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Foreword 

The “6502 Software Gourmet Guide & Cookbook” is written as an 

instructional publication for two audiences. First, it takes the BASIC 

language programmer into the realm of machine-language program¬ 

ming on the 6502. With the large number of computers on the mar¬ 

ket that use the 6502 as its central processor, one can find a new 

challenge by going one step closer to the inner workings of the CPU. 

There are many advantages to programming the 6502 at the machine- 

language level. This book presents these advantages in a way that a 

person with an introductory knowledge of computers will under¬ 

stand. 

Second, the book is intended for the person with a knowledge 

of machine-language programming on a different CPU (i.e., 8080 or 

6800) and wishes to become familiar with the 6502. The description 

of the 6502 structure and instruction set, along with the numerous 

applications discussed throughout the book, will quickly make an 

experienced programmer proficient with the 6502. 

Robert Findley 

November, 1979 
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Introduction 

Have you tried cooking up a program lately on your 6502 microcom¬ 

puter, and you just can’t seem to get the right mixture of instruc¬ 

tions? Or did that math recipe your friend gave you turn out to have 

too many bugs in it, and leave a sour taste in your mouth? Don’t toss 

your computer in the sink and grind those bad listings up in the gar¬ 

bage disposal. Here’s a book that will help take you from a novice 

that burns the bits to a gourmet chef that can make the sweetest 

APPLEcations program pie imaginable. 

Before throwing together your favorite dish, a thorough know¬ 

ledge of the basic ingredients, namely the 6502 instruction set, is 

essential. Every chef that’s worth his salt knows exactly what each 

ingredient will do for him. Begin creating your masterpiece by 

mixing in a little of this routine and a little of that routine. Spice 

up the program with a few of your own special application routines, 

and before baking, add a personal touch by folding in the input/ 

output driver routines for the peripherals in your system. Bake 

thoroughly with your assembler, and there you have it! Your pro¬ 

gramming masterpiece, ready to feed into your computer’s memory 

for hours of tasty enjoyment. 

Is your taste for math routines? Or manipulating data tables and 

character strings? Or maybe you wish to do some real time pro¬ 

gramming. Or set up your system to operate the peripherals under 

interrupt control. Whatever your requirements may be, there is 

certain to be some ideas, techniques, and routines in this book to 

aid you in programming for your specific application. 
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Chapter 1 

The 6502 Instruction Set 

The instruction set of the 6502 CPU provides considerable pro¬ 

gramming power to the machine language programmer. There are 

56 basic instructions which, when all permutations are considered, 

provide 151 individual instructions. These instructions use from one 

to three bytes of memory depending on the function they perform. 

There are several basic elements in the structure of the 6502 

CPU with which the programmer must become thoroughly familiar. 

These elements include the Program Counter, the Accumulator, 

the two Index Registers, the Stack Pointer, Memory, and the Status 

Flags. Also, an understanding of certain concepts is important. For 

instance, with the 6502, input and output operations are performed 

using the same instructions which access the memory. The numerous 

addressing modes provide a versatility for very creative programming. 

One should be knowledgeable of these elements and concepts before 

attempting to write machine language programs. 

The Internal Registers 

The program counter is a sixteen-bit register which is used to 

direct the flow of a program from one instruction to another. Since 

the program counter is sixteen bits long, it can directly access in¬ 

structions in any of the possible 64K bytes of memory. After an in¬ 

struction is executed, the program counter is automatically incre¬ 

mented to the next location memory from which the next instruc¬ 

tion to be executed will be taken. This automatic increment may 

be overridden if the current instruction directs the computer to a 

different memory location. In this case, the program counter is 

loaded with the new address, and a program execution continues 

with the instruction. 
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From the software point of view, the accumulator of the 

6502 is the real workhorse element. All arithmetic and Boolean 

logic operations accumulate their results in this register. This eight- 

bit register, designated by the letter A, is also used for intermediate 

storage when transferring data from one memory location to anoth¬ 

er. A number of instructions for shift, rotate and compare also may 

be performed with the content of the accumulator. The condition 

of the status flags is affected by almost every operation of the 

accumulator. 

The index registers, designated as X and Y, perform three 

important functions. First, as their name implies, they are used to 

form pointers which index into the memory for data storage, 

retrieval, manipulation and examination. The contents of the index 

register are added to a base address to allow selection of a success¬ 

ive group of memory locations. This is accomplished simply by in¬ 

crementing the index register. Since these registers are only eight 

bits wide, it may appear that the range of the index register is limited 

to 256. However, as will be discussed in Chapter 2, there are pro¬ 

gramming techniques to extend this range. Their second function is 

that of an eight-bit counter register. By incrementing or decrement¬ 

ing these registers with the appropriate instructions, they may be 

used to count up, or down, keeping track of the number of occur¬ 

rences of a specific event or, possibly the passage of time. The final 

function is, as general purpose registers, to transfer data between 

memory locations and between registers. 

The stack pointer is an eight-bit register used to index into 

page one of the memory for storing and retrieving data on the 

stack. The stack is the storage area in which the 6502 CPU saves the 

return addresses of subroutine calls and the pertinent data that must 

be stored when an interrupt occurs. The data is stored and retrieved 

from the stack in a push-pull manner. This method is discussed in 

greater detail later. 

External Memory Structure 

The memory is the element in which the programs to be exe¬ 

cuted are stored. It also contains data that may be used by the 

programs. As mentioned earlier, the 6502 is capable of directly ad¬ 

dressing up to 64K of memory. Each memory location consists of 

eight bits which together are referred to as a byte. The memory 

associated with any one individual system may vary. It may con¬ 

sist of a combination of ROM and/or PROM memories, which con¬ 

tain permanently stored programs or data. Or it could consist of a 
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RAM memory whose contents may be altered by the computer for 

storing various programs or data as needed. 

The input/output structure of the 6502 allows the transfer of 

data to and from the peripheral interfaces by assigning memory 

addresses to the peripheral. By setting up memory locations as 

the channels through which data is transferred to and from the 

peripherals, it is possible to use any of the instructions that refer 

to tiie memory for transferring the I/O data. This affords the pro¬ 

grammer great flexibility in testing the status and controlling the 

peripheral devices. 

The Status Flags 

In order to make decisions based on the contents of a register 

or memory location, or the results of an arithmetic or logical op¬ 

eration, the 6502 offers four status flags. They are set to one (for a 

true condition), or cleared to zero (for a false condition), in accord¬ 

ance with the results of an operation performed. Not all status flags 

are affected by the execution of each instruction. Only those flags 

that have relevance are affected by an instruction. These status flags 

are referred to as carry (C), overflow (V), negative (N), and zero 

(Z). The flag condition may be tested by several instructions. The 

instructions’ operation will vary as a consequence of the flags par¬ 

ticular status at the time it is tested. 

The carry flag may be considered an extension of the eight-bit 

accumulator, or a memory location, used as the operand of an in¬ 

struction. For addition and subtraction operations, the carry is con¬ 

sidered the ninth bit and will indicate when an addition causes an 

overflow from bit seven, or a subtraction requires a borrow for bit 

seven. By functioning in this manner, the carry flag becomes a neces¬ 

sary link when performing multiple-precision operations. The carry 

flag is also considered an extension of a register or memory location 

in various rotate and shift operations. There are a number of instruc¬ 

tions that set up the carry to a given condition. This function may be 

necessary when executing a group of instructions that require the 

carry to be set initially to a known state. 

The negative flag indicates the condition of the most signifi¬ 

cant bit of a register or memory location following the last instruc¬ 

tion that affects the negative flag. If the result leaves the most sig¬ 

nificant bit set to one, the negative flag will be set to one. If the 

most significant bit is zero, the negative flag also will be zero. For 

example, if the contents in a memory location are added to the 

contents of accumulator A, and this results in the most significant bit 
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in accumulator A being set to one, the negative flag will be set to 

one. Or, if a memory location is rotated once to the right, moving a 

zero into the most significant bit, the negative flag will be cleared 

to zero as a result of the operation. 

The overflow flag provides an indication of a two’s complement 

overflow as a result of an addition or subtraction. For addition, the 

two’s complement overflow occurs when bit seven of both addends 

is the same value and bit seven of the sum is the opposite value 

(the addition of two negative numbers equaling a positive value). 

For subtraction, a two’s complement overflow occurs when bit seven 

of the subtrahend and minuend are opposite, and bit seven of the 

result takes on the value of bit seven of the subtrahend (the sub¬ 

traction of a negative from a positive number with a negative re¬ 

sult). 

The zero flag is set to one when the execution of an instruction 

results in an all-zero value. This may occur following an arithmetic or 

Boolean logic operation. It may also occur after an index register or 

memory location has been incremented or decremented to zero. 

Condition Flags 

In addition to the status flags, there are also three condition 

flags which are controlled either by execution of specific instructions 

or by certain hardware functions. These flags are designated the 

interrupt disable flag (I), the break flag (B) and the decimal mode 

flag (D). 

The interrupt disable flag is used to indicate when the maskable 

interrupt input is disabled. When the flag is set to one, the maskable 

interrupt input is disabled. The CPU will not respond to an inter¬ 

rupt on this line. When this flag is cleared, an interrupt on the maska¬ 

ble interrupt line will be acknowledged by the CPU. This flag is 

set upon receipt of any one of the three interrupts. Upon returning 

from the interrupt, it is restored to its initial condition at the time 

the interrupt was received. It may also be set or cleared by the exe¬ 

cution of two instructions that perform these specific functions. 

The break flag is used to indicate the execution of a software 

interrupt. It is set when the break instruction is executed and reset 

after the status register is stored on the stack as a result of the 

BREAK instruction. The status register then may be examined to 

determine whether the interrupt was generated by hardware or soft¬ 

ware. A more detailed description of the BREAK instruction and 

flag will be presented later. 

The decimal mode flag controls the type of arithmetic addition 
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or subtraction to be performed. These two types are decimal and bi¬ 

nary addition and subtraction. The decimal mode assumes that the 

numbers to be added or subtracted are in BCD (binary coded deci¬ 

mal) form before the operation. The result is presented in BCD 

form. The binary mode assumes both values are in binary represen¬ 

tation before and after the operation. This flag is set to one for 

decimal arithmetic and cleared to zero for binary arithmatic by two 

specific instructions. This flag allows one to write a single group of 

subroutines to perform both decimal and binary mathematic func¬ 

tions. 

Combining All the Flags 

These seven flags are arranged in an eight-bit register. The flags 

are combined so that they may be stored and retrieved easily for 

interrupt operations. 

This register is called the STATUS register. The flags are as¬ 

signed the following bit locations. One should note that the unused 

bit (bit 5) either may be set or cleared at any time and therefore 

should be ignored when working with the status register. 

Status Register Bit Definition 

BitO - Carry Flag C 

Bit 1 - Zero Flag z 
Bit 2 - Interrupt Disable 1 
Bit 3 - Decimal Mode D 

Bit 4 - Break Flag B 

Bit 5 - Unused 

Bit 6 - Overflow Flag V 

Bit 7 - Negative Flag N 

How the Stack Operates 

The stack is used to store and retrieve data in the memory lo¬ 

cations on page one indicated by the stack pointer. The stack pointer 

operates in a push-pull manner. Its operation is the same whether 

the data being stored is (1) a return address from a subroutine call, 

(2) the return address and status register at the time of an interrupt, 

(3) the storage or retrieval of the contents of the accumulator. When 

data is stored in the stack, the data byte is stored in the memory 

location indicated by the stack pointer. The stack pointer then is 

automatically decremented. If more than one byte is to be stored, 

as in the storage of a return address, each additional byte is loaded 

into the memory. The stack pointer is decremented following each 
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byte storage. By automatically decrementing the stack pointer in 

this manner, it is positioned to store more data or read data stored 

in the stack when either a pull instruction or a return from subrou¬ 

tine, or interrupt, is executed. The following illustrates the method 

of storing the return address of a subroutine call in the stack. The 

return address to be stored is location $5E on page 02. 

Before Subroutine Call 

Stack Memory Address Stack 

Pointer of Stack Contents 

$FF $1FD $00 

$1FE $00 

$1FF $00 

After Subroutine Call 

$FD $1FD $00 

$1FE $5E 

$1FF $02 

By performing a return or pull instruction when data is read 

from the stack, the reverse procedure is followed. That is, the stack 

pointer is automatically incremented and the data byte is read from 

the stack. The stack pointer is now positioned for the next stack op¬ 

eration, whether it be to read or write data in the stack. 

The Format of Interrupt Operations 

The 6502 CPU has provisions for three types of interrupts. Two 

interrupts are generated by hardware, the third is an interrupt 

created by a software instruction. The CPU responds to each of these 

interrupts by storing the return address and the status register in 

the stack and setting the interrupt disable flag. The CPU then selects 

the interrupt vector according to the type of interrupt received. This 

interrupt vector is actually a start address for an interrupt service 

routine. In most cases, this interrupt service routine begins in ROM 

memory with several short instructions that fetch another address 

set up in the RAM memory by the programmer. This second address 

would be the start of the actual interrupt service routine written to 

operate the devices associated with one’s system. 

The first of the hardware interrupts is called the nonmaskable 

interrupt. This interrupt, when received, will always be acknowl- 
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edged by the CPU. It is often used by high speed devices that have 

a very short time to transfer data. Or, it may be used by power- 

loss detect circuits to allow the CPU time to shutdown critical 

operations. Also, it can retain current operating status before the 

power falls to inoperable levels. The nomaskable interrupt is as¬ 

signed its own interrupt vector. 

The other hardware interrupt is called the maskable interrupt. 

The CPU responds to the receipt of a maskable interrupt by the 

setting of the interrupt disable flag. As previously discussed, when 

this flag is reset, the CPU will acknowledge a maskable interrupt. If 

this flag is set to one, the CPU will ignore this hardware interrupt. 

This allows the programmer to control when the program can and 

cannot respond to a maskable interrupt. This interrupt shares its 

vector with the software interrupt. 

A software interrupt is generated by the execution of the soft¬ 

ware interrupt instruction. The 6502 reacts in the same fashion as 

it would to a nonmaskable interrupt. However, the software inter¬ 

rupt is not maskable by the interrupt disable flag. It will always 

vector to the interrupt service routine. Since the maskable and soft¬ 

ware interrupts share the same vector, it is necessary for the inter¬ 

rupt service routine to examine the contents of the status register 

stored in the stack to determine which type of interrupt was re¬ 

ceived. The break flag will be set for a software interrupt. 

The use of interrupts in a microcomputer system allows a pro¬ 

gram to be performing one function while waiting for a peripheral 

device to complete its operation. For example, a mailing list program 

could be sorting out names of people living in a specific geographi¬ 

cal area, while a printer device, operating under interrupt control, 

prints the selected names. 

There is also a RESET interrupt which is generally used to di¬ 

rect the CPU to a start-up program. The reset is simply an overriding 

interrupt that halts execution of any program currently running and 

directs control to a program which may reinitialize the hardware to 

a known state. A separate vector is assigned for the reset inter¬ 

rupt. 

The interrupt vectors are set up in the hardware at the highest 

addressable locations of the computer (FFFA to FFFF). As dis¬ 

cussed, these vectors direct the CPU to specific memory locations 

when the respective interrupts occur. The page portion of the vector 

address is in the higher address, and the low portion of the vector is 

in the lower address of each vector. The vectors are arranged in 

memory as follows: 
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Address of Vector 

FFFF,FFFE 

FFFD,FFFC 

FFFB,FFFA 

Type of Interrupt 

Software and maskable 

RESET 

Nonmaskable interrupt 

Addressing Modes Add Variety 

The 6502 instruction set makes extensive use of various AD- 

RESSING modes. These different modes of addressing provide many 

instructions with up to eight ways of selecting the instructions 

operand. The addressing mode may refer to the location that con¬ 

tains (or is to receive) data for the instruction execution. Or, it may 

refer to the location of the next instruction to be executed. The in¬ 

structions that use these different addressing modes require an ad¬ 

ditional one or two bytes of memory to be properly defined by the 

actual machine code. 

The first byte of the instruction contains the machine code 

which indicates the instruction to be executed along with the ad¬ 

dressing mode used for that instruction. The information contained 

in the additional bytes of the instruction would indicate either the 

actual data to be used as the operand, the location in memory where 

the data is (or will be) stored, or a relative address. These addressing 

modes are referred to as immediate, zero page, zero page indexed, 

absolute, absolute indexed, indexed indirect, indirect indexed and 

relative. 

The source listing of the instructions that use these modes is 

separated into two fields. The first is called the operator field, 

and contains the mnemonic for the operation to be performed. 

The second field is the operand field which will indicate the ad¬ 

dressing mode to be used for the instruction. As will be pointed out 

later, when the individual instructions are presented, the machine 

code for the same mnemonic will vary depending on the addressing 

mode selected. 

Whenever a numeric value is designated as the operand of the 

source listing for an instruction, the value will be represented by 

hexadecimal digits. In order to conform with the generally accepted 

notation for representing hexadecimal values in the source listing, 

these values will be preceded by a dollar sign ($). For example, 

an instruction to load the accumulator from memory location 

00A7 will appear as follows: LDA $00A7. 

Immediate Addressing Mode 

The immediate addressing mode selects the operand from the 
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memory location following the first byte of the instruction. The in¬ 

structions that allow the immediate mode of addressing require two 

bytes. The first byte contains the machine code for the operation 

to be performed and the second byte contains the immediate data 

value that will be used. The listings contained in this text have the 

operand preceded by a pound sign (#) whenever the immediate ad¬ 

dressing mode is used. The following example illustrates the execu¬ 

tion of the instruction that loads the accumulator with the imme¬ 

diate value of ten (hexadecimal): 

Before Execution 

Contents of A = XX (don't care) 

Instruction Executed 

Source code LDA #$10 Machine code $A9 $10 

After Execution 

Contents of A = $10 

Zero Page Addressing Mode 

The zero page addressing mode selects the operand of the in¬ 

struction from a memory location on page 00. This mode requires 

one additional byte to specify the location on page 00 to be used 

by the instruction. It is advantageous to use page 00 for the storage 

of frequently used data. This allows one to access the specific loca¬ 

tion on page 00 with a two-byte instruction, rather than using an 

additional byte to specify the page, as in the absolute mode. 

The example below illustrates the execution to store the ac¬ 

cumulator instruction using the zero-page addressing mode. The 

instruction in the example stores the contents of the. accumulator 

in memory location 49 (hexadecimal). 

Before Execution 

Contents of A = $85 

Contents of memory location $0049 = XX (don't care) 

Instruction Executed 

Source code STA$49 Machine code $85 $49 

After Execution 

Contents of A = $85 

Contents of memory location $0049 = $85 

Zero-Page Indexed Addressing Mode 

The zero-page indexed addressing mode is similar to the zero- 
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page addressing mode in that the operand refers to a specific loca¬ 

tion on page 00. However, the actual memory location is selected 

by adding the contents of the X index register to the operand value. 

The X index register thus becomes an offset from the location 

indicated by the operand. One should note two points. First, the 

Y index is only valid in this mode when loading or storing the 

page 00. If the sum of the operand plus the index register exceeds 

$FF, the overflow is ignored and the instruction loops back to 

the beginning of page 00. 

The following example illustrates the execution of ANDing 

the accumulator with the third entry in a table which begins on 

page 00, location $50. 

Before Execution 

Contents of A = $47 

Contents of X = $02 

Contents of memory location $0050 = $01 

Contents of memory location $0051 = $02 

Contents of memory location $0052 = $04 

Contents of memory location $0053 = $08 

Instruction Executed 

Source code AND $50,X Machine code $35 $50 

After Execution 

Contents of A = $04 

Absolute Addressing Mode 

The absolute addressing mode uses two additional bytes to de¬ 

fine the address of the memory location used as the operand for 

the instruction. The first of these two bytes contains the lower por¬ 

tion of the memory address; the second contains the page portion. 

Thus, the absolute mode allows one to directly access any memory 

location in the system for use as the operand of the instruction. 

When instructions that allow both absolute and zero-page address¬ 

ing modes are assembled, the distinction between the two is deter¬ 

mined by the page number of the address. If the page number is 

zero, the zero-page addressing mode should be selected. If the 

page number is not zero, the absolute addressing mode must be 

used. 

The following example illustrates the execution of the load, 
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the accumulator with the contents of a memory location using the 

absolute addressing mode. The contents of memory location $0280 

are loaded into the A accumulator. 

Before Execution 

Contents of A = XX (don't care) 

Contents of memory location $0280 = $67 

Instruction Executed 

Source code LDA $0280 Machine code $AD $80 $02 

After Execution 

Contents of A = $67 

Contents of memory location $0180 = $67 

Absolute Indexed Addressing Mode 

The absolute indexed addressing mode uses the operand ad¬ 

dress stored in the two bytes following the machine code for the in¬ 
struction, and adds the contents of the X or Y index register to de¬ 

termine the actual memory location used by the instruction. The 

operand is stored with the first byte containing the lower portion 

of the memory address and the second byte containing the page 

portion. Unlike the zero-page indexed mode, this mode will cross a 

page boundary if the sum of the low portion of the operand and 

the index register is greater than $FF. Note that the X and Y index 

registers may be used in most instructions that allow absolute in¬ 

dexed addressing. 

The following example adds the contents of the memory lo¬ 

cation following location $0520 to the accumulator, using the Y 

index register. 

Before Execution 

Contents of A = $20 

Contents of Y = $01 

Contents of memory location $0520= $15 

Contents of memory location $0521 = $30 

Contents of memory location $0522 = $45 

Carry flag is reset 

Instruction Executed 

Source code ADC $0520,Y Machine code $79 $20 $05 
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After Execution 

Contents of A = $50 

Indirect Addressing Mode 

The next three addressing modes utilize a common form of ad¬ 

dressing known as indirect addressing. It uses an intermediate storage 

area to store a pointer. This pointer indicates the actual memory lo¬ 

cation used with the instruction. The operand of the instruction calls 

out the location of the intermediate pointer. This indirect method of 

fetching an operand allows a fixed instruction sequence to operate 

on numerous memory locations by simply changing the intermediate 

pointer. These modes used in the 6502 use page zero for storing the 

intermediate pointer. Therefore, the indirect addressing instructions 

only require two memory locations: the first to store the machine 

code for the instruction, and the second to store the location on page 

zero at which the pointer will be found. The pointer is stored in two 

consecutive bytes with the low portion of the address stored in the 

first byte and the page position stored in the second byte. 

The indirect addressing mode is used by the JUMP instruction 

to select the location of the next instruction to be executed. The ad¬ 

dress stored as the pointer on page zero is moved into the program 

counter and the program sequence shifts to the routine beginning 

at this new address. 

Indexed Indirect Addressing Mode 

The indexed indirect addressing mode uses the X index register 

to offset the instruction operand. The content of the index register 

is added to the instruction operand. This value then is used to fetch 

the pointer on page zero which is in turn used to indicate the memo¬ 

ry location operated on by the instruction. This instruction allows 

one to set up a table of pointers on page zero and, by manipulating 

the X index register, the desired pointer will be selected. It should 

be noted that if the sum of the operand plus the X index register is 

greater than $FF, the result will wrap around to the beginning of 

page zero. 

The following example illustrates the operation of the in¬ 

dexed indirect addressing mode. The accumulator is stored in a 

memory location which is indexed indirectly through a pointer on 

page zero. 

Before Execution 

Contents of A = $55 
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Contents of X = $02 

Contents of memory location $0080 = $24 

Contents of memory location $0081 = $05 

Contents of memory location $0082 = $22 

Contents of memory location $0083 = $05 

Contents of memory location $0522 = $XX (don’t care) 

Contents of memory location $0524 = $XX (don't care) 

Instruction Executed 

$ource code STA ($80,X) Machine code $81 $80 

After Execution 

Contents of A = $55 

Contents of memory location $0522 = $55 

Contents of memory location $0524 = $XX (don't care) 

Indirect Indexed Addressing Mode 

The indirect indexed addressing mode offsets the value of the 

pointer selected from page zero by adding the Y index register to 

it. The instruction operand indicates the location of the pointer on 

page zero. The contents of the Y index register is added to this 

pointer to select the actual memory location to be operated on. 

Thus, a table of as many as 256 entries may be set up in any section 

of the memory with a pointer to its lowest address stored on page 

zero. By proper adjustment of the Y index register, any desired 

entry in the table may be selected. This method is illustrated below. 

This example loads the accumulator with the second entry of a 

table beginning at location $0400. 

Before Execution 

Contents of A = XX 

Contents of Y = $01 

Contents of memory location $0090 = $00 

Contents of memory location $0091 = $04 

Contents of memory location $0400 = $B1 

Contents of memory location $0401 = $B2 

Contents of memory location $0402 = $B3 

Instruction Executed 

Bource code LDA ($90),Y Machine code $B1 $90 

After Execution 

Contents of A = $B2 
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Relative Addressing Mode 

The relative addressing mode references a memory location rela¬ 

tive to the current value of the program counter +2. The relative ad¬ 

dressing mode is used exclusively by the branch instructions. Two 

bytes are required to define the branch instruction. The first byte of 

the branch instruction calls out which conditional branch is to be 

executed. The second byte contains the relative displacement in 

two’s complement form. Branching to a memory location is calcu¬ 

lated by simply adding the second byte to the value of the program 

counter +2. If the most significant bit is a one, the branch will be to 

an address lower than the current program counter +2. A value of 

zero for the most significant bit indicates a branch to a higher ad¬ 

dress. The two’s complement notation limits the branch instructions 

to a displacement of —128 to +127 locations from the value of the 

program counter +2. 

If the zero flag is set, the following example illustrates a branch 

back to the instruction located $0E hexadecimal locations before the 

branch instruction. 

Before Execution 

Program counter = $0270 

(Location of first machine code of branch) 

Instruction Executed 

Source code BEQ $F0 Machine code $F0 $F0 

After Execution 

Program counter = $0262 

Described here are the various types of instructions available 

with the 6502 CPU and will provide the mnemonic name used for 

writing programs in symbolic language. The machine code for the 

instruction is given as two hexadecimal digits. In cases where the 

mnemonic allows more than one addressing mode, the additional 

machine codes are listed, followed by an indication of the addressing 

mode to which they relate. Appendix A contains a list of these 

mnemonics and machine codes in alphabetical order. These mne¬ 

monics are equivalent to those defined by MOSTEK. Information 

concerning the timing for the instructions is also included. 

The use of mnemonics facilitates working with an assembler 

program when developing relatively large and complex programs. 
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Thus, the programmer is urged to concentrate on learning the mne¬ 

monics for the instructions, and not to memorize the machine codes. 

After a program has been written using the mnemonics, the pro¬ 

grammer can use a lookup table for conversion to machine code if 

an assembler program is not available. 

The following discussion of the 6502 instruction set is preceded 

by the mnemonics and machine code in either two or three columns. 

The first column contains the mnemonic representation of the in¬ 

struction. The second column contains the machine code for that 

mnemonic. In cases where several addressing modes are possible, the 

third column indicates the addressing mode for the machine code. 

The first group of instructions loads data from the accumula¬ 

tor to the memory, and vice versa. These instructions require one 

to three bytes of memory. 

Load the Accumulator from Memory 

LDA #DATA $A9 IMMEDIATE 

LDA ADDR $A5 ZERO PAGE 

LDA ADDR,X $B5 ZERO PAGE INDEXED 

LDA ADDR $AD ABSOLUTE 

LDA ADDR.X SBD ABSOLUTE INDEXED 

LDA ADDR,Y SB9 ABSOLUTE INDEXED 

LDA (ADDR.X) $A1 INDEXED INDIRECT 

LDA (ADDR),Y $B1 INDIRECT INDEXED 

This group of instructions loads the accumulator with the 

content of the memory location indicated by the addressing mode. 

For the immediate mode, the instruction requires two bytes and the 

data to be loaded into the accumulator is taken from the second byte 

of the instruction. For the zero-page modes, the instruction requires 

two bytes, with the second byte indicating the location on page 00 

from which the data is to be taken and loaded into the accumula¬ 

tor. The second and third bytes of the three-byte absolute mode in¬ 

struction contain the low and page portion of the address from 

which the data to be loaded is taken. The indirect modes require 

two bytes. The second byte indicates the location on page zero 

containing the indirect pointer. The N and Z flags are affected as a 

result of these instructions. The C, I, D and V flags remain unchanged. 

Store Accumulator in Memory 

STA ADDR $85 ZERO PAGE 

STA ADDR.X $95 ZERO PAGE INDEXED 
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STA ADDR $8D ABSOLUTE 

STA ADDR,X $9D ABSOLUTE INDEXED 

STA ADDR,Y $99 ABSOLUTE INDEXED 

STA (ADDR,X) $81 INDEXED INDIRECT 

STA (ADDR),Y $91 INDIRECT INDEXED 

Storing data contained in the accumulator to a memory loca¬ 
tion is accomplished by the execution of one of these instructions. 
The exact location in memory is determined by the addressing mode 
used. The immediate mode is not valid for this instruction. The zero 
page and indirect modes require two bytes, and the absolute modes 
require three. The status flags are affected in a similar manner as 
loading the accumulator from the memory instructions. 

PUSH the Accumulator onto the Stack 

PHA $48 

This instruction stores the contents of the accumulator into 
the memory location indicated by the stack pointer. After storing 
the data, the stack pointer is automatically decremented to the 
proper position for the next stack operation. This one-byte instruc¬ 
tion provides a convenient method for temporarily storing the con¬ 
tents of the accumulator without designating a specific memory 
location for its storage. None of the status flags are affected. 

PULL Data from the Stack into the Accumulator 

PLA $68 

Execution of this instruction first increments the stack pointer, 
and then transfers the data in the memory location indicated by the 
stack pointer to the designated accumulator. This instruction is used 
in conjunction with the push instruction to retrieve data pushed onto 
the stack. The status flags are not affected. 

The next section contains instructions that deal with the load¬ 
ing, storing, and manipulation of the index registers contents and 
stack pointer. Proper manipulation of these registers is essential in 
programming the 6502 efficiently. The number of bytes required for 
this group of instructions varies from one to three. 

Load the Index Registers 

LDX #DATA $A2 IMMEDIATE 

LDX ADDR $A6 ZERO PAGE 
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LDX ADDR,Y $B6 ZERO PAGE INDEXED 

LDX ADDR $AE ABSOLUTE 

LDX ADDR.Y $BE ABSOLUTE INDEXED 

LDY #DATA $A0 IMMEDIATE 

LDY ADDR $A4 ZERO PAGE 

LDY ADDR,X $B4 ZERO PAGE INDEXED 

LDY ADDR $AC ABSOLUTE 

LDY ADDR.X $BC ABSOLUTE INDEXED 

This group of instructions load the designated index register 

from the memory location defined by the respective addressing 

modes. The immediate and zero page instructions require two bytes 

of memory and the absolute addressing mode requires three bytes. 

An index register is not used to load itself when an indexed address- 

ing mode is called out. The resultant contents of the index register 

affect the N and Z flags, and the C, I, D and V flags are left unchanged. 

Store the Index Registers 

STX ADDR $86 ZERO PAGE 

STX ADDR.Y $96 ZERO PAGE INDEXED 

STX ADDR $8E ABSOLUTE 

STY ADDR $84 ZERO PAGE 

STY ADDR.X $94 ZERO PAGE INDEXED 

STY ADDR $8C ABSOLUTE 

Storing the contents of the designated index register is accom¬ 

plished by the execution of one of these instructions. The contents 

of the index register remain unchanged. The zero-page addressing 

modes require two bytes of memory and the absolute mode requires 

three bytes. The flags are affected in the same manner as with the 

load index register instructions. 

Increment the Index Register 

INX $E8 

INY $C8 

These one byte instructions increment the designated index re¬ 

gister by one. By using the index registers as part of a pointer, via an 

indexed addressing mode, this instruction is used to advance the 

pointer from one location to the next. The N and Z flags are af¬ 

fected while the C, I, D and V flags remain unchanged. 
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Decrement the Index Registers 

DEX $CA 

DEY $88 

These instructions perform the opposite function of increment 

instructions. The contents of the designated index register is decre¬ 

mented by one. The N and Z flags reflect the result of the opera¬ 

tion while the C, I, D and V flags are unchanged. 

Transfer from Accumulator to Index Register 

TAX $AA 

TAY $A8 

The current contents of the accumulator are transferred to the 

designated index register. This is a convenient one byte instruction 

for the temporary storage of the accumulator. The N and Z flags are 

affected by these instructions while the C, I, D and V flags and the 

contents of the accumulator remain unchanged. 

Transfer from Index Register to Accumulator 

TXA $8A 

TYA $98 

The contents of the designated index register are transferred to 

the accumulator. This may be performed to allow arithmetic or logi¬ 

cal operations on the contents of the index register which can only 

be executed in the accumulator. As in the previous transfer instruc¬ 

tions only the N and Z flags are affected by these one byte instruc¬ 

tions. 

Transfer from Stack Pointer to the X Index Register 

TSX $BA 

This one-byte instruction transfers the contents of the stack 

pointer to the X index register. The stack pointer maintains its ini¬ 

tial contents following the execution. By loading the X index regis¬ 

ter with the address contained in the stack pointer, the absolute in¬ 

dexed addressing mode instructions may be used to store data on 

the stack while in a subroutine. Also, by incrementing the X index 

register following this instruction, an indexed pointer is set to exam¬ 

ine and/or change the return address of a subroutine call. The N and 

Z flags are the only flags affected. 
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Transfer from X Index Register to Stack Pointer 

TXS $9A 

This instruction transfers the contents of the X index register 

into the stack pointer. This one byte instruction is used to initialize 

the stack pointer at the start of a program. It may also be used to 

move the stack pointer to a new location in the stack, with the in¬ 

tent, possibly, of skipping a return address or some data stored on 

the stack. None of the status flags are affected by this instruction. 

These instructions listed above describe the transfer of data be¬ 

tween internal CPU registers, and a CPU register and a memory loca¬ 

tion. Several instructions that allow the manipulation of data within 

the CPU registers have also been discussed. The 6502 provides a simi¬ 

lar type manipulation of memory contents. These instructions util¬ 

ize the zero page and absolute modes of addressing, and require two 

or three bytes of memory. 

Increment the Memory Location 

INC ADDR $E6 ZERO PAGE 

INC ADDR,X $F6 ZERO PAGE INDEXED 

INC ADDR $EE ABSOLUTE 

INC ADDR,X $FE ABSOLUTE INDEXED 

The designated memory location is incremented by one. The ab¬ 

solute addressing mode requires three bytes of memory, and the zero 

page requires two. This makes it convenient to set up a memory loca¬ 

tion as a pointer. Only the X index register is used in the indexed 

form. Only the N and Z flags are affected by the execution. 

Decrement the Memory Location 

DEC ADDR $C6 ZERO PAGE 

DEC ADDR.X $D6 ZERO PAGE INDEXED 

DEC ADDR $CE ABSOLUTE 

DEC ADDR,X $DE ABSOLUTE INDEXED 

These instructions decrement the contents of the designated 

memory location by one. The X index register is used exclusively 

by the indexed form. As in the increment memory instructions, the 

zero page addressing mode requires two bytes and the absolute mode 

requires three bytes. The N and Z flags are conditioned to indicate 

the result and the C,I,D and V flags are left unchanged. 

The following group of instructions allows the programmer to 
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direct the computer to perform arithmetic operations between the 

accumulator and the designated memory location. Also, there is a 

pair of instructions that control whether the arithmetic assumes bin- 

nary or BCD digits in the accumulator and memory location. The in¬ 

structions in this group that use the immediate, zero page and in¬ 

direct addressing modes require two bytes, and the absolute requires 

three. 

Set the Decimal Mode 

SED $F8H 

Addition and subtraction of two bytes in a computer normally 

assumes that the contents of the bytes are eight-bit binary values. 

However, this instruction allows one to store the data to be added or 

subtracted as BCD digits. A BCD digit is a four-bit binary number 

within the range of zero to nine. The six binary values above nine 

are invalid. This instruction sets the decimal mode flag. As long as 

this flag remains set, the execution of the addition and subtraction 

instructions assumes that the accumulator and memory location used 

contain two BCD digits. The result of the arithmetic operation 

leaves two BCD digits in the accumulator. This one-byte instruction 

affects only the decimal mode flag. 

Clear the Decimal Mode 

CLD $D8 

All addition and subtraction instruction executed when the 

decimal mode flag is cleared assumes the data to be in binary form. 

Only the decimal mode flag is affected. 

Add the Contents of Memory Plus the Carry Flag 

to the Accumulator 

ADC #DATA $69 IMMEDIATE 

ADC ADDR $65 ZERO PAGE 

ADC ADDR,X $75 ZERO PAGE INDEXED 

ADC ADDR $6D ABSOLUTE 

ADC ADDR.X $7D ABSOLUTE INDEXED 

ADC ADDR,Y $79 ABSOLUTE INDEXED 

ADC (ADDR.X) $61 INDEXED INDIRECT 

ADC (ADDR),Y $71 INDIRECT INDEXED 

These instructions add the contents of the designated memory 
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location to the accumulator. The carry flag is also added to the least 

significant bit of the accumulator. The result of the addition is left 

in the accumulator in the format dictated by the decimal mode flag. 

The carry flag is the link between bytes when adding two multiple 

precision values. The N, Z and V flags are also updated to indicate 

the result of the addition. The contents of the memory location used 

are not changed. 

Subtract the Memory Contents and the Carry Flag 

from the Accumulator 

SBC #DATA $E9 IMMEDIATE 

SBC ADDR $E5 ZERO PAGE 

SBC ADDR,X $F5 ZERO PAGE INDEXED 

SBC ADDR $ED ABSOLUTE 

SBC ADDR,X $FD ABSOLUTE INDEXED 

SBC ADDR.Y $F9 ABSOLUTE INDEXED 

SBC (ADDR,X) $E1 INDEXED INDIRECT 

SBC (ADDR),Y $F1 INDIRECT INDEXED 

The contents of the memory location and the carry flag are 

subtracted from the accumulator. The result of the subtraction 

either in binary or BCD, is stored in the accumulator and the 

carry flag will be reset if a borrow was required for the subtrac¬ 

tion of the most significant bits. The N, Z and V flags are also af¬ 

fected by these instructions. 

There is a group of instructions that perform a subtraction op¬ 

eration without altering the contents of any CPU registers or memo¬ 

ry locations. However, the results of the subtraction operation are 

indicated by the condition of several of the status flags. The purpose 

of these instructions is to allow the program to compare the contents 

of the accumulator or index register to a value in memory. 

The following group of compare instructions is very powerful 

and somewhat unique. They direct the computer to compare the 

contents of the designated accumulator or index register against the 

contents of the memory, and set the status flags as a result of the 

compare operation. Essentially it is a subtraction operation, with 

the value in the memory being subtracted from the value in the ac¬ 

cumulator or index register. The value in the accumulator or index 

register is not altered by the operation. However, the flags are set 

in the same manner as though an actual subtraction operation had 

occurred. Subsequently, by testing the status of the various flags 

after a compare instruction is executed, the program can determine 
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whether the compare operation resulted in a match or not. The 

flags will indicate the relative magnitude of the two values with 

respect to each other. 

These various tests are accomplished by utilizing the conditional 

branch instructions (to be described later). Unlike the SBC instruc¬ 

tions, the carry flag is not included in the subtraction. 

Compare the Contents of the Memory to the Accumulator 

CMP #DATA $C9 IMMEDIATE 

CMP ADDR $C5 ZERO PAGE 

CMP ADDR,X $D5 ZERO PAGE INDEXED 

CMP ADDR $CD ABSOLUTE 

CMP ADDR,X $DD ABSOLUTE INDEXED 

CMP ADDR.Y $D9 ABSOLUTE INDEXED 

CMP (ADDR,X) $C1 INDEXED INDIRECT 

CMP (ADDR),Y $D1 INDIRECT INDEXED 

This group of compare instructions compares the content of the 

designated memory location to the content of the accumulator and 

requires two bytes for the immediate, zero page and indirect address¬ 

ing modes, and three bytes for the absolute mode. The C, N and Z 

flags are conditioned according to the results of the subtraction 

operation. The V flag is not changed. 

