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Introduction

Objectives

Sometimes I hear people talk about how smart computers have become. But
computers aren’t smart: programmers are. Programmers make microprocessors act
like calculators, moon landers, or income tax preparers. Programmers must be
smart, because by themselves microprocessors can't do much of anything.

Sound programming, then, is fundamental to successful computer use. With
this principle in mind, this book has two objectives: first, to introduce newcomers to
some of the techniques, terminology, and power of assembly-language program-
ming in general, and of the 6502 in particular; and second, to present a set of soft-
ware tools to use in developing assembly-language programs for the 6502.

Chapter 1 takes you on a quick tour of your computer’s hardware and soft-
ware; Chapters 2 thru 4 comprise a short course in assembly-language programming
for those readers new to the subject. The rest of the book presents source listings,
object code, and assembler listings for programs that you may enter into your com-
puter and run. )

Programmers have long sought to develop small and fast programs with the un-
fortunate result that occasionally code has been written that is unreadable (and even
unworkable) simply because a programmer wanted to save a few bytes or a few
cycles. In certain instances when memory space is particularly tight or execution
time is critical, readability is sacrificed for performance. But today the average pro-
grammer is not forced to make this choice. Of course, all other things being equal, I,
too, value programs that are quick and compact.

But how often are all other things equal?

While developing the programs that appear in this book, I had a number of ob-
jectives, most of them more important than the speed or size of a block of code. I
designed these programs to be:

Useful: No program is presented simply to demonstrate a particular program-
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ming technique. All of the programs in this book were written because I needed cer-
tain things done — usually something I didn’t want to be bothered with doing
myself. The monitor monitors, the disassembler disassembles, and the text editor
lets me enter and edit text strings. These programs earn their keep.

Easy to Use: Simply by glancing at the screen you can tell which program is
running and what mode it is in. When a program needs information, it asks you for
it and allows you to correct mistakes you might make while answering. This soft-
ware doesn't require you to remember the addresses of programs or of variables.
Functions are mapped to individual keys, and you can assign functions to keys in
any way that makes sense to you.

Readable: A beginning 6502 programmer should be able to understand the
workings of every program in this book. The labels and comments in the listings
were carefully chosen to reveal the purpose of each variable, subroutine, and line of
code. I am writing first and foremost for you, the reader, not for the 6502.

Portable: The book’s software runs on an Apple II, an Atari 400 or 800, an
Ohio Scientific (OSI) Challenger I-P, or a PET 2001. With proper initialization of
the System Data Block, it should run on any 6502-based computer equipped with a
keyboard and a memory-mapped, character-graphics video display.

Compatible: These routines are very good neighbors. As long as the other soft-
ware in your system does not use the second 4 K bytes of memory (hexadecimal
memory locations 1000 thru 1FFF), there should be no conflict between your soft-
ware and the software in this book. In particular, most of the software in this book
preserves the zero page, so your software may use the zero page as much as you like,
and you won't be bothered with having to save and restore it before and after calls
to the software presented herein.

Expandable: The programs in this book are highly modular, and you may ex-
tend or restructure them to meet your individual needs. System-specific subroutines
are called indirectly, so that other subroutines may be substituted for them, and
most values are treated as variables, rather than as constants hard-wired into the
code. There are no monolithic programs in this book; they’re all subroutines and
may be combined in many ways to build powerful new structures.

Compact: [ know that every personal computer has exactly the same available
memory: too little, I also know ways to write a program in ten or twenty percent
less space. But if doing so required sacrificing readability, portability, or expand-
ability, I did not do so. In many cases I feared that to save a byte, I might lose a
reader’s clear understanding of how a program works. I considered that too great a
price to pay for a somewhat smaller program.

Fast: Assuming that the above objectives have been met, the software in this
book has been developed to operate as quickly as possible. But in any trade-off be-
tween speed and the other objectives, speed loses. A fast program that you can't
understand holds little value. None of the programs in this book are likely to make
you complain about how long you have to wait. I can't tell if I'm waiting an extra
millisecond. Can you?

So go ahead. Read. Program, Enjoy!
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Chapter |:
Your Computer

The software in this book can run on a number of computers because it assumes
very little about the host machine. Let’s examine these assumptions and in so doing
take a quick tour of your computer.

The 6502 Microprocessor

We'll start with the 6502 microprocessor, the component in your system that
actually computes. By itself, the 6502 can’t do much. It has three registers (special
memory areas for storing the data upon which the program is operating), called A,
X, and Y, which can each hold a number in the range of 0 to 255. Different registers
have different capabilities. For example, if a number is in A (the accumulator), the
6502 can add to it, or subtract from it, any value up to 255. But if a number is in the
X register or the Y register, the 6502 can only increment or decrement that number
(ie: add or subtract one from it).

The 6502 can also set one register equal to the value of another register, and it
can store the contents of any register anywhere in memory, or load any register
from any location in memory. Thus, although the 6502 can only operate on one
number at a time, it can operate on many numbers, just by loading registers from
various locations in memory, operating on the registers, and then storing the results
of those operations back into memory.

Types of Memory

You may have heard that a computer stores information as a series of ones and
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zeros. This is because the computer’s memory is simply an elaborate array of
switches, and an individual switch can have only two states: closed or open. These
two states may also be expressed as on and off, or as one and zero.

