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Preface

The steep fall in price and the increase in power of the microcomputer
has caused an explosion of interest in home computing. In the UK, the
launching of the BBC microcomputer together with the excellent TV
programmes will inevitably add to the growth of the hobby.

The most popular language of the microcomputer is undoubtedly
the high level version known as BASIC and for most devotees of the
hobby it has become accepted as the norm if not the only way to ‘talk’ to
their machine. This is understandable in view of the comparative
friendliness of the language together with the ease with which the
neophyte can produce useful results within an hour or so of the initial
purchase. The more ‘noble’ languages such as PASCAL and ALGOL
tend to be neglected due to a combination of reasons including
financial. Few home computers have the necessary translating soft-
ware to handle these languages so extra expenditure is required as well
as the intellectual effort involved in mastering fresh syntax laws.

There is, however, in all computers an obscure alternative language
— machine code. It is provided free, executes at lightning speed and is
ultra efficient in terms of memory usage. Machine code enables you to
converse directly with the most important silicon chip in your machine
which is of course the microprocessor.

This book may stimulate your interest in the subject and help in
overcoming the initial inertia. It deals exclusively with the particular
microprocessor having the type number 6502 (and 6502A) and is
found in many popular microcomputers including the APPLE, PET,
ACORN, ATARI and last but not least, the BBC system. Machine
code is not easy to learn so the examples which accompany the text
deliberately err on the side of simplicity. I have discovered to my cost
that machine code is certainly not easy to write about without
introducing at least some of the awesome jargon which surrounds the
subject. If you survive this book you would be well advised to study the
numerous advanced works available on 6502 code.

My thanks are due to my dear wife Mabs who suffered many hours
of a clicking typewriter without complaint and also to the Editor of
Computing Today who gave me the initial confidence to write at all on the
subject.

A.P.S.
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The native language of the computer

Why learn machine code?

The dramatic fall in cost, the pressures of the advertising media and the
profusion of technical magazines now available has caused more and
more people to buy a microcomputer either for themselves or for their
children. Computer enthusiasts are being created at an ever increasing
rate and are threatening to outnumber even bingo and football
enthusiasts.

When you join the ranks of the computing fraternity you will first
have to learn how to deal with outsiders who delight in posing what
they consider to be a highly original question ‘what can you actually do
with one of these things?’ Probably you will decide to join one of the
many computer clubs which are springing up in most towns and where
the most varied assortment of humanity collects on one or more
evenings a week. Some will subject you to the exciting details of a new
add-on gadget, others will make your brain reel with the latest
computing buzzwords. Almost certainly you will hear arguments
(usually quite fierce) on the respective merits and demerits of
PASCAL, BASIC, COMAL and FORTH etc. There will however be
one or two present who appear to attract a certain amount of respect.
On enquiry, you will be told, in rather a hushed voice, that they know
machine code. You gather from this that an ability to ‘know’ machine
code almost qualifies you for entrance to the Royal Enclosure at Ascot.
The question which arises is whether or not such adulation is justified?

The vast majority of home computer owners start on BASIC
because, rightly or wrongly, this is the resident language in ROM and
once proficiency is gained it is not easy to budge from it. It is true that
some writers derive a certain amount of satisfaction from deriding
BASIC. According to Dijkstra, an eminent intellectual in the world of
computing science (and incidentally a bit of a snob), ‘. . . any student
that had a prior exposure to BASIC would be mentally mutilated
beyond hope of regeneration’. Few, of course, except his admiring
followers, would take such a remark seriously though they may
applaud his attempt to emulate the wit of Oscar Wilde. It would be



unprofitable in a book on machine code to enter into the respective
virtues of the various high level languages. The strength of these
arguments is diluted by emotion and prejudice in many cases although
they do provide interesting reading as an alternative to watching the
nth repeat of Casablanca. What is important is to discuss the advantages
or otherwise of machine code versus all other high level languages.

We start with the bad news. Machine code is difficult, frustrating
and shows up the computer for what it is — a silicon moron! Users of
high level language may be excused for falling into the trap of thinking
that computers are ‘smart’ although there is certainly no excuse for
thinking they are ‘intelligent’. Any property of the computer that
appears to deserve the label ‘intelligence’ must be attributed to the
sophistication of the resident software which is man’s doing — using
‘man’ in the generic sense which includes woman. This mass of
software, interposed between you and the crudities of machine code,
allows you to control powerful operations by simply typing in the
appropriate keyword. For example, the simple BASIC line PRINT A,
which we all take for granted as performing the simple task of placing a
number on the screen at the current cursor position, when analysed
into its machine code equivalent would probably surprise or maybe
even frighten you. The newcomer to machine code soon realises that
the microprocessor, the ‘miracle chip’ beloved by the media, is a
miracle only because it has thousands of circuits buried within a small
slab of silicon. All it can do is to add or subtract two numbers at a time
(provided they are very small), count up and down and move bits
around from one part of the system to another although, to be fair, ata
truly phenomenal speed.

After this depressing introduction to machine code it must come as a
relief to learn that the other side of the coin is more cheerful. The
advantages are listed here (but not necessarily in order of importance)
using BASIC as the yardstick for comparison:

1. Speed of execution
A program written in machine code will probably execute many
times faster, perhaps as much as a hundred or more times faster.
This is because you are conversing in the computer’s nativelanguage
instead of circumventing the translation software. Another reason
for the enhanced speed is the dedication of the coding to the particular
objective rather than employing translation subroutines which must
be general purpose orientated and therefore wasteful in code. As an
example, if the program only intends to use the top line of the screen
area for textual purposes the coding is tailor made for just this
requirement; a general purpose translation segment would
probably cater for text to be displayed at any desired part of the



screen and must therefore contain redundant code in many cases of
use.

2. Memory economy

A machine code program, if sensibly written, is economical in the
use of memory for the same basic reasons given under speed above.
A floating point number in BASIC is often stored in five bytes of
memory irrespective of its magnitude! Thus if you want to store the
number 3 it will occupy as much memory ‘real estate’ as storing the
number 33333333 or even 3.567843 x 1023, With machine code,
memory allocation can be tightly allocated according to the
magnitude of a number. Another memory saving is achieved
because there is no need to store BASIC line numbers or keep track
of keyword lists. Keywords like LET or PRINT are easy for
humans but quite incomprehensible to the machine code
vocabulary so their translation wastes memory space.

3. Input/output control

Most children from the age of six to sixty like seeing things move.
One of the fascinating properties of a computing system is the ability
to control not only the conventional peripherals such as printers,
tape recorders, floppy disks etc., but also mechanical models and
various home or commercially made gadgets. This exercise
demands some knowledge of the input/output ports and in many
cases BASIC is not ideally suited for such purposes due mainly to
the slow response to input and output line signals.

4. Screen dynamics
Programs which produce moving ‘pictures’ such as in ‘space war’
type games are greatly improved in machine code versions.

5. Ego boosting
This is a trivial, superficial advantage but many of us, including the
writer, are basically egotists and secretly enjoy inflicting awe on
people. In any case, you may like your name to be mentioned ‘in a
hushed voice’ at the local computer club.

The overriding advantage of learning machine code however is the
satisfaction of knowing a little more about the true workings of a
computer instead of through the rose tinted spectacles of a high level
language which demands virtually no knowledge whatsoever of the
machine architecture. It may be argued that it is not necessary to know
how say, a watch works in order to use it, but if computing is a hobby
the argument is unconvincing because all aspects of the subject should
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be equally interesting. Although the computer employs electronics, it
is possible to gain quite a detailed knowledge of the inner workings of a
computer without any prior knowledge of electronics. This is because
the digital computer is simply a fwo-state system and only two electrical
levels are encountered, voltage or no-voltage. The general principle
would be the same if a computer ran on gas instead of electricity, the
two states would then be gas or no-gas. The rest of this chapter covers
some of the preliminary work necessary to embark on machine code
programming. If you already own a home computer, most of this
information may already be available to you in the User Manual, but it
will probably be a little too specific to the particular machine and
therefore lacking in generality.

The microcomputer system

The major components in a microcomputer system consist of the
microprocessor chip, a few memory chips, one or more chips to
communicate with the external peripherals, a power supply and an
oscillator called the °‘clock’. The remaining components are a
heterogeneous assortment of chips which come under the heading of
logic support. The number of these support chips is beginning to thin
out in some of the modern machines due to a technique known as
uncommitted logic arrays or more simply, ULAs. This allows much of the
support logic to be cheaply integrated into one or two ULA chips,
lowering the total chip count and therefore improving the overall
reliability of the system. The famous ZX81 has a very low chip count
owing to the use of ULAs and the powerful BBC/ACORN machine
has also incorporated the technique. Fig. 1.1 shows the simplified
overview of the microcomputer system in sufficient detail to cover
present purposes.

The components of the system in Fig. 1.1 have the following duties:

1. The microprocessor chip
This is the central processor of the computing system and has
complete control of all other components. The primary function is
to interpret machine code instructions and execute them in the required
order. It must be emphasised that the machine code is specific to the
particular microprocessor type — it cannot ‘understand’ other
microprocessor codes.

2. Memory chips
The microprocessor can only execute a program if the machine code
instructions (which form that program) are already stored
somewhere in memory. There are two kinds of memory chips:
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Fig. 1.1. Simplified microcomputer system

(a) RAM (Random Access Memory)
Information can be stored or changed in RAM. Storing new
information in a RAM is called writing; finding out what is
already in RAM is called reading.

Remember this:| writing new information destroys the old
information; reading information does not
destroy existing information.

(b) ROM (Read Only Memory)
Information in ROM is permanent and placed there during
manufacture. It is impossible for the microprocessor to change
the contents of a ROM, i.e., you cannot write into a ROM.

The term RAM is an unwise choice of terminology because strictly
both RAMs and ROMs are ‘random access’ in the sense that any
particular piece of information can be accessed, irrespective of where
itis in the chip. The preferable term would have been RWM (Read
Write Memory) but the modern craze for twisting abbreviations to
form acronyms appears to be more important than the conveyed
sense.




One other primary distinguishing factor between RAMs and
ROM s is the property of volatility. A memory is said to be volatile if
the security of the stored information depends on the application of
power. The information in a RAM is volatile — it ‘evaporates’ if
the power is interrupted even for a split second. ROMs do not rely
on a sustained power supply so are described as non-volatile. Bearing
this in mind should resolve the problem, ‘what kind of stuff goes in
RAM and what kind goes in ROM?’. In practice, the typical home
computer will have one or more ROMs which have been pre-
programmed with the operating system software, a complex set of
programs which enables the user to sit at the keyboard and control
the computer. The programs will include a high level language
translator (almost always BASIC) and probably a machine code
monitor for entering your programs in machine code. As far as the
RAM is concerned almost the whole of it is yours! Any programs
you enter whether in machine code or BASIC will go into the RAM
space. If you have an important program in RAM it is of course up
to you to save it on tape (or disk) before switching off the machine —
remember that RAM is volatile!

3. The address bus and the data bus

Fig. 1.1 shows two thick bundles of wire which appear to connect the
RAMs and ROMs to the microprocessor. The term bus implies a set

of wires have a commonly related purpose so we distinguish an
address bus and a data bus.
(a) The address bus

This is used by the microprocessor to select one particular

location in the memory system. Memory chips may be
considered as a collection of separate locations (pigeon holes).
Each location is uniquely defined by an address code. The pattern

of binary zeros and ones on the address bus causes an electronic
‘arm’ to move to the particular location, thus identifying it for
action by the system. The arm shown in the RAM and ROM of
Fig. 1.1 is of course an oversimplification, it will in fact be a
chunk of electronic circuitry located within the memory chip
and called a decoder. As far as the address bus is concerned it has
no way of knowing whether the address code refers to RAM or

ROM. Only one location can be selected at any one time by the

system so locations, whether in RAM or ROM, must not have
overlapping address codes. The number of wires on the address

bus is normally sixteen. The number of different binary
patterns possible on the address bus is 2'6 or 65 536. This is
because the law of combinations is defined by the formula

number of combinations = 2N where N is the number of

wires.



To save referring to the awkward decimal numbers which crop
up in binary, the number 65 536 is more easily remembered as
64K, one ‘K’ in binary being 2% which is 1024. It follows from
the previous comments that however much money you can
spend on memory chips, you cannot hang more than a total of
64K on the address bus. (Some of the latest microprocessors
have increased the number of address wires to 22 which allows a
total addressing space of 222 or over 4 million addresses!)
(b) The data bus

When we have mentioned ‘information’ stored in a location
there has been no explanation given as to the amount of
information which each location can hold — how many binary
bits? In most current microprocessors, the standard is eight bits
which is known as the word length. Thus the ‘width’ of each
memory location is eight bits, commonly called a byte. The
object of the data bus is to provide a highway between the
selected memory location and the microprocessor and must
therefore be a bunch of eight wires with each wire dedicated to
the passage of one bit. The bytes are thus transmitted to or from
memory via the medium of the data bus. You will notice from
Fig. 1.1 that the data bus is bidirectional because of the
requirements of RAM. As far as the ROM is concerned, the
data bus only appears as a one-way path, from ROM ¢t
mMiCroprocessor.

4. The control bus

Unlike the previous two bus systems, the control bus is a hotchpotch
of single wires, each having a completely unrelated function to the
others. Thus it is incorrectly called a ‘bus’. No information (in the
normal meaning of the term) is carried by the control wires, they
serve only as trigger lines to activate the various components at the
right time. One of these will be the R/W or read/write line which
informs the RAM when to read and when to write. The remaining
control wires will not be discussed at this stage.

. The clock

The microprocessor requires a set of timing pulses to synchronise all
the components in the system. These pulses are generated by the so-
called clock chip. (In some microprocessors, the clock circuitry is
integrated within the microprocessor chip.)

. The input/output chips
These are used to provide an interface between the computing
components and the external components or peripherals. The term
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interface is used to describe any device which must be interposed
between two systems in order to compensate for their
incompatibility. Peripherals are items such as keyboards, monitor
screens, printers, cassette tape units, light pens etc. The
incompatibility may be due to different electrical requirements
(different voltage or current levels) or simply a timing problem.
Peripherals, as far as the computer is concerned, are undisciplined
and lethargic. Computers operate on a microsecond time scale,
whereas peripherals muddle along at a sluggish millisecond pace —
some of them, human operated keyboards for example, have
difficulty in cracking the 0.1 second barrier! Because of the timing
discrepancies, peripherals are, in general, not synchronised to the
computer clock; they are said to operate asynchronously.
Input/output chips can be quite complex, having built in
sophistication to deal, as far as possible, with a wide range of
peripheral equipment. They may have exotic names like
‘Peripheral Interface Adaptor’ or ‘Versatile Interface Adaptor’ but
they all feature a bunch of input/output wires for passing data and
some control wires called ‘handshake lines’. There are two rival
protocols for peripheral organisation:
(a) Special instructions
The machine code repertoire includes instructions which act
specifically on the input/output chips.
(b) Memory mapping
No special instructions exist to handle input/output chips. The
microprocessor considers the input/output data lines as ordinary
memory locations. Memory mapping tends to be the more
favoured system because of the inherent flexibility. Each
input/output chip has its own unique set of addresses on the
64K memory ‘map’ and there can be a large number of such
chips in a system. Fig. 1.1 assumes a memory mapped system
because of the address ‘arm’ shown.

Manipulations with binary

Numbers expressed in binary appear cumbersome and uninformative
after an upbringing geared to the decimal notation. Because of this,
BASIC and most other high level languages provide you with 99 %
protection against the ravages of binary by pretending it doesn’t exist.
They provide convenient translation routines so that you can continue
thinking in decimal. Nevertheless, the computer is by nature a digital
beast and can digest binary with relish. Unfortunately, machine code
programming does demand some dexterity in the manipulation of

8



binary patterns together with a moderate fluency in binary arithmetic.
Those readers who are already proficient in binary can skip the
remainder of this chapter. The less endowed types must grit their teeth
(like I had to) and stick with it.

Binary patterns

A bit is a binary ‘1’ or a ‘0’. A binary string is a collection of bits. A
string of eight bits is now known as a byte. A byte is conveniently treated
in two halves; each four-bit half is called a nibble.

The following notation is popular for referring to particular bits
within a byte

(AR U RO e SR SR s )

Lifolalajolalofo]
msb/ \lsb

The example byte is shown as a partitioned box. The bit positions are
labelled bit O (the rightmost position) to bit 7. The terms ‘least
significant bit’ or Isb and the ‘most significant bit’ or msb are special
labels for bits at each end. The left hand nibble in the example is 1011
and the right hand nibble is 0100.

It is often necessary to consider two bytes ‘joined together’ in which
case they are distinguished by calling one of them the higher order byte
and the other the lower order byte.

RAM and ROM store their information in bytes, one addressable
location holds one byte. If the particular item of information cannot be
accommodated within the confines of one byte it must occupy two or
more contiguous locations. The dictionary defines contiguous as
‘following in order’ from which we deduce that in this sense it means
occupying adjacently addressed locations.

It is time we dug a little deeper into the computer meaning of the
harmless word ‘information’. What information is contained in a byte
of bits? The strange answer is — anything the programmer wishes it to
mean! We should realise that automatically assuming that a string of
bits must be considered a binary number is misguided. It could, for
example, be simply a code. It could be an abbreviated form of quite
detailed information concerning an employee. If it does represent a
number there are several different ways of expressing the same number
as the following will show.

(a)Unsigned binary
The bit positions represent the power of 2 in ascending order from

9
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Isb to msb. A ‘1’ means that power of 2 is present, a ‘0’ means it is
absent. Thus, 00010101 would represent the number 21 in
decimal

1
4
-16
21
The bit positions in a byte are 1 2 4 8 16 32 64 128 (from right to left).
Examples are better than explanations:
10000001 =129 00000111 =7 10101010=170 11111111=255

The last example is a special case since it is often required to quickly
estimate the highest number which can be held in a string of N bits.
Instead of collecting the individual bit powers, the following rule can be
used.

Largest unsigned number which can be held in a
string of N bits is 2N—1

Thus 11111111 is 28—1 = 255 decimal.

So we must conclude that the largest number which can be held in one
memory location is 255 decimal. Ifhowever the programmer decides to
allocate two adjacent locations to hold one number (by considering
them to be joined end to end) the largest number now would be
11111111 11111111 which by the previous rule would give us the
number 216—1 = 65536 —1 = 65 535.

(b) Signed binary and two’s complement
If both positive and negative numbers are to be represented then
one bit must be wasted to indicate the sign. This is always the msb
and the remaining seven bits must represent the magnitude.
Positive numbers have sign 0, negative 1.

Example:
01100011 is a positive number; 10010010 is a negative number.
sign bit sign bit

For positive numbers, the form is straightforward, thus
00000111 = + 7. Negative numbers however are far from straight-
forward because they are represented by a method know as two’s
complement.

10



The two’s complement of a number is found by first reversing all the
bits and then adding 1.

Example: 00000111is + 7. Now reverse the bits,
11111000 now add 1,
11111001 is then —7.

Example: 00000100 is + 4. Reversing the bits,
11111011 now add 1,

11111100 is then —4.

To avoid the error prone exercise of adding 1 (it is easy to forget a
carry) an alternative way to obtain the two’s complement is:

Start from the right. Copy down without change up to and
inclusive of the first ‘1’ and thereafter change the bits.

Example: positive number 00001101
two’s complement 11110011

Note the method is also valid the other way round; the two’s
complement of a negative number is the equivalent positive number.

Since there are only seven bits to represent the magnitude, the
largest positive number which can be held in a byte is +127 (27—1).
The largest negative number is one more, —128, which seems
surprising.

Another quirk is the upside down appearance of negative numbers
because the smallest negative number looks like the largest. Consider
the number (—1). Since 00000001 is +1 then from the previous rule
11111111 is —1. Note that if the byte was intended to be treated as an
unsigned binary number, it would represent 255 instead of —1. The
following analysis of a 3-bit word may help in understanding the
curious behaviour of two’s complement numbers.

0 0 0 0

0.0 1 +1

g 10 +2 Since ‘0’ is a positive number it means

0 1l +3 there are four positive numbers and
four negative numbers. This explains
why there appears to be ‘one more’

L8 u — negative number.

101 -3

1.1 0 —2

| —1
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There is a final question to be answered before leaving the subject of
two’s complement. Why is such an ungainly system used? It is simply a
case of the economics of computer circuitry. Two’s complement allows
the arithmetic circuits of a computer to be limited to performing
addition. Subtraction can then be treated as a special case of addition by
the trick of adding a negative number — which is the same as
subtraction. Finally, why two’s complement? Whats wrong with
‘one’s complement’?

The one’s complement of a number (sometimes called the logical
complement) is simply the number with all the bits reversed or
complemented.

Thus, 01010101 has a one’s complement (logical complement) of
10101010.

The two’s complement is of course obtained by adding one more. Why

the one’s complement is seldom used is because of certain ambiguities

which arise, such as two different ways of representing zero — which

would be disastrous.
Thus 00000000 would represent zero (plus zero)

then 11111111 would represent minus zero. This could be fatal in a
computing system. However by using the two’s complement, the extra
one kicks all those 1s back to 0s.
Thus 11111111 is the one’s complement of zero but by adding 1,

1

1 <— it can be seen that the propagation of the carry leaves
the eight zeros which is respectable and normal. The carry that is
kicked out of the system at the msb end is ignored; it can’t be held in a
byte anyway!

(c)Binary coded decimal (BCD)
This representation of a number is a kind of compromise between
the conflicting interests of humans and computers. It is easier to
associate the binary string with the world of real decimal numbers if
BCD is used. BCD allows a byte to be considered as two separate
nibbles, each nibble representing an independent decimal digit
according to simple binary powers.

To understand BCD consider the byte 00100111,
split into two nibbles 0010 0111,
now read this as 27 decimal.

Because of the four-bit binary form it is easy to translate into the
equivalent decimal almost at sight. Note that in the above example
its decimal value in unsigned binary is a tougher proposition — 39
decimal. There is one further point to be made on BCD with regard
to illegal combinations — there are six of them in each nibble. The
largest decimal digit is 9 which means that the binary combinations

12



1010, 1011, 1100, 1101, 1110 and 1111 are forbidden com-
binations. Because of the six illegals which exist in BCD, it may be
seen that the form is inherently wasteful of memory storage capacity
because although these illegals are unused, they inhabit phantom
positions within the byte. To illustrate the wastage we recall that the
largest number held in unsigned binary in one byte is equivalent to
255 decimal whereas in BCD, the largest decimal is 99. Thus we
have to allocate more storage capacity if BCD is used. The main
area of BCD usage is when dealing with computer controlled
instrumentation. Such instruments have INPUT/OUTPUT lines
which feed or receive data in BCD format.

Some microprocessors can perform arithmetic on either two’s
complement numbers or can be programmed to accept BCD numbers
direct and produce the result in BCD. Fortunately, the 6502 is
equipped for this operation.

Hexadecimal code

This subject is treated separately from the previous binary
manipulations because it is simply a code used to identify or describe a
binary string of bits. Describing a binary string by its decimal
equivalent is not rapid enough — even with practice could you almost
instantly say what is 11011011 in decimal? BCD is easier but we are then
faced with the six illegals for which we have no symbol.

Hexadecimal or simply ‘hex’ uses the full sixteen characters to
describe the binary contents of a nibble (the base of hexadecimal is
sixteen).

The characters in hex are 0, 1, 2, 3, 4,5,6,7,8,9,A,B,C,D, E, F.

The letters start where the numbers finish so A isten, Bis eleven and so
on until we reach F which is fifteen. One hex digit describes one nibble
so to describe a byte we need two hex digits. Here are some examples:

01110001 11111111 10101010 10110000 00000000 00001111
71 FF AA BO 00 OF

Hex is very important in machine code programming and it must be
learned. The microprocessor set of instruction codes are given in hex.
Addresses are given in hex as well as decimal; strangely, an address in
hex tends to be easier to comprehend than the equivalent decimal when
relating it to the system address bus. If we label the addresses in
decimal the range is from 0 to 65 535. If we use hex, we only need four
hex characters to cover the range. The lowest address is 0000 and the
highest address is FFFF because if the sixteen address lines are all at

13



‘1’, the highest address must be 1111 1111 1111 1111 which is FFFF in
hex.

Although hex is used primarily for descriptive rather than arithmetic
purposes, it is often necessary to count in hex. The base of decimal is
10, the base of binary is 2 but the base of hex is 16. This means that
every hex digit ascends in powers of 16 from right to left and we
visualise that each digit sits underneath its respective power as follows:

163 162 16 1 , but it is better to think
in this form 4096 256 16 1 . As an example, the
hex number 1 2 5 F can be evaluated as follows:
15x1 15

5x 16 80
2 x 256 512
1 x 4096 4096

4703 decimal

Associated with hex is the concept of dividing the 64K memory map
into pages.

[One page is 256 bytes of memory

Bearing this in mind, it is convenient to visualise a four-hex digit
numbered address as follows:

Page number address within page

|
XXXX
Example: the address 0305 refers to address 05 on page 03.
Example: the address FFFF refers to address FF on page FF.

Most microprocessors attach special significance to page zero which
is the range 0000 to O0FF. In the 6502 some instructions are lumped
under the heading of ‘page zero’ instructions and will only operate
within the boundaries of this page. Page one in the 6502 is also ‘special’
since it is the area dedicated to a powerful memory block known as the
stack. Page one extends between the limits 0100 to 01FF.

Adding in hex is weird until you get used to it. It is best to quote some
examples rather than a formal description:

F
4

_lz Check: 15 + 4 = 19 decimal which is 3 + (1 x 16) = 13 hex
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You have to remember that in any column, if a total exceeds F there
must be a carry to the next higher order column.
Here are some more examples of adding two hex numbers:

F FF CE FFF
A 01 15 101
19 100 E3 1100

It was mentioned earlier that the highest positive number in a two’s
complement byte is + 127 which is the string 01111111. Quoting this
in hex, it is 7F. Thus it is useful to remember that:

Highest positive number is 7F

Any hex number ‘larger’ than 7F tips the number over to the negative
region. Thus the hex number FF, which you may be excused for
thinking is a ‘large’ number, is indeed only numerically equal to —1.
This point is worth mentioning because forgetting this may lead to an
erroneous check when you later substitute sample data in order to
prove that your addition program is valid.

This about concludes the background information necessary to
embark on the perilous but satisfying road to machine code
programming.

Summary

® Machine code is difficult but is worth learning.

® Programs written in machine code execute faster, take less memory
space, improve screen dynamics and could increase your
standing(?).

@ It enables you to understand the internal operation of computers
whereas high-level languages such as BASIC are undemanding in
this respect.

® The computer operates as a two-state system: the two states can be
called 1 and 0 or high and low or volts and no-volts or indeed any
other pair of opposites . . . even New York and Moscow if the mood
takes you.

® A microprocessor by itself is not a computing system. It requires
memory chips, input/output chips, a clock and various peripherals.

® The microprocessor controls the system, the ROMs and RAMs
store the information, the address bus decides which piece of
information, the data bus carries the information back and forth.
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@® The address bus in the 6502 has 16 wires so is thus capable of 21¢
different address codes.

@ The data bus is always as ‘wide’ as memory. In the 6502 it is 8 bits.

@ Eight bits is called a byte which in turn consists of two 4-bit nibbles.

® Input/output chips are designed to ease the problems associated
with peripheral interfacing.

® The 6502 employs a memory-mapped input/output system so there
are no special instructions to activate peripherals . . . they are
treated no differently to an addressed memory location.

@ The term ‘bit’ means either a ‘1’ or a ‘0’. The bits within a byte are
referred to as bit 0 through to 7. The least significant bit is ‘bit 0.

@® Two bytes considered joined are distinguished by ‘lower order and
higher order’ bytes.

@ A string of bits can mean many different things, depending on the
programmer’s viewpoint.

® An unsigned binary number uses all the bits for representing
magnitude. The highest number held in a byte is 255 decimal.

® Signed binary numbers normally employ the two’s complement
notation where the msb is reserved for the sign bit. 0 = positive;
1 = negative.

® The largest positive two’s complement number within a byte is
+127: the largest negative is—128.

@® BCD is useful for instrumentation input/output devices.

® There are six illegal combinations in a BCN nibble, 1010 to 1111.

® Hex coding is basically a descriptive code used widely in machine
code literature. The characters are the numbers 0 through to 9 and
the letters A through to F. The base of the hex code is sixteen.

® A four hex-digit address can cover the entire range of a 16-bit
addressing scheme.

@® A ‘page’ of memory is 256 bytes. Page 0 is 0000 to 00FF.

@ The two right hand hex digits is the address within a page. The left
hand two hex digits is the page number.

® There are 256 pages in the total 64K memory map.

® RAMs can have their contents changed by programmed
instructions but the information stored is volatile.

® ROMs have fixed information and are non-volatile.
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2
Architecture of the 6502

Family history

The first microprocessor was inflicted on an innocent society in the
year 1971 by Intel. After a short time, two rival species dominated the
market. These were the Intel 8080 and the Motorola 6800, both of
which began to sell in enormous quantities and were second sourced
under licence by many other manufacturers. Keeping the overall
pattern of the 8080 reasonably intact, Zilog added many more
instructions and produced an upgraded model which has retained
popularity to the present day — the famous Z80. The Z80 was
designed to retain compatibility with the 8080 by including the original
instruction set plus extras. In this way, it was possible for programs
originally written for the 8080 to be still run on the Z80. It is worth
mentioning at this point that the currently popular disk operating
system known as CP/M, although commonly supposed to operate only
with a Z80 based machine, assumes only the original 8080 instructions
to be present. Our 6502 microprocessor has the Motorola 6800
microprocessor as its ancestor and was desgined by MOS Technology
The 6502 is used in many popular microcomputers including the
Apple, Pet, Acorn Atom, Atari, Aim 65 and last, but certainly not
least, the BBC microcomputer.

The 6502 has many powerful features but sadly, one or two
annoying ones.

Internal anatomy

A detailed drawing of the various bits and pieces within the chip would
be not only confusing but quite unnecessary from the point of view of
the machine code programmer. It is sufficient to understand the
functions of those registers which are programmable. The term register
is used for a set of electronic ‘switches’ which can store a set of binary
bits until such time as they are needed. Registers are therefore similar
to memory locations which we have previously discussed except they
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Fig. 2.1. Simplified interior view of the 6502 microprocessor chip

are inside the microprocessor itself. They are constructed differently
from memory cells in order to increase the storage and retrieval time
and they may have more sophisticated control circuitry. Their
functions extend beyond that of mere storage since they must take their
part in the role of program execution. Fig. 2.1 shows a simplified
version of the registers within the 6502 and the interconnections
between each.

