
ISSUE NO. 1

*
Rockwell International
...where science gets down to business

Page 2 i m m r a i r f l

As you page through this first issue of the newsletter,
you’ll notice that most of the articles have been written
by Rockwell employees. Since the purpose of the news
letter is to provide you with a medium to exchange ideas
with other AIM 65/6502 users, we’ll be looking forward
to having an article from YOU (or even a comment
about what you’d like to see) for the next issue.

You don’t need to be a professional writer to submit an
article. We can smooth over and edit any rough spots
there may be, as long as it’s readable. So please type it.
We can also re-draw any diagrams that accompany your
article. The best way to send assembly source listings is
on cassette. Be sure to let us know if you’d like it
returned. If you don’t have an assembler, we can accept
handwritten source listings as long as they are easy to
read and well commented — don’t forget to use labels
for every referenced memory location.

I ’ll look forward to hearing from you.

Best Wishes,

Editor

To keep receiving this newsletter, subscribe now! The
cost is $5 for 6 issues (or $8 overseas). As an incentive
for charter subscriptions, w e’ll send you the next 8
issues for $5 ($8 overseas) — that’s 2 additional issues
free - if you subscribe now. This a one-time offer that
will not be repeated. Just fill in the attached subscription
request, add your check or money order payable to
ROCKW ELL INTERNATIONAL, and mail in the atta
ched, postage paid envelope. (Payment must be in U.S.
funds drawn on a U.S. bank.) No purchase orders.

All correspondence and articles should be sent to:
NEWSLETTER EDITOR
ROCKWELL INTERNATIONAL
P.O. Box 3669, RC55
ANAHEIM, CA 92803

AIM 65 SELF-TEST PROGRAM
AVAILABLE

Rockwell is making the AIM 65 self-test program availa
ble through it’s spare parts facility. Order part numbers
#EA74-M800 and #PL74-J100 for the Test Manual and
Program Listing, respectively.

Refer to the spare parts list elsewhere in this newsletter
for further information.

LOW COST PRINTER FOR AIM 65 (?)
An ar tic le in the February 1980 issue of
MICROCOMPUTING page 186 (remember KILOBAUD?)
explained the hows of interfacing a surplus Model 2970
Communications Terminal (Selectric-based) to a KIM or
SYM.

The low price (the author paid $100 for his 2970) and
the excellent print quality could offset the slow speed
and complicated design of the Selectric mechanism for
your application.

Since the SYM also uses a 6522 as its user I/O, conver
sion to AIM 65 would seem straightforward.

Although the author didn’t mention the printing speed of
the Selectric, 1 understand it to be quite slow (around
10-15 characters per second). That works out to one fifth
the speed of the DIABLO at about one thirtieth the
price.

Hmmm . . . that’s not too bad.

COLOR GRAPHICS
That same issue of M ICROCOMPUTING (Feb. 1980)
also published the design of a low-cost video display
which uses the AMI S68047 VDG.

The Video Display Generator operates in three modes:
alphanumerics (32 x 16), semigraphics, or full graphics
(up to 256 x 192 resolution).

Although the display chip was interfaced to an 8080 sys
tem in the article, an experienced AIM 65 user should
have very little trouble in adpating the interface to his
system.

The software must, of course, be completely re-written.

COPYRIGHT 1980 ROCKWELL INTERNATIONAL CORPORATION

Rockwell does not assume any liability arising out of the application or use
of any products, circuit, or software described herein; neither does it convey
any license under its patent rights nor the patent rights of others. Rockwell
further reserves the right to make changes in any products herein without
notice.

Page 3

AIM 65 SPARE PARTS
PROCUREMENT

Here’s an abbreviated spare parts price list with some of
the more commonly requested items. (All parts are avail
able.)

For C.O.D. orders or inquiries, call: 800/351-6018.

Mail Orders should be directed to:
ROCKWELL INTERNATIONAL
SPARES CONTROL
P.O. BOX 3669, RC48
ANAHEIM, CA 92803

Add your state and city tax. On orders under $10.00,
add $2.00 shipping and handling.

AIM SPARE PARTS LIST

ROCKWELL PART

NO.

DESCRIPTION PRICE

208R02-001 THERM AL PRINTER $74.70

208R02-010 PRINT HEAD 13.00

341R29-001 RESET SWITYCH <S1) .30
470R03-002 DARLINGTON TRANSISTOR

ARRAY (Z21.Z30)
2.71

TT270 THERM AL PRINTING PAPER 3
ROLLS/BOX

3.50

PA00-D020-001 KEYBOARD-TO-AIM 65 CABLE 7.50

PA00-D124-003 RED DISPLAY FILTER 3.85

PA00-D125 DISPLAY ANTI STATIC SHIELD 2.00

PA00-D131-00I PAPER TEAR BAR 73

PA00-D13 3-001 PAPER HOLDER 7.13
R2114 RAM CHIP 13.05

R3222 MONITOR ROM (Z22) 35 45

R3223 MONITOR ROM (Z23) 35.45

R6502 CPU (Z9) 9.80

R6520 PI A (Ul) 6.55

R6522 VIA (Z l mZ32) 9.10

R6532 RIOT (Z33) 12.35
EA74-M800 TEST M AN U AL 7.50

PL-EA74-J100 TEST PROGRAM LISTING 7.50

21 OR 12-001 4-DIGIT DISPLAY MODULE
(MUST SPECIFY INTENSITY CODE
WHICH IS FOUND ON LOWER
LEFT HAND CORNER OF
MODULE. THE CODE W ILL BE A
LETTER (A THROUGH E) OR A
COLOR (RED THROUGH WHITE)

29.25

CRT APP. NOTE INFO

If you ’ve been climbing the walls trying to find the
Standard Microsystems CG-5004 character generator
specified in our application note entitled “ CRT MONI
TO R OR TV IN T E R F A C E FOR AIM 6 5 ” ,
(#R6500N12) then listen up.