Not all memory switches are the same. Some, in what is called ROM (read-only
memory), are hard-wired into your computer’s circuitry and cannot be changed ex-
cept by physically replacing the ROM circuits containing those switches. Others, in
what is called RAM (random-access memory) or programmable memory, can be
changed by the processor. The 6502 can open or close any of the switches, called bits
(binary digits), in its programmable memory, and later on read what it “wrote” into
that memory. Figure 1.1 shows how the processor has access to read-only memory
and programmable memory.

READ - ONLY
6502 < MEMORY

\

PROGRAMMABLE
MEMORY

Figure 1.1: How the 6502 interacts with memory. The arrows indicate the flow of data.

A third kind of memory is set by some external device, not by the 6502. Such
memory switches are called input ports, and may be connected to keyboards, ter-
minals, burglar alarms — virtually anything that can generate an electrical signal.
The 6502 perceives these externally generated signals by reading the appropriate in-
put ports.

Yet another kind of memory switch, called an output port, generates a high ora
low voltage on some particular wire depending on whether the 6502 sets a given
memory switch to a one or a zero. One or more of these output ports can enable the
6502 to “talk” to the outside world.

Now don't jump up and think I'm going to show you how to synthesize speech
in this book. “Talk” is just my way of anthropomorphizing the 6502. It will happen
elsewhere in this book, when the 6502 “sees,” “remembers,” and “knows” what to
do. Of course the 6502 doesn't see, remember, or know anything, but I often find it
helpful to put myself in its place. That way I can better understand how a program
will run, or why a program doesn't run, and I do see, remember, and know things.

But don't take such verbs too literally. The 6502 doesn't talk. It causes signals to
be generated that may be sensed by other devices, such as cassette recorders,
printers, disk drives — and yes, even speech synthesizers. But not in this book.

Some peripheral devices are actually connected to both an input and an output
port. Examples of these devices are cassette tape machines and floppy-disk drives,
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which are mass-storage or secondary-storage devices. Figure 1.2 summarizes the
processor’s access to memory and to peripheral devices.

PERIPHERALS MEMORY PROCESSOR
VIDEO DISPLAY [
OUTPUT
PORTS -
6502
CASSETTE
RECORDER
INPUT PORTS
P
READ-ONLY
MEMORY
MAIN MEMORY
PROGRAMMABLE
MEMORY
.

Figure 1.2: A summary of the 6502 microprocessor’s access to data in main memory and
through I/O (input and output) ports. The arrows indicate the flow of data.

A video screen connected to your computer looks like memory to the 6502, so
the 6502 can read from and write to the screen. The keyboard is scanned by I/O (in-
put/output) ports that are decoded to look like any other programmable memory
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address, so the 6502 can look at the keyboard just by looking at a particular place in
memory. Thus, the 6502 can interact directly with memory only, but because all
I/0 devices are mapped to addresses in memory, the 6502 can interact with the user,

See figure 1.3,
SCREEN

MEMORY 6502
KEYBOARD —_—

Figure 1.3: How the 6502 interacts with the user. Arrows indicate the flow of data.

The Operating System

Thus far we have discussed your machine’s hardware. But the Apple, Atari
OSI, and PET computers feature more than hardware. For example, all these com-
puters have an operating system (stored in ROM) which includes the I/O software
routines that are needed to use the screen and the keyboard. We are not particularly
concerned with how these subroutines work, but I assume your system does have
such routines,

There are many other subroutines in your computer’s operating system. Your
system'’s documentation should tell you what subroutines are available and provide
their addresses. All of this means power for you, the programmer. The more you
know about your computer, the more you can make it do. Because the software in
this book was developed to run on a number of systems, I chose not to use routines
available in your machine’s ROM, no matter how powerful they might be, unless I
could be sure that they would be available in the operating systems of the Apple, the
Atari, the OSI, and the PET computers. In other words, the software in this book
does not take full advantage of the power in your operating system. But the software
you write, which need only run on your system, should exploit to the fullest the
power of your computer's ROM routines,
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BASIC

One of the most important features of your computer is the BASIC interpreter
in ROM. This interpreter is a program that enables your computer to understand
commands given in BASIC. Your system’s documentation should tell you what
commands are legal in the particular dialect of BASIC implemented on your
machine. BASIC is an easy language to learn and you can do a lot with it.

Unfortunately, not every dialect of BASIC is the same. A program written in
BASIC that runs on machine A may not run on machine B. BASIC is a common
language, but not a standard one. Is there any language that is standard from
system to system?

6502 Code

The central processor is the computer’s heart. The Apple, Atari, OSI, and PET
computers all use the 6502 microprocessor. Every microprocessor has a certain in-
struction set, or group of instructions, which the microprocessor can execute. These
instructions are at a much lower level than the BASIC commands with which you
may be familiar. For example, in BASIC you can have a single line in a program to
PRINT “HELLO.” It would take a sequence of many 6502 instructions to perform
the same function.

However, a sequence of microprocessor instructions will run on any computer
featuring that microprocessor. Thus, if you write a program consisting of 6502 in-
structions to perform some function, that program should run on any 6502-based
computer. It won't run on an 8080-based computer, a Z80-based computer, or a
6800-based computer, but it should run on an Apple, a PET, an Atari, an OS], or
any other system built around a 6502. 6502 programs can also run much faster than
equivalent programs written in BASIC and can be smaller than BASIC programs.
The programs presented in this book are all written in 6502 code, and require only
half of the memory available on a computer containing 8,000 bytes of program-
mable memory, thus leaving more than enough room for your own programs.
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Chapter 2:
Introduction to Assembler

Ever watch a juggler or a good juggling team? The balls, pins, or whatever are
in the air in such intricate patterns that you can hardly follow them, let alone
duplicate the performance yourself. It's beautiful, but not magic; just an application
of some simple rules. I've learned to juggle recently, and although I'm still a rank
beginner, I've taught my two hands to keep three balls moving through the air. Yet
neither hand knows very much. A hand will toss a ball into the air, and then it will
catch a ball. The other hand will toss a ball into the air, and then it will catch a ball.
That'’s all. My hands perform only two operations: toss and catch. Yet with those
two primitive operations I can put on a pleasant little performance.

