N
%,
7 7
'), & Microelectronics Education Programme
NN\
I\Q
\
MEP '3-CHIP PLUS' MICROPROCESSOR CONTROL SYSTEM

I'he '3-Chip' control system is designed for those who want to use a micro-
processor system as a controller in CDT or science classes, or for demon-

strating the principles of 'processing' with external gadgetry winking and

whirring as a pupil motivator.

The system 1s designed to be as cheap as possible so that a class set of
the controller board, which is the heart of the system, is expected to be
affordable by schools prepared to devote an adequate budget to technology
cducation. The controller board carries a microprocessor (6502), some
'scratchpad' RAM, a program memory and an input-output/timer chip (6522).
These are the three fundamental ingredients of a microprocessor controller.
'Scratchpad' RAM 1s provided, which, together with a small number of
other components, constitutes the "plus" in the title. '

In order to make 'control' easy for a wide ability range, a variety of plug-
on 'gadgets' are available for which all the volts and amps of interfacing
arc taken care of. One small board carries 8 switches and another 8 LEDs.
A separate board carrying 4 changeover relays is available for switching
extevnal power to motors, heaters, lamps or whatever. Other separate
bourds are a tone generator (for playing tunes), a 4 digit display (for
writing messages), a railway speed control board (forward/reverse + 3
speeds for a 12V loco), and a converter to enable the relay board to be
used to control railway point motors. Additional input units include an
analogue-digital converter, and a temperature transducer (which allow
voltages and temperatures to be input to the system) and a sensor adaptor
which allows four phototransistors (perhaps on the model railway track) to

be connected as inputs.

The system was originally developed with MEP financial support by Peter
Nicholls at Belper High School. Introducing machine code programming to
young people of a wide range of ability has been well tried here (and
other places) over a number of years (work has been going on since 1979) .
The key is supportive course materials which lead students through system
usage into programming with a limited instruction set introduced at a care-
fully controlled rate. If this is done, all but the weakest (i.e. those
unlikely to be graded in a CSE exam) can gain an 'awareness' of micro-
processor and control by operating the system, plugging units together,
keying in code or using pre-programmed EPROMs. 'Average' students can
usually cope with being asked to make a small change to a few bytes of
code in order to modify the behaviour of the system in some small way;
and as one would expect, only 'able' students can cope with open-ended
design situations where the specification of the control system has to be
drawn up and then the program written to do the job. In other words,
high level language is not the only route to an experience of computer
control for school students. The cost advantage of machine-code control-
lers 1s high, as is their portability and low power consumption. Perhaps
this 1s the only cost effective route to hands-on control work for whole

classes at a time.

Some facility must exist within the school for 'putting' the program into a
ROM of some sort. Part of the 3-CHIP system is a non-volatile-RAM loader
which enables program code to be keyed into the program chip. This loader
will also blow EPROMs. (If schools have other EPROM blowing facilities
there 1s nothing to stop these being used).

A final facility of the system is its ability to "mimic" the BBC computer.
The address map of the controller is the same as that of the BBC micro,
so that assembler on the Beeb can be used to develop code, the computer
can test-run it, and when finished it can be transferred to EPROM or
non-volatile RAM. This facility may be attractive to whizz-kids who find
that hand-assembly of machine-code slows up their creativity, and to
teachers who have dabbled with control in BASIC (perhaps on a Beeb),
but who as yet lack the confidence to dive into the machine-code pool.
To mix the metaphors horribly, the assembler route offers a stepping
stone into machine-code using equipment one largely has already.

The controller, RAM loader, and the range of peripheral boards described
above should be available from Messrs. UNILAB LTD. at the beginning of
1985. UNILAB also manufacture the MEP 'MFA' equipment: all the peri-
pherals for 3-CHIP are designed to be both electrically and mechanically
compatible with MFA boards and the MFA computer interface. Further
input and output boards have been prototyped and are likely to appear
later, as is a 3-CHIP board designed around a Z-80 microprocessor - this
is a dynamic range that will grow to both meet and stimulate need. It is
intended that a distance-learning pack for teachers be published by the
end of 1985, to coincide with general hardware availability. Workcards for
use as an extension module to 'MFA' will be published in due course. Work
is also underway on the writing of courseware for use in CDT courses
including those based on modular technology exams and the expected new
ABE microprocessor option to Control Technology.

Further details after January 1985 available from:

Unilab Limited, Clarendon Road, Blackburn, BB1l 9TA
Telephone: (0254) 57643/4

T1-2

T3

T4

T10

T11

T12

T13

T14

CONTENTS

Introduction to the Controller and A-ROM
Loader.

Machine Code and Hexadecimal Numbers.
Contact with the real world - ports.

Control of Music Module, display, railway,
buggy with new machine code instructions
and ideas introduced progressively.

Inputting data to the Controller.

Feedback of position from the railway
Analogue inputs (voltage and temperature)
Using ROM.

Processing of data, and control of temperature
as an example of an analogue quantity.

ERRATA NOTE

Page
2 Last para. line 10:

Please read 1984 NOT 1985

Last para. last line
Please read AEB NOT ABE

19 For "memory module"”
please read "music module"

33 Under Assembler mnemonics
please read LDA HHLL

13

19

53

54

61

64

69

y.Chip Plus Microcontroller System - Teaching Philosophy

Th.s INSET package on microprocessor control is very sim?lar to a
.en Sth year teaching module written for a CSE (all-ability)
electronics course. The pace of the worksheets is somewhat faster
+nan all but grade 1 students could cope with, and certainly the
<ories of sheets would take longer than the 15 hours of CSE course
time originally allocated to microprocessor work, but with these
qualifications these concepts could be learnt in the classroom
without modification.

The medium is the message This phrase of McLuhan's may be
misappropriated again to indicate a profound truth about
cducational technology. This is that our students are likely to
"iearn' a great deal more from the circumstances of their learning
situation than from the actual words and detailed subject content
that we as teachers seek to impart. 'Learning' - particularly in
the ultra-rapidly changing sphere of electronics - must be about
attitudes, skills, concepts and understanding. The hardware for
this package has been developed with this overall educational aim
in mind, rather than to satisfy the narrow objective of teaching
students to write control software in machine-code.

The 'microprocessor revolution' will have various facets, one major
area of micro use is control. Literally billions of
mic:oprocessors will be (are already?) in use - a minority in what
would conventionally be described as a computer. Control
applications in which the microprocessor and its accompanying
program ('software') are dedicated to a particular task outnumber
‘computing' applications. These control applications range from
those in domestic equipment (washing machines, food mixers, central
heating boilers, sewing machines) through control and
monitoring systems in cars to industrial and manufacturing uses
(including robots and CNC machine tools). The '3-chip board' which
is the heart of this teaching package is in front of the student
all the time and is used to perform a wide variety of tasks in
conjunction with the range of add-on modules. 1In this way the
simplicity, versatility, power and cheapness of the dedicated
microcontroller which lies behind the coming 'second industrial
revolution' is demonstrated without ever being explicitly stated.

Eoncegtual development

The worksheets introduce new concepts at a controlled rate and
dgscriptions are full enough for the material to be used as a
dlstance—learning package. This may mean that students who have
some familiarity with microelectronics and its associated jargon
#ill prefer to skim certain sections. No apology is made for the
EJC§ ;hat some sheets are 'cookery'. The purpose is to give
tamiliarity in handling the equipment and a glimpse of what the
S¥stem can do before beginning to unravel the machine code.
-Urious students are advised to proceed through the sheets trusting
that all programming ideas that are introduced apparently
unexplained will be unravelled in the following sheets.

€

An overview of the written material is:

T1-2 Introduction to the Controller and A-ROM Loader

T3 Machine code and hexadecimal numbers

T4 Contact with the real world - ports

T5-T9 Control of Music Module, display, railway, buggy with ne
machine code instructions and ideas introduced
progressively

T10 Inputting data to the Controller

Ti1 Feedback of position from the railway

T12 Analogue inputs {¥oltage and temperature)

T13 Using RAM

Tl4 Processing of data, and control of temperature as an

example of an analogue quantity.

Inevitably there are concepts that are not dealt with. The full
range of facilities on the A-ROM Loader (which can also burn
programs semi-permanently into EPROMs) aré described in literature
supplied with the hardware. 1If you have the burner board, try
transferring a program to an EPROM or EEPROM.

The technique of drawing a flowchart is covered in the next
collection of ideas ('Project Possibilites'). The concept of
interrupt handling is left out of this material, as is use of the
6522 timers and other facilities, and software techniques like
using look-up tables. The increasingly common mechanical device
the stepper motor is squeezed into the next text. As with any
subject, the tidy desire for 'completeness' needs to be kept in
check. This collection of thoughts aims to provide the newcomer t
control and 3-Chip Plus with a range of methods for implementing
basic control functions. The overview of the material reveals tha
the fundamental concepts of digital input and output, with
conversion to and from an analogue voltage are covered as are
sequenced control and control with feedback. The essential pictur
is completed by a demonstration that microprocessors can process
data, change its format and make decisions.

The problem-solving thread in these sheets is sometimes less
perceptible than I would wish. The optimum structure of

show a new idea in operation
describe and explain it

give further example(ss)

set an applications problem
provide answers on follow-up sheet

I EEE

has had to be modified somewhat in places simply to get through,
with a finite amount of text, in a distance-learning environment.
There is quite a lot of content to be imparted before a teacher ca
feel on top of microprocessor control. With schoo! students I
would write terser learning sheets with frequent simple problems tc
solve, and use a good deal of verbal explanation both in groups anc
one-to-one as the need arose.

Peter Nicholls
December 1984

T1 Using the '3-Chip Plus' controller board

Fetch a 3-Chip Plus microcontroller. This pogrd is the heart of
everything that you will be doing. It is similar to a great many
of the simpler microprocessor control systems that are already in
use in industry, and in many bits of domestic equipment already on
sale. The ingredients of any simple microsystem are:

Read
only
memory

V
Micro- Master
" clock

rocessor i
P s oscillator

r 3

Input-output
device

Yy

a8
v

Random
access
memory

Power
supply

Fig. 1
On our boards the Input-Output chip is the large 6522 at the end.
The microprocessor is the 6502 in the middle. The program which
directs the microprocessor is stored in a Read Only Memory which
clips into the black socket. The function of these components will

become clearer as you go on. Meanwhile let's get a program
running.

* * * * * * * *

* Fetch a 5V power supply
an 8-LED Unit
a Music Module
an 8-Switch Unit
a demonstration program (read only) memory chip
labelled 'DEMO'

Any microprocessor system must have a program stored in a memory
chip. The program is as essential as the processor. Put another
way, the 3-Chip Plus microcontro!ller you have in front of you is
dead until you plug into it a memory chip containing a program.

5 Plug the program memory chip into the black socket:

lift the lever up

insert the chip - white mark towards the white mark on
the socket

press the lever down

* Connect the 8-LED Unit to the right hand connector (MPort
A") and the 8-Switch Unit to the left hand connector ("Port
BH)

* The memory chip has eight different programs stored in it.
They are all very short and control whatever is connected to
Port A of the 3-Chip Plus board. The program is selected by
the switch settings on the 8-Switch Unit.

* Put all switches except the right hand one down on the
8-Switch Unit (So switch 0 only should be up). Connect the
power supply to the board - the LEDs should flash on and off
in blocks of four. 1If nothing seems to happen, press the
RESET button on the board; if this does not produce results,
disconnect the power and read this sheet from the beginning,
checking your connections carefully (especially that the
memory chip is inserted correctly and clamped).

* Switch Switch 0 back down and put up Switch 1. Press the
RESET button and watch the LEDs - you should now have a
'chaser' display.

* Only Switch 2 up {put Switch | down again) will 'chase' the
LEDs in the opposite direction. Only Switch 3 up will give
you traffic lights - always remember to press RESET after
selecting a new program.

* Now plug the Music Module into the connector on the right of
the 8-LED Unit. Switches 4, 5 and 6 will give three
different tunes (as usual press RESET after selecting the
program). You can also watch the LEDs showing which control
lines are on and which off, and so how different notes are
selected.

* Finally, put Switch 7 up and all the rest down. Press
RESET. The Switches on the 8-Switch Unit can now be used to
select which note is being played.

* * * * * * * *

This sheet is to guide you to the point of familiarity with the
Controller Board. It should be clear that the Board's behaviour
can be changed easily by changing the program. It should be clear
that the program is stored in an integrated circuit ("chip') which
is plugged into the black socket. It should also be clear that the
Board can control various external gadgets - you used an 8-LED Unit
and Music Module for this sheet's work.

On sheet T2 the equipment for 'building' a program will be met -
DEMO memory chips won't exist for everything you want to do!

Next sheet - T2

T2 Loading the Program into a Memory

The work on the last sheet was meant to show you a simple
microcontroller system in operation. You put a memory chip into
the socket on the microcontroller board and there were 8 programs
available to you for flashing LEDs and playing tunes. The proper
name for the memory chip you used is Erasible
Programmable
Read
Only
Memory and these are very
widely used in
microsystems for
- storing the program
which controls the
microprocessor

A Read Only Memory is one which you can only 'read' from (you can't
write things into it). Programmable means that you can put your
program into it if you have the right equipment. And it can be
erased by shining ultra-violet light through the window at the top.

EPROM's are very useful for building microsystems. 1f you are
trying to design a program you can 'burn' your first try at the
program into a 'clean' EPROM using special equipment, then connect
the EPROM to the microsystem to test it. The trouble is that if
your first program doesn't work, you have to erase the whole EPROM
wwhich takes about half an hour) and then reprogram it with your
improved program. This is a slow business - especially since you
may only want to change one instruction in the program.