Standard Microsystems has discontinued that part and has
replaced it with their CRT 7004. The newer part will
retain for well under $20 and is available through their
distributors. Contact the factory for more info:

STANDARD MICROSYSTEMS CORP.
35 Marcus Boulevard

Hauppauge, New York 11787

(516) 273-3100

WARNING !!!

Care must be taken so that the locations SA406 and
$A407 in AIM 65 RAM are not accidentally altered by
the user or his programs.

These locations ($A406 and $A407) contain the display
linkage vector. Since the warm start sequence does not
re-initialize this vector, once the locations are changed,
pressing the RESET key will cause the machine to jump
off into never-never-land. The only way to gain control
is to turn the power off and then on again so AIM 65
can perform it’s cold start sequence. Turning off the
power will, of course, cause any user programs to be
lost.

USING EPROMS IN AIM 65

If you don’t have the optional BASIC or ASSEMBLER
ROMS installed in your AIM 65, one or more EPROMS
can be used. Two EPROMS which will plug in with no
modification to the AIM are: the TMS 2516 and TMS
2532 from Texas Instruments and the Intel 2716.

The TMS 2532 (4K x 8 EPROMS) is a perfect match
for AIM 65 because it occupies the same amount of
address space as the Rockwell R2332 ROM. This allows
programs to span two or more contiguous blocks of
EPROM memory.

The TMS 2516 and Intel 2716, on the other hand, will
occupy the lower 2K of AIM 65’s 4K per ROM slot.
This is because All (address line 11) on AIM 65 will
connec t with CE (chip enab le - pin 18) on the
2716 /2516 and needs to be low to read from the
EPROPM device.

The Intel 2732 is not AIM 65-compatible because the
functions of pins 18 and 21 (CE and A l l) have been
reversed.

Page 4 ITTTlTEW rfi

FOR YOUR INFORMATION AIM 65 SYMBOL TABLE ROUTINE
No, I don’t mind if you also look elsewhere for AIM 65
information. Here are some other sources.

65xx MICRO MAG
Roland Lohr
Hansdorfer Str 4
2070 Ahrensburg
W. Germany

(This publication is written
almost entirely in German)

COMPUTE MAGAZINE
POB 5119
Greensboro, N. C. 27403

TARGET (newsletter)
c/o Donald Clem
R.R. No. 2, Conant Rd.
Spencerville, Ohio 45887

MICRO
POB 6502
So. Chelmsford, Mass. 01824

MICROCOMPUTING (formely KILOBAUD)
Peterborough, NH 30458

Also, here is a list of application notes published by
R O C K W E L L for the 6502 /A IM 65. They can be
obtained for the asking from:

ROCKWELL INTERNATIONAL
MARKETING SERVICES
POB 3669, RC55
Anaheim, CA 92803

Document No.

223

224

230

231

235

247

238

241

Document Name

R6502/R6532 Timer Interrupt Pre
cautions

System 65 to AIM 65 Interface

RS-232C Interface for AIM 65

Intferfacing R6500 Microprocessors
to a Floppy Disk

Interfacing KIM-4 to AIM 65

Using KIM-1 Tapes with AIM 65

A CRT Monitor or TV Interface
for AIM 65

Preparing an AIM 65 Basic Pro
gram for PROM/ROM Operation.

Sometimes it’s useful to obtain a symbol table from a
assembly. Here is a short, fully relocatable routine that
will do just that.

Simply install this program in some out-of-the-way spot
(it now resides in the top page of a 4K AIM 65 system)
and run it right after the assembly is done.

I t ’s handy to set the FI user V ec to r (loca tions
S010C-S010E) to point to the start of the symbool table
printing routine. This lets the FI key call for the symbol
table printout.

NOTE: This routine destroys the contents of the Symbol
Table Starting Address Low and High ($0034
and $003B) and the Number of Symbols High
and Low ($000B and $000C) so can only be
used once per assembly. Of course, the program
could be modified to transfer the data in these
locations to other locations, but this is left up to
the user.

Be sure to specify the document number and name.

