ISSUE NO. 3

MICROFLEX 65

. . . lets you expand your AIM 65 or
build a standalone microcomputer system.

‘l Rockwell International

..where science gets downto business

Page 2

EDITORS CORNER

I'd like to devote an entire issue on the application of AIM 65 to Com-
puter Aided Design (CAD).

I remember working out design problems with a calculator and thinking
how much more efficient it was than the slide rule method (at that time,
it was almost against the rules to have a calculator in school). I also
remember having to work out the same equation over and over, changing
one parameter each time, until it came out right. Those types of repet-
itive tasks are ideal for the computer to work on.

There must be quite a large number of design problems where param-
eters must be changed and solutions checked. One area that immediately
comes to mind is in active filter design. Plenty of equations to work out
and parameters to change here.

I'm sure that a number of you are using a BASIC equipped AIM 65 for
CAD. How ‘bout sharing some of those programs with the rest of us???

SUBMITTING ARTICLES

Please try to type your article double spaced. If you can’t get to a type-
writer, then print neatly. Don't use the editor on your AIM 65 because
it is upper case only and will drive a typist to drink. Programs should
be submitted on AIM 65 cassette as a BASIC or assembly language text
file so the program can be assembled on a machine with a wider carriage
printer for increased readability. Use a tape gap of about $20 to com-
pensate for any differences in equipment. Your tape will be returned to
you from an appreciative editor.

PUBLISHED PROGRAMS

Several of you have mentioned that you are having problems getting the
AIMPLOT program from issue # 2 to run correctly. Besides the cor-
rections to AIMPLOT that are mentioned in this issue, I don't know
where the problem is as of yet, but should have it figured out by the
next issue. If you can’t wait, send me a self addressed stamped envelope
and I'll send you the fix when I get it. [will, if at all possible, try to
run the programs that are published in Interactive and ask that all pro-
grams be submitted on cassette in source form. (The only program in
this issue that I haven't tried is the one in the BASIC USR HELPER

article.) &gﬂ"é\

Editor

COPYRIGHT 1980 ROCKWELL INTERNATIONAL CORPORATION

Rockwell does not assume any hability arising out of the application or use of any
products, circuit, or software described herein, neither does it convey any license
under its patent rights nor the patent rights of others. Rockwell further reserves
the right to make changes in any products herein without notice

FOR YOUR INFORMATION -

AIM 65/ (714 632-0975 Use this number

MICROPRODUCTS when you have technical

APPLICATIONS questions concerning the

ENGINEER AIM 65 system or are having
difficulty interfacing to the AIM
65.

DEVICE APPLICATIONS (714) 632-3860 Use this number

ENGINEER when you have technical

questions concerning individual
6500 family devices whether or
not they are on the AIM 65.

SERVICE INFORMATION 800-351-6018-Call this number
when your AIM 65 is broken and
needs repair. Their address is:

AIM 65 REPAIR
Rockwell International
6 Butterfield Trail Dr.
El Paso, TX 79924

LITERATURE &
DISTRIBUTOR/DEALER
INFORMATION

(714) 632-3729, 800-854-8099
(in California call 800-422-4230)-
Call one of these numbers when
you need literature for a certain
product, information on your
nearest Rockwell dealer/
distributor or to request a
particular application note.
SALES INFORMATION (714) 632-3698-Call this number
when you need price information
for AIM 65 or Microflex 65
accessories or other Rockwell
products.

SPARE PARTS (714) 632-2190-Call this number
when you want to order spare
parts for your AIM 65. (The
minimum cash order is $10.)

To keep receiving this newsletter, subscribe now! The cost is $5 for 6
issues ($8 overseas). (NO CASH OR PURCHASE ORDERS WILL BE
ACCEPTED) (Payment must be in U.S. funds drawn on a U.S. bank).

All subscription correspondence and articles should be sent to:

EDITOR, INTERACTIVE
ROCKWELL INTERNATIONAL
POB 3669, RC 55
ANAHEIM, CA 92803

INTERACTIVE

MICROFLEX 65 ADD-ON
FAMILY NOW AVAILABLE

The first eight members of the new Microflex 65 products have been
introduced by Rockwell.