For developing programs there are better ways. Fetch an
A-ROM loader and an A-ROM - the 'better way' that we shall use.
A-ROM stands for Alterable

Read

Only

Memory - it's a special device into which you can
load your program, and alter it if you need to. (By the way, 'A-
ROM' is a bit of jargon invented for these learning sheets; it's

not common currency.)

* Clamp the A-ROM into the loader (the right way round) and
switch on.

* The display should show something like:

“b

T 00
NN N]

This diSPIaY will l-? the address of the instruction
show a "prompt'’

- the memory 'cell! code or data

character which at present being stored in that

tells you what the displayed address. Your

loader is doing. A-ROM could have
anything there - it
won't necessarily
be A9

(A note in brackets here. You may be worried by 'numbers' like

'A'l Don't worry. A to F are codes with a special meaning which
will be explained later. For the moment accept that there are
sixteen 'characters' which can be used: 0 - 9 and A - F.)

* When the prompt is showing 'a' the keypad can be used to enter
an address. Press 245 and see what is stored at that
address. What is in 6CE? The A-ROM has 2,048 stores in it.
They have numbered addresses from 000 to 7FF.

To put something into a store, first press the key d on the bottom
row - the prompt in the display will change to d. The keypad will

now change the right hand pair of display digits, and these numbers
will be stored into the A-ROM

* Press the a key, then 123 .
Press the d key, then 45
This will store the number 45 in the store whose address is
123,

* Press the +1 key. The display will move on to address 12&4.
Press keys 67 and the number 67 will be entered into the
store at that address.

Press +1 again and enter 89 (into store 125)

* Check that the codes in 123 and 124 have been held - you can
do this by pressing the -1 button which will take you back
first to 124 and then to 123.

* Switch off the power, and then switch on again. Press keys a,
I, 2, 3, and check on the display that the code 45 is still
stored there. Press +1 and check the contents of 124 and 125.

You should find that disconnecting the power did not mess up
the memory.

* Make a note of what the control keys a, d, +! and -l do. Note
that these worksheets will use a to mean the 'address' command
key and A to mean the number digit key.

©o o o 0 0 0 O O 0 O o o o
So much for how to operate the kit. Now use it to load a program:

Press a, then 000, then d, A9
(this will put the code A9 in the memory cell whose address is
000).

Press +1 then FF (which will be put into location 001)
Continue to press +1 to get the next store, and enter the program,
instruction by instruction, as follows:

002 &D
003 63
004 FE
005 A9
006 FO
007 8D
008 61
009 FE

00A A0

0oB OA
poC 20
ooD 80
nog 27
00F A9
910 OF
o1l 8D
012 61
013 FE
ots A0
o1s 0A
nle 20
017 80
018 27
019 4C)
01A 05
olB 20

Now press a and 780, then d to allow you to enter the code:

780 A9
781 00
782 8D
783 6B
784 FE
785 8D
786 6E
787 FE
788 A9
789 43
78A 8D
78B 64
78C FE
78D A9
78E C3
78F 8D
790 65
791 FE
792 AD
793 6D
794 FE
795 FO
796 FB
797 88
798 DO
799 F3
79A 60

Finally load 7FC 00 (press a, 7FC, d, 00
7FD 20 press +1, 20)

Now you know what machine code is! Soon all will be revealed; the

purpose of this sheet is merely to demonstrate the equipment and to
give you a feel for memory cells, their addresses, and that you can
store codes in them.

* Remove the A-ROM from the loader and clamp it into the 3-Chip
Plus board. Plug the 8-LED unit into Port A and switch on.
The LEDs should start flashing in blocks of four - try
pressing RESET if they don't.

If this works you have successfully completed the exercise of
loading a program and running it. If it won't work you have
probably miskeyed somewhere. In which case, put the A-ROM
back into the loader, press a 000, then step the memory using
the +1 key (as far as location 01B) checking the contents of
each cell as you go. Repeat for 780 to 79A (press a 780 to
get to the right block of memory, then step through with the
+1 key), and lastly check 7FC and 7FD. There should be no
difficulty in getting the program to run once it is correctly
entered into the A-ROM.

Next Sheet - T3

T3 Now for the Machine Code

is learning material may have heard the jargon
‘§::%w?:ir;ogé‘t?éscomputergconversation. It is often thought to be
‘Qc most esoteric and difficult aspect of computer progranming -
gt-,-tly for the buffs. Yet for control applications it is usually
v;rv straightforward, as this sheet will attempt to show.

Sheet T2 had a string of machine code instructions which you haq to
enter into the program memory (the A-ROM). Step | towards getting
into 1t is to rewrite it in groups of codes - like this:

000 A9 FF .
002 8D 63 FE

The A9 (in cell 000) and the FF (in cell 001) belong together - the
mi~roprocessor makes sense of them as a pair. So it is more
scnsible to write them as a pair. Similarly the 8D (in cell 002),
the 63 (in cell 003) and the FE (in cell 00&) only make sense
together - so are written as a group on one line. Notice that the
address of the 'FF' is not shown - one just assumes that it is in
the cell after 000, i.e. 00l. But remember that the next cell in
the program listing is address 002 (not 001) because 00! has
alrcady been used. The address on the next line in the list would
be ... 005 (003 and 4 are already used).

The whole of the first chunk of program written out in this way
looks like this - check it against the listing on sheet T2; see
that you can make sense of it:

000 A9 FF
002 8D 63 FE
005 A9 FO
007 &D 61 FE
00A A0 0A
00cC 20 80 27
00F A9 OF
011 8D 61 FE
014 A0 0A

016 20 80 27
019 4C 05 20

This way of writing reveals a good deal more order in the code than
mizht have been apparent at first sight. Let's try the effect of
°7e or two changes.

* Change the contents of cell 006 to CO0, so now you have

005 A9 CO
007 8D 61 FE
etc.

(put the A-ROM in the loader, press a 006 d Co)

Page 10 missing

the 16 x 16's column

-
9 mmd_rcd & X
Ti{v s.<'s sixteens units
2 2 9 means the same as 512 + 32 + 9 = 553
1 6 2 - means the same as 256 + 96 + 2 = 354
3 3 6 is equal to what? (write down your
answer)
9 7 4 is equal to what? (write down your
5 answer)
4 1 15 is equal to what? (write down your
answer)
that was a surprise maybe - that we can write fifteen in the
column. But how else are you going to count from zero upwards?
you can't put a one in the sixteens column until you get up to
sixteen
it will cause a lot of confusion if we write 'l5' in the column, so

we invent a few new 'numerals':

Decimal Hex.

Note down this list.

NoooONAWMETWN—O

TMOOOTEIOVRONAUMFTWN—O

To make ;lear when we are working in hex. it is usual to put some

:rmigéHYlth the number. Conventions vary - you may meet SA9, &A9

doliar ‘all_of which tell you that A9 is a hex number. The

i BBCSan Is probably the most common international symbol, but

e lcrocomputer uses the ampersand sign (&) to denote a hex
myer, so this convention has become common too.

To avoi : .
svm5011? confusion (and save ink!) these worksheets will use no
yim. Just about every number on them is in hex anyway.

Rememner
e that f : P
otherwise . rom now on everything is in hex unless stated

| R .
To ‘.o othis up

in : : ; i
tens counting) v your mind, write down the decimal (ordinary, or

alues of the following hex numbers:

(%
125 (5) 3A (g) 4D (7) A5 (8) DD

Nex: sheet - T3(F) 11

T3(F)

Follow-up to 'Now for the Machine Code'

L. Hexadecimal 336 = eight hundred & twenty two

2. Hexadecimal 074 = one hundred & sixteen

3. Hexadecimal 41(15) = one hundred and fifty five
4, 25 = thirty seven

5. 3A = fifty eight

6. 4D = seventy seven .

7. A5 = one hundred & sixty five

8. DD = two hundred & twenty one

Next sheet

- Ty

12

TS Switching Devices On and Off

An inderstanding of what's in a microprocessor will help you to
Unce- < tand how 3 program is constructed. You won't need to know

ever.taing - in fact one or two key facts will go a long way.

The : raprocessor that we use (which is typical of most of them)
ha+ .- »ins. 16 of them connect to the program memory (the EPROM)
and ir~ uscd to select the address of the memory cell being looked
at. rhese 16 pins are called the address bus.

8 p.s receive back from the program memory the code or data that
}s stored in the cell that has been selected by the address bus.
These 8 pins are called the data bus. Diagram | shows the idea.

address bus

vond e micro -
only
rocessopr
memory —
data bus
Diagram |
“That lecaves 16 pins unexplained! Some of them are used as control

flinos, one of which, for instance, is used to tell the program
memory when to put its data onto the data bus. A couple of pins go

to the power supply and two to the crystal clock that keeps time
accurately.

When the RESET key is pressed on the 3-Chip Plus board, the
microprocessor starts at address 000 and fetches the contents of
that cell. The 'processor can fetch codes from following addresses
in a similar way.

Let's look again at the previous program (on sheet T3):

Instruction Other
Address Code Information Meaning
000 A9 FF A9 = load into the micro-
processor 'heart' a
number
FF = the number to be
loaded
002 8D 63 FE 8D = store the contents of
the microprocessor
'heart' to a memory
cell
FE63 = the address of the
memory cell
005 A9 FO A9 = load into the micro-
processor 'heart' a
number
FO = the number to be
loaded
007 8D 61 FE 8D = store the contents of

the microprocessor
'heart' to a memory
cell.

FE61 = the address of the
memory cell

and so on

Once you see the structure it should seem straightforward and
logical. One final point before going on: notice that on the 3-
Chip Plus board, "Port A" (the connector into which you plugged
8-LED Unit) is said to have address FE61. The ports are memory
cells into which you can store data. Voltages appear on the pi-
of the port 'chip' (the 6522 in our case) - these voltages are
controlled by the data that has been stored in the memory cell .
the port address.

The machine code in 005 - 009 stores the hex code FO in port A"
memory cell. The code FO will switch on the four left-hand LED
Try to crack the code relationship - what code turns on what LE

* Using the shell of the program given on sheet T2, use the
A-ROM loader to put 0l into address 006
and 00 into address 010
Run the program in the 3-Chip Plus board - which LED flasht
* Change 006 to 02; which LED flashes now?
* Try 04 and then 08 in cell 006,

* Since 04% + 02 + 01l = 07, what would you expect if 07 is in
cell 0067 Try it!

* Any guesses for what 10, 20, 40 and 80 will do to the outﬂ
lines if put in cell 006 of the program?

Control of something bigger

Sartzhing LEDs on and off is only the beginning. The control!

vritages on the eight lines of a port can be used to control almost
Aty ining.

¢ ©lug the RELAY Unit into the connector on the 8-LED Unit (the
$-LED Unit doesn't have to be there, it just helps you to keep
watch on the control lines). 1If you have a motor and a
s11table power supply, connect them like this:

g::::;’J,External power
#IP ||8-LED] ‘
L IT ||9 ©
Al UN - 63:% motor
RELAY
UNIT

Diagram 2.

[f Port A line 4 is "high" or at "logic 1" and
line 5 is "low" or at "logic 0"
the relays will be like this:

Py

§ + external
l supply
Relay 5 Relay 4

motor
o

current

OV external
supply

Diagram 3

Y30 7an set up this situation by putting number 10 into the
Jrogram at 996 and at 010 (putting it into both these

pitranaes stops the flashing). Note which way the motor

"AITAUAY,

* 1f Port A line 4 is "low" or at "logic 0" and
line 5 is "high" or at "logic L"
the relays will be like this:

+ external

supply
Relay 5 Relay™ 4
- OV external

motor supply

(o

—_—
current

Diagram &

This can be set up putting 20 into the program at 006 and at
010. Try it; check that the motor rotates in the opposite
direction. Why does sending 20 to Port A switch the relays
into the position shown?

* Finally, there are two possible ways of stopping the motor.
Can you work out:

(a) what position relays 4% and 5 need to be in for the
motor to stop?

(b) what number to put into locations 006 and 010 to get
this to happen?

The answers to these questions are on the follow-up sheet.

Next Sheet - Tu4(F)

Page 17 missing

The relay work extended this idea. Relays 5 and 4 are connected to
lines A5 and A4 (port A line 5, port A line 4) respectively. For
the connections in Fig | the bit pattern is 0001 0000 which needs
10 in hex to be sent to port A. Fig 2 requires 0010 0000 which is
20 in hex. One code rotates the motor clockwise, the other
counter- clockwise.

To stop the motor, either 0000 0000 (hex 00) or 001l 0000 (hex
30) can be used. :

[f you connected two motors, you would have needed to use two more

bits, so, for example, 100l 0000 (hex 90) would rotate one motor
clockwise and the other counter-clockwise. .

Next worksheet - T5 but if a Music Module is not available you
could go on to T6 or T7.

18

TS Playing Tunes (Notes and Delays).

The "WFA' Memory Module can be plugged onto the 3-Chip Plus
controller and long and complicated tunes played. The Memory
“Module 1s controlled by the port, each note has a hex code, thus:

hex 00 - silence
0l - middle C
02 - C#
03 - D
04 - D#
05 - E
06 - F
07 - Fi
08 - G
09 - Gi#
0A - A
0B - A# (B flat)
0oC - B
0D - top C
0E - top C#
OF - top D

To get the feel of it, put two different codes (you choose) into
addresses 006 and 010. Transfer the A-ROM into the Controller and
run :the program. You should get a two-tone siren (the notes of
your choice). If you have problems, check the contents of program
memory cells 780 - 79A, and 7FC & D.