0002 0000 , THIS. SYMBOL TftBLE
0003' 0000 ;PRINTING ROUTINE
0004 0000 . WftS WRITTEN BV
0005 0000 , ERIK SHOVGftftRD of
0006 0000 ,DENMftRK
000? 0000 IT WILL MftKE GNLV
0008 0000 i ONE LISTING OF
000? 0000 .; THE SYMBOL TftBLE
0010
0011

0000
0000

; PER
PRES

ftSSEMBLV.
S THE "FI" KEV

0012 0000 ftFTER THE ftSSEMBLV
0012 0000 ;TO GET ft LISTING OF
0014 0000 , THE TftBLE.
0015 0000 *: = $010C
0016 010C OO OF JMP SYM
0017 01 OF LNK = *•3 ft
00 IS 010F •+: = $F00
001 S' 0 F 0 0 20 71 E8 SVM JSR *E871
0020 0F03 20 F© E9 JSR t-E9F0
0021 0FO6 HO 00 NEW LDV #0
0022 0F08 B1 3ft SVMLP LDH <LNK>,V
0023 OFOR 20 BC E9 JSR i:E9BC
0O24 OFOD C8 1 N't'
0025 0F0E CO 06 CPV #6
0026 OF 10 DO F6 BNE SVMLP
002? 0F12 ft9 3D LDft #' =
0028 OF 14 20 BC: E9- JSR *E9BC
0029 OF 17 R9 24 LDft # *
003:0 OF 19 20 BC E9 JSR *E9BC
0031 0F1C B1 3ft LDft •: LNK >, V
G032 OF IE 20 46 Eft JSR *Eft46
0033 0F21 C8 I r-4V
0034 OF 22 B1 3ft LDft (LNKO, V
0035 OF 24 20 46 Eft JSR *Eft46
0036 OF 27 20 FO E9 JSR tE9F0
0037 OF 2ft 18 CLC
003:8 OF 20 R9 08 LDft #8
0033 OF 2D 65 3ft ftDC LNK
0040 0F2F 85 3ft STft LNK
0041 0F21 fl9 OO LDft #0
0042 0F33 65 3B ft DC: LNK+1
0043 OF 35 85-3B ST ft LNK+1
0044 OF 3 7 38 SEC
0045 OF 38 ft5 0C LDft *0C
0046 OF 3ft E9 01 SBC #1
0047 0F3C 85.OC STft *OC

Page 5

0048 0F2E ft 5 0B LDft $0B
0049 0F40 E3 00 SBC #0
0050 0F42 85 0B ST ft $0B
0051 0F44 05 0C ORft *0C
0052 0F46 D0 BE BNE NEW
0053 0F4S 60 RTS
0054 0F49 END

EDIT BASIC PROGRAMS

I’ll bet you didn’t know that the AIM 65 text editor can
be used to edit BASIC programs. Well, it can.

When you’re in BASIC and perform a SAVE to cassette
- the program is saved in its ASCII format (not in the
tokenized format as i t ’s stored in memory.) If you ’ve
ever had the printer on when you read in a BASIC pro
gram, you’ve seen how it’s saved on cassette.

There are three th ings you need to keep in m ind,
though, when you edit your programs:

1. Since the AIM 65 text editor limits the char
acter per line count to 60, there can be no
m ore than 60 c h a rac te rs per line in your
BASIC program (BASIC normally permits 72
characters per line.) Any more than 60 char
acters will be ignored.

2. When BASIC programs are read into the edi
tor, the first line of the text buffer will be
blank. Leave this blank line in there or things
will get fouled up.

3. When finished editing, go to the bottom of
the text buffer with the “ B ” key and drop
down past the last line with the “ D ” key.
Next, press the “ I” key (for insert), followed
by a Control “ Z ” (hold the “ C T R L ” key
down while pressing the “ Z ” key), and then
a “ RETURN” to terminate the insert.

The tape gap in Iocaion $A409 should be at least $20 to
allow the BASIC interpreter time to interpret.

Now save the program to cassette using the editor “ L ”
(List) command after you* have moved to the top of the
buffer with the “ T ” command.

CHECKSUM PROGRAM

Gordon Smith
Rockwell Hobby Computer Club

Here is a technique for verifying that your ROM’s are
correct. The techni^uejetermines a check sum for each
of the ROM’s or ROM pair. To make this easy to do, I
am enclosing a check sum program which also could be
used with some modification as a check sum subroutine.

The first section of the program uses the CRLF monitor
subroutine to clear the display and the FROM and TO
subroutines to get the starting and stopping addresses.

The second section of the program initializes the check
sum to zero and also sets up a dummy third address
byte for the start and stop addresses. The reason that the
third address byte is used is to allow a proper ending of
the checksum when the last address is FFFF.

The third section (starting at 032C) actually forms the
running check sum by adding the currently addressed
memory cell to the prior check sum.

The next section increments the start address until it
equals the stop address + 1 as determined by the sec
tion starting at 0349. When the stop address is FFFF the
incremental address must be 010000 at the time of termi
nation. This is the reason for carrying the third address
byte. If only two address bytes were used for the com
parison, FFFF would increment to 0000 and the stop
would never occur.

The final section uses the BLANK2 subroutine to space
the display over so that the monitor prompt will not
wipe out a digit of the result and then uses the NUMA
subroutine three times to print out the three byte check
sum.

