ISSUE NO.

AIM 65/40 . .

THE NEXT G

2 For Your Information

3 Coming Soon . ..
AIM 65/40

4 Data Files for AIM 65
BASIC

6 More BASIC Data Files

9 A Move/Relocate Program

13
14
16
19
21
22
24

\y y
NERATION!

TTY Output Utility

Data Statement Generator
Cassette Load Utility
Interrupt Driven Keyboard
A Basic Hint

Letters to the Editor

Easy RS232C

Page 2

EDITOR’S CORNER

I want to thank all you supporters who have been sending in articles,
comments, suggestions etc. It’s nice to know that INTERACTIVE has
so many fans out there. We have a pretty good mix of articles in this
issue with maybe a bias towards data files. But, that’s what you seem to
be interested in.

Keep in mind that this publication is a dynamic entity. You are the force
behind it. Whatever you collectively say GOES. If you wish to influence
the direction we re taking, then write an article about the subject you’d
like to see. It’s as simple as that!

I would like to see more articles on how to interface the AIM 65 to dif-
ferent devices such as A/D, D/A, counter chips, DVM chips, speech
synthesizers, graphic output, etc. etc. etc. . . .

How about it?

I have received some good stuff in the area of CAD (Computer Aided
Design). Not enough for a complete issue, though, so I'll start running
them in issue #6 (or #7).

We're getting ready to do another update on the AIM 65 User’s Guide.
If you have found any errors or think we could explain something better,
let us know. Send all comments to the attention of THE DOCUMEN-
TATION MANAGER, Rockwell Intl., POB 3669, RC55, Anaheim, CA
92803.

Two interesting articles appeared recently in EDN magazine. The Jan-
uary 7, 1981 issue carried two articles which featured AIM 65. One of
them showed how a mechanical engineer could simulate a physical model
on a BASIC language equipped AIM 65. The other article gave complete
details (hardware and software) so an AIM 65 (or other 6502/6522 sys-
tem) could control the intensity or speed of ac operated devices such as
lamps or motors through an interrupt driven zero crossing detector.

If you don’t have access to this magazine, we can send you reprints of
the articles. Just ask for EDN #1 if you want the ac power interface or

EDN #2 for the digital simulation article. Send requests to the attention I

of SALES SUPPORT SERVICES, Rockwell Intl., POB 3669, RC55,
Anaheim, CA 92803.

All subscription correspondence and articles should be sent to:

EDITOR, INTERACTIVE
ROCKWELL INTERNATIONAL
POB 3669, RC 55
ANAHEIM, CA 92803

COPYRIGHT 1981 ROCKWELL INTERNATIONAL CORPORATION

Rockwell does not assume any liability arising out of the application or use of any
products, circuit, or software described herein, neither does it convey any license
under its patent rights nor the patent rights of others. Rockwell further reserves
the right to make changes in any products herein without notice.

INTERACTIVE

’

A version of the PASCAL programming language is now *‘in the works’
for AIM 65. At this point, all the information I can give you is that it will
consist of a five ROM set and be a subset of Standard Pascal which was
defined in a book called *‘Pascal User Manual and Report’’ by Jensen
and Wirth. No, there’s no data sheet as of yetso please don’t call or write
until we say that more information is available. This is not a product an-
nouncement . . . just some advance information that is intended to give
a hint about where Rockwell is heading. More on Pascal later.

Eric C. Rehnke
Newsletter Editor

FOR YOUR INFORMATION

From the Editor:

Here are some books that may help you along on the road to mastering
microcomputers.

BASIC FOR HOME COMPUTERS by Albrecht, Finke, and Brown.
Published by John Wiley & Sons (605 Third Ave., New York, NY
10016).

PROGRAMMING AND INTERFACING THE 6502 by Marvin De
Jong. Published by Howard W. Sams & Co. (4300 W. 62nd St., In-
dianapolis, Ind 46268).

THE FOLLOWING BOOKS ARE AVAILABLE FROM ROCKWELL
INTERNATIONAL AT SPECIAL PRICES:

6502 SOFTWARE DESIGN by Leo J. Scanlon. Published by Howard
W. Sams & Co. 6502 Assembly language tutorial and hardware inter-
facing examples. $7.00 (U.S. & Canada) $9.00 (overseas)

MICROCOMPUTER SYSTEMS ENGINEERING by Camp, Smay, and
Triska. Published by Matrix Publishers (30 NW 23rd Place, Portland,
ORE 97210) General intro to microcomputing, 6502, 6800, and 8080
Assembly language programming, and some system design principles.
$17.00 for U.S. and Canada and $19.00 overseas.

AIM 65 LABORATORY MANUAL AND STUDY GUIDE by Leo J.
Scanlon. Published by John Wiley & Sons. Provides 17 programming

and I/O experiments for the AIM 65. $5.00 (U.S. & Canada) or $7.00
(overseas)

ORDERING INSTRUCTIONS for books available from Rockwell: Or-
ders must be accompanied by payment. U.S. and Canadian orders
must be by check or money order and overseas payment must be drawn
on U.S. bank. California residents add 6% state tax. Send orders to
the attention of SALES SUPPORT SERVICES, Rockwell Intl, POB
3669, RCSS, Anaheim, CA 92803.

CORRECTION TO THE AIM 65
USER’S GUIDE

There seems to be a problem with the program on pages 8-37 and 8-38

P

f«

of the AIM 65 User’s Guide (Rev 3, December 1979). Insert the se-ﬁ

quence HERE JMP HERE between ;CONTINUE and the dotted line

(Continued on page 22)

INTERACTIVE

COMING SOON. ...
AIM 65/40

Rockwell International will shortly be introducing the AIM 65/40. The
AIM 65/40 microcomputer is made up of an R6502 based single board
computer with on-board expansion to 65 kilobytes of memory, a full
graphic 280 X N dot matrix or 40-column alphanumeric printer, a 40-
character alphanumeric display, and a full ASCII keyboard with user as-
signable function keys.

An advanced generation of Rockwell’s popular AIM 65 microcomputer,
the AIM 65/40 will be available as a complete system or as individual
computer and intelligent peripheral modules.

The AIM 65/40 Series 1000 single board computer modules feature
system address expansion up to 128K bytes with on-board memory up
to 48 kilobytes of RAM and up to 32 kilobytes of ROM or EPROM.
Six level priority interrupt logic and six 16-bit multi-mode timers are
included for flexibility in production automation and laboratory control
applications. Extensive 1/O capability provides an RS-232C asyn-
chronous communications interface channel with programmable data
rates of up to 19,200 baud for terminals or modems, plus a 20 ma current
loop TTY interface, dual audio cassette interfaces, and two user-defin-
able 8-bit parallel ports with handshake control two 16-bit timer/counters
and an 8-bit serial shift register.

Three additional 8-bit parallel ports are directly programmable as dic-
tated by the user’s application to provide more TTL level I/O or inter-
face to keyboards, displays, and printer modules. Manufacturer supplied
ROM resident software included with the AIM 65/40 Series 1000 com-
puter provide I/O drivers for the intelligent peripherals and more. The
printer connector is compatible with the Centronics parallel interface that
is so popular with high speed dot matrix printers.

A buffered system bus accommodates off-board expansion via Rock-
well’s RM 65 microcomputer modules which include intelligent periph-
eral controllers for mini or standard floppy disks, CRT monitors and the
IEEE488 instrumentation bus, plus additional communications inter-
faces and a selection of RAM, ROM and PROM memory expansion
options up to 128K bytes of memory and memory-mapped [/O capacity.

The AIM 65/40 Model 0600 graphics printer module consists of an in-
telligent microprocessor controller integrated with the printer mecha-
nism. This module operates in two modes. Character mode operation

Page 3

prints upper and lower case ASCII characters, mathematical symbols,
and semi-graphics character font formatted as 40-characters/line at 240
lines/minute. Full graphics mode outputs any data pattern desired as a
280xN dot matrix. With its own microprocessor controller, user chang-
able character generator ROM, thermal head drivers, motor control, and
parallel handshake ASCII interface, this freestanding peripheral mini-
mizes demand on the AIM 65/40 central processor, permitting maximum
system performance.

The Model 0400 display module features a bright, crisp vacuum flou-
rescent 40-character alphanumeric display. This stand-alone module has
its own microprocessor controller for display of alphanumeric, special,
and limited graphics characters, parallel handshake ASCII interface, sup-
port circuitry and operates from a single +5 volt power supply. Special
control commands permit variable display timing, cursor control, auto-
scroll, and character blinking.

The Model 0200 keyboard module provides a terminal style alpha-
numeric and special character keyboard matrix with 64 keys, including
locking ALL CAPS, control, and eight user definable function keys.
Three keys labelled ATTN, RESET, and PAPER FEED have dedicated
lines to the interface connector.

The AIM 65/40 Series 5000 incorporates a ROM resident software sys-
tem and integrates all four modules into a complete microcomputer sys-
tem. The interactive monitor software controls the AIM 65/40 system
with single keystroke, self-prompting commands, supports software de-
velopment with assembler, debug and control commands. A multi-file
text editor supports both line and screen editing functions. Optional lan-
guages include a fully symbolic R6500 assembler and BASIC. FORTH,
PASCAL, and PL/65 software packages are in development.

The AIM 65/40 is expected to be available sometime during the third
quarter of 1981.

For price and delivery information contact your local Rockwell sales
office. o

Page 4

DATA FILES FOR
AIM-65 BASIC

Jerry K. Radke
U.S. Dept. of Agriculture

The storage and retrieval of data on a permanent (or semipermanent)
medium is often necessary. Unfortunately, Rockwell AIM-65 BASIC
does not provide data file capability for its cassette recorder interface.
Even worse, Microsoft does not provide a listing of the BASIC it wrote
for the AIM-65 so the user can easily modify it. However, the procedure
presented here will provide the user of the AIM-65 with a cassette data
file capability that is relatively painless though not very elegant.

I use two short BASIC subroutines to open files (one each for read and
write) and one to write an end-of-file. These statements start at 9000. I
usually reserve certain blocks of data statement numbers for certain sub-
routines which can be saved and loaded individually, e.g. 4000’s are re-
served for my real-time clock and timing subroutines, 5000's are my
sorting subroutines, 6000's are for my formatted printing subroutines,
etc. This allows me to build programs using these standard subroutines
as modules.

In addition to the three subroutines, scme BASIC statements are needed
in the main program to control the tape recorder(s) and to select the active
output device (AOD) and active input device (AID). The remote control
lines to the tape recorders should be functional. The minimum procedure
to write on tape is to call the subroutine at 9000 to open a file, set the
AOD to *‘tape’’, print (via BASIC *‘PRINT"" statements) to tape, re-
turning AOD to ‘‘display ", and finally end-filing the tape by calling the
subroutine at 9100. This causes the 80 byte tape buffer to fill and dump
to tape in blocks while automatically turning the tape recorder on and
off. Reading tapes is performed by calling the subroutine at 9200 to open
the file, setting the AID tape, “'INPUTting " the data, and returning the
AID to the ‘‘keyboard’’.