Compare the Contents of the Memory to the Index Register 

CPX #DATA $E0 IMMEDIATE 

CPX ADDR $E4 ZERO PAGE 

CPX ADDR $EC ABSOLUTE 

CPY #DATA $C0 IMMEDIATE 

CPY ADDR $C4 ZERO PAGE 

CPY ADDR $CC ABSOLUTE 

These instructions compare the contents of the designated 

index register with the memory location. The contents of the in¬ 

dicated memory location is subtracted from the index register. The 

C, N and Z flags are affected by the result of the subtraction. How¬ 

ever, the V flag, memory location and index register remain un¬ 

changed. The immediate and zero-page addressing mode instructions 

require two bytes and the absolute mode instructions require three. 

These instructions are useful in testing for the end of a table pointed 
to by the index register. 

There are several groups of instructions that allow Boolean logic 
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operations to be performed between the contents of locations in 

the memory and the accumulator. Boolean logic operations are valua¬ 

ble in a number of programming applications. The 6502 instruction 

set allows three basic Boolean operations to be performed. These 

are the logical AND, logical OR, and EXCLUSIVE OR operations. 

Each type of logic operation is performed on a bit-by-bit basis be¬ 

tween the memory location and the accumulator specified by the 

instruction. 

These instructions utilize four basic addressing modes to define 

the memory location to be used. For this entire group, the im¬ 

mediate, zero page and indirect mode instructions require two bytes 

of memory, while the absolute mode requires three. 

"AND" the Accumulator 

AND #DATA $29 IMMEDIATE 

AND ADDR $25 ZERO PAGE 

AND ADDR,X $35 ZERO PAGE INDEXED 

AND ADDR $2D ABSOLUTE 

AND ADDR,X $3D ABSOLUTE INDEXED 

AND ADDR.Y $39 ABSOLUTE INDEXED 

AND (ADDR,X) $21 INDEXED INDIRECT 

AND (ADDR),Y $31 INDIRECT INDEXED 

When the Boolean AND instruction is executed, each bit of the 

accumulator will be compared with the corresponding bit in the 

memory location specified by the instruction. As each bit is com¬ 

pared, a logic result will be placed in the accumulator. The logic 

result is determined as follows: If both the bit in the accumulator 

and the bit in the memory location with which the operation is 

being performed are a “1,” the accumulator bit will be left as a 

“1.” For other possible combinations (i.e., the accumulator bit 

= “0,” and the memory location bit = “1,” or if the accumulator bit 

= “1” and the memory contents bit = “0,” or if both the accumu¬ 

lator and the memory contents have the particular bit = “0”), the 

accumulator bit will be set to “0.” An example will illustrate the 

logical AND operation: 

Initial State of the Accumulator: 10101010 

Contents of Memory Location: 11001101 

Final State of the Accumulator: 10001000 

The eight logical AND instructions perform this type of logic 
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operation between the accumulator and memory location, the result 

of the operation is stored in the accumulator. The N and Z flags 

are affected by the results of the logical AND operation. C and V 

flags are not affected. 

Logical "OR"the Accumulator 

ORA #DATA $09 IMMEDIATE 

ORA ADDR $05 ZERO PAGE 

ORA ADDR,X $15 ZERO PAGE INDEXED 

ORA ADDR $0D ABSOLUTE 

ORA ADDR,X $1D ABSOLUTE INDEXED 

ORA ADDR,Y $19 ABSOLUTE INDEXED 

ORA (ADDR,X) $01 INDEXED INDIRECT 

ORA (ADDR),Y $11 INDIRECT INDEXED 

This group of Boolean logic instructions direct the computer 

to perform the logical OR operation on a bit-by-bit basis with the 

designated accumulator and contents of the memory location. The 

logical OR operation will result in the accumulator having a bit set 

to “1” if either the bit in the accumulator, or the corresponding bit 

in the memory location is a “1.” Since the case where both the 

accumulator bit and the operand bit is a “1” also satisfies the rela¬ 

tionship, that condition will also result in the accumulator bit being 

a “1.” If neither accumulator nor memory location has a “1” in the 

bit position, the accumulator bit remains “0.” An example illustrates 

the results of the logical OR operation: 

Initial State of the Accumulator: 10101010 

Contents of the Operand Register: 11001101 

Final State of the Accumulator: 11101111 

The logical OR instructions listed here perform this operation 

between the accumulator and memory location. The execution of 

these instructions leaves the result in the accumulator. The effect on 

the status flags is the same as for the logical AND instructions. 

Logical "EXCLUSIVE OR"the Accumulator 

EOR #DATA $49 IMMEDIATE 

EOR ADDR $45 ZERO PAGE 

EOR ADDR,X $55 ZERO PAGE INDEXED 

EOR ADDR $4D ABSOLUTE 

EOR ADDR.X $5D ABSOLUTE INDEXED 
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EOR ADDR,Y $59 AB50LUTEINDEXED 

EOR (ADDR.X) $41 INDEXED INDIRECT 

EOR (ADDR),Y $51 INDIRECT INDEXED 

This group of Boolean logic instructions is a variation of the 

logic OR. The variation is termed the logical EXCLUSIVE OR. 

The EXCLUSIVE OR operation is similar to the OR, except that 

when the corresponding bits in both accumulator and the operand 

register are a “1,” the accumulator bit will be set to “0.” Thus, the 

accumulator bit will be a “1” after the operation only if one of the 

registers has a “1” in the bit position. An example provides clari¬ 

fication: 

Initial State of the Accumulator: 10101010 

Contents of the Operand Register: 11001101 

Final State of the Accumulator: 01100111 

These logical EXCLUSIVE OR instructions, similar to those for 

the AND and OR, perform the operation between the accumulator 

and memory location with the results being stored in the accumu¬ 

lator. The status flags are also affected, or not affected, in the same 

manner as the logical AND instructions. 

BIT Test Memory with the Accumulator 

BIT ADDR $24 ZERO PAGE 

BIT ADDR $2C ABSOLUTE 

The BIT test instruction tests one or more bits in a memory 

location without altering the contents of the memory location. This 

is accomplished by performing a logic AND between the accumulator 

and the memory location. Although neither alter their contents, the 

Z flag will indicate whether one or more common bit positions con¬ 

tain a “1.” Testing for the condition of a particular bit is done by 

loading the accumulator with zeros in all bits except the one to be 

tested. This bit is loaded with a one. Executing BIT would set the 

Z flag to one if the bit in memory is zero, or clear the Z flag if it 

is one. The condition of bit 7 and bit 6 of the memory location is 

loaded directly into flags N and V respectively. This is done indepen¬ 

dently of the logic AND operation. Thus, one may test these two bits 

with the BIT instructions, without initializing the accumulator. The 

C flag is not affected. The zero page addressing mode requires two 

bytes to define the operation and the absolute mode requires three. 
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The 6502 has a group of instructions that allow the programmer 

to condition several of the status flags individually. The status re¬ 

gister also may be stored and retrieved from the stack. All of the in¬ 

structions in this group require only one byte of memory. The in¬ 

structions that refer to an individual flag affect only that flag. All 

other status flags remain in their initial condition. 

Set the Carry Flag 

SEC $38 

This instruction sets the carry flag to a value of “1,” and the 

“clear the carry” instruction presented next, provides a convenient 

method for conditioning the carry flag before an arithmetic or rotate 

instruction. 

Clear the Carry Flag 

CLC $18 

This instruction clears the carry flag by loading a “0.” 

Set the Interrupt Flag 

SEI $78 

The interrupt flag is set to a “1” by this execution. It may be 

considered a disable interrupt instruction since the interrupt flag 

disables the CPU from accepting maskable interrupts while it is set 

to a “1.” 

Clear the Interrupt Flag 

CLI $58 

This instruction clears the interrupt flag to a “0” condition. 

Clearing the interrupt flag allows the CPU to accept interrupts from 

the maskable interrupt line. 

Interrupt flag instructions provide the programmer with a 

means of control when the computer may accept interrupts on the 

maskable interrupt line. The function of these two instructions is 

performed automatically when an interrupt is received. The com¬ 

puter automatically sets the I flag. Then, upon execution of the “re- 

turn-from-interrupt” instruction (to be presented later), the I flag 

is returned to its initial state. Also, there may be times in a program 

when an operation to be performed affects data critical to the exe- 
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cution of the interrupt service routine. Before performing this opera¬ 

tion, the interrupt flag should be set so that a maskable interrupt will 

not be accepted while the data is being changed. Once the program 

has completed this operation, the flag may be cleared to allow in¬ 

terrupts to be received. 

Clear the Overflow Flag 

CLV $B8 

This instruction clears the two’s complement overflow flag to 

a “0” and is useful in performing signed binary arithmetic opera¬ 

tions. 

PUSH Status Register onto Stack 

PHP $08 

Occasionally, it is desired to save the current status flag settings. 

For example, a routine may determine that a value is negative. How¬ 

ever, this information is not required by the program until other 

parameters are tested. This one-byte instruction may be used to store 

the status register on the stack. Then, when the program is ready to 

make a decision based on the sign of the aforementioned value, the 

status can be retrieved from the stack by the pull status instruc¬ 

tion. Pushing the status register onto the stack stores the status in 

the location indicated by the stack pointer at the time of execution. 

Then the stack pointer is decremented. The contents of the status 

register is not affected. 

PULL Status Register from Stack 

PLP $28 

This one byte instruction causes the stack pointer to be in¬ 

cremented and the data on the stack at this location to be loaded 

into the status register. This is one method of restoring the status 

to a previously determined condition. The PHP and PLP instruc¬ 

tions are also a convenient method of storing and restoring the 

decimal mode flag when calling an arithmetic routine that may 

change its setting. 

It is often desirable to be able to shift the contents of an ac¬ 

cumulator or memory location either right or left. In a fixed length 

register, a simple shift operation would result in some information 

being shifted right out of the register! Therefore, instead of losing 
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this information, the carry flag is used as an extension of the 

accumulator or memory location. The carry will “catch” the bit 

being shifted out of either the LSB for a shift to the right, or the 

MSB for a shift to the left. 

When performing these shift operations, the condition of the bit 

being shifted into the register must also be considered. Depending 

on the application of the shifting operation, it may be desired to 

shift a zero, or to shift the initial contents of the carry flag, into 

this bit. The shifting operation that shifts the carry around to the 

opposite end of the register is termed a “rotate” operation. The 

initial contents of the entire register and the carry are never lost, 

it is shifted out one end into the carry, and from the carry back into 

the other end of the register. 

The 6502 CPU provides four various shifting and rotating op¬ 

erations that may use either the accumulator or a memory location 

as the register to be shifted. A description of the shift and rotate 

operations available are presented here. Those designating an ac¬ 

cumulator require one byte, those using the zero page addressing 

mode require two bytes, and those indicating the absolute address¬ 

ing mode require three bytes. Only the X index register is valid for 

the indexed addressing modes. 

Arithmetic Shift Left 

ASL A $0A 

ASL ADDR $06 ZERO PAGE 

ASL ADDR,X $16 ZERO PAGE INDEXED 

ASL ADDR $0E ABSOLUTE 

ASL ADDR.X $1E ABSOLUTE INDEXED 

The arithmetic shift left operation shifts either the designated 

accumulator or memory location to the left one bit. The MSB is 

shifted into the carry and a zero is shifted into the LSB. This op¬ 

eration multiplies the initial contents of the register by two. For 

multiple precision operations, this instruction may be used to shift 

the least significant byte, and the successive bytes may be shift¬ 

ed by using the rotate left instruction, to be described shortly. 

By starting with this instruction, initially it is not necessary to 

clear the carry flag. The C, N and Z flags are affected by this op¬ 

eration. The V flag is not. 

Logical Shift Right 

LSR A $4A 
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LSR ADDR $46 ZERO PAGE 

LSR ADDR.X $56 ZERO PAGE INDEXED 

LSR ADDR $4E ABSOLUTE 

LSR ADDR,X $5E ABSOLUTE INDEXED 

The logical shift right instruction shifts the designated register 

to the right one bit. Bit zero is loaded into the carry flag, and bit 

seven is loaded with a zero. This instruction is used to divide the 

contents of the register by two when the MSB is assumed to be 

part of the value and not the sign of the value. The C, N and Z 

flags are affected by the result of this operation but the V flag is 

not. 

Rotate Left 

ROL A $2A 

ROL ADDR $26 ZERO PAGE 

ROL ADDR,X $36 ZERO PAGE INDEXED 

ROL ADDR $2E ABSOLUTE 

ROL ADDR,X $3E ABSOLUTE INDEXED 

The designated accumulator or memory location is rotated one 

bit to the left by the execution of this instruction. The MSB is ro¬ 

tated into the carry, and the initial content of the carry is rotated 

into the LSB. Since this instruction forms a closed loop, it does not 

lose the contents of any of the bits. It may, therefore, be used to 

calculate the parity of the value in the register by rotating each bit 

into the carry and adding up the number of ones contained in the 

register. Rotating a multiple precision value to the left may be ac¬ 

complished by initially clearing the carry and then, beginning with 

the least significant byte, rotating each byte once to the left. In 

doing so, it is essential that the instructions in between each rotate 

do not affect the carry flag. The status flags are affected in the same 

manner as with the arithmetic shift left. 

Rotate Right 

ROR A $6A 

ROR ADDR $66 ZERO PAGE 

ROR ADDR,X $76 ZERO PAGE INDEXED 

ROR ADDR $6E ABSOLUTE 

ROR ADDR,X $7E ABSOLUTE INDEXED 

The rotate right instruction rotates the designated accumulator 
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or memory location once to the right with the LSB rotated into the 

carry, and the initial contents of the carry rotated into the MSB. 

The parity of the register contents also may be checked by a series 

of rotate right instructions. Dividing a multiple precision value by 

two may be accomplished initially by clearing the carry and then, 

beginning with the most significant byte and working down to the 

least significant byte, each byte of the multiple precision value is 

rotated once to the right. Here again, the instructions in between 

rotate instructions must not affect the carry. The status flags are 

affected in the same manner as with the arithmetic shift left in¬ 

struction. 

The No Operation Instruction 

NOP $EA 

The no operation, or NOP, instruction directs the computer to 

consume time by executing a machine cycle that effectively does 

nothing except advance the program counter to the next memory 

address. None of the CPU registers are affected by the operation. 

The instruction is useful for creating time delays, or as a filler if 

patches to a program are required (or anticipated). 

The instructions discussed so far have been direct action ones. 

The programmer arranged a sequence of these instructions in memo¬ 

ry. When the program is started, the computer proceeds to execute 

the instructions in the order in which they are encountered. The 

computer automatically reads the contents of the memory loca¬ 

tion and executes the instruction it finds there. Then it automati¬ 

cally increments a special address register called a “program count¬ 

er” to the next sequential memory location. Often it is desirable to 

perform a series of instructions located in one section of the memory 

and then skip over a group of memory locations to start executing 

instructions in another section. This action can be accomplished by 

a group of instructions that will cause the CPU to jump to a new 

section of the memory and continue executing instructions se¬ 

quentially from the new memory location. 

There are a series of conditional branch instructions available 

in this computer that add considerable power to the machine’s capa¬ 

bilities. The computer can be directed to test the status of a par¬ 

ticular flag. If the status of the flag is the desired one, a branch will 

be performed. If it is not, the computer will continue to execute 

the next instruction in the current sequence. This capability provides 

a means for the computer to make decisions, and to modify its op- 
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eration as a function of flag status. 

All of the branch instructions use the relative addressing mode 

to define the memory location from which the next instruction to 

be executed is to be taken. This mode of addressing requires two 

bytes of memory to properly define the instruction. The first byte 

contains the machine code for the type of branch instruction to be 

executed. The second byte contains the relative displacement, in 

two’s complement form, from the memory location following the 

second byte of the branch instruction. Refer to the beginning of this 

chapter to review the relative addressing mode if necessary. These 

branch instructions do not affect any of the status flags. 

The following is a list of branch instructions. Each tests a sin¬ 

gle flag to determine whether to branch, or to fall through to the 

next sequential instruction. The first column contains the mnemonic 

representation for the instruction, the second column contains the 

machine code for the first byte of the instruction, and the final 

column indicates the flag tested and the condition that would cause 

the instruction to branch. 

BCC RELA 

BCS RELA 

BNE RELA 

BEQ RELA 

BPL RELA 

BMI RELA 

BVC RELA 

BVS RELA 

$90 C=0 

$B0 C=1 

$D0 Z=0 

$F0 Z=1 

$10 N=0 

$30 N=1 

$50 V=0 

$70 V=1 

The Jump Instruction 

JMP ADDR $4C ABSOLUTE 

JMP (ADDR) $6C INDIRECT 

The jump instruction always results in the computer going to 

the designated address rather than fetching the next instruction 

from the current sequence. However, the jump instruction is not 

limited to an area in the memory relative to its current location. 

Using either of the addressing modes indicated, the jump instruc¬ 

tion can direct the computer to any location throughout its memo¬ 

ry. For the three-byte absolute addressing mode instruction, the 

second byte contains the low portion, and the third byte contains 

the page portion of the address to which the computer is to jump. 

For the indirect mode, the operand points to the location where the 

The 6502 Instruction Set 39 



actual address to jump may be found. The indirect pointer points 

to the low portion of the address and the next successive memory 

location contains the page portion. These jump instructions do not 

affect any of the status flags. 

Quite often, when a programmer is developing computer pro¬ 

grams, he will find that a particular algorithm can be used many 

times in different parts of the program. Rather than entering the 

same sequence of instructions at different locations in the memo¬ 

ry (which would not only consume the time of the programmer but 

would also result in a lot of memory being used to perform the 

same function), it is desirable to be able to put an often used se¬ 

quence of commands in one section of the memory. Then, when¬ 

ever this particular algorithm is required, it would be convenient 

to jump to the section that contained it and perform the sequence 

of instructions, before returning to the main part of the program. 

This is a standard practice in computer operations. The algorithm 

can be designated as a subroutine. A special instruction allows the 

programmer to call a subroutine. A second type of instruction is 

used to terminate the sequence of instructions. This special termi¬ 

nator will cause the program operation to revert back to the next 

sequential location in the memory. 

When a jump-to-subroutine instruction is executed, the CPU 

will save the address of the last byte of the instruction call by storing 

it in the stack. The address in the program counter is advanced to 

the last byte of the subroutine call instruction. The low portion of 

this address then is stored in the stack indicated by the stack pointer. 

The stack pointer is decremented by one, and the page portion of the 

address is stored in the stack. Finally, the stack pointer is then de¬ 

cremented once more to position it for the next operation. 

The return instruction that terminates a subroutine requires 

only one byte. When the CPU encounters a return instruction, it 

causes the address stored in the stack to be pulled off into the 

program counter. The program counter is then incremented and the 

instruction following the jump to subroutine is executed. The low 

and then page portions of the address are each pulled from the stack 

in the same manner that a value is pulled from the stack and loaded 

into an accumulator. 

Jump to Subroutine 

JSR ADDR $20 ABSOLUTE 

This three-byte instruction directs program execution to the 
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address indicated by the operand. The second byte contains the low 

portion and the third byte contains the page portion of the subrou¬ 

tine’s start address. This instruction does not affect the status flags. 

Return from Subroutine 

RTS $60 

This one byte instruction returns program execution from a subrou¬ 

tine to the calling program. The return address is pulled from the 

stack and loaded into the program counter. The program counter is 

then incremented and the next instruction in the initial program se¬ 

quence is executed. Since no status flags are affected by the return, 

the result of the subroutine’s operation may be passed to the calling 

program through the flags. 

This final group of instructions deals with the software por¬ 

tion of interrupt operations. These instructions, along with the in¬ 

terrupt flag set and clear instructions presented previously, provide 

the 6502 with the necessary software capability to operate under 

interrupt control. 

Break - a Software Interrupt 

BRK $00 

Execution of this one-byte instruction causes the 6502 to re¬ 

spond in a manner similar to the receipt of a hardware interrupt. 

The address of the BRK instruction plus two is pushed into the 

stack, followed by the status register. The break flag, bit four of the 

status register, will be set when it is stored as an indication to the 

interrupt handler that the interrupt is software generated. The pro¬ 

gram counter then is loaded with the interrupt vector at locations 

$FFFF and $FFFE. This vector is the start address of the maskable 

interrupt routine. At this time, any hardware interrupts that occur 

on the maskable interrupt line will be ignored since the interrupt 

disable flag is also set by this instruction. 

Return from Interrupt 

RTI $40 

This one-byte instruction is used at the completion of an in¬ 

terrupt service routine to automatically restore the flags in the status 

register to their initial values at the time the interrupt was received. 

The return address is then pulled from the stack. Execution of the 
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program resumes at the instruction following the last one executed 

before the interrupt. 

Information on Instruction Execution Times 

When programming for real-time applications, it is important 

to know how much time each instruction requires for execution. 

With this information, the programmer can develop timing loops or 

determine with substantial accuracy how much time it takes to 

perform a particular series of instructions. This information is im¬ 

portant when dealing with programs that control the operation of 

external devices which require events to occur at specific times. 

Along with the list of mnemonics and machine codes, Appendix A 

provides the nominal instruction execution time for each instruc¬ 

tion used in a 6502 system. The table shows the number of cycle 

states required by the instruction. Since the nominal cycle time 

for a 6502 microcomputer is one microsecond, the number of cycle 

states translates directly into the execution time for each instruc¬ 

tion. In some cases, however, the cycle time of a 6502 system may 

be slowed down to allow the use of slower memory. To calculate 

the execution time of an instruction, multiply the number of cycle 

states for the instruction by the time required for one cycle. Knowing 

the exact time required by the CPU to execute each instruction 

allows algorithms to have specific events occur at precisely timed 

intervals. This concept is discussed in greater detail in Chapter Three 

on programmed time delays. 
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Chapter 2 

6502 Programming 
Techniques 

Creativity in programming is what makes the difference between 

so-so programmers and efficient programmers. Proper selection of 

the instructions available to perform a given task can be of substan¬ 

tial importance. When memory size and execution times are critical, 

the technique used must be concise and free of extraneous opera¬ 

tions. 

The flexibility inherent in the 6502 instruction set allows one 

to become extremely creative. The structure of the 6502 instruc¬ 

tion set provides a variety of techniques to accomplish a given task. 

Different methods for storing and retrieving data, altering instruc¬ 

tion execution sequences and controlling various other functions 

of the CPU are among its many attributes. Proper selection and 

utilization of these techniques can shorten both memory require¬ 

ments and execution time for a given program. 

If Page Zero Were Only Bigger! 

Although the 6502 is capable of directly addressing 64K of 

memory, the instruction set places special significance on the lowest 

256 bytes. This portion of the memory is referred to as page zero. 

The reason for the significance of using page zero is the presence of 

the zero page addressing mode. 

The zero-page addressing mode allows one to directly reference 

a location on page zero. This is accomplished by specifying only the 

eight least significant bits of the address, rather than an entire six- 

teen-bit address. The importance of this addressing mode is that 

only one byte is required to specify the memory address rather than 

two bytes as in the absolute mode. For example, an instruction to 

store the accumulator contents in location $10 on page 00 requires 
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only two bytes. One byte is used to indicate a store-A-zero-page 

instruction (machine code $85), and the second byte to indicate 

the page zero location where data is to be stored ($10). If the same 

data were to be stored in location $10 on page $02, the absolute 

mode version of the STA instruction would be required. This ab¬ 

solute mode instruction would use three memory locations: One 

location for the machine code ($8D) and two more to designate 

the address ($10 and $02). This one byte difference between the two 

modes may not appear to be a significant savings, however it does 

add up as the length of the program increases. 

Often, programs are written which require a large amount of 

data storage. Pointers, counters and data buffers are typical of such 

information used by a program. Data storage location can be an 

important factor in program efficiency. The short one- or two-byte 

data values should be stored on page zero. Also, the data which is 

most frequently referenced should have priority over the temporary 

data which may be called out only a few times. Long strings of data 

are effectively referenced by storing a base pointer on page zero and 

using one of the indirect addressing modes to access it. One must 

be careful in the use of page zero to minimize memory requirements. 

Storing data in the stack can help ease the burden on page 

zero. Occasionally a single byte of data is generated at one point in 

a routine, but not needed until several intermediate steps are exe¬ 

cuted. A location on page zero could be set up to hold this data. 

Or, one could push this data onto the stack by using the PHA in¬ 

struction. Thus, the stack would provide a temporary holding register 

for the data. When the routine is ready, the stored data may be 

pulled from the stack by the PLA instruction. In this way, the 

necessity of using page zero for temporary data storage is alleviated. 

A word of caution: Don’t try to push data onto the stack be¬ 

fore calling a subroutine which is to use it. When the subroutine at¬ 

tempts to pull the data, it will end up with the low portion of its 

return address, rather than the data it is expecting. Remember, the 

subroutine call is going to push the return address onto the stack, 

displacing the stack pointer. Data that is used by a subroutine 

should be referenced by an address or pointer, not by pushing it 

onto the stack. 

Using the Indirect Pointers 

Another attribute of page zero is storing the pointers for the 

indirect indexed addressing modes. The indirect indexed addressing 

mode is of significant importance because it provides the program- 
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mer with a convenient means of sequentially selecting memory lo¬ 

cations. Using the indirect indexed mode, sequential locations from 

several different areas of the memory are easily indicated. A program 

for transferring data from one table to another, or for comparing two 

storage areas would be ideal candidates for using this addressing 

mode. The proper manipulation of these indirect pointers is essential 

if full advantage of this addressing mode is desired. 

Outputting data from a section of the memory to an output 

device is one common use for the indirect indexed addressing mode. 

Editor and assembler programs use it to transmit text and source 

data from one buffer to another. The following sample routine il¬ 

lustrates the basic structure of these routines. 

In this routine, the pointer is stored on page zero. FMPNT is 

the pointer to the area from which data is to be output. CRTDSP 

is the address of the video display device which will receive the 

transmitted data. The Y index register is initialized to zero. After 

each byte is transmitted, the Y index register is incremented. If, as 

a result of incrementing, the Y index register becomes zero, the up¬ 

per half of FMPNT is incremented. Incrementing in this fashion al¬ 

lows more than 256 bytes to be transmitted at one time. This routine 

also tests the data transmitted to indicate the end of the buffer. A 

zero byte in the buffer is used to signify the end. When it is encoun¬ 

tered, the routine returns to the calling program. 

*=$0000 

FMPNT *=*+2 

*=$0200 

TBLOUT LDA (FMPNT),Y 

BEQ ZCHAR 

STA CRTDSP 

INY 

BNETBLOUT 

INC FMPNT+1 

BNETBLOUT 

ZCHAR RTS 

From pointer storage 

Read character from table 

Zero byte indicates end of buffer 

Output to CRT display 

Advance index pointer 

Not zero, continue output 

Advance base pointer by 256 

Continue output 

Last character output, return 

A Conditional Branch Can Save Memory 

One very useful programming trick is indicated in this routine. 

Following the INC FMPNT+1 instruction, the program jumps back 

to the beginning by using the two-byte BNE TBLOUT instruction. 

FMPNT+1 is the page portion of the pointer. In 95 percent of the 
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6502-based computers, the last RAM location never exceeds $DFFF. 

It is safe to assume that incrementing FMPNT+1 will not cause it 

to go to zero. Thus, the two-byte BNE saves one memory location 

over the three-byte JMP instruction. One should also watch for 

places where a conditional branch is followed by a jump instruc¬ 

tion. In these situations, the branch instruction for the opposite 

condition of the first branch may be used in place of the jump in¬ 

struction. 

Counting Characters and Events 

The TBLOUT routine was terminated when a specific code, 

namely $00, was encountered in the data being transmitted. Another 

method of detecting when the program has completed its operation 

is to set up a register or memory location as a countdown register. 

This register would initially contain a binary count of the number of 

times the program loop is to be executed. Then, for each pass through 

the loop, the countdown register would be decremented and checked 

for a value of zero. If the register did not go to zero, the loop would 

be continued. When the register reaches zero, the program would 

jump out of the loop. The following program listing performs an 

operation similar to TBLOUT. However, rather than check for a ter¬ 

minating zero byte, the program uses the X index register as a count¬ 

down register. Before calling this routine, the X index register must 

be set to the number of bytes to be transmitted. FMPNT and Y are 

initialized as before. 

*=$0000 

FMPNT *=*+2 

*=$0200 

MESSAG LDA (FMPNT),Y 

STA CRTDSP 

INY 

DEX 

BNE MESSAG 

RTS 

Indirect pointer 

Fetch character to output 

Display on CRT 

Advance buffer pointer 

Decrement character count 

Count = zero? No, continue 

Yes, output complete 

It is often desired to have a computer count the number of 

times a specific operation is performed. The counter may perform 

this function. It may also indicate the number of characters received 

from an input device. There are several ways a counter may be set 

up. One is to designate one of the index registers as the counter re¬ 

gister, and each time a count is to be made, the INX or INY instruc- 
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tion may be executed. Since the index registers are eight-bits long, 

they may be used to indicate a count from 0 to 255. 

To set up an index register as a counter, one would load the de¬ 

signated register with zeros and insert the proper increment instruc¬ 

tion at the location within the program where the count is to be 

made. When the process is complete, the designated index register 

will contain a binary count of the number of times the operation 

occurred. 

The accumulator and index register are generally required to 

perform other operations while a counter is to be maintained. One 

or more memory locations may be designated as the counter storage 

area. If the count is expected to exceed 255, several memory loca¬ 

tions would have to be used for the counter. For a single memory 

location, an increment instruction would be inserted in the instruc¬ 

tion sequence where the count is to be made. When two or more 

memory locations are to be used for the counter, a series of instruc¬ 

tions would be needed to increment the counter. The instruction se¬ 

quence is to increment the memory location containing the least 

significant portion of the count and check its contents for a value 

of zero. If the least significant portion went to zero as a result of the 

increment, the next memory location would also be incremented. 

If a third byte of memory is used as part of the counter, its con¬ 

tents would be incremented whenever incrementing the second byte 

resulted in the second byte going to zero. A sample program listing 

for incrementing a triple precision counter is presented here. The 

memory locations used for the counter are designated CNTR1, 

CNTR2 and CNTR3. 

COUNTR 

OVER 

INC CNTR1 Increment the LSByte of the counter 

BNE OVER = zero? No, skip other incr instruction 

INC CNTR2 Yes, increment second byte of counter 

BNE OVER = zero? No, skip next instruction 

INC CNTR3 Yes, incr the MSByte of the counter 

Continue processing 
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Chapter 3 

General Purpose 
Routines 

Whenever one writes a program, there are usually several basic 
operations that occur over and over. These operations may be exe¬ 
cuted for completely unrelated tasks. However, the instruction se¬ 
quence may be the same. For example, rotating a group of memory 
locations to the left can be used to multiply a binary number by two 
or to properly position a BCD number. Such frequently encountered 
instruction sequences are often set up as subroutines. 

Subroutines usually fall into two classifications. General pur¬ 
pose subroutines are written to perform a specific function for a 
variety of applications. This is accomplished by defining how certain 
registers and memory locations are to be initialized before calling 
the subroutine. In the rotate subroutine, the X index register might 
be pointing to the first location to be rotated and the Y index re¬ 
gister could be used as a counter for the number of locations af¬ 
fected. Thus, any number of memory locations can be rotated by 
proper selection of X and Y, before calling the rotate subroutine. 
This class of subroutines is placed in a library of subroutines so a 
programmer does not have to continually “reinvent the wheel.” 

The second class of subroutine is that which performs an in¬ 
struction sequence unique to a given program. As one writes a pro¬ 
gram, an algorithm may occur two or more times throughout the 
program. This algorithm may be essential to the program it is written 
for, but may have no meaning to any other one. Such an algorithm 
might execute an unusual calculation or generate an output to an 
uncommon peripheral device. It is important to recognize these al¬ 
gorithms when they occur and form subroutines from them. This 
will aid in conserving memory usage. Added time savings occur by 
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shortening the assembly and debugging time, since the subroutine 

is assembled and debugged only once. 

A number of subroutines come under the general purpose classi¬ 

fication. Although these routines are presented as subroutines, they 

may be revised to be used in line with a given instruction sequence. 

This can help save memory space if the routine is called upon only 

once. The necessary revision is accomplished by either deleting the 

return instruction or replacing it with a jump instruction. 

The subroutines presented in this chapter make use of several 

addressing modes. Each one has a function which may make it more 

efficient to use than another. Some apply better when short strings 

of data are being manipulated. Others lend more readily to opera¬ 

tions involving long banks of data, possibly extending over numerous 

pages in the memory. The addressing mode used in each subroutine 

is the most efficient in memory usage and execution time for the 

description presented. There are other alternatives, however, depend¬ 

ing on the applications. 

Clearing a Section of Memory 

When setting up a program for entering data or storing the 

results of a calculation, it is often desirable to clear the memory 

locations to be used for storage. This operation is achieved by filling 

the memory locations with zeros. One way to do this is to store zero 

in the accumulator and perform a series of STA ADDR instructions 

in which the ADDR designates each memory location to be cleared. 

This method is fine if the area to be cleared consists of only two or 

three memory locations, and the clearing operation is required in 

only one or two differerent portions of the program. However, if 

a lengthy table area must be cleared, such as an input buffer (which 

may store 72 characters or more for a single line of input), this 

would be highly impractical. It would use more memory locations 

than necessary, even for short tables to be cleared by different 

routines throughout a program. 

An alternative subroutine which, when called, will clear as many 

locations in a table area as defined by the calling program. The rou¬ 

tine listed below will fill up to 256 memory locations with zeros. 

The calling routine must store the lowest address of the table in 

TOPNT on page zero. Also, the X index register must contain the bi¬ 

nary count of the number of locations to be cleared. CLRMEM is 

the start of the subroutine. The accumulator and the X index re¬ 

gister will be equal to zero upon returning. 

TOPNT is a successive pair of memory locations set up on page 
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zero. It will be used as storage for a temporary pointer. The low por¬ 

tion of the address stored in TOPNT is stored in the lower addressed 

byte and the page portion is stored in the next higher byte. 

CLRMEM LDA #$00 

TAY 

CLRM1 STA (TOPNT),Y 

INY 

DEX 

BNECLRM1 

RTS 

Set up zero value 

Initialize index pointer 

Clear memory location 

Advance index pointer 

Decrement counter 

Not zero, continue clearing 

Return 

Transferring a Section of Memory 

Programs of varying applications often have a similar require¬ 

ment: the transfer of information from one section of memory to 

another. For example, an editor program may transfer data from the 

input buffer to the main text buffer. A calculator may transfer a 

multiple precision value from a storage area to a working area in the 

memory. The programming to perform this function is basically the 

same in either case. The start address for the section of memory to 

be transferred and the section of memory to receive the data, are set 

up. Either the count for the number of memory locations to be 

transferred, or the address of the last location to be transferred must 

be indicated. 

The first transfer routine is limited to 256 bytes of memory. 

This is useful for moving data values from a storage area to a working 

buffer and vice versa. The initial pointers are set up in FMPNT and 

TOPNT. FMPNT is a two-byte pointer on page zero, similar to 

TOPNT, which must point to the table from which data is to be 

transferred. TOPNT must be set to the destination storage area. 

Index register X is set to the number of bytes to be moved. The Y 

index register is initialized by the routine to zero and is used as the 

index pointer to both memory areas. 

MOVIND LDY #$00 

MOVIN1 LDA (FMPNT),Y 

STA (TOPNT),Y 

INY 

DEX 

BNE MOVIN1 

RTS 

Initialize the index pointer 

Fetch byte to transfer 

Store byte in new location 

Advance index pointer 

Decrement byte counter 

Not zero, continue 

Return 
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The next transfer routine compares the contents of the pair 

of memory locations labeled ADDCHK with the FROM pointer to 

determine when the last location has been moved. This method is 

applicable when the last location is always known, or constant, and 

the byte count is variable. When this subroutine is called, ADDCHK 

must be set to the last location of the section to be transferred. 

FMPNT and TOPNT should indicate the starting addresses of their 

respective areas of memory. The X and Y index registers are set to 

zero. After each byte is transferred, FMPNT is compared to 

ADDCHK. When they are equal, the transfer is complete. 

MOVEAD LDA (FMPNT,X) 

STA (TOPNT) ,Y 

LDA FMPNT 

CMPADDCHK 

BNEPNTADV 

LDA FMPNT+1 

CMPADDCHK 

BNE PNTADV 

RTS 

PNTADV INY 

BNE FMADV 

INC TOPNT+1 

FMADV INC FMPNT 

BNE MOVEAD 

INC FMPNT+1 

JMP MOVEAD 

Fetch data to transfer 

Store data in new location 

Fetch LS half to FMPNT 

Is it equal to LS half of last address? 

No, advance pointer 

Fetch MS half of FMPNT 

Is it equal to MS half of last address? 

No, advance pointer 

Yes, return to calling program 

Advance index pointer 

N or zero, advance FROM pointer 

Advance TO base pointer 

Advance LS half of FROM pointer 

Not zero, continue transfer 

Advance MS half of FROM pointer 

Continue transfer 

Multiple Precision Routines 

When dealing with numerical data, it is often necessary to use 

more than one eight-bit byte to represent a binary number. Since a 

single byte can only represent a value from 0 to 255, one would be 

quite limited in the type of calculations that could be performed. 

This problem is solved by manipulating the data in several bytes as 

through they were one long register or memory location: N X 8 

bits long (N = number of bytes used to represent the data value). 

For example, by using two bytes as though they were a single six¬ 

teen-bit register, the decimal values from 0 to 65,535 may be rep¬ 

resented in binary format. This form of representation is referred 

to as multiple precision. 

In order to perform operations that consider several bytes as 

one, there must be some link to carry the effects of an operation on 
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one byte over to the next. This link is the carry flag. The carry flag 

indicates whether an operation on one byte of a multiple precis¬ 

ion operation should carry over to the next byte. When the addition 

of a number to a low order byte of a multiple precision value creates 

an overflow, the carry flag will be set to a “1.” This will be included 

in the addition of the next higher byte of a multiple precision value. 

Similarly, when a subtraction requires a borrow for the MSB of a 

multiple precision byte, the carry will be reset and will create a bor¬ 

row from the LSB of the next higher byte of the multiple precision 

number. 

The subroutines described next perform a variety of multiple 

precision operations on values stored in the memory. These opera¬ 

tions include incrementing, decrementing, rotating left, rotating 

right, and complementing a single precision value. Also, they may 

be used for adding, subtracting, and comparing a pair of multiple 

precision values with each other. For these routines, the multiple 

precision value(s) is assumed to be stored in consecutive memory 

locations with the least significant byte in the lowest address. 

Incrementing a Multiple Precision Value 

There are a number of different reasons why a multiple pre¬ 

cision value may have to be incremented. It may be to (1) advance 

a pointer that is stored in the memory, (2) increment an event 

counter, or (3) simply add one to a binary value. For whatever 

reason, the basic process consists of incrementing the least signifi¬ 

cant byte and, if it goes to zero as a result, the next byte will be 

incremented. This process ends when a byte does not go to zero, 

or when the most significant byte has been incremented. The first 

instruction sequence may be used to increment a double precision 

value. It increments the least significant byte and, if zero, incre¬ 

ments the second byte. 

NEXT 

INCMEMADR 

BNE NEXT 

INC MEMADR+1 

Increment the Lb Byte 

Not zero, skip next instruction 

Increment the IV1S Byte 

Continue processing 

The next routine increments a multiple precision value stored 

in the memory. The label VALUE should be set to the first location 

of the page in which the data is stored. For example, if the data is 

stored on page 00, VALUE should be set equal to zero. This restricts 

the subroutine to numbers stored on the designated page. However, 
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one should keep all data storage confined to the same section of the 

memory. Then, the X index register is set to the location on page 

zero of the least significant byte of the multiple precision number. 

The Y index register is used as a byte counter. It should be initial¬ 

ized to the number of bytes in the multiple precision number. 

There are two important facts upon returning from this subrou¬ 

tine. First, the contents of the index register will point to one of two 

locations. Either the last byte which, when incremented, did not go 

to zero, or to the last location plus one of the multiple precision val¬ 

ue. Also, the Z flag will be set to “1” upon returning when the entire 

value has gone to zero. If any of the bytes do not go to zero, the Z 

flag will be “0” when the return is executed. 

INCMEM INC VALUE,X Increment memory contents 

BNE INRET If result not zero, return 

I NX Advance index pointer 

DEY Decrement byte counter 

BNE INCMEM Not zero, continue incrementing 

INRET RTS Complete, return 

Decrementing a Multiple Precision Value 

The procedure for decrementing a multiple precision value is 

similar to incrementing. However, different criteria are used to 

determine when the succeeding byte should be decremented. The 

next byte is decremented only when the byte being decremented 

goes from zero to $FF. In this case, a borrow is required from the 

next byte. The DEC instruction does not condition the flags to in¬ 

dicate the change from zero to $FF, so a different instruction se¬ 

quence must be used. This sequence uses the SBC #$01 instruc¬ 

tion to decrement a byte because it will cause the C flag to be reset 

to “0” when the zero-to-$FF transition occurs. 