Assembly-language programming is not so different from juggling. Like jug-
gling, programming enables you to put on an impressive or baffling performance. In
its simplest terms, juggling is nothing more than taking something from one place
and putting it someplace else. The same thing is true of the central processor: the
6502 takes something from one place and puts it someplace else.

In fact, programming the 6502 is easier than juggling in several ways. First, the
6502 is obviously much faster than even the most skillful juggler. In the time it takes
me to pick up a ball with one hand and place that ball somewhere else, the 6502 can
get something from one place and put it someplace else hundreds of thousands of
times. Sleight of hand requires quickness, and the 6502 is quick.

The 6502 even gives me a helping hand. When I try to juggle, I must keep the
balls moving with nothing but my two hands. But my home computer has three
hands (registers A, X, and Y in the 6502) and thousands of pockets (8,000 bytes or
more of programmable memory).

A byte is 8 bits of data that may be loaded together into a register. A register
holds 1 byte. Each location in memory holds 1 byte. The 6502 can affect only 1 byte
in one operation. But because the 6502 can perform hundreds of thousands of opera-
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tions each second, it can affect hundreds of thousands of bytes each second.

Binary

In the final analysis, any value is stored within the computer as a series of bits,
If we wish, we may specify a byte by its bit pattern: such a representation uses only
ones and zeroes, and is called binary. For example, the number 25 in binary is
00011001.

In binary, each bit indicates the presence or absence of some value. Each bit
represents twice as much value, or significance, as the bit to its right, so the right-
most bit is the least significant, and the left-most bit is the most significant. Table 2.1
gives the significance of each bit in an 8-bit byte:

S

Table 2.1: Bit significance in an 8-bit byte,

Bit Number: b7 b6 b5 b4 b3 b2 bl bo
Bit Significance: 128 64 32 16 8 4 2 1

The right-most bit (called bit 0) tells us whether we have a one in our byte. The
bit to its left (bit 1) tells us whether we have a two; the bit to its left tells us whether
we have a four...and the leftmost bit (bit 7) tells us whether we have a 128 in our
byte.

To determine the bit pattern for a given value — say, 25 — determine first what
powers of two must be added to equal your value. For instance, 25 = 16 + 8 + 1,
s0 25 in binary is 00011001. »

Twenty-five can be expressed in other ways as well. Rather than specify every
number as a pattern of eight ones and zeros, we often express numbers in hexa-
decimal representation.

Hexadecimal

Unlike binary, which requires a group of eight characters to represent an 8-bit
value, hexadecimal notation allows us to represent an 8-bit value with a group of
only two characters. These characters are not limited to 0 and 1, but may include
any digit from 0 to 9, and any letter from “A” to “F.” That gives us a set of sixteen
characters, which is just right because we want to represent numbers in base 16.

INTRODUCTION TO ASSEMBLER 9



(Hexadecimal stands for 16: hex for six, and decimal for ten. Six plus ten equals six-
teen.)

To represent a byte in hexadecimal notation, divide the 8-bit byte into two 4-bit
units (sometimes called nybbles). Each of these 4-bit units has a value of from 0 to 15
(decimal), which we express with a single hexadecimal digit. A decimal 10 is a hexa-
decimal $A. (The dollar sign indicates that a number is in hexadecimal representa-
tion.) Table 2.2 gives the conversions of decimal to hexadecimal for decimal
numbers 0 thru 15.

Table 2.2: Hexadecimal character set,

Hexadecimal Character Decimal Equivalent
$0 = 0
$1 = 1
$2 = 2
$3 = 3
$4 = 4
$5 = 5
$6 = 6
$7 = 7
$8 = 8
$9 = 9
$A = 10
$B = 11 ;
$C = 12
$D = 13
$E = 14
$F = 15

Appendix Al, Hexadecimal Conversion Table, shows the hexadecimal
representation of every number from 0 to 255 decimal.

In this book, object code, the only code that the machine can execute directly,
will generally be presented in hexadecimal, and a thorough understanding of hexa-
decimal will help you to interpret instructions and follow some of the 6502’s actions.
Even the sketchiest understanding of hexadecimal math, however, should be suffi-
cient for you to follow and use the programs in this book.
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ASCII Characters

Instead of a number from O to 255, an 8-bit byte can be used to represent an up-
per or lower case letter of the alphabet, a punctuation mark, or a printer-control
character such as a carriage return. A string of such bytes may represent a word, a
message, or even a complete document. Appendix A2, ASCII Character Codes,
gives the hexadecimal value for any ASCII character. ASCII stands for American
Standard Code for Information Interchange, and is the closest thing the industry has
to a standard set of character codes. If you want to store the letter “A” in some loca-
tion in memory, you can see from Appendix A2 that you must store a $41 in that
location,

Whether a given byte is interpreted as a number, an ASCII character, or
something else depends entirely on the program using that byte. Just as beauty is in
the eye and mind of the beholder, so is the meaning of a given byte determined by
the program that sees and uses it.

