LDA #nn (Immediate). This instruction uses the immediate address- 
ing mode, and is a 2-byte instruction. The first byte will be the op- 
code (A 9H), while the second byte is the number which will be placed 
in the accumulator. Thus, when the following is encountered: 

A9H 

34H 

the 6502 will load the accumulator with the hexadecimal number 34H 

(see Figure 7-1). In most assembly language formats, the above instruc- 
tion would be written LDA #34. 

LDA nn (Zero Page.) The zero page version of LDA is a 2-byte 
instruction that will operate only on locations in page zero, i.e., the 
256 bytes from 0000H to OOFFH. The first byte of the instruction is 
the op-code (A5H), while the second byte defines the address in page 
zero where the data to be loaded will be found. For example, suppose 
the program encounters the following instruction: 

ASH 

52H 

The op-code A5H tells the 6502 to load the accumulator with page 
zero data found at location 0052H. Figure 7-2 shows the operation of 
this instruction. The action is: 

1. While executing the program the LDA (52H) instruction is 
encountered. 

2. The 6502 goes to memory location 0052H, where it finds data 
67H. 

Accumulator 

© [iowons | 

(1) 0200 = ASH ~—sLDA #nn 
0201 34H nn 

0262 (Next Instruction) 

Figure 7-1. LOAD-immediate (LDA #nn) instruction 
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Accumulator 

© 
6 

GQ) 0200 ASH © 

0952 67H 

Figure 7-2. LOAD-zero page instruction 

3. The data from 0052H (i.e., the number 67H) is loaded into the 
accumulator. 

LDA nn,X (Zero Page, X)._ This instruction has a bit more flexibility 
than simple zero page addressing. For the LDA nn,X instruction, the 
effective address of the page zero address where the data are found 
is computed by adding the contents of the X-register in the 6502 to 
the second byte of the instruction. 

For example, assume that the X-register contains 03H when the 
following instruction is encountered: 

Byte 1 BS5H (LDA nn,X) 

Byte 2 50H nn 

The 6502 will compute the zero page address by adding byte 2 
to the contents of the X-register: 

nn+x= 

50H + 03H 

53H 

Thus, the 6502 will load into the accumulator the data stored in 

zero page loation 0053H. 

LDA nnnn (Absolute Addressing). The 3-byte absolute LDA loads the 
accumulator with the data stored in the two bytes that follow the op- 
code. 
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Byte 1 ADH (LDA,nnnn) 

Byte 2 Low-order address byte 

Byte 3 High-order address byte 

Suppose we encounter the code: 

Byte 1 ADH _ op-code LDA 

Byte 2 53H nn 

Byte 3 OFH nn 

The 6502 will load the accumulator with the contents of the 

memory location specified by (byte 3) + (byte 2), which in this case 
is OF53H. 

LDA nnnn,X (Absolute,X). The absolute-X mode LDA instruction 
uses three consecutive bytes to designate an address defined by the 
sum of the contents of the X-register and the absolute address given 
in bytes 2 and 3 of the code. For example, assume that the X-register 
contains the number 05H when the following code is encountered 
during program execution: 

Byte 1 BDH LDA nnnn,X 

Byte 2 OOH nn 

Byte 3 OEH nn 

The absolute address is defined by (byte 3) + (byte 2), so is OEOOH. 
Since BD is the hexadecimal op-code for LDA nnnn,X, the actual 

address is O0EOOH + X, or O0EOOH + 05H, which is OEO5H. 

The LDA nnnn,X instruction is particularly useful for accessing 
look-up tables. In the example here, we could store a 256-element 
table from OEOOH to OEFFH, and either step through the table or 
access specific data by manipulating the data in the X-register. This 
type of strategy is used in programs such as code conversion (e.g., 

ASCII to Baudot) or in the linearization of transducer or instrumen- 
tation data. 

LDA nnnn,Y (Absolute Y). The Absolute-Y LDA instruction is the 
same as the Absolute-X LDA instruction, except that the effective 
address is computed by adding the contents of the Y-register to the 
absolute address specified by the second and third bytes of the code. 

Address = (Byte 3 + Byte 2) + Y 

For example if the contents of the Y-register in the 6502 are EAH, 
and the following code is encountered: 
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Byte 1 B9H LDA nnnn, Y 

Byte 2 00H nn 

Byte 3 02H nn 

the effective address is computed as 0200H + EAH, or 02EAH. The 
uses of the Absolute-Y LDA instruction are the same as the Absolute- 

X LDA instruction. 

LDA (nn,X) Indirect, X. The indirect indexed LDA instruction com- 
bines the indirect and indexed addressing modes in a technique called 
pre-indexing. The effective address of the data to be stored in the 
accumulator is stored in two successive locations in page zero. An 

indirect indexed instruction is a 2-byte instruction and uses the X- 
register. The page zero address containing the low-order byte of the 
effective address is computed by adding the second byte of the in- 
struction to the contents of the X-register. 

Figure 7-3 shows an example of how the /ndirect, X instruction 

Main Program 
X Register 

@200H — 

@201H AIH 

0202H 55H 
0203H 

Accumulator 

Figure 7-3. Operation of an Indirect-X instruction (pre-indexing technique) 
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operates. The contents of the X-register are 2FH, and the 6502 is 

executing a program in page two when, at 0201H, it encounters: 

Byte 1 Al1H LDA (nn,X) 
Byte 2 55H nn 

The 6502 interprets “A1H” as the LDA (nn,X) instruction, so the 
following sequence (see Figure 7-3) takes place: 

1. The LDA (55,X) instruction is fetched and decoded. 

2. The 6502 adds together byte 2 of the instruction (55H) and 
the contents of the X-register (2FH) to obtain a result of: 

55H + 2FH = 84H 

3. Step 2 tells the 6502 that the low-order byte of the effective 
address of the data to be loaded into the accumulator will be 
found at location 0084H in page zero; the high-order byte of 
the effective address is stored at the next sequential location 
(0084H + 01H), which is 0085H. 

4, The address stored at 0084H and 0085H is EF22H, so the 
program counter of the 6502 will be loaded with EF22H. 

5. The contents of memory location EF22H (26H) are stored in 
the accumulator. 

LDA (nn), Y Indirect, Y. The Jndirect, Y LDA instruction is similar to 
Indirect, X but uses post-indexing rather than pre-indexing. Whereas 
pre-indexed addressing involves indexed indirect addressing, the post- 
indexing method uses indirect indexed addressing. Sound confusing? 
Well, Figure 7-4 may help a little. You may wish to reexamine Figure 
7-3 after you read the description below, and compare these two similar 
LDA modes. The Y-register contains the hexadecimal number ACH, 
and the main program is executing instructions in page two when the 
following is encountered: 

Byte 1 0201H BIH LDA (nn), Y 
Byte 2 0202H 4CH nn 

The 6502 interprets this code as an LDA (4CH), Y instruction, so 
the following operations take place: 

1. The LDA (4CH), Y instruction is encountered and decoded, 

telling the 6502 that the indirect address is stored in locations 
004CH (low-order byte) and 004DH (high-order byte) of page 
Zero. 
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Main Program 
Y Register 

0200H  — 
CQ) 9201H_ BIH 

0202H 4CH 
0203H  — 

@C41H + ACH 

©) Accumulator 

Figure 7-4. Operation of an Indirect-Y instruction (post-indexing technique) 

2. The 6502 goes to 004CH and 004DH and finds address 0C41H. 
This is not the effective address, but must be added to the 

contents of the Y-register. 

3. The indirect address (0C41H) is added to the contents of the 
Y-register (ACH) to yield the actual effective address: 

0C41H + ACH = 0CEDH 

4. The address OCEDH is loaded into the 6502 program counter. 

5. The contents of memory location OCEDH (34H) are loaded 
into the accumulator. 

Summary of LDA. All versions of the LDA instruction have the effect 
of fetching data from some point in memory and storing it in the 
accumulator of the 6502. In some cases, discovering the location of the 
actual data is complex (as in Indirect,X or Y), while in others it is very 
simple, e.g., in the LDA, Immediate instruction. In all cases, however, 

the end result is that data from some specified or computed location 
in memory wind up in the accumulator. 

Note: This data transfer is nondestructive! If we execute an LDA 
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nnnn (Absolute) instruction, we will copy the data at the location spec- 
ified by nnnn into the accumulator. Following execution of this in- 
struction, the same data will appear at both locations, i.e., nnnn and 
the accumulator. Figure 7-5 shows the situation for both pre- and post- 
execution of an instruction. 

The STA instructions are exactly the opposite of LDA. Whereas 
the LDA instruction will cause data to be loaded into the accumulator, 

the STA causes data to be copied from the accumulator to some spec- 
ified location in memory. Once again, we find the operation is non- 
destructive. In other words, if an instruction causes data to be 
transferred from the accumulator to some memory location, then after 

O@200H — 

*$201H LDAnnnn 

0202H 8CH 
0203H FH } address @FBCH 

0204H 

Accumulator 

eo (Old Data) 
4CH -— 

@FBDH 

* = Instruction being Executed 

(A) 

0200H 

0201H LOAnnnn 

9202H BCH 
0203H FH } dress OFBCH 

*@204H — 

OFBAH Accumulator 

OFeBH Pac 
@FBCH 4C 

@FBDH 
Same Data at 
Both Places 

* = Instruction being Executed 

(B) 

Figure 7-5. Status A) pre-execution and B) post-execution shows the non- 
destructive nature of data transfer 
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execution of this instruction the data will appear in both the accu- 
mulator and the designated memory location. 

The STA instructions use all of the addressing modes of the LDA, 
except for the immediate addressing mode (which would be illogical 
for STA since “STA” stands for Store Accumulator). It will serve little 
purpose to reiterate the lengthy descriptions of instruction action as 
given above for LDA, because the only difference is the direction of 
data transfer with respect to the accumulator. 

The STA and LDA instructions are frequently used together, 
especially in computer I/O operations. For example, one popular 6502- 
based microcomputer memory maps an input port at location A001H. 
Suppose we want to input this data and then save it by storing it in 
some location in memory. This may be necessary (in fact, it usually is!) 
because some subsequent instruction may alter the contents of the 
accumulator where the input data from the port is at AO0O1H and store 
it at location EFO5H. A typical program fragment to accomplish this 
trick would be: 

Mnemonic Code_ Comment 

LDA (A001) ADH _ Load accumulator with contents 
nn-low 01H of location A001H 
nn-high AOH 
STA (EFO5H) 8DH Store contents of accumulator at 
nn-low 05H EFOSH 
nn-high EFH 

We might also use STA and LDA in conjunction with each other 
to temporarily store accumulator data which will be used again. A brief 
example is: 

I. LDA (A001H0). 

2. STA (0050H). 

3. (Other programming). 

4. LDA (0050H). 

o. (Other programming using retrieved data). 

In step 1 we loaded data into the accumulator from our input 
port at location A001H. During step 2 that data was temporarily stored 
at location 0050H in page zero. Step 3 has the 6502 doing other things 
for awhile, a phase which might take from one to any number of 
instructions. Step 4 has the data stored in 0050H retrieved by reloading 
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it into the accumulator. Step 5 shows the program continuing, using 
the retrieved data. 

The STA instructions affect none of the PSR flags. However, the 
LDA affects the N-flag to indicate whether the loaded data are negative 
(N = HIGH) or positive (N = LOW). The Z-flag is also affected by 
LDA and indicates whether the loaded data is zero (Z = HIGH) or 
non-zero (z = LOW). 

Arithmetic Instructions (ADC and SBC) 

The arithmetic instructions form another subset of the Group-I instruc- 
tion block. Computers are really dumb devices because all they can 
do is add and subtract. Even when subtracting, the computer is really 
using addition, but fools the computer into thinking it’s adding instead 
of subtracting by making the subtrahend a two’s complement equiv- 
alent of the number being subtracted. Multiplication and division are 
handled using either software algorithms or specialized external hard- 
ware. The 6502 has the add-with-carry (ADC) and subtract-with-carry 
(SBC) instructions. 

The ADC instruction will add the contents of the accumulator to 
data specified by the instruction. All eight Group-I addressing modes 
are allowable for ADC. Let’s consider the rules for binary arithmetic: 

0+0=0 

0+1=1 

1+0=1 

1+ 1 = 0 Carry-1 

A simple example follows: Add the binary numbers 10000101, (i-e., 
85H) and 10011001, (i.e., 99H): 

1 

10000101 

10011001 

(Carry-1)00011110 

The answer is 00011110, (IEH) plus a carry-1. On the 6502, the 
accumulator would contain 1EH and the carry flag (C) would be set 
to equal HIGH or 1 following this operation. Note: if you have a hexa- 
decimal calculator, such as the TI Programmer, the display will read 
“11E” (hex). 

The immediate addressing mode is a 2-byte instruction that will 
add the contents of the accumulator with the data in the second byte 
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of the instruction, and then store the result in the accumulator. For 

example, suppose the accumulator contains 3FH when the following 
instruction is encountered: 

Byte 1 69H ADC #nn 
Byte 2 24H nn 

Since 69H is the op-code for the ADC, immediate instruction, 
and the accumulator contents are 3FH, the following addition takes 
place: 

3FH (accumulator data) 
+24H (Byte 2 data) 
63H (answer stored in accumulator) 

In the above example, the carry flag would be reset (C = LOW). 
The other seven addressing modes allowed the ADC instruction 

will add to the contents of the accumulator data retrieved from mem- 
ory in the manner defined by the protocol for the specific addressing 
mode. 

The symbolic notation for the ADC instruction is: 

A+M+C A 

which means, “The contents of the accumulator are added to data 

retrieved from memory (M) and the carry flag (C).” The carry flag may 
be set prior to the addition operation, and remains set when new 
instructions are encountered. Let’s look at an example of how this 
could affect an addition problem. If we add 5FH and 42H, the answer 
should be AlH. But suppose the carry flag had been previously set 
(C = 1) by another operation? Although you might believe that the 
problem being worked is: 

5FH + 42H = AlH 

the actual problem is: 

5FH + 42H = 01H = A2H 

The solution will be in error because the programmer failed to account 
for the 01H represented by the carry flag. The answer is to clear the 
carry flag (i.e., make C = 0) prior to the addition. For example, suppose 
we do not want the C-flag to affect an addition such as above, we could 
write the following (assume 5FH is the accumulator data): 
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CLC Clear carry flag 

ADC #42H Add #42H to accumulator data 

Since the carry flag was cleared prior to the ADC #42H instruc- 
tion, the result will be the desired AlH. 

The subtraction with carry (SBC) instruction is actually a sub- 
traction with BORROW, if we use mathematically correct terminology. 
The symbolic operation for SBC is: 

A-M-C-A 

This notation says that the value fetched from memory (M) and 
the complement of the carry flag (C) is subtracted from the contents 
of the accumulator, and the result is stored in the accumulator. Note 

that the carry flag will be set (HIGH) if a result is equal to or greater 
than zero, and reset (LOW) if the results are less than zero, i.e., 
negative. 

The SBC instruction has all eight Group-I addressing modes avail- 
able, as was also true of ADC. 

The SBC instruction affects the following PSR flags: negative (N), 
zero (Z), carry (C), and overflow (V). The N-flag indicates a negative 
result and will be HIGH; the Z-flag is HIGH if the result of the SBC 
instruction is zero and LOW otherwise; the overflow flag (V) is HIGH 
when the result exceeds the values 7FH (+127,,.) and 80H with 
C = 1 (ie, —128,,). 

The 6502 manufacturer recommends for single-precision (i.e., 8 
bit) subtracts that the programmer ensure that the carry flag is set 
prior to the SBC operation to be sure that true two’s complement 
arithmetic takes place. We can set the carry flag by executing the SEC 
(set carry flag) instruction. 

The rules for binary subtraction are: 

0-0=0 
0-1=0 Carry-1 
1-0=1 
1-1=0 

The SBC instruction complements the ADC instruction and is 
used in arithmetic operations. The one additional instruction used in 
arithmetic operations is the set decimal mode instruction that permits 
binary coded decimal (BCD) arithmetic. But since it is not a Group-I 
instruction, it will be discussed elsewhere. 
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Logical Instructions (AND, ORA, and EOR) 

The 6502 microprocessor can perform three logical functions: AND, 
OR (ORA), and the exclusive-OR (EOR). The 6502, as with other mi- 
croprocessor chips, performs these operations on multibit binary words 
on a bit-by-bit basis. In other words, the results of a logical operation 
on one pair of bits (e.g., bO and a0) will not affect operations on the 
next higher (e.g., bl and al) or lower order bit. 

The logical-AND operation obeys the following rules: 

0 AND 0 =0 

0 AND 1=0 

1 AND 0 = 0 

1 AND 1= 1 

A fact worth remembering for the AND operation is that the 
result is always LOW (0) unless both bits are HIGH (1). We use this 
fact in bit making operations. For example, we often tell whether or 
not a 7-bit ASCII keyboard is sending new data by applying the strobe 
bit to bit 7 of an input port. We could mask all bits except bit 7 and 
test for non-zero. The ASCII for the character “M” is 4 DH, which in 

7-bit binary notation is 1001101,, or if a strobe (data valid) bit is added 
at bit 7, the code becomes 11001101, (CDH). To test this data for 
validity, we could AND CDH with 80H. Here it is shown in binary to 
illustrate the principle: 

11001101 

AND 10000000 
10000000 

This is for the data valid condition—the result is non-zero and that is 

testable, or, for the data-not-valid condition, when bit 7 is LOW: 

01001 01001 

AND 10000000 
00000000 

the result is zero. 
The 6502 AND instruction performs on a bit-by-bit basis, stores 

the result in the accumulator, and enjoys all eight Group-I addressing 
modes. The AND instruction affects the N-flag and Z-flag. 

The logical-OR instruction (ORA) is the complement of the AND 
instruction. Whereas the result of the AND instruction was true (1) 
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only when both bits are true, the OR will be true when either or both 
bits are true: 

0OR0 = 

0OR1 = 

1 OR 0 

1OR1 = — ot OSS 

Again, the operation is performed on a bit-by-bit basis in the 
6502, so no operation between bits of any order will affect operation 
of ORA command and on any other set of bits. 

The ORA instruction affects the N-flag and Z-flag. The N-flag will 
be HIGH if bit 7 of the result is HIGH, and low otherwise. The Z-flag 
will be HIGH if the result is zero, and LOW if the result is non-zero. 

Exclusive-OR (EOR) instruction is interesting. The result is true 
(1) if either bit is true, but not if both bits are true. The rules for the 
exclusive-OR are: 

0 XOR 0 = 0 

0XOR1=1 

1 XORO = 1 

1 XOR 1 = 0 

Note that any time the two bits are the same (both 0 or both 1), the 
result will be 0. The Logical Exclusive-OR function is called “XOR” 
in digital electronics texts, but the 6502 Exclusive-OR instruction is 
EOR. 

The EOR instruction can use all eight Group-I addressing modes, 
and will affect the N-flag and Z-flag. 

EOR is used in arithmetic operations and others, but one use is 
complementing the accumulator. This is done by using the EOR in- 
struction in the immediate addressing mode will all one’s; for example, 
B1H XOR FFH (using binary notation for illustration): 

10110001 

XOR]J1111111 
01001110 

Some single-board computers used as OEM boards, or for indus- 
trial control applications, use inverters on the input and output ports— 
a design feature considered ill-advised by some engineers. On those 
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machines, we need to use the EOR #FF instruction to complement 

data on all I/O operations. 

Compare Instructions (CMP) 

The compare (CMP) instruction compares data fetched from memory 
with data stored in the accumulator without altering the data in the 
accumulator. CMP can use all eight Group-I addressing modes, and 
three of the PSR flags: C, N, and Z. The use of the flags is different 
for this instruction than for others, and operates as follows: 

1. C-flag is set HIGH (1) when the value in memory is Jess than 
the value in the accumulator, and is reset LOW (0) when the 
value in memory is greater than the value in the accumulator. 

2. N-flag is set HIGH (1) or reset LOW (0) according to the result 
of bit 7. 

3. Z-flag is set HIGH (1) on equal comparison, reset for unequal 
comparison. 

The compare instruction can be used for several applications, but 
one quoted in most of the textbooks determines which peripheral is 
using the interrupt capability of the 6502 to gain the attention of the 
processor. We can have each peripheral input a unique code, and then 
have the interrupt subroutine compare this code in the accumulator 
with several constants. By monitoring the Z-flag for “equal compari- 
son” status, we can tell which device demands service. 

GROUP-II INSTRUCTIONS 

The Group-II instructions are used primarily for data manipulation and 
arithmetic applications. This group contains the decrement, increment, 

rotate, shift, and the load/store instructions for the X-register. Group- 
II is broken into two subgroups called Group-IIa and IIb. The former 
group contains the shift and rotate instructions, while the latter con- 
tains the increment, decrement, plus load/store register-X instructions. 

Certain Group-II instructions use the so-called “accumulator” ad- 
dressing mode in which the data used for the operand are the accu- 
mulator data. The “‘accumulator” addressing mode is, therefore, a 

special case of implied addressing. 
The shift instructions are used to shift data in the accumulator 

either to the left (ASL) or right (LSR). Both forms of shift instruction 
use the following addressing modes: accumulator, zero page, zero page 
X, absolute, and absolute X. 
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The arithmetic shift left (ASL) instruction will shift the data in 
either the accumulator or the indicated memory location one position 
left every time it is executed; bit 7 will be transferred to the carry 
flag, and a 0 is stored in bit 0. This operation is shown pictorially in 
Figure 7-6A. 

An example using the accumulator addressing mode is shown in 
Figures 7-6B and 7-6C. The initial condition is shown in Figure 7-6B. 
.The data word D3H (1101001,) is stored in the accumulator, and the 
“state of the C-flag is irrelevant. Following execution of the ASL in- 
struction, a 0 has been entered into the bit 0 position, and bit 7 has 
been moved to the C-flag. The accumulator data is not A6H 
(10100110,), and the carry flag is set. 

The branch on carry clear and branch on carry set instructions 
in Group-III can be used to alter program direction after each shift 
according to the condition of the C-flag. These branch instructions will 
be discussed with other Group-III instructions. 

In addition to the C-flag (which always takes on the previous 
value of bit 7), the ASL instruction also affects the Z- and N-flags. The 
Z-flag is set (1 or HIGH) if the result of the shift produces a zero result. 
While this condition could occur at any time if the correct data were 

Carry Accumulator or 

Flag Designated Memory Location 

[87 |+—|87| 86] 85/84 /63| 82/51] 80|~— 0 
(A) 

C-Filag Accumulator 

Xx 110160 0601 ~«1 

Before ASL Execution 

X = Doesn't Care 

(B) 

C-Flag Accumulator 

1+~19019090116 ~——9 

After ASL Execution 

(C) 

Figure 7-6. Operation of the Arithmetic Shift Left (ASL) instruction A) op- 
eration, B) status before execution, C) status after execution 
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present, it will always occur on the eighth shift of the same data because 
we have been entering zeros into bit 0 each time execution occurs. 
After this operation occurs eight times, all bits will be zero. The N- 
flag will take on a value that is determined by the condition of bit 7 
following execution. Since bit 6 is shifted to the bit 7 position, the N- 
flag is set according to the previous value of bit 6. If the result bit 7 
is 1, then N = 1; if result bit-7 is 0, then N = 0. 

Accumulator mode instructions operate on data in the accumu- 
lator, while the other addressing modes will modify memory location 
data without affecting other registers in the 6502. 

The logical shift right, or LSR, instruction is similar to, but exactly 
the opposite of, ASL. The LSR instruction shifts data to the right, rather 
than the left. In execution of LSR, bit 0 is stored in the C-flag and a 
zero is entered into the bit 7 position. 

Two principal uses for ASL and LSR instructions are in multi- 
plication/division arithmetic operations, a parallel-to-serial data con- 
version (serial-to-parallel conversion is also possible, but is more 
involved). We gain the arithmetic capability because each left shift 
(ASL) will multiply the data by two, while each right shift divides the 
data by two. 

The rotate left (ROL) and rotate right (ROR) instructions are 
similar to the shift instructions, except that data are recirculated back 
into the accumulator or memory location addressed by the instruction. 
In both cases, data are shifted one bit position left or right according 
to which rotate instruction is being executed. The difference between 
rotate and shift instructions is illustrated by the following: 

I. ROR (rotate right). Each bit is shifted one bit to the right, the 
contents of the C-flag are shifted into bit 7, and bit 0 is shifted 
to the C-flag. Thus, after nine shifts, the contents of the ac- 
cumulator (or designated memory location) will be exactly the 
same as before, as will be the C-flag. 

2. The ROL (rotate left) instruction works exactly the opposite 
of ROR: bit 7 goes to the C-flag and the C-flag goes to bit 0. 

The rotate instructions have uses similar to the shift instructions, 
but the data can be recirculated back into the accumulator (or memory 
location); thus the operation is nondestructive of data. 

The Group-IIb instructions are: Increment (INC), Decrement 
(DEC), load X (LDX), and store X (STX). The DEC and INC instructions 
are used for addressing modes: zero page, zero:page X, Absolute, and 
Absolute X. The LDX and STC instructions recognize these same four 
addressing modes plus the immediate addressing mode. 
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The INC affects a designated memory location, and will increase 
the value of the data word at that location by 1. In other words, the 
operation is: 

M+1-M 

The increment INC instruction does not affect the accumulator, 
but does affect the N and Z-flags. The N-flag will be 1 when bit 7 of 
the result after execution of INC is 1, and 0 if bit 7 is 0. The Z-flag 
will be 1 when the result is zero (e.g., where FFH + 1 = 00H), and 
0 if the result is non-zero. 

The DEC instruction is exactly the opposite of the INC instruc- 
tion. DEC causes the contents of the designated memory location to 
be reduced by one, or symbolically: 

M-1-M 

The N and Z-flags are affected in exactly the same manner as in 
INC. 

The LDX (load X-register) and STX (store X-register contents in 
a designated memory location) are analogous to LDA and STA dis- 
cussed earlier. The LDX uses the following addressing modes: im- 
mediate, zero page, zero page X, Absolute, and Absolute X. 
Symbolically, the operation is: 

M-> X 

In other words, a data word from memory is loaded into the 6502 
internal X-register. The N and Z-flags are set according to the result, 
i.e., the value of the data word stored in the X-register. 

The STX (store X) instruction has the effect of storing the contents 
of the X-register at a designated memory location. Only the zero page, 
zero page Y, and Absolute addressing modes are permitted this in- 
struction. No PSR flags are affected by the STX instruction. 

Thus far we have discussed the Group-I and Group-I] instructions. 
The Group-IlI instructions include all other instructions in the 6502 
repertoire. 

GROUP-III INSTRUCTIONS 

The Group-III instructions include the following: 
BCC Branch on Carry Clear 
BCS Branch on Carry Set 
BEQ Branch on Result equal to Zero 
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BIT Bit Test 
BMI Branch on Result Minus 
BNE Branch on Result not equal Zero 
BPL Branch on Result Plus 
BRK Force Break 
BVC Branch on Overflow Clear 
BVS Branch on Overflow Set 
CLC Clear Carry Flag 
CLD Clear Decimal Mode 
CLI Clear Interrupt Disable Flag 
CLV Clear Overflow Flag 
CPX Compare Memory with X-register 
CPY Compare Memory with Y-register 
DEX Decrement X-register 
DEY Decrement Y-register 
INX Increment X-register 
INY Increment Y-register 
JMP Jump to New Memory Location 

JSR Jump to Subroutine 
LDY Load Y-register 
NOP No Operation 

PHA Push Accumulator on Stack 
PHP Push Processor Status from Stack 

RTI Return from Interrupt 
RTS Return from Subroutine 

SEC Set Carry Flag 
SED Set Decimal Mode 

SEI Set Interrupt Disable 
STY Store Y-register in Memory 
TAX Transfer Accumulator to X-register 
TAY Transfer Accumulator to Y-register 
TYA Transfer Y-register to Accumulator 
TSX Transfer Stack Pointer to X-register 
TXA Transfer X-register to Accumulator 
TXS Transfer X-register to Stack Pointer 

Let’s briefly describe these instructions and their operation. Chap- 
ter 16 contains op-codes and other details on instructions. 

BCC (Branch on Carry Clear). This instruction uses relative address- 
ing to branch forward and backward in the program if the carry flag 
is clear (0). BCC doesn’t affect the PSR flags. 

This instruction is the first of several branch instructions which 
we will consider. Since all use similar protocols regarding the direction 
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and distance of the relative addressed branch, we will cover BCC in 
detail but delete the detail in discussion of the other instructions. 
Previously, we did the same thing by covering all eight addressing 
modes for LDA, but not the Group-I instructions which followed. 

The BCC instruction tests the carry flag in the Processor Status 
Register (PSR) of the 6502. The C-flag can have only two states, set 
(1) or clear (0). If the C-flag is set, then the BCC instruction will not 
cause a branch. The program is said to “fall through” the BCC, which 
is jargon for the program will execute the next instruction in sequence, 
rather than branching. 

BCC is a 2-byte instruction with the mnemonic form “BCCnn,” 
where “nn” will specify the direction and distance of the branch. This 
instruction will be encountered in the form: 

Byte1 90H BCC nn 

Byte 2 nn 

Relative addressing means that the program will branch or 
“jump” to a location relative to the instruction. The 6502 will permit 

104 105 

120 121 

8 

9 

A 

8 

c 

D 

E 

F 

(8) 

Figure 7-7. A) forward branch table, B) backward branch table 
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branches of up to 127 spaces forward (+127,,), or 128 spaces backward 
(—128,,) as counted from the next instruction following BCC. Forward 
branches will use values for nn that are positive hexadecimal numbers, 
while backward branches will use the hexadecimal notation for the 
two’s complement representation of the negative number. Forward 
and backward hexadecimal codes are given in Figures 7-7A and 7-7B, 
respectively. 

Let’s look at three examples: a no-branch, a forward branch of 
+6, ., and a backward branch of —6, 9. Figure 7-8 shows the no-branch 
condition. 

Recall that BCC is branch on carry clear (C = 0). At location 
E003H the program encounters BCC 06H, so it goes to the C-flag to 
determine whether it is set (1) or reset (0). In this case, C = 1, so no 
branch will occur. 

The program “falls through” to execute the instruction at EO05H. 
The no-branch conditon may be the trivial case, but essentially it 
permits continued execution of a program unless some specified cri- 
terium (e.g., C = 0) is met. 

An example of a forward branch BCC instruction is shown in 
Figure 7-9. In this case the instruction is BCC 06H, which means that 
the program will jump six steps forward when the carry flag is zero. 

A fundamental error made by many beginning programmers in- 
volves the counting of the six steps. Counting begins at the location 
following the second byte of the instruction, since the instruction is at 
E003H and E005H, in the branch condition, the next instruction will 

be at E004H+ 06H, or EOOAH. In this example, the BCC 06H instruc- 
tion is encountered at E003H, so the 6502 checks the C-flag, finds that 

it is zero, and jumps six steps ahead to fetch the next instruction at 
EOOAH. 

Figure 7-8. Operation for the NO BRANCH condition 
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E003 BCC 06H } 

aonrhwhd = 

m s oO 

EQOA Next Inst 

Figure 7-9. Forward branch 

Figure 7-10 shows an example of a backward branch version of 
the BCC instruction. The relative branching distance is still six, but in 
this case it is —6. The two’s complement notation for —6 in hexa- 
decimal form is FAH, so the second byte will be FAH. Once again, 
the counting takes place from the location following the second byte. 
Since in Figure 7-10 the BCC FAH instruction is located at EO008H 
and E000H, EOOAH is the point where counting is referenced. Thus, 
six back from E0Q0QAH will be E004H. When the program encounters 
BCC FAH (BCC —06) at E008H, the 6502 tests the C-flag, finds it 
zero and transfers program control to E004H. 

Of course, in both forward and backward branch cases, the change 
in program control is implemented within the 6502 by altering the 
contents of the program counter register. 

E000 
E001 

EQ04 (Next Instruction) Flag 

=-=-N Wh 0 

mmm sss ~ o 
a 

E008 BCC FAH 
E09 FAH 
EQOA 
EQOB 

Figure 7-10. Backward branch 
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The —127,, to +128,,. locations’ range for the relative branch 

can be increased by having the instruction at the branch-to location 
be at jump instruction; for example. 

E001 BCC 06H 
E002 06H 
E003 
E004 
E005 
E006 
E007 
E008 JMP F008H 
E009 08H 
E00A FOH 

F008H 

In the case above, BCC 06H branches to E008H, where a JMP 
FO08H is found. Thus, this BCC 06H instruction causes a much larger 
branch, i.e., to FOO8H. The use of a JMP instruction, then, can make 
the range of any conditional branch instruction equal to the available 
memory. 

There is a bit of confusion among some new programmers re- 
garding the relative branch distance. In some cases, the distance is 
listed as +129 and — 126, while in others, the +127 and —128 figures 
are listed. The difference is merely a matter of where one starts mea- 
suring. The 129/126 protocol is from the current program counter 
contents, while the 127/128 figure is derived from counting from the 
next instruction following the conditional branch instruction. The dif- 
ference is due to the 2-byte instruction. If you add to lower figures 
you get the other figures: 

(+127) + (2) +129 
(—126) + (—2) = —128 

We will not discuss the rest of the conditional branch instructions 
in the detail of the BCC instruction because the branching protocols 
are the same. The branch conditions and flags affected will be discussed 
briefly. 

BCS (Branch on Carry Set). This instruction is the exact inverse of 

the BCC instruction. Branching occurs when the carry flag is set (1), 
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rather than reset. No flags are affected by the BCC instruction. The 
program counter (PC) will be affected only if C = 1. Addressing mode 
is relative. 

BEQ (Branch on Result Equal Zero). Branch occurs if the result of 

an operation is zero, i.e., if the zero flag is set (Z = 1). No flags are 
affected, and PC is affected only for Z = 1 (i.e., result is zero). Ad- 
dressing mode is relative. 

BIT (Bit-Test between Memory and Accumulator). A logical-AND is 

performed between the contents of the accumulator and the contents 
of a specified memory location. The result of the comparison is not 
stored in the accumulator, so the accumulator contents remain unaf- 

fected. The contents of the Processor Status Register (PSR) are affected 
as follows: 

I. N-flag is set to the value of bit 7 of the data in the selected 
location. 

2. V-flag is set to the value of bit 6 of the data in the selected 
memory location. 

3. Z-flag is set (Z = 1) if the result of the logical-AND is zero, 
and reset (Z = 0) if the result is non-zero. 

The BIT instruction uses only the zero page and Absolute ad- 
dressing modes. 

The BIT instruction performs a logical-AND between the accu- 
mulator and the contents of the designated memory location on a bit- 
by-bit basis. 

Recall that the result of a logical-AND will be 1 only if both bits 
are 1: 

0 AND 0 = 0 

0 AND 1=0 

1 AND 0 = 0 

1 AND 1=1 

Thus, we can test any of the 8 bits by manipulation of the data 
in the memory location. For example, suppose we want to test bit 4 
of the accumulator data. Suppose the accumulator data is 93H 
(10010011,) and we want to detect a 1 in bit 4. The operation of BIT 
is shown in Figure 7-11. In order to determine if bit 4 is 1, we AND 

10H from 00f1H with the contents of the accumulator. Since, in this 

case, the tested bit (b4) is 1, the result is non-zero, so the Z-flag is 0. 
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0950 
0051 19H 

24H Bit nn 

51H nn 

Accumulator 

bit-4 

10010011 

And 00010000 

Result 00010000 

Processor Status Register 

N Z2 CG 1 OD VV 

oo x x x @ 
X = Don’t Care 

Figure 7-11. Operation of the BIT instruction 

If bit 4 had been zero, then the result would have been zero, and the 

Z-flag would be set (Z = 1). Depending upon the desired result, a 
BEQ (branch on equal zero) instruction or a BNE (branch on not equal 
zero) instruction could be used to take action, depending on the result 
of BIT. 