The units include a module adapter for single cards, a buffer module that
adapts AIM 65 to multiple-card motherboards, a 4-slot piggyback mod-
ule stack, a prototyping module, an extender card for troubleshooting,
an 8K static RAM card, a 16K PROM/ROM card and a two-port asyn-
chronous communications interface adapter.

The Microflex 65 bus offers memory addressing up to 128K bytes, high
immunity to electrical noise, and growth provisions for user functions.

The RM65-7101 Single-Card Adapter connects any Microflex 65 module
to the AIM 65 microcomputer’s system expansion connector.

The RM65-7104 Adapter/Buffer Module interfaces the AIM 65 to any
Microflex 65 motherboard and will drive up to 15 modules. The RM65-
7004 4-Slot Piggyback Module Stack (PMS) is the first available card
cage and motherboard assembly in the Microflex 65 family. The compact
PMS form factor allows low-profile packaging of a Microflex 65/AIM

' 65 system in a desktop or terminal style enclosure. The PMS is $150 in
single quantities.

The RM65-7201 Design Prototyping Module allows Microflex 65 users
to develop their own custom circuits. Power and return lines are pre-
routed and plated-through holes allow manual or automatic wire wrap-
ping of components and so¢kets. The RM65-7211 Extender Card pro-
vides easy access to circuitry for probing by extending a card from a
cage at enclosure, simplifying signal tracing and troubleshooting.

The RM65-3108 8K Static RAM Module uses R2114 devices arranged
in two 4K memory blocks. Module features include address assignment,
write protect and bank select and enable. The RM65-3216 16K PROM/
ROM Module has eight 24-pin sockets, allowing installation of standard
2K, 4K or 8K ROM or PROM devices.

The RM65-5451 ACIA Module interfaces two independent, asynchron-
ous serial I/O channels. Each may operate as a data terminal or a data
set. Channel 1 provides RS-232C and 20 ma current loop interfaces
and Channel 2 is an RS-232C port. Program-selectable features on
each channel include word length, number of stop bits, parity, internal/
external receiver clock source, and 15 data rates from 50 to 19,200 baud.
On-board DC/DC converter allows +5V only operation.

The Rockwell Microflex 65 product line expands the capabilities of the
AIM 65 microcomputer in Industrial, OEM, Educational and Product
Development applications. The Microflex 65 family is available in edge
connector or Eurocard versions.

Page 3

MORE MICROFLEX 65 ‘‘ON THE WAY”’

Three additional Microflex 65 family boards (the SBC, a 32K dynamic
RAM, and a GPIO module) are slated for delivery in December 1980.

The SBC (Single Board Computer) features an R6502 CPU, sockets for
up to 16K of PROM/ROM, 2K of 2114 RAM, and an R6522 VIA. The
SBC is ideal for applications which are form-factor sensitive because of
its rather compact board size (about 4” X 6.5") and also for applications
requiring several additional boards because of its compatability with all
the other Microflex 65 cards.

The 32K dynamic RAM is addressable in 4K sections and features a
scheme of refreshing that is complete transparent to the rest of the sys-
tem. Write protect and bank select switches are included for increased
versatility. An on-board DC-DC converter furnishes the necessary —5
volts so only +5 and +12 are required from the Microflex 65 bus.

The GPIO (General Purpose Input/Output) module contains two R6522
VIA devices which provide four 8-bit I/O ports and eight control lines.
The 8-bit ports are fully buffered as are the control lines.

The data direction of each I/O port can be under either manual or soft-
ware control.

These boards are available in either edge connector or Eurocard versions.

For further information contact your local Rockwell sales office.

PL/65 NOW AVAILABLE

PL/65, an intermediate level system-implementation language, is now
available for the AIM 65.

PL/65 is designed to improve the productivity of the programmer and to
increase program readability. Control statements such as conditional ex-
ecution (IF-THEN-ELSE), conditional looping (FOR-TO-BY), coupled
with a simplified block capability, support structured program design
techniques.