The accumulator (4)

This, from the programmer’s viewpoint, is the most important register
in the chip since it is the only one equipped to carry out complex
operations. If you wish to add two numbers together for instance, they
must be read from memory in turn and passed to the accumulator. You
cannot add directly to memory locations. Some ideas of its status can
be gained by noting the special connection between it and the block
called the Arithmetic and Logic Unit (ALU). It is not proposed to deal
with the intricacies of the ALU because the programmer will be
unaware of its existence. In all fairness to the ALU however, it should
be pointed out that this is the place where all the real work of processing
is carried out — the accumulator only appears important to the
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programmer. The accumulator, like most of the other registers in the
chip, is one byte wide.

Summarising the role of the accumulator we can liken it to a Motion
at a Conference. At a conference, ‘all Motions must be passed through
the Chair’ but within a microcomputer, all data must be passed
through the accumulator!

The X and Y registers (X, Y)

These registers have two distinct functions. Either of them can serve as
temporary holding registers for dumping information. There are times
when the accumulator may have valuable information but it is
required for other purposes. Instructions exist for transferring the
contents of the accumulator to the X or Y registers or transferring back
again.

A more important function is concerned with a technique known as
indexed addressing, the details of which will be mercifully left to a later
chapter. Facilities exist also for using the registers as counters. No
addition or subtraction can be performed.

The stack-pointer (S)

The stack is described in detail later. It is sufficient at this time to define
it as a general purpose dumping ground. It is not in the
microprocessor. It is an area in the external RAM memory occupying
a maximum of 256 bytes (or one ‘page’) and always situated in page one.
The exact position at which the stack starts is decided by the
programmer in the first instance by loading (writing) a number into the
stack pointer. This number is interpreted as the address of the stack.
Once this chore has been accomplished, the behaviour of the stack is
subsequently automatic because the stack pointer is decremented
(contents reduced by 1) after each dumping operation, so the next
dump can take place in a fresh location. When retrieving data from the
stack, the reverse process is activated; the stack pointer is first
incremented so as to point back to the address of the last data item
entered. The stack is called a Last In First Out or LIFO memory
because the last data entered must be the first to be recalled.

The stack pointer is for all practical purposes one byte wide so it can
seemingly only serve as an address pointer over the range 00 to FF hex
(page zero). But as previously stated, the stack can only be on page one.
This ambiguity is resolved by the neat dodge of wiring in a ninth bit
stuck permanently at ‘1’ at the msb end of the stack pointer; the
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effective address range then being 100 to 1FF which are the page one
boundaries.

The Processor Status Register (P)

This is not a register under the normal meaning of the term. It is not a
general purpose storage cell for data. It is a set of individual flag bits
used to record (remember) certain incidents which have taken place in
the immediate past. A flag bit is one which is effectively a yes/no signal.
The particular incident which is flagged depends on the position within
the PSR. The register is the customary eight bits wide but one of the bit
positions is unused:

[(n]v] [B[pfr[z[C]

Negative bit —-| I—Carry bit

Overflow bit Zero bit
Not used Interrupt disable bit
Break bit Decimal mode bit

The N, V, B, Z and C flags are automatically set to ‘1’ or reset to ‘0’
depending on the result of a recently executed instruction; in most
cases, the immediate recent. The rule in translation is that a ‘1’ means
yesor ‘true’ whereas a ‘0’ means no or ‘false’. For example, if the N bit
is 1 the previous instruction must have resulted in a negative number
(the msb must have been 1).

You may be wondering to whom is this fascinating information
directed? Why are the flags important? The information is required by
the microprocessor decision circuits when dealing with the machine
code equivalent to the IF THEN statements of BASIC. Later, the
details of branch type instructions will be given such as BMI which
means ‘branch if minus’. This means in effect ‘branch to some out of
sequence for the next instruction f the last result was negative’ — in
other words, if the N bit was set. The V bit is set as a result of an add or
subtract process leading to an overflow condition, while the C bit is set
if a carry resulted. The C bit may under certain circumstances be
considered as a ninth bit tacked on to the end of a register or memory
location. It should be pointed out provisionally that a carry out from a
register does not necessarily indicate an overflow condition — one of
the quirks of two’s complement arithmetic discussed in more detail
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later. In case this may appear worrying consider the case of adding 1
to -1:

{1
£ n
1<+— 00000000

Note that a carry was generated into the C bit but the result is a valid
one, so there is no overflow status to be signalled.

Most of the PSR bits are programmable, i.e. they can be set or reset
by special instructions.

The D bit may be set to 1 by the programmer if the numbers entering
the arithmetic unit are intended to be treated in BCD format (refer
back to Chapter 1). Once the D bit is set to 1, all subsequent arithmetic
proceeds on the assumption of BCD inputs until such time as the
programmer resets the D bit back again to 0. It is up to the
programmer to ensure that illegal BCD groups are not presented.

The Ibit is also programmable and is set to 1 (by an instruction) if for
some reason or other, an ‘interrupt request’ is to be denied. An interrupt
is a method of literally interrupting the current program execution in
order to deal with a peripheral device. For certain parts of a current
program, it would be embarrassing for an interrupt to be allowed so the
programmer can arrange for critical areas to be immune to peripheral
attack. The B bit is set to 1 if the program is interrupted by a ‘break’
command (BRK).

Interrupt Signals

These are RESet, Interrupt ReQuest and Non Maskable Interrupt.
There are three control wires on the microprocessor (see Fig. 2.1)
marked RES, IRQ, NMI from which interrupts can occur. Notice the
convention of the negator bar over the top of a pin label which indicates
that inverted logic (sometimes called active LOW signal) is required.
Thus a ground or LOW level voltage initiates the action instead of a
HIGH voltage (this information is only interesting to electronic
hardware enthusiasts).

RES action: When this pin is grounded, all activity in the system stops
— the microprocessor goes on strike! When this ground is released and
the pin is brought HIGH again, the following actions occur:

1. The address bus is forced by the Program Counter (treated
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later) to adopt the hex number FFFC and then FFFD. The
contents of these two locations are then interpreted as the
address from where the first instruction is to be taken.

The I bit in the PSR is set to prevent interrupts.

The processing of all instructions in memory (from the first
onwards) commences.

©w N

It is of course necessary for the programmer to ensure that the
addresses FFFC and FFFD contain the two byte address of the ‘first
instruction’. In a typical computer system, this area of the memory will
be pre-programmed in a ROM forming part of the resident operating
system. Reset action is intended to ensure the system powers up in an
orderly fashion. Since the term ‘system’ includes the peripherals, the
input/output chips also have a RES pin which is connected to the
microprocessor’s pin. The registers within the typical input/output
chips are normally set to all zeros under reset conditions. On the other
hand, the registers within the microprocessor are not zeroed. With the
exception of the I bit (which is set to 1) the contents of all registers is
mere garbage under reset conditions and it is the responsibility of the
operating system software designer to organise the initial contents by
suitable instructions in the ROM.

IRQ action: When a peripheral requests service it sets a flag bit
situated inside the input/output chip. If the I bit in the microprocessor
PSR is reset (0), it is allowed to interrupt. The procedure is:

1. The address bus is forced to FFFE and then FFFF. The
contents of these two locations are interpreted as the address of
the first instruction of another program designed to service the
peripheral. After the interrupted program has its current position
stored in the stack, the other program begins to execute. This
other program is called an interrupt routine.

2. When the interrupt routine is finished, the processor retrieves
the return address from the stack again and the main program
continues from the point at which it was interrupted.

As previously stated, the interrupt request will not take place if the I bit
is set. However, if the I bit is subsequently reset and the flag in the
input/output chip is still set, the interrupt is belatedly serviced.

NMI action. Unlike IRQ, NMI is not subservient to the I bit —itisa
brute force action with no breeding or manners. It just barges into
whatever else is going on, jumping to its own special program and, as
explained before, returning control to the main program when
completed.

The address lines are forced to FFFA and FFFB on receipt of the
interrupt.
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Understandably, the manufacturers of home computers either warn
you against tampering with NMI or prevent your access to the pin.

Jump vectors

Machine code programmers in in the home computer environment will
want to experiment with IRQ), particularly if the objective is the
control of electromechanical models. There is one mystery to resolve
concerning the earlier references to the special memory addresses
dedicated to the servicing of interrupts.

For example, the IRQ address in ROM must be at address FFFE
and FFFF. But if it is in ROM the home programmer can’t get to it!
How can we use IRQ) to jump to our own interrupt service routine if it
is permanently hogged by the resident operating system?

In most systems, the user is allowed access by reason of a simple
piece of trickery which we shall call a jump vector. The operating system
usually ensures that the contents of FFFE and FFFF contain an address
in RAM. At this address is an instruction which is a JUMP instruction
to the start of the operating system program. Thus the system arrives
by an intermediate stepping stone in RAM. The address of the jump
vector in RAM will be (or ought to be) given in the User’s Manual. To
use interrupt, all you have to do is to store the contents, replace the
contents by your own jump vector (which will now point to the start of
your program) and finally replace the original contents which belonged
to the operating system.

The Program Counter (PC)

This is the prima donna of all the registers but, apart from one
instruction ‘NO OPERATION’, it is not directly programmable. The
course of all programs is completely under the control of the program
counter so its function is worth special treatment:

The program counter contains the address of the next
instruction byte to be fetched from memory.

After each instruction byte is fetched from memory, the program
counter is incremented, from which we assume that instructions are
executed in strict address order.

There is one exception to the contiguous-address rhythm. If the
currently accessed instruction is a conditional BRANCH IF type and
the condition is indeed true, an entirely new number is placed into the
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program counter. Thus the next instruction byte is fetched from an
entirely different address decided by the programmer. The normal
action of the program counter continues again from this fresh address.

The program counter must be able to reach any part of the 64K
memory space and consequently must be capable of holding a four hex
digit address. The register may be considered in two parts, the higher
order byte (PCH) and the lower order byte (PCL).

Example:

1111110010001110J

PCH PCL

PCH is holding FC and PCL is holding 8E; the combined address is
FCB8E. It is the only register which is 16 bits wide.

The Instruction Register (IR)

The programmer has no access to this register. It holds the Operation
Code part of the instruction (informing the Control Unit which
particular set of actions are to be carried out). (We shall see later that a
complete instruction consists of an operation code and in most cases an
operand.)

The Control Unit

When the instruction register contents are received by the control unit
it knows exactly what task is to be carried out in order to execute the
current instruction.

The first task is to decide whether the complete instruction has been
fetched from memory. It already has the Op Code but there may be
one or more operands to fetch before the full instruction can be
executed. Once the Op Code is decoded (and there is a different Op
Code for every instruction) the control unit will know how many
operands to fetch before it can complete the execution.

The action of the control unit may be divided into two distinct
‘phases’:

The Fetch Phase, during which the Op Code and operands are read
from memory.

The Execute Phase, during which the actual execution of the
instruction takes place.

24



Although the internal logic of the control unit is complex, the actual
operations carried out are relatively simple. They consist of opening
and closing the input and output gates of a pair of registers one at a time
allowing the data in one of them to pass along an internal ‘highway’
and enter another. Arithmetic processes are automatically processed in
the ALU by the simple action of a trigger pulse on the appropriate
control line. The complexity arises because all these simple steps must
be carried out in the right order and at the right time. In fact, what the
program considers to be a simple ‘instruction’ is in reality a series of
minute steps called the microprogram for that particular instruction.
These microprograms are stored in a ROM, situated inside the control
unit — the Microprogram ROM. (Not to be confused with the
external ROM chips.)

Not all instructions take the same time, some taking two clock cycles
and other more complex varieties may take up to seven cycles. The
6502 can employ a clock frequency of 1 MHz (one million cycles per
second) but the 6502A can operate at 2 MHz. To gain some idea of the
time taken to complete an instruction, both fetch and execute phases, a
simple addition of the contents of a memory location to the
accumulator takes three or four clock cycles depending on its position
in RAM. Thus, taking the worst case of four, the 6502 can perform
250 000 additions per second and the 6502A twice this amount.

This completes the details of the 6502 architecture. It is not easy to
understand and to those who have never attempted this before it must
be bewildering. Fortunately, it is not essential to grasp all these details
before proceeding to the next chapter. It may be that when you refer
back to it later, it makes more sense.

Remember, if machine code was easy there would be no honour in
learning it!

Summary

@ Registers can be considered as a set of electronic switches which can
hold a byte (in some cases two bytes).

@ The accumulator is the major programmable register and the only one
capable of carrying out arithmetic processing.

® The X and Y registers can have their contents swopped with each
other or with the accumulator. They can be incremented or
decremented for use as counters and are used for a special
addressing mode known as indexed.

@ The stack pointer (S) is used to control any part of RAM (in page one)
which has been declared the stack.
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@® The stack is a LIFO sytem used for dumping the contents of the
other registers.

@ The Processor Status Register (P) is a set of flag bits which indicate
items of interest resulting from the previous instruction. The N, V, Z
and C bits are used by the control unit to decide whether or not to
branch to some out of sequence address.

® The I bit can be used to inhibit an interrrupt request from the
peripherals. It can be set or reset under program control.

® The D bit can be set if BCD arithmetic is to be used, otherwise it
must be reset by the programmer.

@ The currently running program can be interrupted by any one of
three signals, IRQ, NMI and RES.

@ On receipt of an accepted interrupt, the program diverts to another
program called an interrupt service routine. On completion of this, the
original program is allowed to continue from the point at which it
was interrupted.

® IRQ is subject to the I bit in the PSR. NMI and RES ignore the I
bit.

® IRQ facilities can be used provided the jump vector in RAM is
altered to correspond with your own interrupt service routine. The
jump vector will be in RAM at an address which must be looked up
in the User’s Manual.

@ The Program Counter (PC), apart from one exception, is not available
directly to the programmer. It is automatic in action, always
‘pointing’ to the address of the next instruction byte. This rhythm is
disturbed if the conditions are true in a branch type instruction.

@ The Instruction Register (IR) holds the Op Code part of an instruction
while it is being decoded by the control unit. It is not
programmable.

@ The Control Unit contains the set of microprograms necessary to
carry out the individual steps required for instruction execution.
® During the Fetch phase, the Op Code and operands are read from

memory.

@ During the Execute phase, the instructions are obeyed.

® The number of clock cycles varies with the complexity of the
instruction.

® The 6502 operates at a clock frequency of 1 MHz; the 6502A runs
twice as quick.

® This chapter may not be digestible in one go!
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3

The machine code instruction

Operation codes and operands

The word ‘instruction’ has been mentioned several times already and
we must now discuss it in detail. Superficially, an instruction can be
defined as an order given to the 6502 in a form which is directly
acceptable to the decode section of the control unit. Unfortunately, this
would mean writing a program in the form of a string of depressing ‘1’s
and ‘0’s which to any normal human being would be about as
stimulating as psychedelic lighting without the flashes. Program
writing is made a little ‘easier’ by persuading the computer to accept
machine code instructions either in hexadecimal form via a resident
machine code monitor or in a slightly higher level form known as an
assembler. Most home computers have a machine code monitor in
ROM but few have a resident assembler although the BBC/Acorn is
well equipped in this respect. Whatever method of entry is used, it is
essential to grasp the basic format of a computer instruction.

Instruction Format

The list of different instructions which a microprocessor can execute is
called the instruction set. The 6502 has 56 types of instruction but most of
these have thirteen variations on the basic type. Except for a few
exceptions, instructions have the following format:

Op Code Operand

The two parts of a typical instruction are defined as follows:

(@) The Op Code
This is an abbreviation for ‘Operation Code’ and informs the
machine WHAT to do with a data item.

(b) The Operand
This informs the machine WHERE to find the data and is
usually the memory ADDRESS which holds it.
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The Op code is analogous to the verb and the operand to the noun.
Consider the sentence:

Place a copy of the contents of address 35CF into the

accumulator.
Using hexadecimal machine code for the 6502, the instruction would
be written as:

AD CF35
The Op Code in hex is the ‘AD’ part. The operand, also in hex, is the
memory address but note this carefully, written in reverse byte order! It
must be admitted that the previous remark that machine code is made
‘easier’ if hex is used doesn’t seem to be worth much. In defence, this is
what it would look like in binary:

10101101 1100111100110101

On the other hand if the same instruction was entered by means of a
typical assembler it could be written as:

LDA $35CF (operand in hex but right way round)
or LDA 13775 (operand in decimal)
or perhaps LDA BLOGS (symbeolic operand)

Before proceeding further, it is wise to spend some time on the details
of assembly code and the various dielects which are around. Even if your
system does not boast an assembler you will find that it is still worth
assuming there is one while you are developing a program, even if this
means a conversion exercise to machine code as a last step before
entering the program at the keyboard.

The properties of an Assembler

As assembler is the name for a software system designed to ease the
burden of writing machine code programs and to reduce the chance of
making errors. It is either resident already in ROM and can be called
up by the normal operating system or alternatively it may be available
on tape or disk. Assemblers are specific both to the machine and the
microprocessor type because it is in reality a software interface between
you and the machine code. Unlike the software which is used to enable
the use of high level language such as BASIC, each line of a program
written in assembly code gives rise only to one line of the equivalent
machine coding — a one to one correspondence exists. Thus a
program written in assembly code is no shorter in length but it will read
more meaningfully to you than the machine code.
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Assembler mnemonics

An assembler mnemonic is a three letter group used to replace the Op
Code. The letters are standardised by the microprocessor
manufacturer and are chosen to represent as far as possible the meaning
of the Op Code in abbreviated form. The following is an example
selection of 6502 Op Codes in their primitive hex form and the
equivalent assembler mnemonic:

0p Code

in Hex Mnemonic Meaning in plain language
AD LDA Load accumulator
8D STA Store accumulator
AA TAX Transfer accumulator to X register
A8 TAY Transfer accumulator to Y register
8A TXA Transfer X register to accumulator
BA TSX Transfer Stack pointer to X register
F8 SED Set decimal mode

The mnemonics, although heavily abbreviated forms, are soon
remembered after the first few weeks of use. The hexadecimal Op
Code however should never be memorised. Always look it up from the
table in Appendix 1. It may take a little of your time but you will find it

~ helpful for future reference to copy out the table and paste it on to card.

~ If you always intend to use the assembler (and if you have one it would

be foolish not to) there is of course no need to even know the hex codes
and you would find little of interest in the table.

Machine code operands

In machine code, the operand must be given in the form of either a two
or four digit hex number which normally represents the address of the
data in memory. If the address is in page zero then only two hex digits
are required. You will recall that page zero extends from 0000 to 00FF
so the first two leading zeros can be omitted. If the address is outside
page zero then the full four hex digit address must be given and
complicated by an annoying twist:

Remember this: A 4 hex digit address must be written with
the lower order byte first!
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Example: If the address in hex is actually 35CF, the operand must be
written in the form CF35. This is because the 6502 architecture is
designed this way round in order to speed up the control cycles. We
must remember that machine code is arranged to suit the machine’s
convenience; humans are considered a nuisance and quite illogical.

Assembly code operands

Assemblers are intended to aid humans in their fight with the machine
so we should expect that evils like reverse-byte operands are weeded
out. Also the dreaded hex code is replaced by an option allowing the
address to be given in normal decimal form. Advanced assemblers
even allow you to use symbolic operands provided that some previous
initialisation has equated the chosen ‘symbol’ (which could be a group
of letters having mnemonic value) to a specific machine address.
Symbolic addresses increase the readability of a program and
consequently reduce the number of programming errors which might
otherwise occur.

Addressing modes

From a practical viewpoint, an addressing mode determines what
interpretation the machine places on the operand you have written.

To give a quick example, suppose we write LDA 30.

The operand-is 30 but does this mean load the number 30 into the
accumulator or does it mean load the contents of address 30 into the
accumulator? Some of the instructions can have as many as eight
different addressing modes for each one of them. In fact, the power of a
microprocessor to process data depends to a great extent on the
number of addressing modes for each instruction rather than the
number of different instruction forms. The 6502 owes much of its
popularity to the number of addressing modes available. There is of
course a slight drawback as far as the beginner is concerned — the
more addressing modes, the more difficult it is to decide which one to
use in a particular case. With practice and confidence however, you
will bless rather than curse their availability. In the following attempt
to explain some of them we shall stick to the simple LDA as an example
mnemonic Op Code but remember that many more instructions allow
the same type of addressing modes.
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Immediate addressing

With immediate addressing, the operand is the data. Memory is not
involved. The character used to inform the assembler that the operand
is immediate is the symbol # placed before it.

Example: LDA #30 would load the number 30 into accumulator.

In hex machine code, no special symbol is required because the
information is contained in the Op Code itself. Thus in machine code
the previous line would be A9 30.

Immediate addressing is used for placing constants in registers.

Zero page addressing

In zero page addressing, the operand is an address in page zero of the
required data.

Example LDA30 would load the contents of address 30 into the
accumulator.

In machine code, it would be A5 30.
Page zero is something special and enjoys a higher status than the
rest of memory. Wherever possible, page zero should be used because:

(a) the operand only requires one byte of storage
(b) the execution time is reduced

There are also some addressing modes which can only be used in page
zero locations. There may be some snags, however, when you try to
use page zero because many home computers employ an operating
system which purloins most of it. You may have to examine your
User’s Manual in the section devoted to the contents of page zero with
the object of spotting a few empty locations.

Absolute addressing

In absolute addressing, the operand is an address which can be anywhere
in the 64K memory space (including page zero).

Example: LDA 3056 would load the contents of address 3056 into
the accumulator.

The machine code would be AD 5630 (note the reversed bytes).
Note that absolute addressing requires three bytes of storage, one for
the Op Code and two for the operand.
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Indexed addressing

An indexed address is the sum of the operand and the contents of an index
register. There are two index registers, X and Y and either can be
used. The assembler is informed that indexed addressing is intended
by following the operand by a comma and the index X or Y.

Example: LDA 30,X wouldload into the accumulator the contents
of an address effectively equal to 30 + contents of X.

Thus if X contains 05, the contents of address 35 is loaded; if X
contains 06 then contents of address 36 is loaded.

Indexed addressing provides a simple method of using the same
instruction to refer to different addresses by simply changing X (usually
by incrementing or decrementing X). A loop can be set up as shown in
Fig. 3.1, which shows how some particular ‘process’ can be performed

Indexed
instruction

Increment X

Fig. 3.1. Loop flowchart

on a block of memory addresses. The end-of-loop test will be on the
value to which X has grown. Thus if we desire ten revolutions of the
loop then if initially X contains 00, the loop must exit when X contains
10.

The following terms are recognised when discussing indexing: The
operand of an indexed instruction is called the base address, the
contents of the index register is called the relative address and the sum of
the two is called the gffective address. This relation can be shown as

Effective address = base address + relative address

As an example, in the instruction LDA 60,X assume the X register

32



contains 07. The base address is 60, the relative address is 07 and the
effective address is 67.
The 6502 recognises two forms of indexed addressing, as follows.

Zero page indexed addressing

The operand is a single byte, two-hex digit address.
Example: LDA 30,X

In hex machine code, B5 30
Only the X register can be used in this mode.

Absolute indexed addressing

The operand is a two byte, four-hex digit address.
Example: LDA 4527,X or LDA 4527 ,Y

In hex machine code BD2745 or B9 2745
Note that either X or Y can be used as the index register.

Indirect addressing

The availability of this mode of addressing raises the status of the 6502,
almost approaching that of a minicomputer. In fact the reason that the
PET, APPLE, ATOM and ATARI designers chose the 6502 was
probably due in some measure to the indirect addressing capability.
Before discussing the details, it would be wise to point out that there
are three variants distinguished by the terms simple indirect, indexed
indirect and. indirect indexed, all of which are available on the 6502.

Sitmple indirect addressing

There is only one instruction which can use this mode (actually a jump
instruction JMP) but for the moment, we shall continue with the LDA
theme purely as an example to illustrate the technique.

Example: LDA (40) Note the parentheses indicate indirect.

The operand is not the actual address of the data. It is the address of
where the address is to be found! Read this again because it is probably
gobbledegook the first time — or even the second?
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The following illustration may help:

0084 FF —’lAccumulalm]

The indirect address is 40 so the machine goes to address 40 first. The
contents of 40 (84 in this case) is then interpreted as the address of the
data so the machine then goes to this address to find the actual data.
The data (FF in this case) is then dumped into the accumulator.

An obvious question will arise here; if we wanted to load the contents
of address 84 into the accumulator why didn’t we just write LDA 84?
The advantage of indirect addressing is the ability to change the contents
of the ‘address pointer’. Thus in the above example, the contents of
address 40 (the indirect address) contains the address pointer 84 — it is
‘pointing’ to address 84 where the data lies. If we change this 84 to
some other number, the original instruction will fetch data from a
different address. Indirect addressing has therefore the same potential
for creating loops as the previously discussed indexed addressing but
instead of being restricted to X or Y as the variable, a memory location
can be changed or incremented or decremented. Remember that the
description above is based on a fictitious instruction. There is, in fact
no 6502 instruction LDA(xx). The real instructions are now discussed.

The indirect address pointer is always two bytes and is stored in two
consecutive addresses in the usual awkward order, lower byte first,
higher byte second. The only instruction using simple indirect
addressing is the jump instruction JMP which is equivalent in BASIC
to the GOTO.

Example: JMP (5460) This causes the computer to jump to the
indirect address 5460. In address 5460 is the lower order byte of the
address pointer; the higher order byte is in 5461.
The hex code is 6C 6054
To illustrate:
JMP (5460) 5460 (80 ]

5461
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This would cause the computer to jump to address 7080 for the next
instruction. In fact, 7080 would be loaded into the Program Counter.
Note that if the address pointer was changed, the jump would be to a
different address.

Indexed indirect addressing

This is like indirect addressing but worse! Not only do we have to grasp
the essential idea behind indirect addressing, we have to cope with the
added complication of indexing at the same time.

The assembler is notified by writing the operand in the form (ZZ,X)
so taking the LDA case again for an example and assuming that X
contains 05:

LDA (340,X) is the assembly form of the indexed indirect
mode. The contents of X are first added to the operand to produce 35.
This is then taken as the address of the lower order byte of the address
pointer, the higher order byte is at address 36 (Fig. 3.2). The operand

LDA (30,X)

Accumulator
o880 56 |—] |

Fig. 3.2. Indexed indirect addressing

is single byte in all indexed indirect instructions, which means the
address pointer must be in page zero. If the sum of the operand and X
exceeds FF (255 decimal) the carry is ignored and a wrap-around
occurs back to address 0000.

One advantage of this mode is the ability to address the entire 64K
memory space by the use of a singlebyte operand. The main advantage,
however, is the presence of two variable mechanisms, because we can
vary X to obtain a new pointer address and the pointer itself can be
changed. Thus we can set up looped processes in various blocks of
memory under the one indexed indirect instruction. In some
textbooks, indexed indirect is called pre-indexed indirect.

Finally, on the 6502, only the X register can be used in this mode.
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Indirect indexed addressing

This is a kind of mirror image of the previous mode. In the first place,
only the Y register can be used to provide indexing. Secondly, the
indexed addition is to the address pointer instead of the operand.

The assembler is notified of this mode by writing the operand in the
form (ZZ),Y . Be careful to notice the difference between this form and
the previous one because they are very similar.

Example: LDA (30),Y Assume that Y contains 05.

The machine goes to address 30 in which the lower order byte of the
address pointer is stored with the higher order byte in 31. The contents
of Y is then added to form the effective address pointer (Fig. 3.3).

LDA (30),Y 0030 60
0031 70 05
Add
7065 F3 —_—
Accumulator

Fig. 3.3. Indexed indirect addressing

Indirect indexed addressing is very useful for processing blocks of
data which may be distributed in various pockets throughout the
memory space. The address pointer represents the first location in the
block or list and the Y register can be incremented within the loop. The
address pointer then becomes the base address, the Y register the relative
address which together constitutes the effective address. To process
another block, the mechanism is the same except the address pointer
must be changed to point to the start of the new block. Another name
for indexed indirect is ‘post-indexed’.

Implied addressing

This mode will come as light relief after the previous forms — there is
no operand at all. The Op Code itself is sufficient to define the
complete instruction. Most of these instructions are concerned with
simple register operations such as transfers from one to the other or
increments or decrements. It is called implied because the operand is
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implied rather than specifically stated. (Some texts use the alternative
term ‘implicit’ instead of implied.)

Examples are:

INX increment X

INY increment Y

CLC clear C bit in processor status register
SED set decimal mode

TAX transfer accumulator to X

TXA transfer X to accumulator

Implied addressing is economic because the instruction is only single
byte. Another advantage is overcoming deficiencies in the repertoire of
some registers. For example, we cannot add numbers to the X or Y
registers; only the accumulator can perform addition of numbers. If we
indeed wish to add, say, 04 to X it is necessary to either use four INX
instructions or use a TXA to transfer X to accumulator. We can then
add 04 and then use TAX to transfer back again.

Another pair of very economic instructions are concerned with stack
operations.

PHA Push accumulator on stack
PLA Pull accumulator from stack

Whenever you wish to temporarily store the contents of A, just use
PHA. When you want it back again then use PLA. If on the other hand
you want to store X or Y temporarily then use TXA or TYA first and
then PHA. Remember from previous work that the stack is a LIFO
and it will be up to you to keep track of the order in which data has been
pushed on the stack.

Relative addressing

This form of addressing is used only in conditional branch type
instructions. Briefly, the operand signifies how many bytes have to be
skipped over a program to arrive at the intended destination. For
example, the most common branch instruction is BNE ZZ, where
BNE means ‘branch if not equal’ ZZ bytes to obtain the next
instruction.

Example: BNE 09 would cause a branch nine bytes forward (if the
branch condition was satisfied). If the branch condition was not
satisfied, the machine would ignore the instruction and carry on in the
normal instruction address sequence.

How about if we wish to branch backwards instead of forwards? In
hex machine code this is a bit tricky because backward branches are
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assumed to be negative numbers — and that means two’s complement
conversion. Thus if we wanted to branch back nine bytes we must find
the two’s complement of 9 as follows:

write down +9 as 00001001, then obtain the two’s complement,
11110111, which in hex is F7.