The results of these check sums are as follows:

BASIC CHIPS B000 TO CFFF = OFC76B
B000 TO BFFF = 07CC47
cooo TO DFFF = 07FB24

ASSEMBLER CHIP D000 TO DFFF = 071A67

MONITOR CHIPS E000 TO FFFF — 0EB11B
E000 TO EFFF = 078675
F000 TO FFFF = 072AA6

Page 6 n r n T i s i i m O
(CHECKSUM PROGRAM CONT’D)
INITIALIZE ‘FI’ KEY
010C 4C JMP 0300

PICK UP START AND
STOP ADDRESSES

010C 4C JMP 0300
0300 20 JSR E9FO
0303 20 JSR E7A3
0306 AD LDA A41C
0309 85 STA 01
030B AD LDA A41D
030E 85 STA 02
0310 20 JSR E83E
0313 20 JSR E7A7
0316 AD LDA A41C
0319 85 STA 04
03 IB AD LDA A41D
03 IE 85 STA 05

0339
033B
033D

A9 LDA #00
65 ADC 06
85 STA 06

INCREMENT ADDRESS TO
PICK UP NEXT VALUE

03 3F E6 INC .01
0341 DO BNE 0349
0343 E6 INC 02
0345 DO BNE 0349
0347 E6 INC 00

06

02

TEST FOR LAST TERM

0349 A5 LDA 04
034B C5 CMP 01

CLEAR 3RD BYTE TEST 034D A5 LDA 05
ADDRESSES AND CHECK 034F E5 SBC 02
SUM 0351 A5 LDA 03

0353 E5 SBC 00
0320 A0 LDY #00 0355 B0 BCS 032C
0322 84 STY 00
0324 84 STY 03
0326 84 STY 06
0328 84 STY 07 PRINT FINAL RESULTS
03 2A 84 STY 08 AND RE-ENTER MONIT

0357 20 JSR E9F0
035A 20 JSR E83B

FORM CHECK SUM 035D A5 LDA 06
035F 20 JSR EA46

032C 18 CLC 0362 A5 LDA 07
032D B 1 LDA (01),Y 0364 20 JSR EA46
032F 65 ADC 08 0367 A5 LDA 08
0331 35 STA 08 0369 20 JSR EA46
0333 A9 LDA #00 036C 4C JMP E 1A 1
0335 65 ADC 07
0337 85 STA 07

D5

DATA FILES FOR AIM 65 BASIC
Ralph Reccia
Rockwell International
The ability to operate with data files greatly enhances the
usefulness of AIM 65 BASIC.

The BASIC program listed here requires the use of two
tape recorders and both must be in the remote control
mode.

Note that lines 30 through 140 are an assembly language
program which gets poked into memory locations $0F00
th rough $0F68 ($ = h e x a d e c im a l .) L oca tions $0F69
through $0FFF are used to store the data files that are
being used. Assembly language programs are inserted
into BASIC programs as follows:

The assembly language program is assembled nor
mally into its final destination address. Each data
byte is then converted from a binary value to a dec
imal (BCD) value. (This part is a real drudge and
could be made much easier with a utility program
that does all this conversion automatically. Such
things are simple for computers.) These decimal
values are then put into our BASIC Program as a
series of DATA statements (see lines 30-140). The
program sequence in lines 10-20 is used to POKE
these numbers into memory. The assembly language
program is then accessed as a subroutine by the
USR function (see Appendix FI in the AIM 65
BASIC manual.)

The user MUST limit the amount of memory available
for BASIC to 3,839 bytes. This is done by entering
3839 in answer to “ MEMORY SIZE?”

FROM = B000
07CC47

<[>
FROM = C000

07FB24
<[>
FROM = D000

071A67
<[>
FROM = E000

078675
<[>
FROM = F000

072AA6
<[>
FROM = B000

0FC76B
< l>
FROM = E000

0EB11B

TO = BFFF

TO = CFFF

TO = DFFF

TO = EFFF

TO = FFFF

TO = CFFF

TO = FFFF

Subroutines 3000 and 3100 set up delays which allow
the operator to perform the manual functions on the tape
recorder and read the display as the program prompts the
user as to functions that need to be performed. The pro
gram waits until the user responds that he is finished by
use of the GET command. (See lines 1996, 3220, and
3330.)

The data file in the example program is a fixed record
format type. There are four fields per record (see lines
1230 - 1260): the CATALOG # field, the AUTHOR
field, the TITLE field, and tne REMARKS field. These
categories can easily be changed to suit whatever applica
tion you may have in mind. The number of fields per
record can also be changed as long as you realize that
in the present design, the data buffer length is 151 char
acters long ($EF69 - $EFFF).

However, all 151 characters are not available for user
data. Some space is needed for element separation and
an end-of-record character. Looking at lines 195, 196,
and 219, you’ll see that the element separator is a semi
colon (;) and the end of record is signified by an excla
mation point (!). These characters are inserted at the
appropriate points in the data buffer by the software and
need not l?e entered by the operator. Furthermore, they
cannot be used as data anywhere else in the file. Of
course, these special characters can easily be changed by
the user to any other convenient ASCII characters.

Each record needs one element separator per field and
one end-of-record marker. To calculate the “ actual”
buffer space available to the user simply subtract the
number of fields plus one (for the end of record charac
ter) from the total buffer length.

Our example file system has a 151-character buffer and
four fields, so the user can enter 146 characters into the
text buffer, since

151 - (4 + 1) = 146

Advanced experimenters can change the size and location
of the data buffer by changing the references in BASIC
(lines 1040, 1290, 1320, and 2020) and the references to
the label DATA contained in the assembly language
subroutine.