The PL/65 compiler generates R6500 assembly language source code. In
addition, PL/65 allows assembly language instructions to be incorpo-
rated in-line in portions of programs where timing or code optimization
requirements are critical. The result is a system implementation lan-
guage which has the power and flexibility of assembly language and the
structuring potential of a high-level language.

The AIM 65 PL/65 compiler is contained in two 4k byte ROMs which
plug directly into the AIM 65 BASIC sockets. For further information,
contact Electronic Devices Division, Rockwell International, P.O. Box
3669, Anaheim, CA 92803, (714) 632-3729 or your local Rockwell sales
office.

Page 4

SOLVING SIMULTANEOUS
EQUATIONS USING BASIC

George Sellers

(ED. NOTE: The first time I entered this program into my system, I tried
to make it ‘‘look nice'’ by inserting spaces between commands and op-
erands. The program wouldn’t run until I eliminated all unnecessary
spaces (it ran out of room). So type the program in EXACTLY as shown.)

Here is a BASIC program you might find of interest for solving simul-
taneous equations with up to 20 equations and 20 unknowns. It is directly
transcribed from the FORTRAN program in reference (1) and is based
on what is called the Gauss-Jordan Method with maximum pivot feature.

The program just fits into 4K of RAM on the AIM 65. The following
table shows run times for various numbers of unknowns:

NUMBER OF EQUATIONS RUN TIME IN SECONDS

3 1.325
5 3.015
10 14.325
20 92.485

O REMSTMUL T AME TS
13 (1

JN NN L
i THFUT EN v N RN
20 FORJ=LTONMIFORY
FrRINT® LN
INFUTECT 2 ENE
TP " CHECE

“RO

FRRINTACL
L IFRINT
THFUT " CHANGE THFPUT"
THFUT " ROW

9O FORL=1LTONMEFRINT " E
100

110 FORI=1TONMICK (L) =0
LEO NF=NMA-L

140 FORT=1TONMN

150 TF=14

L&

X

03 HE

INT

v & MEW

INTERACIIVE

A AL PN

The input is organized with the coefficients of each equation being a row
of matrix ‘*A”" which is called the coefficient matrix. The right side of
the equations are organized into a column which is called the constant
matrix “‘B.’" The solutions are also organized into a column and this
column is called the solution matrix *X.”’

Thus A*X=B in matrix algebra.

The data are entered into the program by way of the prompts for each
column. The coefficient matrix can then be printed out to verify the
accuracy of the input and corrections can be made if necessary. Finally,
the constant matrix can be input and after a short time, the solution
matrix is printed.

[f matrix notation is not familiar to you, I suggest you check an advanced
algebra text.

This technique forms the basis of many important types of problems i.e.
network theory, regression analysis, linear programming (see BYTE
magazine for most recent method of trying to solve large systems of
linear equations) and economics (see Sept '80 Scientific American pg
207) to name a few.

1) Golden, James T., FORTRAN IV PROGRAMMING AND
COMPUTING, Prentice Hall, Englewood, N.J. 1965

= T O M

il
\.“'.é

LF AN s O T
CROW CETY

D

IRk

ERCTRE S S WA

[Ty
Y L.

o O GOTOS 0
UE" 5T ede@t e dr sl

fyletyvs

JTOE

EXTT

sNEXETIE

INTERACTIVE

170
180
190
200
210
215
220
230
240
250
260
270
280
290
295
300
310
315
320
330
340
350
360
370
500

FORK=1TONM
LF CAX-ABS (ALK 1)
TFCKCK > 000T021E

LCOT) =K

PYe=QRO0TOZLE

AX=ARGE (A Ky 1)
NEXTHE
LFARS CAX) <=L 0E~sGE0TOE00
CROL=1.0

L=l OO0

CROLY=1.0

FORJ=1TONM

TFO~-Jry=0G0TO0300
e Oy DY AR 1D

FORK=LFTONF

ACr K= Gl KRS Oy Y SNEXT

N
i

EXT
EXTI

FRINT"SOLUTION 18"

FORT=1T0ONM
L=LCCL)
XODd=ally NMtL /Ay 1D

Lyt EX O

F
N
£
I

EXTI
NI

DR o P Y IR S | O P I R PR £ 0 e DO I O

LS O

Led Tt ke 00}

[I

FRIMT " AX

R O

| Jorem 'y |..~:..