To play tunes you need to learn how to delay (kill time!) for a
selected amount of time. Try this first (load the program into the
A-ROM, then run it):

000 A9 FF The "port set-up routine"
002 8D 63 FE (explained on Sheet T9)
005 A9 note Send note code to port A
007 8D 61 FE

00A AO delay delay

00C 20 80 27

00F A9 note send note code to port A
011 8D 61 FE

Ol AOQ delay delay

0l6 20 80 27

019 A9 note note to port A

o1 8D 61 FE

OlE A0 delay delay

120 20 80 27

723 A9 note note to port A

425 8D 61 FE

723 AD delay delay

927 20 30 27

2D uC 95 20 end of program

Y"i~Tt vour own note codes for the cells labelled 'note', and the

PToavs. Eaeh 'blink' of delay in this case is 50ms (a twentieth of
} '"7ondl. 50 to sound a note for one second you need twenty
3liakst Rermember , though, that all the numbers in machine'code
17® hex. T5 get twenty blinks, use hex l4 (which is twenty in
feT.mal Tounting),

19

Now let's try to play a proper tune. The MFA workcards use

'Morning has Broken' as an example - the first few notes are this:
Note Note code Time (ms) 'Blinks' r~eded Blinks in hex

C 01 400 ms 3 08

E 05 400 ms 8 08

G 08 400 ms 8 08

c 0D 1200 ms 24 18

D 1200 ms

B 600 ms

A 200 ms

G 400 ms

A 600 ms

B 200 ms

A 400 ms)

G 1200 ms
The first four lines of the table are completed - you can work out

the remaining codes and delays yourself.
By repeatedly using the program block:

A9 note

8D 61 FE
AQ delay
20 80 27

you can write a program to play this much of the
tune. Don't forget to start your program with the 'set-up routine'
in addresses 000 - 004, and to finish it with 4C 00 20 as in the
example program at the start of this sheet. Load the program into
your A-ROM. Check that the code you previously put in 780 - 79A 1is
still correct, and that 7FC and 7FD are 00 and 20 respectively.

Transfer the A-ROM to the 3 Chip-Plus board and listen expectantly!
(press RESET if necessary). The correct code is given on sheet
T5(F) if all else fails.

o o o o 0 0 0 0 o o o o

20

The machine code is very.repetltlve.
‘dictionary' of instructions to refer to

sheet with these headings:

Assembler
Code mnemonic Name

A9 NN LDA/#NN Load accumulator
immediate

8D LL HH STA HHLL Store

A0 NN LDY/NN Load Y register
immediate

20 LL HH JSR HHLL Jump to sub-
routine which
starts at
address HHLL

4C LL HH IJMP HHLL Jump to new
location
60 RTS Return from

sub-routine

21

It's worth building up a

start now on a clean

Description

Loads the microprocessor
'accumulator' with the
next number in the
program - NN is meant to
indicate the next number.

Stores the contents of
the microprocessor
accumulator to the
address HHLL. Notice
that to send to this
address the code is

8D LL HH - the halves of
the address are entered
in the opposite order.

Loads the microprocessor
'Y Register' with the
next number in the
program - NN is meant to
indicate the next number.

When this instruction is
encountered, the micro-
processor jumps to the
address HHLL & begins to
execute the machine code
which is stored in that
program memory cell and
those following it.

When this instruction is
encountered, the micro-
processor jumps to the
address HHLL & begins to
execute the machine code
which is stored in that
program memory cell and
those following it.

The microprocessor goes
to the point in the main
program where it left off
to perform the sub-
routine (i.e. the point
where the JSR instruction
was met).

That table introduced some new terms, and concepts, which need more
explaining. The microprocessor has inside it a vital 'heart'
called its accumulator. Actually it's more like a stomach because
it's where most of the digesting of numbers and data goes on. It's
a store where one hex number can be held and operated on.

The other name for this sort of special store in a microprocessor

is register - the accumulator is one register in the
microprocessor. There are two other special registers in the 6502
microprocessor called the X register and the Y register. They have

a number of functions, but in our program the Y register was used
as a temporary store for the delay length.

'Immediate' is a jargon word which means 'a specified number'.

Just 'load' would mean that a register was being loaded with the
contents of a memory cell; 'load immediate' means load the register
with the number following.

A sub-routine ‘is a self-contained piece of program which the
microprocessor jumps to and returns from as necessary. In our case
the delay program is needed a number of times. Imagine how tedious
(and wasteful of memory space) it would be to have to put in the
delay program in full again and again. Instead, a 'JSR'
instruction is used followed by the address at which the sub-
routine starts (in our case 2780) - note that the addresses get
entered 'backwards', the 80 before the 27 in this case.

You might wonder how the program gets back to where it left
off after the sub-routine finishes. The final instruction is every
sub-routine must be 60 - return from sub-routine. This jumps the
microprocessor back to the right point in the program.

Finally, the jump instruction tells the microprocessor to go to a
new address and start executing the code from there. so 4C 05 20
will jump the program to (2)005 which repeats the sending-notes-to-
the-port program.

Now that you know what some of the instructions are, have another

look at the program given near the start of this sheet and try to
understand what's going on.

Next Sheet - T5(F)

TS(€) Follow-up to Notes & Delays

T ompiete table for 'Morning has Broken' looks like this:
he Com e

Note Note Code Time (ms) 'Blinks' needed 'Blinks' in hex
- 91 400 ms 8 08
¢ 05 400 ms 8 08
G ns 400 ms 8 08
= oD 1200 ms 24 _ 18
N oF 1200 ms 24 18
i ncC 600 ms 12 0C
\ A 200 ms 4 04
G 08 400 ms 8 08
A A 600 ms 12 0C
B 0C 200 ms 4 04
A 0A 400 ms 8 08
G 08 1200 ms 24 18

The complete program is:

000 A9 FF
002 8D 63 FE
005 A9 01
007 8D 61 FE
00A A0 08
0oC 20 80 27
00F A9 05
01l 8D 61 FE
Olu A0 03
0lLe6 20 80 27
019 A9 08
ol 8D 61 FE
0lE A0 08
020 20 80 27
023 A9 0D
025 8D 61 FE
0238 A0 18

92A 20 80 27
02D A9 OF
02F 8D 61 FE
032 A0 18
934 20 80 27
737 A9 0C
739 8D 61 FE
93C A0 oC
93E 20 80 27
T4 A9 0A
743 8D 6! FE
46 A0 Ou
7.8 20 80 27
7B A9 08
25D 8D 61 FE

23

050 A0 08
052 20 80 27

055 A9 0A
057 8D 61 FE

05A A0 0C

05C 20 80 27

05F A9 0C

061 8D 61 FE

064 A0 04

066 20 80 27

069 A9 0A

06B 8D 61 FE

06E A0 08 .
070 20 80 27

073 A9 08

075 8D 61 FE

078 A0 18

07A 20 80 27
07D 4C 05 20

with 780 - 79A and 7FC - 7FD as before

Your're right - that was tedious! There are better ways than this
of doing repetitive tasks, but we must learn to walk before trying
to run. The sub-routine introduced on sheet T5 is one vital way.
Putting all the codes and delays into a table is another way. You
might like to try this more elegant program for the whole 'Morning
has Broken' tune. Put it into the A-ROM from 100 upwards:

100 A9 FF
102 8D 63 FE
105 A2 00
107 BD 80 21
10A C9 00
10C FO F7
10E 29 OF

110 8D 61 FE
113 BD 80 21

116 29 FO
118 A8

119 20 80 27
11C E8

11D 4C 07 21

24

1 g A 196 438
1R 58 197 45
182 38 198 48
ER <D 199 CD
R OF 19A CA
189 6C 19B. 48
1 S0 2A 19C 45
s 48 19D 41
188 6A 19E 10
159 20 19F Al
1SA 4A 1A0 C3 -
188 8 1AL 45
1842 41 1A2 43
18D 43 1LA3 45
| SE 45 1AL Cc8
18F C38 1AS5 CA
190 CA LA6 43
191 48 1A7 65
192 45 1A8 23
193 41 1A9 cl
194 C3 1AA 00
195 C3

Ther, make two other small changes:

(a) reduce the delay by changing the contents of 78E to 18
(it was C3)

(b) tell the 3 Chip microprocessor to run the program put in
100 upwards by changing the contents of 7FD to 21 (it was

20) .

Put the A-ROM into the 3-Chip Plus board and switch on - you should
get a full version of 'Morning has Broken'! This time, the actual
program is from 100 - 11F (only 32 locations), although it does
depend on the delay routine in 780 - 79A. This is much more
economical. Also the tune is easily changed or modified. You can
put your own tune from 180 upwards - it doesn't matter how long or
short it is so long as you put 00 at the end to tell the
microprocessor where the end is. The coding is:

4 5
length of note //' note code (as in table on sheet T5)
(1 unit is about
one tenth of a
second now)

This new program uses a number of 'tricks' which will be e*plained
90t bv bit as you progress through these sheets; it is deliberately
19t heing explained at this stage.

Next Sheet - Té or T7, whichever is free and you haven't done. If

vou have done both of these, move on to sheet T8.

25

Té6 7-Segment Display

The ports on the 3-Chip Plus board may be used to drive a 7-segment
display. 1In our case we shall use seven lines of port A to control
the segments, and four lines of port B to control the digits. To
turn on a segment you store 'l' to the line which controls that
segment, and at the same time 'l' to the digit that you want to
turn on.

a
PORT A (address FE61) -getbcda rfgfo

eld__lc

PORT B (address FE60) - - - - Z Yy XW ~ I
HEHE

This won't yet be very clear so let's try one or two things:
First, the port set-up routine

000 A9 FF
002 8D 63 FE
005 8D 62 FE

Now, to turn on segment g of digit X we need to send

008 A9 40
40 to port A with 00A 8D 61 FE

00D A9 02
and 02 to port B with 00F 8D 60 FE

o012 4C 12 20

Load this into the A-ROM. Connect the display to Port A and Port B
on the 3-Chip Plus board. Transfer the A-ROM to the 3-Chip Plus
board press RESET and the display should show:

- that is, segment g of digit X is on. [[:[]ﬂﬁ
IR

e = =3
* Change the contents of 009 to 0l and of 00E to 08. Reconnect

the A-ROM to the 3-Chip board and press RESET. This should
turn on segment a of digit Z.

The key to understanding what is going on is to understand that
every hexadecimal code is a shorthand way of writing eight binary
digits (ones and zeros). Sheet T3 explains this - you might like
to re-read it.

~ending 40 to port A is the same as sending binary 0100 0000. 1If
+23 100k at the organisation of port A you will see that this
“sitohes on segment g. Similarly, sending 02 to port B is the same
1= binary 0000 0010 which will turn on digit X. (Look at the
mformation at the top of this sheet).

tn the second example, sending 0l to port A is 0000 000! which
tirns on segment a, while sending 08 to port B is 0000 1000 which
tiras on digit Z.

Note down the segment labels and the allocation of the bits of port
Y. Copy the labelling of the digits (W, X, Y & Z) and how port B
allocated.

! What should you do to turn on segment c of digit Y? Write the
answer, then test your answer by altering the program in the A-
RO and running it.

2 To display 7 you need to turn on segments a b & c¢. How could
this be done?

Write a program fecr digit W, then check it by loading the A-ROM
and reconnecting it to the 3-Chip Plus board.

[t's helpful to know codes that have to be written to port A to
stow each of the numbers 0 through to 9. They are easy to work out
if you use a table. Copy this table into your notes.

Decimal number Display gef bcda hex. code

0 i 0011 1111 3F

1 { 0000 1100 0C

2 £ orlo 101l 6B

3 = 0100 1111 4F

4 - 0101 1100 5C

5 c 0101 0111 57

6 o orrr o1l 77

7 0 0000 1101 0D

8 Fd oL11 1111 7F

9 DX 0101 1101 5D
. 12 display 2 on digit Z you write 6B to port A and 08 to port
>+ Trvowt, then try: 3) display 4 on digit W. 4) 6 on digit X.
' %57« dut the code to display on digit Y, then try it. 6) What

;7 tne codes for the other hexadecimal num erals?

these characters to the table you already have).

27

Multiplexing: You might be wondering what the point of a four digit
display is, if only one number is shown at a time. It is possible
to display all four digits at once - or so the human eye thinks.

In fact the digits are flashed on and off in rapid succession so
quickly that the eye sees a continuous display. To show | 2 3 4
the sequence is:

ms, turn off
ms, turn off
ms, turn off
ms, turn off - -

»write | to digit Z, delay
" write 2 to digit Y, delay
write 3 to digit X, delay
write 4 to digit W, delay

L —a - repeat —~—<—J

The software (program) to do this is given below.

Notice that the addresses are given as 200 etc. This is so that
you can put the program in the A-ROM at 200 and-upwards.

200 A9 FF As program at the start of this sheet
202 8D 63 FE
205 8D 62 FE

208 A0 00

20A A9 0C Segment code for 1

20C 8D 61 FE Store to port A

20F A9 08 Code for digit Z

211 &8D 60 FE Store to port B

214 20 80 27 Delay 1 ms

217 A9 6B Sends 6B (ccode for 2)

219 8D 6! FE to port A
21C A9 04 and 04 (digit Y)

21E 8D 60 FE to port B

221 20 80 27 Delay | ms

224 A9 4F Sends 4F (code for 3) :
226 8D 61 FE to port A
229 A9 02 and 02 (digit X)

22B 8D 60 FE to port B

22E 20 80 27 Delay 1 ms

231 A9 5C Sends 5C (code for 4)

233 8D 61 FE to port A
236 A9 01 and 01 (digit W)

238 8D 60 FE to port B

23B 20 80 27 Delay 1| ms

23E 4C 0A 22 Jump: next instruction executed: (2)20A

You will need to make three other changes:

Change 789 to 04
78E to 00
and 7FD to 22
The first two changes will shorten the delay time down to | ms.
The final change tells the microprocessor your program starts at
200.

Put the A-ROM back in the 3-Chip Plus board, power up and press
RESET if necessary - the display should show 1 2 3 4.

o o o o 0 O O O o o o o

[f you have done sheet T5 go on now to T6(F) and then T7 (or T8 if
you've done T7 too).

