
6502 SOFTWARE
Gourmet Guide &

COOKBOOK

Put Together

Your Own 6502 Programs

Using These

Time-Tested Recipes

— General Purpose Routines —

— Conversion Routines —

— Search and Sort Routines —

— Floating Point Routines —

— 6502 Instruction Set —

— And More —

SCELBI Publications

6502
SOFTWARE
Gourmet Guide &

COOKBOOK

By Robert Findley

h^SCELBI Publications

Copyright © 1979
Scelbi Computer Consulting, Inc.

Elmwood, CT 06110

ALL RIGHTS RESERVED

IMPORTANT NOTICE

No part of this publication may be reproduced, transmitted, stored
in a retrieval system, or otherwise duplicated in any form or by any
means electronic, mechanical, photocopying, recording or otherwise,
without the prior express written consent of the copyright owner.

The information in this manual has been carefully reviewed, and
is believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies or for the success or failure of various ap¬
plications to which the information contained herein might be
applied.

Foreword

The “6502 Software Gourmet Guide & Cookbook” is written as an

instructional publication for two audiences. First, it takes the BASIC

language programmer into the realm of machine-language program¬

ming on the 6502. With the large number of computers on the mar¬

ket that use the 6502 as its central processor, one can find a new

challenge by going one step closer to the inner workings of the CPU.

There are many advantages to programming the 6502 at the machine-

language level. This book presents these advantages in a way that a

person with an introductory knowledge of computers will under¬

stand.

Second, the book is intended for the person with a knowledge

of machine-language programming on a different CPU (i.e., 8080 or

6800) and wishes to become familiar with the 6502. The description

of the 6502 structure and instruction set, along with the numerous

applications discussed throughout the book, will quickly make an

experienced programmer proficient with the 6502.

Robert Findley

November, 1979

ACKNOWLEDGEMENT

The author wishes to thank his wife, Barbara, and the staff at Scelbi

for their invaluable help in preparing this book.

Contents

Introduction Page 7

1 6502 Instruction Set Page 9

2 6502 Programming Techniques Page 43

3 General Purpose Routines Page 49

4 Conversion Routines Page 71

5 Floating Point Routines Page 91

6 Decimal Arithmetic Routines Page 125

7 Input/Output Processing Page 139

8 Search and Sort Routines Page 169

Appendices Page 192

Index Page 204

Introduction

Have you tried cooking up a program lately on your 6502 microcom¬

puter, and you just can’t seem to get the right mixture of instruc¬

tions? Or did that math recipe your friend gave you turn out to have

too many bugs in it, and leave a sour taste in your mouth? Don’t toss

your computer in the sink and grind those bad listings up in the gar¬

bage disposal. Here’s a book that will help take you from a novice

that burns the bits to a gourmet chef that can make the sweetest

APPLEcations program pie imaginable.

Before throwing together your favorite dish, a thorough know¬

ledge of the basic ingredients, namely the 6502 instruction set, is

essential. Every chef that’s worth his salt knows exactly what each

ingredient will do for him. Begin creating your masterpiece by

mixing in a little of this routine and a little of that routine. Spice

up the program with a few of your own special application routines,

and before baking, add a personal touch by folding in the input/

output driver routines for the peripherals in your system. Bake

thoroughly with your assembler, and there you have it! Your pro¬

gramming masterpiece, ready to feed into your computer’s memory

for hours of tasty enjoyment.

Is your taste for math routines? Or manipulating data tables and

character strings? Or maybe you wish to do some real time pro¬

gramming. Or set up your system to operate the peripherals under

interrupt control. Whatever your requirements may be, there is

certain to be some ideas, techniques, and routines in this book to

aid you in programming for your specific application.

Introduction 7

Chapter 1

The 6502 Instruction Set

The instruction set of the 6502 CPU provides considerable pro¬

gramming power to the machine language programmer. There are

56 basic instructions which, when all permutations are considered,

provide 151 individual instructions. These instructions use from one

to three bytes of memory depending on the function they perform.

There are several basic elements in the structure of the 6502

CPU with which the programmer must become thoroughly familiar.

These elements include the Program Counter, the Accumulator,

the two Index Registers, the Stack Pointer, Memory, and the Status

Flags. Also, an understanding of certain concepts is important. For

instance, with the 6502, input and output operations are performed

using the same instructions which access the memory. The numerous

addressing modes provide a versatility for very creative programming.

One should be knowledgeable of these elements and concepts before

attempting to write machine language programs.

The Internal Registers

The program counter is a sixteen-bit register which is used to

direct the flow of a program from one instruction to another. Since

the program counter is sixteen bits long, it can directly access in¬

structions in any of the possible 64K bytes of memory. After an in¬

struction is executed, the program counter is automatically incre¬

mented to the next location memory from which the next instruc¬

tion to be executed will be taken. This automatic increment may

be overridden if the current instruction directs the computer to a

different memory location. In this case, the program counter is

loaded with the new address, and a program execution continues

with the instruction.

The 6502 Instruction Set

From the software point of view, the accumulator of the

6502 is the real workhorse element. All arithmetic and Boolean

logic operations accumulate their results in this register. This eight-

bit register, designated by the letter A, is also used for intermediate

storage when transferring data from one memory location to anoth¬

er. A number of instructions for shift, rotate and compare also may

be performed with the content of the accumulator. The condition

of the status flags is affected by almost every operation of the

accumulator.

The index registers, designated as X and Y, perform three

important functions. First, as their name implies, they are used to

form pointers which index into the memory for data storage,

retrieval, manipulation and examination. The contents of the index

register are added to a base address to allow selection of a success¬

ive group of memory locations. This is accomplished simply by in¬

crementing the index register. Since these registers are only eight

bits wide, it may appear that the range of the index register is limited

to 256. However, as will be discussed in Chapter 2, there are pro¬

gramming techniques to extend this range. Their second function is

that of an eight-bit counter register. By incrementing or decrement¬

ing these registers with the appropriate instructions, they may be

used to count up, or down, keeping track of the number of occur¬

rences of a specific event or, possibly the passage of time. The final

function is, as general purpose registers, to transfer data between

memory locations and between registers.

The stack pointer is an eight-bit register used to index into

page one of the memory for storing and retrieving data on the

stack. The stack is the storage area in which the 6502 CPU saves the

return addresses of subroutine calls and the pertinent data that must

be stored when an interrupt occurs. The data is stored and retrieved

from the stack in a push-pull manner. This method is discussed in

greater detail later.

External Memory Structure

The memory is the element in which the programs to be exe¬

cuted are stored. It also contains data that may be used by the

programs. As mentioned earlier, the 6502 is capable of directly ad¬

dressing up to 64K of memory. Each memory location consists of

eight bits which together are referred to as a byte. The memory

associated with any one individual system may vary. It may con¬

sist of a combination of ROM and/or PROM memories, which con¬

tain permanently stored programs or data. Or it could consist of a

10 Chapter 1

RAM memory whose contents may be altered by the computer for

storing various programs or data as needed.

The input/output structure of the 6502 allows the transfer of

data to and from the peripheral interfaces by assigning memory

addresses to the peripheral. By setting up memory locations as

the channels through which data is transferred to and from the

peripherals, it is possible to use any of the instructions that refer

to tiie memory for transferring the I/O data. This affords the pro¬

grammer great flexibility in testing the status and controlling the

peripheral devices.

The Status Flags

In order to make decisions based on the contents of a register

or memory location, or the results of an arithmetic or logical op¬

eration, the 6502 offers four status flags. They are set to one (for a

true condition), or cleared to zero (for a false condition), in accord¬

ance with the results of an operation performed. Not all status flags

are affected by the execution of each instruction. Only those flags

that have relevance are affected by an instruction. These status flags

are referred to as carry (C), overflow (V), negative (N), and zero

(Z). The flag condition may be tested by several instructions. The

instructions’ operation will vary as a consequence of the flags par¬

ticular status at the time it is tested.

The carry flag may be considered an extension of the eight-bit

accumulator, or a memory location, used as the operand of an in¬

struction. For addition and subtraction operations, the carry is con¬

sidered the ninth bit and will indicate when an addition causes an

overflow from bit seven, or a subtraction requires a borrow for bit

seven. By functioning in this manner, the carry flag becomes a neces¬

sary link when performing multiple-precision operations. The carry

flag is also considered an extension of a register or memory location

in various rotate and shift operations. There are a number of instruc¬

tions that set up the carry to a given condition. This function may be

necessary when executing a group of instructions that require the

carry to be set initially to a known state.

The negative flag indicates the condition of the most signifi¬

cant bit of a register or memory location following the last instruc¬

tion that affects the negative flag. If the result leaves the most sig¬

nificant bit set to one, the negative flag will be set to one. If the

most significant bit is zero, the negative flag also will be zero. For

example, if the contents in a memory location are added to the

contents of accumulator A, and this results in the most significant bit

The 6502 Instruction Set 11

in accumulator A being set to one, the negative flag will be set to

one. Or, if a memory location is rotated once to the right, moving a

zero into the most significant bit, the negative flag will be cleared

to zero as a result of the operation.

The overflow flag provides an indication of a two’s complement

overflow as a result of an addition or subtraction. For addition, the

two’s complement overflow occurs when bit seven of both addends

is the same value and bit seven of the sum is the opposite value

(the addition of two negative numbers equaling a positive value).

For subtraction, a two’s complement overflow occurs when bit seven

of the subtrahend and minuend are opposite, and bit seven of the

result takes on the value of bit seven of the subtrahend (the sub¬

traction of a negative from a positive number with a negative re¬

sult).

The zero flag is set to one when the execution of an instruction

results in an all-zero value. This may occur following an arithmetic or

Boolean logic operation. It may also occur after an index register or

memory location has been incremented or decremented to zero.

Condition Flags

In addition to the status flags, there are also three condition

flags which are controlled either by execution of specific instructions

or by certain hardware functions. These flags are designated the

interrupt disable flag (I), the break flag (B) and the decimal mode

flag (D).

The interrupt disable flag is used to indicate when the maskable

interrupt input is disabled. When the flag is set to one, the maskable

interrupt input is disabled. The CPU will not respond to an inter¬

rupt on this line. When this flag is cleared, an interrupt on the maska¬

ble interrupt line will be acknowledged by the CPU. This flag is

set upon receipt of any one of the three interrupts. Upon returning

from the interrupt, it is restored to its initial condition at the time

the interrupt was received. It may also be set or cleared by the exe¬

cution of two instructions that perform these specific functions.

The break flag is used to indicate the execution of a software

interrupt. It is set when the break instruction is executed and reset

after the status register is stored on the stack as a result of the

BREAK instruction. The status register then may be examined to

determine whether the interrupt was generated by hardware or soft¬

ware. A more detailed description of the BREAK instruction and

flag will be presented later.

The decimal mode flag controls the type of arithmetic addition

12 Chapter 1

or subtraction to be performed. These two types are decimal and bi¬

nary addition and subtraction. The decimal mode assumes that the

numbers to be added or subtracted are in BCD (binary coded deci¬

mal) form before the operation. The result is presented in BCD

form. The binary mode assumes both values are in binary represen¬

tation before and after the operation. This flag is set to one for

decimal arithmetic and cleared to zero for binary arithmatic by two

specific instructions. This flag allows one to write a single group of

subroutines to perform both decimal and binary mathematic func¬

tions.

Combining All the Flags

These seven flags are arranged in an eight-bit register. The flags

are combined so that they may be stored and retrieved easily for

interrupt operations.

This register is called the STATUS register. The flags are as¬

signed the following bit locations. One should note that the unused

bit (bit 5) either may be set or cleared at any time and therefore

should be ignored when working with the status register.

Status Register Bit Definition

BitO - Carry Flag C

Bit 1 - Zero Flag z
Bit 2 - Interrupt Disable 1
Bit 3 - Decimal Mode D

Bit 4 - Break Flag B

Bit 5 - Unused

Bit 6 - Overflow Flag V

Bit 7 - Negative Flag N

How the Stack Operates

The stack is used to store and retrieve data in the memory lo¬

cations on page one indicated by the stack pointer. The stack pointer

operates in a push-pull manner. Its operation is the same whether

the data being stored is (1) a return address from a subroutine call,

(2) the return address and status register at the time of an interrupt,

(3) the storage or retrieval of the contents of the accumulator. When

data is stored in the stack, the data byte is stored in the memory

location indicated by the stack pointer. The stack pointer then is

automatically decremented. If more than one byte is to be stored,

as in the storage of a return address, each additional byte is loaded

into the memory. The stack pointer is decremented following each

The 6502 Instruction Set 13

byte storage. By automatically decrementing the stack pointer in

this manner, it is positioned to store more data or read data stored

in the stack when either a pull instruction or a return from subrou¬

tine, or interrupt, is executed. The following illustrates the method

of storing the return address of a subroutine call in the stack. The

return address to be stored is location $5E on page 02.

Before Subroutine Call

Stack Memory Address Stack

Pointer of Stack Contents

$FF $1FD $00

$1FE $00

$1FF $00

After Subroutine Call

$FD $1FD $00

$1FE $5E

$1FF $02

By performing a return or pull instruction when data is read

from the stack, the reverse procedure is followed. That is, the stack

pointer is automatically incremented and the data byte is read from

the stack. The stack pointer is now positioned for the next stack op¬

eration, whether it be to read or write data in the stack.

The Format of Interrupt Operations

The 6502 CPU has provisions for three types of interrupts. Two

interrupts are generated by hardware, the third is an interrupt

created by a software instruction. The CPU responds to each of these

interrupts by storing the return address and the status register in

the stack and setting the interrupt disable flag. The CPU then selects

the interrupt vector according to the type of interrupt received. This

interrupt vector is actually a start address for an interrupt service

routine. In most cases, this interrupt service routine begins in ROM

memory with several short instructions that fetch another address

set up in the RAM memory by the programmer. This second address

would be the start of the actual interrupt service routine written to

operate the devices associated with one’s system.

The first of the hardware interrupts is called the nonmaskable

interrupt. This interrupt, when received, will always be acknowl-

14 Chapter 1

edged by the CPU. It is often used by high speed devices that have

a very short time to transfer data. Or, it may be used by power-

loss detect circuits to allow the CPU time to shutdown critical

operations. Also, it can retain current operating status before the

power falls to inoperable levels. The nomaskable interrupt is as¬

signed its own interrupt vector.

The other hardware interrupt is called the maskable interrupt.

The CPU responds to the receipt of a maskable interrupt by the

setting of the interrupt disable flag. As previously discussed, when

this flag is reset, the CPU will acknowledge a maskable interrupt. If

this flag is set to one, the CPU will ignore this hardware interrupt.

This allows the programmer to control when the program can and

cannot respond to a maskable interrupt. This interrupt shares its

vector with the software interrupt.

A software interrupt is generated by the execution of the soft¬

ware interrupt instruction. The 6502 reacts in the same fashion as

it would to a nonmaskable interrupt. However, the software inter¬

rupt is not maskable by the interrupt disable flag. It will always

vector to the interrupt service routine. Since the maskable and soft¬

ware interrupts share the same vector, it is necessary for the inter¬

rupt service routine to examine the contents of the status register

stored in the stack to determine which type of interrupt was re¬

ceived. The break flag will be set for a software interrupt.

The use of interrupts in a microcomputer system allows a pro¬

gram to be performing one function while waiting for a peripheral

device to complete its operation. For example, a mailing list program

could be sorting out names of people living in a specific geographi¬

cal area, while a printer device, operating under interrupt control,

prints the selected names.

There is also a RESET interrupt which is generally used to di¬

rect the CPU to a start-up program. The reset is simply an overriding

interrupt that halts execution of any program currently running and

directs control to a program which may reinitialize the hardware to

a known state. A separate vector is assigned for the reset inter¬

rupt.

The interrupt vectors are set up in the hardware at the highest

addressable locations of the computer (FFFA to FFFF). As dis¬

cussed, these vectors direct the CPU to specific memory locations

when the respective interrupts occur. The page portion of the vector

address is in the higher address, and the low portion of the vector is

in the lower address of each vector. The vectors are arranged in

memory as follows:

The 6502 Instruction Set 15

Address of Vector

FFFF,FFFE

FFFD,FFFC

FFFB,FFFA

Type of Interrupt

Software and maskable

RESET

Nonmaskable interrupt

Addressing Modes Add Variety

The 6502 instruction set makes extensive use of various AD-

RESSING modes. These different modes of addressing provide many

instructions with up to eight ways of selecting the instructions

operand. The addressing mode may refer to the location that con¬

tains (or is to receive) data for the instruction execution. Or, it may

refer to the location of the next instruction to be executed. The in¬

structions that use these different addressing modes require an ad¬

ditional one or two bytes of memory to be properly defined by the

actual machine code.

The first byte of the instruction contains the machine code

which indicates the instruction to be executed along with the ad¬

dressing mode used for that instruction. The information contained

in the additional bytes of the instruction would indicate either the

actual data to be used as the operand, the location in memory where

the data is (or will be) stored, or a relative address. These addressing

modes are referred to as immediate, zero page, zero page indexed,

absolute, absolute indexed, indexed indirect, indirect indexed and

relative.

The source listing of the instructions that use these modes is

separated into two fields. The first is called the operator field,

and contains the mnemonic for the operation to be performed.

The second field is the operand field which will indicate the ad¬

dressing mode to be used for the instruction. As will be pointed out

later, when the individual instructions are presented, the machine

code for the same mnemonic will vary depending on the addressing

mode selected.

Whenever a numeric value is designated as the operand of the

source listing for an instruction, the value will be represented by

hexadecimal digits. In order to conform with the generally accepted

notation for representing hexadecimal values in the source listing,

these values will be preceded by a dollar sign ($). For example,

an instruction to load the accumulator from memory location

00A7 will appear as follows: LDA $00A7.

Immediate Addressing Mode

The immediate addressing mode selects the operand from the

16 Chapter 1

memory location following the first byte of the instruction. The in¬

structions that allow the immediate mode of addressing require two

bytes. The first byte contains the machine code for the operation

to be performed and the second byte contains the immediate data

value that will be used. The listings contained in this text have the

operand preceded by a pound sign (#) whenever the immediate ad¬

dressing mode is used. The following example illustrates the execu¬

tion of the instruction that loads the accumulator with the imme¬

diate value of ten (hexadecimal):

Before Execution

Contents of A = XX (don't care)

Instruction Executed

Source code LDA #$10 Machine code $A9 $10

After Execution

Contents of A = $10

Zero Page Addressing Mode

The zero page addressing mode selects the operand of the in¬

struction from a memory location on page 00. This mode requires

one additional byte to specify the location on page 00 to be used

by the instruction. It is advantageous to use page 00 for the storage

of frequently used data. This allows one to access the specific loca¬

tion on page 00 with a two-byte instruction, rather than using an

additional byte to specify the page, as in the absolute mode.

The example below illustrates the execution to store the ac¬

cumulator instruction using the zero-page addressing mode. The

instruction in the example stores the contents of the. accumulator

in memory location 49 (hexadecimal).

Before Execution

Contents of A = $85

Contents of memory location $0049 = XX (don't care)

Instruction Executed

Source code STA$49 Machine code $85 $49

After Execution

Contents of A = $85

Contents of memory location $0049 = $85

Zero-Page Indexed Addressing Mode

The zero-page indexed addressing mode is similar to the zero-

The 6502 Instruction Set 17

page addressing mode in that the operand refers to a specific loca¬

tion on page 00. However, the actual memory location is selected

by adding the contents of the X index register to the operand value.

The X index register thus becomes an offset from the location

indicated by the operand. One should note two points. First, the

Y index is only valid in this mode when loading or storing the

page 00. If the sum of the operand plus the index register exceeds

$FF, the overflow is ignored and the instruction loops back to

the beginning of page 00.

The following example illustrates the execution of ANDing

the accumulator with the third entry in a table which begins on

page 00, location $50.

Before Execution

Contents of A = $47

Contents of X = $02

Contents of memory location $0050 = $01

Contents of memory location $0051 = $02

Contents of memory location $0052 = $04

Contents of memory location $0053 = $08

Instruction Executed

Source code AND $50,X Machine code $35 $50

After Execution

Contents of A = $04

Absolute Addressing Mode

The absolute addressing mode uses two additional bytes to de¬

fine the address of the memory location used as the operand for

the instruction. The first of these two bytes contains the lower por¬

tion of the memory address; the second contains the page portion.

Thus, the absolute mode allows one to directly access any memory

location in the system for use as the operand of the instruction.

When instructions that allow both absolute and zero-page address¬

ing modes are assembled, the distinction between the two is deter¬

mined by the page number of the address. If the page number is

zero, the zero-page addressing mode should be selected. If the

page number is not zero, the absolute addressing mode must be

used.

The following example illustrates the execution of the load,

18 Chapter 1

the accumulator with the contents of a memory location using the

absolute addressing mode. The contents of memory location $0280

are loaded into the A accumulator.

Before Execution

Contents of A = XX (don't care)

Contents of memory location $0280 = $67

Instruction Executed

Source code LDA $0280 Machine code $AD $80 $02

After Execution

Contents of A = $67

Contents of memory location $0180 = $67

Absolute Indexed Addressing Mode

The absolute indexed addressing mode uses the operand ad¬

dress stored in the two bytes following the machine code for the in¬
struction, and adds the contents of the X or Y index register to de¬

termine the actual memory location used by the instruction. The

operand is stored with the first byte containing the lower portion

of the memory address and the second byte containing the page

portion. Unlike the zero-page indexed mode, this mode will cross a

page boundary if the sum of the low portion of the operand and

the index register is greater than $FF. Note that the X and Y index

registers may be used in most instructions that allow absolute in¬

dexed addressing.

The following example adds the contents of the memory lo¬

cation following location $0520 to the accumulator, using the Y

index register.

Before Execution

Contents of A = $20

Contents of Y = $01

Contents of memory location $0520= $15

Contents of memory location $0521 = $30

Contents of memory location $0522 = $45

Carry flag is reset

Instruction Executed

Source code ADC $0520,Y Machine code $79 $20 $05

The 6502 Instruction Set 19

After Execution

Contents of A = $50

Indirect Addressing Mode

The next three addressing modes utilize a common form of ad¬

dressing known as indirect addressing. It uses an intermediate storage

area to store a pointer. This pointer indicates the actual memory lo¬

cation used with the instruction. The operand of the instruction calls

out the location of the intermediate pointer. This indirect method of

fetching an operand allows a fixed instruction sequence to operate

on numerous memory locations by simply changing the intermediate

pointer. These modes used in the 6502 use page zero for storing the

intermediate pointer. Therefore, the indirect addressing instructions

only require two memory locations: the first to store the machine

code for the instruction, and the second to store the location on page

zero at which the pointer will be found. The pointer is stored in two

consecutive bytes with the low portion of the address stored in the

first byte and the page position stored in the second byte.

The indirect addressing mode is used by the JUMP instruction

to select the location of the next instruction to be executed. The ad¬

dress stored as the pointer on page zero is moved into the program

counter and the program sequence shifts to the routine beginning

at this new address.

Indexed Indirect Addressing Mode

The indexed indirect addressing mode uses the X index register

to offset the instruction operand. The content of the index register

is added to the instruction operand. This value then is used to fetch

the pointer on page zero which is in turn used to indicate the memo¬

ry location operated on by the instruction. This instruction allows

one to set up a table of pointers on page zero and, by manipulating

the X index register, the desired pointer will be selected. It should

be noted that if the sum of the operand plus the X index register is

greater than $FF, the result will wrap around to the beginning of

page zero.

The following example illustrates the operation of the in¬

dexed indirect addressing mode. The accumulator is stored in a

memory location which is indexed indirectly through a pointer on

page zero.

Before Execution

Contents of A = $55

20 Chapter 1

Contents of X = $02

Contents of memory location $0080 = $24

Contents of memory location $0081 = $05

Contents of memory location $0082 = $22

Contents of memory location $0083 = $05

Contents of memory location $0522 = $XX (don’t care)

Contents of memory location $0524 = $XX (don't care)

Instruction Executed

$ource code STA ($80,X) Machine code $81 $80

After Execution

Contents of A = $55

Contents of memory location $0522 = $55

Contents of memory location $0524 = $XX (don't care)

Indirect Indexed Addressing Mode

The indirect indexed addressing mode offsets the value of the

pointer selected from page zero by adding the Y index register to

it. The instruction operand indicates the location of the pointer on

page zero. The contents of the Y index register is added to this

pointer to select the actual memory location to be operated on.

Thus, a table of as many as 256 entries may be set up in any section

of the memory with a pointer to its lowest address stored on page

zero. By proper adjustment of the Y index register, any desired

entry in the table may be selected. This method is illustrated below.

This example loads the accumulator with the second entry of a

table beginning at location $0400.

Before Execution

Contents of A = XX

Contents of Y = $01

Contents of memory location $0090 = $00

Contents of memory location $0091 = $04

Contents of memory location $0400 = $B1

Contents of memory location $0401 = $B2

Contents of memory location $0402 = $B3

Instruction Executed

Bource code LDA ($90),Y Machine code $B1 $90

After Execution

Contents of A = $B2

The 6502 Instruction Set 21

Relative Addressing Mode

The relative addressing mode references a memory location rela¬

tive to the current value of the program counter +2. The relative ad¬

dressing mode is used exclusively by the branch instructions. Two

bytes are required to define the branch instruction. The first byte of

the branch instruction calls out which conditional branch is to be

executed. The second byte contains the relative displacement in

two’s complement form. Branching to a memory location is calcu¬

lated by simply adding the second byte to the value of the program

counter +2. If the most significant bit is a one, the branch will be to

an address lower than the current program counter +2. A value of

zero for the most significant bit indicates a branch to a higher ad¬

dress. The two’s complement notation limits the branch instructions

to a displacement of —128 to +127 locations from the value of the

program counter +2.

If the zero flag is set, the following example illustrates a branch

back to the instruction located $0E hexadecimal locations before the

branch instruction.

Before Execution

Program counter = $0270

(Location of first machine code of branch)

Instruction Executed

Source code BEQ $F0 Machine code $F0 $F0

After Execution

Program counter = $0262

Described here are the various types of instructions available

with the 6502 CPU and will provide the mnemonic name used for

writing programs in symbolic language. The machine code for the

instruction is given as two hexadecimal digits. In cases where the

mnemonic allows more than one addressing mode, the additional

machine codes are listed, followed by an indication of the addressing

mode to which they relate. Appendix A contains a list of these

mnemonics and machine codes in alphabetical order. These mne¬

monics are equivalent to those defined by MOSTEK. Information

concerning the timing for the instructions is also included.

The use of mnemonics facilitates working with an assembler

program when developing relatively large and complex programs.

22 Chapter 1

Thus, the programmer is urged to concentrate on learning the mne¬

monics for the instructions, and not to memorize the machine codes.

After a program has been written using the mnemonics, the pro¬

grammer can use a lookup table for conversion to machine code if

an assembler program is not available.

The following discussion of the 6502 instruction set is preceded

by the mnemonics and machine code in either two or three columns.

The first column contains the mnemonic representation of the in¬

struction. The second column contains the machine code for that

mnemonic. In cases where several addressing modes are possible, the

third column indicates the addressing mode for the machine code.

The first group of instructions loads data from the accumula¬

tor to the memory, and vice versa. These instructions require one

to three bytes of memory.

Load the Accumulator from Memory

LDA #DATA $A9 IMMEDIATE

LDA ADDR $A5 ZERO PAGE

LDA ADDR,X $B5 ZERO PAGE INDEXED

LDA ADDR $AD ABSOLUTE

LDA ADDR.X SBD ABSOLUTE INDEXED

LDA ADDR,Y SB9 ABSOLUTE INDEXED

LDA (ADDR.X) $A1 INDEXED INDIRECT

LDA (ADDR),Y $B1 INDIRECT INDEXED

This group of instructions loads the accumulator with the

content of the memory location indicated by the addressing mode.

For the immediate mode, the instruction requires two bytes and the

data to be loaded into the accumulator is taken from the second byte

of the instruction. For the zero-page modes, the instruction requires

two bytes, with the second byte indicating the location on page 00

from which the data is to be taken and loaded into the accumula¬

tor. The second and third bytes of the three-byte absolute mode in¬

struction contain the low and page portion of the address from

which the data to be loaded is taken. The indirect modes require

two bytes. The second byte indicates the location on page zero

containing the indirect pointer. The N and Z flags are affected as a

result of these instructions. The C, I, D and V flags remain unchanged.

Store Accumulator in Memory

STA ADDR $85 ZERO PAGE

STA ADDR.X $95 ZERO PAGE INDEXED

The 6502 Instruction Set 23

STA ADDR $8D ABSOLUTE

STA ADDR,X $9D ABSOLUTE INDEXED

STA ADDR,Y $99 ABSOLUTE INDEXED

STA (ADDR,X) $81 INDEXED INDIRECT

STA (ADDR),Y $91 INDIRECT INDEXED

Storing data contained in the accumulator to a memory loca¬
tion is accomplished by the execution of one of these instructions.
The exact location in memory is determined by the addressing mode
used. The immediate mode is not valid for this instruction. The zero
page and indirect modes require two bytes, and the absolute modes
require three. The status flags are affected in a similar manner as
loading the accumulator from the memory instructions.

PUSH the Accumulator onto the Stack

PHA $48

This instruction stores the contents of the accumulator into
the memory location indicated by the stack pointer. After storing
the data, the stack pointer is automatically decremented to the
proper position for the next stack operation. This one-byte instruc¬
tion provides a convenient method for temporarily storing the con¬
tents of the accumulator without designating a specific memory
location for its storage. None of the status flags are affected.

PULL Data from the Stack into the Accumulator

PLA $68

Execution of this instruction first increments the stack pointer,
and then transfers the data in the memory location indicated by the
stack pointer to the designated accumulator. This instruction is used
in conjunction with the push instruction to retrieve data pushed onto
the stack. The status flags are not affected.

The next section contains instructions that deal with the load¬
ing, storing, and manipulation of the index registers contents and
stack pointer. Proper manipulation of these registers is essential in
programming the 6502 efficiently. The number of bytes required for
this group of instructions varies from one to three.

Load the Index Registers

LDX #DATA $A2 IMMEDIATE

LDX ADDR $A6 ZERO PAGE

24 Chapter 1

LDX ADDR,Y $B6 ZERO PAGE INDEXED

LDX ADDR $AE ABSOLUTE

LDX ADDR.Y $BE ABSOLUTE INDEXED

LDY #DATA $A0 IMMEDIATE

LDY ADDR $A4 ZERO PAGE

LDY ADDR,X $B4 ZERO PAGE INDEXED

LDY ADDR $AC ABSOLUTE

LDY ADDR.X $BC ABSOLUTE INDEXED

This group of instructions load the designated index register

from the memory location defined by the respective addressing

modes. The immediate and zero page instructions require two bytes

of memory and the absolute addressing mode requires three bytes.

An index register is not used to load itself when an indexed address-

ing mode is called out. The resultant contents of the index register

affect the N and Z flags, and the C, I, D and V flags are left unchanged.

Store the Index Registers

STX ADDR $86 ZERO PAGE

STX ADDR.Y $96 ZERO PAGE INDEXED

STX ADDR $8E ABSOLUTE

STY ADDR $84 ZERO PAGE

STY ADDR.X $94 ZERO PAGE INDEXED

STY ADDR $8C ABSOLUTE

Storing the contents of the designated index register is accom¬

plished by the execution of one of these instructions. The contents

of the index register remain unchanged. The zero-page addressing

modes require two bytes of memory and the absolute mode requires

three bytes. The flags are affected in the same manner as with the

load index register instructions.

Increment the Index Register

INX $E8

INY $C8

These one byte instructions increment the designated index re¬

gister by one. By using the index registers as part of a pointer, via an

indexed addressing mode, this instruction is used to advance the

pointer from one location to the next. The N and Z flags are af¬

fected while the C, I, D and V flags remain unchanged.

The 6502 Instruction Set 25

Decrement the Index Registers

DEX $CA

DEY $88

These instructions perform the opposite function of increment

instructions. The contents of the designated index register is decre¬

mented by one. The N and Z flags reflect the result of the opera¬

tion while the C, I, D and V flags are unchanged.

Transfer from Accumulator to Index Register

TAX $AA

TAY $A8

The current contents of the accumulator are transferred to the

designated index register. This is a convenient one byte instruction

for the temporary storage of the accumulator. The N and Z flags are

affected by these instructions while the C, I, D and V flags and the

contents of the accumulator remain unchanged.

Transfer from Index Register to Accumulator

TXA $8A

TYA $98

The contents of the designated index register are transferred to

the accumulator. This may be performed to allow arithmetic or logi¬

cal operations on the contents of the index register which can only

be executed in the accumulator. As in the previous transfer instruc¬

tions only the N and Z flags are affected by these one byte instruc¬

tions.

Transfer from Stack Pointer to the X Index Register

TSX $BA

This one-byte instruction transfers the contents of the stack

pointer to the X index register. The stack pointer maintains its ini¬

tial contents following the execution. By loading the X index regis¬

ter with the address contained in the stack pointer, the absolute in¬

dexed addressing mode instructions may be used to store data on

the stack while in a subroutine. Also, by incrementing the X index

register following this instruction, an indexed pointer is set to exam¬

ine and/or change the return address of a subroutine call. The N and

Z flags are the only flags affected.

26 Chapter 1

Transfer from X Index Register to Stack Pointer

TXS $9A

This instruction transfers the contents of the X index register

into the stack pointer. This one byte instruction is used to initialize

the stack pointer at the start of a program. It may also be used to

move the stack pointer to a new location in the stack, with the in¬

tent, possibly, of skipping a return address or some data stored on

the stack. None of the status flags are affected by this instruction.

These instructions listed above describe the transfer of data be¬

tween internal CPU registers, and a CPU register and a memory loca¬

tion. Several instructions that allow the manipulation of data within

the CPU registers have also been discussed. The 6502 provides a simi¬

lar type manipulation of memory contents. These instructions util¬

ize the zero page and absolute modes of addressing, and require two

or three bytes of memory.

Increment the Memory Location

INC ADDR $E6 ZERO PAGE

INC ADDR,X $F6 ZERO PAGE INDEXED

INC ADDR $EE ABSOLUTE

INC ADDR,X $FE ABSOLUTE INDEXED

The designated memory location is incremented by one. The ab¬

solute addressing mode requires three bytes of memory, and the zero

page requires two. This makes it convenient to set up a memory loca¬

tion as a pointer. Only the X index register is used in the indexed

form. Only the N and Z flags are affected by the execution.

Decrement the Memory Location

DEC ADDR $C6 ZERO PAGE

DEC ADDR.X $D6 ZERO PAGE INDEXED

DEC ADDR $CE ABSOLUTE

DEC ADDR,X $DE ABSOLUTE INDEXED

These instructions decrement the contents of the designated

memory location by one. The X index register is used exclusively

by the indexed form. As in the increment memory instructions, the

zero page addressing mode requires two bytes and the absolute mode

requires three bytes. The N and Z flags are conditioned to indicate

the result and the C,I,D and V flags are left unchanged.

The following group of instructions allows the programmer to

The 6502 Instruction Set 27

direct the computer to perform arithmetic operations between the

accumulator and the designated memory location. Also, there is a

pair of instructions that control whether the arithmetic assumes bin-

nary or BCD digits in the accumulator and memory location. The in¬

structions in this group that use the immediate, zero page and in¬

direct addressing modes require two bytes, and the absolute requires

three.

Set the Decimal Mode

SED $F8H

Addition and subtraction of two bytes in a computer normally

assumes that the contents of the bytes are eight-bit binary values.

However, this instruction allows one to store the data to be added or

subtracted as BCD digits. A BCD digit is a four-bit binary number

within the range of zero to nine. The six binary values above nine

are invalid. This instruction sets the decimal mode flag. As long as

this flag remains set, the execution of the addition and subtraction

instructions assumes that the accumulator and memory location used

contain two BCD digits. The result of the arithmetic operation

leaves two BCD digits in the accumulator. This one-byte instruction

affects only the decimal mode flag.

Clear the Decimal Mode

CLD $D8

All addition and subtraction instruction executed when the

decimal mode flag is cleared assumes the data to be in binary form.

Only the decimal mode flag is affected.

Add the Contents of Memory Plus the Carry Flag

to the Accumulator

ADC #DATA $69 IMMEDIATE

ADC ADDR $65 ZERO PAGE

ADC ADDR,X $75 ZERO PAGE INDEXED

ADC ADDR $6D ABSOLUTE

ADC ADDR.X $7D ABSOLUTE INDEXED

ADC ADDR,Y $79 ABSOLUTE INDEXED

ADC (ADDR.X) $61 INDEXED INDIRECT

ADC (ADDR),Y $71 INDIRECT INDEXED

These instructions add the contents of the designated memory

28 Chapter 1

location to the accumulator. The carry flag is also added to the least

significant bit of the accumulator. The result of the addition is left

in the accumulator in the format dictated by the decimal mode flag.

The carry flag is the link between bytes when adding two multiple

precision values. The N, Z and V flags are also updated to indicate

the result of the addition. The contents of the memory location used

are not changed.

Subtract the Memory Contents and the Carry Flag

from the Accumulator

SBC #DATA $E9 IMMEDIATE

SBC ADDR $E5 ZERO PAGE

SBC ADDR,X $F5 ZERO PAGE INDEXED

SBC ADDR $ED ABSOLUTE

SBC ADDR,X $FD ABSOLUTE INDEXED

SBC ADDR.Y $F9 ABSOLUTE INDEXED

SBC (ADDR,X) $E1 INDEXED INDIRECT

SBC (ADDR),Y $F1 INDIRECT INDEXED

The contents of the memory location and the carry flag are

subtracted from the accumulator. The result of the subtraction

either in binary or BCD, is stored in the accumulator and the

carry flag will be reset if a borrow was required for the subtrac¬

tion of the most significant bits. The N, Z and V flags are also af¬

fected by these instructions.

There is a group of instructions that perform a subtraction op¬

eration without altering the contents of any CPU registers or memo¬

ry locations. However, the results of the subtraction operation are

indicated by the condition of several of the status flags. The purpose

of these instructions is to allow the program to compare the contents

of the accumulator or index register to a value in memory.