Other routines can be added to do such things as search
for and/or print various fields of the record, etc.

By the w ay , the end of file ind ica to r consis ts o f a
dummy record with a colon (:) as the first character fol
lowed by an exclamation point (!).

1 REM B ft SIC FILE Hh NL'L 1NG F'ROGRftM FOR HIM 65
2 REM THIS ROUTINE DESCRIBES ft METHOD OF
3 REM SAVING AND LOADING DftTft DURING THE
4 REM EX I CUT I ON OF ft BASIC PROGR.HM
5 REM
6 REM ROCKWELL I NTERNftT I ONftL 8,-'24/79
7 REM
8 REM SET ftSSEMBLV ROUTINES TO L.OC $0F00
y REM
10 FOR I=0T0104 READX
20 ROKE3840+I,X ■NEXT
30 DATA169, 183, 141, 2, 168
40 DftTft32, 29, 242, 16?, 35, 32, 74, 242, 162, 0
50 DftTft 189, 105, 15, 32, 74, 242, 232, 201, 33, 208, 245
60 DftTftl69, 12, 141, 0, 168, 96, 169, 0, 141, 11, 168
70 DATA32, 234, 237, 32, 41, 238
80 DAT ft 201, 3-5, 240, 6, 201, 22, 208, 242, 240, 243
90 DATA162, 0., 32, 41, 238, 157, 105, 15, 232
100 DftTft201, 33, 208, 245, 169, 12, 141, 0, 168, 96
110 DATA162, 0. 189, 105, 15, 23 2, 201, 59, 240, 10
120 DATA201, 33, 240, 12, 32, 188, 233. 76, 74, 15
130 DAT ft 3-2, 240, 233, 76, 74, 15, 32, 240, 233
140 DftTft32, 240, 233, 96

Page 7

189 REM
190 REM SET TAPE GAR TO *30, TURN *BOTH
191 REM REMOTE CONTROLS OFF, SET UPPER
192 REM BVTE OF USER VECTOR TO *0F AND
193 REM SET TAREOUT $A425 TO TAPE 2
19-4 REM NOTE DEFAULT IS TAPE 1
195 REM !" SVMBOL IS END OF RECORD
196 REM SVMBOL IS ELEMENT SEPARATOR
197 REM
200 P0KE41993, 48:POKE43008, 12.P0KE5, 15.POKE42037,1
210 ER*=" 1 " ES$="; "
500 PR I NT "DO VOU WANT TO- I!'" GOSUB3000
510 PR I NT "UPDATE A FILE 2 ,• " . GOSUB3000
520 PRI NT"CREATE A NEW FILE" GOSUB2000
530 PR I NT " 3.«READ A FILE": GOSUB3000
540 INPUT"INPUT 1,20R2";X
550 ONXGOTO1000,1200,2000
1000 G O S LI B3200
1010 G O SIJ B 3 3:0 0
1020 PRINT"CASSETTE 1 TO PLftV".GOSUB3100
1030 PR INT"CftSSETTE 2 TO RECORD" GOSUB3100
•1040 POKE4, 32 : X=IJSR >. V > • ft=PEEK1.3945 >
1044 REM
1045 REM CHECK FOR END OF FILE
1046 REM
1050 IFA=58THEN1220
1060 POKE4, 72 : X=USR'! V /•
1070 PR I NT "WANT TO KEEP IT"' GO SUB 3-000
1080 INPUT"TVF’E V OR N", At-
1090 IFft$="N "THEN1040
1100 P0KE4, 0 : X=U£R':'. V.1 : GOT01040
1200 GOSUB3300
1210 PRINT"CftSSETTE 2 TO RECORD"•GOSUB3100
1220 POKE4, 0
1230 INPUT"CATftLOG #",CN$
1240 I NPUT " ftUTHOR " RU*

1250 INPUT"TITLE"; TI*
1260 I NPUT'" REMARKS " j RE*
1262 REM
1263: REM
1264 REM
1265 REM
1266 REM PUT THE ELEMENTS TOGETHER
1267 REM
1270 A $=C N $•+E S $+A IJ $+E S $+T I f+ESf-+RE*+ES$+ERf
1 2o0 FOF' I — 1TOLEN A$ >
1290 P0KE3:944 +•1, ASC MI Df < A*, 1, 1 > : NEXT
13:00 X=USR'::v;:' INPUT "MORE V OR N"; A*
1310 IFft*="V"THEN1230
1320 POKE3945, 58 : P0KE3946, 3:3 : X=USR«: V ;•
133:0 GOSUB3200
1340 PRI NT"WISH TO READ TftPE":GOSUB3000
1345 I NPUT" TVPE V OR N", ftf-
1350 IFft$="V "THEN1990
1360 G 0 S U B 3:2 0 0
1370 PRINT" TVPE RUN TO RESTftRT"•END
1990 PRINT" CHftNGE TftPE TO UN IT" : GO SUB 3:000
1993 PR I NT"ONE TVPE D WHEN DONE" ■GOSUB3000
1996 GETft* : IFft$0 " D " THEN1996
2000 GOSUB3200
2016 PRINT"CftSSETTE 1 TO PLftV"•GOSUB3000
2020 P0KE4, 3:2 : X=USR•'! V > : ft=PEEK <3945:•
2030 *FA=58THEN2100
2040 POKE4,72:X=USR<V>:GOTO2020
2100 PR INT"END OF FILE" GOSUB2000
2110 GOT 01260
3000 FOR I-IT01500:N E X T .RETURN
3100 FORI=1TO2500:NE X T :RETURN
3200 PRINT"CASSETTES TO REWIND":GOSUB2100
3210 POKE42008, 60:PRINT"TVPE D WHEN DONE" .GOSUB2000
2220 GETAf:IFA*O-,,D"THEN3220
2220 POKE42008, 12:RETURN
2200 PRINT"ftDVftNCE TAPES SO VOU" :GOSUB2000
2210 F‘R I NT "ARE PAST LEADER" : GOSUB2000
2320 POKE42008, 60
2225 PR INT"TVPE D WHEN DON E " :GOSUB3000
2220 GET ftf : I FftfO- " D " THEN2320
2340 POKE42008, 12:RETURN