Since the SBC instruction is used, this routine may decrement 

a decimal multiple-precision value as well as a binary value. This is 

accomplished by setting the decimal mode flag before calling this 

subroutine. For binary multiple precision values, the decimal mode 

flag must be cleared. 

The following subroutine decrements the multiple precision 

value indicated by TOPNT, which is set to the least significant byte. 

The Y index register must be initialized to zero and the X index 

register to the number of bytes in the value to be decremented. The 

contents of the Y index register cannot be assumed to point to any 

one particular byte upon returning. 
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DCRMEM 

DCRET 

LDA (TOPNT),Y 

SEC 

SBC #$01 

STA (TOPNT),Y 

INY 

DEX 

BNE DCRET 

BCC DCRMEM 

RTS 

Fetch byte to be decremented 

Set carry for subtraction 

Decrement value by one 

Restore byte in memory 

Advance pointer 

Decrement byte counter 

Last byte decremented, return 

Next byte should be decremented 

Return to calling program 

Rotating a Multiple Precision Value 

A binary number can be multiplied times two by shifting each 

bit one position to the left, and loading the LSB with a “0.” Con¬ 

versely, by shifting each bit of a binary number to the right one bit 

position, and setting the MSB to “0,” the binary value is divided 

by two. When rotating a multiple precision number, it is necessary 

to carry the bit shifted out of a byte over to the next byte. This is 

accomplished by the rotate instructions, which include the carry flag 

as part of the byte when rotating either left or right. For a rotate 

left operation, the MSB shifted out of the lower order byte will be 

shifted into the LSB of the next byte. 

The first routine listed here is labeled the ROTATL subroutine. 

It uses the constant VALUE set to the first location^ of the page on 

which the data to be rotated resides. The X index register must be 

initialized to the location of the least significant byte of the data. 

The number of bytes to be rotated must be stored in the Y index 

register. The initial operation is to clear the carry flag. This creates 

the “0” bit, which must be loaded into the LSB of the multiple 

precision value. If it is desired to check for a “1” rotated out of the 

MSB of the value, the carry flag will be properly conditioned upon 

returning. Also, the X index register will point to the most signifi¬ 

cant byte. 

ROTATL CLC 

ROTL ROL VALUE,X 

DEY 

BNE MORRTL 

RTS 

MORRTL INX 

JMP ROTL 

Clear the carry 

Rotate the byte left 

Decrement the byte counter 

Not zero, continue rotate 

Done, return 

Advance memory pointer 

Continue to rotate left 

The ROTATR sub' outine rotates the designated multiple pre- 
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cision value to the right. The X index register must indicate the lo¬ 

cation of the most significant byte of the value when calling this 

routine, since it works from the most significant byte down to the 

least significant byte. Here again, VALUE is set to the zero loca¬ 

tion of the page on which the data resides. The Y index register must 

be set to the number of bytes in the multiple precision value. The 

carry flag is cleared initially to provide the “0” to be shifted into the 

MSB of the value. If it is desired to rotate a “1” into the MSB 

of the most significant byte, the carry flag may be set and this rou¬ 

tine may be entered at the second entry point, labeled ROTR. 

ROTATR CLC 

ROTR ROR VALUE.X 

DEY 

BNE MORRTR 

RTS 

MORRTR DEX 

JMP ROTR 

Clear the carry 

Rotate the byte right 

Decrement the byte counter 

Not zero, continue rotate 

Done, return 

Decrement memory pointer 

Continue rotate right 

Complementing a Multiple Precision Number 

The complement of a binary value is performed by changing 

each bit to the opposite condition of its current state. If a bit is a 

“1,” it is changed to a “0”; if a bit is a “0,” it is changed to a “1.” 

This type of complement is often referred to as the one’s comple¬ 

ment of a binary number. The one’s complement is used to comple¬ 

ment data received from an input device if it is in the opposite state 

of that required by the program. The complement of the inputted 

data may be derived by a simple EOR #$FF instruction just after 

reading in the data. 

Another form of binary complement is the two’s complement 

which may be formed by subtracting the binary number from zero. 

The two’s complement is generally used when a negative value of a 

binary number is desired. Or, it may be used to form the negative 

of a subtrahend value that may be added to the minuend. This sub¬ 

tracts the subtrahend from the minuend. The two’s complement 

of a single byte may be achieved by complementing and then incre¬ 

menting the byte. 

The following routine forms the two’s complement of a multi¬ 

ple precision binary number stored in the memory. When this routine 

is called, the X index register must indicate the least significant byte 

of the multiple precision value to be complemented. The Y index 

register must contain the number of bytes defined for the value. 
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VALUE is again assumed to point to the first memory location of 

the page on which the number to be complemented resides. When 

the routine returns, the X index register will point to the most 

significant byte +1. 

Both two’s-complement and one’s-complement operations 

are executed in this routine. First, the least significant byte is two’s 

complemented. This is accomplished by exclusive ORing $FF with 

the byte and incrementing the result. If the result leaves the byte 

equal to zero, the next byte also will be two’s complemented. When 

a byte is left with a nonzero result, the remainder of the number is 

one’s complemented. 

COMPLM SEC 

COMPL LDA #$FF 

EOR VALUE,X 

ADC #$00 

STA VALUE.X 

INX 

DEY 

BNECOMPL 

RTS 

Set carry for two's complement 

Load $FF for complement operation 

Complement byte 

If carry = one, two's complement 

Store byte in memory 

Advance memory pointer 

Decrement byte counter 

Not zero, continue 

Return to calling program 

Multiple Precision Addition and Subtraction 

Addition and subtraction are common functions often required 

when dealing with multiple precision values that represent numeric 

data. Both operations work from the least significant byte up to the 

most significant byte, using the carry flag as the link between bytes. 

When the addition of two bytes results in an overflow from the 

MSB, the carry flag is set and is included in the addition of the 

LSB’s of the next pair of bytes. Conversely, if the subtraction of a 

pair of bytes results in a borrow required from the next byte of the 

minuend, the carry flag is reset. This causes a borrow from the LSB 

of the next byte of the subtraction. These routines can operate on 

binary numbers or decimal numbers, depending on the setting of 

the decimal mode flag. 

The addition routine is labeled ADDER. This routine adds the 

multiple precision value indicated by the pointer in TOPNT to the 

value indicated by FMPNT. The result of the addition is stored in 

place of the value indicated by TOPNT. FMPNT and TOPNT must 

be set to the least significant byte of the multiple precision numbers. 

The X index register must be set to the binary count of the number 

of bytes in the multiple precision values. The carry flag will indicate 
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whether an overflow from the MSB of the most significant byte has 

occurred upon returning from this routine. The calling routine may 

have to check this flag since an overflow would usually indicate an 

error condition. At the completion of this routine, the index register 

will be pointing to the most significant byte plus one of the result. 

ADDER CLC 

ADDR1 LDA (TOPNT),Y 

ADC (FMPNT),Y 

STA (TOPNT),Y 

INY 

DEX 

BNE ADDR1 

RTS 

Clear carry flag 

Fetch byte from one value 

Add to byte of other value 

Store result 

Increment index pointer 

Decrement counter 

Not zero, continue addition 

Return 

The subtraction routine, labeled SUBBER, subtracts two mul¬ 

tiple precision values stored in the memory. TOPNT must indicate 

the least significant byte of the minuend. FMPNT must indicate the 

least significant byte of the subtrahend. The X index register must 

contain the binary count of the number of bytes in each multiple 

precision value. The result of the subtraction is stored in place of 

the minuend. The carry flag will be reset if a borrow was required 

by the subtraction of the MSB of the most significant byte. 

SUBBER SEC 

SUBB1 LDA (TOPNT),Y 

SBC (FMPNT),Y 

STA (TOPNT),Y 

INY 

DEX 

BNESUBB1 

RTS 

Set carry flag 

Fetch byte from minuend 

Subtract byte from subtrahend 

Store result over minuend 

Increment index pointer 

Decrement byte counter 

Not zero, continue subtraction 

Return 

Comparing Two Multiple Precision Values 

It is often desired to determine whether one number is larger 

or smaller in magnitude than another. This fact may change the man¬ 

ner in which a program is to deal with two numbers. For example, 

when subtracting two numbers, it is usually necessary to subtract 

the larger from the smaller and, if indicated, change the sign of the 

result. The following routine may be used to compare two multi¬ 

ple precision numbers stored in memory. 

The COMPARE routine compares the multiple precision value 
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indicated by the pointer in FMPNT against the value indicated by 

the pointer in TOPNT. These pointers initially must be set to the 

least significant byte minus one of the respective values to be com¬ 

pared. The Y index register must be set to the binary count of the 

number of bytes to be compared. Upon returning, the carry and zero 

flags will be set to indicate the outcome of the comparison. The call¬ 

ing program must check these flags and enter the proper routine as 

a result of the comparison. This is accomplished by using the BCC, 

BCS or BEQ conditional branch instructions. The index register will 

equal zero if the two values are equal, or the location of the byte 

at which the comparison faded. 

CMPLOP 

CMPMEM 

CMPRET 

DEY 

BEQ CMPRET 

LDA (FMPNT),Y 

CMP (TOPNT),Y 

BEQ CMPLOP 

RTS 

Decrement pointer 

If zero, both values equal** 

Fetch compare data 

Compare to indicated data 

If equal, continue comparing 

Return with C and Z flags conditioned 

A similar routine may be used to compare alphabetic informa¬ 

tion such as: (1) one name against another, (2) duplication, (3) if 

the character set is well ordered (as is the case with the ASCII code), 

to place the names in alphabetical order. 

To compare two character strings, first set FMPNT and TOPNT 

to the first character of each string. The Y index register should be 

initialized to zero and the X index register to the number of char¬ 

acters to be compared. At the instruction marked by **, replace it 

with INY and insert DEX immediately after it. This setup assumes 

the first character of each string is stored in the lowest address. 

The following listing illustrates a possible instruction sequence 

for calling the CPRMEM routine, and checking the results of the 

compare operation for one of the three possible conditions. 

LDA #TABL1—1 

STA FMPNT 

LDA #TABL1H 

STA FMPNT+1 

LDA #TABL2—1 

STA TOPNT 

LDA #TABL2H 

STA TOPNT +1 

Set up pointer to value to be 

Compared against 

Set up page portion of pointer 

Set up pointer to value to be compared 

to 

Set up page portion of pointer 
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LDY #COUNT Set byte count in Y 

JSR CMPMEM Compare FMPNT 

BEQ EQUAL TABL1 = TABL2 

BCCGRTR TABL1 > TABL2 

TABL 1 < TABL2, begin processing 

For less than 

Checking for Value within Limits 

Another type of comparison often required is to check whether 

the value of a byte of data falls within expected limits. One frequent 

application is to check the code received from an input device. For 

example, a calculator program may check each character input for a 

legal digit code when it expects to be receiving only digital informa¬ 

tion. Or, a control program may check inputs from a sensing device 

to determine whether a parameter is within allowable limits. When 

the data being checked falls within sequential limits (limits defined 

by an upper and lower bound), the following type of routine may 

be used. 

This routine compares a byte of data against the lower limit 

minus one and the upper limit of the boundaries in which the data 

byte must fall. The reason for checking the lower limit minus one is 

to allow the condition of the carry flag, upon returning, to indicate 

whether the byte falls within the designated limits. When the routine 

returns to the calling program with the carry set, the byte is not 

within the limits. When this routine is called, the data byte to be 

checked must be in the accumulator. 

The routine listed below checks the ASCII code for the digits 

0 through 9. ($B0 to $B9). To check for the ASCII code for the 

alphabetic characters A through Z, the immediate portion of the 

compare instructions would simply be changed to $C0 (ASCII A 

minus 1) and $DA (ASCII D). This routine begins at the label 

LMTCHK. 

LMTCHK CMP #$AF Is byte less than ASCII zero? 

BCS LMTRET Yes, not in limits, return with C = 1 

CMP #$B9 Is data byte greater than ASCII nine? 

BCS CRCLR If not, reset C to zero before returning 

SEC If so, return with C = 1 

LMTRET RTS Return to calling program 

CRCLR CLC Within limits, return with C = zero 

RTS Return 
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Programmed Time Delays 

The computer is designed to execute a program stored in its 

memory as rapidly as possible. It does not hesitate between instruc¬ 

tions to contemplate the next operation it should perform. However, 

there are certain types of programs that require a hesitation, or de¬ 

lay, between one operation and the next. One program is a display 

program that outputs a frame of characters or pattern to a video de¬ 

vice, and then must wait a specific amount of time before out- 

putting the next frame or pattern. Or, a delay may be required after 

outputting a control command, which turns on a motor driven de¬ 

vice, to allow the motor to get up to speed before a data transfer 

may be initiated. A programmed delay also may be required be¬ 

tween outputting of each bit of a serial data pattern to allow the 

program to control the data transmission rate. By inserting program 

time-delay sequences, one may affect these real time program appli¬ 

cations. 

Each instruction requires a specific number of cycles and 

therefore needs a specific amount of time to execute. A delay may 

be created by knowing the exact time for each instruction and pro¬ 

gramming a group of instructions whose total execution time is close 

to the desired delay. (For the 6502 with a clock frequency of one 

Megahertz, one should be able to program a delay within two micro¬ 

seconds of the required time.) Depending on the type of memory 

used in one’s system, the actual timing of the instructions may 

vary from those presented in Appendix A. Before getting into the 

time-delay programming, it is necessary to understand the differences 

between various types of memories so that one will be able to dis¬ 

cern the actual timing for one’s own particular system. 

This description is presented in general terms. It is not intend¬ 

ed to present specific details of memory accessing. Refer to the 

manual supplied by the particular hardware manufacturer for de¬ 

tails on memory accessing. 

When a computer must access a memory location in order to 

read an instruction, obtain data, or write data into it, the address 

of the memory location is first placed on the memory address bus. 

Then, the memory must be given time to select the memory loca¬ 

tion. The contents of the location then may be read from the data 

bus by the CPU, or the contents of the data bus may be written into 

the memory location. The length of time required to access a memo¬ 

ry location for reading or writing is referred to as the memory 

speed. The delay required between sending the address and accessing 

the memory location may vary, depending on this speed. If the nor- 
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mal delay in the CPU instruction time is sufficient for the memory 

to react to the address selection, the data may be read or written 

in the following cycle. However, if the memory cannot react fast 

enough, one or more wait cycles must be executed before reading 

from, or writing to the memory location. 

A wait cycle is a “do nothing state.” The hardware slows down 

to allow time to access the slower memory. A single wait cycle for 

the 6502 takes approximately one microsecond. (It varies with dif¬ 

ferent clock frequencies.) The number of wait cycles used by a 

specific microcomputer is detailed by the hardware manual. Know¬ 

ing the number of wait cycles allows one to program exact delays 

to a system that uses ROM or static RAM. 

Dynamic RAM memory makes it difficult to calculate the in¬ 

struction timing accurately. The reason for this is that the dynamic 

RAM memory requires a refresh cycle at least once every one or two 

milliseconds. (This time may vary for different types of dynamic 

memory.) A refresh cycle means that within the allotted time, each 

memory address must be accessed with a read cycle in order for the 

memory to maintain its current contents. This refresh process may 

interrupt the timing of the CPU instructions, since the refresh cir¬ 

cuitry may be accessing a memory location at the same time the 

CPU may require a memory access. In this case, the CPU would 

have to wait for the refresh read to complete, thereby extending 

the time required for the instruction to execute. It is possible only 

to calculate a minimum time delay for a given instruction sequence, 

and not the maximum, when using dynamic RAM memory. 

One feature of the 6502 which affects its timing is its pipe¬ 

lining capability. Pipelining means that the CPU can internally exe¬ 

cute a portion of an instruction while fetching the next byte from 

the memory. This overlapping has the effect of shorting the execu¬ 

tion time of an instruction. The number of memory accesses governs 

the actual number of cycles an instruction requires. 

The use of ROM or static RAM memory coupled with an 

understanding of pipelining allows one to determine the exact tim¬ 

ing for each instruction. However, this is detailed in Appendix A. 

Each instruction is given as well as the number of actual cycles 

required for execution. By multiplying the number of cycle times, 

the timing for all instructions can be calculated. If one or more 

wait states are added, this additional time must be added to each 

memory access executed per instruction. 

With a knowledge of the timing necessary for the instructions, 

one may begin to program time delays of specific duration. In program- 
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ming a delay, strive to use as few instructions as possible. Also, as¬ 

sure that the instructions used in the delay do not interfere with 

the operation of the main program. Unless stated otherwise, the 

times given below are those listed in Appendix A, and assume no 

wait cycles have been added to the memory access time. 

For very short delays (2 to 20 microseconds), several instruc¬ 

tions that fall in the direct sequence of the program may be used. 

Suppose a delay of 6 microseconds is required at a certain point. 

A no-operation instruction requires 2 microseconds to execute, so 

the desired 6-microsecond delay may be derived by using three 

NOP instructions at the point in the program requiring the de¬ 

lay. 

Another method used to create short delays is to insert a jump- 

to-subroutine instruction that jumps to a location that contains a 

return instruction. This sequence would delay 6 microseconds for 

the jump-to-subroutine instruction plus 6 microseconds for the 

return, for a total of 12 microseconds. To conserve memory, the 

return instruction may be part of an existing routine. It need not 

be set up as a return specifically for this delay. 

For longer delays, the method of inserting the delay instruc¬ 

tions in sequence with the main program would begin to waste a 

great deal of memory. An alternative is to use a subroutine that 

will form a timing loop to delay the desired amount of time. The 

following routine allows control of the delay time be selection of an 

initial value for the Y index register. The delay is created by forming 

a program loop that decrements the Y index register until it reaches 

zero, and then returns. The larger the initial value of the Y index 

register, the longer the delay. (The exception is that the initial value 

of zero will create the longest delay.) 

DELAY DEY Decrement delay cntr (2 £sec) 

BNE DELAY If cntr ^ zero, loop back (3 psec) 

RTS Counter = zero, return (6 fxsec) 

The amount of time used by this routine is calculated by add¬ 

ing the time required for each instruction every time it is executed. 

The execution time for each instruction is given in parenthesis after 

each comment. The following formula may be used to calculate 

the delay time for a given value of Y. If Y is initially zero, the 

value of 256 must be substituted in this equation. 

LDYJSRDEYBNE RTS 

DELAY TIME = 2 + 6 + '•» - 3) * (Y) + 6 
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The time required for the instruction LDY and JSR, which 

sets up the Y index register to the required constant and then calls 

the DELAY subroutine, must be included in the calculation. The 

time given for the LDY instruction assumes the immediate address¬ 

ing mode. The time required for setting up the Y index register may 

be excluded if it is set up before the time delay begins. 

The time delay that can be created by this program loop runs 

in increments of five from a minimum of 19 microseconds for the 

Y index register equal to one, to a maximum of 1294 microseconds 

for the Y index register equal to zero. This incremental factor is 

controlled by the loop DEY,BNE. Should it be desired to expand 

the increment, and thereby extend the maximum delay possible, 

additional instructions may be added. For example, if the incre¬ 

mental factor is desired to be 8 microseconds rather than 6, a NOP 

instruction can be inserted between the DEY and BNE instruction. 

This will add 2 microseconds to the loop without altering the basic 

operation of the routine. 

Sometimes the actual delay required by a program does not 

equal one of the incremental times generated by the delay loop. 

The delay may be adjusted by setting the Y index register to the 

closest incremental time without exceeding the time desired. Then, 

adding one or two instructions to the calling sequence brings the 

total delay within 1 or 2 microseconds. As an example, suppose 

a delay of 428 microseconds is needed. Selecting a value of 82 for 

the Y index register will provide a delay of 424 microseconds. The 

additional 4 microseconds can be added by two NOP instructions 

in the calling routine before the JSR DELAY instruction. These ad¬ 

ditional instructions will add the necessary 4 microseconds to the 

total delay. 
Substantially longer timing loops can be derived by nesting 

delay loops. Using both index registers one can set up a delay loop 

within a delay loop. Then, when one loop goes through a complete 

cycle, the second loop will be decremented once. This multiplies 

the time required for the inside loop by the initial value (minus one) 

of the index register in the outside loop. The following routine, 

which includes the calling sequence, illustrates this method of 

nesting delay loops. The Y index register is used for the outside 

loop. The greater the initial value of the registers, the longer the 

delay, with the exception of zero, which creates the longest delay. 

LDY #$YY Set initial inside loop (2 nsec) 

64 Chapter 3 



LDX #$XX 

JSR DLYLOP 
Set initial outside loop (2psec) 

Call delay loop routine (6/isec) 

DLYLOP DEX Decrement outside loop (2 Msec) 

BNE DLYLP1 If =A zero, branch to inside loop 

(3 psec) 

RTS If = zero, return, delay over (6 psec) 

DLYLP1 DEY Decrement inside loop (2 Asec) 

BEQ DLYLOP If = zero, branch to outside loop 

(3 Asec) 

JMP DLYLP1 If zero, continue inside loop 

(3 Asec) 

Calculation of the time amount required for execution can be 

made from the formula given. This formula is shown in two forms. 

One indicates the instruction sequence that is executed, and the 

second provides a condensed version for use in making the actual 

calculation. 

LDY LDX JSR 

DELAY TIME = 2 + 2 + 6 

DEX BNE DEY BEQ JMP DEY BEQ 

[2 + 3 + ((INIT Y) -1)* (2 + 3 + 3) + 2 + 3)] + 

DEX BNE DECB BEQ JMP DECB BEQ 

[((INIT X)-2)* (2 + 3 + (255* (2 + 3 + 3))) + 2 + 3] + 

DEX BNE RTS 

DELAY TIME = (((INIT X) -2)* 2045) + (((INIT Y) -1)* 8) + 36 

The first formula has two sections in brackets. The first bracket¬ 

ed section indicates the time for the first pass through the inside 

loop. The second bracketed section indicates the time for all succes¬ 

sive passes. The reason for the separation of these times is that on 

the first pass through the inside loop, the value of the Y index re¬ 

gister will be as initialized by the calling program. After the first 

pass, the Y index register will always be zero when the inside loop 

is entered. This formula is only valid for initial values of the X in¬ 

dex register from two to 256. (In actual operation of the subrou- 
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tine, the index registers are initialized to zero when 256 is used in 

the formula.) If the X index register is initially set to one, the exe¬ 

cution time is simply the sum of the times not enclosed in the 

brackets, which is 21 microseconds. For values of index register X 

from two to 256, the time delay can be set within the limits of 36 

to 521,506 microseconds in intervals of 8 microseconds. If finer 

selection is required, the technique discussed previously of inserting 

instructions in the calling sequence may be used. 

Random Number Generators 

The purpose of a random number generator is to provide a non¬ 

repeating series of random numbers. These random numbers may be 

applied to several different programs. When a game (such as dice or 

blackjack) is programmed, the program must provide a random as¬ 

sortment of numbers for the roll of the dice or a draw of a card. 

This is accomplished by using some form of a random-number gen¬ 

erator routine. Another application for these generators it to create 

random patterns for testing devices such as a computer’s memory, 

which may be sensitive to various patterns. 

Two methods of programming random number generators will 

be presented. The first is very simple and is used when the numbers 

are required in response to an input from the program operator. 

The second method uses a routine that will produce a new random 

number each time it is called. 

With many game programs, a random number is required in 

response to an input received from the operator. The random num¬ 

ber may be derived by constantly incrementing a memory location 

until the input is received. This may be accomplished by forming 

a program loop that increments the register and then checks the 

status of the input device for an input from the operator. If the 

status indicates there is no input, the routine will loop back to 

increment the memory location again. This program loop should be 

short, probably in the range of 30 to 50 microseconds. It would 

be impossible for a human to select the precise time to input a 

character to stop the loop when a specific value is present. For 

programs that require random numbers following an operator input, 

the following routine may be used to generate random numbers. The 

CHKINP in this program is assumed to check the input device status 

and return with the sign flag set to “1” if a character has been 

entered on the keyboard, or set to “0” if a character has not been 

entered. When the character has been received, the value in RNDM 

may be used as the random number for the program. 
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RNDMLP INC RNDM Increment random number 

JSR CHKINP Check for character entered 

BPL RNDMLP Not entered 

Use RNDM for random number 

When a program requires random numbers at various times 

throughout its operation (not necessarily after an input), the fol¬ 

lowing routine may be used. It generates a pseudo-random data 

pattern of eight-bit bytes. This random-number generator is not a 

true generator because, depending on its initial values, it will create 

a repetitive pattern every 1000 to 4000 numbers. However, the pro¬ 

gram that uses it can make the data “more random” by using a trick 

that will be described shortly. 

This random-number generator uses two consecutive memory 

locations to save the random number and an incrementing addend. 

Each time the routine is called, the random number created last 

is used in generating the next random number. It is operated by the 

series of instructions in this routine, and then the addend is added 

to it to create the new random number. At the same time, the ad¬ 

dend will be incremented either once or twice, depending on the 

result of the addition of the random number to the addend. The 

new random number will be saved in the memory and returned to 

the calling program in the accumulator. 

The trick referred to previously is to have the calling program 

alter the contents of the addend at a point in the program that is 

occasionally executed. This will increase the overall random pattern 

generated. For example, there may be a subroutine called once for 

every ten or fifteen times the random-number generator is called. 

An instruction sequence should be added to this subroutine to alter 

the addend. It may be altered by incrementing once, or adding five, 

or resetting the addend to zero. No matter what method is used to 

change the value of the addend, the result will be that of altering 

the data pattern generated. The instruction sequence that follows 

the routine below may be used by the calling program to alter the 

addend by adding five to it. 

RANDOM 

LDARNDM Fetch random number 

ROL RNDM Perform a series of 

EOR RNDM Operations on it to 

ROR RNDM Create a new random number 
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INC RNDM+1 

ADC RNDM+1 

BVC SKIP 

INC RNDM+1 

SKIP LDA RNDM 

RTS 

LDA RNDM+1 

ADC #$5 

STA RNDM+1 

Increment the addend 

Add the addend 

If V = 0, increment addend once 

Otherwise, increment it twice 

Store new random number 

Return to calling program 

Sequence to add five to addend 

Fetch random number addend 

Add five to addend 

Save new addend 

Continue processing 

Checking Parity: An Error Detection Technique 

An error may occur when data is transmitted from one device 

to another. Perhaps it’s because of an intermittent problem with the 

transmitting or receiving equipment. Or, the error may be introduced 

by the communication channel (extraneous noise on a telephone 

line). Regardless of the cause, a technique to test for such errors is 

often desirable. 

Checking for parity is a widely used method of error detection. 

It is used frequently when data is formed into small groups, eight 

bits, for example. Seven of the bits contain the data to be com¬ 

municated. The eighth bit is used as the parity bit. The number of 

“one” bits among the seven determines the condition of the eighth. 

Odd parity simply means that of the eight bits, there must be an 

odd number of ones. If the seven data bits contain an even number, 

say two ones, the parity bit would be set to one. Likewise, if there 

were three ones among the seven, the parity bit would be set to 

zero. The objective in even parity is to manipulate the parity bit 

so that the total number of ones comes out even. Thus, the parity 

bit is always set to one or zero in order to make the total of ones 

equal to an even number in the case of even parity, and to an odd 

number for odd parity. The following example illustrates this 

point. 

The following routine checks the parity of an eight-bit group. 

It may be used for determining either the condition of the parity 

bit for outputting data, or testing the parity of data received. When 

calling this routine, the data to be checked must be in the accumula¬ 

tor. The parity is checked by rotating each bit into the carry and in¬ 

crementing a parity count for each bit found to be one. The parity 

count is stored in a separate memory location referred to by the 

label PTYCNT. After each bit is tested, the least significant bit of 
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PARITY 

EVEN 

ODD 

PARITY 
BIT DATA 

10 0 10 10 1 

0 0 0 1 0 1 0 1 

the parity count is loaded into the C flag. When the routine returns, 

the accumulator will maintain its initial contents. The C flag will 

be set to one if the data has odd parity, or reset to zero if the data 

has even parity. If this routine is used to determine the setting of the 

parity bit for outputting the data, the parity bit should be zero when 

calling this routine, and then conditioned to create the desired pari¬ 

ty by checking the C flag upon returning. The instruction sequence 

that follows this listing illustrates a method of setting up data to be 

transmitted with even parity. The MSB is assumed to be the parity 

bit. For checking the parity of data received, the data should be 

loaded into the accumulator before calling this routine. Upon re¬ 

turning, the C flag may be tested for odd or even parity. 

PARITY 

LOOP 

ZEROBT 

LDY #$08 

CLRPTYCNT 

ROL A 

BCC ZEROBT 

INC PTYCNT 

DEY 

BNE LOOP 

ROL A 

ROR PTYCNT 

RTS 

Set bit counter 

Clear parity counter 

Rotate bit into carry 

Bit = zero, don't increment parity count 

Bit = one, add one to parity counter 

Decrement bit counter 

=# zero, continue parity check 

Rotate once more to restore data 

Rotate LSB of parity cntr into carry 

Ret, C=1 odd parity, C=0 even parity 

EVEN 

JSR PAR ITY Check parity of data to be transmitted 

BCC EVEN Even parity, output data as is 

ORA #$80 Odd parity, set parity bit to make it even 

... Proceed to output data 
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Chapter 4 

Conversion Routines 

I he real power provided by a computer is exemplified by its capa¬ 

bility to operate with unlimited variations of character codes by sim¬ 

ply changing a program. It can accept information in one form, 

convert it to another for processing, and then output it in the same 

format as initially received. Or, the output may be converted once 

again to an entirely different format. One may be aware of various 

other devices that perform such conversions. However, the input 

and output codes are most likely fixed, allowing no variation. A 

computer may be programmed to utilize a variety of codes for in¬ 

put, output and processing. 

The need for code conversion and the type of conversion re¬ 

quired is governed by two factors. The code used by the peripheral 

devices for transmitting and receiving data is one factor. If the input 

device transmits one code, and the output device must receive a 

different one, conversion from one code to the other is necessary. 

The format required by the program to process the data is the other 

factor. 

Standard and Special Character Sets 

The codes used by different I/O devices to transmit and receive 

data can vary greatly. Some codes are recognized as standard char¬ 

acter sets which many peripherals utilize. Other codes may be the 

result of a hardware design which is most economical. This would 

create a special purpose code for which software conversion would 

be necessary. Several of the standard codes used to represent l- 

phanumeric information are ASCII, BAUDOT, EBCDIC and 

HOLLERITH. ASCII and BAUDOT are commonly used on key¬ 

board and printer or display devices such as CRT terminals and tele¬ 

typewriter machines. EBCDIC generally is used for mass storage 
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devices such as magnetic tape units, and HOLLERITH is normally 

associated with card reader/punch devices. The special purpose 

codes may be derived when interfacing a calculator-style keyboard 

in the configuration of a matrix. 

The code used by a program to process the information may 

be the same code as received. Or, it may require conversion to a 

format more convenient for the computer. When a program deals 

with the manipulation of text, such as an editor program, the char¬ 

acter code received by the program is often used for storing the text 

information. As each character is input, the code is stored as the 

representation to be used by the program for that character. For 

programs that deal with numeric data, for arithmetic operations, 

or designating digital information, conversion from the character 

code received to the binary or decimal equivalent may be required. 

A calculator program might receive the data as ASCII encoded deci¬ 

mal digits. This must be converted to the binary equivalent for pro¬ 

cessing and then back to ASCII digits to output the answer. A 

monitor program may require the conversion of the coded octal or 

hexadecimal input to the binary equivalent for defining memory 

addresses and their contents. 

How Different Are ASCII and BAUDOT? 

There are a number of standard codes used to transfer data 

from a peripheral device to a computer, and vice versa. For the fol¬ 

lowing discussion on conversion from one code to another, the 

ASCII and BAUDOT codes will be used. Their contrasting formats 

aid in describing various methods of code conversion. Therefore, 

to preface the conversion routines, a brief discussion of each code 

is presented. 

ASCII is a seven-bit code that represents the entire alpha¬ 

numeric character set plus punctuation marks and a number of non¬ 

printing control characters. An eighth bit is often added to this code. 

This bit can be used to provide parity for error checking or it can be 

set to a constant “1” or “0” condition for all characters. The ASCII 

codes for the printing characters and several of the control charac¬ 

ters are presented in both octal and hexadecimal notation by Ap¬ 

pendix D. The code used throughout this book wherever ASCII is 

discussed assumes the eighth bit is always set to “1.” 

As the reader may notice by examining Appendix D, the ASCII 

code is well-ordered. The letters of the alphabet are represented in 

sequential order from $C1 for A to $DA for Z. The numbers are 

similarly ordered from $B0 to $B9 for numbers zero through nine. 
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This coding for the numbers allows easy conversion from ASCII 

to binary-coded decimal by simply dropping the four most signi¬ 

ficant bits of the ASCII code. The ASCII code convenience sharply 

contrasts the BAUDOT code discussed next. 

BAUDOT is a five-bit code used to represent the alphanumeric 

character set plus several punctuation marks and control characters. 

Appendix E contains the hexadecimal representation. It assumes the 

three most significant bits are all “0.” The reader may question how 

five bits can be used to represent more than 32 characters. The an¬ 

swer is quite simple. Each of the letters of the alphabet shares its 

code with a numeral or punctuation mark. Two separate control 

characters are used to determine which of the two possible charac¬ 

ters is being transmitted. One indicates the letters and the other 

indicates figures (numerals or punctuation marks). The proper mode 

(letters or figures) must be set by outputting the corresponding con¬ 

trol character before the output of one or more of the characters 

of that mode. For example, if a sentence consisting entirely of let¬ 

ters were to be typed on a BAUDOT keyboard, the letters control 

character would be entered first. The letters that make up the words 

of the sentence would follow. Then, to end the sentence, the figures 

control character would be entered followed by the period, which 

shares its code with the letter M. The codes for space, carriage re¬ 

turn, line feed, and null characters are common to both modes. 

Examination of the BAUDOT code in Appendix E reveals the 

obvious scrambled pattern of character codes. There is no set pat¬ 

tern that would lend itself to ease of recognition of the BAUDOT 

letters as there is with the ASCII code. And, conversion of the 

BAUDOT code for numerals to the equivalent BCD values is not as 

trivial as conversion of the ASCII digits described previously. 

Making BAUDOT More Workable 

Programs that operate with the BAUDOT code must have some 

means of differentiating between the two characters a BAUDOT 

code may represent. This can be accomplished by defining one of 

the three most significant bits as a mode designator. One of these 

three bits would be set to “0” for the letter mode, and to “1” for 

the figure mode. For this discussion, bit five will be so designated. 

The following pair of routines may be used to encode and decode 

the BAUDOT characters according to this method for separating the 

letters from the figures. The first routine is used to encode the 

BAUDOT characters as they are input. There are two entry points 

for this routine. The first, labeled BAUDIN, is used when the input 
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of characters are to be initialized. The initialization is done by out- 
putting a letters control character to the printer device before call¬ 
ing the input routine to receive a character from the keyboard. A 
memory location is set up to indicate the current mode of the 
printer device. This memory location, labeled CNTRL, is conditioned 
by the receipt of the letters or figures control characters. It is used to 
encode the characters as they are received. The other entry point, 
at label INBAUD, is used after the initialization has been completed. 
This entry point assumes that CNTRL is properly conditioned. 
The routine returns to the calling program with the character con¬ 
tained in the accumulator. The listing and flow chart for this routine 
are now presented. 

BAUDIN LDA #$1F Load letters code into accumulator 

JSR OUTPUT Call routine to send BAUDOT charac- 

JSR LETCOD Initialize CNTRL to letters code 
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INBAUD JSR INPUT 

CMP #$1 B 

BEQ FIGCOD 

CMP #$1 F 

BEQ LETCOD 

CLC 

ADCCNTRL 

RTS 

FIGCOD LDY #$20 

STY CNTRL 

RTS 

LETCOD LDY #$00 

STY CNTRL 

RTS 

Now accept BAUDOT char from keyboard 

See if figures code 

Yes, set CNTRL to $20 

See if letters code 

Yes, set CNTRL to $00 

Clear carry for addition 

Add condition of sixth bit 

Return to process data 

Set sixth bit of CNTRL 

By loading it with $20 

Clear sixth bit of CNTR L 

By loading it with $00 

Two subroutines are called out in this listing to perform the 

input and output operations with the BAUDOT devices. The INPUT 

routine inputs a character from the BAUDOT keyboard, and returns 

to this routine with that character in the accumulator. The OUTPUT 

routine must transmit the character contained in the accumulator 

to the BAUDOT output device. The reader may refer to Chapter 

Seven for methods of implementing these INPUT and OUTPUT rou¬ 

tines. 

Another routine may be used to decode BAUDOT characters 

before outputting. It also has two entry points. The BAUDOT entry 

point is called when the initial character of the string of characters 

is to be output. This entry point sets up the output device and the 

CNTRL memory location to the letters mode before outputting the 

character. After the first character, the subsequent characters are 

output by using entry point OTBAUD. OTBAUD first checks the 

character to be output for a change from the current mode. If 

different, the proper mode control character will be output before 

the character. The character to be output must be stored in the Y 

index register before calling either of these entry points. The 

OUTPUT routine must function in the same manner as previously 

described. 

BAUDOT LDA #$1F 

JSR OUTPUT 

LDA #$00 

STA CNTRL 

OTBAUD TYA 

Load letters code into accumulator 

Call routine to send BAUDOT code 

Reset CNTRL to letters code 

Fetch character to output 
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LTCHAR LDACNTRL 

BEQOUTCOD 

LDA #$00 

STA CNTRL 

JMP LASFIG 

See if last was letter 

Yes, output character 

Reset CNTRL to letter mode 

By using routine above 

From ASCII to BAUDOT and Back 

Using the ASCII and BAUDOT codes as the sample codes, two 

methods of code conversion will now be presented. The first method 

uses a look-up table. The table consists of both the ASCII and 

BAUDOT codes for each character of the character sets. The entries 

in the table are arranged in pairs. The first entry of a pair contains 

the ASCII code for the character, and the second entry contains 

the BAUDOT code for the same character. In cases where there is 

no equivalent BAUDOT code for a character, an appropriate sub¬ 

stitute may be inserted (for example, the BAUDOT code for the left 

and right parenthesis, ( and ), may be substituted as the equivalent 

code for the ASCII left and right brackets, [ and ]). The BAUDOT 

null character is used when no suitable substitute is available. 

The conversion program that uses this table begins at one end of 

the table and compares the character code to be converted against 

the entries in the table of the same character set. For conversion 

from ASCII to BAUDOT, the ASCII code to be converted is com¬ 

pared to the ASCII entries in the table. When a match is found, the 

BAUDOT entry of the pair is returned as the BAUDOT equivalent. 

A similar process is used to convert BAUDOT to ASCII. A flow chart 

indicates the logic used for conversion in either direction. 

Address 

0700 ASBDTB 

0701 BDASTB 

0702 

0703 

Hexa 
Code 
Cl ASCII A 

03 BAUDOT A 

C2 ASCII B 

19 BAUDOTB 

073C 

073D 

073E 

073F 

0740 

0741 

0742 

FF ASCII RUBOUT 

00 BAUDOT NULL 

A0 ASCII SPACE 

04 BAUDOT SPACE 

A1 ASCII ! 

2D BAUDOT! 

A2 ASCII " 
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0743 31 BAUDOT" 

0744 A3 ASCII # 

0745 34 BAUDOT # 

075E 

075F 

0760 

0761 

0762 

0763 

0764 

0765 

0766 

0767 

AF 

3D 

A8 

2F 

A9 

32 

DB 

2F 

DD 

37 

ASCII / 

BAUDOT/ 

ASCII ( 

BAUDOT( 

ASCII ) 

BAUDOT) 

ASCII [ 

BAUDOT ( (substitute) 

ASCII ] 

BAUDOT) (substitute) 

077C 

077D 

077 E 

077 F 

BF ASCII? 

39 BAUDOT ? 

CO ASCII @ 

00 BAUDOT NULL (substi¬ 

tute) 

One rule must be followed. When substitute characters are used, 

the true code for a conversion must be located such that it will be 

found before the substitute codes are encountered. For example, 

the ASCII and BAUDOT pairs for left and right parenthesis must 

be placed so that conversion from BAUDOT to ASCII will find 

the ASCII code for left and right parenthesis, not left and right 

brackets. This positioning is illustrated in the table. 