The following group of compare instructions is very powerful

and somewhat unique. They direct the computer to compare the

contents of the designated accumulator or index register against the

contents of the memory, and set the status flags as a result of the

compare operation. Essentially it is a subtraction operation, with

the value in the memory being subtracted from the value in the ac¬

cumulator or index register. The value in the accumulator or index

register is not altered by the operation. However, the flags are set

in the same manner as though an actual subtraction operation had

occurred. Subsequently, by testing the status of the various flags

after a compare instruction is executed, the program can determine

The 6502 Instruction Set 29

whether the compare operation resulted in a match or not. The

flags will indicate the relative magnitude of the two values with

respect to each other.

These various tests are accomplished by utilizing the conditional

branch instructions (to be described later). Unlike the SBC instruc¬

tions, the carry flag is not included in the subtraction.

Compare the Contents of the Memory to the Accumulator

CMP #DATA $C9 IMMEDIATE

CMP ADDR $C5 ZERO PAGE

CMP ADDR,X $D5 ZERO PAGE INDEXED

CMP ADDR $CD ABSOLUTE

CMP ADDR,X $DD ABSOLUTE INDEXED

CMP ADDR.Y $D9 ABSOLUTE INDEXED

CMP (ADDR,X) $C1 INDEXED INDIRECT

CMP (ADDR),Y $D1 INDIRECT INDEXED

This group of compare instructions compares the content of the

designated memory location to the content of the accumulator and

requires two bytes for the immediate, zero page and indirect address¬

ing modes, and three bytes for the absolute mode. The C, N and Z

flags are conditioned according to the results of the subtraction

operation. The V flag is not changed.

Compare the Contents of the Memory to the Index Register

CPX #DATA $E0 IMMEDIATE

CPX ADDR $E4 ZERO PAGE

CPX ADDR $EC ABSOLUTE

CPY #DATA $C0 IMMEDIATE

CPY ADDR $C4 ZERO PAGE

CPY ADDR $CC ABSOLUTE

These instructions compare the contents of the designated

index register with the memory location. The contents of the in¬

dicated memory location is subtracted from the index register. The

C, N and Z flags are affected by the result of the subtraction. How¬

ever, the V flag, memory location and index register remain un¬

changed. The immediate and zero-page addressing mode instructions

require two bytes and the absolute mode instructions require three.

These instructions are useful in testing for the end of a table pointed
to by the index register.

There are several groups of instructions that allow Boolean logic

30 Chapter 1

operations to be performed between the contents of locations in

the memory and the accumulator. Boolean logic operations are valua¬

ble in a number of programming applications. The 6502 instruction

set allows three basic Boolean operations to be performed. These

are the logical AND, logical OR, and EXCLUSIVE OR operations.

Each type of logic operation is performed on a bit-by-bit basis be¬

tween the memory location and the accumulator specified by the

instruction.

These instructions utilize four basic addressing modes to define

the memory location to be used. For this entire group, the im¬

mediate, zero page and indirect mode instructions require two bytes

of memory, while the absolute mode requires three.

"AND" the Accumulator

AND #DATA $29 IMMEDIATE

AND ADDR $25 ZERO PAGE

AND ADDR,X $35 ZERO PAGE INDEXED

AND ADDR $2D ABSOLUTE

AND ADDR,X $3D ABSOLUTE INDEXED

AND ADDR.Y $39 ABSOLUTE INDEXED

AND (ADDR,X) $21 INDEXED INDIRECT

AND (ADDR),Y $31 INDIRECT INDEXED

When the Boolean AND instruction is executed, each bit of the

accumulator will be compared with the corresponding bit in the

memory location specified by the instruction. As each bit is com¬

pared, a logic result will be placed in the accumulator. The logic

result is determined as follows: If both the bit in the accumulator

and the bit in the memory location with which the operation is

being performed are a “1,” the accumulator bit will be left as a

“1.” For other possible combinations (i.e., the accumulator bit

= “0,” and the memory location bit = “1,” or if the accumulator bit

= “1” and the memory contents bit = “0,” or if both the accumu¬

lator and the memory contents have the particular bit = “0”), the

accumulator bit will be set to “0.” An example will illustrate the

logical AND operation:

Initial State of the Accumulator: 10101010

Contents of Memory Location: 11001101

Final State of the Accumulator: 10001000

The eight logical AND instructions perform this type of logic

The 6502 Instruction Set 31

operation between the accumulator and memory location, the result

of the operation is stored in the accumulator. The N and Z flags

are affected by the results of the logical AND operation. C and V

flags are not affected.

Logical "OR"the Accumulator

ORA #DATA $09 IMMEDIATE

ORA ADDR $05 ZERO PAGE

ORA ADDR,X $15 ZERO PAGE INDEXED

ORA ADDR $0D ABSOLUTE

ORA ADDR,X $1D ABSOLUTE INDEXED

ORA ADDR,Y $19 ABSOLUTE INDEXED

ORA (ADDR,X) $01 INDEXED INDIRECT

ORA (ADDR),Y $11 INDIRECT INDEXED

This group of Boolean logic instructions direct the computer

to perform the logical OR operation on a bit-by-bit basis with the

designated accumulator and contents of the memory location. The

logical OR operation will result in the accumulator having a bit set

to “1” if either the bit in the accumulator, or the corresponding bit

in the memory location is a “1.” Since the case where both the

accumulator bit and the operand bit is a “1” also satisfies the rela¬

tionship, that condition will also result in the accumulator bit being

a “1.” If neither accumulator nor memory location has a “1” in the

bit position, the accumulator bit remains “0.” An example illustrates

the results of the logical OR operation:

Initial State of the Accumulator: 10101010

Contents of the Operand Register: 11001101

Final State of the Accumulator: 11101111

The logical OR instructions listed here perform this operation

between the accumulator and memory location. The execution of

these instructions leaves the result in the accumulator. The effect on

the status flags is the same as for the logical AND instructions.

Logical "EXCLUSIVE OR"the Accumulator

EOR #DATA $49 IMMEDIATE

EOR ADDR $45 ZERO PAGE

EOR ADDR,X $55 ZERO PAGE INDEXED

EOR ADDR $4D ABSOLUTE

EOR ADDR.X $5D ABSOLUTE INDEXED

32 Chapter 1

EOR ADDR,Y $59 AB50LUTEINDEXED

EOR (ADDR.X) $41 INDEXED INDIRECT

EOR (ADDR),Y $51 INDIRECT INDEXED

This group of Boolean logic instructions is a variation of the

logic OR. The variation is termed the logical EXCLUSIVE OR.

The EXCLUSIVE OR operation is similar to the OR, except that

when the corresponding bits in both accumulator and the operand

register are a “1,” the accumulator bit will be set to “0.” Thus, the

accumulator bit will be a “1” after the operation only if one of the

registers has a “1” in the bit position. An example provides clari¬

fication:

Initial State of the Accumulator: 10101010

Contents of the Operand Register: 11001101

Final State of the Accumulator: 01100111

These logical EXCLUSIVE OR instructions, similar to those for

the AND and OR, perform the operation between the accumulator

and memory location with the results being stored in the accumu¬

lator. The status flags are also affected, or not affected, in the same

manner as the logical AND instructions.

BIT Test Memory with the Accumulator

BIT ADDR $24 ZERO PAGE

BIT ADDR $2C ABSOLUTE

The BIT test instruction tests one or more bits in a memory

location without altering the contents of the memory location. This

is accomplished by performing a logic AND between the accumulator

and the memory location. Although neither alter their contents, the

Z flag will indicate whether one or more common bit positions con¬

tain a “1.” Testing for the condition of a particular bit is done by

loading the accumulator with zeros in all bits except the one to be

tested. This bit is loaded with a one. Executing BIT would set the

Z flag to one if the bit in memory is zero, or clear the Z flag if it

is one. The condition of bit 7 and bit 6 of the memory location is

loaded directly into flags N and V respectively. This is done indepen¬

dently of the logic AND operation. Thus, one may test these two bits

with the BIT instructions, without initializing the accumulator. The

C flag is not affected. The zero page addressing mode requires two

bytes to define the operation and the absolute mode requires three.

The 6502 Instruction Set 33

The 6502 has a group of instructions that allow the programmer

to condition several of the status flags individually. The status re¬

gister also may be stored and retrieved from the stack. All of the in¬

structions in this group require only one byte of memory. The in¬

structions that refer to an individual flag affect only that flag. All

other status flags remain in their initial condition.

Set the Carry Flag

SEC $38

This instruction sets the carry flag to a value of “1,” and the

“clear the carry” instruction presented next, provides a convenient

method for conditioning the carry flag before an arithmetic or rotate

instruction.

Clear the Carry Flag

CLC $18

This instruction clears the carry flag by loading a “0.”

Set the Interrupt Flag

SEI $78

The interrupt flag is set to a “1” by this execution. It may be

considered a disable interrupt instruction since the interrupt flag

disables the CPU from accepting maskable interrupts while it is set

to a “1.”

Clear the Interrupt Flag

CLI $58

This instruction clears the interrupt flag to a “0” condition.

Clearing the interrupt flag allows the CPU to accept interrupts from

the maskable interrupt line.

Interrupt flag instructions provide the programmer with a

means of control when the computer may accept interrupts on the

maskable interrupt line. The function of these two instructions is

performed automatically when an interrupt is received. The com¬

puter automatically sets the I flag. Then, upon execution of the “re-

turn-from-interrupt” instruction (to be presented later), the I flag

is returned to its initial state. Also, there may be times in a program

when an operation to be performed affects data critical to the exe-

34 Chapter 1

cution of the interrupt service routine. Before performing this opera¬

tion, the interrupt flag should be set so that a maskable interrupt will

not be accepted while the data is being changed. Once the program

has completed this operation, the flag may be cleared to allow in¬

terrupts to be received.

Clear the Overflow Flag

CLV $B8

This instruction clears the two’s complement overflow flag to

a “0” and is useful in performing signed binary arithmetic opera¬

tions.

PUSH Status Register onto Stack

PHP $08

Occasionally, it is desired to save the current status flag settings.

For example, a routine may determine that a value is negative. How¬

ever, this information is not required by the program until other

parameters are tested. This one-byte instruction may be used to store

the status register on the stack. Then, when the program is ready to

make a decision based on the sign of the aforementioned value, the

status can be retrieved from the stack by the pull status instruc¬

tion. Pushing the status register onto the stack stores the status in

the location indicated by the stack pointer at the time of execution.

Then the stack pointer is decremented. The contents of the status

register is not affected.

PULL Status Register from Stack

PLP $28

This one byte instruction causes the stack pointer to be in¬

cremented and the data on the stack at this location to be loaded

into the status register. This is one method of restoring the status

to a previously determined condition. The PHP and PLP instruc¬

tions are also a convenient method of storing and restoring the

decimal mode flag when calling an arithmetic routine that may

change its setting.

It is often desirable to be able to shift the contents of an ac¬

cumulator or memory location either right or left. In a fixed length

register, a simple shift operation would result in some information

being shifted right out of the register! Therefore, instead of losing

The 6502 Instruction Set 35

this information, the carry flag is used as an extension of the

accumulator or memory location. The carry will “catch” the bit

being shifted out of either the LSB for a shift to the right, or the

MSB for a shift to the left.

When performing these shift operations, the condition of the bit

being shifted into the register must also be considered. Depending

on the application of the shifting operation, it may be desired to

shift a zero, or to shift the initial contents of the carry flag, into

this bit. The shifting operation that shifts the carry around to the

opposite end of the register is termed a “rotate” operation. The

initial contents of the entire register and the carry are never lost,

it is shifted out one end into the carry, and from the carry back into

the other end of the register.

The 6502 CPU provides four various shifting and rotating op¬

erations that may use either the accumulator or a memory location

as the register to be shifted. A description of the shift and rotate

operations available are presented here. Those designating an ac¬

cumulator require one byte, those using the zero page addressing

mode require two bytes, and those indicating the absolute address¬

ing mode require three bytes. Only the X index register is valid for

the indexed addressing modes.

Arithmetic Shift Left

ASL A $0A

ASL ADDR $06 ZERO PAGE

ASL ADDR,X $16 ZERO PAGE INDEXED

ASL ADDR $0E ABSOLUTE

ASL ADDR.X $1E ABSOLUTE INDEXED

The arithmetic shift left operation shifts either the designated

accumulator or memory location to the left one bit. The MSB is

shifted into the carry and a zero is shifted into the LSB. This op¬

eration multiplies the initial contents of the register by two. For

multiple precision operations, this instruction may be used to shift

the least significant byte, and the successive bytes may be shift¬

ed by using the rotate left instruction, to be described shortly.

By starting with this instruction, initially it is not necessary to

clear the carry flag. The C, N and Z flags are affected by this op¬

eration. The V flag is not.

Logical Shift Right

LSR A $4A

36 Chapter 1

LSR ADDR $46 ZERO PAGE

LSR ADDR.X $56 ZERO PAGE INDEXED

LSR ADDR $4E ABSOLUTE

LSR ADDR,X $5E ABSOLUTE INDEXED

The logical shift right instruction shifts the designated register

to the right one bit. Bit zero is loaded into the carry flag, and bit

seven is loaded with a zero. This instruction is used to divide the

contents of the register by two when the MSB is assumed to be

part of the value and not the sign of the value. The C, N and Z

flags are affected by the result of this operation but the V flag is

not.

Rotate Left

ROL A $2A

ROL ADDR $26 ZERO PAGE

ROL ADDR,X $36 ZERO PAGE INDEXED

ROL ADDR $2E ABSOLUTE

ROL ADDR,X $3E ABSOLUTE INDEXED

The designated accumulator or memory location is rotated one

bit to the left by the execution of this instruction. The MSB is ro¬

tated into the carry, and the initial content of the carry is rotated

into the LSB. Since this instruction forms a closed loop, it does not

lose the contents of any of the bits. It may, therefore, be used to

calculate the parity of the value in the register by rotating each bit

into the carry and adding up the number of ones contained in the

register. Rotating a multiple precision value to the left may be ac¬

complished by initially clearing the carry and then, beginning with

the least significant byte, rotating each byte once to the left. In

doing so, it is essential that the instructions in between each rotate

do not affect the carry flag. The status flags are affected in the same

manner as with the arithmetic shift left.

Rotate Right

ROR A $6A

ROR ADDR $66 ZERO PAGE

ROR ADDR,X $76 ZERO PAGE INDEXED

ROR ADDR $6E ABSOLUTE

ROR ADDR,X $7E ABSOLUTE INDEXED

The rotate right instruction rotates the designated accumulator

The 6502 Instruction Set 37

or memory location once to the right with the LSB rotated into the

carry, and the initial contents of the carry rotated into the MSB.

The parity of the register contents also may be checked by a series

of rotate right instructions. Dividing a multiple precision value by

two may be accomplished initially by clearing the carry and then,

beginning with the most significant byte and working down to the

least significant byte, each byte of the multiple precision value is

rotated once to the right. Here again, the instructions in between

rotate instructions must not affect the carry. The status flags are

affected in the same manner as with the arithmetic shift left in¬

struction.

The No Operation Instruction

NOP $EA

The no operation, or NOP, instruction directs the computer to

consume time by executing a machine cycle that effectively does

nothing except advance the program counter to the next memory

address. None of the CPU registers are affected by the operation.

The instruction is useful for creating time delays, or as a filler if

patches to a program are required (or anticipated).

The instructions discussed so far have been direct action ones.

The programmer arranged a sequence of these instructions in memo¬

ry. When the program is started, the computer proceeds to execute

the instructions in the order in which they are encountered. The

computer automatically reads the contents of the memory loca¬

tion and executes the instruction it finds there. Then it automati¬

cally increments a special address register called a “program count¬

er” to the next sequential memory location. Often it is desirable to

perform a series of instructions located in one section of the memory

and then skip over a group of memory locations to start executing

instructions in another section. This action can be accomplished by

a group of instructions that will cause the CPU to jump to a new

section of the memory and continue executing instructions se¬

quentially from the new memory location.

There are a series of conditional branch instructions available

in this computer that add considerable power to the machine’s capa¬

bilities. The computer can be directed to test the status of a par¬

ticular flag. If the status of the flag is the desired one, a branch will

be performed. If it is not, the computer will continue to execute

the next instruction in the current sequence. This capability provides

a means for the computer to make decisions, and to modify its op-

38 Chapter 1

eration as a function of flag status.

All of the branch instructions use the relative addressing mode

to define the memory location from which the next instruction to

be executed is to be taken. This mode of addressing requires two

bytes of memory to properly define the instruction. The first byte

contains the machine code for the type of branch instruction to be

executed. The second byte contains the relative displacement, in

two’s complement form, from the memory location following the

second byte of the branch instruction. Refer to the beginning of this

chapter to review the relative addressing mode if necessary. These

branch instructions do not affect any of the status flags.

The following is a list of branch instructions. Each tests a sin¬

gle flag to determine whether to branch, or to fall through to the

next sequential instruction. The first column contains the mnemonic

representation for the instruction, the second column contains the

machine code for the first byte of the instruction, and the final

column indicates the flag tested and the condition that would cause

the instruction to branch.

BCC RELA

BCS RELA

BNE RELA

BEQ RELA

BPL RELA

BMI RELA

BVC RELA

BVS RELA

$90 C=0

$B0 C=1

$D0 Z=0

$F0 Z=1

$10 N=0

$30 N=1

$50 V=0

$70 V=1

The Jump Instruction

JMP ADDR $4C ABSOLUTE

JMP (ADDR) $6C INDIRECT

The jump instruction always results in the computer going to

the designated address rather than fetching the next instruction

from the current sequence. However, the jump instruction is not

limited to an area in the memory relative to its current location.

Using either of the addressing modes indicated, the jump instruc¬

tion can direct the computer to any location throughout its memo¬

ry. For the three-byte absolute addressing mode instruction, the

second byte contains the low portion, and the third byte contains

the page portion of the address to which the computer is to jump.

For the indirect mode, the operand points to the location where the

The 6502 Instruction Set 39

actual address to jump may be found. The indirect pointer points

to the low portion of the address and the next successive memory

location contains the page portion. These jump instructions do not

affect any of the status flags.

Quite often, when a programmer is developing computer pro¬

grams, he will find that a particular algorithm can be used many

times in different parts of the program. Rather than entering the

same sequence of instructions at different locations in the memo¬

ry (which would not only consume the time of the programmer but

would also result in a lot of memory being used to perform the

same function), it is desirable to be able to put an often used se¬

quence of commands in one section of the memory. Then, when¬

ever this particular algorithm is required, it would be convenient

to jump to the section that contained it and perform the sequence

of instructions, before returning to the main part of the program.

This is a standard practice in computer operations. The algorithm

can be designated as a subroutine. A special instruction allows the

programmer to call a subroutine. A second type of instruction is

used to terminate the sequence of instructions. This special termi¬

nator will cause the program operation to revert back to the next

sequential location in the memory.

When a jump-to-subroutine instruction is executed, the CPU

will save the address of the last byte of the instruction call by storing

it in the stack. The address in the program counter is advanced to

the last byte of the subroutine call instruction. The low portion of

this address then is stored in the stack indicated by the stack pointer.

The stack pointer is decremented by one, and the page portion of the

address is stored in the stack. Finally, the stack pointer is then de¬

cremented once more to position it for the next operation.

The return instruction that terminates a subroutine requires

only one byte. When the CPU encounters a return instruction, it

causes the address stored in the stack to be pulled off into the

program counter. The program counter is then incremented and the

instruction following the jump to subroutine is executed. The low

and then page portions of the address are each pulled from the stack

in the same manner that a value is pulled from the stack and loaded

into an accumulator.

Jump to Subroutine

JSR ADDR $20 ABSOLUTE

This three-byte instruction directs program execution to the

40 Chapter 1

address indicated by the operand. The second byte contains the low

portion and the third byte contains the page portion of the subrou¬

tine’s start address. This instruction does not affect the status flags.

Return from Subroutine

RTS $60

This one byte instruction returns program execution from a subrou¬

tine to the calling program. The return address is pulled from the

stack and loaded into the program counter. The program counter is

then incremented and the next instruction in the initial program se¬

quence is executed. Since no status flags are affected by the return,

the result of the subroutine’s operation may be passed to the calling

program through the flags.

This final group of instructions deals with the software por¬

tion of interrupt operations. These instructions, along with the in¬

terrupt flag set and clear instructions presented previously, provide

the 6502 with the necessary software capability to operate under

interrupt control.

Break - a Software Interrupt

BRK $00

Execution of this one-byte instruction causes the 6502 to re¬

spond in a manner similar to the receipt of a hardware interrupt.

The address of the BRK instruction plus two is pushed into the

stack, followed by the status register. The break flag, bit four of the

status register, will be set when it is stored as an indication to the

interrupt handler that the interrupt is software generated. The pro¬

gram counter then is loaded with the interrupt vector at locations

$FFFF and $FFFE. This vector is the start address of the maskable

interrupt routine. At this time, any hardware interrupts that occur

on the maskable interrupt line will be ignored since the interrupt

disable flag is also set by this instruction.

Return from Interrupt

RTI $40

This one-byte instruction is used at the completion of an in¬

terrupt service routine to automatically restore the flags in the status

register to their initial values at the time the interrupt was received.

The return address is then pulled from the stack. Execution of the

The 6502 Instruction Set 41

program resumes at the instruction following the last one executed

before the interrupt.

Information on Instruction Execution Times

When programming for real-time applications, it is important

to know how much time each instruction requires for execution.

With this information, the programmer can develop timing loops or

determine with substantial accuracy how much time it takes to

perform a particular series of instructions. This information is im¬

portant when dealing with programs that control the operation of

external devices which require events to occur at specific times.

Along with the list of mnemonics and machine codes, Appendix A

provides the nominal instruction execution time for each instruc¬

tion used in a 6502 system. The table shows the number of cycle

states required by the instruction. Since the nominal cycle time

for a 6502 microcomputer is one microsecond, the number of cycle

states translates directly into the execution time for each instruc¬

tion. In some cases, however, the cycle time of a 6502 system may

be slowed down to allow the use of slower memory. To calculate

the execution time of an instruction, multiply the number of cycle

states for the instruction by the time required for one cycle. Knowing

the exact time required by the CPU to execute each instruction

allows algorithms to have specific events occur at precisely timed

intervals. This concept is discussed in greater detail in Chapter Three

on programmed time delays.

42 Chapter 1

Chapter 2

6502 Programming
Techniques

Creativity in programming is what makes the difference between

so-so programmers and efficient programmers. Proper selection of

the instructions available to perform a given task can be of substan¬

tial importance. When memory size and execution times are critical,

the technique used must be concise and free of extraneous opera¬

tions.

The flexibility inherent in the 6502 instruction set allows one

to become extremely creative. The structure of the 6502 instruc¬

tion set provides a variety of techniques to accomplish a given task.

Different methods for storing and retrieving data, altering instruc¬

tion execution sequences and controlling various other functions

of the CPU are among its many attributes. Proper selection and

utilization of these techniques can shorten both memory require¬

ments and execution time for a given program.

If Page Zero Were Only Bigger!

Although the 6502 is capable of directly addressing 64K of

memory, the instruction set places special significance on the lowest

256 bytes. This portion of the memory is referred to as page zero.

The reason for the significance of using page zero is the presence of

the zero page addressing mode.

The zero-page addressing mode allows one to directly reference

a location on page zero. This is accomplished by specifying only the

eight least significant bits of the address, rather than an entire six-

teen-bit address. The importance of this addressing mode is that

only one byte is required to specify the memory address rather than

two bytes as in the absolute mode. For example, an instruction to

store the accumulator contents in location $10 on page 00 requires

6502 Programming Techniques 43

only two bytes. One byte is used to indicate a store-A-zero-page

instruction (machine code $85), and the second byte to indicate

the page zero location where data is to be stored ($10). If the same

data were to be stored in location $10 on page $02, the absolute

mode version of the STA instruction would be required. This ab¬

solute mode instruction would use three memory locations: One

location for the machine code ($8D) and two more to designate

the address ($10 and $02). This one byte difference between the two

modes may not appear to be a significant savings, however it does

add up as the length of the program increases.

Often, programs are written which require a large amount of

data storage. Pointers, counters and data buffers are typical of such

information used by a program. Data storage location can be an

important factor in program efficiency. The short one- or two-byte

data values should be stored on page zero. Also, the data which is

most frequently referenced should have priority over the temporary

data which may be called out only a few times. Long strings of data

are effectively referenced by storing a base pointer on page zero and

using one of the indirect addressing modes to access it. One must

be careful in the use of page zero to minimize memory requirements.

Storing data in the stack can help ease the burden on page

zero. Occasionally a single byte of data is generated at one point in

a routine, but not needed until several intermediate steps are exe¬

cuted. A location on page zero could be set up to hold this data.

Or, one could push this data onto the stack by using the PHA in¬

struction. Thus, the stack would provide a temporary holding register

for the data. When the routine is ready, the stored data may be

pulled from the stack by the PLA instruction. In this way, the

necessity of using page zero for temporary data storage is alleviated.

A word of caution: Don’t try to push data onto the stack be¬

fore calling a subroutine which is to use it. When the subroutine at¬

tempts to pull the data, it will end up with the low portion of its

return address, rather than the data it is expecting. Remember, the

subroutine call is going to push the return address onto the stack,

displacing the stack pointer. Data that is used by a subroutine

should be referenced by an address or pointer, not by pushing it

onto the stack.

Using the Indirect Pointers

Another attribute of page zero is storing the pointers for the

indirect indexed addressing modes. The indirect indexed addressing

mode is of significant importance because it provides the program-

44 Chapter 2

mer with a convenient means of sequentially selecting memory lo¬

cations. Using the indirect indexed mode, sequential locations from

several different areas of the memory are easily indicated. A program

for transferring data from one table to another, or for comparing two

storage areas would be ideal candidates for using this addressing

mode. The proper manipulation of these indirect pointers is essential

if full advantage of this addressing mode is desired.

Outputting data from a section of the memory to an output

device is one common use for the indirect indexed addressing mode.

Editor and assembler programs use it to transmit text and source

data from one buffer to another. The following sample routine il¬

lustrates the basic structure of these routines.

In this routine, the pointer is stored on page zero. FMPNT is

the pointer to the area from which data is to be output. CRTDSP

is the address of the video display device which will receive the

transmitted data. The Y index register is initialized to zero. After

each byte is transmitted, the Y index register is incremented. If, as

a result of incrementing, the Y index register becomes zero, the up¬

per half of FMPNT is incremented. Incrementing in this fashion al¬

lows more than 256 bytes to be transmitted at one time. This routine

also tests the data transmitted to indicate the end of the buffer. A

zero byte in the buffer is used to signify the end. When it is encoun¬

tered, the routine returns to the calling program.

*=$0000

FMPNT *=*+2

*=$0200

TBLOUT LDA (FMPNT),Y

BEQ ZCHAR

STA CRTDSP

INY

BNETBLOUT

INC FMPNT+1

BNETBLOUT

ZCHAR RTS

From pointer storage

Read character from table

Zero byte indicates end of buffer

Output to CRT display

Advance index pointer

Not zero, continue output

Advance base pointer by 256

Continue output

Last character output, return

A Conditional Branch Can Save Memory

One very useful programming trick is indicated in this routine.

Following the INC FMPNT+1 instruction, the program jumps back

to the beginning by using the two-byte BNE TBLOUT instruction.

FMPNT+1 is the page portion of the pointer. In 95 percent of the

6502 Programming Techniques 45

6502-based computers, the last RAM location never exceeds $DFFF.

It is safe to assume that incrementing FMPNT+1 will not cause it

to go to zero. Thus, the two-byte BNE saves one memory location

over the three-byte JMP instruction. One should also watch for

places where a conditional branch is followed by a jump instruc¬

tion. In these situations, the branch instruction for the opposite

condition of the first branch may be used in place of the jump in¬

struction.

Counting Characters and Events

The TBLOUT routine was terminated when a specific code,

namely $00, was encountered in the data being transmitted. Another

method of detecting when the program has completed its operation

is to set up a register or memory location as a countdown register.

This register would initially contain a binary count of the number of

times the program loop is to be executed. Then, for each pass through

the loop, the countdown register would be decremented and checked

for a value of zero. If the register did not go to zero, the loop would

be continued. When the register reaches zero, the program would

jump out of the loop. The following program listing performs an

operation similar to TBLOUT. However, rather than check for a ter¬

minating zero byte, the program uses the X index register as a count¬

down register. Before calling this routine, the X index register must

be set to the number of bytes to be transmitted. FMPNT and Y are

initialized as before.

*=$0000

FMPNT *=*+2

*=$0200

MESSAG LDA (FMPNT),Y

STA CRTDSP

INY

DEX

BNE MESSAG

RTS

Indirect pointer

Fetch character to output

Display on CRT

Advance buffer pointer

Decrement character count

Count = zero? No, continue

Yes, output complete

It is often desired to have a computer count the number of

times a specific operation is performed. The counter may perform

this function. It may also indicate the number of characters received

from an input device. There are several ways a counter may be set

up. One is to designate one of the index registers as the counter re¬

gister, and each time a count is to be made, the INX or INY instruc-

46 Chapter 2

tion may be executed. Since the index registers are eight-bits long,

they may be used to indicate a count from 0 to 255.

To set up an index register as a counter, one would load the de¬

signated register with zeros and insert the proper increment instruc¬

tion at the location within the program where the count is to be

made. When the process is complete, the designated index register

will contain a binary count of the number of times the operation

occurred.

The accumulator and index register are generally required to

perform other operations while a counter is to be maintained. One

or more memory locations may be designated as the counter storage

area. If the count is expected to exceed 255, several memory loca¬

tions would have to be used for the counter. For a single memory

location, an increment instruction would be inserted in the instruc¬

tion sequence where the count is to be made. When two or more

memory locations are to be used for the counter, a series of instruc¬

tions would be needed to increment the counter. The instruction se¬

quence is to increment the memory location containing the least

significant portion of the count and check its contents for a value

of zero. If the least significant portion went to zero as a result of the

increment, the next memory location would also be incremented.

If a third byte of memory is used as part of the counter, its con¬

tents would be incremented whenever incrementing the second byte

resulted in the second byte going to zero. A sample program listing

for incrementing a triple precision counter is presented here. The

memory locations used for the counter are designated CNTR1,

CNTR2 and CNTR3.

COUNTR

OVER

INC CNTR1 Increment the LSByte of the counter

BNE OVER = zero? No, skip other incr instruction

INC CNTR2 Yes, increment second byte of counter

BNE OVER = zero? No, skip next instruction

INC CNTR3 Yes, incr the MSByte of the counter

Continue processing

6502 Programming Techniques 47

Chapter 3

General Purpose
Routines

Whenever one writes a program, there are usually several basic
operations that occur over and over. These operations may be exe¬
cuted for completely unrelated tasks. However, the instruction se¬
quence may be the same. For example, rotating a group of memory
locations to the left can be used to multiply a binary number by two
or to properly position a BCD number. Such frequently encountered
instruction sequences are often set up as subroutines.

Subroutines usually fall into two classifications. General pur¬
pose subroutines are written to perform a specific function for a
variety of applications. This is accomplished by defining how certain
registers and memory locations are to be initialized before calling
the subroutine. In the rotate subroutine, the X index register might
be pointing to the first location to be rotated and the Y index re¬
gister could be used as a counter for the number of locations af¬
fected. Thus, any number of memory locations can be rotated by
proper selection of X and Y, before calling the rotate subroutine.
This class of subroutines is placed in a library of subroutines so a
programmer does not have to continually “reinvent the wheel.”

The second class of subroutine is that which performs an in¬
struction sequence unique to a given program. As one writes a pro¬
gram, an algorithm may occur two or more times throughout the
program. This algorithm may be essential to the program it is written
for, but may have no meaning to any other one. Such an algorithm
might execute an unusual calculation or generate an output to an
uncommon peripheral device. It is important to recognize these al¬
gorithms when they occur and form subroutines from them. This
will aid in conserving memory usage. Added time savings occur by

General Purpose Routines 49

shortening the assembly and debugging time, since the subroutine

is assembled and debugged only once.

A number of subroutines come under the general purpose classi¬

fication. Although these routines are presented as subroutines, they

may be revised to be used in line with a given instruction sequence.

This can help save memory space if the routine is called upon only

once. The necessary revision is accomplished by either deleting the

return instruction or replacing it with a jump instruction.

The subroutines presented in this chapter make use of several

addressing modes. Each one has a function which may make it more

efficient to use than another. Some apply better when short strings

of data are being manipulated. Others lend more readily to opera¬

tions involving long banks of data, possibly extending over numerous

pages in the memory. The addressing mode used in each subroutine

is the most efficient in memory usage and execution time for the

description presented. There are other alternatives, however, depend¬

ing on the applications.

Clearing a Section of Memory

When setting up a program for entering data or storing the

results of a calculation, it is often desirable to clear the memory

locations to be used for storage. This operation is achieved by filling

the memory locations with zeros. One way to do this is to store zero

in the accumulator and perform a series of STA ADDR instructions

in which the ADDR designates each memory location to be cleared.

This method is fine if the area to be cleared consists of only two or

three memory locations, and the clearing operation is required in

only one or two differerent portions of the program. However, if

a lengthy table area must be cleared, such as an input buffer (which

may store 72 characters or more for a single line of input), this

would be highly impractical. It would use more memory locations

than necessary, even for short tables to be cleared by different

routines throughout a program.

An alternative subroutine which, when called, will clear as many

locations in a table area as defined by the calling program. The rou¬

tine listed below will fill up to 256 memory locations with zeros.

The calling routine must store the lowest address of the table in

TOPNT on page zero. Also, the X index register must contain the bi¬

nary count of the number of locations to be cleared. CLRMEM is

the start of the subroutine. The accumulator and the X index re¬

gister will be equal to zero upon returning.

TOPNT is a successive pair of memory locations set up on page

50 Chapter 3

zero. It will be used as storage for a temporary pointer. The low por¬

tion of the address stored in TOPNT is stored in the lower addressed

byte and the page portion is stored in the next higher byte.

CLRMEM LDA #$00

TAY

CLRM1 STA (TOPNT),Y

INY

DEX

BNECLRM1

RTS

Set up zero value

Initialize index pointer

Clear memory location

Advance index pointer

Decrement counter

Not zero, continue clearing

Return

Transferring a Section of Memory

Programs of varying applications often have a similar require¬

ment: the transfer of information from one section of memory to

another. For example, an editor program may transfer data from the

input buffer to the main text buffer. A calculator may transfer a

multiple precision value from a storage area to a working area in the

memory. The programming to perform this function is basically the

same in either case. The start address for the section of memory to

be transferred and the section of memory to receive the data, are set

up. Either the count for the number of memory locations to be

transferred, or the address of the last location to be transferred must

be indicated.

The first transfer routine is limited to 256 bytes of memory.

This is useful for moving data values from a storage area to a working

buffer and vice versa. The initial pointers are set up in FMPNT and

TOPNT. FMPNT is a two-byte pointer on page zero, similar to

TOPNT, which must point to the table from which data is to be

transferred. TOPNT must be set to the destination storage area.

Index register X is set to the number of bytes to be moved. The Y

index register is initialized by the routine to zero and is used as the

index pointer to both memory areas.

MOVIND LDY #$00

MOVIN1 LDA (FMPNT),Y

STA (TOPNT),Y

INY

DEX

BNE MOVIN1

RTS

Initialize the index pointer

Fetch byte to transfer

Store byte in new location

Advance index pointer

Decrement byte counter

Not zero, continue

Return

General Purpose Routines 51

The next transfer routine compares the contents of the pair

of memory locations labeled ADDCHK with the FROM pointer to

determine when the last location has been moved. This method is

applicable when the last location is always known, or constant, and

the byte count is variable. When this subroutine is called, ADDCHK

must be set to the last location of the section to be transferred.

FMPNT and TOPNT should indicate the starting addresses of their

respective areas of memory. The X and Y index registers are set to

zero. After each byte is transferred, FMPNT is compared to

ADDCHK. When they are equal, the transfer is complete.

MOVEAD LDA (FMPNT,X)

STA (TOPNT) ,Y

LDA FMPNT

CMPADDCHK

BNEPNTADV

LDA FMPNT+1

CMPADDCHK

BNE PNTADV

RTS

PNTADV INY

BNE FMADV

INC TOPNT+1

FMADV INC FMPNT

BNE MOVEAD

INC FMPNT+1

JMP MOVEAD

Fetch data to transfer

Store data in new location

Fetch LS half to FMPNT

Is it equal to LS half of last address?

No, advance pointer

Fetch MS half of FMPNT

Is it equal to MS half of last address?

No, advance pointer

Yes, return to calling program

Advance index pointer

N or zero, advance FROM pointer

Advance TO base pointer

Advance LS half of FROM pointer

Not zero, continue transfer

Advance MS half of FROM pointer

Continue transfer

Multiple Precision Routines

When dealing with numerical data, it is often necessary to use

more than one eight-bit byte to represent a binary number. Since a

single byte can only represent a value from 0 to 255, one would be

quite limited in the type of calculations that could be performed.

This problem is solved by manipulating the data in several bytes as

through they were one long register or memory location: N X 8

bits long (N = number of bytes used to represent the data value).

For example, by using two bytes as though they were a single six¬

teen-bit register, the decimal values from 0 to 65,535 may be rep¬

resented in binary format. This form of representation is referred

to as multiple precision.

In order to perform operations that consider several bytes as

one, there must be some link to carry the effects of an operation on

52 Chapter 3

one byte over to the next. This link is the carry flag. The carry flag

indicates whether an operation on one byte of a multiple precis¬

ion operation should carry over to the next byte. When the addition

of a number to a low order byte of a multiple precision value creates

an overflow, the carry flag will be set to a “1.” This will be included

in the addition of the next higher byte of a multiple precision value.

Similarly, when a subtraction requires a borrow for the MSB of a

multiple precision byte, the carry will be reset and will create a bor¬

row from the LSB of the next higher byte of the multiple precision

number.

The subroutines described next perform a variety of multiple

precision operations on values stored in the memory. These opera¬

tions include incrementing, decrementing, rotating left, rotating

right, and complementing a single precision value. Also, they may

be used for adding, subtracting, and comparing a pair of multiple

precision values with each other. For these routines, the multiple

precision value(s) is assumed to be stored in consecutive memory

locations with the least significant byte in the lowest address.

Incrementing a Multiple Precision Value

There are a number of different reasons why a multiple pre¬

cision value may have to be incremented. It may be to (1) advance

a pointer that is stored in the memory, (2) increment an event

counter, or (3) simply add one to a binary value. For whatever

reason, the basic process consists of incrementing the least signifi¬

cant byte and, if it goes to zero as a result, the next byte will be

incremented. This process ends when a byte does not go to zero,

or when the most significant byte has been incremented. The first

instruction sequence may be used to increment a double precision

value. It increments the least significant byte and, if zero, incre¬

ments the second byte.