BMI (Branch on Result Minus). This instruction causes a branch op- 
eration if the result of an operation is minus, as indicated by the N- 
flag being set (N = 1). The N-flag will be 1 when the result bit 7 is 1. 
No flags are affected, but the program counter will be affected if N 
= 1. The relative addressing mode is used. See BCC for other oper- 
ational details and examples. 

BNE (Branch on Result Not Equal to Zero). This instruction is the 

complement of BEQ. The branch will occur if the result of an operation 
is non-zero, as indicated by the Z-flag being reset (Z = 0). No flags 
are affected, but the program counter will be affected if Z = 0. The 
relative addressing mode is used. See BCC for other operational details 
and examples. 

BPL (Branch on Result Plus). This instruction is the complement of 
BMI. The branch occurs if the result of an operation is positive, as 
indicated by the N-flag being zero (N = 0). No flags are affected if 
N = OQ; N-flag is zero when bit 7 of the result is zero. The relative 
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addressing mode is used. See BCC for other operational details and an 
example. 

BRK (Force Break). This instruction is a software interrupt command. 
When a BRK instruction is encountered, the address, the next instruc- 

tion, and the contents of the Processor Status Register are pushed onto 
the external stack. The rectors for the BRK command are stored at 
FFFEH and FFFFH as follows: 

FFFEH low-order address byte 

FFFFH high-order address byte 

Notice that BRK uses the same rector location as the hardware 
interrupt (IRQ) line. The sole difference that distinguishes the BRK 
command from a hardware interrupt is that the B-flag is set (B = 1) 
if the interrupt is due to a BRK command, and reset (B = 0) if IRQ 
is brought LOW (0). An interrupt subroutine must contain a brief 
subroutine that pulls the previous PSR contents from the external stack 
and then tests it for B = 1 (bit 4 of the PSR) using either the AND or 
BIT instructions; ANDing with 10H will do the trick. 

BVC (Overflow Flag Clear). This instruction is a conditional branch 
that will branch using relative addressing if the overflow (V) flag is 
clear, i.e., zero (V = 0). No flags are affected, and the program counter 
is affected only if V = 0. See BCC for other operational details and 
examples. 

BVS (Overflow Flag Clear). The BVS instruction is the complement 
of BVC, and will branch if the overflow flag is set (V = 1). The relative 

addressing mode is used. No flags are affected, but the program counter 
will be altered if V = 1. See BCC for other operational details and 
examples. 

CLC (Clear Carry Flag). The CLC instruction uses implied addressing 
and has the effect of setting the C-flag in the PSR to zero (C = 0). No 
other flags are affected. 

CLD (Clear Decimal Mode). The CLD flag has the effect of setting 
the D-flag of the PSR to zero (D = 0). Implied addressing mode is 
used. Following execution of CLD, all subsequent ADC and SBC arith- 
metic operations will take place in straight binary. No flags other than 
the D-flag are affected. 

CLI (Clear Interrupt Disable Flag). This 1-byte instruction clears the 
interrupt disable, or I-flag, of the PSR. Execution of this instruction 
causes the I-flag to become zero (I = 0). The implied addressing mode 
is used. The purpose of the CLI instruction is to permit the 6502 to 
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respond to interrupt requests on the IRQ line. The I-flag is normally 
set to I = 1 when the 6502 is first turned on and RST is activated. 
The programmer must inset a CLI instruction somewhere in the 
program before interrupts are permitted. 

CLV (Clear Overflow Flag). The CLV instruction is used to set the 
overflow (V) flag to zero, (V = 0). Implied addressing is used for this 
1-byte instruction. No other PSR flags are affected. 

CPX (Compare Memory with X-register). The CPX instruction com- 

pares the contents of the X-register with the contents of a designated 
memory location. Immediate, zero page, and Absolute addressing 
modes are used. The N, Z, and C-flags are affected. The contents of 

the X-register are not affected by CPX. The comparison is performed 
by subtracting the contents of the addressed memory location from 
the contents of the X-register, but the result is not stored in either the 
X-register or the memory location. The PSR flags are affected as follows: 

1. The C-flag will be set (C = 1) if the absolute value of the 
X-register is equal to or greater than the value fetched from 
memory (X M). The C-flag is reset (C = 0) if X is less than the 
value from memory. 

2. If bit 7 of the comparison result is 1, then the N-flag is set 
(N = 1), but if bit 7 is 0, then the N-flag is reset (N = 0). 

3. The Z-flag is set (Z = 0) if the value memory is equal to the 
value from the X-register, otherwise it is reset (Z = 0). 

The CPX instruction can be used for setting the PSR flags, etc. 

CPV (Compare Memory with Y-Register). This instruction is identical 
with the CPX instruction with the exception that the Y-register is used 
instead of the X-register. Read the discussion on CPX for details that 
also affect CPV. 

DEX (Decrement X-Register). The DEX is a 1-byte instruction that 
uses implied addressing, i.e. X-register is implied. Execution of DEX 
will cause the X-register to be reduced, i.e., decremented by 1. Sym- 
bolically, this instruction acts as follows: 

X—-1->X 

Thus, we can see that the result of DEX is stored in the X-register. 
The DEX instruction affects only the N and Z-flags of the PSR. If the 
result of DEX is such that bit 7 is 1, then the N-flag is set (N = 1). If 
bit 7 of the X-register is 0, then the N-flag is reset (N = 0). The Z-flag 
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is set (Z = 0) if the result of DEX is zero. If the result is non-zero, 
then the Z-flag will be reset (Z = 0). 

DEY (Decrement Y-register). This instruction is exactly like DEX, 
except that the Y-register is used instead of the X-register. Read the 
DEX description for details which also apply to DEY. 

INX (Increment X-register). The INX instruction is a l1-byte, implied 
addressing instruction which increases the value stored in the X-reg- 
ister by 1, with the result stored in the X-register. Symbolically: 

X+17>X 

The C and V-flags are not affected by the INX instruction. The 
N-flag will be set (N = 1) if bit 7 of the X-register is 1, and reset 
(N = 0) if bit 7 is 0. The Z-flag will be set (Z = 1) if the result of INX 
is zero, and reset (Z = 0) if the result is non-zero. 

INY (Increment Y-register). This instruction is the same as INX, except 

that the Y-register is used instead of the X-register. See the discussion 
of INX for details which also apply to INY. 

JMP (Jump to Another Memory Location). The JMP instruction 

causes an immediate transfer of program control to another memory 
location. Both Absolute and Indirect addressing modes can be used. 
Symbolically, the JMP instruction is: 

(PC + 1) > PCL 

(PC + 2) ~ PCH 

Let’s consider an example of each form of the JMP instruction. 
In the Absolute addressing mode, the program counter is loaded with 
the address given in the following two bytes. Recall that the contents 
of the program counter determine the location of the next instruction 
to be executed; for example: 

Byte 1 0500H 4CH JMPnnnn 

Byte 2 0501H 52H nn (low-byte) 

Byte 3 0502H EFH nn (high-byte) 

In this example, a JMP EF52H instruction is encountered at mem- 
ory location 0500H. Immediately after the execution of JMP EF52H, 
the contents of the PC will be EF52H and that will be the location of 
the next instruction to be executed. 

An indirect JMP example is: 
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Byte 1 0500H 6CH JMP (nnnn) 

Byte 2 0501H B4H nn 

Byte 3 0502H EFH nn 

EFB4H 55H low-order byte 

EFB5H 06H high-order byte 

In this case, a JMP (nnnn) instruction is encountered at 0500H. The 
parenthesis around the address “nnnn” tells us that the 6502 program 
counter is loaded not with “nnnn,” but rather with the contents of 
“nnnn” and “nnnn+1.” In this case, the “nnnn” described by nnnn 
is EFB4H. This location in memory contains the low-order byte of the 
Jump destination address, while EFB5H contains the high-order byte 
of the destination address. The data bytes in these locations are stuffed 
into PCL and PCH of the program counter, respectively, to form 
address 0655H as the destination address. 

JSR (Jump to Subroutine). A subroutine is a program or program 

segment which may be used frequently or only if certain special con- 
ditions are met (among other applications). An example is a printer 
output routine. In a typical scenario, we would load the hexadecimal 
equivalent code of an ASCII alphanumeric character to be printed 
into the accumulator, and then jump to the printer subroutine with a 
JSR instruction. Only Absolute addressing is allowed, and no PSR flags 
are affected. 

The difference between JMP and JSR is that the JSR will store 
the two bytes of the last instruction address to be executed on the 
stack, and decrement the Stack Pointer by 2. When the program re- 
turns from the subroutine (by encountering an RTS instruction), the 
program counter will be loaded with the address of the next instruction 
to follow JSR. Symbolically, on return from subroutine: 

PCL + 1 > PCL 

PCH + 2 > PCH 

An RTS is always the last instruction in the subroutine, and causes 
restoration of the main program LDY (Load Y-Register). The LDY 
instruction is the same as LDX, except that the Y-register is used instead 
of the X-register. The symbolic notation is: 
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M- Y 

Addressing modes used by LDY are Immediate, Absolute, zero page, 
zero page X, and Absolute indexed X. Only the N and Z-flags are 
affected. LDY will set (N = 1) the N-flag if the result makes bit 7 of 
the Y-register 1, otherwise, N = 0. The Z-flag is set (Z = 1) if the 
value loaded into the Y-register is zero, otherwise Z = 0. 

NOP (No Operation). This 1-byte instruction uses the Implied ad- 
dressing mode, and does nothing to anything in the 6502 but use up 
two clock cycles of time and increment the program counter by 1. 

PHA (Push Accumulator on Stack). This instruction pushes the con- 
tents of the accumulator onto the external stack in memory. The ad- 
dressing mode is Implied. The Stack Pointer is decremented by 1. No 
flags are affected, and PHA is a single-byte instruction. 

PHP (Push Processor Status on Stack). This instruction is exactly like 

the PHA instruction, except that the contents of the Processor Status 
Register are pushed to the stack, instead of the accumulator contents. 

PLA (Pull Accumulator from Stack). The PLA instruction is opposite 
PHA. The Stack Pointer is incremented by 1, and the values stored at 
that point in the external memory stack are transferred back into the 
accumulator of the 6502. Addressing mode is Implied. The PLA in- 
struction affects the N and Z-flags of the PSR. The N-flag is set 
(N = 1) if bit 7 of the accumulator is 1, and reset (N = 0) if bit 7 is 
0. The Z-flag will be set (Z = 1) if the value restored to the accumulator 
is zero, and reset (Z = 0Q) if the accumulator contents are non-zero. 

PLP (Pull Processor Status from Stack). This instruction is similar to 
PLA, except that the contents of the PSR are restored instead of the 
accumulator contents. All PSR flags are affected, and will take on the 
values stored on the stack. PLP increments the Stack Pointer by 1. 

RTI (Return from Interrupt). The purpose of this instruction is to 
restore the 6502 to its previous status, i.e., the status before the inter- 

rupt occurred. When the 6502 responds to an interrupt, it pushes the 
contents of the program counter and Processor Status Register onto 
the external stack. The RTI instruction pulls these data back from the 
stack, and restores them to the PC and PSR. Thus, RTI will force the 

6502 to restart in the program where the interrupt occurred. The RTI 
instruction, therefore, should be the last instruction in the interrupt 
service subroutine program. Otherwise, the 6502 will not return to 
the main program. 

RTS (Return from Subroutine). This instruction is analogous to the 
RTI, except that it is used at the end of a subroutine called by a JSR 
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instruction. The 6502 saves PC and PSR data on the stack in response 
to the JSR instruction. RTS will restore these data to the 6502 PC and 
PSR. The RTS must be the final instruction in the subroutine program. 

SEC (Set Carry Flag). The SEC instruction causes the Processor Status 

Register carry flag (C-flag) to be set (C = 1). No other flags or registers 
are affected. Addressing mode is applied. 

SED (Set Decimal Mode). The SED instruction places the 6502 in 

the decimal mode by setting the decimal flag in the PSR (D = 1). 
Following this instruction, all SBC and ADC instructions will use BCD 
arithmetic. No other flags or registers are affected. 

SEI (Set Interrupt Disable). The SEI instruction sets the Interrupt 
Disable flag in the PSR (I = 1). The effect is to prevent the 6502 from 
responding to interrupt requests on the IRQ line (requests on NMI are 
not affected). Addressing mode is implied. No other flags or registers 
are affected. 

STY (Store Y-Register in Memory). This instruction stores the contents 

of the Y-register in a memory location specified by the bytes following 
the op-code. Allowable addressing modes are Absolute, zero page, and 
zero page X. No PSR flags are affected. 

TAX (Transfer Accumulator to X-Register). This instruction transfers 
the contents of the accumulator to the X-register. Implied addressing 
is used. Only the N and Z-flags of the PSR are affected. The N-flag is 
set (N = 1) if bit 7 of the X-register becomes 1, and reset (N = 0) if 
bit 7 becomes 0. The Z-flag is set (Z = 1) if the result is zero, and 
reset (Z = 0) if the result is non-zero. No other flags or registers are 
affected. 

TAY (Transfer Accumulator to Y-Register). This instruction is exactly 

the same as TAX, except that data destination is the Y-register instead 
of the X-register. 

TYA (Transfer Y-Register to Accumulator). This instruction transfers 

the contents of the Y-register to the accumulator. Addressing mode is 
Implied. Only the N and Z-flags of the PSR are affected (see discussion 
on TAX). 

TSX (Transfer Stack Pointer to X-Register). The TSX instruction will 
transfer the contents of the 6502 Stack Pointer (SP) register to the 
X-register. Only the N and Z-flags of the PSR are affected (see dis- 
cussion on TAX). Implied addressing is used. 

TXA (Transfer X-Register to the Accumulator). This instruction trans- 

fers the contents of the X-register to the accumulator, and is exactly 
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the opposite of TAX. Only the N and Z-flags are affected (see discussion 
on TAX). 

TXS (Transfer X-Register to Stack Pointer). This instruction is opposite 

the TSX instruction, and will transfer the contents of the X-register to 
the 6502 Stack Pointer register. Only the N and Z-flags are affected 
(see discussion on TAX). 

We can sometimes use TSX and TXS to relocate the external 
stack. A typical sequence might be: 

TSX Save SP at location 

STX,nnnn nnnn 

LDS #aa Load new SP top location (#aa) in X-reg- 
ister 

TXS Transfer X-register to SP 



65xx-Family Support 
Chips 

The manufacturers of the 65xx (6502) microprocessor chips also offer 
certain special I/O and other chips which will aid in making an effi- 
cient, low-cost computer. In this chapter, we will examine a few of the 
most common and popular of these chips. 

6522 

The 6522 Peripheral Interface Adapter (PIA) is 40-pin DIP integrated 
circuit that contains all the logic to implement I/O functions, with 
complex handshaking routines, and timer functions. In addition to the 
standard pair of 8-bit I/O ports, the 6522 also offers a pair of interval 
timers, a shift register that is useful for serial-to-parallel and parallel- 
to-serial data conversions. 

The 6522 is designed to operate with the 6502 microprocessor, 
so is often encountered in microcomputers from small single-board 
OEM models intended to be installed in larger instruments, to full- 
scale microcomputers with the regular complement of peripheral de- 
vices. As a 6502 adjunct, the 6522 is intended for memory-mapped 
operation. The four address lines on the 6522 are identified in Figure 
8-1 as RSO through RS3. These lines form a 4-bit address that is capable 
of uniquely addressing up to 16 different internal memory-mapped 
functions. The 6522 functions are located at the following internal 
addresses: 

101 
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R6522 

Figure 8-1. 6522 pinouts 

Address Register 
S2 RSO Designation Comments 

0 ORB 
1 ORA Controls handshaking 
0 DDRB 
1 
0 

RS3 -. 

DDRA 
TIL-L, T1C-L Timer-l write latch and read 

counter 
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Address Register 
RS3 RS2 RSI RSO Designation Comments 

1 0 0 0 T2L-L/T2C-L Timer-2 write latch and read 
counter 

1 0 0 1 T2C-H Trigger T2L-L/T2C-L transfer 
1 0 1 0 SR 
1 0 1 1 ACR 
1 1 0 0 PCR 
1 1 0 1 IFR 
1 1 1 0 IER 
1 1 1 1 ORA No effect on handshake 

The 6522 is memory-mapped, so will be treated by the micro- 
processor chip as if it were a bank of 16 bytes of memory. In the AIM- 
65 microcomputer, for example, the 6522 is memory-mapped at 
locations A000 through AOOF (hex addresses). If we want to write a 
word to port-A, then we would want to address ORA at location 0001, 
which in the AIM-65 is AOO1H. 

The configuration of the 6522 ports is interesting and most useful. 
The port registers are designated ORA (port-A) and ORB (port-B). 
These Output Registers can be configured as either input or output, 
on a bit-by-bit basis, under program control. The control mechanism 
resides in the related Data Direction Registers A and B (DDRA and 
DDRB). If we want to make all bits of either register an output, then 
we will write a “1” to the corresponding DDR. Similarly, if we want 
the register to act as an input, then a “0” is written to the DDR. Thus, 

to make ORA an output port, we will write FFH to location 0011 
(DDRA) of the 6522. If we want the port to be an input port, then we 
would have written 00H to location 0011H instead of FFH. 

The interesting thing about the 6522 output registers is that we 
may make the ports either inputs or outputs on a bit-for-bit basis. Thus, 
we can make BO an input, B1 an output, etc. All we need do is write 
the correct word to the selected DDR that will configure the individual 
bits as needed. Suppose, for example, we wanted to configure the bits 
of ORB as follows: 

ORB Bit Function DDRB State 

PB7 Input 0 
PB6 Input 0 
PB5 Output 1 
PB4 Input 0 
PB3 Output 1 
PB2 Output 1 
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ORB Bit 

PBl 
PBO 

Function DDBB State 

Output 1 
Input 0 

Thus, if we write the binary word 00101110, (i.e., 2EH) to DDRB 
at location 0010H of the 6522, ORB will be configured as shown. We 
can also configure ORA as needed using a similar scheme modified to 
meet the needs of the user. This is done under program control. If the 
function of each bit of both ports remains immutable, then the pro- 
gramming chores can be accomplished once when the computer is 
first turned on, or reset. The initial program steps will be housekeeping 
in nature, and may well include setting up ORA and ORB by pro- 
gramming DDRA and DDRB. 

The 6522 pinouts are discussed here: 

Designation Pin 

CS1,CS2 24, 23 

RSO-RS3 38, 37, 
36, 
35 

R/W 22 

D0-D7 33-26 

RES 34 

TRO 2) 

Description 

Phase-2 clock input. This clock regulates the 
transfer of data between the PIA and the 
system (transfer on d, = HIGH), and serves 
as the timer base for on-chip timers and ‘shift 
registers (SR). 

Chip-select lines. CS1 is active-HIGH, CS2 is 
active-LOW. Both lines must be active for 
chip to be on. 

Register-select lines. These lines address the 
internal functions of the 6522, and are nor- 

mally connected to bits of the address bus as 
dictated by system memory map. 

Read/write line. A HIGH indicates that data 
are being transferred out of the 6522 to the 
system; a LOW indicates data will be trans- 
ferred into the system. This line is a control 
input, and will not affect the 6522 unless CS1 
is HIGH and CS2 is LOW. 

Data bus lines. Data will be transferred to and 
from the 6522 over these lines if the chip- 
select, R/W and ¢, = HIGH criteria are met. 

Reset. Active-LOW input that will clear (i.e., 
set = 0) all registers except Tl, T2, and SR. 

Interrupt request. This active-LOW output will 
go LOW when both the interrupt enable bit 
and interrupt flags of the 6522 are set (= 1). 
This pin is used for such purposes as signalling 
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Designation Pin Description 

the processor that a timer interval has ex- 
pired. 

PAO-PA7T 2-9 Peripheral interface for port-A. The input and/ 
or output pins for port-A. 

PBO-PB7 10-17 Peripheral interface for port-B. The input and/ 
or output pins for port-B. 

CAI, CA2 40,39 Peripheral control lines for port-A. These lines 
act as either interrupt lines or as handshaking 
lines. Operation is controlled through the In- 
ternal Control Register (ICR). 

CB1, CB2 18,19 Peripheral control lines for port-B (see above 
CA1, CA2). In addition, these lines act as the 
serial port for the shift register (SR). 

6530 

The 6530 device is a ROM-RAM-I/O timer integrated circuit. The 
device contains a mask-programmable read only memory (ROM) that 
will store up to 1024 8-bit words. It also contains a 64 byte 8-bit random 
access memory (RAM), two 8-bit bidirectional I/O ports, and a pro- 
grammable interval timer. The 6530 device is, therefore, extremely 

versatile. The interval timer will time various intervals from 1 to 
262,144 clock periods, and is under software control in the I/O con- 
figuration. The 6530 device contains an 8-bit bidirectional data bus for 
communication between the “outside world” and the 8-bit data bus 
of the microprocessor. There is also a pair of 8-bit buses for commu- 
nication with external peripheral devices. All lines are both TTL- and 
CMOS-compatible. 

The 6530 architecture is divided in four main sections within the 
IC: RAM, ROM, I/O, and timer. The I/O section consists of the two 
8-bit portions discussed here, and are controlled by a pair of data 
direction registers (DDR), designated “A” and “B.” This form of ar- 
chitecture permits us to configure both ports as either input or output 
on a bit-for-bit basis. Thus, a HIGH (logical-1) written to a bit of the 
DDR will cause the corresponding bit of the associated port to be 
configured as an output. Similarly, writing a LOW to the DDR bit 
makes the corresponding port bit an input. 

The 6530 device contains two forms of internal memory. There 
is a 64-byte by 8-bit RAM, which will permit both read and write 
operations. This memory can be used as a “scratchpad” memory. There 
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is also a 1K by 8-bit ROM which is addressed by A0-A9 and RSO (see 
Figure 8-2). By using CS1 and CS2, we can parallel up to seven different 
6530 devices. 

Pinouts for the 6530 

Designation Pin Description 

RES 16 Reset. This active-LOW line will cause all I/O 
registers to clear, causing all I/O lines to act 
as inputs. The RES line must remain LOW 
for not less than one complete clock cycle. 

Vss PAI 

PAO PA2 

b2 PA3 

RSO PA4 

AQ PAS 

A8 PAG 

A7 PA7 

AG DBO 

R/W DB1 

AS DB2 

A4 DB3 

A3 DB4 

A2 DB5 

Al DB6 

AO DB7 

RES PBO 

IRQ/PB7 PB1 

CS1/PB6 PB2 

CS2/PB5 PB3 

Vec PB4 

R6530 Pinout Designation 

Figure 8-2. 6530 pinouts 
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®, 

R/W 

IRQ 

DBO-DB7 
PAO0-PA7 

PBO-PB7 
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Pinouts for the 6530 (continued) 

Pin Description 

Phase-two clock. This line connects to the 
phase-2 clock of the 6502 microcomputer sys- 
tem. The LOW state of the clock will be any 
potential from 0 volts to 0.4 volt, while a 
HIGH will be +2.4 or more volts. 

Read/Write. When this line is HIGH, the 6502 

will be able to read data from the 6530, while 
a LOW allows the 6502 to write data to the 
6530. 

Interrupt Request. Also used as PB7 in non- 
timer modes. 

Data bus 
Peripheral data bus “A” 

Peripheral data bus “B” 





Device Selection and 

Address Decoding 

The control and timing signals synchronize the operation of the 6502- 
based microcomputer. Such an arrangement is necessary when nu- 
merous (up to 65,536) devices can share a common 8-bit data bus. The 
information provided by the control signals concerns what device is 
being called upon and what it is supposed to do. The control and 
timing signals arbitrate the use of the bus in response to the instructions 
provided by the programmer. In this section, we will discuss how these 
signals are used to designate and instruct the memory and peripheral 
devices connected to the 6502 bus. 

Two jobs must be done by the 6502 control signals: First, it must 
designate the device that is selected, and second, tell it whether a read 

or a write is to take place. The address bus designates not only memory 
locations but also I/O ports (the 6502 uses memory-mapped I/O). Since 
the address bus contains 16 parallel bits, the bus can uniquely address 
2'°, or 65,536,0, different memory locations or peripherals. Valid mem- 
ory addresses range from 00000000, (OOH) to 11111111, (FFH). The 
designation of read or write is indicated by the status of the R/W line 
on the 6502 during phase 2. Thus, we can select any device, whether 
memory or memory-mapped peripherals by using the address bus, the 
R/W line, and the phase-2 clock signals. 

ADDRESS DECODING 

The purpose of an address decoder is to provide a signal that becomes 
active only when the correct address is on the address bus. Decoders 

109 
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may use all 16 bits (A0-A15) of the bus, or just 1 or 2 bits. In one 
scheme only a single bit is needed to turn on a teletypewriter. In that 
case, the computer only had 26K of memory so the A15 bit never 
came on to address active memory. The A15 bit defines the 32K 
boundary (80H = 32K), so will come on only when addressing a location 
of 32K or higher. Thus, since there is no memory or other peripherals 
above 26K, we can use A15 to joggle the teletypewriter/printer on 
and off. An example will be given in Chapter 11. Most address decoders 
require more than a single bit. 

An address decoder requires some means of examining multiple- 
bit lines and deciding which of two possible outputs to issue. The 
address decoder may have an active-HIGH output (goes HIGH when 
the correct address is present) or an active-LOW output (LOW on 
correct address). The 7530 TTL chip is a popular device in decoder 
circuits (see Figure 9-1). 

The 7430 is an 8-input NAND gate. The rules which govern the 
operation of any NAND gate are: 

1. If any one input is LOW, then the output is HIGH. 

2. All 8 inputs must be HIGH for the output to be LOW. 

Thus, in order to use the 7430 as an 8-bit address decoder, we 

must somehow conspire to make all 8 bits HIGH (logical-1) when the 
correct address is on the bus. The only combination where that situation 
arises naturally is 11111111, (FFH). For all other addresses we must 
provide inverters on each address line where zeros are expected. Fig- 
ure 9-2 shows a sample 7430 decoder circuit for address 11001011, 
(CBH). Since bits AO, Al, A3, A6, and A7 are already 1 when this 

address is presented, nothing else need be done—the address lines can 
be connected directly to the inputs of the 7430. For bits A2, A4, and 

Figure 9-1. Eight-bit address decoder based on the 7430 chip 
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Figure 9-2. Practica! version of Figure 9-1 

AS, however, a different tactic is required. These bits will be LOW 
when the correct address is presented, so must be inverted. Thus, an 
inverter is provided in each of these address bus lines so that the 7430 
will see 11111111, when 11001011 is present on the address bus. 

The output of the 7430 is an active-LOW signal which we des- 
ignate SELECT. When the correct 8-bit address appears on the bus, 
this signal drops LOW; at all other times it is HIGH. 

The circuit in Figure 9-2 is capable of seeing only 8 bits of the 
16-bit address bus. If we want to examine all 16 bits, then some other 

tactic is needed; an example is shown in Figure 9-3. In this circuit, 

two 7430 devices are used in combination. One 7430 examines bits 
A0-A7 while the other examines A8—-A15. The outputs are combined 
in a 2-input NOR gate. The rules for a NOR gate are: 

1. If either input is HIGH, then the output is LOW. 

2. Both inputs must be LOW for the output to be HIGH. 

Since both 7430s have active-LOW outputs, output of the 7402 
will be HIGH only when the correct address is present on the inputs 
of the 7430 devices. All other but the correct inputs will cause one or 
the other 7430 output (or both!) to be HIGH, thereby forcing the 7402 
output LOW. The circuit in Figure 9-3 would not be used very often 
for several reasons. Among them is the fact that we could sometimes 
use schemes which reduce the number of address bus lines needed to 
uniquely designate a memory or I/O port location. 

Another type of address decoder is shown in Figure 9-4. This 
device is based on the TTL 7442 device which is known as a BCD-to- 
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Figure 9-3. Eight-bit decoders expanded to sixteen-bit operation 
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Figure 9-4. 7442 used as an address decoder 
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1-of-10 decoder. The 7442 was originally designed to provide decimal 
(1-of-10) output in response to Binary Coded Decimal (BCD) input. 
The BCD code uses a 4-bit binary number to represent decimal digits. 
The normal weighting for the 4 bits is the 8-4-2-1 weighting of any 
4-bit binary “word.” The BCD codes and their decimal equivalents , 
are: 

BCD Decimal 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 OMAN DWIA WON © 

There are ten unique output lines on the 7442 decimal, one for 
each decimal digit. When a 4-bit BCD word is applied to the inputs, 
the corresponding decimal output will drop LOW. Thus, when the 
binary (BCD) code 0011, is applied to the inputs, output 3 drops LOW; 
all other outputs remain HIGH. 

Figure 9-4 shows a 7442 device connected to the low-order 4 bits 
of the address bus. The following devices are selected: 

A3 A2 Al AO Device 

He OOSCCCOCOCSO COrPeFerHoCoOooo COrPrFCORFKFCO KHOrOrororse OCWONIBHNUAWNEHO 

We can, therefore, select up to ten devices using a single 7442. 
They do not have to be on the A0—-A3; we can use any four bits of the 
address bus if we want to locate the device elsewhere. We could, for 

example, connect the “8” input of the 7442 to the A1L5 bit, and then 
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A15 

Al4 

A113 

Al2 

e 

SELECT 

Figure 9-5. 7485 chips used in 4-bit banks for address decoding 

connect AO, Al, and A2 to the 1-2-4 inputs of the 7442. In this way 
we could locate ten I/O ports starting at the 32K boundary. 

Two or more 7442 devices can be used together to provide the 
ability to look at 4, 8, 12, or 16 bits. We could combine the selected 

outputs in a 2, 3, or 4-input NOR gate, as in Figure 9-3. We could also 
use a cascading arrangement, which will be discussed in Chapter 10 
under the heading of “banking.” 

Another device which is sometimes used as an address decoder 
is the 7485 four-bit magnitude comparator, or its CMOS pin-for-pin 
equivalent, the 4063. These devices examine two 4-bit binary words, 

designated A and B, and issue unique outputs that indicate whether 
A equals B, A is less than B, or A is greater than B. If we program one 
set of inputs (e.g., B) with the desired address code, then we can use 
the A = B output as a SELECT signal. In that case, the A inputs are 
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connected to the address bus lines. Figure 9-5 shows the circuit which 
can be used for any bit length (16 bits are shown). 

The 7485 is equipped with cascade inputs that are used to join 
two or more devices together to form longer words. If an increment 
of 4 bits is desired, then all inputs of the 7485 are used. We can use 
less than 4 bits by strapping the same unused inputs on both A and B 
words to the same level. It doesn’t matter whether you strap them 
HIGH or LOW, so long as corresponding inputs on both sides of the 
same chip are at the same level. Each additional 7485 will extend the 
address word length from 1 to 4 bits. 

In some cases the programmed inputs will be permanently wired 
HIGH or LOW according to the bit pattern required by the designated 
address. In other cases, we will want to vary the address occasionally, 
so will use switches as in Figure 9-5. Each input is equipped with a 
pull-up resistor to V+ and a switch; when the switch is open, the input 
is HIGH; when the switch is closed, the input is LOW (grounded). 

Rarely do we need all 16 bits to designate an address. Figure 9- 
6 shows a method using an 8-bit decoder (any of the circuits can be 
used, not just the 7430) combined with a 2-bit (7400) decoder to per- 
form a specific chore, e.g., I/O decoder. The address that this circuit 
responds to will be above 49,152,, because the Al4 and A15 bits must 
be on. In addition, the SELECTL signal for 00110111, must also be 

SELECTH 

MAINSELECT 

Figure 9-6. Simplified address decoding when not all memory is used 
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true (LOW). If both SELECTL and SELECTH are LOW, then the 
output of the 7402 NOR gate will be HIGH (a signal designated as 
“MAIN-SELECT?!’). 

GENERATING READ/WRITE SIGNALS 

The 6502 indicates read and write conditions by the coincidence of 
the phase-2 signal with the state of the R/W line. For a read operation, 
both the phase-2 line and the R/W are HIGH. For a write operation, 
the phase-2 clock is HIGH and R/W is LOW. In order to generate 
unique and discrete READ and WRITE signals, we must take into 
account both phase-2 and R/W lines. These new signals must also be 
capable of driving enough TTL roads for the planned size of the com- 
puter. Given the nature of some machines, the total fan-out might be 
100 or more. For most applications, however, the standard fan-out of 
10 offered by most TTL devices is sufficient. Where higher drive 
capability is needed, we can use bus driver ICs, which have high 
fan-outs. 

Figure 9-7A shows a simple READ and WRITE signal generator 
circuit that has a fan-out of 10. Both outputs are produced by TTL 
7400 NAND gate sections (the 7400 contains four independent 2-input 
NAND gates). The usual rules apply: 

1. A LOW on any one input will cause the NAND output to be 
HIGH. 

2. Both inputs must be HIGH for the output to be LOW. 

Since both phase-2 and R/W outputs are HIGH to read operations, 
we can generate our system READ by connecting these lines to the 
inputs of the NAND gate. The output of that NAND gate will drop 
LOW, forming a READ signal, but only when phase-2 and the R/W 
line are both HIGH. 

The system WRITE signal is also generated by the phase-2 and 
R/W lines, but requires the R/W line be inverted first. Figure 9-7B 
shows the timing diagram for both read and write operations. Note 
that the R/W line is shown in both normal (A) and inverted (B) forms. 
The times for this diagram are the same as those in Chapter 4. 

The phase-1 clock cycle starts at time T,. The address of the 
selected memory location is output on the address bus (AO through 
A15) during this period, and becomes stable in about 300 nanoseconds 
(T,). The address remains valid until the end of the phase-2 clock cycle. 
At time T,, the phase-2 cycle begins, and finds the R/W line HIGH 
(see A). At this time the READ output drops LOW, and remains LOW 
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oo Bus = Address Valid Pp Address Valid 
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(B) 

Figure 9-7. Generating system READ and WRITE signals (A) circuits, (B) timing 
diagram 
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Figure 9-8. A) Buffered phase-2 clock, READ and WRITE signals, B) decoding 
for system READ and WRITE signals 

throughout the phase-2 cycle. At the end of phase-2, the READ line 
returns to the inactive HIGH state. 

The write operation follows a similar routine, but the inverted 
R/W line (B) must be HIGH for the WRITE signal to be active. At 
time T;, the WRITE line goes LOW. 

Figure 9-8A shows another method for generating discrete READ 
and WRITE signals. This method, or one closely related to it, is used 

extensively in 6502-based microcomputers. The READ signal is buf- 
fered by a noninverting buffer device such as the 4050 CMOS device. 
The WRITE signal is formed, also from the R/W output of the 6502, 
by an inverter (the example shown is a CMOS 4949). Like the R/W 
line, the phase-2 line is also buffered by a 4050 CMOS device. 
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The use of the signal generated by the circuit in Figure 9-8A in 
creating system READ and system WRITE is shown in Figure 9-8B. 
A pair of 7400 (or equivalent) NAND gates is used in this circuit. One 
input from each gate is connected together at the phase-2 line. Thus, 
when the phase-2 clock is HIGH, the gates are enabled. If the READ 
signal is HIGH, then the system-READ signal will go LOW. Similarly, 
if the WRITE signal is HIGH, then the system-WRITE will go LOW. 

A slightly different version of this circuit is made by inserting an 
inverter in the WRITE input line to A2, and then joining the inverter 
input to the READ input at R/W (see Figure 9-7A). 

Figure 9-9 shows the use of a 7442 to create device-select signals 
in 6502 systems. Recall from our earlier discussion that the 7442 is a 
BCD-to-1-of-10 decoder. If we apply the control signals to the BCD 
inputs of the 7442, then we can generate device-select signals. In the 
scheme shown, the phase-2 signal is applied to the A input (weight = 
1), R/W to B (weight = 2), and the SELECT is applied to the C input 
(weight = 4). We can either ground the D input (weight = 8) or use 
it as an active-LOW chip select (CS) signal. The coding that the 7442 
responds to is: 

Active 

DCBA Output Signal 

0 0 0 O 0 (none) 
0 0 0 1 1 (none) 
0 0 1 0 2 (none) 
0 0 1 1 3 (none) 

Figure 9-9. 7442 used for system READ and WRITE signal generation 
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Active 

DCBA Output Signal 
01 0 0 4 (none) 
01 0 1 5 WRITE 
0 1 1 =0 6 (none) 
0111 7 READ 
100 0 8 Chip not selected 
100 1 9 Chip not selected 

In the case where an active-LOW SELECT signal is used, the C 
input will be LOW when the address is selected. In those cases a READ 
will look like 0011 input to the 7442, so the 3 output would be the 
READ signal. The WRITE signal would create the code 0001, so the 

1 output would be used. 