Listings for conversion routines from ASCII to BAUDOT, 

and vice versa, using the look-up table are now presented. The code 

to be converted must be in the accumulator when the routine is 

called. Also, the converted data is returned to the calling program 

in the accumulator, resulting in a loss of the initial character. 

ASBAUD LDX #$00 

FASCII CMP ASBDTB,X 

BEQFNDBDO 

INX 

INX 

Initialize table pointer 

Is character equal to table entry? 

If match, do conversion 

No match, advance pointer 

To next ASCII code 
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JMPFASCII ttContinue looking 

FNDBDO LDA ASBDTB+1.X Fetch BAUDOT equivalent 

RTS Return with code in accumulator 

BAUDAS LDX #$00 Initialize table pointer 

FBAUDO CMP BDASTB.X Is character equal to table entry? 

BEQ FIMDASC If match, do conversion 

INX No match, increment pointer 

INX To next BAUDOT code 

JMP FBAUDO ttContinue looking 

FNDASC LDA BDASTB-1,X Fetch ASCII equivalent 

RTS Return with code in accumulator 

Watch for the Table’s End 

Both of these routines assume that the code to be converted is 

valid (one which is included in the table). If, for some reason, the 

accumulator does not contain a valid code, the table will be over¬ 

shot. It is for this reason that a test for the end of the table should 
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be added. The following instruction sequence may be inserted in 

place of the JMP instructions marked by the ft- 

The immediate portion of the CPX instruction must be set 

equal to the number of entries in the table. The value is $80. If the 

end of the table is reached without a match, some method is needed 

to inform the calling program of the error. One method, indicat¬ 

ed in this instruction sequence, might be to set the accumulator 

equal to an invalid code. 

CPX #$80 

BNE FZZZZZ 

LDA #$40 

RTS 

The Input Points the Way 

Another code conversion is to form a pointer out of the char¬ 

acter code to be converted. This pointer is used to point to the cor¬ 

responding code in a conversion table. The conversion table con¬ 

tains a list of the conversion codes. Each entry is located at the 

address in the table to which the code to be converted will point 

when the pointer is formed. 

In the following example, the conversion from ASCII to 

BAUDOT is made by resetting the two most significant bits of the 

ASCII code to zero forming a pointer to the corresponding BAUDOT 

code in the conversion table. This method of setting up the pointer 

means the table must begin at location 00 of the page on which it 

resides. If it does not, a displacement constant must be added to the 

pointer to properly adjust it. For this routine, it is assumed that 

the table begins at location 00. 

The conversion table uses 64 memory locations. Each one con¬ 

tains the BAUDOT codes for the characters in the order correspond¬ 

ing to the pointer formed by the equivalent ASCII code. As in the 

previous look-up table, the use of substitute characters is required 

at the locations in the table for which no BAUDOT equivalents 

exist. Therefore, the first table entry is the null character, since an 

@ does not exist in the BAUDOT code. The next entry is the 

BAUDOT code for an A, then B, and so on. 

Yield to Nonsequential Characters 

A special condition arises when the characters such as car¬ 

riage return, line feed, and rubout are converted. In forming the 

Compare X to the table count 

Not end, continue search at 

FASCII or FBAUDO 

End of table, return with A = $40 
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pointer for these characters, the carriage return forms a pointer to 

the same location as the letter M and the line feed forms a pointer 

to the same location as the “?.” Because only three characters of this 

type need to be converted to BAUDOT, the conversion routine can 

check for their individual codes before forming the pointer. This 

eliminates the possibility of erroneous conversion. However, if the 

codes being converted have ten or more codes that overlap in this 

fashion, it would be more efficient (in memory usage) to expand the 

conversion table from 64 entries to 128, and to zero only the MSB 

of the ASCII code to form the pointer. This means that there will 

be more substitute characters contained in the table. But, the ac¬ 

tual conversion routine will not have to check each code for special 

characters. 

The conversion routine shown below uses the pointer technique 

to convert from ASCII to BAUDOT, with special consideration given 

to the carriage return, line feed, and rubout characters. The X in¬ 

dex register is set up as the pointer. This routine assumes that the 

ASCII code of the character to be converted is contained in the 

accumulator when the routine is called. The converted code is re- 

turned in the accumulator. 

ASBDPT CMP #$8D Carriage return? 

BEQCARRET Yes, fetch BAUDOT carriage return 

CMP #$8A Line feed? 

BEQ LINFED Yes, fetch BAUDOT line feed 

CMP #$FF Rubout? 

BEQ RUBOUT Yes, fetch BAUDOT null 

AND #$3F Mask off 2 MSB of ASCII 

TAX Form pointer to conversion table 

LDA BDOTBL,X Fetch BAUDOT code from table 

RTS Return with code in accumulator 

CARRET LDA #$08 Set BAUDOT carriage return 

RTS Return 

LINFED LDA #$02 Set BAUDOT carriage return 

RTS Return 

RUBOUT LDA #$00 Set BAUDOT null 

RTS Return 

0400 BDOTBL 00 NULL FOR @ 

0401 03 A 

0402 19 B 

INSERT BAUDOT 

CODES CTO Y FROM 
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FETCH BAUDOT 
EQUIVALENT 



0423 

0424 

0425 

0426 

0427 

0428 

0429 

042A 

042B 

042C 

042D 

042 E 

042 F 

0430 

0431 

0432 

0433 

0434 

0435 

0436 

0437 

0438 

0439 

043A 

043B 

043C 

043D 

043E 

043F 

34 # 

29 $ 

00 NULL FOR % 

3A & 

2B 

2F ( 

32 ) 

00 NULL FOR* 

00 NULL FOR + 

2C 

23 
3C 

3D / 

36 0 

37 1 

33 2 

21 3 

2A 4 

30 5 

35 6 

27 7 

26 8 

38 9 

2E 

3E 

00 NULL FOR < 

00 NULL FOR = 

00 NULL FOR > 

39 ? 

Things to Consider 

There are several considerations when choosing which method 

to use for code conversion. The first one is whether the conversion 

will be made in both directions (from code A to code B for input, 

and then code B back to code A for output), or only one direction. 

If conversion is in one direction only, the pointer method would 

shorten the table space required because only one code is included in 

the table area. For conversion in both directions, either method re¬ 

sults in approximately the same memory requirement unless the 

table for the pointer method has gaps of unused locations caused 

by the code forming the pointer having a nonsequential bit pat¬ 

tern. 
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For programs requiring speed of conversion, the pointer method 

is the choice. It provides the correct code with just a single pass 

through the instruction sequence. The look-up table method will 

remain in a loop until the correct code is found. This means that it 

could take up to 60 or more times longer than the pointer method 

to make a single conversion. 

Numeric Conversion Is Quite Common 

Another common type of conversion is the conversion of nu¬ 

meric data from one number base to another. The typical conver¬ 

sion is from decimal to binary, and binary to decimal. The reason 

this conversion is common is because the decimal number system is 

used in real world mathematical and numeric applications, while 

the computer is generally designed to operate with binary numbers. 

Thus, to allow the real world and the computer to operate in their 

most desirable number systems, the conversion of decimal to bin- 

nary, and vice versa, is required. 

The first routine converts a number designated by decimal 

digits in binary-coded decimal format to the equivalent triple pre¬ 

cision binary value. The decimal digits are contained in a table 

labeled DECMAL, with one BCD digit stored per byte. The 

table BINVAL consists of three consecutive memory locations used 

to store the binary number. This triple precision representation 

allows conversion of decimal values from 0 to 16, 777, 215. The 

routine starts with the most significant decimal digit and works down 

to the least significant one. 

The major part of the conversion is done by a subroutine that 

multiplies the current contents of BINVAL by ten, and then adds 

one decimal digit to this new value. This subroutine, labeled TIMS10, 

performs the multiplication by a series of rotate and addition opera¬ 

tions, as explained in the commented portion of the listing. Several 

of the subroutines presented in Chapter Three are used by this 

subroutine to aid in performing its function. 

The data table that precedes this listing defines the locations 

used by both the binary-to-decimal and decimal-to-binary conversion 

routines for storing temporary data. This table indicates the number 

of memory bytes to be assigned to each label. The *=*+ in the 

mnemonic column is an assembler directive. It informs the assem¬ 

bler program of the number of bytes to be reserved for the indicated 

FMPNT *=*+2 Temporary pointer storage 
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TOPNT 

DECTBL 

DGTCNT 

BINVAL 

WRKARA 

DECMAL 

DECML8 

TIMS10 

*=*+2 
*=*+1 

*=*+1 

*=*+3 

*=*+3 

*=*+7 

*=*+1 

PHA 

LDX #BINVAL 

STX FMPNT 

LDA #WRKARA 

STA TOPNT 

LDA #$00 

STA FMPNT+1 

STA TOPNT+1 

LDY #$03 

JSR ROTATL 

LDX #$03 

JSR MOVIND 

LDX #BINVAL 

LDY #$03 

JSR ROTATL 

LDX #BINVAL 

LDY #$03 

JSR ROTATL 

LDX #$03 

JSR ADDER 

PLA 

LDX #WRKARA 

STX FMPNT 

STA BINVAL 

LDA #$00 

STA BINVAL+1 

STA BINVAL+2 

LDX #$03 

JSR ADDER 

RTS 

Temporary pointer storage 

Pointer to DECMAL table 

Counter storage for BNTODC 

Binary equivalent storage 

Temporary working area 

Decimal equivalent storage 

M.S. digit of decimal equivalent 

Save digit to be added 

Set up pointer to BINVAL 

Store in FMPNT 

Set up pointer to WRKARA 

Store in TOPNT 

Set up page portion of pointers 

Store in FMPNT 

And TOPNT 

Set precision counter 

Multiply BINVAL X 2 

Set precision counter 

Move BINVAL X 2 to WRKARA 

Set pointer to rotate BINVAL left 

Set precision counter 

Multiply (BINVAL X 2) X 2 (total =X4) 

Set pointer to rotate BINVAL left 

Set precision counter 

Multiply BINVAL X 4 X 2 (total =X8) 

Set precision counter 

Add (BINVAL X 2) + (BINVAL X 8) 

Fetch decimal digit from stack 

Set pointer to WRKARA 

Store pointer in FMPNT 

Load BINVAL with decimal digit 

Load remainder of BINVAL 

With zero 

Add BINVAL X 10 to new digit 

Return with sum in BINVAL 

Decimal to Binary Conversion 

The DCTOBN routine fetches the BCD digits from the 

DECMAL table for conversion to binary by the TIMS10 subroutine. 

First, using the CLRMEM subroutine, the three words used for the 
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binary number storage are cleared. The routine then fetches one 

decimal digit at a time, beginning with the most significant digit, and 

calls the TIMS10 subroutine to add it to the binary value. Then the 

conversion is complete and the routine returns to the calling pro¬ 

gram. Once again, this routine assumes the decimal digits are stored 

in the DECMAL table in BCD format, one digit per byte, before 

being called. This routine begins at the label DCTOBN. 

DCTOBN CLD 

LDX #BINVAL 

STX TOPNT 

LDX #$0 

STX TOPNT+1 

LDX #$03 

JSR CLRMEM 

LDX #DECML8 

Clear decimal mode flag 

Set pointer to BINVAL 

Store in TOPNT 

Set page portion of pointer to zero 

Store in TOPNT 

Set precision counter 

Clear binary storage area 

Set pointer to MS decimal digit 
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STX DECTBL 

DBCNVT LDA VALUE,X 

JSR TIMS10 

DEC DECTBL 

LDX #DECMAL—1 

CPX DECTBL 

BNE DBCNVT 

RTS 

Store in temporary storage 

Fetch decimal digit 

Multiply BINVAL X 10 and add digit 

Decrement decimal pointer 

Is last decimal digit added? 

To BINVAL? 

No, continue process 

Yes, return with sum in BINVAL 

The TIMS10 subroutine may be inserted in place of the JSR 

TIMS10 instruction, rather than being set up as a subroutine. This 

has not been done to call attention to the portion of the routine that 

performs the actual conversion. Also, this subroutine is used in Chap¬ 

ter Five to convert the decimal numbers directly to their binary 

equivalents as they are entered by the operator. 

Binary-To-Decimal Conversion 

This routine performs the reverse function of the DCTOBN one. 

It converts the triple precision binary value in BINVAL to the 

equivalent eight-digit decimal number and is stored in the DECMAL 

table. This routine is called BNTODC. 

BNTODC uses a subroutine labeled DCEQVL to perform the 

actual conversion of the binary value to decimal. The conversion 

is made by subtraction of a binary constant equal to the decimal 

power of ten. When this subroutine is called, the pointer TOPNT 

must contain the address of the least significant byte of the power 

of ten to the subtracted. The indicated power of ten is then sub¬ 

tracted from the binary value being converted. When the result of 

the subtraction requires a borrow for the MSB (indicated by the 

carry flag being reset after the subtraction), the current power of 

ten is added back to the binary value to correct for the last sub¬ 

traction. The memory location labeled DECCNT contains the deci¬ 

mal value for the power of ten being subtracted when the subrou¬ 

tine returns. 

As an example, suppose the binary value of one million can be 

subtracted five times from the binary number before the borrow 

occurs. The value of five would be the seventh digit of the decimal 

equivalent. 

This subroutine, like the TIMS10 subroutine in the previous 

conversion routine, can be placed in line with the BNTODC instruc¬ 

tion sequence. By replacing the JSR DCEQVL instruction, one can 

shorten the memory required as well as the execution time. It is 
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presented as a subroutine to bring out the significance of its opera¬ 

tion to this conversion routine. 

DCEQVL LDA #$00 

STA DGTCNT 

LDX #BINVAL 

STX TOPNT 

STA TOPNT+1 

LDX #$03 

DCLOOP JSR SUBBER 

LDX #$03 

BCSINCRVL 

JSR ADDER 

RTS 

INCRVL INC DGTCNT 

JMP DCLOOP 

Set up initial decimal counter 

Store zero in DGTCNT 

Set pointer to BINVAL 

Store in TOPNT 

Set page portion of TOPNT 

Set precision counter 

Subtract binary constant 

Set precision counter 

No borrow, increment decimal count 

Add constant back to BINVAL 

Return with digit in DECCNT 

Increment decimal counter 

Continue subtraction 

The BNTODC routine sets up and keeps track of the current 

power of ten being subtracted from the binary value by DCEQVL. 

As each power of ten is subtracted and the value of the respective 

decimal digit value is returned in DGTCNT, BNTODC stores the 

decimal digit value in DECMAL. It then advances to the next lower 

power of ten. When the decimal value of one has been subtracted, 

the subroutine returns with the decimal equivalent stored in the 

DECMAL table. It is important to note that the value in BINVAL 

will be zero when the conversion is complete. The calling program 

must save the original value of BINVAL if it is required after the 

conversion. 

The listing and flow chart are presented here. The assembler 

directive .BYTE is used in this table. It informs an assembler pro¬ 

gram to assign one byte for each of the values which follow it. 

BNTODC 

BNDC 

CLD 

LDX #DECML8 

STX DECTBL 

LDX #<TENMIL 

STX FMPNT 

LDX #>TENMIL 

STX FMPNT+1 

JSR DCEQVL 

LDX DECTBL 

LDA DGTCNT 

Clear decimal mode flag 

Set pointer to decimal storage 

Save pointer in DECTBL 

Set pointer to binary constant 

Store pointer in FMPNT 

Set page portion of constant pointer 

Store in FMPNT 

Calculate decimal value of digit 

Fetch pointer to decimal storage 

Fetch digit just calculated 
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STA VALUE,X 

DEC DECTBL 

LDA FMPNT 

CLC 

ADC #$03 

STA FMPNT 

CMP #<ONE+3 

BNEBNDC 

RTS 

TENMIL .BYTE 

ONEMIL .BYTE 

HUNTHO .BYTE 

TENTHO .BYTE 

ONETHO .BYTE 

HUNRED .BYTE 

TEN .BYTE 

ONE .BYTE 

Store in decimal table 

Back up table pointer 

Fetch pointer to constant table 

Clear carry for addition 

Advance pointer to binary constants 

Store in FMPNT 

Is pointer at end of table? 

No, continue conversion 

Yes, return 

$80,$96,$98 Ten million in binary 

$40,$42,$0F One million in binary 

$A0,$86,$01 One hundred thousand in 

binary 

$10,$27,$00 Ten thousand in binary 

$E8,$03,$00 One thousand in binary 

$64,$00,$00 One hundred in binary 

$0A,$00,$00 Ten in binary 

$01,$00,$00 One in binary 
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Chapter 5 

Floating Point Routines 

Complex mathematics is one of the key functions for which a com¬ 

puter is best suited. Those unfamiliar with the techniques involved 

often consider such programs too complicated a task to undertake. 

However, if one takes the time to break down the basic operations, 

the overall algorithms are not quite so difficult. 

The digital computer is capable of performing mathematical 

operations with numbers of considerable magnitude. This is possible 

by representing numbers as multiple precision values in which more 

than one memory location is used to hold the numeric information. 

However, by increasing the number of locations assigned to represent 

a number, one could reach a point where the least significant bits 

become too insignificant with respect to the total value. A more 

practical representation would be to condense the size of the re¬ 

quired number of significant digits. The overall magnitude of the 

value may be indicated by a power of the number base. This rep¬ 

resentation is referred to as floating point format. 

Format of Floating Point Numbers 

Floating point format allows one to define a number as a pro¬ 

duct of two values. The first value contains the significant digits of 

the number. This value is referred to as the “mantissa.” It should 

contain as many significant digits as needed to properly define its 

relative value. The second value contains the power to which the 

number base is to be raised. This value, called the “exponent,” 

indicates the magnitude of the significant digits of the mantissa. 

For example, the decimal value 1,000,000 would require a triple 

precision binary number to be properly represented. However, this 

same value can be defined as “1 X 10**6,” or, in floating point 

notation, “1.0 E+6.” This form contains the mantissa, 1, which is 
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the single significant digit of this value, and the exponent 6, which 

indicates the power of ten, or the number of places the decimal 

point should be moved to the right. This shorter notation also 

requires fewer memory locations to represent the indicated value 

— one location to contain the significant digit (1), and a second to 

hold the exponent value (6). 

One more advantage this notation has over the individual mul¬ 

tiple precision value is the capability to represent fractional numbers. 

By providing a sign bit for the exponent, negative, as well as positive 

values of the exponent can be expressed. Remember, a negative ex¬ 

ponent forms the reciprocal of the power. For base ten, the ex¬ 

ponent, —1 would indicate the value of 1/10 times the mantissa. 

The negative exponent moves the decimal point to the mantissa 

one place to the left for each integer value of the exponent. 

This notation can be used to represent binary numbers as well. 

The binary mantissa contains the significant bits of the binary value. 

The binary exponent will indicate the power of two to which the 

mantissa is raised, thereby indicating the location of the decimal 

point (or, to properly refer to it, the binary point). The same prop¬ 

erties of the decimal exponent apply to the exponent for the binary 

numbers. If the exponent is positive, the binary point in the mantissa 

is actually located to the right by the number of places indicated 

by the exponent. A negative exponent shifts the binary point to the 

left. Putting it in more relative terms, if the mantissa is shifted to the 

right, the exponent must be incremented. Shifting the mantissa to 

the left means the exponent must be decremented. The following 

illustrates three ways of expressing the same number in binary 

floating point format. 

101.0 E + 0= 5X1=5 

.101 E+ 3 = 5/8X8= 5 

101000.0 E - 3 = 40 X 1/8 = 5 

This notation may be used to represent a wide range of values 

with a minimum number of memory locations. One or more memory 

locations may be set up to store the mantissa and the exponent. The 

number of locations used will depend on the number of significant 

bits desired to express each quantity. 

The floating point routines to be presented in this chapter op¬ 

erate with binary floating point numbers in the following format. 

Each number will be stored in four memory locations. The first 

location will contain the exponent with the most significant bit 
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indicating the sign of the exponent. The sign bit will indicate a posi¬ 

tive number if reset to zero, and a negative exponent if set to one. 

The next three locations will be used to store the mantissa as a tri¬ 

ple precision binary number. The most significant bit of the most 

significant byte is used to indicate the sign of the mantissa. The 

binary point will always be implied to be to the right of the sign bit 

in the mantissa. One should note that there is no implied binary 

point in the exponent since the exponent is always assumed to be an 

integer value. This format is illustrated below. 

Exponent MSB Mantissa LSB 

SEEEEEEE S.MMMMMMM MMMMMMMM MMMMMMMM 

MEM LOC N+3 MEM LOC N+2 MEM LOC N+1 MEM LOC N 

The order for storing the data in the memory location should be 

noted. The exponent is stored in the highest address of the four loca¬ 

tions used to store the floating point number. Also, since the sign 

bit takes up one bit for both the mantissa and the exponent, the 

number of bits used to represent each value is 23 (decimal) and 7, 

respectively. 

Before presenting the floating point routines, it should be 

noted that various locations on page 00 are used for data storage. 

This data includes pointers and counters required at different times, 

several temporary storage tables, and two areas that are frequently 

used as operating registers. These two areas shall be referred to as 

the floating point accumulator and the floating point operand. The 

floating point accumulator is used as the accumulator of the floating 

point routines in performing calculations and storing the results of 

the operations performed. The floating point operand is used to store 

and manipulate the number operated on by the accumulator. These 

two locations will have the same format as defined previously for 

the floating point numbers. The floating point accumulator and 

operand shall be abbreviated as FPACC and FPOP throughout the 

remainder of this chapter. 

Floating Point Normalization 

The first routine is used to adjust the floating point numbers 

to a common format. This format is required for proper operation 

of the other floating point routines. In order for the floating point 

arithmetic routines to operate with the highest degree of accuracy 

possible, the value in the FPACC must be adjusted to a standard 

representation before the operations are performed. This represen- 
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tation is referred to as the normalized value. A number is considered 

to be normalized when the mantissa’s most significant bit with a 

value of “1” is immediately to the right of the implied binary point. 

If this bit is not a “1,” the number is normalized by shifting the man¬ 

tissa to the left until the most significant “1” is to the right of the 

implied binary point. For each bit position shifted to the left in the 

mantissa, the corresponding exponent must be decremented to main¬ 

tain the actual value of the number. The resultant value of the man¬ 

tissa will be a number greater than or equal to one half, and less than 

one. This process is illustrated below: 

BEFORE NORMALIZATION 0.00011011100011000011010 E+0 

AFTER NORMALIZATION 0.11011100011000011010000 E-3 

The process of normalizing a floating point number is required 

to set up the values in a common format with which the other rou¬ 

tines can work effectively. Also, normalizing a number allows more 

significant digits in the mantissa. By insuring that one is using the 

highest number of digits possible, the accuracy of the calculations 

will be increased. 

The normalization routine is written to operate with positive 

mantissa values. If the number to be normalized is negative, this 

routine will convert it to its two’s complement form before nor¬ 

malizing, and then complement it again after the normalization. 

The following example illustrates the process for normalizing the 

value —5, as it may appear after an arithmetic operation. 

INITIAL VALUE 1.1111111 011000000 00000000 E $0A 

COMPLEMENTED 0.0000000 101000000 00000000 E $0A 

NORMALIZED 0.101000 000000000 00000000 E $03 

COMPLEMENTED 1.011000 000000000 00000000 E $03 

One special test must be made by this routine . It must check for 

an initial mantissa value of zero. If the mantissa is initially all zeros, 

and the normalization routine is allowed to perform its normal se¬ 

quence, it would become caught in an endless loop looking for the 

first “one” bit. Therefore, to eliminate this possibility, the FPACC 

mantissa is initially checked for a value of zero. If found, the FPACC 

exponent is zeroed and the routine returns. 

The routine uses four memory locations for the mantissa in the 

initial stages of the process. This is necessary to handle some special 

cases that occur in the multiplication routine that require the addi- 
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tional precision. For the routines that do not use the additional byte, 

the least significant byte minus one of the mantissa must be set to 

zero before calling the FPNORM routine. 

FPNORM LDX #TSIGN 

LDA FPMSW 

BMI ACCMIN 

LDY #$00 

STY PAGE0,X 

JMP ACZERT 

ACCMIN STA PAGE0,X 

Set pointer to sign register 

Fetch FPACC MS Byte 

If negative, branch 

If positive, clear sign register 

By storing zero 

Then test if FPACC=0 

Set sign indicator if minus 
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LDY #$04 Set precision counter 

LDX #FPLSWE Set pointer to FPACC LS Byte —1 

JSR COMPLM Two's complement FPACC 

ACZERT LDX #FPMSW Set pointer to FPACC MS Byte 

LDY #$04 Set precision counter 

LOOKO LDA PAGE0,X See if FPACC=0 

BNEACNONZ Branch if nonzero 

DEX Decrement index pointer 

DEY Decrement byte counter 

BNE LOOKO If counter not zero, continue 

STY FPACCE FPACC = 0, clear exponent, too 

NORMEX RTS Exit normalization routine 

ACNONZ LDX #FPLSWE Set pointer to FPACC LS Byte —1 

LDY #$04 Set precision counter 

JSR ROTATL Rotate FPACC left 

LDA PAGEO.X See if one in MS Bit 

BMI ACCSET If minus, properly justified 

DEC FPACCE If positive, decrement FPACC exponent 

JMPACNONZ Continue rotating 

ACCSET LDX #FPMSW Set pointer to FPACC MS Byte 

LDY #$03 Set precision counter 

JSR ROTATR Compensating rotate right FPACC 

LDA TSIGN Is original sign positive 

BEQ NORMEX Yes, simply return 

LDY #$03 With pointer at LS Byte, set precision 

counter 

JMPCOMPLM Restore FPACC to negative and return 

Several of the Chapter Three subroutines are used here. These 

are the ROTATL, ROTATR and COMPLM subroutines. Throughout 

the remainder of the floating point routines, these and other subrou¬ 

tines, such as MOVIND, CLRMEM and ADDER will be called upon 

to perform their various functions. 

Floating Point Addition 

The basic function of this routine is carried out by the ADDER 

subroutine. However, there are a number of conditions that must 

be considered before the actual addition is performed. 

First, the FPACC and the FPOP are tested for a value of zero. 

If both values are zero, or only the FPOP is zero, the routine can be 

exited immediately, since the answer is already in the FPACC. 

(Remember, the results of all floating point operations are returned 
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in the FPACC!) If the FPACC is zero, the contents of the FPOP are 

transferred to FPACC before returning. 

Should both numbers contain values other than zero (as is most 

likely the case when FPADD is called) the relative magnitude of one 

number to the other must be compared. With both numbers ex¬ 

pressed in floating point notation, the range of values can vary quite 

a bit. For the addition routine, there is a limit in which the relative 

magnitude of the two numbers must fall. If one value is so much 

larger than the other, that the significant digits of the smaller are out¬ 

side the range of the significant digits of the larger, the addition 

would result in no change to the larger number. The answer would 

simply be equal to the larger number. This range is equal to the num¬ 

ber of bits used to represent the value of the mantissa. For the 

floating point format used by these routines, the allowable limit 

on the difference between the two exponents is 23. If the difference 

is greater than 23, the number of greater magnitude is returned in 

the FPACC as the answer. 

Assuming that the two numbers fall within the allowable range, 

the mantissas must be properly aligned before the addition can be 

executed. The two numbers are aligned when the exponents of each 

are equal. This alignment is made by shifting the mantissa of the 

smaller value to the right, while incrementing its exponent until it 

is equal to the exponent of the larger. Of course, if the exponents 

are equal at the start, this is not necessary. The only special con¬ 

sideration in this procedure is when the mantissa being shifted is 

negative. In this case, a “1” must be shifted into the MSB of the 

mantissa to maintain the negative condition. This is accomplished by 

setting the carry flag and calling the second entry point, ROTR, of 

the ROTATR subroutine. This will not clear the carry at the start 

of the rotate operation. 

The final operation before the addition is performed is to shift 

the FPACC and FPOP one bit to the right. This leaves the MSB open 

to accept a possible overflow as a result of the addition. This elimi¬ 

nates the need to test the carry flag for an overflow when the addi¬ 

tion is complete. Also, quad-precision is utilized in both the shifting 

and addition. This maintains the integrity of the LSB when the re¬ 

sult of the addition is normalized. 

FPADD LDA FPMSW 

BNENONZAC 

MOVOP LDX #FOPLSW 

STX FMPNT 

See if FPACC MS Byte =0 

Branch if not zero 

Set pointer to FPOP LS Byte 

Save in FMPNT 
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LDX #FPLSW 

STX TOPNT 

LDA #$00 

STA FMPNT+1 

STA TOPNT+1 

LDX #$04 

JMPMOVIND 

NONZAC LDA FOPMSW 

BNE CKEQEX 

RTS 

CKEQEX LDX #FPACCE 

LDA PAGE0,X 

CMP FOPEXP 

BEQ SHACOP 

SEC 

LDA #$00 

SBC PAGE0,X 

ADC FOPEXP 

BPLSKPNEG 

SEC 

STA TEMPI 

LDA #$00 

SBC TEMPI 

SKPNEG CMP #$18 

BMI LINEUP 

SEC 

LDA FOPEXP 

SBC PAGE0.X 

BPL MOVOP 

RTS 

LINEUP LDA FOPEXP 

SEC 

SBC PAGE0,X 

TAV 

BMI SHIFTO 

MORACC LDX #FPACCE 

JSR SHLOOP 

DEY 

BNE MORACC 

Set pointer to FPACC LS Byte 

Save in TOPNT 

Set page zero value 

Store in page portion of FMPNT 

And page portion of TOPNT 

Set precision counter 

Move FPOP to FPACC and return 

See if FPOP MS Byte = 0 

No, check exponents 

Yes, return, result = FPACC 

Set pointer to FPACC exponent 

Fetch FPACC exponent 

Is it equal to FPOP exponent? 

Branch ahead if equal 

If not equal, determine which is 

larger 

Form the two's complement of 

The FPACC exponent 

Add in FPOP exponent 

If +, FPOP > FPACC 

If —, form two's complement 

Of the result 

This will be used to test the 

Magnitude of the difference in 

exponents 

Is difference < 18 hexadecimal? 

If so, align the mantissas 

If not, is the FPOP > FPACC? 

This is tested by comparing 

The exponents of each 

FPOP larger, move FPOP to 

FPACC 

FPACC larger, return 

Fetch FPOP exponent 

Set carry for subtraction 

Subtract FPOP—FPACC exponents 

Save difference in Y 

If neg., FPACC >, shift FPOP 

Set pointer to FPACC exponent 

Shift FPACC to right, one bit 

Decrement difference counter 

If not zero, continue 
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JMPSHACOP 

SHIFTO LDX #FOPEXP 

JSR SHLOOP 

INY 

When zero, set up for addition 

Set pointer to FPOP exponent 

Shift FPOP to right, one bit 

Increment difference counter 
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BNE SHIFTO 

SHACOP LDA #$00 

STA FPLSWE 

STA FOLSWE 

LDX #FPACCE 

JSR SHLOOP 

LDX #FOPEXP 

JSR SHLOOP 

LDX #FOLSWE 

STX FMPNT 

LDX #FPLSWE 

STX TOPNT 

LDX #$04 

JSR ADDER 

JMPFPNORM 

SHLOOP INCPAGE0,X 

DEX 

TV A 

LDY #$04 

FSHIFT PH A 

LDA PAGE0,X 

BMIBRING1 

JSR ROTATR 

JMP RESCNT 

BRING1 SEC 

JSR ROTR 

RESCNT PLA 

TAY 

RTS 

Not zero, continue 

Prepare for addition 

Clear FPACC LS Byte -1 

Clear FPOP LS Byte -1 

Set pointer to FPACC exponent 

Rotate FPACC right to allow for over¬ 

flow 

Set pointer to FPOP exponent 

Rotate FPOP right to keep alignment 

Set pointer to FPOP LS Byte -1 

Store in FMPNT 

Set pointer to FPACC LS Byte -1 

Store in TOPNT 

Set precision counter 

Add FPOP to FPACC 

Normalize result and return 

Increment exponent value 

Decrement pointer 

Save difference counter 

Set precision counter 

Store difference counter on stack 

Fetch MS Byte of value 

If negative, must rotate one in MSB 

Positive, rotate value right one bit 

Return to calling program 

Set carry to maintain minus 

Rotate value right one bit 

Fetch difference counter 

Restore in Y 

Return 

Floating Point Subtraction 

Floating point subtraction may be derived by simply form¬ 

ing the two’s complement of the value contained in the FPACC and 

then jumping to the FPADD routine, as the following FPSUB routine 

illustrates. 

FPSUB LDX #FPLSW 

LDY #$03 

JSR COMPLM 

JMP FPADD 

Set pointer to FPACC LS Byte 

Set precision counter 

Complement FPACC 

Subtract by adding negative 
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Floating Point Multiplication 

Floating point multiplication is essentially carried out by a 

series of shifting and addition operations. As presented previously, 

a binary number is multiplied by two by simply shifting it one bit 

position to the left. With the proper addition function, one can 

create a multiplication algorithm for multiple precision binary num¬ 

bers. This algorithm would operate in the following manner. 

The two numbers to be multiplied shall be referred to as the 

multiplier and the multiplicand. A third register, called the partial- 

product, shall be used to store the product as it is being calculated. 

First, examine the LSB of the multiplier. If it is a “1,” add the mul¬ 

tiplicand to the partial-product register. After the addition, or if the 

LSB was zero, shift the multiplicand to the left, one-bit position 

(multiplying it by two). Examine the bit to the left of the LSB of 

the multiplier and, if it is a “1,” add the current value of the mul¬ 

tiplicand to the partial-product. Then, shift the multiplicand to the 

left again. The process continues for each bit of the multiplier, work¬ 

ing up to the MSB. Each time the multiplier bit is equal to “1,” 

the current multiplicand is added to the partial-product. The multi¬ 

plicand is always shifted left following the examination of each bit 

of the multiplier (and addition to the partial-product if the bit is 

“1”). The result of the multiplication is contained in the partial- 

product register when the operation is complete. 

The algorithm just described performs multiplication of stan¬ 

dard binary numbers. Using this basic procedure, a multiplication 

algorithm for the mantissa in floating point format can be written. 

The following flow chart illustrates the process to be used to mul¬ 

tiply the floating point values. The only major difference between 

the algorithm above and the process used by this floating point 

multiplication routine is that the partial-product is shifted right for 

each bit examined, rather than shifting the multiplicand to the 

left. 

The exponent portion of the binary floating point numbers is 

manipulated in the same manner as the exponent of decimal float¬ 

ing point numbers for multiplication. They are simply added to¬ 

gether. 

The mantissa signs of both the multiplier and the multipli¬ 

cand must be examined before the multiplication is executed. 

Since the multiplication algorithm only works for positive numbers, 

if either value is negative it must be two’s complemented before 

multiplying. Also, following the laws of multiplication, if the two 

values are the same sign, the result will be positive; if the signs are 
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opposite, the result will be negative. This condition must be tested 

at the beginning, and, if the result is to be negative, the final value 

must be two’s complemented before returning. 

If the partial-product is rotated right for each bit of the mul¬ 

tiplier, it is necessary for the partial-product register to contain 

twice as many bits as the multiplier. Although the partial-product 

register contains more precision than the program is designed to 

handle, it is essential to maintain the required significant bit for the 

answer. At the completion of the multiplication algorithm, the 24th 

bit of the partial-product is used to round off the final result. The 

result is then normalized to the proper 23 bit floating point format. 

This manner of handling the partial-product allows maximum pre¬ 

cision for the multiplication routine. 

FPMULT JSR CKSIGN 

LDA FOPEXP 

CLC 

ADC FPACCE 

STA FPACCE 

INC FPACCE 

SETMCT LDA #$17 

STA CNTR 

MULTIP LDX #FPMSW 

LDY #$3 

JSR ROTATR 

BCC NADOPP 

ADOPP LDX #MCAND1 

STX FMPNT 

LDX #WORK1 

STX TOPNT 

LDX #$6 

JSR ADDER 

NADOPP LDX #W0RK6 

LDY #$6 

JSR ROTATR 

DEC CNTR 

BNE MULTIP 

LDX #WORK6 

LDY #$6 

JSR ROTATR 

LDX WORK3 

Set up and check sign of mantissas 

Get FPOP exponent 

Add FPACC exponent 

To FPOP exponent 

Save in FPACC exponent 

Add one for algorithm compensation 

Set bit counter 

Store bit counter 

Set pointer to FPACC MS Byte 

Set precision counter 

Rotate FPACC right 

Carry = zero, don't add partial-product 

Pointer to LS Byte of multiplicand 

Store pointer 

Pointer to LS Byte of partial-product 

Store pointer 

Set precision counter 

Add multiplicand to partial-product 

Set pointer to MS Byte of partial- 

product 

Set precision counter 

Rotate partial-product right 

Decrement bit counter 

Not zero, continue multiplying 

Else, set pointer to partial-product 

Set precision counter 

Make room for possible rounding 

Set pointer to 24th bit of partial- 
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LDA PAGEO.X 

product 

Fetch LS Byte -1 of result 

ROL A Rotate 24th bit to sign 

BPLPREXFR If 24th bit = zero, branch ahead 

CLC Clear carry for addition 

LDY #$3 Set precision counter 

LDA #$40 Add one to 23rd bit of partial-product 

ADC PAGE0,X To round off result 

STA WORK3 Store sum in memory 

CROUND LDA #$0 Clear A without changing carry 

ADC PAGE0,X Add with carry to propagate 

STA PAGE0,X Store in partial-product 

INX Increment index pointer 

DEY Decrement counter 

BNECROUND Not zero, add next byte 

PREXFR LDX #FPLSWE Set pointer to FPACC LSW —1 

STX TOPNT Store in TOPNT 

LDX #WORK3 Set pointer to partial-product 

STX FMPNT 

LSW —1 

Store in FMPNT 

LDX #$4 Set precision counter 

EXMLDV JSR MOVIND Move partial-product to FPACC 

JSR FPNORM Normalize result 

LDA SIGNS Get sign storage 

BNE MULTEX If not zero, sign is positive 

LDX #FPLSW Else, set pointer to FPACC LS Byte 

LDY #$3 Set precision counter 

JSR COMPLM Complement result 

MULTEX RTS Exit FPMULT 

CKSIGN LDA #$0 Set page portion of pointers 

STA TOPNT+1 Store in TOPNT 

STA FMPNT+1 Store in FMPNT 

LDA #WORKO Set pointer to work area 

STA TOPNT Store in TOPNT 

LDX #$8 Set precision counter 

JSR CLRMEM Clear work area 

LDA #MCAND0 Set pointer to multiplicand storage 

STA TOPNT Store in TOPNT 

LDX #$4 Set precision counter 

JSR CLRMEM Clear multiplicand storage 

LDA #$1 Initialize sign indicator 

STA SIGNS By storing one in SIGNS 
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LDA FPMSW 

BPLOPSGNT 

NEGFPA DEC SIGNS 

LDX #FPLSW 

LDY #$3 

JSR COMPLM 

OPSGNT LDA FOPMSW 

BMINEGOP 

RTS 

NEGOP DEC SIGNS 

LDX #FOPLSW 

LDY #$3 

JMPCOMPLM 

Fetch FPACC MS Byte 

Positive, check FPOP 

If negative, decrement SIGNS 

Set pointer to FPACC LS Byte 

Set precision counter 

Make positive for multiplication 

Is FPOP negative? 

Yes, complement value 

Else, return 

Decrement SIGNS indicator 

Set pointer to FPOP LS Byte 

Set precision counter 

Complement FPOP and return 

Floating Point Division 

The procedure for division almost can be considered the reverse 
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of that for multiplication. The division algorithm consists of a series 

of subtraction and shifting operations. The algorithm is illustrated 

in the following flow chart and is written for division of numbers in 

floating point format rather than straight binary. For operating with 

IlSFPOP NEGATIVE?! 

I 
^_NO VES 

COMPLEMENT 
FPOP 
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numbers in standard binary format, the most significant bits of the 

divisor and dividend would have to be properly aligned, and the lo¬ 

cation of the binary point in the quotient would have to be account¬ 

ed for in cases where the result is not a pure integer. 

A sample division of two floating point numbers using this al¬ 

gorithm in a step-by-step fashion is given below. This illustration will 

divide the binary equivalent of the value 15 (decimal) by 5. The 

numbers are presented as four-bit values to keep the illustration 

short. However, in the FPDIV routine, the operation is carried out 

23 times for each significant bit of the mantissa of the dividend. 