To make the data files compatible with text files that are written and read
by EDITOR, a few additional things should be done. The first five char-
acters “*‘PRINTed " to the tape buffer should be the filename. (The first
position in the buffer was set to indicate block zero by statement 9010
thus the filename takes up characters 2 through 6). The 7th character
must not be a CR ($OD) or it will not be accepted by EDITOR as a text
file. EDITOR also wants to see two consecutive CR’s at the end of the
file to indicate EOF. The EOF subroutine does this as well as filling the
rest of the block with *‘nulls*’. However, the user is free to set up his 80
byte blocks to suit his own needs, e.g. a special character to indicate
EOF. Obviously, to read data from tapes, a proper INPUT format is nec-
essary to match the way the data is stored. The filename will also need
to be INPUT from block 0.

The program on page 5 gives an example that we can follow. Statements
20 through 50 load array P$. Statement 60 inputs a title for the data (not
the filename). Statements 90— 120 sets up tape recorder 1 or 2 for output
and turns the tape controls off. (User should respond with a 1 or 2 to

INTERACTIVE

statement 90). At statement 120, place tape recorder in ‘‘record’’ mode
and answer query. Input ‘‘filename’’ at 140. Statements 150-230 ac-
tually do the writing to tape. Note that 170 prints the filename, a comma,
and the number of data lines (N). Commas are necessary if more than
one data element are to be read per line. Statement 240 turns the tape
recorders on to allow the user to reposition the tapes if necessary. The
tape read example is similar. Statements 560—630 input the data, 640—
690 prints the data, and 700 turns the tape controls back on. The user
can place the recorder in the *‘play "’ mode after the prompt *>"" is dis-
played for statement 580. Of course, the tape should be properly placed
in a gap just before the start of the desired file.

Statements should be kept to a minimum while the AOD or AID is set to
*tape’’. If data is going to be written or read several different times in
the program, return AOD or AID to ‘‘keyboard/display’’ after each
PRINT or INPUT loop or routine. In other words, only have the AOD or
AID set to ‘‘tape’’ when absolutely necessary. I have not tried all com-
binations possible, but do know that data can be easily written or cor-
rected by the EDITOR and read as data by BASIC. I would be interested
in hearing about any ‘‘discoveries’” you make. If you have questions, I
can be reached at 612/589-3411 during normal working hours.

This procedure offers quite a bit of flexibility, and I have left it this way
even though a neater package could be written using WHEREIN and
WHEREOUT and putting almost everything in the subroutines. One

thing to rermember with this routine is that the tape must be positioned so /

that block zero will be the first block read. This can be changed if de-
sired, however. Also, a search procedure could be used to locate block
zero of a given file.

MINIMUM STATEMENTS TO WRITE ON CASSETTE TAPE

*

* USER PROGRAM

*

GOSUB 9010 OPEN FILE WRITE

POKE 42003,84 ACTIVE OUTPUT DEVICE SET TO
“TAPE"

*

* USER PRINT STATEMENTS TO
TAPE

*

POKE 42003,13 ACTIVE OUTPUT DEVICE
RETURNED TO *‘DISPLAY "™
GOSUB 9110 WRITE EOF ON TAPE

END

MINIMUM STATEMENTS TO READ FROM TAPE

*

* USER PROGRAM

*

GOSUB 9210 OPEN FILE (READ)

I_‘r | “RA

TERACTIVE

LA R AN | Ta) Page 5
POKE 42002,84 ACTIVE INPUT DEVICE SET TO 70 INPUT *‘STORE ON TAPE Y/N’’ ;A$
“TAPE”’ 80 IF A$=‘N" THEN STOP
* 90 INPUT “T= ", T.T=T-1
* USER INPUT STATEMENTS TO 100 POKE 42037, T:REM: SET TAPOUT
READ FROM TAPE 110 POKE 43008,204:REM: TURN TAPES OFF
* 120 INPUT “‘TAPE READY Y/N’’;A$
POKE 42002,13 ACTIVE INPUT DEVICE RETURNED 130 IF A$=‘“N"’ THEN STOP
TO “KEYBOARD”’ 140 INPUT “‘FILENAME’’ ;A%
* 150 GOSUB 9010:REM: OPEN FILE
* USER PROGRAM 160 POKE 42003,84:REM: TAPE AOD
* 170 PRINT A$; " ; N
END 180 PRINT H$
190 FOR I=0 TO N-1
200 PRINTI + 1; “,”" ;P$(D)
TAPE SUBROUTINES 210 NEXTI
220 POKE 42003,13:REM: DISPLAY AOD
9000 REM: OPEN 230 GOSUB 9110:REM: WRITE EOF
FILE (WRITE) 240 POKE 43008,252:REM: TURN TAPES ON
9010 POKE 278,0 $0116 TO O (SET 1ST CHAR IN BUFF 250 END
FOR BLK 0)
9020 POKE 42039,1 SET OUTPUT TAPE POINTER 500 REM: TAPE READ EXAMPLE
($A437) TO ““1” 510 DIM R40), R$40)
9030 POKE 360,0 BLOCK COUNT ($0168) TO ZERO 520 INPUT ‘‘READ TAPE Y/N’’; A$
9040 POKE 41993,22 SET TAPE GAP 530 IF A$=‘N" THEN STOP
($A409) TO $16 540 INPUT “T =", T:-T=T-1
9050 RETURN 550 POKE 42036, T:REM: SET TAPIN
9100 REM: WRITE- 560 GOSUB 9210:REM: OPEN FILE
EOF 570 POKE 42002,84:REM: TAPE AID
9110 POKE 42003,84 SET OUTFLG TO “‘T”’ 580 INPUT A$,N
9115 PRINT CHR$(13) OUTPUT OD,OD,QA 590 INPUT H$
9120 NL=80-PEEK CHECK POINTER FOR BUFFER 600 FOR I=0 TO N-1
(42039) SPACE 610 INPUT R(),R$(D)
9130 FOR NC=1TONL FILL BUFFER WITH NULLS 620 NEXT I
9140 PRINT CHRS$(0); 630 POKE 42002,13
9150 NEXT NC 640 PRINT
9160 POKE 42003,13 SET OUTFLG TO *“‘D”’ 650 PRINT! ** *";PRINT'!'H$
9170 RETURN 660 FOR I=0 TO N-1
9200 REM: OPEN 670 PRINT! R(I); TAB(5);R$(I)
FILE (READ) 680 NEXT I
9210 POKE 277,0 SET BLOCK ($0115) TO ZERO 690 PRINT! **
9220 POKE 42038,80 SET COUNTER ($A436) TO END 700 POKE 43008,252
($50) 710 END
9230 RETURN Some useful locations:
Hex Decimal Label Remarks
EXAMPLE PROGRAM
$0115 277 BLK Block count for input (must be
1 DIM P$(40) zero to start)
10 REM: TAPE WRITE EXAMPLE $0116 278 TABUFF 80 byte tape buffer starts here
20 INPUT “‘# ENTRIES’’ ;N $0168 360 BLKO Block count for output
30 FORI=0TO N-1 (set to zero)
40 PRINT “ENTRY #'" ;I + 1; :INPUT P$(I) $A409 41993 GAP Block gap for tape recorder
50 NEXTI $A411 42001 PRIFLG Printer “*ON"" = 0,

60 INPUT “‘TITLE™ ;HS$ “OFF™ = 128 (S80)

Page 6

MORE BASIC DATA FILES

Steve West and Frank Nunneley
Johannesburg, South Africa

(EDITOR’S NOTE: Yes, I know that you’ve already seen a data file han-
dling program. But, this program is a bit different and it shows a neat
way to add new commands to AIM 65 BASIC.)

The ability to process and store data on cassette greatly enhances the use-
fulness of BASIC programs.

Any system of this type should be easy to use. The method described
here extends the instruction set of BASIC to include instructions to open
and close files and to input and output data. The new instructions are:

(Continued from previous page)

$A409 41993 GAP Block gap for tape recorder
$A411 42001 PRIFLG Printer “‘ON”’ = 0,
““OFF’’ = 128 ($80)
$A434 42036 TAPIN Tape 1 or 2 controls for input
) default = 1
) if not changed
$A435 42037 TAPOUT Tape I or2 controls for output
) (otherwise last)
$A436 42038 TAPTR Tape buffer pointer for input
$A437 42039 TAPTR2 Tape buffer pointer for output
@™ @
$A800 43008 DRB Data Reg B for monitor
6522—PB4 and PBS turn
tape controls on and off.
Hex Decimal Remarks:
$CC 204 Both tapes
OFF
$DC 220 Tape 1 on,
2 off
$EC 236 Tape 2 on,
1 off
$FC 252 Both tapes
on
Useful Monitor Subroutines
Hi Lo
Hex Decimal Decimal Decimal Remarks
$E6BD 59069 230 189 Toggle Tape
#1 control
$E6CB 59083 230 203 Toggle Tape
#2 control

©-

<

r

ERACIIVE

()
[
=

- A

PRINT# ‘NAME'1 Opens a cassette output file. The name of
the file is in single quotes and is followed

by the recorder number. (Default is T=1)

PRINT#A,B$ Outputs data to the currently open output
file. Format is identical to standard PRINT
statement.

PRINT## Closes current output file.

INPUT# ‘NAME 2 Opens an input file by finding the file
“NAME”’. The file name is again fol-
lowed by the recorder number (Default to
tape recorder 1)

INPUT#AS$,BS Inputs data from currently open input file.

INPUT## Closes Input file.
Only one tape buffer is available while BASIC is in use, thus only one
/O file can be open at a time.

To use BASEX, BASIC must be limited to 3883 bytes in response to
the question ‘‘MEMORY SIZE?”’ when entering BASIC. Answer
“WIDTH?"’ as before, then ESCape to monitor and Load BASEX from
cassette. Reenter BASIC using 6 and the extension program is ready to
work. This order is important as the divert routine on page zero must be
modified after BASIC is initialized.

The assembly listing follows. When entering this file in source it is rec-
ommended that the editor be placed above $800; the assembler symbol
table can be placed between 200 and 800. This way the Editor won'’t be
corrupted when the program is tested. After entering BASIC after assem-
bling the file it will be necessary to modify the instructions on page zero
using Mneumonic Entry. After the file is working and the initialization
procedure from tape is used this is nor required.

<*>=C8

<I>
00C8 4C JMP OF2D
00CB EA NOP
0occ

<

When the file is working dump it (object) to cassette, the link to the ex-
tension must be included here.