The instruction would then be BNE F7. (Refer to Chapter 1if you have

forgotten this.)

The mode is called ‘relative’ addressing because the operand is in
essence an offset, relative to the present position.

It is a common source of programming error, particularly in hex
machine code, to miscount the bytes by one. This could lead to
disastrous results because being one out could mean a branch to an
operand and, because of the pathetic intelligence of a computer, would
be treated as an Op Code!

The following example may assist in understanding the counting
procedure:

Tz 7 ZZ
d
ZZ YA/ Each byte is shown as a pair of ZZ.
The byte marked XX is the byte which
ZZ ZZ ZZ would have been executed next if the
cr condition was false (the ‘normal’
BNE ?? sequence).
The problem is to find the correct
XX ZZ ZZ operand for the BNE instruction for
a each of the four examples a, b, ¢, d.
o a=03 :b=07
b ZZ 77 c=FB:d=F6

= rlL ZZ V44

One outstanding advantage of an assembler is to free the programmer
from this error prone procedure. An assembler normally allows you to
write a symbolic label (of your own choice) to identify the destination
byte. The following illustrates:

BNE BLOGS
Z2727Z
BLOGS |ZZ ZZ

Since the branch type instructions only have a single byte operand the
maximum number of bytes which can be skipped is 127 forward or 128
backwards. (If this is not clear, refer again to Chapter 1.)

If a branch is required outside these limits it is necessary to employ a
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~ leap-frogging procedure with the aid of the unconditional jump

instruction, JMP. A conditional branch such as BNE can be used for
part of the journey as far as the JMP. This will re-route the machine on
to the ultimate destination. A jump instruction has a two-byte operand

- s0 any part of the memory space can be accessed.

Accumulator addressing

There are a few instructions which can operate on memory locations or
the accumulator. They are the shift and rotate instructions which will
be treated later.

This concludes the addressing modes available (thirteen in all) and
also this chapter. You will continually need to refer to this chapter
when in doubt as to the exact significance of a particular mode.

Summary

@® A machine code program can be entered by a machine code monitor
which will demand hex code throughout.

® An assembler allows easier and less error prone methods of entry.

@ All instructions have an Op Code which informs what is required.

@® Most instructions have an operand which supplies information on
where to find the required data.

® Some operands are single and some double byte, so a complete
instruction in hex code may be one, two or three bytes long.

® Two byte operands if in hex machine code must have the bytes
reversed (lower order byte first).

® An assembler accepts the Op Code as three letter mnemonic
groups. The operand is assumed to be in decimal. If the dollar sign
precedes the operand it indicates hex numbers.

® Some assemblers allow pre-defined symbolic operands.

® The significance attached to an operand defines the addressing mode.

@ If the operand is the actual data it is called immediate mode.

@ Ifthe operand is a two-hex digit address of the data it is called page zero
mode (address range 0000 to 00FF).

® If the operand is a four-hex digit address it is called absolute
addressing (address range 0000 to FFFF).

® Indexed addressing allows the operand address to be modified by
the addition of the index register contents.

® In an indexed instruction, the effective address is the sum of the
operand and the contents of X (or in some cases Y).
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® If the operand is single byte it is zero page index mode. Only X
allowed.

@ If operand is two-byte it is absolute indexed and can use X or Y.

® Indirect addressing is when the operand is the address in memory
where the address pointer is located. An address pointer is the address
of the data.

® [Indexed indirect addressing causes the contents of X to be added to the
operand first, the result is the address of the pointer in memory. It is
sometimes called pre-indexed addressing. (Remember that only X
is allowed.)

® [ndirect indexed addressing adds the contents of Y to the pointer. It is
sometimes called post indexed addressing. (Remember that only Y
is allowed.)

® Implied addressing does not require an operand. The Op Code is
sufficient to define the instruction.

® Register transfers, increments and decrements use implied
addressing.

® Accumulator contents can be pushed onto the stack with PHA and
recovered with PLA.

® Only branch instructions use relative addressing. The operand refers
to the number of bytes skipped. Forward branches require a positive
operand; backward branches, a negative operand by using the two’s
complement.

® Branch operands in assembly code can be symbolic labels.

® Abranch operand cannot exceed +127 or -128 in decimal (7F or 80
in hex).

® Accumulator addressing is an instruction acting only on the
accumulator.



4

Classification of instructions

Apart from reference purposes, a list of instructions arranged in
alphabetical order is of small value; from a functional viewpoint they
would be virtually in random order and consequently would contribute
little to the learning process. If however they are arranged in some sort
of classified order the task of choosing the right one is made easier,
although there will always be arguments as to whether a particular
instruction should be under a certain heading or some other. We shall
discuss them under the following headings:

(a) Transfers between memory and registers
(b) Transfers between registers

(c) Incrementing and decrementing

(d) Branching and comparisons

(e) Arithmetic and PSR operations

(f) Logical operations

(g) Shifting and rotating

(h) Stack operations.

The information required to completely define the nature of any
instruction may be divided into two categories — primary information
which must be understood first, and secondary information which,
although important, can be postponed until needed. One of the
features which most of us find bewildering when trying to understand
literature written on machine code is the mas of detail surrounding
each instruction. For example, the designers of a microprocessor will
publish a sheet of paper filled with mind-bending detail on the precise
effect of every instruction and its various addressing modes. As an
example of scientific condensation it is usually a masterpiece. As a
guide to the poor student trying to program for the first time in
machine code it is about as informative as a civil service document.
Too much information in one place is no information! The number of
clock cycles required to execute a given instruction may be important to
the professional or experienced programmer. On the other hand, a
beginner is overjoyed that his program works at all and is unlikely to be
concerned about wasting the odd clock cycle. As experience grows,
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such matters may assume importance but initially they should not be
allowed to intrude to the detriment of more pertinent information.

Another characteristic of each instruction which may be considered
of secondary importance is the effect on every bit in the Processor
Status Register. It is probably sufficient in the initial learning stages to
assume that after an instruction, the ‘relevant bits in the PSR are
updated’ and to remember that the branch type instructions will not
affect the PSR in any way; they rely on the PSR information but they
leave it alone.

This chapter will be devoted to a coarsely detailed discussion on each
instruction.

Transfers between memory and registers

To transfer means to place a copy of the data in one place (called the
source) into another place (called the destination).

After a transfer, the source information is preserved intact; the old
information at the destination is overwritten by the new.

The direction of transfer is established by the following terms:

To load means to transfer from memory to register.
To store means to transfer from register to memory.

The 6502 has three load instructions, LDA, LDX and LDY and three
store instructions STA, STX and STY. They all set the N and Z bits in
the PSR accordingly.

Mnemonic
Op Code Action Addressing modes supported
LDA Load accumulator Immediate / Z page / Absolute /
Z page, X / Absolute, X / Absolute, Y /
Indexed indirect / Indirect indexed
STA Store accumulator As LDA but no immediate mode
LDX . Load X Immediate / Zero page / Absolute
: Z page, Y / Absolute, Y
STX Store X Z page / Absolute / Z page, Y
LDY Load Y Immediate / Z page / Absolute
Z page, X / Absolute, X
STY Store Y Z page / Absolute /
Z page, X

You will notice that immediate addressing can be used with load
instructions but not with store instructions. This is because to store
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tmmediate would demand one operand for the immediate data and a
second operand for where it was to be stored — an impossibility in a
single-operand computing system. What happens then if we wish to
place the constant say, F5 in address 0057? It has to be done in two
stages. First load immediate F5 into say, the accumulator (or X or Y)
then use a store instruction. The following illustrates:

Assembly code Hex machine code
LDA #$F5 A9 F5
STA $57 85 57

Transfers between registers

There are four of these: TAX, TAY, TXA, TYA. (There are two
others but they are concerned with the stack and will be treated under
that heading.) The N and Z bits are set accordingly.

Mnemonic

Op Code Action Addressing modes supported
TAX Transfer Accumulator to X Only implied addressing
TXA Transfer X to Accumulator Only implied addressing
TAY Transfer Accumulator to Y Only implied addressing
TYA Transfer Y to Accumulator Only implied addressing

Register transfers are used mainly to shuffle around data that is in the
way but too important to be overwritten.

Incrementing and decrementing

There are four register instructions: DEX, DEY, INX and INY and
two memory instructions: DEC and INC. They all set the N and Z bits
accordingly.

Mnemonic

Op Code Action Addressing modes supported
DEX Decrement X Only implied addressing
INX Increment X Only implied addressing
DEY Decrement Y Only implied addressing
INY Increment Y Only implied addressing
DEC Decrement memory contents Z page / Absolute /
INC Increment memory contents Z page, X / Absolute, X
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The main use is in loop counting operations, either to count up or
down until a certain limit is reached. This can be done in two ways,
either by counting up (incrementing) until a certain number is reached
or by starting with a number and counting down (decrementing) until
zero is reached. For counting up by two or more at a time, consecutive
increments can be used or, if the increment is to be large, by using the
arithmetic add instruction. Thus if it is required to count X up ten at a
time you could use ten consecutive INX lines but it would lack
i efficiency and elegance. The best way would be to use TXA followed
by an add immediate (ten) and then a final TAX. For counts less than
five at a time the crude method of multiple INX lines would work out
more efficiently.

| Branching and comparisons

You will already be familiar with the IF THEN structure of BASIC
which is used to program decisions. ‘IF such and such is TRUE then
perform some action or actions, otherwise do something else’. The
ability of a computer to alter the program path depending on certain
criteria is the major advantage it has over the simple ‘calculator’. We
must expect, therefore, that such a facility is inherent within the
microprocessor and is not simply a high-level programming gimmick.
Unfortunately, although decision branching instructions are inherent
in any microprocessor instruction set, they are relatively primitive
when compared to the sophisticated doctoring-up versions in a high-
level language. For example, in BASIC we take the following line for
granted:

100 IF S+K/2 = S*(K+SIN(D) OR S>G THEN B-=] :
GOTO 450

In machine code this is in the realms of Fantasy. Instruction codes
certainly exist for decision making but they are of the naive ‘yes/no’
form. Either something happens or it doesn’t happen.

In BASIC, exponents seldom use diagrammatic aids to help them in
planning their programs; they should do but they don’t. In fact, the
arrival of the VDU as the primary display device (instead of the early
printers or ‘teletypes’) has in one way encouraged sloppy trial and
error programming in BASIC — or indeed other high-level languages.
Instead of wasting expensive printer paper to muddle through, the
VDU (or TV screen) now tends to be used as a cheap scribbling pad
and is quicker to many of us than getting down to serious planning by
Sflowchart.

This sloppy method will just not work in machine code unless you
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are an instinctive coder. Flowcharts are virtually essential in planning
a machine code program if it is one which contains multiple decision
branches. What is a ‘flowchart?’. A flowchart, in the broadest meaning
of the term, is a diagrammatic abbreviation for the actual program or
rather the strategy of it. It is a preliminary statement of the program
structure and can be of free form, using any short-cut symbolism which 4
the programmer feels sufficient for the purpose or according to the
dictates of established symbolism. If the chart is intended only as a
personal aid, then the symbolism employed is unimportant. If,
however, the intention is to inform others (as well as yourself) how your
masterly program was architectured, it is essential to use formalised
symbols or outlines which have the blessing of the Establishment.
Some of the most commonly used outlines used in flowcharts are shown
in Fig. 4.1.

Subroutine

Denotes a definite action or
a sequence of actions

D Denotes a ‘terminal’ (such as START or STOP)

The decision diamond. Used where a program can
take either of two courses. The decision or criterion
upon which the decision is based is written inside.
Essentially a ‘yes/no’ branch

Known as a ‘connector’. Used to link together sections
of a large flowchart which overlaps several pages.

The number inside links with the same number

on the next page

D Denotes transfer to or from an external peripheral

L ____________ Denotes an ‘annotation’. Used where additional
remarks are required to explain actions further

—
Direction arrows. Show flow of data between
flowchart outlines

Fig. 4.1. Commonly used flowchart outlines
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A flowchart should not be too detailed and show every step of the
program — this would defeat the object and the end result would be as
complex as the actual program. A flowchart is strictly a shorthand
version so that the overall strategy of the program is clear without
polluting the paper with irrelevant or obvious detail. Sometimes it may
be desirable to have more than one flowchart, perhaps a very short
form first and subsequently another with more detail. The human
mind works better if complexity is staged — it objects to detail
bulldozed into it without preparation.

The main use of flowcharts is to show the course of decision
branches, so the ‘diamond’ is the most important symbol. A diamond
has oneentry point and fwo exit points, one of them the ‘yes’ branch and
the other the ‘no’ branch. Most of the coding in this book is of short
duration and designed rather as segments which can be used in actual
programs, consequently the need for flowcharts to accompany them is
minimal. However, when you undertake ambitious programs,
flowcharts or some form of strategic planning diagrams will be
essential.

There are eight conditional branch instructions in the 6502. They
are BNE, BEQ, BPL, BMI, BCC, BCS, BVC and BVS. They all use
relative addressing and none of them affect the processor Status
Register. If the condition is true (and this knowledge depend on the
PSR bits adjusted by the (normally) immediately previous instruction, the
branch is made. If the conditions are untrue, the branch instruction is
ignored and the next sequential instruction is executed. It is essential,
when choosing which particular branch instruction is to be used, to be
quite certain whether the previous instruction does affect the relevant
bits which are being tested.

Mnemonic
Op Code Action Addressing modes supported
BNE Branch if not equal (Z = 0)
BEQ Branch if equal (Z=1)
BPL Branch if plus (N = 0)
BMI Branch if minus (N = 1) Only relative addressing
BCC Branch if Carry clear (C = 0)
BCS Branch if Carry set (C=1)
BVC Branch if Overflow clear (V =0)
BVS Branch if Overflow set (V = 1)

One small point often forgotten is the fact that zero is a positive
number. Thus if you use BPL you are really testing for ‘equal to or
greater than zero’. There is no hard and fast rule as to the choice of
branch but in general, it is tidier to use the ‘yes’ branch as a skip
(meaning don’t do it). For example, if the intention is to increment X
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only if the last result was positive, then the neatest choice of branch is
the opposite, BMI (Fig. 4.2).

INX

s Nt instruction

Fig. 4.2. Branch — if loop

Try doing this the other way using BPL and see the kind of ugly mess
you get into!

It is time to discuss the comparison instructions. Thus we may want
something to happen only if a register contained some particular
number. The PSR can only deal with crude results such as whether the
number is zero or not zero; it is incapable of informing if the last result
was, say, 23 or any other particular number. One way of course is to
use the simple mathematical dodge of subtracting the number from the
test number and seeing if the result is zero, thus indicating equality.
Unfortunately, this operation may corrupt the data merely to test it
and may necessitate shuffling around prior and subsequent to the test.
To avoid all this trouble the 6502 has three comparison instructions:
CMP, CPX and CPY.

One of the primary properties of these instructions is the
preservation of the test data. Although the execution involves a
subtraction process it is carried out by the microprocessor in a separate
pair of registers and the PSR bits are set accordingly. Thus if the two
numbers were equal the Z bit would be set to 1. It is worth mentioning
that a comparison instruction does absolutely nothing apart from
updating the PSR. Unless it is followed immediately by a branch
instruction it is a mere passenger.

Mnemonic
Op Code Action Addressing modes supported
CMP Compare memory with accumulator Immediate / Z Page / Absolute /
(A—M) Z Page, X / Absolute, X /
and set PSR accordingly Absolute Y, / Indirect indexed /

Indexed indirect
CPX  Compare memory with X (X—M)

CPY' Cormpare memory with ¥ (YoM Immediate / Z Page / Absolute
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It is important in some cases to note that the subtraction test is A-M or
X-M or Y-M i.e. the operand data is subtracted from the register
concerned. Thus if the register contained 5 and the memory data was 6
the comparison instruction would set the N bit to 1, indicating a
negative result. If the test is for equality the direction of subtraction is
immaterial; if testing for ‘greater than’ or ‘less than’ it is vital.

Jump instructions

Jump instructions are similar to branches in as much as they interfere
with the normal sequential rhythm of the computer but they are
unconditional — they always jump. There are only two of these: JMP
and JSR.

Mnemonic
Op Code Action Addressing modes supported
JMP  Jump to the operand address for the Absolute
next instruction Absolute indirect
JSR  Jump to the operand address of the Absolute
subroutine

JMP is straightforward and needs no further comment except to
remember once again that if writing in hex machine code, the bytes in
the operand must be written back to front, lower order byte first.

JSR however is another matter since it involves some idea of the
mechanism of a subroutine.

A subroutine is a program segment which may be used more than
once. It can be ‘called up’ by JSR. Thus if a subroutine was located at
address 5640 we would write JSR 4056 which would cause a jump to
this address for the next instruction. But how do we arrive back to the
main program after the subroutine has completed its task?

In the first place, we must remember to always end a subroutine with
RTS (which means ‘return from subroutine’). The mechanism is as
follows:

(a) When JSR is executed, the return address is stored on the stack
prior to jumping to the subroutine.

(b) On completion of the subroutine, the RTS instruction recovers
the return address from the stack and jumps back to this
address.

RTS Return from subroutine Implied addressing
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More detailed treatment of subroutines is dealt with in a later chapter,
the only intention at this stage is to explain the mechanism of linkage
between main program and subroutine.

Although not strictly a candidate for inclusion under this heading
the ‘break’ instruction BRK does alter the course of a program — in
fact it stops it altogether! It is equivalent to STOP or END in BASIC.
When writing in hex machine code it is imperative that the end of
program should be BRK (hex code 00) otherwise the machine will
canter on trying to execute garbage with disastrous results in most
cases.

LBRK Break from program (Stop) Implied addressing

The BRK instruction sets the B bit in the PSR.

The ‘bit test’

This is technically a comparison type instruction since it has no other
effect except to update the PSR. The full power of the instruction can
not be appreciated until we cover the logical AND operation so we shall
define it twice; here in a simple but incomplete form and again later.

Mnemonic Addressing modes
Op Code Action supported

BIT Examines bit 7 and bit 6 in memory.
If bit 7 is 1 then the N bit is set. Z page / Absolute
If bit 6 is 1 then the V bit is set

This is a convenient way of testing whether these two bits are 1 or 0. Bit
7 is of course the sign but and could have been tested by a normal BMI
instruction. Bit 6 however has no immediately obvious claim for VIP
treatment. However both bit 6 and bit 7 are highly significant as far as
the input/output chips are concerned because they are the flags which
signal an interrupt request via the IRQ line.

It is important to note that the BIT test does not alter the memory
contents or the Accumulator. The remaining details concern the AND
mask technique and we shall see that BIT, in addition to the above
function, also carries out an AND operation on the Accumulator.

Arithmetic and PSR operations

There are only two arithmetic operations. They perform addition and
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subtraction of 8-bit binary numbers. However, it is convenient to treat
certain other instructions (which affect the Program Status Register)
under this heading because of their close association with arithmetic
operations. ADC and SBC are for addition and subtraction and CLC,
SEC, CLV, SED and CLD are used to set or clear the relevant PSR
bits.

Multiplication and division, although taken for granted by humans,
are complex operations and the 6502 (and indeed most other 8-bit
microprocessors) has no instructions for them. They can however be
implemented by ‘software’ using addition and subtraction.

Mnemonic

Op Code Action Addressing modes supported

ADC  Add memory to accumulator with Immediate / Z Page / Absolute /
carry Z Page, X / Absolute, X /

Absolute Y, / Indexed indirect /
Indirect indexed
SBC  Subtract memory from accumulator
with carry

CLC  Clear C bit in PSR

SEC  Set C bit in PSR

CLV  Clear V bit in PSR

SED  Set D bit in PSR (informs that BCD Implied only
arithmetic is required)

CLD Clear D bit in PSR (informs that
normal two’s complement arithmetic
is required)

Binary addition

The precise function of ADC can be defined in symbolic terms as
follows:

A=A+M+C (M means memory)

If the C bit is clear, the above becomes A=A + M
If the C bit is set, the above becomes A=A+M +1

The C bit is set automatically if the result of the addition exceeds FF
in unsigned binary (255 in decimal).

The V bit is set automatically to represent overflow if the addition
exceeds (+127) or (-128) in two’s complement binary.

If the precise difference between carry and overflow status is
mysterious refer to the paragraph ‘The Processor Status Register (P)’
in Chapter 2.
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If the requirement is limited to addition of single byte numbers
having two’s complement significance the carry bit is of no importance
provided it is reset initially by means of CLC. On the other hand, the
overflow bit, V, should be tested after an addition in case the result is
invalid.

The C bit however assumes great importance if multibyte numbers
are to be added because the correct sum of the higher significant bytes
relies on the possibility of a carry from the preceding lower-order byte
sum. It is worth emphasising that the C and V bits are only important if
the programmer thinks they are!

If for example, the programmer has some idea of the magnitude of
the result following an addition process it would be waste of time
testing for overflow by the use of the branch BVS. As a further
example, if the programmer is treating the numbers as unsigned
binary then the V bit will have no significance but the C bit on the other
hand now assumes the role of ‘overflow detector’.

Binary subtraction

The precise function of SBC which means ‘Subtract with carry’ can be
defined in symbolic terms as follows:

A=A-M-C i
where M is memory and C means the carry bit complemented.

When adding (ADC), the carry bit is initially cleared by using CLC.
When subtracting, the carry bit should be initially set by using SEC!
Mysterious isn’t it? The explanation depends on the maner in which
the arithmetic circuits handle subtraction. They use addition of the
complement — they add the negative. Thus instead of subtracting,
say, 3 from 5, they add (-3) to 5. If there is a carry bit involved it is
complemented (if 1 it is changed to 0; if 0 it is changed to 1). Thus if we
make sure the carry is set before a subtraction, it will be considered by
the subtraction circuits to be ‘reset’. So, summarising the carry
function in both ADC and SBC:

Clear carry with CLC before starting addition
Set carry with SEC before starting subtraction

BCD addition and subtraction

If we wish the arithmetic circuitry to consider a byte as two BCD digits
we use SED first (Set decimal mode). There is now a drastic change in
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the carry operations in order to preserve BCD validity. An
intermediate carry (sometimes called the ‘half-carry’ in some texts)
comes into play between bit 3 and bit 4 which is acutally the ‘boundary’
between the two BCD digits.

Example Normal BCD
addition
9 00001001 9 00001001
add 1 00000001 add 1 00000001
result 00001010 result 00010000

We must remember that the two BCD digits are independent of each
other; they are in reality, two entirely separate entities as far as place
weightings are concerned. The concept of the half-carry may be
understood by considering the two digits separated as follows:

oooﬂ 001 (nine in BCD)
g o
bit 4 bit 3

The half-carry action is quite automatic when in BCD mode and the
programmer can ignore it. It is however, up to the programmer to
ensure that BCD illegals are not allowed in the accumulator, i.e. the six
combinations above 1001. In fact, providing that SED is placed at the
head of a subtraction or an addition routine, there will be no change
required in the program. In case you may be curious how the
arithmetic system handles this half-carry, the outline procedure is as
follows:

1. Add the two numbers.
2. Is the right hand nibble illegal (greater than 9)?
3. Ifso, add a further six (which generates the half-carry).

Example:
8 [ 00001000

add 5 [ 00000101
result 00001101 illegal
add 6 110
result 00010011 | legal (13 in BCD)

A similar procedure is applied to the left hand nibble, but in this case
the carry is the normal C bit status.
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It should be mentioned again that BCD format is inherently
inefficient; the highest number in a byte is only 99 instead of 255 as in
unsigned binary.

Logical operations

The term ‘logical’ is one of those blanket terms which have a variety of
meanings depending on the context in which they are used. As far as
we are concerned under this heading,

A logic operation between two bytes simulates the action of
eight independent logic gates. The two inputs to each gate
come from the corresponding bits from each byte.

A logic operation is completely non-arithmetic in nature since there is
no carry mechanism from one bit to the next.

The 6502 has three logical instructions AND, ORA and EOR which
correspond to the AND, INCLUSIVE-OR and the EXCLUSIVE-
OR gates. In case the concept of a logic gate is unfamiliar to you some
initial ground work must be covered.

Logic gates

A logic gate has one output, the state of which depends on the
combination of the input states. As far as we are concerned, the gates
only have two inputs. ‘States’ of course mean whether a 1 existsor a 0.
The definition of the three gates in question is as follows:

(a) The AND Output is 1 only if both are 1.
(b) The INCLUSIVE—OR Output is 1 if either or both inputs
are 1.

(¢) The EXCLUSIVE-OR  Output is 1 only if the two inputs
are different.

(The INCLUSIVE-OR if often referred to simply as the OR)

Mnemonic
Op Code Action Addressing modes supported

AND  Performs the logical AND between Immediate / Z Page / Absolute /
memory and the Accumulator Z Page, X / Absolute, X /
Absolute Y, / Indexed indirect /
Indirect indexed
ORA  Performs the logical INCLUSIVE-OR
between memory and the Accumulator

EOR  Performs the EXCLUSIVE-OR
between memory and the Accumulator
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The results of these operations are left in the Accumulator. The
obvious question now is, what use are they?

In general, they are used to manipulate certain bits of a word
without disturbing the remaining bits — in short, selective processing
within a byte. When the input/output lines are discussed in a later
chapter many uses will be found for switching one particular bit ON or
changing the state of another bit. Since the 6502 is a memory-mapped
system (see the paragraph ‘The input/output chips’ in Chapter 1) the
eight bits in the memory map location designated as the ‘Input/Output
Register’ are physically connected to the output wires feeding an
external system. It may be that one of these wires occupying bit 3
position is indeed the wire which switches on the food mixer! If we wish
to switch off the mixer, it would be very awkward if we did this by
simply clearing the register — this could switch off the room heater or
even the television as well — a ghastly incident if it happened in the
middle of Miss World. However, it would be easy to selectively switch
off the food mixer if we used a suitable logical operation (the AND
operation).

The following rules apply to the three logical instructions:

Use AND operation to clear selected bits (by using ‘zeros’ in the mask
positions).

Use ORA operation to set selected bits (by using ‘ones’ in the mask
positions).

Use EOR operation to change selected bits (by using ‘ones’ in the
mask positions).

The term mask is used to describe the pattern of bits required in one of
the bytes to carry out the selective action on the other byte.
The process is best described with the aid of an example project:

It is required to clear the three left hand bits in the Accumulator without
altering the remaining bits. How?

From the above rules the AND operation is required and since
memory is not involved the mask can be immediate addressing with the
pattern 00011111 or 1F hex. The instruction would therefore be

AND #8$1F
To investigate, assume the original contents of the accumulator was

11011011 Accumulator originally
00011111 AND mask
00011011 Result in Accumulator

If the bits are examined carefully you will verify that the action between
each corresponding pair of bits obeys the AND gate rule. Thus only
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where there were two ‘1’s before will there be a ‘1’ afterwards. Verify
that the five bits on the right are the same after as they were before.

As another example, suppose the objective is to set the extreme right
and the extreme left bits in the Accumulator to 1 (the msb and the Isb).
This time the correct instruction is ORA and the correct mask is
10000001 or 81 hex.

As a final example, suppose the objective is to change the state of the
third bit from the right (bit 2).

The instruction is EOR and the mask is 00000100 or 04 hex. Thus if
bit 2 was originally a ‘1’ then afterwards it would be a ‘0’ (or vice
versa). These examples have assumed the mask is in the form of an
immediate operand with the data in the Accumulator. Provided that
we realise that the result is always in the Accumulator, the relative
positions of mask and data is immaterial. Suppose the output register
happens to be at address 8004 hex and a device is switched on by bit 5.
If we wanted to ensure it was OFF it could be done as follows:

LDA# $DF (DF is the mask 11011111)
AND $8044
STA $8004

The mask is placed into the Accumulator and the data is ANDed into
it. The result (with bit 5 now cleared to 0) is stored back.

The BIT instruction again

The complete description of the BIT instruction (partially described
under ‘Branching and Comparisons’) is now possible. In addition to
setting the N and V bits, the AND operation is performed and if the
result is zero, the Z bit is set to 1. The formal definition of BIT follows.

Mnemonic
Op Code Action Addressing modes supported

BIT Examines bit 7 and bit 6 in memory. If bit 7
is 1 then the N bit is set. If bit 6 is 1 then the
V bit is set. After this is done, an AND Z page / Absolute
operation is performed on the Accumulator
mask and the Z bit is set to 1 if the result of
the AND is zero. (Both the Accumulator and
memory retain their original contents)

This is a very useful instruction but, obviously from the above, not a
very easy one to learn. Some additional remarks may help.
The object of BIT is to test the contents of a memory location for the
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presence of certain bits without affecting them or the Accumulator in
any way. All BIT does is to update the program Status Register.

If the intention is to test the state of bit 6 or bit 7, the contents of the
accumulator before the test is unimportant. But if you require
knowledge on the state of, say, bit 3 in memory it will be necessary to
set the appropriate mask in the accumulator first (by using immediate
addressing). If the result of the AND is zero, the Z bit is set.

Example: To test if bit 3 in location 35isa 1 ora0.
First load the mask 00001000 into Accumulator LDA S08
Then BIT test location 35 using Z page addressing BIT 35

Ifbit 3 was a ‘0’ the Z bit would be set to 1 and could be found out by the
branch instruction BNE or, if required the alternative BEQ. Although
it is called a bit fest we must remember that the complete test must
include a subsequent branch instruction. Like the comparison
instructions, a bit test not immediately followed by a branch is useless.

Shift and rotate instructions

There are four of these, ASL, LSR, ROL and ROR. Some texts
include these under the heading of logical instructions because the
actions carried out are non-arithmetic in nature.

To shift means to push the bit pattern along in one direction as if with
a piston. Repeated shifts will eventually push the entire bit pattern out
and we can imagine it dropping on the floor — lost for ever!

To rotate means to perform a shift action as before but the bits being
pushed out at one end are re-inserted at the other again — a kind of
circulating bit pattern. In both shift and rotate, the C bit acts as a ninth
bit extension of the register or memory.

Mnemonic
Op Code Action Addressing modes supported

ASL ‘Arithmetic’ Shift Left Accumulator or
memory, using the C bit as the ninth bit at
the msb end.