NEXT

INCMEMADR

BNE NEXT

INC MEMADR+1

Increment the Lb Byte

Not zero, skip next instruction

Increment the IV1S Byte

Continue processing

The next routine increments a multiple precision value stored

in the memory. The label VALUE should be set to the first location

of the page in which the data is stored. For example, if the data is

stored on page 00, VALUE should be set equal to zero. This restricts

the subroutine to numbers stored on the designated page. However,

General Purpose Routines 53

one should keep all data storage confined to the same section of the

memory. Then, the X index register is set to the location on page

zero of the least significant byte of the multiple precision number.

The Y index register is used as a byte counter. It should be initial¬

ized to the number of bytes in the multiple precision number.

There are two important facts upon returning from this subrou¬

tine. First, the contents of the index register will point to one of two

locations. Either the last byte which, when incremented, did not go

to zero, or to the last location plus one of the multiple precision val¬

ue. Also, the Z flag will be set to “1” upon returning when the entire

value has gone to zero. If any of the bytes do not go to zero, the Z

flag will be “0” when the return is executed.

INCMEM INC VALUE,X Increment memory contents

BNE INRET If result not zero, return

I NX Advance index pointer

DEY Decrement byte counter

BNE INCMEM Not zero, continue incrementing

INRET RTS Complete, return

Decrementing a Multiple Precision Value

The procedure for decrementing a multiple precision value is

similar to incrementing. However, different criteria are used to

determine when the succeeding byte should be decremented. The

next byte is decremented only when the byte being decremented

goes from zero to $FF. In this case, a borrow is required from the

next byte. The DEC instruction does not condition the flags to in¬

dicate the change from zero to $FF, so a different instruction se¬

quence must be used. This sequence uses the SBC #$01 instruc¬

tion to decrement a byte because it will cause the C flag to be reset

to “0” when the zero-to-$FF transition occurs.

Since the SBC instruction is used, this routine may decrement

a decimal multiple-precision value as well as a binary value. This is

accomplished by setting the decimal mode flag before calling this

subroutine. For binary multiple precision values, the decimal mode

flag must be cleared.

The following subroutine decrements the multiple precision

value indicated by TOPNT, which is set to the least significant byte.

The Y index register must be initialized to zero and the X index

register to the number of bytes in the value to be decremented. The

contents of the Y index register cannot be assumed to point to any

one particular byte upon returning.

54 Chapter 3

DCRMEM

DCRET

LDA (TOPNT),Y

SEC

SBC #$01

STA (TOPNT),Y

INY

DEX

BNE DCRET

BCC DCRMEM

RTS

Fetch byte to be decremented

Set carry for subtraction

Decrement value by one

Restore byte in memory

Advance pointer

Decrement byte counter

Last byte decremented, return

Next byte should be decremented

Return to calling program

Rotating a Multiple Precision Value

A binary number can be multiplied times two by shifting each

bit one position to the left, and loading the LSB with a “0.” Con¬

versely, by shifting each bit of a binary number to the right one bit

position, and setting the MSB to “0,” the binary value is divided

by two. When rotating a multiple precision number, it is necessary

to carry the bit shifted out of a byte over to the next byte. This is

accomplished by the rotate instructions, which include the carry flag

as part of the byte when rotating either left or right. For a rotate

left operation, the MSB shifted out of the lower order byte will be

shifted into the LSB of the next byte.

The first routine listed here is labeled the ROTATL subroutine.

It uses the constant VALUE set to the first location^ of the page on

which the data to be rotated resides. The X index register must be

initialized to the location of the least significant byte of the data.

The number of bytes to be rotated must be stored in the Y index

register. The initial operation is to clear the carry flag. This creates

the “0” bit, which must be loaded into the LSB of the multiple

precision value. If it is desired to check for a “1” rotated out of the

MSB of the value, the carry flag will be properly conditioned upon

returning. Also, the X index register will point to the most signifi¬

cant byte.

ROTATL CLC

ROTL ROL VALUE,X

DEY

BNE MORRTL

RTS

MORRTL INX

JMP ROTL

Clear the carry

Rotate the byte left

Decrement the byte counter

Not zero, continue rotate

Done, return

Advance memory pointer

Continue to rotate left

The ROTATR sub' outine rotates the designated multiple pre-

General Purpose Routines 55

cision value to the right. The X index register must indicate the lo¬

cation of the most significant byte of the value when calling this

routine, since it works from the most significant byte down to the

least significant byte. Here again, VALUE is set to the zero loca¬

tion of the page on which the data resides. The Y index register must

be set to the number of bytes in the multiple precision value. The

carry flag is cleared initially to provide the “0” to be shifted into the

MSB of the value. If it is desired to rotate a “1” into the MSB

of the most significant byte, the carry flag may be set and this rou¬

tine may be entered at the second entry point, labeled ROTR.

ROTATR CLC

ROTR ROR VALUE.X

DEY

BNE MORRTR

RTS

MORRTR DEX

JMP ROTR

Clear the carry

Rotate the byte right

Decrement the byte counter

Not zero, continue rotate

Done, return

Decrement memory pointer

Continue rotate right

Complementing a Multiple Precision Number

The complement of a binary value is performed by changing

each bit to the opposite condition of its current state. If a bit is a

“1,” it is changed to a “0”; if a bit is a “0,” it is changed to a “1.”

This type of complement is often referred to as the one’s comple¬

ment of a binary number. The one’s complement is used to comple¬

ment data received from an input device if it is in the opposite state

of that required by the program. The complement of the inputted

data may be derived by a simple EOR #$FF instruction just after

reading in the data.

Another form of binary complement is the two’s complement

which may be formed by subtracting the binary number from zero.

The two’s complement is generally used when a negative value of a

binary number is desired. Or, it may be used to form the negative

of a subtrahend value that may be added to the minuend. This sub¬

tracts the subtrahend from the minuend. The two’s complement

of a single byte may be achieved by complementing and then incre¬

menting the byte.

The following routine forms the two’s complement of a multi¬

ple precision binary number stored in the memory. When this routine

is called, the X index register must indicate the least significant byte

of the multiple precision value to be complemented. The Y index

register must contain the number of bytes defined for the value.

56 Chapter 3

VALUE is again assumed to point to the first memory location of

the page on which the number to be complemented resides. When

the routine returns, the X index register will point to the most

significant byte +1.

Both two’s-complement and one’s-complement operations

are executed in this routine. First, the least significant byte is two’s

complemented. This is accomplished by exclusive ORing $FF with

the byte and incrementing the result. If the result leaves the byte

equal to zero, the next byte also will be two’s complemented. When

a byte is left with a nonzero result, the remainder of the number is

one’s complemented.

COMPLM SEC

COMPL LDA #$FF

EOR VALUE,X

ADC #$00

STA VALUE.X

INX

DEY

BNECOMPL

RTS

Set carry for two's complement

Load $FF for complement operation

Complement byte

If carry = one, two's complement

Store byte in memory

Advance memory pointer

Decrement byte counter

Not zero, continue

Return to calling program

Multiple Precision Addition and Subtraction

Addition and subtraction are common functions often required

when dealing with multiple precision values that represent numeric

data. Both operations work from the least significant byte up to the

most significant byte, using the carry flag as the link between bytes.

When the addition of two bytes results in an overflow from the

MSB, the carry flag is set and is included in the addition of the

LSB’s of the next pair of bytes. Conversely, if the subtraction of a

pair of bytes results in a borrow required from the next byte of the

minuend, the carry flag is reset. This causes a borrow from the LSB

of the next byte of the subtraction. These routines can operate on

binary numbers or decimal numbers, depending on the setting of

the decimal mode flag.

The addition routine is labeled ADDER. This routine adds the

multiple precision value indicated by the pointer in TOPNT to the

value indicated by FMPNT. The result of the addition is stored in

place of the value indicated by TOPNT. FMPNT and TOPNT must

be set to the least significant byte of the multiple precision numbers.

The X index register must be set to the binary count of the number

of bytes in the multiple precision values. The carry flag will indicate

General Purpose Routines 57

whether an overflow from the MSB of the most significant byte has

occurred upon returning from this routine. The calling routine may

have to check this flag since an overflow would usually indicate an

error condition. At the completion of this routine, the index register

will be pointing to the most significant byte plus one of the result.

ADDER CLC

ADDR1 LDA (TOPNT),Y

ADC (FMPNT),Y

STA (TOPNT),Y

INY

DEX

BNE ADDR1

RTS

Clear carry flag

Fetch byte from one value

Add to byte of other value

Store result

Increment index pointer

Decrement counter

Not zero, continue addition

Return

The subtraction routine, labeled SUBBER, subtracts two mul¬

tiple precision values stored in the memory. TOPNT must indicate

the least significant byte of the minuend. FMPNT must indicate the

least significant byte of the subtrahend. The X index register must

contain the binary count of the number of bytes in each multiple

precision value. The result of the subtraction is stored in place of

the minuend. The carry flag will be reset if a borrow was required

by the subtraction of the MSB of the most significant byte.

SUBBER SEC

SUBB1 LDA (TOPNT),Y

SBC (FMPNT),Y

STA (TOPNT),Y

INY

DEX

BNESUBB1

RTS

Set carry flag

Fetch byte from minuend

Subtract byte from subtrahend

Store result over minuend

Increment index pointer

Decrement byte counter

Not zero, continue subtraction

Return

Comparing Two Multiple Precision Values

It is often desired to determine whether one number is larger

or smaller in magnitude than another. This fact may change the man¬

ner in which a program is to deal with two numbers. For example,

when subtracting two numbers, it is usually necessary to subtract

the larger from the smaller and, if indicated, change the sign of the

result. The following routine may be used to compare two multi¬

ple precision numbers stored in memory.

The COMPARE routine compares the multiple precision value

58 Chapter 3

indicated by the pointer in FMPNT against the value indicated by

the pointer in TOPNT. These pointers initially must be set to the

least significant byte minus one of the respective values to be com¬

pared. The Y index register must be set to the binary count of the

number of bytes to be compared. Upon returning, the carry and zero

flags will be set to indicate the outcome of the comparison. The call¬

ing program must check these flags and enter the proper routine as

a result of the comparison. This is accomplished by using the BCC,

BCS or BEQ conditional branch instructions. The index register will

equal zero if the two values are equal, or the location of the byte

at which the comparison faded.

CMPLOP

CMPMEM

CMPRET

DEY

BEQ CMPRET

LDA (FMPNT),Y

CMP (TOPNT),Y

BEQ CMPLOP

RTS

Decrement pointer

If zero, both values equal**

Fetch compare data

Compare to indicated data

If equal, continue comparing

Return with C and Z flags conditioned

A similar routine may be used to compare alphabetic informa¬

tion such as: (1) one name against another, (2) duplication, (3) if

the character set is well ordered (as is the case with the ASCII code),

to place the names in alphabetical order.

To compare two character strings, first set FMPNT and TOPNT

to the first character of each string. The Y index register should be

initialized to zero and the X index register to the number of char¬

acters to be compared. At the instruction marked by **, replace it

with INY and insert DEX immediately after it. This setup assumes

the first character of each string is stored in the lowest address.

The following listing illustrates a possible instruction sequence

for calling the CPRMEM routine, and checking the results of the

compare operation for one of the three possible conditions.

LDA #TABL1—1

STA FMPNT

LDA #TABL1H

STA FMPNT+1

LDA #TABL2—1

STA TOPNT

LDA #TABL2H

STA TOPNT +1

Set up pointer to value to be

Compared against

Set up page portion of pointer

Set up pointer to value to be compared

to

Set up page portion of pointer

General Purpose Routines 59

LDY #COUNT Set byte count in Y

JSR CMPMEM Compare FMPNT

BEQ EQUAL TABL1 = TABL2

BCCGRTR TABL1 > TABL2

TABL 1 < TABL2, begin processing

For less than

Checking for Value within Limits

Another type of comparison often required is to check whether

the value of a byte of data falls within expected limits. One frequent

application is to check the code received from an input device. For

example, a calculator program may check each character input for a

legal digit code when it expects to be receiving only digital informa¬

tion. Or, a control program may check inputs from a sensing device

to determine whether a parameter is within allowable limits. When

the data being checked falls within sequential limits (limits defined

by an upper and lower bound), the following type of routine may

be used.

This routine compares a byte of data against the lower limit

minus one and the upper limit of the boundaries in which the data

byte must fall. The reason for checking the lower limit minus one is

to allow the condition of the carry flag, upon returning, to indicate

whether the byte falls within the designated limits. When the routine

returns to the calling program with the carry set, the byte is not

within the limits. When this routine is called, the data byte to be

checked must be in the accumulator.

The routine listed below checks the ASCII code for the digits

0 through 9. ($B0 to $B9). To check for the ASCII code for the

alphabetic characters A through Z, the immediate portion of the

compare instructions would simply be changed to $C0 (ASCII A

minus 1) and $DA (ASCII D). This routine begins at the label

LMTCHK.

LMTCHK CMP #$AF Is byte less than ASCII zero?

BCS LMTRET Yes, not in limits, return with C = 1

CMP #$B9 Is data byte greater than ASCII nine?

BCS CRCLR If not, reset C to zero before returning

SEC If so, return with C = 1

LMTRET RTS Return to calling program

CRCLR CLC Within limits, return with C = zero

RTS Return

60 Chapter 3

Programmed Time Delays

The computer is designed to execute a program stored in its

memory as rapidly as possible. It does not hesitate between instruc¬

tions to contemplate the next operation it should perform. However,

there are certain types of programs that require a hesitation, or de¬

lay, between one operation and the next. One program is a display

program that outputs a frame of characters or pattern to a video de¬

vice, and then must wait a specific amount of time before out-

putting the next frame or pattern. Or, a delay may be required after

outputting a control command, which turns on a motor driven de¬

vice, to allow the motor to get up to speed before a data transfer

may be initiated. A programmed delay also may be required be¬

tween outputting of each bit of a serial data pattern to allow the

program to control the data transmission rate. By inserting program

time-delay sequences, one may affect these real time program appli¬

cations.

Each instruction requires a specific number of cycles and

therefore needs a specific amount of time to execute. A delay may

be created by knowing the exact time for each instruction and pro¬

gramming a group of instructions whose total execution time is close

to the desired delay. (For the 6502 with a clock frequency of one

Megahertz, one should be able to program a delay within two micro¬

seconds of the required time.) Depending on the type of memory

used in one’s system, the actual timing of the instructions may

vary from those presented in Appendix A. Before getting into the

time-delay programming, it is necessary to understand the differences

between various types of memories so that one will be able to dis¬

cern the actual timing for one’s own particular system.

This description is presented in general terms. It is not intend¬

ed to present specific details of memory accessing. Refer to the

manual supplied by the particular hardware manufacturer for de¬

tails on memory accessing.

When a computer must access a memory location in order to

read an instruction, obtain data, or write data into it, the address

of the memory location is first placed on the memory address bus.

Then, the memory must be given time to select the memory loca¬

tion. The contents of the location then may be read from the data

bus by the CPU, or the contents of the data bus may be written into

the memory location. The length of time required to access a memo¬

ry location for reading or writing is referred to as the memory

speed. The delay required between sending the address and accessing

the memory location may vary, depending on this speed. If the nor-

General Purpose Routines 61

mal delay in the CPU instruction time is sufficient for the memory

to react to the address selection, the data may be read or written

in the following cycle. However, if the memory cannot react fast

enough, one or more wait cycles must be executed before reading

from, or writing to the memory location.

A wait cycle is a “do nothing state.” The hardware slows down

to allow time to access the slower memory. A single wait cycle for

the 6502 takes approximately one microsecond. (It varies with dif¬

ferent clock frequencies.) The number of wait cycles used by a

specific microcomputer is detailed by the hardware manual. Know¬

ing the number of wait cycles allows one to program exact delays

to a system that uses ROM or static RAM.

Dynamic RAM memory makes it difficult to calculate the in¬

struction timing accurately. The reason for this is that the dynamic

RAM memory requires a refresh cycle at least once every one or two

milliseconds. (This time may vary for different types of dynamic

memory.) A refresh cycle means that within the allotted time, each

memory address must be accessed with a read cycle in order for the

memory to maintain its current contents. This refresh process may

interrupt the timing of the CPU instructions, since the refresh cir¬

cuitry may be accessing a memory location at the same time the

CPU may require a memory access. In this case, the CPU would

have to wait for the refresh read to complete, thereby extending

the time required for the instruction to execute. It is possible only

to calculate a minimum time delay for a given instruction sequence,

and not the maximum, when using dynamic RAM memory.

One feature of the 6502 which affects its timing is its pipe¬

lining capability. Pipelining means that the CPU can internally exe¬

cute a portion of an instruction while fetching the next byte from

the memory. This overlapping has the effect of shorting the execu¬

tion time of an instruction. The number of memory accesses governs

the actual number of cycles an instruction requires.

The use of ROM or static RAM memory coupled with an

understanding of pipelining allows one to determine the exact tim¬

ing for each instruction. However, this is detailed in Appendix A.

Each instruction is given as well as the number of actual cycles

required for execution. By multiplying the number of cycle times,

the timing for all instructions can be calculated. If one or more

wait states are added, this additional time must be added to each

memory access executed per instruction.

With a knowledge of the timing necessary for the instructions,

one may begin to program time delays of specific duration. In program-

62 Chapter 3

ming a delay, strive to use as few instructions as possible. Also, as¬

sure that the instructions used in the delay do not interfere with

the operation of the main program. Unless stated otherwise, the

times given below are those listed in Appendix A, and assume no

wait cycles have been added to the memory access time.

For very short delays (2 to 20 microseconds), several instruc¬

tions that fall in the direct sequence of the program may be used.

Suppose a delay of 6 microseconds is required at a certain point.

A no-operation instruction requires 2 microseconds to execute, so

the desired 6-microsecond delay may be derived by using three

NOP instructions at the point in the program requiring the de¬

lay.

Another method used to create short delays is to insert a jump-

to-subroutine instruction that jumps to a location that contains a

return instruction. This sequence would delay 6 microseconds for

the jump-to-subroutine instruction plus 6 microseconds for the

return, for a total of 12 microseconds. To conserve memory, the

return instruction may be part of an existing routine. It need not

be set up as a return specifically for this delay.

For longer delays, the method of inserting the delay instruc¬

tions in sequence with the main program would begin to waste a

great deal of memory. An alternative is to use a subroutine that

will form a timing loop to delay the desired amount of time. The

following routine allows control of the delay time be selection of an

initial value for the Y index register. The delay is created by forming

a program loop that decrements the Y index register until it reaches

zero, and then returns. The larger the initial value of the Y index

register, the longer the delay. (The exception is that the initial value

of zero will create the longest delay.)

DELAY DEY Decrement delay cntr (2 £sec)

BNE DELAY If cntr ^ zero, loop back (3 psec)

RTS Counter = zero, return (6 fxsec)

The amount of time used by this routine is calculated by add¬

ing the time required for each instruction every time it is executed.

The execution time for each instruction is given in parenthesis after

each comment. The following formula may be used to calculate

the delay time for a given value of Y. If Y is initially zero, the

value of 256 must be substituted in this equation.

LDYJSRDEYBNE RTS

DELAY TIME = 2 + 6 + '•» - 3) * (Y) + 6

General Purpose Routines 63

The time required for the instruction LDY and JSR, which

sets up the Y index register to the required constant and then calls

the DELAY subroutine, must be included in the calculation. The

time given for the LDY instruction assumes the immediate address¬

ing mode. The time required for setting up the Y index register may

be excluded if it is set up before the time delay begins.

The time delay that can be created by this program loop runs

in increments of five from a minimum of 19 microseconds for the

Y index register equal to one, to a maximum of 1294 microseconds

for the Y index register equal to zero. This incremental factor is

controlled by the loop DEY,BNE. Should it be desired to expand

the increment, and thereby extend the maximum delay possible,

additional instructions may be added. For example, if the incre¬

mental factor is desired to be 8 microseconds rather than 6, a NOP

instruction can be inserted between the DEY and BNE instruction.

This will add 2 microseconds to the loop without altering the basic

operation of the routine.

Sometimes the actual delay required by a program does not

equal one of the incremental times generated by the delay loop.

The delay may be adjusted by setting the Y index register to the

closest incremental time without exceeding the time desired. Then,

adding one or two instructions to the calling sequence brings the

total delay within 1 or 2 microseconds. As an example, suppose

a delay of 428 microseconds is needed. Selecting a value of 82 for

the Y index register will provide a delay of 424 microseconds. The

additional 4 microseconds can be added by two NOP instructions

in the calling routine before the JSR DELAY instruction. These ad¬

ditional instructions will add the necessary 4 microseconds to the

total delay.
Substantially longer timing loops can be derived by nesting

delay loops. Using both index registers one can set up a delay loop

within a delay loop. Then, when one loop goes through a complete

cycle, the second loop will be decremented once. This multiplies

the time required for the inside loop by the initial value (minus one)

of the index register in the outside loop. The following routine,

which includes the calling sequence, illustrates this method of

nesting delay loops. The Y index register is used for the outside

loop. The greater the initial value of the registers, the longer the

delay, with the exception of zero, which creates the longest delay.

LDY #$YY Set initial inside loop (2 nsec)

64 Chapter 3

LDX #$XX

JSR DLYLOP
Set initial outside loop (2psec)

Call delay loop routine (6/isec)

DLYLOP DEX Decrement outside loop (2 Msec)

BNE DLYLP1 If =A zero, branch to inside loop

(3 psec)

RTS If = zero, return, delay over (6 psec)

DLYLP1 DEY Decrement inside loop (2 Asec)

BEQ DLYLOP If = zero, branch to outside loop

(3 Asec)

JMP DLYLP1 If zero, continue inside loop

(3 Asec)

Calculation of the time amount required for execution can be

made from the formula given. This formula is shown in two forms.

One indicates the instruction sequence that is executed, and the

second provides a condensed version for use in making the actual

calculation.

LDY LDX JSR

DELAY TIME = 2 + 2 + 6

DEX BNE DEY BEQ JMP DEY BEQ

[2 + 3 + ((INIT Y) -1)* (2 + 3 + 3) + 2 + 3)] +

DEX BNE DECB BEQ JMP DECB BEQ

[((INIT X)-2)* (2 + 3 + (255* (2 + 3 + 3))) + 2 + 3] +

DEX BNE RTS

DELAY TIME = (((INIT X) -2)* 2045) + (((INIT Y) -1)* 8) + 36

The first formula has two sections in brackets. The first bracket¬

ed section indicates the time for the first pass through the inside

loop. The second bracketed section indicates the time for all succes¬

sive passes. The reason for the separation of these times is that on

the first pass through the inside loop, the value of the Y index re¬

gister will be as initialized by the calling program. After the first

pass, the Y index register will always be zero when the inside loop

is entered. This formula is only valid for initial values of the X in¬

dex register from two to 256. (In actual operation of the subrou-

General Purpose Routines 65

tine, the index registers are initialized to zero when 256 is used in

the formula.) If the X index register is initially set to one, the exe¬

cution time is simply the sum of the times not enclosed in the

brackets, which is 21 microseconds. For values of index register X

from two to 256, the time delay can be set within the limits of 36

to 521,506 microseconds in intervals of 8 microseconds. If finer

selection is required, the technique discussed previously of inserting

instructions in the calling sequence may be used.

Random Number Generators

The purpose of a random number generator is to provide a non¬

repeating series of random numbers. These random numbers may be

applied to several different programs. When a game (such as dice or

blackjack) is programmed, the program must provide a random as¬

sortment of numbers for the roll of the dice or a draw of a card.

This is accomplished by using some form of a random-number gen¬

erator routine. Another application for these generators it to create

random patterns for testing devices such as a computer’s memory,

which may be sensitive to various patterns.

Two methods of programming random number generators will

be presented. The first is very simple and is used when the numbers

are required in response to an input from the program operator.

The second method uses a routine that will produce a new random

number each time it is called.

With many game programs, a random number is required in

response to an input received from the operator. The random num¬

ber may be derived by constantly incrementing a memory location

until the input is received. This may be accomplished by forming

a program loop that increments the register and then checks the

status of the input device for an input from the operator. If the

status indicates there is no input, the routine will loop back to

increment the memory location again. This program loop should be

short, probably in the range of 30 to 50 microseconds. It would

be impossible for a human to select the precise time to input a

character to stop the loop when a specific value is present. For

programs that require random numbers following an operator input,

the following routine may be used to generate random numbers. The

CHKINP in this program is assumed to check the input device status

and return with the sign flag set to “1” if a character has been

entered on the keyboard, or set to “0” if a character has not been

entered. When the character has been received, the value in RNDM

may be used as the random number for the program.

66 Chapter 3

RNDMLP INC RNDM Increment random number

JSR CHKINP Check for character entered

BPL RNDMLP Not entered

Use RNDM for random number

When a program requires random numbers at various times

throughout its operation (not necessarily after an input), the fol¬

lowing routine may be used. It generates a pseudo-random data

pattern of eight-bit bytes. This random-number generator is not a

true generator because, depending on its initial values, it will create

a repetitive pattern every 1000 to 4000 numbers. However, the pro¬

gram that uses it can make the data “more random” by using a trick

that will be described shortly.

This random-number generator uses two consecutive memory

locations to save the random number and an incrementing addend.

Each time the routine is called, the random number created last

is used in generating the next random number. It is operated by the

series of instructions in this routine, and then the addend is added

to it to create the new random number. At the same time, the ad¬

dend will be incremented either once or twice, depending on the

result of the addition of the random number to the addend. The

new random number will be saved in the memory and returned to

the calling program in the accumulator.

The trick referred to previously is to have the calling program

alter the contents of the addend at a point in the program that is

occasionally executed. This will increase the overall random pattern

generated. For example, there may be a subroutine called once for

every ten or fifteen times the random-number generator is called.

An instruction sequence should be added to this subroutine to alter

the addend. It may be altered by incrementing once, or adding five,

or resetting the addend to zero. No matter what method is used to

change the value of the addend, the result will be that of altering

the data pattern generated. The instruction sequence that follows

the routine below may be used by the calling program to alter the

addend by adding five to it.

RANDOM

LDARNDM Fetch random number

ROL RNDM Perform a series of

EOR RNDM Operations on it to

ROR RNDM Create a new random number

General Purpose Routines 67

INC RNDM+1

ADC RNDM+1

BVC SKIP

INC RNDM+1

SKIP LDA RNDM

RTS

LDA RNDM+1

ADC #$5

STA RNDM+1

Increment the addend

Add the addend

If V = 0, increment addend once

Otherwise, increment it twice

Store new random number

Return to calling program

Sequence to add five to addend

Fetch random number addend

Add five to addend

Save new addend

Continue processing

Checking Parity: An Error Detection Technique

An error may occur when data is transmitted from one device

to another. Perhaps it’s because of an intermittent problem with the

transmitting or receiving equipment. Or, the error may be introduced

by the communication channel (extraneous noise on a telephone

line). Regardless of the cause, a technique to test for such errors is

often desirable.

Checking for parity is a widely used method of error detection.

It is used frequently when data is formed into small groups, eight

bits, for example. Seven of the bits contain the data to be com¬

municated. The eighth bit is used as the parity bit. The number of

“one” bits among the seven determines the condition of the eighth.

Odd parity simply means that of the eight bits, there must be an

odd number of ones. If the seven data bits contain an even number,

say two ones, the parity bit would be set to one. Likewise, if there

were three ones among the seven, the parity bit would be set to

zero. The objective in even parity is to manipulate the parity bit

so that the total number of ones comes out even. Thus, the parity

bit is always set to one or zero in order to make the total of ones

equal to an even number in the case of even parity, and to an odd

number for odd parity. The following example illustrates this

point.

The following routine checks the parity of an eight-bit group.

It may be used for determining either the condition of the parity

bit for outputting data, or testing the parity of data received. When

calling this routine, the data to be checked must be in the accumula¬

tor. The parity is checked by rotating each bit into the carry and in¬

crementing a parity count for each bit found to be one. The parity

count is stored in a separate memory location referred to by the

label PTYCNT. After each bit is tested, the least significant bit of

68 Chapter 3

PARITY

EVEN

ODD

PARITY
BIT DATA

10 0 10 10 1

0 0 0 1 0 1 0 1

the parity count is loaded into the C flag. When the routine returns,

the accumulator will maintain its initial contents. The C flag will

be set to one if the data has odd parity, or reset to zero if the data

has even parity. If this routine is used to determine the setting of the

parity bit for outputting the data, the parity bit should be zero when

calling this routine, and then conditioned to create the desired pari¬

ty by checking the C flag upon returning. The instruction sequence

that follows this listing illustrates a method of setting up data to be

transmitted with even parity. The MSB is assumed to be the parity

bit. For checking the parity of data received, the data should be

loaded into the accumulator before calling this routine. Upon re¬

turning, the C flag may be tested for odd or even parity.

PARITY

LOOP

ZEROBT

LDY #$08

CLRPTYCNT

ROL A

BCC ZEROBT

INC PTYCNT

DEY

BNE LOOP

ROL A

ROR PTYCNT

RTS

Set bit counter

Clear parity counter

Rotate bit into carry

Bit = zero, don't increment parity count

Bit = one, add one to parity counter

Decrement bit counter

=# zero, continue parity check

Rotate once more to restore data

Rotate LSB of parity cntr into carry

Ret, C=1 odd parity, C=0 even parity

EVEN

JSR PAR ITY Check parity of data to be transmitted

BCC EVEN Even parity, output data as is

ORA #$80 Odd parity, set parity bit to make it even

... Proceed to output data

General Purpose Routines 69

Chapter 4

Conversion Routines

I he real power provided by a computer is exemplified by its capa¬

bility to operate with unlimited variations of character codes by sim¬

ply changing a program. It can accept information in one form,

convert it to another for processing, and then output it in the same

format as initially received. Or, the output may be converted once

again to an entirely different format. One may be aware of various

other devices that perform such conversions. However, the input

and output codes are most likely fixed, allowing no variation. A

computer may be programmed to utilize a variety of codes for in¬

put, output and processing.

The need for code conversion and the type of conversion re¬

quired is governed by two factors. The code used by the peripheral

devices for transmitting and receiving data is one factor. If the input

device transmits one code, and the output device must receive a

different one, conversion from one code to the other is necessary.

The format required by the program to process the data is the other

factor.

Standard and Special Character Sets

The codes used by different I/O devices to transmit and receive

data can vary greatly. Some codes are recognized as standard char¬

acter sets which many peripherals utilize. Other codes may be the

result of a hardware design which is most economical. This would

create a special purpose code for which software conversion would

be necessary. Several of the standard codes used to represent l-

phanumeric information are ASCII, BAUDOT, EBCDIC and

HOLLERITH. ASCII and BAUDOT are commonly used on key¬

board and printer or display devices such as CRT terminals and tele¬

typewriter machines. EBCDIC generally is used for mass storage

Conversion Routines 71

devices such as magnetic tape units, and HOLLERITH is normally

associated with card reader/punch devices. The special purpose

codes may be derived when interfacing a calculator-style keyboard

in the configuration of a matrix.

The code used by a program to process the information may

be the same code as received. Or, it may require conversion to a

format more convenient for the computer. When a program deals

with the manipulation of text, such as an editor program, the char¬

acter code received by the program is often used for storing the text

information. As each character is input, the code is stored as the

representation to be used by the program for that character. For

programs that deal with numeric data, for arithmetic operations,

or designating digital information, conversion from the character

code received to the binary or decimal equivalent may be required.

A calculator program might receive the data as ASCII encoded deci¬

mal digits. This must be converted to the binary equivalent for pro¬

cessing and then back to ASCII digits to output the answer. A

monitor program may require the conversion of the coded octal or

hexadecimal input to the binary equivalent for defining memory

addresses and their contents.

How Different Are ASCII and BAUDOT?

There are a number of standard codes used to transfer data

from a peripheral device to a computer, and vice versa. For the fol¬

lowing discussion on conversion from one code to another, the

ASCII and BAUDOT codes will be used. Their contrasting formats

aid in describing various methods of code conversion. Therefore,

to preface the conversion routines, a brief discussion of each code

is presented.

ASCII is a seven-bit code that represents the entire alpha¬

numeric character set plus punctuation marks and a number of non¬

printing control characters. An eighth bit is often added to this code.

This bit can be used to provide parity for error checking or it can be

set to a constant “1” or “0” condition for all characters. The ASCII

codes for the printing characters and several of the control charac¬

ters are presented in both octal and hexadecimal notation by Ap¬

pendix D. The code used throughout this book wherever ASCII is

discussed assumes the eighth bit is always set to “1.”

As the reader may notice by examining Appendix D, the ASCII

code is well-ordered. The letters of the alphabet are represented in

sequential order from $C1 for A to $DA for Z. The numbers are

similarly ordered from $B0 to $B9 for numbers zero through nine.

72 Chapter 4

This coding for the numbers allows easy conversion from ASCII

to binary-coded decimal by simply dropping the four most signi¬

ficant bits of the ASCII code. The ASCII code convenience sharply

contrasts the BAUDOT code discussed next.

BAUDOT is a five-bit code used to represent the alphanumeric

character set plus several punctuation marks and control characters.

Appendix E contains the hexadecimal representation. It assumes the

three most significant bits are all “0.” The reader may question how

five bits can be used to represent more than 32 characters. The an¬

swer is quite simple. Each of the letters of the alphabet shares its

code with a numeral or punctuation mark. Two separate control

characters are used to determine which of the two possible charac¬

ters is being transmitted. One indicates the letters and the other

indicates figures (numerals or punctuation marks). The proper mode

(letters or figures) must be set by outputting the corresponding con¬

trol character before the output of one or more of the characters

of that mode. For example, if a sentence consisting entirely of let¬

ters were to be typed on a BAUDOT keyboard, the letters control

character would be entered first. The letters that make up the words

of the sentence would follow. Then, to end the sentence, the figures

control character would be entered followed by the period, which

shares its code with the letter M. The codes for space, carriage re¬

turn, line feed, and null characters are common to both modes.

Examination of the BAUDOT code in Appendix E reveals the

obvious scrambled pattern of character codes. There is no set pat¬

tern that would lend itself to ease of recognition of the BAUDOT

letters as there is with the ASCII code. And, conversion of the

BAUDOT code for numerals to the equivalent BCD values is not as

trivial as conversion of the ASCII digits described previously.

Making BAUDOT More Workable

Programs that operate with the BAUDOT code must have some

means of differentiating between the two characters a BAUDOT

code may represent. This can be accomplished by defining one of

the three most significant bits as a mode designator. One of these

three bits would be set to “0” for the letter mode, and to “1” for

the figure mode. For this discussion, bit five will be so designated.

The following pair of routines may be used to encode and decode

the BAUDOT characters according to this method for separating the

letters from the figures. The first routine is used to encode the

BAUDOT characters as they are input. There are two entry points

for this routine. The first, labeled BAUDIN, is used when the input

Conversion Routines 73

of characters are to be initialized. The initialization is done by out-
putting a letters control character to the printer device before call¬
ing the input routine to receive a character from the keyboard. A
memory location is set up to indicate the current mode of the
printer device. This memory location, labeled CNTRL, is conditioned
by the receipt of the letters or figures control characters. It is used to
encode the characters as they are received. The other entry point,
at label INBAUD, is used after the initialization has been completed.
This entry point assumes that CNTRL is properly conditioned.
The routine returns to the calling program with the character con¬
tained in the accumulator. The listing and flow chart for this routine
are now presented.

BAUDIN LDA #$1F Load letters code into accumulator

JSR OUTPUT Call routine to send BAUDOT charac-

JSR LETCOD Initialize CNTRL to letters code

74 Chapter 4

INBAUD JSR INPUT

CMP #$1 B

BEQ FIGCOD

CMP #$1 F

BEQ LETCOD

CLC

ADCCNTRL

RTS

FIGCOD LDY #$20

STY CNTRL

RTS

LETCOD LDY #$00

STY CNTRL

RTS

Now accept BAUDOT char from keyboard

See if figures code

Yes, set CNTRL to $20

See if letters code

Yes, set CNTRL to $00

Clear carry for addition

Add condition of sixth bit

Return to process data

Set sixth bit of CNTRL

By loading it with $20

Clear sixth bit of CNTR L

By loading it with $00

Two subroutines are called out in this listing to perform the

input and output operations with the BAUDOT devices. The INPUT

routine inputs a character from the BAUDOT keyboard, and returns

to this routine with that character in the accumulator. The OUTPUT

routine must transmit the character contained in the accumulator

to the BAUDOT output device. The reader may refer to Chapter

Seven for methods of implementing these INPUT and OUTPUT rou¬

tines.

Another routine may be used to decode BAUDOT characters

before outputting. It also has two entry points. The BAUDOT entry

point is called when the initial character of the string of characters

is to be output. This entry point sets up the output device and the

CNTRL memory location to the letters mode before outputting the

character. After the first character, the subsequent characters are

output by using entry point OTBAUD. OTBAUD first checks the

character to be output for a change from the current mode. If

different, the proper mode control character will be output before

the character. The character to be output must be stored in the Y

index register before calling either of these entry points. The

OUTPUT routine must function in the same manner as previously

described.

BAUDOT LDA #$1F

JSR OUTPUT

LDA #$00

STA CNTRL

OTBAUD TYA

Load letters code into accumulator

Call routine to send BAUDOT code

Reset CNTRL to letters code

Fetch character to output

Conversion Routines 75

76 Chapter 4

LTCHAR LDACNTRL

BEQOUTCOD

LDA #$00

STA CNTRL

JMP LASFIG

See if last was letter

Yes, output character

Reset CNTRL to letter mode

By using routine above

From ASCII to BAUDOT and Back

Using the ASCII and BAUDOT codes as the sample codes, two

methods of code conversion will now be presented. The first method

uses a look-up table. The table consists of both the ASCII and

BAUDOT codes for each character of the character sets. The entries

in the table are arranged in pairs. The first entry of a pair contains

the ASCII code for the character, and the second entry contains

the BAUDOT code for the same character. In cases where there is

no equivalent BAUDOT code for a character, an appropriate sub¬

stitute may be inserted (for example, the BAUDOT code for the left

and right parenthesis, (and), may be substituted as the equivalent

code for the ASCII left and right brackets, [and]). The BAUDOT

null character is used when no suitable substitute is available.

