A65-050

N

Rockwell

AIM 65 FORTH ROMS

A65-050

FORTH LANGUAGE

FORTH is a unique programming language well suited to a
variety of applications. Because it was originally developed for
real-time control applications, FORTH is ideal for machine and
process control, energy managements, data acquisition, auto-
matic testing, robotics and other applications where assembly
language was previously the only possible language choice.

FORTH actually provides the best of two worlds. It has the
looping and branching constructs of high-level languages
(DO ...LOOP, BEGIN...END, IF... THEN and IF . . . ELSE
... THEN) and the code efficiency of machine and assembly
languages. And programmers will be pleased to know that
FORTH allows you to specify addresses, operands and data in
hexadecimal, octal, binary or any other number base from two
to 40—a distinct advantage over languages like BASIC, where
all information must be in decimal.

In most time-critical applications, at least part of the program
must be written in assembly language. FORTH has a built in
6502 macro assembler, and lets you drop into assembly lan-
guage at almost any point in your program, without perarate
assembly and load steps or awkward machine level linkage.
FORTH programs typically run up to ten times faster than other
interpretive languages, and can even approach the speed of
machine language programs for some applications.

FEATURES

AIM 65 Microcomputer host and target
ROM resident for immediate operation
Application oriented

Extensible language

Over 200 pre-defined functions
Interactive compilation

Reverse polish notation

Compact memory usage

Fast execution

Easy debugging

Stack implementation

16-bit words

Built-in structured macro assembler
Shortens software development time

PRODUCT OVERVIEW

AIM 65 FORTH, consisting of primitives, interpreter, macro
assembler and input/output functions, is contained in two 4K-
byte ROMs that plug into the AIM 65 Microcomputer Master
Module sockets Z25 and Z26. FORTH functions are linked
to AIM 65 Debug Monitor and Text Editor ROMs providing
access to the AIM 65 peripherals (keyboard, single-line display
and 20 column printer) as well as user-defined input/output
functions. Both interactive and batch modes of operation are
supported. Interactive operation interprets FORTH words upon
entry for immediate execution and debugging or for compilation.
In the batch mode, FORTH words can be entered into the Text
Buffer then input to FORTH for interpretation. The batch mode
allows an application program fo be easily edited using Text
Editor commands. Application programs written in FORTH can
thus be developed, as well as executed for checkout or pro-
duction operation, on the AIM 65 Microcomputer.

AIM 65 FORTH ROMSs, when installed in an AIM 65 Microcom-
puter, can also be used to develop and checkout an application
program written in FORTH that is to be installed in an RM 65
Single Board Computer (SBC) module for runtime operation.
The developed program will run with RM 65 Run-Time FORTH
ROMs installed in the RM 65 SBC module. In this configuration,
all RM 65 input/output operations must be user-provided and
can be tested using the AIM 65 Microcomputer as the host com-
puter prior to being installed in the RM 65 environment.

ORDERING INFORMATION

Part No. Description
A65-050 AIM 65 FORTH ROMs
AB5-040 AIM 65 Math Package ROM
RM65-0152 RM 65 Run-Time FORTH ROM

Order No. Description
265 AIM 85 FORTH User's Manual"
283 AIM 65 FORTH Reference Card": 2
2118 AIM 65 Math Package User's Manual®
812 RM 65 Run-Time FORTH User's Manual®
NOTES:
1. Included with A65-050.
2. Included with A65-040.
3. Included with RM65-0152.

Document No. 29000D87

Data Sheet Order No. D87
Rev. 1, March 1983

A65-050

AIM 65 FORTH ROMs

DEVELOPING FORTH PROGRAMS

FORTH is built on subroutine-like functions, called “words.”
These words are linked together to form a “dictionary,” which
is the central core of the language. Writing a program in
FORTH consists of using several predefined words to define
each new word. Once the new word has been added to the
system dictionary, it becomes as much a part of the language
as any other word that has been previously defined. In this
way new features and extensions can be added by simply
defining one or more new words. Adding new features to
conventional languages like BASIC or Pascal requires the
language system to be completely reassembled or
recompiled.

FORTH is a stack-oriented language, and is programmed in
Reverse Polish Notation (RPM), the notation that is used in
Hewilett-Packard scientific calculators. Using a data stack is
an extremely efficient way of passing variables back and
forth between operations. A data stack eliminates the need
to tie up memory locations with variable tables, and allows
you fo use only as much memory as you need.