<D>

FROM=F2D TO=FFF
OUT=T F=BASEX T=1
MORE?Y

FROM=C8 TO=CB
MORE?N

Y s

-~

n :

INTERACTIVE

Page 7
-y
2000 sk TAFE DATA FILES OF63 20 AC ER EXIT JSR FLXY
2000 5 STEVE WEST AUG ‘80 OFé66 68 FLA
OF67 38 SEC
2000 FHXY =$ERYE OF68 60 RTS
2000 FLXY =$ERAC OF 69 INFUT
2000 CRLF =$E9F0 OF69 48 FHA
2000 LL. =$EBFE OF6A 20 9E ER JER PHXY
2000 OUTFLG =$A413 OF6DI A0 01 LIY #1
=000 INFLG — =$A412 OF&6F E1 Cé LDA (FNTR)»Y
2000 OUTDLS =$EF05 OF71 9 23 CMF $7#
2000 TORYTE =4F18R OF73 IO N4 ENE FR1
2000 DILINK =$A406 OF75 A9 54 Lha #°7
2000 DNUMFTA =$EG6F OF77 8D 12 A4 STA INFLG
2000 TAFOQUT =$A435 OF78 08 INY
2000 TAFIN =$A434 OF7E El1 Cé LIA (ENTR) Y
2000 IRE =$ABO0 OF 7D C9 27 CMF %777
2000 DULL =$ES0A OF7F FO 07 BEQ LOADFL
2000 NAME — =$A42EF OF81 C9 23 CMF 47 #
2000 LOADTA =$E32F OF83 FO 2F EEQ OFFTAF
2000 FNTR =%Cé OFB%S 4C 5F OF JMF 8T
2000 X=$F 20 0F88 LOADFL
OF 2D OF88 20 C7 OF JER RINAME
OF 2D RASEXT OF8E BC 34 A4 STY TAFIN
OF2DL €9 97 CHMF #497 OFBE 20 2F E3J JER LOADTA
OF2F FO 0C REQ FRINT 0OF91 4C 63 OF JMP EXIT
- OF31 (9 84 CMF #484 OF94 OFENFL
OF33 FO 34 RBEQ INFUT OF94 20 C7 OF JER RINAME
OF3% C9 3A CMF #$3A OF97 8C 35 A4 SYY TAFOUT
OF37 RO 03 RCS NOTNUM 0F9a 20 6F ES JSR DUMETA
OF39 4C CC 00 JMF $CC OF9DI 4C 63 OF JME EXIT
OF3C 60 NOTNUM RTS OFAQ 98 UFENTR TYA
OFAl 18 CL.C
OF3D0 48 FRINT FHA OFA2 65 Cé ADC FNTR
OF3E 20 9E ER JSR FHXY OFA4 85 Cé STA FNTR
OF41 a0 01 LIY #1 OFA6 90 02 RCC URL
OF43 Rl Cé LIA (FNTR)YY oFa8 Eé C7 INC ENTR+1
OF45 L9 2¢ CHME & % OFAA 60 UF1, RTS
OF47 FO 06 KEQ STATAF OF AK CLOSE
OF49 FR1 OFAE 20 FO E9 JSR CRLF
OF49 20 FE EB J5R LL OFAE 20 FO E9 JER CRLF
OF4C 4C 63 OF JMECEXTT OFR1 20 OA ES JSR DUL1
OF 4F STATAF OF R4 OFFTAF
OF4F A% 54 LIva #77 OFE4 A9 CF LIA #$CF
OF51 8D 13 A4 5TA OUTFLG OFE6 2D 00 A8 ANI' DIRE
OF34 C8 INY OFE9 8D 00 A8 5TA DIRR
OF5S Kl Cé LIA (FNTRY»Y OFRC 20 FE E8 JSR LL
OF57 €9 27 CMF #7777 OFEF 20 AC ER JER FLXY
OFS59 FO 39 KEQ OFENFL OFC2 68 FLA
OF3RrR 9 23 CMP ¥ # OFC3 A% 8F LA +$8F
OFSD FO 40 EEQR CLOSE OFCS 38 SEC
OF5F 5T OFCé 60 RTS
NOFsF 88 NEY OFD7 RINAME

OF60 20 A0 OF JER UFFNTR OFC7 C8 INY

Page 8

OFC8 20 A0 OF JSR UFFNTR
OFCE A0 00 Loy #0
OFCh Rl Cé NEXT LIA (FPNTR)Y»Y
OFCF C9 27 CMFP #7277
OFI1 FO OE BEQ ENIINAM
OFL3 99 2E A4 STA NAME»Y
OFnée 8 INY

OFn7 €GO 05 CPY #5
OFne Do F2 ENE NEXT
OFDR 20 A0 OF JER O UFFNTR
OFDE 4C EE OF JMP RDA
OFE1 20 A0 OF ENIINAM JSR UFPFENTR
OFE4 A9 20 LA #7
OFES6 99 2E A4 ENI1 STA NAME»Y
OFE? (8 INY

OFEA CO 05 CFPY #5
OFEC 0o F8 EBNE EN1
OFEE RDY

OFEE AO 01 Loy #1
OFF0 Bl Cé LIlIA (FNTR)>»Y
OFF2 C9 32 CMF #72
OFF4 FO AA REQ UFFNTR
OFF6 (C9 31 CMF #71
OFF8 Do 03 BNE RID2
OFFA 220 A0 OF JOR UFFNTR
OFFD 88 RI2 NEY

OFFE 60 RTS

OFFF X=$C8

00Cs DIVERT

00C8 4C 2Iv OF JHMF BASEXT
00CE EA NOF

00CC +END

As a final note, the BASIC data files are EDITOR compatible so that
data to be processed can be produced by using the EDITOR.

AN EXAMPLE PROGRAM ILLUSTRATING THE USE OF
THE NEW COMMANDS

Notes: No tape number was specified when opening the files thus tape

recorder 1 is used (default)
At 600 is a subroutine to toggle the tapes to make rewind and fast
forward possible.

SOME COMMENTS ON THE EXAMPLE BASIC PROGRAM:

Line

Number Action

45 turn tape #1 ON

55 wait for key when operator is ready
58 turn both tapes OFF

10
30
40
45
S50
]
58
60
70
830
Q0
100
110
120
130
140
200
210
220
230
240
250
260
270
280
290
300
310
320
590
600
610

INTERACIIVE

-~
60 the output file is opened and called
‘“‘NAMES”’
100 .LAST indicates that the last name
has been entered
140 end of output to TAPE routine
200 start of input from TAPE routine
220 looks for file with NAME= ‘‘NAMES"”’
230 prints heading (1st string in file)
260 inputs name from TAPE
270 has last been read?
280 echos to printer
300 closes file
600 TP=0 (both tapes OFF
TP=1 (#1 ON, #2 OFF)
TP=2 (#1 OFF, #2 ON)
TP=3 (both tapes ON)
FRINTIY EXAMPLE FROGRAM®
FRINT!" °®
REM STORE NAMES ON CASSETTE
TF=12G08URAL00
FRINT" TAFE TO RECORD" -~

GETASIIF Ag=""

TF=0GOSURG00

FRINTHE NAMES " " NAME

FOR I=1T030

INFUTAS

FRINT#AS ¢ REM # 850 TO TAFE
IF A%=" LAST"THENLZ20

THENSS

LIST"

NEXT

REM CLOSE FILE

FRINT##

END

REM READ NAMES FROM TAPE
FRINT"TAFE TO PLAY"

INFUT# NAMES ‘H$
FRINTITARCS) H
FRINT!I" "

FOR I=17T030
INFUT#A%

ITFA$=" ,LAST"THEN300
FRINT!AS
NEXT
INFUT#4#
FRINT® I
END

REM TAFE ON/OFF

FOKE43008y 207ANDFEEK (43008) 0R16XThe
RETURN <

0ONE !

INTERACTIVE

NP el L)

A MOVE/RELOCATE
ROUTINE

Anthony Chandler,
Montreal, Canada

SUMMARY

This routine will, at the user’s option, either MOVE a block of data or
RELOCATE a machine-language program from one area of memory into
any other area of RAM from $0200 up. It can perform both forward and
backward shifts, and resides entirely in Page Zero.

INTRODUCTION

Often the need arises to shift a block of data or a machine-language pro-
gram from one set of locations in memory to another.

If a block of data, such as a ‘‘look-up’’ table has to be shifted, then a
simple MOVE routine which sequentially reads each byte of data in the
SOURCE area and writes it into the DESTINATION area is sufficient.
Examples of MOVE routines are given on pages 6-26 and 6-27 of the
R6500 Programming Manual.

However, if a machine-language program has to be shifted, then a simple
MOVE routine may not be satisfactory. Those instructions in the pro-
gram which use the absolute addressing mode (such as JMP 0345 or LDA
0567) have operands in the form of an address. If the operand points to
an address within the span of the program being re-located, then the in-
struction must be modified so that its operand points to the correspond-
ing address in the destination area. On the other hand, if the instruction
refers to an address outside the span of the program, then it must be
moved without alteration.

In order to shift programs, a more complex routine which calculates the
necessary address changes is required.

In AIM 65, the memory area available for programs extends from ad-
dress $0200 up to the limit of installed RAM ($1000 if 4K of memory is
installed). Any MOVE/RELOCATE routine which occupies part of this
area will naturally be restrictive, since the area it took up could not be
used. A special effort has been made to enable the following routine to
be located entirely in Page zero, which is not normally used for program
instructions, so as to leave the entire working area from $0200 up free.

DESCRIPTION

Fig. 1 is a disassembly of the MOVE/RELOCATE routine. The pro-
gram itself occupies addresses $0000—$00DD. Addresses SOOEB—$00FF
are ‘‘borrowed’’ from the Text Editor ‘‘Find’’ command for temporary
storage, pointers and prompt messages. Loading of the ‘‘RELOC’’ rou-
tine will not disturb any operations of the Text Editor except the
*Find’’ command and only then if an attempt is made to find a character
string longer than 12 characters. The Text buffer addresses, stored in
$00DF-$00E9 are preserved.

Page 9

EXECUTION—RELOCATE

The program starts at $0000 and can be run using the * =0000 command
or by setting up a linkage to $0000 via one of the Function keys. The
following example illustrates the entries necessary to re-locate a pro-
gram presently residing at addresses $0456 to $0567 to a destination
starting at address $0234. In this example, the address of the last in-
struction is $0567—the last byte of the program might be at $0569, if
the program terminated with a 3 byte instruction.

PROGRAM PROMPTS
S = START ADDRESS
F = FINISH ADDRESS
D = DESTINATION ADDRESS
MR = MOVE/RELOCATE

* =0000

G/

S= Enter 0456 (NOTE—NO ERRORS
PERMITTED. IF
INCORRECT DIGIT
THEN RE-START
PROGRAM)

S=0456F= Enter 0567

S=0456F=0567D = Enter 0234

(Display wraps around)
0456F=0567D=0234MR = Enter “‘R’" (for re-locate)
(any other key except *‘M*’ will

do)

The routine will run, displaying a disassembly of the source program as
the re-location takes place.

On completion, control returns to the Monitor. The next free available
address following the re-located program ($0348 in the above example)
will be found by examining memory locations 00F5-00F6 (LSB first—
4803)

EXECUTION—MOVE

If the source addresses, $0456 to $0567 contain data (or text) then a sim-
ilar procedure is followed.

In this case, however, the Source Finish address entered in response to
the prompt ‘‘F=""should be one address less than that of the last byte of
data (for example, 0566 instead of 0567).

After entering the addresses, the response to the move/relocate prompt
“MR ="’ should be ‘M’ for move.

The Destination Finish address to be found at $00F5-00F6 will be the
address of the last byte of data moved (for example $0345). The next free
address is $0346.