The conversion program that uses this table begins at one end of

the table and compares the character code to be converted against

the entries in the table of the same character set. For conversion

from ASCII to BAUDOT, the ASCII code to be converted is com¬

pared to the ASCII entries in the table. When a match is found, the

BAUDOT entry of the pair is returned as the BAUDOT equivalent.

A similar process is used to convert BAUDOT to ASCII. A flow chart

indicates the logic used for conversion in either direction.

Address

0700 ASBDTB

0701 BDASTB

0702

0703

Hexa
Code
Cl ASCII A

03 BAUDOT A

C2 ASCII B

19 BAUDOTB

073C

073D

073E

073F

0740

0741

0742

FF ASCII RUBOUT

00 BAUDOT NULL

A0 ASCII SPACE

04 BAUDOT SPACE

A1 ASCII !

2D BAUDOT!

A2 ASCII "

Conversion Routines 77

0743 31 BAUDOT"

0744 A3 ASCII #

0745 34 BAUDOT #

075E

075F

0760

0761

0762

0763

0764

0765

0766

0767

AF

3D

A8

2F

A9

32

DB

2F

DD

37

ASCII /

BAUDOT/

ASCII (

BAUDOT(

ASCII)

BAUDOT)

ASCII [

BAUDOT ((substitute)

ASCII]

BAUDOT) (substitute)

077C

077D

077 E

077 F

BF ASCII?

39 BAUDOT ?

CO ASCII @

00 BAUDOT NULL (substi¬

tute)

One rule must be followed. When substitute characters are used,

the true code for a conversion must be located such that it will be

found before the substitute codes are encountered. For example,

the ASCII and BAUDOT pairs for left and right parenthesis must

be placed so that conversion from BAUDOT to ASCII will find

the ASCII code for left and right parenthesis, not left and right

brackets. This positioning is illustrated in the table.

Listings for conversion routines from ASCII to BAUDOT,

and vice versa, using the look-up table are now presented. The code

to be converted must be in the accumulator when the routine is

called. Also, the converted data is returned to the calling program

in the accumulator, resulting in a loss of the initial character.

ASBAUD LDX #$00

FASCII CMP ASBDTB,X

BEQFNDBDO

INX

INX

Initialize table pointer

Is character equal to table entry?

If match, do conversion

No match, advance pointer

To next ASCII code

78 Chapter 4

JMPFASCII ttContinue looking

FNDBDO LDA ASBDTB+1.X Fetch BAUDOT equivalent

RTS Return with code in accumulator

BAUDAS LDX #$00 Initialize table pointer

FBAUDO CMP BDASTB.X Is character equal to table entry?

BEQ FIMDASC If match, do conversion

INX No match, increment pointer

INX To next BAUDOT code

JMP FBAUDO ttContinue looking

FNDASC LDA BDASTB-1,X Fetch ASCII equivalent

RTS Return with code in accumulator

Watch for the Table’s End

Both of these routines assume that the code to be converted is

valid (one which is included in the table). If, for some reason, the

accumulator does not contain a valid code, the table will be over¬

shot. It is for this reason that a test for the end of the table should

Conversion Routines 79

be added. The following instruction sequence may be inserted in

place of the JMP instructions marked by the ft-

The immediate portion of the CPX instruction must be set

equal to the number of entries in the table. The value is $80. If the

end of the table is reached without a match, some method is needed

to inform the calling program of the error. One method, indicat¬

ed in this instruction sequence, might be to set the accumulator

equal to an invalid code.

CPX #$80

BNE FZZZZZ

LDA #$40

RTS

The Input Points the Way

Another code conversion is to form a pointer out of the char¬

acter code to be converted. This pointer is used to point to the cor¬

responding code in a conversion table. The conversion table con¬

tains a list of the conversion codes. Each entry is located at the

address in the table to which the code to be converted will point

when the pointer is formed.

In the following example, the conversion from ASCII to

BAUDOT is made by resetting the two most significant bits of the

ASCII code to zero forming a pointer to the corresponding BAUDOT

code in the conversion table. This method of setting up the pointer

means the table must begin at location 00 of the page on which it

resides. If it does not, a displacement constant must be added to the

pointer to properly adjust it. For this routine, it is assumed that

the table begins at location 00.

The conversion table uses 64 memory locations. Each one con¬

tains the BAUDOT codes for the characters in the order correspond¬

ing to the pointer formed by the equivalent ASCII code. As in the

previous look-up table, the use of substitute characters is required

at the locations in the table for which no BAUDOT equivalents

exist. Therefore, the first table entry is the null character, since an

@ does not exist in the BAUDOT code. The next entry is the

BAUDOT code for an A, then B, and so on.

Yield to Nonsequential Characters

A special condition arises when the characters such as car¬

riage return, line feed, and rubout are converted. In forming the

Compare X to the table count

Not end, continue search at

FASCII or FBAUDO

End of table, return with A = $40

80 Chapter 4

pointer for these characters, the carriage return forms a pointer to

the same location as the letter M and the line feed forms a pointer

to the same location as the “?.” Because only three characters of this

type need to be converted to BAUDOT, the conversion routine can

check for their individual codes before forming the pointer. This

eliminates the possibility of erroneous conversion. However, if the

codes being converted have ten or more codes that overlap in this

fashion, it would be more efficient (in memory usage) to expand the

conversion table from 64 entries to 128, and to zero only the MSB

of the ASCII code to form the pointer. This means that there will

be more substitute characters contained in the table. But, the ac¬

tual conversion routine will not have to check each code for special

characters.

The conversion routine shown below uses the pointer technique

to convert from ASCII to BAUDOT, with special consideration given

to the carriage return, line feed, and rubout characters. The X in¬

dex register is set up as the pointer. This routine assumes that the

ASCII code of the character to be converted is contained in the

accumulator when the routine is called. The converted code is re-

turned in the accumulator.

ASBDPT CMP #$8D Carriage return?

BEQCARRET Yes, fetch BAUDOT carriage return

CMP #$8A Line feed?

BEQ LINFED Yes, fetch BAUDOT line feed

CMP #$FF Rubout?

BEQ RUBOUT Yes, fetch BAUDOT null

AND #$3F Mask off 2 MSB of ASCII

TAX Form pointer to conversion table

LDA BDOTBL,X Fetch BAUDOT code from table

RTS Return with code in accumulator

CARRET LDA #$08 Set BAUDOT carriage return

RTS Return

LINFED LDA #$02 Set BAUDOT carriage return

RTS Return

RUBOUT LDA #$00 Set BAUDOT null

RTS Return

0400 BDOTBL 00 NULL FOR @

0401 03 A

0402 19 B

INSERT BAUDOT

CODES CTO Y FROM

Conversion Routines 81

FETCH BAUDOT
EQUIVALENT

0423

0424

0425

0426

0427

0428

0429

042A

042B

042C

042D

042 E

042 F

0430

0431

0432

0433

0434

0435

0436

0437

0438

0439

043A

043B

043C

043D

043E

043F

34 #

29 $

00 NULL FOR %

3A &

2B

2F (

32)

00 NULL FOR*

00 NULL FOR +

2C

23
3C

3D /

36 0

37 1

33 2

21 3

2A 4

30 5

35 6

27 7

26 8

38 9

2E

3E

00 NULL FOR <

00 NULL FOR =

00 NULL FOR >

39 ?

Things to Consider

There are several considerations when choosing which method

to use for code conversion. The first one is whether the conversion

will be made in both directions (from code A to code B for input,

and then code B back to code A for output), or only one direction.

If conversion is in one direction only, the pointer method would

shorten the table space required because only one code is included in

the table area. For conversion in both directions, either method re¬

sults in approximately the same memory requirement unless the

table for the pointer method has gaps of unused locations caused

by the code forming the pointer having a nonsequential bit pat¬

tern.

Conversion Routines 83

For programs requiring speed of conversion, the pointer method

is the choice. It provides the correct code with just a single pass

through the instruction sequence. The look-up table method will

remain in a loop until the correct code is found. This means that it

could take up to 60 or more times longer than the pointer method

to make a single conversion.

Numeric Conversion Is Quite Common

Another common type of conversion is the conversion of nu¬

meric data from one number base to another. The typical conver¬

sion is from decimal to binary, and binary to decimal. The reason

this conversion is common is because the decimal number system is

used in real world mathematical and numeric applications, while

the computer is generally designed to operate with binary numbers.

Thus, to allow the real world and the computer to operate in their

most desirable number systems, the conversion of decimal to bin-

nary, and vice versa, is required.

The first routine converts a number designated by decimal

digits in binary-coded decimal format to the equivalent triple pre¬

cision binary value. The decimal digits are contained in a table

labeled DECMAL, with one BCD digit stored per byte. The

table BINVAL consists of three consecutive memory locations used

to store the binary number. This triple precision representation

allows conversion of decimal values from 0 to 16, 777, 215. The

routine starts with the most significant decimal digit and works down

to the least significant one.

The major part of the conversion is done by a subroutine that

multiplies the current contents of BINVAL by ten, and then adds

one decimal digit to this new value. This subroutine, labeled TIMS10,

performs the multiplication by a series of rotate and addition opera¬

tions, as explained in the commented portion of the listing. Several

of the subroutines presented in Chapter Three are used by this

subroutine to aid in performing its function.

The data table that precedes this listing defines the locations

used by both the binary-to-decimal and decimal-to-binary conversion

routines for storing temporary data. This table indicates the number

of memory bytes to be assigned to each label. The *=*+ in the

mnemonic column is an assembler directive. It informs the assem¬

bler program of the number of bytes to be reserved for the indicated

FMPNT *=*+2 Temporary pointer storage

84 Chapter 4

TOPNT

DECTBL

DGTCNT

BINVAL

WRKARA

DECMAL

DECML8

TIMS10

=+2
=+1

=+1

=+3

=+3

=+7

=+1

PHA

LDX #BINVAL

STX FMPNT

LDA #WRKARA

STA TOPNT

LDA #$00

STA FMPNT+1

STA TOPNT+1

LDY #$03

JSR ROTATL

LDX #$03

JSR MOVIND

LDX #BINVAL

LDY #$03

JSR ROTATL

LDX #BINVAL

LDY #$03

JSR ROTATL

LDX #$03

JSR ADDER

PLA

LDX #WRKARA

STX FMPNT

STA BINVAL

LDA #$00

STA BINVAL+1

STA BINVAL+2

LDX #$03

JSR ADDER

RTS

Temporary pointer storage

Pointer to DECMAL table

Counter storage for BNTODC

Binary equivalent storage

Temporary working area

Decimal equivalent storage

M.S. digit of decimal equivalent

Save digit to be added

Set up pointer to BINVAL

Store in FMPNT

Set up pointer to WRKARA

Store in TOPNT

Set up page portion of pointers

Store in FMPNT

And TOPNT

Set precision counter

Multiply BINVAL X 2

Set precision counter

Move BINVAL X 2 to WRKARA

Set pointer to rotate BINVAL left

Set precision counter

Multiply (BINVAL X 2) X 2 (total =X4)

Set pointer to rotate BINVAL left

Set precision counter

Multiply BINVAL X 4 X 2 (total =X8)

Set precision counter

Add (BINVAL X 2) + (BINVAL X 8)

Fetch decimal digit from stack

Set pointer to WRKARA

Store pointer in FMPNT

Load BINVAL with decimal digit

Load remainder of BINVAL

With zero

Add BINVAL X 10 to new digit

Return with sum in BINVAL

Decimal to Binary Conversion

The DCTOBN routine fetches the BCD digits from the

DECMAL table for conversion to binary by the TIMS10 subroutine.

First, using the CLRMEM subroutine, the three words used for the

Conversion Routines 85

binary number storage are cleared. The routine then fetches one

decimal digit at a time, beginning with the most significant digit, and

calls the TIMS10 subroutine to add it to the binary value. Then the

conversion is complete and the routine returns to the calling pro¬

gram. Once again, this routine assumes the decimal digits are stored

in the DECMAL table in BCD format, one digit per byte, before

being called. This routine begins at the label DCTOBN.

DCTOBN CLD

LDX #BINVAL

STX TOPNT

LDX #$0

STX TOPNT+1

LDX #$03

JSR CLRMEM

LDX #DECML8

Clear decimal mode flag

Set pointer to BINVAL

Store in TOPNT

Set page portion of pointer to zero

Store in TOPNT

Set precision counter

Clear binary storage area

Set pointer to MS decimal digit

86 Chapter 4

STX DECTBL

DBCNVT LDA VALUE,X

JSR TIMS10

DEC DECTBL

LDX #DECMAL—1

CPX DECTBL

BNE DBCNVT

RTS

Store in temporary storage

Fetch decimal digit

Multiply BINVAL X 10 and add digit

Decrement decimal pointer

Is last decimal digit added?

To BINVAL?

No, continue process

Yes, return with sum in BINVAL

The TIMS10 subroutine may be inserted in place of the JSR

TIMS10 instruction, rather than being set up as a subroutine. This

has not been done to call attention to the portion of the routine that

performs the actual conversion. Also, this subroutine is used in Chap¬

ter Five to convert the decimal numbers directly to their binary

equivalents as they are entered by the operator.

Binary-To-Decimal Conversion

This routine performs the reverse function of the DCTOBN one.

It converts the triple precision binary value in BINVAL to the

equivalent eight-digit decimal number and is stored in the DECMAL

table. This routine is called BNTODC.

BNTODC uses a subroutine labeled DCEQVL to perform the

actual conversion of the binary value to decimal. The conversion

is made by subtraction of a binary constant equal to the decimal

power of ten. When this subroutine is called, the pointer TOPNT

must contain the address of the least significant byte of the power

of ten to the subtracted. The indicated power of ten is then sub¬

tracted from the binary value being converted. When the result of

the subtraction requires a borrow for the MSB (indicated by the

carry flag being reset after the subtraction), the current power of

ten is added back to the binary value to correct for the last sub¬

traction. The memory location labeled DECCNT contains the deci¬

mal value for the power of ten being subtracted when the subrou¬

tine returns.

As an example, suppose the binary value of one million can be

subtracted five times from the binary number before the borrow

occurs. The value of five would be the seventh digit of the decimal

equivalent.

This subroutine, like the TIMS10 subroutine in the previous

conversion routine, can be placed in line with the BNTODC instruc¬

tion sequence. By replacing the JSR DCEQVL instruction, one can

shorten the memory required as well as the execution time. It is

Conversion Routines 87

presented as a subroutine to bring out the significance of its opera¬

tion to this conversion routine.

DCEQVL LDA #$00

STA DGTCNT

LDX #BINVAL

STX TOPNT

STA TOPNT+1

LDX #$03

DCLOOP JSR SUBBER

LDX #$03

BCSINCRVL

JSR ADDER

RTS

INCRVL INC DGTCNT

JMP DCLOOP

Set up initial decimal counter

Store zero in DGTCNT

Set pointer to BINVAL

Store in TOPNT

Set page portion of TOPNT

Set precision counter

Subtract binary constant

Set precision counter

No borrow, increment decimal count

Add constant back to BINVAL

Return with digit in DECCNT

Increment decimal counter

Continue subtraction

The BNTODC routine sets up and keeps track of the current

power of ten being subtracted from the binary value by DCEQVL.

As each power of ten is subtracted and the value of the respective

decimal digit value is returned in DGTCNT, BNTODC stores the

decimal digit value in DECMAL. It then advances to the next lower

power of ten. When the decimal value of one has been subtracted,

the subroutine returns with the decimal equivalent stored in the

DECMAL table. It is important to note that the value in BINVAL

will be zero when the conversion is complete. The calling program

must save the original value of BINVAL if it is required after the

conversion.

The listing and flow chart are presented here. The assembler

directive .BYTE is used in this table. It informs an assembler pro¬

gram to assign one byte for each of the values which follow it.

BNTODC

BNDC

CLD

LDX #DECML8

STX DECTBL

LDX #<TENMIL

STX FMPNT

LDX #>TENMIL

STX FMPNT+1

JSR DCEQVL

LDX DECTBL

LDA DGTCNT

Clear decimal mode flag

Set pointer to decimal storage

Save pointer in DECTBL

Set pointer to binary constant

Store pointer in FMPNT

Set page portion of constant pointer

Store in FMPNT

Calculate decimal value of digit

Fetch pointer to decimal storage

Fetch digit just calculated

88 Chapter 4

STA VALUE,X

DEC DECTBL

LDA FMPNT

CLC

ADC #$03

STA FMPNT

CMP #<ONE+3

BNEBNDC

RTS

TENMIL .BYTE

ONEMIL .BYTE

HUNTHO .BYTE

TENTHO .BYTE

ONETHO .BYTE

HUNRED .BYTE

TEN .BYTE

ONE .BYTE

Store in decimal table

Back up table pointer

Fetch pointer to constant table

Clear carry for addition

Advance pointer to binary constants

Store in FMPNT

Is pointer at end of table?

No, continue conversion

Yes, return

$80,$96,$98 Ten million in binary

$40,$42,$0F One million in binary

$A0,$86,$01 One hundred thousand in

binary

$10,$27,$00 Ten thousand in binary

$E8,$03,$00 One thousand in binary

$64,$00,$00 One hundred in binary

$0A,$00,$00 Ten in binary

$01,$00,$00 One in binary

Conversion Routines

Chapter 5

Floating Point Routines

Complex mathematics is one of the key functions for which a com¬

puter is best suited. Those unfamiliar with the techniques involved

often consider such programs too complicated a task to undertake.

However, if one takes the time to break down the basic operations,

the overall algorithms are not quite so difficult.

The digital computer is capable of performing mathematical

operations with numbers of considerable magnitude. This is possible

by representing numbers as multiple precision values in which more

than one memory location is used to hold the numeric information.

However, by increasing the number of locations assigned to represent

a number, one could reach a point where the least significant bits

become too insignificant with respect to the total value. A more

practical representation would be to condense the size of the re¬

quired number of significant digits. The overall magnitude of the

value may be indicated by a power of the number base. This rep¬

resentation is referred to as floating point format.

Format of Floating Point Numbers

Floating point format allows one to define a number as a pro¬

duct of two values. The first value contains the significant digits of

the number. This value is referred to as the “mantissa.” It should

contain as many significant digits as needed to properly define its

relative value. The second value contains the power to which the

number base is to be raised. This value, called the “exponent,”

indicates the magnitude of the significant digits of the mantissa.

For example, the decimal value 1,000,000 would require a triple

precision binary number to be properly represented. However, this

same value can be defined as “1 X 10**6,” or, in floating point

notation, “1.0 E+6.” This form contains the mantissa, 1, which is

Floating Point Routines 91

the single significant digit of this value, and the exponent 6, which

indicates the power of ten, or the number of places the decimal

point should be moved to the right. This shorter notation also

requires fewer memory locations to represent the indicated value

— one location to contain the significant digit (1), and a second to

hold the exponent value (6).

One more advantage this notation has over the individual mul¬

tiple precision value is the capability to represent fractional numbers.

By providing a sign bit for the exponent, negative, as well as positive

values of the exponent can be expressed. Remember, a negative ex¬

ponent forms the reciprocal of the power. For base ten, the ex¬

ponent, —1 would indicate the value of 1/10 times the mantissa.

The negative exponent moves the decimal point to the mantissa

one place to the left for each integer value of the exponent.

This notation can be used to represent binary numbers as well.

The binary mantissa contains the significant bits of the binary value.

The binary exponent will indicate the power of two to which the

mantissa is raised, thereby indicating the location of the decimal

point (or, to properly refer to it, the binary point). The same prop¬

erties of the decimal exponent apply to the exponent for the binary

numbers. If the exponent is positive, the binary point in the mantissa

is actually located to the right by the number of places indicated

by the exponent. A negative exponent shifts the binary point to the

left. Putting it in more relative terms, if the mantissa is shifted to the

right, the exponent must be incremented. Shifting the mantissa to

the left means the exponent must be decremented. The following

illustrates three ways of expressing the same number in binary

floating point format.

101.0 E + 0= 5X1=5

.101 E+ 3 = 5/8X8= 5

101000.0 E - 3 = 40 X 1/8 = 5

This notation may be used to represent a wide range of values

with a minimum number of memory locations. One or more memory

locations may be set up to store the mantissa and the exponent. The

number of locations used will depend on the number of significant

bits desired to express each quantity.

The floating point routines to be presented in this chapter op¬

erate with binary floating point numbers in the following format.

Each number will be stored in four memory locations. The first

location will contain the exponent with the most significant bit

92 Chapter 5

indicating the sign of the exponent. The sign bit will indicate a posi¬

tive number if reset to zero, and a negative exponent if set to one.

The next three locations will be used to store the mantissa as a tri¬

ple precision binary number. The most significant bit of the most

significant byte is used to indicate the sign of the mantissa. The

binary point will always be implied to be to the right of the sign bit

in the mantissa. One should note that there is no implied binary

point in the exponent since the exponent is always assumed to be an

integer value. This format is illustrated below.

Exponent MSB Mantissa LSB

SEEEEEEE S.MMMMMMM MMMMMMMM MMMMMMMM

MEM LOC N+3 MEM LOC N+2 MEM LOC N+1 MEM LOC N

The order for storing the data in the memory location should be

noted. The exponent is stored in the highest address of the four loca¬

tions used to store the floating point number. Also, since the sign

bit takes up one bit for both the mantissa and the exponent, the

number of bits used to represent each value is 23 (decimal) and 7,

respectively.

Before presenting the floating point routines, it should be

noted that various locations on page 00 are used for data storage.

This data includes pointers and counters required at different times,

several temporary storage tables, and two areas that are frequently

used as operating registers. These two areas shall be referred to as

the floating point accumulator and the floating point operand. The

floating point accumulator is used as the accumulator of the floating

point routines in performing calculations and storing the results of

the operations performed. The floating point operand is used to store

and manipulate the number operated on by the accumulator. These

two locations will have the same format as defined previously for

the floating point numbers. The floating point accumulator and

operand shall be abbreviated as FPACC and FPOP throughout the

remainder of this chapter.

Floating Point Normalization

The first routine is used to adjust the floating point numbers

to a common format. This format is required for proper operation

of the other floating point routines. In order for the floating point

arithmetic routines to operate with the highest degree of accuracy

possible, the value in the FPACC must be adjusted to a standard

representation before the operations are performed. This represen-

Floating Point Routines 93

tation is referred to as the normalized value. A number is considered

to be normalized when the mantissa’s most significant bit with a

value of “1” is immediately to the right of the implied binary point.

If this bit is not a “1,” the number is normalized by shifting the man¬

tissa to the left until the most significant “1” is to the right of the

implied binary point. For each bit position shifted to the left in the

mantissa, the corresponding exponent must be decremented to main¬

tain the actual value of the number. The resultant value of the man¬

tissa will be a number greater than or equal to one half, and less than

one. This process is illustrated below:

BEFORE NORMALIZATION 0.00011011100011000011010 E+0

AFTER NORMALIZATION 0.11011100011000011010000 E-3

The process of normalizing a floating point number is required

to set up the values in a common format with which the other rou¬

tines can work effectively. Also, normalizing a number allows more

significant digits in the mantissa. By insuring that one is using the

highest number of digits possible, the accuracy of the calculations

will be increased.

The normalization routine is written to operate with positive

mantissa values. If the number to be normalized is negative, this

routine will convert it to its two’s complement form before nor¬

malizing, and then complement it again after the normalization.

The following example illustrates the process for normalizing the

value —5, as it may appear after an arithmetic operation.

INITIAL VALUE 1.1111111 011000000 00000000 E $0A

COMPLEMENTED 0.0000000 101000000 00000000 E $0A

NORMALIZED 0.101000 000000000 00000000 E $03

COMPLEMENTED 1.011000 000000000 00000000 E $03

One special test must be made by this routine . It must check for

an initial mantissa value of zero. If the mantissa is initially all zeros,

and the normalization routine is allowed to perform its normal se¬

quence, it would become caught in an endless loop looking for the

first “one” bit. Therefore, to eliminate this possibility, the FPACC

mantissa is initially checked for a value of zero. If found, the FPACC

exponent is zeroed and the routine returns.

The routine uses four memory locations for the mantissa in the

initial stages of the process. This is necessary to handle some special

cases that occur in the multiplication routine that require the addi-

94 Chapter 5

tional precision. For the routines that do not use the additional byte,

the least significant byte minus one of the mantissa must be set to

zero before calling the FPNORM routine.

FPNORM LDX #TSIGN

LDA FPMSW

BMI ACCMIN

LDY #$00

STY PAGE0,X

JMP ACZERT

ACCMIN STA PAGE0,X

Set pointer to sign register

Fetch FPACC MS Byte

If negative, branch

If positive, clear sign register

By storing zero

Then test if FPACC=0

Set sign indicator if minus

Floating Point Routines 95

LDY #$04 Set precision counter

LDX #FPLSWE Set pointer to FPACC LS Byte —1

JSR COMPLM Two's complement FPACC

ACZERT LDX #FPMSW Set pointer to FPACC MS Byte

LDY #$04 Set precision counter

LOOKO LDA PAGE0,X See if FPACC=0

BNEACNONZ Branch if nonzero

DEX Decrement index pointer

DEY Decrement byte counter

BNE LOOKO If counter not zero, continue

STY FPACCE FPACC = 0, clear exponent, too

NORMEX RTS Exit normalization routine

ACNONZ LDX #FPLSWE Set pointer to FPACC LS Byte —1

LDY #$04 Set precision counter

JSR ROTATL Rotate FPACC left

LDA PAGEO.X See if one in MS Bit

BMI ACCSET If minus, properly justified

DEC FPACCE If positive, decrement FPACC exponent

JMPACNONZ Continue rotating

ACCSET LDX #FPMSW Set pointer to FPACC MS Byte

LDY #$03 Set precision counter

JSR ROTATR Compensating rotate right FPACC

LDA TSIGN Is original sign positive

BEQ NORMEX Yes, simply return

LDY #$03 With pointer at LS Byte, set precision

counter

JMPCOMPLM Restore FPACC to negative and return

Several of the Chapter Three subroutines are used here. These

are the ROTATL, ROTATR and COMPLM subroutines. Throughout

the remainder of the floating point routines, these and other subrou¬

tines, such as MOVIND, CLRMEM and ADDER will be called upon

to perform their various functions.

Floating Point Addition

The basic function of this routine is carried out by the ADDER

subroutine. However, there are a number of conditions that must

be considered before the actual addition is performed.

First, the FPACC and the FPOP are tested for a value of zero.

If both values are zero, or only the FPOP is zero, the routine can be

exited immediately, since the answer is already in the FPACC.

(Remember, the results of all floating point operations are returned

96 Chapter 5

in the FPACC!) If the FPACC is zero, the contents of the FPOP are

transferred to FPACC before returning.

Should both numbers contain values other than zero (as is most

likely the case when FPADD is called) the relative magnitude of one

number to the other must be compared. With both numbers ex¬

pressed in floating point notation, the range of values can vary quite

a bit. For the addition routine, there is a limit in which the relative

magnitude of the two numbers must fall. If one value is so much

larger than the other, that the significant digits of the smaller are out¬

side the range of the significant digits of the larger, the addition

would result in no change to the larger number. The answer would

simply be equal to the larger number. This range is equal to the num¬

ber of bits used to represent the value of the mantissa. For the

floating point format used by these routines, the allowable limit

on the difference between the two exponents is 23. If the difference

is greater than 23, the number of greater magnitude is returned in

the FPACC as the answer.

Assuming that the two numbers fall within the allowable range,

the mantissas must be properly aligned before the addition can be

executed. The two numbers are aligned when the exponents of each

are equal. This alignment is made by shifting the mantissa of the

smaller value to the right, while incrementing its exponent until it

is equal to the exponent of the larger. Of course, if the exponents

are equal at the start, this is not necessary. The only special con¬

sideration in this procedure is when the mantissa being shifted is

negative. In this case, a “1” must be shifted into the MSB of the

mantissa to maintain the negative condition. This is accomplished by

setting the carry flag and calling the second entry point, ROTR, of

the ROTATR subroutine. This will not clear the carry at the start

of the rotate operation.

The final operation before the addition is performed is to shift

the FPACC and FPOP one bit to the right. This leaves the MSB open

to accept a possible overflow as a result of the addition. This elimi¬

nates the need to test the carry flag for an overflow when the addi¬

tion is complete. Also, quad-precision is utilized in both the shifting

and addition. This maintains the integrity of the LSB when the re¬

sult of the addition is normalized.

FPADD LDA FPMSW

BNENONZAC

MOVOP LDX #FOPLSW

STX FMPNT

See if FPACC MS Byte =0

Branch if not zero

Set pointer to FPOP LS Byte

Save in FMPNT

Floating Point Routines 97

LDX #FPLSW

STX TOPNT

LDA #$00

STA FMPNT+1

STA TOPNT+1

LDX #$04

JMPMOVIND

NONZAC LDA FOPMSW

BNE CKEQEX

RTS

CKEQEX LDX #FPACCE

LDA PAGE0,X

CMP FOPEXP

BEQ SHACOP

SEC

LDA #$00

SBC PAGE0,X

ADC FOPEXP

BPLSKPNEG

SEC

STA TEMPI

LDA #$00

SBC TEMPI

SKPNEG CMP #$18

BMI LINEUP

SEC

LDA FOPEXP

SBC PAGE0.X

BPL MOVOP

RTS

LINEUP LDA FOPEXP

SEC

SBC PAGE0,X

TAV

BMI SHIFTO

MORACC LDX #FPACCE

JSR SHLOOP

DEY

BNE MORACC

Set pointer to FPACC LS Byte

Save in TOPNT

Set page zero value

Store in page portion of FMPNT

And page portion of TOPNT

Set precision counter

Move FPOP to FPACC and return

See if FPOP MS Byte = 0

No, check exponents

Yes, return, result = FPACC

Set pointer to FPACC exponent

Fetch FPACC exponent

Is it equal to FPOP exponent?

Branch ahead if equal

If not equal, determine which is

larger

Form the two's complement of

The FPACC exponent

Add in FPOP exponent

If +, FPOP > FPACC

If —, form two's complement

Of the result

This will be used to test the

Magnitude of the difference in

exponents

Is difference < 18 hexadecimal?

If so, align the mantissas

If not, is the FPOP > FPACC?

This is tested by comparing

The exponents of each

FPOP larger, move FPOP to

FPACC

FPACC larger, return

Fetch FPOP exponent

Set carry for subtraction

Subtract FPOP—FPACC exponents

Save difference in Y

If neg., FPACC >, shift FPOP

Set pointer to FPACC exponent

Shift FPACC to right, one bit

Decrement difference counter

If not zero, continue

Chapter 5

JMPSHACOP

SHIFTO LDX #FOPEXP

JSR SHLOOP

INY

When zero, set up for addition

Set pointer to FPOP exponent

Shift FPOP to right, one bit

Increment difference counter

Floating Point Routines 99

BNE SHIFTO

SHACOP LDA #$00

STA FPLSWE

STA FOLSWE

LDX #FPACCE

JSR SHLOOP

LDX #FOPEXP

JSR SHLOOP

LDX #FOLSWE

STX FMPNT

LDX #FPLSWE

STX TOPNT

LDX #$04

JSR ADDER

JMPFPNORM

SHLOOP INCPAGE0,X

DEX

TV A

LDY #$04

FSHIFT PH A

LDA PAGE0,X

BMIBRING1

JSR ROTATR

JMP RESCNT

BRING1 SEC

JSR ROTR

RESCNT PLA

TAY

RTS

Not zero, continue

Prepare for addition

Clear FPACC LS Byte -1

Clear FPOP LS Byte -1

Set pointer to FPACC exponent

Rotate FPACC right to allow for over¬

flow

Set pointer to FPOP exponent

Rotate FPOP right to keep alignment

Set pointer to FPOP LS Byte -1

Store in FMPNT

Set pointer to FPACC LS Byte -1

Store in TOPNT

Set precision counter

Add FPOP to FPACC

Normalize result and return

Increment exponent value

Decrement pointer

Save difference counter

Set precision counter

Store difference counter on stack

Fetch MS Byte of value

If negative, must rotate one in MSB

Positive, rotate value right one bit

Return to calling program

Set carry to maintain minus

Rotate value right one bit

Fetch difference counter

Restore in Y

Return

Floating Point Subtraction

Floating point subtraction may be derived by simply form¬

ing the two’s complement of the value contained in the FPACC and

then jumping to the FPADD routine, as the following FPSUB routine

illustrates.

FPSUB LDX #FPLSW

LDY #$03

JSR COMPLM

JMP FPADD

Set pointer to FPACC LS Byte

Set precision counter

Complement FPACC

Subtract by adding negative

100 Chapter 5

Floating Point Multiplication

Floating point multiplication is essentially carried out by a

series of shifting and addition operations. As presented previously,

a binary number is multiplied by two by simply shifting it one bit

position to the left. With the proper addition function, one can

create a multiplication algorithm for multiple precision binary num¬

bers. This algorithm would operate in the following manner.

The two numbers to be multiplied shall be referred to as the

multiplier and the multiplicand. A third register, called the partial-

product, shall be used to store the product as it is being calculated.

First, examine the LSB of the multiplier. If it is a “1,” add the mul¬

tiplicand to the partial-product register. After the addition, or if the

LSB was zero, shift the multiplicand to the left, one-bit position

(multiplying it by two). Examine the bit to the left of the LSB of

the multiplier and, if it is a “1,” add the current value of the mul¬

tiplicand to the partial-product. Then, shift the multiplicand to the

left again. The process continues for each bit of the multiplier, work¬

ing up to the MSB. Each time the multiplier bit is equal to “1,”

the current multiplicand is added to the partial-product. The multi¬

plicand is always shifted left following the examination of each bit

of the multiplier (and addition to the partial-product if the bit is

“1”). The result of the multiplication is contained in the partial-

product register when the operation is complete.

The algorithm just described performs multiplication of stan¬

dard binary numbers. Using this basic procedure, a multiplication

algorithm for the mantissa in floating point format can be written.

The following flow chart illustrates the process to be used to mul¬

tiply the floating point values. The only major difference between

the algorithm above and the process used by this floating point

multiplication routine is that the partial-product is shifted right for

each bit examined, rather than shifting the multiplicand to the

left.

The exponent portion of the binary floating point numbers is

manipulated in the same manner as the exponent of decimal float¬

ing point numbers for multiplication. They are simply added to¬

gether.

The mantissa signs of both the multiplier and the multipli¬

cand must be examined before the multiplication is executed.

Since the multiplication algorithm only works for positive numbers,

if either value is negative it must be two’s complemented before

multiplying. Also, following the laws of multiplication, if the two

values are the same sign, the result will be positive; if the signs are

Floating Point Routines 101

opposite, the result will be negative. This condition must be tested

at the beginning, and, if the result is to be negative, the final value

must be two’s complemented before returning.

If the partial-product is rotated right for each bit of the mul¬

tiplier, it is necessary for the partial-product register to contain

twice as many bits as the multiplier. Although the partial-product

register contains more precision than the program is designed to

handle, it is essential to maintain the required significant bit for the

answer. At the completion of the multiplication algorithm, the 24th

bit of the partial-product is used to round off the final result. The

result is then normalized to the proper 23 bit floating point format.

This manner of handling the partial-product allows maximum pre¬

cision for the multiplication routine.

FPMULT JSR CKSIGN

LDA FOPEXP

CLC

ADC FPACCE

STA FPACCE

INC FPACCE

SETMCT LDA #$17

STA CNTR

MULTIP LDX #FPMSW

LDY #$3

JSR ROTATR

BCC NADOPP

ADOPP LDX #MCAND1

STX FMPNT

LDX #WORK1

STX TOPNT

LDX #$6

JSR ADDER

NADOPP LDX #W0RK6

LDY #$6

JSR ROTATR

DEC CNTR

BNE MULTIP

LDX #WORK6

LDY #$6

JSR ROTATR

LDX WORK3

Set up and check sign of mantissas

Get FPOP exponent

Add FPACC exponent

To FPOP exponent

Save in FPACC exponent

Add one for algorithm compensation

Set bit counter

Store bit counter

Set pointer to FPACC MS Byte

Set precision counter

Rotate FPACC right

Carry = zero, don't add partial-product

Pointer to LS Byte of multiplicand

Store pointer

Pointer to LS Byte of partial-product

Store pointer

Set precision counter

Add multiplicand to partial-product

Set pointer to MS Byte of partial-

product

Set precision counter

Rotate partial-product right

Decrement bit counter

Not zero, continue multiplying

Else, set pointer to partial-product

Set precision counter

Make room for possible rounding

Set pointer to 24th bit of partial-

102 Chapter 5

LDA PAGEO.X

product

Fetch LS Byte -1 of result

ROL A Rotate 24th bit to sign

BPLPREXFR If 24th bit = zero, branch ahead

CLC Clear carry for addition

LDY #$3 Set precision counter

LDA #$40 Add one to 23rd bit of partial-product

ADC PAGE0,X To round off result

STA WORK3 Store sum in memory

CROUND LDA #$0 Clear A without changing carry

ADC PAGE0,X Add with carry to propagate

STA PAGE0,X Store in partial-product

INX Increment index pointer

DEY Decrement counter

BNECROUND Not zero, add next byte

PREXFR LDX #FPLSWE Set pointer to FPACC LSW —1

STX TOPNT Store in TOPNT

LDX #WORK3 Set pointer to partial-product

STX FMPNT

LSW —1

Store in FMPNT

LDX #$4 Set precision counter

EXMLDV JSR MOVIND Move partial-product to FPACC

JSR FPNORM Normalize result

LDA SIGNS Get sign storage

BNE MULTEX If not zero, sign is positive

LDX #FPLSW Else, set pointer to FPACC LS Byte

LDY #$3 Set precision counter

JSR COMPLM Complement result

MULTEX RTS Exit FPMULT

CKSIGN LDA #$0 Set page portion of pointers

STA TOPNT+1 Store in TOPNT

STA FMPNT+1 Store in FMPNT

LDA #WORKO Set pointer to work area

STA TOPNT Store in TOPNT

LDX #$8 Set precision counter

JSR CLRMEM Clear work area

LDA #MCAND0 Set pointer to multiplicand storage

STA TOPNT Store in TOPNT

LDX #$4 Set precision counter

JSR CLRMEM Clear multiplicand storage

LDA #$1 Initialize sign indicator

STA SIGNS By storing one in SIGNS

Floating Point Routines 103

LDA FPMSW

BPLOPSGNT

NEGFPA DEC SIGNS

LDX #FPLSW

LDY #$3

JSR COMPLM

OPSGNT LDA FOPMSW

BMINEGOP

RTS

NEGOP DEC SIGNS

LDX #FOPLSW

LDY #$3

JMPCOMPLM

Fetch FPACC MS Byte

Positive, check FPOP

If negative, decrement SIGNS

Set pointer to FPACC LS Byte

Set precision counter

Make positive for multiplication

Is FPOP negative?