Page 8 r m w n K a i k v l

0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
000S 0000
0009 0000
0010 0000
0011 0000
0012 0000
0013 0000
0014 0000
0015 0000
0016 0000
0017 0000
0018 0000
0019 0F00
0020 0F00
0021 0F00
0022 0F00 A9 B7
0022 0F02 8D 02 A 8
0024 0F05 20 ID F2
0025 0F08 A9 22
0026 0F0A 20 4A F2
0027 0F0D A2 00
0028 0F0F BD 69 0F
0029 0F12 20 4A F2
0030 0F15 E8
0021 0F16 C9 21
0022 0F18 D0 F5
0022 0F1A A9 0C
0024 0F1C 8D 00 A8
0025 0F1F 60
0026 0F20
0027 0F20
0028 0F20
0029 0F20 A9 00
0040 0F22 3D 0B A8
0041 0F25 20 EA ED
0042 0F28 20 29 EE
0042 0F2B C9 22
0044 0F2D F0 06
0045 0F2F C9 16
0046 0F21 D0 F2
004? 0F23 F0 F2
0048 0F25 A2 00
9049 0F2? 20 29 EE
0050 0F2A 9D 69 0F
0051 0F2D E8
0052 0F2E C9 21
0052 0F40 D0 F5
0054 0F42 A9 0C
0055 0F44 8D 00 A8
0056 0F47 60
0057 0F48
0858 0F48
0059 0F48
0060 0F48 A2 00
0061 0F4A BD 69 OF
0062 0F4D ES
0062 0F4E C9 2B
0064 0F50 F0 0H
0065 0F52 C9 21
0066 0F54 FO 0C
0067 0F56 20 BC E9
0068 0F59 4C 4A 0F
0069 0F5C 20 F0 E9
0070 0F5F 4C 4A 0F
0071 0F62 20 F0 E9
0072 0F65 20 F0 E9
0073 UF 6 a 60
0074 0F69
0075 0F69
0076 0F69 41
0077 0F6A

;BASIC FILE HANDLER ASSEMBLY ROUTINES 8,'24/79
R. RECCIA

} THE FOLLOWING SUBROUTINES DESCRIBE A METHOD OF
WRITING AMD READING FILES WHILE EXECUTING A

i BASIC PROGRAM ON AIM 65. THE ROUTINES MAY BE
,RELOCATED

0UTALL=$E9BC
CRLF=$E9F0
TAOSET =#F21D
0UTTAP=$F24A
TAISET=*EDEA
GETT AP=i:EE29

*=$0F00

;THIS ROUTINE OUTPUTS DATA TO TAPE

LDA #*B7 ;SET PB7 TO AN OUTPUT
STA SA802
JSR TAOSET SET RECORDER 2 AS OUTPUT
LDA # #• ;OUTPUT # AS BEGINNING OF
JSR OUTTAP
LDX #0
LDA DATA, X ,LOAD HCC WITH CHARACTER
JSR OUTTAP ,OUTPUT ACC TO TAPE
I NX
CMP #"• ! ■' COMPARE TO TOTAL STRING
BNE MORE
LDA #*0C TURN RECORDER 2 OFF
STA $A800
RTS

THE FOLLOWING ROUTINE READS THE TAPE

LDA #0
STA *A80B ; INITIALIZE ACR

NO JSR TAISET , SET TAPE 1 FOR INPUT
SYNC JSR GETTAP .i READ CHAR FROM TAPE TO ACC

CMP
BEQ

"
YES

;CHECK IF BEGINNING OF FILE

CMP
BNE
BEQ

#*16
NO
SYNC

;CHECK FOR SYNC CHARACTER

YES LDX #0
GETMOR JSR

STA
I NX

GETTAP
DATA, X

; INPUT CHARACTER

CMP
BNE

- ' -
GETMOR

;CHECK FOR END OF FILE

LDA
STA
RTS

#*0C
$A800

TURN RECORDER 1 OFF

; THIS ROUTINE OUTPUTS DATA TO ADD

LDX
AGAIN LDA

I NX
DATA, X

CMP
BEQ LINFD

,CHECK FOR RECORD SEPARATOR

CMP
BEQ

! •'
DONE

..CHECK FOR END OF FILE

JSR
JMP

OUTALL
AGAIN

,OUTPUT ACC TO AOD

LINFD JSR
JMP

CRLF
AGA IN

DONE JSR
JSR
RTS

CRLF
CRLF

DATA BYTE 'A '
END

ERRORb — 0000 U000
END OF ASSEMBLY

n r r n i r a n w i Page 9

A COUPLE OF 6522 APPLICATIONS
NOTES

Conrad Boisvert
Synertek, Inc.