The Instruction Cycle

A microprocessor such as the 6502 can’t do anything without being told. It only
knows 151 instructions, called opcodes (operation codes). Each opcode is 1 byte
long. An opcode may command the 6502 to take something from one register and to
put it someplace in memory, to load some register with the contents of some loca-
tion in memory, or to perform some other equally simple operation. See Appendix
A4 for a list of opcodes for the 6502 microprocessor.

What do 6502s do all day? They work while programmers play. The 6502 gets
an opcode, performs the specified operation, gets the next opcode, performs the
specified operation, gets the next opcode, performs the...

You get the picture. '

How does the 6502 know where to find the next opcode? The 6502 has a 16-bit
register called the PC (program counter). The PC holds the address of some location
in memory. When the 6502 starts its instruction cycle, it gets the opcode stored at
the memory location specified by the PC. Then it performs the operation specified
by that opcode. When it has executed that instruction, it makes the PC point to the
next opcode and starts on a new instruction cycle by getting the opcode whose ad-
dress is now in the PC.

Figure 2.1 shows a flowchart for the instruction cycle of the 6502
microprocessor.

“That's it? That's all the 6502 does?” you ask.

That's it. But with the right program in memory, we can make the 6502 dance.

INTRODUCTION TO ASSEMBLER 11



l

FETCH OPCODE
POINTED TO BY THE
PROGRAM COUNTER

PERFORM OPERATION
SPECIFIED BY THAT
OPCODE

MAKE PROGRAM
COUNTER POINT
TO NEXT OPCODE
IN MEMORY

|

Figure 2.1: The 6502 instruction cycle.

Machine Language

A machine-language program is nothing more than a series of machine-
language instructions stored in memory. If the PC in the 6502 can be made to hold
the address of the start of your program, then we say that the PC is pointing to your
program. When the 6502 starts its instruction cycle, it will fetch the first opcode in
your program, and then perform the operation specified by that opcode. At this
point, we say that your program is running.

Each machine-language instruction is stored in memory as a 1-byte opcode,
which may be followed by 1 or 2 bytes of operand. Thus, a 6502 machine-language
program might be “A9 05 20 02 04 A2 F5 60.”

Just a bunch of numbers! (Hexadecimal numbers, in this case.) But it is exactly
these numbers that the machine understands; hence the term, machine language.

Assemblers

Machine language is easy to read — if you're a machine. But programmers are
people. So programming tools called assemblers have been developed, which take
more readable assembly-language source code as input and produce listings and ob-
ject code as output. The listing is the assembler’s output intended for a human
reader. The object code is a series of 6502 machine-language instructions intended to
be stored in memory and executed by the 6502.
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For each chapter in this book that presents a program, there is an appendix at
the back of the book containing an assembler listing and a hexdump of the same pro-
gram. The assembler listing includes both source and object code, making it easy for
you to read the program; the hexdump shows you what the object code for that pro-
gram actually looks like in your computer’s memory. Figure 2.2 shows how an
assembler is used to produce an assembler listing for the programmer and object
code for the processor.

SOURCE OF INPUT: PROGRAMMER
INPUT: ASSEMBLER SOURCE CODE

(MAY CONTAIN COMMENTS )

PROGRAM: ASSEMBLER

) ASSEMBLER ASSEMBLER
OUTPUT: LISTING OBJECT CODE
INTENDED FOR: PROGRAMMER 6502

Figure 2.2: From programmer to object code. The assembler takes source code as input and
produces an assembler listing and object code as output.

The programs in this book have all been produced on the OSI 6500
Assembler/Editor, running under the OSI 65-D Disk Operating System, on an OSI
C-IP machine with 24 K bytes of programmable memory and one 5-inch floppy
disk. It is likely that the source code presented in this book will assemble immedi-
ately or with only minor modification on other 6500 assemblers. (Incidentally, the
source code in each chapter of this book should fit into the workspace of a computer
with much less than 24 K bytes of user memory, if you delete many of the com-
ments. But then, of course, your listings will be a lot less readable.)

But you don't write a listing; an assembler produces a listing. What you write is
assembly-language source code.

Source Code

An assembly-language source program consists of one or more lines of
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assembly-language source code. A line of assembly-language source code consists of
up to four fields:

LABEL MNEMONIC OPERAND COMMENT

The mnemonic, required in all cases, is a group of three letters chosen to suggest
the function of a given machine-language instruction. For example, the mnemonic
LDA stands for LoaD Accumulator. LDX stands for LoaD X register. TXA means
Transfer the X register to the Accumulator. 6502 mnemonics are not nearly as mean-
ingful as BASIC commands, but they're a big improvement over the machine-
language opcodes. See Appendix A3 for a list of 6502 mnemonics.

Some operations require an operand field. For example, the operation load ac-
cumulator requires an operand, because the line of source code must specify what
you wish to load into the accumulator.

The label and comment fields are optional. A label lets you operate on some
location in memory by a name that you have assigned to it. Comments are not in-
cluded in the object code that will be assembled from your program, but they make
your source code and your listings much more meaningful to a human reader. When
you write a program, even if no one but yourself will ever read it, try to choose your
labels and comments so that someone else can understand the purpose of each part
of the program. Such careful documentation will save you a lot of time weeks or
months down the road, when you might otherwise reread your program and have
no idea why you included some unlabeled, uncommented line of source code.