Yes, complement value

Else, return

Decrement SIGNS indicator

Set pointer to FPOP LS Byte

Set precision counter

Complement FPOP and return

Floating Point Division

The procedure for division almost can be considered the reverse

104 Chapter 5

of that for multiplication. The division algorithm consists of a series

of subtraction and shifting operations. The algorithm is illustrated

in the following flow chart and is written for division of numbers in

floating point format rather than straight binary. For operating with

IlSFPOP NEGATIVE?!

I
^_NO VES

COMPLEMENT
FPOP

Floating Point Routines 105

numbers in standard binary format, the most significant bits of the

divisor and dividend would have to be properly aligned, and the lo¬

cation of the binary point in the quotient would have to be account¬

ed for in cases where the result is not a pure integer.

A sample division of two floating point numbers using this al¬

gorithm in a step-by-step fashion is given below. This illustration will

divide the binary equivalent of the value 15 (decimal) by 5. The

numbers are presented as four-bit values to keep the illustration

short. However, in the FPDIV routine, the operation is carried out

23 times for each significant bit of the mantissa of the dividend.

Once again, this algorithm assumes the numbers are in normalized

floating point format.

106 Chapter 5

0.1111 Original DIVIDEND at start of routine.

0.1010 DIVISOR (Note floating point format.)

0.0101 This is the REMAINDER from the subtraction

operation. Since the result was POSITIVE, a "1"

is placed in the LSB of the QUOTIENT register.

0.0001 QUOTIENT after first loop.

NOW BOTH QUOTIENT AND DIVIDEND (NEW

REMAINDER) ARE ROTATED LEFT

0.1010 New DIVIDEND (which is the previous

REMAINDER rotated once to the LEFT).

0.1010 DIVISOR (Does not change during routine).

0.0000 RESULT of this subtraction is zero and thus quali¬

fies to become a NEW DIVIDEND. Also,

QUOTIENT LSB getsa "1''for this case!

0.0011 QUOTIENT after second loop.

AGAIN BOTH QUOTIENT AND DIVIDEND (NEW

REMAINDER) ARE ROTATED LEFT

0.0000 New DIVIDEND (which isthe last remainder

rotated once to the left).

0.1010 DIVISOR (still same old number).

1.0110 RESULT of this subtraction is a minus number

(note that the SIGN bit changed). Thus, old

DIVIDEND stays in place and QUOTIENT gets

a “0" in LSB!

0.0110 QUOTIENT after third loop.

NOW BOTH QUOTIENT, AND IN THIS CASE, THE OLD

DIVIDEND, ARE ROTATED LEFT

0.0000 Old DIVIDEND rotated once to the left.

Floating Point Routines 107

0.1010 Same old DIVISOR

1.0110 RESULT of this subtraction is again a minus. Old

DIVIDEND stays in place. QUOTIENT gets another

"0" in LSB.

0.1100 QUOTIENT after fourth loop.

With only four significant bits in the dividend, the calculation

illustrated ends after the fourth loop. The answer is contained in the

quotient. The exponents are the next quantity that must be dealt

with, since the values are represented in floating point notation.

Just as in division of decimal floating point numbers, the exponents

of the binary counterparts are subtracted; dividend exponent minus

the divisor exponent. In the example given, the dividend would

have an exponent of four for the normalized binary value of 15

(decimal), and the divisor would have a binary exponent of three.

The algorithm as presented requires a compensation factor of +1

after subtracting the exponents in order to have the correct floating

point result. Thus, the exponent of the quotient in the previous

example would be (4 — 3) +1 = 2. This can be verified by moving the

implied binary point in the quotient two places to the right — the

binary value of three would indeed be observed.

In the division algorithm, just as in the multiplication, the sign

of the dividend and divisor must be positive for the algorithm to

operate properly. If either is negative, it must be two’s comple¬

mented before the division is performed. Also, if the signs are the

same, the sign of the quotient must be positive. If the signs are

opposite, the quotient must be two’s complemented before exiting

the routine to make the answer negative.

While examining the FPDIV listing, note that two other condi¬

tions are considered by the routine. If the quotient has a remainder

after the final loop through the divide algorithm, which would result

in a “1” in the 24th bit position, it is rounded off by adding a

“1” to the 23rd bit. Also, if a divide by zero is attempted (which is

an illegal operation), the FPDIV routine jumps to a routine labeled

DERROR. The user may use this to perform whatever is deemed

necessary when this error occurs.

FPDIV JSR CKSIGN Clear work area and set SIGNS

LDA FPMSW Check for divide by zero

BEQ DERROR Divisor = zero, divide by zero error

108 Chapter 5

SUBEXP LDA FOPEXP

SEC

SBC FPACCE

STA FPACCE

INC FPACCE

SETDCT LDA #17

STA CNTR

DIVIDE JSR SETSUB

BMINOGO

LDX #FOPLSW

STX TOPNT

LDX #WORKO

STX FMPNT

LDX #$3

JSR MOVIND

SEC

JMPQUOROT

DERROR LDA #$BF

JMP ERROUT

NOGO CLC

QUOROT LDX #WORK4

LDY #$3

JSR ROTL

LDX #FOPLSW

LDY #$3

JSR ROTATL

DEC CNTR

BNE DIVIDE

JSR SETSUB

BMI DVEXIT

LDA #$1

CLC

ADCWORK4

STA WORK4

LDA #$0

ADC WORK5

STAWORK5

LDA #$0

ADCWORK6

Get DIVIDEND exponent

Set carry for subtraction

Subtract DIVISOR exponent

Store result in FPACC exponent

Compensate for divide algorithm

Set bit counter storage

To 17 hexadecimal

Subtract DIVISOR from DIVIDEND

If result is minus, rotate zero in

QUOTIENT

Set pointer to DIVIDEND

Store in TOPNT

Set pointer to QUOTIENT

Store in FMPNT

Set precision counter

Move QUOTIENT to DIVIDEND

storage

Set carry for positive results

Rotate into QUOTIENT

Set ASCII for "?”

Print "?" and return

Negative result, clear carry

Set pointer to QUOTIENT LS Byte

Set precision counter

Rotate carry into LSB of QUOTIENT

Set pointer to DIVIDEND LS Byte

Set precision counter

Rotate DIVIDEND left

Decrement bit counter

If not zero, continue

Do one more for rounding

If minus, no rounding

If 0 or +, add one to 23rd bit

Clear carry for addition

Round off LS Byte of QUOTIENT

Restore byte in work area

Clear A, not the carry

Add carry to second byte of

QUOTIENT

Store result

Clear A, not the carry

Add carry to MS Byte of

Floating Point Routines 109

110 Chapter 5

STA W0RK6

BPLDVEXIT

LDX #W0RK6

LDY #$3

JSR ROTATR

INC FPACCE

DVEXIT LDX #FPLSWE

STX TOPNT

LDX #WORK3

STX FMPNT

LDX #$4

JMPEXMLDV

SETSUB LDX -#WORKO

STX TOPNT

LDX #FPLSW

STX FMPNT

LDX -#$3

JSR MOVIND

LDX #WORKO

STX TOPNT

LDX #FOPLSW

STX FMPNT

LDY #$0

LDX #3

SEC

SUBR1 LDA (FMPNT),Y

SBC (TOPNT),Y

STA (TOPNT),Y

INY

DEX

BNESUBR1

LDA WORK2

RTS

QUOTIENT

Store result

If MSB = 0, exit

Else prepare to rotate right

Set precision counter

Clear sign bit counter

Compensate exponent for rotate

Set pointer to FPACC

Store in TOPNT

Set pointer to QUOTIENT

Store in FMPNT

Set precision counter

Move QUOTIENT to FPACC

Set pointer to work area

Store in TOPNT

Set pointer to FPACC

Store in FMPNT

Set precision counter

Move FPACC to work area

Prepare for subtraction

Store pointer to DIVISOR

Set pointer to FPOP LS Byte —1

Store pointer to DIVIDEND

Initialize index pointer

Set precision counter

Set carry for subtraction

Fetch FPOP byte (DIVIDEND)

Subtract FPACC byte (DIVISOR)

Store in place of DIVISOR

Advance index pointer

Decrement precision counter

Not zero, continue subtraction

Set sign bit result in N flag

Return with flag conditioned

The floating point routines presented to this point, when as¬

sembled into the object code, will reside in approximately two and

one half pages of memory. Additional memory is required for the

data areas on page 00 which are used to store various counters and

data values. The locations used on page 00 by these floating point rou¬

tines are listed in the following table. The addresses listed here are

the same as those used by the floating point package presented in

Floating Point Routines 111

Appendix F.

Address

Program

Label Definition

0000 FMPNT FROM pointer

0002 TOPNT TO pointer

0004 CNTR Counter Storage

0005 TSIGN Sign Indicator

0006 SIGNS Signs Indicator (Multiply

0007 FPLSWE

and Divide)

FPACC Extension

0008 FPLSW FPACC Least Significant Byte

0009 FPNSW FPACC Next Significant Byte

000A FPMSW FPACC Most Significant Byte

000B FPACCE FPACC Exponent

oooc MCAND0 Multiplication Work Area

000D MCAND1 Multiplication Work Area

000E MCAND2 Multiplication Work Area

000 F FOLSWE FPOP Extension

0010 FOPLSW FPOP Least Significant Byte

0011 FOPNSW FPOP Next Significant Byte

0012 FOPMSW FPOP Most Significant Byte

0013 FOPEXP FPOP Exponent

0014 WORKO Work Area

0015 WORK1 Work Area

0016 WORK2 Work Area

0017 WORK3 Work Area

0018 WORK4 Work Area

0019 WORK5 Work Area

001A WORK6 Work Area

001B WORK7 Work Area

The floating point routines are extremely powerful routines

that can be of considerable value to someone who requires such

mathematical calculations on a 6502-based microcomputer. These

routines provide the capability to handle binary numbers equivalent

to six or seven significant decimal digits raised to plus or minus the

38th power of ten. Using these routines as a base, a wide variety

of mathematic operations can be performed by loading FPACC and

FPOP with the numbers in normalized floating point format and

calling the proper routine.

One of the most common requirements of a program that

112 Chapter 5

deals with binary numbers is the conversion to and from deci¬

mal because it is often necessary to communicate with a human

operator. Therefore, to illustrate a method for converting from float¬

ing point decimal to floating point binary, and back, the following

three routines are included.

Floating Point Input Routine

The first of these routines performs the conversion of decimal

floating point numbers to floating point binary. The overall require¬

ment of this routine is to receive the decimal number in floating

point format, normalize the mantissa portion to an all-integer value,

and convert to the equivalent floating point binary value.

Floating point decimal values may be expressed in various

forms, as indicated below.

123.45

or

1.2345 E+2

As either of these formats are received, the mantissa portion is

converted to binary. The exponent is also formulated during the

input to provide the proper normalized decimal value. Unlike the

binary normalization, which shifts the binary point to the left of

the MSB, decimal normalization maintains the decimal point to the

right of the least significant digit. This provides a purely integer

mantissa. Thus, the example above would be normalized to

12345 E-2

The conversion of the decimal mantissa to binary is accom¬

plished by the routine labeled DECBIN, which is a version of the

TIMS10 subroutines presented in Chapter Four. This subroutine

converts each digit entered. First, it multiplies the binary equivalent

of the digits already received by ten. The BCD value of the latest

digit input is added to create the new binary number.

Once the mantissa is converted, the decimal exponent is input

and converted to binary. At this point, it is necessary to normalize

the mantissa of the binary equivalent be calling the FPNORM rou¬

tine. The FPACC exponent is set to a value of 23 before calling the

FPNORM routine. Then, using the FPMULT routine, the normalized

binary equivalent is multiplied by ten (for each unit of a positive

decimal exponent received), or by 0.1 (for each unit of a negative

Floating Point Routines 113

exponent received).

The input and output portions of this routine require that the

user provide driver routines for the specific input and output devices

associated with one’s system. The requirement for the INPUT rou¬

tine is to return to the calling routine with the ASCII code for the
character entered in the accumulator. The routine to output char¬

acters to a display device, such as a mechanical printer or video

display, must accept the character to be output as an ASCII charac¬

ter stored in the accumulator. This output routine labeled ECHO,

is called to echo the characters received from the input device

back to the display device. Refer to Chapter Seven for methods of

creating these routines. The ECHO routine should return with the

ASCII code for the character output in the accumulator.

Presented next is the decimal to binary input routine listing.

Both formats illustrated previously are allowed as legal entries. The

routine accounts for positive and negative mantissas and exponents.

The operator has the option to cancel the current input by entering

a control zero character. Several locations on page 00 are used to store

the input characters and save counters and indicators. These loca¬

tions will be summarized later in this chapter.

FPINP LDA #$00 Clear page portions of TOPNT

STA TOPNT And FMPNT to set up pointers

STA FMPNT To page zero, where data is stored

CLD Clear decimal mode flag

LDX #INMTAS Set pointer to storage area

STX TOPNT Store in TOPNT

LDX #$0C Set precision counter

JSR CLRMEM Clear storage area

JSR INPUT Get character from kybd

CMP #$AB Test if + sign

BEQ SECHO Yes, echo and continue

CMP #$AD Test if — sign

BNE NOTPLM No, test if valid character

STA INMTAS' Make input sign nonzero

SECHO JSR ECHO Echo character to output

N INPUT JSR INPUT Get character from kybd

NOTPLM CMP #$8F Test for control zero

BNE SERASE No, skip erase

ERASE LDA #$BC Yes, print < as a rubout

JSR ECHO Output <

JSR SPACES Print several spaces

114 Chapter 5

JMP FPINP

SERASE CMP #$AE

BNE SPRIOD

PERIOD BIT INPRDI

BPLPER1

BMI ISLAND

PERI STA INPRDI

LDY #$0

STY CNTR

JSR ECHO

JMP NINPUT

SPRIOD CMP #$C5

BNE SFNDXP

FNDEXP JSR ECHO

JSR INPUT

CMP #$AB

BEQ EXECHO

CMP #$AD

BNE NOEXPS

STA INEXPS

EXECHO JSR ECHO

EXPINP JSR INPUT

NOEXPS CMP #$8F

BEQ ERASE

CMP #$B0

ISLAND BMI ENDINP

CMP #$BA

BPL ENDINP

AND #$0F

STA TEMPI

LDX #IOEXPD

LDA #$03

CMP $0,X

BMI ENDINP

LDA $0,X

CLC

ROL $0,X

ROL $0,X

ADC $0,X

ROL A

ADC TEMPI

STA $0,X

Restart input string

Test for decimal point

No, skip period

Decimal point already received?

No dec. pt. yet, continue

Yes, end input

Set dec. pt. indicator

Reset digit counter

Echo dec. pt. to output

Get next character

Test for E for exponent

No, skip exponent

Yes, echo E — to output

Input next character of exponent

Test for + sign

Yes, echo it

Test for - sign

No, test for digit

Yes, store minus indicator

Echo to output

Get next character for exponent

Test for control zero

Yes, start again

Number, test low limit

No, end input string

Test upper limit

No, end input string

Mask and strip ASCII

Store BCD in temporary storage

Set pointer to exponent storage

Test for upper limit of exponent

Is ten's digit > 3?

Yes, end input

Store temporarily in A

Clear carry

Exponent X 2

Exponent X 4

Add original (X 5)

Exponent X10

Add new input

Store in exponent storage

Floating Point Routines 115

LDA #$B0

ORA TEMPI

BNEEXECHO

SFNDXP CMP #$B0

BMI ENDINP

CMP #$BA

BPL ENDINP

TAY

LDA #$F8

BIT IOSTR2

BNE NINPUT

TYA

JSR ECHO

INCCNTR

AND #$0F

PHA

JSR DECBIN

LDX #IOSTR

PLA

CLC

ADC $0,X

STA $0,X

LDA #$0

ADC $1 ,X

STA $1 ,X

LDA #$0

ADC $2,X

STA $2,X

JMP NINPUT

ENDINP LDA INMTAS

BEQ FINPUT

LDX #IOSTR

LDY #$03

JSR COMPLM

FINPUT LDA #$0

STA IOSTR—$1

LDA #FPLSWE

STA TOPNT

LDA #IOSTR—$1

STA FMPNT

LDX #$04

JSR MOVIND

Restore ASCII code

By setting $B0

Echo number

Test for valid number

Too low, end input

Test for upper limit

If not valid, end input

Save temporarily

Input too large?

Test for too large

Yes, ignore present input

No, fetch digit again

Echo to output

Increment digit counter

Mask off ASCII

Save BCD digit temporarily

Multiply previous value X 10

Set pointer to storage

Fetch digit just entered

Clear carry for addition

Add digit to storage

Save new total

Clear A for next addition

Add carry to next byte

Save new total

Clear A again for addition

Add carry to final byte

Save final byte of total

Look for next character input

Test is positive or negative

Indicator zero, number positive

Index to LSB of input mantissa

Set precision counter

Two's complement for negative

Clear input storage LSB—1

Set TOPNT to FPACC

Set FMPNT to input storage

Set byte counter

Move input to FPACC

Set exponent for FPNORM

116 Chapter 5

LDY #$17

STY FPACCE

JSR FPNORM

LDA INEXPS

BEQPOSEXP

LDA #$FF

EOR IOEXPD

STA IOEXPD

INC IOEXPD

POSEXP LDA INPRDI

BEQ EXPOK

LDA #$0

SEC

SBC CNTR

EXPOK CLC

ADC IOEXPD

STA IOEXPD

BMI MINEXP

BNE EXPFIX

RTS

EXPFIX JSR FPIX10

BNE EXPFIX

RTS

FPX10 LDA #$04

STA FOPEXP

LDA #$50

STA FOPMSW

LDA #$00

STA FOPNSW

STA FOPLSW

JSR FPMULT

DECIOEXPD

RTS

MINEXP JSRFPD10

BNE MINEXP

RTS

FPD10 LDA #$FD

STA FOPEXP

LDA #$66

Store exponent for normalization

Normalize the input

Test exponent sign indicator

Positive? Same exponent

Minus, form two's complement

Of exponent value

By complementing and incrementing

Test period indicator

If zero, no decimal point

Clear A

Set carry for subtraction

Form negative of count

Clear carry for addition

Add to compensate for dec. pt.

Store results

Negative exponent, adjust to zero

Not zero, adjust to zero

Return with value in FPACC

Multiply by ten

Exponent not zero, multiply again

Return

Multiply FPACC X 10

Load FPOP with a value of ten

By setting the exponent to four

And the mantissa to $50,$00,$00

Multiply FPACC X FPOP

Decrement decimal exponent

Return to test for completion

Compensated decimal exponent minus

FPACC X 0.1 till decimal exponent = zero

Return

Place 0.1 in FPOP by

Setting FPOP exponent to -3

And loading mantissa with $66,$66,

$67

STA FOPMSW

STA FOPNSW

Floating Point Routines 117

LDA #$67

STA FOPLSW

JSR FPMULT Multiply FPACC X FPOP

INC IOEXPD Increment decimal exponent

RTS Return

DECBIN LDA #$00

STA IOSTR3 Clear MS Byte + 1 of result

LDX #IOLSW Set pointer to I/O work area

STX TOPNT Store in TOPNT

LDX #IOSTR Set pointer to I/O storage

STX FMPNT Store in FMPNT

LDX #$04 Set precision counter

JSR MOVIND Move I/O storage to work area

LDX #IOSTR Set pointer to original value

LDY #$04 Set precision counter

JSR ROTATL Start X 10 routine (total =X2)

LDX #IOSTR Reset pointer

LDY #$04 Set precision counter

JSR ROTATL Multiply by two again (total =X4)

LDX #IOLSW Set pointer to I/O work area

STX FMPNT Store in FMPNT

LDX #IOSTR Set pointer to I/O storage

STX TOPNT Store in TOPNT

LDX #$04 Set precision counter

JSR ADDER Add original to rotated (total ^X5)

LDX #IOSTR Reset pointer

LDY #$04 Set precision counter

JMP ROTATL X2 again (total =X10) and return

Floating Point Output Routine

The next routine converts the floating point binary number

in the FPACC to its floating point decimal equivalent, and output it

to the display device as ASCII characters in the following format:

0.1234567 E+07

First, the normalized value is converted to a binary value in

which the binary exponent is within the range of —4 to —1. As this

is done, the decimal exponent is generated. Once the binary expo¬

nent is properly adjusted, the decimal mantissa is output by mul¬

tiplying the adjusted binary mantissa by ten for each decimal digit.

Each multiplication causes the next decimal digit to be pushed out

118 Chapter 5

into the most significant byte +1 of the binary mantissa. As each

digit is pushed out, its ASCII code is formed, and the ECHO routine

is called to output the digit. When the mantissa has been output,

the decimal exponent is converted. This conversion makes use of the

method described in Chapter Four for binary to decimal conversion.

The exponent is then output.

FPOUT LDA #$0

STA IOEXPD

LDA FPMSW

BMIOUTNEG

LDA #$AB

BNE AHEAD1

OUTNEG LDX #FPLSW

LDY #$3

JSR COMPLM

LDA #$AD

AHEAD1 JSR ECHO

LDA #$B0

JSR ECHO

LDA #$AE

JSR ECHO

DEC FPACCE

DECEXT BPLDECEXD

LDA #$4

CLC

ADC FPACCE

BPL DECOUT

JSR FPX10

DECREP LDA FPACCE

JMP DECEXT

DECEXD JSR FPD10

JMP DECREP

DECOUT LDX #IOSTR

STX TOPNT

LDX #FPLSW

STX FMPNT

LDX #$3

JSR MOVIND

LDA #$0

STA IOSTR3

LDX #IOSTR

Clear decimal exponent storage

Is value to be output negative?

Yes, make positive and output

Else, set ASCII code for "+"

Go display + sign

Set pointer to LS Byte of FPACC

Set precision counter

Make FPACC positive

Set ASCII code for

Output sign of result

Set up ASCII zero

Output zero to display

Set up ASCII decimal point

Output decimal point

Decrement FPACC exponent

If compensated, exponent > = 0

Exponent negative, add four to FPACCE

Clear carry for addition

Add four to FPACC exponent

If exponent > = 0, output mantissa

Else, multiply mantissa by ten

Get exponent

Repeat test for > = 0

Multiply FPACC by 0.1

Check status of FPACC exponent

Set up for move operation

Set TOPNT to working register

Set pointer to FPACC LS Byte

Store in FMPNT

Set precision counter

Move FPACC to output registers

Clear output register MS Byte +1

Set pointer to output LS Byte

Floating Point Routines 119

LDY #$3 Set precision counter

JSR ROTATL Rotate to compensate for sign bit

JSR DECBIN Output register X 10, overflow in MS

Byte +1

COMPEN INCFPACCE Increment FPACCexponent

BEQ OUTDIG Output digit when compensation done

LDX #IOSTR3 Else, rotate right to compensate

LDY #$4 For any remainder in binary exponent

JSR ROTATR Perform rotate right operation

JMP COMPEN Repeat loop until exponent = zero

OUTDIG LDA #$7 Set digit counter to seven

STA CNTR For output operation

LDA IOSTR3 Fetch BCD, see if first digit = zero

BEQ ZERODG Yes, check remainder of digits

OUTDGS LDA IOSTR3 Get BCD from output register

ORA #$B0 Form ASCII code for numbers

JSR ECHO And output digit

DECRDG DEC CNTR Decrement digit counter

BEQ EXPOUT = zero, done output exponent

JSR DECBIN Else, get next digit

JMP OUTDGS Form ASCI I and output

ZERODG DEC IOEXPD Decrement exponent for skipping

display

LDA IOSTR2 Check if mantissa = zero

BNE DECRDG If not zero, continue output

LDA IOSTR1

BNE DECRDG

LDA IOSTR

BNE DECRDG

LDA #$0 Mantissa zero, clear exponent

STA IOEXPD

BEQ DECRDG Before finishing display

EXPOUT LDA #$C5 Set up ASCII code for E

JSR ECHO Display E for exponent

LDA IOEXPD Test if negative

BMI EXOUTN Yes, display " and negate

LDA #$AB No. set ASCII code for "+"

JMPAHEAD2 Display exponent value

EXOUTN EOR #$FF Two's complement exponent

STA IOEXPD To make negative value positive

INC IOEXPD For output of exponent value

LDA #$AD Set ASCI I code for

120 Chapter 5

AHEAD2 JSR ECHO Output sign of exponent

LDY #$0 Clear ten's counter

LDA IOEXPD Fetch exponent

SUB12 SEC Set carry for subtraction

SBC #$0A Subtract ten's from exponent

BMI TOMUCH If minus, ready for output

STA IOEXPD Restore positive result

INY Advance ten's counter

JMPSUB12 Continue subtraction

TOMUCH TYA Put MS digit into A

ORA #$B0 Form ASCII code

JSR ECHO Output ten's digit to display

LDA IOEXPD Fetch unit's digit

ORA #$B0 Form ASCI I code

JMP ECHO Output digit and return

Putting the Pieces Together

This final routine ties the FPINP and FPOUT routines together,

along with the floating point mathematical routines FPNORM,

FPADD, FPSUB, FPMULT and FPDIV to create a floating point

calculator program. All that is required by the reader is to supply

the I/O driver routines. The program allows one to enter and receive

data in the following format:

27.6E-2 X—5 = —0.1380000E+01

FPCONT LDA #$8D ASCII carriage return

JSR ECHO Output carriage return

LDA #$8A ASCII linefeed

JSR ECHO Output line feed

JSR FPIIMP Get first FP decimal number

JSR SPACES Output two spaces

LDX #TPLSW Set pointer to temporary storage

STX TOPNT Store in TOPNT

LDX #FPLSW Set pointer to FPACC LS Byte

STX FMPNT Store in FMPNT

LDX #$04 Set precision counter

JSR MOVIND Move FPACC to temporary storage

NVALID JSR INPUT Fetch operator from input

CMP #$AB Test for "+" sign

BNENOTADD No, try

Floating Point Routines 121

JSR OPERAT Input FPACC value

JSR FPADD Add FPOP to FPACC

JMP FINAL Output result of addition

NOTADD CMP #$AD Test for " sign

BNE NOTSUB No, try "X"

JSR OPERAT Yes, input FPACC value

JSR FPSUB Subtract FPACC from FPOP

JMP FINAL Output result of subtraction

NOTSUB CMP #$D8 Test for "X" sign

BNE NOTMUL No, try "/"

JSR OPERAT Yes, input FPACC value

JSR FPMULT Multiply FPOP times FPACC

JMP FINAL Output result of multiplication
NOTMUL CMP #$AF Test for sign

BNE NOTDIV No, try delete

JSR OPERAT Yes, input FPACC value

JSR FPDIV Divide FPOP by FPACC

FINAL JSR FPOUT Output answer

JMP FPCONT Set up for new input

NOTDIV CMP #$8F Not operator, try control zero

BNE NVALID No, ignore, try again

BEQ FPCONT Yes, restart input string
OPERAT JSR ECHO Display control operator

JSR SPACES Display a few spaces

JSR FPINP Fetch second FP decimal number

JSR SPACES Display two spaces

LDA #$BD Set ASCII code for “="

JSR ECHO Display "=" sign

JSR SPACES Display two spaces

LDX #FOPLSW Set pointer to FPOP LS Byte

STX TOPNT Store in TOPNT

LDX #TPLSW Set pointer to temporary storage
STX FMPNT Store in FMPNT

LDX #$04 Set precision counter

JMP MOVIND Move first input to FPOP and return

The three routines, FPINP, FPOUT and FPCONT, as presented,

require less than three pages of memory. This requirement may be

shortened to some extent by forming subroutines for various com¬

mon instruction sequences. This has not been done here to maintain

clarity of operation. However, the ambitious reader should have

little difficulty in shortening the program. The following list defines

122 Chapter 5

the data areas on page zero used by these routines. The addresses

listed here are used by the floating point program presented in

Appendix F.

Program

Address Label Definition

001 c INMTAS I/O Mantissa Sign

00 ID INEXPS I/O Exponent Sign

001E INPRDI I/O Period Indicator

001F IOLSW I/O Work Area Least Significant Byte

0020 IONSW I/O Work Area Next Significant Byte

0021 IOMSW I/O Work Area Most Significant Byte

0022 IOEXP I/O Work Area Exponent

0023 IOSTR I/O Storage

0024 IOSTR1 I/O Storage

0025 IOSTR2 I/O Storage

0026 IOSTR3 I/O Storage

0027 IOEXPD I/O Exponent Storage

0028 TPLSW Temporary Input Storage Least Sig¬

nificant Byte

0029 TP NSW Temporary Input Storage Next Sig¬

nificant Byte

002A TPMSW Temporary Input Storage Most Sig¬

nificant Byte

002B TPEXP Temporary Input Storage Exponent

002C TEMPI Temporary Storage to Reside on Pages

This floating point program has been assembled to reside on

pages 02 to 07 and is presented in Appendix F as a memory dump.

The locations on page zero used to store the temporary data are

the same as those called out in the test. The order in which the

routines have been presented for explanation is the same order in

which they are assembled in Appendix F. A complete symbol table

is provided following the memory dump.

Floating Point Routines 123

Chapter 6

Decimal Arithmetic
Routines

When using a computer to process mathematical data, such as data
entered by an operator, and after processing, output for the operator
to read, the decimal numbering system is most often the base used.
This representation allows the operator to enter and read the data
in a form most widely accepted and easily understood, since it is
usually drummed into everyone from the time they are bom. The
computer, on the other hand, is generally designed to operate most
efficiently with numbers in binary format. Therefore, there must
be some means made available to allow the operator and the com¬
puter to communicate in a common number system.

Conversion routines from one number base to another are often
used. Routines, such as those presented, make it possible to input
and output numbers in decimal notation while performing the
actual calculations in binary notation. However, inaccuracies can
creep into the most elementary calculation as a result of the con¬
version! For example, the subtraction of 2.1 from 5.0 may be
output at 2.8999 rather than 2.9 because of conversion errors.

For applications where the operation required can be per¬
formed as decimal addition and subtraction, it would be far more
accurate to perform these simple mathematical calculations in the
same format as that used for input and output. The 6502 provides
for this operation with the decimal mode flag. The decimal mode flag
selects between binary and decimal arithmetic. When set, the addi¬
tion and subtraction instructions assume BCD digits are contained
in the two subject bytes. With the decimal mode flag reset, these
instructions assume the affected bytes will contain binary data.

Presented here are routines that perform addition, subtraction,
multiplication, and division of decimal numbers. The format used

Decimal Arithmetic Routines 125

to represent each number will be the same for all routines. Four

bits are required to define each BCD digit. Therefore, two digits

will be stored in a single eight-bit byte, with the least significant

digit of the pair in the least significant half of the byte. These op¬

erations work with multiple precision values, allowing up to 256

bytes to be assigned for each number. For the routines presented,

the bytes used to represent each number must be stored in a table

of sequential memory locations, with the byte containing the least

significant digit pair in the lowest address of the table.

The Basic Subroutines

First is the decimal addition routine. If it looks like it is almost

a carbon copy of the ADDER routine in Chapter Three, that’s be¬

cause it is! The only difference is that the decimal mode flag is set

when the subroutine is executed. The SED instruction has been

added to this routine to guarantee setting the flag. However, this

may be deleted if the calling program has already set it. FMPNT

and TOPNT must be initialized to the least significant byte of

their respective values. Index register X must be set to the binary

count of the number of bytes per value. The result is stored in

TOPNT.

DECADD LDY #00

SED

CLC

DCADD1 LDA (TOPNT),Y

ADC (FMPNT),Y

STA (TOPNT),Y

INY

DEX

BNE DCADD1

RTS

Initialize pointer

Set decimal mode flag

Clear carry flag

Fetch byte from one value

Add byte of second value

Store sum

Increment index pointer

Decrement byte counter

Not zero, continue addition

Return

The decimal subtraction routine is also the same as the subrou¬

tine SUBBER in Chapter Three. However, the decimal mode flag is

set at the start of this routine. Just as in the previous routine,

TOPNT and FMPNT initially must be set to the least significant byte

of the minuend and subtrahend, respectively. The X index register

must be set to the binary number of bytes in each value. This routine

stores the result in place of the value indicated by TOPNT. For a

valid answer, the minuend must be greater than or equal to the sub¬

trahend.

126 Chapter 6

DECSUB LDY #00

SED

SEC

DCSUB1 LDA(TOPNT),Y

SBC (FMPNT),Y

STA (TOPNT),Y

INY

DEX

BNE DCSUB1

RTS

Initialize index pointer

Set the decimal mode flag

Set the carry flag

Fetch a byte from the minuend

Subtract a byte of the subtrahend

Store the difference in the minuend

Increment index pointer

Decrement byte count

Not zero, continue

Return

Calculating with Signed BCD

The next pair of routines uses the decimal addition and subtrac¬

tion routines to perform the actual computation. These routines add

the capability to perform addition and subtraction of signed deci¬

mal numbers. The sign and magnitude of the numbers to be added

or subtracted must be checked to determine whether the operation

actually calls for an addition or subtraction, and to set up the proper

sign for the result of the operation.

The two numbers to be operated on by these routines must be

stored in two tables, referred to by the labels DCAC and DCOP.

DCAC is the decimal accumulator, which is used to store one addend

for the signed addition routine, and the minuend for the signed

subtraction routine. DCOP is the decimal operand table, and must

contain the other addend for the signed addition routine, and the

minuend for the signed subtraction routine. For both routines,

the results of the respective operations are stored in DCAC upon

returning to the calling program. Also, the initial contents of DCOP

are not necessarily maintained.

The number of bytes in each table can be varied to allow for

the number of digits desired per value. For these routines, the tables

must be of equal length. The tables used by these routines are

three bytes long, allowing six BCD digits per number. If the length

of the tables is changed, the constant 03 in the instructions whose

comments are marked by a double asterisk must be changed to in¬

dicate the new byte count.

Unlike binary numbers in which the MSB of the binary value

may be considered as the sign bit, BCD representation does not allow

for this convenient method of sign designation. One may sacrifice

a BCD digit by assigning the MSB of the MS Byte of a value as the

sign bit. However, this method does not simplify the procedure for

checking the sign of the value. It also complicates the process of

Decimal Arithmetic Routines 127

checking for an overflow or underflow, since the C flag will not

automatically indicate these errors. A separate memory location

will be used to indicate the sign of the decimal values.

The sign of each number is set up in separate memory loca¬

tions and uses the most significant bit of each byte to indicate a

negative number if set, or a positive number if reset. The remain¬

ing bits in each sign byte must be all zeros, since there are several

locations in the routine in which the sign bytes are checked as being

equal. This check involves the contents of the entire byte, not just

the MSB. Making the remaining bits equal to zero is consistent with

the format used by these routines to set and reset the sign bit of

the result. The sign bytes that refer to the sign of the DCAC and

DCOP are labeled SIGNAC and SIGNOP, respectively.

Signed Addition

Depending on the sign and magnitude of the values operated

on, it may be necessary to exchange the contents of DCAC and

DCOP. This is required when the indicated operation is that of sub¬

tracting the accumulator from the operand. This exchange is ac¬

complished by a subroutine labeled SHIFT. SHIFT exchanges the

contents of the accumulator and operand one byte at a time.

In the process of determining which operation is actually

called for (addition or subtraction), the relative magnitudes of

the two numbers must be known. This is determined by the CMPR

subroutine. Its operation is basically the same as that of the

CPRMEM subroutine in Chapter Three. The only difference is

that this routine is written specifically for comparing two triple

precision values.

The signed addition routine, beginning at the label SGNADD,

adds the contents of DCOP to DCAC, and returns with the answer

in DCAC. The calling routine simply loads DCAC, SIGNAC, DCOP,

and SIGNOP with the desired values before calling this routine. When

the sign of each is the same, the addition is performed as indicated.

If the signs are different, the value of smaller magnitude is subtracted

from the larger value, and the sign of the larger is set as the sign of

the answer. The actual computation is done by one of the previous

addition or subtraction subroutines. The condition of the carry flag

upon returning to the calling program will indicate whether an

overflow or underflow has occurred as a result of the operation,

signalling a possible error condition. The operation of the signed

addition routine is illustrated in the flow chart following the source

listing.

128 Chapter 6

SIGNOP *=*+1

SIGNAC *=*+1

DCOP *=*+2

DCOPM *=*+1

DC AC *=*+2

DCACM *=*+1

SGNADD LDA SIGNOP

CMP SIGNAC

BEQSAR2

BCC SAR3

SARI JSR CMPR

BCS SB 12

LDA #00

STA SIGNAC

SB21 JSR SHIFT

SB 12 LDA #<DCAC

STA TOPNT

LDA #<DCOP

STA FMPNT

LDX #$03

JMPDECSUB

SAR2 LDA #< DCOP

STA FMPNT

LDA #<DCAC

STA TOPNT

LDX #$03

JMPDECADD

SAR3 JSR CMPR

BCS SB 12

BEQSB21

LDA #$80

STA SIGNAC

BNE SB21

SHIFT LDX #$00

SHIFTA LDA DCOP,X

LDY DCAC.X

STA DCAC,X

STY DCOP,X

INX

CPX #03

BNE SHIFTA

RTS

Sign byte of DCOP

Sign byte of DCAC

Decimal operand storage

Decimal operand MS Byte

Decimal accumulator storage

Decimal accumulator MS Byte

Fetch sign of DCOP

Compare to sign of DCAC

Signs equal, add numbers

SIGNOP negative, SIGNAC positive

Is DCOP greater than DCAC?

No, subtract DCOP from DCAC

Yes, set up zero byte

Clear sign of DCAC

Exchange DCAC and DCOP

Fetch low portion of DCAC address

Store in TOPNT

Fetch low portion of DCOP address

Store in FMPNT

**Set precision counter

Subtract and return

Set pointer for addition

Of DCOP to DCAC

**Set precision counter

Add and return

Is DCOP greater than DCAC?