.

RINT"X ("
1

LOE-&" TEND

I

Page 5

Page 6

LEARN TO TOUCH TYPE

(ED. NOTE: I LIKE this program! Talk about CAI (Computer Aided In-
struction). The sound output from the last issue could easily be adapted
into TOUCH to signal the operator he made a boo-boo.)

Mel Evans
1027 Redeemer
Ann Arbor, MI 48103

If you use your AIM 65 keyboard much at all, you can increase both the
speed and the accuracy of your input by learning to touch-type. All it
takes is the right kind of practice, and after you’ve got it, you'll be able
to input as fast as you can read the characters, and with almost no typos.
And here’s the best part: you don’t have to go to school to get *‘the right
kind of practice.’”” With the TOUCH program listed in Fig. 1, your
AIM 65 can give it to you whenever, and as long as, you feel like
practicing.

TOUCH is a modification for AIM 65 of a BASIC program written by
Art Armstrong (‘‘Thirty Days to a Faster Input,”” BYTE, Dec. 79,
p-250). If you try TOUCH and decide you really want to use it, read
Armstrong’s article first: it is full of good tips on how to speed up the
learning process.

A sample run is shown in Fig. 2. The program first asks for a set of char-
acters to be used in the practice session. Type in any sequence of printing
characters, ending with RETURN. (Start small, with ASDFG.) The pro-
gram prints the selected character set, and then asks for the length and
number of ‘‘words’’ to be used in the practice session. It then presents
the first “‘word’’: a string of characters randomly chosen from the prac-
tice set.

Put your fingers on the ‘‘home’’ keys (ASDF left, JKL; right, as shown
in the BYTE article). Your goal is to type the word without peeking at
the keyboard, but peek if you must at first. After typing a character, re-
turn to the ‘‘home’’ keys for reference. As Armstrong says, ‘‘The im-
portant thing is to always use the same finger for each key. Otherwise the
process cannot become automatic.”’

The teaching technique is ‘‘operant conditioning’’: the instant you press
a wrong key, the printer tells you about it, and you start over with a new

.

>

INTERACTIVE

word. After the last word, the program prints your score and a list of the #*

characters you missed (and number of misses each). You can use this list
to determine which characters to emphasize in the next session, and you
can emphasize them as shown in the second session in Fig. 2. Notice that
the H key was typed five times into the practice set. This makes H occur
five times as often as the other characters in the resulting words.

With printer ON, you get a full record of each session, as in Fig. 2. With
printer OFF, the display is the same, but only mistakes, score, and error
list are printed. (This is done by using PRINT for display-only and
PRINT! for display-and-print.)

Most of the differences between TOUCH and Armstrong’s program are
just conversion to the AIM 65 dialect of BASIC, but there are a few
functional changes. The printout option mentioned above is one. I didn’t
incorporate his ‘‘echo’’ feature: it would use a lot of paper on the AIM 65
printer, and like he says, it’s better practice not using it. Another change:
after each session, TOUCH asks you if you want another session with the
same practice characters. To quit, on SAME KEYS AGAIN? type N,
and on WHICH KEYS? hit F1. Now you’re back in BASIC entry mode.

For reading single keys, TOUCH uses the GET instruction, which is
mentioned, but not fully explained, in the AIM 65 BASIC manual. GET
reads the keyboard and returns with a character. If no key is down, it
returns with the null character. If a key is down, it returns with that sin-
gle character. If you GET again while the key is still down, it does not
return until key up, and then returns with the null character.

This makes GET easy to use for entering strings. Observe lines 15-50 in
the listing (Fig. 1). Until you press a key, line 20 repeatedly gets the null
character and line 30 repeatedly adds it to C$ (which of course does not
change C$). When you finally hit a key, it gets added to C$ just once:
GET then waits until you release the key.