Ele [TLIIITTIIT= 0

LSR  ‘Logical’ Shift Right Accumulator or
memory, using the C bit as the ninth Accumulator / Z Page / Z
bit at the Isb end. Page, X / Absolute /

Ble (LT TT =] - PP
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Mnemonic

Op Code Action Addressing modes supported

ROL Rotate Left Accumulator or memory, using
the C bit as the ninth bit in the loop.

e

ROR Rotate Right Accumulator or memory, using
the C bit as the ninth bit in the loop.

CTTiT I

Arithmetic Shift Left (ASL)
Examples: (a) Before @ Ll]llllllOlO]O[ll
Aterast [T] [tltlifelaTel elvo]

(a) Before Eel falifefalvizlolol]
anec At [0] [ililelililelo]n]

Logical Shift Right (LSR)

Examples: (a) Before Filililatelolilo]
After ASL Lo Tt T o laerlola]

(a) Before [oJoJ1J1Jo[1Jo]1]

After ASL [oJoJoJ1T1Jol1Jo]

Rotate Left (ROL)

Examples: (a) Before Falola el afa] 1]
After ROL Pold TaTala]a[aon

(a) Before [oT1Jo[1J1J1J1]o]

After ROL ool £ e iEiliozlEe]

Rotate Right (ROR)
Examples: (a) Before m [1ToTol1JofJ1]1]0]
AterROR[0] [1[1JoJo[1JoJ1]1]

(a) Before [o] leliftlalil]olo]
AferROR[0] [oJoT1[1T1T1]1T0]

ikl EIEL . EH EE




These examples should be carefully studied before trying to use them.
The strangest part of the mechanism is the role of the C bit because of
its lofty position up in the Program Status Register. From the
mechanism viewpoint however just treat it in the manner described —
as a ninth bit in the system. A point of terminology may arise with
regard to the two shift instructions. Why is ASL an ‘arithmetic’ shift
left and the LSR a ‘logical’ shift right? The answer is (probably?) the
position of the C bit. With ASL, the C bit occupies the left hand end
(which is the msb end) and is the natural position for the carry in an
arithmetic protocol. With LSR, the carry is at the right and is therefore
unnatural arithmetically and therefore designated as ‘logical’.

Employment of shift and rotate instructions demands experience
and a certain degree of imagination on the part of the programmer.
They can be used in the following circumstances:

Multiplication

If a binary pattern is shifted to the left the effect is multiplication by
two. For every shift left the effect is to double the number, subject of
course to the limit imposed by an eight bit word.

Example: If 00001010 is given an ASL, it becomes 00010100; the
original number was ten and ASL converted it to twenty. If
shifted again it becomes forty.

The limit is reached when the carry bit is set; further attempts with
ASL would lead to a garbage result. Note that it is not possible to
multiply by three or five or any number which is not an integral power
of two.

Davision

If a binary pattern is shifted to the right, the effect is to divide by two.
Every successive LSR will halve the number until bits start being lost
again at the right hand end. Since the C bit in LSR is at the right, the
presence of a 1 signals the limit is reached. As in multiplication,
division is only possible by powers of two.

Positioning bits

Although knowledge of the state of a particular bit can be gained by use
of the AND mask technique, shift or rotate instructions can be used to
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bring the bit of interest into say, the sign position (bit 7). This can then
be checked with BMI or BPL. Alternatively, the bit could be brought
into the C bit position by LSR. In general, the rotate instructions are
‘safer’ because the integrity of the bits is preserved — none can drop
out of circulation.

When in BCD mode, if a single digit is in the right hand nibble
position, four left shifts is equivalent to multiplying by ten:

00001001 after four ASL or four ROL becomes 10010000.
Nine becomes ninety.

Conversion of parallel to serial and vice versa

If a certain ‘memory location’ is in reality the output register to a
peripheral it is sometimes necessary to convert a bit string in the
register to a series of bits following one after the other along the same
wire, ‘parallel to serial conversion’. If say bit 7 is designated the single
‘output wire’ ASL or ROL can be used to pass the right bits one at a
time into the output ‘window’. Many peripherals are activated by one
wire with the signal bits entering in single file. Suppose the ‘peripheral’
is an audio amplifier feeding a loudspeaker. The input is a single wire
(plus an earth return) and a successive string of bits entering will cause
either random noise or arhythmic beat depending on the bit pattern. A
printer is often a serial input device and can be fed by the shift or rotate
technique although special chips to handle the conversion are normally
used. The reverse case of converting serial inputs to parallel can
equally well be done with shift or rotate instructions.

Stack operations

The ‘stack’ has been mentioned in an earlier chapter but must now be
discussed in more detail. You will remember that:

(a) The stack is a certain area in page one of memory (address
range 0100 to 01FF); the current address within the stack is
defined by the Stack Pointer.

(b) The stack is a LIFO (Last In First Out memory) so the data can
only be withdrawn in the inverse order it was stored.

When the microprocessor is first powered up, the content of the stack
pointer is unknown — garbage. The first operation is therefore to
define the top of the stack by loading a number into it. This number is a
pointer to the stack position in memory. It is normal to load it with FF
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but because of the extra bit permanently present in the wiring this will
cause the stack pointer to hold 1FF (refer to Fig. 2.1). Before
proceeding with detail we should be quite certain as to the meaning of
‘top’ and ‘bottom’ of the stack because there is a conflict between
‘common sense’ and pedantry in their application.

The top of memory is FFFF. The bottom of memory is 0000. The
convention is correct, of course (0000 is the lowest address), but
because it is natural to number from the top downwards in diagrams
and computer programs it is prone to misinterpretation. A reasonable
compromise is to use the phrase ‘rise towards zero’ when considering
stack movements because it is awkward to draw the stack the ‘correct’
way round. Fig. 4.3 shows the portion of the memory map designated

T Page zero

00FF
0100
0101
0102
0103

Page one

Limits of stack

X 01FD
Stack pointer 01FE
8 R o (137
0200

Page two

Fig. 4.3. Stack limits in memory and customary starting contents of stack pointer

the ‘stack’. The stack pointer is shown as being set to FF (which is of
course 1FF) so the first location in the stack which is open for dumping
data is 01FF. There is no absolute rule that the stack pointer should be
set initially to this position but as data is pushed onto the stack it rises
towards zero but cannot rise further than 0100. It is therefore in the
interests of maximum stack movement that it should start at the
‘bottom’.

There are two instructions TXS and TSX used to transfer data
between the Stack Pointer and X and there are four instructions for
pushing data on or pulling data off the stack; these are PHA, PLA,
PHP, PLP. Only the contents of the Accumulator and PSR can be
pushed or pulled from the stack.

60



Mnemonic Addressing modes
0p Code Action supported

TXS  Transfer X to Stack Pointer

TSX  Transfer Stack pointer to X

PHA  Push Accumulator to stack in address
corresponding to the contents of Implied only
stack pointer. After this, decrement the stack
pointer

PLA  First increment the stack pointer, then pull
from stack into accumulator

PHP  As PHA above but pushes the Process Status
Register instead of the Accumulator

PLP  As PLA above but pulls the Processor Status
Register instead of the Accumulator

It would appear from study of the above that there is no direct way to
set the initial contents of the Stack Pointer. The only way is to set FF in
X using immediate addressing and then transfer with TXS.

PHA and PLA are such powerful instructions but so simple to use
that they deserve a detailed treatment to supplement the above
definitions.

Using PHA

Whenever it is required to temporarily save the contents of the
accumulator it is of course always possible to use a normal ST A but this
will entail supplying the operand address. The advantage of PHA is
twofold. Firstly it is an economical single byte instruction, and secondly,
the programmer is freed from the responsibility of deciding the specific
address of the storage location. The action of the stack is quite
automatic, rising with each PHA and falling back with each PLA.
To understand the action of PHA, study Fig. 4 which shows the
register and memory contents after the deed is done. Before the
execution, the Stack pointer must have held 01FD so PHA stored the
Accumulator contents (35) into the location 01FD. After this, the Stack

Stack pointer Accumulator

[T FC }—= o1Fc L 35
01FD 35
OLFE] Previous data
O1FF] Previous data

Fig. 4.4. Contents of stack pointer, memory and accumulator immediately after
execution of PHA (push accumulator onto stack)
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Pointer decremented to 01FC which is the next vacant location (ready
for the next PHA).

Using PLA

This is the complementary form used to restore the stack back to the
Accumulator (see Fig. 4.5).

Stack pointer 01FC Accumulator

[T FD | 01FD ES l 35 ]
OIFE
01FF

Fig. 4.5. Contents of stack pointer, memory and accumulator immediately after
execution of PLA (pull accumulator from stack)

Note carefully that the Stack pointer is first decremented before the
actual transfer takes place. This is because the pointer is left ‘pointing’
to an empty location (or one containing garbage) by the previous
PHA. There is one snag with stack operations — the information must
be drawn from the stack in inverse order to its entrance. It is, after all, a
‘last in first out’ memory. This restriction is seldom a real handicap
because it is used for temporary storage of data. The thing to watch is
the order of retrieval.

Example: Suppose we wish to store X, Y and A on the stack by using
the transfer instructions as an intermediary. We must push
A first, before transferring the remaining registers:

PHA
TXA
PHA
TYA
PHA
When it is time to retrieve them, the order must be:
PLA
TAY
PLA
TAX
PLA

Use of PHP and PLP
The action of these is identical to PHA and PLA except they act on the
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Process Status Register instead of the Accumulator. There are few
occasions when it will be necessary to store this register. The exception
arises when organising interrupts for it is vital that the status of the
system is restored to the prior interrupt form. This will entail the
inclusion of the PSR in the list of registers to be dumped to stack.

Use of stack by the microprocessor

The previous treatment of the stack operations has assumed the
program has initiated them. Certain stack operations are, however,
initiated automatically by the microprogram in the Control ROM. For
example, the execution of JSR (Jump to Subroutine) will cause the
Program Counter to be dumped on to the stack prior to the actual jump
to the subroutine address. Because this register is two bytes long, the
stack must rise by two locations to store it. What happens if the
subroutine itself uses the stack? This doesn’t matter because pushing
actions will always be followed eventually by pulling actions within the
subroutine, so when it is time to return, the RTS instruction will find
the stack in the correct position to restore the Program Counter
contents.

This last point illustrates the inherent elegance (almost beauty) of
the stack mechanism provided the fundamental rule is observed —
always pull data out in the inverse order of entrance.

There is one danger ever-present in stack operation, that of
overflow! The stack is only 256 bytes in length and it is surprising how
easy it is to exceed these limits, particularly if the program is complex
with multiple subroutines and interrupts. It is easy to forget that the
operating system in a home computer will also be using the stack for its
own purposes and which could add an unknown into the situation.

‘No operation’ instruction (NOP)

NOP does nothing except to increment the Program Counter. It is
only a single byte instruction using implied addressing.

What use is it? Its uselessness is its virtue because it provides a one-
byte ‘hole’ in the program. If you are programming in hex machine
code it is doubtful if your machine code monitor offers facilities for
inserting an extra instruction somewhere in the ‘middle’. If you miss
one out, you have the gruelling task of re-entering all the bytes
downwards in the memory map in order to insert the instruction. This
is where the NOP comes in. When developing a program, which
almost certainly will mean errors and omissions to attend to, it is a good
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plan to sprinkle a few NOPs about every ten lines or so — preferably in
blocks of three. If you miss an instruction out it is then relatively easy to
over-print the NOPs with real instructions after perhaps a bit of

juggling.

This concludes the description of the 6502 instruction codes. They are
intended only as an introduction and full details, including clock
cycles, number of bytes and the hex machine code for each addressing
mode are presented in the Appendix. After a time, the contents of this
chapter will seldom be consulted and you as a programmer will work
almost entirely from the condensed form in Appendix A.

Summary

® During a transfer, the source is left intact but the destination is
overwritten by the new contents.

@® Incrementing means to add 1; decrementing means to subtract 1.

@ All branch-type instructions use relative addressing.

@ The branch takes place depending on the relevant bits set in the
PSR which were established by the preceding instruction result. If the
branch conditions are not fulfilled, the machine carries on normally
without branching.

@ Compare instructions perform a substraction between memory and
Acc but restore the original contents afterv-ards. Their only action
is to update the PSR. They are only of use if followed by a Branch
instruction.

® Jump instructions are really unconditional branches — they always
branch.

@ To use a subroutine, the calling procedure is JSR followed by the
absolute address. To return from a subroutine, its last instruction
must be RTS.

@® To stop a program use BRK (break).

@ The BIT instruction transfers bit 6 and 7 of the tested location into
the V and N bits respectively. It then carries out a logical AND,
using the Acc as the mask, and sets the Z bit if the result is zero. The
original memory location is left intact.

@® The only instruction for adding into the Acc is ADC which takes the
carry bit (C) into consideration. Before starting an addition process
the C bit must be cleared by using CLC.

@ To subtract from the Acc use SBC, which again takes the C bit into
consideration. Because subtraction is carried out by
complementary addition, the C bit should be set to I first.
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® To add and subtract BCD numbers use SED first but remember to
use CLD before reverting to normal binary arithmetic.

@ There are three logical instructions AND, ORA and EOR.

@® AND is used to clear selected bits, OR A is used to set selected bits and
EOR is used to change selected bits.

® There are two shift instructions, ASL for shifting left and LSR for
shifting right. The C bit acts as a ninth bit extension.

@ There are two rotate instructions, ROL for rotating left and ROR
for rotating right. The C bit is included within the ‘loop’.

® The Stack is a programmably designated area in page one of
memory. The Stack Pointer contents always point to the address of
the current stack location.

® PHA pushes the Acc onto the stack then moves the stack pointer
contents up one towards zero.

® PLA moves the contents of the Stack Pointer down one away from zero
then transfers the stack contents back to the Acc.

® The PSR can be pushed and pulled by the use of PHP and PLP
respectively.

® Always retrieve data from the stack in inverse order of storage.

® The stack is only 255 bytes long and could overflow.

@ NOP is useful for sprinkling holes in a program in case you want to
fill them later.
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5
Applying the instruction set

Preliminary advice

It is one thing knowing what each instruction will do. It is quite another
matter choosing which one to use and in what order they should be used
to implement a given programming objective. This is the primary
division between knowledge and the application of knowledge — it is in
fact the art of programming. These remarks apply equally to BASIC
and machine language but have a greater relevance to the latter. With
due respects to Dijkstra, it is an art — not a science. Perhaps the
soundest advice to the newcomer to machine code is the old adage,
‘don’t run until you can walk’. Try very simple objectives first and
ignore the scorn of your colleagues who are hooked on BASIC. The
typical irritating remark which you must accustom yourself to ignore is
““Is that all it does? I can do that in two lines in BASIC.”’ In a few
months, they may be coming to you for advice on how to make their
tank, missile or other graphical contraption ‘move across the screen
quicker’.

Importance of the User’s Manual

Whichever machine you own, the resident operating system and the
BASIC interpreter will make considerable demands on the available
address space. In particular, much of the valuable page zero will have
probably been pilfered by these systems. If you later intend to write
programs completely in machine code then it is probably allowable to
occupy these hallowed places subject to the requirements of the
machine code monitor. Apart from the restrictions on use of page zero,
you cannot use any part of RAM without consulting the User’s
Manual supplied with your machine. From this, you will learn the
upper and lower address limits and how it is utilised. Study of this will
reveal (perhaps?) the areas of memory which are vacant and suitable
for inclusion of your machine code programs or subroutines. There
may be for example, an area dedicated to the servicing of some
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peripheral which you don’t have. This would be an ideal area, safe
from the ravages of BASIC. Those of you who own Commodore PET's
will know that the RAM area reserved for the second cassette buffer
(few people ever bother with the second cassette) covers an area of 192
bytes from address 033A hex onwards. In case you think that 192 bytes
is a paltry amount of memory you will probably find it more than
ample for the programs which you are likely to manage in the early
stages. Subroutines of 20 or 30 bytes can be surprisingly powerful —
remember that machine code is very economical in memory use.

If you do require a substantial amount of RAM for your program it
is possible to restrict the boundaries of the BASIC text by use of
HIMEM or LOWMEM (if you have them) or by a suitable POKE
instruction into the relevant pointer. Again, this knowledge must be
gleaned from the User’s Manual.

Program and data requirements

It is important to distinguish between the program and the data to
which the program refers. The program bytes must occupy
consecutive bytes in memory but the data bytes can be sprinkled
anywhere provided that certain rules, dictated by the addressing
mode, are preserved. Thus an instruction using zero-page addressing
doesn’t itself have to be in page zero although the data byte at the
operand address must be. As mentioned before, the majority of page
zero is normally occupied although there are a few holes. These must
be considered as treasure trove once they have been prised out from the
Manual. If you use indexed indirect or indirect indexed addressing
you will need to examine page zero to find a pair of adjacent locations
to hold the address pointer.

Machine code or assembly code?

At the time of writing, very few home computers arrive with a resident
assembler although most include a machine code Monitor for entering
a program in hex. There is of course no contest between the two. If you
have an assembler then let the machine code monitor hibernate in its
ROM. Whether you write in hex or assembly code it is still machine code
as far as the microprocessor is concerned. The advantage of an
assembler is the facility it offers for entering machine code in more
civilised notation and therefore in less error prone form.
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Assembler notation

All assemblers share certain common properties and much of the
notation is standardised but unfortunately not all of it! In the example
programs, the notation used is

Mnemonic Op code Three letter goup as in APPENDIX A
Immediate addressing #

Operands in decimal assumed unless prefixed by $
Operands in hex $

Symbolic operands free choice (not more than five letters)

Although when entering hex machine code the operands must be
written ‘back to front’ (if double byte) this does not apply in assembly
code.

Example: In assembly operands the absolute address 0640 is written
0640. In hex machine code, it must be written 40 60.

Assembler addressing modes

With hex machine code, there is a different Op Code for each
addressing mode so there is no need to indicate to the monitor which
mode is intended. With an assembler however, it is necessary to use the
exact symbolism for the operand.

In the examples which follow, the symbolism used is:

ZERO PAGE Z2Z HH

ABSOLUTE 777 HHHH

ZERO PAGED INDEXED ZZZ HH, X (or HH, Y)
ABSOLUTE INDEXED Z7Z HHHH, X (or HHHH, Y)
INDEXED INDIRECT 777 (HH, X)

INDIRECT INDEXED Z7Z (HH), Y

Note: ZZZ is the Op Code mnemonic
HH is a single byte operand
HHHH is a double byte operand

Sample layout of program
The actual ‘program’ has no particular purpose except to illustrate

simple operations involving transfers between registers, adding and
stack transfers.
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Assembly

code Remarks Hex code
LDX # $FF FF—+ X 0340 A2 FF
TXS Transfer X to SP 2 9A

LDA  #$65 65 = Acc 3 A9 65
PHA Push Acc on stack o 48

ADC  #$01 Add 1 to Acc 6 69 01
PHA Push Acc on stack 8 48

PLA Pull from stack to Acc 9 68

TAX Acc > X A AA

PLA Pull from stack to Acc B 68

TAY Acc— Y (6] A8

BRK Stop D 00

After this is run, the register contents are

PC Acc X Y SP
034E 65 66 65 FF

Assuming the hex code above was entered via a Machine Code
Monitor, such as on the PET, the procedure would be:

(a) Decide where to store the program (assume address 0340
onwards).

(b) Display a block of bytes from memory by keying M
0340, 0350.

(c) Using the cursor, overwrite the bytes of the program.

The display would appear as follows:

0340 A2 FF 9A A9 65 48 69 01
0348 48 68 AA 68 A8 00 /1! /1
0350 7 1/ /1 /1 // /1 /1 /1!

The leftmost column is the hex address of the first byte of each row.
The program ends at 00 (BRK), the 6th byte on row two; the slashes
indicate garbage bytes.

You would be well advised to study the layout carefully, particularly
the translation from the assembly code to the hex code. This will
require continual reference to the Machine Code Summary (Appendix
A). It should be stressed that the procedure for entering machine code
or the assembler notation may not be the same in your machine. For
example, the remarks column shown can actually be entered alongside
the assembly code in most assemblers, usually prefixed by a semicolon

(595
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Short program examples

These examples may be helpful in getting the feel of machine code.
They gradually increase in difficulty as more of the instructions are
introduced. The programs in themselves are not particularly useful but
the ideas may help in building up confidence so you should enter them
all and satisfy yourself they work. The remarks column is only used
where the particular coding is obscure. In assembly code, symbolic
operands have been used in BRANCH type instructions with the
destination line prefixed by the symbolised form in the ‘label’ field.

Program 1. Add contents of address 0360 and 0361 and store result in address 0362

CLC Clear carry bit 18

LDA # $00 Clear Acc A9 00
ADC $0360 6D 60 03
ADC $0361 6D 61 03
STA $0362 Store result 8D 62 03
BRK 00

Before running, enter the numbers to be added into the two locations.
Then try the program with several different numbers, including mixed

signs.

Program 2. Load X with 3,Y with 5. Add them up and store result in 0360

CLC 18

LDX #8$03 A2 03
LDY #805 A0 05
STX $0360 Use 0360 as temporary store 8E 60 03
TYA 98

ADC $0360 Add original contents of X 6D 60 03
STA $0360 Store result back 8D 60 03
BRK

Note the shuffling around required to add X to Y (has to be done via the Acc).

Program 3. Swop over contents of 0360 and 0361

LDA $0360 Load 1st number into Acc AD 60 03
LDX $0361 Load 2nd number into X AE 61 03
STA $0361 8D 61 03
STX $0360 8E 60 03
BRK 00
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Program 4. Examine location 0360. Ifit contains a positive number, load FF into X. If

it contains a negative number, load EE into X N |
LDA $0360 AD 60 03
BMI NEG 30 03
LDX #$FF A2 FF
BRK Stops here if positive 00
NEG LDX #$EE ¢ A2 EE
BRK Stops here if negative 00

Remember the largest positive number is 01111111 = 7F hex. Try out
with different pairs of numbers. To test overflow try 7F + 01 which
gives the ‘correct’ answer 80 if interpreted as unsigned binary but as
far as two’s complement is concerned, it is a false answer; the V bit is
set.

Program 5. Add up the contents of locations 0360 and 0361 and store result in 0362. If
overflow is caused, Load FF into Y

LDY #$00 A0 00
CLC 18
LDA $0360 Load 1st number AD 60 03
ADC $0361 Add 2nd number 6D 61 03
BVC OK Branch if clear to label ‘OK’ 50 02
LDY #$FF Overflow status A0 FF
OK STA $0362 Store result 8D 62 03
BRK 00

Program 6. Assume two numbers are in locations 0360 and 0361. If the smaller
number is in 0361, swop them over

LDA $0361 Examine the first number AD 61 03
CMP $0360 Compare it with the second CD 60 03
BMI SWOP 30 01
BRK Stop here if correct 00
SWOP TAX AA

LDA $0360 AD 60 03
STA $0361 8D 61 03
STX $0360 8E 60 03
BRK Stop here after swopping 00

Program 7. Store the integers 0, 1, 2, . . . 9 in addresses 0360 . . . 0369

LDX #$00 Clear index register A2 00
LDA #3%00 Clear Acc A9 00
STORE STA $0360, X  Store Acc in (0360 + X) 9D 60 03
INX Increment X E8
TXA Effectively increment Acc 8A
CPX #$0A Ten jobs to do! EO 0A
BNE STORE  Go back if X not yet ten D0 F7
BRK All jobs done 00
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Study Program 7 carefully because it is the first example on the use of
indexed addressing in creating a loop. It conforms in principle to the
general purpose flowchart of Fig. 5.1.
Enter loop
Initialise
Clear X
Perform the
process on
X L = Lowest address
H = Highest address
In program 7,
L = 0360
H = 0369
Increment so H—L+1=ten = 0A hex
X
Compare X
withH—L+1
Yes °
Exit Fig. 5.1

There are numerous occasions when a certain process must be
performed on consecutive locations in memory and the flowchart
provides a general guide on choosing the loop constants. Note the
process is first performed on the lowest address (the base address) and the
index is increased each time round the loop until the limit is reached. In
Program 7, this limit is when the value in X has grown to ten (the total
number of jobs to be done). In fact the equation H-L + 1 is indeed
equal to the total number of jobs to be done.

To illustrate how program 7 can be modified, suppose the objective
was changed to:

Store the integers 0,1,2, — n in addresses 0350 to 0385 hex.

The program would remain the same except the third line would be,
LDA 0350,X

and the comparison line would be CPX # $36 (0385-0350 + 1).
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There is an alternative method of attack in which the process is
carried out in reverse order, ‘last’ address first. The index register is
first loaded with the ‘number of jobs to be done’ (H-L +1) and
decremented until zero is reached. This method avoids using a CMP
instruction since the BNE itself can test for zero in X. The operand of
the indexed instruction, however, must be L—1 which is a bit awkward
to remember. The next program uses this method.

Program 8. Clear the addresses 0360 . . . 0369 (see Fig. 5.2)

LDX  #$0A Number of jobs A2 0A
LDA #3%00 Clear Acc A9 00
BACK STA $035F, X Store Acc in L—1, X 9D 5F 03
DEX Decrement X CA
BNE BACK Branch back if X not yet zero DO FA
BRK All jobs done 00
Clear X
Clear Acc
0A-+X
00+Acc
Clear
L. X
Clear
Ll Increment
X
Decrement Compare X
X with
H—L+1
Yes ° .......... Note that CMP is Yes @
not required

1]

Fig. 5.2. Flowchart for program 8 Fig. 5.3. Program 8 if counting
up method used

To illustrate the ‘counting up’ method, examine Fig. 5.3, which shows
how Program 8 would be arranged.
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Program 9. Search the addresses 0360 . . . 0380 for the number of time the pattern FF
is stored. Place answer in 0381

LDX #$00 Clear X A2 00
STX $0381 Clear address holding answer 8E 81 03
BACK LDA $0360, X Load contents of (0360 + X) BD 60 03
CMP # $FF Compare with pattern FF C9 FF
BNE SKIP No pattern in this address - DO 03
INC $0381 Pattern found so add 1 to answer EE 81 03
SKIP INX Increment X E8
CPX #$21 All jobs done? E0 21
BNE BACK No DO F1
BRK Yes 00

1
!
.ﬁ

Program 10. Search page zero from 00 to F2 for the first occurrence of the pattern AA.
When found, place the ADDRESS in which it was found in 0360. If not
found at all leave FF in 0360

LDX #$00 Clear X A2 00
LDA #$FF ‘Not found’ in pattern in Acc A9 FF
STA $0360 Store it 8D 60 03
BACK LDA $00, X Load contents of (00 + X) B5 00
CPM # $AA Compare with pattern AA C9 AA
BEQ FOUND Pattern found FO 06
INX Increment X E8
CPX #3$F3 All jobs done E0 F3
BNE BACK No DO F5
BRK Stop here if pattern not found 00
FOUND STX $0360 X contains the address 8E 60 03
BRK Stop here if pattern found 00

The problem of knowing where a certain item is stored is often as
important as knowing what item is stored. The address is often more
important than the contents. Program 10 illustrates how the index
register contents give a clue as to the address although, since the search
was from address 00 to F2, it was more than a clue because X was the
address. In the more general case, the address of the found item can be
obtained by adding X to the base address; the base address being the
operand (L in the flowcharts).

As an example, suppose the objective of Program 10 was changed to
read ‘Search page zero from 24 to FF —’, the found item would have
an address equal to 24 + X. If it was found immediately at the head of
the list, X would still be at zero so the address would be 24 + 0 or 24! If
it was found at the next address, X would have grown to 1 so again the
result is valid (24 + X). y
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Program 11. A block of addresses 0360 to 0369 is storing numbers in two’s
complement form. Add up the numbers and store total in 0370

CLC Clear Carry bit 18
LDX #$00 Clear X A2 00
TXA Clear A as well 8A

BACK ADC $0360, X Add contents of (0360 + X) 7D 60 03
INX Increment X E8
CPX #$0A All jobs done? E0O 0A
BNE BACK No DO F8
STA $0370 Yes so store total 8D 70 03
BRK Stop 00

No provision is made for detecting overflow but the extra lines would
be similar to those in Program 5.

Program 12. Alist of data items is stored in 0360 to 0370. Relocate this data into 0380

to 0390

LDX #$00 Clear X A2

BACK LDA $0360, X Load contents of old address BD 60 03
STA $0380, Y Store in new address 9D 80 03
INX Increment X E8
CPX #811 All jobs done? E0 11
BNE BACK No DO F5
BRK Yes 00

The method shown to relocate is fairly straightforward but only
because the new address block was not overlapping the old. If the
objective was altered to say — relocate from 0360—0370 to the new
block 0365 — 0375, the above scheme would not work because the
relocation loop would erase data before it was relocated. The next
program will illustrate the alternative procedures.

Program 13. A list of data items is stored in 0360 . . . 0370. Relocate in 0365 . . . 0375

LDX #3811 Number of jobs A2 11
BACK LDA $035F, X Load L-1, X (old location) BD 5F 03

STA $0364, X Store L-1, X (new location) 9D 64 03

DEX Decrement X CA

BNE BACK All jobs done? DO F7

BRK Yes 00

The relocation in this program takes place bottom upwards (similar to
the technique employed in Program 8) so avoiding premature erasure
of data. The first address to be actioned will be 0370 (the last address in
the original block), the data being transferred to 0375 (the last address
in the new block).
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Program 14. Time delay proportional to N time units, where N is the contents of 0360

LDX  $0360 Load N AE 60 03
DEX Decrement CA

BNE TIME Not yet zero DO FD
BRK Delay expired 00

Delays are often required, especially when controlling peripherals.
The standard method is based on the above and consists of starting
with a number N and counting it down until zero is reached. The
actual delay depends on the value of N and also the microprocessor
clock. The delay loop is over two instructions, DEX and BNE.
Referring to Appendix A, it will be noted that these instructions take
two clock cycles each.

Example: Assume the clock frequency is 1 MHz (one million cycles per
sec), then each cycle is 1 us (microsecond) and one loop cycle would be
4ps. Thus if N was FF (which is 255 in decimal), the time delay would
be 255 x 4 = 1024us which is just over a millisecond. This would be the
maximum possible delay with such a simple program. As far as a
human is concerned, this would be an undetectable delay, although for
handling ‘slow’ peripherals it could very well be more than adequate.