No, subtract DCOP from DCAC

Equal, SIGNAC remains positive

Yes, change SIGNAC

To negative value

Subtract DCAC from DCOP

Initialize index pointer

Fetch byte from DCOP

Fetch byte from DCAC

Store DCOP byte in DCAC

Store DCAC byte in DCOP

Advance index register

Last pair of bytes swapped?

No, swap next pair

Yes, return

Decimal Arithmetic Routines 129

CMPR

CMPRA

LDX #$03 Initialize index pointer

LDA DCOP—1,X Fetch byte from DCOP

CMPDCAC—1,X Compare to byte of DCAC

BNE CMPRET Not equal, return

DEX Equal, decrement index pointer

BNE CMPRA Not done, continue

RTS Return, with C and Z conditioned

Signed Subtraction

The signed subtraction routine, starting at the label SGNSUB,

subtracts the contents of DCOP from the contents of DCAC. The

calling program must set the contents of DCAC, SIGNAC, DCOP

and SIGNOP with the desired values before calling this routine. The

sign and magnitude of each of the numbers is examined to determine

the actual operation to be performed. Several of the routines in the

signed addition routine are used here. Since the decimal addition or

subtraction routine is the last operation to be executed, the condi¬

tion of the C flag will indicate whether an error has occurred.

SGNSUB LDA SIGNOP Fetch sign of DCOP

CMP SIGNAC Compare to sign of DCAC

BNE DIFSGN Not equal, change sign and add

AND #$80 Are both negative?

BMINAGATV Yes, compare magnitudes

JSR CMPR Positive, is DCOP > DCAC?

BCC SB21 Yes, subtract DCAC from DCOP

LDA #$80

STA SIGNAC

No, set SIGNAC negative

BNE SB 12 Subtract DCOP from DCAC

DIFSGN LDA SIGNAC Fetch SIGNAC

ADD #$80 Change SIGNAC to opposite

STA SIGNAC Store back in SIGNAC

JMPSAR2 Add DCOP to DCAC

NEGATV JSR CMPR Compare DCAC to DCOP

BEQNEG1 Equal, make sign positive

BCC SB 21 Subtract DCAC from DCOP

NEG1 LDA #$00

STA SIGNAC

DCOP < DCAC, SIGNAC positive

BEQSB12 Subtract DCOP from DCAC

Using these routines as a base, expanded decimal arithmetic

programs can be written. One possible addition might be to include

a decimal point by specifying either a fixed number of digits in

the DCAC and DCOP to be to the right or left of the decimal point,

or setting up a memory location to define the exponent. The ex¬

ponent may reside in one or more bytes of memory and also have a

sign byte associated with it. By following the procedures outlined

in Chapter Five, one may develop a floating point program using

decimal values for the mantissa and exponent. The following routines

may be used to perform the multiplication and division operations

Decimal Arithmetic Routines 131

of this type of floating point program.

The multiplication and division routines both operate with a

four-byte accumulator and operand. The first three bytes contain

the six BCD digits of the respective values. The fourth byte is an

extension of each value to allow for an overflow during the calcu¬

lations. The fourth byte must be cleared before entering either of

these routines. Also, a memory location is set aside for both routines

to store a digit counter value. This location, labeled DIGCNT, is

initially set by these routines to the number of significant digits of

the accumulator. As the operations proceed, this value is decrement¬

ed; when it reaches zero, the operation is complete.

A table area labeled DCPP is used to store the partial-product

and quotient for the respective operations. This table consists of

132 Chapter 6

seven bytes, which allows enough room for the multiplication

routine to maintain any overflow that may occur.

Multiplication Routine

The multiplication routine multiplies the contents of the deci¬

mal operand by the contents of the decimal accumulator. Begin¬

ning with the least significant digit of DCAC and working up, each

digit is used as a counter for the number of times the operand is

to be added to the partial-product. When the counter goes to zero,

the contents of the partial-product are rotated right, which achieves

the same result as multiplying the operand by ten. The next digit

of the accumulator is then selected as a counter for the number of

times the operand is added to the partial-product. This multipli¬

cation loop is executed once for each significant digit of the deci¬

mal accumulator. At the completion, the contents of DCPPO to

DCPP5 contain the 12 significant digits of the result. If this routine

is used in part of a floating point program, the results should be

normalized. This is accomplished by shifting the partial-product

register to the left until a nonzero BCD digit is in the most signifi¬

cant half of the most significant byte. This normalization process

follows the same general outline as that defined in Chapter Five.

DIGCNT *=*+1 Digit counter

TMPCNT *=*+1 Temporary counter storage

DCPPO *=*+1 Partial-product LS Byte

DCPP1 *=*+1

DCPP2 *=*+1

DCPP3 *=*+1

DCPP4 *=*+1

DCPP5 *=*+1 Partial product of MS Byte

DCPP6 *=*+1 Partial product extension

DCOP *=*+2 DCOP storage

DCOPM *=*+2 DCOP MS Byte and extension

DCAC *=*+2 DCAC storage

DCACM *=*+2 DCAC MS Byte and extension

DECMUL LDA #$06 Set digit counter

STA DIGCNT Store in memory

LDX #$07 Set precision counter

LDY #$00 Initialize index pointer

STY TOPNT+1 Initialize page of TOPNT

STY FMPNT+1 Initialize page of FMPNT

LDA #< DCPPO Fetch low portion of DCPPO address

Decimal Arithmetic Routines 133

NXTDGT

STA TOPNT Store pointer in TOPNT

JSR CLRMEM Clear partial-product area

SED Set decimal mode flag

LDA DCAC Fetch LS Byte of DCAC

AND #$0F Mask off upper half

BEQDIGDON If zero, no need to multiply this digit

STA TMPCNT Store digit in temporary counter

LDX #< DCPP3 Set pointer to partial-product storage

STX TOPNT Store in TOPNT

LDX #< DCOP Set pointer to operand

STX FMPNT Store in FMPNT

LDX #$04 Set precision counter

JSR DECADD Add DCOP to partial-product

DECTMPCNT Decrement digit multiplier

134 Chapter 6

BNE MULTPL

DIGDON LDA #$04

PPSHIFT LDY #$07

LDX #< DCPP6

JSR ROTATR

LDY #$03

LDX #< DCACM

JSR ROTATR

SEC

SBC #$01

BNE PPSHIFT

DEC DGTCNT

BNE NXTDGT

RTS

Not zero, continue multiply loop

Set rotate counter

Set precision counter

Set pointer to partial-product

Rotate partial-product right

Set precision counter

Set pointer to DCAC

Rotate partial-product to right

Set carry for decrement

Decrement rotate counter

Not done, continue rotating

Decrement digit counter

Not zero, continue multiplication

Return

Division Routine

The decimal division routine operates in a manner similar to the

binary to decimal conversion routine of Chapter Four. That is, it

subtracts the divisor from the dividend until a borrow is required.

A count of the number of times the subtraction is successfully per¬

formed is maintained. This becomes part of the quotient. When the

borrow is detected, the routine rotates the dividend four bits to the

left, and the subtraction cycle begins again. As each digit of the quo¬

tient is generated, it is shifted into the least significant digit of the

quotient.

Before calling this routine, the divisor and dividend must be

loaded into the DCAC and DCOP as normalized decimal numbers.

Once again, to normalize these decimal values, the most significant

nonzero BCD digit must be in the most significant digit location of

the respective values. At the completion of this routine, the quotient

is contained in DCPP1 through DCPP3. As compensation for the

operation of the routine, a value of one must be added to the expo¬

nent of the quotient.

DECDIV LDX #$06

STX DIGCNT

LDA #< DCPP0

3TA TOPNT

LDY #$00

3TY TOPNT+1

STY FMPNT+1

JSR CLRMEM

Set up digit counter

Store digit counter in memory

Set up low portion of DCPP0 address

Store in TOPNT for clear routine

Set up index pointer

Initialize page portion of TOPNT

Initialize page portion of FMPNT

Clear quotient storage

Decimal Arithmetic Routines 135

136 Chapter 6

SUBDON LDX #$04

JSR DECADD

DEC DIGCNT

BEQDVEXIT

LDA #$04

RESULT LDX #< DCPP1

LDY #$03

JSR ROTATL

LDX #< DCOP

LDY #$04

JSR ROTATL

SEC

SBC #$01

BNE RESULT

BEQDVNEXT

DVEXIT RTS

Set precision counter

Add DIVISOR back to DIVIDEND

Decrement digit counter

Equal zero, return

Set rotate left counter

Set pointer to QUOTIENT

Set precision counter

Rotate QUOTIENT left

Set pointer to DIVIDEND

Set precision counter

Rotate DIVIDEND left

Set carry for decrement

Decrement rotate counter

Not zero, continue rotating

Continue division loop

Return

Decimal Arithmetic Routines 137

Chapter 7

Input/Output Processing

Writing a program to communicate with a peripheral device is as

important as almost any other programming task one may have to

perform. Nearly every program requires some form of input or

output.

The input data may be received from a group of sensors that

make up a burglar alarm system. Or, it may be entered through a

keyboard device for a variety of control or data entry purposes.

Input also could come from a bulk storage device, such as magnetic

tape, for loading programs or reading large blocks of data. The out¬

put data may be used to turn relays or lights on and off, send char¬

acters to a display (such as a mechanical printer or video display),

or to store programs or data on a bulk storage device. No matter

what the task, it is important to be able to write effective I/O driver

programs.

Before the various forms of I/O routines are presented, it is

important to understand the input/output setup of the 6502. The

6502 CPU handles input and output in the same manner as reading

and writing to the memory. This means that any addressable memory

location may be used as an eight-bit parallel I/O port. Therefore, it

is possible to have 64K of eight-bit parallel I/O devices on one sys¬

tem. This would be impractical since some memory would be re¬

quired to store the program to operate the I/O devices. The method

of accessing an I/O port as though it is a location in memory allows

the use of any of the memory access instructions to transfer data

to and from the I/O devices. With this capability, the programmer is

afforded considerable flexibility in testing and transferring data with

an I/O device.

Some Ground Rules for Discussion

The following convention will be assumed for the I/O ports.

Input/Output Processing 139

An input port consists of eight parallel data lines that provide true

logic to the 6502 CPU. True logic means that a logic “1” trans¬

mitted by the input device is seen by the 6502 as a logic “1.” An

output port is assumed to consist of eight parallel data lines that

receive data written to it by the 6502 and maintains the eight-bit

data at the output port lines until another data pattern is written

to the output port.

The first type of I/O processing to be discussed is one that

would be used in conjunction with the simplest form of input and

output devices. The input device might be a group of switches,

or sensors, that provide a “1” or “0” to each of the input data

lines to indicate an open or closed position. The output device

might consist of a group of lamps that may be turned on by out-

putting a “1,” or off by outputting a “0.” The schematic diagram

below illustrates this configuration.

140 Chapter 7

Several Methods of Data Input

As indicated by this diagram, the input port has eight switches,

numbered zero through seven, connected to its corresponding eight

data leads. These switches might be sensor switches in a burglar alarm

system that monitor the opening and closing of doors throughout a

building. Assuming that the switches are closed when the doors are

properly secured, the following input routine may be used to test

for an open door. The label SWINP refers to the memory address of

the switch input port.

SWTEST LDA SWINP Read switch input port

BEQ SWTEST If zero, all doors closed, continue

testing

One or more doors open, alarm

condition

This routine illustrates the simplicity of inputting information

from an input port. The data is read into the accumulator by the

LDA instruction. Each bit of the accumulator now indicates the

open (1) or closed (0) condition of the switches connected to the

input port, and the status flags are conditioned to indicate whether

one of the switches is open. For this example, the Z flag will be

set to “1” if all the switches are closed. Should any of the switches

become open, the data lead corresponding to that switch will go to

a “1” condition, and the Z flag will be reset, since the accumula¬

tor will not be “0.”

It is not necessary to use all eight data leads of an input port.

Suppose there are only five switches, zero through four, connected

to the input port. The other three leads are not used. In this case a

different test procedure would be required. The program listing

below loads the accumulator with a value of $1F, and the BIT

instruction is used to test for a one in any of the five least signi¬

ficant bits of the input port. The Z flag would indicate the possi¬

ble open condition of one or more of the five switches.

SWTEST LDA #$1 F Set the bit test byte

BIT SWINP Test five least significant bits

BEQ SWTEST+S2 If zero, all doors closed, continue

testing

.. . One or more doors open, alarm condi¬

tion

Input/Output Processing 141

Suppose one data lead was required. By connecting it to bit

seven of the input port, the N flag could be used in testing for a

“1” or “0” condition. In this case, the conditional branch instruc¬

tion in the first listing would be changed to a BPL instruction.

Output to Light the LEDS

At the output port, a set of eight lights shown as light emit¬

ting diodes, is connected to the eight output port data leads, num¬

bered zero through seven. Each light is turned on by outputting a

“1” to the corresponding data lead. The light is turned off by out-

putting a “0.” For example, to turn on every other light, one could

load the accumulator with a bit pattern of “10101010” and store it

in the output port, as listed below. The label LIGHTS refers to the

memory location assigned to the output port.

LDA #$AA Load the desired bit pattern

STA LIGHTS Output pattern to LIGHTS

These LIGHTS might be connected to the control panel of the

burglar alarm system. They could be used to indicate which of the

doors have been opened by including an instruction to output the

data to the LIGHTS as it is read from the switches. The following

sequence may be used.

SWTEST LDASWINP Read switch input port

STA LIGHTS Output switch conditions to display

BEQ SWTEST If zero, all doors closed, loop back

... One or more doors open, alarm condi¬

tion

After inputting the data from the switches, the routine imme¬

diately outputs the same data to the LIGHTS. In so doing, any light

that turns on will indicate that the corresponding door is open. The

program then tests for a door open, just as before, and either continues

testing, if the doors are all closed, or performs whatever logic may be

necessary when a door is found to be open (i.e., sounding an alarm,

calling the police, etc.).

Applications for This Simple Interface

Naturally, the switches and lights used in this example may be

142 Chapter 7

replaced by a wide variety of devices for an even greater number of

applications. The input may come from heat, light, or pressure trans¬

ducers. Or, it can come from analog-to-digital converters, which

transform an analog signal to a proportional digital binary, or BCD

value. An output port may drive relays, seven segment displays,

alarms, or digital-to-analog converters.

A novel application for a simple output device is to connect a

speaker to one bit of an output port and have the computer syn¬

thesize different frequencies to create music. The different tones

are generated by outputting alternate ones and zeros with an appro¬

priate delay in between each output. The shorter the delay, the

higher the frequency, and vice versa. By outputting a given set of

tones in the proper sequence with each tone lasting the proper dura¬

tion, a musical tune can be played by the computer. Many 6502-

based microcomputers have been known to play such intriguing

songs as “Mary Had a Little Lamb,” and “A Bicycle Built for Two. ”

Looking at this application from a more scientific viewpoint,

this form of frequency synthesis may be used to generate any num¬

ber of different waveforms for a multitude of technical applications.

Generating Serial Data

One such technical application is in the generation of asyn¬

chronous serial data. Serial data is data that is sent one bit at a time

with each bit lasting a specific amount of time before the next bit is

output. Asynchronous serial data is a short group of bits output in

serial form. Each group of bits generally represents a single char¬

acter of one of the standard character sets (i.e., ASCII, BAUDOT),

although random data patterns may be transmitted in this fashion.

It is referred to as asynchronous, because the beginning of the group

of bits may occur at any time. However, once started, the timing of

each bit in the group must meet the specified time. The timing dia¬

gram illustrates the manner in which the ASCII code for the letter

“E” (11000101 in binary) is transmitted as asynchronous serial data.

As noted in the timing diagram, the character code for the

“E” is preceded by a start bit. This bit is used to inform the re¬

ceiving device that a character is being transmitted. The character

code then follows the start bit, beginning with the least significant

bit. The character transmission is completed by adding one or more

stop bits to the end of the code. The stop bits are added to allow

time for the receiving device to prepare to receive another char¬

acter.

The timing diagram also indicates that there is a specific amount

Input/Output Processing 143

of time, “t,” for the duration of each bit. This timing is often re¬

ferred to by the number of bits that could be transmitted in one

second at this rate, rather than the amount of time used for each bit.

The standard bit per second, or BAUD, rates used for transmitting

ASCII code, range from 110 BAUD for many keyboard and printer

devices, to 9600 BAUD for high-speed devices.

Programmed Delay Creates the BAUD Rate

The computer may be used to generate serial data in this form,

by outputting one bit at a time, and providing a programmed delay

between each bit to create the proper timing. The routine listed next

outputs eight-bit characters as asynchronous serial data with two

stop bits. The timing generated by this routine outputs data at a

rate of 110 bits per second. This corresponds to a delay between bits

of 9.09 milliseconds. The timing may be calculated by adding up the

number of cycles per instructions (indicated in the column of figures

to the left of the listing) for each instruction executed between the

output of each bit. This timing assumes a cycle time of one micro¬

second.

This routine may be used to output ASCII characters to a

printer or other type of device that receives asynchronous serial

data at 110 bits per second. The character to be output must be in

the accumulator when this routine is called. The initial contents of

the X and Y index registers are pushed onto the stack at the start

of this routine, and then pulled from the stack before returning.

The output of each bit is accomplished by rotating it into bit zero

144 Chapter 7

of the accumulator, and storing it in the memory location assigned

to the output port. One should make special note of the fact that

the instructions between the output and rotate operations do not

affect the carry flag. This allows the routine to maintain the charac¬

ter for outputting as each bit is transmitted.

PRINT STATEMP

TYA

PHA

TXA

PHA

LDATEMP

CLC

ROL A

JSR BITOUT

2 LDY #$08

6PRINT1 JSR BITOUT

2 DEY

3 BNEPRINT1

2 LDA #$01

4 STAPRINTR

6 JSR TIMER

6 JSR TIMER

PLA

TAX

PLA

TAY

LDA TEMP

RTS

4 BITOUT STAPRINTR

2 ROR A

6 JSR TIMER

6 RTS

2 TIMER LDX #$D2

6TIME1 JSR DUMMY

6 JSR DUMMY

6 JSR DUMMY

2 NOP

2 DEX

3 BNETIME1

6 JSR DUMMY

6 DUMMY RTS

Save initial character

Move Y to A and

Save Y on the stack

Move X to A and

Save X on the stack also

Fetch character

Clear carry for start bit

Rotate carry into A

Output start bit

Set data bit counter

Output data bit and delay

Decrement bit counter

Not zero, output next bit

Set up stop bit

Output stop bit

Delay for one stop bit

Delay from second stop bit

Fetch initial X value

Restore in X

Fetch initial Y value

Restore in Y

Fetch initial character

Return

Output bit to printer

Position for next output

Delay one bit time

Set delay counter value

Jump to return instruction to

Provide delay using

X index register as delay counter

Added for delay

Decrement delay counter

Not zero, continue loop

Added for delay

Return

Input/Output Processing 145

Shaking Hands with the Computer

The type of peripheral devices discussed require nothing more

than a simple input or output instruction to transfer the information.

When a transfer is to be made, the program does not care what state

the peripheral is in, previous to the transfer. However, for many peri¬

pherals, the process of transferring data between it and a computer

under program control requires some type of handshaking. This

means that a program must check whether the device is ready to

make a data transfer, and, when so indicated, perform the logic

necessary to make the transfer. In general, there are two methods

used to provide the program control. One method is to have the pro¬

gram continuously input the status bit of the peripheral, often

referred to as the “programmed data transfer” (or PDT) bit, until

it indicates the device is ready for a data transfer. The other method

is for the peripheral device to send a signal to the computer when it

is ready for a data transfer. This signal is called an interrupt. Once

an interrupt is received, the method of data transfer is similar to that

for the PDT operation.

The major difference between the two modes is that under

PDT operation, the program must continuously check the status of

the device. Under interrupt operation, the program is free to perform

other operations while waiting for the interrupt from the peripheral.

Utilizing the PDT Bit

Whether a peripheral device is designed to generate interrupts

or operate strictly in the PDT mode, there is generally a PDT bit

associated with it. A device that generates interrupts will have a

PDT bit to provide the option of operating in the PDT mode. When

operating under interrupt it is used to identify itself as the device

that generated the interrupt, should there be more than one in¬

terrupting device in the system. It is, therefore, important to under¬

stand how to check the PDT bit of a device. Any peripheral that is

designed to operate with a PDT bit will have a status output. This

output may contain only the PDT bit, or it may include several

other status leads to indicate error conditions that may occur in the

peripheral. These status leads are connected to an input port allow¬

ing the status to be examined by a program.

There are several ways of checking the PDT bit, depending

on its location within the memory byte. If located in the most

significant bit of the status byte, loading the accumulator with the

status will set the N flag to indicate the condition of the PDT bit.

146 Chapter 7

CKPDT LDA STATUS Load status byte into A

BPL CKPDT If PDT = zero, continue testing it

PDT = one, device ready, begin

processing

If the PDT bit is located in a bit position other than bit seven,

the BIT test instruction may be used. The accumulator must be

loaded with all zeros except for the bit corresponding to the loca¬

tion of the PDT bit in the device’s status byte. Then, by performing

the BIT test between the accumulator and the device’s status, the Z

flag will indicate the opposite condition of the PDT bit. The fol¬

lowing routine checks the PDT bit as bit one until it indicates that

the device is ready.

CKPDT LDA #$02 Set bit to test the PDT

BIT STATUS Condition the Z flag for the PDT test

BEQ CKPDT If Z set, device not ready

If Z reset, device is ready

Anticipate I/O Problems

There are times when it is known that a PDT bit must change

within a certain amount of time. For instance, after outputting a

character to a display device there is usually a specific maximum

time limit for the device to accept it and the PDT bit to come true

again. If this time limit is surpassed, it might indicate a problem with

the display device. This possible error may be monitored by the

program by inserting a counter in the PDT test loop. The counter

would be calculated to allow only a given amount of time to elapse

before the PDT bit must return. Otherwise an error routine would

be entered to inform the operator of a possible problem. The fol¬

lowing format may be used to include a timer in the PDT checking

routine. The exact timing of this loop may be calculated as discussed

in Chapter Three.

LPSET LDY #$YY

CKPDT LDA STATUS

BMI PDTEST

DEY

BNE CKPDT

Set up timing loop counter

Condition N flag for PDT test

Have PDT, continue processing

No PDT, decrement timer

Timer #= zero, continue testing

Time out, possible error

Input/Output Processing 147

Data Input with PDT Control

PDT operation, for most input devices, generally follows the

same basic procedure. When a program requires data from an input

device, it reads the status of the device and checks the condition

of the PDT bit. If the PDT bit indicates the device has data avail¬

able, the program can proceed to input the data. For some devices,

once the data has been read in, a “character accepted” signal from

the program may be required to reset the PDT bit.

This procedure is typical of many interfaces that latch the data

in from a device and then set a PDT bit. The diagram shown next

illustrates this form of interface. The data is entered by setting up

the data at the input to the latches and then pulsing the strobe line

of the latches. This same strobe signal sets the PDT bit. After the

data has been read by the program, the reset line is pulsed by the

program outputting a “character accepted” signal.

A program to control this type of interface is listed next. The

PDT bit is connected to bit seven of the status input port. This

6

INPUT 5

DEVICE 4

DATA 3

LEADS 2

0

INPUT
DEVICE
STROBE

DATA

INPUT

PORT

STATUS
INPUT
PORT

CONTROL
OUTPUT

PORT

148 Chapter 7

allows the program to check for the PDT bit by reading the status
and testing for the condition of the N flag. The data is entered
through the data input port. Once the data has been accepted, the
PDT bit is reset by outputting a “character accepted” signal to the
control output port.

PDTINP LDA STATUS

BPLPDTINP

LDA DATAIIM

RESET LDY #$01

STY CHRACC

LDY #$00

STY CHRACC

RET

Input device status

N = zero, no PDT, continue testing

N = one, read data from device

Set up output pulse

Output character accepted

Clear to create pulse

Reset character accepted

Return

In this program listing, the “character accepted” signal is de¬
rived by first loading index register Y with $01 and outputting it
to the control port, labeled RESET. Then, Y is cleared and output
to the control port. This effectively creates a pulse on the least
significant data lead of the control port. Some interfaces are reset
by simply writing to the control port. A third possibility is that the
interface resets the PDT bit when the input is executed. In this case,
the input routine may be exited just after the data is read.

The label RESET has been included in this routine to point
out the portion of the routine that resets the PDT bit. This portion
may be required as an initial reset for the input device at the start
of a program that uses the device to receive data. Quite often when
dealing with such devices, it is necessary to output a reset during
the initializing stages of the program. This guarantees that the device
status will indicate the true status when the device is first called upon
to input some data. For the other cases in which the PDT is reset
by writing to the control output or reading from the data input, the
corresponding instruction should be executed to initialize the input
device.

Receiving Serial Data

Another routine that tests the status before inputting the data
is one which inputs asynchronous serial data. The start bit of the
asynchronous data could be considered its PDT bit. The input rou¬
tine would test for the presence of the start bit. When detected, the
data bits that follow may be read in by sampling the data at the
proper time intervals.

Input/Output Processing 149

Sampling the data is performed by providing a programmed

delay until the midpoint of each bit is reached. The bit is then read

in on the input data lead. The arrows in the timing diagram shown

next indicate when each bit should be sampled by the program. The

left arrow indicates when the start bit is first detected. The next

arrow indicates a delay time equal to one and a half bits before

sampling bit zero of the data. Each subsequent sample is taken after

a delay time of one bit.

The next program may be used to receive eight bits of asyn¬

chronous serial data. Such data may be generated by the PRINT

routine previously mentioned. The timing provided in this routine

reads the data at 110 BAUD. By altering the delay, this timing may

be changed to input data over a wide range of BAUD rates. The num¬

ber of cycles for each instruction is indicated in the left-hand col¬

umn. The delay time between samplings may be calculated by adding

up the number of cycles for each instruction executed between

inputs. The major portion of the delay is provided by the same

TIMER subroutine used in PRINT.

The data is input through bit seven of the data input port. This

allows the program to test simply the N flag for the start bit. Each

bit is then input by rotating bit seven of the input port into the

carry and then rotating the carry into the accumulator. When the

last bit has been input, an additional delay of one bit time is added

to make sure the input data is into the stop bit before returning to

the calling program. If this final delay was not provided, and the

last data bit of the input was a “0,” the calling program could

call SRLINP and would input the last data bit that is still at the

input port. If this occurs, SRLINP would assume it to be the start

bit of a new character. This would result in the input of erroneous

data. The data received is returned to the calling program in the

accumulator.

START
BIT

U-1.5t

0 1 2 3 4 5 6 7 STOP STOP

f 4* t t *1* t *1* * »ttT rtt 1 rt

150 Chapter 7

SRLINP TYA

PHA

TXA

PHA

4 SR LOOP LDA KYBDIIM

3 BMISRLOOP

2 LDA #$00

6 JSR HAFBIT

6 JSR TIMER

2 LDY #$08

6NEXBIT ROLKYBDIN

2 ROR A

6 JSR TIMER

2 DEY

3 BNENEXBIT

JSR TIMER

STA TEMP

PLA

TAX

PLA

TAY

LDA TEMP

RTS

2 HAFBIT LDX #$6E

3 JMPTIME1

Save initial value of Y

On the stack

Save initial value of X

On the stack

Input to look for start bit

N flag = one, no start bit yet

Have start bit, clear A

Delay one-half bit time

Delay one bit time

Set data bit counter

Move data bit into carry

Move carry into accumulator

Delay one bit time

Decrement bit counter

Not zero, input next bit

Delay one bit time

Temporarily save data

Fetch initial value of X

Restore X

Fetch initial value of Y

Restore Y

Restore data received in A

Return

Set one-half bit delay time

Delay one-half bit time

Output Data with a Specific Format

PDT operation of a parallel output device is generally straightfor¬

ward. When the PDT bit is checked and indicates the device is ready

to accept data, the data may be output. Upon receipt of the data by

the device, the PDT bit will change state to indicate that the device is

busy processing the data. Once the processing is completed, the PDT

will return to its device ready status and wait for the next output from

the program. Therefore, if the program is to output more than one

character, the PDT bit must be monitored after each character is out¬

put to determine when the device is ready to accept the next charac¬

ter.

The following routine might be used to output a line of text to a

printer that accepts ASCII characters as eight-bit parallel data. This

routine fetches the characters one at a time from a buffer and outputs

them to the printer. When a carriage return is detected in the character

string, it is transmitted, followed by a line feed. The program then re-

Input/Output Processing 151

turns to the calling program. The PDT is assumed to be in bit zero of

the status input from the printer. Also, when the routine is called,

FMPNT is assumed to be pointing to the start of the character string.

LINOUT LDY #0

JSR CKPDT

LDA (FMPNT),Y

CMP #$8D

BEQ FINISH

STA CHROUT

INY

JMP LINOUT

FINISH STA CHROUT

JSR CKPDT

LDA #$8A

STACHROUT

RTS

CKPDT LDA #$01

BIT STATUS

BEQ CKPDT+$2

RTS

Initialize pointer

Wait for printer PDT

Fetch character from message storage

Character = carriage return?

Yes, complete output

No, output character to printer

Advance character string pointer

Wait for PDT

Output carriage return

Check PDT before sending line feed

Set line feed

Output line feed

Return to calling program

Set up to test PDT

Test status of printer PDT

PDT = zero, wait for printer

PDT = one, return to output next char

This method of checking the PDT bit of an I/O device is com¬

monly used when it is not required to perform other functions while

waiting for a data transfer from a peripheral. In cases where a back¬

ground program is not necessary while waiting for a peripheral, it is of

no consequence for the CPU to dedicate itself to testing the PDT bit.

Such constant attention to the PDT bit allows data to be transferred

as rapidly as possible. This is also necessary if the data is only available

for a given length of time. A card reader is a good example. The pro¬

gram must read a character from the card reader when it is available.

Once the reader starts reading a card, it does not stop in between each

character while the program reads it. The program must be ready for

each character when it is available. Otherwise, the character will be

lost.

Data Transfer Using Interrupts

Another method of transferring data under program control is to

have the I/O device send an interrupt signal to the computer when it is

ready for a data transfer. This signal interrupts the program currently

in progress and directs the CPU to an interrupt service routine. The in¬

terrupt routine performs the logic necessary to transfer the data to or

152 Chapter 7

from the peripheral and then returns to the original program as though

it had not been interrupted at all. This method of operation is known

as interrupt processing.

Interrupt processing is analogous to a postman being interrupted

while delivering the mail. As the postman is placing the mail in a row

of mailboxes, someone walks up to him and taps him on the shoulder.

The mailman completes filling the current mailbox, makes a mental

note as to which mailbox is to be filled next, and turns to the person.

The mailman is given a letter and is asked to send it. The mailman

takes the letter and stores it in his mailbag. He then returns to the job

of filling the mailboxes, beginning with the box he remembers as the

next one to be filled. This is similar to the procedure followed by a

computer when an interrupt is received from a peripheral.

When an interrupt signal is received, the current instruction being

executed is completed. The address of the next instruction to be exe¬

cuted is saved on the stack. Also, it is necessary to save the informa¬

tion contained in the CPU status flags so that it may be properly re¬

stored before returning to the interrupted program. The computer is

now ready to perform the steps necessary to transfer the data between

itself and the peripheral. Once the transfer is completed, the status

flags must be restored to their initial contents at the time the interrupt

was received. Execution of the interrupted program is resumed at the

instruction that would have been executed next.

The 6502 Interrupt Structure

Before presenting methods of interrupt processing with the 6502,

several features should be discussed which make interrupt processing

easy and effective. There are two types of hardware interrupts avail¬

able. One is the nonmaskable interrupt. When received, the nonmask¬

able interrupt is always acknowledged. For this reason, the nonmask¬

able interrupt is generally used for very high-speed devices that re¬

quire immediate attention, or as a power failure interrupt to allow the

storage of any critical information.

The other hardware interrupt is the maskable interrupt. Its ac¬

knowledgement is dependent on the condition of the I flag. When

the I flag is set, the maskable interrupt line is disabled. An interrupt

on the maskable interrupt line will not be acknowledged by the

6502. When the I flag is reset, the 6502 will acknowledge a maskable

interrupt. The maskable interrupt is generally used by most of the

devices that operate under interrupt control. For a maskable or non¬

maskable interrupt, the interrupt service routine will be basically the

same.

Input/Output Processing 153

The condition of the interrupt flag may be software controlled

by one of three instructions. The SEI instructions sets the I flag, dis¬

abling the maskable interrupt. The CLI instruction clears the I flag,

enabling the receipt of maskable interrupts. The third instruction,

PLP, conditions not only the I flag, but all of the status flags from

the contents of the stack. The stack may be loaded from the accumu¬

lator using PHA first. Then, the PLP instruction will move that

value from the stack into the status register.

Interrupts Aren’t Always Desired

When writing a program to operate with interrupts, there are

several times when it may not be desired to accept interrupts. One

is during the initialization of the program, before all the necessary

pointers, counters and tables used by the program have been set up.

If an interrupt is received before the program is ready to accept it,

the program may receive or transmit erroneous data. To avoid such

an occurrence, the first instruction of the program should be the dis¬

able interrupt instruction. Then, after the initialization is complete,

the interrupts may be enabled. The program now is ready to deal

with the interrupts properly.

Another time that interrupts must be disabled is upon receipt

of an interrupt. This is to allow the program enough time to respond

to the first interrupt before receiving the second. The 6502 automati¬

cally disables the maskable interrupt upon receipt of the maskable,

nonmaskable and software interrupts. Therefore, it is not necessary

to include a SEI instruction in the interrupt service routine. When

the interrupt service routine is finished, the return from interrupt in¬

struction will restore the I flag to its initial condition at the time the

interrupt was received. If it is desired to allow nesting of interrupts,

the interrupt service routine can enable the maskable interrupt after

it has completed its initial steps. Any subsequent interrupt on the

maskable interrupt line will be recognized and serviced, even if it is

the original interrupting device. The process of nesting interrupts will

be discussed later.

It may be necessary to disable interrupts when a section of the

program is changing information vital to the function of the inter¬

rupt routine. This information might be the address for storing or re¬

trieving data to be transferred. Or, a flag indicating the progress of

the program to the interrupt routine. For whatever reason, the pro¬

gram must disable interrupts before the change is made. After chang¬

ing the information, the interrupts may be re-enabled. This will pro¬

vide the smooth transition of information needed by the interrupt

154 Chapter 7

routine.

Save Data from the Interrupted Program

Another feature of the 6502 is the automatic status register

storage that takes place when an interrupt is acknowledged. The con¬

tents of the program counter and the status register are pushed onto

the stack. It is necessary to save this information so that it may be

restored before returning to the interrupted program. When the inter¬

rupt service routine has completed its operation, the return from in¬

terrupt instruction, mnemonic RTI, pulls the status register and pro¬

gram counter from the stack. This results in the CPU returning to the

interrupted program with no change in its execution.

The accumulator and index register may also be stored in the

stack if they are used by the interrupt service routine. This is achieved

by pushing the accumulator, transferring the index registers to the

accumulator and pushing them onto the stack. At the completion of

the service routine, the data must be pulled from the stack and trans¬

ferred to the proper registers. This program sequence is illustrated

next.

INTRPT PHA

TXA

PHA

TYA

PHA

PLA

TAY

PLA

TAX

PLA

RTI

Interrupt received, program counter

And status register pushed onto stack

Save accumulator contents on stack

Move X index reg to accumulator

Save contents of X on stack

Move Y index reg to accumulator

Save contents of Y on stack

Process interrupt

Fetch original contents of Y

Restore Y index register

Fetch original contents of X

Restore X index register

Restore accumulator

Restore status and program counter

to original contents

The procedure for receiving interrupts by a 6502-based micro¬

computer follows the basic steps described above. When an interrupt

is received from a peripheral, the CPU automatically pushes the con¬

tents of the program counter and status register onto the stack, and

sets the I flag. (For the maskable interrupt, this procedure assumes

that the I flag is reset at the time the maskable interrupt occurs.) The

Input/Output Processing 155

CPU vectors to the proper interrupt service routine.

Service the Interrupting Device

The interrupt service routine performs the logic required to ser¬

vice the interrupting device. It is usually a combination of the PDT

routine for the device being controlled, and a routine that checks and

stores the data for an input, or sets up the data to be output. The in¬

terrupt routine is meant to operate independently from the main

program. It must perform its own checks and manipulate the data in¬

to and out of memory, as well as drive the peripheral. In order to ac¬

complish this, and to provide a flexible interrupt routine, a link be¬

tween the main program and the operation of the interrupt service

routine must be established.

One method of establishing the link is through the use of an in¬

terrupt table area. This table area normally includes at least three

items, namely, a memory pointer, a data counter, and an in-progress

flag. The memory pointer is used by the interrupt routine to indi¬

cate where input data is to be stored, or where output data is to be

found. As the interrupt routine stores or outputs each byte of data,

the memory pointer is advanced to the next location. The data coun¬

ter indicates to the interrupt routine the amount of data to be re¬

ceived or sent. The routine decrements this counter each time it in¬

puts or outputs some data. When the counter reaches zero, the opera¬

tion is complete. If necessary, the end of the operation also may be

indicated by the receipt or transmission of a terminating character,

such as a carriage return or line feed. This would terminate the opera¬

tion before the data counter reached zero. The completion of the

operation then is signaled by resetting the in-progress flag. The in¬

progress flag is set by the main program when the input or output is

initiated. Then, when the interrupt routine is finished with the I/O

operation, the in-progress flag is reset. The main program periodically

checks this in-progress flag and, when it is reset, the main program

knows that the I/O operation is complete.

The in-progress flag may also serve another purpose. The inter¬

rupt routine can test this flag when an interrupt is received to deter¬

mine whether an interrupt from the peripheral is expected. If it is ex¬

pected, the interrupt routine can service the interrupt normally. If

the interrupt is not expected, the interrupt may be ignored by reset¬

ting the I/O device, if necessary, and returning to the interrupted

program. Or, an error routine may be entered, which informs either

the main program or the computer operator of the erroneous inter¬

rupt.

156 Chapter 7

After the interrupt service routine completes its operation, it re¬

turns control to the interrupted program. This is accomplished by re¬

storing the CPU registers and executing the return from interrupt in¬

struction. The original status and program counter are pulled from

the stack, and the return is made to the interrupted program. Restor¬

ation of the status and CPU registers before exiting the interrupt ser¬

vice routine allows the interrupted program to continue execution as

though the interrupt never occurred.