Loading a Register

Let's write a simple program to load a register with a number — say, to load the
accumulator with the number “10.” Since we want to load the accumulator, we'll use
the LDA instruction. (If we wanted to load the X register, we would use the LDX in-
struction, and if we wanted to load the Y register, we'd use LDY.) We know what
mnemonic to write into our first line of source code. But a glance at Appendix A6,
6502 Opcodes by Mnemonic and Addressing Mode, shows that LDA has many ad-
dressing modes. What operand shall we write into this line of source code?

We know that we want to load the accumulator with a “10,” and not with any
other number, so we can use the immediate addressing mode to load a “10” directly
into the accumulator. We'll use a “#” sign to indicate the immediate mode;

Example |

LDA #10
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Example 1 is a legitimate line of source code containing only two fields: a
mnemonic and an operand. The mnemonic, LDA, means “load the accumulator.”
But load it with what? The operand tells us what to load into the accumulator. The
“4" sign specifies that this operation is to take place in the immediate mode, which
means we want to load the accumulator with a constant to be found in this line of
source code, rather than with data or a variable to be found in some location in
memory. Then the operand specifies the constant to be loaded into the accumulator,
in this case “10.”

Constants

A constant is any value that is known by the programmer and “hard-wired” in-
to the code. A constant does not change during the execution of a program. If a
value changes during the execution of a program, then it is a variable, and one or
more memory locations must be allocated to hold the current value of each variable.

There are several kinds of constants. Any number is a constant. The number
“7 " for example, is a constant: a seven now will still be a seven this afternoon. A
character is another kind of constant: the letter “A” will still be the letter “A” tomor-
row. But a variable, such as one called FUEL, will change during the course of a pro-
gram (such as a lunar lander simulation), so it is not a constant.

In Example 1, note that the “#” sign is the only punctuation in the operand field.
In the absence of special punctuation marks (such as the dollar sign indicating a
hexadecimal number and the apostrophe indicating an ASCII character representa-
tion), any numbers given in this book are in decimal.

What object code will be assembled from this line of source code? Let’s hand-
assemble it and see. Appendix A6 shows us that the opcode for load accumulator,
immediate mode, is $A9. So the first byte of object code for this instruction will be
$A9. The second byte must specify what the 6502 should load into the accumulator.
We want to load register A with a decimal 10, which is $0A. So the object code
assembled from Example 1 is: A9 0A.

When these 2 bytes of object code are executed by the 6502, it will result in the
accumulator holding a value of $0A, or decimal 10. In effect, we've just told a jug-
gler: put a “10” in your right hand.

What if we wanted to load the accumulator with the letter “M,"” rather than
with a number? We'd still use LDA to load the accumulator, and we'd still use the
immediate mode of addressing, specifying in the operand the constant to be loaded
into the accumulator. Either of the following two lines of source code will work:
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Example 2
LDA # M
or

LDA #$4D

In each line of source code above, the mnemonic and the “4” sign tell us we're
loading the accumulator in the immediate mode — ie: with a constant. The operand
following the “#” sign specifies the constant. An apostrophe indicates that an ASCII
character follows, whereas a “$” sign indicates that a hexadecimal number follows.
Appendix A2 shows that an ASCII “M" = $4D; they are simply two representations
of the same bit pattern. So the two lines of source code above are equivalent; they
will both assemble into the same object code: A9 4D.

Which of the two lines of source code is more readable? If a constant will be
used in a program as an ASCII character, then represent it in your source code as an
ASCII character.

Storing the Register

Now let’s say we want to store the contents of the accumulator someplace in
memory. Every location in memory has a unique address (just like houses do), rang-
ing from $0000 to $FFFF. Suppose we decide to store the contents of the accumulator
at memory location $020C. We could do it with the following line of source code:

Example 3

STA $020C

Example 3 will assemble into these 3 bytes of machine language: 8D 0C 02.

According to the Appendix A6, the 6502 opcode for “store accumulator, ab-
solute mode” (STA) is $8D.

When the 6502 fetches the opcode “8D,” it knows that it must store the contents
of the accumulator at the address specified by the next 2 bytes. This is why it is
called absolute mode. Absolute mode is used when specifying an exact memory

location in an instruction.
In the example above, that address seems wrong. It looks like the machine-

language operand is specifying address $0C02, because the bytes are in that order:
“0C” followed by “02.” But we want to operate an address $020C. Is something
wrong here?
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Low Byte First

You and I might think something is wrong when the address $020C is written as
an “0C" followed by an “02" but you and I are people. We don't think like the 6502.
When you and I write a number, we tend to write the most significant digit first and
the least significant digit last. But the 6502 doesn’t work that way. When the 6502 in-
terprets two sequential bytes as an address, the first byte must contain the less
significant part of the address (the “low byte”), and the second byte must contain the
more significant part of the address (the “high byte”). All addressing modes that re-
quire a 2-byte operand require that the 2 bytes be in this order: less significant byte
first, followed by the more significant byte.

However, not all addressing modes require a 2-byte operand.

Zero-Page Addressing

Memory is divided into pages, where a page is a block of 256 contiguous ad-
dresses. The page from $0000 to $0OFF is called the zero page, because all addresses
in this page have a high byte of zero. The zero-page addressing mode takes advan-
tage of this fact. Source code assembled using the zero-page addressing mode re-
quires only 1 byte in the operand, because the opcode specifies the zero page mode
of addressing, and the high byte of the operand is unnecessary because it is
understood to be zero. Thus, you can specify an address in the zero page by the ab-
solute or by the zero-page addressing mode, but the zero-page mode will let you do
it using one less byte.