10 
Interfacing Memory to 
the 6502 

The very nature of the programmable digital computer, no matter 
how large or how small, requires memory. No sequential or serial 
processing machine could work unless there were some way to store— 
or remember—data and programming instructions. Hence, memory 
devices are inherent in digital computer design. 

The principal difference between large mainframe computers 
and even the smallest single-board computer is essentially one of scale. 
In terms of memory, this difference translates into certain restrictions 
on the microcomputer regarding the types of memory devices that 
are used. The generally slower 8-bit microcomputer, for example, has 
little need for 20-nanosecond ECL memory elements because the CPU 
will never operate fast enough to make either efficient or cost-effective 
use of such memory. 

Similarly, the microcomputer probably has no need for multiple 
disk packs such as found in almost all large mainframe computer in- 
stallations. For most microcomputers, the simple floppy disk (diskette) 
is sufficient. As the lines blur between classes of computer, however, 
the situation may radically change. There are already multi-megabyte 
large single-disk drives on the market made especially for microcom- 
puters. Several manufacturers offer microcomputers in upright 19-inch 
racks that look for all the world like minicomputers of not long ago, 
and these are equipped with “hard disk” drives. One wonders whether 
the traditional definitions that distinguish minicomputers from micro- 
computers are still valid. This industry moves too fast for “tradition” 
to have much meaning; reality keeps changing. 
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MEMORY HIERARCHY 

Various types of memory are still available, and they differ markedly 
as to the time required to read or write data. We can classify memory 
into several very broad categories according to approximate access 
time: cache memory, short-term or “working store” memory, medium- 
term memory, and long-term memory. 

A cache memory is one that operates at ultrahigh speeds, and is 
used where the memory must keep up with a high-speed central 
processor. Typical technologies used to form semiconductor cache 
memories are all high frequency devices: emitter-coupled logic (ECL), 
high-speed TTL, and current injection logic (IIL or I?L). As with any 
circuit that operates in ultrashort periods of time (i.e., 5 to 100 
nanoseconds), cache memory designers must be aware of such matters 
as VHF/UHF circuit layout practices, matching of input and output 
impedances, and the transmission-line properties of electrical 
conductors. 

Cache memories are usually limited to a small portion of a main- 
frame computer’s total memory array. Data is transferred in and out 
of the small “cache” as needed. 

Short-term memory is the main volatile memory of a microcom- 
puter and consists mostly of semiconductor random access memory 
(RAM) chips. Short-term memory devices usually operate with access 
times on the order of 100 nanoseconds to 5 microseconds. 

The working store of most microcomputers consists of an array 
of high-speed short-term devices comprising as few as 32 bytes and as 
much as hundreds of kilobytes. 

The “typical” (if that word can have meaning in this context) 
8-bit microcomputer has a 16-bit address bus, so can access 2'° (65,536) 
different 1l-byte (i.e., 8-bit) memory locations. Of course, 16-bit 
machines will have 2-byte circuits at each memory location. 

TYPES OF MEMORY DEVICES 

Solid-state computer memory devices can be divided into RAM and 
ROM. RAM is random access (read/write) memory, while ROM is read 
only memory. The latter type is programmed once, and then installed 
into the computer as a permanent program or data, while the RAM 
can be used to either read from or write to; RAM can contain program 
instructions, data, look-up table entries, etc. RAM devices can be fur- 
ther broken down into static RAM and dynamic RAM. 

Figure 10-1 shows both static and dynamic RAM devices in model 
form. The static RAM is shown in Figure 10-1A. Such a memory device 
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will consist of a flip-flop that can be set to either 1 (HIGH) or 0 (LOW). 
In this case, a Type-D flip-flop is used, and such a flip-flop will obey 
the following rules: 

1. When the clock (CLK) line is active (LOW, in this case), the 
data on the D-input will be transferred to the Q-output. 

2. When the CLK input is HIGH (inactive), the data on the 
Q-output remains at the level it took the last time thé CLK 
line was active. In other words, if a HIGH was present on 
D-input when the CLK line underwent the transition from 
LOW to HIGH, then the Q-output will remain at HIGH. Thus, 
the Type-D flip-flop will “remember” the HIGH condition 
(convenient? After all, that’s what a memory element is sup- 
posed to do). 

In the case of Figure 10-1A, the D-input of the flip-flop becomes 
the D,, line of the memory cell, and the CLK line becomes a R/W 
line. The Q-output becomes the data output (D,,,) but only after being 
passed through a tri-state noninverting buffer stage. This stage is used 
to keep the Q-output from loading the data bus of the computer unless 
the computer directs it to be active by issuing the active-LOW chip 
enable (CE) signal. There will also be a similar gate at the data input 
to keep the flip-flop from operating every time the R/W line on the 
6502 is LOW. In other cases, the R/W line on the memory element 
is connected to a device select circuit rather than the system R/W 
signal. 

The static memory device offers the advantage that it will re- 
member the bit of data input to it until it is either rewritten or power 
is lost on the computer system. But the static memory also suffers from 
requiring relatively large amounts of electrical current, which can 
increase considerably the current requirements of the machine. The 
dynamic memory generally requires less current, and is described here. 

Figure 10-1B shows the basic 1-bit memory cell inside a dynamic 
memory chip. We can model the dynamic memory as a switch-con- 
trolled leaky capacitor, in which Q1 (of Figure 10-1B) is the switch. 
The addressing of the memory cell is made a little easier by arranging 
them in a row-column matrix in which any one cell is uniquely accessed 
via a specific BIT line and WORD line. We will discuss addressing 
more in a moment. 

The leakage factor means that the dynamic memory will not hold 
data indefinitely, but must be refreshed every so many milliseconds. 
In some cases, the CPU will have to handle that chore, while in others 
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Tri-State 
Noninverting 

Buffer 

(A) 

Bit Line 

a 

£ 

5 Memory 
co} Cell 
= “Capacitor” 

Vag “‘Precharge”’ 

(B) 

Figure 10-1. A) Type-D flip-flop used as a single-bit memory cell in static 
RAM, B) dynamic RAM memory cell 
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on-board refresh capability will be provided that does not require the 
attention of the 6502. 

Figure 10-2A shows an example of a static memory device called 
by Intel the 8102A, and others the 2102A device. This is 1024 x 1- 
bit chip, so a bank of eight 2102As will make a 1K 8-bit computer 
memory. There are ten address lines (AQ-A9), as needed, to address 
1024 different cells (2'° = 1024). There are also data input (D,,) and 
data output (D,,,) lines on this chip, as well as the CE and R/W lines. 
Figure 10-2B shows the truth table for the operation of these pins. 

The read cycle (see Figure 10-2C) outputs data from pin D,,, of 
the 2102A to the system data bus. There is a certain access time (T,) 
required to read data. The read cycle must be at least this long, or 
data will be lost. For 2102A devices, the nominal T, is 450 nanoseconds, 

with selected devices available with 250 nanosecond capability. The 
450 nanosecond devices cannot be operated with microprocessor chips 
whose read cycle is less than 450 nS duration—a very real possibility 
given the clock speeds of some modern CPU chips. For those cases, 
the faster chips are mandatory. 

The read cycle requires a HIGH on the R/W line, and a LOW 
on the CE line. In a real computer, it is likely that the CE line will 
be connected to some sort of bank selector circuit and the R/W line 
to the device select line (see Chapter 9). 

The write cycle permits the 6502 to input data into the memory 
device. In this case, we also require a LOW on the CE line, but the 
R/W line must be LOW. 

4116 16K x 1-Bit Dynamic RAM 

Dynamic RAM provides certain advantages over static RAM, especially 
in systems with large RAM arrays. For small systems, i.e., those of only 
a few thousand bytes of memory, static RAM is probably most eco- 
nomical. The DRAM device usually has a density of at least four to 
one over the static versions, so can be configured in a large array that 
occupies little space. This factor makes it possible to make small desk- 
top computers that don’t generate too much heat to raise the room 
temperature. The reliability of the computer is also improved when 
DRAM devices replace static memory in large arrays. The lower heat 
generation has a lot to do with the reduction in failures, as does the 
lower parts count, since there are fewer components to fail. As a result 
of these factors, the use of DRAM devices permits a lower cost, more 

reliable unit when large arrays are used. The extra cost of the external 
refresh circuitry does not increase proportionally with memory size, 
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(Device not Selected) 

WRITE @ 

2102A Truth Table 

H = High 

L = Low 

X = Don’t Care 

(B) 

Waveforms 

Read Cycle 
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Chip 
Enable 

out _X@_} 
4) 1.5 Voits Oto, 
(2) 2.0 Volts 
(3) 0.8 Volts 

(c) 
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Figure 10-2 (continued). B) 2102/8102 truth table, C) READ cycle timing 
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Write Cycle 

Address 

Chip 
Enable 

Read/ 
Write 

Data Data can Data can 
In Change Change 

(D) 

Figure 10-2 (continued). D) WRITE cycle timing 

so is distributed over the entire 64K—making the DRAM more 
economical in higher order arrays. 

Although we are going to discuss one of the most popular DRAM 
devices, be aware that many offer greater than 16K size. The Fairchild 
4164 device is a 64K single-chip DRAM, as is the MCM6664A by 
Motorola Semiconductor, Inc. 

The 4116 device is shown in Figure 10-3. The block diagram of 
the internal circuitry is shown in Figure 10-3A, while the logic symbol 
used in schematics is shown in Figure 10-3B and the pinouts/ pin names 
are in Figure 10-3C. Note that the 4116 device only has 7 address bits 
(AO through A6). The 16K memory contained within the chip, however, 
would normally require 14 bits on the address bus. The 4116 overcomes 
this problem by using a multiplexed addressing scheme in which a row 
address select (RAS) and a column address select (CAS) alternately 
select half of the total address bits required. When the RAS line is 
LOW, the 7 address lines input the lower order 7 bits into a special 
7-bit latch that holds the data. Similarly, when the CAS is made LOW, 
the high order 7 bits are input to another 7-bit register. Of course, the 
microcomputer must be designed to connect bits AO through A6 of 
the system address bus to the AO-A6 lines of the 4116 on one cycle, 
and A7 through A13 of the address bus to AO—A6 of the 4116 on the 
next cycle. 

The organization of the 4116 device is an X-Y matrix in which a 
storage array of 128 horizontal rows contains 128 memory cells each. 
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Logic Symbol 

(B) 

Pin Names 

Ao-Ag Address Inputs 

Data Input 

Write Enable Input (Active LOW) 

Row Address Strobe Input 
(Active LOW Clock) 

Column Address Strobe Input 
(Active LOW Clock) 

Data Output 

+5 V Power Supply 

0 V Power Supply 

—5 V Power Supply 

+12 V Power Supply 

Figure 10-3 (continued). B) circuit symbol, C) IC package 
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Each cell in any given row is connected to its own vertical column (or 
bit line) that serves to connect it to a sense amplifier (Figure 10-4). 

The DRAM read cycle is shown in Figure 10-5. The operation of 
RAS and CAS with respect to the address data passed to the 4116 is 
shown. The write enable (WE) is an active-LOW input that must be 
kept HIGH during the read operation. After all of these timing actions 
take place, the data out line will contain a valid data signal. 

The refresh cycle for the 4116 is shown in Figure 10-6. The 
arrangement of this chip allows us to refresh all cells using only the 
row address line. Either the CPU (in the case of the Z-80), the program 
(in 6502 and almost every other microprocessor), or an in-memory 
computer will supply a row address to AO through A6 at the same time 
an RAS signal is generated. During this period, the data out line is 
open (i.e., tri-stated). This process must be accomplished not less often 
than every two milliseconds. 

Read Only Memory (ROM) Devices 

The read only memory is a semiconductor device that will store a 
program or data, and may be treated in the circuit as if it were a 
semiconductor RAM device. The difference, of course, is that the ROM 

will not accept data from the CPU during write operations—it allows 
only read operations (hence the name). The write only memory (WOM) 
is a joke that made the rounds of the microcomputer /semiconductor 
industries a few years ago and referred to an imaginary device that 
will accept data and never give it up again. Of course, an open con- 
ductor accomplishes the same neat trick! 

Several different types of ROM are on the market. Some are 
permanently programmed and cannot be reprogrammed. These de- 
vices use internal fuse links that are either left intact or blown with a 
high current input from the external world. In one condition, the 
internal transistor is made LOW, while in the other, the transistor is 

HIGH. Another type of ROM is the erasable programmable read only 
memory (EPROM). This device is programmed in a manner similar to 
the other type, except the internal mechanism is different and allows 
the device to be reprogrammed. There is a quartz window in the top 
of the IC package that allows the chip to be exposed to an ultraviolet 
light source that will erase (set to HIGH) the EPROM. 

ADDRESS BLOCK DECODING 

Most microcomputers use more than 1K of memory, yet many of the 
memory chips available are only 1024-byte (with some being 256-byte). 
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Vag 

Vss Vag Vag Word 

Precharge Line 
63 

Figure 10-4. Simplified internal circuitry 

Although there are more modern devices capable of very large byte 
arrays, many users still prefer the older, smaller devices. The question 
arises, “How does the memory device allocated to a location greater 
than the maximum address in each individual chip know when it is 
being addressed?” The solution seems to be ordering of the memory 
in 1K blocks, and then the use of some form of address decoding to 
tell which 1K block is being designated. 

Figure 10-7 shows a selection scheme used by several manufac- 
turers of 8K memory banks. Each block of this memory is an array of 
1024 bytes, so every location can be addressed by bits AO-A9 of the 
address bus. The address pins for all devices are connected together 
to form the address bus (AO-A9). We must, however, select which of 
the eight blocks is addressed at any given time. One way to do this is 
to use a data selector IC. The 7442 device shown in Figure 10-7 is a 
BCD-to-1l-of-10 decoder. It will examine a 4-bit binary (BCD) input 
word, and issue an output condition that indicates the value of that 
word. In this simplified example, we are going to limit the memory 
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Block-0 
1024 BYTES 

Block-1 
142 1024 BYTES 

. 
> 
© 

4 
Q 

o 
¢ 
a 

nN A a & WN — © 

Block~2 
1024 BYTES 

(a) 

A13 A12 Ali1 A10 

Block-@ 0-1K 0 0 ) 0 
1K-2K 0 0 0 1 
2K-3K 0 0 1 0 
3K-4K @ @ 1 1 

4K-5K ) 1 @ @ 

5K-6K ] 1 @ 1 

6K-7K 6 1 1 @ 

7K-8K ) 1 1 1 

(b) 

Figure 10-7. Using 7442 in bank selection of memory: code for above 
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size to 8K, so only the 1, 2, and 4 inputs of the 7442 are needed. The 
input weighted 8 is grounded (set = 0). The 7442 indicates the active 
output by going LOW, exactly the right condition for the RAM devices 
in the memory blocks. The code that will exist on the Al0-A12 bits 
of the address bus for the various memory addresses in the range 
0-8K is shown here: 

Memory 7442 7442 

Locs. Al3 Al2 All Al0O Block Output Pin 

OK-1K 0 0 0 0 0 0 1 

1K-2K 0 0 0 1 1 1 2 

2K-3K 0 0 l 0 2 2 3 

3K-4K 0 0 1 ] 3 3 4 

4K-5K 0 1 0 0 4 4 5 

5K-6K 0 ] 0 1 5 5 6 

6K-7K 0 1 1 0 6 6 7 

7K-8K 0 1 1 1 7 7 9 

A100 _— 

A110 [——] _ —BANKO 
A120 fr | 7442 -—— 0-8K 

A ___ — 
FS 

IL ——] BANK 1 7442 [— ‘ 
AA I Eq 

! 
| 
| 
I 
| 
1 

A130 
A140 
A150 7442 

| 
| — | 

Td 

————- BANK 7 7442 +; 56-64K 

fd 

Figure 10-8. Multiple bank selection 
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For an 8K memory, then, the lower 10 bits of the address bus 
(AO-AQ9) select which location in the individual chips is wanted, and 
A10-A12 select which block of 1024 bytes contains the address. 

In Figure 10-7 we limited the memory size to 8K. This was done 
intentionally to keep the circuit simple. But how do we select memory 
in ranges higher than 8K? The answer is to use the 7442 input weighted 
“8” as a bank select control. Recall from Figure 10-7 that this input 
was kept grounded. If it is HIGH, then none of the eight outputs of 
the 7442 will go LOW. But if it is LOW, then the circuit will work. 
Figure 10-8 shows a simplified selection scheme for all 65K, using the 
“8” weighted inputs of the 7442 block selectors as a bank select ter- 
minal. Each bank of 8K contains its own block select 7442, and one 
additional 7442 is used to select the bank of 8K that will become active. 
The codes existing on address lines Al3-Al15 for each 8K bank of 
locations are: 

7442 
Memory 7442 Pin 
Locs. Bank Als Al4 Al13 Output Low 

OK-8K 0 0 0 0 0 1 

8K-16K 1 0 0 1 ] 2 

16K-24K 2 0 1 0 2 3 

24K-32K 3 0 ] 1 3 4 

32K—40K 4 1 0 0 4 5 

40K-48K 5 1 0 1 5 6 

48K-56K 6 1 1 0 6 7 

56K-64K 7 1 1 1 7 9 





11 
Interfacing I/O Devices 
to the 6502 

The topic of input and output devices, components, and circuits is 
often overlooked by texts on microcomputers because I/O devices are 
not quite as exotic and interesting as the details of some of the micro- 
processor chips. But the I/O section of the computer is vitally important 
to the overall functioning of the machine because it determines how 
data are transferred in and out of the machine. In other words, the 

utility of the device is often determined, or more often limited, by the 
structure of the I/O circuitry used. After you purchase a microcom- 
puter and decide to expand its capability, it is almost inevitable that 
the question of I/O ports will come up: there will probably be too few 
to support the extra peripherals and devices that you want to add! 

The input and output functions are operated by the control signals 
of the microcomputer, and may take either of two forms: (1) direct 
I/O and (2) memory-mapped. Some microprocessor chips provide for 
direct I/O in the form of I/O instructions; the Z-80 is one such machine 

(see Z-80 Users Manual by Joseph J. Carr, Reston Publishing Co.). In 
the Z-80 device, the address of the port will be passed over the low 
order 8 bits (AO-A7) of the address bus, while the data from the ac- 
cumulator are passed simultaneously over both the data bus (DBO- 
DB7) and the high order 8 bits of the address bus (A8-A15). The 8-bit 
memory address will support up to 256 different I/O ports that can 
be numbered 0 through 255. The Z-80 device control signals allow for 
I/O operations and are combined to produce unique IN and OUT 
commands to the I/O devices. 

Other microprocessor chips, such as the 6502, do not provide 
input and output commands in the instruction set, so will not have the 

139 
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control signals and capabilities for direct I/O. In 6502-based machines, 
the input and output ports are treated as if they were memory locations: 
Such ports are called memory-mapped I/O ports. 

While admitting that the I/O is not necessarily the most inter- 
esting aspect of microprocessor technology, we must study some of 
these mundane details to understand how the microcomputer deals 
with the outside world. To begin this study we will consider some 
elementary digital electronics theory and some of the devices used to 
form I/O ports. From an understanding of these topics you should be 
able to progress to designing I/O ports and interfacing techniques for 
the 6502. 

LOGIC FAMILIES 

Digital electronic circuits use assorted logic blocks, called gates (AND, 
OR, NOT, NAND, NOR, XOR, etc.), and flip-flops to perform the 
various circuit functions. On initial inspection, it seems that digital 
logic circuit design is made simpler because all of the logic blocks are 
available in integrated circuit form and can be easily connected to- 
gether with impunity. The reason why this situation exists is that the 
IC logic devices are part of various families of similar devices. A digital 
logic family will use standardized input and output circuits that are 
designed to work with each other, use the same voltage levels for both 
power supply and logical signals, and generally use the same technology 
in construction of the devices. Common logic families in current use 
are TTL, CMOS, NMOS, PMOS, and MOS, with subgroups within each. 

Obsolete forms, such as RTL and DTL, although interesting to the 

owner of older equipment, are of too little interest to justify inclusion 
here. Also certain devices will mix technologies, e.g., an NMOS mi- 
croprocessor chip that uses TTL input and output circuits to gain some 
of the advantages of both families. 

TTL (Transistor-Transistor-Logic) 

Transistor-transistor-logic (TTL, also called T?L) is probably the oldest 
of the currently used IC logic families and is based on bipolar transistor 
technology. The bipolar transistors are the ordinary PNP and NPN 
types, as distinguished from the field effect transistors. 

The TTL logic family uses power supply potentials of 0 and +5 
volts DC, and the +5-volt potential must be regulated for proper 
operation of the device. Most specifications for TTL devices require 
the voltage to be between +4.5 VDC and 5.2 VDC, although there 

appear to be practical limitations on even these values. Some complex 
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function ICs, for example, will not operate properly at potentials below 
+4.75 volts, despite the manufacturer’s protestations to the contrary. 
Also, at potentials above 5.0 volts, even though less than the +5.2-volt 
maximum potential is “allowed,” there is an excess failure rate probably 
due to the higher temperatures generated inside the ICs. The best 
rule is to keep the potential of the power supply between + 4.75 and 
+5.0 volts; furthermore, the potential must be regulated. 

Figure 11-1 shows the voltage levels used in the TTL family of 
devices to represent logical-]1 and logical-0. The logical-1, or HIGH, 
condition is represented by a potential of + 2.4 volts or more (+5 volts 
maximum). The device must be capable of recognizing any input po- 
tential over +2.4 volts as a HIGH condition. The logical-0, or LOW, 
condition is supposedly zero volts but most TTL devices define any 
potential from 0 to 0.8 volt as logical-0. The voltage region between 
+0.8 volt and +2.4 volts is undefined; the operation of a TTL device 

in this region is not predictable. Some care must be exercised to keep 
the TTL logical signals outside the undefined zone—a source of prob- 
lems in some circuits that are not properly designed. 

The inverter, or NOT gate, is the simplest form of digital logic 
element and contains all of the essential elements required to discuss 
the characteristics of the family. Figure 11-2A shows the internal circuit 
of a typical TTL inverter. The output circuit consists of a pair of NPN 
transistors connected in the “totem pole” configuration in which the 
transistors form a series circuit across the power supply. The output 
terminal is taken at the junction between the two transistors. 

The HIGH state on the output terminal will find transistor Q4 
turned off and Q3 turned on. The output terminal sees a low impedance 
(approximately 130 ohms) to the +5-volt line. In the LOW output 

Undefined 

Figure 11-1. TTL logic levels 
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state, exactly the opposite situation exists: Q4 is turned on and Q3 is 
turned off. In that condition, the output terminal sees a very low 
impedance to ground. 

The input terminal of the TTL inverter is a transistor emitter 
(Q1). When the input is LOW, the emitter of Q1] is grounded. The 
transistor is forward biased by resistor Rl so the collector of Q1 is 
made LOW also. This condition causes transistor Q2 to be turned off, 
so the voltage on its emitter is zero and the voltage on its collector is 
HIGH. In this situation, we have the conditions required for a HIGH 

output: Q4 is turned off and Q3 is forward biased, thereby connecting 
the output terminal through the 130-ohm resistor to the +5-volt DC 
power supply terminal. 

Exactly the opposite situation obtains when the input terminal is 
HIGH. In that case, we find transistor Q1 turned off and the voltage 
applied to the base of Q2 HIGH. Under this condition, the collector 
voltage of Q2 drops and its emitter voltage rises. Transistor Q4 is turned 
on, grounding the output terminal, and transistor Q3 is turned off. In 
other words, a HIGH on the input terminal produces a LOW on the 
output terminal. 

Figure 11-2B shows the current path when two TTL devices are 
connected together in cascade. The emitter of Device A input is con- 
nected to the output terminal of Device B. The input of a TTL device 
is a current source that provides 1.6 milliamperes at TTL voltage levels. 
The output transistors are capable of sinking up to 16 milliamperes. 
Therefore, we may conclude, for regular TTL devices, the output 
terminal will provide current sinking capability to accommodate up 
to 10 TTL input loads. Some special “buffer” devices will accommodate 
up to 30 TTL input loads. 

The input and output capabilities of TTL devices are generally 
defined in terms of fan-in and fan-out. The fan-in is standardized in 
a unit, or standard, input load rather than current and voltage levels. 

This convention allows us to interconnect TTL devices simply without 
being concerned with matters such as impedance matching. In inter- 
facing TTL devices it is merely necessary to ensure that the number 
of TTL input loads does not exceed the fan-out of the driving device. 
In brief, the fan-in is one unit TTL input load, while the fan-out is the 

output capacity expressed in the number of standard input loads that 
a device will drive. In the case of the regular TTL devices, the output 
current capacity is 16 mA, while the standard input load is 1.6 mA, so 
a fan-out of 16/1.6, or 10, exists. 

Asking a TTL device to drive a number of TTL loads in excess 
of the rated fan-out will result in reduced noise margin and the pos- 
sibility that the logic levels will be insufficient to reliably drive the 
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+5 V DC 
O 

Input Output 

LoL LL Ee He 

(A) 

(B) (C) 

Figure 11-2. A) TTL inverter, B) TTL interface, C) multiple-emitter inputs for 
TTL gate. 
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inputs connected to the output. Some devices will provide a fan-out 
margin but most will not. When it is necessary to drive a large number 
of TTL loads, it is wise to use a high fan-out buffer. 

Multiple TTL inputs are formed by adding extra emitters to the 
input transistor (see Figure 11-2B). This type of circuit is used on 
multiple input devices such as NAND gates, etc.; each emitter is ca- 
pable of sourcing 1.6 mA of current and represents a fan-in of one 
standard TTL load. 

Open-Collector Output. The standard TTL output circuit shown in 
Figure 11-2A must be connected to a standard TTL input in order to 
work properly. At times, however, it becomes necessary to interface 
the TTL device with some other type of device than TTL. In some 
cases, the external load will be at the same voltage level as TTL, but 
in others the voltage level might be considerably higher than +5 volts. 
The open-collector circuit of Figure 11-3 will accommodate such loads. 

Figure 11-3 shows only the output stage of the open-collector 
device; all the other circuitry will be as in Figure 11-2A. Transistor 
Q] is arranged so that its collector is brought out to the output terminal 
of the device. Since there is no current path to the V+ terminal of 
the power supply, an external load must be provided for the device 
to work. In the case of the situation shown, an external “pull-up re- 
sistor”’ is connected between the output terminal (i.e., Q1 collector) 
and +5 volts DC; for most TTL open-collector devices the value of 
the pull-up resistor is 2 kohm to 4 kohms. Other loads and higher 
voltages can be accommodated, provided that the DC resistance of 
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the load is sufficient to keep the collector current in Q1 within specified 
limits. 

Speed vs. Power. The TTL logic family is known for its relatively fast 
operating speeds. Most devices will operate to 18-20 MHz, and some 
selected devices operate to well over 30 MHz. But the operating speed 
is not without a concomitant trade-off: increased operating power. 
Unfortunately, higher speed means higher power dissipation. The prob- 
lem is the internal resistances and capacitances of the devices. The 
operating speed is set in part by the RC time constants of the internal 
circuitry. To reduce the time constant and thereby increase the op- 
erating speed, it is necessary to reduce the resistances and that will 
necessarily increase the current drain and power consumption. 

TTL Nomenclature. Each logic family uses a unique series of type 
numbers for the member devices so that users can identify the tech- 
nology being used from the number. With very few “house number” 
exceptions, TTL type numbers will have either four or five digits 
beginning with the numbers 54 or 74. The normal devices found most 
commonly are numbered in the 74xx and 74xxx series, while the higher 
grade “military specification” devices carry 54xx and 54xxx numbers. 
The 54 and 74 series retain the same “xx” or “xxx” suffix for identical 
devices. For example, the popular NOR gate will be numbered 7402 
in commercial grade components and 5402 in military grade. In gen- 
eral use, we can substitute the more reliable 54xx devices for the 

identical 74xx devices. 

TTL Subfamilies. Certain specialized TTL devices are used for cer- 
tain purposes, such as increased operating speed, lower power con- 
sumption, etc. These family subgroups include (in addition to regular 
TTL) low power (74Lxx), high speed (74Hxx), Schottky (74Sxx), and 
low power Schottky (74LSxx) devices. A principal difference between 
these groups that must be addressed by the circuit designer or inter- 
facer is the input and output current requirements. In most cases, the 
following levels apply: 

Subfamily Input Current Output Current 

74xx 1.6 mA 16 mA 

74Lxx 0.18 mA 3.6 mA 

74Hxx 2.0 mA 20 mA 

74Sxx 2.0 mA 20 mA 

74LSxx 0.4 mA 8.0 mA 
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CMOS (Complementary Metal Oxide Semiconductor) 

The complementary metal oxide semiconductor, or CMOS, digital IC 
logic family is based on the metal oxide semiconductor field effect 
transistor (MOSFET). In general, CMOS devices are slower in operating 
speed than TTL devices, but have one immensely valuable property: 
low power dissipation. The CMOS device presents a high impedance 
across the DC power supply at all times, except when the output is 
undergoing transition from one state to the other. At all other times, 
the CMOS device draws only a few microamperes of electrical current, 
making it an excellent choice for large systems where speed of oper- 
ation is not the most important specification. 

Figure 11-4 shows two CMOS devices which are at least repre- 
sentative of the large family of related logic elements. Figure 11-4A 
illustrates a simple CMOS inverter. Note that it consists of N-channel 
and a P-channel MOSFETs connected such that their respective 
source-drain paths are in series, while the gate terminals are in parallel. 
This arrangement is reminiscent of push-pull operation because the 
N-channel and P-channel devices turn on and off with opposite polarity 
signals. As a result, one of these two transistors will have a low channel 
resistance with the input LOW, while the other will offer a very high 
resistance (megohms). When the input is made HIGH, then the role 
of the two transistors is reversed: the one with the low channel re- 
sistance becomes high resistance, while that with the high resistance 
goes LOW. This operation has the effect of connecting the output 
terminal to either V,, or V,, depending upon whether the input is 
HIGH or LOW. Since, in both cases, one of the series pair is high 

resistance, the total resistance across the V,,-V,, power supply is HIGH. 
Only during the transistion period, when both transistors have a me- 
dium range source-drain resistance, will there be any appreciable load 
in the power supply. The output terminal will not deliver any current 
because it will be connected to another CMOS input, which has a very 
high impedance. As a result, there is never any time when the CMOS 
IC, operated only in conjunction with other CMOS devices, will draw 
any appreciable current. An example of the difference between TTL 
and CMOS current levels is seen by comparing the specifications for 
a common quad 2-input NAND gate in both families. The TTL version 
needs 25 milliamperes, while the CMOS device requires only 15 
microamperes. 

Figure 11-4B shows a typical CMOS AND gate. The two inputs 
are connected to independent inputs of a pair of series-connected 
N-channel MOSFETs. The output of this stage will not change state 
unless both inputs are active, a result of the series connection. 
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Figure 11-4. A) CMOS inverter circuit, B) CMOS gate 

The operating speed of typical CMOS devices is limited to 4-5 
MHz, although some 10-15 MHz devices are known. The speed is the 
principal disadvantage to the CMOS line; typical TTL devices operate 
to 20 MHz but require more current. 

Another problem with the CMOS device is sensitivity to static 
electricity. The typically very thin insulating layer of oxide between 
the gate element and the channel has a breakdown voltage of 80 to 
100 volts. Static electricity, on the other hand, can easily reach values 
of 1,000 volts or more! Whenever the static is sufficient to cause a 

biting spark when you touch a grounded object, you can bet that it 
was generated by a potential of 1,000 volts or more! This potential is 
sufficient to destroy CMOS devices. This problem is especially critical 
in dry climates or during the low humidity portions of the year. How- 
ever, methods of working with CMOS allow us to minimize damage 
to the device. In general, the CMOS working rules require use of a 
grounded working environment, grounded tools, and that we avoid 
wearing certain wool or artificial fiber garments. Also, the B series 
(e.g., CA-4001B) have built-in zener diodes to protect the delicate gate 
structure by shunting dangerous potentials around the gate. 
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Tri-state Devices 

Ordinary digital IC logic devices are allowed only two permissible 
output states: HIGH and LOW, corresponding to TRUE/FALSE logic 
or 1/0 of the binary system. In the HIGH state, the output is typically 
connected through a low impedance to a positive power supply, while 
in the LOW state the output is connected to either a negative power 
supply or ground. While this arrangement is sufficient for ordinary 
digital circuits, a problem exists when two or more outputs are con- 
nected together but must operate separately. Such a situation exists in 
a microcomputer on the data bus. If any one device on the bus stays 
LOW, then it more or less commands the entire bus: No other changes 
on any other device will be able to affect the bus so the result will be 
chaos. Also, even if we could conspire to make all bits HIGH when 
not in use, there would still be a loading factor as well as ambiguity 
as to which device is turned on at any given time. 

The answer to the problem is in tri-state logic, as shown sche- 
matically in Figure 11-5. Tri-state devices, as the name implies, have 
a third permissible output state. This third state effectively disconnects 
the output terminal from the workings of the IC. In Figure 11-5, switch 
Sl represents the normal operating modes of the device. When the 
input is LOW, switch S1 is connected to R1 so the output would be 
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Figure 11-5. Tri-state output equivalent circuit 
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HIGH. Similarly, when the input is HIGH, switch S1 is connected to 

R2 so the output is LOW. The third state is generated by switch S2. 
When the active-LOW chip enable (CE) terminal is made LOW, then 
switch S2 is closed and the output terminal is connected to the output 
of S1. When the CE terminal is HIGH, however, switch S2 is open so 
the output floats at a high impedance (represented by R3). Because of 
this operation, the tri-state device can be connected across a data bus 
line and will not load the line except when CE is made LOW. 

An advantage of tri-state digital devices is that the chip enable 
terminals can be driven by device select pulses, creating a unique 
connection to the data bus that is not ambiguous to the microcomputer. 
In other words, the computer will “know” that only the data from the 
affected input port or device is on the bus whenever that CE is made 
LOW. 

INTERFACING LOGIC FAMILIES 

One of the defining characteristics of a logic family is that the inputs 
and outputs of the devices within the family can be interconnected 
with no regard to interfacing. A TTL output can always drive a TTL 
input, and a CMOS output can always drive a CMOS input without 
any external circuitry other than a conductor. But when we want to 
interconnect logic elements of different families, then some consid- 
eration must be given to proper methods. In some cases, it will suffice 
to simply connect the output of one device to the input of the other, 
while in other cases some external circuitry is needed. 

Figure 11-6A shows a series of cascade inverters. The CMOS 
device is not comfortable driving the TTL input, and the TTL input 
is not happy with the CMOS output. As a result, we must use a special 
CMOS device that will behave as if it has a TTL output while retaining 
its CMOS input: 4050 and 4049. The 4049 device is a hex inverting 
buffer, while the 4050 is the same in noninverting configuration. The 
special character of these devices is the bipolar transistor output that 
will mimic the TTL output if the package V+ potential is limited to 
+5 volts DC. The 4040/4050 will operate to potentials up to +15 
volts, but is TTL compatible only at a V+ potential of +5 volts DC, 
with the other side of the device power supply grounded. The input 
of the 4049/4050 is CMOS, so is compatible with all CMOS outputs. 

The TTL input is a current source, so the TTL output depends 
for proper operation on driving a current source (naturally). The CMOS 
input, however, is a very high impedance because the CMOS family 
is voltage-driven. If we want to interface an ordinary TTL output to 
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a CMOS input (see Figure 11-6B), then we must provide a pull-up 
resistor between the TTL output terminal and the +5-volt DC power 
supply. A value between 2 and 4 kohms is selected to make the current 
source mimic a TTL input current level. 