If longer delays are required it is possible to have a loop within a
loop, similar to nested FOR loops in BASIC. Obviously, the program
above which breaks (BRK) out after the expired time would have little
practical value but, if BRK is changed to RTS, the program can be
used as a subroutine. The practice of using computer instructions to
produce a delay could cause trouble in some systems. If for example, a
program allows interrupts to occur within a timing loop the effect could
be serious. Most microcomputer systems now employ Input/Output
chips which provide sophisticated functions such as an independent
timer. This allows the time delay to be considered an external
hardware, rather than software, problem.

Program 15. Double loop time delay subroutine. Number N in Acc determines the
delay.
If Acc arrives with FF, the inner loop will revolve 255 times for every
revolution of the outer loop. Total delay thus depends on
255 x 255 = 65 000 rev (approx) (see Fig. 5.4)

TAY Y now holds N A8
LOOP2 TAX So does X AA
LOOP1 DEX Inner loop decrement CA
BNE LOOP 1 Bottom of inner loop DO FD
DEY Outer loop decrement 88
BNE LOOP 2 Bottom of outer loop DO F9
RTS Delay completed 60
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N assumed to be in Acc
—_—

From calling
program

Decrement
X

ul:?:;u;:wlm Fig. 5.4. Double delay loop

Program 16. Load Acc with the number 77 and store this in address 0360 using
Indirect Indexed mode. The indirect address locations to be 06 and
07 in page zero

LDY #3%00 Clear Y A0 00
LDA #$60 i o e e T R R A9 60
STA 06 Set indirect address in 85 06
LDA #303 page zero A9 03
STA 07 e e b e e SR 85 07
LDA #877 Load the number 77 into Acc A9 77
STA (06),Y Store in 0360 (via pointer) 91 06
BRK 00

This program is easy to criticise — what a long way round just to store
77 in address 0360! In defence, the intention is simply to get the feel of
indirect addressing before progressing to more involved actions. Index
register Y is cleared first so as to minimise the complexity and reduce
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the mode to ‘simple indirect’. Remember that Indirect Indexed mode
uses the Y register to modify the address pointer. Fig. 5.5 may help in
understanding the program.

STA (06), Y
_0006 _ S 2 60 Y
E‘ 0007~ [~ 03 R |
[}
]
]
|
: : Acc
L --0360 77 ] Fig. 5.5. Idea behind program 16

The contents of 0006 and 0007 are the lower and higher order bytes
respectively of the address pointer.

Warning: Remember that page zero locations are sacrosanct and in
some micros using 06 and 07 could cause trouble. Consult
your manual on this point.

Program 17. Store the integers 0, 1, 2 . . . 9 in the addresses 0360 to 0369 using
Indirect Indexed mode. The indirect address locations to be 06 and 07 in

page zero
LDY #$00 Clear Y A0 00
LDA #$60 A9 60
STA 06 Set indirect address in 85 06
LDA #$03 page zero A9 03
STA 07 85 07
BACK TYA Transfer Y to Acc 98
STA (06),Y Store in (pointed address +Y) 91 06
INY Increment Y Cc8
CPX #3$OA All integers stored? CO OA
BNE BACK No DO F8
BRK Yes 00

The first five instructions are identical to those of Program 16 and are
simply to set the address pointer.

The remaining instructions increment Y in a loop until it grows to
OA (ten jobs). Since it uses Indirect Indexed by Y, the effective address
is increased each time. Thus, when Y has grown to 03, the effective
address is 0360 + 03. Although this program does a little more than the
previous one, it may still appear to be a roundabout method. The point
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to appreciate, however, is that a change in the contents of the address
pointer (06 and 07) would cause the same program to store the integers
in an entirely different address block.

Program 18. Using Indexed Indirect mode, store the ASCII code for ‘space’ in all
locations from 8000 onwards, covering a range of four complete pages.
Use addresses 06 and 07 in page zero for pointer

LDX #3800 A2 00
TXA Clear X, Aand Y 8A
TAY A8
STA 06 85 06
LDA #$80 Set indirect address A9 80
STA 07 in page zero 85 07
LDA #$20 Load Acc with 20 (ASCII code) A9 20
BACK STA (06),Y Store Acc in pointed address + Y 91 06
INY C8
CPY #$00 Repeat for complete page GO0 00
BNE BACK DO F9
INX Increment X E8
INC 07 Increment high byte of pointer E6 07
LDY #8300 Reset Y for start of next page A0 00
CPX #304 Pages finished ? E0 04
BNE BACK No DO FO
BRK Yes 00

This program is worth studying with great care, not because itis a
particularly efficient way to achieve the objective, but because it forms
a good exercise in the concept of page boundaries as well as indirect
indexed addressing. As in previous examples, the address pointer is in
06 and 07. The lower order byte of the address (in 06) is indexed by Y
each time until it has grown to FF which is the last location on a page.
To repeat the procedure on the next page, Y is reset to zero and the higher
byte of the pointer is incremented. Remember from earlier work on the
concept of a ‘page’ that the higher order byte is the page number and
the lower order byte is the address within that page. Note that the test
for the end of page is CPY #8$00 and not CPY #$FF. This is due to
the preceding INY which increments FF to 00 (FF is -1 so
incrementing by + 1 yields 00).

The fourth line from the bottom, LDY #8$00, is not really necessary
(because Y would already have been zero at this point in the program)
but it aids comprehension. As an exercise, replace the line with two
NOPs, OP code EA, and prove that it still works OK.

The program indicates how the screen could be painted with
characters. If we assume the screen RAM locations start from 8000 hex
and occupy exactly four pages (1K) this program would clear the screen

79




by printing spaces in every position. The PET screen is almost
identical, except that only 1000 character positions are available. For
any computer which has a memory mapped screen, the pointer in
addresses 06 and 07 would have to be changed to suit the screen
starting address. To paint a character on the screen it is normally
sufficient to look up the ASCII code (refer to Appendix 2) although
not all computers stick rigidly to the standard.

One of the difficulties which beset the newcomer to machine code is
the limit of 255 decimal imposed by the 6502 8-bit registers. Thus it is
not possible to use indexed addressing to cover the entire screen area.
The previous program used indirect addressing with Y as an index to
cover one page and X as a simple counter to ‘turn the pages’. An
alternative method would be to retain indirect addressing and
increment the pointer or use the ADC 01. Unfortunately, the same
problem arises — we can’t add or increment to a final value greater
than 255 decimal — or can we? The answer is to use double-precision
addition, or if that is not enough, treble-precision. This will be one of
the techniques discussed in the next chapter.

Summary

® Practise on very simple programs until confidence is gained.

® Before attempting to enter machine code, consult the User’s
Manual to establish where you can safely enter it.

® A program will be a number of bytes occupying contiguous
addresses.

® There is no rule regarding the location of the data bytes; they can be
scattered.

® Page zero is special. Free locations are difficult to find because the
BASIC system uses most of the area.

® Indirect addressing require the pointers to be stored in page zero.

® Machine code programs can be entered in a more friendly manner if
assembly code is used. If your system does not have an assembler
you must write in hexadecimal machine code.

® In hex machine code, you must look up Appendix 1 to obtain the
Op Code.

® There is a different hex code for each addressing mode.

® In Assembly code, the same mnemonic three-letter group is used,
irrespective of the addressing mode. The Assembler is notified of
the mode by the symbols and punctuation used with the operand
address.

® Double byte operands of hex coding must be written ‘backwards’,
lower order byte of address first.
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® In Assembly code, the operand can be stated in terms of decimal,
hex or in some assemblers even in binary — provided that the prefix
symbol notifies the assembler in the prescribed manner.

® A loop which operates on consecutive locations in memory can be
implemented by the use of indexed addressing.

® A loop begins with initialisation in order to establish the starting
condition of the index register or in some cases, the Accumulator.

@ Within the loop is the process which is performed on the memory
locations via indexed addressing mode.

® The index register is incremented (or in some cases, decremented)
to prepare for the next revolution of the loop.

® The bottom of the loop contains the ‘end of job’ test.

@ If the index register starts at zero and is tncremented, the end of job
test is a Compare (CPX), (CPY) or in some cases (CMP) followed
by a BNE.

® If a search is conducted to discover the presence of a certain data
pattern, the address of the data can be found by adding the base
address (the operand usually) to the current index register contents.

® Relocating programs or data can be performed by indexed loop but
care must be taken not to erase any of the source data by overwriting
the destination data. This can occur if there is overlap between
source and destination.

® Delays can be interposed within a program by simple loops which
count a number down to zero. The delay time depends on the
number and the cycle time of the instructions within the loop.

@® Delays more than a few milliseconds require nested loops.

@ Indirect addressing enables any address in the 64K memory space
to be accessed by a single byte operand.

@ The effective address can be changed by the index register and the
memory contents of the pointer.
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6

Arithmetical and logical
manipulations

Although many of the previous programming examples have involved
simple addition and subtraction there has been little attention paid to
the detailed mechanism of two’s complement arithmetic. It is useful to
understand the procedures if only to increase confidence in their use.
For example, how does the microprocessor distinguish between a carry
and an overflow situation? Is it possible to use an ADC instruction to
subtract or must we always use SBC? Why do we have to clear the carry
before ADC but set the carry before SBC? How can large numbers be
added together in spite of the limitations imposed by an eight-bit word
length? Partial answers have been given to some of these questions in
earlier chapters but it is time to attack them with more vigour.

Single-byte addition

Study the following examples, particularly the final state of the C and
V bits.

1. Add (+35)to (+5) 00000101 +5 Accumulator
00000101 +5 Operand data

0 < 00001010 +10 Accumulator result
Note the carry out was a ‘0’ (no carry !)
There was no overflow so the V bit is ‘0’.

2. Add (-5) to (+5) 00000101 +5 Accumulator
11111011 —5 Operand data
1 «< 00000000 0 Accumulator result

This time the carry is ‘1’ but still no overflow.

It would seem from the above example that we can have a correct
answer in two’s complement even if there is a carry ‘1’ out.
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3. Add (-5)to (+3) 00000011 +3 Accumulator
11111011 —5 Operand data

0 11111110 —2 Accumulator result

Carry out ‘0’ and no overflow.

No carry this time, the Accumulator sign bit changed but still the answer
' was correct and no overflow exists. It would seem therefore that a mere
' change of sign bit is not indicative of overflow status.

4, Add (+ 1) to (+127) 01111111 +127 Accumulator
‘ 00000001 +1 Operand data

1 10000000 + 128 Accumulator result

This time there is obviously an overflow condition because of the
inherent restriction on the maximum positive number of 127. Notice
that there was no carry.

From a study of these examples, is it possible to arrive at a valid
statement which defines the conditions for overflow? They have shown
that neither the presence of a carry or a change of sign are in themselves
evidence so we must assume that the microprocessor arithmetic circuits
must have an inbuilt overflow ‘detector’ which sets the V bit
accordingly. Humans of course could easily deduce the conditions by
simple reasoning as follows:

Adding two positive numbers must not exceed + 127 or overflow
occurs.

Adding two negative numbers must not exceed -128 or overflow
occurs.

Adding a positive to a negative can never cause overflow.

But this kind of reasoning is alien to computers — it is doubtful if they
can reason at all anyway. And yet they can be trusted to the nth degree
once the logic has been designed in accordance with the laws of Boolean
algebra. Examination of the examples again reveals a rather strange
but pertinent variation between the bit patterns of Example 4 (which
did cause overflow) and the others (which did not).

Overflow exists if the carry bit IN to sign position is
different from the carry bit OUT of the sign position

Thus if the add process causes a ‘1’ to be carried into the sign position
and a ‘1’ is carried out, there is no overflow; Example 2 illustrated this.
Examine Example 4 again and confirm that a ‘1’ was carried in to the
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sign position but a ‘0’ was carried out; since they were different the V
bit would be set. Computer logic can easily spot differences between
bits by using an EXCLUSIVE-OR gate, which gives an output of ‘1’
only if the two input bits are different. Thus, two ‘0’s or two ‘1’s would
give a ‘0’ output.

Single byte subtraction
If there were no facilities for subtraction as a separate instruction (such

as SBC) it would still be possible to subtract numbers by using the ‘add
the complement’ method.

Subtract ( + 3) from ( + 5) +3 00000011
two’s complement is 11111101
So if we add this complement it will be ‘subtraction’
+5 00000101
add complement of + 3 11111101

1 00000010

Notice that again there is a carry out but no overflow status (the
answer is correct). It is not expected that subtraction be carried out
using this method but such knowledge can be useful on the odd
occasion. There is, of course, in the 6502 the SBC instruction and as
the name implies, it takes the carry into consideration. As mentioned
earlier, it is necessary to set the carry (not clear it) before subtracting.
This is because the computer implements SBC by using
complementary addition, so it is essential to complement the carry bit
with SEC beforehand.

Significance of the C and V bits

If an addition is carried out, the result is left in the Accumulator and the
C and V bits are automatically set or reset as appropriate. But there the
responsibility of the microprocessor ends. It doesn’t stop or issue any
warning if the result is invalid due to overflow — it sets the V bit,
shrugs its shoulders and carries on with the next instruction. It would
have been easy in the design stage to cause the computer to halt on
overflow but this would be undesirable. It would rob the programmer
of the ability to manoeuvre, to take advantage of the pathetic intellect
of the computer. The programmer can decide whether or not to ignore
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the V bit because in certain circumstances the answer could be correct
(from the programmer’s viewpoint) even if the V bit is set. The C bitis
often set or reset in instructions other than addition (ADC) or
subtraction (SBC). The ability to take action or ignore the C and V bits
is the key to the problem of ‘multi-precision’ arithmetic which
overcomes the limitations imposed by an eight-bit result.

Multi-precision arithmetic

This is the technique of using more than one location or register to hold
oneitem of data and organising the arithmetic instructions accordingly.
Before describing the details of the technique we first consider a simple
case to illustrate how the programmer will at times ignore the overflow
status in order to expand the range of positive (or negative) numbers
which can be held in a single byte result. If we refer to Example 4 in
which the addition of + 1 to + 127 resulted in ‘overflow’, it is clearly
allowable for a programmer to ignore this. If the numbers being dealt
with are known in advance to be all positive there is little point in
allowing space in a byte for the ‘sign bit’ and the result can be
interpreted in unsigned binary . If this is so, the result 10000000 becomes
128 absolute. The maximum number which could be held is now
11111111 = 255 absolute. By ignoring the V bit and overriding the
inherent two’s complement nature of the internal arithmetic logic, it
has been possible to double the range of absolute numbers provided
that the ability to handle mixed sign is sacrificed. Suppose we proceed
with this concept a stage further and use the C bit, not as an indication
of a ‘carry’ but as a ninth bit of the Accumulator. This will allow us to
double the range of unsigned numbers yet again. Thus, the maximum
absolute number becomes

C Accumulator
1 11111111 =511 decimal

The carry bit, bearing in mind it represents (by virtue of its binary
weighting) a value of 98 - 956 decimal, must be added to the
Accumulator contents (255 in total) to produce 511 decimal.

We now appear to have exhausted the expansion options available if
the result is to be presented in one go. But why can’t we use fwo locations
in memory to hold the result? No reason at all why not — except that it
is going to be a little more tricky to program because it will now be
important to ensure that the results of each single byte are properly
placed in the double byte locations. It is also important to be sure to
know when to ignore the C and V bits and when to take them into
consideration.
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Adding single byte numbers into a double byte result

Program 19. Two numbers are in addresses 0370 and 0371. Add these and store the
result in the pair of addresses 0372 (lower order byte of result) and 0373
(higher order byte). Assume numbers are in normal two’s complement

notation

LDA #$00 A9 00
STA $0372 Clear Acc and result bytes 8D 72 03
STA $0373 8D 73 03
LDA $0372 Load lower order result AD 72 03
¢LC 18

ADC #$0370 Add first number 6D 70 03
STA $0372 Store in low order result 8D 72 03
LDA $0373 Load high order result AD 73 03
ADC #$00 Add Zero + carry bit 69 00
STA $0373 Store in high order result 8D 73 03
LDA $0372 Load lower order result AD 72 03
CLC 18

ADC #$0371 Add second number 6D 71 03
STA $0372 Store in low order result 8D 72 03
LDA $0373 Load high order result AD 73 03
ADC #$00 Add Zero + carry bit 69 00
STA $0373 Store in high order result 8D 73 03
BRK 00

The first step was to clear the Acc and the two locations to hold the
result. You may think not strictly necessary but it helps in
understanding the logic flow.

The procedure for both numbers is identical (as can be seen by the
dividing lines in the remarks column) so it is only necessary to
understand the first. The lower order result byte is first loaded into the
Acc and the first number added to it. No carry is added because the
CLC previously cleared it. The Acc is stored in the lower order byte
result which now contains an updated total. Next, the higher order
result byte is loaded into the Acc and zero is added using immediate
addressing, but this time, with the carry bit (if any). Although the
double byte result occupies two memory locations we must visualise
them as laid out end to end as follows:

High byte Low byte
i L

Sign bit -T t—- Not considered as sign bit

The sign of the double byte result is the msb of the high byte. The bit
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usually taken to be the sign in the low byte is just treated as an ordinary
magnitude bit. This allows 15 bits for magnitude with the C bit
providing the linkage between the two bytes. The maximum positive
number is now 01111111 11111111 which is 213 -1 = 32 767 decimal
and the maximum negative —-32 768.

To understand the linkage via the C bit, study the following
examples: Let the first number be 255 decimal, 11111111 in binary
and the second be 128 decimal, 10000000. The pencil and paper
working is

11111111
10000000

1 01111111  Result in low order byte.

Next, zero is added (plus carry) to the higher order byte giving
00000001.
The double byte result is therefore
00000001 01111111 = + 383 decimal
To see that it works we add yet another number

present total = 00000001 01111111 , add 129 decimal to low byte,
10000001

1 00000000

add zero (plus carry) to the higher order byte giving 00000010.
The double byte result has now grown to
00000010 00000000 = 512 decimal
The next program uses the same technique to add a list of numbers into
a grand total.

Program 20. A block of single byte numbers are in addresses 0360 to 0369. Add these
up and leave the double precision result in 0370 (low order byte) and 0371

(high order byte)
LDX #$00 A2 00
STX $0370 Clear X and result bytes 8E 70 03
STX $0371 8E 71 03
BACK LDA $0370 Load low order byte result AD 70 03
CLC 18
ADC #$0370, X Add a number 7D 60 03
STA $0370 Store in low order byte result 8D 70 03
LDA $0371 Load high order byte result AD 71 03
ADC #$00 Add Zero + carry bit 69 00
STA $0371 Store in high order byte result 8D 71 03
INX E8
CPC #30A All jobs done? E0 0A
BNE BACK No D0 E9
BRK Yes 00
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Fig. 6.1. Flowchart of program 20

The flowchart shown in Fig. 6.1 will help in the understanding of
Program 20.

Adding double-byte numbers

The procedure would be virtually identical to single byte additions.
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The only difference is in the way higher order bytes are handled.
Instead of adding ‘zero plus carry’ we must add ‘higher order byte plus

)

carry’.

Program 21. One number is held in a pair of addresses 0380 (low byte) and 0381 (high
byte); the other number in 0382 and 0383. Add these up and store result
in 0384 and 0385

LDA 00 A9 00
STA 0384 Clear Acc and result bytes 8D 84 03
STA 0385 8D 85 03
LDA 0384 Load low byte result AD 84 03
CLC 18

ADC 0380 Add first number (low byte) 6D 80 03
STA 0384 Store in low byte result 8D 84 03
LDA 0385 Load high byte result AD 85 03
ADC 0381 Add first number (high byte) 6D 81 03
STA 0385 Store in high byte result 8D 85 03
LDA 0384 Load low byte result AD 84 03
CLC 18

ADC 0384 Add second number (low byte) 6D 82 03
STA 0384 Store in low byte result 8D 84 03
LDA 0385 Load high byte result AD 85 03
ADC 0383 Add second number (high byte) 6D 83 03
STA 0385 Store in high byte result 8D 85 03
BRK 00

This appears a cumbersome method but apart from the first three lines
(which are included for ‘tidiness’) there is no short cut. Before
labouring through each line individually, it may help matters to
picture the memory map:

0380 Lowbyte
0381 High byte
0382 Low byte
0383 High byte
0384 Low byte
0385 High byte

It was stated that there were ‘no short cuts’ but this was not strictly
true. Apart from the first three instructions, a further saving of a byte
or so could have been obtained by loading the first number and adding
the second. Indeed, if this program was literally intended to add only
two numbers together it would certainly not require the first three
instructions to clear the accumulator and the destination locations; i.e.
it would not require in:tialisation. These remarks would also apply to
Program 19. But these short cuts would prejudice the application of the
program skeleton if it was later intended to add a series of numbers by
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means of indexed addressing. It is standard (and wise) procedure to
initialise first before entering the indexing loop because the process is
entirely ADC on all numbers in the list instead of a single STA for the
first number and ADC for the rest — an awkward ‘odd man out’
situation.

The next program is the natural corollary because it takes the
skeleton and fits it into an indexed loop. If we look back to Programs 19
and 20, it will be recognised that a similar relationship was involved.

Program 22. Five double byte numbers are stored in addresses 0380 to 0389. Add these
up and store result in address 038A (low byte) and 038B (high byte)

LDX 00 A2 00
STX  038A 8E 8A 03
STX 038B 8E 8B 03
BACK LDA 038A Load low byte result AD 8A 03
CLC 18
ADC 0380, X Add low byte (indexed) 7D 80 03
STA 038A Store low byte result 8D 8A 03
INX E8
ADC 0380, X Add high byte (indexed) 7D 80 03
STA  038B Store high byte result 8D 8B 03
INX E8
CPX 0A All done? E0 0A
BNE BACK D0 EA
BRK 00

Compare the program with Program 20 and note it is almost identical,
the two differences being:

(a) Both ADCs act on money
(b) An extra INX is needed to bring out the higher byte of each
number.

Double byte subtraction

It is unnecessary to treat the detailed mechanism with the aid of
programs. The programs for adding numbers will also work for
subtracting numbers provided:

(a) SEC is replaced by SEC (set carry).
(b) SBC is used in place of ADC.

BCD Addition and subtraction

The 6502 facility for performing arithmetic on BCD formatted
numbers is to some extent unique. Some micros offer a kind of BCD
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arithmetic but demand some assistance from the programmer during
each add or subtract instruction. On the 6502, it is a once and once only
operation of setting the D bit at the head of the program. Any of the
previous programs involving addition or subtraction will operate in
BCD format provided that the initialisation lines include one extra
instruction, SED (hex code F8). Once the D bit has been set, the micro
will continue to treat all numbers as if they were in BCD format. If it is
intended to revert to normal binary arithmetic in the same program, it
would be necessary to clear the D bit with the instruction CLD (hex
code 38).
One or two words of warning may be useful when using BCD:

(a) It is up to the programmer to ensure that numerical data
presented to the ADC or SBC routines are indeed in BCD
format. You will remember that four bit binary groupings 1010
to 1111 inclusive are illegal in BCD — these are in fact the
nibbles which are represented in hex by the letters A to F
inclusive.

(b) The operating system which runs the keyboard, screen and the
BASIC interpreter almost always ensures that the D bit is
cleared so it would be unnecessary in the previous programs to
clear it at the head of every program. Normal binary would be
assumed. However, if you are bold enough to bypass the
operating system and run your machine code programs ‘naked’
you had better tell the machine what arithmetic you need
because the power on conditions are indeterminate in the PSR.

Under what conditions would you use BCD? The answer is probably
not very often. There are two main areas:

(a) Peripheral instrumentation normally outputs (or expects
inputs to be) in BCD. If your programs are to handle these
devices then your arithmetic must be compatible.

(b) Where exact money calculations are important. The high priests
of a religion known as ‘Chief Accountants’ are not amused by
the kind of rational rounding tolerated in physics or
engineering. BCD calculations can be right to the penny — if
enough places, or rather nibbles, are taken. ‘Look after the
pennies and the pounds will take care of themselves’ is one of
those archaic platitudes which are still taken literally in the
Boardroom.

The power of shift, rotate and logic operations
Apart from multiplication and division by powers of two, the shift and
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rotate instructions are used to manipulate bits within a byte and, like
the ‘logical’ instructions, are non-arithmetic in nature. Their use
demands a certain amount of inspired trickery on the part of the
programmer and many of the operations carried out appear
mysterious. The actual mechanism of these operations have all been
previously described although wusing them 1is not exactly
straightforward. Instead of going step by step again over what each
instruction does, it is more helpful to study some random program
segments — they may come in useful to splice into your own programs.

Program 23. Single byte numbers of mixed sign are stored in addresses 0360 to 0369.
Change them all to absolute values, i.e. if positive leave them alone, if
negative change them to positive

CLC 18

LDX #3$00 A2 00
BACK LDA 0360, A Load a number (indexed) BD 60 03

BPL SKIP Skip the next three if positive 10 07

EOR #$FF Change all the bits (one’s

compl.) 49 FF

ADC #301 Add one to form two’s compl. 69 01

STA $0360, X Replace in positive form 9D 60 03
SKIP INX E8

CPX #30A All done? E0 0A

BNE BACK No DO EF

BRK Yes 00

To change the sign of a number you convert it to the two’s
complement, by first changing all the bits. To change a bit,
EXCLUSIVE-OR it with a ‘l’. So to change all the bits,
EXCLUSIVE-OR it with FF. After this, one is added (by ADC
immediate 01) and the now positive number is restored in its original
home.

Coded records

By storing records in coded form, a surprising amount of information
can be squeezed into a single byte. The actual code used is not
important and, provided that it is used consistently, can be home-
made. Apart from the economy in memory requirements, coded
information obviously carries certain advantages in the area of
security.

To illustrate the method and to provide a guinea-pig for
experimenting with logic tricks examine the following simple code.
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Sample code for computer dating

Client A Client B

e e R

‘0’ = female 0 0 0 No particular interests
‘1’ =male 0 0 1 Art

0 1 0 Sport

0 1 1 Music

1 0 0 Science

1 0 1 Travel

1 1 0 Reading

1 1 1 Handicrafts

Two clients are squeezed into each byte and distinguished by the ‘A’
nibble (left byte) and the ‘B’ nibble (right byte). The coding is shown
for client A although the relative bit positions apply also to client B.

Examples: If client A was coded F hex, he would be interested in
handicrafts.
If client A was coded 3 hex, she would be interested in
music.
If the contents of a complete byte was coded 4A, client A
would be a female scientist and client B a male sportsman.

It should be emphasised that the code is primitive and does not contain
the sophistication expected in a real situation. A computer dating
service would normally include personal characteristics of a more
intimate nature but this is a family book and it would be indelicate to
include them. It does however serve the purpose of showing how even
four bits can hide quite a lot of information. It is left to the imagination
to visualise the enormous possibilities if say, two complete bytes were
allotted to each client — 65 536 distinct categories! If stored in ‘plain
language’ characters in BASIC, two bytes would only hold two
characters. Of course, the actual printing out of the matched data would
have to be human oriented and delivered in normal English but the
point is — the actual storage of large amounts of data can be achieved
most economically if binary coded.

Having stored this data, how can it be manipulated? Using two
clients for each byte has of course introduced complications but this is
all to the good, because it provides an excellent example in the use of
the shift or rotate instructions in ‘unpacking’ data. Before offering a
complete program which searches for a match it would help to examine
each separate problem associated with the task.
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1. If a match is found, how is the particular client identified?
The hex address itself can be the client’s identification code with a
flag bit somewhere to identify which particular nibble within that
address. Thus, a client whose identification code was 063F (B)
would indeed be stored in the right hand nibble of hex address 063F.

2. How can the two halves be separated once in the Accumulator?
There are several ways, but the easiest would be to PSH a copy in
the stack first then AND mask the ‘B’ nibble to all zeros. This leaves
the ‘A’ nibble on its own. To handle the ‘B’ nibble, the original can
be retrieved from the stack with PLA and shifted four places left.
This will kick out the ‘A’ nibble and leave the ‘B’ nibble in the
processing position at the left:

PSH Save on stack

AND #$FO Erase the ‘B’ nibble
(process client A)

PLA Retrieve from stack

ASL A

ASL A Kick out the ‘A’ nibble
ASL A and bring ‘B’ nibble to left.
ASL A

(process client B)

3. Assuming the nibble is in the left position, how is sex determined?
The sex bit is in the sign position so BPL or BMI can be the test
branch.

4. What is the ‘process’?
This depends on you but the most probable requirement would be
to test if the client satisfied a certain match. This is easily done by
AND masking followed by a BNE or BEQ), whichever is the more
convenient.
The next program is useful for testing out the ideas described. The
total of clients stored is low but is quite sufficient for test purposes.

Program 24. Twenty clients are stored in addresses 0370 to 0379 in the code form
described previously. How many of them are ladies interested in science?
Answer in address 037A (see Fig. 6.2)

LDX #800 Clear index A2 00

STX 037A Clear address to hold total 8E 7A 03
BACK LDA 0360, X Load two clients, indexed BD 70 03

PHA Save copy on stack 48

AND #$F0 Erase client B 29 FO

BMI SKIP Reject if male 30 09

94



Initialise

Load the
two clients

Erase
client B

No

Expose
field

No

Update Y
total

Retrieve
copy

Erase
client A

Expose
field

Scientist NyanO
?

Update
total

Increment
index

Nn

Fig. 6.2. Flowchart for program 24
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AND #8$70 Erase all bits except ‘interest’ field 29 70

SEC 38

SBC #8$40 (01000000) is female scientist E9 40

BNE  SKIP Reject (no match) DO 03

INC 0370 Add one to total EE 70 03
SKIP PLA Retrieve copy from stack 68

ASL A 0A

ASL A Bring client B to left 0A

ASL A 0A

ASL A 0A

BMI  SKIP1 Reject if male 30 09

AND #§70 Erase all bits except ‘interest’ field 29 70

SEC 38

SBC #$40 (01000000) is female scientist E9 40

BNE SKIP1 Reject (no match) DO 03

INC 0730 Add one to total EE 70 03
SKIP1 INX E8

CPX #80A All jobs done? E0 0A

BNE BACK No D0 DA

BRK 00

It should be emphasised that the program is intended only to illustrate
the use of logical and shift instructions with little attention being paid to
the coding efficiency. In fact it is apparent from the flowchart that a
sizeable chunk of code is repeated twice and could have been reduced
by using an inner loop.