If you haven't done T5 go straight to the explanations on pages 3
and 4 (of T5) before moving to T6(F). You should then move to T5
(the practical part) and/or T7.

28

T6(F) Follow-up to 7-Segment Display

To turn on segment c of digit Y you must write 0000 0100 to
port A and 0000 0100 to port B. That is 04 to port A and 04 to
port B. So write 04 in address 009 of the previous program
and 24 in 0OE

To display 7 on digit W write 0000 1101 to port a and 0000 0001
to port B. That is 0D to port A and 0l to port B, 009 should
be 0D and 00E should be 01 (in the previous program) .

To display 4 on digit W, 009 should be 5C and 00E should be 01.
To display 6 on digit X, 009 should be 77 and 0OE should be 02.
E requires segments a, d, e, f, g to be on, so the control code

is 0111 001l which is 73 in hex. To display this on digit Y,
009 should be 73 and 00E should be 04,

Display letter g e f bcda hex-code
A 0111 1 101 7D
b 0111 0110 76
C 0011 0011 33
d 0110 1110 6E
E 01 11 0011 73
F 0111 0001 71

Next worksheet - T5 or T7, or if you've done them both, T8

29

T7 Control of Speed, Brightness - and other Analogue Quantities

All the sheets so far have dealt with 'digital' outputs. That
means that the control line can be 'on' or 'off', but nothing in
between. Often one wants to set a voltage level, or current level
to control, for example, the speed of a motor. A digital output
will allow the moic: *o be switched fully on or fully off, an
analogue output can be set to a number of levels in between. A
digital-analogue converter (DAC) is a circuit that allows our 3-
Chip Plus board to control analogue devices.

CONTROLLER

analogue output

—~ 0
@ »
@ g SHi motor
- a
0 £
- 3
© 0
'ground' /0OV
line
The diagram shows the idea - connecting the units up will help

understanding.

* Plug the 8-LED Unit onto port A of the 3-Chip Plus board, then
plug the Power DAC Unit onto the 8-LED board. Plug an 8-
Switch Unit onto Port B (on the left hand side of the
controller).

* Key the following program into the A-ROM (starting at 400):

400 A9 FF The "port set-up routine"

402 8D 63 FE (explained on sheet T9)

405 AD 60 FE Load the accumulator from Port B
408 8D 61 FE Store the accumulator to Port A
40B 4C 05 24 Go back to (2)405 and repeat

You must also check that 7FC contains 00
and 7FD contains 24

* Put the A-ROM back in the 3-Chip Plus controller and switch
on. The 8-LED Unit should follow whatever you do to the 8-

Switch Unit - wherever a switch is at logic | the LED should
be lit. Try various switch positions.

* Connect a 15V d.c. power supply to the Power DAC (take care to
get the + and - the right way round). The power pack must
give smoothed d.c. - many science lab packs do, but some
don't. Connect a voltmeter of 12V full scale deflection (or
more) to the DAC output and/or connect a 12V lamp or d.c.
motor. Motor or lamp should not draw more than 0.5A current.
Set up hex 00 (= binary 0000 0000) on the input switches.

Note the output voltage (or the behaviour of the lamp or
motor).

Set up hex 0l (binary 0000 000l) on the input switches; note

the output voltage (or behaviour of motor or lamp). Do this

for all hex values between 00 and 07; the table below (copied
into your notes) might be useful for summarising results.

Hex input Binary input DAC output voltage (Ideal output)

00 0000 0000 (ov)

01 0000 000! (1.75V)
02 0000 o00l0 (3.50V)
03 0000 001! (5.25V)
04 0000 0100 (7.00V)
05 0000 010t (8.75V)
06 0000 0110 (10.50V)
07 0000 011! (12.25V)

The designed output voltage is also shown in the table so that
you can compare your measured voltage if you had a meter.
There are bound to be small differences - don't worry about
them. If a meter was not to hand, be assured that the output
was close to the designed value.

The output of the DAC is "1.75V per bit" - so for each unit on
the input (which of course is copied directly to the output of
port A), the analogue output rises by 1.75V.

* Change the binary input to 0000 1011 (hex O0B). The analogue
output will be close to 5.25V but the polarity (direction)
will be reversed. That is because bit 3 controls the polarity
of the output.

0000 011

1
bits 7-4 are not \
used, but are
passed through to :

the connector on the ;—forward/reverse bit
other side of the DAC

voltage output control bits

To sum up, the power DAC has 7 voltage output levels (and 'off'),
and can reverse the supply connections to a load. It can provide
at least 0.5A current (and is overload protected). It should be
driven by a L5V supply; it will work with less but the maximum

output will be limited. A 6.5V supply will allow levels 0, L, 2
and 3 to be output. ’

o o o 0 0 0 0 0 o o

31

Sequencing the output

The controller board has done nothing of significance in that last
system - the input switches could have been connected straight
through to the Power - DAC. The system becomes more versatile when
a sequence of events is wanted: say a motor is required to be
speeded up from zero to maximum over 6s, held at maximum for 5s,
then switched off until a restart button is pressed. The type of
program on sheet T5 can be used to output hex numbers which set the
output of the DAC and to delay for a given time before outputting
the next code.

Can you write a program that will do this? Remember that the delay
in the sub-routine at 780-79A is 50ms (one-twentieth of a second)
multiplied by the number in the Y register.

How long must the output be at levels 01, 02, 03 etc, up to 077
What is the number needed in the Y register to achieve this? Try
to write the program and load it. Don't forget to check that the
delay routine in 780-79A is there (@and that 789 has been put back
to 43, and 78E to C3). You can load your program into the A-ROM at
500 upwards. Put 00 into 7FC and 25 into 7FD. The most
interesting way to test is to connect a 12V d.c. motor to the
output, or a model! railway, but a 12V lamp will also do, or even a
meter.

The answer is on T7(F) if you can't get it working.

32

T7(F) Follow up to Control of Analogue Quantities

The first part of sheet T7 should have been very straightforyarq.
The voltages measured for the various levels were probably W}thxn
17% of the 'ideal' values - e.g. level 3 was 5.25V +/- 10%, i.e.
between 4.73V and 5.77V. A more expensive DAC would get very much
closer than this; this one is perfectly adequate for control of
power devices in schools.

You may have noticed one new concept creep in - that of loadipg the
accumulator with the contents of a memory cell whose address is
given. The instruction code was 'AD' - you can enter it into your
table:

-

Assembler

Code mnemonic Name Description
AD LL HH STA HHLL Load Loads the accumulator with the

contents of the address HHLL.
As with 'store', the address is
put after the code low-before-

high.,
Our example showed something else as well - that a Port can take in
data, as well as pushing it out. The number read from address FE60
into the accumulator is the contents of that address - in other
words the binary number set on the 8 switches connected to the
port. More will be said later about when a port acts as an input

and when as an output.
o o o o 0 0 0 0 o o o o

The program to increase the output voltage gradually to full is
given below. The structure of the program is:

Set up port A
Code 0! to port A
Delay 1s

Code 02 to port A
Delay 1s

Code 03 to port A
Delay s

Code 07 to port A
Delay 5s
Code 00 to port A

33

Remembering that ls is twenty 'blinks' of delay (Which is 14 in
hexadecimal) we have:

500 A9 FF LDA#FF Set up as output

502 &D 63 FE STA FE63 port A

505 A9 01 LDA#0 1 Load code 0l

507 8D 61 FE STA FE61 and store it to port A

50A A0 L4 LDY#14 Twenty blinks into Y register

50C 20 80 27 JSR 2780 and jump to sub-routine

50F A9 02 LDA#02 Load code 0!

511 8D 61 FE STA FE61 store to port A

514 A0 14 LDY#14 Delay into Y register

516 20 80 27 JSR 2780 and jump to sub routine

519 A9 03 LDA#03 %

51B 8D 61 FE STA FEé6l1

51E A0 L4 LDY#14

520 20 80 27 JSR 2780

323 A9 04 LDA#04

525 8D 61 FE STA FEé61

528 A0 L4 LDYi#1 4

52A 20 80 27 JSR 2780

52D A9 05 LDA#05

52F 8D 61 FE STA FE61

532 A0 14 LDY#14

534 20 80 27 JSR 2780

537 A9 06 LDA#06

539 8D 61 FE STA FEé61

53C A0 14 LDY#14

53E 20 80 27 JSR 2780

541 A9 07 LDA#07

543 8D 61 FE STA FE6l1

546 A0 64 LDY#64 One hundred 'blinks'

548 20 80 27 JSR 2780 Jump to delay sub-routine

543 A9 00 LDA#00 Switch off

54D 8D 61 FE STA FE61

550 4C 50 25 IJMP 2550 Jump to this instruction
- an eternal loop.

Don't forget that the delay sub-routine at 780 must be right, 7FC
should contain 00 and 7FD should contain 25.

Again this program is very boring - the next sheet will show a much
more elegant way of handling this problem. But hefore moving on,
learn about a couple more facilities of the 6502 microprocessor.

First, why was the sub-routine address 2780 when you put the code
into the A-ROM at 780 upwards? The reason is that the
microprocessor needs an address with four hex digits, and the zero
insertion force (zif) socket on the 3-Chip Plus board is wired in
at 2000 to 27FF. So address 780 in the A-ROM is seen by the
microprocessor as 2780. Similarly, the jump instruction at the end
of the program above sends the microprocessor back to 2550, which
is the same bit of program, creating an everlasting loop.

34

Secondly, what about these mystery locations 7FC and 7FD? They
contain what is called the reset vector, and again it's address low
byte before address high byte. So if 7FC contains 00 and 7FD ha§
25 in it, when the RESET button is pressed, the microprocessor will
begin by executing the machine code in address 2500 (which is, of
course, address 500 in the A-ROM). Note also that the word byte
slipped in there. Byte is such a common jargon-word that you
should know that it is the same as 8 binary digits (or bits). It

is therefore the same as two hex digits. Thus FE 6l is a two byte
address (the address of port A).

Finally, notice that the program listing has had the 'assembler
mnemonics' put in. Once you get used to the page full of
hieroglyphics you will find them very helpful - indeed you will
write the programs first with these, putting the actual machine
code instructions second. It is much easier to remember that
LDY#14 means Load the Y register with the number 14 than it is to
remember that A0 14 means this. From now on all listings on these
sheets will have the mnemonics as well as the machine code. Often
comments will then not be necessary.

Make notes on anything you are likely to forget. 1It's important to
know that the zif socket is at 2000 - 27FF and that the reset
vector is in 27FC (low byte) and 27FD (high byte).

Next worksheet - If you haven't done T5 yet, look now at the
explanations of pages 3 and 4 of it. Then do the
practical part of T5 if possible. If the T5
equipment is busy or you've done it, do T6. 1If

you've done both T5 and T6, go to TS8.

T8 More Bite with less Bytes

The motor speeding up program on the last sheet was very tedious.

How can more be done with less program?

First meet some new

instructions - copy them into your table:

Assembler
Code mnemonic Name

C9 NN CMP/NN Compare
(Immediate)

DO XX BNE XX Branch if not
equal
FO XX BEQ XX Branch if
equal
EE LL HH INC HHLL Increment
memory

Description

Compares the contents of the
accumulator with the next
byte of the program. 'Sets'
a 'flag' in the
microprocessor (ithe zero
flag) if the comparison
shows that the numbers are
the same.

1f the zero flag is not set,
the processor will branch to
another address and begin to
execute the code there. The
next byte (XX) after DO
specifies how long the
'branch' is.

If the zero flag is set,

the processor will branch to
another address and begin to
execute the code there. the
next byte (XX) after FO
specifies how long the
'branch' is.

Increase by 1| (adds 1 to)
the contents of the memory
cell HHLL.

Can you now see how this program works?

(2)590 A9 FF LDA{#FF Set up as output
(2)502 8D 63 FE STA FE63 Port A
(2)505 A9 0l LDA#01 Load 0l and
(2)507 8D 61 FE STA FEe6l send to port A
(2)50A LOOP A0 L4 LDY#14 l4 blinks (/= twenty) to Y reg
(2)50C 20 80 27 JSR DELAY Jump to DELAY sub routine at
27380

(2)50F AD 61 FE LDA FE61 Load the accumulator with the

contents of port A
(2)512 C9 07 CMP#07 Compare with 07
(2)514 FO 06 BEQ DONE If it's equal, branch over the

next
. 06 bytes

(2)516 EE 6! FE INC FE61 Otherwise increase port A by |
(2)519 4C 0A 25 IMP LOOP and jump back to (2)50A
(2)51C DONE A0 50 LDY#50 Prepare for 4s delay
(2)51E 20 80 27 JSR DELAY Jump to DELAY sub routine at

2780
(2)521 A9 00 LDA{#00 Load 00 and
(2)523 8D 61 FE STA FE6! send to port A
(2)526 END 4C 26 25 JMP END Twiddle thumbs and keep out of

mischief.

As usual the delay sub-routine,
correct (in (2)780 -

and the reset vector must be
(2)Y79A and (2)7FC and D).

There is one final tip that can be given to program writers which
makes life a lot easier - use labels. This last program was
labelled to make it easier to follow - the labels were underlined.

You can use any words you like - the ones above indicate what point
the program is at. Names like BILL, BEN, BOB, BERT are an
alternative.

To talk through that program:

2500 - 2504 set up port A as an output

2505 - 2509 output 01 from port A (connected to the Power DAC)

250A - 250E cause a ls delay

250F - 2511 load the accumulator with the current value of port A

2512 - 3 compare it with 07. The 'zero flag' (mentioned at
the beginning of this sheet) is a single binary digit
store in the microprocessor whose value must be 0 or
l. In this case, if the accumulator contents were
07, the zero flag will be L.