The method in Figure 11-6B works well in circuits where both 
CMOS and TTL devices operate from a +5-volt DC power supply. 
While this is the usual situation in most circuits, on occasion the TTL 
and CMOS devices operate from different potentials; the correct in- 
terfacing method is shown in Figure 11-6C. Here we use an open- 
collector TTL output with a resistance to the Vz, power supply (used 
by the CMOS device) that is sufficiently high to keep the current 
flowing in the TTL output at a level within tolerable limits. 

We can use a single 4049/4050 device to drive up to two regulator 
TTL inputs (Figure 11-6D), and an ordinary CMOS device will drive 
a single “LS” series TTL input. The 4001 and 4002 CMOS devices are 
capable of directly driving a single regular TTL input. With the ex- 
ception of the 4049/4050 device, these methods depend upon the 
CMOS and TTL devices operating from a common +5-volt DC power 
supply. If the CMOS devices are operated at higher potentials, then 
all bets are off and we will be forced into using the 4049/4050 method 
discussed previously to prevent burnout of the TTL input. 

Most microprocessor chips have limited output line capacity, most 
being limited to one or two TTL input loads. Most of the MOS series 
microprocessor chips use MOS logic internally, but have TTL-com- 
patible output lines. In the case of a two loads output, the total allowable 
output current is 3.2 milliamperes. However, many TTL-compatible 
inputs may be connected to the data bus or address bus of the micro- 
computer. We need a high current bus driver on each line of the bus 
to accommodate these higher current requirements. Figure 11-7 shows 
a series of eight noninverting bus drivers interfacing the data bus of 
a microcomputer (DBO-DB7) with the data bus outputs of the micro- 
processor chip (BO-B7). This circuit will increase the drive capacity of 
the microcomputer from a fan-out of 2 to a fan-out of 30 or even 100, 
depending upon the bus driver selected. 

FLIP-FLOPS 

All of the gates used in digital electronics are transient devices. In 
other words, the output state disappears when the input stimulus dis- 
appears; the gate has no memory. A flip-flop, however, is a circuit that 
is capable of storing a single bit, one binary digit, or data. An array of 
flip-flops, called a register, can be used to store entire binary words in 
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Figure 11-6. IC logic element interfacing A) any-CMOS-to-4049/4050-to- 
single TTL, B) TTL-to-CMOS operated from +5 VDC, C) TTL-to-CMOS other 
than +5 VDC, D) 4049/4050 to drive TTL, E) CMOS-to-LS TTL (i.e., 74LS 
series), F) 4001/4002 CMOS to TTL 
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Figure 11-7. Using bus driver stages to increase the bus power capacity 

the computer. All of these circuits can be built with discrete digital 
gates, even though few modern designers would do so because the 
various forms of flip-flop are available as discretes in their own right. 

Figure 11-8 shows the basic reset-set, or RS flip-flop. The two 
versions are based on the NOR and NAND gates, respectively. An RS 
flip-flop has two inputs, S and R for set and reset. When the S input is 
momentarily made active, then the output terminals go to the state 
in which Q = HIGH and NOT-Q = LOW. The 2 input causes just 
the opposite reaction: Q = LOW and NOT-Q = HIGH. These inputs 
must not be made active simultaneously, or an unpredictable output 
state will result. 

Figure 11-8A shows the RS flip-flop made from a pair of 2-input 
NAND gates. In each case, the output of one gate drives one input of 
the other; the gates are said to be cross-coupled. The alternate inputs 
of each gate form the input terminals of the flip-flop. 

The inputs of the NAND gate version of the RS flip-flop are active- 
LOW. This means that a momentary LOW on either input will cause 
the output action. For this reason, the NAND gate version is sometimes 

designated an RS FF, and the inputs designated S and R, respectively. 
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The NOR gate version of the RS flip-flop is shown in Figure 
11-8B. In this circuit, the inputs are active-HIGH so the output states 
change by applying a HIGH pulse momentarily. The circuit symbol 
for the RS flip-flop is shown in Figure 11-8C. In some instances, the 
NAND version will be indicated by the same circuit, while in others 
there will be either R and S indications for the inputs or circles indi- 
cating inversion at each input terminal. 
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: 
(A) 
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Figure 11-8. A) NAND-based RS flip-flop, B) NOR-based RS flip-flop, C) RS 
flip-flop circuit symbol 
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The RS flip-flop operates in an asynchronous manner, i.e., the 
outputs will change any time an appropriate input signal appears. 
Synchronous operation, which is required in most computer-oriented 
circuits, requires that output states change only coincident with a 
system clock pulse. The circuit in Figure 11-9 is a clocked RS flip-flop. 
Gates G3 and G4 form a normal NOR-based RS flip-flop. Control via 
a clock pulse is provided by gates G1 and G2. One input of each is 
connected to the clock line. These two gates will not pass the R and 
S pulses unless the clock line is HIGH. The input lines can change all 
they want between clock pulses, but an output change is effected only 
when the clock pulse is HIGH. 

A Type-D flip-flop (Figure 11-10A) is made by using an inverter 
to ensure that the S and R inputs of a clocked RS flip-flop are always 
complementary. The S input of the RS flip-flop and the input of the 
inverter that drives the R input of the RS FF are connected in parallel. 
When the S input is made HIGH, therefore, the R input will be LOW. 
Similarly, a LOW on the S input will place a HIGH on the R input. 
The circuit symbol for the Type-D FF is shown in Figure 11-10B. 

The rule for the operation of the Type-D flip-flop is: The input 
data applied to the D terminal will be transferred to the outputs only 
when the clock line is active. Figure 11-10C shows a typical timing 
diagram for a level-triggered Type-D flip-flop that has an active-HIGH 
clock. The output line of this flip-flop will follow the input line only 
when the clock line is HIGH. Trace D shows the data at the D-input, 
while trace Q shows the output data; CLK shows the clock line, which 

is presented with a series of regular pulses. 
At time T,, the data line goes HIGH, but the clock line is LOW, 

so no change will occur at output Q. At time T,, however, the clock 
line goes HIGH; the data line is still HIGH so the output goes HIGH. 
Note that the Q output remains HIGH after pulse T1 passes, and it 
will continue to remain HIGH even when the data input drops LOW 
again. In other words, the Q output of the Type-D flip-flop will re- 

RO 

Figure 11-9. Clocked-RS flip-flop 
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member the last valid data present on the D input when the clock 
pulse went inactive. At time T, we find another clock pulse, but this 
time the D input is LOW. As a result, the Q output drops LOW. The 
process continues for times T, and T,. Note that, in each case, the 
output terminal follows the data applied to the input only when the 
clock pulse is present! 

The example shown here is for a level-triggered Type-D flip-flop, 
which will allow continuous output changes while the clock line is 
HIGH. An edge triggered Type-D flip-flop timing diagram is shown 
in Figure 11-10D. In this case, the data on the outputs will change 
only during either a rising edge of the clock pulse (positive edge trig- 
gered) or on the falling edge of the clock pulse (negative edge trig- 
gered). The flip-flop will respond only during a very narrow period of 
time. 

I/O PORTS: DEVICES AND COMPONENTS 

A number of devices on the market can be used for input and output 
circuitry in microcomputers. Some devices are merely ordinary TTL 

or CMOS digital integrated circuits that are adaptable to I/O service. 
Still others are special-purpose integrated circuits that were intended 
from the inception as I/O port devices. Most of the microprocessor 
chip families contain at least one general-purpose I/O companion chip 
that is specially designed to interface with that particular chip. In this 
chapter, we will study some of the more common I/O components. 
Keep in mind, however, that there are many other alternatives that 

may be better than those shown here. You are advised to keep abreast 
of the integrated circuits that are available from various manufacturers. 

Figure 11-11 shows the TTL 74100 device. This integrated circuit 
is a dual 4-bit latch circuit. When we connect the latch strobe terminals 
together (pins 12 and 23), we find that the device is usable as an 8-bit 
latch. The 74100 device can be used as an output port. 

The input lines of the 74100 device are connected to bits DBO 
through DB7 of the data bus. The Q outputs of the 74100 are being 
used as the data lines to the external device. The two strobe lines are 
used to gate data from the data bus onto the Q outputs of the 74100. 
The data latch (including the 74100) will transfer data at the D inputs 
to the Q outputs when the strobe line is HIGH (note the similarity to 
the operation of the Type-D flip-flop—the data latch is a special case 
of the Type-D FF in which the clock line is labelled strobe). When the 
WRITE signal goes HIGH, therefore, the data on the bus is transferred 
to the Q outputs of the 74100. The data will remain on the Q outputs 
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Figure 11-11. 74100 chip used as an output port 

even after the WRITE signal goes LOW again. This type of output, 
therefore, is called a latched output. 

It is not necessary to use a single integrated circuit for the latched 
output circuit. For example, we could use a pair of 7475 devices, or 
an array of 8 Type-D flip-flops, although one wonders why! 

Input ports cannot use ordinary 2-state output devices because 
there may be a number of devices sharing the same data bus lines. If 
any one device, whether active or not, develops a short to ground then 
that bit will be permanently LOW, regardless of what other data are 
supposed to be on the line. In addition, it is possible that some other 
device will output a HIGH onto the permanently LOW line and 
thereby cause a burn-out of another IC. Similarly, a short-circuit of 
any given output to the V+ line will place a permanent HIGH on that 
line. Regardless of the case, placing a permanent data bit onto a given 
line of the data bus always causes a malfunction of the computer or 
its resident program. To keep the input ports “floating” harmlessly 
across the data bus lines, we must use tri-state output components for 
the input ports; such components were discussed earlier in this chapter 
(see Figure 11-5). 

A number of 4-bit and 8-bit tri-state devices on the market can 
be used for input port duty. Figure 11-12A shows the internal block 
diagram for the 74125 TTL device. This device is a quad noninverting 
buffer with tri-state outputs. A companion device, 74126, is also useful 

for input port service if we want or need an inverted data signal. The 
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74126 device is a quad inverter with tri-state outputs. Each stage in 
the 74125/74126 devices has its own enable terminal (C1 through C4) 
that is active-LOW. When the enable terminal is made LOW, therefore, 
the stage will pass input data to the output and operate in the manner 
normal to TTL devices. If the enable terminal is HIGH, however, then 
the output floats at a high impedance so will not load the data line to 
which it is connected. 

Figure 11-12B shows a pair of 74125 devices connected to form 
a single 8-bit input port. The output lines from each 74125 (i.e., pins 
3, 6, 8, and 11) are connected to lines DBO through DB7 of the data 
bus. The input pins of the 74125 (pins 2, 5, 9, and 12) are used to 
accept the data from the outside world. 

The READ signal generated by the microprocessor chip and the 
device select circuits is used to turn on the 74125 devices. Note that 
all four enable lines of each 74125 device are parallel-connected so 
that all stages will turn on at the same time. 

The output lines of the input port are not latched. Therefore, the 
data will disappear when the READ signal becomes inactive, exactly 
the requirements of an input port on a shared bus! 

Another useful input port device is the 74LS244 TTL integrated 
circuit. Like the 74125 device, the 74LS244 has tri-state outputs. The 
74LS244 is an array of eight noninverting buffer stages arranged in a 
2-by-4 arrangement in which four devices share a common enable 
terminal. In Figure 11-13A, we find that stages Al through A4 are 
driven by chip enable input CEI (pin 1), while Bl through B4 are 
driven by chip enable input CE2 (pin 19). In the circuit in Figure 
11-13B we strap the two chip enable terminals together to force the 
74LS244 device to operate as a single 8-bit input port. The eight input 
lines are connected to the respective input terminals of the 74LS244, 
while the output lines are connected to their respective data bus lines. 
When the READ signal becomes active (LOW), then data on BO 
through B7 will be gated onto data bus lines DBO through DB7. 

The techniques used thus far in this chapter require separate 
integrated circuits for input and output functions. While this is often 
satisfactory, it involves an excessive number of chips for some appli- 
cations. We can, however, make use of combination chips in which 
the input and output functions are combined. Several devices on the 
market are classified as bidirectional bus drivers. These devices will 
pass data in either direction depending upon which is selected by the 
control signals. Typical devices used for several years in microcomputer 
designs are the 4-bit 8216/8226 devices and the 8-bit 8212 device, all 
by Intel. Originally, these devices were intended for use in the 8080A 
microprocessor circuit. Even though the 8080A has been long since 
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Figure 11-12. A) internal circuit of 75125 chip, B) 74125 as an input port 
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Figure 11-13 (continued). B) 74LS244 as input port 

superseded by newer and more powerful microprocessors, some of the 
support chips still find wide application. 

Figure 11-14 shows the internal structure (simplified) for the 8216 
and 8226 devices. The principal difference between the 8216 and the 
8226 is that the 8216 uses noninverting stages while the 8226 uses 
inverting stages. Note that the two buffers in each stage are facing in 
opposite directions with respect to the data bus line (DBO). In other 
words, the output line of I is connected to the data bus so stage I can 
be used as an input port line. Similarly, the input of O is connected 
to the data bus, thereby allowing use of O as an output line. The DI 

and DO lines are for input and output, respectively. 
Control of the 8216 and 8226 devices is through the DIEN and 

CS inputs. Figure 11-15 shows the truth table that applies to these 
chips. The chip select line (CS) is active-LOW, so we find that the 
output will be in the high impedance state if CS is made HIGH. The 
CS line must be LOW for the device to operate. The data direction 
(DIEN) line will connect the input lines (DI) to the data bus (DB) when 
the DIEN is LOW, and connect the data bus lines to the output lines 
(DO) when DIEN is HIGH. 
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Figure 11-14. One segment from 8216/8226 chips 

Figure 11-16 shows two alternate plans for connecting the 8216 
and 8226 devices to actual microprocessor circuits. Figure 11-16A 
shows the basic connections to make these devices work properly, while 
Figure 11-16B shows a method for using a pair of 8216 devices with 
a 6502 microprocessor chip. The control signals from the micro- 
processor chip are specifically designed for use with the 8216/8226 
devices. 

8216/8226 

s [oen| stave | 
ro tO DI-— DB 

He 
x High-Z 

Hee 
Figure 11-15. 8216/8226 truth table 
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INTERFACING KEYBOARDS TO THE MICRO- 
COMPUTER ’ 

The microcomputer is able to communicate with humans through 
means of various displays (e.g., video CRT, strip-chart recorder, seven- 
segment LEDs). The so-called “real world” can communicate with the 
computer through transducers and data converters. But humans have 
to communicate with the computer through a device such as a key- 
board. The purpose of the keyboard is to allow the human operator 
to send uniquely encoded binary representations of alphanumeric char- 
acters, special symbols, or that denote special functions to the com- 
puter. If the computer has been programmed to recognize these special 
codes, then the human operator can direct the operation of the com- 
puter, feed it data, etc. 

There are at least three general types of keyboard. First is the 
simple hexadecimal keypad, which will have 16 keys that are labelled 
0 through 9 and A through F. The “hex” keypad will produce either 

+5 V DC 

DIO DBO 

DI1 DB! pata 
DI2 DB2 Bus 

DI3 DB3 

DOO 

DO1 

DO2 

DO3 

* Two Required for 8-Bit 
D 
ata Bus cS —sCDIEN 

(A) 

Figure 11-16. A) 8216 as input port (4-bit), B) two combined for 8-bit op- 
eration 
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Data 
Bus 

DB4 

DBS 

DB6 

DB7 

(B) 

the 4-bit binary representations of the hex numbers 0000 through 1111 
or the ASCII representation (note that the ASCII is a 7-bit code of 
which the lowest order 4 bits are the same as the binary code for 
hexadecimal). The second form of keyboard is the full ASCII keyboard 
that contains all of the alphanumeric characters and outputs unique 
7-bit ASCII binary codes representing those characters. The several 
different forms of this type of keyboard offer 56, 64, or 128 characters 
(the maximum number allowable with 7-bit codes). The 7-bit ASCII 
code is ideal for 8-bit microcomputers because the binary word length 
of the character code is only 1 bit less than the word length of the 
microprocessor. When the strobe or data valid bit is added to the code 
bits then a single 8-bit word is totally filled and there are no 
wasted bits. 
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The third type of keyboard is the custom or special-purpose key- 
board used on electronic instrument panels, for point-of-sale terminals 
designed to be operated by quickly trained Christmas and summer 
replacement clerks, etc. The custom keyboard may be merely a series 
of switches that set some input port bits HIGH or LOW depending 
upon the situation or it may be a general purpose or hexadecimal 
keyboard with special keycaps that denote special functions. The com- 
puter would be programmed to look for the special symbol and then 
jump to the program that performs the requisite function when the 
signal is received. 

Figure 11-17 shows the circuit for a typical type of keyboard that 
is based on a Read Only Memory. Addressing the locations of the 
memory IC (JC1) is by shorting together specific row (“X’’) and column 
(“Y’’) input pins. When the “@” key is pressed, for example, the key 
switch that denotes “@” is used to short together row “XO” and column 
“Y8” (see character table in Figure 11-17). This combination uniquely 
addresses the memory location inside IC] that contains the binary 
code that represents the ASCII character “@.” 

Lines DBO through DB6 are the data lines for the ASCII code, 
and DB7 is the strobe line. The strobe line is used to tell the outside 
world that the data on the other seven lines are valid. Normally, “trash” 
signals will be on those other lines until a key is pressed and the ASCII 
code appears. By using the strobe line judiciously, we can create a 
signal that tells the computer when to believe the DBO-DB6 data. 
In the case of Figure 11-17, the strobe is a pulse that is created by 
monostable stable multivibrator (i.e., one-shot) [C2. 

The two different types of strobe signal are shown in Figure 
11-18. The level type of signal is simply a voltage level that becomes 
active when the key is closed, and remains active until the key is 
released. In Figure 11-18A, the signal is active-HIGH so pops HIGH 
when key closure occurs and drops LOW again when the key is re- 
leased. The alternate form of strobe signal is the pulse as shown in 
Figure 11-18B. This signal will snap HIGH only for a brief period (often 
measured in microseconds) and then go LOW again. By the time the 
operator releases the key (i.e., after dozens of milliseconds), the com- 
puter has input the data and gone on to grander and more wonderful 
things. 

It is important to ensure that the type of strobe signal matches 
the computer and the software being used. Problems that can make 
an otherwise normal keyboard appear to malfunction involve the du- 
ration of the strobe pulse, software that is looking to find one type of 
strobe signal but the keyboard supplies the other, and inverted strobe 
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Level | | 

Type 

Pulse 

Type | a 

| | 
Key Closure Key Opened 

Figure 11-18. Types of strobe signal (A) level, (B) pulse 

signals (i.e., the keyboard is active-LOW and the program wants to see 
active-HIGH so no data-valid strobe signal is received—except when 
the data is trash). We will discuss possible “fixes” for these problems 
shortly. 

The keyboard is most easily interfaced to the microcomputer that 
has a spare input port to accommodate it. We can then connect DBO- 
DB6 to the low order 7 bits of the input port and the strobe signal to 
the highest order bit of the port. A program is then written to con- 
tinuously examine that high order bit and branch to the input routine 
when it sees an active strobe signal. In that case, simple interconnection 
is all that is needed. 

Where there is no available input port, then we may create one 
using one of the methods shown earlier or some special function I/O 
port IC device. The I/O port circuitry could then be used to input 
data from the keyboard directly to the data bus. 

Most of the methods for interfacing keyboards will work fast 
enough that the computer can pick up the valid data each and every 
time a key is pressed. But at times we will want the computer to come 
back later and pick up the data (note that “later” could mean 500 ms, 
but the key would have been released by that time), so that some other 
program task is not interrupted. In that case, we would want a latched- 
output keyboard. If the output data on any given keyboard is not 
latched, then a circuit such as in Figure 11-19 may be used. Here we 
see the use of another 74100 8-bit data latch. Seven of the latch inputs 
are used to accommodate the ASCII data lines, and the eighth is not 
connected. The ASCII strobe signal is used to activate the 74100 strobe 
lines and will transfer valid ASCII data from the inputs to the outputs 
of the 74100 so that the computer always sees a valid data signal. 

In the case shown in Figure 11-19, the computer must periodically 
interrogate the input port and take the data each time. Unless there 
is some reason why the computer must know that the data is new, the 
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Keyboard 

Figure 11-19. Latch circuit for keyboard 

strobe is not necessary. We could, however, add a flip-flop that changes 
state when the strobe signal is received and is then reset when the 
computer takes the data. In that case, the READ signal generated to 
activate the input port also could be used to deactivate the strobe FF, 
provided that the timing could be worked out. 

Figure 11-20 shows the fixes for several problems. When the 
strobe signal is of the wrong polarity, we can interpose an inverter 
between the strobe output of the keyboard and the strobe line of the 
computer input port (see Figure 11-20A). 

The same basic idea is used when the voltage levels from the 
keyboard are not compatible with the input level requirements of the 
microcomputer. It is almost universally true that microcomputers want 
to see TTL-compatible voltage levels for all signals (i.e., 0-volts and 
2.4-5.2 volts for LOW and HIGH, respectively). If the keyboard pro- 
duces something else, for example, a CMOS logic level, then some 
form of level translation must be used. The interface device in that 
case could be a CMOS 4049 or 4050 (depending upon whether inver- 
sion is desired) operated from a +5-volt power supply. When the IC 
is operated from +5 volts DC, then the output lines are TTL- 
compatible while the input will still accommodate CMOS levels. 

Figure 11-20B shows one fix for the situation where the keyboard 
strobe signal is too short for the microcomputer being used. In many 
cases, the keyboard used on a microcomputer will seem to malfunction 
intermittently. The operator will notice that it will not always be picked 
up by the computer. The problem in that case may well be that the 
strobe pulse is too short. Microcomputer programs typically loop 
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through several steps that input the data at the port, mask all bits but 
the strobe, and then test the strobe for either 1 or 0, depending upon 
whether active-HIGH or active-LOW is desired, and then act accord- 

ingly. If the strobe is active, then the program jumps to the input 
subroutine that will accept the data and stuff it someplace. If, on the 
other hand, the strobe test shows that it is inactive, then the program 
branches back to the beginning and inputs the data to test again. It 
will continue this looping and testing until valid data is received. The 
problem is that the looping requires a finite period of time to execute— 
not much time, but still finite. If the strobe pulse comes alive and 
disappears while the loop program is in another phase than input data, 
then it will be lost forever. To the operator, it will appear that the 
computer ignored the keystroke—and much complaining and calling 
of service technicians will ensue. An example of such a situation is 
where the computer requires 22 microseconds to execute the loop 
program, and the keyboard has a 500-nanosecond strobe (they exist). 
In that case, we can use the pulse stretcher circuit in Figure 11-20B. 
The circuit is merely a one-shot, and does not actually stretch any- 
thing—it only looks that way to the naive. Actually it uses the strobe 
pulse from the keyboard as the trigger signal for the one-shot, and 
then the output of the one-shot becomes the new, longer, and pre- 
sumedly “stretched,” strobe pulse that is sent to the computer. The 
duration of the pulse is given approximately by 0.7R,C, and these 
values can be any normal values under 10 megohms and 10 pF, select 
values that will make the strobe pulse duration at least long enough 
that the loop program will catch it, but not so long as to require several 
loops to outrun it. 

Where the low-cost keyboard outputs a level strobe signal, and 
the computer wants to see a pulse strobe signal, use an arrangement 
such as in Figure 11-20C. Here we have a 74121 one-shot similar to 
the one used previously. The difference is that the trigger input is 
connected to the keyboard strobe line through an RC differentiator 
(R2 and C2). The purpose of the differentiator is to produce a pulse 
signal when the level becomes active. Note that, sometimes, one-shot 
devices will respond to both rising and falling edges, so some sort of 
diode suppression might be needed in the differentiator output (i.e., 
trigger input) to eliminate the unwanted version of the signal. 

CUSTOM KEYBOARDS, SWITCHES, AND LED 
DISPLAYS 

Custom keyboards may be ordinary keyboards with special keycaps or 
they may be specially designed sets of switches that tell the computer 
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Keyboard 

STROBE STROBE 

(A) 

STROBE 

(C) 

Figure 11-20. A) inverting strobe pulse, B) lengthening strobe pulse, C) circuit 
for positive-level-to-pulse type strobe signal 
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to do some neat thing or another. In this section we will consider some 
of the techniques used to interface and construct these keyboards. 

Perhaps the simplest method is that shown in Figure 11-21A. The 
active element of the keyboard is an input port with switches con- 
nected to set each bit either HIGH or LOW. In some cases, especially 
those where a special-purpose I/O port IC is used, the bits of the port 
might be ordinarily maintained HIGH by internal pull-up resistors to 
+5 volts DC, but in most cases we will have to supply the pull-up 
resistors externally. The resistors are designed to ensure that the open 
bit of the input port remains HIGH and is not erroneously driven LOW 
by noise or other factors. The switches will produce a HIGH on the 
bit line when they are open, and a LOW when they are closed. 

Where there is no available input port, then we create one by 
using a 74LS244 or some similar device to interface the switches to 
the data bus line. A READ] signal is used to turn on the 74LS244 
when the computer wants to read the setting of the switches. The read 
operation can be either periodic, as in the case of the keyboards, or it 
may occur just once when the computer is first turned on or the 
program first begins execution. In this latter case, the computer is 
asking the keyboard what modes are selected or some similar question. 
Some designers use this same method to tell the computer which 
options the customer has purchased. For example, suppose we have a 
scientific or medical instrument that has eight optional modes that the 
customer pays for separately from the main instrument. The designer 
might put a circuit such as in Figure 11-21A on the printed circuit 
board (the switches are DIP switches) so that the customer engineer 
or production staff can set them according to which options are pur- 
chased. The program to support those options could already be built 
into the software supplied via ROM to the customer, but only becomes 
activated when the switch is set to the correct position. Of course, the 
setting protocol of these switches would be kept confidential lest 
the customer set them himself, thereby avoiding payment of the 
license fee. 

The example in Figure 11-21B also shows an opto-isolator switch, 
which is sometimes used to indicate the position of an object. In a 
popular printer, for example, there is a little metal flange on the print 
head assembly that will fit into the space between the LED and the 
phototransistor, thereby blinding the transistor when the print head 
assembly is at the end of its travel. As long as the transistor sees light, 
it will be turned on and the state of DB7 will remain LOW. When the 
print head assembly reaches the limit of travel, however, it will blind 

the transistor causing it to turn off, and DB7 goes HIGH. The micro- 
processor used to control the printer carriage will then know to issue 
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the signal that returns the carriage to the left side of the page and 
issue a line feed signal to advance the paper. 

Switches don’t make and break in a clean manner; there is almost 

always some “contact bounce” to contend with. In the case of toggle 
switches that we set and forget, this “bounce” is not too much of a 
problem. But in the case of pushbutton switches that are operated 
regularly, then the contact bounce will produce spurious signals that 
may erroneously tell the computer to do something besides what the 
operator intended. The two circuits in Figure 11-22 can be used to 
“debounce” the pushbutton switches. Figure 11-22A shows the so- 
called half-monostable circuit, which will produce an output pulse 
with a duration set by Rl and Cl every time the pushbutton switch 
is operated. The inverter is CMOS type, such as the 4049 or 4050 
devices (again, depending upon the desired polarity of the signal). The 
alternate circuit (see Figure 11-22B) is merely the one-shot circuit used 
earlier but with a pushbutton switch and pull-up resistor forming the 
trigger input network. In either case, the output will be a pulse with 
a duration long enough to allow the bounce signals to die out. 

Figure 11-23 shows the methods for interfacing LEDs and LED 
7-segment displays to the microcomputer. In both cases, an output 
port is needed. If none exists, a 74100 or some other device may be 

+5 VDC 

All 3.3 K 

S1 

$2 

$3 

$4 

(A) 

Figure 11-21. A) interfacing switches for “custom keyboard” 
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Figure 11-21 (continued). B) with eight inputs 
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O Active-High 

O Active-Low 

R2 
3.3 K 

Figure 11-22. Debounced keyboards A) monostable multivibrator type B) 
half-monostable type 
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used to form an output port. In the case of Figure 11-23, a single output 
port is used. Figure 11-23A shows the method for interfacing individual 
LEDs to the port. Each light-emitting diode is driven by an open- 
collector TTL inverter. The LED and a current limiting resistor is used 
to form the collector load for the inverters. The value of the resistor 
is selected to limit the current to a level compatible with the limits of 
the LED and the output of the inverter. With the value shown, the 
current is limited to 15 milliamperes, which is within the capability of 
most of the available open-collector TTL inverters on the market, and 
will provide most LEDs with sufficient brightness to be seen in a well- 
lighted room .. . although not outdoors in direct sunlight. 

When the input signal of the inverter in Figure 11-23A is HIGH, 
then the output is LOW, thereby grounding the cathode of the LED. 
This condition will turn on the LED. Alternatively, when the input of 
the inverter is LOW, its output will be HIGH so the cathode of the 
LED will be at the same potential as the anode and no current will 
flow. Therefore the LED will be off. 

Figure 11-23B shows a similar method for interfacing 7-segment 
LEDs to the microcomputer output port. Here we drive the 7 segments 
of the LED numerical display device with open-collector TTL inverters 
in exactly the same manner as with the individual LEDs. This method 
assumes that the LED numerical display is of the common anode 
variety with the anode connected to the +5-volt DC power supply. 

A constraint on this method is that the computer must generate 
via a software method the 7-segment code. For example, when the 
number to be displayed is “4,” we will want to light up the following 
segments: f, g, b, and c. These segments are controlled by bits B5, B6, 
Bl, and B2, respectively. Since the segment is turned on when the 
output port level is HIGH (as in the previous case), we will want to 
output the binary word 01100110 to turn on the segments that indicate 
“4.” In this case, the decoding of the number “4” into 7-segment code 
is performed in software, probably using a look-up table. 

Figure 11-24 shows a method for interfacing the display through 
an ordinary TTL BCD-to-7-segment decoder integrated circuit, in this 
case the 7447 device. The 7447 will accept 4-bit Binary Coded Decimal 
data at its inputs, decode the data, and turn on the segments of the 
LED display as needed to properly display that digit. The 7447 outputs 
are active-LOW, i.e., they drop LOW when a segment is to be turned 
on and are HIGH at all other times. We therefore would use a common 
anode 7-segment LED display for this application. 

The BCD code applied to the inputs is weighted in the popular 
8-4-2-1 method, and according to our connection schema shown in 
Figure 11-24: BO = 1, B1 = 2, B2 = 4, and B3 = 8. 
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330 or 390 2 

(B) 

Figure 11-23. A) Interfacing light-emitting diodes (LED), B) interfacing light- 
emitting diode seven-segment numerical displays 
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Three control terminals are available on the 7447 device. We 
have a lamp test (LT, pin 3) that will turn on all 7 segments when it 
is LOW; at all other times LT is kept HIGH. One function of this 
terminal is to provide a test of the LED readout to ensure that no 
burned-out segments exist. The nature of 7-segment readouts allows 
erroneous readout if one or more segments is burned out or otherwise 
inoperative. For example, if segment g is defective, an 8 output will 
read 0! There may be no way for a user to find that defect unless there 
is a lamp test performed. In some cases, the LT is performed on demand 
by the user. In that case, a pushbutton switch will ground pin 3 and 
the user will note whether or not an 8 appears. Of course, all LT 
terminals of the entire multidigit display can be connected together 
in one bus to light up all at the same time. In a 6-digit display, grounding 
the common LT line would produce 888888. The other alternative is 
to connect the LT line to an output bit of the microcomputer. The 
program would then display all 8s for a few seconds when the computer 
or instrument is first turned on, with the idea that the user will observe 

any defective segments. Be careful when connecting the LT terminals 
to the output port lest the drive capability of the port bit be exceeded. 
Most computer output port lines will drive no more than two or three 
TTL loads, and the LT input represents one such load. In the case 
where more drive is needed, a noninverting buffer with an appropriate 
fan-out can be used. 

The RBI input is for ripple blanking. If the RBI input is LOW, 
then the display will turn off if the BCD word applied to the data 
inputs is zero, i.e., 0000. The purpose is to blank leading zeroes. In 
other words, without ripple blanking the number “432” displayed on 
a 6-digit display would read “000432.” If we used ripple blanking, 
however, those three leading zeroes would be extinguished and the 
display would read “---432.” Complementary to the RBI is the ripple 
blanking output (RBO), which tells the next display that zero blanking 
is desired. Note that the RBO being grounded will turn off the display, 
and thus can be used in multiplexing applications. 

When using the display in Figure 11-24, a program will load the 
accumulator with the correct binary coded decimal representation for 
that digit, and then output it to the port that controls the display. Since 
microcomputer data words (hence, accumulator registers) tend to be 
8 bits or longer, it will be necessary to mask the data to provide zeroes 
in the high order half-byte of the word. By eliminating the lamp test 
and blanking features, we can pack the bits in order to make a single 
8-bit word contain 2 BCD digits, or, up to 4 BCD digits in a 16-bit 
word. In the case of the 8-bit accumulator, we could pack the least 
significant digit (in BCD form) into BO-B3, and the most significant 
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digit into B4—B7 of the 8-bit word. Most common microprocessors have 
the instructions to automatically accomplish the packing and unpacking 
of BCD data. 

As long as only 1 or 2 digits are required or sufficient output ports 
are available, the method shown here will be satisfactory. But where 
output ports must be created, or a large number of digits exist, then 
we might want to consider multiplexing the displays. In a multiplexed 
(MUX) display, each digit is turned on in sequence and no 2 digits are 
on at the same time. If the multiplexed rate is rapid enough, the human 
eye will blend the on-off transitions and will not notice the flicker. 
The human eye has a persistence of approximately 1/13 second (i.e., 
80 ms), so we will want to switch through the displays at a rate that 
allows each digit to be turned on before the eye persistence gives it 
a chance to be recognized. In the case of 6-digit display, therefore, we 
would want to switch at a rate faster than 80 ms/6, or 12.8 ms. If we 

take the reciprocal of time, we will find the switching frequency, which 
in this case would be 1/0.0128s or 78 Hz. We can, therefore, apply an 
80 Hz or higher clock and still meet the persistence requirements of 
the eye. In most cases, however, faster clock rates are used with the 
attendant smoothing of the display. 

So why multiplex? Besides the reduce complexity and chip count 
of the circuit (hence, improved reliability), there is also the advantage 
of improved current drain requirements. A typical LED device wants 
to see 15 mA per segment. If the digit “8” is displayed, with all 7 
segments lit, then the current per digit would be 15 mA x 7, or 105 
mA. In the case of our hypothetical 6-digit display, then, we would 
need 6 x 105 mA or 630 mA for the display alone! That’s more than 
a half ampere to light display segments . . . and may well be greater 
than the allowable current budget in many applications (hand-held 
instruments, such as calculators, need to MUX the display to have a 

battery life that is even reasonable). 
Figure 11-25 shows a method of using a single 7447 device to 

drive a larger number of 7-segment readouts. The a—g segment lines 
are bused together so that all a lines, all b lines, etc., are connected 
into a single line. Therefore, there will be 7 lines feeding the 7 segments 
of all digits. In the case shown, we would need 21 lines to individually 
address all 7 segments of all 3 digits. In this arrangement, only 7 lines 
are used, and the anodes of each digit are connected to the power 
through transistor switches that are turned on sequentially. 