ASCII code manipulations

A keyboard character, in the majority of computers, is stored in the
form of a seven-bit code known as ASCII which stands for ‘American
Standard Code for Information Interchange’. It is mercifully
pronounced as ‘Askey’. There is room in the code for 128 different
characters (27 = 128) and most of them are used. The total character set
can be divided into upper case letters A — Z, lower case letters a — z,
the digits 0 — 9, various punctuation symbols including the dollar sign
(which of course emphasises the American origin) and the ubiquitous
hash mark # . Appendix 2 includes a restricted set of the most used
ASCII characters with their hex and decimal equivalents. The full code
includes various ‘control’ characters and odds and ends which tend to
obscure the most commonly used letters and figures. It is useful to be
aware of the basic structure of the code in order to manipulate the bits.
The following is the broad plan which holds for letters and figures:
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(g iy SRR ety it e 1

A et e B
‘17 if letter I I ¢ ] 4
‘0’ if number Sequential position

‘1’ if lower case

The five least significant bits are used for alphabetical sequence
purposes. Thus the upper case ‘E’ which is the fifth character would
have the ASCII code 1000101 (hex 45) or decimal 69. Lower case ‘e’
would be 1100101 (hex 65) or decimal 101. Numbers are also found by
the code sequence except that bit 4 is always a ‘I’. Thus, ‘9’ is coded
0111001 (hex 39) or decimal 57. Remember that numbers on a
typewriter are always lower case.

Suppose we are entering numbers, ‘numerical digits’ is the posh
term, it is clear that the only bits of the code which are strictly
numercial are the four least significant bits, the remaining bits are so
much garbage if we know that the characters expected are indeed
numbers. So the first job in a keyboard read segment would be to strip
off the unwanted bits using an AND mask technique.

Before attempting to illustrate masking it would be advisable to deal
with the missing eight bit. Since the ASCII code is a seven-bit code,
what do they do with the eighth bit at the msb end? There is no hard
and fast rule in microcomputers. Traditionally, the eight bit was used
to check parity but this ‘waste’ of a bit is seldom found except perhaps in
minicomputers or mainframes. It is now often used for the ‘reverse
print’ mode. Thus, if the eighth bit is a ‘0’, the mode is normal; if
however the eighth bit is ‘1’ it signifies reverse print (black on white
instead of white on black or some alternative colour scheme). Study of
the User’s Manual of your micro will establish the point.

There are only two areas within the computer where the ASCII code
would normally be used, the keyboard input, the screen memory and
the area of RAM where character strings are stored.

Program 25. Numbers in ASCII code format are stored in addresses 0360 to 0369.
Convert them to BCD format

LDX 00 Clear index A2 00
BACK LDA 0360, X Load ASCII (indexed) BD 60 03
AND OF Erase the four left hand bits 29 OF
STA 0360, X Replace 9D 60 03
INX E8
CPX 0A All done? E0 0A
BNE BACK No DO F3
BRK Yes 00
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The previous program was an easy example because of the prior
knowledge. The problem of separating numerics from punctuation
and letters or in general, a complete analysis of ASCII characters
involves examination of the three higher order bits. Shift instructions
are useful for moving bit patterns into the sign position in order to test
(by means of BPL or BMI) if a particular bit is set. The BIT test is
useful in this area because of the power it possesses of pin-pointing bits
6 and 7 whilst still in memory. Since shifts can also be carried out whilst
still in memory it is quite possible to gain a good deal of information
without even troubling the Accumulator.

For example, suppose in location 0360 is an ASCII pattern. If we
ASL one place, bits 5 and 6 of the ASCII become bits 6 and 7, both of
which can be tested by BVC and BMI.

Thus ASL 0360
BIT 0360

After this, we know that if the original ASCII bit 6 was a ‘1”, the N bit
in the PSR would be set and if bit 5 was a ‘1’, the V bit would be set.

Using the EOR and ORA

Although these two are ‘logical’ they find their greatest use in the field
of Input/Output manipulation and will be treated later under that
heading.

The program examples in this chapter should provide at least food for
thought and you would be well advised to enter all of them and any
dummy data they demand. Most of the data has been assumed to lie in
addresses 0360 onwards but this is only because the writer tried them
out on a CBM microcomputer and this area is convenient for this
machine. It is a simple matter to rearrange the operand addresses if the
data must lie elsewhere. All programs have ended with BRK but if
RTS is substituted they could be used as subroutines provided pre-
preparation techniques were arranged prior to calling.

Summary

@ Before starting an Adding sequence, reset the carry bit with CLC.

@ Before starting a Subtract sequence, set the carry with SEC.

® The C bit and the V bit, although updated by the computer
automatically, are there only for the programmer’s information and
can be ignored.
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® When adding single byte numbers into a double byte result the
carry is first cleared and the lower byte is added and returned to the
lower byte result. Next zero plus carry is added to the higher byte
result.

® To add double byte numbers into a double byte result, the
procedure is similar to the above but instead of adding zero plus
carry, the higher order byte plus carry is used.

® BCD arithmetic is easy on the 6502. Just remember to set the D bit
first with SED. Also remember to clear it again with CLD if
reversion to normal two’s complement arithmetic is to follow.

® To obtain the two’s complement, use EOR FF then add 1.

® A home made binary code can be a very economical dodge to store
personnel or indeed any kind of records.

® The ASCII code (pronounced Askey) is the popular code for storing
keyboard characters.

® The full ASCII uses seven bits and allows 128 different characters
including various control codes. An abbreviated form of the ASCII
is given in Appendix 2.

® The eighth bit is often used to signify ‘reverse character’ display.
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7

Input/output manipulations

What is peripheral?

Anything which is used by, but is not an integral part of, a computer is
deserving of the name peripheral. Obvious peripherals are, of course,
floppy disks, cassette recorders and printers but the two things we do
not normally (but should) treat as peripherals are the keyboard and the
video screen. There are many more exotic devices which can now be
hooked on to the computer including light pens, ‘writing tablets’, voice
recorders, joysticks — the list is growing every month. It is all part of
an anthropomorphic desire to invest computer systems with ‘human’
senses, although some of them are little short of gimmicks. Voice
operated systems have always intrigued us and science fiction writers
worth their salt must include an ORAC or a ZEN in the scenario.
Perhaps the technique will improve but at present, the primitive Dalek
type accents of the first generation systems seem preferable to the latest
craze towards re-creating the old ‘Oxford’ accent.

Another important range of peripherals are the ON/OFF control
lines which activate mechanical systems and move robot arms or wash
clothes etc. This is an interesting area for the model enthusiast who is
also a computer type.

Interface problems

The kindest thing you can say about most peripherals is that they
exhibit individualism. In short, they are undisciplined, lazy, greedy
and loudmouthed. The thousands of circuits within the computer
boundary behave like well drilled soldiers obeying instantaneously the
commands of the microprocessor master clock. Everything is
synchronised to the clock and order reigns throughout. Peripherals
tend to sneer at the clock and go their own way. Internal circuits
operate at high speed using a time scale in the order of microseconds.
Peripherals are sluggish, their full-out speed seldom breaking the
millisecond barrier. The power consumption of the internal
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computing circuits is modest. A typical hairy chested peripheral can
eat up more power than the entire computing system. They have a lust
for current and voltage. The internal computing system operates in an
acoustical vacuum. Peripherals either clack or they hum or they clatter
like an ageing lawnmower. A typical line printer, when feeling
particularly cheerful, can drown Concorde. As might be expected, the
difference in temperament between peripheral and computer causes
problems.
The problems come under the general heading of interfacing. There
are two of them:
(a) Hardware interfacing: electronic circuitry is required to
compensate for the different voltage and current requirements.
These problems are outside the scope of this book.
(b) Software interfacing: program segments are required to
compensate for the different timing requirements.

Interface chips

The manufacturers of microprocessors always offer support chips
forming a ‘family’, each member of which is electrically and software
compatible with the rest. Thus the general family title of our system is
the 650X, the X number determining the particular member. Thus,
the microprocessor itself is the 6502 and the 6520 is an input output
chip called by the grandiose title of ‘Peripheral Interface Adaptor’
(known affectionately in the trade as a PIA). There is an even bigger
and better input/output chip, the 6522 which is more versatile than the
PIA and is correspondingly named the ‘Versatile Interface Adaptor’
(VIA for short).

Both the PIA and the VIA have quite complex interiors; in fact as far
as number of pins are concerned they are equal in status to the
microprocessor itself — 40 pins. The detailed treatment of these two
chips would, to do them both justice, justify a separate book. The PIA
is the simpler of the two and will be explained first.

The PIA (6520)

This chip consists of two virtually identical halves and to avoid much
repetition only the ‘A’ side will be treated (the ‘B’ side differences are
not serious).

Fig. 7.1 shows the programmer’s view of the PIA (A side only) and
note that it is connected to the address bus and the data bus of the
microprocessor. This brands it immediately as a memory mapped
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Handshake lines Peripheral data lines

Fig. 7.1. Peripheral interface adaptor (A side only) 6520

input/output chip; the registers within the chip are allocated unique
addresses and behave like any other memory locations. The particular
addresses allocated are in the first instance quite arbitrary but in the
case of a home computer system they have been decided once and for
all by the system designer. If you are proficient with a soldering iron
and would like to hook the PIA onto a different address area, you are
free in principle to do so but do make sure you know what you are
doing. Most of the address space has probably been allocated anyway
although if you decide to wire in another PIA (or even another dozen!)
you may find a few left.

What are the addresses?
This depends on your particular system so we shall assumethe addresses
are as shown on Fig. 7.1.

There are three programmable registers but, for some strange
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reason, the original designers were stingy enough to restrict the
number of addresses to two. One register has its own address, the other
two have to share one address. Before attempting to define these
registers study Fig. 7.1 closely and notice the double direction arrows
on the eight peripheral data lines. These lines can be individually
programmed to be either inputs from a peripheral or outputs to a
peripheral. Taking any line at random, it is clear that it cannot at the
same time be both an input and an output so we can understand why
there is one special register used to define the direction of each.
First some definitions:

The eight data lines (PAO to PA7)

These deliver or accept TTL voltage levels or, to phrase this a little

less pompously, they can be switched ON or OFF. They are the

main data paths between the peripheral/s and the microprocessor. ¢
The data register (located at our assumed address E000)

This is a buffer or ‘holding’ register for the data lines.
The direction register (located at our assumed address E000)

By setting bit patterns in this register, the programmer can set the

directivity of the data lines in accordance with the following

convention:
A ‘1’ in the direction register makes the corresponding data line
an output.
A ‘0’ inthe direction register makes the corresponding data line
an input.
Examples: With FF in the direction register, all data lines behave as
outputs.
With F8 in the direction register, data lines PA3 to PA7
behave as outputs and data lines PAO to PAZ2 behave as
inputs.
The control register (Located at our assumed address E001)

With the sole exception of bit 2 (shown shaded in Fig. 7.1) this
register is dedicated to the behaviour of the two handshake lines CA1
and CA2.

It must be admitted that this register is a bit of a swine to understand
and the gory details will be left for later treatment. We must however
be familiar with the use of bit 2 since it is vital to the behaviour of the
Direction Register.

In fact it is bit 2 which resolves the problem of the ‘shared address’.
You will note again from Fig. 7.1 that the Direction and Data registers
share the same address 8000 as how does the PIA know which is meant?
The rule is simple:

If bit 2 is ‘0’, the address EQ0O is the Direction Register.
If bit 2 is ‘1’, the address E000 is the Data Register.
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Under reset conditions, all the registers in the PIA have their bits
cleared to ‘0’s so initially, bit 2 is ‘0’ and consequently the Address
E000 must refer to the Direction Register. After the desired bit pattern
is set in this register, the contents of the Control Register can be
changed to allow future references to E000 to belong exclusively to the
Data Register. If the handshake lines are not being used (and they
don’t always have to be) the remaining bits of the Control Register can
remain at zero. It will be appreciated that the directivity of the data
lines are unlikely to require changing within the same program or
system so setting the Direction Register is usually a one-off job during
the program initialisation. It would be well to study a few simple
examples of initialisation in order to sort out all this conglomeration.

Example: Initialise the PIA to cause all the data lines to behave as
outputs. Do not assume that reset action has occurred.

LDA #$00 Clear Acc

STA  $E001 Clear Control register

LDA #$FF

STA  $E000 Put all ‘1’s in Direction Register
LDA #$04

STA  $E001 Set bit 2 to ‘1’ in Control Register

Note the hex number 04 in the Control register (00000100) which sets
bit 2. Although the initialisation example set the required directivity of
the output lines it is well to note that the actual logic voltages on each
output are not yet established. All we have told the PIA up to now is
that the eight data lines are to behave as outputs. To set the patterns of
‘1’s and ‘0’s the lines must adopt, will require the corresponding bit
pattern to be set into the Data Register. In future, to avoid repetition,
we shall assume that reset conditions have been prior established so
that there is no need for the Control Register to be cleared in the first
instance.

Example: Initialise the PIA for PAO and PA3 to be inputs and the

remainder outputs.

LDA #8$F6

STA E000 Put 11110110 in Direction Register
LDA #$04 Set bit ‘2’ to 1 in Control Register
STA 8001

Data lines programmed to behave as inputs will not accept patterns
placed in the Data Register from the microprocessor. Thus, if all the
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lines are inputs and we store the bit pattern at, say, FF in the Data
Register the dta lines will ignore it. This is understandable when you
think about it — if a line is supposed to be an input, then the only
legitimate signal must come from outside.

The handshake lines

The PIA is equipped with two special lines CA1 and CA2 which are
primarily used to keep peripherals and computer in step with each
other. CAl can only be used as an input but CA2 can be programmed
to behave either as an input or an output, depending on the state of a
certain bit in the Control Register. In fact, the behaviour of the
handshake lines is intimately linked with the pattern set in the Control
Register. These details will be left until we discuss the subject of
interrupts.

Programmable test panel

It is advisable to practise on simple examples before attempting
ambitious projects. Writing bug-proof software to control peripherals
can be a lengthy task and can lead to much gnashing of teeth before
they begin to behave. It is a good plan to construct a test panel which
can be used for gaining confidence before risking your talents on real
equipment. The primary requirements of such a panel are to display the
states of the data lines and to provide simulated inputs. Fig. 7.2 is a
circuit diagram of such a panel which provides crude but quite effective
simulation of peripheral behaviour. Before detailed descriptions are
given, a word of warning is advisable. Unless you have some
experience in the construction of electronic equipment (particularly
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digital) it is better to enlist the did of someone who has! Home
computers are not cheap and connecting badly constructed gadgets
could turn out to be an expensive exercise. The drawing is shown in
adequate detail to guide those with prior experience. The appearance
and mechanical details of the front panel are left to your own
imagination and artistic sense. The power supply can be obtained from
either:

1. Stealing from the computer’s 5 V supply (if your knowledgeable
friend thinks there are enough milliamps available).

2. Constructing a mains 5 V supply. (Particular care required here!)

3. Using dry batteries. Unfortunately, 5 V is an awkward value for
batteries but 4.5 V would be quite suitable. In fact dry batteries are
the safest method of all.

Panel facilities

(1) Simple switches provide simulated inputs to the PIA data lines. One
special switched input is used to feed CA1 because of the more
demanding requirements.

(2) Light emitting diodes (LEDs) are used to indicate the logic state of
the outputs. They light up when an output is in the HIGH state
(logic 1).

(3) Sockets are provided which are direct connections to the data and
handshake lines. These can be used to drive (or be driven by)
external devices. To safeguard against unwanted voltage pulses
feeding back into the PIA, it is essential that the sockets ‘see’ a
TTL device as the first load. This device can be an inverting or
non-inverting buffer.

Before example programs and hook-ups are given, there are a few
quirks to be aware of with regard to the switch positions and the
meanings to be attached to the LED displays (see Fig. 7.3).

When a line is to be used as an output the appropriate switch must be
left in the ‘H’ position (switched OFF) otherwise the line is rigidly
grounded and the PIA is unable to pull it to the HIGH state. The PIA
outputs are in the ‘floating high’ state until the Direction Register has
been initialised so all the LEDs will be in the ON state when the panel is
connected but programs have not been run. LEDs will go to the OFF
state only when the Data Register has been loaded with ‘0’s.

The panel should be connected via a suitable multiway plug/socket
to the User Port but again, a warning that such connections should
only be made after consulting the hardware section of your User’s
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Fig. 7.3

Manual. The following programs will assume that the panel or some
equivalent is indeed connected to the computer User Port. It also
assumes of course that the User Port is driven by a PIA chip, either a
6520 or a 6820. It is fortunate that another very popular chip found in
microprocessor controlled computers is very similar to the PIA;itisin
fact called a VIA meaning ‘Versatile Interface Adaptor’. This chip
may be thought of as our PIA plus much more. The full facilities of a
VIA include internal counters and hardware shift registers, all of which
can be under program control. Whether the User Port is a PIAor a
VIA, the panel connections will be broadly the same, the main
difference (apart from the extras) is that a VIA has a completely
separate address for the Direction Register and the pin we have called
CA1 my be CB1 instead.

Program 26. Make the datalines all outputs with the four right hand lights ON and the
four left hand lamps OFF

LDA #8$00 Clear Acc and Control Register A9 00
STA E001 8D 01 EO
LDA #$FF Set all ‘I's in Direction Register A9 FF
STA E000 8D 00 EO
LDA #8304 Set bit 2 in Control Register A9 04
STA E000 8D 00 EO
LDA #3$OF 4 R.H. lamps ON A9 OF
STA E000 8D 00 EO
BRK 00

This program invites the obvious criticism — what a tedious job just to
switch four lights on! We must remember however that initialising the
PIA is a ‘one off’ job and in a complex program the above lines would
represent a small part of the total number of lines. We should also
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understand that we can’t have the best of both worlds. If we want the
luxury and versatility of a 100 % programmable device then we must
expect a certain amount of tedium in order for it to behave in the
particular manner required for one purpose. Don’t forget when trying
out the program to leave all the input switches OFF (in the H position).
Remember also that a lJamp ON in any position will cause the
corresponding socket outlet to assume the logic HIGH position (logic
1). If you have a logic probe or similar detector, you should confirm
these statements.

Program 27. Use the four left-hand data input switches to control the four right hand

lamps

CLV B8

LDA #8300 Clear Acc and X A9 00

TAX AA

STA  $E001 Clear Control Register 8D 01 EO

LDA #$0F Set Direction Register A9 OF

STA  E000 8D 00 EO

LDA #$04 Set bit 2 in Control Register A9 04

STA  $E001 8D 01 EO

STX  $E000 Clear Data Register 8E 00 EO
BACK LDA  $E000 Load switch pattern into Acc AD 00 EO

LSR A Shift left nibble along to 4A

LSR A right nibble 4A

LSR A 4A

LSR A 4A

STA  $E000 Set lamp pattern 8D 00 EO

BVC BACK Close switch sensing loop 50 F4

The program is closed loop, continuously sensing the current positions
of the switches. There is no unconditional BRANCH instruction in the
6502 so a back-door method using the BVC test is used. The branch
will always be taken because the V bit is initially cleared and none of
the instructions subsequently used will affect the V bit.

The switches provide input for PA4 to PA7 and the four LSR lines
move the pattern into the PAO to PA3 position ready for displaying the
lamps. There is no ways of breaking out of this program once it has
been started so it would be advisable to add a few more lines enabling
the operator to switch an exit. However, this would entail the use of one
of the handshake lines and would introduce unecessary complication at
this stage.

108



Program 28. Cause the eight lamps to flash on and off continuously. The flashes to be
at reasonable rate for normal vision

CLV B8
LDA #800 Clear Control Register A9 00
STA  $E001 8D 01 EO
LDA #8$FF Set data lines all outputs A9 FF
STA $E000 8D 00 EO
LDA #8304 Set bit 2 in Control Register A9 04
STA $E001 8D 01 EO
LDA #800 Switch lamps OFF A9 00
STA  $E000 00 EO
BACK LDA $70 Place a ‘delay’ number in Acc

prior to using subroutine A9 70
JSR  DELAY  (Program 15) 2022 P2
LDA $E000 Change over the lamp statesby ~ AD 00 EO
LDA #$FF exclusive-or with all the ‘I’s 49 FF
STA  $E000 8D 00 EO
BVC BACK 50 F1

If lights are flashed at computer speed, the display would just be a
blurr. Use is made of an earlier program which was written as a
subroutine with the delay time determined by the number left in the
Acc prior to calling (refer to Program 15). Experiment with numbers
other than 70 hex to vary the rate of flashing.

The address code where the subroutine lodges will depend on your
own memory map so the operand in the machine code version has been
left undetermined. If the assembler you have provides for symbolic
operands then the word ‘DELAY’ would be acceptable provided of
course that you used this in the label field of the subroutine.

The handshake lines

CA1 and CA2 should be thought of as data controllines rather than data
lines. Most commonly used peripherals act too slowly for the computer
so some kind of dialogue must be programmed between the two. Thus
the computer may ask the peripheral ‘Are you ready to receive data?’
The peripheral may respond either with ‘Yes’ or ‘No’. The
conversations are naturally less refined than this but the meaning is the
same.
Re-affirming an earlier statement:

CAl can only be used as an input.
CAZ2 can be used as an input or an output

The CA1 input is a little unusual in behaviour and is described as an
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edge-triggering input. This means that something happens only if the
input signal changes from one level to another. A logic high by itself will
do nothing, neither will a logic low. Things only start to happen when
the signal rises from low to high or (depending on a certain bit in the
control register) falls form high to low.

Before describing the details of programming, study Fig. 7.4 which
shows a method of connecting an analogue-to-digital converter (A/D
converter) to the PIA. This is a device that accepts an analogue voltage

Enter

CA2
PIA Send pulse
CAl from CA2
to sample
PA7 PAO
Valid A/D
converter
Sample
Read data
lines and
pass to Acc.
VIN i
Fig. 7.4. A/D conversion interface
Fig. 7.5. ‘Wait till ready’

loop

at its input and then laboriously converts this to a set of binary bits
which represent the value of the analogue voltage. Thus the input
voltage may be anything within the range say, zero volts to 2.55 V.
The corresponding binary output would be 00000000 to 11111111
which in pure unsigned binary would represent zero to 255 decimal.
To achieve this conversion takes time — perhaps as long as a
millisecond! Now a millisecond to us seems a negligible time but to a
computer it is a couple of weeks. The A/D converter is therefore
equipped with two handshake lines in addition to the eight data
outputs. On receipt of a logic pulse from CA2 to the SAMPLE input,
the A/D conversion process commences. When the binary data on the
output lines is considered (by the A/D converter) to be a valid
representation of Vpy it changes the state of the VALID output line.
The ‘conversation’ would read something like this, ‘Please start
digitising’ which eventually brings the reply ‘I have done this so you
can read in my data’. Fig. 7.5 illustrates in flow chart form the
conversation. In a real situation, the analogue voltage Vy would
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probably be continually changing so it would be necessary to re-
sample the data at regular intervals. The flowchart shown would then
represent only a part of the complete ‘read data’ routine.

Programming CA1 and CA2

The behaviour of these lines is determined by the bit pattern placed in
the control register during the initialisation routine, normally
somewhere near the head of the program. The following description is
based on Fig. 7.6 which defines the function of each bit in the Control
Register. In spite of the forbidding appearance it is not too bad in
practice to handle the register. Nevertheless, some additional
comments may help in gaining confidence.

Note first that three bits 7, 1, 0 are concerned with the behaviour of
the CA1 line. Four bits 6, 5, 4, 3 are concerned with CA2 line. The
remaining bit 2 is the odd man out and has nothing to do with the
handshake lines; it is our old ‘friend’ which is always set to ‘1’ after the
direction register has been tidied up.

CA2 flag (when it is an input) | Can only be SET by external signals
Can only be RESET by reading the data register
CA1 flag e—
Determines which is the active edge
of CAl
0 = active low
1 = active High

0= Input
1 = Output

I 7 | 6 | 5 4 3 2 1 0

CALl flag interrupt
0=No
1= Yes

| CA2 direction

Used to resolve the
shared addresses of the
data and direction
registers

0 = Direction register
1 = Data register

I When CA2 is an output I When CA2 is an input

CAZ2 flag interrupt
0 0 CA2 adopts state of CAl flag 0=No i e
0 1 CA2 normally high but delivers 1= Yes
a negative—going pulse whenever
the data register is read Determines which is the
ctive edge of CA2
1 X CA2 adopts the same state as (a) ;\::ﬁvzel:w
bit 3 S 1 = active high
If bit 3 = 1 then CA2 is high

If bit 3 = 0 then CA2 is low

Fig. 7.6. Details of control register in PIA
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CA1 Flag bit (bit 7)

This bit can not be directly programmed. It can only be set to 1 by the
arrival of an external signal (of the correct polarity) on the CAl line.
Once the flag is set, it cannot be reset directly! It is reset automatically
the next time the data register is read. ‘Reading’ the dataregister means
performing an LDA, an LDX or an LDY.

CA2 Flag bit (bit 6)

When CA2 is programmed to behave as an input, bit 6 acts as the flag
with the same properties as described under CA1.

CA2 Diarection (bit 5)

To cause CA2 to behave as an input, this bit must be reset to 0. If this is
changed to 1, CA2 becomes an output.

Bits 4 and 3

A complication arises here because the properties of these two bits are
completely different, depending on whether CA2 is an input or an
output. Assume first that CA2 is an input:

Bit 4 allows you to decide which edge of the CA2 input will set CA2
flag. If bit 4 is O then only when CAZ2 input falls from HIGH to
LOW will the flag be set. If bit 4 is 1, a rise from LOW to HIGH is
required.

Bit 3 determines whether INTERRUPT action is required when
the CA2 flag is set. If bit 3 is 0, there is no interrupt action. If bit 3 is
1, an interrupt ‘request’ is sent from the PIA to the microprocessor.

The subject of interrupt will not be discussed in detail until later.
Assume that CA2 is an output:

CAZ2 flag (bit 6) ceases to have any relevance and the behaviour of CA2
depends on the particular permutation of bits 4 and 3 as shown in the
kind of truth table shown at bottom left of Fig. 7.6 so each of these three
permutations should be treated separately:
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Bit 4 and 3 both 0

CA2 may be considered ‘connected’ to CAl flag bit. Thus as soon
as a signal arrives on CAl which sets the flag bit, CA2 line
immediately goes to the high state. It remains high until the flag bit
1s reset.

Bit4 = Oandbit3 = 1

This permutation is used when a peripheral requires a ‘negative-
going’ pulse, a typical example being the well known (to electronic
types) 555 timer. CA2 will normally reset in the high state but when-
ever the data register is ‘read’ (by an LDA, LDX or an LDY) CA2
jumps low for a brief instant and then automatically returns back to
the high state. To be more specific, the return occurs on the next
falling edge of the ‘E’ line. This line is coincident with phase two of
the microprocessor clock (refer back to Fig. 7.1).

Bit4 =1

If this bit is held at 1, CA2 is said to be in the ‘manual’ mode
although it is not exactly a wise choice of label. In point of fact, CA2
will now adopt the state of bit 3. Changing bit 3 will cause the
corresponding change in CAZ2 output state.

Bits 1 and 0

These belong to the CAl line, having the same significance as bits 4
and 3 had on CA2 when an input.

Bit 1 determines which is the effective edge of CA1. Thusif bit 1is 0
then a change of CA1 from high to low will set CAI1 flag but if it is 1,
only a change from low to high will be effective.

Bit 0 is the interrupt bit. If it is 0, then no interrupt occurs when the
CA1 flag is set. Ifit is 1, then an interrupt request is sent immediately
the CA1 flag is set.

This concludes the rather grim details of the PIA ‘A’ side. The ‘B’ side
(if it is available for user port handling) is virtually identical to the ‘A’
side except for one or two variations. Thus on the ‘B’ side, the flags are
automatically reset when the data register is ‘written’ into (after a
STA, STX or STY). Before attempting actual programs using the
handshake lines it is advisable to practise on the bit patterns required in
the control register for various system requirements. In the examples
which follow, the rule will be to place ‘0’s in any bits which are either
not used or conversely, which are not programmable. You will
remember that bits 6 and 7 are not directly programmable so these will
have ‘0’s in them as far as our initialisation examples are concerned.
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Erample 1. Assume CAl is to be an active high input but not to cause
interrupt. CA2 is to be an active low input and to cause
interrupt.

(The term ‘active low’ means a change from high to low sets flat while

‘active high’ means from low to high.)

The correct pattern required in the control register is 00001110 (hex
OE). Thus after the data direction register has been initialised, the next
lines would be:

LDA #$0E
STA $E001

(In these examples, we shall stick with our assumption that the control

register is located at address E001.)

Example 2. Assume CAL is to be active low input with no interrupt
and CA2 the same.

The correct pattern required in the control register is 00000100

(04 hex). It is interesting that this example appears to be the default

pattern because you may remember that in our examples, prior to

discussing the handshake lines, we put 04 hex in the control register.

Example 3. CA1 to be an active high input without interrupt. CA2 to
be an output with the state to be initially low but sub-
sequently to be determined by bit 3.

The correct pattern required in the control register is 00110110

(hex 36).

Example 4. CA1 to be active low input causing interrupt. CA2 to be
an output which is a negative going pulse coincident with a
read of the data register.

The correct pattern required in the control register is 00101101

(hex 2D).

Example 5. CAL1 to be active high and cause interrupt. CA2 to be an
output which copies the state of the CA1 flag bit.

The correct pattern required in the control register is 00100111

(hex 27).

Once the mechanics of the control register have been mastered the next
logical step is to apply the technique to real situations. In the home
computer field it may often be found that the user port facilities are less
than adequate. Eight data lines and two handshake lines may often
appear to restrict applications. It may happen that a certain project
requires say, sixteen data lines and more handshakes. These situations
call for ingenuity in the use of the available system which in turn
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Trigger
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Timing details

CAZ2 trigger | I

This edge sets
CA1 flag
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R e
Output ' ’
Depends on R

Fig. 7.7. Conversion of resistor control knob to binary

demands some expertise in the use of additional integrated circuits,
decoders, multiplexers etc. With a little thought it is often possible to
devise a peripheral system which uses ‘less wires’.