231% - 35 If (and only if) the zero flag equals 1, the
microprocessor branches on 6 bytes. That means tbat
when the port A value becomes 07, the processor will
go on to 'DONE'.

2516 - 2518 If port A was not 07, this instruction will be the
next, and port A will be 'incremented' (increased by
1.

2519 - 2518 Jumps back to 250A (LOOP) to go round the loop again.

251C - 2520 Causes a further 4s delay when 07 has been reached -
ls delay has already been caused

2521 - 2525 Send 00 to the port to set the output of the DAC to
OVv.

2525 - 2528 This instruction jumps back to itself (END) forever.
This is a good way of ending a program to stop any

random events happening.
37

Copy one more instruction code into your table, and then try a
programming assignment:

Assembler

Code mnemonic Name Description
CE LL HH DEC HHLL Decrement Decreases by 1| (sub tracts |
memory from) the contents of the

memory cell HHLL.
Can you now extend the program so that after 5 seconds at full
power the output of the DAC is taken down to OV in smooth steps?
You'll need to change the code from (2)521 onwards.
As a somewhat more difficult assignment you might-like to try

writing one of these programs using the BNE instruction - which
will skip if the comparison shows the comparison not to be 'true'.

The answers to these problems are on sheet T8(F)

38

T&(F)

Follow-up More Bite with less Bytes

To extend the program to drop the output steadily to zero, this
code can be used:

2)521
) 524
)526
)528
)52B
)

(
(
(
(
(
(2)52E

2
2
2
2
2

SLOW CE

END

FO
A0
20
4C
4C

DEC FEé61
BEQ END
LDY#1%
JSR DELAY
IJMP SLOW
IMP ERD

Decrease port A by 1
1f equal to zero branch to end
Load 14 (twenty) blinks

and jump to delay sub-routine
Jump and do again

End when port A = 00.

The assignment to write the code using BNE might have produced this
result (for the first piece of program):

(2)526 =

LOOP

A9
&D
A9
8D
AQ
20

FF
63
01
61

FE
FE

27
FE

27

FE
25
FE
25

LDA#FF
STA FE63
LDA#0 L
STA FE61
LDY#14
JSR DELAY
LDA FE6[
CMP#07
BNE AGIN
LDY#50
JSR DELAY
LDA#00
STA FE6!
IMP END
INC FE61
JMP LOOP

Branch on to 2523
Otherwise delay #4s

if not =

Output to zero
and loop eternally

Increase output by 1
and go back to loop

39

That might have caused difficulty either because yo wanted to
branch back in the program and didn't know how to, or because you

weren't sure how to work out the branch forwards. The branch
forwards is not too difficult - in this program you want to miss
thirteen bytes of code, which is 0D in hex. But is it possible to
branch backwards? "Yes" is the answer. Look at this program:
(2)505 A9 01 LDA#01L Send 01

(2)s507 8D 61 FE STA FE61 to port A

(2)50A LOOP A0 14 LDY#1 4 Delay

(2)50C 20 80 27 ISR DELAY ls

(2)50F EE 61 FE INC FEé61 Increase port A by 1|

(2)512 AD 61 FE LDA FE61

(2)515 C9 07 CMP 07 Is it 07 (at the tgop)?

(2)517 DO Fl BNE LOOP If not then do again

(2)519 A0 64 LDY#64 1f yes,

(2)51B 20 80 27 ISR DELAY delay 5s

(2)51E A9 00 LDA#0G0 Output

(2)520 8D 61 FE STA FE6l to zero

(2)523 END 4C 23 25 JMP END and loop eternally

Here the program keeps branching back until the output to the port
reaches 07 when the output is held steady for 5 seconds then
reduced to zero.

But why does "DO Fl" take you back to LOOP? Look at the 'branch
calculator' printed on a separate sheet. (You can usefully stick a
photocopy of it onto a piece of card, then cut it carefully down
the middle.) F! is the branch displacement (50 was 0D at address
2515 in the previous program). All displacements from 0l to 7F are
forwards; all from FF to 80 are backwards.

Line up the arrow on card R with address HHI9 on card L. 2519 is
the next instruction that would be executed if it weren't for the
branch instruction. The instruction that you want next is 250A:
opposite this is the branch displacement Fl.

4. read off branch
displacement here

address of next
instruction

wanted 0C F3
0D Fu
ADDRESS 0E F5 BRANCH
OF Fé6 DI SPLACEMENT
HH10 F7
11 F8
12 F9
13 FA
L4 FB
L5 FC
16 FD
17 FE

address of next 18 FF

instruction 19 (=00——r0r . line up 00 arrow

normally executed LA 0l with address 19
HH1B 02

40

Using the cards makes it very much easier to calculate)
displacements, especially negative ones (for branche§ backwards in
the programs). Check that you can use the cards reliably by
calculating the branch displacements for the program on sheet T8,
and the other two programs on T8(F).

Note that "HH" stands for the high byte of the address - it could
be anything (iin our case it was 25). Also note that these cards
can be used only for branches of about forty eight (hex 30) bytes
in each direction. You could easily make cards (or a pair of
concentric discs of slightly different radii) to handle the full 80
(hex) bytes in either direction.

Next Sheet - T9

41

Branch Calculating Card

ADDRESS

L

HHOO
HHOL
HHO2
HHO3
HHO4
HHOS
HHO6
HHO7
HHO8
HHO9
HHOA
HHOB
HHOC
HHOD
HHOE
HHOF
HH10
HHL1

HH12

- HH13

HH14
HH15
HHL6
HH17
HH18
HH19
HHLA
HHIB
HHIC
HHID
HHIE
HHIF
HH20
HH2 1
HH22
HH23
HH24
HH25
HH26
HH27
HH28
HH29
HH2A
HH2B
HH2C
HH2D
HH2E
HH2F
HH30
HH3 1
HH32
HH33
HH3 4
HH35
HH36
HH37
HH338
HH39
HH3A
HH3B
HH3C
HH3D
HH3E
HH3F
HH40
HH4 |
HH&42
HH43
HH4 4
HH45
HH46
HH47
HH438
HH49
HH4A
HH4B
HH4C
HH4D
HH4E
HH4F
HH50
HH5 1
HH52
HH53
54
HH55
HH56
HH57
HH58
HH59
HH5A
HH5B
HH5C
HH5D

[

Branch Calculating Card

R

BRANCH DISPLACEMENT

T9 Sequ=nces: Controlling a Model Railway (Gor example)

A, "writing" the right code to Fhe right port it is easy to control
3 madel railway. Similar techniques can be used to control any
yeer device nceding switching or speed control. This sheet will

~xniain the programming trick which was used to shorten the program
for the tone generator. [f you want to work with a model railway
cynplete with points, you will need a railway points adaptor. The

arrangement is:

8-LED Power Relay Railway
3-Chin Plus DAC Unit Points
Controellenr Adaptor
15V 20-25V
power power
supply supply

The two power supplies shown may be two lab supplies connected
together:

+9Vor - 'V oext Relay Board
oV - .V ext Power DAC
+15Vo o OV(ext) Relay Board
ov(ext) Power DAC
0w

The layout of the railway discussed as an example is:

0 direction 1 QErection
Q 1
0
B1
B0 B2
B3
S 1 P 0
0 1
0 R
1

T ¢

(7 ;2ir points are labelled P Q R and S and the directions of the
2Y.ntn oare labelled '0' and 1.

43

Four position sensors are labelled BO - B3 and may be connected to
a ribbon cable or a connector. These will be used on a subsequent
sheet.

PORT A will be used to control the track and PORT B to read in

where the train is. The eight lines of port A are:
points points points points { loco] loco loco loco
S R Q P direction| speed speed |[speed
A7 A6 A5 A4 A3 A2 Al A0

-

Suppose we send 2F to port A: in binary this is -

0 0 1 0 1 L 1 1
+
) +2 @ 1 at il kb speed
0]) © O o]
o 0 ®© o P n 0
o O > B RN o [0} n -~
a8 0 o} o -) > —_
e o 0.0 o o) Q2 0 0 A
— © Folllo! nn g o a oo
] PO QNI Q — 4+ @ o O
et B — £ £ 0T —~ o~
z ol N o m Q o)~ - o E £ 0
n ER R [0} [0} 2 A @© 9]
T aj af e} & o
N L T © n o o oo o,owou &
3 - T -~ 0 .c = e Rl
2 2T FERN T o) PP PEUS T el
o c o« =1 [l sl
-3 -2 - © -2 (¢}
c O o o o o o o O
B "D o3 a4 oo 3

If the loco were at sensor B2 and this code were sent to port A,
the loco would travel to B3 at full speed. If you grasp this, it
should be easy to work out what hex value will cause any required
movement.

o o o o 0 0 0 0 o o o o

If you haven't a railway, you zould drive a 'MFA' vehicle via the
Movement Module from the port Bits 0 and 2 control on/off for the
two motors, and bits | and 3 the direction of each.

Alternatively, wire up the Relay Unit and the Power DAC to control
and reverse two motors, like this:

N

b
Q\E:i;—«w A 54
Q*_——__ Left motor

Power Relay —————— Right motor
DAC Unit

44

Bits 2, 1 and 0 give you control over the motor speed. Bit 3 will
reverse both motors.

Vit o . With the relays in the
(from position shown what
DAC) will be the motor's

behaviour? This
I? Iofs correspons to logic 1
on bit 7 and logic 1| on

oV —e * bit 6.

With logic 0 on both bits 7 and 6 what will the motor do?

If with logic 0 on bit 7 and logic | on bit 6 the motor drives the
vehicle forward, what will logic | on bit 7 and logic 0 on bit 6
cause the motor to do?

What codes will need to be output then to give full ahead, full
reverse, right turn, and left turn? What codes for half speed?

I[f your motors are only 4.5V types, what is the maximum speed code
you should send to the Power DAC?

o o o) o 0 0 0 0 o 0 0 o

The technique for outputting codes in a sequence involves setting
up a table of values and then using them in turn. We have a delay
sub-routine at (2)780 which delays the number of 'blinks' (50ms
periods) that has been put into the Y register before jumping to
the sub-routine. So all that is needed is a sequence:

Send next value in table to port A (£ control code)
Send next value in table to Y Register (= delay)
Jump to DELAY sub-routine

On return from sub-routine do again

You may have noticed immediately that alternate values in our table
are going to be control codes (linterleaved with delay values). To
send the loco from B2 on the track to B3, then to Bl and stop for
12s would need a sequence of codes:

(2)080 2F B2 - B3 at full speed

(2)081 46 delay 3.5s which is 70 blinks (hex 46)
(2)082 B4 B3 - Bl at half speed

(2)083 80 delay 5s

(2)08s BO stop

(2)085 FF maximum delay time (12.2s)

Notice that these are put from 080 to 085 in the A-ROM. T1f you are
controlling something other than this railway layout, work out your

own codes and delays to put in the table, after deciding on a
sultable sequence.

45

Meet four new instructions:

Assembler

Code mnemonic Name Description

BD LL HH LDA HHLL,X ULoad accumulator The accumulator is loaded
absolute, with the contents of the
indexed X memory cell whose address

is (HHLL + X), where X is
the contents of the X

Register.
BC LL HH LDY HHLL,X Load Y Register The Y Register is loaded
absolute, with the contents of the
indexed X memory cell whose address

is (FHLL + X), where X is
the contents of the X

Register.
A2 NN LDX#NN Load X Register Loads the microprocessor
immediate 'X Register' with the

next number in the
program - NN is meant to
indicate the next number.

ES INX Increment X Increments (increases by
Register 1) the contents of the X
Register.

The 'indexed' loading instructions makes possible what we want to
do. BD 80 20 will load the accumulator from 2080 if the content of
the X Register is 00. If the X Register contains 0l, the
accumulator will be loaded from 208!, and so on.

The program 1is:

(2)000 A9 FF LDA/FF Port A

(2)002 8D 63 FE STA FE63 Set for output

(2)005 A2 00 LDX#00 00 into X Register

(2)007 LOOP BD 80 20 LDA 2080,X Load accumulator with next code

f2)00A 8D 61 FE STA FE61 Send code to Port A

2)00D E8 INX Increment the X Register

1 2)00E BC 80 20 LDY 2080,X Load Y Register with delay

{2)0l1 20 80 27 JSR DELAY Jump to DELAY sub-routine

(2)ol4 E8 INX Increment the X Register

(2)015 4C 07 20 JMP LOOP Jump to entry point of main
loop

[t's as simple as that! One obvious flaw is that the program will

start outputting garbage as soon as all the values in the table
have been used (in the last case, as soon as the 12s delay is up
with the loco stopped). One way of overcoming this is to put 00 in
the table at the end of your values, and using a branch instruction
to skip to a jump-to-itself instruction at the end of the program.
Can you work out the program? (and then test it!).

Finally, what should your look-up table contain to take the loco
from B3, clockwise round the inner loop once at half speed, out to
B2, then clockwise round the outer loop flat out? (If you are not
using the railway, work out another control sequence for your
gadget). The delays in this kind of control have to be about right
for the thing to work correctly. We shall meet the idea of
feedback on sheet TI0 which makes it very much easier to control a
mechanical system reliably.

Next Sheet - T9(F)
a6

T9(F) Follow-up to Sequences

motor terminals will be connected to V+ and the motor will
therefore be off.

Driving motors from the relay unit with bit 7 and bit 6 = 1, both

Logic 0 on bits 7 and 6.will also turn the motor off.

Logic 0 on bit 7 and | on bit 6 will turn the motor on, perhaps
clockwise (depending on how it is connected).

Logic | on bit 7 and 0 on bit 6 will rotate the motor in the other

direction.
Full ahead will need 0101 01 which is 57 (hex)

11
Full reverse will need 1010 01tl which is A7 (hex)
(or you could use 010l 11el which is 5F (hex))

From the drawing you can see that bits 4 and 5 go to the left motor
and bits 6 and 7 go to the right motor

So to turn right 0001 0111l which is 17 (hex) this will turn off
the right motor and drive the left.