Once again, this algorithm assumes the numbers are in normalized 

floating point format. 
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0.1111 Original DIVIDEND at start of routine. 

0.1010 DIVISOR (Note floating point format.) 

0.0101 This is the REMAINDER from the subtraction 

operation. Since the result was POSITIVE, a "1" 

is placed in the LSB of the QUOTIENT register. 

0.0001 QUOTIENT after first loop. 

NOW BOTH QUOTIENT AND DIVIDEND (NEW 

REMAINDER) ARE ROTATED LEFT 

0.1010 New DIVIDEND (which is the previous 

REMAINDER rotated once to the LEFT). 

0.1010 DIVISOR (Does not change during routine). 

0.0000 RESULT of this subtraction is zero and thus quali¬ 

fies to become a NEW DIVIDEND. Also, 

QUOTIENT LSB getsa "1''for this case! 

0.0011 QUOTIENT after second loop. 

AGAIN BOTH QUOTIENT AND DIVIDEND (NEW 

REMAINDER) ARE ROTATED LEFT 

0.0000 New DIVIDEND (which isthe last remainder 

rotated once to the left). 

0.1010 DIVISOR (still same old number). 

1.0110 RESULT of this subtraction is a minus number 

(note that the SIGN bit changed). Thus, old 

DIVIDEND stays in place and QUOTIENT gets 

a “0" in LSB! 

0.0110 QUOTIENT after third loop. 

NOW BOTH QUOTIENT, AND IN THIS CASE, THE OLD 

DIVIDEND, ARE ROTATED LEFT 

0.0000 Old DIVIDEND rotated once to the left. 
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0.1010 Same old DIVISOR 

1.0110 RESULT of this subtraction is again a minus. Old 

DIVIDEND stays in place. QUOTIENT gets another 

"0" in LSB. 

0.1100 QUOTIENT after fourth loop. 

With only four significant bits in the dividend, the calculation 

illustrated ends after the fourth loop. The answer is contained in the 

quotient. The exponents are the next quantity that must be dealt 

with, since the values are represented in floating point notation. 

Just as in division of decimal floating point numbers, the exponents 

of the binary counterparts are subtracted; dividend exponent minus 

the divisor exponent. In the example given, the dividend would 

have an exponent of four for the normalized binary value of 15 

(decimal), and the divisor would have a binary exponent of three. 

The algorithm as presented requires a compensation factor of +1 

after subtracting the exponents in order to have the correct floating 

point result. Thus, the exponent of the quotient in the previous 

example would be (4 — 3) +1 = 2. This can be verified by moving the 

implied binary point in the quotient two places to the right — the 

binary value of three would indeed be observed. 

In the division algorithm, just as in the multiplication, the sign 

of the dividend and divisor must be positive for the algorithm to 

operate properly. If either is negative, it must be two’s comple¬ 

mented before the division is performed. Also, if the signs are the 

same, the sign of the quotient must be positive. If the signs are 

opposite, the quotient must be two’s complemented before exiting 

the routine to make the answer negative. 

While examining the FPDIV listing, note that two other condi¬ 

tions are considered by the routine. If the quotient has a remainder 

after the final loop through the divide algorithm, which would result 

in a “1” in the 24th bit position, it is rounded off by adding a 

“1” to the 23rd bit. Also, if a divide by zero is attempted (which is 

an illegal operation), the FPDIV routine jumps to a routine labeled 

DERROR. The user may use this to perform whatever is deemed 

necessary when this error occurs. 

FPDIV JSR CKSIGN Clear work area and set SIGNS 

LDA FPMSW Check for divide by zero 

BEQ DERROR Divisor = zero, divide by zero error 

108 Chapter 5 



SUBEXP LDA FOPEXP 

SEC 

SBC FPACCE 

STA FPACCE 

INC FPACCE 

SETDCT LDA #17 

STA CNTR 

DIVIDE JSR SETSUB 

BMINOGO 

LDX #FOPLSW 

STX TOPNT 

LDX #WORKO 

STX FMPNT 

LDX #$3 

JSR MOVIND 

SEC 

JMPQUOROT 

DERROR LDA #$BF 

JMP ERROUT 

NOGO CLC 

QUOROT LDX #WORK4 

LDY #$3 

JSR ROTL 

LDX #FOPLSW 

LDY #$3 

JSR ROTATL 

DEC CNTR 

BNE DIVIDE 

JSR SETSUB 

BMI DVEXIT 

LDA #$1 

CLC 

ADCWORK4 

STA WORK4 

LDA #$0 

ADC WORK5 

STAWORK5 

LDA #$0 

ADCWORK6 

Get DIVIDEND exponent 

Set carry for subtraction 

Subtract DIVISOR exponent 

Store result in FPACC exponent 

Compensate for divide algorithm 

Set bit counter storage 

To 17 hexadecimal 

Subtract DIVISOR from DIVIDEND 

If result is minus, rotate zero in 

QUOTIENT 

Set pointer to DIVIDEND 

Store in TOPNT 

Set pointer to QUOTIENT 

Store in FMPNT 

Set precision counter 

Move QUOTIENT to DIVIDEND 

storage 

Set carry for positive results 

Rotate into QUOTIENT 

Set ASCII for "?” 

Print "?" and return 

Negative result, clear carry 

Set pointer to QUOTIENT LS Byte 

Set precision counter 

Rotate carry into LSB of QUOTIENT 

Set pointer to DIVIDEND LS Byte 

Set precision counter 

Rotate DIVIDEND left 

Decrement bit counter 

If not zero, continue 

Do one more for rounding 

If minus, no rounding 

If 0 or +, add one to 23rd bit 

Clear carry for addition 

Round off LS Byte of QUOTIENT 

Restore byte in work area 

Clear A, not the carry 

Add carry to second byte of 

QUOTIENT 

Store result 

Clear A, not the carry 

Add carry to MS Byte of 
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STA W0RK6 

BPLDVEXIT 

LDX #W0RK6 

LDY #$3 

JSR ROTATR 

INC FPACCE 

DVEXIT LDX #FPLSWE 

STX TOPNT 

LDX #WORK3 

STX FMPNT 

LDX #$4 

JMPEXMLDV 

SETSUB LDX -#WORKO 

STX TOPNT 

LDX #FPLSW 

STX FMPNT 

LDX -#$3 

JSR MOVIND 

LDX #WORKO 

STX TOPNT 

LDX #FOPLSW 

STX FMPNT 

LDY #$0 

LDX #3 

SEC 

SUBR1 LDA (FMPNT),Y 

SBC (TOPNT),Y 

STA (TOPNT),Y 

INY 

DEX 

BNESUBR1 

LDA WORK2 

RTS 

QUOTIENT 

Store result 

If MSB = 0, exit 

Else prepare to rotate right 

Set precision counter 

Clear sign bit counter 

Compensate exponent for rotate 

Set pointer to FPACC 

Store in TOPNT 

Set pointer to QUOTIENT 

Store in FMPNT 

Set precision counter 

Move QUOTIENT to FPACC 

Set pointer to work area 

Store in TOPNT 

Set pointer to FPACC 

Store in FMPNT 

Set precision counter 

Move FPACC to work area 

Prepare for subtraction 

Store pointer to DIVISOR 

Set pointer to FPOP LS Byte —1 

Store pointer to DIVIDEND 

Initialize index pointer 

Set precision counter 

Set carry for subtraction 

Fetch FPOP byte (DIVIDEND) 

Subtract FPACC byte (DIVISOR) 

Store in place of DIVISOR 

Advance index pointer 

Decrement precision counter 

Not zero, continue subtraction 

Set sign bit result in N flag 

Return with flag conditioned 

The floating point routines presented to this point, when as¬ 

sembled into the object code, will reside in approximately two and 

one half pages of memory. Additional memory is required for the 

data areas on page 00 which are used to store various counters and 

data values. The locations used on page 00 by these floating point rou¬ 

tines are listed in the following table. The addresses listed here are 

the same as those used by the floating point package presented in 
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Appendix F. 

Address 

Program 

Label Definition 

0000 FMPNT FROM pointer 

0002 TOPNT TO pointer 

0004 CNTR Counter Storage 

0005 TSIGN Sign Indicator 

0006 SIGNS Signs Indicator (Multiply 

0007 FPLSWE 

and Divide) 

FPACC Extension 

0008 FPLSW FPACC Least Significant Byte 

0009 FPNSW FPACC Next Significant Byte 

000A FPMSW FPACC Most Significant Byte 

000B FPACCE FPACC Exponent 

oooc MCAND0 Multiplication Work Area 

000D MCAND1 Multiplication Work Area 

000E MCAND2 Multiplication Work Area 

000 F FOLSWE FPOP Extension 

0010 FOPLSW FPOP Least Significant Byte 

0011 FOPNSW FPOP Next Significant Byte 

0012 FOPMSW FPOP Most Significant Byte 

0013 FOPEXP FPOP Exponent 

0014 WORKO Work Area 

0015 WORK1 Work Area 

0016 WORK2 Work Area 

0017 WORK3 Work Area 

0018 WORK4 Work Area 

0019 WORK5 Work Area 

001A WORK6 Work Area 

001B WORK7 Work Area 

The floating point routines are extremely powerful routines 

that can be of considerable value to someone who requires such 

mathematical calculations on a 6502-based microcomputer. These 

routines provide the capability to handle binary numbers equivalent 

to six or seven significant decimal digits raised to plus or minus the 

38th power of ten. Using these routines as a base, a wide variety 

of mathematic operations can be performed by loading FPACC and 

FPOP with the numbers in normalized floating point format and 

calling the proper routine. 

One of the most common requirements of a program that 
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deals with binary numbers is the conversion to and from deci¬ 

mal because it is often necessary to communicate with a human 

operator. Therefore, to illustrate a method for converting from float¬ 

ing point decimal to floating point binary, and back, the following 

three routines are included. 

Floating Point Input Routine 

The first of these routines performs the conversion of decimal 

floating point numbers to floating point binary. The overall require¬ 

ment of this routine is to receive the decimal number in floating 

point format, normalize the mantissa portion to an all-integer value, 

and convert to the equivalent floating point binary value. 

Floating point decimal values may be expressed in various 

forms, as indicated below. 

123.45 

or 

1.2345 E+2 

As either of these formats are received, the mantissa portion is 

converted to binary. The exponent is also formulated during the 

input to provide the proper normalized decimal value. Unlike the 

binary normalization, which shifts the binary point to the left of 

the MSB, decimal normalization maintains the decimal point to the 

right of the least significant digit. This provides a purely integer 

mantissa. Thus, the example above would be normalized to 

12345 E-2 

The conversion of the decimal mantissa to binary is accom¬ 

plished by the routine labeled DECBIN, which is a version of the 

TIMS10 subroutines presented in Chapter Four. This subroutine 

converts each digit entered. First, it multiplies the binary equivalent 

of the digits already received by ten. The BCD value of the latest 

digit input is added to create the new binary number. 

Once the mantissa is converted, the decimal exponent is input 

and converted to binary. At this point, it is necessary to normalize 

the mantissa of the binary equivalent be calling the FPNORM rou¬ 

tine. The FPACC exponent is set to a value of 23 before calling the 

FPNORM routine. Then, using the FPMULT routine, the normalized 

binary equivalent is multiplied by ten (for each unit of a positive 

decimal exponent received), or by 0.1 (for each unit of a negative 
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exponent received). 

The input and output portions of this routine require that the 

user provide driver routines for the specific input and output devices 

associated with one’s system. The requirement for the INPUT rou¬ 

tine is to return to the calling routine with the ASCII code for the 
character entered in the accumulator. The routine to output char¬ 

acters to a display device, such as a mechanical printer or video 

display, must accept the character to be output as an ASCII charac¬ 

ter stored in the accumulator. This output routine labeled ECHO, 

is called to echo the characters received from the input device 

back to the display device. Refer to Chapter Seven for methods of 

creating these routines. The ECHO routine should return with the 

ASCII code for the character output in the accumulator. 

Presented next is the decimal to binary input routine listing. 

Both formats illustrated previously are allowed as legal entries. The 

routine accounts for positive and negative mantissas and exponents. 

The operator has the option to cancel the current input by entering 

a control zero character. Several locations on page 00 are used to store 

the input characters and save counters and indicators. These loca¬ 

tions will be summarized later in this chapter. 

FPINP LDA #$00 Clear page portions of TOPNT 

STA TOPNT And FMPNT to set up pointers 

STA FMPNT To page zero, where data is stored 

CLD Clear decimal mode flag 

LDX #INMTAS Set pointer to storage area 

STX TOPNT Store in TOPNT 

LDX #$0C Set precision counter 

JSR CLRMEM Clear storage area 

JSR INPUT Get character from kybd 

CMP #$AB Test if + sign 

BEQ SECHO Yes, echo and continue 

CMP #$AD Test if — sign 

BNE NOTPLM No, test if valid character 

STA INMTAS' Make input sign nonzero 

SECHO JSR ECHO Echo character to output 

N INPUT JSR INPUT Get character from kybd 

NOTPLM CMP #$8F Test for control zero 

BNE SERASE No, skip erase 

ERASE LDA #$BC Yes, print < as a rubout 

JSR ECHO Output < 

JSR SPACES Print several spaces 
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JMP FPINP 

SERASE CMP #$AE 

BNE SPRIOD 

PERIOD BIT INPRDI 

BPLPER1 

BMI ISLAND 

PERI STA INPRDI 

LDY #$0 

STY CNTR 

JSR ECHO 

JMP NINPUT 

SPRIOD CMP #$C5 

BNE SFNDXP 

FNDEXP JSR ECHO 

JSR INPUT 

CMP #$AB 

BEQ EXECHO 

CMP #$AD 

BNE NOEXPS 

STA INEXPS 

EXECHO JSR ECHO 

EXPINP JSR INPUT 

NOEXPS CMP #$8F 

BEQ ERASE 

CMP #$B0 

ISLAND BMI ENDINP 

CMP #$BA 

BPL ENDINP 

AND #$0F 

STA TEMPI 

LDX #IOEXPD 

LDA #$03 

CMP $0,X 

BMI ENDINP 

LDA $0,X 

CLC 

ROL $0,X 

ROL $0,X 

ADC $0,X 

ROL A 

ADC TEMPI 

STA $0,X 

Restart input string 

Test for decimal point 

No, skip period 

Decimal point already received? 

No dec. pt. yet, continue 

Yes, end input 

Set dec. pt. indicator 

Reset digit counter 

Echo dec. pt. to output 

Get next character 

Test for E for exponent 

No, skip exponent 

Yes, echo E — to output 

Input next character of exponent 

Test for + sign 

Yes, echo it 

Test for - sign 

No, test for digit 

Yes, store minus indicator 

Echo to output 

Get next character for exponent 

Test for control zero 

Yes, start again 

Number, test low limit 

No, end input string 

Test upper limit 

No, end input string 

Mask and strip ASCII 

Store BCD in temporary storage 

Set pointer to exponent storage 

Test for upper limit of exponent 

Is ten's digit > 3? 

Yes, end input 

Store temporarily in A 

Clear carry 

Exponent X 2 

Exponent X 4 

Add original (X 5) 

Exponent X10 

Add new input 

Store in exponent storage 
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LDA #$B0 

ORA TEMPI 

BNEEXECHO 

SFNDXP CMP #$B0 

BMI ENDINP 

CMP #$BA 

BPL ENDINP 

TAY 

LDA #$F8 

BIT IOSTR2 

BNE NINPUT 

TYA 

JSR ECHO 

INCCNTR 

AND #$0F 

PHA 

JSR DECBIN 

LDX #IOSTR 

PLA 

CLC 

ADC $0,X 

STA $0,X 

LDA #$0 

ADC $1 ,X 

STA $1 ,X 

LDA #$0 

ADC $2,X 

STA $2,X 

JMP NINPUT 

ENDINP LDA INMTAS 

BEQ FINPUT 

LDX #IOSTR 

LDY #$03 

JSR COMPLM 

FINPUT LDA #$0 

STA IOSTR—$1 

LDA #FPLSWE 

STA TOPNT 

LDA #IOSTR—$1 

STA FMPNT 

LDX #$04 

JSR MOVIND 

Restore ASCII code 

By setting $B0 

Echo number 

Test for valid number 

Too low, end input 

Test for upper limit 

If not valid, end input 

Save temporarily 

Input too large? 

Test for too large 

Yes, ignore present input 

No, fetch digit again 

Echo to output 

Increment digit counter 

Mask off ASCII 

Save BCD digit temporarily 

Multiply previous value X 10 

Set pointer to storage 

Fetch digit just entered 

Clear carry for addition 

Add digit to storage 

Save new total 

Clear A for next addition 

Add carry to next byte 

Save new total 

Clear A again for addition 

Add carry to final byte 

Save final byte of total 

Look for next character input 

Test is positive or negative 

Indicator zero, number positive 

Index to LSB of input mantissa 

Set precision counter 

Two's complement for negative 

Clear input storage LSB—1 

Set TOPNT to FPACC 

Set FMPNT to input storage 

Set byte counter 

Move input to FPACC 

Set exponent for FPNORM 
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LDY #$17 

STY FPACCE 

JSR FPNORM 

LDA INEXPS 

BEQPOSEXP 

LDA #$FF 

EOR IOEXPD 

STA IOEXPD 

INC IOEXPD 

POSEXP LDA INPRDI 

BEQ EXPOK 

LDA #$0 

SEC 

SBC CNTR 

EXPOK CLC 

ADC IOEXPD 

STA IOEXPD 

BMI MINEXP 

BNE EXPFIX 

RTS 

EXPFIX JSR FPIX10 

BNE EXPFIX 

RTS 

FPX10 LDA #$04 

STA FOPEXP 

LDA #$50 

STA FOPMSW 

LDA #$00 

STA FOPNSW 

STA FOPLSW 

JSR FPMULT 

DECIOEXPD 

RTS 

MINEXP JSRFPD10 

BNE MINEXP 

RTS 

FPD10 LDA #$FD 

STA FOPEXP 

LDA #$66 

Store exponent for normalization 

Normalize the input 

Test exponent sign indicator 

Positive? Same exponent 

Minus, form two's complement 

Of exponent value 

By complementing and incrementing 

Test period indicator 

If zero, no decimal point 

Clear A 

Set carry for subtraction 

Form negative of count 

Clear carry for addition 

Add to compensate for dec. pt. 

Store results 

Negative exponent, adjust to zero 

Not zero, adjust to zero 

Return with value in FPACC 

Multiply by ten 

Exponent not zero, multiply again 

Return 

Multiply FPACC X 10 

Load FPOP with a value of ten 

By setting the exponent to four 

And the mantissa to $50,$00,$00 

Multiply FPACC X FPOP 

Decrement decimal exponent 

Return to test for completion 

Compensated decimal exponent minus 

FPACC X 0.1 till decimal exponent = zero 

Return 

Place 0.1 in FPOP by 

Setting FPOP exponent to -3 

And loading mantissa with $66,$66, 

$67 

STA FOPMSW 

STA FOPNSW 
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LDA #$67 

STA FOPLSW 

JSR FPMULT Multiply FPACC X FPOP 

INC IOEXPD Increment decimal exponent 

RTS Return 

DECBIN LDA #$00 

STA IOSTR3 Clear MS Byte + 1 of result 

LDX #IOLSW Set pointer to I/O work area 

STX TOPNT Store in TOPNT 

LDX #IOSTR Set pointer to I/O storage 

STX FMPNT Store in FMPNT 

LDX #$04 Set precision counter 

JSR MOVIND Move I/O storage to work area 

LDX #IOSTR Set pointer to original value 

LDY #$04 Set precision counter 

JSR ROTATL Start X 10 routine (total =X2) 

LDX #IOSTR Reset pointer 

LDY #$04 Set precision counter 

JSR ROTATL Multiply by two again (total =X4) 

LDX #IOLSW Set pointer to I/O work area 

STX FMPNT Store in FMPNT 

LDX #IOSTR Set pointer to I/O storage 

STX TOPNT Store in TOPNT 

LDX #$04 Set precision counter 

JSR ADDER Add original to rotated (total ^X5) 

LDX #IOSTR Reset pointer 

LDY #$04 Set precision counter 

JMP ROTATL X2 again (total =X10) and return 

Floating Point Output Routine 

The next routine converts the floating point binary number 

in the FPACC to its floating point decimal equivalent, and output it 

to the display device as ASCII characters in the following format: 

0.1234567 E+07 

First, the normalized value is converted to a binary value in 

which the binary exponent is within the range of —4 to —1. As this 

is done, the decimal exponent is generated. Once the binary expo¬ 

nent is properly adjusted, the decimal mantissa is output by mul¬ 

tiplying the adjusted binary mantissa by ten for each decimal digit. 

Each multiplication causes the next decimal digit to be pushed out 
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into the most significant byte +1 of the binary mantissa. As each 

digit is pushed out, its ASCII code is formed, and the ECHO routine 

is called to output the digit. When the mantissa has been output, 

the decimal exponent is converted. This conversion makes use of the 

method described in Chapter Four for binary to decimal conversion. 

The exponent is then output. 

FPOUT LDA #$0 

STA IOEXPD 

LDA FPMSW 

BMIOUTNEG 

LDA #$AB 

BNE AHEAD1 

OUTNEG LDX #FPLSW 

LDY #$3 

JSR COMPLM 

LDA #$AD 

AHEAD1 JSR ECHO 

LDA #$B0 

JSR ECHO 

LDA #$AE 

JSR ECHO 

DEC FPACCE 

DECEXT BPLDECEXD 

LDA #$4 

CLC 

ADC FPACCE 

BPL DECOUT 

JSR FPX10 

DECREP LDA FPACCE 

JMP DECEXT 

DECEXD JSR FPD10 

JMP DECREP 

DECOUT LDX #IOSTR 

STX TOPNT 

LDX #FPLSW 

STX FMPNT 

LDX #$3 

JSR MOVIND 

LDA #$0 

STA IOSTR3 

LDX #IOSTR 

Clear decimal exponent storage 

Is value to be output negative? 

Yes, make positive and output 

Else, set ASCII code for "+" 

Go display + sign 

Set pointer to LS Byte of FPACC 

Set precision counter 

Make FPACC positive 

Set ASCII code for 

Output sign of result 

Set up ASCII zero 

Output zero to display 

Set up ASCII decimal point 

Output decimal point 

Decrement FPACC exponent 

If compensated, exponent > = 0 

Exponent negative, add four to FPACCE 

Clear carry for addition 

Add four to FPACC exponent 

If exponent > = 0, output mantissa 

Else, multiply mantissa by ten 

Get exponent 

Repeat test for > = 0 

Multiply FPACC by 0.1 

Check status of FPACC exponent 

Set up for move operation 

Set TOPNT to working register 

Set pointer to FPACC LS Byte 

Store in FMPNT 

Set precision counter 

Move FPACC to output registers 

Clear output register MS Byte +1 

Set pointer to output LS Byte 
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LDY #$3 Set precision counter 

JSR ROTATL Rotate to compensate for sign bit 

JSR DECBIN Output register X 10, overflow in MS 

Byte +1 

COMPEN INCFPACCE Increment FPACCexponent 

BEQ OUTDIG Output digit when compensation done 

LDX #IOSTR3 Else, rotate right to compensate 

LDY #$4 For any remainder in binary exponent 

JSR ROTATR Perform rotate right operation 

JMP COMPEN Repeat loop until exponent = zero 

OUTDIG LDA #$7 Set digit counter to seven 

STA CNTR For output operation 

LDA IOSTR3 Fetch BCD, see if first digit = zero 

BEQ ZERODG Yes, check remainder of digits 

OUTDGS LDA IOSTR3 Get BCD from output register 

ORA #$B0 Form ASCII code for numbers 

JSR ECHO And output digit 

DECRDG DEC CNTR Decrement digit counter 

BEQ EXPOUT = zero, done output exponent 

JSR DECBIN Else, get next digit 

JMP OUTDGS Form ASCI I and output 

ZERODG DEC IOEXPD Decrement exponent for skipping 

display 

LDA IOSTR2 Check if mantissa = zero 

BNE DECRDG If not zero, continue output 

LDA IOSTR1 

BNE DECRDG 

LDA IOSTR 

BNE DECRDG 

LDA #$0 Mantissa zero, clear exponent 

STA IOEXPD 

BEQ DECRDG Before finishing display 

EXPOUT LDA #$C5 Set up ASCII code for E 

JSR ECHO Display E for exponent 

LDA IOEXPD Test if negative 

BMI EXOUTN Yes, display " and negate 

LDA #$AB No. set ASCII code for "+" 

JMPAHEAD2 Display exponent value 

EXOUTN EOR #$FF Two's complement exponent 

STA IOEXPD To make negative value positive 

INC IOEXPD For output of exponent value 

LDA #$AD Set ASCI I code for 
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AHEAD2 JSR ECHO Output sign of exponent 

LDY #$0 Clear ten's counter 

LDA IOEXPD Fetch exponent 

SUB12 SEC Set carry for subtraction 

SBC #$0A Subtract ten's from exponent 

BMI TOMUCH If minus, ready for output 

STA IOEXPD Restore positive result 

INY Advance ten's counter 

JMPSUB12 Continue subtraction 

TOMUCH TYA Put MS digit into A 

ORA #$B0 Form ASCII code 

JSR ECHO Output ten's digit to display 

LDA IOEXPD Fetch unit's digit 

ORA #$B0 Form ASCI I code 

JMP ECHO Output digit and return 

Putting the Pieces Together 

This final routine ties the FPINP and FPOUT routines together, 

along with the floating point mathematical routines FPNORM, 

FPADD, FPSUB, FPMULT and FPDIV to create a floating point 

calculator program. All that is required by the reader is to supply 

the I/O driver routines. The program allows one to enter and receive 

data in the following format: 

27.6E-2 X—5 = —0.1380000E+01 

FPCONT LDA #$8D ASCII carriage return 

JSR ECHO Output carriage return 

LDA #$8A ASCII linefeed 

JSR ECHO Output line feed 

JSR FPIIMP Get first FP decimal number 

JSR SPACES Output two spaces 

LDX #TPLSW Set pointer to temporary storage 

STX TOPNT Store in TOPNT 

LDX #FPLSW Set pointer to FPACC LS Byte 

STX FMPNT Store in FMPNT 

LDX #$04 Set precision counter 

JSR MOVIND Move FPACC to temporary storage 

NVALID JSR INPUT Fetch operator from input 

CMP #$AB Test for "+" sign 

BNENOTADD No, try 
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JSR OPERAT Input FPACC value 

JSR FPADD Add FPOP to FPACC 

JMP FINAL Output result of addition 

NOTADD CMP #$AD Test for " sign 

BNE NOTSUB No, try "X" 

JSR OPERAT Yes, input FPACC value 

JSR FPSUB Subtract FPACC from FPOP 

JMP FINAL Output result of subtraction 

NOTSUB CMP #$D8 Test for "X" sign 

BNE NOTMUL No, try "/" 

JSR OPERAT Yes, input FPACC value 

JSR FPMULT Multiply FPOP times FPACC 

JMP FINAL Output result of multiplication 
NOTMUL CMP #$AF Test for sign 

BNE NOTDIV No, try delete 

JSR OPERAT Yes, input FPACC value 

JSR FPDIV Divide FPOP by FPACC 

FINAL JSR FPOUT Output answer 

JMP FPCONT Set up for new input 

NOTDIV CMP #$8F Not operator, try control zero 

BNE NVALID No, ignore, try again 

BEQ FPCONT Yes, restart input string 
OPERAT JSR ECHO Display control operator 

JSR SPACES Display a few spaces 

JSR FPINP Fetch second FP decimal number 

JSR SPACES Display two spaces 

LDA #$BD Set ASCII code for “=" 

JSR ECHO Display "=" sign 

JSR SPACES Display two spaces 

LDX #FOPLSW Set pointer to FPOP LS Byte 

STX TOPNT Store in TOPNT 

LDX #TPLSW Set pointer to temporary storage 
STX FMPNT Store in FMPNT 

LDX #$04 Set precision counter 

JMP MOVIND Move first input to FPOP and return 

The three routines, FPINP, FPOUT and FPCONT, as presented, 

require less than three pages of memory. This requirement may be 

shortened to some extent by forming subroutines for various com¬ 

mon instruction sequences. This has not been done here to maintain 

clarity of operation. However, the ambitious reader should have 

little difficulty in shortening the program. The following list defines 
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the data areas on page zero used by these routines. The addresses 

listed here are used by the floating point program presented in 

Appendix F. 

Program 

Address Label Definition 

001 c INMTAS I/O Mantissa Sign 

00 ID INEXPS I/O Exponent Sign 

001E INPRDI I/O Period Indicator 

001F IOLSW I/O Work Area Least Significant Byte 

0020 IONSW I/O Work Area Next Significant Byte 

0021 IOMSW I/O Work Area Most Significant Byte 

0022 IOEXP I/O Work Area Exponent 

0023 IOSTR I/O Storage 

0024 IOSTR1 I/O Storage 

0025 IOSTR2 I/O Storage 

0026 IOSTR3 I/O Storage 

0027 IOEXPD I/O Exponent Storage 

0028 TPLSW Temporary Input Storage Least Sig¬ 

nificant Byte 

0029 TP NSW Temporary Input Storage Next Sig¬ 

nificant Byte 

002A TPMSW Temporary Input Storage Most Sig¬ 

nificant Byte 

002B TPEXP Temporary Input Storage Exponent 

002C TEMPI Temporary Storage to Reside on Pages 

This floating point program has been assembled to reside on 

pages 02 to 07 and is presented in Appendix F as a memory dump. 

The locations on page zero used to store the temporary data are 

the same as those called out in the test. The order in which the 

routines have been presented for explanation is the same order in 

which they are assembled in Appendix F. A complete symbol table 

is provided following the memory dump. 
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Chapter 6 

Decimal Arithmetic 
Routines 

When using a computer to process mathematical data, such as data 
entered by an operator, and after processing, output for the operator 
to read, the decimal numbering system is most often the base used. 
This representation allows the operator to enter and read the data 
in a form most widely accepted and easily understood, since it is 
usually drummed into everyone from the time they are bom. The 
computer, on the other hand, is generally designed to operate most 
efficiently with numbers in binary format. Therefore, there must 
be some means made available to allow the operator and the com¬ 
puter to communicate in a common number system. 

Conversion routines from one number base to another are often 
used. Routines, such as those presented, make it possible to input 
and output numbers in decimal notation while performing the 
actual calculations in binary notation. However, inaccuracies can 
creep into the most elementary calculation as a result of the con¬ 
version! For example, the subtraction of 2.1 from 5.0 may be 
output at 2.8999 rather than 2.9 because of conversion errors. 

For applications where the operation required can be per¬ 
formed as decimal addition and subtraction, it would be far more 
accurate to perform these simple mathematical calculations in the 
same format as that used for input and output. The 6502 provides 
for this operation with the decimal mode flag. The decimal mode flag 
selects between binary and decimal arithmetic. When set, the addi¬ 
tion and subtraction instructions assume BCD digits are contained 
in the two subject bytes. With the decimal mode flag reset, these 
instructions assume the affected bytes will contain binary data. 

Presented here are routines that perform addition, subtraction, 
multiplication, and division of decimal numbers. The format used 
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to represent each number will be the same for all routines. Four 

bits are required to define each BCD digit. Therefore, two digits 

will be stored in a single eight-bit byte, with the least significant 

digit of the pair in the least significant half of the byte. These op¬ 

erations work with multiple precision values, allowing up to 256 

bytes to be assigned for each number. For the routines presented, 

the bytes used to represent each number must be stored in a table 

of sequential memory locations, with the byte containing the least 

significant digit pair in the lowest address of the table. 

The Basic Subroutines 

First is the decimal addition routine. If it looks like it is almost 

a carbon copy of the ADDER routine in Chapter Three, that’s be¬ 

cause it is! The only difference is that the decimal mode flag is set 

when the subroutine is executed. The SED instruction has been 

added to this routine to guarantee setting the flag. However, this 

may be deleted if the calling program has already set it. FMPNT 

and TOPNT must be initialized to the least significant byte of 

their respective values. Index register X must be set to the binary 

count of the number of bytes per value. The result is stored in 

TOPNT. 

DECADD LDY #00 

SED 

CLC 

DCADD1 LDA (TOPNT),Y 

ADC (FMPNT),Y 

STA (TOPNT),Y 

INY 

DEX 

BNE DCADD1 

RTS 

Initialize pointer 

Set decimal mode flag 

Clear carry flag 

Fetch byte from one value 

Add byte of second value 

Store sum 

Increment index pointer 

Decrement byte counter 

Not zero, continue addition 

Return 

The decimal subtraction routine is also the same as the subrou¬ 

tine SUBBER in Chapter Three. However, the decimal mode flag is 

set at the start of this routine. Just as in the previous routine, 

TOPNT and FMPNT initially must be set to the least significant byte 

of the minuend and subtrahend, respectively. The X index register 

must be set to the binary number of bytes in each value. This routine 

stores the result in place of the value indicated by TOPNT. For a 

valid answer, the minuend must be greater than or equal to the sub¬ 

trahend. 
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DECSUB LDY #00 

SED 

SEC 

DCSUB1 LDA(TOPNT),Y 

SBC (FMPNT),Y 

STA (TOPNT),Y 

INY 

DEX 

BNE DCSUB1 

RTS 

Initialize index pointer 

Set the decimal mode flag 

Set the carry flag 

Fetch a byte from the minuend 

Subtract a byte of the subtrahend 

Store the difference in the minuend 

Increment index pointer 

Decrement byte count 

Not zero, continue 

Return 

Calculating with Signed BCD 

The next pair of routines uses the decimal addition and subtrac¬ 

tion routines to perform the actual computation. These routines add 

the capability to perform addition and subtraction of signed deci¬ 

mal numbers. The sign and magnitude of the numbers to be added 

or subtracted must be checked to determine whether the operation 

actually calls for an addition or subtraction, and to set up the proper 

sign for the result of the operation. 

The two numbers to be operated on by these routines must be 

stored in two tables, referred to by the labels DCAC and DCOP. 

DCAC is the decimal accumulator, which is used to store one addend 

for the signed addition routine, and the minuend for the signed 

subtraction routine. DCOP is the decimal operand table, and must 

contain the other addend for the signed addition routine, and the 

minuend for the signed subtraction routine. For both routines, 

the results of the respective operations are stored in DCAC upon 

returning to the calling program. Also, the initial contents of DCOP 

are not necessarily maintained. 

The number of bytes in each table can be varied to allow for 

the number of digits desired per value. For these routines, the tables 

must be of equal length. The tables used by these routines are 

three bytes long, allowing six BCD digits per number. If the length 

of the tables is changed, the constant 03 in the instructions whose 

comments are marked by a double asterisk must be changed to in¬ 

dicate the new byte count. 

Unlike binary numbers in which the MSB of the binary value 

may be considered as the sign bit, BCD representation does not allow 

for this convenient method of sign designation. One may sacrifice 

a BCD digit by assigning the MSB of the MS Byte of a value as the 

sign bit. However, this method does not simplify the procedure for 

checking the sign of the value. It also complicates the process of 
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checking for an overflow or underflow, since the C flag will not 

automatically indicate these errors. A separate memory location 

will be used to indicate the sign of the decimal values. 

The sign of each number is set up in separate memory loca¬ 

tions and uses the most significant bit of each byte to indicate a 

negative number if set, or a positive number if reset. The remain¬ 

ing bits in each sign byte must be all zeros, since there are several 

locations in the routine in which the sign bytes are checked as being 

equal. This check involves the contents of the entire byte, not just 

the MSB. Making the remaining bits equal to zero is consistent with 

the format used by these routines to set and reset the sign bit of 

the result. The sign bytes that refer to the sign of the DCAC and 

DCOP are labeled SIGNAC and SIGNOP, respectively. 

Signed Addition 

Depending on the sign and magnitude of the values operated 

on, it may be necessary to exchange the contents of DCAC and 

DCOP. This is required when the indicated operation is that of sub¬ 

tracting the accumulator from the operand. This exchange is ac¬ 

complished by a subroutine labeled SHIFT. SHIFT exchanges the 

contents of the accumulator and operand one byte at a time. 

In the process of determining which operation is actually 

called for (addition or subtraction), the relative magnitudes of 

the two numbers must be known. This is determined by the CMPR 

subroutine. Its operation is basically the same as that of the 

CPRMEM subroutine in Chapter Three. The only difference is 

that this routine is written specifically for comparing two triple 

precision values. 

The signed addition routine, beginning at the label SGNADD, 

adds the contents of DCOP to DCAC, and returns with the answer 

in DCAC. The calling routine simply loads DCAC, SIGNAC, DCOP, 

and SIGNOP with the desired values before calling this routine. When 

the sign of each is the same, the addition is performed as indicated. 

If the signs are different, the value of smaller magnitude is subtracted 

from the larger value, and the sign of the larger is set as the sign of 

the answer. The actual computation is done by one of the previous 

addition or subtraction subroutines. The condition of the carry flag 

upon returning to the calling program will indicate whether an 

overflow or underflow has occurred as a result of the operation, 

signalling a possible error condition. The operation of the signed 

addition routine is illustrated in the flow chart following the source 

listing. 
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SIGNOP *=*+1 

SIGNAC *=*+1 

DCOP *=*+2 

DCOPM *=*+1 

DC AC *=*+2 

DCACM *=*+1 

SGNADD LDA SIGNOP 

CMP SIGNAC 

BEQSAR2 

BCC SAR3 

SARI JSR CMPR 

BCS SB 12 

LDA #00 

STA SIGNAC 

SB21 JSR SHIFT 

SB 12 LDA #<DCAC 

STA TOPNT 

LDA #<DCOP 

STA FMPNT 

LDX #$03 

JMPDECSUB 

SAR2 LDA #< DCOP 

STA FMPNT 

LDA #<DCAC 

STA TOPNT 

LDX #$03 

JMPDECADD 

SAR3 JSR CMPR 

BCS SB 12 

BEQSB21 

LDA #$80 

STA SIGNAC 

BNE SB21 

SHIFT LDX #$00 

SHIFTA LDA DCOP,X 

LDY DCAC.X 

STA DCAC,X 

STY DCOP,X 

INX 

CPX #03 

BNE SHIFTA 

RTS 

Sign byte of DCOP 

Sign byte of DCAC 

Decimal operand storage 

Decimal operand MS Byte 

Decimal accumulator storage 

Decimal accumulator MS Byte 

Fetch sign of DCOP 

Compare to sign of DCAC 

Signs equal, add numbers 

SIGNOP negative, SIGNAC positive 

Is DCOP greater than DCAC? 

No, subtract DCOP from DCAC 

Yes, set up zero byte 

Clear sign of DCAC 

Exchange DCAC and DCOP 

Fetch low portion of DCAC address 

Store in TOPNT 

Fetch low portion of DCOP address 

Store in FMPNT 

**Set precision counter 

Subtract and return 

Set pointer for addition 

Of DCOP to DCAC 

**Set precision counter 

Add and return 

Is DCOP greater than DCAC? 

No, subtract DCOP from DCAC 

Equal, SIGNAC remains positive 

Yes, change SIGNAC 

To negative value 

Subtract DCAC from DCOP 

Initialize index pointer 

Fetch byte from DCOP 

Fetch byte from DCAC 

Store DCOP byte in DCAC 

Store DCAC byte in DCOP 

Advance index register 

Last pair of bytes swapped? 

No, swap next pair 

Yes, return 

Decimal Arithmetic Routines 129 



CMPR 

CMPRA 

LDX #$03 Initialize index pointer 

LDA DCOP—1,X Fetch byte from DCOP 

CMPDCAC—1,X Compare to byte of DCAC 

BNE CMPRET Not equal, return 

DEX Equal, decrement index pointer 

BNE CMPRA Not done, continue 

RTS Return, with C and Z conditioned 



Signed Subtraction 

The signed subtraction routine, starting at the label SGNSUB, 

subtracts the contents of DCOP from the contents of DCAC. The 

calling program must set the contents of DCAC, SIGNAC, DCOP 

and SIGNOP with the desired values before calling this routine. The 

sign and magnitude of each of the numbers is examined to determine 

the actual operation to be performed. Several of the routines in the 

signed addition routine are used here. Since the decimal addition or 

subtraction routine is the last operation to be executed, the condi¬ 

tion of the C flag will indicate whether an error has occurred. 