FORTH programs are developed using “top-down/bottom-
up” techniques. That is, the programmer begins by defining
the program in very general terms, then systematically breaks
these definitions down into more and more detailed sub-
modules. When the lowest levels of sub-modules have been
defined, he starts coding, in FORTH, at those levels, working
back up toward the top of the program, in pyramid fashion.
Each sub-module is a stand-alone component of the pro-
gram, and can be completely debugged without having the
complete program in the system. This type of software
development is difficult, if not impossible, to do with most
other high-level languages.

FLOATING POINT FUNCTIONS

AIM 65 FORTH contains both a single- (16-bit) and double-
(32-bit) precision integer arithmetic capability. In AIM 65
applications where floating point arithmetic is desired, the
AIM 65 Math Package may be used in conjunction with the
FORTH ROMs. These floating point functions may be called
using FORTH words included in the math package ROM.
When this ROM is installed in socket Z24 on the AIM 65
Microcomputer, the floating point math words can be auto-
matically linked to the FORTH dictionary during FORTH
initialization. The AIM 65 Math Package ROM can aiso be
installed in either an RM 65 SBC or PRCM/ROM module.

MEMORY MAP
Address (Hex) Contents
$DO000-$DFFF Math Package Program
$B000-$CFFF FORTH Program
$280-$2FF Terminal Input Buffer
$25C-$27F Math Package Variables
$200-$257 FORTH User Variables
$AB-$C4 Math Package Variables
$10-$5AA FORTH Variables

FORTH WORDS

STACK MANIPULATION

DUP
2DUP
DROP
2DROP
SWAP
OVER
ROT

- DUP
>R

R>

R

PICK
SP@
RP@
BOUNDS

.8

DEFINING WORDS

<name>

VARIABLE <namd>

CONSTANT <name>
CODE <name>

;CODE
<BUILDS . .. DOES>
USER

MEMORY
@

!

c@

c!

?

+!
CMOVE
FILL
ERASE
BLANKS

TGGGLE

Duplicate top of stack.

Duplicate top two stack items.

Delete top of stack.

Delete top two stack items.

Exchange top two stack items.

Copy second item to top.

Rotate third item on top.

Duplicate only if non-zero

Move top item to return stack.

Retrieve item from return stack.

Copy top of return stack onto stack.

Copy the nth item to top.

Return address of stack position

Return address of return stack pointer.

Convert "address count" to “end-
address start-address.”

Print contents of stack.

Begin colon definition of <name>.

End colon definition.

Create a variable <name> with initial
value n; returns address when
executed.

Create a constant <name> with valus
n; returns value when executed.

Begin definition of assembly-language
primitive operation <name=.

Used to create a new defining word,
with execution-time “code routine” for
this data type in assembly.

Used to create a new defining word,
with execution-time routine for this
data type in higher-level FORTH.

Create a user variable.

Fetch value addressed by top of stack.

Store n1 at address n2.

Fetch one byte only.

Store one byte only.

Print contents of address.

Add second number on stack to
contents of address on top.

Move n3 bytes starting at address n1 to
area starting at address n2.

Put byte n3 into n2 bytes starting at
address n1.

Fill n2 bytes in memory with zeroes,
beginning at address n1.

Fill n2 bytes in memery with blanks,
beginning at address n1.

Mask memory with bit pattern.

NUMERIC REPRESENTATION

DECIMAL
HEX
BASE
DiGIT

0

1
2
3

Set decimal base.

Set hexadecimal base.
Set number base.
Convert ASCII to binary.
The number zero.

The number one.

The number two.

The number three.

A65-050

AIM 65 FORTH ROMs

FORTH WORDS (CONT’D)
ARITHMETIC AND LOGICAL

+ Add.

D+ Add double-precision numbers.

ES Subtract (n1 = n2)

. Multiply.

/ Divide (n1/n2).

MOD Modulo (i.e., remainder from division).
/MOD Divide, giving remainder and guotient.
-/IMOD Multiply, then divide (n1-n2/n3), with

double intermediate.
- Like -/MOD, but give quotient only.

uU. Unsigned multiply leaving double
product.

v Unsigned divide.

M* Signed multiplication leaving double
product.

M/ Signed remainder and quotient from
double dividend.

M/MOD Unsigned divide leaving double quotient

and remainder from double dividend
and single divisor.

MAX Maximum.