Page 10

If the MOVE routine is used to shift the contents of the Editor’s Text
Buffer, then the Source Start address should be that shown (Low order
byte first) at SO00E3-00E4. The Source Finish address should be one less
than the text end address shown at $00EI/E2. On completion of the
MOVE operation, it will be necessary to reset the Text Buffer addresses
as follows:

00El Text end address—same as 00FS
00E2 00F6

00E3 Text start address—same as Destination
00E4 Start

00E5 Text buffer end address—this can be any

00E6 address higher than that in 00EI -00E2
depending on the amount of free space
required.

During execution of the MOVE option, no messages are displayed and
return to the Monitor is very rapid.

OVERLAPPING

The routine permits backward overlapping—for programs, the DESTI-
NATION START address must be at least three addresses lower than the
SOURCE START. For a data MOVE, there is no restriction.

Forward overlapping is not possible, but a program or data block can be
temporarily re-located or moved to a high or low memory area and then
shifted back to overlay its original source area.

SELF-REPRODUCTION

Incidentally, the program will successfully re-locate itself and so, if the
terminating instruction were replaced with instructions calculating a new
destination, it could become self-perpetuating until its progeny filled
available RAM.

STORING ON CASSETTE TAPE

When dumping the routine for storage on to cassette tape, the addresses
to dump are FROM= 0000 TO= 00DD

MORE? Y

FROM= 00F7 TO= OOFF

This procedure avoids recording on tape the Editor’s Text start and finish
addresses from $00El to $00E6. This means that, when ‘‘RELOC’ is
loaded from tape at some future time, it will not affect any Text Editor
which is set up.

N

INTE

RACTIVE

PROGRAM LISTING AND COMMENTS

The following temporary stores and pointers are used:

SOURCE START (S)

CURRENT SOURCE ADDRESS

SOURCE FINISH (F)

$00EB

OPERAND ADDRESS (from instruction

being read)

DESTINATION START (D)

CURRENT DESTINATION ADDRESS

00EC

00ED
00EE

00EF
00FO0

00F1
00F2

00F3
00F4

00F5
00F6

Prompt messages are stored (in ASCII) as follows:

M = 00F7
00FB
00FF

0000 A2

0002 A0

0004 20

0007 20

000A EO

000C DO

000E 20

/53

/ 44

/ 3D

LDX

LDY

JSR

JSR

CPX

BNE

JSR

3D 46
3D 4D 52

*

*

#00

#00

00D2

0090

#0C

0004

00D2

3D

*

S F
D =M

Al

(LO)
(HI)

* = unchanged)

INITIALIZE. X INDEXES
MESSAGE BYTES

Y INDEXES PROGRAM
BYTES EACH INSTRUCTION
DISPLAY PROMPT MESSAGE
ASKING FOR ADDRESS

GET 4-DIGIT ADDRESS AND

STORE IT

SEE IF 12 DIGITS (ALL
THREE ADDRESSES)
IF NOT-BACK FOR NEXT

ADDRESS

DISPLAY FINAL PROMPT

(“MR="")

INTERACIIVE

0011 20 JSR E973
0014 C9 CMP #4D
0016 FO0O BEQ 007E
0018 A5 LDA ED
001A 8D STA A425
001D A5 LDA EE
001F 8D STA A426
0022 20 JSR F46C
0025 A5 LDA EA
0027 C9 CMP #02
0029 DO BNE 006E
002B A0 LDY #0I
002D Bl LDA (ED),Y
002F 85 STA Fl
0031 C8 INY

0032 Bl LDA (ED),Y
0034 85 STA R
0036 38 SEC

0037 AS LDA Fl
0039 E5 SBC EB
003B A5 LDA R
003D E5 SBC EC
003F 90 BCC 006E
0041 A5 LDA EF
0043 E5 SBC Fl
0045 A5 LDA FO
0047 ES SBC R
0049 90 BCC O006E
004B 18 CLC

004C A5 LDA Fl
004E 65 ADC F3
0050 48 PHA

REDOUT—SEE IF USER
WANTS MOVE OR
RELOCATE

IF HE SAYS “M’ THEN—

GO TO MOVE ROUTINE FOR
STRAIGHT COPY
OTHERWISE, GET CURRENT
SOURCE ADDRESS FROM ED/
EE AND PUT IT IN SAVPC AT
A425/A426

DISASM—INTERPRET
INSTRUCTION & DISPLAY IT
LENGTH—ACCUMULATOR
HAS LENGTH MINUS ONE
ISIT A 3-BYTE
INSTRUCTION?

NO—SO GO MAKE
STRAIGHT COPY

YES—IS A 3-BYTE SO MAY
HAVE TO ALTER

GET FIRST BYT OF OPERAND

SECOND BYT OF OPERAND
OPERAND INTO FI/F2
SUBTRACT SOURCE START
ADDRESS FROM OPERAND
TO SEE IF OPERAND POINTS
TO ADDRESS BELOW
SOURCE START

IF SO—CARRY CLEAR AND
NO CHANGE REQUIRED
SUBTRACT OPERAND FROM
SOURCE FINISH ADDRESS
TO SEE IF OPERAND POINTS
TO ADDRESS ABOVE
SOURCE FINISH

IF SO—CARRY CLEAR AND
NO CHANGE REQUIRED.
OPERAND REQUIRES
CHANGING SO PREPARE TO
ADD. ADD OPERAND TO
DESTINATION START
ADDRESS

TEMPORARILY STORE LO-
BYT SUM ON STACK

0051
0053
0055

0056
0057
0058
005A
005B
005C
005E
0060
0062
0063
0064
0066
0067
0069
006B
006E

0071

0074

0077

007A

007C

007E

007E
0080
0082
0085

0088

A5
65
AA

38
68
ES
48
8A
ES
A0
91
88
68
91
88
B1
91
4C
20

20

20

20

BO

90

LDA
ADC
TAX

SEC

PLA

SBC

PHA
TXA
SBC

LDY
STA

DEY
PLA

STA

DEY
LDA
STA

IMP

JSR

JSR

JSR

JSR

BCS

BCC

F4

EB

EC
#02
(F5),Y

(F5),Y

(ED),Y

(FS),Y

0071

00C6

00AD

EA13

00A3

0018

008D

Page 11

TEMPORARILY STORE HI-
BYT SUM IN X

NOW SUBTRACT SOURCE
START ADDRESS FROM SUM
GET LO-BYT SUM

STORE IT ON STACK
GET HI-BYT SUM FROM X

PUT ADJUSTED OPERAND
INTO CURRENT
DESTINATION PLUS 3

AND PLUS 2

NOW GET OP-CODE FROM
CURRENT SOURCE

PUT IT IN CURRENT
DESTINATION

GO TO UPDATE AND END
CHECK

MAKE STRAIGHT COPY OF
COMPLETE INSTRUCTION
INCREMENT CURRENT
SOURCE AND DESTINATION
ADDRESSES BY LENGTH OF
INSTRUCTION PLUS ONE
CLEAR THE DISPLAY
(CRLOW)

SEE IF PAST END—CARRY
CLEAR IF SO

NOT AT END SO GO BACK
FOR NEXT INSTRUCTION
BRANCH ALWAYS (AT END)

THE FOLLOWING ROUTINE IS JUMPED TO IF USER
REQUIRES A MOVE OPERATION RATHER THAN
RELOCATE. IT TRANSFERS A STRAIGHT COPY, BYTE
BY BYTE FROM SOURCE INTO DESTINATION

20

LDA
STA
JSR
JSR

JSR

#01
EA
00C6
00AF

00A3

SET LENGTH TO ONE

TRANSFER THE DATA
INCREMENT CURRENT
SOURCE AND DESTINATION
ADDRESSES BY ONE

SEE IF PAST END—CARRY
CLEAR IF SO

Page 12
008B BO BCS 007E NOT AT END SO BACK FOR
NEXT BYT OF DATA
008D 4C JMP FEE9 PATCI0—CLEAR DISPLAY
—HOME TO
MONITOR
—REVELATION 6.14
0090 THIS SUB-ROUTINE GETS A 4-DIGIT ADDRESS AND

0090

0093
0095
0097

009A
009C
009E

009F
00AO0
00Al
00A2

00A3

00A3
00A4
00A6
00A8
00AA
00AC

00AD

STORES IT, LO-BYT FIRST, IN TWO ADJACENT PAIRS
OF THE STORE STARTING AT $00EB. \
WHEN CALLED FOR THE FIRST TIME, X =0

20 JSR E3FD RBYTE—GET TWO DIGITS
(HI ORDER)

95 STA ECX STORE THEIR HEX VALUE

95 STA EEX SAME AGAIN

20 JSR E3FD RBYTE—GET NEXT TWO
DIGITS (LO ORDER)

95 STA EB)X STORE

95 STA EDX AGAIN

E8 INX INCREMENT X READY FOR
NEXT ADDRESS

E8 INX

E8 INX

E8 INX

60 RTS

THIS SUB-ROUTINE CHECKS TO SEE IF THE CURRENT
SOURCE ADDRESS HAS EXCEEDED THE SOURCE
FINISH ADDRESS—IF SO, THE MOVE OR RELOCATE
IS COMPLETE.

38 SEC

AS LDA EF
ES5 SBC ED
A5 LDA FO
ES SBC EE
60 RTS IF NOT PAST END, CARRY

REMAINS SET

THIS SUB-ROUTINE INCREMENTS THE CURRENT
SOURCE AND CURRENT DESTINATION STORES BY AN
AMOUNT EQUAL TO THE LENGTH OF THE LAST-
INTERPRETED INSTRUCTION PLUS ONE, SO AS TO
POINT TO THE NEXT INSTRUCTION TO BE READ

IF DATA IS BEING MOVED, THE LENGTH (IN $00EA)
IS SET TO #01 AND THIS SUB IS ENTERED AT 300AF
SO THAT SOURCE AND DESTINATION ADDRESSES
ARE INCREMENTED BY ONE EACH TIME

00AD
00AF
00BO
00B2
00B4
00B6
00B8
00BA
00BB
00BD
00BF
00C1
00C3
00Cs

00C6

00C6
00C8
00CA
00CC
00CD
00CF
00D1

00D2

00D2
00D5

00D8

00D9
00DB

00DD

INTERACTIVE

’.
E6 INC EA ADD ONE TO LENGTH
18 CLC
A5 LDA EA
65 ADC ED
8 STA ED
90 BCC O00BA
E6 INC EE
18 CLC
A5 LDA EA
65 ADC F5
8 STA F5
90 BCC 00CS5
E6 INC F6
60 RTS
THIS SUB-ROUTINE IS CALLED WHEN NO
MODIFICATION OF THE OPERAND IS REQUIRED. IT
COPIES A COMPLETE INSTRUCTION FROM THE
ADDRESS POINTED TO BY CURRENT SOURCE, INTO
THE ADDRESS POINTED TO BY CURRENT
DESTINATION
A4 LDY EA GET LENGTH OF
INSTRUCTION
Bl LDA (ED),Y GET BYT FROM SOURCE
91 STA (FS5),Y PUT IT IN DESTINATION -
88 DEY
CO CPY #FF ANY MORE ?
DO BNE 00C8 YES—GO BACK FOR NEXT
BYTE
.60 RTS

THIS SUB-ROUTINE DISPLAYS THE FOUR PROMPT
MESSAGES WHICH ARE STORED IN ASCII AT $00F7 ET
SEQ. WHEN CALLED FOR THE FIRST TIME, Y = 0
AND IS USED TO INDEX ALONG THE MESSAGE
TABLE.