As an example of user port economics, study Fig. 7.7 which shows
how an external variable resistor (imagine this to be a joystick knob)
can be persuaded to convert itself into a binary number by using only
the two handshake lines, leaving the data lines free for other purposes.
The solution to any computerised system naturally requires software
as well as hardware, which is why interfacing engineers must be
reasonably proficient in both fields. For example, it would be no good
suggesting the hardware shown in Fig. 7.7 unless the designer had a
reasonable idea of the kind of software back up needed to complete the
system. Before treating the software, it is necessary to understand
(roughly) the behaviour of the 555 timer chip. Consider it as a black
box with one input and one output terminal which has the following

property:

1. The output normally rests in the low state, the input in the high
state.
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2. Ifthe input is momentarily driven low by a short duration pulse, the
output goes high and remains so for a time depending on the value of
an external capacitor (normally fixed) and a resistor (normally a
variable).

Summarising, one negative-going pulse applied to the input causes a
change of state at the output which eventually returns back to the initial
resting state. The time interval which elapses before the return
depends on both the C and R value of the external components. The
timing details are shown in Fig. 7.7. A suitable software subroutine
which handles the system is now tackled.

Program 29. Subroutine to place a value in the X register proportional to the current
value of the variable resistor R. The hardware is shown in Fig. 7.7 and
the flowchart in Fig. 7.8

LDA #$00 Clear Control Register A9 00
STA  $E001 8D 01 EO
STA  $E000 Make data lines inputs? 8D 00 EO

LDA #$2C Initialise CA2 neg-pulse output A9 2C
CALl flag active low without interr.

STA  $E001 8D 01 EO
SAMPLE LDX #800 Clear X A2 00
LDA  $E000 Dummy read of data register to
cause output pulse on CA2 AD 00 EO
TEST BIT $E001 Test for CAl flag in control. If set,
N bit is set 2C 01 EO
BMI  EXIT 30 03
INX E8
BPL TEST 10 F8
EXIT RTS Returns with value in X 60

The control register initialisation is shown above the dotted line in
Program 29 and would, in practice, be part of the main program rather
than within the body of the subroutine. The action is fairly
straightforward. The X register grows (by incrementing) until the 555
timer output returns to the low state. This sets the flag because the
initialisation programmed the flag to set when it detects a falling edge
(active low). Once the flag is set, the subroutine returns to the calling
program with the X register holding the binary equivalent of the
resistor setting.

There will be a few practical hardware details to consider, such as the
correct (or suitable) choice of capacitor and resistor value. The output
pulse width of the 555 timer is 1.1 CR seconds. If CR is chosen too
small, X will count up to maximum and overshoot before the flag is set.
The value chosen must be adjusted to match the time it takes for X to
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Return Fig. 7.8. Flowchart for program 29

count up to FF hex (255 decimal) when R is maximum. Examination
of the TEST loop in Program 29 shows there are four instructions
which, according to Appendix A, will occupy a time slice of twelve
clock pulses per revolution. Assuming a 1 MHz clock, the loop will take
approximately 3 ms to achieve maximum count in X. The product CR
in the timer circuit must therefore be in this order of magnitude.

One final point regards voltages; the timer power supply must be
5 V to match the TTL levels of the PIA lines. It should be emphasised
once more that coupling such equipment should only be undertaken if
you are experienced in digital electronics. The 555 timer is cheap
but the PIA output chip is not!

Interrupt action

Up to this point, care has been taken to avoid the CAl flag causing an
interrupt to occur by ensuring that bit 0 (the interrupt bit) in the
control register is initialised to 0. It is time now to investigate what
happens if this bit is set to 1.

It is advisable to re-read Interrupt Signals in Chapter 1 to refresh the
details. On receipt of the CAl (or CAZ2) signal which sets the
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appropriate flag, a signal called IRQ (interrupt request) is sent via the
PIA up to the microprocessor. If the I bit in the processor status register
is ‘0’, the present program is interrupted and the computer jumps to a
predetermined address and starts executing another program called
the Interrupt Service Routine. On completion of this routine, the system
returns to the original program and continues from the point at which
it was interrupted. So much for the overall function; the application,
however, is fraught with difficulty. In fact it should be pointed out that
dabbling with the interrupt function in a home computer should be
attempted with some reservations. It is a little difficult to write
crashproof programs in which your own interrupt routines are
interspersed because at all times you are competing with the operating
system software which relies strongly on interrupt actions.

Before attempting to write interrupt routines, it is essential to
examine the User’s Manual to find the address of the interrupt request
JUMP vector. There will be two locations holding this address in the
usual low byte, high byte positions. The operating system will have
already placed the address of its own ‘private’ routine in these
addresses and it is essential that the contents are stored (preferably in
the stack) before changing the contents to point at your own interrupt
routine. You must also remember to restore the original contents at the
end of the routine prior to returning from interrupt.

An interrupt may be defined as a peripheral-initiated subroutine,
which implies that the program can have no knowledge of when the
interrupt occurs. Fortunately it is in the nature of a request and, should
the interrupt arrive at an inconvenient time, the request can be refused
by strategic placing of the interrupt mask. Thus if a certain area of the
main program is vulnerable and could not tolerate interruption (such
as a critical timing loop or an initialisation routine) the interrupt mask
SEI can be used at the beginning and cleared with CLI at the end.
Should an interrupt request arrive within this area, it must wait
passively until it reaches CLI.

An important thing to remember is that once an interrupt flag is set
it will 7emain so until the data register is read. Failure to note this can
sometimes be disastrous because once an interrupt is granted and the
service routine entered, the system may immediately interrupt itself ad
infinitum. The remedy of course is to insert a dummy read (say LDA
E000) even if it is not wanted just to clear the interrupt flag.

Interrupt polling

If CA2 is an input then it too can be used under interrupt status. What
happens if both of them arrive together? Furthermore, if an interrupt
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request is received how will the program know whether it was due to
CA1 or CA2 peripheral? If the interrupt service routine is the same for
both peripherals it doesn’t really matter but this is unlikely. In most
cases, the routine to service each peripheral would be different and
therefore be located at different addresses. Referring back to Fig. 7.1 it
will be seen that only one interrupt request line exists between the PIA
and the microprocessor.

Thus there is no hardware distinction between CAl and CA2
requests. The only way to ascertain from which input the request came
is to check whether CA1 flag is set (bit 7) or CA2 flag (bit 6). This can
be done by loading the control register and masking out the unwanted
bits 0-5 or more economically by using the BIT test. Once the interrupt
origin is established, the interrupt jump vector can be adjusted to point
at the appropriate service routine address.

Why use interrupt?

There are two ways in which peripherals can be handled. One is the
‘wait till ready’ technique as illustrated in Program 29. Provided the
entire system doesn’t mind being tied up during the wait interval there
is nothing gained by risking the perils of interrupt programming.
Unfortunately, there will often be a requirement for some background
program to run continuously, in which case using peripheral
interruption at a strategic moment may be the only solution. It is
obviously more economical and efficient to use interrupt procedures
but it will be appreciated from the previous treatment that considerable
experience is required before confidence in interrupt driven
peripherals is gained.

The VIA (6522)

It was stated at the beginning of this chapter that the 6522, more
commonly known as the VIA was a more complex version of the PIA.
This was in essence true, although the differences are more in the form
of additions or extra facilities rather than fundamental changes. Much
of the preceding treatment of the PIA can be transferred without
drastic modification to the VIA, particularly the programming of the
direction and data registers. Before going into details perhaps the
advantages or rather improvements over the PIA should be proudly
presented.

In the first case, the annoying penny-pinching trick of two registers
having to share the same address has been removed. Instead of using
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‘bit 2’ in a control register to resolve address ambiguity, the VIA uses
separate addresses for the data registers and the direction registers. Of
course you never get anything for nothing; the VIA occupies sixteen
addresses which indicates that there is a total of sixteen registers within
the chip and directly programmable. The labelling employed in the
VIA is different to the PIA. Fig. 7.9 shows the two halves, known as

Data bus

Address system 'R( |
1

The versatile m"v.hu adaptor (6522)

T T |

Fig. 7.9. VIA lines to the outside world

Port A and Port B. Each half contains eight data lines and two control
lines. CA1and CB1 can only be used as inputs while CA2 and CB2 can
be used as either inputs or outputs depending on certain bits in the
control register. As far as we have gone up to now, there is little
difference to the PIA. However, when we consider the total register
complement, it is excusable if a certain amount of gloom descends. In
view of this, it is conducive to mental stability if they are atacked in a
calm manner and only features of importance treated in any detail. We
shall leave the complete register complement until later — it is
frightening.

Continuing now with the major differences between the VIA and the
PIA: Apart from the independent addressing of direction and data
registers, perhaps the outstanding difference is the manner in which
the control registers are organised. You may remember that a separate
control register was used for each half of the PIA and the flag bits for the
control lines CA1 and CA2 (and CB1, CB2) were situated in the
control register. The VIA however departs from this scheme and uses
only one control register, called the PCR or Peripheral Control Register to
serve both halves. Since it is only the usual eight bits wide, only four
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This half of the register !
is programmed in the same
manner as shown but applies
to CB1 and CB2

Fig. 7.10. The peripheral control register (assuming CA2 and CB2 are inputs)

J Active edge of CAl
(0 = Active low
| 1= Active high

if it is ‘normal’ or is the

‘independent’ input mode.

Active edge of CA2 when it is
an input.
(0 = Active low ; 1 = Active high)

Determines CA2 direction.

(0 = Input ; 1 = Output)

When CA2 is an input, decides

(0 = normal ; 1 = independent)

bits are available for each half, bits 0-3 cater for Port A and bits 4-7 for
Port B. Fig. 7.10 shows the allocation of the various bits, in detail for
bits 0-3, although the left-hand half is identical (bit-position wise) for
Port B. You will notice there are no flag bits because there is just no
room for them. Instead, the VIA uses a separate register to handle the

flag bits. It is eight bits wide so there is room for eight flags.

It is called the Interrupt Flag Register (IFR) and caters not only for the
CA1, CA2, CB1 and CB2 flags but also for some powerful extra flags
which belong to counters and shift registers etc. Fig. 7.11 shows the bit
allocation although at this stage it would be better not to worry about

5 4 3

2 1 0

CHOEEOEE

Bit Set by Cleared by
0 Active edge of CA2 (when input) Readiog orwiiting fport
1 Atia of CAL Reading uvd\::.-tmq A port
2 Completion of 8 shifts Rnding o tins 10
: Reading or writing the
3 Active edge of CB2 (when input) B port data
Reading or writing the
4 Active edge of CB1 B port data
5 Timer 2 expired Reading T2 low—order counter
or writing T2 high—order counter
. y Redaing T1 low—order counter
6 Timer 1 expired or writing T1 high—order
counter latch
7 Any action which clears the

An active and enabled interrupt
sta

interrupt state

Fig. 7.11. The interrupt flag register (IFR)
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the extras. Let us work our way through a simple exercise to illustrate
the use of a control handshake by consulting Figs. 7.10 and 7.11.

Suppose we want to set a flag when the signal coming in on CA1 goes
from low to high. We must ensure that bit 0 in the peripheral control
register is first initialised with a ‘1’ because this causes the CA1 flag to
be set on an ‘active high’ signal. This will entail loading the pattern 01
hex into the accumulator first then storing it in the address at which the
peripheral control register is situated (these addresses are discussed
later). Subsequently, to find out whether or not a signal has arrived, we
must examine the contents of the interrupt flag register to see if bit 1 is
set. This, of course, can be achieved by the AND masking technique or
alternatively by progressive shifting until the bit position is within the
view of the ‘test’ instruction TST.

7 6 5 4 3

2 1 0
[E/CI T1 l T2 ICBlJ CBZI SR |CAl |CA2]

1 = Enable interrupt
0 = Disable interrupt

When bit 7 s 1 Any remaining bits at 1 are set to 1 . . .
When bit 7 is 0 Any remaining bits at 1 are set to 0 Flg' 7.12. The Interrupt enable register

(Any remaining bits at O have no effect) (IER)

Now for another discrepancy between the PIA and the VIA. When a
flag is set you may or may not require an interrupt request to be sent up
the IRQ line to the microprocessor. In the PIA, you will remember
that bits were allocated in the control register for this purpose. In the
VIA, again an entirely separate register is allocated called the Interrupt
Enable Register (IER ) and is shown in Fig. 7.12. If you fail to understand
this figure you should not feel humble — it frightened me to start with
and still does.

Let’s try an example with the following scenario.

Assume that when CBI1 flag is set we wish an interrupt to be enabled
which of course means sending a signal up the IRQ line. At the same

time, any existing interrupts are to be disabled. This is what we could
do:

LDA  §$6F

STA IER Place the pattern 01101111 in the interrupt enable
register to clear any existing bits except the CBI1 bit

LDA  $90

STA IER Place the pattern 10010000 in the IER to confirm that
CB1 is to interrupt.

The first operation is to disable unwanted interrupts which is why bit 7
was a 0. The next operation contains a 1 in bit 7 which confirms the
interrupt status of bit 4 (the CB1 position).
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It may be of interest to note that the two patterns are the one’s
complement of each other. You will of course appreciate that it was
possible for several interrupts (or rather flags) to be set at any one time
because peripherals may barge in, with no manners, at any time. It will
be up to you to clobber them until such time as you are ready to deal
with them.

Before tackling the counter and timer registers, another example,
consolidating previous work, may be useful. As in the previous
example, symbolic addresses will be used.

Example. Initialise (configurate) the VIA to behave as follows:
Port A to be all inputs. Port B to be all outputs. CA1 to be active high
input which is to enable the interrupt. CA2, CB1 and CB2 to be
active high inputs without interrupt.

To make head and tail of the following you should have Figs. 7.10, 7.11,

and 7.12 in mind.

LDA #$00

STA Port A Port A all inputs
LDA #$FF

STA Port B Port B all outputs
LDA  #$55

STA PCR Place 01010101 in peripheral control register (CAl,
CA2, CB1, CB2 active high inputs at ‘normal’ mode

LDA #8$7D

STA IER Place 01111101 in interrupt enable register to disable
all interrupts except CAl

LDA #8$82

STA IER Place 10000010 in interrupt enable register to confirm
interrupt enable on CAl

Some explanation is required at this point concerning the term
‘normal’ mode above. Referring to Fig. 7.10 again note that bit 1
decides this. It refers to the method you choose for resetting the CA2
flag when it is an input. Under ‘normal’ mode CA2 flag remains set
until it is reset by programming a 0 into the interrupt flag register. This
choice allows CA2 (or CB2) to be used as an isolated input control if
desired.

You may be wondering at this stage whether or not it is worth
carrying on or is there already sufficient complexity to keep your
personality subdued for ever. Remember that the previous work is
hard and demands much practice before it begins to sink in. The VIA
is very sophisticated — in fact I think it is a work of genius and the
designers deserve the Nobel Prize for chips. Unfortunately, works of
genius demand a genius to understand them easily. Now follows the rest
of the contraption — best of luck!
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Using CA2 and CB2 as outputs

Fig. 7.10 showed the meaning of each bit in the peripheral control
register on the assumption than bit 3 was a 0, thus making CA2 an
Input. (Similarly bit 7 at 0 would make CB2 an input.) If bit 3 however
is set to 1, the picture changes and we must now examine Fig. 7.13.

1— Active edge of CAl
identical but refers to port B

"I";ndagr?llya:::o%?in is that pulses 1f CA2 is a level, bit 1
can only be produced on CB2 when determines its level
port B is written (not when it is read) If CA2 is a pulse;

0 makes CA2 go low when reading
or writing port A. It remains low
untill CAl is activated

This half is programmed almost

1 makes CA2 go low for one
clock cycle when reading
or writing port A

1 makes CA2 a level
0 makes CA2 a pulse

1 makes CA2 an output
0 makes CA2 an input

Fig. 7.13. The peripheral control register (assuming CA2 and CB2 are outputs)

In the first place, bit 3 must be 1 (and bit 7 for the B side). You then
have a choice of the kind of output you want on CA2. This can either be
a simple ‘level’ output in which case it assumes the same state at bit 1.

Example.  Suppose you want CAZ2 to behave as a level then the right
hand half must be set with the pattern:
110X for CA2 to remain at 0
111X for CA2 to remain at 1
(The ‘X’ above is irrelevant to this issue because it belongs
to CA1 active level.)

Clearly, you must keep changing bit 1 every time you wish to change
the state of CA2.

Example.  Suppose you want to produce a negative-going pulse (high
to low and back again) on CA2 output.
The pattern in the right hand half must now be 101X.
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When subsequently you require such an output pulse, it is only
necessary to perform a dummy read or write on the A Port.

The auxiliary control register and the timer/counters

This is yet another register to worry about if (and only if) you want to
experiment with the timers. It is shown in Fig. 7.14 and you will note
that bit 7 and bit 6 are concerned with timer 1 and bits 2, 3 and 4 are
concerned with shift register functions. Timer 1 is very complicated
and usually tied up by the operating system of a personal computer so
we shall leave it alone. The shift register can be used for serial to
parallel conversion and vice versa but is not often used so we shall leave
this alone as well.

7 6 5 4 3 2 1 0
% T | Input latch on port A
S:r"‘t'::;/t""” 1 Shift register 0 = Disable
functions 1 = Enable
i Input latch on port B
Counter/timer 2 0 = Disable
0 = Generate time delay by decrementing 02 clock 1 = Enable

{called single shot)
1 = Counts pulse arriving on bit 6 of port B

Fig. 7.14. The auxiliary control register (ACR)

This leaves one timer for us to discuss, timer 1 which is handled by
bit 5 in the auxiliary control register. Before treating this, let’s get the
two right-hand bits out of the way. You will note from Fig. 7.14 that bit
0 and bit 1 refer to ‘input latches’ and are nothing whatsoever to do
with timer functions. Indeed, they belong to the data ports.

Input latches

The term ‘latch’ has been described earlier but in this sense we can
consider them as holding registers. When Port A or Port B are used as
outputs, the latching is inherent. That is to say, any data loaded in to
them remains there until it is subsequently changed by a fresh load
operation. When these ports are used as inputs, the incoming data is
normally fed raw to the input registers of the ports and can be
continually changing. If, however, it is required to sample the input
data at some definate time, the current input can be latched in by an
active signal on CA1 for Port A or CB1 for Port B.
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Either or both ports can be operated under latched conditions by
writing ‘1’s in bit 0 or bit 1 positions of the auxiliary control register.
Once input data has been latched, the data coming in is ignored until it
required to relatch.

Timer 2

Timer 2 is virtually a 16-bit counter and occupies two addresses, low-
byte and high-byte. Once a number is loaded into the counter (low
order byte first) it is automatically decremented down to 0 by either

(a) the clock pulses of the microcomputer (if single shot mode is used)
or
(b) incoming pulses from an external device on to pin 6 of Port B (this
will take precedence over normal Port B actions).

The time finishes when the count reaches zero, at which time the
timer 2 flag is set (bit 5 in the interrupt flag register (refer back to Fig.
7.11). Thus we can use these facilities for producing a simple time delay in
terms of (N) clock pulses or we can use them to count the number of
external events which have occurred.

Example.  Produce a time delay of 2560 (hex) clock pulses.
LDA #800
STA ACR  Ensure one shot mode is established in the
auxiliary control register (bit 5 = 0)

LDA #$60
STA T2L Store low-order counter
LDA #825

STA T2H Store high-byte counter (timing interval now
starts automatically)
LDA $2D Produce mask to check timer 2 flag (00100000)
BACK BIT IFR Is flag set in interrupt flag register
BEQ BACK Not yet
LDA T2L Reading the timer 2 low-byte resets the flag.

Example.  Cont external pulses arriving on pin 6 of Port B until 200
have arrived.

LDA #800

STA DRB Make Port B inputs (by clearing direction
register)

LDA  #820

STA ACR Ensure timer 2 is in pulse-counting mode (Bit
5 =1 in auxiliary control register)
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LDA #$00
STA T2L Store low-order counter
LDA #8$20
STA T2H Store high-order counter (count now ready)
LDA #8$20 Mask for timer 2 flag (00100000)
BACK BIT IFR Timer 2 flag set yet?
BEQ  BACK Not yet
LDA T2L Reading T2 low-order byte resets flag.

Apart from listing the address order for the individual registers of the
VIA, that about covers all we have space for.

_;&::Z: VIA vsgisuv
W Output register for port B

XXX1 Output register for port A

XXX2 Port B direction register

XXX3 Port A direction register

XXX4 Timer 1 counter low—order byte

XXXS5 Timer 1 counter high—order byte

XXX6 Timer 1 latch low—order byte

XXX7 Timer 1 latch high—order byte

XXX8 Timer 2 counter low—order byte

XXX9 Timer 2 counter high—order byte

XXXA Serial shift register

XXXB Auxiliary control register

XXXC Peripheral control register

XXXD Interrupt flag register

XXXE Interrupt enable register

XRXF Output register for port A (no handshaking)  Fig. 7.15. VIA address allocations

The addresses are shown in Fig. 7.15 and are always in this
sequence, i.e., occupying consecutive addresses. The absolute addresses of
course will depend on your manual which will (or should) give you a
memory map which includes the VIA residence block.

Summary

® Peripherals are slow and almost always asynchronous.

@ Peripherals must be both hardware and software interfaced to the
computer input/output chip.

® There are two popular input/output chips used with the 6502. They
are the PIA (6520) and the VIA (6522).

® The PIA has two halves. Each half supports eight data lines and two
handshake lines. All lines are TTL compatible.
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@® The VIA is similar to the PIA but contains extra shift and counter
facilities.

® The PIA is memory mapped and the assumed addresses for
example purposes have been E000 and E001.

@ The direction register contents determine which data lines are
outputs and which are inputs. Bits at 1 are outputs; bits at 0 are
inputs.

@ The data register contents are reflected in the data lines.

@ Data and direction registers share the same address E000.

® The control register is at address EQ01. Bit 2 in this register
determines which of the two registers is selected; if bit 2 is 0, the
direction register is addressed, if bit 2 is 1 the data register is
addressed.

® Under RESET conditions, all PIA registers are filled with ‘0’s.

® Data lines programmed to behave as inputs will not accept data
from the data register.

® CAl is always an input. CA2 can be an input or an output
depending on bit in the control register. If bit 5 is 1, CA2 is an
output.

® CA1l and CA2 (when an input) are ‘edge triggered’ inputs. On
detection of the correct edge a flag bit is set in the control register.
CALl flag is bit 7, CA2 flat is bit 6.

® Once a flag is set, it can only be reset by reading the data register.

@ The vunerable edge of CA1 depends on bit 1 in the control register.
If bit 1 is 0, the falling edge sets the flag. If 1, a rising edge sets the
flag. When CA2 is an input, bit 4 determines the vulnerable edge.

® When a flag is set, it may or may not send out an interrupt request
(IRQ) to the microprocessor. The decision depends on bit 0 for CA1
and bit 3 for CA2. The behaviour of CA2 as an output depends on
bits 3 and 4 in the control register.

@ Although the external interface wires of the VIA are identical to the
PIA, it is a more complex chip with many additional features.

@® There are 16 registers each occupying separate addresses on the
memory map.

@ The peripheral control register is eight bits wide and is functionally
in two identical halves which serve the A and B port control lines
respectively.

@ The interrupt flag register houses the four flags for CA1, CA2, CB1
and CB2 inputs and flags for the timers and the shift register. One of
the bits is dedicated to interrupt enable/disable.

® The interrupt enable register is used in conjunction with the seven
flag bits to determine which is to send an interrupt request.

@ The control line CA2 has a unique capability. It can be set in the
‘normal’ mode (flag reset automatically on a read or write of Port A)
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or the ‘independent’ mode (flag reset only by direct resetting by a
‘0’). The mode is established by bit 1 in the peripheral control
register.

@ There are two programmable timers, timer 1 and timer 2. Each of
these is 16 bits long and therefore occupy two addresses each (low
byte and high byte).

@ Timer 2 is usually available to the user and can be used as a time
delay or to count the number of external events. Depending on the
number set into the timer during initialisation, a predictable time
elapses before the number is counted down to zero. When this
happens, the appropriate flag is set.

@ The auxiliary control register is used to control timer 1, timer 2, a
shift register and the input latches on Port A and Port B.

@ The shift register can be used for parallel serial transformations.

® The 16 addresses allocated to the VIA must always be in numerical
sequence XXX0 to XXXF hex. Apart from the extra registers
mentioned, there are two direction registers and two data output
registers.

129




8
Static and dynamic graphics

Background hardware

Information can be presented on the screen face in two distinct ways.
Firstly in the form of normal printed text and secondly in the form of
‘pictures’. Machines vary in their capability of portraying pictures,
depending on such factors as memory, or rather the amount of
memory dedicated to the screen map, and the pixel size. A pixel may be
defined as the number of dots which, treated as a packet of
information, have a uniquely addressable location. Two kinds of
machines may be recognised:

Low resolution graphics
Those in which the pixel size is equal to the area required to portray
a textual character. Such a pixel would typically be an 8 x 8 matrix
of dots making 64 in all. Pictures, or to use the less ‘picturesque’
term graphics, would be crude and lacking in resolution, equivalent
to using a distemper brush as the drawing instrument. The pictures
which are used in the CEEFAX or ORACLE texts are typical of this
low-resolution graphical system. The effect is similar to children’s
building bricks.

High resolution graphics
Facilities exist for dissecting out smaller parts of the 8 x 8 character
matrix, sometimes even down to a single dot. Thus each dot or a
group of perhaps four or six dots can be individually addressed
which means that pictures can be drawn in finer detail — the artist’s
small camel hair brush rather than the distemper brush.

A machine designed for low resolution graphics only can never be
upgraded by software techniques either in high level or machine code
instructions. The resolution capability is hardware dictated during the
design stage.

Fig. 8.1 illustrates the kind of hardware used to provide normal text
characters. Most of the work is performed by a chip which is virtually a
ROM containing all the bits necessary to light up the VDU in the right
places for each individual character. The chip is known as the Character
Generator and may contain either 64 character or 128 character fonts
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VDU screen

ROM contents for
the character ‘T"
[ohaila]n

11
[o]ofo[1]0]0]010
0100 0 X
0 010 Spot deflection 7
0 0[0]0 circuits > v”/ /A
0{0]0 Deflection
0 0]0]0 coils
o[ofofofofo[o[0] ‘ ‘ ===
[} Signal Cathode
| processor 0N modulation
I
!
!
/
/
/
/
/
/
4
/ Parallel to serial em—
!
! 9999999
|
} Row outputs
\
\
N\
hi ~
* ROM character generator
Character Row
address address
Divide
Row counter by eight Clock

ASCII code for
desired character

Fig. 8.1. Outline of video character display system

(the term ‘font’ means the dot matrix pattern used to present the
character visually). The inset in Fig. 8.1 shows how the upper case ‘T’
is stored in the ROM and assumes that a logic 1 causes the screen to
light up and a logic 0 to appear black. Although it is not strictly
necessary for a machine code programmer to understand the
intricacies of Fig. 8.1 it will help in gaining an overall understanding.
The diagram is simplified of course and contains only sufficient detail
for a preliminary understanding. The ROM which stores the
characters has two addressing systems:

The character address

The ASCII code for the desired character is presented at these
inputs and selects the particular 8 x 8 matrix. For example, the
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ASCII code for upper case ‘T’ is 84 (decimal) or 54 (hex) so the
binary pattern present on the character address inputs would be
01010100.
The row address

A cathode ray tube must have the input information fed serially onto
a single electrode called the cathode. This means that the 84 bits
which form a given character must somehow be stretched out so that
only one dot at a time is presented to the cathode. This stretching
process is achieved in two steps, the first step is carried out by the row
address which appears on the three input wires. Three wires can give
any of the eight combinations from 000 to 111. Each combination
selects one row of eight which appears at the row output wires.

The second step of the stretching process is carried out by the parallel to
serial converter. This is a simple logic chip which accepts the eight bits
parallel input and on the receipt of clock pulses, feeds them out one at a
time. The output, which is normal TTL or CMOS logic, is now
processed in order to satisfy the special requirements of the tube
cathode. A logic 1 must be made to light up the tube which means that
it must be converted to a negative-going step by the signal processor.

After each row is converted, the row counter is incremented to bring
the next row into operation which is then converted to serial as before.
Thus to present a complete character requires conversion of all eight
rows before the 64 dots are completely disgorged into the tube cathode.
This is a lengthy process to describe and it may appear strange that
steady characters can be visible on the screen almost instantaneously.
We must realise however that electronic speeds more than make up for
the inherent complexity of such a drawn out process. The dots are
presented at a speed of less than a microsecond per dot and together
with the obliging characteristic of the human eye to retain images help
to present a nice illusion.

The details of the synchronisation process and the sordid details of
the tube scanning circuits must be left to your imagination although it
will be appreciated that a frightening amount of complexity must be
built in to the system. The tube is scanned into a television raster which
causes the spot to sweep from left to right to generate each line and from
top to bottom to complete each ‘frame’.

It should be mentioned that not all systems use an 8 x 8 matrix for
the character font. Some use only a 7 x5 while others use 9 x 8.
Clearly, the more dots used to portray a character, the more pleasing to
the eye is that character.

There is one other piece of electronic wizardry to explain regarding
the problem of keeping the screen steady whilst the computer is
carrying out other sundry tasks. This problem is solved by our old
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friend ‘interrupt’. The resident operating system arranges that every
1/50th of a second the current operation carried out is interrupted and
the screen is repainted. Thus there will be an interrupt service routine
which carries out this operation. The human eye cannot respond to
images which are changed more rapidly that about twentyfive times
per second so the current picture appears to be stationary.

Graphic keys

Some microcomputers have key legends which provide an alternative
character set allowing diagrams to be built up. The characters occupy
the same dot matrix space as ordinary text but instead of letters and
numbers they paint lines and squiggles. The effect is pleasing,
considering it is still low resolution, although a second best in
comparison with more ambitious systems using true high-resolution
graphics. Because of the extra character set, graphic keys often carry
the penalty of non-standardised keyboards which can be annoying for
those used to the standard Qwerty layout. Very often, the inclusion of
graphic keys carries a further penalty because the ASCII code for
screen graphics would encroach on the normal text character space.
This leads to an additional set (called the POKE code) for characters
originating from the screen memory. It is probable that graphic keys
will gradually be phased out in future home computers as high
resolution graphic capabilities may soon become the norm.