MIN Minimum.

+ = Set sign.

D+ — Set sign of double-precision number.

ABS Absolute valus.

DABS Absolute value of double-precision
number.

NEGATE Change sign.

DNEGATE Change sign of double-precision
number.

S->D Sign extend to double-precision
number.

1+ Increment value on top of stack by 1.

2+ Increment value on top of stack by 2.

1- Decrement value on top of stack by 1.

2= Decrement value on top of stack by 2.

AND Logical AND (bitwise).

OR Logical OR (bitwise)

XOR Logical exclusive OR (bitwise).

COMPARISON OPERATORS

< True if n1 less than n2.

> True if n1 greater than n2.

= True if top two numbers are equal.
0< True if top number negative.

0= True if top number zero.

U< True if ul less than u2.

NOT Same as 0=.

MISCELLANEOUS AND SYSTEM

(<comment>) Begin comment (terminate by right
parentheses on same line).

CFA Alter PFA to GFA.

NFA Alter PFA to NFA.

PFA Alter NFA to PFA.

LFA Alter PFA to LFA.

LIMIT Top of memory.

QuIT Clear return stack and return to
terminal.

CONTROL STRUCTURES

DO...LOOP
DO ... +LOOP

|
LEAVE

BEGIN ... UNTIL
BEGIN . .. WHILE
... REPEAT

BEGIN ... AGAIN
IF... THEN

IF...ELSE ... THEN

END
ENDIF

Set up loop, given index range.

Like DO ... LOOP, but adds stack
value to index.

Place current index value on stack.

Terminate loop at next LOOP or
+LOOP.

Loop back to BEGIN until true at
UNTIL.

Loop while true at WHILE, REPEAT
loops unconditionally to BEGIN.

Unconditional loop.

If top of stack true, execute following
clause THEN continue; otherwise
continue at THEN.

If top of stack true, execute ELSE
clause THEN continue; otherwise
execute following clause, THEN
continue.

Alias for UNTIL.

Alias for THEN.

COMPILER-TEXT INTERPRETER

[COMPILE]
COMPILE

LITERAL
DLITERAL

EXECUTE
[
]

DICTIONARY CONTROL

CREATE
FORGET

HERE
ALLOT
TASK

- FIND

DP

C,

i’AD
IMMEDIATE
INTERPRET
LATEST

LIT

CLIT
LITERAL

SMUDGE
STATE

Force compilation of IMMEDIATE word.

Compile following <name=> into
dictionary.

Compile a number into a literal.

Compile a double-precision number into
a literal.

Execute the definition on top of stack.

Suspend compilation, enter execution.

Resume compilation.

Create a dictionary header.

FORGET all definitions from <name>
on.

Returns address of next unused byte in
the dictionary.

Leave a gap of n bytes in the
dictionary.

A dictionary marker.

Find the address of <name> in the
dictionary.

Search dictionary for <name>.

User variable containing the dictionary
pointer.

Store byte into dictionary.

Compile a number into the dictionary.

Pointer to temporary buffer.

Force execution when compiling.

The Text Interpreter executes or
compiles.

Leave name field address (NFA) of top
word in CURRENT.

Place 16-bit literal on the stack.

Place byte literal on the stack.

Compile a 16-bit literal.

Toggle name SMUDGE bit.

User variable containing compilation
state.

A65-050

AIM 65 FORTH ROMs

FORTH WORDS (CONT’'D)

USER VARIABLES

UABORT
UB/BUF
UB/SCR
UC/L
UEMIT
UFIRST
UKEY
ULIMIT

MONITOR & CASSETTE

COoLD
MON
TTY
CHAIN
CLOSE
?IN
0UT
GET
PUT
READ

WRITE

SOURCE
FINIS

INPUT-OUTPUT

-CR

CR
SPACE
SPACES
CLRLINE
DUMP
TYPE

7TERMINAL
KEY

EMIT
EXPECT

WORD

IN
BAUD
BL
CiL
TB

QUERY
ID.

HANG

OUTPUT FORMATTING

NUMBER

<#

User variable for ABORT.
User variable for B/BUF.
User variable for B/SCR.
User variable for C/L.
User variable for EMIT.
User variable for FIRST.
User variable for KEY.
User variable for LIMIT.

o

AlM 85 FORTH cold start.

Exit to AIM 65 Monitor.

Switch; true = TTY; false = KB

Chain tape file.