EACH MESSAGE ENDS WITH AN EQUALS SIGN, =
(ASCII #3D), AND THIS IS USED TO DETERMINE THE
END OF EACH PROMPT MESSAGE

B9 LDA 00F7,Y GET THE CHARACTER

20 JSR E97A OUTPUT—DISPLAY THE
CHARACTER

C8 INY READY FOR NEXT
CHARACTER

C9 CMP #3D ISIT “*="7"

DO BNE OOD%’ NO—SO GET ANOTHER
CHARACTER

60 RTS S

M.=0 4C 00 B9 LC
A.=AMO6 00 02 C7 08
,This show that the DILINK address of 0200 ha

q’

11Y OUIPUT UTILITY
PROGRAMS

Mark Reardon
Rockwell International

Page13
s been stored.M.=A417 23 L9 01 00
~D ;

Fodds sl B2

In actual use there have been two major sources of failure with these pro- l
grams. The easiest to cure is if the baud rate isn’t entered properly. To
determine the appropriate values do the calculations as shown below. The
second source of trouble has been that different manufacturers have de-
signed their peripheral requiring different inputs than are provided. In
these situations these two programs had to be modified to satisfy the pe-

)

S an
a;w(fg?((15¢

Many peripheral devices (printers, CRT Monitors) can use inputs in the

ripheral’s needs.

A Aihaam e

form of a 20 ma current loop or RS-232. The AIM 65 has a built-in 20 =300 /
ma current loop that can be utilized, or the loop can be modified to being PouT
an RS-232 (DOC. No. 230: RS-232C Interface for AIM 65). , 1. B
. _ . 0000 0300 LDA #00 A9 00 ~
One large problem still remains. For the AIM 65 Firmware to use the 0000 0302 STA ALO6 8D 06 AL < (‘wﬁ S
TTY port, the Keyboard/TTY switch must be in the TTY position. Un- g% 0305 LDA #02 A9 02 N
fortunately, the AIM 65 then uses the TTY port for all of the inputs that 0000 0307 STA ALO7 8D 07 AL E
usually come from its Keyboard. Most printers have no way of commu- Ad06 C 030A———BRJI-ERROR ‘OUTINE
nicating back to the AIM 65. In order for the keyboard to retain control, ,—%—-ﬁ 030A — BRI ERROR— /
one of the following programs can be used. Each uses the TTY subrou- g%gi [030A BRK 00 ; (,{
tine in the AIM 65 Monitor (OUTTTY=S$EEAS). They also require the 0207 ‘/ 0308 ERROR - LoA
user to enter the correct values for the baud rate in locations $A417 and 0209 Z 030B ; #F
$A418. The first program (ECHO) utilizes the DILINK ($A406) vector gggg ; ,K.*=300 A
to intercept all data on the way to the display/printer and then redirects it 0211 /05 ' - j 3
to both the TTY and display/printer. If this program or any other program 0300 A9 LDA #00 ') e
that modifies DILINK is assembled on the AIM 65 the object code has to 0000 0302 8D STA ALO6 r iy q o 7:,‘; .
be directed to an external device. 88% 0305 A9 LDA #02 é J~
_ » | 0000 0307 8D STA Akoy / . LM
If the object code is directed to memory, the AIM 65 will lock up. To 0000 030A 00 BRK 3 440(:
free it, the power has to be turned off. Reset will not correct the problem. 810A Cy3n G, v P‘
second program) 1s a user output program. It allows the user Oégg ; ,M/.=O3 00 A9 00 8D 06
to select the TTY port by responding to the OUT= prompt with a U. 8%8? i , . 0304 AL A9 02 8D
o2os i 5 . 0308 07 AL 00 AA
In this way any command that uses the Outall subroutine will direct its 0207 1 030C AA AA AA AA
output to the TTY port. AIM 65 Basic uses Outall for all of its printing gggg ,-"\—‘\——"“ T "}:_ﬁ“;_‘ " o)
commands. Unfortunately, AIM 65 Basic also sets the Outflag to equal 020F) | :-200 14 jr:’\:/f"' :}::-‘ d, pSa
P. To use the user output program the instruction: ‘‘POKE 42003,85,"’ el & 0200 CMP #0D C) <pan f
0214 S 0D
needs to be inserted. 0215 0202 BNE 020E DO OA ©
0204 JSR EEA8 20 A8 EE
S o
020 LbA JFF. ASFRC O
020E JMP EEA8 L4LC A8 EE
METHOD TO CALCULATE 0211
BAUD RATES FOR THE AIM 65 75200
0200 C9 CMP #0D
When used with terminals running at 1200 baud and up, the Rockwell 8j812§ (2)8 \?rs\lfs]
AIM 65 needs to have the Baud Rate entered manually. To calculate the 0207 A9 LDA 2328
values to enter perform the procedure outlined below: 0209 20 JSR EEAS
Note: All variables are integers and have us/bit as their units. 858? ﬁg 5:‘2:’\ é‘EXS
1. 10%(Baud Rate) = X
2. X-67usb =Y 2. 666/—07 us/b = bOULU
3. Y256 = Z remainder W 3. 6660/256 = 25 Remainder 200
4. $A417 = Z in Hex 4. SA147 = 25,, = 194
5. $A418 = W in Hex 5. $A418 = 200,, = C8y; Nas

Page 14

DATA STATEMENT
GENERATOR

G. Brinkmann
W. Germany

Remember the last time you had to convert a machine language program
to data statements so your Basic program could poke it into RAM some-
where? I'll bet you really enjoyed having to convert each hex byte into
decimal and then typing it in. No? Well, then maybe youll find this pro-
gram will come in handy next time around.

What it does is convert hex data to decimal and generate BASIC data
statements with the decimal data. The statements that it generates are
sent out to the audio cassette interface which is used as temporary stor-
age. The input is in the form of hex numbers which could come from the
conversion program itself, as is in the example or, from memory with a
minor change to the conversion program.

Note that this approach needs only one tape without remote control and
only ‘‘on board’’ assembly language routines. The following example
converts the first 26 HEX-values of R. Reccia’s program (INTERAC-
TIVE 1) into BASIC-DATA-Statements and writes them to tape.

It works as following:

—the HEX-values of the assembler language program are put into the
BASIC-Program by DATA-statements. They must be ended by an
““END’’ DATA (or any other special mark, see lines 90, 260).

—In line 190 you are asked for the line-number of the first DATA-state-
ment to be generated, depending on your BASIC-program.

—Line 210 performs a call to WHEREO and opens the outfile. If it is a
tape, with a gap of 80 (POKE 41993,128).

—The main loop starts at line 230, the STRING S$ is filled with the
statement-number and the constant ‘‘DATA’’.

—In line 260 we read the HEX-input-data until ‘‘END’’. The data is
added to S$ after converting to decimal in a subroutine. Each DATA-
line takes 10 items.

—The PRINT-statements (line 350) write the STRING S$ to any open
output, adds 1 to the statement-number and goes to the start of the
main loop (line 230). Note that until now the first statement-line has
a linenumber of d+1 (where d was your input).

—If - the END-mark has been read, the last DATA-statement will be
printed, followed by the statement-line ‘‘d’’ with a counter of all
DATA-items.

—The file will be closed in line 410 through a jump to B52B, a BASIC-
routine which prints a CTRL/Z, closes the file and waits for the new
input.

—The HEX to DECIMAL conversion takes place in statement 450—560
and uses the STRING HS$ in 170. Leading zeroes in the HEX-numbers
are not needed.

—If an error occurs, the faulty item will be printed to the printer and the
file is closed. Therefore, you should make a trial run before going to
tape (by hitting RETURN after OUT=) and any error will go to the
printer (which has not to be on).

When everything worked ok until now, you have a file with DATA-state-
ments on tape. To read it into your actual program, just use a statement
as

100READ N:FOR I = 0 TO N—1:READ X:POKE xxxx+I[,X:NEXT

Remember, the first DATA-statement contains a counter of the following
DATA-items. So you don’t have to bother about it, the first READ will
get it for you. This is extremely useful during the test phase, where
changes occur quite frequently.

The next step is to load the statements into your BASIC program with the
LOAD command. Be sure that you have chosen the right line-number,
the LOAD command will over-write duplicate line-numbers. However,
while testing, it might save you deleting the old lines.

If you are working with the ASSEMBLER and the BASIC at the same
time, you could change the READ in line 260 to PEEK ’s. This saves you
the initial typing in of DATA-statements and the conversion will be done
by BASIC. However, you should either use a counter or a unique mark
as 0,0,0 to find an end to the data.

Of course, the data need not to be in memory at all. You can generate
DATA-statements by reading from keyboard or by using your BASIC-
program to compute them from other data. I use this program regularly
while computing moving averages and other statistics and then replacing
the old values by the new ones for the next run.

BO DOTAAZy GBI aP e OF o 30w A0 v FEvEBvCP e 21 o D0 FH
QG DaTA END

100 REM HEX TG DECIMAL

1060 REM GENERAOTES DATA-LINES 0ON TAPE-FLLE

L0 REM G BRINKMANN

130 REM allF M GRAEVERICH 194

A0 REM D-5414 UALLENDAR

LH0 REM WEST GERMAMY

Lo6G HEM O INITT

L70 He="012X456789ARCIEFT"

180 REM FIRST LINE FOR COUNT OF DATA TTEMS
120 INFUT MR OF FIRST DaTéa-LINE® 0 2014
200 REM OFEN TAPE-FILE WITH LONG GakF

210 FORE a4 LLIIFORE S 2325P0OKE 41993128

220 Ms=lERO0)

230 ¢ GTRECDYH"DATA"

2400 REM 10 TTEmME FER LINE

AO0CFOR W=1 TR 10

DG READ SFITF Ads"ENDY THEN 390

270 REM SURRDUTINE HEX -3 DECIMAL

20 GOSUR 470

290 REM ON ERROK CLOSE FILLE

A00 TF ALSCE"ER"THEN 310

JOE POKE 4Z200Z IRIPRINTIERROR TN LINE "sDIGOT0O430
F1O TFN=L THEN Sd=He4" "

I20 R CONCATENATION

AR08
3460 Rt ANY OFEM FILES IMC O LINE NUMBER
JF70 PRINT S$:D=D+13607T0 230

F0 REM PRINT LAGST LTHE AND THEN FIRST

AP0 FRINT B¢

A00 GTRE LY "DIATAFETRSECCN-DL -1 KLO+N-1)

AL0 PRINT S

420 REM CLOSE OUTPUT FILE

AZ0 PORKE 4«43 0POKE S 181 3X=USROO)

440 REM JUMP 7O BASYTC TNFUT

A0 END

&G REM SUBROUTINE HEX -> DECIMAL

A70 TF LENCASY=1 THEN A¢="0"+A%

460 FOR Is=1 TO 17

40 TF MITDECAS» Ly 1) =MIDS (HE» T 1) THEN A=16X(I-12:607T0 3520
SO0 REM AFTER LAST NEXT =x ERROR

G310 NEXTIGOTO 580

S20 FOR T=1 7T0 17

S0 TF MINECAS»Z2v 1d=MIDSCHE L 1) THEN A=A+1-123G0TO560
540 NEXTIGOTO 580

S5ECG OREM IT7% A GOOD ONE

D60 ALG=STRECAY SRETURN

70 REM FRINT ERROR MSEH

S0 ALE=EROIRETURN ©-

Page 15

Page 16

CASSETTE LOAD UTILITY

. .. For AIM 65

Mark Reardon
Rockwell International

This multi-purpose utility program allows you to load programs with
offset and recover programs that have load errors.