SGNSUB LDA SIGNOP Fetch sign of DCOP 

CMP SIGNAC Compare to sign of DCAC 

BNE DIFSGN Not equal, change sign and add 

AND #$80 Are both negative? 

BMINAGATV Yes, compare magnitudes 

JSR CMPR Positive, is DCOP > DCAC? 

BCC SB21 Yes, subtract DCAC from DCOP 

LDA #$80 

STA SIGNAC 

No, set SIGNAC negative 

BNE SB 12 Subtract DCOP from DCAC 

DIFSGN LDA SIGNAC Fetch SIGNAC 

ADD #$80 Change SIGNAC to opposite 

STA SIGNAC Store back in SIGNAC 

JMPSAR2 Add DCOP to DCAC 

NEGATV JSR CMPR Compare DCAC to DCOP 

BEQNEG1 Equal, make sign positive 

BCC SB 21 Subtract DCAC from DCOP 

NEG1 LDA #$00 

STA SIGNAC 

DCOP < DCAC, SIGNAC positive 

BEQSB12 Subtract DCOP from DCAC 

Using these routines as a base, expanded decimal arithmetic 

programs can be written. One possible addition might be to include 

a decimal point by specifying either a fixed number of digits in 

the DCAC and DCOP to be to the right or left of the decimal point, 

or setting up a memory location to define the exponent. The ex¬ 

ponent may reside in one or more bytes of memory and also have a 

sign byte associated with it. By following the procedures outlined 

in Chapter Five, one may develop a floating point program using 

decimal values for the mantissa and exponent. The following routines 

may be used to perform the multiplication and division operations 
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of this type of floating point program. 

The multiplication and division routines both operate with a 

four-byte accumulator and operand. The first three bytes contain 

the six BCD digits of the respective values. The fourth byte is an 

extension of each value to allow for an overflow during the calcu¬ 

lations. The fourth byte must be cleared before entering either of 

these routines. Also, a memory location is set aside for both routines 

to store a digit counter value. This location, labeled DIGCNT, is 

initially set by these routines to the number of significant digits of 

the accumulator. As the operations proceed, this value is decrement¬ 

ed; when it reaches zero, the operation is complete. 

A table area labeled DCPP is used to store the partial-product 

and quotient for the respective operations. This table consists of 
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seven bytes, which allows enough room for the multiplication 

routine to maintain any overflow that may occur. 

Multiplication Routine 

The multiplication routine multiplies the contents of the deci¬ 

mal operand by the contents of the decimal accumulator. Begin¬ 

ning with the least significant digit of DCAC and working up, each 

digit is used as a counter for the number of times the operand is 

to be added to the partial-product. When the counter goes to zero, 

the contents of the partial-product are rotated right, which achieves 

the same result as multiplying the operand by ten. The next digit 

of the accumulator is then selected as a counter for the number of 

times the operand is added to the partial-product. This multipli¬ 

cation loop is executed once for each significant digit of the deci¬ 

mal accumulator. At the completion, the contents of DCPPO to 

DCPP5 contain the 12 significant digits of the result. If this routine 

is used in part of a floating point program, the results should be 

normalized. This is accomplished by shifting the partial-product 

register to the left until a nonzero BCD digit is in the most signifi¬ 

cant half of the most significant byte. This normalization process 

follows the same general outline as that defined in Chapter Five. 

DIGCNT *=*+1 Digit counter 

TMPCNT *=*+1 Temporary counter storage 

DCPPO *=*+1 Partial-product LS Byte 

DCPP1 *=*+1 

DCPP2 *=*+1 

DCPP3 *=*+1 

DCPP4 *=*+1 

DCPP5 *=*+1 Partial product of MS Byte 

DCPP6 *=*+1 Partial product extension 

DCOP *=*+2 DCOP storage 

DCOPM *=*+2 DCOP MS Byte and extension 

DCAC *=*+2 DCAC storage 

DCACM *=*+2 DCAC MS Byte and extension 

DECMUL LDA #$06 Set digit counter 

STA DIGCNT Store in memory 

LDX #$07 Set precision counter 

LDY #$00 Initialize index pointer 

STY TOPNT+1 Initialize page of TOPNT 

STY FMPNT+1 Initialize page of FMPNT 

LDA #< DCPPO Fetch low portion of DCPPO address 
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NXTDGT 

STA TOPNT Store pointer in TOPNT 

JSR CLRMEM Clear partial-product area 

SED Set decimal mode flag 

LDA DCAC Fetch LS Byte of DCAC 

AND #$0F Mask off upper half 

BEQDIGDON If zero, no need to multiply this digit 

STA TMPCNT Store digit in temporary counter 

LDX #< DCPP3 Set pointer to partial-product storage 

STX TOPNT Store in TOPNT 

LDX #< DCOP Set pointer to operand 

STX FMPNT Store in FMPNT 

LDX #$04 Set precision counter 

JSR DECADD Add DCOP to partial-product 

DECTMPCNT Decrement digit multiplier 
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BNE MULTPL 

DIGDON LDA #$04 

PPSHIFT LDY #$07 

LDX #< DCPP6 

JSR ROTATR 

LDY #$03 

LDX #< DCACM 

JSR ROTATR 

SEC 

SBC #$01 

BNE PPSHIFT 

DEC DGTCNT 

BNE NXTDGT 

RTS 

Not zero, continue multiply loop 

Set rotate counter 

Set precision counter 

Set pointer to partial-product 

Rotate partial-product right 

Set precision counter 

Set pointer to DCAC 

Rotate partial-product to right 

Set carry for decrement 

Decrement rotate counter 

Not done, continue rotating 

Decrement digit counter 

Not zero, continue multiplication 

Return 

Division Routine 

The decimal division routine operates in a manner similar to the 

binary to decimal conversion routine of Chapter Four. That is, it 

subtracts the divisor from the dividend until a borrow is required. 

A count of the number of times the subtraction is successfully per¬ 

formed is maintained. This becomes part of the quotient. When the 

borrow is detected, the routine rotates the dividend four bits to the 

left, and the subtraction cycle begins again. As each digit of the quo¬ 

tient is generated, it is shifted into the least significant digit of the 

quotient. 

Before calling this routine, the divisor and dividend must be 

loaded into the DCAC and DCOP as normalized decimal numbers. 

Once again, to normalize these decimal values, the most significant 

nonzero BCD digit must be in the most significant digit location of 

the respective values. At the completion of this routine, the quotient 

is contained in DCPP1 through DCPP3. As compensation for the 

operation of the routine, a value of one must be added to the expo¬ 

nent of the quotient. 

DECDIV LDX #$06 

STX DIGCNT 

LDA #< DCPP0 

3TA TOPNT 

LDY #$00 

3TY TOPNT+1 

STY FMPNT+1 

JSR CLRMEM 

Set up digit counter 

Store digit counter in memory 

Set up low portion of DCPP0 address 

Store in TOPNT for clear routine 

Set up index pointer 

Initialize page portion of TOPNT 

Initialize page portion of FMPNT 

Clear quotient storage 
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SUBDON LDX #$04 

JSR DECADD 

DEC DIGCNT 

BEQDVEXIT 

LDA #$04 

RESULT LDX #< DCPP1 

LDY #$03 

JSR ROTATL 

LDX #< DCOP 

LDY #$04 

JSR ROTATL 

SEC 

SBC #$01 

BNE RESULT 

BEQDVNEXT 

DVEXIT RTS 

Set precision counter 

Add DIVISOR back to DIVIDEND 

Decrement digit counter 

Equal zero, return 

Set rotate left counter 

Set pointer to QUOTIENT 

Set precision counter 

Rotate QUOTIENT left 

Set pointer to DIVIDEND 

Set precision counter 

Rotate DIVIDEND left 

Set carry for decrement 

Decrement rotate counter 

Not zero, continue rotating 

Continue division loop 

Return 
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Chapter 7 

Input/Output Processing 

Writing a program to communicate with a peripheral device is as 

important as almost any other programming task one may have to 

perform. Nearly every program requires some form of input or 

output. 

The input data may be received from a group of sensors that 

make up a burglar alarm system. Or, it may be entered through a 

keyboard device for a variety of control or data entry purposes. 

Input also could come from a bulk storage device, such as magnetic 

tape, for loading programs or reading large blocks of data. The out¬ 

put data may be used to turn relays or lights on and off, send char¬ 

acters to a display (such as a mechanical printer or video display), 

or to store programs or data on a bulk storage device. No matter 

what the task, it is important to be able to write effective I/O driver 

programs. 

Before the various forms of I/O routines are presented, it is 

important to understand the input/output setup of the 6502. The 

6502 CPU handles input and output in the same manner as reading 

and writing to the memory. This means that any addressable memory 

location may be used as an eight-bit parallel I/O port. Therefore, it 

is possible to have 64K of eight-bit parallel I/O devices on one sys¬ 

tem. This would be impractical since some memory would be re¬ 

quired to store the program to operate the I/O devices. The method 

of accessing an I/O port as though it is a location in memory allows 

the use of any of the memory access instructions to transfer data 

to and from the I/O devices. With this capability, the programmer is 

afforded considerable flexibility in testing and transferring data with 

an I/O device. 

Some Ground Rules for Discussion 

The following convention will be assumed for the I/O ports. 
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An input port consists of eight parallel data lines that provide true 

logic to the 6502 CPU. True logic means that a logic “1” trans¬ 

mitted by the input device is seen by the 6502 as a logic “1.” An 

output port is assumed to consist of eight parallel data lines that 

receive data written to it by the 6502 and maintains the eight-bit 

data at the output port lines until another data pattern is written 

to the output port. 

The first type of I/O processing to be discussed is one that 

would be used in conjunction with the simplest form of input and 

output devices. The input device might be a group of switches, 

or sensors, that provide a “1” or “0” to each of the input data 

lines to indicate an open or closed position. The output device 

might consist of a group of lamps that may be turned on by out- 

putting a “1,” or off by outputting a “0.” The schematic diagram 

below illustrates this configuration. 
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Several Methods of Data Input 

As indicated by this diagram, the input port has eight switches, 

numbered zero through seven, connected to its corresponding eight 

data leads. These switches might be sensor switches in a burglar alarm 

system that monitor the opening and closing of doors throughout a 

building. Assuming that the switches are closed when the doors are 

properly secured, the following input routine may be used to test 

for an open door. The label SWINP refers to the memory address of 

the switch input port. 

SWTEST LDA SWINP Read switch input port 

BEQ SWTEST If zero, all doors closed, continue 

testing 

One or more doors open, alarm 

condition 

This routine illustrates the simplicity of inputting information 

from an input port. The data is read into the accumulator by the 

LDA instruction. Each bit of the accumulator now indicates the 

open (1) or closed (0) condition of the switches connected to the 

input port, and the status flags are conditioned to indicate whether 

one of the switches is open. For this example, the Z flag will be 

set to “1” if all the switches are closed. Should any of the switches 

become open, the data lead corresponding to that switch will go to 

a “1” condition, and the Z flag will be reset, since the accumula¬ 

tor will not be “0.” 

It is not necessary to use all eight data leads of an input port. 

Suppose there are only five switches, zero through four, connected 

to the input port. The other three leads are not used. In this case a 

different test procedure would be required. The program listing 

below loads the accumulator with a value of $1F, and the BIT 

instruction is used to test for a one in any of the five least signi¬ 

ficant bits of the input port. The Z flag would indicate the possi¬ 

ble open condition of one or more of the five switches. 

SWTEST LDA #$1 F Set the bit test byte 

BIT SWINP Test five least significant bits 

BEQ SWTEST+S2 If zero, all doors closed, continue 

testing 

.. . One or more doors open, alarm condi¬ 

tion 
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Suppose one data lead was required. By connecting it to bit 

seven of the input port, the N flag could be used in testing for a 

“1” or “0” condition. In this case, the conditional branch instruc¬ 

tion in the first listing would be changed to a BPL instruction. 

Output to Light the LEDS 

At the output port, a set of eight lights shown as light emit¬ 

ting diodes, is connected to the eight output port data leads, num¬ 

bered zero through seven. Each light is turned on by outputting a 

“1” to the corresponding data lead. The light is turned off by out- 

putting a “0.” For example, to turn on every other light, one could 

load the accumulator with a bit pattern of “10101010” and store it 

in the output port, as listed below. The label LIGHTS refers to the 

memory location assigned to the output port. 

LDA #$AA Load the desired bit pattern 

STA LIGHTS Output pattern to LIGHTS 

These LIGHTS might be connected to the control panel of the 

burglar alarm system. They could be used to indicate which of the 

doors have been opened by including an instruction to output the 

data to the LIGHTS as it is read from the switches. The following 

sequence may be used. 

SWTEST LDASWINP Read switch input port 

STA LIGHTS Output switch conditions to display 

BEQ SWTEST If zero, all doors closed, loop back 

... One or more doors open, alarm condi¬ 

tion 

After inputting the data from the switches, the routine imme¬ 

diately outputs the same data to the LIGHTS. In so doing, any light 

that turns on will indicate that the corresponding door is open. The 

program then tests for a door open, just as before, and either continues 

testing, if the doors are all closed, or performs whatever logic may be 

necessary when a door is found to be open (i.e., sounding an alarm, 

calling the police, etc.). 

Applications for This Simple Interface 

Naturally, the switches and lights used in this example may be 
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replaced by a wide variety of devices for an even greater number of 

applications. The input may come from heat, light, or pressure trans¬ 

ducers. Or, it can come from analog-to-digital converters, which 

transform an analog signal to a proportional digital binary, or BCD 

value. An output port may drive relays, seven segment displays, 

alarms, or digital-to-analog converters. 

A novel application for a simple output device is to connect a 

speaker to one bit of an output port and have the computer syn¬ 

thesize different frequencies to create music. The different tones 

are generated by outputting alternate ones and zeros with an appro¬ 

priate delay in between each output. The shorter the delay, the 

higher the frequency, and vice versa. By outputting a given set of 

tones in the proper sequence with each tone lasting the proper dura¬ 

tion, a musical tune can be played by the computer. Many 6502- 

based microcomputers have been known to play such intriguing 

songs as “Mary Had a Little Lamb,” and “A Bicycle Built for Two. ” 

Looking at this application from a more scientific viewpoint, 

this form of frequency synthesis may be used to generate any num¬ 

ber of different waveforms for a multitude of technical applications. 

Generating Serial Data 

One such technical application is in the generation of asyn¬ 

chronous serial data. Serial data is data that is sent one bit at a time 

with each bit lasting a specific amount of time before the next bit is 

output. Asynchronous serial data is a short group of bits output in 

serial form. Each group of bits generally represents a single char¬ 

acter of one of the standard character sets (i.e., ASCII, BAUDOT), 

although random data patterns may be transmitted in this fashion. 

It is referred to as asynchronous, because the beginning of the group 

of bits may occur at any time. However, once started, the timing of 

each bit in the group must meet the specified time. The timing dia¬ 

gram illustrates the manner in which the ASCII code for the letter 

“E” (11000101 in binary) is transmitted as asynchronous serial data. 

As noted in the timing diagram, the character code for the 

“E” is preceded by a start bit. This bit is used to inform the re¬ 

ceiving device that a character is being transmitted. The character 

code then follows the start bit, beginning with the least significant 

bit. The character transmission is completed by adding one or more 

stop bits to the end of the code. The stop bits are added to allow 

time for the receiving device to prepare to receive another char¬ 

acter. 

The timing diagram also indicates that there is a specific amount 
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of time, “t,” for the duration of each bit. This timing is often re¬ 

ferred to by the number of bits that could be transmitted in one 

second at this rate, rather than the amount of time used for each bit. 

The standard bit per second, or BAUD, rates used for transmitting 

ASCII code, range from 110 BAUD for many keyboard and printer 

devices, to 9600 BAUD for high-speed devices. 

Programmed Delay Creates the BAUD Rate 

The computer may be used to generate serial data in this form, 

by outputting one bit at a time, and providing a programmed delay 

between each bit to create the proper timing. The routine listed next 

outputs eight-bit characters as asynchronous serial data with two 

stop bits. The timing generated by this routine outputs data at a 

rate of 110 bits per second. This corresponds to a delay between bits 

of 9.09 milliseconds. The timing may be calculated by adding up the 

number of cycles per instructions (indicated in the column of figures 

to the left of the listing) for each instruction executed between the 

output of each bit. This timing assumes a cycle time of one micro¬ 

second. 

This routine may be used to output ASCII characters to a 

printer or other type of device that receives asynchronous serial 

data at 110 bits per second. The character to be output must be in 

the accumulator when this routine is called. The initial contents of 

the X and Y index registers are pushed onto the stack at the start 

of this routine, and then pulled from the stack before returning. 

The output of each bit is accomplished by rotating it into bit zero 
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of the accumulator, and storing it in the memory location assigned 

to the output port. One should make special note of the fact that 

the instructions between the output and rotate operations do not 

affect the carry flag. This allows the routine to maintain the charac¬ 

ter for outputting as each bit is transmitted. 

PRINT STATEMP 

TYA 

PHA 

TXA 

PHA 

LDATEMP 

CLC 

ROL A 

JSR BITOUT 

2 LDY #$08 

6PRINT1 JSR BITOUT 

2 DEY 

3 BNEPRINT1 

2 LDA #$01 

4 STAPRINTR 

6 JSR TIMER 

6 JSR TIMER 

PLA 

TAX 

PLA 

TAY 

LDA TEMP 

RTS 

4 BITOUT STAPRINTR 

2 ROR A 

6 JSR TIMER 

6 RTS 

2 TIMER LDX #$D2 

6TIME1 JSR DUMMY 

6 JSR DUMMY 

6 JSR DUMMY 

2 NOP 

2 DEX 

3 BNETIME1 

6 JSR DUMMY 

6 DUMMY RTS 

Save initial character 

Move Y to A and 

Save Y on the stack 

Move X to A and 

Save X on the stack also 

Fetch character 

Clear carry for start bit 

Rotate carry into A 

Output start bit 

Set data bit counter 

Output data bit and delay 

Decrement bit counter 

Not zero, output next bit 

Set up stop bit 

Output stop bit 

Delay for one stop bit 

Delay from second stop bit 

Fetch initial X value 

Restore in X 

Fetch initial Y value 

Restore in Y 

Fetch initial character 

Return 

Output bit to printer 

Position for next output 

Delay one bit time 

Set delay counter value 

Jump to return instruction to 

Provide delay using 

X index register as delay counter 

Added for delay 

Decrement delay counter 

Not zero, continue loop 

Added for delay 

Return 
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Shaking Hands with the Computer 

The type of peripheral devices discussed require nothing more 

than a simple input or output instruction to transfer the information. 

When a transfer is to be made, the program does not care what state 

the peripheral is in, previous to the transfer. However, for many peri¬ 

pherals, the process of transferring data between it and a computer 

under program control requires some type of handshaking. This 

means that a program must check whether the device is ready to 

make a data transfer, and, when so indicated, perform the logic 

necessary to make the transfer. In general, there are two methods 

used to provide the program control. One method is to have the pro¬ 

gram continuously input the status bit of the peripheral, often 

referred to as the “programmed data transfer” (or PDT) bit, until 

it indicates the device is ready for a data transfer. The other method 

is for the peripheral device to send a signal to the computer when it 

is ready for a data transfer. This signal is called an interrupt. Once 

an interrupt is received, the method of data transfer is similar to that 

for the PDT operation. 

The major difference between the two modes is that under 

PDT operation, the program must continuously check the status of 

the device. Under interrupt operation, the program is free to perform 

other operations while waiting for the interrupt from the peripheral. 

Utilizing the PDT Bit 

Whether a peripheral device is designed to generate interrupts 

or operate strictly in the PDT mode, there is generally a PDT bit 

associated with it. A device that generates interrupts will have a 

PDT bit to provide the option of operating in the PDT mode. When 

operating under interrupt it is used to identify itself as the device 

that generated the interrupt, should there be more than one in¬ 

terrupting device in the system. It is, therefore, important to under¬ 

stand how to check the PDT bit of a device. Any peripheral that is 

designed to operate with a PDT bit will have a status output. This 

output may contain only the PDT bit, or it may include several 

other status leads to indicate error conditions that may occur in the 

peripheral. These status leads are connected to an input port allow¬ 

ing the status to be examined by a program. 

There are several ways of checking the PDT bit, depending 

on its location within the memory byte. If located in the most 

significant bit of the status byte, loading the accumulator with the 

status will set the N flag to indicate the condition of the PDT bit. 
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CKPDT LDA STATUS Load status byte into A 

BPL CKPDT If PDT = zero, continue testing it 

PDT = one, device ready, begin 

processing 

If the PDT bit is located in a bit position other than bit seven, 

the BIT test instruction may be used. The accumulator must be 

loaded with all zeros except for the bit corresponding to the loca¬ 

tion of the PDT bit in the device’s status byte. Then, by performing 

the BIT test between the accumulator and the device’s status, the Z 

flag will indicate the opposite condition of the PDT bit. The fol¬ 

lowing routine checks the PDT bit as bit one until it indicates that 

the device is ready. 

CKPDT LDA #$02 Set bit to test the PDT 

BIT STATUS Condition the Z flag for the PDT test 

BEQ CKPDT If Z set, device not ready 

If Z reset, device is ready 

Anticipate I/O Problems 

There are times when it is known that a PDT bit must change 

within a certain amount of time. For instance, after outputting a 

character to a display device there is usually a specific maximum 

time limit for the device to accept it and the PDT bit to come true 

again. If this time limit is surpassed, it might indicate a problem with 

the display device. This possible error may be monitored by the 

program by inserting a counter in the PDT test loop. The counter 

would be calculated to allow only a given amount of time to elapse 

before the PDT bit must return. Otherwise an error routine would 

be entered to inform the operator of a possible problem. The fol¬ 

lowing format may be used to include a timer in the PDT checking 

routine. The exact timing of this loop may be calculated as discussed 

in Chapter Three. 

LPSET LDY #$YY 

CKPDT LDA STATUS 

BMI PDTEST 

DEY 

BNE CKPDT 

Set up timing loop counter 

Condition N flag for PDT test 

Have PDT, continue processing 

No PDT, decrement timer 

Timer #= zero, continue testing 

Time out, possible error 
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Data Input with PDT Control 

PDT operation, for most input devices, generally follows the 

same basic procedure. When a program requires data from an input 

device, it reads the status of the device and checks the condition 

of the PDT bit. If the PDT bit indicates the device has data avail¬ 

able, the program can proceed to input the data. For some devices, 

once the data has been read in, a “character accepted” signal from 

the program may be required to reset the PDT bit. 

This procedure is typical of many interfaces that latch the data 

in from a device and then set a PDT bit. The diagram shown next 

illustrates this form of interface. The data is entered by setting up 

the data at the input to the latches and then pulsing the strobe line 

of the latches. This same strobe signal sets the PDT bit. After the 

data has been read by the program, the reset line is pulsed by the 

program outputting a “character accepted” signal. 

A program to control this type of interface is listed next. The 

PDT bit is connected to bit seven of the status input port. This 

6 

INPUT 5 

DEVICE 4 

DATA 3 

LEADS 2 

0 

INPUT 
DEVICE 
STROBE 

DATA 

INPUT 

PORT 

STATUS 
INPUT 
PORT 

CONTROL 
OUTPUT 

PORT 
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allows the program to check for the PDT bit by reading the status 
and testing for the condition of the N flag. The data is entered 
through the data input port. Once the data has been accepted, the 
PDT bit is reset by outputting a “character accepted” signal to the 
control output port. 

PDTINP LDA STATUS 

BPLPDTINP 

LDA DATAIIM 

RESET LDY #$01 

STY CHRACC 

LDY #$00 

STY CHRACC 

RET 

Input device status 

N = zero, no PDT, continue testing 

N = one, read data from device 

Set up output pulse 

Output character accepted 

Clear to create pulse 

Reset character accepted 

Return 

In this program listing, the “character accepted” signal is de¬ 
rived by first loading index register Y with $01 and outputting it 
to the control port, labeled RESET. Then, Y is cleared and output 
to the control port. This effectively creates a pulse on the least 
significant data lead of the control port. Some interfaces are reset 
by simply writing to the control port. A third possibility is that the 
interface resets the PDT bit when the input is executed. In this case, 
the input routine may be exited just after the data is read. 

The label RESET has been included in this routine to point 
out the portion of the routine that resets the PDT bit. This portion 
may be required as an initial reset for the input device at the start 
of a program that uses the device to receive data. Quite often when 
dealing with such devices, it is necessary to output a reset during 
the initializing stages of the program. This guarantees that the device 
status will indicate the true status when the device is first called upon 
to input some data. For the other cases in which the PDT is reset 
by writing to the control output or reading from the data input, the 
corresponding instruction should be executed to initialize the input 
device. 

Receiving Serial Data 

Another routine that tests the status before inputting the data 
is one which inputs asynchronous serial data. The start bit of the 
asynchronous data could be considered its PDT bit. The input rou¬ 
tine would test for the presence of the start bit. When detected, the 
data bits that follow may be read in by sampling the data at the 
proper time intervals. 
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Sampling the data is performed by providing a programmed 

delay until the midpoint of each bit is reached. The bit is then read 

in on the input data lead. The arrows in the timing diagram shown 

next indicate when each bit should be sampled by the program. The 

left arrow indicates when the start bit is first detected. The next 

arrow indicates a delay time equal to one and a half bits before 

sampling bit zero of the data. Each subsequent sample is taken after 

a delay time of one bit. 

The next program may be used to receive eight bits of asyn¬ 

chronous serial data. Such data may be generated by the PRINT 

routine previously mentioned. The timing provided in this routine 

reads the data at 110 BAUD. By altering the delay, this timing may 

be changed to input data over a wide range of BAUD rates. The num¬ 

ber of cycles for each instruction is indicated in the left-hand col¬ 

umn. The delay time between samplings may be calculated by adding 

up the number of cycles for each instruction executed between 

inputs. The major portion of the delay is provided by the same 

TIMER subroutine used in PRINT. 

The data is input through bit seven of the data input port. This 

allows the program to test simply the N flag for the start bit. Each 

bit is then input by rotating bit seven of the input port into the 

carry and then rotating the carry into the accumulator. When the 

last bit has been input, an additional delay of one bit time is added 

to make sure the input data is into the stop bit before returning to 

the calling program. If this final delay was not provided, and the 

last data bit of the input was a “0,” the calling program could 

call SRLINP and would input the last data bit that is still at the 

input port. If this occurs, SRLINP would assume it to be the start 

bit of a new character. This would result in the input of erroneous 

data. The data received is returned to the calling program in the 

accumulator. 

START 
BIT 

U-1.5t 

0 1 2 3 4 5 6 7 STOP STOP 

f 4* t t *1* t *1* * »ttT rtt 1 rt 
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SRLINP TYA 

PHA 

TXA 

PHA 

4 SR LOOP LDA KYBDIIM 

3 BMISRLOOP 

2 LDA #$00 

6 JSR HAFBIT 

6 JSR TIMER 

2 LDY #$08 

6NEXBIT ROLKYBDIN 

2 ROR A 

6 JSR TIMER 

2 DEY 

3 BNENEXBIT 

JSR TIMER 

STA TEMP 

PLA 

TAX 

PLA 

TAY 

LDA TEMP 

RTS 

2 HAFBIT LDX #$6E 

3 JMPTIME1 

Save initial value of Y 

On the stack 

Save initial value of X 

On the stack 

Input to look for start bit 

N flag = one, no start bit yet 

Have start bit, clear A 

Delay one-half bit time 

Delay one bit time 

Set data bit counter 

Move data bit into carry 

Move carry into accumulator 

Delay one bit time 

Decrement bit counter 

Not zero, input next bit 

Delay one bit time 

Temporarily save data 

Fetch initial value of X 

Restore X 

Fetch initial value of Y 

Restore Y 

Restore data received in A 

Return 

Set one-half bit delay time 

Delay one-half bit time 

Output Data with a Specific Format 

PDT operation of a parallel output device is generally straightfor¬ 

ward. When the PDT bit is checked and indicates the device is ready 

to accept data, the data may be output. Upon receipt of the data by 

the device, the PDT bit will change state to indicate that the device is 

busy processing the data. Once the processing is completed, the PDT 

will return to its device ready status and wait for the next output from 

the program. Therefore, if the program is to output more than one 

character, the PDT bit must be monitored after each character is out¬ 

put to determine when the device is ready to accept the next charac¬ 

ter. 

The following routine might be used to output a line of text to a 

printer that accepts ASCII characters as eight-bit parallel data. This 

routine fetches the characters one at a time from a buffer and outputs 

them to the printer. When a carriage return is detected in the character 

string, it is transmitted, followed by a line feed. The program then re- 
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turns to the calling program. The PDT is assumed to be in bit zero of 

the status input from the printer. Also, when the routine is called, 

FMPNT is assumed to be pointing to the start of the character string. 

LINOUT LDY #0 

JSR CKPDT 

LDA (FMPNT),Y 

CMP #$8D 

BEQ FINISH 

STA CHROUT 

INY 

JMP LINOUT 

FINISH STA CHROUT 

JSR CKPDT 

LDA #$8A 

STACHROUT 

RTS 

CKPDT LDA #$01 

BIT STATUS 

BEQ CKPDT+$2 

RTS 

Initialize pointer 

Wait for printer PDT 

Fetch character from message storage 

Character = carriage return? 

Yes, complete output 

No, output character to printer 

Advance character string pointer 

Wait for PDT 

Output carriage return 

Check PDT before sending line feed 

Set line feed 

Output line feed 

Return to calling program 

Set up to test PDT 

Test status of printer PDT 

PDT = zero, wait for printer 

PDT = one, return to output next char 

This method of checking the PDT bit of an I/O device is com¬ 

monly used when it is not required to perform other functions while 

waiting for a data transfer from a peripheral. In cases where a back¬ 

ground program is not necessary while waiting for a peripheral, it is of 

no consequence for the CPU to dedicate itself to testing the PDT bit. 

Such constant attention to the PDT bit allows data to be transferred 

as rapidly as possible. This is also necessary if the data is only available 

for a given length of time. A card reader is a good example. The pro¬ 

gram must read a character from the card reader when it is available. 

Once the reader starts reading a card, it does not stop in between each 

character while the program reads it. The program must be ready for 

each character when it is available. Otherwise, the character will be 

lost. 

Data Transfer Using Interrupts 

Another method of transferring data under program control is to 

have the I/O device send an interrupt signal to the computer when it is 

ready for a data transfer. This signal interrupts the program currently 

in progress and directs the CPU to an interrupt service routine. The in¬ 

terrupt routine performs the logic necessary to transfer the data to or 
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from the peripheral and then returns to the original program as though 

it had not been interrupted at all. This method of operation is known 

as interrupt processing. 

Interrupt processing is analogous to a postman being interrupted 

while delivering the mail. As the postman is placing the mail in a row 

of mailboxes, someone walks up to him and taps him on the shoulder. 

The mailman completes filling the current mailbox, makes a mental 

note as to which mailbox is to be filled next, and turns to the person. 

The mailman is given a letter and is asked to send it. The mailman 

takes the letter and stores it in his mailbag. He then returns to the job 

of filling the mailboxes, beginning with the box he remembers as the 

next one to be filled. This is similar to the procedure followed by a 

computer when an interrupt is received from a peripheral. 

When an interrupt signal is received, the current instruction being 

executed is completed. The address of the next instruction to be exe¬ 

cuted is saved on the stack. Also, it is necessary to save the informa¬ 

tion contained in the CPU status flags so that it may be properly re¬ 

stored before returning to the interrupted program. The computer is 

now ready to perform the steps necessary to transfer the data between 

itself and the peripheral. Once the transfer is completed, the status 

flags must be restored to their initial contents at the time the interrupt 

was received. Execution of the interrupted program is resumed at the 

instruction that would have been executed next. 

The 6502 Interrupt Structure 

Before presenting methods of interrupt processing with the 6502, 

several features should be discussed which make interrupt processing 

easy and effective. There are two types of hardware interrupts avail¬ 

able. One is the nonmaskable interrupt. When received, the nonmask¬ 

able interrupt is always acknowledged. For this reason, the nonmask¬ 

able interrupt is generally used for very high-speed devices that re¬ 

quire immediate attention, or as a power failure interrupt to allow the 

storage of any critical information. 

The other hardware interrupt is the maskable interrupt. Its ac¬ 

knowledgement is dependent on the condition of the I flag. When 

the I flag is set, the maskable interrupt line is disabled. An interrupt 

on the maskable interrupt line will not be acknowledged by the 

6502. When the I flag is reset, the 6502 will acknowledge a maskable 

interrupt. The maskable interrupt is generally used by most of the 

devices that operate under interrupt control. For a maskable or non¬ 

maskable interrupt, the interrupt service routine will be basically the 

same. 
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The condition of the interrupt flag may be software controlled 

by one of three instructions. The SEI instructions sets the I flag, dis¬ 

abling the maskable interrupt. The CLI instruction clears the I flag, 

enabling the receipt of maskable interrupts. The third instruction, 

PLP, conditions not only the I flag, but all of the status flags from 

the contents of the stack. The stack may be loaded from the accumu¬ 

lator using PHA first. Then, the PLP instruction will move that 

value from the stack into the status register. 

Interrupts Aren’t Always Desired 

When writing a program to operate with interrupts, there are 

several times when it may not be desired to accept interrupts. One 

is during the initialization of the program, before all the necessary 

pointers, counters and tables used by the program have been set up. 

If an interrupt is received before the program is ready to accept it, 

the program may receive or transmit erroneous data. To avoid such 

an occurrence, the first instruction of the program should be the dis¬ 

able interrupt instruction. Then, after the initialization is complete, 

the interrupts may be enabled. The program now is ready to deal 

with the interrupts properly. 

Another time that interrupts must be disabled is upon receipt 

of an interrupt. This is to allow the program enough time to respond 

to the first interrupt before receiving the second. The 6502 automati¬ 

cally disables the maskable interrupt upon receipt of the maskable, 

nonmaskable and software interrupts. Therefore, it is not necessary 

to include a SEI instruction in the interrupt service routine. When 

the interrupt service routine is finished, the return from interrupt in¬ 

struction will restore the I flag to its initial condition at the time the 

interrupt was received. If it is desired to allow nesting of interrupts, 

the interrupt service routine can enable the maskable interrupt after 

it has completed its initial steps. Any subsequent interrupt on the 

maskable interrupt line will be recognized and serviced, even if it is 

the original interrupting device. The process of nesting interrupts will 

be discussed later. 

It may be necessary to disable interrupts when a section of the 

program is changing information vital to the function of the inter¬ 

rupt routine. This information might be the address for storing or re¬ 

trieving data to be transferred. Or, a flag indicating the progress of 

the program to the interrupt routine. For whatever reason, the pro¬ 

gram must disable interrupts before the change is made. After chang¬ 

ing the information, the interrupts may be re-enabled. This will pro¬ 

vide the smooth transition of information needed by the interrupt 
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routine. 

Save Data from the Interrupted Program 

Another feature of the 6502 is the automatic status register 

storage that takes place when an interrupt is acknowledged. The con¬ 

tents of the program counter and the status register are pushed onto 

the stack. It is necessary to save this information so that it may be 

restored before returning to the interrupted program. When the inter¬ 

rupt service routine has completed its operation, the return from in¬ 

terrupt instruction, mnemonic RTI, pulls the status register and pro¬ 

gram counter from the stack. This results in the CPU returning to the 

interrupted program with no change in its execution. 

The accumulator and index register may also be stored in the 

stack if they are used by the interrupt service routine. This is achieved 

by pushing the accumulator, transferring the index registers to the 

accumulator and pushing them onto the stack. At the completion of 

the service routine, the data must be pulled from the stack and trans¬ 

ferred to the proper registers. This program sequence is illustrated 

next. 

INTRPT PHA 

TXA 

PHA 

TYA 

PHA 

PLA 

TAY 

PLA 

TAX 

PLA 

RTI 

Interrupt received, program counter 

And status register pushed onto stack 

Save accumulator contents on stack 

Move X index reg to accumulator 

Save contents of X on stack 

Move Y index reg to accumulator 

Save contents of Y on stack 

Process interrupt 

Fetch original contents of Y 

Restore Y index register 

Fetch original contents of X 

Restore X index register 

Restore accumulator 

Restore status and program counter 

to original contents 

The procedure for receiving interrupts by a 6502-based micro¬ 

computer follows the basic steps described above. When an interrupt 

is received from a peripheral, the CPU automatically pushes the con¬ 

tents of the program counter and status register onto the stack, and 

sets the I flag. (For the maskable interrupt, this procedure assumes 

that the I flag is reset at the time the maskable interrupt occurs.) The 
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CPU vectors to the proper interrupt service routine. 

Service the Interrupting Device 

The interrupt service routine performs the logic required to ser¬ 

vice the interrupting device. It is usually a combination of the PDT 

routine for the device being controlled, and a routine that checks and 

stores the data for an input, or sets up the data to be output. The in¬ 

terrupt routine is meant to operate independently from the main 

program. It must perform its own checks and manipulate the data in¬ 

to and out of memory, as well as drive the peripheral. In order to ac¬ 

complish this, and to provide a flexible interrupt routine, a link be¬ 

tween the main program and the operation of the interrupt service 

routine must be established. 

One method of establishing the link is through the use of an in¬ 

terrupt table area. This table area normally includes at least three 

items, namely, a memory pointer, a data counter, and an in-progress 

flag. The memory pointer is used by the interrupt routine to indi¬ 

cate where input data is to be stored, or where output data is to be 

found. As the interrupt routine stores or outputs each byte of data, 

the memory pointer is advanced to the next location. The data coun¬ 

ter indicates to the interrupt routine the amount of data to be re¬ 

ceived or sent. The routine decrements this counter each time it in¬ 

puts or outputs some data. When the counter reaches zero, the opera¬ 

tion is complete. If necessary, the end of the operation also may be 

indicated by the receipt or transmission of a terminating character, 

such as a carriage return or line feed. This would terminate the opera¬ 

tion before the data counter reached zero. The completion of the 

operation then is signaled by resetting the in-progress flag. The in¬ 

progress flag is set by the main program when the input or output is 

initiated. Then, when the interrupt routine is finished with the I/O 

operation, the in-progress flag is reset. The main program periodically 

checks this in-progress flag and, when it is reset, the main program 

knows that the I/O operation is complete. 

The in-progress flag may also serve another purpose. The inter¬ 

rupt routine can test this flag when an interrupt is received to deter¬ 

mine whether an interrupt from the peripheral is expected. If it is ex¬ 

pected, the interrupt routine can service the interrupt normally. If 

the interrupt is not expected, the interrupt may be ignored by reset¬ 

ting the I/O device, if necessary, and returning to the interrupted 

program. Or, an error routine may be entered, which informs either 

the main program or the computer operator of the erroneous inter¬ 

rupt. 
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After the interrupt service routine completes its operation, it re¬ 

turns control to the interrupted program. This is accomplished by re¬ 

storing the CPU registers and executing the return from interrupt in¬ 

struction. The original status and program counter are pulled from 

the stack, and the return is made to the interrupted program. Restor¬ 

ation of the status and CPU registers before exiting the interrupt ser¬ 

vice routine allows the interrupted program to continue execution as 

though the interrupt never occurred. 

Interrupts for Input and Output Differ 

Interrupt processing for an input device is not exactly the same 

as that for an output device. The reason for this difference is that an 

interrupt from an input device indicates that the input device has a 

character or some data available for the program. The program may 

read the data in, process it, and then wait for another interrupt. For 

an output device, an interrupt indicates that the device has accepted 

the previous output and is ready to receive another character. There¬ 

fore, an output device initially must receive an output from the pro¬ 

gram before it generates an interrupt. Also, after the last character is 

received by the output device, a final interrupt will be generated, 

which must be ignored. This difference is further illustrated by the 

following input and output interrupt routines. 

The input interrupt service routine stores characters as they are 

input into a buffer area in the memory. This routine continues until 

either the buffer is filled or a carriage return is received. The routine 

might be used to input characters from a keyboard or data from a 

paper tape reader. A table area is used which contains the input buf¬ 

fer pointer, data counter and in-progress flag. This table is listed 

next, followed by the table set-up routine of the main program. The 

table set-up routine initializes the contents of the table when an in¬ 

put sequence is to begin. 

The in-progress flag in the first byte of the table is represented 

by the sign bit, not the contents of the entire byte. Therefore, the re¬ 

maining seven bits in this byte may be used to signal error conditions 

or intermediate program status. This type of information is often re¬ 

quired by the interrupt routine or the main program. Next, the in¬ 

put buffer pointer is stored in the second and third bytes of the table, 

with the low portion of the address in the second byte, and the page 

portion in the third byte. The address that must be initially loaded 

into these locations is the start address of the input biffer minus one. 