6522 - GENERATING LONG TIMED INTERVALS

The 6522 Versatile Interface Adapter contains two 16-bit
counter/timers for a variety of purposes, among them the
generation of timed interrupts. Each counter is 16 bits
long, so the maximum count-down is 2 16 or 65,536
counts. With a 1 MHz processor clock rate, this trans
lates to a maximum time of about 54.4 msec.

In some cases, this may not be long enough. To achieve
longer timed intervals, several schemes may be used.
Among them are:

1. Increment or decrement a memory location each
time the timer interrupt occurs. In this way, an
additional factor of up to 256x can be achieved,
resulting in a maximum of about 16.8 seconds.
However, extra program steps are needed.

2. The two 6522 timers may be connected exter
nally (Figure 2), resulting in an effective 32-bit
counter/timer. In this way, intervals longer than
one hour may be achieved.

To
Processor
Interrupt

Figure 1

Timer T2 pulse-count
mode on PB6

Timer T1 free-run
mode on PB7

Connection to Use T1 and T2 as 32-bit
Counter

PROGRAMMING CONSIDERATIONS

To cascade the two counters together, it is necessary to
do the following:

1. Connect FB6 and PB7 together. These pins will
not be useable as general I/O functions in this
case.

2. Program T1 mode to free-run with output on
PB7.

3. Program T2 mode to count pulses on PB6 input.

In this way, the waveform on PB7 is:

Count t I T

Period' X

r
[TI Count (I T1 C o j n t _ l

7 02 Period» X 02 Period*

Since timer T2 pulse-counting mode counts negative-edge
transitions, it is clear that T2 will decrement as follows:

Decrement T2

Thus, T2 decrements will occur at the following inter
vals:

T2 RATE = 2x (T1 COUNT) x (02 PERIOD)
And, hence, the total time will be,
T = 2x (T 1 CO U N T) x (T2 C O U N T) x (02
PERIOD)

Thus, the maximum is 2 X 65,425 X 65,536 X 1 us =
8590 seconds = 142 minutes = about 2-1/2 hours.

6522 -GENERATING A 1 Hz SQUAREWAVE
SIGNAL

The 6522 (Versatile Interface Adapter) has two integral
16-bit t im ers in tended to pe rfo rm a varie ty of
programmable functions. One capability is to use timer
T1 to generate continuous square wave output on periph
eral pin PB7.

The timer is clocked by the system clock, $ 2, which
normally operates at 1 MHz. The waveform generated is
illustrated in Figure 1.

PB7
Output

Figure 1 - PB7 Output Waveform

Note that the period of the waveform is 2N + 4 cycles,
with a 16-bit counter, the maximum number of cycles is
where N is the number set into the timer.

NMax = 16-1 = 65,535

Hence, the maximum programmable period is:

P m a x = 2Nmax+ 4 = 131,074 cycles

Page 10 llTTtTiTffTTfl
This is about 131 msec for a 1 MHz system clock, con
siderably less than 1000 msec, the period for a 1 Hz
signal.

One way to extend the period is to use the PB7 output
signal as a clock input to the sift register on the 6522.
If a pattern of 11110000 is set into the shift register,
then the output of the sift register will appear as Figure
2.

■JU1j | n n r u i r u u i j y |

8 (2H+4) CYCLES

Note that the period is entended by a factor of 8 by this
method.

Pmax = 8 (2N + 4)

Hence for 1 Hz, Pmax = 1,000,000 and N = 62,498.
Thus, it is necessary to store the number 62,498 into the
timer T1 in order to generate the 1 Hz waveform. Then
translated into hexadecimal format, the result is F422,
and F4 is loaded into the high byte and 22 into the low.
The step-by-step sequence for programming this is shown
in Figure 3.

Note especially the following points:

* Loading the T1 high-order counter (Register 5)
initiates the timer in its free-running mode.

* PB7 data direction must be set to an output for
the pulses to occur.

Figure 2 - Shift Register Output Waveform

2 0 0 0 ? P R 0 GRAM TO G EN ERA TE
2 0 0 0 rO UTPUT ON R 6 5 2 2 P B 7
2 0 0 0 ? T 1 T IM E R AND S H I F T R
2 0 0 0 ?
2 0 0 0 y - ... - •.............. - R 6 5 2 2 ADD
2 0 0 0 ?
2 0 0 0 DDRB = $ A 0 0 2
2 0 0 0 T .1. CH " $ A 0 0 5
2 0 0 0 T I L L A 0 0 6
2 0 0 0 SR $ A 0 0 A
2 0 0 0 ACR ~ $ A 0 0 B
2 0 0 0 9
2 0 0 0 # “ $ 0 2 0 0
0 2 0 0 t
0 2 0 0 A 9 FO LDA t-X 1 1 1 1 0 0 0 0
0 2 0 2 8D OA AO STA SR
0 2 0 5 A 9 DC LDA # $ DC
0 2 0 7 8D OB AO STA ACR
0 2 0 A A 9 2 2 LDA # $ 2 2
0 2 0 C BD 0 6 AO STA T I L L
0 2 0 P A 9 F 4 LDA # $ F 4
0 2 1 1 8D 0 5 AO STA T :!.CH
0 2 1 4 A 9 8 0 LDA * $ 8 0
0216 80 02 AO STA DDRB
0 2 1 9 4C 19 02 LOOP JM P LOOP
0 2 1 C ♦ END