For example, suppose you wish to reload a program to reside at $0500
that was originally dumped from $0200. First, start the program by
pressing the ‘F1° key. The ‘FROM=" prompt should appear first. Enter
0200 to specify where the program used to reside in memory and press

the ‘RETURN’ key. Answer the ‘“TO=" prompt with 0500 to show where
the program is going to be loaded. (Programs can only be offset by even
page amounts. For example, if a program originally resided at $0236,
it could only be offset to $0436, $0636, $0A36 etc. not $0400, $0777,
or $0100. Get it? This is because the offset calculation is done only on
the page number (upper byte) and not the byte number (lower byte).)

The rest of the cassette load prompts are the same as the normal ones
in the standard cassette load routine.

This program will also let you load a program even though there are
loading errors. This, at least, gives you a chance to recover a program
that would otherwise be impossible to recover. The normal cassette load
routines will stop when an error occurs.

2000 NAME. =HA42E

2000 CRSUM =$A41E

2000 TAFAR =$A436

2000 AR =HA410

2000 61 =6A41A

2000 TEMF =$0117

2000 ’

2000 TALSET =$EDEA

2000 GETTAF =$EE29

2000 FLXY =HERAC

2000 FHXY =GERYE

2000 NAMO =GEGOF

2000 OUTALL =%E9RC

2000 SANDR =$ER78

2000 COMIN =$E1A1

2000 FROM =HE7A3Z

2000 TO =6E7AT7

2000 ANDRSL =$F%10

2000 CRLOW =$EAL3

2000 BLANK =$E83E

2000 CHERKA =$ES54E

2000 NXTALD =$E2CD

2000 NUMA =$EA4H

2000 CLRCK =$ER4D

2000 =$10C sSET UF F1l KEY
01ocC

010C 4C 61 00 JMF START

010F X=$00

0000 00 ERRO +BYT %00

0001 45 52 MSG +BYT “ERRORS IN
000k 4C 4F MGG +BYT “LOADINY »$C7
0011 C7

0012 44 4F 4F MSG2 +BYT “DON‘ »$CE

0015 CE

0014
0019
0010
001F
0021
0023
0025
0027
0029
002K
0ORE
0031
0032
0034
0036
0039

003A
0030
0040
0042
0044
0047
0049
Q040
004N
00350
0053
0055
0057

005A
005C
QOGE
0060

0061
00464
0067
006A
00an
Q06E
0071
0074
0077
007A
007N
0080
0082
0083
0088
008A
oosn
0090

20
20
20
ce
FO
ce
no
FO
A2
20
91
E8
EO
o
20
60

20
AE
EO
1o
20
A2
BRI
8
8E
20
EO
Fo
4C

AS
[o
Eé
60

20
20
20
20
38
Al
ED
8o
20
20
20
A2
BE
Al
no
BRI
no
no

ot A

YE
36
4F
05
16
00
17

36
AC
00
09
4E

00
02
00

Ad
3E
10
A7

1L
1R
1R
13
CF
16
05
KT
16
F3
16
20
ER

ER
ED
EE

EE
01

C ER

ER

A4

00

01

A4
ER

m
in

E7
ES
Fo
E7

A4
A4
A4
EA
E8
00

A4
0l

01
A4

TAPE
READ
SYNG

FOUND
MORE

COUNT

TIRL

ERROR

RET

START

BLOCK

AGAIN

JOR
JER
JOR
CMF
REQ
CMF
BNE
REQ
L.IX
JEGR
5TA
INX
CRX
BNE
JOR
RTS

JER
LIiX
CFX
BNE
JOR
LI1X
L.I1A
INX
5TX
JER
CrX
REQR
JME

L.InA
ENE
ING
RTS

JOR
JOR
JGR
JER
SEC
L.I1A
SRO
5TA
JER
JER
JER
LIX
HTX
LA
ENE
LIIA
CMF
ENE

FHXY
TAISET
SETTAF
4
FOUNI
F616
READ
SYNC

¥0
GETTAF
TEMF=1 s X

#6522
MORE
FLXY

FHXY
TAFAR
#79
TIKI
TAPE
#00
TEMF s X

TAFAR
FLXY
$00
RET
CHEKA

ERRO
RET
ERRO

FROM
BL.ANK
ANDRS 1
T0

ANDRA1
5141
G141
CRLOW
NAMO
TARE

#35

TAFAR
TEMF-1
BRLOCK
TEMF-19X
NAME -1 ¢ X
RLOCK

Page 17

FBET UF TAPE
sGET A CHAR
JRLOCK START

$HYNT

sHTORE IN RUFFER
sGET A CHAR

$RUFF FULL
¥ NO

FRUFF POINTER

s BUFF EMFTY

§NO

sREAD A BLOCK
sRESET FOINTER
$GET CHAR

$INC BUFF FOINTER
$ HAVE FOINTER

FX2x0 THEN ADD CKSUM
sAND TO CRKSUM

$0=N0 ERRORS

s MAKE <=0

FORLG ADDR

FlLEAVE A SFACE

sADDR TO S1
s NEW ALDR

SOFFSET VALUE
sCLEAR DISFLAY
s FILE NAME

s BLK NO
sNOT EBLK O

§ CMP NAMES
sOITFFERENT

Page 18

0092
0093
0095
0097
009A
009N
009F
Q0AlL
00A4
O0AS
00AB
00AY
00AR
O0AE
00AF
QOR2
OOnra
10103232
QORR
OORE
00CO0
00C3
00C3
00C3
00CS
00Cs
010708
00CE
oocn
OOCF
oonz
oons
oonz
oona
Oonn
O0nF

O0E4
00E7
101070
QOOER
OOED
O0EF
00FO
00F2
O0F 4
O0FS
00F8
O0F9
O0FA
O0FC
OOFI

CA
no
A2
20
20
ce
no
20
E8
20
‘AN
Fo
20
18
6N
8
20
8n
20
AQ
20

FoO
20
C8
20
CA
o
20
(WL
no
20
co
FO
20
Do

20
A2
ALY
86
FO
20
A2
B
48
20
8
68
10
60

FS
0A
F2
34
K37
Fy
41

3A

39

3A

1B
in
3a
1c
3A
00
78

03
9A

con

EC
36
LF
0f
X6
1E
LR
Y4)
Ré

13
00
00
00
01
11
01
G

Fé

00

00

ER

00

00
A4

A4
00

A4
00

00

B2

00

A4

00
A4

00

GETCH

LOAnR2

FTO ELIMINATE
y REMOVE

OK

ERR

STOF

NOE
OuT

DEX
BNE
L.IX
JER
JER
CMF
BNE
JER
INX
JHR
TAX
REQ
JEGR
CLC
ALC
5TA
JOR
STA
JHK
Loy
JEHR

‘BE

REQ
JER
INY
JOR
DEX
BNE
JER
CMF
ENE
JER
CMF
REQ
JOR
ENE

JOR
L.IOX
L.IA
5TX
REQ

CRYT

L.InX
L.IIA
FHA
JOR
INX
FlL.A
EBFL.
RTS

<END

AGAIN
FMEGL -~
ouT
COUNT
#l‘
GETCH
CLRCK

COUNT

STOF
COUNT

S+l
ANDRY
COUNTY
AR
COUNT
#0
SANDR

Q 0K~
0K
ERROR

NXTADD

LOADZ
COUNT
CRSUM+
ERR
COUNT
CKSUM
GETCH
ERROR
GETCH

CRLOW
$00
ERRO
ERRO
NOE
$20
EMBE2-
MSG» X

OUTALL

auT

MSG

AN

1

MGG

R

sDISFLAY LOADING

s GET A CHAR
SRECORD START

s CLEAR CRSUM
FRECORD LENGTH

¥ O=QN0NE

sAND OFFSET

sGET DATA AND STORE

sOTORE AND CMP

MEMORY FAIL ERRORS
“JESRERROR?

s LD MEM ACCERT?

s Y=
FAND Y TO ADDK
yCOUNT RYTES

$CRSUME OK

y O IF NO ERRORS

sCODE. FOR RIT ARS
sFINAL MSG AND RTS

yMER=1

INTERACTIVE

LT

INTERRUPT-DRIVEN
KEYBOARD
FOR THE AIM 65

Dr. Will Cronyn
Borrego Springs, CA

A common requirement in interactive computer systems is the entry of
ASCII characters through the keyboard at random or erratic intervals
when a program is executing. The program may be computational, pro-
cess control, monitoring or some combination of these or other functions.
The AIM 65 monitor routines require an explicit call to the keyboard and
all (i.e. READ, RBYTE, etc.) except RCHEK demand a response before
execution continues. The results would be disastrous if your AIM 65
controlled desert irrigation system had to wait 4 weeks before resuming
execution for you to return from your summer vacation in Alaska to
answer the question: Do-you want the citrus put on a 3-days-a-week
watering schedule? You could lace your program with calls to RCHEK
but such calls, which consume 959 microseconds each (if there is no
keyboard entry), can consume a large fraction of the execution time of
the computer in spite of the fact that they are utilized for only a tiny
fraction of the time.

One solution to the problem was described by De Jong in issue 3 of
Interactive. He suggested the fundamental solution to the problem: gen-
erate interrupts for which the interrupt service routine looks for a key-
board entry. To allow continuation of program execution in the absence
of a keyboard entry, De Jong modified AIM Monitor routines. The result
is an interrupt routine which requires $A3 (163) bytes of code in 87 lines.
In addition to the fairly lengthy code, it does not appear that his routines
are fully debounced, i.e. debounced on both keystroke initiation and
termination.

My solution is to use two interrupt service routines: one to jump from
an executing main program to JSR READ, and the other to jump from
READ (in the most likely event that no keyboard entry is available) back
into the main program. Not only does this approach work but also it uses
unmodified monitor routines and is instructive in its utilization of a dy-
namically programmed interrupt vector. The interrupt service routines
require $40 (64) bytes of code in 29 lines.