Interrupts for Input and Output Differ

Interrupt processing for an input device is not exactly the same

as that for an output device. The reason for this difference is that an

interrupt from an input device indicates that the input device has a

character or some data available for the program. The program may

read the data in, process it, and then wait for another interrupt. For

an output device, an interrupt indicates that the device has accepted

the previous output and is ready to receive another character. There¬

fore, an output device initially must receive an output from the pro¬

gram before it generates an interrupt. Also, after the last character is

received by the output device, a final interrupt will be generated,

which must be ignored. This difference is further illustrated by the

following input and output interrupt routines.

The input interrupt service routine stores characters as they are

input into a buffer area in the memory. This routine continues until

either the buffer is filled or a carriage return is received. The routine

might be used to input characters from a keyboard or data from a

paper tape reader. A table area is used which contains the input buf¬

fer pointer, data counter and in-progress flag. This table is listed

next, followed by the table set-up routine of the main program. The

table set-up routine initializes the contents of the table when an in¬

put sequence is to begin.

The in-progress flag in the first byte of the table is represented

by the sign bit, not the contents of the entire byte. Therefore, the re¬

maining seven bits in this byte may be used to signal error conditions

or intermediate program status. This type of information is often re¬

quired by the interrupt routine or the main program. Next, the in¬

put buffer pointer is stored in the second and third bytes of the table,

with the low portion of the address in the second byte, and the page

portion in the third byte. The address that must be initially loaded

into these locations is the start address of the input biffer minus one.

Setting this pointer to the location before the start of the input buf¬

fer is necessary because the input interrupt routine increments the

Input/Output Processing 157

input buffer pointer before storing the character received, not after.

Finally, one should note the use of the set and clear the I flag

instructions in the SETINT routine before and after the table is set

up. This prevents an interrupt from being acknowledged while the

contents of the input interrupt table are being initialized. However,

disabling interrupts may not be necessary if the data counter is ini¬

tialized first, followed by the pointer and finally the in-progress flag.

In this way, the pertinent data is loaded into the table before the in¬

progress flag is set.

Interrupt Input Table

FLAGIN .BYTE $1

.BYTE $1

.BYTE $1

.BYTE $1

SETINT LDA #$80

STA FLAGIN

LDA #INBFLO

STA FLAGIN+$1

LDA #INBFPG

STA FLAGIN+$2

LDA #$XX

STA FLAGIN+$3

CLI

In-progress flag, sign bit

Low portion, input buffer pointer

Page portion, input buffer pointer

Data counter

Set up routine for input

Disable mskbl interrupts during setup

Store in-progress flag

Set low portion of buffer address

Store in interrupt table

Set page portion of buffer address

Store in interrupt table

Set data counter

Store counter in table

Enable maskable interrupts

Continue main program

The input interrupt service routine is listed followed by the

flow chart. The input is performed by a single load instruction. This

assumes that the input device is reset by reading the data from its in¬

put port. When implementing this routine, the instruction marked by

the double asterisk should be replaced by those required to operate

the specific device being driven.

It is assumed in this routine that only one device in the system

can generate an interrupt. Therefore, it is not necessary to check for

the PDT bit of the input device. If one desires to check the PDT bit

as an error checking measure, this routine should include an instruc¬

tion sequence which inputs the PDT bit of the input device and tests

the status. If the PDT bit is not set properly, an error routine should

be entered. Otherwise, the routine should proceed to input the data

and continue with the normal interrupt processing.

After the data has been input, the in-progress flag is checked to

158 Chapter 7

determine whether an input is expected by the interrupt program.

This routine ignores an unexpected interrupt by simply returning to

the interrupted program without storing the character inputted. It

should be noted that by performing the input sequence before check¬

ing the in-progress flag, the input device will be properly reset

whether the interrupt was expected or not.

Assuming the interrupt was expected, the character received is

stored in the input buffer. The new input buffer pointer is then

stored in the input interrupt table. The data counter is decremented

and, if zero, the in-progress flag is reset and the interrupt service rou¬

tine is exited. If it is not zero, the character just received is tested for

a terminating character. In this routine, the input may be terminated

by a carriage return, ASCII code $8D. If it is a carriage return, the in¬

progress flag is reset to end the input operation and the interrupt

routine is exited. If it is not a carriage return, the in-progress flag re¬

mains set when the routine is exited.

The short instruction sequence following the interrupt service

routine listing may be used by the main program to check for the

completion of the input operation. When the sign bit of the in-prog-

ress byte is reset, the main program will branch to the appropriate

routine, referred to here as CMPTIN, to examine the data received.

The contents of the interrupt input table may be used by the main

program in examining the data input. The input buffer pointer in¬

dicates the location of the last character received. The data counter

indicates either the number of unused locations in the input buffer,

or, if equal to zero, that the entire buffer is filled.

INTINP LDA INPDAT

LDY FLAG IN

BPLEXITIN

INC FLAGIN+$1

BNE INTSTR

INC FLAGIN+$2

INTSTR LDX #$00

STA (FLAGIN+1.X)

DEC FLAGIN+$3

BEQFININP

CMP #$8D

BNE EXITIN

FININP STX FLAG IN

EXITIN

Input data from input device

Check in-progress flag

Interrupt not expected, ignore

Increment input buffer pointer

Not zero, store data

Increment page portion of pointer

Clear index pointer

Store data received in buffer

Decrement character counter

If zero, input finished

Is character a carriage return?

No, exit input routine

Input complete, clear in-progress flag

Restore registers and return

Sequence to check

Input/Output Processing 159

Outputting Under Interrupt

Operation of an output device under interrupt control requires

a different sequence of events from that for an input device. As

pointed out before, the main reason for this difference is that the

output device generates an interrupt after a character has been out-

160 Chapter 7

putted by the program. The input device generates an interrupt to in¬

dicate that it has a character available. The output routine presented

next illustrates the different approach that must be taken for an out¬

put device.

The output interrupt routine outputs a string of characters

stored in a buffer memory. Such a routine may be used to output

messages to a printer or video display, or to output data to a low- or

medium-speed storage device. (High-speed devices generally use a

method of direct memory access. The data is transferred directly

from memory to the storage device, or vice versa, under control of a

hardware interface.)

The interrupt output table is the same type of table used to pro¬

vide the exchange of information between the main program and the

input interrupt service routine. The organization of the table is the

same as the input table, with the in-progress flag, output buffer

pointer, and data counter. However, when the table is initialized, the

buffer pointer is set to the actual start address of the output buffer,

rather than the start address minus one, as in the input table.

Aside from setting up the table, the initialization routine checks

the in-progress flag to determine whether an output is currently be¬

ing executed. This may occur when a program uses the same output

device to display messages from a number of different routines, such

as error and advisory messages in a system monitor program. Check¬

ing this flag eliminates the possibility of an output being initiated be¬

fore a previous one is finished. The input routine does not test this

flag since it is less likely that two separate inputs will be required at

the same time. However, if the possibility does exist, a similar in¬

struction sequence should be added to the input initialization routine

before the disable interrupt instruction.

When the in-progress flag is reset, the output may be initiated.

First, the output table is set up with the required information. While

this table is being loaded, it is not necessary to disable interrupts,

since the output device should not generate an interrupt until after

the first character has been sent. Once the proper information is con¬

tained in the table, the first character is output by this routine. The

output is performed by the STA OUTDAT instruction in this listing.

This initial output triggers the output sequence which is carried on by

the interrupt service routine. For implementation of this routine on

one’s own system, the instruction in this routine and in the interrupt

service routine marked with a double asterisk should be changed to

the instruction sequence necessary to drive the specific output de¬

vice.

Input/Output Processing 161

Interrupt Output Table
FLAGOUT .BYTE $1 Output in-progress flag

.BYTE $1 Low portion, output buffer pointer

.BYTE $1 Page portion, output buffer pointer

.BYTE $1 Output data counter

Output initialization routine

TSTOUT LDAFLGOUT Check in-progress flag

BMI TSTOUT If output in progress, wait

LDA #$XX Set character counter

STA FLGOUT+$3 Store in output interrupt table

LDA #OUTBFL Set low portion of buffer address

STA FLGOUT+$1 Store in interrupt table

LDA #OUTBFP Set page portion of buffer address

STA FLGOUT+$2 Store in interrupt table

LDA #$80 Set in-progress flag

STA FLGOUT Store in output interrupt table

LDX #$00 Set up buffer pointer

LDA (FLGOUT+$1,X) Fetch first character to output

STA OUTDAT** Output character to device

Continue main program

The output interrupt service routine is entered upon receipt of

an interrupt from the output device. The data counter is decrement¬

ed once and checked for zero. When it reaches zero, the last charac¬

ter has been output and the output operation is complete. The in¬

progress flag is reset, and the routine returns to the interrupted pro¬

gram.

If the counter is not zero, the in-progress flag is checked to

make sure that the output routine is expecting an interrupt. As in the

input interrupt service routine, this is indicated by the in-progress

flag being set. If it is reset, the interrupt may be ignored by simply

returning to the interrupted program. Otherwise an error routine

may be entered that signals either the main program or the operator

that an unexpected interrupt was received.

If the routine makes it by the test, the next character may be

outputted. In this routine, it is assumed that the output device is the

only device generating interrupts. Thus, a PDT test is not necessary

before outputting the character. However, if it is felt that such a test

should be performed before outputting the character, the required

instruction sequence for testing the PDT bit may be included. The

routine then returns to the interrupted program.

INTOUT DECFLGOUT+$3 Decrement character counter

162 Chapter 7

BEQ FLGRST = zero? Yes, reset in-progress and exit

LDX #$0 Clear the index register

LDAFLGOUT Check in-progress flag

BPL EXITOT Reset, ignore interrupt

INC FLGOUT+$1 Advance output buffer pointer

BNEXMIT Not zero, continue

INC FLGOUT+$2 Advance page portion

XMIT LDA (FLGOUT+$1,X) Fetch character to be output

STA OUTDAT ** Output character

EXITOT . .. Restore registers and return

FLGRST STX FLGOUT Reset in-progress flag

JMP EXITOT Return to interrupted program

Several Devices on One Interrupt

Only one device has been considered to generate an interrupt.

When an interrupt is received, the interrupt service routine simply

performs the indicated input or output for the single device. This

may not always be the case, since an I/O controller quite often con¬

trols an input and an output device, and generates an interrupt for

Input/Output Processing 163

both devices. Or, there may be several interrupt devices connected to

the system. In order to control more than one device, the interrupt

service routine must determine which device generated the interrupt

by polling each device when an interrupt is received.

Polling means that the interrupt service routine checks the sta¬

tus of each device that could have generated the interrupt. This is

done by checking the PDT bit of each of the devices. When a PDT bit

is found to be set, the appropriate service routine is entered to exe¬

cute the I/O for that device. At the conclusion of the service routine,

the return from interrupt instruction sequence is executed to return

to the interrupted program.

The following listing is an example of a polling routine that

checks the status of three possible interrupting devices. This instruc¬

tion sequence should be the initial sequence of the interrupt routine.

The labels DVICE1, DVICE2 and DVICE3 refer to the interrupt ser¬

vice routines that perform the I/O logic for the designated device.

This routine tests the PDT bit of each device and jumps to the proper

service routine when a PDT bit is set. If none of the possible devices

have the PDT bit set, this routine ignores the interrupt and returns to

the interrupted program. This condition may be treated as an error

condition, if necessary, rather than ignoring it.

LDA PDTDV1

BMI DVICE1

LDA PDTDV2

BMI DVICE2

LD PDTDV3

BMI DVICE3

Polling routine

Test status of device 1

If PDT set, service device 1

Test status of device 2

If PDT set, service device 2

Test status of device 3

If PDT set, service device 3

None set, ignore interrupt

Nesting Interrupts for Fast Service

The use of several interrupting devices in a system may require

that the interrupt service routines allow receipt of an interrupt from

one device while another is being serviced.

This means that the service routine of the first interrupting de¬

vice must enable interrupts before it has completed its operation.

Then, if an interrupt from a second device occurs before this routine

is finished, the current interrupt routine being executed becomes the

interrupted program of the second interrupt. Allowing interrupts to

overlap in this manner is referred to as nesting interrupts.

The illustration shows how the flow from one interrupt routine

164 Chapter 7

to another would proceed if three interrupting devices generated in¬

terrupts within a short period of time, to create the nesting of three

levels of interrupts.

The 6502 stack plays an important role in nesting interrupts.

Saving the CPU registers and status in the stack allows the interrupt

routines to interrupt each other without setting up special pointers

and data storage areas for each interrupt level or device. The only re¬

strictions on the number of nesting levels, as far as the stack is con¬

cerned, is the amount of memory provided for use by the stack. Each

interrupt may use six memory locations in the stack to store the reg¬

isters. Therefore, for every interrupt nesting level one can expect,

there must be six memory locations available in the stack. One must

also allow for other uses of the stack by the main program (i.e., sub¬

routine calls, temporary data storage).

PROGRAM

INTERRUPT FROM
DEVICE 1

INTERRUPTS
ENABLED

INTERRUPT FROM
DEVICE 2

INTERRUPTS
ENABLED

RETURN
TO MAIN

PROGRAM

DEVICE 1
SERVICE

COMPLETE

1-1
INTERRUPT FROM

DEVICE 3

INTERRUPTS
ENABLED

DEVICE 3
SERVICE

COMPLETE

I-'
DEVICE 2
SERVICE

COMPLETE

Input/Output Processing 165

Deciding when to enable interrupts in an interrupt service rou¬

tine to allow nesting is generally determined by the speed of the de¬

vice being serviced. A low-speed device may allow interrupts to be

enabled immediately, since it is likely that a swift data transfer is not

required. A medium-speed device, or a device that has a limited

amount of time to transfer the data, may require the data transfer to

be performed before the interrupts are enabled. Then, the remainder

of the service routine may be executed while the interrupts are en¬

abled. If the high-speed device is being operated in the interrupt

mode, it is very likely that it should not allow interrupts to be en¬

abled until the end of its service routine. If it were to enable inter¬

rupts, a slower device might delay the execution of the high-speed

device’s service routine to the point that a second interrupt from the

high-speed device would be received before the initial interrupt had

been serviced completely. Therefore, one should carefully consider

which routines, and where in the routines, the interrupts are to be

enabled.

This method of selecting when to enable interrupts is a means

of setting a priority for the interrupting devices. The high-speed de¬

vices would have the highest priority, since they do not allow them¬

selves to be interrupted until the service routine is finished. The me¬

dium-speed devices, which may enable interrupts after several opera¬

tions of the service routine have been completed, would be consid¬

ered a middle priority. The low-speed devices would be the lowest

priority because they may be interrupted at any time during the in¬

terrupt service routine.

Such a system of priorities may be augmented by the compu¬

ter’s hardware, if a priority interrupt interface is used. This interface

fields the interrupts from the interrupting devices and allows the

higher priority interrupts through first, before those of lower priori¬

ty. The interrupt software for setting up priorities for the interrupts

received is greatly simplified by this type of interface.

When deciding whether to operate a computer system’s peri¬

pherals under PDT control or interrupt, one should consider the type

of programs (along with the number of peripherals) to be used in the

system. If the programs are the type that receive an input and then

output a response to a single terminal, the PDT mode would be the

easiest to implement, and would provide sufficient performance. Pro¬

grams of this type include games, editors and small system monitors.

For programs that provide keyboard entry and storage or retrieval

from a bulk storage device to enter and store mailing lists, for exam¬

ple, one should consider interrupt processing. This would allow the

166 Chapter 7

data entry and bulk storage to be performed simultaneously. How¬

ever, if the speed of the storage device is fast enough to store each

entry with a minimal delay imposed between entries, the PDT mode

may work just as well. For programs that operate a number of peri¬

pherals simultaneously and, in essence, are running more than one or

two programs at a time, the interrupt mode of operation is a neces¬

sity. Such multi-programmed systems might be used to control sever¬

al terminals at once, while monitoring a burglar or fire alarm system.

Therefore, one should carefully consider the overall requirements for

the type of programs to be run when setting up the I/O portion of

one’s system.

Input/Output Processing 167

Chapter 8

Search and Sort Routines

I he capability of a computer to manipulate data stored in its memo¬

ry is another reason why the computer is such a powerful machine.

The speed with which it can search large blocks of data and extract

information, or sort the data into alphabetical order, or into com¬

mon groupings, is far beyond the capability of a human. The infor¬

mation may represent a wide variety of data. For example, the data

could consist of names and addresses that are to be searched for

those in specific geographic regions. The list may be sorted into

alphabetical order, or the data may be numerical information, such

as test grades or data gathered for a research project. In order for

the computer to perform these tasks, the information to be pro¬

cessed must be arranged in the memory in a specific format. Then,

programs must be written to perform the desired operation.

Structure of Tables

The data to be manipulated must be arranged in some form of

table in the memory. The table may contain a number of entries.

Each entry may consist of one or more bytes of memory, depend¬

ing on the maximum size of a single entry and the format specified.

The two types of tables to be discussed in this chapter are commonly

referred to as fixed-format and free-format tables. In a fixed-format

table, the data is arranged in a standard fashion for each entry. The

same number of bytes is assigned to each entry, no matter how many

bytes an entry may actually take up. A free-format table allows the

size of each table entry to follow the data pattern of the entry. If

the first entry requires four bytes and the next requires six, in a

free-format table, the first entry will only use the four bytes and the

second will use six. There are advantages to both formats, depending

on the application. These will be discussed as the search routines for

each format are presented.

Search and Sort Routines 169

In order to provide a means of comparing the two formats, two

search routines will be presented that perform the same function.

However, one routine utilizes a search table of a fixed format and

the other utilizes a free-format search table. The function performed

by these search routines is that of receiving a command input from a

keyboard and searching a control table for the same command. If

the command is found, the start address of the command routine is

taken from the table and is used to jump to that command routine.

If the command is not found in the table, the search routine returns

to wait for another command input. These routines have many prac¬

tical applications. The entries in the control table may be modified

easily to represent as many commands as one may need for a spe¬

cific program. Any program that allows an operator to input com¬

mands to direct its operation may find one of these routines useful.

Same Data — Two Different Formats

The following control tables are used to illustrate the operation

of the fixed-format and free-format search routines. The commands

in these tables are: GO, LIST, MEDIAN, AVG, COUNT, and ERASE.

These commands might be used to direct the computer to aid in con¬

ducting an experiment. The GO command could initiate a 10-second

sampling interval, during which time a sensor is monitored to detect

the occurrence of an event. A count of the number of times the

event occurs within the 10-second interval is stored in the computer

by the GO command routine. The LIST routine might be used to

print out the counts stored for each 10-second interval up to that

time. This would allow one to examine the raw data for possible

patterns that may develop. The MEDIAN and AVG commands could

calculate the median and average values of the counts stored for each

interval, and output the value to a printer. The COUNT command

might be used to indicate the number of 10-second intervals that

have been initiated up to that time. The ERASE command could

be used to reset the storage area to allow a new set of tests to begin.

In both the fixed-format and free-format control tables, each

entry is divided into two fields. The first field consists of the charac¬

ter string that defines the command name. In the fixed-format entry,

this field is set to a fixed length. In this case, it is six characters long.

For the command names that do not use all six locations available

for the name, the unused locations are filled with zeros. In the free-

format entry, the command field contains the characters for the

name plus one more location that contains a zero byte. This extra

location is used to indicate the end of the name. The second field

170 Chapter 8

is the same for both formats. This field is two bytes long and con¬

tains the start address of the command in the entry.

The end of each control table is indicated by a zero byte stored

immediately following the last entry. By terminating the tables in

this way, the search routines simply may check the first character

of each entry for a zero byte to determine when the end of the

table is reached. Therefore, the number of entries in the control

table is completely independent of the operation of the search

routine. Modifying the number of commands in the control table

is accomplished by adding or deleting the command entries and

moving the zero byte to the end of the new control table. The

search routine does not have to be changed at all.

The control table for the fixed-format search routine is pre¬

sented here, followed by the control table for the free-format rou¬

tine. Note the difference in length between the two tables caused by

the extra zeros that must be added to the fixed-format entries.

0200 C7

Fixed-Format Control Table

Code for letter G

0201 CF Code for letter O

0202 00 Not used for this command

0203 00 Not used for this command

0204 00 Not used for this command

0205 00 Not used for this command

0206 40 Location on page where GO starts

0207 03 Page where GO routine starts

0208 CC Code for letter L

0209 C9 Code for letter 1

020A D3 Code for letter S

020B D4 Code for letter T

020C 00 Not used for this command

020D 00 Not used for this command

020E 60 Location on page where LIST starts

020F 03 Page where LIST routine starts

0210 CD Code for letter M

0211 C5 Code for letter E

0212 C4 Code for letter D

0213 C9 Code for letter 1

0214 Cl Code for letter A

0215 CE Code for letter N

0216 80 Location on page where MEDIAN starts

0217 03 Page where MEDIAN routine starts

Search and Sort Routines 171

0218

0219

021A

021B

021C

021D

021E

021F

0220

0221

0222

0223

0224

0225

0226

0227

0228

0229

022A

022B

022C

022D

022 E

022F

0230

0200

0201

0202

0203

0204

0205

0206

0207

0208

0209

020A

020B

020C

020D

020E

020F

Cl

D6

C7

00

00

00

AO

03

C3

CF

D5

CE

D4

00

CO

03

C5

D2

Cl

D3

C5

00

EO

03

00

C7

CF

00

40

03

CC

C9

D3

D4

00

60

03

CD

C5

C4

C9

Code for letter A

Code for letter V

Code for letter G

Not used for this command

Not used for this command

Not used for this command

Location on page where AVG starts

Page where AVG routine starts

Code for letter C

Code for letter O

Code for letter U

Code for letter N

Code for letter T

Not used for this command

Location on page where COUNT starts

Page where COUNT routine starts

Code for letter E

Code for letter R

Code for letter A

Code for letter S

Code for letter E

Not used for this command

Location on page where ERASE starts

Page where ERASE routine starts

End of table marker

Free-Format Control Table

Code for letter G

Code for letter O

End of command word marker

Location on page where GO starts

Page where GO routine starts

Code for letter L

Code for letter I

Code for letter S

Code for letter T

End of command word marker

Location on page where LIST starts

Page where LIST routine starts

Code for letter M

Code for letter E

Code for letter D

Code for letter I

172 Chapter 8

0210 Cl Code for letter A

0211 CE Code for letter N

0212 00 *End of command word marker*

0213 80 Location on page where MEDIAN starts

0214 03 Page where MEDIAN routine starts

0215 Cl Code for letter A

0216 D6 Code for letter V

0217 C7 Code for letter G

0218 00 *End of command word marker*

0219 A0 Location on page where AVG starts

021A 03 Page where AVG routine starts

021B C3 Code for letter C

021C CF Code for letter O

021D D5 Code for letter U

021E CE Code for letter N

021F D4 Code for letter T

0220 00 *End of command word marker*

0221 CO Location on page where COUNT starts

0222 03 Page where COUNT routine starts

0223 C5 Code for letter E

0224 D2 Code for letter R

0225 Cl Code for letter A

0226 D3 Code for letter S

0227 C5 Code for letter E

0228 00 *End of command word marker*

0229 E0 Location on page where ERASE starts

022A 03 Page where ERASE routine starts

022B 00 **End of table marker**

As mentioned before, the lengths of the two tables differ be-

cause of the variation in the number of characters for each command

name. If, however, all of the names were six characters long, the

fixed-format table would be shorter than the free-format. The com¬

mand field name in the free-format table would require seven bytes

to store each name — six for the name and one for the terminating

zero byte.

Fixed-Format Input Routine

Another consideration when deciding which format to use is

the type of input programming required to enter the commands.

There are several different methods that may be used to input and

store the command to be searched for in the control table.

Search and Sort Routines 173

One method is to initially clear out the input buffer area by
filling it with zero bytes. Then, as each character is entered, it is
stored in the input buffer. When a carriage return is entered, the
input is terminated and the contents of the input buffer may be used
to search for the command. If the command entered does not fill
the input buffer, the unused locations will contain zero bytes. This
method is best suited for the fixed-format, since the input buffer will
contain the same contents as the command name field of the match¬
ing command in the control table.

The following routine could be used to clear the input buffer
and store the characters in the buffer as discussed above. This rou¬
tine uses the CLRMEM subroutine in Chapter Three to clear the in¬
put buffer. The INPUT routine that is called must input a charac¬
ter from the input device (such as an ASCII keyboard), echo it to a
display and return with the character in the accumulator. Along with
the test for the carriage return, to terminate the input and return,
the character count is checked. When the input buffer is full, any
additional characters that may be inadvertently entered before the
carriage return are ignored. The initial instruction sequence may be
used as a control routine to call the individual routines, including
the search routine to be presented later.

When a match is found, the FOUND routine is entered. This
routine takes the address from the address field of the matching con¬
trol entry and uses it to jump to the command routine. The address
is moved to FMPNT on page zero. The jump indirect instruction
directs the CPU to the appropriate command routine. After the com¬
mand routine completes its operations, it may return to the main
control program simply by executing a return instruction.

Since this routine compares the entire input buffer against the
command name field of the control table entries, it is not necessary
for it to test the input buffer or command name for a terminating
character. However, a counter must be set to the number of charac¬
ters in the command name field so that the routine will know when
all of the characters have been compared. In this routine, this count¬
er is set to six. If one changes the length of the command name
field, this counter must also be changed to reflect the new length.

The listing for this fixed-format search routine is presented
next, followed by the flow chart. The flow chart also includes the
logic flow of the main control routine when used in conjunction with
this search routine.

NEXCMD LDA #$0 Set page portion of input pointer

174 Chapter 8

STA TOPNT+1 Store in TOPNT

LDX #INPBFR Set low address of input pointer

STX TOPNT Store in TOPNT

LDX #$06 Set precision counter

JSR CLRMEM Clear input buffer storage

JSR INCMND Fetch command string from input

JSR SRCHFX Search table and execute command
JMPNEXCMD Repeat loop for next command

INCMND LDX #INPBFR Set pointer to input buffer
LDY #$06 Set counter to buffer size

INCHAR JSR INPUT Call routine to input character

CMP #$8D Is character a carriage return?

BNECHECK No, continue input

RTS Yes, return, input complete
CHECK CPY #$00 Is character counter = zero?

BEQINCHAR Yes, ignore new character

DEY Else, decrement counter

STA $0,X Store character in buffer

INX Advance input buffer pointer

BNE INCHAR Fetch next character

Free-Format Input Routine

Another method of inputting the characters is to leave the in¬

put buffer contents as is at the start of the input routine. As each

character is received, it is stored in the input buffer. When a carriage

return is received, the input is terminated by storing the carriage

return in the input buffer and returning. Thus, the input buffer area

must be assigned one byte more than the maximum of characters

assigned for a command name. This method is more advantageous for

the free-format search routine. It sets up the command entered in a

similar format to that used in the command name field of the free-

format control table entries.

The only real diference between this input routine, labeled

INCTRL, and the previous INCMND routine is the instruction se¬

quence that stores the carriage return as the terminating charac¬

ter in the input buffer before returning. Also, one should note the

absence of the routine that clears the input buffer before inputting

the command. This saves quite a few memory locations. The initial

instruction sequence is a sample control routine for directing the

operation of the command search function.

NEXCMD JSR INCTRL Input command from input device

Search and Sort Routines 175

JSRSRCHFR Search table and execute command

JSR NEXCMD Repeat loop for next command

INCTRL LDX #INPBFR Set pointer to start of input

LDY #$06 Set counter to buffer size

INCHAR JSR INPUT Call routine to input character

CMP #$8D Is character a carriage return?

BNE CHECK No, check for full buffer

STA $0,X Yes, store carriage return in buffer

RTS Return, input complete

CHECK CPY #$00 Character count zero?

BEQ INCHAR Yes, ignore current input

DEY Decrement character counter

STA $0,X Store character in buffer

INX Advance buffer pointer

BNE INCHAR Loop to input next character

Searching the Fixed-Format Table

The search routine for a fixed-format control table compares

the contents of the input buffer to the command name field on a

character-by-character basis. This is done by calling the CPRMEM

subroutine, which is presented in Chapter Three. This subroutine

may be included in the SRCHFX routine if it is not used elsewhere

in one’s program.

If the characters in the input buffer do not match any com¬

mand name fields in the control table, the NXWORD routine is

entered to advance the control table pointer to the start of the next

entry. At this point the first character of this entry is checked for

the zero byte, which indicated the end of the control table. If the

zero byte is not found, the routine jumps to the compare routine

to check for a match between the new control entry and the input

buffer. When the zero byte is encountered, it indicates that the

entire table has been searched and no match has been found. The

routine then returns to the control routine to initiate a new com¬

mand entry.

It may be desirable at this point to have the search routine

print out a message, and if no match is found, to inform the opera¬

tor of the error. This may be done by changing the RTS instruction

in the SETNXW routine to a branch or jump instruction, which

jumps to a message output routine to print the message before

returning to the main control program.

When a match is found, the FOUND routine is entered. This

routine takes the address from the address field of the matching

176 Chapter 8

control entry and uses it to jump to the command routine. The

address is moved to FMPNT on page zero. The jump indirect instruc¬

tion directs the CPU to the appropriate command routine. After the

command routine completes its operations, it may return to the

main control program simply by executing a return instruction.

Since this routine compares the entire input buffer against the

command name field of the control table entries, it is not necessary

for it to test the input buffer of command name for a terminating

character. However, a counter must be set to the number of charac¬

ters in the command name field so that the routine will know when

all of the characters have been compared. In this routine, this count¬

er is set to six. If one changes the length of the command name field,

this counter must also be changed to reflect the new length.

The flow chart below includes the logic flow of the main con¬

trol routine when used in conjunction with this search routine.

SRCHFX

INITBF

CMATCH

NXWORD

FOUND

LDX #> CMDTBL

STX FMPNT 1

LDX #CMDTBL—1

STX FMPNT

LDA #INPBFR—1

STA TOPNT

LDY #$06

JSR CMPMEM

BEQFOUND

LDA FMPNT

CLC

ADC #$08

STA FMPNT

LDY #$01

LDA (FMPNT),Y

BNE INITBF

RTS

LDY #$07

LDA (FMPNT),Y

TAX

INY

LDA (FMPNT),Y

STX FMPNT

STA FMPNT 1

JMP (FMPNT)

Set pointer to start of table

Store page portion in FMPNT

Set low portion of table pointer

Store in FMPNT

Set pointer to input buffer

Store in TOPNT

Initialize byte counter

Compare table entry to input

Both equal, process command

Fetch table pointer

Clear carry for addition

Advance pointer to next entry

Restore in FMPNT

Set index pointet to first character

Is end of table reached?

No, continue table search

Yes, entry not found, input command

Set pointer to command address

Fetch low address

Save in X

Advance table pointer

Fetch page portion of address

Store start address of command

Routine in FMPNT

Jump to command routine

Search and Sort Routines 177

Free-Format Search Routine

The free-format search routine that follows has the same basic

flow of the fixed-format routine. That is, it compares the input

buffer to an entry in the control table. If they do not match, it

advances the control table pointer to compare the next entry against

the input buffer. This continues until either a match is found, or the

end of the buffer is reached. But, instead of comparing a fixed

number of characters to get a match, this routine compares the

contents of the input buffer, up to the terminating carriage return,

against each command name field in the control table. If the input

buffer and command name field match to the carriage return in the

input buffer, the corresponding location in the command name field

is checked for its terminating character, a zero byte. If the zero byte

178 Chapter 8

is found, the FOUND routine is entered to fetch the address from

the control table entry and jump to the proper command routine.

Here again, if the suggested main control routine for the free-format

is used, the command routines may return to the main control

routine by executing a return instruction.

SRCHFR LDX#INPBFR Set pointer to input buffer

STX TOPNT Store in TOPNT

LDX #< CMDTBL Set pointer to start of command table

STX FMPNT Store in FMPNT

LDX #> CMDTBL Set page portion of table address

STX FMPNT+1

LDY #$00

STY TOPNT+1

CMATCH LDA (TOPNT),Y

CMP #$8D

BEQ LCHAR

CMP (FMPNT),Y

BNENXWORD

INY

BNE CMATCH

LCHAR LDA (FMPNT),Y

BEQ FOUND

NXWORD LDA (FMPNT),Y

BEQ SETNXW

INY

BNE NXWORD

SETNXW INY

INY

INY

CLC

TYA

ADC FMPNT

STA FMPNT

LDY #$00

LDA (FMPNT),Y

BNECMATCH

RTS

FOUND INY

LDA (FMPNT),Y

TAX

INY

LDA (FMPNT),Y

Store in FMPNT

Initialize index pointer

Store page portion of input address

Fetch entry from input buffer

Is character a carriage return?

Yes, check for end of command

No, is entry equal to command?

No, advance to test next command

Yes, advance index pointer

Check next character

Is end of control field here?

Yes, found matching control word

Test for end of control field

If found, advance to next block

Otherwise, advance command pointer

And continue looking

Advance pointer over the

Address field to start of

Next control word field

Clear carry for addition

Move index pointer to accumulator

Advance command table pointer

Restore pointer in FMPNT

Reset index pointer

Is next control word the end?

No, compare to input buffer

Yes, entry not found, return

Advance pointer to address field

Fetch low portion of command

Save in X

Advance index pointer

Fetch page portion of pointer

Search and Sort Routines 179

STX FMPNT

STA FMPNT+1

JMP (FMPNT)

Store pointer to start of

Command routine in FMPNT

Jump to command routine

180 Chapter 8

Why Sort Out Data?

The process of sorting data into some specified order, or into

groups with common attributes, is another of the computer’s power¬

ful capabilities. For example, it is often desired to arrange a list of

names and addresses in alphabetical order according to the last

names. Or, one may want to sort out persons living in a common

geographical location by sorting the addresses according to Zip

code. In order to program these sort functions, the data first must be

organized into carefully structured tables.

Another Data Structure

Proper structuring may be accomplished by creating fields in

which specific items are to be located. These fields are set up in, a

similar manner to the fields in the search table entries. For this sort

routine, a fixed-format table is used. This table contains a list of

names which are to be arranged in alphabetical order. For illustra¬

tive purposes, the following names are used as table entries.

BROWN, L.R.

DALEY, D.R.

ANDERSON, B.

DARBY, P.

MATTOX, R.T.

MATTHEWS, K.D.

JONES, A.M.

Each element of the names in this list must have a specific field

assigned to it. Looking at the last names, one may observe that the

longest name is eight characters long. However, there are many

names that use more than eight characters. Therefore, a field of

14 bytes for the last name will be used to accommodate the longer

names. One-byte fields will be set up for each of the initials. This

makes a total of 16 bytes for each entry. The delimiters (the comma

and period) are not assigned any location in the tables since a fixed

format is to be used. The inclusion of these punctuation marks

would only serve to take up table space. The delimiters are used,

however, when entering the names to be stored in the table.

A Data Entry Routine

The following program is one possible means of entering the

names into the table in the properly formatted fields. This routine

accepts the names as keyboard entries in the format illustrated

Search and Sort Routines 181

above. Each field is accepted and stored in its proper location in the

table for that entry. A name input is terminated by entering a

carriage return. The delimiters terminate a field entry and advance

the pointer to the next field in the entry. If a field is not filled by

the name, such as a last name with less than 14 characters, or one

with no middle initial, the unused locations in the field are filled

with zero bytes. After the final name has been entered, the operator

may input an asterisk to indicate the completion of the input opera¬

tion.

ASCII Helps Keep Sorting Simple

The character input is expected to be ASCII characters. The

ASCII character set is a well-ordered set of character codes. The

letters A through Z are coded in consecutive order from Cl to $DA

and the numbers zero through nine are coded in order from $B0

to $B9. This is especially useful when sorting into alphabetical or

numerical order, since the lower the code for the character, the

lower it will place the entry in the sorted list.

Before listing this routine, several comments about its opera¬

tion must be given. First, the characters are received by calling a

routine referred to by the label INPUT. This routine must be pro¬

vided by the user to accept characters from the input device asso¬

ciated with one’s system. This routine must return the ASCII code

for the character input in the accumulator upon returning. As a

visual indication for the operator to verify the characters entered,

this INPUT routine should also output the characters received to

the system display device before returning. The contents of the in¬

dex registers must be used to point to a conversion table or whatever,

they should be saved and then restored before returning. This INPUT

routine should also check for the receipt of a carriage return charac¬

ter. When received, the input routine should also output a line feed

character to the printer device, since this is not provided for in the

name input routine.

Before this routine is called, the table area must be properly

set up. This is accomplished by storing a zero byte in the first loca¬

tion in the table. The zero byte is used to indicate the location for

storing the next name entered. Initially, this byte must be set up at

the start of the table by the calling program. Then, as each name is

entered into the table, the zero byte is moved up to the location

immediately following the last name entered in the table. Before

each name input is initiated, the location of this byte in the table

is checked. If the zero byte is not found within the limits of the

182 Chapter 8

table area, it is assumed that the table is filled. At this point, a rou¬

tine, to be supplied by the user and referred to here as TOMUCH,

would be entered. TOMUCH should output a message to the opera¬

tor indicating that the table is filled. The limits of the table area

in this sample routine begin at page $04, and end at page $07 loca¬

tion $FF. Thus, when the table pointer is advanced to the start

of page $08, the table is full.

After the zero byte is found and the program is ready to ac¬

cept a name input, it calls the input routine to fetch the first char¬

acter. There are a number of special codes checked when the first

character is entered. One is an asterisk, which is to be entered when

the list contains all of the names desired. When this character is

received, the routine returns to the calling program, which may then

call upon the sort routine to sort the names into alphabetical order.

The other special codes checked are the carriage return, comma, or

period. If any of these codes are received as the first character, they

are ignored. This is because they indicate the end of either an entry

or a field. They would not be valid at this time since there are no

characters stored as yet for this name.

Once a valid character is entered for the first character, the

characters that follow are checked for a comma or carriage return.

If the comma is received, the remainder of the last name field is

filled with zero bytes, and the portion of the routine that accepts

the initials is entered. If a carriage return is received, the remainder

of the entire entry is filled with zeros and a new name input is

initiated. If the character entered is neither of these two characters,

it is entered as the next character in the last name, up to the four¬

teenth character. If more than 14 characters are entered for the last

name, the excess characters are simply ignored.