The BCD data is fed to the 7447 through output port 1, while 
the MUX information is fed to the bases of the control transistors (Q1- 
Q3) through output port 2. If 4 or less digits are used, then we can 
conspire to use only one output port, with the BCD data supplied 
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through BO-B3, and the control bits through B4-B7. Alternatively, we 
could also add a 7442 BCD-to-1-of-10 decoder to control up to 10 
digits, thereby making fuller use of the binary nature of the output 
port. In that case, the low-order 4 bits (BO-B3) would contain the BCD 
code, while B4-B7 would contain a BCD word that sequences 0000 
through 1001. Let’s see what would be needed to make Figure 11-25 
display the number “432.” We know that the port 2 bits must be HIGH 
to turn on a digit, so the sequence will be: 

Decimal No. Port 1* Port 2** 

4 0100 001 

3 0011 010 

2 0010 100 

4 1000 001 

3 0011 010 

2 0010 100 

4 1000 001 

3 0011 010 

2 0010 100 

* Bits B4-B7 = 0 
**Bits B3-B7 = 0 

Figure 11-26A shows a method for connecting the display/de- 
coder circuits to a single output port. In the case shown here, the 
display /decoder might be an old-fashioned combination of 7447 and 
an LED display or one of the new combination units that contain both 
the decoder and the 7-segment LED in a single DIP integrated circuit 
package (e.g., the Hewlett-Packard units). The 4 BCD lines of all dis- 
plays are connected to a common 4-bit BCD data bus formed from 
the 4 low-order bits of the output port. The high 3 bits of the port are 
used as the MUX control signals. The displays are turned on by an 
active-LOW chip enable (CE) line, so the control bits are required to 
be LOW when the digit is turned on and HIGH at all other times. The 
timing diagram for the multiplex display is shown in Figure 11-26B. 
Note that the chip enable lines CEI through CE3 are active-LOW, so 
will each be LOW one-third of the time, in sequence. 





12 
Interfacing Peripherals 
to the 6502 

A peripheral is a device external to the computer, and which usually 
(but not always) functions to allow the computer to communicate with 
the so-called “outside world.” Examples of peripherals include the usual 
assortment of devices such as teletypewriters, printers, keyboards, card 
readers, tape readers, and CRT video terminals. The peripheral rubric 
can also be applied to such diverse devices as A/D or D/A converters, 
electromechanical relays, sensors of one type or another, and lamps 
or displays. In this chapter, we will consider general methods that 
permit interfacing the 6502 with a majority of peripheral devices. 

PARALLEL PORT METHODS 

Occasionally, a device is found which will permit interfacing through 
a standard 8-bit parallel port. An example is the standard ASCII key- 
board. In that case, 7 of the 8 lines are used to carry data, while the 

eighth line (usually B7) is used as a strobe signal that lets the computer 
know when new data is available. 

The parallel I/O port is usually very rapid, but also very expensive 
except within the same computer or over a path of only a few meters 
outside the computer. For almost all other cases, we will want to use 
serial data communications methods. 

SERIAL DIGITAL DATA COMMUNICATIONS 

The interchange of data between machines requires some means of 
data communication. As mentioned above, parallel communications 

185 
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are probably the fastest method, but can be too expensive for practical 
application. In parallel communications systems, there will be not less 
than 1 line for each bit plus a common. For an 8-bit microcomputer, 
therefore, at least 9 lines are required. In some cases, especially in 
noisy environments, or where the data rate is very high, it may also 
be necessary to add additional lines for control or synchronization 
purposes. Parallel systems are practical over only a few meters distance 
and are the method generally used in small computer systems for 
intermachine local connections. But where the distance is increased 
beyond a few meters or where it becomes necessary to use a trans- 
mission medium other than hard wire, e.g., radio or telephone chan- 
nels, then another method of transmission may be required. For the 
8-bit system, for example, we would require not less than 8 separate 
radio or telephone transmission links between sending and receiving 
units; that is terribly expensive! The solution is to use only one com- 
munications link and then transmit the bits of the data signal serially, 
i.e., one after another sequentially, rather than simultaneously. 

The two forms of serial data communications are diagrammed in 
Figure 12-1: synchronous and nonsynchronous. The efficacy of serial 
communications depends upon the ability of the receiver synchronized 
with the transmitter. Otherwise, if they are out of sync, the receiver 
merely sees a series of high and low shifts of the voltage level and 
cannot make any sense out of the data. The main difference between 
the synchronous and asynchronous data communications method is in 
the manner that the receiver stays in step with the transmitter. In the 
synchronous method, shown in Figure 12-1A, a separate signal is trans- 
mitted to initialize the receiver register and let it know that a data 
word is being transmitted. In some cases, the second transmission 
medium path will be used to send a constant stream of clock pulses 
that will allow operation of the receiver register only at certain times. 
These times correspond to the time of arrival of the data signals. Each 
bit will be sent simultaneously with a clock pulse. If the incoming signal 
is LOW when the clock pulse is active, then the receiver knows that 
a LOW is to be entered into the register, etc. 

The problem with the synchronous method is that it requires a 
second transmission medium path which can be expensive in radio 
and telephone systems. The solution to this problem is to use an asyn- 
chronous transmission system such as shown in Figure 12-1B. In this 
system, only one transmission channel is required. The synchronization 
is provided by transmitting some initial start bits that tell the receiver 
that the following bits are valid data bits. In most systems, the data 
line will remain HIGH when inert and will signal the intent to transmit 
a binary word by initially dropping LOW. 



Jaysibay 
aniaoay 

J9
A1
99
9 

Y
 

0}
 

e1
eq
 

ja
yj

es
eg

 

(v) 
WNIPa|W 

UOISSIWUSUed 

| 

SUOIJBDIUNWILUOD 
S
N
O
U
D
I
Y
O
U
A
S
 

(V7 
pa

yy
iw

is
ue

s)
 

aq
 

02
 

bB
1e
G 

ja
lj

es
ed

 
"b-ZE 

esnbi4 

187 



S
U
O
H
B
O
I
U
N
W
W
O
D
 

SN
no
Ud
JY
yo
UA
Se
 

(g
 

‘(
pe
nu
Ij
Uu
Od
) 

1-
71
 

u
n
i
 

(a) 

UuO!JeZIUOIYIUAS 

49019 

J013U09 

JaysiBay 
aaiacey 

JaysiBay 
yiwsues) 

a
e
 
e
e
 

L
E
E
 
E
D
.
 

Win pay) 
uOIssiwSued 
| 

Ja
AI
a9
0y
 

02
 

pa
ij
ws
ue
s|
 

aq
 

0}
 

b1
eQ
 

ja
|}
e1
eg
 

B
e
g
 

ja
|j

es
eg
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There are two ways to keep the clock of the receiver synchronous 
with the transmitter. In one case, an occasional sync signal will be 
transmitted that keeps the clock on the correct frequency. In most 
modern systems, however, the receiver clock and the transmitter clock 
are both kept very accurate, even though locally controlled. Most small 
computer standards call for the receiver clock frequency to be within 
either 1 percent or 2 percent of the transmitter clock frequency. As 
a result, it is typical to find either crystal clocks or RC clocks made 
with precision low temperature coefficient components. 

The design of serial transmission circuits requires the construction 
of Parallel-In-Serial-Out (PISO) registers for the transmitter, and a 
Serial-In-Parallel-Out (SIPO) register for the receiver. Each register is 
designed from arrays of flip-flops, so they can be quite complex. 

Fortunately, we can also make use of a large-scale integration 
(LSI) serial communications integrated circuit called a UART (universal 
asynchronous receiver/transmitter). Figure 12-2 shows the clock dia- 
gram for a popular “standard” UART IC. The transmitter section has 
two registers: transmitter-hold register and transmitter register. The 
transmitter hold register is used as a buffer to the outside world, and 
is a parallel input circuit. The data bit lines from outside of the UART 
input the data to this register. The output lines of the transmitter hold 
register go directly to the transmitter register internally, and are not 
accessible to the outside world. The transmitter register is of the PISO 
design and is used to actually transmit the data bits. The operation of 
the transmitter side of the UART is controlled by the transmitter 
register clock (TRC) input. The frequency of the clock signal applied 
to the TRC terminal must be 16 times the data transmission rate 
desired. 

The receiver section is a mirror image of the transmitter section. 

The input is a serial line that feeds a receiver register (a SIPO type). 
The output register (receiver hold register) is used to buffer the UART 
receiver section from the outside world. In both cases, the hold registers 
operate semi-independently of the other registers so can perform cer- 
tain “handshaking” routines with other circuits to ensure that they are 
ready to participate in the process. 

Like the transmitter, the receiver is controlled by a clock that 
must operate at a frequency of 16 times the received data rate. The 
receiver clock (RRC) is separate from the transmitter clock (indeed, 
the entire receiver and transmitter circuits are separate from each 
other), so the same UART IC can be used independently at the same 
time. Most common systems will use the UART in a half-duplex or full- 
duplex manner so the receiver and transmitter clock lines will be tied 
together on the same 16X clock line. 
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The modes of transmission are (1) simplex, (2) half-duplex, and 
(3) full-duplex. The simplex method transmits data in only one direc- 
tion. A single UART will be used at the transmit end with the receiver 
section disabled, while at the receive end another UART is used with 

an active receive section and a disabled transmit section. In half-duplex 
transmission, both sections of both UARTs will be used. The half-duplex 
system is one that has the ability to transmit data in both directions, 
but only in one direction at a time. The full-duplex method allows the 
transmission of data in both directions at the same time. Note that, 

with proper external circuit configuration, most UARTs will support 
full-duplex communications. 

Several control terminals and signals are available on the UART 
and these aid in operation of the circuit. Some of them, however, may 
be inactive in any given communications system. The master reset 

terminal is used to set all registers to zero and return all signals to 
their inert state. Table 12-1 shows the other signals and control inputs. 
In a section to follow we will show a typical design for a UART interface 
with a 6502 microcomputer / microprocessor; therefore we will define 
only those that are used in that application. 

TABLE 12-1 

Pin Mnemonic Function 

1 Vcc +5 volts DC power supply. 

2 VEE —12 volts DC power supply. 
3 GND Ground. 

4 RRD Receiver Register Disconnect. A high on this pin 
disconnects (i.e., places at high impedance) the 
receiver data output pins (5 through 12). A low 
on this pin connects the receiver data output 
lines to output pins 5 through 12. 

5 RB, LSB 
6 RB, 
7 RB, 
8 RB; ; . 
9 RB, Receiver data output lines. 

10 RB, 
11 RB, 
12 RB, MSB 

13 PE Parity error. A high on this pin indicates that 
the parity of the received data does not match 
the parity programmed at pin 39. 
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Pin 
14 

15 

16 

17 

18 

19 

20 

21 

22 

23 
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Mnemonic 

FE 

OE 

SFD 

RRC 

DRR 

DR 

RI 

MR 

THRE 

THRL 

TABLE 12-1 (Continued) 

Function 

Framing Error. A high on this line indicates that 
no valid stop bits were received. 

Overrun Error. A high on this pin indicates that 
an overrun condition has occurred, which is de- 
fined as not having the DR flag (pin 19) reset 
before the next character is received by the in- 
ternal receiver holding register. 

Status Flag Disconnect. A high on this pin will 
disconnect (i.e., set to high impedance) the PE, 
FE, OE, DR, and THRE status flags. This feature 
allows the status flags from several UARTs to be 
bus-connected together. 

16 X Receiver Clock. A clock signal is applied 
to this pin, and should have a frequency that is 
16 times the desired baud rate (i.e., for 110 baud 
standard it is 16 x 110 baud, or 1760 hertz). 

Data Receive Reset. Bringing this line low resets 
the data received (DR, pin 19) flag. 

Data Received. A high on this pin indicates that 
the entire character is received, and is in the 

receiver holding register. 

Receiver Serial Input. All serial input data bits 
are applied to this pin. Pin 20 must be forced 
high when no data are being received. 

Master Reset. A short pulse (i.e., a strobe pulse) 
applied to this pin will reset (i.e., force low) both 
receiver and transmitter registers, as well as the 
FE, OE, PE, and DRR flags. It also sets the TRO, 

THRE, and TRE flags (i.e., makes them high). 

Transmitter Holding Register Empty. A high on 
this pin means that the data in the transmitter 
input buffer has been transferred to the trans- 
mitter register, and allows a new character to 
be loaded. 

Transmitter Holding Register Load. A low ap- 
plied to this pin enters the word applied to TB1 
through TB8 (pins 26 through 33, respectively) 
into the transmitter holding register (THR). A 



Pin 

24 

25 

35 

36 

Mnemonic 

TRE 

TRO 

PI 

SBS 
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TABLE 12-1 (Continued) 

Function 

positive-going level applied to this pin transfers 
the contents of the THR into the transmit reg- 
ister (TR), unless the TR is currently sending the 
previous word. When the transmission is finished 
the THR -— TR transfer will take place auto- 
matically even if the pin 25 level transition is 
completed. 

Transmit Register Empty. Remains high unless 
a transmission is taking place, in which case the 
TRE pin drops low. 

Transmitter (Serial) Output. All data and control 
bits in the transmit register are output on this 
line. The TRO terminal stays high when no trans- 
mission is taking place, so the beginning of a 
transmission is always indicated by the first neg- 
ative-going transition of the TRO terminal. 

LSB 

Transmitter input word. 

MSB 

Control Register Load. Can be either wired per- 
manently high, or be strobed with a positive- 
going pulse. It loads the programmed instruc- 
tions (i.e., WLS1, WLS2, EPE, PI, and SBS) into 

the internal control register. Hard wiring of this 
terminal is preferred if these parameters never 
change, while switch or program control is pre- 
ferred if the parameters do occasionally change. 

Parity Inhibit. A high on this pin disables parity 
generator/verification functions, and forces PE 
(pin 13) to a low logic condition. 

Stop Bit(s) Select. Programs the number of stop 
bits that are added to the data word output. A 
high on SBS causes the UART to send 2 stop bits 
if the word length format is 6, 7, or 8 bits, and 
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TABLE 12-1 (Continued) 

Pin Mnemonic Function 

1.5 stop bits if the 5-bit teletypewriter format is 
selected (on pins 37-38). A low on SBS causes the 
UART to generate only | stop bit. 

37 WLS, Word Length Select. Selects character length, 
exclusive of parity bits, according to the rules 

38 WLS, given in the chart below: 

Word Length WLS, WLS, 
5 bits low low 
6 bits high low 
7 bits low high 
8 bits high high 

39 EPE Even Parity Enable. A high applied to this line 
selects even parity, while a low applied to this 
line selects odd parity. 

40 TRC 16 x Transmit Clock. Apply a clock signal with 
a frequency that is equal to 16 times the desired 
baud rate. If the transmitter and receiver sec- 
tions operate at the same speed (usually the case), 
then strap together TRC and RRC terminals so 
that the same clock serves both sections. 

Data Received (DR). A HIGH on this terminal indicates that the data 
have been received and are ready for the outside world to accept. 

Overrun Error (OE). A HIGH on this terminal tells the world that 

the data reset (DR) flag has not been reset prior to the next character 
coming into the internal receive hold register. 

Parity Error (PE). Parity error signal indicates that the parity (odd 
or even) of the received data does not agree with the condition of the 
parity bit transmitted with that data. A lack of such match indicates 
a problem in the transmission path. 

Framing Error (FE). A HIGH on this line indicates that no valid stop 
bits were received. 

B1-B8 Receiver. Ejight-bit parallel output from receiver (tri-state). 

B1-B8 Transmitter. Eight-bit parallel input to transmitter. 

Transmitter Hold Register Empty (THRE). A HIGH on this pin in- 

dicates that the data in the transmitter hold register has been trans- 
ferred to the transmitter register and that a new character may be 
loaded from the outside world into the transmitter hold register. 
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Data Receive Reset (DRR). Dropping this line LOW causes reset of 
the data received (DR) flag, pin 19. 

Receiver Register Disconnect (RRD). A HIGH applied to this pin 
disconnects (i.e., causes to go tri-state) the B1-B8 receiver data output 

lines. 

Transmitter Hold Register Load (THRL). A LOW applied to this pin 
causes the data applied to the B1-B8 transmitter input lines to be 
loaded into the transmitter hold register. A positive-going transition 
on THRL will cause the data in the transmitter hold register to be 
transferred to the transmitter register, unless a data word is being 
transmitted at the same time. In that case, the new word will 

be transmitted automatically as soon as the previous word is completely 
transmitted. 

Receiver (serial) Input (RI). Data input to the receiver section. 

Transmitter Register (serial) Output (TRO). Serial data output from 
the transmitter section of the UART. 

World Length Select (WLS1 and WLS2). Sets the word length of the 
UART data word to 5, 6, 7, or 8 bits according to the protocol given 
in Table 12-1. 

Even Parity Enable (EPE). A HIGH applied to this line selects even 
parity for the transmitted word, and causes the receiver to look for 
even parity in the received data word. A LOW applied to this line 
selects odd parity. 

Stop Bit Select (SBS). Selects the number of stop bits to be added to 
the end of the data word. A LOW on SBS causes the UART to generate 
only 1 stop bit regardless of the data word length selected by WLS1/ 
2. If SBS is HIGH, however, the UART will generate 2 stop bits for 
word lengths of 6, 7, or 8 bits and 1.5 stop bits if a word length of 5 
bits is selected by WLS1/2. 

Parity Inhibit (PI). Disables the parity function of both receiver and 
transmitter and forces PE LOW if PI is HIGH. 

Control Register Load (CRL). A HIGH on this terminal causes the 
control signals (WLS1/2, EPE, PI, and SBS) to be transferred into the 

control register inside of the UART. This terminal can be treated in 
one of three ways: strobe, hardwired, or switch controlled. The strobed 
method uses a system pulse to make the transfer and is used if the 
parameters either change frequently or are under program control. If 
the parameters never change, then it can be hardwired HIGH. But if 
changes are made occasionally, the control lines and CRL can be switch 
controlled. 
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The UART chip is particularly useful because it can be pro- 
grammed externally for several different bit lengths, baud rates, parity 
(odd-even, receiver verification / transmitter generation), parity inhibit, 
and stop bit length (1, 1.5, or 2 stop bits). The UART also provides six 
different status flags: transmission completed, buffer register transfer 
completed, received data available, parity error, framing error, and 
overrun error. 

The clock speed is 320 kHz (maximum) for the A and B versions, 
480 kHz for the AO3/BO3 versions, 640 kHz for the AO4/BO4 ver- 
sions, and to 800 kHz for the AO5/BO5 series. The receiver output 
lines are tri-state logic, so will float at a high impedance to both ground 
and the +5-volt line when inactive. The use of tri-state output allows 
the device to be connected directly to the data bus of a computer or 
other digital instrument. 

The transmitter section uses an 8-bit parallel input register that 
will accept data to be sent serially. It will convert the 8-bit data word 
received in the input register to serial format that includes the 8-bit 
word (also formattable to 5, 6, or 7 bits), start bit, parity bit, and 
stop bits. 

The receiver can be viewed as simply the mirror image of the 
transmitter. It receives a serial input word containing start bits, data, 
parity, and stop bits. This serial stream of data is checked for validity 
by comparison with parity and for the existence of the stop bits. 

The UART data format (serial) is shown in Figure 12-3. The trans- 
mitter output pin will remain HIGH unless data are being transmitted. 
Start bit BO is always HIGH-to-LOW transition, which tells the system 
that a new data word is about to be sent. Bits Bl through B8 are the 
data bits loaded into the transmitter on the sending end of the system. 
All 8 bits of the maximum word length format are shown in the figure, 
even though truncated word lengths of 5, 6, or 7 bits are also allowable. 
The stop bit length can be programmed for 1, 1.5, or 2 bits, according 
to the needs of the system designer. 

The number of data bits, the parity, and the number of stop bits 
are programmed onto the device using HIGH and LOW levels applied 
to certain pins designated for that purpose. For example, the WLS] 

Data Line Parity | Stop Data Line 

B1 B2 B3 B4 BS B6 B7 BSB BY B10B11 

Figure 12-3. Serial communications data word 



Serial Digital Data Communications 197 

and WLS2 pins are used as word length select pins, and will set the 
data word length according to the following code system: 

Word Length WLSI WLS2 

5 bits 0 0 

6 bits 1 0 

7 bits 0 1 

8 bits 1 1 

Similarly, a 2-bit stop code is selected by connecting SBS HIGH, 
but only when the data word is 6, 7, or 8 bits. If the data word is set 
to 5 bits length, which is used on Baudot teletypewriters, then the 
1.5-bit stop code is used. If SBS is LOW, then the stop code is 1 bit 
in length. The parity is set by the EPE pin, and will be coded odd 
for a LOW and even for a HIGH. 

The clock on a UART system must be stable, so we cannot gen- 
erally use RC timer-based clocks and expect proper performance, es- 
pecially at high baud rates. The frequency of the clock must be 16 
times the baud rate. If we want to transmit data of 300 baud, for 
example, the oscillator frequency must be 300 x 16, or 4800 Hz. While 
this frequency is well within the range normally competent RC oscil- 
lators can produce, it is recommended that a crystal oscillator be used 
to ensure the stability and accuracy of the clock. An attractive alter- 
native is the CMOS 4060 device, which contains an internal crystal or 
RC oscillator and a chain of binary divider stages. 

The transmitter circuit is shown in Figure 12-4A. Note that only 
the 8-bit input data, clock, and serial output are required to make this 
circuit operational. The TRE, THRE, and THRL signals are status flags, 
and are optional although they will probably be used in most practical 
cases. They convey information about the status of the information 
transfer, and are sometimes needed in the software used to control 

the UART. A careful review of the meaning of each flag is necessary 
for designers who wish to use the UART. 

The basic receiver circuit for the UART is shown in Figure 
12-4B. We have a similar simplicity in the receiver section (one of the 
principal attractions held by LSI devices to equipment and instrument 
designers). Only the clock, serial in/out, and 8-bit parallel output lines 
are needed. Again, however, certain signals are available that will make 

some applications either easier or possible; these are the DR, OE, FE, 
and PE flags. Table 12-1 gives the meanings of these signals, and those 
of the transmitter section. 

Notice in the receiver section that we use an inverter from the 
data received terminal to reset the DRR terminal. This signal tells the 
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UART to get ready for the next character and can be used to signal 
a distant transmitter that the UART is ready to receive another 
transmission. 

One thing about the UART that appeals to many designers is that 
the two sections (receiver and transmitter) can be used either inde- 
pendently or in a common system. In a simplex communications chan- 
nel (one direction only), a transmitter-wired UART is used on the 
transmitter end, while a receiver-wired UART is used on the receiving 
end. In a half-duplex system (bidirectional communication, but only 
one direction at a time), both sections are used at each end, and the 

status flags can be used in a handshaking system to coordinate matters. 
Full-duplex operation is possible, but requires either a second channel 
(especially in radio links) or a second set of audio tones in hard-wired 
telephone line systems. Not all telephone lines, however, are amenable 
to full duplex operation, especially over long distance lines. 

In dedicated instrument applications, the programming pins will 
probably be hard-wired in the proper codes, but in many case switches 
are used to allow the user to program as needed. You can also connect 
the UART control pins to an I/O port to permit programming of the 
UART under software control of the computer. 

An example of a “standard” UART configured for use with the 
6502 microprocessor is shown in Figure 12-5. Because of the nature 
of the UART, we can use it directly as an I/O port, and memory-map 
it to the 6502 without the need for any external circuiting except 
device select signals. 

The transmitter input lines are high impedance, so can be con- 
nected directly to the 6502 data bus. Similarly, the receiver output 
lines are tri-state, so will float at high impedance (neither HIGH nor 
LOW) until the receiver is turned on. Therefore, we can connect both 
receiver and transmitter directly to the data bus (DBO-DB7). Also 
connected to the data bus are the DR, OE, PE, FE, and THRE. 

The UART is programmed by the CRL, PI, SBS, EPE, WLS1, and 

WLS2 pins being made HIGH or LOW. The protocols governing these 
control pins were given earlier. In Figure 12-5, the control pins are 
set by switches. Each input is tied HIGH through 3.3K pull-up resistors. 
If the corresponding switch is open, therefore, that input is HIGH, but 
if the switch is closed, the input is shorted to ground (and therefore is 
LOW). 

The control input scheme of Figure 12-5 assumes that we need 
variable control over the UART programming. The use of DIP switches 
on the UART printed wiring board permits us to set these factors 
almost at will. If such a capability is not needed, however, we can also 

hard-wire the inputs HIGH or LOW as needed. 
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A variation on the theme is to connect the control input lines to 
a latched output port. We could, for example, use 6 bits of a 74100 
device to contain our HIGH/LOW states. The inputs of the 74100 
would be connected to the data bus, while the inputs are connected 
to the UART control lines. If we memory-map the 74100, and provide 
suitable device select circuitry, then simple write operations will allow 
us to set the UART parameters under program control. 

RS-232 Interfacing 

The Electronic Industries Association (EIA) standard RS-232 pertains 
to a standardized serial data transmission scheme. The idea is to use 
the same connector (i.e., the DB-25 family), wired in the same manner 
all the time, and to use the same voltage levels. Supposedly, one could 
connect any two devices that provide RS-232 I/O without any problem; 
it usually works. 

Modems, CRT terminals, printers (i.e., Model 43 Teletypewriter), 
and other devices will be fitted with RS-232 connectors. Some com- 
puters provide RS-232 I/O; this feature can be added by using a set 
of Motorola ICs called RS-232 drivers/receivers. An RS-232 driver IC 
accepts TTL outputs from a computer or other device, and produces 
RS-232 voltage levels at its output. The RS-232 receiver does just the 
opposite. It takes RS-232 levels from the communications/interface 
and produces TTL outputs. 

Unfortunately, the RS-232 is a very old standard, and it predates 
even the TTL standard. That is why it uses such odd voltage levels for 
logical-1 and logical-0. 

Besides voltage levels, the standard also fixes the load impedances 
and the output impedances of the drivers. 

There are actually two RS-232 standards—the older RS-232B and 
the current RS-232C (see Figure 12-6). In the older version, RS-232B, 
logical-1 is any potential in the —5- to —25-volt range, and logical-0 
is anything between +5 and +25 volts. The voltages in the range —3 
to +3 are a transition state, while +3 to +5 and —3 to —5 are 

undefined. 
The speedier RS-232C standard narrows the limits to +15 volts. 

In addition, the standard fixes the load resistance to the range 3000 
to 7000 ohms, and the driver output impedance is low. The driver 
must provide a slow rate of 30 volts/microsecond. The Motorola 
MC1488 driver and MC1489 receiver ICs meet these specifications. 

The standard wiring for the 25-pin DBM-25 connector used in 
RS-232 ports is shown in Table 12-2. 
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Figure 12-6. RS-232B/C serial communications logic levels 

Current Loop Ports 

The current loop port was designed specifically for use with tele- 
typewriters, but it has been adopted over the years to a variety of 
communications problems in digital instruments. The original 60 (and 
later 20) milliampere current loop systems were intended for Baudot 
Teletype machines, and were used to energize the solenoids in the 
printer. But the same idea has also been adopted for use with a variety 
of printers other than teletypes and is also found in certain other 
instruments that must communicate with computers. The 60 mA ver- 
sion of the current loop is obsolete but is included here because it is 
often necessary to design into older existing systems. 

Figure 12-7A shows the most basic circuit for a 60-mA machine. 
An external 130-volt DC power supply is needed. The current loop 
circuit consists of the DC supply, resistor R2, the teletypewriter 
machine, and c-e path of transistor Q1. 

Diode D1 is used as a spike suppressor. The solenoid coils will 
produce a spike-like pulse (i.e., high amplitude, short duration) every 
time the current flow in one of the coils is interrupted. Diode D1 is 
connected to suppress these spikes, and is used mainly to protect 
transistor Q1. 

Transistor Ql can be any high-voltage power transistor that is 
capable of handling a 60-mA collector current. Q1 acts as a switch to 
turn the loop on and off. 



Serial Digital Data Communications 203 

If a HIGH appears on the LSB of the selected output port, then 
Q1 is forward-biased. Its c-e path conducts current, closing the loop. 
When the LSB of the output port is LOW, then Q1 is reverse-biased. 
Under this condition, its c-e path is turned off, so the loop is open. 

It is best to adjust resistor R2 to obtain a loop current to 60 mA. 
Place a HIGH on the LSB of the selected port, and press one of the 

TABLE 12-2 

EIA RS-232 Pin-outs for Standard DB-25 connecta 

Pin RS-232 Name Function 

1 AA Chassis ground 

2 BA Data from terminal 

3 BB Data received from modem 

4 CA Request to send 

5 CB Clear to send 

6 CC Data set ready 

7 AB Signal ground 

8 CF Carrier detection 

9 undef 

10 undef 

11 undef 

12 undef 

13 undef 

14 undef 

15 DB Transmitted bit clock, internal 

16 undef 

17 DD Received bit clock 

18 undef 

19 undef 

20 CD Data terminal ready 

21 undef 

22 CE Ring indicator 

23 undef 

24 DA Transmitted bit clock, external 

25 undef 
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teletypewriter keys. A millimeter placed at the point indicated in 
Figure 12-7A will show the current. Adjust the resistor (R2) for a flow 
of 60 mA. 

It is probably best if all high-voltage circuits are isolated from 
your computer’s output. A fault in transistor Q1 could otherwise cause 
damage to the output port circuits. An appropriate circuit for this is 
shown in Figure 12-7B. The secret is to use an optoisolator device. On 

0-100 mA DC 

60 WPM 
Bandot 

Teletypewriter 

Port + 130 Volt DC 
LSB = = Power 

=- ~~ ‘Supply 

(A) 

\ Old Circuit 
_~ (Fig. 12-7 A) 

Optoisolator 

(B) 

Figure 12-7. A) Simple circuit to interface old-style Baudot teletypewriters. 
Adjust R2 for 60 mA in the loop, B) Circuit above modified to isolate the 
teletypewriter from the computer output circuitry. 
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the computer side of the device is an LED, while on the teletypewriter 
side is an optotransistor. The transistor will be turned off unless the 
LED is turned on. The collector of the optoisolator transistor is con- 
nected to the point in the previous circuit that connected to the com- 
puter. This collector is also connected to a 5.6-volt DC power supply 
that is derived from the +130-volt DC power supply used in the 
current loop. On the computer side, the LED is connected through a 
current-limiting resistor (R5) to the LSB of the selected port. 

When the LSB of the output port is HIGH, then the LED is 
turned on. This turns on the transistor in the optoisolator, shorting out 
the bias to the current loop transistor. This action turns off the loop. 
Similarly, the LOW on the LSB of the port turns off the transistor, so 

Q]1 is turned on, closing the loop. The action in this circuit is inverted, 
so it is necessary to complement the 6502 accumulator before out- 
putting data. Alternatively, one other transistor inverter could be used, 
between the isolator and QI, to invert the output of the isolator. 

Figure 12-8A shows a circuit that is used to interface the model 
33 to an output port. Looking from the front panel, there is a terminal 
strip on the right-rear side of the Model 33. This terminal strip, shown 
schematically in Figure 12-8B, contains the send/receive connections 
for the teletypewriter. 

The receive side of the machine (terminals 6 and 7) contains the 
loop, so that the solenoids can be pulled in. The send side is merely a 
set of contact closures. In my own experience, this circuit has produced 
some problems. If the loop is turned on after the microcomputer is 
loaded and ready to work, a random pulse seems to change a few 
(important) bits in a few memory locations. The problem is partially 
relieved by using +5-volt and —12-volt power supplies that are com- 
pletely divorced from the computer power supply. But I like the ap- 
proach shown in Figures 12-8B and 12-8C. We would use R1, R2, and 
Cl (from Figure 12-8A), but replace Q1 with the transistor from the 
optoisolator (connect the collector point A). The LED is connected, 
again through a current-limiting resistor, to the LSB of the selected 
output port. 

We can use the —12-volt supply to drive the LED, or the +5- 
volt supply, in which case the polarity is reversed. The isolator transistor 
(Q1) drives an inverter stage (Q2). When the LED is turned on, Q2 is 
turned off, so the LSB of the selected input port is HIGH. But if the 
LED is off, then Q2 is turned on, dropping the LSB of the input port 
to zero. 

Serial Interfacing 

The three basic forms of serial data line are: TTL, 20 mA Current loop, 

and RS-232. In the TTL version, one bit of a TTL-compatible I/O port 
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is used as the serial output or, alternatively, the serial output of a TTL- 
compatible UART is used. The 20-mA and RS-232C have already been 
defined. With so many standard systems, we often face an interfacing 
chore of trying to make two units with dissimilar serial ports play 
together. We might, for example, want to connect a Model-33 Tele- 
type® machine to the RS-232 output of a 6502-based computer. Or 
alternatively, we might want to interface a TTL port with either (or 
both) 20 mA or RS-232. This activity seems especially common among 
hobbyists, universities, and other small users who obtain surplus equip- 
ment or otherwise find themselves forced by budget constraints to mix 
equipment. 

The job of interfacing these various kinds of serial ports is basically 
one of level translation. The TTL device, for example, produces 0 to 

0.8 volt when LOW, and +2.4 volts or more when HIGH. Further- 

more, the TTL port may be capable of sinking only 1.8 mA on LOW 
(i.e., will drive only one TTL input) or it may be buffered sufficiently 
to sink 50 to 100 mA. The RS-232 port, on the other hand, uses +5 
to +15 volts (+12 is very common) for HIGH/LOW levels. The 20 
mA loop presents still another translation problem, i.e., conversion of 

a current level to either TTL or RS-232C voltage levels. In this section, 
we will discuss some of the more popular conversion schemes. First, 
however, we will take a closer look at the 20 mA current loop. 

Figure 12-9 shows detail of a typical 20 mA current loop serial 
data communications system. This system will only work when the 
loop is closed. When both keyboard (transmitter) and printer (receiver) 
are part of the same machine, we must either wire them in full duplex 
(i.e., receiver and transmitter separate) or provide a send-receive 
switch (S1) across the keyboard terminals. Also, if we want a local 
capability, then we must either connect the TTY into a system with 
another machine, or, provide a local switch that shorts the output. The 
switch is shown in dotted line form in Figure 12-9. If this switch is 
closed, then the teletypewriter keyboard will “talk” to its own printer 
even though the equipment is disconnected from the network. 

The transmitter is a keyboard, and can be modelled as a switch 
that closes when the operator presses a key (the actual operation is 
more complex than this simple model). The receiver (printer) can be 

Figure 12-8. A) Circuit to connect computer output port to the Model 33 
teletypewriter. Terminal block shown is found under the top cover of the Md. 
33, on the right rear when viewed from the front of the keyboard. Use separate 
+5 volt DC power supplies for best results, B) Modification of the standard 
circuit to allow isolation of the computer from the teletypewriter, C) different 
circuit to accomplish the same job 
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Figure 12-9. Teletypewriter circuit 

modelled as a solenoid coil in series with the line. This fact can be 
important in digital circuits because the de-energized solenoid coil will 
produce a voltage spike if the instant current flow in the coil ceases. 
The diode, D1, is used to suppress that spike. The diode is normally 
reverse biased when current flows, so the diode is effectively out of 
the circuit. When current flow ceases, however, a reverse polarity 
counterelectromotive force (CEMF) is generated that forward biases 
the diode. Thus, the peak of the CEMF spike, which would otherwise 
be hundreds of volts, reduces to 0.7 volt (the junction potential 
of D1). 

The power supply shown in Figure 12-9 usually produces a voltage 
of 5 to 15 volts, and will include a 20-milliampere current regulator. 
In some machines, the regulator is a solid-state circuit, but in most it 

is a resistor. 

Figure 12-10 shows a simple circuit that will convert 20-mA cur- 
rent loop signals to either TTL (most common) or CMOS logic levels. 
This circuit provides a high degree of isolation between the TTL and 
20-mA sides. Without isolation, noise or simple dynamic load changes 
caused by the 20-mA machine would affect the computer. Total iso- 
lation requires that the 20-mA circuit have its own separate power 
supply. 

The 4N35 optoisolator contains a light emitting diode (LED) po- 
sitioned such that its light falls on the base of a phototransistor (Q1). 
The entire assembly is inside a DIP integrated circuit package. Diode 
D1 protects the LED by suppressing spikes on the line. If the 20-mA 
loop is well regulated, then resistor R is not needed. Its function is to 
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limit the current to a safe value to protect the LED, and its value is 
set by the actual current in the loop. 

The TTL side of the circuit consists of the optoisolator photo- 
transistor (Q1), resistor Rl, and an inverter. If the circuit is TTL, then 
R1 will be 470 ohms or so, and the supply voltage is +5 VDC. Of 
course, IC2 will be a TTL inverter. Let’s consider how the circuit 

works. 
Recall that the HIGH current in the loop is 20 mA, while the 

LOW current is 0 to 2 mA. During the HIGH periods, therefore, the 
LED is on, and during LOW periods it is off. Transistor Q1 is controlled 
by the LED when the LED is on; during LOW periods it is off. When 
the LED is lighted, indicating a HIGH on the loop, transistor Q1 will 
be on. This condition results in the collector-emitter resistance of Q1 
being very low. The input of the inverter will be LOW under that 
condition, so its output will be HIGH. 