If you want to use some location in the zero page to hold a number, you might
decide to use location $00F4. We could write:

Example 4
STA $00F4
or

STA $F4

We could then assemble either line of source code using the absolute addressing
mode: 8D F4 00. Or we could assemble either line of source code using the zero-
page mode: 85 F4.

The opcode “85” means “store accumulator, zero page.” Where in the zero
page? At location $F4 in the zero page, the same location whose absolute address is
$OOF4.
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Symbolic Expressions

Let's say you want to copy the 3 bytes at memory locations $0200, $0201, and
$0202 to $0300, $0301, and $0302, respectively. We could write these lines of source
code:

Example 5

LDA $0200
STA $0300
LDA $0201
STA $0301
LDA $0202
STA $0302

This alternately loads a byte into the accumulator, then stores the contents of the ac-
cumulator into another byte in memory. Note that loading a register from a location
in memory changes the register, but leaves the contents of the memory location un-
changed.

Or we could write the following code, which refers to addresses as symbolic ex-

pressions:

Example 6

ORIGIN = $0200
DEST = $0300
LDA  ORIGIN
STA  DEST

LDA  ORIGIN +1
STA DEST +1
LDA  ORIGIN + 2
STA  DEST + 2

OO W

In Example 6, lines 1 and 2 are assembler directives, which equate the labels
“ORIGIN” and “DEST” with the addresses $0200 and $0300, respectively. Other
lines of source code following these equates may then refer to these addresses by
their labels, or refer to any address as a symbolic expression consisting of labels and,
optionally, constants and arithmetic operators. The source code above will cause an
assembler to generate exactly the same object code as the source code in Example 5,
but Example 6, whose operands consist of symbolic expressions, is much more
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readable than Example 5, whose operands are given in hexadecimal.

Some Exercises

1) Write the 6502 instructions necessary to load the accumulator with the value
127, to load the X register with the letter “r,” and to load the Y register with the con-
tents of address $BO92.

2) Write the 6502 instructions necessary to copy the byte at address $0043 to the
address $0092.
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Chapter 3:

Loops and Subroutines

Indexed Addressing

Although readable, Example 6 is not very efficient, because it requires two lines
of source code to move each byte. If we want to move 50 or 100 bytes must we then
write 100 or 200 lines of source code?

Indexed addressing comes in quite handily here. Instead of specifying the ab-
solute or zero-page address on which an operation is to be performed, we can
specify a base address and an index register. The 6502 will add the value of the
specified index registers to the base address, thereby determining the address on
which the operation is to be performed. Thus, if we want to move 9 bytes from an
origin to a destination, we could do it in the following manner, using the indexed ad-
dressing mode with X as the index register:

INIT

GET
PUT

ADJUST
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ORIGIN = $0200
DEST = $0300

LDX #0

LDA ORIGIN, X
STA DEST, X

INX

Example 7

Initialize X register to zero, so we'll start
with the first byte in the block.

Get Xth byte in origin block.

Put it into the Xth position in the
destination block.

Adjust X for next byte by incrementing
(adding 1) to the X register.



TEST CPX #9 Done 9 bytes yet?
BRANCH BNE GET If not, go back and get next byte...

We will use Example 7 in the following sections to introduce several new in-
structions and addressing modes. Example 7 includes six lines of source code to
move 9 contiguous bytes of data. If we tried to move 9 bytes of data with the tech-
niques used in Examples 5 and 6, it would have taken eighteen lines of source code.
So with indexed addressing, we've saved ourselves twelve lines of code. But how do
these lines work? The lines are labeled so we can look at them one-by-one.

The instruction labeled INIT loads the X register in the immediate mode with
the value zero. After executing the line INIT, the 6502 has a value of zero in the X
register. We don't know anything about what's in the other registers.

GET loads the accumulator with the Xth byte above the address labeled
ORIGIN. The first time the 6502 encounters this line, the X register will hold a value
of zero, so the 6502 will load the accumulator with the zeroth byte above the address
labeled ORIGIN (ie: it will load the accumulator with the contents of the memory
location ORIGIN).

In any line of source code, a comma in the operand indicates that the operation
to be performed shall use an indexed addressing mode. A comma followed by an “X”
indicates that the X register will be the index register for an instruction, whereas a
comma followed by a “Y” indicates that the Y register will be the index for an in-
struction. There are a number of indexed addressing modes. Two of these are ab-
solute indexed and zero-page indexed. The line GET in Example 7 uses the absolute
indexed addressing mode if ORIGIN is above the zero page; if ORIGIN is in the zero
page then the line labeled GET can be assembled using the zero-page indexed ad-
dressing mode. Zero-page indexed addressing, like zero-page addressing, requires
only 1 byte in the operand.

In zero-page indexed and in absolute indexed addressing, the operand field
specifies a base address. The 6502 will operate on an address it determines by adding
to the base address the value of the specified index register (X or Y). Only if the
specified index register has a value of zero will the 6502 operate on the base address
itself; in all other cases the 6502 will operate on some address higher in memory.

So we've loaded the accumulator with the byte at ORIGIN. Now the 6502
reaches the line labeled PUT in Example 7. This line tells the 6502 to store the ac-
cumulator in the Xth byte above DEST. We haven't done anything to change X since
the line INIT set it to zero, so X still holds a value of zero. Therefore, the 6502 will
store the contents of the accumulator in the zeroth byte above DEST (je: in DEST
itself).