A pivotting right turn will need 1001 o111 which is 97 (hex)
turn left 0100 oLttt which is 47 (hex)
pivot left o110 ortt which is 67 (hex)

to do any of these at half (approx) speed , use 4 for the speed
digit instead of 7, i.e. l4% will turn right slowly.

the Power DAC gives .75V per bit, so really you should not use
more than 2 for the speed digit, 3 gives 5.25V output which in
practice will probably be safe.

o o o o 0 0 0 0 o o o o
To test each output code fetched from the table of values, use the
BEQ instruction. This will cause a branch only if the value
fetched is 00 (the zero flag will be set only if the value fetched
is 00).

The program will be:

(2,000 A9 FF LDA{#FF
(2)002 8D 63 FE STA FEé63
(2)005 A2 00 LDXi#00
(2)007 LOOP BD 80 20 LDA 2080,X
(2)00A Fo 10 BEQ END
(2)00C 8D 61 FE STA FE61L
(2)00F ES INX

(2)510 BC 80 20 LDY 2080,X
(2)013 Fo 07 BEQ END
(2)Y915 20 80 27 JSR DELAY
(2)018 E8 INX

(2)919 4C 07 20 JMP LOOP
(2)71C END 4C IC 20 IMP E

a7

Don't forget to put 00 at the end of your table (in (2)086). The
branch calculating cards can be used to calculate the
displacements.

To go from sensor B3 on the track out of the siding needs 10100100
which is A%. Actually this could be E4 since points R don't
matter. The delay is a guess - try 3s which is sixty 'blinks' or
3C in hex.

Clockwise round the inner loop needs 10001100 which is 8C. Try a
delay of 6s which is one hundred and twenty blinks or 78 in hex.

To move out onto the outer loop use 00000100 which is 04 in hex,
for a period of 6s again - 78 in hex.

Finally to go round the outside use 01001111 which is 4F in hex for
a delay of FF, then end your table with 00 - the loco will continue
looping.

So the table of codes should be:

(2)080 Al
(2)081 3C
(2)082 8C
(2)083 FF
(2)084 U
(2)085 Co
(2)086 4F
(2)087 FF
(2)088 00

The delay times can be adjusted until they are about right for the
respective phases of the journey.

One final! tip when working with point motors. The system used here
detects changes in output and kicks the point appropriately. When
the system is first switched on, all the point outputs are at logic
1. If the first commanded value for any point is | as well, it
won't receive any kick. That's fine so long as it's already in the
right physical position at the start of the sequence - and it may
not be. It is therefore useful to 'initialise' the system before
you go into a sequence of codes. Like this:

(2)080 08 All points to 0
(2)081 L4 Delay for ls
(2)082 At Start of sequence proper

(2)083 3C

(2)osy 8C

(2)085 FF
etc

Why use 08 and not 00; can you work it out? It's to do with the
BEQ instruction.

Next Sheet - TI10

48

TLO Inputs, and Checking Them

\lost sf the sheets so far have dealt with outputs and.how to
control them. Port B has occasionally been used for inputs; now we

need to learn the hows and whys of the ports.

The ¢hip at the end of the 3-Chip Plus board (labelled 6522) is
known 1s a "v.i.a." - versatile interface adaptor. It provides two
sorts (routes to the outside world) plus a number of additional
foatures like timers which we won't meet formally though one is
used 1n the 50ms delay sub-routine. These ports themselves are
versatile and can be both input, both output, or allocated between

input and output to suit the application. How is this allocation

carried out?

Associated with each port is what is known as a data direction
register (d.d.r. for short).

D.d.r. A (for port A) is at address FE63 on 3-Chip Plus.
D.d.r. B (for port B) is at address FE62 on 3-Chip Plus.

The word 'register' means 'store' as we know, and the hex number
stored in it tells the v.i.a. whether the port is going to be used
as an input or output. At the start of many of our programs has
been:

A9 FF LDA#FF
8D 63 FE STA FE63

The sole purpose of this code is to store FF in d.d.r. A so that
port A will be an output port.

To set up port B as an input the necessary code would be:

A9 00 LDA#00
8D 62 FE STA FE62

but if you look back to previous sheets you won't find this present
anywhere, even when an input was made (e.g. on sheet T7). This is
because after RESET on the board is pressed, bhoth ports are set up
as inputs. There is something to be said for the habit of
systematically setting up all ports, even those used as inputs, but
it isn't strictly necessary for an all-input port.

Those last 3 words imply that a port need not be all input or all
output. In fact individual lines may be set up as you wish.

* To set up a line as an input store a '0' in the corresponding
place in the d.d.r.

* To set up a line as an output store a 'l' in the corresponding
place in the d.d.r.

So to set up port A as all output, store L1ll 111l which is hex FF
at address FE63 (the address of d.d.r. A)

To set up port B as all input store 0000 0000, hex 00, at address
FE62 (the address of d.d.r. B).

To set up port A as four input (lines A7 - A4) and four output
(lines A3 - A0), store 0000 111, hex OF, at address FE63.

o o o o 0 0 0 0 o o o o)

49

Load this code in an A-ROM:

(2)000 A9 FF LDA/FF Store FF

(2)002 8D 63 FE STA FE63 at d.d.r. A
(2)005 A9 00 LDA#00 Store 00

(2)007 8D 62 FE STA FE62 at d.d.r. B
(2)00A LOOP AD 60 FE LDA FE60 Load port B
(2)00D 8D 61 FE STA FE6! Store to port A
(2)010 4C 0A 20 JIMP LOOP and keep doing it

Don't forget to put 00 and 20 into the Reset vector location (2)7pFC
and (2)7FD.

Put the A-ROM in a controller, plug an &-LED Unit into port A and
an 8-Switch Unit into port B. The LEDs should be .directly
controlled by the switches.

Change the program so that the content of port A is loaded into the
accumulator, and then stored to port B. Swap over the Switch Unit
& LED Unit (they will plug onto the other port correctly, although
it looks strange). <Check the behaviour.

Assuming that you did not change the numbers stored in the data

direction registers, you will find that the system seems dead - no
LEDs lighting anywhere. Now change the d.d.r. contents so that
port A is set up as an input and port B an output. The system

should behave properly now.
o o o o 0 0 0 0 o} o o o

The need often arises to check one line to see whether the input
device connected to it is now giving logic | (say).

B7
temp.
— g
MICROCONTROLLER |
85
light outputs
water BO
level

50

Three inputs connect to the microcontroller and the program will
send control voltages to different outputs according to the states
of these inputs and time elapsed. An input may be checked by a
process called masking. Try out this next program:

(2)000 A9 FF LDA/#FF Send FF

(2)002 8D 63 FE STA FE63 to d.d.r. A

(2)9205 NONE A9 80 LDA#30 Load 80 (1000 0000)
(2)007 2C 60 FE BIT FE60 Bit test Port B

(2)920A DO 11 BNE HOT Branch if result non-zero
(2)06C A9 20 LDA#20 Load 20 (0010 0000)
(2)00E 2C 60 FE BIT FE60 Bit test Port B

(2)011 D0 OF BNE LGHT Branch if result non-zero
(2)013 A9 01 LDA#OT Load 01 (0000 0001)
(2)015 2C 60 FE BIT FE60 Bit test Port B

(2)018 DO 0D BNE WET Branch if result non-zero
(2)01A 4C 05 20 JMP NONE All zero, so check again
(2)01D A9 03 LDA#03 Load accumulator and
(2)01LF 4C 29 20 JMP NOTE jump to note routine
(2)022 LGHT A9 05 LDA#05 Load accumulator and
(2)02u 4C 29 20 JMP NOTE jump to note routine
(2)027 WET A9 09 LDA#09 Load accumulator and pass on to

note routine
(2)029 NOTE 8D 6! FE STA FE61

(2)02C A0 0A LDY#0A

(2)02C 20 80 27 JSR DELAY Sound pair of

(2)031 AD 61 FE LDA FEG1 siren notes

(2)03u 49 FF EOR{#FF once

(2)4656 3D 61 FE STA FE61

(2)039 A0 OA LDY#0A

(2)03B 20 80 27 JSR DELAY

(2)03¢L 4C 05 20 JMP NONE Go back to check inputs again.

The Reset vector needs to be 2000 again, and you need an 8-Switch
Unit on Port B and a Sound Board on Port A. Switch all switches to
0, the A-ROM in the controller and press RESET. Nothing should
happen. Switch input 0 to logic | and a siren will sound, switch
it back to 0 and the siren will stop (but see below **). Switch
input 5 to logic | and a different pair of notes will sound.

Switch input 5 off again, then switch input 7 on - a different pair
of notes again.

In trying to follow the program don't worry too much about the
'NOTE' routine at (2)029 - (2)03E. The odd instruction is EOR{#FF:
it simply inverts the state of all the bits. so when 'NOTE' is
jumped to, the accumulator contains a value which is sent to port A
and the routine alternates this note code with another which is the
‘complement' of it. But you can use the routine without knowing
this!

You do need to know about the BIT instruction though:

51

Assembler
Code mnemonic Name Description

2C LL HH BIT HHLL Bit test The contents of the
accumulator are used to test
the contents of the cell
whose address is specified.
The accumulator contents
specify the bit(s) to be
examined. If any of those
specified contain 1, the
zero flag will be clear
indicating a non-zero
result. BNE will cause a
branch. TIf none of those
specified contain 1, the
zero flag will be 'set'
indicating a zero result.
No branch will occur at BNE.

If that seems complicated, look at the program. The magic
combination of op-codes occurs first at (2)005:

LDA#testbitcode
BIT portaddress
BNE whatshouldhappen

will set up the test. Where are the other similar tests carried
out?

o o o o 0 0 0 0 o o o o
** The behaviour is unsatisfactory in that a note is left sounding
constantly once the input goes low again. Can you modify the
program to stop this happening?
Try switching two inputs to logic | simultaneously - what happens?

Try different pairs of inputs. Can you explain this behaviour from
the program? Is it satisfactory? How ought the system to behave?

Next Sheet - TI10(F)

52

TIO(F) Follow-up to Inputs, and Checking Them

The program to load from port A and store to port B is simply:

(23019 A9 FF LDA/FF put FF

(217202 3D 62 FE STA FE62 in d.d.r. B
(2)10065 A9 920 LDA#00O put 00

(:12)007 8D 63 FE STA FE63 in d.d.r. A
(2)99A LOOP AD 61 FE LDA FE61l Load port A
(:2)00D 8D 60 FE STA FE60 Store to port B
(:2)010 4C 0A 20 JMP LOOP and do again

This is the fully corrected program - with data direction registers
changed too.

o) o o) o 0 0 0 0 o o) o) o
Bit tests occur
at (2)005 - (2)00B (bit 7 is tested, the microprocessor
branches to (2)01D if bit 7 is 1)
at (2)00C - (2)012 (if bit 5 is 1, branch to (2)022)
and at (2)013 - (2)019 («if bit 0 is 1, branch to (2)027).

o o o o 0 0 0 0 o 0 o o

A note is left sounding because the NOTE routine doesn't kill the
sound generator before going back to the bit tests. This is easily
remedied with

(2)03E A9 00 LDA#00 send 00
(2)0%0 8D 61 FE STA FE61 to Port A
(2)043 4C 05 20 IJMP NONE

Can you explain why the tone generator does not appear to go silent
so long as a 'live' switch is at 1? (the code 00 is certainily sent
to the port every time the system goes through the NOTE routine).
Can you explain why the tone does not stop immediately the

of fending switch is put back to the 0 state?

1f two 'live' inputs are switched at the same time, only the
'higher' one causes an effect. The program checks bit 7 (heat)
before bit 5 (light) before bit 0 (wet), and a branch immediately
happens to the note routine if a fault condition is detected. The
system is prioritised. This may be a good thing - or not. Perhaps
it would be better to have a siren (with two fixed tones) plus a
set of indicator lamps to show which one or more fault conditions
have occurred. The Music Module only uses bits 3-0 so if you
connect the 8-LED Unit to 3-Chip Plus, then the Music Module. you
can control LEDs 7-% completely independently of the sound. You
will need to know what the ORA instruction does before writing the
program for this modified system - see sheet TIlI.

Next sheet - TIl1

53

Tl1 Controlling the Railway Il - Feedback

Learning sheet T9 showed the main principles behind controlling the
points and locomotive; this sheet will show you how to 'read' the
sensors so that you can tell when the loco has reached a particular
position. The problems of controlling a device or system by time
delays should be apparent by now. Unless you know exactly how the
external system (in this case the railway) will behave, it is very
difficult to control precisely. Furthermore, any variation in
system behaviour (like a slow-running loco) cannot be coped with.
This is why feeding back data to the controller about the external
system's behaviour is so important. The only alternative is to
have an external system whose behaviour can be guaranteed - stepper
motors (which some users of these sheets will have encountered) are
an example here.

All the detailed instructions on this sheet are framed around a
model railway as described on sheet T9, but any other controllable
device which has position sensors attached can be used so long as
you can interpret the guidance material into the situation.

o) o o] o 0 0 0 0 o) o o o

Key into the A-ROM the program from sheet Tl0 which reads the input
from port B and immediately stores it to port A.

Connect the 8-LED Unit to port A on the 3-Chip Plus board and the
Sensor Input Unit (connected to the railway) to port B. Transfer
the A-ROM and press the RESET key to run the program. The LEDs are
now be showing you what the track sensors are sending out - they
will probably be all off showing that all four sensor outputs are
logic 0. (For the sensors to work reliably, the railway board must
be in a well-lit room).