Close tape file.

Set to active input device (AID).

Set to active output device (AOD).

Input a character from the AID.

Qutput a character to the AOD.

Input n2 characters from AID to
address n1.

Output n2 characters to AOD at
address ni.

Compile from the AID.

Terminate complete from SOURCE.

Qutput CR to printer only.

Carriage return,

Type one space.

Type n spaces.

Qutput a CTRL B.

Print text string (terminated by ").

Dump n2 words starting at address.

Type string of n1 characters starting at
address n2.

True if terminal break request present.

Read key, put ASCII value on stack.

Output ASCII value from stack.

Read n1 characters from input to
address n2.

Read one word from input stream, until
delimiter.

User variable contained within TIB.

Set BAUD rate.

Qutput a SPACE character.

Number of characters/line.

Pointer to terminal input buffer start
address.

Input text from terminal.

Print <name=> from name # field
address (nfa).

Wait for keystroke.

Convert string at address fo double-
precision number.
Start output string.

OUTPUT FORMATTING (CONT'D)

#

#8

SIGN
#>

HOLD
HDL
- TRAILING

.LINE
COUNT

R

D.
D.R

DPL
VOCABULARIES
CONTEXT
CURRENT
FORTH

ASSEMBLER
DEFINITIONS

VOCABULARY <name>

VLIST

VOC-LINK

VIRTUAL STORAGE
LOAD

BLOCK

B/BUF

B/SCR
BLK

SCR

UPDATE
FLUSH

EMPTY-BUFFERS
+BUF

BUFFER

RW

USE

PREV

FIRST
OFFSET

-->

8

Convert next digit of double-precision
number and add character to output
string.

Convert all significant digits of double-
precision number to output string.

Insert sign of n into output string.

Terminate output string (ready for
TYPE).

Insert ASCII character into output
string.

Hold pointer, user variable.

Suppress trailing blanks.

Display line of text from mass storage.

Change length of byte string to type
form.

Print number on top of stack.

Print number n1 right justified n2
places.

Print double-precision number n2 n2.

Print double-precision number n2 n1
right justified n3 places.

Number of digits to the right of decimal
point.

Returns address of pointer to
CONTEXT vocabulary.

Returns address of pointer to
CURRENT vocabulary.

Main FORTH vocabulary

Assembler vocabulary.

Set CURRENT vocabulary to
CONTEXT.

Create new vocabulary.

Print names of all words in CONTEXT
vocabulary.

Most recently defined vocabulary.

Load mass storage screen (compile or
execute).

Read mass storage block to memory
address.

System constant giving mass storage
block size in bytes.

Number of blocks/editing screen.

System variable containing current
block number.

System variable containing current
screen number.

Mark last buffer accessed as updated.

Write all updated buffers to mass
storage.

Erase all buffers.

Increment buffer address.

Fetch next memory buffer.

User read write linkage.

Variable containing address of next
buffer.

Variable containing address of latest
buffer.

Leaves address of first block buffer.

User variable block offset to mass
storage.

Interpret next screen.

Stop interpretation.

AIM 65 FORTH ROMs

A65-050

FORTH WORDS (CONT’D)

PRIMITIVES

0BRANCH Run-time conditional branch,
BRANCH Run-time unconditional branch.
ENCLOSE Text scanning primitive used by WORD.
RO Location of Return Stack.

S0 Location of Parameter Stack.
RP! Initialize Return Stack.

SP! Initialize Parameter Stack.
NEXT The FORTH virtual machine.

SECURITY

ICSP Store stack position in check stack
pointer.

?COMP Error if not compiling.

7CSP Check stack position.

?ERROR Output error message.

?EXEC Not executing error.

?PAIRS Conditional not paired error.

?STACK Stack out of bounds error.

ABORT Error; operation terminates.

ERROR Execute error notification and restart
system.

MESSAGE Displays message.

WARNING Pointer to message Joutine.

FENCE Prevents forgetting below this point.

WIDTH Controls significant characters of

<name=,

MATH PACKAGE FORTH WORDS (A65-040)"

FLOATING POINT ARITHMETIC

F+ Adds two floating point numbers.

F— Subtracts one floating point number
from another floating point number.

F* Multiplies two floating point numbers.

Ff Divides one floating point number by

another floating point number.

UTILITY, SIGN AND COMPARISONS

FABS Takes the absolute value of a floating
point number.