At this point, we have succeeded in moving 1 byte from ORIGIN to DEST. X is
still zero. Now comes the part that makes indexing worthwhile. The line labeled
ADJUST is the shortest line of source code we've seen yet, consisting only of the
mnemonic INX, which means “increment the X register.” Since the X register was
zero, when this line is executed the X register will be left holding a value of one.
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Compare Register

In Example 7, the line labeled TEST compares the value in the X register with
the number “9.” There are three compare instructions for the 6502, one for each
register. CMP compares a value with the contents of the accumulator; CPX com-
pares a value with the contents of the X register, and CPY compares a value with the
contents of the Y register.

We can use these compare instructions to compare any register with any value
in memory, or, in the immediate mode, to compare any register with any constant.
Such comparisons enable us to test for given conditions. For example, in Example 7,
the line labeled TEST tests to see if we've moved 9 bytes yet. If the X register holds
the value “9,” then we have moved 9 bytes, (Walk through the loop yourself. When
you have moved the zeroth through the eighth bytes above ORIGIN to the zeroth
through the eighth positions above DEST, then you have moved 9 bytes.)

A compare instruction never changes the contents of a register or of any loca-
tion in memory. Thus, the X register does not change when the line labeled TEST is
executed by the 6502. What may change, however, are some of the 6502's status
flags.

Status Flags

In addition to the 6502's general-purpose registers (A, X, and Y), the 6502 con-
tains a special register P, the processor status register, Individual bits in the pro-
cessor status register are set or cleared each time the 6502 performs certain opera-
tions. These bits, or hardware flags, are:

bit 0: Carry Flag

bit 1: Zero Flag

bit 2: Interrupt Flag
bit 3: Decimal Flag
bit 4: Break Flag

bit 5: Undefined

bit 6: Overflow Flag
bit 7: Negative Flag

Z< WOTNO

In this book, we will not discuss the use of all the flags in the processor status
register. In this quick course in assembly-language programming, and in the soft-
ware subsequently presented in this book, the three flags we will deal with are C, the
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carry flag; Z, the zero flag; and N, the negative flag.

A compare operation (CMP, CPX, or CPY) does not change the value of
registers A, X, or Y, but it does affect the carry, zero, and negative flags.

For example, if a register is compared with an equal value, the zero flag, Z, will
be set; otherwise, Z will be cleared. If an instruction sets bit 7 of a register or an ad-
dress, the negative flag of the status register will also be set; conversely, if an instruc-
tion clears bit 7 of a register or an address, the negative flag will be cleared. Similar-
ly, mathematical and logical operations set or clear the carry flag, which acts as a
ninth bit in all arithmetic and logical operations. Table 3.1 summarizes the effects of
a compare instruction on the status flags.

Table 3.1: Status flags affected by compare instructions. Note that if you wish to test the
status of the carry flag after a compare, you must set it (using the instruction SEC) before
the compare. When testing the N flag, think of the inputs as signed 8-bit values.

Carry Flag* Negative Flag Zero Flag

Compare a register

with an equal value and you set C, clear N, and  set Z.
Compare a register \
with a greater value and you clear C, clear N, and clear Z.
Compare a register

with a lesser value and you set C, clear N, and clear Z.

Conditional Branching

We can have a program take one action or another, depending on the state of a
given flag. For example, two instructions, BEQ, (Branch on result EQual) and BNE
(Branch on result Not Equal) cause the 6502 to branch, or jump to a new instruction,
based on the state of the zero flag. An instruction which causes the 6502 to branch
based on the state of a flag is called a conditional branch instruction. Other condi-
tional branch instructions are based on the state of other status flags and are given in
table 3.2.

*If you wish to test the status of the carry flag after a compare, you must set it (using
the instruction SEC) before the compare.
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Table 3.2: Conditional branch instructions.

Flag Instruction Description Opcode
C BCC Branch if carry clear. 90
C BCS Branch if carry set. : BO
N BPL Branch if result positive. 10
N BMI Branch if result negative. 30
VA BEQ Branch if result equal.

(Zero Flag set). FO
z BNE Branch if result not equal.

(Zero flag clear.) Do
A" BVC Branch if overflow flag clear. 50
A% BVS Branch if overflow flag set. 70

The line labeled TEST in Example 7 compares the X register to the value “9;”
this sets or clears the zero flag. The line labeled BRANCH then takes advantage of
the state of the zero flag, by branching back to the line labeled GET if the result of
that comparison was not equal. But if Y did equal “9,” then the result of the com-
parison would have been equal, and the 6502 would not branch back to GET. In-
stead, the 6502 would execute the instruction following the line labeled BRANCH.

Loops

Example 7 shows a program loop. We cause the 6502 to perform a certain
operation many times, by initializing and then incrementing a counter, and testing
the counter each time through the loop to see if the job is done.

There’s a lot of power in loops. What would we have to add or change in
Example 7 so that it moves not 9, but 90 bytes from one place to another? Happily,
we wouldn't have to add anything, and we'd only have to change the operand in the
line labeled TEST. Instead of comparing the X register with 9, we'd compare it with
90. See Example 8.

Example 8
Move 90 bytes from origin to destination.

ORIGIN = $0200
DEST = $0300
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INIT LDX #0 Initialize X register to zero, so we'll start
with the first byte in the block.

GET LDA ORIGIN, X Get Xth byte in origin block.

PUT STA DEST,X Put it into the Xth position in the
destination block.

ADJUST INX Adjust X for next byte.

TEST CPX #90 Done 90 bytes yet?

BRANCH BNE GET If not, get next byte...

Writing loops lets us write code that is not only compact, but easily tailored to
meet the demands of a particular application. We couldn’t do that, however,
without indexing and branching.

Loops can be tricky, though. What's wrong with this loop?