Shade a track sensor and one of the LEDs should come on, telling
you that there is now an output from that sensor.

The way the sensors are connected to the lines of the port is:

B} B2 Bl BO - sensor

‘

port line - B7][stfBSJ[BullB:3|[|;2]|;MH‘BOJ

In other words, lines B4 - B7 aren't used, and the sensors shown on
the track layout plan (sheet T9) are labelled according to the port
line they are connected to. Refer to the track plan, shade sensor
BO and check that LED 0 comes on. Do the same for sensors Bl, B2
and B3. You may like to note down the organisation of the sensors.

54

FE
FE

27

met on the
sensor by a simple procedure.

LDA#FF
STA FE63
LDY#08
STY FE61
LDY/#14
JSR DELAY
LDY#2D
LDA#08
ISR TEST
LDY#00
STY FE61
IVMP END

last sheet can be used to check a
Load this program into an A-ROM:

Set up for output,

Port A
All points to O

to Port A (via Y Reg)
Delay time to Y Reg
and jump sub-routine to do it
Points/speed to Y Reg.
Sensor code to accumulator
Jump to output and bit test rtn

Second points/speed to Y Reg

Store to Port A
End of program.

The BIT instruction
{(2)009 A9 FF
(2)992 8D 63
(2)005 A0 08
(2)007 SC 61
(2)00A A0 14
(2)00C 20 80
(2)00F A0 2D
(2)o011 A9 08
(2)013 20 80
(2)01s A0 00
(2)018 8C 61
(2)01B END 4C 1B
(2)080 TEST 8C 61
(2)083 NYET 2C 60
(2)086 FO F38
(2)088 60

STY FE61
BIT FE60

BEQ NYET
RTS

Y Register to Port A

Test Port B (ref contents of
acc)

If sensor zero do again

Return to main program

(The delay sub-routine at (2)780 must be intact)

These new instructions are used (copy them into your growing

Name

table):

Assembler
Code mnemonic
3C LL HH STY HHLL
60 RTS

Description

Store Y Register Stores the contents of the

(absolute)

Return from
sub-routine

This program * sets up port A for

* puts all points to
reason)

Y Register to absolute
address HHLL.

Placed at the end of every
sub-routine to tell the
microprocessor to go back
to the main program.

output

0 for ls (see sheet T9 for the

* loads the required output code into Y and the
sensor test code to A (the accumulator)

* uses a sub-routine to output the points/speed code,
then waits for as
to be covered.

long as it takes for the sensor

Transfer the A-ROM to the controller, put the loco at B2 press
The loco should move from B2 to B3 and stop when it gets

RESET.
there

- when the sensor

(o] o

o

is covered

o 0 0

55

It is possible to write that last simple program using less bytes
of machine code, but the use of a sub-routine will make a more
sophisticated control program much simpler. The program also
illustrates the idea of the use of 'procedures' and of giving
structure to the program. There is a lot to be said for
structuring even simple control programs so that it is clear what
is happening. Put the general control operations at the 'top' of
the program, and the detailed code to cause these operations to
happen in separate sub-routines. This is not the place to write in
details about this; books are available on the subject of
structured programming and an understanding of the simple concepts
of structuring BASIC can be transferred into the machine code
control arena.

Finally, on this topic, two 'parameters' are 'passed' to the
"output and bit test procedure". the output code is put into the Y
Register and the bit test code into the accumulator before the ISR
instruction occurs. The sub-routine then operates on the Y
Register and accumulator contents.

You now have all the principles for writing a longer control
routine. Can you write a program that will take the loco from B3
to Bl at half speed, then to BO at speed 6, and onto the outer loop
at full speed. Finally make the loco go clockwise round the track
at speed 3 ((for ever!). Presumably you will do this by repeated
loading of the Y Register and accumulator followed by jumps to the
sub-routine at (2)080.

Can you incorporate the principles of sheet T9 and use the X
Register as an index register? Put your control codes at {2)0C0
onwards and load them in pairs into the Y Register and accumulator
before jumping to the output and bit-test sub-routine. Think how
you are going to leave the loco going eternally round the outside
loop.

Bit Setting and Cleaning

Sometimes it is useful to be able to turn on or off one control
line (i.e. one bit) of an output Port, without necessarily knowing
or bothering to find out what state the other 7 bits are in. For
example, if you wanted to change point R from position "I" to
position "0" without affecting any other point or the speed output
how would you do it (if you couldn't be sure of the states of all
the other lines)? The answer is to use the AND instruction.

The AND instruction operates like this:
75 AND B9 is 31l - which may seem a curious result (1)

But 75 is 0l11l 0lOl in binary
B9 is 101; 100; in binary

Columns where

there is | at

the top AND

the bottom : :

are 0011 0001 which is 31 in hexadecimal.

See if you can work out:
(1) 32 AND FI (2) 8C AND 78 (3) F3 AND BF

Check your answers with the follow-up sheet before you go on.
56

Example 3 lecads into the idea of masking. [If you have
Bit: 7654 3210
Irter oo0ll (F3)
1ot Lttt (BF)
v
101l 0oLl All bits in the result except for bit 6
will be the same as in the original number
because to get a | in a result column you
must have | in the same column of both the
numbers you start with.
To put it another way, if the number you AND with (the BF in this

case) has a single 0 in it when it's converted to binary, it's just
like looking at the other 8 bit binary number through a mask with 7
holes cut in it. Each bit of the result will contain a | if there

was a 1 in the first number at that place, and the result will be 0
if there was a 0 in the first number at that place - but bit 6 will
always be zero: you will turn it off.

Don't worry if you can't fully understand yet, you can try out the
idea on the equipment and anyway you can use the technique without

fully understanding it.

Try this program:

(2)000 A9 FF LDA#FF
(2)002 8D 63 FE STA FE63
(2)005 A0 08 LDY#08
(2)007 C 61 FE STY FE61
(2)00A A0 14 LDY#14
(2)o00C 20 80 27 JSR DELAY
(2)00F A0 A5 LDY#A5
(2)o011 A9 01 LDA#01
(2)013 20 80 20 JSR TEST
(2)o0156 AD 61 FE LDA FEé6!
(2)019 29 DF AND#DF
(2)01lB 8D 61 FE STA FEs6l
(2)01E END 4C IE 20 IMP END

Pgt the loco at B3 and press RESET.
siding and when it reaches B0, point
position so that the

loco can circulate the

Set up for output
Port A

All points to 0
to Port A (via Y Reg)
Delay time to Y Reg
and jump sub-routine to do
Points/speed code to Y Reg
Sensor code to accumulator
Jump to output and bit test

routine
Load Port A to accumulator
AND with DF (bit 5 0)
Store result back to Port A
END

it

It should move out of the
Q will move to the '0'
inner loop.

Finally, what do you do if you want to change one bit from 0 to 1?

This time you perform a logical OR.

Columns shere there
at the top OR at the
bottom are

is a l

So bit 3 has been turned on by the operation OR#08. -

is OLl1
is 0000

0101
1000

For example 75
08

oLLl 1101
A

Can you think up a simple route for your loco where it will be

necessary to change a bit from 0 to |

57

when it goes over a sensor?

These new

Code

29 NN

09 NN

Next sheet

Assembler
mnemonic

instructions are:

Name

AND#NN

ORA{FNN

- TLL(F)

AND accumulator
(immediate)

OR accumulator
(immediate)

58

Description

Performs a logical AND
between the contents of
the accumulator and the
next number in the
program. The result is
left in the accumulator.

Performs a logical OR
between the contents of
the accumulator and the
next number in the
program. The result is
left in the accumulator.

TILI(F)

Follow-up to Feedback

The more complicated control program will look something like this:

If you
usce th

(2)yoc7z

(2)080

** The

between (2)083 and (12)087.

- (2)00E

AQ
A9
20

AD

END 4C

- (2)08s3

want to do this

R
02
39

Is program:

- (2)00E

A2

00

LOOP BC CO 20

E8

BD CO 20

20

E8
4C

B4
02
BE
01
3
04
7B
00

- (2)088

80

11

00 is put

20

20

as before

LDY#B4
LDA#02

JSR

TEST

LDY#BE
LDAO 1

ISR

TEST

LDY#37
LDA#O4

JSR

TEST

LDY#7B
LDA700

ISR
IMP

as hefore

as before

TEST
END

LDX#00
20C0,X

LDY
[NX
LDA
ISR

INX
IMP

20C0,X

TEST

LOOP

Points/speed code to Y Reg.
Sensor code to accumulator
Jump to output and bit test

. routine
next points/speed
next sensor

next points/speed
next sensor

next points/speed
see explanation below *x

END

using the X Register as an index register,

Index register = 00

Load Y from (table start + X)

Increment index register

Load A from (table start + X)

Jump to output and bit test
routine

Increment index register

Do it all again

First points/speed code

First sensor code

Second points/speed code

etc

see explanation below **

as before

in as the final

sensor check so that the
microprocessor will be permanently 'trapped' in the sub-routine

Thus the loco will go round the

outer circuit of the track for ever.

[e]

(o]

o

[o]

0

1 32 AND FI

which gives

2 8C AND

which gives

78

3 F3 AND BF

which gives

is

is

is

0011 o010
1111 0001
0011 0000

1000 1100
0111 1000
0000 1000

1111 0011
1011 1111
1011 001t

which is 30 in hex

which is 08 in hex

which is B3 in hex

Perhaps the easiest example of altering one bit of the output code
is to change the direction bit (bit 3) when the loco goes over
The program might be:

sensor B2.

(2)000 =
(2)00F
(2)ol1
(2)013

(2)01l6
(2)019
(2)01B
(2)01E END

Next Sheet

(2)00E

A0
A9
20

AD
09
8D
4C

Fé
04
80

61
08
61
1E

- T12

20
FE

FE
20

as before
LDY#F6
LDA#O4
JSR TEST

LDA FE61
ORA#08

STA FE61
IMP END

60

Points/speed code to Y Reg
Sensor code to accumulator
Jump to output and bit test
routine
Load accumulator from Port A
OR with 08
Store result back to Port A
End

T12 Using the A-D Converter

The microprocessor is often used to control a process by making
small adjustments to an output after it has Faken.some measurements
of., perhaps, temperature, or flow rate, or light intensity, or.....
there are many possibilities.

In order to do this an analogue to digital converter is used. This
unit senses the voltage connected to its input socket and gives an
output on its 8 output lines which is the binary code for the input
signal. The voltage is what is known as an §nalogge signal,'the
binary signal to the microprocessor is a digital signal. This is
where the name 'A-D converter' comes from. ADC is a common
abbreviation: the complement of DAC met on sheet T7.

The A-D boxes we use give a binary | output for 0.01V input (that
is 10 mV). So if you connect 0.01V to the input socket, the output
will be 0000 0001.

0.07vV would give 000 0111 on the output lines (the binary code
equals 7 in 'ordinary' counting).

1.27V would give Olll 111l on the output lines (ithe binary code
equals 127 in 'ordinary' counting).

2.60V would give 1100 1000 on the output lines (the binary code
equals 200 in 'ordinary' counting; 200 x 0.0lV = 2.00V)

o o o o 0 0 0 0 o o o o)

Connect up the following circuit.

1 P
turn ADC 0 1234
oL, R
) T
T Digital
multi-
3-CHIP PLUS meter

Q Ql(ideally)

BN

If it has one, the multimeter should be on the DC 20V range.

Rota;ing the potentiometer knob should change the multimeter
reading. Set the voltage to 1.00V.

Key the first program on sheet T7 into the A-ROM - the program that

reads the input to port B and tra i
nsfers it as an output t o v
Connect an 8-LED Unit to port A. P °port A

61

Transfer the A-ROM to the 3-Chip Plus board and press RESET. The
display should show in binary what the output from the ADC is. If
the analogue voltage is 1.00V, which is one hundred lots of 0.01V,
the binary output should be one hundred as well - that is 0110
0100. This tells you which LED's should be alight. Small errors
are likely - but the display should not be more than two out (that
is it will show between 0110 0110 and 0110 0010).

(a) Change the meter reading to 1.42V (#ith the potentiometer).
What does the 8-LED Unit show now? Has the analogue -
digital converter done its job correctly?

(b) Try the following voltages. You might like to copy the table
and use it to make notes.

Volts | Binary Code (1 binary digit = 0.01V) | Actual reading of
8-LED unit.

1.87

Fetch a Temperature Transducer and connect it to the ADC.

The voltage output is 0.01V for every degree Celsius (above 0
C). For a typical room temperature of 20 C this is

0.20V.

20 = 0001 0100 so a number something like this should show on
the display. 1If the room temperature is hotter or colder
than this the display will show something different.

Warm the sensor with your fingers - what is your body
temperature?

(c) If the display showed 0010 1110 what is the temperature of
the sensor?

(d) I[f the display showed 010l 010l what is the temperature of
the sensor?

Sheet Tl4 shows how to turn the binary data into a more useful
format, but first check your results with Ti2(F)

62

TI2(F) Follow up to A-D Converters

(a) 1.2V = 142 lots of 0.01V

1000 1110 which is what the 8-LED Unit should display.

P
18]
it

(%) 0.36V = 0010 0100 which is what the 8-LED Unit should display.
2.%6V = 1111 0110 which is what the 8-LED Unit should display.

1oll 101l which is what the 8-LED Unit should display.

w
~
<
"

(=) 12910 LLLI0D = 46 in 'ordgnary' (decimal) numbers. The
temperature must be 46 °C therefore.

(d) 92101 0101 = 85 in decimal. The corresponding temperature is

35°C.

Next Sheet - TlU)S

63

T13 Using RAM

What is RAM first?! The initials stand for Random Access Memory
which might not make matters any clearer! It is in fact memory
into which data can be written and from which data can be read.