Setting this pointer to the location before the start of the input buf¬ 

fer is necessary because the input interrupt routine increments the 
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input buffer pointer before storing the character received, not after. 

Finally, one should note the use of the set and clear the I flag 

instructions in the SETINT routine before and after the table is set 

up. This prevents an interrupt from being acknowledged while the 

contents of the input interrupt table are being initialized. However, 

disabling interrupts may not be necessary if the data counter is ini¬ 

tialized first, followed by the pointer and finally the in-progress flag. 

In this way, the pertinent data is loaded into the table before the in¬ 

progress flag is set. 

Interrupt Input Table 

FLAGIN .BYTE $1 

.BYTE $1 

.BYTE $1 

.BYTE $1 

SETINT LDA #$80 

STA FLAGIN 

LDA #INBFLO 

STA FLAGIN+$1 

LDA #INBFPG 

STA FLAGIN+$2 

LDA #$XX 

STA FLAGIN+$3 

CLI 

In-progress flag, sign bit 

Low portion, input buffer pointer 

Page portion, input buffer pointer 

Data counter 

Set up routine for input 

Disable mskbl interrupts during setup 

Store in-progress flag 

Set low portion of buffer address 

Store in interrupt table 

Set page portion of buffer address 

Store in interrupt table 

Set data counter 

Store counter in table 

Enable maskable interrupts 

Continue main program 

The input interrupt service routine is listed followed by the 

flow chart. The input is performed by a single load instruction. This 

assumes that the input device is reset by reading the data from its in¬ 

put port. When implementing this routine, the instruction marked by 

the double asterisk should be replaced by those required to operate 

the specific device being driven. 

It is assumed in this routine that only one device in the system 

can generate an interrupt. Therefore, it is not necessary to check for 

the PDT bit of the input device. If one desires to check the PDT bit 

as an error checking measure, this routine should include an instruc¬ 

tion sequence which inputs the PDT bit of the input device and tests 

the status. If the PDT bit is not set properly, an error routine should 

be entered. Otherwise, the routine should proceed to input the data 

and continue with the normal interrupt processing. 

After the data has been input, the in-progress flag is checked to 
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determine whether an input is expected by the interrupt program. 

This routine ignores an unexpected interrupt by simply returning to 

the interrupted program without storing the character inputted. It 

should be noted that by performing the input sequence before check¬ 

ing the in-progress flag, the input device will be properly reset 

whether the interrupt was expected or not. 

Assuming the interrupt was expected, the character received is 

stored in the input buffer. The new input buffer pointer is then 

stored in the input interrupt table. The data counter is decremented 

and, if zero, the in-progress flag is reset and the interrupt service rou¬ 

tine is exited. If it is not zero, the character just received is tested for 

a terminating character. In this routine, the input may be terminated 

by a carriage return, ASCII code $8D. If it is a carriage return, the in¬ 

progress flag is reset to end the input operation and the interrupt 

routine is exited. If it is not a carriage return, the in-progress flag re¬ 

mains set when the routine is exited. 

The short instruction sequence following the interrupt service 

routine listing may be used by the main program to check for the 

completion of the input operation. When the sign bit of the in-prog- 

ress byte is reset, the main program will branch to the appropriate 

routine, referred to here as CMPTIN, to examine the data received. 

The contents of the interrupt input table may be used by the main 

program in examining the data input. The input buffer pointer in¬ 

dicates the location of the last character received. The data counter 

indicates either the number of unused locations in the input buffer, 

or, if equal to zero, that the entire buffer is filled. 

INTINP LDA INPDAT 

LDY FLAG IN 

BPLEXITIN 

INC FLAGIN+$1 

BNE INTSTR 

INC FLAGIN+$2 

INTSTR LDX #$00 

STA (FLAGIN+1.X) 

DEC FLAGIN+$3 

BEQFININP 

CMP #$8D 

BNE EXITIN 

FININP STX FLAG IN 

EXITIN 

Input data from input device 

Check in-progress flag 

Interrupt not expected, ignore 

Increment input buffer pointer 

Not zero, store data 

Increment page portion of pointer 

Clear index pointer 

Store data received in buffer 

Decrement character counter 

If zero, input finished 

Is character a carriage return? 

No, exit input routine 

Input complete, clear in-progress flag 

Restore registers and return 

Sequence to check 
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Outputting Under Interrupt 

Operation of an output device under interrupt control requires 

a different sequence of events from that for an input device. As 

pointed out before, the main reason for this difference is that the 

output device generates an interrupt after a character has been out- 
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putted by the program. The input device generates an interrupt to in¬ 

dicate that it has a character available. The output routine presented 

next illustrates the different approach that must be taken for an out¬ 

put device. 

The output interrupt routine outputs a string of characters 

stored in a buffer memory. Such a routine may be used to output 

messages to a printer or video display, or to output data to a low- or 

medium-speed storage device. (High-speed devices generally use a 

method of direct memory access. The data is transferred directly 

from memory to the storage device, or vice versa, under control of a 

hardware interface.) 

The interrupt output table is the same type of table used to pro¬ 

vide the exchange of information between the main program and the 

input interrupt service routine. The organization of the table is the 

same as the input table, with the in-progress flag, output buffer 

pointer, and data counter. However, when the table is initialized, the 

buffer pointer is set to the actual start address of the output buffer, 

rather than the start address minus one, as in the input table. 

Aside from setting up the table, the initialization routine checks 

the in-progress flag to determine whether an output is currently be¬ 

ing executed. This may occur when a program uses the same output 

device to display messages from a number of different routines, such 

as error and advisory messages in a system monitor program. Check¬ 

ing this flag eliminates the possibility of an output being initiated be¬ 

fore a previous one is finished. The input routine does not test this 

flag since it is less likely that two separate inputs will be required at 

the same time. However, if the possibility does exist, a similar in¬ 

struction sequence should be added to the input initialization routine 

before the disable interrupt instruction. 

When the in-progress flag is reset, the output may be initiated. 

First, the output table is set up with the required information. While 

this table is being loaded, it is not necessary to disable interrupts, 

since the output device should not generate an interrupt until after 

the first character has been sent. Once the proper information is con¬ 

tained in the table, the first character is output by this routine. The 

output is performed by the STA OUTDAT instruction in this listing. 

This initial output triggers the output sequence which is carried on by 

the interrupt service routine. For implementation of this routine on 

one’s own system, the instruction in this routine and in the interrupt 

service routine marked with a double asterisk should be changed to 

the instruction sequence necessary to drive the specific output de¬ 

vice. 
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Interrupt Output Table 
FLAGOUT .BYTE $1 Output in-progress flag 

.BYTE $1 Low portion, output buffer pointer 

.BYTE $1 Page portion, output buffer pointer 

.BYTE $1 Output data counter 

Output initialization routine 

TSTOUT LDAFLGOUT Check in-progress flag 

BMI TSTOUT If output in progress, wait 

LDA #$XX Set character counter 

STA FLGOUT+$3 Store in output interrupt table 

LDA #OUTBFL Set low portion of buffer address 

STA FLGOUT+$1 Store in interrupt table 

LDA #OUTBFP Set page portion of buffer address 

STA FLGOUT+$2 Store in interrupt table 

LDA #$80 Set in-progress flag 

STA FLGOUT Store in output interrupt table 

LDX #$00 Set up buffer pointer 

LDA (FLGOUT+$1,X) Fetch first character to output 

STA OUTDAT** Output character to device 

Continue main program 

The output interrupt service routine is entered upon receipt of 

an interrupt from the output device. The data counter is decrement¬ 

ed once and checked for zero. When it reaches zero, the last charac¬ 

ter has been output and the output operation is complete. The in¬ 

progress flag is reset, and the routine returns to the interrupted pro¬ 

gram. 

If the counter is not zero, the in-progress flag is checked to 

make sure that the output routine is expecting an interrupt. As in the 

input interrupt service routine, this is indicated by the in-progress 

flag being set. If it is reset, the interrupt may be ignored by simply 

returning to the interrupted program. Otherwise an error routine 

may be entered that signals either the main program or the operator 

that an unexpected interrupt was received. 

If the routine makes it by the test, the next character may be 

outputted. In this routine, it is assumed that the output device is the 

only device generating interrupts. Thus, a PDT test is not necessary 

before outputting the character. However, if it is felt that such a test 

should be performed before outputting the character, the required 

instruction sequence for testing the PDT bit may be included. The 

routine then returns to the interrupted program. 

INTOUT DECFLGOUT+$3 Decrement character counter 
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BEQ FLGRST = zero? Yes, reset in-progress and exit 

LDX #$0 Clear the index register 

LDAFLGOUT Check in-progress flag 

BPL EXITOT Reset, ignore interrupt 

INC FLGOUT+$1 Advance output buffer pointer 

BNEXMIT Not zero, continue 

INC FLGOUT+$2 Advance page portion 

XMIT LDA (FLGOUT+$1,X) Fetch character to be output 

STA OUTDAT ** Output character 

EXITOT . .. Restore registers and return 

FLGRST STX FLGOUT Reset in-progress flag 

JMP EXITOT Return to interrupted program 

Several Devices on One Interrupt 

Only one device has been considered to generate an interrupt. 

When an interrupt is received, the interrupt service routine simply 

performs the indicated input or output for the single device. This 

may not always be the case, since an I/O controller quite often con¬ 

trols an input and an output device, and generates an interrupt for 
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both devices. Or, there may be several interrupt devices connected to 

the system. In order to control more than one device, the interrupt 

service routine must determine which device generated the interrupt 

by polling each device when an interrupt is received. 

Polling means that the interrupt service routine checks the sta¬ 

tus of each device that could have generated the interrupt. This is 

done by checking the PDT bit of each of the devices. When a PDT bit 

is found to be set, the appropriate service routine is entered to exe¬ 

cute the I/O for that device. At the conclusion of the service routine, 

the return from interrupt instruction sequence is executed to return 

to the interrupted program. 

The following listing is an example of a polling routine that 

checks the status of three possible interrupting devices. This instruc¬ 

tion sequence should be the initial sequence of the interrupt routine. 

The labels DVICE1, DVICE2 and DVICE3 refer to the interrupt ser¬ 

vice routines that perform the I/O logic for the designated device. 

This routine tests the PDT bit of each device and jumps to the proper 

service routine when a PDT bit is set. If none of the possible devices 

have the PDT bit set, this routine ignores the interrupt and returns to 

the interrupted program. This condition may be treated as an error 

condition, if necessary, rather than ignoring it. 

LDA PDTDV1 

BMI DVICE1 

LDA PDTDV2 

BMI DVICE2 

LD PDTDV3 

BMI DVICE3 

Polling routine 

Test status of device 1 

If PDT set, service device 1 

Test status of device 2 

If PDT set, service device 2 

Test status of device 3 

If PDT set, service device 3 

None set, ignore interrupt 

Nesting Interrupts for Fast Service 

The use of several interrupting devices in a system may require 

that the interrupt service routines allow receipt of an interrupt from 

one device while another is being serviced. 

This means that the service routine of the first interrupting de¬ 

vice must enable interrupts before it has completed its operation. 

Then, if an interrupt from a second device occurs before this routine 

is finished, the current interrupt routine being executed becomes the 

interrupted program of the second interrupt. Allowing interrupts to 

overlap in this manner is referred to as nesting interrupts. 

The illustration shows how the flow from one interrupt routine 
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to another would proceed if three interrupting devices generated in¬ 

terrupts within a short period of time, to create the nesting of three 

levels of interrupts. 

The 6502 stack plays an important role in nesting interrupts. 

Saving the CPU registers and status in the stack allows the interrupt 

routines to interrupt each other without setting up special pointers 

and data storage areas for each interrupt level or device. The only re¬ 

strictions on the number of nesting levels, as far as the stack is con¬ 

cerned, is the amount of memory provided for use by the stack. Each 

interrupt may use six memory locations in the stack to store the reg¬ 

isters. Therefore, for every interrupt nesting level one can expect, 

there must be six memory locations available in the stack. One must 

also allow for other uses of the stack by the main program (i.e., sub¬ 

routine calls, temporary data storage). 

PROGRAM 

INTERRUPT FROM 
DEVICE 1 

INTERRUPTS 
ENABLED 

INTERRUPT FROM 
DEVICE 2 

INTERRUPTS 
ENABLED 

RETURN 
TO MAIN 

PROGRAM 

DEVICE 1 
SERVICE 

COMPLETE 

1-1 
INTERRUPT FROM 

DEVICE 3 

INTERRUPTS 
ENABLED 

DEVICE 3 
SERVICE 

COMPLETE 

I-' 
DEVICE 2 
SERVICE 

COMPLETE 
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Deciding when to enable interrupts in an interrupt service rou¬ 

tine to allow nesting is generally determined by the speed of the de¬ 

vice being serviced. A low-speed device may allow interrupts to be 

enabled immediately, since it is likely that a swift data transfer is not 

required. A medium-speed device, or a device that has a limited 

amount of time to transfer the data, may require the data transfer to 

be performed before the interrupts are enabled. Then, the remainder 

of the service routine may be executed while the interrupts are en¬ 

abled. If the high-speed device is being operated in the interrupt 

mode, it is very likely that it should not allow interrupts to be en¬ 

abled until the end of its service routine. If it were to enable inter¬ 

rupts, a slower device might delay the execution of the high-speed 

device’s service routine to the point that a second interrupt from the 

high-speed device would be received before the initial interrupt had 

been serviced completely. Therefore, one should carefully consider 

which routines, and where in the routines, the interrupts are to be 

enabled. 

This method of selecting when to enable interrupts is a means 

of setting a priority for the interrupting devices. The high-speed de¬ 

vices would have the highest priority, since they do not allow them¬ 

selves to be interrupted until the service routine is finished. The me¬ 

dium-speed devices, which may enable interrupts after several opera¬ 

tions of the service routine have been completed, would be consid¬ 

ered a middle priority. The low-speed devices would be the lowest 

priority because they may be interrupted at any time during the in¬ 

terrupt service routine. 

Such a system of priorities may be augmented by the compu¬ 

ter’s hardware, if a priority interrupt interface is used. This interface 

fields the interrupts from the interrupting devices and allows the 

higher priority interrupts through first, before those of lower priori¬ 

ty. The interrupt software for setting up priorities for the interrupts 

received is greatly simplified by this type of interface. 

When deciding whether to operate a computer system’s peri¬ 

pherals under PDT control or interrupt, one should consider the type 

of programs (along with the number of peripherals) to be used in the 

system. If the programs are the type that receive an input and then 

output a response to a single terminal, the PDT mode would be the 

easiest to implement, and would provide sufficient performance. Pro¬ 

grams of this type include games, editors and small system monitors. 

For programs that provide keyboard entry and storage or retrieval 

from a bulk storage device to enter and store mailing lists, for exam¬ 

ple, one should consider interrupt processing. This would allow the 
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data entry and bulk storage to be performed simultaneously. How¬ 

ever, if the speed of the storage device is fast enough to store each 

entry with a minimal delay imposed between entries, the PDT mode 

may work just as well. For programs that operate a number of peri¬ 

pherals simultaneously and, in essence, are running more than one or 

two programs at a time, the interrupt mode of operation is a neces¬ 

sity. Such multi-programmed systems might be used to control sever¬ 

al terminals at once, while monitoring a burglar or fire alarm system. 

Therefore, one should carefully consider the overall requirements for 

the type of programs to be run when setting up the I/O portion of 

one’s system. 
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Chapter 8 

Search and Sort Routines 

I he capability of a computer to manipulate data stored in its memo¬ 

ry is another reason why the computer is such a powerful machine. 

The speed with which it can search large blocks of data and extract 

information, or sort the data into alphabetical order, or into com¬ 

mon groupings, is far beyond the capability of a human. The infor¬ 

mation may represent a wide variety of data. For example, the data 

could consist of names and addresses that are to be searched for 

those in specific geographic regions. The list may be sorted into 

alphabetical order, or the data may be numerical information, such 

as test grades or data gathered for a research project. In order for 

the computer to perform these tasks, the information to be pro¬ 

cessed must be arranged in the memory in a specific format. Then, 

programs must be written to perform the desired operation. 

Structure of Tables 

The data to be manipulated must be arranged in some form of 

table in the memory. The table may contain a number of entries. 

Each entry may consist of one or more bytes of memory, depend¬ 

ing on the maximum size of a single entry and the format specified. 

The two types of tables to be discussed in this chapter are commonly 

referred to as fixed-format and free-format tables. In a fixed-format 

table, the data is arranged in a standard fashion for each entry. The 

same number of bytes is assigned to each entry, no matter how many 

bytes an entry may actually take up. A free-format table allows the 

size of each table entry to follow the data pattern of the entry. If 

the first entry requires four bytes and the next requires six, in a 

free-format table, the first entry will only use the four bytes and the 

second will use six. There are advantages to both formats, depending 

on the application. These will be discussed as the search routines for 

each format are presented. 
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In order to provide a means of comparing the two formats, two 

search routines will be presented that perform the same function. 

However, one routine utilizes a search table of a fixed format and 

the other utilizes a free-format search table. The function performed 

by these search routines is that of receiving a command input from a 

keyboard and searching a control table for the same command. If 

the command is found, the start address of the command routine is 

taken from the table and is used to jump to that command routine. 

If the command is not found in the table, the search routine returns 

to wait for another command input. These routines have many prac¬ 

tical applications. The entries in the control table may be modified 

easily to represent as many commands as one may need for a spe¬ 

cific program. Any program that allows an operator to input com¬ 

mands to direct its operation may find one of these routines useful. 

Same Data — Two Different Formats 

The following control tables are used to illustrate the operation 

of the fixed-format and free-format search routines. The commands 

in these tables are: GO, LIST, MEDIAN, AVG, COUNT, and ERASE. 

These commands might be used to direct the computer to aid in con¬ 

ducting an experiment. The GO command could initiate a 10-second 

sampling interval, during which time a sensor is monitored to detect 

the occurrence of an event. A count of the number of times the 

event occurs within the 10-second interval is stored in the computer 

by the GO command routine. The LIST routine might be used to 

print out the counts stored for each 10-second interval up to that 

time. This would allow one to examine the raw data for possible 

patterns that may develop. The MEDIAN and AVG commands could 

calculate the median and average values of the counts stored for each 

interval, and output the value to a printer. The COUNT command 

might be used to indicate the number of 10-second intervals that 

have been initiated up to that time. The ERASE command could 

be used to reset the storage area to allow a new set of tests to begin. 

In both the fixed-format and free-format control tables, each 

entry is divided into two fields. The first field consists of the charac¬ 

ter string that defines the command name. In the fixed-format entry, 

this field is set to a fixed length. In this case, it is six characters long. 

For the command names that do not use all six locations available 

for the name, the unused locations are filled with zeros. In the free- 

format entry, the command field contains the characters for the 

name plus one more location that contains a zero byte. This extra 

location is used to indicate the end of the name. The second field 
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is the same for both formats. This field is two bytes long and con¬ 

tains the start address of the command in the entry. 

The end of each control table is indicated by a zero byte stored 

immediately following the last entry. By terminating the tables in 

this way, the search routines simply may check the first character 

of each entry for a zero byte to determine when the end of the 

table is reached. Therefore, the number of entries in the control 

table is completely independent of the operation of the search 

routine. Modifying the number of commands in the control table 

is accomplished by adding or deleting the command entries and 

moving the zero byte to the end of the new control table. The 

search routine does not have to be changed at all. 

The control table for the fixed-format search routine is pre¬ 

sented here, followed by the control table for the free-format rou¬ 

tine. Note the difference in length between the two tables caused by 

the extra zeros that must be added to the fixed-format entries. 

0200 C7 

Fixed-Format Control Table 

Code for letter G 

0201 CF Code for letter O 

0202 00 Not used for this command 

0203 00 Not used for this command 

0204 00 Not used for this command 

0205 00 Not used for this command 

0206 40 Location on page where GO starts 

0207 03 Page where GO routine starts 

0208 CC Code for letter L 

0209 C9 Code for letter 1 

020A D3 Code for letter S 

020B D4 Code for letter T 

020C 00 Not used for this command 

020D 00 Not used for this command 

020E 60 Location on page where LIST starts 

020F 03 Page where LIST routine starts 

0210 CD Code for letter M 

0211 C5 Code for letter E 

0212 C4 Code for letter D 

0213 C9 Code for letter 1 

0214 Cl Code for letter A 

0215 CE Code for letter N 

0216 80 Location on page where MEDIAN starts 

0217 03 Page where MEDIAN routine starts 
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0218 

0219 

021A 

021B 

021C 

021D 

021E 

021F 

0220 

0221 

0222 

0223 

0224 

0225 

0226 

0227 

0228 

0229 

022A 

022B 

022C 

022D 

022 E 

022F 

0230 

0200 

0201 

0202 

0203 

0204 

0205 

0206 

0207 

0208 

0209 

020A 

020B 

020C 

020D 

020E 

020F 

Cl 

D6 

C7 

00 

00 

00 

AO 

03 

C3 

CF 

D5 

CE 

D4 

00 

CO 

03 

C5 

D2 

Cl 

D3 

C5 

00 

EO 

03 

00 

C7 

CF 

00 

40 

03 

CC 

C9 

D3 

D4 

00 

60 

03 

CD 

C5 

C4 

C9 

Code for letter A 

Code for letter V 

Code for letter G 

Not used for this command 

Not used for this command 

Not used for this command 

Location on page where AVG starts 

Page where AVG routine starts 

Code for letter C 

Code for letter O 

Code for letter U 

Code for letter N 

Code for letter T 

Not used for this command 

Location on page where COUNT starts 

Page where COUNT routine starts 

Code for letter E 

Code for letter R 

Code for letter A 

Code for letter S 

Code for letter E 

Not used for this command 

Location on page where ERASE starts 

Page where ERASE routine starts 

**End of table marker** 

Free-Format Control Table 

Code for letter G 

Code for letter O 

*End of command word marker* 

Location on page where GO starts 

Page where GO routine starts 

Code for letter L 

Code for letter I 

Code for letter S 

Code for letter T 

*End of command word marker* 

Location on page where LIST starts 

Page where LIST routine starts 

Code for letter M 

Code for letter E 

Code for letter D 

Code for letter I 
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0210 Cl Code for letter A 

0211 CE Code for letter N 

0212 00 *End of command word marker* 

0213 80 Location on page where MEDIAN starts 

0214 03 Page where MEDIAN routine starts 

0215 Cl Code for letter A 

0216 D6 Code for letter V 

0217 C7 Code for letter G 

0218 00 *End of command word marker* 

0219 A0 Location on page where AVG starts 

021A 03 Page where AVG routine starts 

021B C3 Code for letter C 

021C CF Code for letter O 

021D D5 Code for letter U 

021E CE Code for letter N 

021F D4 Code for letter T 

0220 00 *End of command word marker* 

0221 CO Location on page where COUNT starts 

0222 03 Page where COUNT routine starts 

0223 C5 Code for letter E 

0224 D2 Code for letter R 

0225 Cl Code for letter A 

0226 D3 Code for letter S 

0227 C5 Code for letter E 

0228 00 *End of command word marker* 

0229 E0 Location on page where ERASE starts 

022A 03 Page where ERASE routine starts 

022B 00 **End of table marker** 

As mentioned before, the lengths of the two tables differ be- 

cause of the variation in the number of characters for each command 

name. If, however, all of the names were six characters long, the 

fixed-format table would be shorter than the free-format. The com¬ 

mand field name in the free-format table would require seven bytes 

to store each name — six for the name and one for the terminating 

zero byte. 

Fixed-Format Input Routine 

Another consideration when deciding which format to use is 

the type of input programming required to enter the commands. 

There are several different methods that may be used to input and 

store the command to be searched for in the control table. 
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One method is to initially clear out the input buffer area by 
filling it with zero bytes. Then, as each character is entered, it is 
stored in the input buffer. When a carriage return is entered, the 
input is terminated and the contents of the input buffer may be used 
to search for the command. If the command entered does not fill 
the input buffer, the unused locations will contain zero bytes. This 
method is best suited for the fixed-format, since the input buffer will 
contain the same contents as the command name field of the match¬ 
ing command in the control table. 

The following routine could be used to clear the input buffer 
and store the characters in the buffer as discussed above. This rou¬ 
tine uses the CLRMEM subroutine in Chapter Three to clear the in¬ 
put buffer. The INPUT routine that is called must input a charac¬ 
ter from the input device (such as an ASCII keyboard), echo it to a 
display and return with the character in the accumulator. Along with 
the test for the carriage return, to terminate the input and return, 
the character count is checked. When the input buffer is full, any 
additional characters that may be inadvertently entered before the 
carriage return are ignored. The initial instruction sequence may be 
used as a control routine to call the individual routines, including 
the search routine to be presented later. 

When a match is found, the FOUND routine is entered. This 
routine takes the address from the address field of the matching con¬ 
trol entry and uses it to jump to the command routine. The address 
is moved to FMPNT on page zero. The jump indirect instruction 
directs the CPU to the appropriate command routine. After the com¬ 
mand routine completes its operations, it may return to the main 
control program simply by executing a return instruction. 

Since this routine compares the entire input buffer against the 
command name field of the control table entries, it is not necessary 
for it to test the input buffer or command name for a terminating 
character. However, a counter must be set to the number of charac¬ 
ters in the command name field so that the routine will know when 
all of the characters have been compared. In this routine, this count¬ 
er is set to six. If one changes the length of the command name 
field, this counter must also be changed to reflect the new length. 

The listing for this fixed-format search routine is presented 
next, followed by the flow chart. The flow chart also includes the 
logic flow of the main control routine when used in conjunction with 
this search routine. 

NEXCMD LDA #$0 Set page portion of input pointer 
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STA TOPNT+1 Store in TOPNT 

LDX #INPBFR Set low address of input pointer 

STX TOPNT Store in TOPNT 

LDX #$06 Set precision counter 

JSR CLRMEM Clear input buffer storage 

JSR INCMND Fetch command string from input 

JSR SRCHFX Search table and execute command 
JMPNEXCMD Repeat loop for next command 

INCMND LDX #INPBFR Set pointer to input buffer 
LDY #$06 Set counter to buffer size 

INCHAR JSR INPUT Call routine to input character 

CMP #$8D Is character a carriage return? 

BNECHECK No, continue input 

RTS Yes, return, input complete 
CHECK CPY #$00 Is character counter = zero? 

BEQINCHAR Yes, ignore new character 

DEY Else, decrement counter 

STA $0,X Store character in buffer 

INX Advance input buffer pointer 

BNE INCHAR Fetch next character 

Free-Format Input Routine 

Another method of inputting the characters is to leave the in¬ 

put buffer contents as is at the start of the input routine. As each 

character is received, it is stored in the input buffer. When a carriage 

return is received, the input is terminated by storing the carriage 

return in the input buffer and returning. Thus, the input buffer area 

must be assigned one byte more than the maximum of characters 

assigned for a command name. This method is more advantageous for 

the free-format search routine. It sets up the command entered in a 

similar format to that used in the command name field of the free- 

format control table entries. 

The only real diference between this input routine, labeled 

INCTRL, and the previous INCMND routine is the instruction se¬ 

quence that stores the carriage return as the terminating charac¬ 

ter in the input buffer before returning. Also, one should note the 

absence of the routine that clears the input buffer before inputting 

the command. This saves quite a few memory locations. The initial 

instruction sequence is a sample control routine for directing the 

operation of the command search function. 

NEXCMD JSR INCTRL Input command from input device 
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JSRSRCHFR Search table and execute command 

JSR NEXCMD Repeat loop for next command 

INCTRL LDX #INPBFR Set pointer to start of input 

LDY #$06 Set counter to buffer size 

INCHAR JSR INPUT Call routine to input character 

CMP #$8D Is character a carriage return? 

BNE CHECK No, check for full buffer 

STA $0,X Yes, store carriage return in buffer 

RTS Return, input complete 

CHECK CPY #$00 Character count zero? 

BEQ INCHAR Yes, ignore current input 

DEY Decrement character counter 

STA $0,X Store character in buffer 

INX Advance buffer pointer 

BNE INCHAR Loop to input next character 

Searching the Fixed-Format Table 

The search routine for a fixed-format control table compares 

the contents of the input buffer to the command name field on a 

character-by-character basis. This is done by calling the CPRMEM 

subroutine, which is presented in Chapter Three. This subroutine 

may be included in the SRCHFX routine if it is not used elsewhere 

in one’s program. 

If the characters in the input buffer do not match any com¬ 

mand name fields in the control table, the NXWORD routine is 

entered to advance the control table pointer to the start of the next 

entry. At this point the first character of this entry is checked for 

the zero byte, which indicated the end of the control table. If the 

zero byte is not found, the routine jumps to the compare routine 

to check for a match between the new control entry and the input 

buffer. When the zero byte is encountered, it indicates that the 

entire table has been searched and no match has been found. The 

routine then returns to the control routine to initiate a new com¬ 

mand entry. 

It may be desirable at this point to have the search routine 

print out a message, and if no match is found, to inform the opera¬ 

tor of the error. This may be done by changing the RTS instruction 

in the SETNXW routine to a branch or jump instruction, which 

jumps to a message output routine to print the message before 

returning to the main control program. 

When a match is found, the FOUND routine is entered. This 

routine takes the address from the address field of the matching 
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control entry and uses it to jump to the command routine. The 

address is moved to FMPNT on page zero. The jump indirect instruc¬ 

tion directs the CPU to the appropriate command routine. After the 

command routine completes its operations, it may return to the 

main control program simply by executing a return instruction. 

Since this routine compares the entire input buffer against the 

command name field of the control table entries, it is not necessary 

for it to test the input buffer of command name for a terminating 

character. However, a counter must be set to the number of charac¬ 

ters in the command name field so that the routine will know when 

all of the characters have been compared. In this routine, this count¬ 

er is set to six. If one changes the length of the command name field, 

this counter must also be changed to reflect the new length. 

The flow chart below includes the logic flow of the main con¬ 

trol routine when used in conjunction with this search routine. 

SRCHFX 

INITBF 

CMATCH 

NXWORD 

FOUND 

LDX #> CMDTBL 

STX FMPNT 1 

LDX #CMDTBL—1 

STX FMPNT 

LDA #INPBFR—1 

STA TOPNT 

LDY #$06 

JSR CMPMEM 

BEQFOUND 

LDA FMPNT 

CLC 

ADC #$08 

STA FMPNT 

LDY #$01 

LDA (FMPNT),Y 

BNE INITBF 

RTS 

LDY #$07 

LDA (FMPNT),Y 

TAX 

INY 

LDA (FMPNT),Y 

STX FMPNT 

STA FMPNT 1 

JMP (FMPNT) 

Set pointer to start of table 

Store page portion in FMPNT 

Set low portion of table pointer 

Store in FMPNT 

Set pointer to input buffer 

Store in TOPNT 

Initialize byte counter 

Compare table entry to input 

Both equal, process command 

Fetch table pointer 

Clear carry for addition 

Advance pointer to next entry 

Restore in FMPNT 

Set index pointet to first character 

Is end of table reached? 

No, continue table search 

Yes, entry not found, input command 

Set pointer to command address 

Fetch low address 

Save in X 

Advance table pointer 

Fetch page portion of address 

Store start address of command 

Routine in FMPNT 

Jump to command routine 
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Free-Format Search Routine 

The free-format search routine that follows has the same basic 

flow of the fixed-format routine. That is, it compares the input 

buffer to an entry in the control table. If they do not match, it 

advances the control table pointer to compare the next entry against 

the input buffer. This continues until either a match is found, or the 

end of the buffer is reached. But, instead of comparing a fixed 

number of characters to get a match, this routine compares the 

contents of the input buffer, up to the terminating carriage return, 

against each command name field in the control table. If the input 

buffer and command name field match to the carriage return in the 

input buffer, the corresponding location in the command name field 

is checked for its terminating character, a zero byte. If the zero byte 
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is found, the FOUND routine is entered to fetch the address from 

the control table entry and jump to the proper command routine. 

Here again, if the suggested main control routine for the free-format 

is used, the command routines may return to the main control 

routine by executing a return instruction. 

SRCHFR LDX#INPBFR Set pointer to input buffer 

STX TOPNT Store in TOPNT 

LDX #< CMDTBL Set pointer to start of command table 

STX FMPNT Store in FMPNT 

LDX #> CMDTBL Set page portion of table address 

STX FMPNT+1 

LDY #$00 

STY TOPNT+1 

CMATCH LDA (TOPNT),Y 

CMP #$8D 

BEQ LCHAR 

CMP (FMPNT),Y 

BNENXWORD 

INY 

BNE CMATCH 

LCHAR LDA (FMPNT),Y 

BEQ FOUND 

NXWORD LDA (FMPNT),Y 

BEQ SETNXW 

INY 

BNE NXWORD 

SETNXW INY 

INY 

INY 

CLC 

TYA 

ADC FMPNT 

STA FMPNT 

LDY #$00 

LDA (FMPNT),Y 

BNECMATCH 

RTS 

FOUND INY 

LDA (FMPNT),Y 

TAX 

INY 

LDA (FMPNT),Y 

Store in FMPNT 

Initialize index pointer 

Store page portion of input address 

Fetch entry from input buffer 

Is character a carriage return? 

Yes, check for end of command 

No, is entry equal to command? 

No, advance to test next command 

Yes, advance index pointer 

Check next character 

Is end of control field here? 

Yes, found matching control word 

Test for end of control field 

If found, advance to next block 

Otherwise, advance command pointer 

And continue looking 

Advance pointer over the 

Address field to start of 

Next control word field 

Clear carry for addition 

Move index pointer to accumulator 

Advance command table pointer 

Restore pointer in FMPNT 

Reset index pointer 

Is next control word the end? 

No, compare to input buffer 

Yes, entry not found, return 

Advance pointer to address field 

Fetch low portion of command 

Save in X 

Advance index pointer 

Fetch page portion of pointer 
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STX FMPNT 

STA FMPNT+1 

JMP (FMPNT) 

Store pointer to start of 

Command routine in FMPNT 

Jump to command routine 
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Why Sort Out Data? 

The process of sorting data into some specified order, or into 

groups with common attributes, is another of the computer’s power¬ 

ful capabilities. For example, it is often desired to arrange a list of 

names and addresses in alphabetical order according to the last 

names. Or, one may want to sort out persons living in a common 

geographical location by sorting the addresses according to Zip 

code. In order to program these sort functions, the data first must be 

organized into carefully structured tables. 

Another Data Structure 

Proper structuring may be accomplished by creating fields in 

which specific items are to be located. These fields are set up in, a 

similar manner to the fields in the search table entries. For this sort 

routine, a fixed-format table is used. This table contains a list of 

names which are to be arranged in alphabetical order. For illustra¬ 

tive purposes, the following names are used as table entries. 

BROWN, L.R. 

DALEY, D.R. 

ANDERSON, B. 

DARBY, P. 

MATTOX, R.T. 

MATTHEWS, K.D. 

JONES, A.M. 

Each element of the names in this list must have a specific field 

assigned to it. Looking at the last names, one may observe that the 

longest name is eight characters long. However, there are many 

names that use more than eight characters. Therefore, a field of 

14 bytes for the last name will be used to accommodate the longer 

names. One-byte fields will be set up for each of the initials. This 

makes a total of 16 bytes for each entry. The delimiters (the comma 

and period) are not assigned any location in the tables since a fixed 

format is to be used. The inclusion of these punctuation marks 

would only serve to take up table space. The delimiters are used, 

however, when entering the names to be stored in the table. 

A Data Entry Routine 

The following program is one possible means of entering the 

names into the table in the properly formatted fields. This routine 

accepts the names as keyboard entries in the format illustrated 
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above. Each field is accepted and stored in its proper location in the 

table for that entry. A name input is terminated by entering a 

carriage return. The delimiters terminate a field entry and advance 

the pointer to the next field in the entry. If a field is not filled by 

the name, such as a last name with less than 14 characters, or one 

with no middle initial, the unused locations in the field are filled 

with zero bytes. After the final name has been entered, the operator 

may input an asterisk to indicate the completion of the input opera¬ 

tion. 

ASCII Helps Keep Sorting Simple 

The character input is expected to be ASCII characters. The 

ASCII character set is a well-ordered set of character codes. The 

letters A through Z are coded in consecutive order from Cl to $DA 

and the numbers zero through nine are coded in order from $B0 

to $B9. This is especially useful when sorting into alphabetical or 

numerical order, since the lower the code for the character, the 

lower it will place the entry in the sorted list. 

Before listing this routine, several comments about its opera¬ 

tion must be given. First, the characters are received by calling a 

routine referred to by the label INPUT. This routine must be pro¬ 

vided by the user to accept characters from the input device asso¬ 

ciated with one’s system. This routine must return the ASCII code 

for the character input in the accumulator upon returning. As a 

visual indication for the operator to verify the characters entered, 

this INPUT routine should also output the characters received to 

the system display device before returning. The contents of the in¬ 

dex registers must be used to point to a conversion table or whatever, 

they should be saved and then restored before returning. This INPUT 

routine should also check for the receipt of a carriage return charac¬ 

ter. When received, the input routine should also output a line feed 

character to the printer device, since this is not provided for in the 

name input routine. 

Before this routine is called, the table area must be properly 

set up. This is accomplished by storing a zero byte in the first loca¬ 

tion in the table. The zero byte is used to indicate the location for 

storing the next name entered. Initially, this byte must be set up at 

the start of the table by the calling program. Then, as each name is 

entered into the table, the zero byte is moved up to the location 

immediately following the last name entered in the table. Before 

each name input is initiated, the location of this byte in the table 

is checked. If the zero byte is not found within the limits of the 
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table area, it is assumed that the table is filled. At this point, a rou¬ 

tine, to be supplied by the user and referred to here as TOMUCH, 

would be entered. TOMUCH should output a message to the opera¬ 

tor indicating that the table is filled. The limits of the table area 

in this sample routine begin at page $04, and end at page $07 loca¬ 

tion $FF. Thus, when the table pointer is advanced to the start 

of page $08, the table is full. 

After the zero byte is found and the program is ready to ac¬ 

cept a name input, it calls the input routine to fetch the first char¬ 

acter. There are a number of special codes checked when the first 

character is entered. One is an asterisk, which is to be entered when 

the list contains all of the names desired. When this character is 

received, the routine returns to the calling program, which may then 

call upon the sort routine to sort the names into alphabetical order. 

The other special codes checked are the carriage return, comma, or 

period. If any of these codes are received as the first character, they 

are ignored. This is because they indicate the end of either an entry 

or a field. They would not be valid at this time since there are no 

characters stored as yet for this name. 

Once a valid character is entered for the first character, the 

characters that follow are checked for a comma or carriage return. 

If the comma is received, the remainder of the last name field is 

filled with zero bytes, and the portion of the routine that accepts 

the initials is entered. If a carriage return is received, the remainder 

of the entire entry is filled with zeros and a new name input is 

initiated. If the character entered is neither of these two characters, 

it is entered as the next character in the last name, up to the four¬ 

teenth character. If more than 14 characters are entered for the last 

name, the excess characters are simply ignored. 

If, when the first initial entry is to be entered, a carriage return 

is received, the two initial fields are zeroed and a new name input is 

begun. If a comma is received, it is ignored. Otherwise, the charac¬ 

ter is stored as the first initial and the routine jumps to input the 

second initial. When the second initial is to be entered, receipt of a 

period is ignored, and a carriage return results in a zero byte being 

stored for the second initial. Any other input is stored as the second 

initial. The routine then checks for a full table, and, if not filled, 

begins a new name input sequence. 

ACCEPT LDX #< SRTTBL Initialize sort table pointer 

STX TOPNT Store low address in TOPNT 

LDX #> SRTTBL Set page portion of address 
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STX TOPNT+1 

NOTFND LDY #$00 

LDA (TOPNT),Y 

BEQFNDEND 

JSR CKPAGS 

JMP NOTFND 

FNDEND LDY #$00 

LDX #$0E 

JSR INPUT 

CMP #$AA 

BNENOTDON 

LDA #$00 

STA (TOPNT),Y 

RTS 

NOTDON CMP #$8D 

BEQFNDEND 

CMP #$AE 

BEQFNDEND 

CMP #$AC 

BEQ FNDEND 

STRCHR STA (TOPNT),Y 

INY 

DEX 

BEQ FULFLD 

JSR INPUT 

CMP #$8D 

BEQ HAVECR 

CMP #$AC 

BEQ HAVECM 

BNESTRCHR 

HAVECR INX 

INX 

LDA #$00 

STA (TOPNT),Y 

INY 

DEX 

BNE HAVECR+2 

JSR CKPAGS 

LDA #$00 

TAY 

STA (TOPNT),Y 

BEQ NOTFND 

Store in TOPNT 

Clear index pointer 

Is first entry = zero? 