Similarly, a LOW on the loop turns off the LED, so the photo- 
transistor is also off. Under this condition the Q1 collector-emitter 
resistance is high, so the input of the inverter will see a HIGH. Thus, 
the output of the inverter will be LOW. In both cases, the output of 
IC2 is the same logical value as the current loop. The output of the 
inverter is connected to one bit of an I/O port or to a TTL-compatible 
serial data input. 

If the circuit of Figure 12-10 interfaces to a CMOS circuit or 
computer port, then it will be necessary to use a different power supply 

+5 V DC* 

i.) e 

TTL or CMOS 
Output* 

R 

(Optional) 

IC1 *See Text 
4N35 

Opto-isolator 

Figure 12-10. Isolated 20-milliampere loop interfacing (input to computer) 
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voltage, and must change R1 proportionally. The idea is to keep the 
current flowing in Q1 at a safe value. 

At some of the higher data rates, the anti-noise capacitor Cl may 
tend to dampen the signal too much. The solution to that problem is 
to remove Cl or, at least, reduce its value (perhaps to 0.001 uF). 

The opposite interface circuit is shown in Figure 12-11; this circuit 
converts TTL or CMOS data to 20-mA current loop signals. The in- 
verter will be an open-collector TTL type or a Type-B CMOS device. 
In the case of the CMOS device, no series resistor is needed, provided 

that the supply voltage is +5 VDC. 
When the data input line is LOW, the output of IC2 is HIGH. 

Under this condition, the potential is the same at both ends of the 
LED, so no current flows. The LED is turned off, so Q1 is also off. 
The loop current will be zero, indicating a LOW bit. 

When the data input line is HIGH, the opposite occurs. The output 
of IC2 is LOW, so the cathode of the LED is effectively grounded. 
The LED is therefore turned on, as is transistor Ql. The collector- 
emitter resistance of Q1 is low at this point, so current flows in the 
loop. In this circuit, you may have noticed, transistor Q1 acts as an 
electronic switch; it will always be either fully on or fully off. 

Diode D1 is used to suppress noise spikes on the 20 mA loop. 
The 1N4007 selected for this application has a PIV rating of 1000 volts, 
and a forward current rating of 1 ampere. 

Figure 12-12 shows RS-232C versions of Figures 12-10 and 12- 
11. Recall from earlier in the chapter that RS-232C is a standard which 
uses —5 to —15 volts for logical-1 (HIGH) and +5 to +15 volts for 

+5 V DC 
O 

Data 

Input 

Figure 12-11. Isolated 20-milliampere loop interfacing (output from com- 
puter) 
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logical-O (LOW). When the current loop is LOW (less than 2mA), the 
LED is turned off, so Q1 (Figure 12-12A) will be off, or if the switch 
analogy is used, Q1 is open. Under this condition, point A will be at a 
potential of +12 VDC, so the output level, according to the RS-232C 
convention, is LOW. This level, of course, matches the logic level on 
the 20 mA current loop. When the loop is HIGH, i.e., when 20 mA is 
flowing, the LED is on, as is Q1. Under this condition, the collector- 
emitter resistance of Q1 is very low so the voltage at point A will be 
a little less than —12 VDC. This voltage is the RS-232C HIGH level. 

The opposite number is shown in Figure 12-12B: This circuit 
converts RS-232C serial data signals to 20 mA current loop signals. 
When a LOW is applied to the RS-232C input line, the output of the 
second inverter will also be LOW (+12 VDC). This condition means 
that both ends of the LED are at the same potential; the LED is off. 
Because the LED is off, the transistor Q1 is also off; current on the 
loop is zero. When a HIGH is applied to the RS-232C input, the output 
of the second inverter will be at —12 VDC, so current will flow and 
turn on the LED. Since the LED is turned on, the collector-emitter 

resistance of Q1 is low, so the “switch” is effectively turned on and 
current flows in the loop. This condition is the HIGH for a 20-mA 
current loop. 

A TTL-to-RS-232C interface circuit is shown in Figure 12-13. This 
circuit is based on the popular 741 operation amplifier, which connects 
as a voltage comparator. The rules of voltage comparator operation 
are: 

1. When V1 = Vger, the output is zero. 

2. When V1 is greater than Vp,,;, then the output will be at the 
maximum negative output voltage. 

3. When V1 is less than Vy, then the output will be at the 
maximum positive output voltage. 

Since Varr is +1.4 volts,.a V1 TTL HIGH logic level (i.e., over 
+2.4 volts), will satisfy condition 2, so the output of the operational 
amplifier will be high negative (approximately —8 to —10 VDC). This 
voltage level corresponds to an RS-232C logical-1 (i.e., HIGH). When 
a TTL LOW is applied to V1, condition 3 is satisfied, so the output of 
the operational amplifier will be high positive (i.e., +8 to +10 VDC). 
This logicl level corresponds to the RS-232C LOW condition. 

A TTL-to-RS-232C interface is shown in Figure 12-14A which 
does not depend upon an operational amplifier. When a HIGH is 
applied to the TTL input, the LED inside the optoisolator will be 
turned off. The switch Q] is turned off, presenting a very high collector- 
emitter resistance. The voltage at the RS-232C output will be close to 
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+12 V DC 

RS-232 © 
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Figure 12-12. A) Isolated RS-232C output, B) isolated RS-232C input 

—12 volts, which is the RS-232C HIGH condition. If, on the other 

hand, the TTL input is LOW, the LED is turned on, and the transistor 

is also on. The RS-232C output is now + 12 VDC, which is the condition 
for LOW under the RS-232C convention. 

A nonisolated TTL-to-RS-232C interface circuit is shown in Figure 
12-14B. In this circuit, transistor Q] is the switch that selects the +12 
VDC or —12 VDC RS-232C logical levels, while Q2 controls Q1. Since 
Q1 is a PNP transistor, it will turn on when its base is more negative 
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(or less positive) than its emitter. Therefore, when transistor Q2 is 
turned on, and its collector is at close to ground potential, then Q1 is 
also turned on. If Q2 is turned off, however, its collector potential rises 
to nearly +12 VDC, and Q1 is thereby turned off. 

The key to switching between HIGH (— 12 VDC) and LOW (+12 
VDC) RS-232C levels, then, is to turn Q2 on and off. If Q2 is on, then 
the output is +12 VDC or LOW; if Q2 is off, then the output is —12 
VDC or HIGH. If the TTL input is LOW, then the output of ICI is 
HIGH, causing Q2 to be biased on through the 10 kohm resistor. Thus, 
a LOW on the TTL input turns on, producing a LOW on the RS-232C 
output. Similarly, a HIGH on the TTL input turns off Q2, thereby 
producing a HIGH on the RS-232C output. 

Finally, we have the RS-232C-to-TTL interface circuit, shown in 

Figure 12-15. This circuit consists of a single transistor (Q1) and asso- 
ciated collector load (R2) and base bias (R1) resistor. When an RS-232C 
LOW (+12 VDC) is applied to the input, Q1 is turned on hard, so the 
TTL output is at ground potential. Thus, an RS-232C LOW at the input 
produces a TTL LOW on the output. 

If an RS-232C HIGH (— 12 VDC) is applied to the input, transistor 
QI is reverse biased, and is turned off. The collector potential rises to 
+5 VDC, which is the TTL HIGH. Diode D1 clamps the negative 
voltage to 0.7 VDC, which is safe for Q1. 

When interfacing between TTL and RS-232C, do not overlook 
the possibility of using the Motorola MC1488 and MC1489 devices. 

Controlling External Circuits 

Control of external circuitry makes the microcomputer more useful. 
Certain calculation or signal processing chores can be performed in 
the machine, and then used to control external circuits. The simplest 
forms of external control are on-off switches that are controlled by a 
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Figure 12-13. Op-amp forms TTL-to-RS-232 level translator 
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Figure 12-14. TTL-to-RS-232 level translator A) isolated, B) nonisolated 
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Figure 12-15. RS-232-to-TTL level translator 

single bit of the computer’s output port. More complex control appli- 
cations will use devices such as amplifiers, digital-to-analog converts 
(DACs), etc. Extremely complex feedback control systems have been 
implemented using computers. The availability of microcomputers has 
only accelerated the process, and has, in an interesting way, made the 
design of computerized control circuits less a game for arcane areas 
of engineering and more a game for all. 

Some external control circuits have already been discussed in 
Chapter 6, where we showed methods for connecting the computer 
to digital display devices such as the 7-segment LED decimal display. 
Some of the same methods are also used to interface other devices. 
For example, Figure 12-16 shows methods of interfacing electrome- 
chanical relays. 

Why would we want to interface an electromechanical relay, 
which is a century-old device, to a modern space-age device like a 
microcomputer? The old relay may well be the best solution to many 
problems, especially where a certain degree of isolation is needed 
between the computer and the controlled circuit. An example might 
be 115-volt AC applications, especially those that may require heavy 
current loads. A typical “homeowner” application might be turning 
on and off 115-volt AC lamps around the house. The computer could 
be used as a timer and will turn on and off the lights according to 
some programmed schedule, for example, when you are away. Another 
application might be to use the computer to monitor burglar alarm 
sensors, and then turn on a lamp if one of them senses a break-in. 

Figure 12-16 shows two basic methods for connecting the relay 
to the computer. Control over the relay is maintained by using 1 bit 
of the computer output port, in this case BO. Since only 1 bit is used, 
the other 7 bits are available for other applications, which may be 
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displays, other relays, or certain other devices. Only 1 bit is used, so 
the others remain available and are not removed from use. 

Most microcomputer outputs are not capable of driving heavy 
loads. Some devices will have a fan-out of 10 (i.e., will drive 18 mil- 
liamperes at +5 volts), while others have a low fan-out, typically 2 (3.6 
mA). To increase the drive capacity and to provide a mechanism for 
control, we use an open-collector TTL inverter stage, Ul. One end of 
relay coil K1 is connected to the inverter output, and the other end 
of the coil is connected to the V+ supply. Some TTL devices (7406, 
7407, 7416, and 7417) will operate with potential greater than +5 
volts DC on the output, so we can use 6-volt, 12-volt, or 28-volt relays. 

Of course, the package DC potential applied to the inverter is still the 
normal +5 volts required by all TTL devices. These inverters are 
actually hex inverters, so will contain 6 individual inverter circuits in 
each package. All 6 inverters can be operated independent of each 
other. 

The operation of the circuit revolves around the fact that the 
relay (K1) coil is grounded when the inverter output is LOW, and 
ungrounded when the inverter output is HIGH. As a result, we can 
control the on-off states of the relay by applying a HIGH or LOW level 
to the input of the inverter. If the inverter input is LOW, for example, 
the output is HIGH so the relay coil is not grounded. In that case, the 

V+ 

V+ 

al 

Figure 12-16. Computer interfacing with relays 
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relay coil is not energized because both ends are at the same electrical 
potential. When a HIGH is applied to the input of the inverter (i.e., 
when BO of the output port is HIGH), then the inverter output is LOW 
and that makes the “cold” end of the relay coil grounded. The relay 
will be energized, closing the contacts. We may turn the relay on, 
then, by writing a HIGH (logical-1) to bit BO of the output port, and 
turn it off by writing a LOW (logical-0) to the output port. 

The inverter devices cited here have greater output current ca- 
pability than some TTL devices, but are still low compared with the 
current requirements of some relays. High current relays, for example, 
may have coil current requirements of 1 to 5 amperes. If we want to 
increase the drive capability of the circuit, we may connect a transistor 
driver such as Q1 shown Figure 12-16. 

In the case of relay K2, the cold end of the coil is grounded or 
kept high by the action of transistor Q1. This relay driver will ground 
the coil when the transistor is turned on (i.e., saturated), and will 
unground the coil when the transistor is turned off. As a result, we 
must design a method by which the transistor will be cut off when we 
want the relay off, and saturated when we want the relay on. 

For circuits such as K2, the TTL interface with the computer 
output port (U1) may be an inverter or a noninverting TTL buffer. Of 
course, the on/off protocol will be different for the two. Also, we need 

not use an open-collector inverter for U1 as was the case previously. 
If we want to use an open-collector device, however, then we can 
supply 2.2 kohm pull-up resistor from the inverter output to the +5- 
volt DC power supply. The idea in this circuit is to use the inverter 
or buffer output to provide a bias current to transistor Q1. The value 
of the base resistor (R1) is a function of the Q1 collector current and 
the beta of Q1. This resistor should be selected to safely turn on the 
transistor, all the way to saturation, when the output of Ul is HIGH. 

The relay will be energized when the output of Ql] is HIGH. 
Therefore, the BO control signal should also be HIGH if U1 is a non- 
inverting buffer, and LOW if U1 is an inverter. 

Both relays K1 and K2 in Figure 12-16 use a diode in parallel 
with the relay coil. This diode is used to suppress the so-called inductive 
kick spike created when the relay is de-energized. The magnetic field 
surrounding the coil contains energy. When the current flow is inter- 
rupted, the field collapses causing that energy to be dumped back into 
the circuit. The result is a high voltage counter-EMF spike that will 
possibly burn out the semiconductor devices or in the case of digital 
circuits, create “glitches”——pulses that shouldn’t be! The diode should 
be a rectifier type with a peak inverse voltage rating of 1000 volts, 
and a current of 500 milliamperes or more. The 1N4007 diode has a 
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1000 PIV rating at 1 ampere. This diode will suffice for all but the 
heaviest relay currents. 

Figure 12-17 shows a method for driving a relay from a low fan- 
out output port bit without the use of the inverter. The transistor 
driver is a pair of transistors connected in the Darlington Amplifier 
configuration. Such a circuit connects the two collectors together; the 
base of Q1 becomes the base for the pair; the emitter of Q2 becomes 
the emitter for the pair. The advantage of the Darlington Amplifier 
is that the current gain is greatly magnified. Current gain, beta, is 
defined as the ratio of the collector current to base current (J,/,). For 
the Darlington Amplifier, the beta of the pair is the product of the 
individual beta ratings: 

B,_2 = BQ X BQ2 

B,_2 = B° 

This equation is used when the two transistors are identical. Since 
the total beta is the product of the individual beta ratings, when two 
identical transistors are used, this figure is the beta squared. 

You can either use a pair of discrete transistors to make the 
Darlington pair or use one of the newer Darlington devices that house 
both transistors inside one T0-5, T0-66, or TO-3 power transistor case. 

BO 

Output 
Port 

Figure 12-17. Interfacing with high current relays and solenoids 
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Another method for isolating dangerous or heavy-duty loads from 
the microcomputer output port was shown in Figure 12-8. In this case 
we use an optoisolator as the interface media. The optoisolator uses 
light flux between an LED and a phototransistor to couple the on-off 
signal from input to output. The LED produces light when a current 
is caused to flow in it, while the phototransistor is turned on (saturated) 
when light falls on the base and is off when the base is dark (LED is 
off). The transistor and LED are housed together, usually in a 6-pin 
DIP package. 

The LED in the optoisolator is connected to the output of an 
open-collector TTL inverter. The cathode end of the LED is grounded, 
and the LED thereby is turned on whenever the output of the inverter 
is LOW. Thus, the LED is turned on whenever bit BO of the output 
port is HIGH. At the instant the LED is turned on, transistor Ql 
becomes saturated, so collector-emitter current flows in resistor R4, 

thereby causing a voltage drop that can be used for control purposes. 
The voltage drop across resistor R4 can be used to drive another 

NPN transistor that actually controls the load. Or we can create an 
RC differentiator (R2/C1) and use the leading edge of the voltage 
across R4 (as it turns on) to trigger some other device. In Figure 12- 
18, for example, we are using a triac to control the AC load. A triac 

is basically a full-wave silicon controlled rectifier (SCR), and will gate- 
on when a pulse is received at the gate (G) terminal. Most triacs or 
SCRs will not turn off with gate signals, so some means must be pro- 
vided to reduce the cathode-anode current to near zero when we want 
to turn off the device. That is the purpose of switch $1. When we want 
to turn the circuit off, switch S1 is opened long enough to allow the 
triac/SCR to revert to its off condition. Some devices allow turn-off as 
well as turn-on by external pulses. 

A method for interfacing the microcomputer with display devices 
such as an oscilloscope or a strip-chart paper recorder is shown in 
Figure 12-19. In some instances, those devices are the most appropriate 
means of display, so we will want to provide some means to convert 
binary data to analog voltages for the ’scope or recorder. In Figure 
12-19, the conversion is made by a digital-to-analog converter (DAC). 
The DAC produces an output potential V, that is proportional to the 
binary output. Since various coding schemes are available, they will 
not be discussed here. We will assume for the purposes of our discussion 
that straight binary coding is used in which the zero-volts state is 
represented by a binary word of 00000000, and full-scale output is 
represented by the binary word 11111111. States in between zero and 
full-scale are represented by proportional binary words; half-scale, for 
example, is represented by 10000000. 
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V+ (ISO) 

Power Line 

Open-Collector 
TTL Inverter 

Figure 12-18. Isolated interface to control 120 VAC power lines 

We will want to be able to scale the output potential V,, to some 
value that is compatible with the display device. Not all oscilloscopes 
or paper recorders will accept any potential we apply, so some order 
must be introduced. Some oscilloscopes used in special medical, sci- 
entific, or industrial monitor applications, for example, come with fixed 
1-volt inputs. Those instruments are often the most likely to be selected 
for applications involving a computer, yet lack the multi-voltage input 
selector of engineering models. For those we must select a DAC output 
voltage V, that will match the ’scope input requirements. If the DAC 
output is somewhat higher (0 to 2.56 volts is common), then some form 
of output attenuation is needed. The operational amplifier used in 
Figure 12-19 provides that attentuation. 

The voltage gain of an ordinary operational amplifier connected 
in the inverting follower configuration, as in the case of Al in Figure 
12-19, is set by the ratio of feedback to input resistances (i.e., R2 and 
Rl). For this circuit, the gain is (—R2/R1); the minus sign is an indi- 
cation of polarity inversion. The inversion, incidentally, means that we 
must either design the DAC output to be negative or the oscilloscope/ 
recorder input to be negative. We can re-invert the signal by following 
the amplifier with another circuit that is identical, except that R2 is a 

fixed resistor rather than a potentiometer. In that case, Rl = R2 = 
10 kohms or any other value that is convenient. The product of two 
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inversions is the same as if none had taken place; V,, will be in phase 
with V,. 

A position control is provided by potentiometer R4. In this circuit, 
we are producing an intentional output offset potential around which 
the waveform V, will vary. The effect of this potential is to position 
the waveform on the oscilloscope screen or chart paper where we want 
it. Sometimes the baseline (i.e., zero-signal) position will be in the center 
of the display screen or paper, while in other cases it will be at one 
limit or the other. 

An alternative system that would allow positioning of the baseline 
under program control is to connect a second DAC (with its own R1) 
to point A, which is the operational amplifier summing junction. The 
program can output a binary word other than DAC, which represents 
the desired position on the display. That position can be controlled 
automatically by the program or manually in response to some key- 
board action by the operator. That approach requires the investment 
of one additional DAC, but that cost is now no longer so horrendous 
as it once was—IC DACs are almost dirt cheap these days. 

If the DC load driven by the DAC/computer combination is 
somewhat more significant than an oscilloscope input, then the simple 
op-amp method shown in Figure 12-19 may not suffice. For those 
applications we may need a power amplifier to drive the load. 

A power amplifier is shown in Figure 12-20. Here we have a 
complementary symmetry class-B power amplifier. A so-called “com- 
plementary pair” of power transistors is a pair, one NPN and the other 
PNP, that are electrically identical except for polarity. When these 
transistors are connected with their respective bases in parallel, and 
their collector-emitter paths in series, the result is a simple push-pull 
class-B amplifier. When the DAC output voltage V, goes positive, then 
transistor Q] will tend to turn on, and current flowing through Q1 
under the influence of V+ will drive the load also positive. If, on the 
other hand, the output voltage of the DAC is negative, then PNP 
transistor Q2 will turn on and the load will be driven by current from 
the V— power supply. Since each transistor turns on only on one-half 
of the input signal, the result is fullwave power amplification when 
the two signals are combined in the load. 

The “load” in Figure 12-20 can be any of several different devices. 
If it is an electrical motor, for example, the DAC output voltage will 
vary the speed of the DC motor, hence the computer will control the 
speed because it controls V,. If we provide some means for measuring 
the speed of the motor, then the computer can be used in a negative 
loop to keep the speed constant, or change it to some specific value 
at will. 
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Figure 12-20. High current DAC output 

A method exists by which the motor can be controlled without 
the DAC. If we use a transistor driver to turn the motor on and off, 

we can effectively control its speed by controlling the relative duty 
cycle of the motor current. By using a form of pulse width modulation, 
we can set the motor speed as desired. 

Pulse width modulation of the motor current works by setting 
the total percentage of unit time that the motor is energized. The 
current will always be either all on or all off, never at some intermediate 
value. If we vary the length of time during each second that current 
is applied, therefore, we control the total energy applied to the motor, 
hence its speed. If we want the motor to turn very slowly, then we 
arrange to output very narrow pulses through the output port to Ul 
to the motor control transistor. If, however, we want the motor speed 

to be very fast, then long-duration pulses, or a constant level, are 
applied to the output port. 

Can you spot the most common programming error that will be 
made when you actually try to implement this circuit? It occurs at 
turn-on. The DC motor has a certain amount of inertia that keeps it 
from wanting to start moving when it is off. As a result, if we want to 
start the motor at a slow speed, then the pulse width may not be great 
enough to overcome inertia, and the motor will just sit dormant. The 
solution is to apply a quick, one-time, long-duration pulse to get the 
motor in motion any time we ask it to turn on from a dead stop. After 
the initial “kick in the pants,” the normal pulse coding will apply. 

If we want to actively control the speed of the motor, then we 
will need some sort of sensor that converts angular rotation into some 
kind of pulse train. On some motors this problem is less of a nuisance 
because the motor is mechanically linked with an AC alternator housed 
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in the same case. There will be a pair of output terminals that exhibit 
an AC sinewave whenever the motor shaft is rotating. If we apply this 
AC signal to a voltage comparator (such as the LM-311 device), then 
we will produce a TTL-compatible output signal from the comparator 
that has the same frequency as the AC from the motor. A typical case 
uses the inverting input of the comparator to look at the AC signal, 
and the noninverting input of the comparator is at ground potential. 
Under this condition, an output pulse will be generated every time 
the AC signal crosses the zero-volt baseline. Such a circuit is called a 
zero-crossing detector, appropriately enough. 

If there is no alternator, then some other means of providing the 
signal must be designed. One popular system is shown in Figure 12- 

+5 V DC 

vem 

OOO0O0000 

Output Port 

OOOWOO00O 

Input Port 

Microcomputer 

Figure 12-21. Motor control example 
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21, in which a wheel with holes in the outer rim is connected to the 
motor output shaft, a light emitting diode (LED), and phototransistor 
whenever a hole in the wheel is in the path. Otherwise the light path 
is interrupted. Flashes of light produced when the wheel rotates trigger 
the transistor to produce a signal that is, in turn, applied to the input 
port bit as shown. A program can then be written to sample this input 
port bit, and then determine the motor speed from the frequency of 
the pulses, or, as is more likely with some microprocessors, the time 
between successive pulses. 

The sensor shown in Figure 12-21 may be constructed from dis- 
crete components, if desired, but be aware that several companies 
make such sensors already built into a plastic housing. A slot is provided 
to admit the rim of the wheel to interfere with the light path. 

The methods shown in this chapter are intended to be used as 
guides only, and you may well come up with others that are a lot more 
clever. The computer doesn’t need much in the way of sophisticated 
interfacing in most cases, as can be seen from some of these examples. 





Interrupts 

The interrupt function on any computer allows external devices to 
gain control of the computer. We might want to have such a capability 
for several reasons. First, we might want to permit the computer to 
do some other job while awaiting some alarm condition or another. 
For example, the computer can be used as an environmental controller 
in a home or business. Under most circumstances, the computer would 
monitor temperature and humidity levels, and control heaters, air 

conditioners, and humidifiers. But, if a fire or intruder sensor becomes 
active, forcing an interrupt, then the computer will cease executing 
the normal program and switch to the subroutine that serves that type 
of alarm. 

Another case might be to interface with peripherals that are 
either too slow for the computer or only operate occasionally. Printers, 
especially older mechanical teletypewriters, are particularly slow. We 
find these devices are so slow that a 1-mHz 6502 can execute thousands 
of instructions during the time required for sending one character to 
a printer, i.e., about 100 milliseconds. We can, however, write a pro- 
gram that will output a character and then go do something else until 
the printer sends back a ready signal that interrupts the 6502. 

Still another case involves devices such as A/D converter inter- 
faces. Such a device will produce an n-bit binary word that is propor- 
tional to some analog input voltage. Some A/D converters require 
tremendous chunks of time to make the conversion. Some dual-slope 
integration types, for example, require 50 milliseconds. We can, how- 
ever, use the end of conversion (EOC)—also called status or data 
ready—to interrupt the computer. That arrangement permits the com- 
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puter to perform other chores, for example, process the A/D converter 
data, while the A/D is “doing its thing.” 

There are two interrupt lines on the 6502, IRQ and NMI. Both 
of these pins are active-LOW TTL-compatible lines. This means that 
they are LOW when the applied voltage is 0 to 0.8 volt, and HIGH 
when the applied voltage is +2.4 volts or more. 

There is a major difference between the two forms of interrupt. 
The NMI is a nonmaskable interrupt. When NMI goes LOW, the com- 
puter must go to the interrupt service routine. The IRQ, or interrupt 

request line, is maskable. This interrupt request will be honored only 
if the IRQ Disable (I-flag) bit in the 6502 processor status register is 
reset (LOW). If the I-flag is HIGH, then the 6502 will not honor an 
interrupt request on the IRQ line. 

There are two ways to set the I-flag. First, we can execute a 
software SEI (set interrupt disable status) instruction. The result of SEI 
is to set I = 1. The other way to set the I-flag is to reset the computer. 
When the RST line on the 6502 is brought LOW, the processor jumps 
to a location set by a vector stored in page-FF of memory. During the 
execution of this operation, the I-flag is set HIGH. 

The only way to reset the I-flag, thereby permitting interrupts 
on IRQ, is to execute a CLI (clear interrupt disable status) instruction. 
When the CLI instruction is completed, the I-flag will be LOW. This 
condition permits the 6502 to respond to interrupt requests. 

One implication of the above discussion is that the programmer 
must permit the IRQ line to be active. Almost all computers generate 
a power-on reset pulse that momentarily brings RST LOW immediately 
after power is applied to the system. Thus, the I-flag is set HIGH, 
disabling IRQ, every time (1) power is applied, or (2) the operator 
presses a reset button. If the program is to respond to interrupt requests 
on IRQ, then the programmer must initialize the system by executing 
CLI sometime prior to the time when interrupts are being sought. In 
many cases, this chore is done when the program first begins execution. 
There may also be times we want the program to turn the I-flag on 
and off in response to different conditions. 

INTERRUPT VECTORS 

A vector is an operand stored at a specific location that is used to alter 
the contents of the program counter. In 6502-based systems, the vec- 
tors are stored in page-FF of memory, as follows: 

FFFAH NMI low address byte 
FFFBH NMI high address byte 
FFCH _ reset low address byte 



Nonmaskable Interrupts 229 

FFFDH reset high address byte 
FFFEH IRQ low address byte 
FFFFH IRQ high address byte 

If a nonmaskable interrupt request occurs, then the 6502 goes to 
location FFFAH and fetches the low address byte and places it in the 
low-order half of the program counter (PCL). It then goes to location 
FFFBH and fetches the high address byte and stuffs it into the high- 
order half of the program counter (PCH). The address of the next 
instruction to be executed will be (PCH + PCL). This address is the 
beginning instruction of the interrupt service subroutine. The last in- 
struction in the subroutine must be RTI (return from interrupt). When 
this instruction is encountered, the program counter will be loaded 
with the address of the next instruction in the main program that 
would have been executed if no interrupt had occurred. 

NONMASKABLE INTERRUPTS 

The nonmaskable interrupt does not depend upon the condition of 
the I-flag in the processor status register. When the NMI line goes 
LOW, the 6502 will jump to the nonmaskable interrupt subroutine, as 
directed by the vector addresses stored at FFFAH and FFFBH. The 
jump occurs when the instruction being executed (when NMI goes 
LOW) is completed. Following execution of the interrupt subroutine, 
as the RTS instruction is executed, the program jumps back to the next 
sequential instruction of the main program. 

Figure 13-1 diagrams the operation of the 6502 during a non- 
maskable interrupt. In this hypothetical example, the computer is ex- 
ecuting a program in page-03 when, at location 0353H, NMI signal is 
received (i.e., NMI goes LOW). The operation is as follows: 

1. An active (LOW) NMI is received while the 6502 is executing 
an instruction at 0353H. 

2. At the finish of executing the instruction at 0353H, the 6502 
goes to FFFAH and fetches the low-order address byte (00H) 
and places it in the PCL half of the program counter. It then 
goes to FFFBH and fetches the high-order address byte (COH) 
and places it in the PCH half of the program counter. 

3. The contents of the program counter are not COOOH, so the 
6502 goes to that location to pick up the first instruction of 
the NMI service subroutine. 

4. At the end of the service subroutine, an RTI instruction is 

encountered. The address of the next instruction of the main 
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NMI 
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Figure 13-1. Nonmaskable interrupt sequence example 

program (0354H) is recovered from the stack in page 0. Control 
is returned to the main program at location 0354H. 

The nonmaskable interrupt is used where the system cannot tol- 
erate ignoring an interrupt, for example, a critical alarm in a life- 
threatening situation. The programmer cannot disable the NMI line. 
The I-flag is disabled during the execution of the service subroutine, 
and it will be re-enabled during RTI execution (provided that the 
I-flag was enabled at the beginning of the subroutine). 

MASKABLE INTERRUPT REQUESTS 

The interrupt request (IRQ) is an active-LOW 6502 input which op- 
erates in a manner similar to the nonmaskable interrupt discussed 
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previously. The differences between IRQ and NMI are in the use of 
the flag. Also, the NMI will be recognized if it is LOW for at least two 
clock cycles, while IRQ must be held LOW until it is recognized. Most 
devices connected to the interrupt request line will have a flip-flop 
output which can be reset under program control. It is common prac- 
tice to clear the interrupt request (cancelling the request) under pro- 
gram control as part of the service subroutine. The 6502 sets the 
I-flag HIGH when it responds to an IRQ so that the machine won’t 
respond to the same interrupt more than once. The program must also 
reset the I-flag by executing a CLI command if the intent is to respond 
to eventual interrupt requests. Thus, the interrupt service subroutine 
must (1) set any external interrupt flip-flops HIGH, and (2) execute a 
CLI instruction to clear the I-flag. Most progammers prefer to perform 
these chores immediately before the RTI (return from interrupt). 

Figure 13-2 shows the operation of the interrupt request (IRQ) 
line when the I-flag in the PSR is set (HIGH). The 6502 is executing 
an instruction in the main program at location 0353H when IRQ goes 
LOW. When the 6502 has finished executing the instruction at 0353H, 
it tests the I-flag in the PSR (see step 2 in Figure 13-2). Since the 
I-flag is HIGH, the 6502 sees that IRQ is to be ignored. Thus the 
program counter is updated to the next step in the main program 
(0354H) rather than the IRQ vector. The program will continue exe- 
cuting as if no interrupt request had occurred. 

Operation of IRQ when the I-flag is LOW is shown in Figure 13- 
3. This condition indicates that the interrupt line is not disabled. Again, 
the scenario is the same; the 6502 is executing an instruction at 0353H 
in the main program when IRQ goes LOW. The following sequence 
ensues: 

1. An active (LOW) IRQ is sensed while the 6502 is executing 
an instruction at 0353H. 

2. When the 6502 is finished executing the instruction at 0353H, 
it tests the I-flag in the processor status register (PSR) for HIGH 
or LOW. 

3. Finding the I-flag LOW, the 6502 goes to location FFFEH to 
fetch the low address byte, and load it into the low-order half 
(PCL) of the program counter. It then goes to FFFFH to fetch 
the high address byte and store it in the high-order half of the 
program counter (PCH). 

4. The address in the program counter is (PCH + PCL), so the 
6502 jumps to address OFOOH, which is the starting address of 
the interrupt service program. During this period, the 6502 
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Main 
Program 

NMI 
Vector 

RST 
Vector 

TRO 
Vector 

IRO 
Subroutine 

Figure 13-2. Maskable interrupt sequence example (masked) 

has stored on the external stack the address of the location 

where the main program will resume (in this case, 0354H). 

5. At the end of the interrupt program, the 6502 encounters an 
RTI (return from interrupt) instruction. This causes it to pop 
the address of the next instruction (0354H) off the stack and 
load it into the program counter. The main program resumes 
at 0354H. 

If the programmer makes no provision for clearing the I-flag some 
time during the subroutine or subsequently on the main program, then 
the 6502 will no longer respond to interrupt requests. 

RESET LINE AS INTERRUPT 

The reset input (RSI) of the 6502 is essentially a special limited form 
of nonmaskable interrupt. When RST drops LOW, the 6502 goes to 
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the location indicated by the contents of FFFCH and FFFDH; the 
low-order byte of the 2-byte address is stored at FFFCH, and the high- 
order byte is at FFFDH. The main purpose of RST is to initialize the 
computer. A reset pulse is generated when power is first applied to 
the computer, and this action forces the computer to begin executing 
the program at the address stored in the reset vector, FFFCH/FFFDH. 
Normally, this vector address is the initial address of the program. If 
that is where you want to transfer program control for some particular 
class of interrupt, then you can “bootleg” an interrupt using the RST 
input. 

Main 
Program 

NMI 
@ Vector 

= RST 

|= 3 Vector 

3 IRQ 
” Vector 

Figure 13-3. Maskable interrupt sequence example (unmasked) 
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MULTIPLE INTERRUPTS ON 6502 

Unlike other microprocessors (e.g., Z-80), the 6502 has only one mask- 
able and one nonmaskable interrupt line and/or mode. Without ex- 
ternal circuitry, therefore, we can service only one device on each 
interrupt input. There are special chips available which permit us to 
add and/or prioritize multiple interrupts, but in this section we will 
examine two simple schemes to accomplish this same job with discrete 
logic elements. 

The method shown in Figure 13-4 permits us to have up to 8 
interrupts, and also permits us to software prioritize according to im- 
portance. Obviously, if we receive two interrupts, one indicating a fire 
and the other indicating that a new hot water temperature has been 
commanded, we want the computer to look at the fire alarm first. 

Figure 13-4 connects to the computer via an I/O port, here des- 
ignated as port-1 for the sake of convenience. There are 8 interrupt 
lines, designated as INTO through INT7, all of which are active-LOW. 

Since the interrupt may be transient in nature, and the 6502 needs to 
see a LOW level rather than a negative-going edge, we provide flip- 
flops FF1-FF8 to “remember” the interrupt request until the 6502 
recognizes it. Only two interrupt flip-flops are shown, again for the 
sake of simplicity. 

When any interrupt request line goes LOW momentarily, the Q- 
output for its flip-flop will go HIGH (Note: The interrupt lines INTO- 
INT7 are connected to the active-LOW set inputs on the flip-flops). 
Each Q-output is connected to a single bit of the input port, and also 
to 1 input of an 8-input NOR gate. When any input of NOR gate Gl 
is HIGH, the output of G1 will be LOW. We can, therefore, use the 
output of G1 to signal either INT or NMI on the 6502, as appropriate. 

But how does the 6502 know which interrupt service? Except for 
the case where any and all interrupts are served by the same program, 
we must have some means for distinguishing among the 8 different 
interrupt lines. That is the function of the input port. 