The program that controls the micro-processor is stored in Read
Only Memory (ROM for short) - you can't write data into a ROM, as
the name suggests. One way of remembering what RAM can be used for
is to call it Readily Alterable Memory.

A great many jobs that a microprocessor can do will need a certain
amount of 'working memory' into which bits of information can be
written for use later. Perhaps the easiest way of thinking about
it is to consider how you would work out

(36.27 x 26.93) + (14.97 x 6.12)
(143.27 + 678.95)

using a simple 4 function calculator without a memory. You'd need
a piece of paper on which to 'store' the result of each bracket in
the sum before doing the final working out. You might like to try
to see if you can do it without using paper - but remember, don't
use the calculator memory! The answer is 1.2993693. The piece of
paper you use in a calculation like this is called a 'scratchpad’
by our friends on the other side of the Atlantic. It's not
surprising, therefore, to find the RAM on a microprocessor control
board called 'scratchpad memory', because the job it has to do is
very like the piece of paper used with a calculator.

o o o o 0 0 0 0 o) o o o)

You have already learnt that the two Ports had addresses, FE61 and
FE60 respectively. To get an output from a port you had to store
the hex code you wanted to the right address.

The procedure is just the same for using the scratchpad RAM bhut of
course the addresses are different. 3-Chip Plus has 768 bytes of
RAM on the board. The RAM cells are in two different areas of
memory :

from 0000 to OOFF and
from 0200 to 03FF

The first block is called 'zero page RAM' (because the high byte of
its address is 00) and we will only use this area because it's
simpler and you will hardly ever need more than 256 bytes in a
control situation.

The program example is for a simple 'voting machine' to turn on a
LED when four or more input switches are on. The program can be

changed so that five (or six, or three or...) switches are needed
to turn on the LED. You will use an 8 Switch Unit, but obviously
if it was a voting machine you'd have § single switches on wires.

64

The main part of the program (which you can put into an A-ROM) is:

(21399 A9 FF LDA#FF Set up port A

(2)502 8D 63 FE STA FE63 as output

(2)795 STRT A9 08 LDA#08 Put 08

(2)0997 — 85 40 STA Z40 into loop counter
(21009 A9 00 LDA#00 Put 00

(2)00B 85 41 STA Z41 into result counter
(2)00D AD 60 FE LDA FE60 Load accummulator from Port B
(2)010 85 42 STA Z42 and store it to "temp".
(2)012 LOOP A5 42 LDA Z42 Load accumulator from "temp"
(2)014 29 01 AND##0 1 'mask' right hand bit

(2)o1le FO 02 BEQ NIL branch if result is 0

(2)018 E6 41 INC Z41] Increase result counter by 1
(2)01A NIL 46 42 LSR Z42 Shift right” "temp"

(2)01C C6 40 DEC Zu40 Decrement loop counter

(2)01E DO F2 BNE LOOP Do again unless loop ctr. = 0
(2)020 A5 41 LDA Z41 Load acc. from result ctr.
(2)022 38 SEC Set carry

(2)023 E9 04 SBC#04 Subtract 04

(2)025 10 08 BPL LED Branch if result plus (or zero)
(2)027 A9 00 LDA#00 Otherwise send 00

(2)029 8D 61 FE STA FE6! to port A

(2)02C 4C 05 20 JMP STRT and go back to beginning
(2)02F LED A9 FF LDA#FF Send FF

(2)031 8D 61 FE STA FE6I to port A

(2)03u4 4C 05 20 IJMP STRT and go back to beginning

Connect an 8-LED Unit to port A and an 8-Switch Unit to port B.
Transfer the A-ROM to a 3-Chip Plus board. Press RESET then check
that the program works. You should find that with % or more
switches at 'l', all the LEDs will come on. Otherwise all LEDs are
off. It doesn't matter which 4 switches are on.

o o o o 0 0 0 0 o o} o o}
The following instructions are new to you; add them to your list:

Assembler

Code mnemonic Name Description
85 LL STA ZLL Store Stores the contents of the
(zero page) accumulator to address OOLL
(in zero page RAM)
A5 LL LDA ZLL Load Loads the accumulator with
(zero page) the contents of zero page
RAM at 0OLL.
46 LL LSR ZLL Logical shift The 8 bits currently stored
right at zero page address OOLL
(zero page) are shifted right one place
(50 0110 1011 would become
0011 0101)
38 SEC Set carry The 'carry store' is 'set'

(to logic 1). This has to
be done before performing a
subtraction.

65

Code

E9 NN

10 XX

NOTE

Assembler

mnemonic Name Description
SBC#NN Subtract NN is subtracted from the
(with carry) current contents of the

accumulator. The carry acts
as a 'borrow' if you are
doing multi-byte arithmetic.
Always set the carry before
starting a subtraction.

BPL XX Branch if The microprocessor branches
plus on or back (depending on the
displacement XX) if the
result of the previous
operation in the program was
positive. (Zero is deemed
to be a positive quantity).

Strictly speaking the mnemonic for zero page addresses does
not include the Z. So 'Load, zero page' is just LDA LL
where LL is the address in zero page (e.g. LDA 4C loads from
004C). Putting the 'Z' in helps clarity but if you find
yourself using an assembler (for example on the BBC
Microcomputer), the chances are it won't like the Zs. In
which case delete them!

o o o o 0 0 0 0 o) o) o 0

The flowchart for this program is quite complicated, but if you
can't see what the program is doing by looking at the list above,
the flowchart may help. The important thing to realise is that:

* RAM location 0040 is used to count how may switches have been
inspected, and when this is 8 the decision is made to light
the LED or not.

* RAM location 0041 is used to count how many switches are down.

* RAM location 0042 is used to store the data taken in from port
B as it is shifted right a stage at a time.

o o o o 0 0 0 0 0 o o o)

A6

START

port A =output
port B =input

L, 4
put 98 in @@4gy
P9 in @4l
put contents of
port Bin #9042

NS~ S

load from »
ppaz

increase

@pa1 by
shift right 1

contents of
ppaz g<—-‘

reduce ﬁﬂaﬁbyT

yes

send 00

send FF to port A
n i

Lo pol"t A ‘
] Y -

If you think you have got the idea of how the program works you

might like to try changing it to make it light the LED when 5 or
more switches are on.

Can you change it so that if 4 or more switches are dowg LED 7
lights, and if 3 or less switches are down LED 3 lights?

Try modifying the program so that you use different RAM locations
toystore ¥hegdata.p Ygu might use 00AC (instead of 0040) to store
how many switches have been inspected, 0097 (instead of 0041) to
count how many switches are down, and 0001 (instead of 0042) to
store the data from port B as it is shifted right.

Next Sheet - TLI3(F)
67

T13(F) Follow up to using RAM

1

To get the program to check for 5 or more lamps you change the
instruction at (2)023/4 to E9 05. this subtracts 5 from the
number of switches that have been counted as down before the
‘branch if plus' test is applied.

Leave (2)023/4 as E9 04. Change instruction (2)027/8 to A9 03.
This will turn on LED 3 if too few switches are down. Remember
that the LEDs number from 0 to 7 (not from | to 8) so LED 3 is

the fourth in the line! Change (2)030 to 80 which will

turn on LED 7 alone if enough switches are down.

This is a bit more tricky. A list of program lines that must
be changed is:

(2)007 85 AC
(2)o0B 85 97
(2)010 85 01
(2)012 A5 01
(2)018 E6 97
(2)01A 46 01
(2)01C Cé6 AC
(2)020 A5 97

All the rest are left unchanged.

* * * * * * *

As well as meeting RAM for the first time on this sheet, you
have also gone on to the next step in controlling - that is
using the intelligence of the microprocessor to allow decisions
to be made. To some extent the second railway control sheet
showed this, but this sheet involves a slightly more
sophisticated piece of decision-making. The microprocessor
checked each of eight switches in turn, then made a decision as
to whether or not to turn on a LED according to how many
switches were closed. The microprocessor is not just a
controller but an intelligent controller.

The second thing that you may have realised is how easy it was
to change the number of switches that were needed to operate
the LED. The alteration of a single program code achieved
this. A circuit to turn on a LED when 4 switches out of 8 are
down could be made out of separate integrated circuits. It
would take a long time to wire up, and if you wanted to change
it so that 5 switches were needed to turn on the LED, you'd
have to virtually start again with your design and wiring up.
The flexibility, versatility and ease of mass production of
microcontrollers will lead to their widespread use in old and
new control situations.

Next Sheet - Tl4

68

Tl4 Using the Microprocessor to Operate on Data

This learning sheet follows on from the last and shows how
arithmetic can be done on data sent to the microcomputer, and how
outputs can be changed according to the data. The design of a
digital thermometer is considered; you have a working system when
you have finished the sheet. It is relatively easy to build in a
thermostat function so that the micro can keep the temperature
constant.

o o o o 0 0 0 0 o o o o
[f we want to give a readout of temperature (to port A) we need to:
(a) perform an analogue to digital conversation.
(h) convert the binary data to data for two decimal digits
(c) send it to port A
(d) delay for one second
(e) repeat the process

It is a bit complicated to explain exactly what the program is
doing, but notes are written to tell you what each bit of the

program is doing.

(1) Fetch a 3-Chip Plus board and connect a dual 7 segment LED
Unit to port A, and an ADC to port B

(2) A temperature sensor should be connected to the A-D converter

Key the program into an A-ROM, transfer it to the 3-Chip Plus board
and press RESET - the display will tell you what the temperature of
the sensor is (in degrees Celsius). At first it will show room
temperature (about 20°C). Warm it in your hand and the display
will change. Body temperature is about 37°C which is just outsiqe
the range of the thermometer system. You could immerse it in a jar
of warm water and compare the electronic thermometer with a
mercury-in-glass thermometer, or even put it in boiling water.

o o o o 0 0 0 0 o o o o

69

Digital thermometer program:

(2)000 A9 FF LDA#FF Set up as output

(2)002 8D 63 FE STA FE63 Port A

(2)005 REPT A9 00 LDA##00 Put 00 into

(2)007 85 21 STA Zz21 temp store (1)

(2)009 AD 60 FE LDA FE60 Load Port B

(2)00C FO 10 BEQ OUT Quit if it's zero

(2)00E 85 22 STA Z22 Otherwise put into temp(2)
(2)010 18 CLC Clear the carry

(2)o1t F8 SED Set decimal mode

(2)012 MORE A5 21 LDA Z21 Load temp (1)

(2)014 69 01 ADC#01 Add 1| to it

(2)016 BO 13 BCS MUCH Look for overload condition
(2)o018 85 21 STA Z21 Not, so put.back in temp (1)
(2)01A Cé6 22 DEC Z22 Subtract 1| from temp (2)
(2)01C DO Fu BNE MORE Repeat if not finished
(2)01E OUT A5 21 LDA Z21 Load temp (1): the result
(2)020 8D 61 FE. STA FE6l Send to output port

(2)023 A0 14 LDY# 14 Delay period = ls

(2)025 20 80 27 JSR DELAY execute delay

(2)028 4C 05 20 IJMP REPT and do it all again

(2)02B MUCH A9 FF LDA#FF Result more than 99 so
(2)02D 8D 61 FE STA FE61 send FF to output port
(2)030 A0 L4 LDY#14 Delay period = 1Is

(2)032 20 80 27 JSR DELAY execute delay

(2)035 4C 05 20 JMP REPT and do it all again

You will have noticed that the system seemed to delay before
responding to any switch changes you made. Delays are put into the
program to stop the display flickering all the time. You can
easily change the delay period and observe the effect.

Clearly with a two-digit display and an input that oculd reach 255
it is necessary to indicate an overload condition (input greater
than decimal 99). Sending FF to the port blanks this particular
display, and the program harnesses this facility - the display is
switched off when a false reading would otherwise be given (for
inputs of decimal 100 and above).

The purpose of this sheet is to demonstrate microprocessor control
involving the collection of data, the processing of it and control
with decision making. These are the basic ingredients of most more
sophisticated microcontrolled systems. If you are interested in
the new instructions that have appeared and how the program works,
look at the follow-up sheet TL4(F).

o o o) o 0 0 0 0 o o o) o

It is quite easy to turn the system into a thermostat as well. By
the time the microprocessor has reached OlE or 02B the temperature
is stored in Z21. You need to write a bit more program that will
test whether the temperature is greater than or less than some
desired value. You would then need to switch on or off a heater to
keep the termperature constant. How could this be done when all 8
bits of both ports A and B are tied up? It is possible to use the
CA2 and CB2 lines from the 6522 v.i.a. chip as additional outputs,
and these could switch a relay unit connected to the heater. The
principle of feedback control of an analogue quantity is important,
but the connecting up and the programming are a bit too tricky for
this series of sheets.

Next sheet - T14(F)
70

T14(F)

Follow-up to Processing Data

The new instructions were:

Code

18

F8

69 NN

B0 XX

Cé6 LL

Assembler
mnemonic

Name

CLC

SED

ADC{NN

BCS XX

DEC ZLL

Clear carry

Set decimal
mode

Add with carry
(immediate)

Branch if
carry set

Decrement
{zero page)

Description

The 'carry flag' is made 0.
It is used when performing
additions of numbers which
occupy more than one byte.

All additions and
subtractions can be made to
happen in binary-coded-
decimal by inserting this
instruction.

Add the next number in the
program to the contents of
the accumulator + the carry
flag. The result is left in
the accumulator.

A branch happens only if the
carry bit =1

As other decrement
instructions but for zero
page memory locations.

0 o o 0 o

The flowchart for the program which may help you to understand it
if you wish is:

ddrA=FF
> 1
_temp(l)=¢@

load portB

put into
temp (2)

CLC, SED
load temp (1)
Add @1

put back to temp(1l

decrement temp(2)

FF to portA

delay 1s

no emp (2)
=g@7

yes

temp(1l) to
port A
delay 1s

72