:I.HZ SQUARE--WAVE
OUTPUT PIN USING

iDATA DIRECTION REG,
ST.! COUNTER HIGH BYTE
?T1 LATCH LOW BYTE
i SHIFT REGISTER
i AUX CONTROL REG

ySTART ADDRESS

i STORE SHIFT PATTERN

i SETUP T1 AND SHIFT REG

'LOW BYTE

? HIGH BYTE AND START IT

iSET PB7 =
vSTOP HERE

OUTPUT

rm T T P C H T T O Page 11

BASIC REAL TIME CLOCK
Mark Reardon
ROCKWELL INTERNATIONAL

Here’s a machine language program converted to data
statements that gets ‘poked’ into high memory from
Basic. This particular program doesn’t include the capa
bility for displaying the time — that must be added by
the user if needed.

5 REM THIS PROGRAM WRITTEN BV MARK REARDON
10 REM THIS IS A 24 HOUR CLOCK PROGRAM WRITTEN FOR
20 REM BASIC ON THE AIM 65. IT UTILIZES THE USER
30 REM 6522-S CLOCK ONE. THE FIRST SIX LINES OF CODE
40 REM STORE THE INTERRUPT CLOCK ROUTINE IN UPPER MEMORV.
50 REM WHEN INITIALIZING BASIC LIMIT MEMORV TO 4045.
60 FORI=1TO50:READX:POKE4045+I, X :NEXTI
70 DATA72, 138, 72, 230, 223, 166, 223, 224, 16, 208, 32
80 DATA169, 0, 133, 223, 230, 222, 162, 60, 228, 222, 208, 20
90 DATA133, 222, 230, 221, 228, 221, 208, 12
100 DATA133, 221, 230, 220, 162, 24, 228, 220, 208, 2
110 DATA133, 220, 104, 170, 173, 4, 160, 104, 64
120 REM THE NEXT TWO LINES OF CODE ENTER THE TIME INTO
130 REM THE COUNTERS. TO CHANGE THE START TIME INSERT
140 REM NEW VALUES IN THE FIRST THREE ENTRIES OF THE DATA
150 REM STATEMENT. THEV ARE HOURS, MINUTES, AND SECONDS.
160 FORI-1T04:READX:POKE219+1, X :NEXT I
170 DATA 0, 0, 0, 0
180 REM SET UP THE INTERRUPT ENABLE AND THE
185 REM AUXILIARY CONTROL REGISTERS
190 POKE40974, 192:POKE40971, 64
200 REM SET UP IRQ VECTOR TO CLOCK PROGRAM.
210 P0KE41984, 206:PGKE41985, 15
220 REM LOAD AND START TIMER ONE.
230 POKE40964, 34:POKE40965, 244
240 H=PEEK <220 >:M=PEEK<221>:S=PEEK <222 >
250 REM NOW THE TIME IS H HOURS, M MINUTES, AND S SECONDS.
260 REM TO ADJUST THE CLOCK THE VALUES IN 40964 <FINE> AND
270 REM 40965 <COARSE> CAN BE CHANGED. LARGER VALUES
280 REM SLOW DOWN THE CLOCK.

There are plenty of remarks throughout the program so
there’s no need for a really detailed explanation.

Don’t forget to limit the memory size to 4045.

TTY TIP

From the Editor

At terminal speeds of 2400 baud and above, AIM 65
has a hard time figuring the correct baud rate. These
baud rate values must be entered manually from the AIM
65’s keyboard.

Set the KB/TTY switch to KB and press the RESET
button (this gets you back in the keyboard mode). You
should now see the monitor prompt “ < ” on the LED
d isp lay . P ress the “ M ” key and exam ine location
$A417. The display should now be displaying the con
tents of four memory locations starting with $A417.
Press the key to modify memory followed by the
correct baud rate values (two bytes) as found in Section
9.2.3 of the AIM 65 USER’S GUIDE. Now press the
re turn key on the AIM 65 keyboard . N ext, set the
KB/TTY switch to TTY and press the space bar on AIM
65. If your terminal was set to the same baud rate as
you set up in AIM 65, you should see the monitor
prompt on your terminal which signifies you’re up and
running in the terminal mode.

NEWSLETTER EDITOR
ROCKWELL INTERNATIONAL
P.O. Box 3669, RC55
Anaheim, CA 92803 U.S.A.

GENERAL PURPOSE REMOTE
CONTROL INTERFACE

If you use several different cassette recorders with AIM
65 and have to change the polarity of the remote control
cable each time you change recorders, then you’ll appre
ciate this little goodie!

This relay will enable AIM 65 to control most any cas
sette unit regardless of control signal polarity.

CLARE

Bulk Rate
U.S. POSTAGE

RATE
Santa Ana Calif.
PERMIT NO. 15

r