A=

Fig. 8.2. Quadrant graphics keys

There are certain novel but inefficient ways in which it is possible to
double the effective X and Y resolution on those machines which
include graphics keys as shown in Fig. 8.2. These keys divide the
normal full character matrix into quadrants and by careful
programming, which includes the AND and OR techniques, can
effectively pick out each separate quadrant. However, to call this trick
‘high-resolution graphics’ is debatable.

Graphics software

We shall discuss only the coding for machines which are restricted to
low resolution graphics, that is, those in which the pixel size is the text
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character size. (The coding for high-resolution graphics would be in
essence the same but would be very much more dependent on
individual machine characteristics.)

PEEK and POKE analogies

Those used to programming games or other projects involving moving
graphics in BASIC will be familiar with the keywords POKE and
PEEK and they will also be aware of the underlying hazards in their
use. POKE and PEEK operations have caused more machine crashes
than any other BASIC keyword. The reason, of course, is that these
two operations although part of high-level BASIC are functionally in a
grey area, halfway between high-level and machine code. Thus the
operation POKE 120, A will store the contents of the variable ‘A’ into
the machine address 120, the address of course taken to mean the
decimal address (BASIC seldom allows the interpretation of
hexadecimal to variables). POKEing obviously overrides the
protective cloak of the resident operating system and, in the example
quoted, would possibly (or rather probably since the address is in page
one) cause a machine crash. However, most POKEing operations
would in practice be carried out on the area of memory dedicated to the
screen, in which case the results of a miscalculation in address would be
irritating rather than catastrophic.

It is a good plan to approach machine code graphics by linking the
operations mentally with PEEK and POKE — approaching the
unknown from the known philosophy!

Thus POKE 120, 12 in BASIC will correspond to:

LDA 0C (12 decimal is 0C hex)
STA 78 (120 decimal is 78 hex)

It will be seen that POKE in BASIC requires two separate machine
code operations, one to place the pattern in the accumulator and
another to store it in the desired memory location.

PEEK on the other hand is more simple and can be considered in
machine code as a single operation.

Thus the operation:

A = PEEK (65) will correspond (crudely) with:
LDA 41 (Decimal 65 is 41 hex)

It is appreciated of course that the variable ‘A’ in BASIC is floating
point but this only effects the destination of the PEEKed result. The
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desination of the machine code example could have been the X or Y
register by using LDX or LDY respectively.

Background graphics

Graphics in general and computer games in particular require two
kinds of display, the stationary background and the moving (dynamic)
object or objects. The background picture poses no problems but can
be full of tedium both in high level language and machine code. It will
consist of a painstaking exercise of placing particular characters in
particular addresses so that the overall effect is one of a pictorial
representation of say a landscape.

The particular graphic used to build up the picture can be the
asterisk* or in the case of graphic key availability, any of the special
curves and squiggles. Fig. 8.3 shows a simple ‘background’ assumed to
be in the bottom half of the screen and composed entirely of *
characters.

R R I T TR TR SR P Ay
R R RN R R R R SRR R R R R R R R R R R R AR R AR AR
B T I T T T T S S ey
B R T A S S I N S S SR A S S AP S
B R I I R R R R R T
R I R R R R R T

Fig. 8.3. Background graphics example

Continuing our policy of relating machine code to the equivalent
BASIC, let us first program using PEEK codes to form such a
background. We assume that the machine allows 40 characters per line
so to build up the background of six lines would require a loop causing
6 x 40 = 240 asterisks to be POKED into the appropriate area within
the screen map.
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Assuming the ASCII code is used for the asterisks (42 decimal, 2A
hex) and the address of the top left * is (for simplicity) a nice round
figure of 8000 hex or 32768 decimal, the BASIC code could take this

form:

10000 S = 32768: REM START OF DESIRED BACKGROUND
10010 FOR N = 0to 239

10020 POKE S + N, 42

10030 NEXT N

10040 RETURN

The equivalent machine code version might take the following form:

Program 30
LDA #3$2A Hex code for “‘*”’ A9 2A
LDX #$00 Clear X A2 00
BACK STA 8000, X  Top of loop to store *‘*”’ 8D 00 80
INX E8
CPX #$F0 Test for 240 (decimal) revs E0 FO
BNE BACK DO F8
RTS 60

Since this is a subroutine it would be wise to consider a more universal
form in which the starting address of the screen and the ASCII code to
be implanted could be left undetermined; that is left to the
responsibility of the calling program. Thus the accumulator contents
could be assumed and indexed indirect addressing could be used in
place of the simple indexed form. This of course means that the calling
program can, by loading the appropriate screen address bytes in the
indirect address, choose which part of the screen is to receive the
background program.

The following is the alternative arrangement using symbolic
addresses:

Program 31

LDY #$00 Clear Y A0 00
BACK STA  (SCREEN),
Y ‘SCREEN’ must be address where
lower order byte is assumed.
SCREEN + 1 must contain high

order byte 91 xx xx
INY Cc8
CPY #$F0 End of loop test CO0 FO
BNE BACK DO F8
RTS 60
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Backgrounds built up by painting the same character on the screen are
easiest to program but are obviously restricted in artistic content.
Unfortunately, to widen the scope to include mixtures of any desired
character demands a tedious placing of the ASCII (or POKE code)in a
data list at the end of the program — or other safe memory block.

A convenient system where data lists are concerned is to ensure the
first item in the list is not a character code but is simply the number of
codes (data items) to follow. This number can then be used in the ‘end
of test’ comparison in the loop which activates the list.

Let us assume for purposes of illustration that such alist is resident at
machine hex addresses 1000 onwards and contains 240 (decimal)
items, the first item would then be FO hex. the data items would thus
reside in hex addresses 1001 to 10F1 inclusive. The program segment
would take the following form:

Program 32

LDY #8$00 Clear Y A0 00
BACK LDY 1001, Y Load data item from list B9 01 10

STA  (SCREEN),

Y Index indirect as before 91 xx xx
INY Cc8
CPY 1000 Compares Y with absolute address
contents of first item in list
BNE BACK DO F4
RTS 60

Note that the Y register is used both for sequencing through the data
list using absolute indexed addressing and again for the indexed
indirect mode for painting the characters onto the SCREEN area.

The superior speed of machine code over BASIC is well confirmed
in these examples. It is far better visually to see a background appear
virtually instantaneous rather than the slow character by character
sweep of most BASICs.

Dynamic graphics

How do we make an object ‘move’ across the background using
machine code? It is probable that most readers are already familiar
with the method used in BASIC and there is no revolutionary method
of implementing the effect using machine code. It might be profitable,
as in the last example, to approach the problem via BASIC in the first
instance in order to more easily follow the mchine code equivalent.
We shall consider the ‘object’ to be moved is a single character such
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as the * although the letter O provides a reasonable ball for game
simulation. The principle is as follows, assuming the ball is to progress
from left to right:

. Display the ball at screen address A.

. Hold it there for a reasonable time interval.
. Erase the ball with a ‘space’ or blank.

. Display the ball at screen address A + 1.

. Test for ball hitting boundary of screen.

. If test is NO, jump back to 1.

QY OV OO N =

The speed of travel will depend on the delay used in line 2 although in
machines which have a slow BASIC system, the inherent machine
delay may in itself be more than sufficient without employing a delay
subroutine. If the ball is to be moved from right to left, the A + 1 in line
4 is replaced by A—1.

The following code is designed to make the object move from left to
right. The delay to hold the ball is assumed to be supplied by a simple
delay subroutine which of course must be in situ before running.

Program 33
LDY #20 ASCII code for space A0 20
LDX #00 Clear X for character count A2

BACK LDA 1000 Code for ball assumed in this

address, (*) would do AD 00 10

STA SCREEN, X Display object 9D xx xx
JSR DELAY Hold displayed object 20 xx xx
TYA Acc now holds space code 98
STA  SCREEN, X Object rendered invisible 9D xx xx
INX E8
CPX #27 Test for end of line EO0 27
BNE BACK DO EE
RTS 60

The above assumes a line length of 40 characters occupying columns 0
to 39 decimal (00 to 27 hex). The screen address has again been left as a
symbolic operand.

Ifthe object of the dynamic display is to cause the object to impact on
a target or a boundary line, it is a simple matter to test the contents of
the next character position. If this is a code for ‘space’ the object can
continue its flight; if not, the boundary is reached and appropriate
action can follow depending on the game’s strategy.

High-resolution graphics
It would be an exercise of doubtful value to give examples of machine
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code which act upon high-resolution modes since the facilities are
specific to the resident machine operating system. Unfortunately the
high-res graphics area has grown up in piecemeal fashion. Because of
the compexity involved (and the tedium) it is probably the best idea to
use the many existing machine code subroutines which handle the
graphics. There is little point in re-inventing the wheel. Even if you are
a purist and normally scorn the work of others there is still an
opportunity to display originality in the manner in which you string
these subroutines together. All you need is the listing of the machine
code version of the BASIC interpreter and the operating system. There
are many enterprising writers who have dug out this information on
the various popular machines — not all manufacturers are
forthcoming in this area.

Mention should be made here of the superb high-resolution graphic
facilities on the BBC/ACORN machine which, because of the machine
code subroutines which abound, are particularly relevant to this
subject. ACORN have always been inclined towards rather low level
programming and love interspersing machine parameters with their
BASIC keywords. Although the BASIC is in general close to the
popular and well known MICROSOFT standard, some very powerful
extras are included, particularly in the field of high-resolution graphics
and colour. There is a particularly powerful keyword ‘VDU’ whichisa
general-purpose instruction to access the graphics systems. The
keyword is followed by a string of separate parameters which are
almost of pure machine code breed and therefore very fast in
execution.
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9
General guidelines

A book of this size can do little more than present the instruction code
of the 6502 and describe the function and possible application of each
separate code. It is doubtful whether a book of any size can literally
teach you how to program. Programming in a high level language like
BASIC is an intellectual exercise but programming in machine code is
more of an intellectual battle because in the early stages of acquiring the
art you get the distinct impression the machine is hostile. It is so easy to
become frustrated and return to the relatively friendly environment of
BASIC. The great thing is not to expect too much too early and above
all, don’t attempt to write ambitious programs until you have tried out
simple little routines for several weeks or even months. This chapter is
devoted to the pitfalls of machine code, a kind of ‘aid for frustrated
programmers’.

Correct mental attitude

Approach the machine with compassion not anger. Remember the
poor old 6502 (or indeed any other microprocessor) has extremely
limited mental powers and cannot understand the complex orders we
take for granted when conversing with the help of a BASIC interpreter.
Machine code instructions are atoms of action not molecules — we are
not even building with bricks as a starting point because the bricks
themselves must first be fashioned out of sand and clay. A pessimistic
but sound philosophy to adopt in the early stages is as follows:

Programs written in BASIC seldom work first time, machine
code programs never do.

With this attitude of mind you will never be frustrated and occasionally
(very occasionally) you will be pleasantly surprised.

Before sitting at the keyboard

It is a common habit with BASIC to compose a program at the
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keyboard in spite of the textbook advice against it. It is understandable
why this advice is ignored because it is so easy in BASIC to write a few
lines and then give it a quick whirl to see if it works. If it doesn’t, the
syntax or other errors are corrected and it is tried again. In fact the ease
of correction and modification is probably the main reason for the
popularity of BASIC or indeed any interpreted rather than compiled high-
level language. Programs can be built up piecemeal fashion by
repeated bouts of trial and error. Any attempt to adopt similar
techniques in machine code programming is doomed to failure.

Never compose machine code at the keyboard. Always work it out on
paper first in a tidy format and avoid scribbling and masses of
alterations. Always use a pencil (never ink) in the provisional draft
because errors are the rule not the exception.

Never trust to your memory for hex machine codes —even ifyou are
certain about the code look it up in Appendix 1. Just think of the havoc if
you wrote 9A instead of A9! If you have an assembler then looking up
the codes will not be a problem although another possible hazard will
be an incorrect operand symbol. Instead of the machine codes you will
always require that part of the user manual which deals with the
assembler format. Remember that the assembler symbolism used in
this book is not necessarily valid in your micro — hex codes are always
the same for the 6502 but assembly language is subject to makers’
variations.

Entering at the keyboard :

It is important to be methodical when entering machine code. BASIC
almost encourages slap-happy keyboard work because of the editing
facilities built-in to the language; it is so easy to correct errors after
running. Machine code monitors in most microcomputers are lacking
in friendliness and offer virtually no help. In all fairness to the system
designer of a typical home computer, machine code programming is
assumed to be unpopular with the majority of users and it is considered
uneconomical to devote too much ROM space to a monitor. Very few
makes include assemblers in the resident software although the
ACORN and the BBC micro are exceptional in this respect.

It is a good plan to SAVE your machine code program on tape before
youtry the first RUN because of the very real danger of a system crash.
It is ridiculously easy to crash the machine with a faulty machine code
program. Even a wrong address, a wrong code or entering the program
in a forbidden area of RAM can result in loss of keyboard control. No
damage of course but the program must be re-entered again from
scratch, an exercise not conducive to tranquillity. If you SAVE first
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and then RUN, at least you have a fall-back version to re-enter if the
machine does crash on the first (or thirteenth) attempt.

It is possible, if your machine provides the POKE function in
BASIC, to be independent of the monitor and POKE the machine
code program via a DATA/READ loop. This provides no additional
saveguard against a machine crash. In fact, your first experience of a
crash whilst still in BASIC was probably due to POKEing.

Curing bugs

Curing bugs is easy. Finding them can lead to anguish. In some cases,
it feels rather like trying to find a non-existent black cat in a dark room.
There are so many reasons for a program failure that it is difficult to
formulate a logical fault-finding procedure — in practice it is usually
the last thing you try! In order of probability, the following is as good a
sequence as any.

Incorrectly entered

It is easy to either mistype a line or to leave one out completely because
machine code is literally coded language and therefore mistakes are not
obvious. Examine every character entered against the paper copy
otherwise you will spend a fruitless hour or so trying to find a non-
existent bug.

Entered in the wrong block of RAM

As mentioned several times before, the space free for machine codes in
the memory map is restricted to certain address blocks. Even if the
program itself is absolutely correct, its presence in a reserved area can
kill the operating system or the BASIC interpreter. Check again that
your code is legitimately located. Even if the coding starts in a harmless
area, it may be of such a length that it extends across into forbidden
territory. Remember it is usually possible to annexe the BASIC area
by use of HIMEM (if you have it) or, by consulting the manual,
POKEing a new number in an address pointer.

Program overlapping the data

When a program is first scribbled out on paper it is seldom known with
any degree of precision how many bytes it will occupy, so locations
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earmarked for holding data which the program is to use are chosen
provisionally in the first instance. Very often, the program length is
underestimated and there is a danger that the program will eat up its
own data because it is within rather than at the end of the program. In
‘the case of assembly language, the danger is often minimised because a
common facility is automatic location of data at the end of the program
lines. There is of course no necessity for data bytes to be at the end of a
program; they could just as well be placed before the head.

Relative address error

Conditional branch instructions use relative addressing which means
that when in machine code without the help of an assembler, you have
to count the bytes backwards or forwards. Backward branches are
particularly error prone because of the need to convert to two’s
complement notation. Consider the havoc caused by being just one
count out when calculating a relative address. In most cases, this will
cause a branch to an operand instead of an Op Code which of course the
microprocessor will attempt to execute. It would be pure chance if the
result of an operand ‘code’ turned out to be benign.

Incorrect addressing mode

There are eight different LDAs, eight different ADCs and so on. It is
easy to make an error in an addressing mode. A particularly error
prone example is indirect indexed and indexed indirect mix up! Don’t
forget that only the X register is used in indexed indirect and only the Y
register in indirect indexed.

Two byte operands back to front

It is a pity from the human viewpoint that two byte operands must be
written back to front in 6502 code. This means that the normal human
tendency to enter the address 0600 hex as 0600 is, as far as the 6502 is
concerned ‘back to front’. We should not blame the 6502 for this quirk
because it is more efficient from the hardware viewpoint if it sees the
lower order byte first.

False assumptions

Never assume the carry bit is ‘0’ before an addition and never assume
it is ‘1’ before a subtraction. Likewise never assume there is plenty of
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room left in the stack. It is usually a simple matter to check the contents
of the stack pointer to see if it is dangerously near 01FF hex (the last
free location in the stack).

Incorrect branch code

If for example you have chosen BPL, are you certain you wish to
branch if positive? Don'’t forget that zero is a positive number and can
easily cause an unexpected result. Another common cause of error is
the interpretation of a double negative when using BNE. For example
if the ‘yes’ branch is followed, remember that this really means ‘yes, it
is not equal’ which is an unhappy piece of gobbledegook and easily
misinterpreted in a flowchart.

Errors of logic

As a last resort, if none of the previous suggestions help, the flowchart
(if there is one) should be re-examined. It is customary in some circles
to construct a rough outline flowchart first and then a more detailed

Overall
objective

Module 1 Module 2 Module 3
First level
Module 1 Module 1 Module 1 Module 3 Module 3
a b < a b
Second level
Module 1 Module 1 Module 1 Module 1
b,1 b.2 b3 b4
Third level

Fig. 9.1. Structure chart
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version. In fact the traditional flowchart layout is often abandoned in
favour of a ‘structure chart’ which portrays more effectively the
various levels of detail. Fig. 9.1 illustrates the idea behind such a chart.
Unlike a conventional flowchart, in which the flow is from top to
bottom, the structure chart is read horizontally from left to right. The
horizontal row beneath a given row is merely a more detailed version.
If an error of logic exists, such a structure allows a more organised
search to proceed.

However, it is not easy to give advice or suggest rules how to find
errors of logic. Very often, if the bugs resist repeated attempts, it may
often pay to cut your losses by scrapping the project and starting again
from a fresh angle. Don’t be ashamed if you have to resort to this
apparently degrading act — I never am.

Using existing subroutines

Lurking within the bowels of the resident BASIC interpreter will be
found many useful machine code subroutines. These will have been
written by experts and thoroughly debugged before they were allowed
to enter the ROM. By splicing them into your own code you will be
spared routine tasks irksome to write but nevertheless essential. For
example, a subroutine to get a character entered from the keyboard
and place it in the accumulator can be a recurring need.
To use these subroutines it is necessary to:

1. Know the starting address of the required routine. This information
may be in an appendix to the User’s Manual but very often it will
require a trip to the local computer shop for a book dealing with the
detailed anatomy of your model. Fortunately, there are many
enterprising writers who, with dogged determination, manage to
ferret out all those bits of information which should be in the manual
but are not.

2. Know the calling procedures. Subroutines assume that certain
parameters have been lodged in certain registers so it is essential
these are loaded prior to using JSR.

Using other people’s subroutines may be considered cheating if, that is,
you have an idealistic temperament. Even if you do not use them, it is
worth while examining the listings in order to stimulate ideas for later
use. Programming, particularly in machine code, has grown up bit by
bit over the years and all the common subroutines such as floating
point addition, multiplication and division are the result of a
communal mind and hence ‘public domain’ category.
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Appendix 1

6502 machine code summary

Alphabetical list of op code mnemonics

Action in ‘words’

Action in ‘operational symbolism’

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS
£1c
CLD
CLI
CLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
JMP
JSR
LDA
LDX
LDY
LSR
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Add with carry

Logical AND
Arithmetic shift left
Branch if carry clear
Branch if carry set
Branch if equal

Bit test

Branch if minus

Branch if not equal
Branch if plus

Break

Branch if overflow clear
Branch if overflow set
Clear carry

Clear decimal mode
Clear interrupt mask
Clear overflow

Compare with accumulator
Compare with X register
Compare with Y register
Decrement memory
Decrement X register
Decrement Y register
Logical EXCLUSIVE OR
Increment memory
Increment X register
Increment Y register
Jump unconditional
Jump to subroutine
Load Accumulator

Load X register

Load Y register

Logical shift right

A+M+C—A

AAM—A

gl

Branch if C=0

Branch if C =1

Branch if Z = 1

M7—>N; M6—V; A AM and update Z
Branch if N =1

Branch if Z =0

Branch if N =0

PC=PC +1

Branch if V=0

Branch if V =1

0—C

0—D

01

0V

A—M and update N, Z and C
X —M and update N, Z and C
Y —M and update N, Z and C
M—1—M

X—1—X

Y—1—*Y

AxM—A

M+ 1M

X+1—7X

Y +12Y

Jump to location M

Jump to subroutine at location M
M—A

M—>X

M—Y

0 | j-C



Action in ‘words’

NOP
ORA
PHA
PHP
PLA
PLP

ROL

ROR

RTI
RTS
SBC
SEC
SED
SEI
STA
STX
STY
TAX
TAY
TSX
TXA
TXS
TYA

No operation
Logical OR

Push Acc on stack
Push PSR on stack
Pull Acc from stack
Pull PSR from stack

Rotate left

Rotate right

Return from interrupt
Return from subroutine
Subtract with carry

Set carry

Set decimal mode

Set interrupt inhibit

Store accumulator

Store X register

Store Y register

Transfer Accum to X register
Transfer Accum to Y register
Transfer PSR to X register
Transfer X register to Accum
Transfer X register to PSR
Transfer Y register to Accum

Increment Program Counter
AvM—A

A—S; SP—1—*SP

PSR—S; SP—1—>SP

SP + 1—SP; S—A

SP + 1=SP; S—PSR

L— -
L—1

Return to next location from interrupt
Return to next location from call
A—M-—-C—A

1—-C

1-D

1-I

A—~M

XM

Y—-M

A—>X

A=Y

PSR—X

X—=A

X—PSR

Y—A

Operational symbolism abbreviations

A
X
bé

PSR ...

SP
S

<4{><opN—Z

. Accumulator

. Index register X

. Index register Y

Program status register

. Stack pointer

. Location corresponding to
SP

. N bit in PSR

. I bit in PSR

.. Zbit in PSR

. Dhitin PSR

: . C bitin PSR
. V bit in PSR

. . Logical AND
. . Logical Exclusive OR
. Logical OR

The arrow —>, means ‘where the result
is placed’

M means memory or, in the case of
immediate mode, a number.
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Operations between memory and accumulator

Z PGE, INDX | INDR| PSR
IMM | ZPGE | ABS X |ABS, X|ABS, Y| INDR | INDX| bits

A9 A5 | AD | B5 BD B9 Al B1
LDA NZ

No

code! [ 85 8D 95 9D 99 81 91
STA /

ADC NZCV

SBC NZCV

CMP NZC

AND Nz

ORA NZ

EOR NZ

<—1——Hex machine code

Number of bytes in operand— r«—— Execution time in clock cycles
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Register to register transfers and counting

Implied

AA
TAX

8A
TXA

9A
TXS

BA
TSX

A8
TAY

1. No operands
required

2. All take two
clock cycles

3. All update
N and Z bits
except TXS

Single bit operations on processor status register

18
CLC

38
SEC

D8
CLD

F8
SED

1. No operands
required

2. All take two
clock cycles

3. Action on PSR
bits as title
indicates

Implied
98
TYA
E8
INX
CA
DEX
Cs8
INY
88
DEY
B8
CLV
58
CLI
78
SEI
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Operations between memory and index registers

Z PGE, Z PGE, PSR
Y

Imm | ZPGE | ABS ABS, Y X ABS, X | buts

A2 Ab AE B6 BE |No code {No code
LDX NZ

T

)l R ) Lo o ML B e O s B S S '
!

No code| 86 8E 96 [No code |No code |No code
STX /

A0 A4 AC |Nocode[Nocode| B4 BC

LDY NZ
y G e 0 Wl e 0 e [l M T o e
|
|
No code | 84 8C [Nocode{Nocode| 94 [No code!
STY l |
i | 1[3]2] ¢ 1] 4
EO | E4 EC |No code|No code |No code | No code
CPX NZC
1 (21|32 4
Co C4 CC |No code|No code [ No code | No code
CPY NZC
L2 1324

<—— Hex machine code

Number of bytes in operand —t+ | <4—Execution time in clock cycles
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Conditional branches

Relative
DO ;
1. No action on PSR
BNE bits
2. Forward branches
FO have positive
BEQ operands. Backward
branches have
10 negative operands
BPL 3. All have single byte
operands
90 4. All take 2 clock
BCC cycles
Unconditional jumps
ABS Indirect
4C 6C
JMP
2 3 2 5
20 No code
JSR
2 6

No action on PSR bits

Break and returns

Relative

30
BMI

50
BVC

70
BVS

BO
BCS

Implied
BRI 00 <— Sets B bit in PSR
Takes 7 clock cycles
60
RTS T
No action on PSR bits
4’0 //
RTI
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Incrementing, decrementing memory and bit test

Z PGE,
Z PGE ABS X ABS, X
E6 EE Fé6 FE
INC
1158126116217
Cé6 CE D6 DE
DEC
1|5 2164116 [2]7
24 2C  |No code [No code
BIT
11312 |4

Stack operations

Implied
48
PHA
0 3
68
PLA
0 4
08
PHP
0 3
28
PLP
0 4

No action on PSR bits

Updates N and Z bits

No action on PSR bits

No action on PSR bits
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Appendix 2

Useful conversion tables

Powers of 2

20 =1 2% =16 28 =256 212 = 4096
2! =2 25 =32 29 =512 213 = 8192
22 =4 26 =64 210 = 1024 214 = 16024
23 =8 27 =128 2! = 2048 215 = 32048

Hex/decimal/ASCII conversion

ASCII character| 0 1 2. ]34 800 eu) Tl 89 space
Hex 30 | 31132 ]|33[34 35| 36| 37[38] 39 20
Decimal 48 | 49 [ 50 [ 51 | 52 [ 53 | 54 | 55 | 56 | 57 32
ASCllIcharacter{ A (B | C [ D | E | F| G|H! I ]| JIK|L|M
Hex 41 [ 42143 [ 44|45 | 46| 47 | 48| 49| 4A[ 4B | 4C| 4D
Decimal 65 |66 | 67 | 68 | 69 [ 70 [ 71 | 72 | 73| 74 [ 75| 76| 77
ASClIcharacter N |O | P [Q | R | S| T|U|VIW|X]|Y]| Z
Hex 4E [4F [ 50 [ 51 [ 52 [ 53 [ 54 | 55 | 56 | 57 | 58 | 59| 5A
Decimal 78 179|180 |81 (8283|8485 |8 87]|88|89| 90

Table of odds and ends

4 bits = 1 nibble
2 nibbles = 1 byte

2 bytes = an absolute address

1 page = 256 bytes
4 pages = 1K

64K = 256 pages

Page 0 = 0000 to O0FF hex

7F hex = + 127 dec = largest positive number in two’s complement
80 hex = —128 dec = largest negative number in two’s

complement

FF hex = 225 dec = largest number in unsigned binary
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Index

Absolute addressing, 31
Accumulator, 18

Address bus, 6

Address code, 6

Address, effective, 32
Address, relative, 32
Addressing modes, 30
Addressing, absolute, 31
Addressing, implied, 36
Addressing, indexed, 32, 72
Addressing, indirect, 33, 77
Addressing, relative, 37
ALU, 18

Analogue/digital conversion, 110
Arithmetic operations, 49
ASCII, 96, 154

Assembler mnemonics, 29
Assembler, 28

Background graphics, 135
Base address, 32

BCD addition, 51

BCD, 12

Binary, 8

Bit test, 49

Break, 21

Byte, 7

Carry and overflow, 82
Character address, 131
Character generators, 130
Clock, 7

Coded records, 92
Comparisons, 45

Control register, 103
Control unit, 24

Curing bugs, 142

Data bus, 7
Decoder, 6
Delays, 76

Direction register, 103
Division, 58
Double-byte addition, 88
Dynamic graphics, 137

Effective address, 32
EXCLUSIVE—OR, 53
Execute phase, 24

Fetch phase, 24
Flag bit, 20
Flowcharts, 45
Frame, 132

Handshake lines, 105
Hexadecimal code, 13
High order byte, 9

High res graphics, 130

Implicit addressing, 36

Implied addressing, 36
INCLUSIVE—OR, 53

Indexed addressing, 32, 72
Indexed indirect addressing, 33, 35
Indirect addressing, 33, 77
Indirect indexed addressing, 33, 36, 78
Input/output, 100

Instruction classification, 41
Instruction register, 24
Instructions, 27

Interface, 7

Interfacing chips, 101

Interrupt polling, 118

Interrupt servicing, 119

Interrupt, 21

Jump vectors, 23
Jumps, 47
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Latches, 125

LIFO, 19, 59

Logic gates, 53

Logical complement, 12
Logical operations, 53
Loops, 32

Low order byte, 9

Low resolution graphics, 130
LSB, 9

Masking, 54
Memory mapping, 8
Microprocessor, 4
Microprogram, 25
MSB, 9

Multiple precision, 85
Multiplication, 58

Nibble, 9
No-operation, 63
Number base, 14

Operand, 27
Operation code, 27
Overflow test, 83

Page boundaries, 79
Page, 14

PIA, 103

Post-indexed indirect, 35
Pre-indexed indirect, 35
Program counter, 23

RAM, 5

Reading, 5

Register, 17

Relative address, 32
Relative addressing, 37
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Reset action, 21
ROM, 5
Row address, 132

Shift and rotate, 56
Signed binary, 10
Simple indirect addressing, 33
Stack operations, 59
Stack pointer, 19, 61
Status register, 20
String, 9

Structure chart, 144
Subroutine, 48, 76, 98
Symbolic label, 38
Symbolic operands, 28

Test panel, 105
Transfers, 42

Two state, 4

Two’s complement, 10

ULR, 4
Unsigned binary, 9
User-manuals, 66

VIA, 119
Volatility 6

Word length, 7
Writing, 5

X register, 19

Y register, 19

Zero page addressing, 31
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6502 Machine Code for Beginners

BASIC is a simple language to learn and can quickly be put
into practice even by an inexperienced programmer, whether
enthusiast or student. But it has its drawbacks — it takes up a
lot of memory-space and is slow to run.

A more efficient way of programming is to use machine code.
At the expense of a little complexity in program writing, the
rewards of machine code programming can soon be reaped.

A. P. Stephenson, author of several books and a regular
contributor to the microcomputer press, has produced here a
very readable and lively introduction to 6502 Machine Code
for Beginners.

Specially written for owners of 6502 based microcomputers,
BBC Micro, Acorn Atom, Pet, Apple, etc.

ISBNO 408 013117

Newnes Microcomputer Books