If, when the first initial entry is to be entered, a carriage return

is received, the two initial fields are zeroed and a new name input is

begun. If a comma is received, it is ignored. Otherwise, the charac¬

ter is stored as the first initial and the routine jumps to input the

second initial. When the second initial is to be entered, receipt of a

period is ignored, and a carriage return results in a zero byte being

stored for the second initial. Any other input is stored as the second

initial. The routine then checks for a full table, and, if not filled,

begins a new name input sequence.

ACCEPT LDX #< SRTTBL Initialize sort table pointer

STX TOPNT Store low address in TOPNT

LDX #> SRTTBL Set page portion of address

Search and Sort Routines 183

STX TOPNT+1

NOTFND LDY #$00

LDA (TOPNT),Y

BEQFNDEND

JSR CKPAGS

JMP NOTFND

FNDEND LDY #$00

LDX #$0E

JSR INPUT

CMP #$AA

BNENOTDON

LDA #$00

STA (TOPNT),Y

RTS

NOTDON CMP #$8D

BEQFNDEND

CMP #$AE

BEQFNDEND

CMP #$AC

BEQ FNDEND

STRCHR STA (TOPNT),Y

INY

DEX

BEQ FULFLD

JSR INPUT

CMP #$8D

BEQ HAVECR

CMP #$AC

BEQ HAVECM

BNESTRCHR

HAVECR INX

INX

LDA #$00

STA (TOPNT),Y

INY

DEX

BNE HAVECR+2

JSR CKPAGS

LDA #$00

TAY

STA (TOPNT),Y

BEQ NOTFND

Store in TOPNT

Clear index pointer

Is first entry = zero?

Yes, begin input routine

No, advance sort table pointer

Check for last table entry

Initialize index pointer

Set up last name field counter

Fetch character from input

Check for * code

Proceed if not *

End of input

Store end of table marker

Return to main program

Test for carriage return

Ignore if first character in field

Test for period

Ignore if first character in field

Test for comma

Ignore if first character in field

Store character in field

Advance index pointer

Decrement character counter

If zero, field is full

Otherwise, input next character

Test for carriage return

Finish entry if carriage return

Test for comma

Finish last name field

Jump to store character

Increment counter twice to

Clear initial fields

Set up zero byte

Store in remaining field area

Advance index pointer

Decrement byte counter

Not zero, continue clearing

See if end of boundary

Not out of bounds

Store zero byte at start

Of next entry

Begin process for next entry

184 Chapter 8

HAVECM LDA #$00

STA (TOPNT),Y

INY

DEX

BNE HAVECM

FULFLD JSR INPUT

CMP #$AC

BEQ FULFLD

CMP #$8D

BNE SAVIN1

LDA #$00

STA (TOPNT) ,Y

INY

JMPSAVIN2

SAVIN1 STA (TOPNT),Y

INY

INITF2 JSR INPUT

CMP #$AE

BEQ INITF2

CMP #$8D

BNE SAVIN2

LDA #$00

SAVIN2 STA (TOPNT),Y

JSR CKPAGS

JMPFNDEND

CKPAGS CLC

LDA #$10

ADC TOPNT

STA TOPNT

BCC CKPAGS

INC TOPNT+1

LDA TOPNT+1

CMP #$08

BEQ TOMUCH

CKPGRT RTS

Comma entered, clear

Rest of last name field

Advance index pointer

Decrement field counter

Continue clearing field

Get first initial

Test for comma

Ignore comma at this point

Test for carriage return

Not CR, store character

If carriage return, store

Zero byte for both initials

Advance index pointer

Jump to clear second initial

Store character for first initial

Advance index pointer

Input next character

Test for period

Ignore a period at this point

Test for carriage return

Not CR, store zero byte

If CR, store zero byte

Store second initial character

Check if out of bounds

If not, process next entry

Clear carry for addition

Set increment to next entry

Add to indirect pointer

Save in TOPNT

If no carry, return

Increment page portion of TOPNT

Fetch page portion of pointer

Test for boundary exceeded

Display message if table full

Otherwise, return to continue input

It may be desired to provide some kind of entry correction

capability to this main input routine. One way to accomplish this is

to designate another special entry code. When entered, this would

cause the program to reset the table pointer to the start of the cur¬

rent entry and initiate a new name input. The routine listed next

Search and Sort Routines 185

may be used by the input routine to check for a control zero charac¬

ter, $8F. This routine checks for the control zero and, if entered,

resets the table pointer, essentially erasing the current name input

from the table. The start of the name input sequence at the

FNDEND label then is entered. Otherwise, it simply returns to con¬

tinue the input.

CHKRUB CMP#$8F Check for control zero

BEQ R ESET If control zero, start new entry

RTS Otherwise, return to check character

RESET PLA Advance stack pointer to

PLA Eliminate return address

LDY #$00 Reset index pointer to start

JMP FNDEND Begin name entry again

Now that one has defined the format for storing the data, and

developed a means of entering it, a routine may be written to sort

the data as desired. The main objective of the sort routine is to

examine the contents of the field (or fields) that contain the infor¬

mation pertinent to the sort operation. Then it must rearrange the

table contents into the desired order or groups. There are a number

of techniques used to do this. The choice generally depends on the

type of data and sorting operation to be performed. The sort routine

arranges the table contents into alphabetical order by using a ripple

sorting technique.

How the Ripple Sort Operates

The term ripple is derived from the manner in which the routine

moves through the table to sort the entries into alphabetical order.

Beginning with the first entry (N), the sort routine compares it to

the next entry (N+l) in the table, If the first entry is lower in alpha¬

betical order than the second, the two entries are left as it. The rou¬

tine advances to check the order of the second entry (new N) against

the third (new N+l). If the first entry is greater than the second, the

routine will swap the two entries so that the entry that was initially

the second entry would now be the first.

As the procedure continues, if the Nth entry is found to be

greater than the N+l entry, the two entries are exchanged in the

table. Then, rather than advancing to the next entry, the routine

backs up to compare the N—1 entry against the new N entry. This

is because if the initial N+l entry was lower than the N entry, it

may also be lower than the N—1 entry. Therefore, the routine will

186 Chapter 8

continue to transfer the lower entry down through the table until

the entry before it is lower in alphabetical order, or the entry is

moved to the beginning of the table once again. The routine then

starts back up through the table once again. This type of movement

up and down through the table gives a ripple effect as the routine

compares and shifts the entries around.

The operation of the sort routine may be illustrated by exam¬

ining its procedure for arranging the sample list of names into alpha¬

betical order, given at the start of this section. The routine initially

compares the first entries and finds the order to be correct, since

the B in BROWN comes before the D in DALEY. When the next

pair of entries is compared, however, it is found that ANDERSON

should go before DALEY. The routine will therefore shift the second

and third entries around, as illustrated in the table below.

BROWN, L.R.

ANDERSON, B.

DALEY, D.R.

DARBY, P.

MATTOX, R.T

MATTHEWS, K.D.

JONES, A.M.

Now the second and third entries are in the proper order with

respect to each other. The routine backs up to compare the first

entry against the second. The second entry is found to be less than

the first. The routine swaps these two entries and begins comparing

the entries once again, starting with the first two.

ANDERSON, B.

BROWN, L.R.

DALEY, D.R.

DARBY, P.

MATTOX, R.T.

MATTHEWS, K.D.

JONES, A.M.

On this pass through the table, the routine will proceed all

the way up to MATTOX, R.T. before finding another entry out of

order. Note that in comparing MATTOX, R.T. and MATTHEWS,

K.D., the routine must work up to the fifth character in the last

names to determine the proper order. If the last names were the

Search and Sort Routines 187

same, it must go up to the initials to check whether the two entries

are in order. Upon finding these names in the wrong order, the

routine will exchange them:

ANDERSON, B.

BROWN, L.R.

DALEY, D.R.

DARBY, P.

MATTHEWS, K.D.

MATTOX, R.T.

JONES, A.M.

The routine then backs up in order to compare DARBY, P.

and MATTHEWS, K.D. Finding these to be in order, it moves for¬

ward again until MATTOX, R.T. is compared to JONES, A.M.

These two entries are swapped and the routine again backs up and

compares MATTHEWS, K.D. to JONES, A.M. It finds also they

must be swapped. Finally, after determining that DARBY, P. and

JONES, A.M. are in the right order, the routine advances until the

end of the table is reached. The resulting table will contain the names

in the following order:

ANDERSON, B.

BROWN, L.R.

DALEY, D.R.

DARBY, P.

JONES, A.M.

MATTHEWS, K.D.

MATTOX, R.T.

In checking for the start and end of the allowable table, this

routine assumes that the table begins at page $04 location $00, and

ends at page $07 location $FF. If the entire table is not filled, the

last entry must be followed by a zero byte. The instruction sequence

used here to compare the two entries is similar to the CPRMEM

routine presented in Chapter Three.

SORT LDX #< SRTTB1 Initialize pointer to second table entry

STX FMPNT Store low address portion in FMPNT

LDX #< SRTTB1 Set page portion of address

STX FMPNT+1 Store in FMPNT

LDX #< SRTTBL Initialize pointer to start of sort table

188 Chapter 8

STX TOPNT

LDX #> SRTTBL

STX TOPNT+1

INITBK LDA TOPNT+1

CMP #$07

BNECKEND

LDA TOPNT

CMP #$F0

BEQSRTRET

CKEND LDY #$10

LDA (TOPNT),Y

BNE CKNEXT

SRTRET RTS

CKNEXT LDY #$0

LDA (TOPNT),Y

CMP (FMPNT),Y

BNE CKGTLT

INY

CPY #$10

BNE CKNEXT+$2

FINEND CLC

LDA FMPNT

ADC #$10

STA FMPNT

BCC TOADV

INC FMPNT+1

TOADV CLC

LDA TOPNT

ADC #$10

STA TOPNT

BCC INITBK

INC TOPNT+1

BNE INITBK

CKGTLT BCC FINEND

LDY #$0

NOTYET LDA (TOPNT),Y

TAX

LDA (FMPNT),Y

STA (TOPNT),Y

TXA

STA (FMPNT),Y

INY

Store low address portion in TOPNT

Set page portion of address

Store in TOPNT

Fetch page portion of table pointer

Is last page of table indicated?

No, check for last table entry

Yes, check low address portion

Is the end of table reached?

Yes, sort complete, return

Set index pointer

Does N+1 entry start with zero?

No, compare two entries

Yes, end of table entries, return

Initialize index pointer

Fetch character from N entry

Compare N to N+1 entry

Not equal, check for greater than

Equal, advance index pointer

All characters checked?

No, continue comparison

Clear carry for addition

Fetch N+1 pointer

Advance it to next entry

Restore in FMPNT

Not across page, advance TOPNT

Next page, increment page portion

Clear carry for addition

Fetch pointer to N entry

Advance to next entry

Restore in TOPNT

Not across page, check end of table

Advance page portion of TOPNT

Jump to test for end of table

N < N+1, advance to next entry

N > N+1, exchange entries

Fetch character from N

Save temporarily

Fetch character from N+1

Store N+1 character in N

Fetch N character

Store N character in N+1

Advance index pointer

Search and Sort Routines 189

TOD EC

STA FMPNT

BCSTODEC

DEC FMPNT+1

SEC

LDA TOPNT

SBC #$10

STA TOPNT

BCS INITBK

DEC TOPNT+1

LDA TOPNT+1

CMP #$03

BNE INITBK

BEQ SORT

Restore in FMPNT

Page not crossed, decrement TOPNT

Page crossed, decrement page portion

Set carry for subtraction

Fetch N pointer

Back up to N—1 entry

Restore in TOPNT

Page not crossed, compare next entries

Page crossed, decrement page portion

Fetch new N page pointer

Is pointer backed up too far?

No, test next pair of entries

Yes, reset pointers to start

Ways to Shorten Sort Operations

This method of sorting may be aided in a number of ways to

increase the efficiency of its operation. For example, the name input

routine could be revised to separate the table into several sections,

one for names beginning with the letters A through J, another for

K through R, and another for S through Z. As each name is entered,

the first letter could be checked, and the name stored in the proper

section of the table.

Another possibility is to revise the ripple sequence in the fol¬

lowing manner. When a name is found to be out of alphabetical

order, the start address of the current N+l entry could be saved.

Then, after the entry is backed up to the proper location in the

table, the sort may resume by recalling the saved N+l address and

using it as the N address of the next entry to compare. This would

avoid the time-consuming process of retracing the sort up through

the section already known to be in the proper order.

The sort function also could be revised to limit itself to the

contents of just one field in an entry. By setting the pointer and field

length counter to a specific field within each entry, the sort opera¬

tion could arrange the entries according to some classification such

as the Zip code of an address, or a special code set up by the pro¬

grammer to classify each entry.

The techniques and routines discussed in this chapter may be

utilized to create rather sophisticated programs designed specifically

to fill one’s requirements. By combining these with other program¬

ming functions, one may develop programs that give the computer

the capability to perform various operations for a wide variety of

applications.

Search and Sort Routines 191

Appendices

Appendix A

This table presents the entire instruction set of the 6502 CPU.

The first column contains the menmonic used for each instruction.

The machine code, presented as hexadecimal digits, is given in the

second column. For the instructions that use one or more of the

possible addressing modes, the third column indicates the mode for

the machine code of that row. The fourth and fifth columns indicate

the number of bytes required for the instruction cycles and the num¬

ber of machine cycles, respectively. Instructions are defined in Chap¬

ter 1. (* — add one if page boundary is crossed.)

Machine Addressing l\lo. of No. of

Mnemonic Code Code Bytes Cycles

ADC 69 Immediate 2 2

ADC 65 Zero Page 2 3

ADC 75 Zero Page, X 2 4

ADC 6D Absolute 3 4

ADC 7D Absolute,X 3 4*

ADC 79 Absolute// 3 4*

ADC 61 Indirect,X 2 6

ADC 71 Indirect// 2 5*

AND 29 Immediate 2 2

AND 25 Zero Page 2 3

AND 35 Zero Page 2 4

AND 2D Absolute 3 4

AND 3D Absolute ,X 3 4*

AND 39 Absolute,Y 3 4*

AND 21 lndirect,X 2 6

AND 31 Indirect, Y 2 5*

ASL OA Accumulator 1 2

ASL 06 Zero Page 2 5

ASL 16 Zero Page,X 2 6

ASL 0E Absolute 3 6

ASL IE Absolute ,X 3 7

BCC 90 Relative 2 3*

BCS BO Relative 2 3*

BEQ F0 Relative 2 3*

192 Appendix A

BIT 24

BIT 2C

BMI 30

BNE DO

BPL 10

BRK 00

BVC 50

BVS 70

CLC 18

CLD D8

CLI 58

CLV B8

CMP C9

CMP C5

CMP D5

CMP CD

CMP DD

CMP D9

CMP Cl

CMP D1

CPX EO

CPX E4

CPX EC

CPY CO

CPY C4

CPY CC

DEC C6

DEC D6

DEC CE

DEC DE

DEX CA

DEY 88

EOR 49

EOR 45

EOR 55

EOR 4D

EOR 5D

EOR 59

EOR 41

EOR 51

INC E6

INC F6

Zero Page 2

Absolute 3

Relative 2

Relative 2

Relative 2

1

Relative 2

Relative 2

1

1

1

Immediate 2

Zero Page 2

Zero Page,X 2

Absolute 3

Absolute.X 3

Absolute,Y 3

Indirect ,X 2

lndirect,Y 2

Immediate 2

Zero Page 2

Absolute 3

Immediate 2

Zero Page 2

Absolute 3

Zero Page 2

Zero Page,X 2

Absolute 3

Absolute,X 3

1

1

Immediate 2

Zero Page 2

Zero Page,X 2

Absolute 3

Absolute,X 3

Absolute.Y 3

lndirect,X 2

Indirect.Y 2

Zero Page 2

Zero Page,X 2

3

4

3*

3*

3*

7

3*

3*

2

2

2

2

2

3

4

4

4*

4*

6

5*

2

3

4

2

3

4

5

6

6

7

2

2

2

3

4

4

4*

4

6

5*

5

6

Appendix A 193

INC EE Absolute 3 6

INC FE Absolute.X 3 7

INX E8 1 2

INY C8 1 2

JMP 4C Absolute 3 3

JMP 6C Indirect 3 5

JSR 20 Absolute 3 6

LDA A9 Immediate 2 2

LDA A5 Zero Page 2 3

LDA B5 Zero Page,X 2 4

LDA AD Absolute 3 4

LDA BD Absolute ,X 3 4*

LDA B9 Absolute// 3 4*

LDA A1 lndirect,X 2 6

LDA B1 Indirect// 2 5*

LDX A2 Immediate 2 2

LDX A6 Zero Page 2 3

LDX B6 Zero Page,Y 2 4

LDX AE Absolute 3 4

LDX BE Absolute// 3 4*

LDY AO Immediate 2 2

LDY A4 Zero Page 2 3

LDY B4 Zero Page,X 2 4

LDY AC Absolute 3 4

LDY BC Absolute ,X 3 4*

LSR 4A Accumulator 1 2

LSR 46 Zero Page 2 5

LSR 56 Zero Page,X 2 6

LSR 4E Absolute 3 6

LSR 5E Absolute.X 3 7

NOP EA 1 2

ORA 09 Immediate 2 2

ORA 05 Zero Page 2 3

ORA 15 Zero Page.X 2 4

ORA OD Absolute 3 4

ORA ID Absolute ,X 3 4*

ORA 19 Absolute// 3 4*

ORA 01 Indirect.X 2 6

ORA 11 Indirect.Y 2 5*

PHA 48 1 3

PHP 08 1 3

PLA 68 1 4

. PLP

194

28

Appendix A

1 4

ROL 2A

ROL 26

ROL 36

ROL 2E

ROL 3E

ROR 6A

ROR 66

ROR 76

ROR 6E

ROR 7E

RTI 40

RTS 60

SBC E9

SBC E5

SBC F5

SBC ED

SBC FD

SBC F9

SBC El

SBC FI

SEC 38

SED F8

SEI 78

STA 85

STA 95

STA 8D

STA 9D

STA 99

STA 81

STA 91

STX 86

STX 96

STX 8E

STY 84

STY 94

STY 8C

TAX AA

TAY A8

TSX BA

TXA 8A

TXS 9A

TYA 98

Accumulator 1

Zero Page 2

Zero Page,X 2

Absolute 3

Absolute,X 3

Accumulator 1

Zero Page 2

Zero Page,X 2

Absolute 3

Absolute,X 3

1

1

Immediate 2

Zero Page 2

Zero Page,X 2

Absolute 3

Absolute,X 3

Absolute,Y 3

lndirect,X 2

lndirect,Y 2

1

1

1

Zero Page 2

Zero Page,X 2

Absolute 3

Absolute,X 3

Absolute,Y 3

lndirect,X 2

Indirect.Y 2

Zero Page 2

Zero Page,Y 2

Absolute 3

Zero Page 2

Zero Page,X 2

Absolute 3

2

5

7

2

5

6

6

7

6

6

2

3

4

4

r
41

6

5*

2

2

2

3

4

4

5

5

3

4

4

3

4

4
2

2

2

2

2

2

Appendix A 195

Appendix B

00

01

02

03

04

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

Octal to Hexadecimal

0 12 3 4

0 12 3 4

8 9 A B C

10 11 12 13 14

18 19 1A IB 1C

20 21 22 23 24

28 29 2A 2B 2C

30 31 32 33 34

38 39 3A 3B 3C

40 41 42 43 44

48 49 4A 4B 4C

50 51 52 53 54

58 59 5A 5B 5C

60 61 62 63 64

68 69 6A 6B 6C

70 71 72 73 74

78 79 7A 7B 7C

80 81 82 83 84

88 89 8A 8B 8C

90 91 92 93 94

98 99 9A 9B 9C

AO A1 A2 A3 A4

A8 A9 AA AB AC

BO B1 B2 B3 B4

B8 B9 BA BB BC

CO Cl C2 C3 C4

C8 C9 CA CB CC

DO D1 D2 D3 D4

D8 D9 DA DB DC

EO El E2 E3 E4

E8 E9 EA EB EC

FO FI F2 F3 F4

F8 F9 FA FB FC

5 6

5 6

D E

15 16

ID IE

25 26

2D 2E

35 36

3D 3E

45 46

4D 4E

55 56

5D 5E

65 66

6D 6E

75 76

7D 7E

85 86

8D 8E

95 96

9D 9E

A5 A6

AD AE

B5 B6

BD BE

C5 C6

CD CE

D5 D6

DD DE

E5 D6

ED EE

F5 F6

FD FE

7

7

F

17

IF

27

2F

37

3F

47

4F

57

5F

67

6F

77

7F

87

8F

97

9F

A7

AF

B7

BF

C7

CF

D7

DF

E7

EF

F7

FF

196 Appendix B

H
ex

ad
ec

im
al

 t
o
 D

ec
im

al

Appendix C

Appendix C 197

Appendix D

ASCII Character Set

Characters Hexa

Symbolized Rep

A Cl

B C2

C C3

D C4

E C5

F C6

G C7

H C8

I C9

J CA

K CB

L CC

M CD

N CE

O CF

P DO

Q D1

R D2

S D3

T D4

U D5

V D6

W D7

X D8

Y D9

Z DA

[DB

\ DC

] DD

t DE

«- DF

SPACE AO

CAR RET 8D

LINE FEED 8A

Characters Hexa

Symbolized Rep

! A1

" A2

A3

$ A4

% A5

& A6

' A7

(A8

) A9

* AA

+ AB

, AC

AD

AE

/ AF

0 BO

1 B1

2 B2

3 B3

4 B4

5 B5

6 B6

7 B7

8 B8

9 B9

: BA

; BB

< BC

= BD

> BE

? BF

@ CO

RUBOUT FF

CONTROL 0 8F

198 Appendix D

Appendix E

Baudot Character Set

Characters

LC UC

A

B ?

C

D $

E 3

F I

G &

H #

I 8

J

K (
L)

M

IM

O 9

P 0

Q 1

R 4

S BELL

T 5

U 7

V ;
W 2

X /

Y 6

Z

SPACE

CAR RET

LINE FEED

NULL

FIGURES

LETTERS

5 Level Code

Bit Position

5 4 3 2 1

0 0 0 1 1

110 0 1

0 1110

0 10 0 1

0 0 0 0 1

0 110 1

110 10

10 10 0

0 0 110

0 10 11

0 1111

10 0 10

1110 0

0 110 0

110 0 0

10 110

10 111

0 10 10

0 0 10 1

1 0 0 0 0

0 0 111

11110

10 0 11

1110 1

10 10 1

1 0 0 0 1

0 0 10 0

0 10 0 0

0 0 0 1 0

0 0 0 0 0

110 11

11111

Hexa Codes

LC UC

03 23

19 39

OE 2E

09 29

01 21

OD 2D

1A 3A

14 34

06 26

OB 2B

OF 2F

12 32

1C 3C

OC 2C

18 38

16 36

17 37

OA 2A

05 25

10 30

07 27

IE 3E

13 33

ID 3D

15 35

11 31

04 04

08 08

02 02

00 00

IB IB

IF IF

Appendix E 199

Appendix F

Floating Point Program

The floating point program presented in Chapter Five has been
assembled and is presented below as a memory dump. The left-hand
column contains the location of the first memory byte on that line.
Each row of data indicates the contents of 16 memory locations.
The symbol table that immediately follows this memory dump in¬
dicates the location of the instruction referenced by that symbol
within this dump.

The program is split into two parts. The first half contains the
floating point routines. The second contains the input and output
routines. If one desires to use only the floating point arithmetic
routines, the second half may be deleted, beginning at $475.

0200 A9 00 A8 91

0210 60 E8 4C 0B

0220 38 A9 FF 55

0230 00 B1 02 71

0240 02 FI 00 91

0250 C8 CA DO F8

0260 6B 02 95 00

0270 00 DO 07 CA

0280 02 B5 00 30

0290 02 A5 05 F0

02A0 86 00 A2 08

02B0 02 A5 12 DO

02C0 00 F5 00 65

02D0 30 08 38 A5

02E0 30 0B A2 0B

02F0 15 03 C8 DO

0300 A2 13 20 15

0310 2E 02 4C 55

0320 20 15 02 4C

02 C8 CA DO FA 60

02 18 76 00 88 DO

00 69 00 95 00 E8

00 91 02 C8 CA DO

02 C8 CA DO F6 60

60 A2 05 A5 0A 30

A0 04 A2 07 20 20

88 DO F8 84 0B 60

05 C6 0B 4C 7A 02

E4 A0 03 4C 20 02

86 02 A9 00 85 01

01 60 A2 0B B5 00

13 10 07 38 85 2C

13 F5 00 10 C5 60

20 15 03 88 DO F8

F8 A9 00 85 07 85

03 A2 OF 86 00 A2

02 F6 00 CA 98 A0

2A 03 38 20 16 02

18 36 00 88 DO 01

01 60 CA 4C 16 02

88 DO F4 60 18 A0

F6 60 38 A0 00 B1

A0 00 B1 00 91 02

07 A0 00 94 00 4C

02 A2 0A A0 04 B5

A2 07 A0 04 20 0A

A2 0A A0 03 20 15

A5 0A DO 13 A2 10

85 03 A2 04 4C 4A

C5 13 FO 37 38 A9

A9 00 E5 2C C9 18

A5 13 38 F5 00 A8

4C F5 02 A2 13 20

OF A2 OB 20 15 03

07 86 02 A2 04 20

04 48 B5 00 30 06

68 A8 60 A2 08 AO

200 Appendix F

0330 03 20 20 02 4C 9A 02

0340 OB E6 OB A9 17 85 04

0350 A2 OD 86 00 A2 15 86

0360 06 20 15 02 C6 04 DO

0370 17 B5 00 2A 10 13 18

0380 00 75 00 95 00 E8 88

0390 00 A2 04 20 4A 02 20

03A0 03 20 20 02 60 A9 00

03B0 08 20 00 02 A9 OC 85

03C0 06 A5 OA 10 09 C6 06

03D0 30 01 60 C6 06 A2 10

03E0 OA FO 23 A5 13 38 E5

03F0 20 4E 04 30 16 A2 10

0400 4A 02 38 4C OC 04 A9

0410 20 OB 02 A2 10 AO 03

0420 04 30 IE A9 01 18 65

0430 A9 00 65 1A 85 1A 10

0440 OB A2 07 86 02 A2 17

0450 86 02 A2 08 86 00 A2

0460 10 86 00 AO 00 A2 03

0470 DO F6 A5 16 60 A9 00

0480 A2 OC 20 00 02 20 80

0490 85 1C 20 C5 07 20 80

04A0 07 20 CO 07 4C 75 04

04B0 2C 85 IE AO 00 84 04

04C0 42 20 C5 07 20 80 07

04D0 ID 20 C5 07 20 80 07

04EO BA 10 52 29 OF 85 2C

04F0 00 18 36 00 36 00 75

0500 2C DO CE C9 BO 30 2E

0510 DO 83 98 20 C5 07 E6

0520 68 18 75 0 0 95 00 A9

0530 95 02 4C 95 04 A5 1C

0540 A9 00 85 22 A9 07 85

0550 02 AO 17 84 OB 20 55

0560 85 27 E6 27 A5 IE FO

0570 85 27 30 ID DO 01 60

0580 13 A9 50 85 12 A9 00

0590 60 20 97 05 DO FB 60

05A0 11 A9 67 85 10 20 37

05B0 IF 86 02 A2 23 86 00

05C0 20 OA 02 A2 23 AO 04

20 A5 03 A5 13 18 65 OB 85

A2 OA AO 03 20 15 02 90 OD

02 A2 06 20 2E 02 A2 1A AO

DF A2 1A AO 06 20 15 02 A6

AO 03 A9 40 75 00 85 17 A9

DO F6 A2 07 86 02 A2 17 86

55 02 A5 06 DO 07 A2 08 AO

85 03 85 01 A9 14 85 02 A2

02 A2 04 20 00 02 A9 01 85

A2 08 AO 03 20 20 02 A5 12

AO 03 4C 20 02 20 A5 03 A5

OB 85 OB E6 OB A9 17 85 04

86 02 A2 14 86 00 A2 03 20

BF 4C 06 04 18 A2 18 AO 03

20 OA 02 C6 04 DO D2 20 4E

18 85 18 A9 00 65 19 85 19

09 A2 17 AO 03 20 15 02 E6

86 00 A2 04 4C 93 03 A2 14

03 20 4A 02 A2 14 86 02 A2

38 B1 00 FI 02 91 02 C8 CA

85 01 85 03 D8 A2 1C 86 02

07 C9 AB FO 06 C9 AD DO 08

07 C9 8F DO OB A9 BC 20 C5

C9 AE DO 12 24 IE 10 02 30

20 C5 07 4C 95 04 C9 C5 DO

C9 AB FO 06 C9 AD DO 08 85

C9 8F FO Cl C9 BO 30 56 C9

A2 27 A9 03 D5 00 30 46 B5

00 2A 65 2C 95 00 A9 BO 05

C9 BA 10 2A A8 A9 F8 24 25

04 29 OF 48 20 AB 05 A2 23

00 75 01 95 01 A9 00 75 02

FO 07 A2 23 AO 03 20 20 02

02 A9 22 85 00 A2 04 20 4A

02 A5 ID FO 08 A9 FF 45 27

05 A9 00 38 E5 04 18 65 27

20 7D 05 DO FB 60 A9 04 85

85 11 85 10 20 37 03 C6 27

A9 FD 85 13 A9 66 85 12 85

03 E6 27 60 A9 00 85 26 A2

A2 04 20 4A 02 A2 23 AO 04

20 OA 02 A2 IF 86 00 A2 23

Appendix F 201

05D0 86 02 A2 04 20 2E 02

05E0 85 27 A5 0A 30 04 A9

05F0 02 A9 AD 20 C5 07 A9

0600 C6 OB 10 OF A9 04 18

0610 4C 02 06 20 97 05 4C

0620 00 A2 03 20 4A 02 A9

0630 02 20 AB 05 E6 OB FO

0640 34 06 A9 07 85 04 A5

0650 07 C6 04 FO 1A 20 AB

0660 FO A5 24 DO EC A5 23

0670 C5 20 C5 07 A5 27 30

0680 27 E6 27 A9 AD 20 C5

0690 06 85 27 C8 4C 8C 06

06A0 BO 4C C5 07 A9 8D 20

06B0 04 20 CO 07 A2 28 86

06C0 02 20 80 07 C9 AB DO

06D0 06 C9 AD DO 09 20 01

06E0 DO 09 20 01 07 20 37

06F0 01 07 20 DC 03 20 DE

0700 A3 20 C5 07 20 CO 07

0710 C5 07 20 CO 07 A2 10

0720 4A 02

ACCMIN 0262 COMPL

ACCSET 028A COMPLM

ACNONZ 027A CROUND

ACZERT 026B DECBIN

ADDER 022E DECEXD

ADDEXP 033A DECEXT

ADOPPP 0350 DECOUT

ADDR1 0231 DECRDG

AHEAD1 05F3 DECREP

AHEAD2 0685 DERROR

BRING1 0326 DIVIDE

CKEQEX 02B6 DVEXIT

CKSIGN 03A5 ECHO

CLRM1 0203 ENDINP

CLRMEM 0200 ERASE

CNTR 0004 EXECHO

COMPEN 0634 EXMLDV

A2 23 AO 04 4C OA 02 A9 00

AB DO 09 A2 08 AO 03 20 20

BO 20 C5 07 A9 AE 20 C5 07

65 OB 10 OE 20 7D 05 A5 OB

OE 06 A2 23 86 02 A2 08 86

00 85 26 A2 23 AO 03 20 OA

OA A2 26 AO 04 20 15 02 4C

26 FO 11 A5 26 09 BO 20 C5

05 4C 4A 06 C6 27 A5 25 DO

DO E8 A9 00 85 27 FO E2 A9

05 A9 AB 4C 85 06 49 FF 85

07 AO 00 A5 27 38 E9 OA 30

98 09 BO 20 C5 07 A5 27 09

C5 07 A9 8A 20 C5 07 20 75

02 A2 08 86 00 A2 04 20 4A

09 20 01 07 20 9A 02 4C F5

07 20 2D 03 4C F5 06 C9 D8

03 4C F5 06 C9 AF DO OC 20

05 4C A4 06 C9 8F DO C2 FO

20 75 04 20 CO 07 A9 BD 20

86 02 A2 28 86 00 A2 04 4C

0203 EXOUTN 067D

0220 EXPFIX 0577

037 F EXPINP 0404

05AB EXPOK 056 D

0613 EXPOUT 066F

0602 FINAL 06F5

0619 FINPUT 0540

0651 FMPNT 0000

060E FNDEXP 04C1

0406 FOLSWE OOOF

03F0 FOPEXP 0013

0441 FOPLSW 0010

07C5 FOPMSW 0012

0535 FOPNSW 0011

049C FPACCE 0008

0401 FDADD 029A

0393 FPCONT 06A4

202 Appendix F

FPD10 0597

FPDIV 03DC

FPINP 0475

FPLSW 0008

FPLSWE 0007

FPMSW 000A

FPMULT 0337

FPNORM 0255

FPNSW 0009

FPOUT 05DE

FPSUB 032D

FPX10 057D

FSHIFT 031B

INEXPS 001D

INMTAS 001C

INPRDI 001E

INPUT 0780

IOEXP 0022

IOEXPD 0027

IOLSW 001F

IOMSW 0021

IONSW 0020

IOSTR 0023

IOSTR1 0024

IOSTR2 0025

IOSTR3 0026

ISLAND 04DD

LINEUP 02DA

LOOKO 026 F

MCANDO 000C

MCAND1 000D

MCAND2 000E

MINEXP 0591

MORACC 02E2

MORRTL 0211

MORRTR 021C

MOVIN1 024C

MOVIND 024A

MOVOP 029E

MULTEX 03A4

MULTIP 0347

NADOPP 0350

NEGFPA 03C5

NEGOP 0303

NINPUT 0495

NOEXPS 0407

NOGO 040B
NONZAC 02B1

NORMEX 0279

NOTADD 06D1

NOTDIV 06FB

NOTMUL 06EB

NOTPLM 0498

NOTSUB 06DE

NVALID 06C1

OPERAT 0701

OPSGNT 03CE

OUTDGS 064A

OUTDIG 0642

OUTNEG 05EA

PERI 04B1

PERIOD 04 A B

POSEXP 0564

PREXFR 0389

QUO ROT 040C

RESCNT 032A

ROTATL 020A

ROTATR 0215

ROTL 020B

ROTR 0216

SECHO 0492

SERASE 04 A 7

SETDCT 03EC

SETMCT 0343

SETSUB 044E

SFNDXP 0503

SHACOP 02F5

SHIFTO 02ED

SHLOOP 0315

SIGNS 0006

SKPNEG 02CE

SPACES 07C0

SPRIOD 04BD

SUB12 068C

SUBB1 023F

SUBBER 023C

SUBEXP 03E3

SUBR1 0468

TEMPI 002C

TOMUCH 0697

TOPNT 0002

TPEXP 002B

TPLSW 0028

TPMSW 002A

TPNSW 0029

TSIGN 0005

WORKO 0014

WORK1 0015
WORK2 0016

WORK3 0017

WORK4 0018

WORK5 0019

WORK6 001A

WORK7 001B

ZERODG 065B

Appendix F 203

Index
Accumulator: 9, 10
Addressing modes: 16—22
ASCII: 71,72
Asynchronous: 143, 149
BAUD: 144, 150
BAUDOT: 71,73
BCD: 127
Binary, exponent: 92

mantissa: 92
point: 92
to-decimal conversion: 87

Bit, start: 143, 150
stop: 143, 150

Borrow: 57
Character code: 72
Complement, One’s: 56

Two’s: 56
Conditional branch: 46
Conversion, binary-to-decimal: 87

code: 71
decimal-to-binary: 85
numeric: 84

Decimal, addition: 126
division: 135
mode flag: 12,54,125
subtraction: 126
to-binary conversion: 85

Delay time: 150
Dividend: 106
Division: 106
EBCDIC: 71
Encode: 74
Error detection: 68
Execution time: 61
Field: 170, 181
Fixed format: 170
Flags, break: 12

carry: 11, 53
condition: 12
decimal mode: 12
in-progress: 156
interrupt disable: 12
negative: 11
overflow: 12,57
status: 9, 11
zero: 12

Floating point, accumulator: 93
addition: 96
format: 91
input routine: 113
multiplication: 101
operand: 93
output routine: 118
subtraction: 100

Free format: 170
Handshaking: 146
HOLLERITH: 72
Interrupt: 14

maskable: 15, 153
nonmaskable: 14, 153
processing: 153
service routine: 152, 158, 162
software: 15
vector: 15

I/O driver: 139
Limits, checking: 60
Look-up table: 77
Mantissa: 91
Memory: 9, 10

access: 61
clearing: 50
transferring: 51

Multiple precision: 91
addition: 57
comparison: 58
decrementing: 54
rotating: 55
routine: 52

Multiplicand: 101
Multiplier: 101
Nesting: 154, 164
Parallel data: 140
Parity: 68
Partial-product: 101
PDT operation: 146
Pipelining: 62
Pointer: 80

stack: 9, 10, 13
Polling: 164
Program counter: 9
Programmed delay: 61, 144
Quotient: 106
RAM, dynamic: 6?

static: 62
Random number generator: 66
Register, countdown: 46

index: 9, 10
status: 13

Reset: 15
ROM: 62
Routine, input: 113

multiple precision: 52
multiplication: 133
output: 118
service: 152,158,162

Serial data: 143, 149
Signed, addition: 128

subtraction: 131
Sort: 181

ripple: 186
Status byte: 147
Strobe: 148
Subroutine: 49
Timing diagram: 143
Transmission: 143
True logic: 140

204 Index

Now you can put together programs without having to start

from scratch. You’ll have the most useful routines at your

command — already programmed and ready to use. You’ll

get a plain-talk explanation of how the entire 6502 instruc¬

tion set works. And that’s a big value to everyone, 6502

owner or not! All in one easy-to-use cookbook.

Why is it called a cookbook?

Because it’s a book of recipes. It contains routines, subrou¬

tines and short programs. These are the ingredients. All you

do is take a pinch of this, a pinch of that. Combine the

ingredients, and voila — your own masterpiece! Just the

program to suit your taste.

Time-tested recipes.

Although the 6502 cookbook is brand new, SCELBI’s

software cookbook idea has been around for years. The

recipes are really time-tested! Tens of thousands of our Z80,

6800 and 8080 cookbooks have been used throughout the

U.S. and in countries around the world.