INT Truncates a floating point number to an
integer.

SGN Converts the sign of a floating point
number to a floating point number.

FSIGN Gets a value corresponding to the sign
of a floating point number.

FCOMP Compares the value of a compacted
number in memory to a floating point
number.

POLYNOMIAL

POLY Evaluates a polynomial with

consecutive exponents.
Evaluates a polynomial with odd
exponents.

POLYODD

EXPONENTIAL AND LOGARITHMIC

SQR Takes the square root of a floating point
number.

> Raises one floating point number to the
power of another floating point
number.

EXP Raises the transcendental number e to
the power of a floating point number.

LOG Computes the logarithm to the base 10
(i.e., common log) of a floating point
number.

LN Computes the logarithm to the base e
(i.e., natural log) of a floating point
number.

*Requires AIM 65 FORTH or RM 656 FORTH be resident.

USER VARIABLE

MIN-WIDTH Specifies the minimum field width to be
output.
DEC-LENGTH Specifies the number of places to the

right of the decimal point to be
output.

ASCI/FLOATING POINT CONVERSIONS

FIN Converts a number in memory from
ASCI to floating point format.

FOUT Converts a number from fioating point
to ASCII.

FORMAT CONVERSION AND DATA MOVING

M>F Unpacks the compacted number in
memory to floating point.
F>M Packs the floating point number to

compacted format and stores the
result in memory.

M>A Unpacks the floating point number in
memory.

S>A Converts an integer to floating point
format.

S>F Converts an integer to floating point
format.

F>S Converts a number from floating point

to an integer.

TRIGONOMETRIC AND UNITS CONVERSION

SIN Calculates the sine of a floating point
number (in radians).

COs Calculates the cosine of a floating point
number (in radians).

TAN Calculates the tangent of a floating

point number (in radians).

ARCTAN Calculates the arc tangent of a floating
point number.

DEGREES Converts a floating point number from
radians to degrees.

RADIANS Converts a floating point number from

degrees to radians.

A65-050 AIM 65 FORTH ROMs

Information furnished by Rockwell International Corporation is belleved to be accurate and reliable. However, no responsibility is assumed by Rockwell
International for its use, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication
or otherwise under any patent or patent rights of Rockwell International other than for circuitry embodied in a Rockwell product. Rockwell International
reserves the right to change circuitry at any time without notice.

Electronic Devices Division

®Rockwell International Corporation 1983 Printed in U.S.A.
All Rights Reserved
ELECTRONIC DEVICES DIVISION REGIONAL ROCKWELL SALES OFFICES
T\
(HOME OFFICE Y

Electronic Devices Division
Rockwell International

4311 Jamboree Road

Newport Beach, California 92660

Mailing Address:
P.0.BoxC
Newport Beach, California 92660
Mail Code 501-300

Tel: 714-833-4700

TWX: 910 591-1698

UNITED STATES
Electronic Devices Division
Rockwell International
1842 Reynolds

Irvine, California 92714
(714) 833-4655

ESL 62108710

TWX: 910 595-2518

Rockwell International
921 Bowser Road
Richardson, Texas 75080
(214)996-6500

Telex: 73-307

Electronic Devices Division
Rockwell International

10700 West Higgins Rd., Suite 102
Rosemont, lliinois 60018
(312)297-8862

TWX: 910 233-0179 (Rl MED ROSM)

Electronic Devices Division
Rockwell International
50018 Greentree
Executive Campus, Rt. 73
Marlton, New Jersey 08053
(609) 596-0030

TWX: 710 940-1377

FAR EAST
Electronic Devices Division

Rockwell International Overseas Corp.

Itohpia Hirakawa-cho Bldg.
7-8, 2-chome, Hirakawa-cho
Chiyoda-ku, Tokyo 102, Japan
(03) 265-8806

Telex: J22198

EUROPE

Electronic Devices Division
Rockwell International GmbH
Fraunhofersirasse 11

D-8033 Munchen-Martinsried
West Germany

(089) 8576016

Telex: 0521/2650 rimd d

Electronic Devices Division
Rockwell International
Heathrow House, Bath Rd,
Cranford, Hounslow,
Middlesex, England

{01) 759-8911

Telex: 851-25463

Electronic Devices
Rockwell Collins
Via Boccaccio, 23
20123 Milano, Italy
498.74.79

Telex: 202/82

YOUR LOCAL REPRESENTATIVE

10/82