When INT goes LOW, the 6502 will branch to the program whose 
initial address is stored at FFFEH and FFFFH. The first instruction 
in this subroutine will be to read input port-1 to determine which bits 
are HIGH (active) and which are LOW (inactive). The program will 
then clear the active flip-flops and then go to the portion of the program 
segment that serves the active interrupt request lines. 

The programmer can prioritize the interrupt requests by causing 
the computer to respond to certain requests first, or by polling the 
bits in order of highest-to-lowest priority. 

Resetting the interrupt flip-flops occurs when the clear line is 
brought LOW. Since each FF clear line is connected to an output port 
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Interrupt Request 
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To 6502 

INT Line 

Figure 13-4. Multiple interrupt hardware 
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bit, we can reset, or “clear,” the interrupt by writing a LOW to the 
correct output port bit. During the initialization sequence, right after 
the computer is powered-up (or a reset button is pressed), we may 
want to ensure that all interrupt lines are cleared by writing 00H to 
port-1 for a few milliseconds, and then following the FFH. This action 
will force all flip-flop clear lines LOW, forcing each Q-output LOW, 
and then setting all clear lines HIGH (the inactive state). 

In cases where the computer and the peripherals do not share a 
common printed wiring board (or even the same cabinet), the interrupt 
flip-flops are usually located in the peripheral’s circuitry, while gate 
Gl and the I/O ports are with the computer. The input port lines 
become interrupt request signals, while the output port lines are in- 
terrupt acknowledge signals. 



Interfacing with the 
Apple II Bus 

The Apple II microcomputer is probably one of the most popular 
complete microcomputers on the personal computer market. It is used 
by hobbyists, businesses, computer education instructors, and scientists. 

It is a powerful little machine, and is available in several versions, such 
as the Apple® II Plus and the enhanced Apple® IIe, which uses LSI 
microcircuits to replace many of the microcircuits which were found 
in the II and II Plus versions. The Apple II is found almost everywhere, 
and it seems that there are more Apple retailers than for any other 
computer except, perhaps, the TRS-80® by Radio Shack. 

The Apple II is a self-contained microcomputer that is based on 
the 6502 microprocessor chip. This computer comes complete with a 
keyboard and up to 48K of internal random access read/write (RAM) 
memory chips. The 6502 will support 64K, but the Apple II uses the 
upper 16K for its own reserved purposes. Nevertheless, there are ways 
around this limitation (which is often more imagined than real), and 
some manufacturers offer Apple II 16K cards which bring the memory 
size up to the full 64K. It is necessary to use either programming or 
hardware tricks to let the computer use either the built-in read only 
memory (ROM) or the add-on RAM when addressing the upper 16K 
of memory. 

The Apple II has been around a long time, and is now well- 
entrenched as one of the basic microcomputers. One advantage of this 
type of computer is that large amounts of software and hardware 
accessories are on the market for it. There are many imitators of the 
Apple II, most of which are software compatible with the Apple II for 
obvious reasons! But the Apple II is bedeviled with not only imitators, 
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some of which use seemingly exact copies of the Apple II printed 
wiring board layout, but also counterfeits. Some unscrupulous manu- 
facturers in Southeast Asia have offered for sale exact duplicates of the 
Apple II without first bothering with the legal nicety of a license from 
the U.S. manufacturer! 

The Apple II is a single-board computer housed in a small case 
about the size of a cheap typewriter. There are eight slots on the 
motherboard that will accommodate accessories and interface devices. 
The basic computer comes with 16K of memory, but we can configure 
it with up to 48K of 8-bit memory by replacing the 4K memory chips 
with 16K memory chips. 

The Apple II uses software to replace hardware complexity. The 
memory allocations above the 48K boundary are used for the monitor 
program and for housekeeping functions, such as driving the disk 
system. 

The connectors for each of the plug-in cards have 50 pins, with 
pins 1 through 25 on the component side of the inserted printed wiring 
boards, and 26 through 50 on the “foil” side of the card. Several 
companies offer either plug-in accessory cards (I/O cards or A/D con- 
verter cards), or blank interfacing cards on which you may build your 
own circuitry. The Apple II plug-in card pinouts are described here: 

Pin Designation Function 

1 I/OSELECT This active-LOW signal is LOW if and only if 
one of the 16 addresses assigned to that partic- 
ular connector is called for in the program. The 
6502 used in the Apple II uses memory-mapped 
I/O, so each I/O port number is represented 
by a memory location in the range C800H and 
C8FFH. Reference the Apple IJ memory-map 
in the manual for specific locations. 

2 AO Address Bus bit 0 
3. Al Address Bus bit 1 
4 AQ Address Bus bit 2 
5 A3 Address Bus bit 3 

6 A4 Address Bus bit 4 
7 Ad Address Bus bit 5 
8 A6 Address Bus bit 6 

9 AT Address Bus bit 7 

10 A8 Address Bus bit 8 
11 AQ Address Bus bit 9 
12 AlO Address Bus bit 10 

13 ~All Address Bus bit 11 
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22 

23 

24 
25 

26 
27 

28 

29 

Designation 

Al2 

INTOUT 

DMAOUT 
+5 

GND 
DMAIN 

INTIN 

NMI 
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Function 

Address Bus bit 12 
Address Bus bit 13 

Address Bus bit 14 

Address Bus bit 15 

Control signal from 6502 microprocessor is 
HIGH during read operations, and LOW dur- 
ing write operations. 

No connection 

Active-LOW signal that lets the world know 
that an input or output operation is taking 
place, this line will go LOW whenever an ad- 
dress in the range C800H to C8FFH is on the 
address bus. 

Active-LOW input, if this line is LOW during 
the phase-1 clock period, then the CPU will 
halt (i.e., enter a wait state) during the following 
phase-1 clock period. If RDY remains HIGH, 
then normal instruction execution will occur 
on the following phase-2 clock signal. 

Active-LOW Direct Memory Access line allows 
external devices to gain access to the data bus 
and apply an 8-bit data word to the address it 
places on the address bus. 

Interrupt output signal allows prioritizing of 
interrupts from one plug-in card to another. 
The INTOUT line of each lower order card runs 
to the INTIN pin of the next card in sequence 
(see pin 28). 

Direct Memory Access version of INTOUT 
+5-volt DC power supply available from main 
board to plug-in card 

Ground 
Direct Memory Input signal allows prioritizing 
DMaA functions. 

Interrupt Input (see DMAOUT, pin 24) 

Active-LOW nonmaskable interrupt _line. 
When brought LOW, this line will cause the 
CPU to be interrupted at the completion of the 
present instruction cycle. This interrupt is not 
dependent upon the state of the CPU’s inter- 
rupt flip-flop flag. 
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Pin 
30 

31 

32 
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Designation 

TRQ 

02 

Function 

Interrupt Request. This active-LOW input will 
cause the CPU to interrupt at the end of the 
present instruction cycle, provided that inter- 
rupt flip-flop is reset. 
Reset line. This active-LOW input will cause 
the program to return to the Apple II monitor 
program. 
Active-LOW input that disconnects the ROMs 
of the monitor to permit custom software 
stored in ROMs on the plug-in board to be ex- 
ecuted. 
—12-volt DC power from main board to plug- 
in board 
—5-volt DC power from main board to plug- 
in board 
No connection 
7 mHz clock signal 
2 mHz clock signal 
Phase-1 clock signal 
Similar to INH except that it disables all ROMs 
including C800H to C8FFH used for I/O func- 
tions 

Phase-2 clock signal 
Active-LOW signal indicates one of the 16 ad- 
dresses assigned to that connector is being se- 
lected. 
Data Bus bit 7 
Data Bus bit 6 
Data Bus bit 5 
Data Bus bit 4 
Data Bus bit 3 
Data Bus bit 2 
Data Bus bit 1 
Data Bus bit 0 
+12-volt power from main board to plug-in 
boards 



Interfacing with the 
KIM-1, AIM-65, and 
SYM-1 

The KIM-1 microcomputer was a single-board trainer that was intro- 
duced by MOS Technology, Inc. of Norristown, PA, the originator of 
the 6502 microprocessor chip. It was apparently intended to introduce 
the world of microprocessing to engineers who would incorporate the 
6502 into their instrument and computer designs. The KIM-1 com- 
puter, however, blossomed into a popular starter computer as well as 
a trainer. Many current computer experts began their careers with a 

KIM-1 device. 
The KIM-1 was a single-board computer that contained 1K of 

8-bit memory, a 6522 Versatile Interface Adapter (VIA), a 20 mA TTY 
current loop for making hard copies, and a cassette (audio) interface 
to allow storage of programs on ordinary audio tape. One feature of 
the KIM-1 tape interface not found on others of the era is the ability 
to search for programs on the tape by a designator applied to the 
beginning of the program on the cassette. 

The SYM-1 is a more recent single-board trainer computer that 
uses the KIM-1 bus. The SYM-1, however, is still easily obtained and 

contains more features than the original KIM-1. For those members 
of the KIM-cult, the SYM-I is a good substitute. 

The AIM-65 is a more advanced microcomputer based on the 
KIM bus, and is made by Rockwell Microelectronics, Inc. The AIM-65 
computer uses a standard ASCII typewriter keyboard instead of the 
hexadecimal pad of the KIM-1. It also has a 20-character 5 x 7 dot 
matrix LED display and a 20-column 5 x 7 dot matrix thermal printer 
instead of the standard 7-segment LED readouts of the KIM-1, which 
require some imagination to read hexadecimal digits above 9. The 
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printer uses standard calculator printer paper available at stationery 
stores. 

The AIM-65 also has a sophisticated monitor program stored in 
ROM, and has the ability to incorporate BASIC and a 6502 assembler 
into other on-board ROMs. In contrast, the KIM-1 originally used a 
relatively simple monitor. To write and input programs one had to 
“fingerbone” instructions into the computer on a step-by-step basis. 
The AIM-65 comes with a text editor. Also, the AIM-65 can be con- 
figured with either 1K or 4K of memory, and external memory to 48K 
can be added. . 

The two interfacing connectors etched onto the boards of the 
KIM-1, SYM-1, and AIM-65 computers are the applications connector, 
basically an I/O connector, and the expansion connector, which is more 
similar to a genuine bus connector. Both are of primary interest to 
microprocessor users who must interface the computer with some 
external device. 

KIM-1/SYM-1/AIM-65 Applications Connector 

Note: Numbered connector pins are on the top—component—side of 
the printed wiring board; alphabetic pins are on the bottom—or 
“foil” —side of the board. 

Pin Designation Function 

1 GND Ground 
2 PA3 Port-A bit 3 
3 PA2 Port-A bit 2 
4 PAI Port-A bit 1 
5 PA4 Port-A bit 4 
6 PA5 Port-A bit 5 
7 PAG Port-A bit 6 
8 PAT Port-A bit 7 

9  PBO Port-B bit 0 
10 PBI Port-B bit 1 
11 PB2 Port-B bit 2 
12 PB3 Port-B bit 3 
13. PB4 Port-B bit 4 
14. +PAO Port-A bit 0 
15 PB7 Port-B bit 7 
16 PB5 Port-B bit 5 
17 KBRO Keyboard Row 0 
18 KBCF Keyboard Column F 



Pin Designation 

19 KBCB 
20 KBCE 
21 KBCA 
22 KBCD 

Decode 

AUD IN 
AUDOUTL 

+12 
AUDOUTH 

XZ VZ Zr AMM MWoOOw> 

A ~] 

TTYKBD+ 

N TTYPNT+ 

TTYKBD— 

TTYPNT— 

KB R3 
KB CG 
KB R2 
KB CC 
KB R1 NXxe< G4 
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Function 

Keyboard Column B 
Keyboard Column E 
Keyboard Column A 
Keyboard Column D 
+5-volt DC from main board power supply 

Memory-bank select signals (Active-LOW) 

Memory decode signal used to increase memory 
capacity with off-board memory devices 
Audio input from cassette 
Low-level audio output to cassette with “micr” 
input 

+12-volt DC power from main board 
High-level audio output to cassette player with 
“line” input 
Positive terminal of 20-mA teletype keyboard 
loop 
Positive terminal of 20-mA teletypewriter printer 
loop 
Negative terminal of 20-mA teletypewriter key- 
board loop . 
Negative terminal of 20-mA_teletypewriter 
printer loop 
Keyboard Row 3 
Keyboard Column G 
Keyboard Row 2 
Keyboard Column C 
Keyboard Row 1 

The KIM-1 and related computers use the 6522 VIA device. The 
6522 contains two 8-bit I/O ports—Port-A and Port-B. These ports are 
represented by bits PAO-PA7 and PBO-PB7. Both ports can be con- 
figured under software control for either input or output port service 
on a bit-by-bit basis. In other words, PAO might be an input bit, while 
PAI is an output port bit. Or we can configure all 8 bits of either or 
both ports as either input or output. 
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KIM-1/SYM-1/AIM-65 Expansion Connector 

Designation 

SYNC 

Function 

Active-HIGH output line that goes HIGH during 
the phase-1 clock signal during instruction fetch 
operations. This line is used to allow the 6502 to 
operate with slow memory, dynamic memory, or 
in the Direct Memory Access mode. 
Has the effect of inserting a wait state into the 
CPU operating cycle. See similar description for 
same signal in Apple II discussion 
Phase-1 clock signal 
Maskable interrupt request line. Active-LOW 
Reset overflow input. A negative-edge triggered 
input that will reset the overflow flip-flop in the 
CPU 
Active-LOW nonmaskable interrupt input line. 
This interrupt line cannot be masked by the in- 
ternal interrupt flip-flop. 
In parallel with the reset line on the 6502 and 
on the microcomputer. When brought LOW, this 
line will cause the program counter inside the 
6502 to be loaded with OOH. The effect of this 
line is to form a hardware “JUMP to 00H” in- 
struction. 

Data Bus bit 7 
Data Bus bit 6 
Data Bus bit 5 
Data Bus bit 4 
Data Bus bit 3 
Data Bus bit 2 
Data Bus bit 1 
Data Bus bit 0 
Address decoder output that goes HIGH when- 
ever the COU addresses a location from 1800H 
to 1BFFH 



6502 Detailed 
Instruction Set 

The 6502 instruction set is presented in this chapter, so that you can 
study the instructions on a one-by-one basis. We will give you the 
common assembly language mnemonic for each instruction, a brief 
description to supplement the descriptions in Chapter 7, and the op- 
erations code (op-code) for each. The codes are listed in hexadecimal 
(HEX), binary, and octal formats to accommodate different computers. 

ADC 

Add Memory to Accumulator with Carry 

A+M+C-A,C 

Status Register Flags Affected: N, Z, C, V 

Addressing ____Op-Code______— No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Immediate ADC #oper 69 01101001 151 2 2 
Zero Page ADC oper 65 01100101 145 2 3 
Zero Page,X ADC oper,X 75 01110101 165 2 4 
Absolute ADC oper 6D 01101101 155 3 4* 
Absolute,X ADC oper,X 7D 01111101 175 3 4* 

Absolute, Y ADC oper,Y 79 01111001 171 3 6 
(Indirect,X) ADC (oper,X) 61 01100001 141 2 5* 
(Indirect), Y ADC (oper),Y 71 01110001 161 2 

*Add 1 if a page boundary is crossed. 
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The ADC instruction performs an addition with carry between 
the contents of the accumulator, the carry flag, and the contents of a 
memory location (specified or implied, depending upon the instruc- 
tion). The status register flags are affected according to the following 
protocols: 

Carry Flag (C). The carry flag is set (C = 1) if the sum of a binary 
addition exceeds FFH (255,,) or if the sum of a decimal (BCD) addition 
exceeds 99,,. All other results will cause the carry flag to be reset 
(C = 0). 

Negative Flag (N). The negative flag will be set (N = 1) if bit 7 of 
the result stored in the accumulator is 1, and reset (N = 0) if bit 7 of 
the result is 0. 

Overflow Flag (V). The overflow flag is set (V = 1) when the sign or 
bit 7 changes because the result in the accumulator is greater than 
+127,,(7FH) or —128,,. All other results cause the overflow flag to 
be reset (V = 0). 

Zero Flag (Z). The zero flag is set (Z = 1) if the result in the accu- 
mulator is 0, and reset (Z = 0) for all other results. 

AND 

Logical-AND Operation Between Memory and the 
Accumulator 

AAM-A 

Status Register Flags Affected: N, Z 

Addressing ____Op-Code_____ No, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Immediate AND #oper 29 00100001 #£«=35i1 2 2 
Zero Page AND oper 25 00100101 45 2 3 
Zero Page,X AND oper,X 35 00110101 65 2 4 
Absolute AND oper 2D 00100101 55 3 4 
Absolute,X AND oper,X 3D 00110101 75 3 4* 
Absolute, Y AND oper,Y 39 00110001 £71 3 4* 

(Indirect,X) AND (oper,X) 21 00100001 41 2 6 
(Indirect),Y AND (oper),Y 31 00110001 61 2 5* 

*Add 1 if page boundary is crossed. 
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The logical-AND instruction is of Group One, and has the full 
complement of addressing modes: Immediate, Absolute, Zero Page, 
Absolute X, Absolute Y, Zero Page X, Indexed Indirect, and Indirect 
Indexed. 

The AND instruction causes the CPU to perform a logical-AND 
on a bit-by-bit basis between the contents of the accumulator and a 
data word fetched from memory. The results of the AND operation 
are stored in the accumulator. The rules for the logical-AND operation 
are: 

0 AND 0 = 0 

0 AND 1=0 

1 AND 0 = 0 

1 AND 1=1 

In the logical-AND instruction, the operation is on a bit-for-bit 
basis. The result of any operation on a given bit will not affect any 
other bit. 

The Zero Flag (Z) is set (1) if the result in the accumulator is zero 
(00000000), otherwise it is reset (Z = 0). The Negative Flag (N) is set 
(N = 1) if accumulator bit 7 of the result is 1, and reset (N = 0) 
otherwise. 

ASL 

Shift Left 1-Bit Data in Either Accumulator or Memory 

c~|7]6|5]4]3]/2]1}o}~0 
Status Flags Affected: N, Z, C 

Addressing ___—Op-Code_______ No, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Accumulator ASL A OA 00001010 12 1 2 

Zero Page ASL oper 06 00000110 06 2 5 
Zero Page,X ASL oper,X 16 00010110 26 2 6 

Absolute ASL oper OE 00001110 16 3 6 

Absolute,X ASL oper,X 1E 00011110 # £36 3 7 

The ASL instruction will operate on either the accumulator or 
an addressed memory location. In the ASL instruction, bit 7 is always 
shifted to the carry flag (C), and bit 0 is made zero. The negative flag 
(N) will be made equal to the result in bit 7. The zero flag (Z) will be 
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set (Z = 1) if the result is zero, and reset (Z = 0) otherwise. The carry 
flag contains the former bit 7 data (1 or 0). 

BCC 

Branch on Carry Clear (C = 0) 

Status Register Flags Affected: None 

Addressing _ Op-Code No, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Relative BCC oper 90 10010000 220 2 2* 

*Add 1 if branch occurs to same page, add 2 if branch occurs to another 
page. 

This 2-byte instruction causes a relative branch forward or back- 
ward a number of steps specified by the second byte of the instruction 
code. Forward branches are specified by a positive hexadecimal num- 
ber, while backward branches are represented by a two’s complement 
equivalent hex negative number. For example, branching ahead 6 
locations (+6) would be represented by 06H in the second byte, while 
branching 6 steps backwards (—6) is represented by FAH. The branch 
occurs if the Carry Flag is reset (C = 0). 

BCS 

Branch on Carry Set (C = 1) 

Branch on C = 1 

Status Register Flags Affected: None 

Addressing __— Op-Code No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Relative BCS oper BO 10110000 260 2 2* 

*Add 1 if branch occurs to same page, add 2 if branch occurs to next 
page. 

This 2-byte instruction is a relative branch forward or backward. 
The branch occurs a number of bytes of memory specified by the 
second byte of the instruction. Forward branches are specified by a 
hexadecimal number, while backward branches are represented by a 
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two’s complement equivalent. For example, branching ahead 6 loca- 
tions would be represented by 06H in the second byte, while branching 
6 steps backwards is represented by FAH (—6,,). Branch will occur 
when the carry flag of the Processor Status Register is set (C = 1). 

BEQ 

Branch on Result Equals Zero (Z = 1) 

Branch on Z = 1 

Status Register Affected: None 

Addressing _____—Op-Code_____— Noo, No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Relative BEQ oper FO 11110000 360 2 2* 

*Add 2 if branch occurs to the same page, add 2 if to another page, 
ie., if page boundary is crossed. 

The BEQ instruction is a conditional branch that will branch when 
the result of an operation is zero (when the Z-flag is 1). If the result 
of an operation is zero, then the Z-flag is set (Z = 1); the BEQ instruc- 
tion tests the Z-flag. If the Z-flag is 0, indicating a non-zero result, then 
no branch occurs and the program will execute the next instruction 
in sequence after BEQ. 

Branching is relative, meaning that the program will jump for- 
ward or backward an amount specified by the second byte of the 
instruction. Forward jumps are specified by a positive hexadecimal 
number, while backward branches are specified by a two’s complement 
hexadecimal equivalent number. For example, branching 6 steps for- 
ward would be specified by 06H, while 6 steps backward (—6) is rep- 
resented by FAH. BEQ is the complement of the BNE (Branch on Not 
Equal) instruction. 

BIT 

Bit Test 

Tests bits in memory with accumulator 

AAM, M, > N, M, > V 

Status Register Flags Affected: N, Z, V 
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Addressing ___— Op-Code Noo, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Zero Page BIT oper 24 00100100 44 2 3 
Absolute BIT oper 2C 00101100 54 3 4 

The BIT instruction is a comparison operation used to test bits 
from a memory location with bits in the accumulator. The contents of 
the accumulator are not affected by this instruction. Hence, the BIT 
instruction is termed “nondestructive.” 

The BIT instruction affects the N, V, and Z flags of the processor 
status register. The N-flag is set to the value of memory word bit 7 
(M,), while V is set to the value of memory word bit 6 (M,). The 
Z-flag is set (Z = 1) if the result is zero, and reset (Z = 0) if the result 
is non-zero. 

BIT performs a comparison by executing a logical-AND operation 
between the contents of the accumulator and the contents of a specified 
memory location. If the result of this operation is zero, then Z = 1, 
otherwise Z = 0. 

BMI 

Branch on Result Equals Minus (N = 1) 

Branches when N = 1 

Status Register Flags Affected: None 

Addressing _____ Op-Code No. No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Relative BMI oper 30 00110000 60 2 2* 

*Add 1 if branch occurs to same page, add 2 if branch crosses page 
boundary. 

The BMI instruction is a conditional branch instruction. The 
branch is taken if the result of a previous operation is negative, as 
indicated by the N-flag of the processor status register being set (N = 
1). This test tells us that bit 7 of the previous result was 1. 

The BMI instruction uses relative addressing. The branch occurs 
forward or backward a number of steps specified by the second byte 
of the instruction. A forward branch is denoted by a positive hexa- 
decimal number, while a backward branch by an equivalent two’s 
complement hexadecimal number. For example, a branch 6 spaces 
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forward (+6) would be designed by 06H in the second byte, while a 
branch 6 steps backward (—6) by the hexadecimal equivalent FAH. 

BNE 

Branch on Result Not Equal to Zero (Z = OQ) 

Branches on Z = 0 

Status Register Flags Affected: None 

Addressing ___— Op-Code No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Relative BNE oper DO 11010000 320 2 2* 

* Add 1 if branch occurs to same page, add 2 if branch occurs to different 
page. 

The BNE instruction is a conditional branch that takes the branch 
if the result of a previous instruction was not equal to zero. BNE tests 
the Z-flag of the processor status register, and will branch if Z = 0. 

The BNE instruction uses relative addressing. The branch causes 
a jump forward or backward an amount specified in the second byte 
of the instruction. A forward branch is denoted by a positive hexa- 
decimal number in the second byte, while a backward branch is in- 
dicated by a two’s complement hexadecimal number. For example, a 
branch forward of 6 steps (+6) is denoted by 06H, while a branch 
backward of 6 spaces (—6) is denoted by FAH. 

BPL 

Branch on Result Positive 

Branch on N = 0 

Status Register Flags Affected: None 

Addressing ___—Op-Code_______— Noo, No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Relative BPL,oper 10 00010000 020 2 2* 

*Add 1 if branch occurs to same page, add 2 if branch occurs to different 
page. 
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This instruction causes a branch when the result of the previous 
instruction was positive, as indicated by the N-flag being 0. Relative 
addressing mode is used, with the jump displacement being given by 
the second byte of the instruction. A positive jump will be indicated 
by a positive hexadecimal number, while a backward branch is indi- 
cated by a two’s complement hexadecimal number in the second byte. 
For example, a forward branch of 6 steps is indicated by 06H in byte 
2, while a backward branch (—6) is indicated by the hexadecimal 
number FAH. 

BRK 

Force Break 

Forced interrupt PC + 2! P4 

Status Register Flags Affected: I 

Addressing ___-Op-Code_____ No, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied BRK 18 00011000 030 1 7 

The BRK command is a means for forcing the microprocessor to 
execute the interrupt subroutine under program control. The address 
of the first instruction of the interrupt subroutine is stored at locations 
FFFEH (low-order byte) and FFFFH (high-order byte). The contents 
of the program counter are incremented by 2 and then pushed onto 
the external stack during the execution of the interrupt subroutine. 
The BRK command is not disabled by the I-flag in the processor status 
register. The I-flag, which is an interrupt disable flag, is set HIGH (1) 
by the BRK instruction. 

BVC 

Branch on Overflow Clear 

Branch on V = 0 

Status Register Flags Affected: None 

Addressing ___—Op-Code_____— Noo, No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Relative BVC oper 50 0101000 120 2 2* 

* Add 1 if branch occurs to same page, add 2 if branch occurs to different 
page. 
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The BVC instruction causes a jump when the overflow flag (V) 
in the processor status register is clear (V = 0). Thus, BVC is a con- 
ditional branch instruction that uses relative addressing. The BVC 
instruction tests the V-flag of the processor, and will branch if V = 0. 
The branch will jump forward or backward an amount specified in the 
second byte of the instruction. A forward branch is denoted by a 
positive hexadecimal number in the second byte, while a backward 
branch is indicated by a two’s complement hexadecimal number. 

BVS 

Branch on Carry Set 

Branch on V = 1 

Status Register Flags Affected: None 

Addressing ___—Op-Code___ Noo. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Relative BVS oper 70 01110000 160 2 2* 

* Add 1 if branch occurs to same page, add 2 if branch occurs to different 
page. 

This instruction is exactly like BVC, except that the branch occurs 
when the V-flag is set (V = 1). 

CLC 

Clear Carry Flag 

0-C 

Status Register Flags Affected: C goes to 0 

Addressing ______Op-Code______— No, No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied CLC 18 00011000 030 1 2 

The CLC instruction causes the carry flag of the processor status 
register to become clear (C = 0). 
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CLD 

Clear Decimal Mode 

0-D 

Status Register Flags Affected: D 

Addressing __—Op-Code_____ No. Ne. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied CLD D8 11011000 330 1 2 

CLI 

Clear Interrupt Disable Bit 

0- I 

Status Register Flags Affected: I 

Addressing _:_Op-Code______ No, No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied CLI 58 01011000 130 1 2 

The CLI instruction clears the interrupt disable flag (also called 
the I-flag) in the 6502 CPU. Execution of this flag causes the I-flag to 
go to zero (I = 0). The implied addressing mode is used because there 
is only one possible destination, namely the I-flag of the processor 
status register. The purpose of the CLI instruction is to permit the 
6502 to respond to interrupt requests from the outside world that are 
indicated by the IRQ line dropping LOW. The I-flag is normally set 
to I = 1 when the 6502 is first turned on and the RST line is activated. 
The programmer must insert a CLI] instruction somewhere in the 
program before it is necessary to respond to maskable interrupts. This 
instruction and the companion SEI (set interrupt flag) can be used to 
turn the interrupt function on and off as needed. 

CLV 

Clear Overflow Flag 

0-V 



Status Register Flags Affected: V 

Addressing _____—Op-Code__ Noo. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied CLV B8 10111000 270 1 2 

The CLV instruction is used to clear the overflow flag (also called 
the V-flag) of the processor status register to LOW (V = 0). Implied 
addressing is used since there is only one possible destination for the 
instruction. CLV is 1-byte instruction and affects no flags other than 
the V-flag. 

CMP 

Compare Memory with Accumulator 

A—-M 

Status Register Flags Affected: N, Z, C 

Addressing ____ Op-Code No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Immediate CMP # Oper C9 11001001 311 2 
Zero Page CMP Oper C5 11000101 305 
Zero Page,X CMP Oper,X D5 11010101 325 
Absolute CMP Oper CD 11001101 315 
Absolute,X CMP Oper,X DD 11011101 335 
Absolute,Y CMP Oper,Y D9 11011001 331 
(Indirect,X) CMP(Oper,X) Cl 11000001 301 
(Indirect, Y CMP (Oper),Y D1 11010001 321 

*Add 1 if page boundary is crossed. 

2 
3 
4 
4 
4* 
4* 

6 
5 NNWOWWANN 

The compare (CMP) instruction compares data fetched from 
memory with data stored in the accumulator without altering the data 
in the accumulator. CMP can use all eight Group-I addressing modes, 
and three of the PSR flags: C, N, and Z. The use of the flags is different 

for this instruction than for others, and operates as follows: 

1. C-flag. Set HIGH (1) when the value in memory is less than 
the value in the accumulator, and is reset LOW (0) when the 
value in memory is greater than the value in the accumulator. 
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2. N-flag is set HIGH (1) or reset LOW (0) according to the result 
of bit 7. 

3. Z-flag is set HIGH (1) on equal comparison, reset for unequal 
comparison. 

CPX 

Compare Memory with Index X-Register 

X—M 

Status Register Flags Affected: N, Z, C 

Addressing _____ Op-Code No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Immediate CPX #oper EKO 11100000 340 2 2 
Zero Page CPX oper E4 11100100 344 2 3 

Absolute CPX oper EC 11101100 354 3 4 

The CPX instruction compares the contents of the X-register with 
the contents of a designated memory location. Immediate, zero page, 
and Absolute addressing modes are used. The N, Z, and C-flags are 

affected. The contents of the X-register are not affected by CPX. The 
comparison is performed by subtracting the contents of the addressed 
memory location from the contents of the X-register, but does not store 
the result in either the X-register or the memory location. The PSR 
flags are affected as follows: 

1. The C-flag will be set (C = 1) if the absolute value of the 
X-register is equal to or greater than the value fetched from 
memory (X M). The C-flag is reset (C = 0) if X is less than the 
value from memory. 

2. If bit 7 of the comparison result is 1, then the N-flag is set 
(N = 1), but if bit 7 is 0, then the N-flag is reset (N = 0). 

3. The Z-flag is set (Z = 0) if the value memory is equal to the 
value from the X-register, otherwise it is reset (Z = 0). 

The CPX instruction can be used for setting of the PSR flags, 
among other uses. 
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CPY 

Compare Memory with Index Y-Register 

Y—M 

Status Register Flags Affected: N, Z, C 

Addressing _— Op-Code No, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Immediate CPY #oper CO 11000000 300 2 2 
Zero Page CPY oper C4 11000100 304 2 3 
Absolute CPY oper CC 11001100 314 4 4 

The CPY instruction is exactly like the CPX instruction, except 
that. the Y-register is used instead of the X-register. For a detailed 
discussion of this instruction, read the text for the CPX instruction, 
substituting “Y” for “X.” 

DEC 

Decrement Memory by One 

M-1-7-M 

Status Register Flags Affected: N, Z 

Addressing ______ Op-Code______ No, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Zero Page DEC oper C6 11000110 306 2 5 
Zero Page,X DEC oper,X D6 11010110 326 2 6 
Absolute DEC oper CE 11001110 316 3 6 
Absolute,X DEC oper,X DE 11011110 336 3 0 

The DEC instruction causes the data in the addressed memory 
location to be decremented, i.e., decreased by one; the DEC instruction 

does not affect the accumulator data. The N and Z-flags of the processor 
status register are affected as follows: 

1. The N-flag will be 1 when bit 7 of the result is 1, and 0 when 
the result is 0. 

2. The Z-flag will be 1 when the result is zero (00000000), and 
0 when the result is anything other than 00000000. 
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DEX 

Decrement Index X-Register by One 

X-1-7-X 

Status Register Flags Affected: N, Z 

Addressing ____— Op-Code Noo. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied DEX CA 11001010 312 1 2 

The DEX instruction causes the data in the index X-register to 
be decremented by 1; the DEX instruction does not affect the contents 
of the accumulator or any memory location. The N and Z-flags of the 
processor status register are affected as follows: 

1. The N-flag will be 1 when bit 7 of the result in the X-register 
is 1, and 0 when the result bit 7 is 0. 

2. The Z-flag will be 1 when the result in the X-register is zero 
(00000000) and 0 when the result in the X-register is anything 
other than 00000000. 

DEY 

Decrement Index Y-Register by One 

y-1-Y 

Status Register Flags Affected: N, Z 

Addressing ____ Op-Code | No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied DEY 88 10001000 210 1 2 

The DEY instruction is identical in all respects to the DEX 
instruction, except that the index Y-register is used instead of index 
X-register. 
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EOR 

Exclusive-OR (Logical Operation) Memory with 
Accumulator 

AVYVM-A 

Status Register Flags Affected: N, Z 

Addressing _____Op-Code_____— No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Immediate EOR #oper 49 01001001 i111 2 2 
Zero Page EOR oper 45 01000101 105 2 3 
Zero Page,X EOR oper,X 55 01010101 125 2 4 
Absolute EOR oper 4D 01001101 115 3 4 
Absolute,X EOR oper,X 5D 01011101 135 3 4* 

Absolute, Y EOR oper,Y 59 01011001 131 3 4* 
(Indirect,X) EOR (oper,X) 41 01000001 101 2 6 
(Indirect), Y | EOR(oper),Y 51 01010001 121 2 5* 

*Add 1 if page boundary is crossed. 

The EOR instruction causes an exclusive-OR logical operation 
between the contents of the accumulator and the contents of the 
addressed memory location. The operation takes place on a bit-by-bit 
basis, so the result of one operation will not affect the operation on 
the next bit. The rules for EOR are as follows: 

0 XOR 0 = 0 

0XOR1 = 1 

1 XORO = 1 

1 XOR 1 = 0 

Note that the result bit is true (1) if either bit is true, but not if both 
bits are true. The EOR instruction affects the N and Z-flags of the 
processor status register as follows: 

1. The N-flag will be 1 if bit 7 of the result is 1, and 0 if bit 7 of 
the result is 0. 

2. The Z-flag will be 1 if the result of the operation stored in the 
accumulator is 00000000, and 1 if the result stored in the 

accumulator is anything other than 00000000. 
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One application for the EOR instruction is in complementing the 
accumulator, i.e., making all the 1s into Os and all the Os into ls. 

INC 

Increment Memory by One 

M+1-M 

Status Register Flags Affected: N, Z 

Addressing ______Op-Code______ Noo, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Zero Page INC oper F6 11100110 346 2 5 

Zero Page,X INC oper,X F6 11110110 366 2 6 

Absolute INC oper EE 11101110 356 3 6 
Absolute,X INC oper,X FE 11111110 9376 3 7 

The INC instruction causes the data in the addressed memory 
location to be incremented (increased) by one; the data in the accu- 
mulator is not affected by INC. The N and Z-flags of the processor 
status register are affected as follows: 

1. The N-flag will be 1 if bit 7 of the result is 1, and 0 if bit 7 of 
the result is 0. 

2. The Z-flag will be 1 if the result is 00000000, and 0 if the result 
is anything other than 00000000. 

INX 

Increment Index X-Register by One 

X+17>X 

Status Register Flags Affected: N, Z 

Addressing _ Op-Code No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied INX E8 11101000 350 1 2 

The INX instruction causes the data stored in the index X-register 
to be incremented (increased) by one; the accumulator data is not 
affected by INX. The N and Z-flags of the processor status register are 
affected as follows: 
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1. The N-flag will be 1 if bit 7 of the result stored in the X-register 
is 1, and 0 if bit 7 of the result is 0. 