DETAILED PROGRAM DESCRIPTION

There are three parts to the code which appears in the listing: (1) system
configuration and initialization, $200-22B; (2) a ‘‘main’’ program which
provides an immediate, positive verification that the interrupt-driven
keyboard is functioning properly, $22C-24C; and (3) the interrupt rou-
tines themselves in a location which would be appropriate for most 4K
AIM applications, $FCO-FFF. The interrupt routine sequences and con-
figurations can best be understood by referring to the IRQ signal display.
The T1 timer counter ($A004,5) is loaded with $FFFF, which produces
an interrupt 65 milliseconds execution of the main program begins. The

Page 19

timer latch ($A006,7) is loaded with $4000. Thus, in the T1 free-run
mode (UACR loaded with $40), when T1 times out after 65 milliseconds,
which results in a jump to MNSVC, the contents of the T1 latch is trans-
ferred to the counter, thereby setting up another interrupt 16 milliseconds
later. The interrupt vector is reconfigured to RDSVC and the T1 latch
is loaded with $FFFF. Thus after 16 milliseconds in MNSVC the inter-
rupt results in a jump to RDSVC, which returns program execution to
the ‘‘main’’ program for another 65 milliseconds. Parameters for the next
cycle are established by reconfiguring the interrupt vector to MNSVC
and loading the T1 latch with $4000.

It may appear that 16 milliseconds is a long time to decide whether or
not READ will actually be presented with a keyboard entry. However,
because of timing requirements in READ which are based on the need
to debounce key stroke and key release (a total of about 11 milliseconds)
this time cannot be significantly reduced. In tests I performed, errors
were evident at an allowance of $2800 microseconds, while none were
seen at $2C00. I tested the program at keystroke rates up to about 540/
minute (my maximum single-key stroking rate) with no sign of errors.

Note that the stack pointer is saved in SAVSP when MNSVC is entered.
This procedure is required because normally, i.e. when there is no key-
board entry for READ, exit from READ is achieved through use of the
interrupt rather than through an RTS within READ itself. Thus the stack
is not properly restored and since there are 3 layers of subroutines within
READ it would be unnecessarily difficult and .risky to keep track of the
depth of the stack when READ is exitted via interrupt.

The ‘‘main’’ program was a key element in testing and debugging the
interrupt-driven keyboard. Through the display of ‘‘?’’ at the rate of
about 3/second, with a carriage return/line feed after 10 “*?”’, it provides
an immediate indication that both the ‘‘main’’ program and the keyboard
program are functioning. Of course a character entered through the key-
board would normally be placed in a buffer accessible to other parts of
the program instead of simply being displayed via OUTPUT. The source
code, even in its fully annotated form, is short enough that it, the As-
sembler symbol table, and the object code can all be co-resident in the
AIM during development or modification.

FTHIS FROGRAM FNAELES
STHE ATH-65% T0 HAVE

PN TNTERRUFT-DETVEN
FREYROARD S T E L
FWITHOUT EX
SENTRY
FTOOTHIS G
FTERRURT TOME
FTLONG 2 DMy
SPRDGRAM WHILH
PFLAYS ZYPSGECe 1
S LIME S B TNT E R
SRUPT SERVICE ROU-
FTINES WRITTEN BY$

2000
2000

2000
2000
BO00

Page 20 II\II /“:Im

D ST

TR WL CROMYN 0REE AR 40 LItd 440
SEYMEBLOTIC DATA COMM U""f‘ go 07 AG ST UTI1LL+]
PoPL0. BOX 624 228 48 oL
FRORREGD SPRINGS»CA
2000 PELATET-NARE FR2004

DOGE0 ST I9EG.

FETART "MAIN" PROGRM

A2 OA BEGIN LDX #10
ODONT HAVE INTRUFPTE
SDUDRING PRINT OF " ’!' “

78 LOLE SR

20 Na BT JERHM

Whe CLT

200 3F 02 JERDELAY

CA LE %
FoOAaRE WE UP TO 107

Do Fo BNE TDLE

20 FO E9 JHRCRLF

AC 20 02 JHEBEGIN
FFOR DELAY HAVE 2
SLOOPS-0UTSTIIE=$80-
$OINDEX=0NTR .
NG TDE =SFF e TNDEX=Y

AL FF DELAY LDY #EFF

Ay BHo LIe #4680

30 00 5TA CHTR

85& LOOFL DEY

o Fi BNE LOOF1

6 00 DEC CNTR

0 ,'.-.‘. 4 m no Fe BNE LODFL

024C 60 RTH

SMONTTOR ROUTINES.
SALL EXCERT "READ
§ERE FOR DUMMY MALN
FFROGRAM .

MUNMA
CRLF
OUTFEUT
READ
(M

2GO0 s TR VE
2AGO TRV A
2000 LAk

=000 L.

2000 1L
2000 UTER

2000 ioPnGE G (\h I ARLES
2OGO ¥on
QOQGH CMYH Ao ‘f‘-‘l
QG §OMATMN OMLY .

—

T1 CONFIG.

0001 ¢ OLNTERE
GO0l
(‘)i"("n 0 024N FINTRRPT SRVC RTNG.
200 Ay Ll LA A MNEYE 024D sMNGVC LEARS FROM
2 CR STa TROVA O2an $UMALINYTO REALSRDEVE
LA A MNSUVE 02410 sLEARFS FROM REaAD TO
o™ 8N 01 Ad STa TRAVA+L 024N iU ME LN LB CAUSE D
G206 sV FREE-RLUW MOLDE: G24n § INTRPT-TIRLVEN :
NG A0 LI 440 02al sFROM REAUy MUST
Gk Ao e LAtk G240 STOR PNTR @ SAVER.
sNTSARLE ALl Yia 0241 SMEXT INTRFT AFTER
t)"(' FINTRETS EXCERT T Q:rah SMNGUE TH RDGUE
D20F Ay 7r LIe a7 LI LSV ME
o2 O 5Ta ULER orCo SAVEGE KXl
0214 A% €O LA #EC0 OFCL 48 MNGUT FHA
Otég 8l OF A0 Ta UIER OFCE GA TXA
0219 §INTR F‘T "MALN" AFTER OFC3E 48 FHA
021 P60 =G FEEUSED Kt ey 1H%
0219 A TF le b BE CO OF STX GAVGF
O2LE 8D 04 A0 GTa UT1L ST INTRET VECTOR
D21E 8D 05 AO STaA UTLLAL g FOR MEXT INTRFT
(221 5 1 FT READ AFTER FCYOLE CNOT A
0221 #1646 MBEC=%4000 Ay B4 L.IA
0221 A% 0o LI #0 OFca 8 06 A4 BT
GR2X 8D 06 A0 BTa UT1LL OFLIE ae QF LDA #=RIGVE

INTERACTIVE

A BASIC HINT

Howard A. Chinn
S. Yarmouth, MA

Issue No. 1 of INTERACTIVE called attention to the use of the AIM 65
text editor for editing BASIC programs. Mention was not made, how-
ever, of the use of the text editor to write BASIC programs that contain
both direct (calculator mode) and indirect (programming mode) com-
mands. This feature (which is not available on a TRS-80 until you up-
grade to a disc system) provides an opportunity for many interesting
applications.

Listing No. 1 is that of a short demonstration program prepared in the
text editor and printed using the Editor’s *‘L’’ command. This program
was recorded on tape using the Editor’s ‘‘L’’ command. Next, BASIC is
entered and the program loaded using BASIC'S ‘‘LOAD’’ and with the
printer turned ‘‘OFF "’ (for this particular demonstration). Listing No. 2
was generated automatically while the program was being loaded!

Listing No. 2 shows that a title and explanation is printed without the
distracting ‘‘REM’’s. Program lines 10 to 40 are then placed in RAM.
Next, the POKE command turned the printer ‘‘ON’’. The list command
did its thing just as if you had typed in the command using the keyboard.

Page 21

The possibilities of this feature of the AIM 65 are limited only by your

imagination.

Now, can someone tell me how to write a BASIC program in the text
editor including the essential ‘‘CTRL Z’’ and a command to automati-
cally turn off the cassette recorder after a dump to tape?

(The ““Z’’ at the end of Listing #1 is a control Z).

LISTING NO. 1

=)

/

OUT=

21*‘BASIC PGM VIA EDITOR”’

2““AUTOMATICALLY LISTS
AND RUNS PROGRAM™”’
21*“ALSO TURNS PRINTER ON
AUTOMATICALLY "’

21““FOR LIST AND RUN"’

LISTING NO. 2
BASIC PGM VIA EDITOR

AUTOMATICALLY LISTS AND
RUNS PROGRAM

ALSO TURNS PRINTER ON
AUTOMATICALLY

FOR LIST AND RUN

LIST
10 FORN =1 TO 5
20 PRINTN“‘X15=""N*15

ERGEVE LIa FIMNEBYE
#2000 A4 STa TRRVA

LOOG

% And, finally, the ““RUN’’ command ran the program automatically and 10 FOR N=1TO § 30 NEXT N
since the printer was still ““ON’’ the result is shown on the printout. The 20?7N“X15=""N*15 40 END
program, of course, resides in RAM. It could have been made to disap- 30 NEXT N RUN
pear had the original listing contained ‘‘NEW '’ at its end. 40 END 1 X15=15
POKE 42001, 128 2 X15= 30
In a nutshell, when using the AIM 65 text editor any entry without a line LIST 3 X15= 45
number becomes a direct command and those with line numbers are in- RUN 4 X15= 60
direct commands that are placed in RAM in the usual fashion. zZ 5 X15=175 -
GO0l Ga ST TRAVAST Ay OF LI - MMSUE
$LENGTH-NEXT ITNTRFT g0l & STa TROVALL
oo DYCLE==$FFEF USEC pOT O TERM OF THLE
A FF LI EFF FIMTRPT CYCLE MEXT
152 R TI A TY} STéa UTLLL sWLLL HAVE La&
Y FF LUA #EFF Ay OG0 LIVE
an 0¥ Ao STa UTILLYT @I 06 Ao STA DT UL
GFDLC &8 CLY AT a0 LI b a0
OF LD 20 3C ER JHROREAD gn 07 A0 STa UTieL 41
OFEQ STONT ALLOW ITNTRET s NOW STORE AeXeBF
(] §ORURING OUTEUT Ak Co OF GOVGE
(: g GET YA
200N B JEROOUTRUT &
s EXTT OFRMOMNSUVE A
eRETOLMTRET FOR LEAF &8
iOFROM "MALN A0y

Page 22

(Continued from page 2)

above the IRQ Interrupt Processing section of the program. Also change
the instruction BNE INTRET in the IRQ Interrupt Processing section to
read BEQ INTRET.

The disassembly listing will also have to be changed. Add a JMP 0388
instruction between the CLI and LDA #40 instructions. The BNE 0392
will then be changed to BEQ 0395 because that part of the program is
shifted upwards in memory.

UNHELPFUL USR HELPER

For some unknown reason, the following program lines were omitted
from the BASIC USR HELPER article on page 18 of issue #3.

The following lines are required:

0 DB=13*11+11:F=15:FA=15*16+10:GO TO 3

| POKE4,DB:POKES,F:RETURN:SET UP FOR SETARD
2 POKEA4,FA:POKES,F:-RETURN:SET UP FOR CALLIT
3 REM PROGRAM MAY START HERE

Note that the definition on line 0 will speed up operation by eliminating
the required conversions to decimal every time lines 1 or 2 are called.