Yes, begin input routine 

No, advance sort table pointer 

Check for last table entry 

Initialize index pointer 

Set up last name field counter 

Fetch character from input 

Check for * code 

Proceed if not * 

End of input 

Store end of table marker 

Return to main program 

Test for carriage return 

Ignore if first character in field 

Test for period 

Ignore if first character in field 

Test for comma 

Ignore if first character in field 

Store character in field 

Advance index pointer 

Decrement character counter 

If zero, field is full 

Otherwise, input next character 

Test for carriage return 

Finish entry if carriage return 

Test for comma 

Finish last name field 

Jump to store character 

Increment counter twice to 

Clear initial fields 

Set up zero byte 

Store in remaining field area 

Advance index pointer 

Decrement byte counter 

Not zero, continue clearing 

See if end of boundary 

Not out of bounds 

Store zero byte at start 

Of next entry 

Begin process for next entry 
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HAVECM LDA #$00 

STA (TOPNT),Y 

INY 

DEX 

BNE HAVECM 

FULFLD JSR INPUT 

CMP #$AC 

BEQ FULFLD 

CMP #$8D 

BNE SAVIN1 

LDA #$00 

STA (TOPNT) ,Y 

INY 

JMPSAVIN2 

SAVIN1 STA (TOPNT),Y 

INY 

INITF2 JSR INPUT 

CMP #$AE 

BEQ INITF2 

CMP #$8D 

BNE SAVIN2 

LDA #$00 

SAVIN2 STA (TOPNT),Y 

JSR CKPAGS 

JMPFNDEND 

CKPAGS CLC 

LDA #$10 

ADC TOPNT 

STA TOPNT 

BCC CKPAGS 

INC TOPNT+1 

LDA TOPNT+1 

CMP #$08 

BEQ TOMUCH 

CKPGRT RTS 

Comma entered, clear 

Rest of last name field 

Advance index pointer 

Decrement field counter 

Continue clearing field 

Get first initial 

Test for comma 

Ignore comma at this point 

Test for carriage return 

Not CR, store character 

If carriage return, store 

Zero byte for both initials 

Advance index pointer 

Jump to clear second initial 

Store character for first initial 

Advance index pointer 

Input next character 

Test for period 

Ignore a period at this point 

Test for carriage return 

Not CR, store zero byte 

If CR, store zero byte 

Store second initial character 

Check if out of bounds 

If not, process next entry 

Clear carry for addition 

Set increment to next entry 

Add to indirect pointer 

Save in TOPNT 

If no carry, return 

Increment page portion of TOPNT 

Fetch page portion of pointer 

Test for boundary exceeded 

Display message if table full 

Otherwise, return to continue input 

It may be desired to provide some kind of entry correction 

capability to this main input routine. One way to accomplish this is 

to designate another special entry code. When entered, this would 

cause the program to reset the table pointer to the start of the cur¬ 

rent entry and initiate a new name input. The routine listed next 
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may be used by the input routine to check for a control zero charac¬ 

ter, $8F. This routine checks for the control zero and, if entered, 

resets the table pointer, essentially erasing the current name input 

from the table. The start of the name input sequence at the 

FNDEND label then is entered. Otherwise, it simply returns to con¬ 

tinue the input. 

CHKRUB CMP#$8F Check for control zero 

BEQ R ESET If control zero, start new entry 

RTS Otherwise, return to check character 

RESET PLA Advance stack pointer to 

PLA Eliminate return address 

LDY #$00 Reset index pointer to start 

JMP FNDEND Begin name entry again 

Now that one has defined the format for storing the data, and 

developed a means of entering it, a routine may be written to sort 

the data as desired. The main objective of the sort routine is to 

examine the contents of the field (or fields) that contain the infor¬ 

mation pertinent to the sort operation. Then it must rearrange the 

table contents into the desired order or groups. There are a number 

of techniques used to do this. The choice generally depends on the 

type of data and sorting operation to be performed. The sort routine 

arranges the table contents into alphabetical order by using a ripple 

sorting technique. 

How the Ripple Sort Operates 

The term ripple is derived from the manner in which the routine 

moves through the table to sort the entries into alphabetical order. 

Beginning with the first entry (N), the sort routine compares it to 

the next entry (N+l) in the table, If the first entry is lower in alpha¬ 

betical order than the second, the two entries are left as it. The rou¬ 

tine advances to check the order of the second entry (new N) against 

the third (new N+l). If the first entry is greater than the second, the 

routine will swap the two entries so that the entry that was initially 

the second entry would now be the first. 

As the procedure continues, if the Nth entry is found to be 

greater than the N+l entry, the two entries are exchanged in the 

table. Then, rather than advancing to the next entry, the routine 

backs up to compare the N—1 entry against the new N entry. This 

is because if the initial N+l entry was lower than the N entry, it 

may also be lower than the N—1 entry. Therefore, the routine will 
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continue to transfer the lower entry down through the table until 

the entry before it is lower in alphabetical order, or the entry is 

moved to the beginning of the table once again. The routine then 

starts back up through the table once again. This type of movement 

up and down through the table gives a ripple effect as the routine 

compares and shifts the entries around. 

The operation of the sort routine may be illustrated by exam¬ 

ining its procedure for arranging the sample list of names into alpha¬ 

betical order, given at the start of this section. The routine initially 

compares the first entries and finds the order to be correct, since 

the B in BROWN comes before the D in DALEY. When the next 

pair of entries is compared, however, it is found that ANDERSON 

should go before DALEY. The routine will therefore shift the second 

and third entries around, as illustrated in the table below. 

BROWN, L.R. 

ANDERSON, B. 

DALEY, D.R. 

DARBY, P. 

MATTOX, R.T 

MATTHEWS, K.D. 

JONES, A.M. 

Now the second and third entries are in the proper order with 

respect to each other. The routine backs up to compare the first 

entry against the second. The second entry is found to be less than 

the first. The routine swaps these two entries and begins comparing 

the entries once again, starting with the first two. 

ANDERSON, B. 

BROWN, L.R. 

DALEY, D.R. 

DARBY, P. 

MATTOX, R.T. 

MATTHEWS, K.D. 

JONES, A.M. 

On this pass through the table, the routine will proceed all 

the way up to MATTOX, R.T. before finding another entry out of 

order. Note that in comparing MATTOX, R.T. and MATTHEWS, 

K.D., the routine must work up to the fifth character in the last 

names to determine the proper order. If the last names were the 
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same, it must go up to the initials to check whether the two entries 

are in order. Upon finding these names in the wrong order, the 

routine will exchange them: 

ANDERSON, B. 

BROWN, L.R. 

DALEY, D.R. 

DARBY, P. 

MATTHEWS, K.D. 

MATTOX, R.T. 

JONES, A.M. 

The routine then backs up in order to compare DARBY, P. 

and MATTHEWS, K.D. Finding these to be in order, it moves for¬ 

ward again until MATTOX, R.T. is compared to JONES, A.M. 

These two entries are swapped and the routine again backs up and 

compares MATTHEWS, K.D. to JONES, A.M. It finds also they 

must be swapped. Finally, after determining that DARBY, P. and 

JONES, A.M. are in the right order, the routine advances until the 

end of the table is reached. The resulting table will contain the names 

in the following order: 

ANDERSON, B. 

BROWN, L.R. 

DALEY, D.R. 

DARBY, P. 

JONES, A.M. 

MATTHEWS, K.D. 

MATTOX, R.T. 

In checking for the start and end of the allowable table, this 

routine assumes that the table begins at page $04 location $00, and 

ends at page $07 location $FF. If the entire table is not filled, the 

last entry must be followed by a zero byte. The instruction sequence 

used here to compare the two entries is similar to the CPRMEM 

routine presented in Chapter Three. 

SORT LDX #< SRTTB1 Initialize pointer to second table entry 

STX FMPNT Store low address portion in FMPNT 

LDX #< SRTTB1 Set page portion of address 

STX FMPNT+1 Store in FMPNT 

LDX #< SRTTBL Initialize pointer to start of sort table 
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STX TOPNT 

LDX #> SRTTBL 

STX TOPNT+1 

INITBK LDA TOPNT+1 

CMP #$07 

BNECKEND 

LDA TOPNT 

CMP #$F0 

BEQSRTRET 

CKEND LDY #$10 

LDA (TOPNT),Y 

BNE CKNEXT 

SRTRET RTS 

CKNEXT LDY #$0 

LDA (TOPNT),Y 

CMP (FMPNT),Y 

BNE CKGTLT 

INY 

CPY #$10 

BNE CKNEXT+$2 

FINEND CLC 

LDA FMPNT 

ADC #$10 

STA FMPNT 

BCC TOADV 

INC FMPNT+1 

TOADV CLC 

LDA TOPNT 

ADC #$10 

STA TOPNT 

BCC INITBK 

INC TOPNT+1 

BNE INITBK 

CKGTLT BCC FINEND 

LDY #$0 

NOTYET LDA (TOPNT),Y 

TAX 

LDA (FMPNT),Y 

STA (TOPNT),Y 

TXA 

STA (FMPNT),Y 

INY 

Store low address portion in TOPNT 

Set page portion of address 

Store in TOPNT 

Fetch page portion of table pointer 

Is last page of table indicated? 

No, check for last table entry 

Yes, check low address portion 

Is the end of table reached? 

Yes, sort complete, return 

Set index pointer 

Does N+1 entry start with zero? 

No, compare two entries 

Yes, end of table entries, return 

Initialize index pointer 

Fetch character from N entry 

Compare N to N+1 entry 

Not equal, check for greater than 

Equal, advance index pointer 

All characters checked? 

No, continue comparison 

Clear carry for addition 

Fetch N+1 pointer 

Advance it to next entry 

Restore in FMPNT 

Not across page, advance TOPNT 

Next page, increment page portion 

Clear carry for addition 

Fetch pointer to N entry 

Advance to next entry 

Restore in TOPNT 

Not across page, check end of table 

Advance page portion of TOPNT 

Jump to test for end of table 

N < N+1, advance to next entry 

N > N+1, exchange entries 

Fetch character from N 

Save temporarily 

Fetch character from N+1 

Store N+1 character in N 

Fetch N character 

Store N character in N+1 

Advance index pointer 
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TOD EC 

STA FMPNT 

BCSTODEC 

DEC FMPNT+1 

SEC 

LDA TOPNT 

SBC #$10 

STA TOPNT 

BCS INITBK 

DEC TOPNT+1 

LDA TOPNT+1 

CMP #$03 

BNE INITBK 

BEQ SORT 

Restore in FMPNT 

Page not crossed, decrement TOPNT 

Page crossed, decrement page portion 

Set carry for subtraction 

Fetch N pointer 

Back up to N—1 entry 

Restore in TOPNT 

Page not crossed, compare next entries 

Page crossed, decrement page portion 

Fetch new N page pointer 

Is pointer backed up too far? 

No, test next pair of entries 

Yes, reset pointers to start 

Ways to Shorten Sort Operations 

This method of sorting may be aided in a number of ways to 

increase the efficiency of its operation. For example, the name input 

routine could be revised to separate the table into several sections, 

one for names beginning with the letters A through J, another for 

K through R, and another for S through Z. As each name is entered, 

the first letter could be checked, and the name stored in the proper 

section of the table. 

Another possibility is to revise the ripple sequence in the fol¬ 

lowing manner. When a name is found to be out of alphabetical 

order, the start address of the current N+l entry could be saved. 

Then, after the entry is backed up to the proper location in the 

table, the sort may resume by recalling the saved N+l address and 

using it as the N address of the next entry to compare. This would 

avoid the time-consuming process of retracing the sort up through 

the section already known to be in the proper order. 

The sort function also could be revised to limit itself to the 

contents of just one field in an entry. By setting the pointer and field 

length counter to a specific field within each entry, the sort opera¬ 

tion could arrange the entries according to some classification such 

as the Zip code of an address, or a special code set up by the pro¬ 

grammer to classify each entry. 

The techniques and routines discussed in this chapter may be 

utilized to create rather sophisticated programs designed specifically 

to fill one’s requirements. By combining these with other program¬ 

ming functions, one may develop programs that give the computer 

the capability to perform various operations for a wide variety of 

applications. 
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Appendices 

Appendix A 

This table presents the entire instruction set of the 6502 CPU. 

The first column contains the menmonic used for each instruction. 

The machine code, presented as hexadecimal digits, is given in the 

second column. For the instructions that use one or more of the 

possible addressing modes, the third column indicates the mode for 

the machine code of that row. The fourth and fifth columns indicate 

the number of bytes required for the instruction cycles and the num¬ 

ber of machine cycles, respectively. Instructions are defined in Chap¬ 

ter 1. (* — add one if page boundary is crossed.) 

Machine Addressing l\lo. of No. of 

Mnemonic Code Code Bytes Cycles 

ADC 69 Immediate 2 2 

ADC 65 Zero Page 2 3 

ADC 75 Zero Page, X 2 4 

ADC 6D Absolute 3 4 

ADC 7D Absolute,X 3 4* 

ADC 79 Absolute// 3 4* 

ADC 61 Indirect,X 2 6 

ADC 71 Indirect// 2 5* 

AND 29 Immediate 2 2 

AND 25 Zero Page 2 3 

AND 35 Zero Page 2 4 

AND 2D Absolute 3 4 

AND 3D Absolute ,X 3 4* 

AND 39 Absolute,Y 3 4* 

AND 21 lndirect,X 2 6 

AND 31 Indirect, Y 2 5* 

ASL OA Accumulator 1 2 

ASL 06 Zero Page 2 5 

ASL 16 Zero Page,X 2 6 

ASL 0E Absolute 3 6 

ASL IE Absolute ,X 3 7 

BCC 90 Relative 2 3* 

BCS BO Relative 2 3* 

BEQ F0 Relative 2 3* 
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BIT 24 

BIT 2C 

BMI 30 

BNE DO 

BPL 10 

BRK 00 

BVC 50 

BVS 70 

CLC 18 

CLD D8 

CLI 58 

CLV B8 

CMP C9 

CMP C5 

CMP D5 

CMP CD 

CMP DD 

CMP D9 

CMP Cl 

CMP D1 

CPX EO 

CPX E4 

CPX EC 

CPY CO 

CPY C4 

CPY CC 

DEC C6 

DEC D6 

DEC CE 

DEC DE 

DEX CA 

DEY 88 

EOR 49 

EOR 45 

EOR 55 

EOR 4D 

EOR 5D 

EOR 59 

EOR 41 

EOR 51 

INC E6 

INC F6 

Zero Page 2 

Absolute 3 

Relative 2 

Relative 2 

Relative 2 

1 

Relative 2 

Relative 2 

1 

1 

1 

Immediate 2 

Zero Page 2 

Zero Page,X 2 

Absolute 3 

Absolute.X 3 

Absolute,Y 3 

Indirect ,X 2 

lndirect,Y 2 

Immediate 2 

Zero Page 2 

Absolute 3 

Immediate 2 

Zero Page 2 

Absolute 3 

Zero Page 2 

Zero Page,X 2 

Absolute 3 

Absolute,X 3 

1 

1 

Immediate 2 

Zero Page 2 

Zero Page,X 2 

Absolute 3 

Absolute,X 3 

Absolute.Y 3 

lndirect,X 2 

Indirect.Y 2 

Zero Page 2 

Zero Page,X 2 

3 

4 

3* 

3* 

3* 

7 

3* 

3* 

2 

2 

2 

2 

2 

3 

4 

4 

4* 

4* 

6 

5* 

2 

3 

4 

2 

3 

4 

5 

6 

6 

7 

2 

2 

2 

3 

4 

4 

4* 

4 

6 

5* 

5 

6 

Appendix A 193 



INC EE Absolute 3 6 

INC FE Absolute.X 3 7 

INX E8 1 2 

INY C8 1 2 

JMP 4C Absolute 3 3 

JMP 6C Indirect 3 5 

JSR 20 Absolute 3 6 

LDA A9 Immediate 2 2 

LDA A5 Zero Page 2 3 

LDA B5 Zero Page,X 2 4 

LDA AD Absolute 3 4 

LDA BD Absolute ,X 3 4* 

LDA B9 Absolute// 3 4* 

LDA A1 lndirect,X 2 6 

LDA B1 Indirect// 2 5* 

LDX A2 Immediate 2 2 

LDX A6 Zero Page 2 3 

LDX B6 Zero Page,Y 2 4 

LDX AE Absolute 3 4 

LDX BE Absolute// 3 4* 

LDY AO Immediate 2 2 

LDY A4 Zero Page 2 3 

LDY B4 Zero Page,X 2 4 

LDY AC Absolute 3 4 

LDY BC Absolute ,X 3 4* 

LSR 4A Accumulator 1 2 

LSR 46 Zero Page 2 5 

LSR 56 Zero Page,X 2 6 

LSR 4E Absolute 3 6 

LSR 5E Absolute.X 3 7 

NOP EA 1 2 

ORA 09 Immediate 2 2 

ORA 05 Zero Page 2 3 

ORA 15 Zero Page.X 2 4 

ORA OD Absolute 3 4 

ORA ID Absolute ,X 3 4* 

ORA 19 Absolute// 3 4* 

ORA 01 Indirect.X 2 6 

ORA 11 Indirect.Y 2 5* 

PHA 48 1 3 

PHP 08 1 3 

PLA 68 1 4 

. PLP 
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ROL 2A 

ROL 26 

ROL 36 

ROL 2E 

ROL 3E 

ROR 6A 

ROR 66 

ROR 76 

ROR 6E 

ROR 7E 

RTI 40 

RTS 60 

SBC E9 

SBC E5 

SBC F5 

SBC ED 

SBC FD 

SBC F9 

SBC El 

SBC FI 

SEC 38 

SED F8 

SEI 78 

STA 85 

STA 95 

STA 8D 

STA 9D 

STA 99 

STA 81 

STA 91 

STX 86 

STX 96 

STX 8E 

STY 84 

STY 94 

STY 8C 

TAX AA 

TAY A8 

TSX BA 

TXA 8A 

TXS 9A 

TYA 98 

Accumulator 1 

Zero Page 2 

Zero Page,X 2 

Absolute 3 

Absolute,X 3 

Accumulator 1 

Zero Page 2 

Zero Page,X 2 

Absolute 3 

Absolute,X 3 

1 

1 

Immediate 2 

Zero Page 2 

Zero Page,X 2 

Absolute 3 

Absolute,X 3 

Absolute,Y 3 

lndirect,X 2 

lndirect,Y 2 

1 

1 

1 

Zero Page 2 

Zero Page,X 2 

Absolute 3 

Absolute,X 3 

Absolute,Y 3 

lndirect,X 2 

Indirect.Y 2 

Zero Page 2 

Zero Page,Y 2 

Absolute 3 

Zero Page 2 

Zero Page,X 2 

Absolute 3 

2 

5 

7 

2 

5 

6 

6 

7 

6 

6 

2 

3 

4 

4 

r 
41 

6 

5* 

2 

2 

2 

3 

4 

4 

5 

5 

3 

4 

4 

3 

4 

4 
2 

2 

2 

2 

2 

2 
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Appendix B 

00 

01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

Octal to Hexadecimal 

0 12 3 4 

0 12 3 4 

8 9 A B C 

10 11 12 13 14 

18 19 1A IB 1C 

20 21 22 23 24 

28 29 2A 2B 2C 

30 31 32 33 34 

38 39 3A 3B 3C 

40 41 42 43 44 

48 49 4A 4B 4C 

50 51 52 53 54 

58 59 5A 5B 5C 

60 61 62 63 64 

68 69 6A 6B 6C 

70 71 72 73 74 

78 79 7A 7B 7C 

80 81 82 83 84 

88 89 8A 8B 8C 

90 91 92 93 94 

98 99 9A 9B 9C 

AO A1 A2 A3 A4 

A8 A9 AA AB AC 

BO B1 B2 B3 B4 

B8 B9 BA BB BC 

CO Cl C2 C3 C4 

C8 C9 CA CB CC 

DO D1 D2 D3 D4 

D8 D9 DA DB DC 

EO El E2 E3 E4 

E8 E9 EA EB EC 

FO FI F2 F3 F4 

F8 F9 FA FB FC 

5 6 

5 6 

D E 

15 16 

ID IE 

25 26 

2D 2E 

35 36 

3D 3E 

45 46 

4D 4E 

55 56 

5D 5E 

65 66 

6D 6E 

75 76 

7D 7E 

85 86 

8D 8E 

95 96 

9D 9E 

A5 A6 

AD AE 

B5 B6 

BD BE 

C5 C6 

CD CE 

D5 D6 

DD DE 

E5 D6 

ED EE 

F5 F6 

FD FE 

7 

7 

F 

17 

IF 

27 

2F 

37 

3F 

47 

4F 

57 

5F 

67 

6F 

77 

7F 

87 

8F 

97 

9F 

A7 

AF 

B7 

BF 

C7 

CF 

D7 

DF 

E7 

EF 

F7 

FF 
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Appendix D 

ASCII Character Set 

Characters Hexa 

Symbolized Rep 

A Cl 

B C2 

C C3 

D C4 

E C5 

F C6 

G C7 

H C8 

I C9 

J CA 

K CB 

L CC 

M CD 

N CE 

O CF 

P DO 

Q D1 

R D2 

S D3 

T D4 

U D5 

V D6 

W D7 

X D8 

Y D9 

Z DA 

[ DB 

\ DC 

] DD 

t DE 

«- DF 

SPACE AO 

CAR RET 8D 

LINE FEED 8A 

Characters Hexa 

Symbolized Rep 

! A1 

" A2 

# A3 

$ A4 

% A5 

& A6 

' A7 

( A8 

) A9 

* AA 

+ AB 

, AC 

AD 

AE 

/ AF 

0 BO 

1 B1 

2 B2 

3 B3 

4 B4 

5 B5 

6 B6 

7 B7 

8 B8 

9 B9 

: BA 

; BB 

< BC 

= BD 

> BE 

? BF 

@ CO 

RUBOUT FF 

CONTROL 0 8F 
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Appendix E 

Baudot Character Set 

Characters 

LC UC 

A 

B ? 

C 

D $ 

E 3 

F I 

G & 

H # 

I 8 

J 

K ( 
L ) 

M 

IM 

O 9 

P 0 

Q 1 

R 4 

S BELL 

T 5 

U 7 

V ; 
W 2 

X / 

Y 6 

Z 

SPACE 

CAR RET 

LINE FEED 

NULL 

FIGURES 

LETTERS 

5 Level Code 

Bit Position 

5 4 3 2 1 

0 0 0 1 1 

110 0 1 

0 1110 

0 10 0 1 

0 0 0 0 1 

0 110 1 

110 10 

10 10 0 

0 0 110 

0 10 11 

0 1111 

10 0 10 

1110 0 

0 110 0 

110 0 0 

10 110 

10 111 

0 10 10 

0 0 10 1 

1 0 0 0 0 

0 0 111 

11110 

10 0 11 

1110 1 

10 10 1 

1 0 0 0 1 

0 0 10 0 

0 10 0 0 

0 0 0 1 0 

0 0 0 0 0 

110 11 

11111 

Hexa Codes 

LC UC 

03 23 

19 39 

OE 2E 

09 29 

01 21 

OD 2D 

1A 3A 

14 34 

06 26 

OB 2B 

OF 2F 

12 32 

1C 3C 

OC 2C 

18 38 

16 36 

17 37 

OA 2A 

05 25 

10 30 

07 27 

IE 3E 

13 33 

ID 3D 

15 35 

11 31 

04 04 

08 08 

02 02 

00 00 

IB IB 

IF IF 

Appendix E 199 



Appendix F 

Floating Point Program 

The floating point program presented in Chapter Five has been 
assembled and is presented below as a memory dump. The left-hand 
column contains the location of the first memory byte on that line. 
Each row of data indicates the contents of 16 memory locations. 
The symbol table that immediately follows this memory dump in¬ 
dicates the location of the instruction referenced by that symbol 
within this dump. 

The program is split into two parts. The first half contains the 
floating point routines. The second contains the input and output 
routines. If one desires to use only the floating point arithmetic 
routines, the second half may be deleted, beginning at $475. 

0200 A9 00 A8 91 

0210 60 E8 4C 0B 

0220 38 A9 FF 55 

0230 00 B1 02 71 

0240 02 FI 00 91 

0250 C8 CA DO F8 

0260 6B 02 95 00 

0270 00 DO 07 CA 

0280 02 B5 00 30 

0290 02 A5 05 F0 

02A0 86 00 A2 08 

02B0 02 A5 12 DO 

02C0 00 F5 00 65 

02D0 30 08 38 A5 

02E0 30 0B A2 0B 

02F0 15 03 C8 DO 

0300 A2 13 20 15 

0310 2E 02 4C 55 

0320 20 15 02 4C 

02 C8 CA DO FA 60 

02 18 76 00 88 DO 

00 69 00 95 00 E8 

00 91 02 C8 CA DO 

02 C8 CA DO F6 60 

60 A2 05 A5 0A 30 

A0 04 A2 07 20 20 

88 DO F8 84 0B 60 

05 C6 0B 4C 7A 02 

E4 A0 03 4C 20 02 

86 02 A9 00 85 01 

01 60 A2 0B B5 00 

13 10 07 38 85 2C 

13 F5 00 10 C5 60 

20 15 03 88 DO F8 

F8 A9 00 85 07 85 

03 A2 OF 86 00 A2 

02 F6 00 CA 98 A0 

2A 03 38 20 16 02 

18 36 00 88 DO 01 

01 60 CA 4C 16 02 

88 DO F4 60 18 A0 

F6 60 38 A0 00 B1 

A0 00 B1 00 91 02 

07 A0 00 94 00 4C 

02 A2 0A A0 04 B5 

A2 07 A0 04 20 0A 

A2 0A A0 03 20 15 

A5 0A DO 13 A2 10 

85 03 A2 04 4C 4A 

C5 13 FO 37 38 A9 

A9 00 E5 2C C9 18 

A5 13 38 F5 00 A8 

4C F5 02 A2 13 20 

OF A2 OB 20 15 03 

07 86 02 A2 04 20 

04 48 B5 00 30 06 

68 A8 60 A2 08 AO 
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0330 03 20 20 02 4C 9A 02 

0340 OB E6 OB A9 17 85 04 

0350 A2 OD 86 00 A2 15 86 

0360 06 20 15 02 C6 04 DO 

0370 17 B5 00 2A 10 13 18 

0380 00 75 00 95 00 E8 88 

0390 00 A2 04 20 4A 02 20 

03A0 03 20 20 02 60 A9 00 

03B0 08 20 00 02 A9 OC 85 

03C0 06 A5 OA 10 09 C6 06 

03D0 30 01 60 C6 06 A2 10 

03E0 OA FO 23 A5 13 38 E5 

03F0 20 4E 04 30 16 A2 10 

0400 4A 02 38 4C OC 04 A9 

0410 20 OB 02 A2 10 AO 03 

0420 04 30 IE A9 01 18 65 

0430 A9 00 65 1A 85 1A 10 

0440 OB A2 07 86 02 A2 17 

0450 86 02 A2 08 86 00 A2 

0460 10 86 00 AO 00 A2 03 

0470 DO F6 A5 16 60 A9 00 

0480 A2 OC 20 00 02 20 80 

0490 85 1C 20 C5 07 20 80 

04A0 07 20 CO 07 4C 75 04 

04B0 2C 85 IE AO 00 84 04 

04C0 42 20 C5 07 20 80 07 

04D0 ID 20 C5 07 20 80 07 

04EO BA 10 52 29 OF 85 2C 

04F0 00 18 36 00 36 00 75 

0500 2C DO CE C9 BO 30 2E 

0510 DO 83 98 20 C5 07 E6 

0520 68 18 75 0 0 95 00 A9 

0530 95 02 4C 95 04 A5 1C 

0540 A9 00 85 22 A9 07 85 

0550 02 AO 17 84 OB 20 55 

0560 85 27 E6 27 A5 IE FO 

0570 85 27 30 ID DO 01 60 

0580 13 A9 50 85 12 A9 00 

0590 60 20 97 05 DO FB 60 

05A0 11 A9 67 85 10 20 37 

05B0 IF 86 02 A2 23 86 00 

05C0 20 OA 02 A2 23 AO 04 

20 A5 03 A5 13 18 65 OB 85 

A2 OA AO 03 20 15 02 90 OD 

02 A2 06 20 2E 02 A2 1A AO 

DF A2 1A AO 06 20 15 02 A6 

AO 03 A9 40 75 00 85 17 A9 

DO F6 A2 07 86 02 A2 17 86 

55 02 A5 06 DO 07 A2 08 AO 

85 03 85 01 A9 14 85 02 A2 

02 A2 04 20 00 02 A9 01 85 

A2 08 AO 03 20 20 02 A5 12 

AO 03 4C 20 02 20 A5 03 A5 

OB 85 OB E6 OB A9 17 85 04 

86 02 A2 14 86 00 A2 03 20 

BF 4C 06 04 18 A2 18 AO 03 

20 OA 02 C6 04 DO D2 20 4E 

18 85 18 A9 00 65 19 85 19 

09 A2 17 AO 03 20 15 02 E6 

86 00 A2 04 4C 93 03 A2 14 

03 20 4A 02 A2 14 86 02 A2 

38 B1 00 FI 02 91 02 C8 CA 

85 01 85 03 D8 A2 1C 86 02 

07 C9 AB FO 06 C9 AD DO 08 

07 C9 8F DO OB A9 BC 20 C5 

C9 AE DO 12 24 IE 10 02 30 

20 C5 07 4C 95 04 C9 C5 DO 

C9 AB FO 06 C9 AD DO 08 85 

C9 8F FO Cl C9 BO 30 56 C9 

A2 27 A9 03 D5 00 30 46 B5 

00 2A 65 2C 95 00 A9 BO 05 

C9 BA 10 2A A8 A9 F8 24 25 

04 29 OF 48 20 AB 05 A2 23 

00 75 01 95 01 A9 00 75 02 

FO 07 A2 23 AO 03 20 20 02 

02 A9 22 85 00 A2 04 20 4A 

02 A5 ID FO 08 A9 FF 45 27 

05 A9 00 38 E5 04 18 65 27 

20 7D 05 DO FB 60 A9 04 85 

85 11 85 10 20 37 03 C6 27 

A9 FD 85 13 A9 66 85 12 85 

03 E6 27 60 A9 00 85 26 A2 

A2 04 20 4A 02 A2 23 AO 04 

20 OA 02 A2 IF 86 00 A2 23 
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05D0 86 02 A2 04 20 2E 02 

05E0 85 27 A5 0A 30 04 A9 

05F0 02 A9 AD 20 C5 07 A9 

0600 C6 OB 10 OF A9 04 18 

0610 4C 02 06 20 97 05 4C 

0620 00 A2 03 20 4A 02 A9 

0630 02 20 AB 05 E6 OB FO 

0640 34 06 A9 07 85 04 A5 

0650 07 C6 04 FO 1A 20 AB 

0660 FO A5 24 DO EC A5 23 

0670 C5 20 C5 07 A5 27 30 

0680 27 E6 27 A9 AD 20 C5 

0690 06 85 27 C8 4C 8C 06 

06A0 BO 4C C5 07 A9 8D 20 

06B0 04 20 CO 07 A2 28 86 

06C0 02 20 80 07 C9 AB DO 

06D0 06 C9 AD DO 09 20 01 

06E0 DO 09 20 01 07 20 37 

06F0 01 07 20 DC 03 20 DE 

0700 A3 20 C5 07 20 CO 07 

0710 C5 07 20 CO 07 A2 10 

0720 4A 02 

ACCMIN 0262 COMPL 

ACCSET 028A COMPLM 

ACNONZ 027A CROUND 

ACZERT 026B DECBIN 

ADDER 022E DECEXD 

ADDEXP 033A DECEXT 

ADOPPP 0350 DECOUT 

ADDR1 0231 DECRDG 

AHEAD1 05F3 DECREP 

AHEAD2 0685 DERROR 

BRING1 0326 DIVIDE 

CKEQEX 02B6 DVEXIT 

CKSIGN 03A5 ECHO 

CLRM1 0203 ENDINP 

CLRMEM 0200 ERASE 

CNTR 0004 EXECHO 

COMPEN 0634 EXMLDV 

A2 23 AO 04 4C OA 02 A9 00 

AB DO 09 A2 08 AO 03 20 20 

BO 20 C5 07 A9 AE 20 C5 07 

65 OB 10 OE 20 7D 05 A5 OB 

OE 06 A2 23 86 02 A2 08 86 

00 85 26 A2 23 AO 03 20 OA 

OA A2 26 AO 04 20 15 02 4C 

26 FO 11 A5 26 09 BO 20 C5 

05 4C 4A 06 C6 27 A5 25 DO 

DO E8 A9 00 85 27 FO E2 A9 

05 A9 AB 4C 85 06 49 FF 85 

07 AO 00 A5 27 38 E9 OA 30 

98 09 BO 20 C5 07 A5 27 09 

C5 07 A9 8A 20 C5 07 20 75 

02 A2 08 86 00 A2 04 20 4A 

09 20 01 07 20 9A 02 4C F5 

07 20 2D 03 4C F5 06 C9 D8 

03 4C F5 06 C9 AF DO OC 20 

05 4C A4 06 C9 8F DO C2 FO 

20 75 04 20 CO 07 A9 BD 20 

86 02 A2 28 86 00 A2 04 4C 

0203 EXOUTN 067D 

0220 EXPFIX 0577 

037 F EXPINP 0404 

05AB EXPOK 056 D 

0613 EXPOUT 066F 

0602 FINAL 06F5 

0619 FINPUT 0540 

0651 FMPNT 0000 

060E FNDEXP 04C1 

0406 FOLSWE OOOF 

03F0 FOPEXP 0013 

0441 FOPLSW 0010 

07C5 FOPMSW 0012 

0535 FOPNSW 0011 

049C FPACCE 0008 

0401 FDADD 029A 

0393 FPCONT 06A4 
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FPD10 0597 

FPDIV 03DC 

FPINP 0475 

FPLSW 0008 

FPLSWE 0007 

FPMSW 000A 

FPMULT 0337 

FPNORM 0255 

FPNSW 0009 

FPOUT 05DE 

FPSUB 032D 

FPX10 057D 

FSHIFT 031B 

INEXPS 001D 

INMTAS 001C 

INPRDI 001E 

INPUT 0780 

IOEXP 0022 

IOEXPD 0027 

IOLSW 001F 

IOMSW 0021 

IONSW 0020 

IOSTR 0023 

IOSTR1 0024 

IOSTR2 0025 

IOSTR3 0026 

ISLAND 04DD 

LINEUP 02DA 

LOOKO 026 F 

MCANDO 000C 

MCAND1 000D 

MCAND2 000E 

MINEXP 0591 

MORACC 02E2 

MORRTL 0211 

MORRTR 021C 

MOVIN1 024C 

MOVIND 024A 

MOVOP 029E 

MULTEX 03A4 

MULTIP 0347 

NADOPP 0350 

NEGFPA 03C5 

NEGOP 0303 

NINPUT 0495 

NOEXPS 0407 

NOGO 040B 
NONZAC 02B1 

NORMEX 0279 

NOTADD 06D1 

NOTDIV 06FB 

NOTMUL 06EB 

NOTPLM 0498 

NOTSUB 06DE 

NVALID 06C1 

OPERAT 0701 

OPSGNT 03CE 

OUTDGS 064A 

OUTDIG 0642 

OUTNEG 05EA 

PERI 04B1 

PERIOD 04 A B 

POSEXP 0564 

PREXFR 0389 

QUO ROT 040C 

RESCNT 032A 

ROTATL 020A 

ROTATR 0215 

ROTL 020B 

ROTR 0216 

SECHO 0492 

SERASE 04 A 7 

SETDCT 03EC 

SETMCT 0343 

SETSUB 044E 

SFNDXP 0503 

SHACOP 02F5 

SHIFTO 02ED 

SHLOOP 0315 

SIGNS 0006 

SKPNEG 02CE 

SPACES 07C0 

SPRIOD 04BD 

SUB12 068C 

SUBB1 023F 

SUBBER 023C 

SUBEXP 03E3 

SUBR1 0468 

TEMPI 002C 

TOMUCH 0697 

TOPNT 0002 

TPEXP 002B 

TPLSW 0028 

TPMSW 002A 

TPNSW 0029 

TSIGN 0005 

WORKO 0014 

WORK1 0015 
WORK2 0016 

WORK3 0017 

WORK4 0018 

WORK5 0019 

WORK6 001A 

WORK7 001B 

ZERODG 065B 
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Index 
Accumulator: 9, 10 
Addressing modes: 16—22 
ASCII: 71,72 
Asynchronous: 143, 149 
BAUD: 144, 150 
BAUDOT: 71,73 
BCD: 127 
Binary, exponent: 92 

mantissa: 92 
point: 92 
to-decimal conversion: 87 

Bit, start: 143, 150 
stop: 143, 150 

Borrow: 57 
Character code: 72 
Complement, One’s: 56 

Two’s: 56 
Conditional branch: 46 
Conversion, binary-to-decimal: 87 

code: 71 
decimal-to-binary: 85 
numeric: 84 

Decimal, addition: 126 
division: 135 
mode flag: 12,54,125 
subtraction: 126 
to-binary conversion: 85 

Delay time: 150 
Dividend: 106 
Division: 106 
EBCDIC: 71 
Encode: 74 
Error detection: 68 
Execution time: 61 
Field: 170, 181 
Fixed format: 170 
Flags, break: 12 

carry: 11, 53 
condition: 12 
decimal mode: 12 
in-progress: 156 
interrupt disable: 12 
negative: 11 
overflow: 12,57 
status: 9, 11 
zero: 12 

Floating point, accumulator: 93 
addition: 96 
format: 91 
input routine: 113 
multiplication: 101 
operand: 93 
output routine: 118 
subtraction: 100 

Free format: 170 
Handshaking: 146 
HOLLERITH: 72 
Interrupt: 14 

maskable: 15, 153 
nonmaskable: 14, 153 
processing: 153 
service routine: 152, 158, 162 
software: 15 
vector: 15 

I/O driver: 139 
Limits, checking: 60 
Look-up table: 77 
Mantissa: 91 
Memory: 9, 10 

access: 61 
clearing: 50 
transferring: 51 

Multiple precision: 91 
addition: 57 
comparison: 58 
decrementing: 54 
rotating: 55 
routine: 52 

Multiplicand: 101 
Multiplier: 101 
Nesting: 154, 164 
Parallel data: 140 
Parity: 68 
Partial-product: 101 
PDT operation: 146 
Pipelining: 62 
Pointer: 80 

stack: 9, 10, 13 
Polling: 164 
Program counter: 9 
Programmed delay: 61, 144 
Quotient: 106 
RAM, dynamic: 6? 

static: 62 
Random number generator: 66 
Register, countdown: 46 

index: 9, 10 
status: 13 

Reset: 15 
ROM: 62 
Routine, input: 113 

multiple precision: 52 
multiplication: 133 
output: 118 
service: 152,158,162 

Serial data: 143, 149 
Signed, addition: 128 

subtraction: 131 
Sort: 181 

ripple: 186 
Status byte: 147 
Strobe: 148 
Subroutine: 49 
Timing diagram: 143 
Transmission: 143 
True logic: 140 
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Now you can put together programs without having to start 

from scratch. You’ll have the most useful routines at your 

command — already programmed and ready to use. You’ll 

get a plain-talk explanation of how the entire 6502 instruc¬ 

tion set works. And that’s a big value to everyone, 6502 

owner or not! All in one easy-to-use cookbook. 

Why is it called a cookbook? 

Because it’s a book of recipes. It contains routines, subrou¬ 

tines and short programs. These are the ingredients. All you 

do is take a pinch of this, a pinch of that. Combine the 

ingredients, and voila — your own masterpiece! Just the 

program to suit your taste. 

Time-tested recipes. 

Although the 6502 cookbook is brand new, SCELBI’s 

software cookbook idea has been around for years. The 

recipes are really time-tested! Tens of thousands of our Z80, 

6800 and 8080 cookbooks have been used throughout the 

U.S. and in countries around the world. 