2. The Z-flag will be 1 if the result stored in the X-register is 
00000000, and 0 if the result in the X-register is anything other 
than 00000000. 

INY 

Increment Index Y-Register by One 

Y+1-yY 

Status Register Flags Affected: N, Z 

Addressing ____Op-Code______—s Noo. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied INY C8 11001000 310 1 2 

JMP 

Jump to a New Location in Memory 

(PC + 1) > PCL 
(PC + 2) > PCH 

Status Register Flags Affected: None 

Addressing ___— Op-Code Noo, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Absolute JMP oper 4C. 01001100 114 3 3 
Indirect JMP (oper) 6C 01101100 154 3 3 

The JMP (jump) instruction causes an immediate, unconditional 

transfer of program control to another memory location. Both Absolute 
and indirect addressing modes can be used. The next instruction to be 
executed after the JMP instruction will not be the next instruction in 
sequence (except for the trivial case where someone gratuitously added 
a “JMP to next location” instruction), but rather the instruction at the 
memory location specified by the operand of the instruction. Consider 
the following example: 
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Step Location Instruction Comment 

1 0200H JMP nnnn JUMP to location A008 
2 0201H 08H (nn) 
3 0202H AOH (nn) 
4 0203H NOP Next instruction in sequence 

In step 1, the 6502 encounters a 3-byte JMP AOO8H instruction 
(step 2 is the low-order destination byte, while step 3 is the high-order 
destination byte—the two together make up the 16-bit address). The 
next instruction to be executed will not be the NOP (no operation) 
found at location 0203H in step 4, but rather it will be the instruction 
found at location A008H. 

JSR 

Jump to New Location for Subroutine (With Return 
Address) 

PC + 24 

(PC + 1) > PCL 

(PC + 2) ~ PCH 

Status Register Flags Affected: None 

Addressing _—Op-Code__ No. No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Absolute JSR oper 20 00100000 40 3 6 

The JSR is a jump instruction similar to the JMP instruction, with 
the exception that JSR will store the 2 bytes of the last instruction 
address to be executed on the external stack (usually in page one of 
memory), and will then decrement the Stack Pointer (SP) register by 
2. When the program returns from the subroutine (which it does on 
encountering an RTS instruction), the program counter will be loaded 
with the address of the next instruction to be executed after the sub- 
routine is completed (i.e., the next instruction in sequence after JSR). 
On return from the subroutine, the following status exists: 

PCL + 1 > PCL 

PCH + 2 > PCH 
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The RTS (return from subroutine) must be the last instruction in 
the subroutine, otherwise the program control will not return to the 
main program. 

LDA 

Load Accumulator with Data Stored in Memory 

M-A 

Status Register Flags Affected: N, Z 

Addressing ____—Op-Code___ Noo, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Immediate LDA #oper AQ 10101001 251 2 2 
Zero Page LDA oper A5 10100101 245 2 3 
Zero Page,X LDA oper,X B5 10110101 265 2 4 
Absolute LDA oper AD 10101101 255 3 4 
Absolute,X LDA oper,X BD 10111101 275 3 4* 

Absolute,Y |= LDA oper,Y B9 10111001 271 3 4* 
(Indirect,X) LDA (oper,X) Al 10100001 241 2 6 

(Indirect),Y LDA (oper),Y Bl 10110001 261 2 5* 

*Add 1 if page boundary is crossed. 

The LDA instruction serves to load the accumulator with data 
taken from defined memory locations. This transfer of data is nonde- 
structive, i.e., the data will appear both in the accumulator and in the 
original memory location when the instruction is executed. Thus, LDA 
is a copying operation rather than a transfer in the strict sense of the 
word. The LDA instruction uses all 8 addressing modes available to 
Group-I instructions; the operation of LDA with respect to these modes 
is described in Chapter 7. Only the N and Z-flags of the processor 
status register are affected by the LDA instruction: 

1. The N-flag will be 1 if the data transferred into the accumulator 
has bit 7 = 1, and 0 if bit 7 = 0. 

2. The Z-flag will be 1 if the data transferred into the accumulator 
is 00000000, and 1 if the data transferred into the accumulator 
is any number other than 00000000. 
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LDX 

Load Index X-Register with Data Stored in Memory 

M- X 

Status Register Flags Affected: N, Z 

Addressing _____ Op-Code No, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Immediate LDX #oper AO _ 10100000 240 2 2 
Zero Page LDX oper A4 10100100 244 2 3 

Zero Page,X LDX oper,X B4 10110100 264 2 4 

Absolute LDX oper AC 10101100 254 3 4* 

Absolute,X LDX oper,X BC 10111100 274 3 4* 

*Add 1 if page boundary is crossed. 

The LDX< instruction loads the index X-register with data fetched 
from a defined memory location. The transfer of data is nondestructive, 
i.e., the data will appear in both the accumulator of the 6502 and in 
the original memory location after the execution of LDX. Thus, LDX 
is a copying operation rather than a transfer in the strict sense of the 
word. The LDX instruction uses only 5 of the 8 addressing modes 
available on 6502. The N and Z-flags of the processor status register 
are affected as follows: 

1. The N-flag will be 1 if the data transferred into the X-register 
has bit 7 = 1, and 0 if bit 7 = 0. 

2. The Z-flag will be 1 if the data transferred into the X-register 
is 00000000, and 0 if the data transferred is anything other 
than 00000000. 

LDY 

Load Index Y-Register with Data Stored in Memory 

M- Y 

Status Register Flags Affected: N, Z 



Addressing ______—Op-Code_____—s No, No. 

_Mode__ = = Mnemonic Hex Binary Octal Bytes Cycles 
Immediate LDY #oper AO 10100000 240 2 2 
Zero Page LDY oper A4 10100100 244 2 3 
Zero Page,X LDY oper,X B4 10110100 264 2 4 
Absolute LDY oper AC 10101100 254 3 4 
Absolute,X = LDY oper,X BC 10111100 274 3 4* 

*Add 1 if page boundary is crossed. 

The LDY instruction operates in exactly the same manner as the 
LDX< instruction, except that the Y-register is the destination rather 
than the X-register (see the discussion for LDX). 

LSR 

Shift Right One Bit (Memory or Accumulator) 

0- b7 > b6 - b5 > b4 > b3 > 52> b1 > b0 C 

Status Register Flags Affected: N, Z, C (Note: N goes to 0) 

Addressing ______Op-Code____— No, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Accumulator LSR A 4A 01001010 112 1 2 

Zero Page LSR oper 46 01000110 106 2 5 
Zero Page,X LSR oper,X 56 01010110 126 2 6 
Absolute LSR oper 4E 01001110 116 3 6 

Absolute,X oper,X SE 01011110 136 3 7 

The LSR, or logical shift right instruction, causes a 0 to be shifted 
into bit 7 (also the N-flag of the processor status register) of the ac- 
cumulator or memory location addressed; the contents of each bit is 

moved one position to the right, and bit 0 (the LSB) is moved to the 
carry flag. The LSR instruction uses the following addressing modes: 
accumulator, zero page, zero page X, absolute, and absolute X. See 

Chapter 7 for a discussion of the LSR (and the companion ASL instruc- 
tion) and possible applications. 

NOP 

No Operation 

Status Register Flags Affected: None 
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Addressing ______— Op-Code Noo, No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied NOP EA 11101010 352 l 2 

The NOP instruction carries out no operation in the 6502 and 
affects no processor status register flags. The purpose of the NOP 
instruction is to insert a 2-cycle “wait” into a program or to take up a 
space. 

ORA 

Logical-OR Operation Between Accumulator and Memory 
Location 

AVM-A 

Status Register Flags Affected: N, Z 

Addressing _____Op-Code___— No. No. 

_Mode__ = = Mnemonic Hex Binary Octal Bytes Cycles 
Immediate ORA #oper 09 00001001 O11 2 2 
Zero Page ORA oper 05 00000101 005 2 3 
Zero Page,X ORA oper,X 15 00010101 025 2 4 
Absolute ORA oper OD 00001101 015 3 4 
Absolute,X ORAoper,X 1D 00011101 035 3 4 
Absolute, Y ORA oper,Y 19 00011001 031 3 4 
(Indirect,X) ORA (oper,X) 01 00000001 001 2 6 
(Indirect),Y ORA (oper)Y 11 00010001 021 2 5* 

*Add 1 if page boundary is crossed. 

The ORA instruction performs a logical-OR operation on a bit- 
by-bit basis between the accumulator and the addressed memory lo- 
cation. The operation affects the contents of the accumulator. The 
rules for a logical-OR operation are as follows: 

0OR0=0 

0OORI1=1 

1OR0=1 

1OR1=1 

As you can see from this, the result of a logical-OR operation is 
true (1) any time either of the bits being compared is 1. Since the ORA 
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instruction operates on a bit-for-bit basis, no operation between bits 
of any order will affect the operation of the ORA instruction on any 
other set of bits. The ORA instruction affects the N and Z-flags of the 
processor status register as follows: 

1. The N-flag will be 1 if bit 7 of the result in the accumulator 
is 1, and 0 if bit 7 is 0. 

2. The Z-flag will be 1 if the result in the accumulator is 00000000, 
and 0 if the result is anything other than 00000000. 

PHA 

Push Accumulator Contents Onto External Stack 

A} 

Addressing ______Op-Code_____s No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied PHA 48 01001000 110 1 3 

The PHA instruction serves to push the contents of the accu- 
mulator out onto the external stack in memory. The PHA instruction 
doesn’t affect any processor status register flags, but will cause the 
Stack Point (SP) to decrement by one. 

PHP 

Push Processor Status Register Onto External Stack 

Py 

Status Register Flags Affected: None 

Addressing ______ Op-Code___ Noo. No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied PHP 08 00001000 010 1 3 

The PHP instruction is exactly like PHA, except that the contents 
of the processor status register are transferred to the external stack, 
rather than the accumulator contents. No PSR flags are affected, but 
the instruction does cause the SP to decrement by 1. 
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PLA 

Pull Accumulator From Stack 

At 

Status Register Flags Affected: N, Z 

Addressing ____ Op-Code No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied PLA 68 01101000 150 1] 4 

The PLA instruction is used to pull data from the external stack 
back to the accumulator. This instruction is thus the opposite of the 
PHA instruction. The N and Z-flags of the processor status register are 
affected by this operation as follows: 

1. The N-flag will be 1 if the returned data has bit 7 = 1, and 0 
if bit 7 is 0. 

2. The Z-flag will be 1 if the returned data is 00000000, and 0 if 
the returned data is anything other than 00000000. 

PLP 

Pull Processor Status From External Stack 

Pt 

Status Flags Affected: All 

Addressing ___ Op-Code Noo, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied PLP 28 00101000 050 1] 4 

The PLP instruction works exactly like the PLA instruction, ex- 
cept that the data pulled from the stack are stored in the processor 
status register instead of the accumulator. All of the PSR flags are 
affected, and become whatever the corresponding bits were on the 
external stack. One use of this instruction is to restore the PSR after 
some alternative operation, such as a subroutine. 
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ROL 

Rotate Data One Bit to the Left (Memory Location or 
Accumulator) 

b7 — b6 - bd — b4- 3 -— bD2- bI © bDO- Ce 
(M or A) 

Status Register Flags Affected: N, Z, C 

Addressing ___—Op-Code__s No, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Accumulator ROL A 2A 00101010 052 1 

Zero Page ROL oper 26 00100110 046 2 5 

Zero Page,X ROL oper,X 36 00110110 066 2 6 

Absolute ROL oper 2E 00101110 056 3 6 

Absolute,X ROL oper,X 3E 00111110 076 3 7 

The ROL instruction is like the ASL instruction, except that the 
shifted-out data recirculates, i.e., the bit 7 datum is stored in the C- 

flag, while the C-flag data is stored in BO. Either the accumulator or 
a byte from memory can be handled with ROL. Each bit of the affected 
byte is shifted 1 place to the left, as shown in the diagram. The N, Z, 
and C-flags of the processor status register are affected as follows: 

1. The N-flag will be 1 if bit 7 of the result is 1, and 0 if bit 7 is 

0. 

2. The Z-flag will be 1 if the result is 00000000, and 0 if the result 
is anything other than 00000000. 

3. The C-flag takes on the value (1 or 0) that was in bit 7 before 
the shift occurred. 

ROR 

Rotate One Bit to the Right (Memory or Accumulator) 

> b7 - b6 - b5 > b4 > b3 > bD2 > bDI - bO- C 

(M or A) 

Status Register Flags Affected: N, Z, C 
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Addressing ____—Op-Code_ Noo. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Accumulator ROR A 6A 01101010 152 1 2 
Zero Page ROR oper 66 01100110 146 2 i) 
Zero Page,X ROR oper,X 76 01110110 166 2 6 
Absolute ROR oper 6E 01101110 156 3 6 
Absolute,X ROR oper,X 7E 01111110 176 3 7 

The ROR instruction is similar to the LSR instruction, except that 
the shifted-out data is recirculated back into the register. Bit 0 data 
are right-shifted into the C-flag, while the previous contents of the C- 
flag are shifted into bit 7. All other bits are shifted 1 place to the right, 
as shown in the diagram above. The C, Z, and N-flags of the processor 
status register are affected in the same manner as for the ROL 
instruction. 

RTI 

Return From Interrupt 

Pt 

PC t 

Status Register Flags Affected: All 

Addressing _____ Op-Code Noo, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied RTI 40 01000000 100 ] 6 

The RTI instruction allows the 6502 microprocessor to return 
from serving an interrupt. When the 6502 encounters the RTI instruc- 
tion, it will restore the previous program by pulling the previous 
processor status register (P) and program counter contents from mem- 
ory. Thus, the processor status register will return to its condition when 
the interrupt was encountered, as will the PC. Since no other registers 
are affected, the programmer may wish to save the contents of other 
registers (if they are of importance) with other steps in the program. 
RTI must be the last instruction in the interrupt service subroutine. 
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RTS 

Return From Subroutine 

PC t 

PC +17 PC 

Status Register Flags Affected: None 

Addressing ____—Op-Code______ No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied RTS 60 01100000 140 1 6 

The RTS instruction performs for subroutines (see instructions for 
JSR) what RTI does for interrupt service routines. The purpose of the 
RTS instruction is to restore the 6502 processor to the program being 
executed when the subroutine instruction JSR was encountered. The 
program counter is returned from the external stack and then incre- 
mented by 1, the new value being stored in the PC of the 6502 to 
point to the next instruction in sequence after the JSR was encountered. 
The RTS instruction must be the last instruction in a subroutine pro- 
gram, otherwise, the processor will not know how to return to the 
main program. 

SBC 

Subtract Memory From Accumulator with Borrow 

A-—-M-—C-A _§ (Note: “C” denotes a borrow operation) 

Status Register Flags Affected: N, Z, Z, V 

Addressing _____Op-Code__— Noo. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Immediate SBC E9 11101001 351 2 2 
Zero Page SBC E5 11100101 345 2 3 

Zero Page,X SBC F5 11110101 365 2 4 

Absolute SBC ED 11101101 355 3 4 

Absolute,X SBC FD 11111101 375 3 4* 

Absolute,Y SBC F9 11111001 371 3 4* 

(Indirect,X) SBC El 11100001 341 2 6 

(Indirect), Y SBC Fl 11110001 361 2 5* 

*Add 1 if page boundary is crossed. 
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The SBC (subtraction with carry) instruction is actually a sub- 
traction with BORROW, if we use mathematically correct terminology. 
The symbolic operation for SBC is 

A-M-C-A 

This notation says that the value fetched from memory (M) and 
the complement of the carry flag (C) is subtracted from the contents 
of the accumulator, and the result is stored in the accumulator. Note 

that the carry flag will be set (HIGH) if a result is equal to or greater 
than zero, and reset (LOW) if the results are less than zero, i.e., neg- 
ative. 

The SBC instruction has available all 8 Group-I addressing modes, 
as was also true of ADC. 

The SBC instruction affects the following PSR flags: negative (N), 
zero (Z), Carry (C), and overflow (V). The N-flag indicates a negative 
result and will be HIGH; the Z-flag is HIGH if the result of the SBC 
instruction is zero and LOW otherwise; the overflow flag (V) is HIGH 
when the result exceeds the values 7FH (+127,,.) and 80H with C = 
1 (i.e., — 128,,). 

The 6502 manufacturer recommends for single-precision (8-bit) 
subtracts that the programmer ensure that the carry flag is set prior 
to the SBC operation to be sure that true two’s complement arithmetic 
takes place. We can set the carry flag by executing the SEC (set carry 
flag) instruction. 

The rules for binary subtraction are: 

0-0=0 

0-1=0 Carry — 1 

1-0O=1 

1-—1=0 

The SBC instruction complements the ADC instruction and is 
used in arithmetic operations. The additional instruction used in 
arithmetic operations is the set decimal mode instruction that permits 
binary coded decimal (BCD) arithmetic. 

SEC 

Set Carry Flag 

1-C 



Status Register Flags Affected: C goes to 1 

Addressing __— Op-Code Noo, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied SEC 38 00111000 070 1 2 

Sets processor status register C-flag to 1. 

SED 

Set Decimal Mode 

1-D 

Status Flags Affected: D goes to 1 

Addressing _—Op-Code__ No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied SED F8 11111000 370 1 2 

Sets processor status register D-flag to 1, thereby permitting dec- 
imal operations (see Chapter 7). 

SEI 

Set Interrupt Disable Status Bit 

1 - I 

Addressing _____— Op-Code No. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied SEI 78 01111000 170 ] 2 

Sets interrupt status bit (I-flag) of the processor status register to 
1, thereby disabling the interrupt capability of the 6502. 

STA 

Store Accumulator Contents in Memory 

A7M 
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Status Register Flags Affected: None 

Addressing _____ Op-Code Noo. No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Zero Page STA oper 85 10000101 205 
Zero Page,X STA oper,X 95 10010101 225 
Absolute STA oper 8D 10001101 215 
Absolute,X STA oper,X 9D 10011101 235 
Absolute,Y STA oper,Y 99 10011001 231 
(Indirect,X) STA (oper,X) 81 10000001 201 
(Indirect) Y STA(oper)Y 91 10010001 221 NNWGQaN bd a ® ota & hh G 

The STA instruction stores the contents of the accumulator in a 
location in memory. Seven modes of addressing are available, as de- 
tailed here. The transfer is nondestructive, so the same data will appear 
in both the accumulator and in the selected memory location imme- 
diately after the execution of an STA instruction. 

STX 

Store Index X-Register in Memory 

X—-M 

Status Register Flags Affected: None 

Addressing _____ Op-Code____ No, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Zero Page STX oper 86 10000110 206 2 3 
Zero Page,Y STX oper,Y 96 10010110 226 2 4 
Absolute STX oper 8E 10001110 216 3 4 

The STX instruction stores the contents of the index X-register 
in a location in memory. Three different addressing modes are allowed: 
zero page, zero page-Y, and Absolute. The transfer is nondestructive, 
so the same data will appear in both the X-register and the selected 
memory location following the transfer. 

STY 

Store Index Y-Register in Memory 

Y>-M 
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Addressing ______Op-Code__— No, No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Zero Page STY oper 84 10000100 204 2 3 
Zero Page,X STY oper,X 94 10010100 224 2 4 

Absolute STY oper 8C 10001100 214 3 4 

The STY instruction stores the contents of the index Y-register 
in a location in memory. Three different addressing modes are allowed: 
zero page, zero page-X, and Absolute. The transfer is nondestructive, 
so the same data will appear in both the Y-register and in the selected 
memory location immediately after execution of the STY instruction. 

TAX 

Transfer Contents of Accumulator to Index X-Register 

A-> xX 

Status Register Flags Affected: N, Z 

Addressing _____ Op-Code No". No. 
Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied TAX AA 10101010 252 1 2 

The TAX instruction transfers the data in the accumulator into 
the index X-register. This transfer is nondestructive, so the same data 
will appear in both the accumulator and the X-register following ex- 
ecution of this instruction. The N and Z-flags of the processor status 
register are affected as follows: 

1. The N-flag will be 1 if bit 7 of the data transferred into the 
X-register is 1, and 0 if bit 7 of the transferred data is 0. 

2. The Z-flag will be 1 if the data transferred to the X-register 
is 00000000, and 0 if the transferred data is anything other 
than 00000000. 

TYA 

Transfer Contents of Index Y-Register to the Accumulator 

YA 
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Status Register Flags Affected: N, Z 

Addressing _____Op-Code_____ No, No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied TYA 98 10011000 230 1 2 

This instruction is the same as TAX, except that data is transferred 
from the index Y-register to the accumulator. The treatment of the 
flags is the same. 

TSX 

Transfer Stack Pointer to Index X-Register 

S- xX 

Status Register Flags Affected: N, Z 

Addressing _______Op-Code____ Noo, No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied TSX BA 10111010 272 1 2 

Transfers contents of the stack pointer (SP) to the X-register. The 
N and Z-flags are affected in the same manner as for TAX. 

TXA 

Transfer Index X-Register to Accumulator 

X-A 

Status Register Flags Affected: N, Z 

Addressing _____ Op-Code Noo. No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied TXA 8A 10001010 212 1 2 

The TXA instruction transfers the contents of the X-register into 
the accumulator. The TXA instruction is opposite of the TAX instruc- 
tion, and affects the N and Z-flags in exactly the same manner. 
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TXS 

Transfer Index X-Register to Stack Pointer 

X > SP 

Status Register Flags Affected: None 

Addressing _____ Op-Code No. No. 

Mode Mnemonic Hex Binary Octal Bytes Cycles 

Implied TXS 9A 10011010 232 1 2 

This instruction transfers the contents of the index X-register into 
the accumulator. 
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Appendix B 

APPENDIX B_ 6502 Instructions Sorted by Op-Code (Hex- 
adecimal) 

09 ~ BRK 

@1 - ORA - (Indirect,X) 

$2 - Future Expansion 

@3 - Future Expansion 

$4 - Future Expansion 

$5 - ORA - Zero Page 

@6 - ASL - Zero Page 

@7 - Future Expansion 

8 PHP 

#9 - ORA - Immediate 

QA - ASL - Accumulator 

@B - Future Expansion 

@C - Future Expansion 

$D - ORA - Absolute 

§E - ASL - Absolute 

@F - Future Expansion 

1p - BPL 

11 - ORA - (Indirect) ,Y 

12 Future Expansion 

13 - Future Expansion 

14 

15 

16 

17 

18 

19 

1A 

1B 

1c 

1D 

1E 

1F 

Future Expansion 

ORA - Zero Page,X 

ASL - Zero Page,X 

Future Expansion 

CLC 

ORA - Absolute,Y 

Future Expansion 

Future Expansion 

Future Expansion 

ORA - Absolute,X 

ASL - Absolute,X 

Future Expansion 

JSR 

AND - (Indirect ,X) 

Future Expansion 

Future Expansion 

BIT - Zero Page 

AND - Zero Page 

ROL - Zero Page 

Future Expansion 

PLP 

AND - Immediate 

ROL - Accumulator 

Future Expansion 

BIT - Absolute 

AND - Absolute 

ROL - Absolute 

Future Expansion 

BML 

AND - (Indirect) ,Y 

Future Expansion 

Future Expansion 

Future Expansion 

AND - Zero Page,X 

ROL - Zero Page,X 

Future Expansion 

SEC 

AND - Absolute,Y 

Future Expansion 

Future Expansion 

Future Expansion 

AND - Absolute,X 

ROL - Absolute,X 

Future Expansion 

281 
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APPENDIX B 6502 Instructions Sorted by Op-Code (Hex- 
adecimal) Continued 

49 - RTI 69 - RTS 

41 - EOR - (Indirect ,X) 61 - ADC - (Indirect ,X) 

42 ~ Future Expansion 62 - Future Expansion 

43 = Future Expansion 63 - Future Expansion 

44 - Future Expansion 64 - Future Expansion 

45 - EOR - Zero Page 65 - ADC - Zero Page 

46 - LSR - Zero Page 66 - ROR - Zero Page 

47 - Future Expansion 67 - Future Expansion 

48 - PHA 68 - PLA 

49 - EOR - Immediate 69 = ADC - Inmediate 

4A - LSR - Accumulator 6A - ROR - Accumulator 

4B - Future Expansion 6B - Future Expansion 

4C - JMP - Absolute 6C - JMP ~ Indirect 

4D - EOR - Absolute 6D - ADC - Absolute 

4E - LSR - Absolute 6E - ROR - Absolute 

4F - Future Expansion 6F - Future Expaneton 

S@ - BVC 79 - BVS 

51 ~ EOR ~- (Indirect) ,Y 71 = ADC - (Indirect) ,Y 

52 - Future Expansion 72 - Future Expansion 

53 - Future Expansion 73 - Future Expansion 

54 - Future Expansion 74 - Future Expansion 

55 - EOR - Zero Page,X 75 = ADC ~ Zero Page,X 

56 - LSR - Zero Page,X 76 - ROR - Zero Page,X 

57 - Future Expansion 77 = Future Expansion 

58 - CLI 78 - SEI 

59 - EOR - Absolute,Y 79 - ADC - Absolute,Y 

SA - Future Expansion 7A - Future Expansion 

5B - Future Expansion 7B - Future Expansion 

5C - Future Expansion 7C - Future Expansion 

5D - EOR - Absolute,X 7D - ADC - Absolute,X 

5E ~ LSR - Absolute,X 7E - ROR - Absolute,X 

SF - Future Expansion 7F - Future Expansion 
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APPENDIX B_ 6502 Instructions Sorted by Op-Code (Hex- 
adecimal) Continued 

86 - Future Expansion 

81 - STA ~ (Indirect ,X) 

82 - Future Expansion 

83 - Future Expansion 

84 - STY - Zero Page 

85 - STA - Zero Page 

86 - STX - Zero Page 

87 - Future Expansion 

88 - DEY 

89 - Future Expansion 

8A - TXA 

8B - Future Expansion 

8C - STY - Absolute 

8D ~ STA - Absolute 

8E - STX - Absolute 

8F - Future Expansion 

99 - BCC 

91 - STA - (Indirect) ,Y 

92 - Future Expansion 

93 - Future Expansion 

94 - STY - Zero Page,X 

95 - STA - Zero Page,X 

96 - STX - Zero Page,Y 

97 - Future Expansion 

98 - TYA 

99 - STA - Absolute,Y 

9A - TXS 

9B - Future Expansion 

9C - Future Expansion 

9D - STA - Absolute,X 

9E - Future Expansion 

9F - Future Expansion 

Ag 

Al 

A2 

A3 

AG 

AS 

A6 

A7 

A8 

SRReEZEERSE 

LDY - Immediate 

LDA - (Indirect ,X) 

LDX - Immediate 

Future Expansion 

LDY - Zero Page 

LDA - Zero Page 

LDX - Zero Page 

Future Expansion 

TAY 

LDA - Immediate 

TAX 

Future Expansion 

LDY - Absolute 

LDA - Absolute 

LDX - Absolute 

Future Expansion 

BCS 

LDA - (Indirect) ,Y 

Future Expansion 

Future Expansion 

LDY - Zero Page ,X 

LDA - Zero Page ,X 

LDX ~ Zero Page,Y 

Future Expansion 

CLV 

LDA - Absolute,Y 

TSX 

Future Expansion 

LDY - Absolute,X 

LDA - Absolute ,X 

LDX - Absolute,Y 

Future Expansion 
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APPENDIX B_ 6502 Instructions Sorted by Op-Code (Hex- 
adecimal) Continued 

ce 

cl 

C2 

c3 

C4 

cs 

C6 

c7 

c8 

c9 

CA 

cB 

cc 

cD 

CE 

CF 

Dg 

D1 

D2 

D3 

D4 

DS 

D6 

D7 

D8 

CPY - Immediate 

CMP - (Indirect ,X) 

Future Expansion 

Future Expansion 

CPY - Zero Page 

CMP - Zero Page 

DEC - Zero Page 

Future Expansion 

INY 

CMP - Immediate 

DEX 

Future Expansion 

CPY - Absolute 

CMP - Absolute 

DEC - Absolute 

Future Expansion 

BNE 

CMP - (Indirect) ,Y 

Future Expansion 

Future Expansion 

Future Expansion 

CMP - Zero Page,X 

DEC - Zero Page,X 

Future Expansion 

CLD 

CMP ~ Absolute,Y 

Future Expansion 

Future Expansion 

Future Expansion 

CMP ~ Absolute,X 

DEC - Absolute,X 

Future Expansion 

CPX - Immediate 

SBC - (Indirect,X) 

Future Expansion 

Future Expansion 

CPX - Zero Page 

SBC ~- Zero Page 

INC - Zero Page 

Future Expansion 

INX 

SBC - Immediate 

NOP 

Future Expansion 

CPX - Absolute 

SBC - Absolute 

INC - Absolute 

Future Expansion 

BEQ 

SBC - (Indirect) ,Y 

Future Expansion 

Future Expansion 

Future Expansion 

SBC ~ Zero Page,X 

INC - Zero Page ,X 

Future Expansion 

SED 

SBC - Absolute,Y 

Future Expansion 

Future Expansion 

Future Expansion 

SBC - Absolute,X 

INC - Absolute,X 

Future Expansion 



Index 

A 

Absolute mode 49 

Absolute indexed mode 55 

Accumulator 14, 21, 83 

Accumulator mode 45 

Address block decoding 131 
Address bus 35 

Address decoding 109 
Addressing modes 45 
ADD-with-carry 78 

AIM-65 241 
Algorithm 17 
ALU (see Arithmetic logic unit) 
Apple II 1, 10 
Apple II bus 237 
Apple III 4 

Arithmetic instructions 78 

Arithmetic logic unit 14, 21 

Arithmetic shift left 84 

ASCII 58, 164 

B 

BASIC 10 

Bidirectional bus drivers 158 

Bit test 92 

Branch 45 
Branch instructions 24 
Branch on carry clear 87 
Branch on carry set 91 
Branch on result equal zero 92 
Break command flag 64 
B1-B8 Receiver 194 

B1-B8 Transmitter 194 

Cc 

Cache memory 122 

Carry flag 66 
Central processing unit 11, 14 
CMOS 146, 149 
CPU 11, 13, 14, 42 
Compare instructions 83 
Complementary Metal Oxide Semi- 

conductor 146 
Control logic section 14 
Control logic 21 
Control Register Load (CRL) 195 
Control signals 35 

Controlling external circuits 213 
CRT video terminals 185 
Current loop 67 
Cycles 16 
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DAC 222 
Data bus 35 
Data Bus Enable (DBE) 37 
Data direction registers 105 
Data write 42 
Decimal mode flag 64 
Data Received (DR) 194 

Data Receiver Reset (DRR) 195 
Decrement X 50 
Device selection 109 
Displacement integer “e” 46 
DRAM 125, 128 
Dynamic memory 123, 125 

E 

Even Parity Enable (EPE) 195 

F 

Fan-in 142 
Fan-out 142 
Flags 63 
Flip-flops 150 
Framing error 194 

H 

Half-monostable 172 

I 

1/O 11, 19, 20, 139 
I/O ports 155 

IRQ 230 
Immediate mode 47, 48 

Implied mode 50 
Index registers 23 
Indirect absolute mode 52 

Indirect indexed mode 60, 73 

Indexed indirect mode 62 

Input/output 11 

Instructions 67, 68 

Instruction decoder 21 
Instruction register 14, 21 

Instruction set 245 
Interfacing 201 
Interfacing I/O 139 
Interfacing logic families 149 
Interfacing keyboards 163 
Interfacing memory 121 
Interfacing peripherals 185 
Interrupts 227 
Interrupt control logic 22 
Interrupt disable flag 65 
Interrupts, multiple 234 
Interrupt requests 38, 230 

Interrupt vectors 228 

K 

Keyboards 169 
KIM-1 7, 241 
KIM-bus 241 

L 

LED displays 169 
Logical instructions 81 
Logical shift right 85 
Logic families 140 

M 

MAD 11 
MAD, operation of 16 
Mainframe computers 2, 4 
Memory 11, 121 

Memory allocation restraints 26 
Memory devices, types of 122 
Memory hierarchy 122 
Memory-mapping 14 

Memory-mapped I/O 14, 20 
Microcomputer 1, 2, 4, 6, 101, 121 

Microcomputer interfacing 5 
Microprocessor 2 

Microprocessor fundamentals 10 
Minicomputers 1, 3 



Mythical Analytic Device 11 
Multiplexed display 180 

N 

Negative flag 63 
N-flag 63 
NMI 229 
Nonmaskable interrupts 229 
Nonsynchronous 186 
Numerical methods 17 
Nybble 49 

O 

Ohio Scientific 9 
Op-code fetch 39 

Open-collector output 144 
Operation codes 16 
Overflow flags 64 
Overrun Error (OE) 194 

P 

Page-FF 27 
Page-01 27 
Page-00 27 
Parallel port 185 
Parity Error (PE) 194 

Parity Inhibit (PI) 195 
Processor status register 22, 66 
Program counter 14, 23 

R 

RAM 105, 122, 131 
Random Access Memory (see RAM) 
Read Only Memory 6, 105, 131 

Read/Write cycle timing 42 
Read/Write signals 116 
READY 37 
Receiver input 195 

Receiver Register Disconnect (RRD) 
195 
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Relative mode 45, 48 

RESET 39 
Reset line 232 

ROM (see also Read Only Memory) 6, 
105, 122, 131 

Rotate 45 

RS-232 201 
R/W 37, 42 

S 

SELECT 114 
Serial digital data communications 

185 
Serial interfacing 205 
Set Overflow (SO) 39 
Shift 45 
Single-board computer 3, 213 
Single-chip computer 2 
Speed-vs-power 145 
Stack Pointer (SP) 23, 66 
Static memory devices 123 
Status flags 63 
Status register 14, 16 
Stop Bit Select (SBS) 195 
Subtract-with-carry 78 
Switches 169 
SYNC 39 
Synchronous 186 
Synchronization 39 
Superboard II 9 
Synertek 7 
SYM-1 7, 8, 241 

T 

Teletypewriter 56, 185 
Timing section 22 

Timing signals 35 
Touch-Tone 3 
Transistor-transistor-logic 140 
Transmitter Hold Register Empty 

(THRE) 194 
Transmitter Hold Register Load 

(THRL) 195 
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Transmitter Register Output (TRO) 7 
195 

Tri-state logic 148 Zero-flag 65 
TIL 140, 149 Zero-page indexed mode 60 

TTL nomenclature 145 Zero-page mode 48, 51 
TTL subfamilies 145 

U 

UART 189 6 
Universal Asynchronous Receiver/ 6502-based machines 7 

Transmitter 189 6502 clock timing 39 

6502 instruction set 67 

WwW 6502 internal structure 21 
6502 pinouts 29 

Word Length Select (WLS) 195 6522 101 
WRITE 42 6530 105 
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ware interfacing chores. Joseph Carr, also 
the author of the popular Z-80™ User's 
Manual, includes comparisons of micro, 
mini, and main frame computers, and looks 
at applications categories for microcompu- 
ters in general and for the more popular 
6502-based machines in particular. This 
valuable guide covers: Introduction to 
Microprocessors and Microcomputers; 6502 
Architecture; 6502 Pinouts; Timing and Con- 
trol Signals; 6502 Addressing Modes; 6502 
Status Flags; 6502 Instruction Set (General); 
65xx-Family Support Chips; Device Selection 
and Address Decoding; Interfacing Memory 
to the 6502; Interfacing 1/0 Devices to the 
6502; Interfacing Peripherals to the 6502; 
Interrupts; Interfacing with the Apple // 
BUS; Interfacing with the K/M-1, AIM-65 
and SYM-1; 6502 Instruction Set (Detail). 

6502@ Is a registered trademark of Rockwell International 
Corporation. 

Z-80™ is a trademark of Zilog Corporation. 

Apple® |i Is a registered trademark of Apple Computer, Inc. 

2 1 8 9 8 7 0 0 2 0 