Example 9
ORIGIN = $0200
DEST = $0300
INIT LDX #0 Initialize X register to zero, so we'll start
with the first byte in the block.
GET . LDA ORIGIN, X Get Xth byte in origin block.
PUT STA DEST,X Put it into the Xth position in the
destination block.
TEST CPX #9 Done 9 bytes yet?
BRANCH  BNE GET If not, get next byte...

Examine Example 9 very carefully. How does it differ from Example 77 It lacks
the line labeled ADJUST, which increments the X register. What will happen when
the 6502 executes the code in Example 97 It will initialize X to zero; it will get a byte
from ORIGIN and move it to DEST. Then it will compare the contents of register X
to 9. Register X won't equal 9, so it will branch back to GET, where it will do exactly
what it did the first time through the loop, because X will still equal zero. Until the X
register equals 9, the 6502 will branch back to GET. But nothing in this loop will
ever change the value of X! So the 6502 will sit in this loop forever, getting a byte
from ORIGIN and putting it in DEST and determining that the X register does not
hold a 9...

Now look at Example 10. Will it cause the 6502 to loop, and if so, will the 6502
ever exit from the loop? Why, or why not?
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Example 10

ORIGIN = $0200
DEST = $0300

INIT LDX #0 Initialize X register to zero, so we'll start
with the first byte in the block.

GET LDA ORIGIN,X Get Xth byte in origin block.

PUT STA DEST,X Put it into the Xth position in the
destination block.

ADJUST INX Adjust X for next byte,

TEST CPX #9 Done 9 bytes yet?

BRANCH BNEINIT If not, get next byte...

Relative Addressing

All conditional branch instructions use the relative addressing mode, and they
are the only instructions to use this addressing mode. Like the zero page and zero-
page indexed addressing mode, the relative addressing mode requires only a 1-byte
operand. This operand specifies the relative location of the opcode to which the 6502
will branch if the status register satisfies the condition required by the branch in-
struction. A relative location of 04 means the 6502 should branch to an opcode 4
bytes beyond the next opcode, if the given condition is satisfied. Otherwise, the 6502
will proceed to the next opcode.

Because the operand in a conditional branch instruction is only 1 byte, it is not
possible for a conditional branch instruction to cause a branch more than 127 bytes
forward or 128 bytes backward from the current value of the program counter. (A
branch backward is indicated if the relative address specified is negative; forward if
it's positive. A byte is negative if bit 7 is set. A byte is positive if bit 7 is clear. Thus,
a value of 00 is considered positive.) However, an instruction called JMP allows the
programmer to specify an unconditional branch to any location in memory.
Therefore, if we have a short conditional branch followed by an unconditional
jump, we may achieve in two instructions a conditional branch to any location in
memory.

Unconditional Branch

Just as BASIC has its GOTO command, which causes an unconditional branch
to a specified line in a BASIC program, the 6502 has its JMP instruction, which un-
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conditionally branches to a specified address. A program may loop forever by
JMP'ing back to its starting point.

Look at Example 11. Unless a line of code within the loop causes the 6502 to
branch to a location outside of the loop, the 6502 will sit in this loop forever.

Example 11
Endless Loop:
START  xXxXXXXXXXXX some
XXXXXXXXXX instructions
XXXXXXXXXX
JMP START
Indirect Addressing

A JMP instruction may be written in either the absolute addressing mode or the
indirect addressing mode. Absolute addressing is used in Example 11. The operand is
the address to which the 6502 should jump. But in the indirect mode (which is
always signified by parentheses in the operand field) the operand specifies the ad-
dress of a pointer. The 6502 will jump to the address specified by the pointer; it will
not jump to the pointer itself.

The line of code “JMP (POINTR)” will cause the 6502 to jump to the address
specified by the 2 bytes at POINTR and POINTR +1. Thus, if POINTR = $0600,
and the 6502 executes the instruction “JMP (POINTR)” when memory location
$0600 holds $00 and $0601 holds $20, then the 6502 will jump to address $2000.
(Remember, addresses are always stored in memory with the low byte first.)

How Branching Works

Incidentally, all branches, whether relative, absolute, or indirect, work by
operating on the contents of the PC (program counter). Before any branch instruc-
tion is executed, the PC holds the address of the current opcode. A branch instruc-
tion changes the PC, so that in the next instruction cycle the 6502 will fetch not the
opcode following the current opcode, but the opcode at the location specified by the
branch instruction. Then execution will continue normally from the new address.
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Relocatability

Often I implement short unconditional branches as:

CLC

BCC PLACE
rather than as:

JMP PLACE

This is because the first method (relying as it does on relative rather than ab-
solute addressing) will still work even if you relocate the code in which it is con-
tained. Making your code relocatable will save you time and trouble when you try
to move your programs around in memory and still want them to work.

To relocate code containing the second example, you'd have to change the
operand field because the absolute address of PLACE will have changed. To relocate
code containing the first example, you wouldn't have to change a thing.

Subroutines

Perhaps the two most powerful instructions available to the assembly-language
programmer are the JSR (Jump to SubRoutine) and the RTS (ReTurn from
Subroutine). These instructions (equivalent to GOSUB and RETURN in BASIC)
enable us to organize chunks of code as building blocks called subroutines.

Think of the subroutine as a job. Your computer can do more work for you if it
knows how to do more jobs. Once you teach the 6502 how to do a given job, you
won't have to tell it twice. Let's say you're writing a program in which the same
operation must be performed at various times within a program. In every location
within your program where the operation is required, you could includ