NEWSLETTER REVIEW

From the Editor:
The Sept/Oct issue of the Target, a newsletter dedicated entirely to the

AIM 65 was, perhaps, the best issue of that newsletter that I've seen. In
it were two articles that should tickle the fancy of most any serious AIM
65 user. The first article showed how to hook up the new General Instru-
ment Programmable Sound Generator (AY3-8910) to the Aim 65 and
presented a software driver to make the thing generate telephone touch
tones from phone numbers which are stored in memory.

I have played with this chip quite a bit and am really impressed with all
its capability. The AY3-8910 interfaces very easily with the user R6522.

The other neat article that was in the issue presented complete plans
(hardware and software) for an EPROM programmer that can program
virtually all of the most popular EPROMS—2708, both styles of the
2716 and 2532. The software is self prompting and the hardware design
is complete down to the AC power supply.

The Sept/Oct issue (1980) of Target is easily worth the $6.00 yearly sub-
scription rate (it’s published bimonthly). Outside of the U.S. and Canada
the price is $12.00. Contact Donald Clem, RR#2, Spencerville, OH
45887.

BEHAVIORAL SCIENCES
AIM-65 USERS GROUP

Workers in the behavioral and biological sciences who are currently us-
ing, or are interested in using the AIM 65 are invited to participate in
a user's group now forming. Areas of interest include hardware and soft-
ware for experimental control, data acquisition, statistical analyses, and
other applications. If interested, please write, outlining areas of interest,
current and planned projects, etc., to Dr. J. W. Moore, Jr., Box 539
MTSU, Murfreesboro, TN 37132.

-

INTERACTIVE

LETTERS TO THE EDITOR

Dear Eric:

In a previous letter I complained about the lack of readability of many of
the programs in issues #1 and #2 of INTERACTIVE. This letter is to
thank you and commend you for the fine job you have done in issue #3
in rendering the programs more readable. The only one which is faint at
all but still is quite readable is the simultaneous equations from George
Sellers.

Here is a question you might be able to answer in the journal. Does any-
one have a machine language program which will make a software con-
version from ASCII to Baudot and output serial Baudot on the AIM 65°s
20 miliampere current loop? A relay could then be used to transfer the
Baudot to the 60 miliampere current lcop of a Model 15 five level tele-
type. A perhaps related question—can the 20 miliampere TTY loop out-
put of the AIM 65 be used to output to a printer and still use the AIM 65
keyboard? If so, where would the KBD/TTY switch be placed?

Another question—Since the AIM 65 monitor has routines in it which
convert shifted characters so that the output is entirely capitals (no lower
case) how can the AIM 65 board be used to feed a printer the necessary
codes for lower case? I thought perhaps Dr. DeJong’s program for the
Interrupt Driven Keyboard on page 12 would answer this, but his routine
contains at location @C7F **if alpha characters do not shift"" just as does
the monitor. Could one just leave out the routine between GC7F and
¥ C85 and get lower case characters output?

Keep plugging along and keep up the good work. Happy to see that
INTERACTIVE is getting larger all the time. Thanks.

Sincerely,
John U. Keating, M.D.
8415 Washington Blvd.
Indianapolis, IN 46240

Dear John,

I don’t know of any program available to convert the TTY port to Baudot.
Doesn’t sound too difficult, however. See the program on page 13 of this
issue for the procedure for using the TTY port without regard to the TTY/
KBD switch. I would assume that lower case output could be achieved
by modifving an input program (such as DeJong's) and writing a new
output program.

Eric

Dear Editor,

I must apologize. 1 am rather negligent in sending in programming
“*goodies " to share and this contribution does not make up for it. How-
ever, I noticed in Issue 2, there was an 18 line step disassembler. This
should make it even easier; excluding the F3 jump, it is only 3 lines
long. If printout is desired, it requires all of 4 lines.

0112 IMP 00D0 (this is arbitrary)

00D0 INC A419

INTERACIIVE

00D3 JSR
00D6 RTS

E71D

To run, toggle the printer off. Next, disassemble the first instruction of
the program under examination using the K command and a RETURN
following the / prompt. This sets up the various flags and registers. To
disassemble subsequent instructions, just press the F3 key.

The printing version goes as follows:

0112 JMP 00D0 (again, this is arbitrary)
00D0O INC A419

00D3 JSR E71D

00D6 JSR FO4 A

00D9 RTS

Toggle the printer off, and disassemble the first instruction as above. Hit
the PRINT key to print the first instruction. Each press of F3 will di-
sassemble and print the next line.

Michael L. Brachman
3513 Lake Ave. #307
Wilmette, IL 60091

Dear Editor:

I think I've hit on a good way to build data files on tape from AIM
BASIC. This is an alternative to the method described by Ralph Reccia
in Issue No. 1.

To write a file on tape, insert the following line in the BASIC code before
the first PRINT statement you wish to send to tape:

POKEA4,113:POKES5,232:X=USR(X)

This line calls the monitor subroutine WHEREO, which issues the fa-
miliar prompts OUT=, F=, T=. Answer these prompts with T, your
desired file name, and 1 or 2. This initializes a tape file with the given
name. From here on, all BASIC PRINT statements will direct output to
the tape buffer, and when the buffer is filled it will be dumped to tape.

Don't forget to close the tape file before leaving the BASIC program.
This is necessary to ensure recording the last dab of output. To close,
insert the following line after the last PRINT which you want directed
to tape:

POKEA,10:POKE5,229:X=USR (X)

This calls the monitor subroutine DU11, which closes the file and re-
directs output to the display/printer. As a final touch, optional but nice,
stop the tape recorder by inserting the line:

POKEA43008,207 AND PEEK (43008).

(I've assumed that you have the tape recorder remote control connected.)
To read a tape file, insert the following code before the INPUT statements:

POKE4,72:POKES,232:X =USR(X)

Page 23

This calls WHEREI, which issues input prompts, searches for the desired
file, and loads the first block into the buffer. Additional blocks are loaded
as they are needed. To restore normal operation, insert the line:

POKE42002,13

A potential problem on input from tape and be sidestepped by ending
the file with a distinctive end-of-file flag, say 9999, when it is written.
Thus, the end of file can be detected on input by testing each datum as
it is read. There is room for some ingenuity here.

Adroit use of POKE42002,84 and POKEA42002,13 permit reading alter-
nately from the tape and from the keyboard. The tape file need not be
re-initialized each time. POKEA42003,84 and POKEA42003,13 serve a
similar function for output.

Incidentally, I've found that the tape recorder remote controls as pro-
vided on the AIM®65 interject intolerable noise into the recordings. This
is because the power ground is in common with the signal ground and
it can be remedied by electrically isolating the power circuit. I use opto-
isolators and transistors, but the relay method shown on the back page
of Issue No. 1 is probably better.

The TEXT EDITOR can also be useful in dealing with these files. For
example, I've prepared a data file of our natural gas usage for the past
five years. For this, it was convenient to set up a text file in which each
line was one month’s gas use. After appending an end-of-file flag, this
file was dumped on tape under the file name GAS by means of the
editor’s L command. The advantage here is that the file can be proofed
prior to recording with the help of the T, B, U, D, K, I, and F commands.

How about sending BASIC output to a serial printer? I've found that
when the KB/TTY switch is in the TTY position, output is routed to the
serial port. Unfortunately, this also disables the keyboard. One way out
is to insert the line

WAIT 43008,08,08

which stops program execution until the KB/TTY switch is thrown to
TTY. To restore normal operation, insert

WAIT 43008,08

which again halts execution until the switch is returned to KB. Don’t
forget to set the baud rate parameters.

I have found the AIM65 to be very educational, as was the case with the
KIM-1 before it. I use both. I appreciate the support Rockwell is giving
AIMG6S through this newsletter, as well as through peripherals and tech
notes.

Earl O. Knutson
51 Ralph Place
Morristown, N.J. 07960

EASY RS232C

R. M. Dumse
Rockwell Int’l

To meet the RS232C requirements it is necessary to convert the TTL
levels of the 6500 Series 1/0 devices on the AIM to RS232C levels. TTL
levels are defined as values below 0.8V for a logical zero and above 2.4V
for a logical one, with OV and 5V being the outside limits. The middle
region is undefined, meaning a TTL device operating with an input be-
tween 0.8V and 2.4V could interpret it to be either a zero or a one. Its
output is therefore indeterminate. To have TTL circuits work correctly
we must make sure that these levels are correct. RS232 levels are differ-
ent. A logical one is defined to be any voltage between —3V and — 15V,
a logical zero between +3V and + 15V in the **C"’ version. The region
between —3V and +3V is indeterminate. Note that this is inverted to the
way we normally think of ogic, a one being negative going and a zero
being positive.

To communicate across an RS232 interface, the AIM must be able to
send and receive all RS232 signals at these levels. Although not well doc-
umented, the AIM is already equipped with a receiver that will translate
RS232 signals to TTL levels. This receiver accepts an input from pin Y
on the Applications (J1) Connector. Part of the circuitry used is shared
with the 20ma current loop receiver. The 20ma current loop transmitter
can easily be converted to RS232 levels off the board with the circuitry
detailed below.

Not yet mentioned is the fact that RS232 devices communicate serially.
The format is generally selectable with at least one mode that is identical
to the Teletype format used by the AIM with one start bit and two stop
bits. We can therefore use the software in the AIM’s Monitor to com-
municate when the convertor is added.

(J1) RS232
SERIAL v GND
IN
TXD
20ma(+) S
RXD
20ma
(Ret) RTS
CTS
5 A
DSR
GND L L 7 LOGIC GND
THE DC TO DC CONVERTER COULD BE REPLACED “f——< g pcp
BY A 5V SUPPLY. WITH THE SWITCH UP—AIM
LOOKS LIKE MODEM. SWITCH DOWN—AIM LOOKS
LIKE TERMINAL. ——< 20 DTR

If the device to be connected has a ‘‘handshaking’’ version of the RS232,
it is necessary to generate handshaking signals that allow continuous
communication. The circuit shown below uses a scheme of simply
“‘wrapping around’’ any handshaking signals to meet this end. That is,
when it is set to be a modem, a Request To Send (RTS) is wrapped
around to the Clear To Send (CTS) line. (Note: To further confuse the
issue these signals are negative logic. A zero, meaning level between
+3V and + 15V, is considered the true condition ie: a Request To Send
is a positive voltage when true.) /
The circuit shown will work well at speeds in excess of 9600 baud if the
AIM 65 used has a 3.3K ohm resistor in R24. This resistor is labelled on
the board and can be found behind the printer. Older AIM 65’s have a
1K ohm resistor in that position which will not work. Replacing that re-
sistor with the higher value will correct the problem, but will void the
AIM'’s warranty. Refer to section 9. 2. 3. of the AIM 65 USER'S

GUIDE for direction on initializing and operating the serial interface.
6.

NEWSLETTER EDITOR
ROCKWELL INTERNATIONAL
P.O. Box 3669, RC55
Anaheim, CA 92803 U.S.A.

Bulk Rate
U.S. POSTAGE
RATE
Santa Ana Calif.
PERMIT NO. 15