But watch out! Observe line 310. It GETs B$; but then, if it is the null
character, GETs again. Otherwise it would proceed to line 350, find that
B$ (the null character) didn’t match the word character, and give you an
error. Try deleting that IF, and you will get a score of 0% before you can
reach the first key!

The program as listed runs in about 1350 bytes of RAM. If you omit
REMs and spaces, it will probably run on a 1K AIM 65. Now then.
Don’t just sit there. Read Armstrong’s article, and then get busy!

2 REM LET AIM TEACH YOU TOUCH-TYFING
REM ORIG. RBY ART ARMSTRONG

(BYTE» DEC 1979 FPAGE 250)

& REM AIM MOD RY MEL EVANS (5/711/80)

8 REM

10 PRINT*WHICH KEYS?T®

12 REM RBUILD KEY S8TRING
15 Cg==nt

20 GET A%

22 REM EXIT ON CR

25 IF A$=CHR$(13) THEN 60

INTERACTIVE

CH=Ch+At

GOTO 20

REM STRING RUILT S0 PRINT IT
FRINTCHIFRINT® *
L=LENCCSY DTN ACL)

INFUT "WORD SIZE®sWL

INFUT "HOW MANY WORDS® sNT

NR=0INF=0

i REM CLEAR ERROR COUNT

FOR I=1 TO LIACI)=0INEXT
FOR T=1 TO NT

5 REM BUTLD WORD # T

NP =NF 4 WL
At
FOR I=1 TO WL

223G REM SELECT RANDOM CHARACTER

FaINT CLKRNINCLY +1)
AG=ASEMINE(CEs Py 1)
NEXT I

5 REM FRINT WORD

FRINT A%

FOR I=1 T0O WL

REM READ KEY & CHECK FOR MATCH
GET B&IIF Be="" THEN 310

IF BECEMINECAG»Ty1) THEN 500
NR=NR41

MNEXT T

NEXT T

REM COMPUTE & FRINT SCORE
FRINT" ":FPRINT!I*SCORE: " SINT CLOOXNR/NF)Y s "X *
TF ONR=NF THEN 414

G OPRINTHYERRORS " FOR I=1 TO L:IF ACI)=0 THEN 410

FRINTIMIDE(CET»1)5A 01
NEXT T

FRINT® ¥

INFUT "SAME KEYS AGAIN"sA¢
IF LEFT$ (A% 1)="Y" THEN 100
FUN

5 OREM UFDATE ERROR COUNT

FOR J=1 TO L
TF MIDGCCEy Jr 1)CMIDECAS Ty 1) THEN NEXTIGOTO SH20

Soacdy=Aa00 4l

FRINT ! *Xdokk ERROR ON *MID A%y Tvl)
REM WATT & BIT & THEN RETURN

FOR I=1 TO 300INEXT

GOTO 380

Page 7

Page 8

BASIC TIME SAVER

Gordon Smith
Rockwell International

(EDITORS NOTE: According to Gordon, the basis for the program
came from a similar program published in TARGET which he
modified quite extensively and added auto-line numbering. This
article was reprinted from the Rockwell Anaheim Hobby Club
Newsletter.)

This issue I have what I think is a real goody for all of you who are
using AIM BASIC and are either marginal or lazy typists or both — I
suspect that includes most of us. I have named the program *‘BASIC
HELPER’’ because that is what it does. It is a combination automatic
line numberer and common basic command automatic typist.

I will describe usage of the program first and then how it works. The
program occupies the top two pages of a 4K AIM (OE00-OFFF). Con-
sequently when BASIC is entered via the **5’" Key, you must
respond to the ““MEMORY SIZE"’ question with 3584 or less. This
gives you 3054 bytes free for keying-in segments of your program.
Note that this places no limitation on the size of the program you are
keying-in, because as these 3054 bytes are filled they may be dumped
on tape. Then the next segment with its proper line numbers may also
be keyed in after typing ‘‘NEW.”

As each segment fills memory it is dumped on tape and the next seg-
ment then keyed-in. This is permissible on AIM because unlike PET
and APPLE, loading a program from tape does not automatically
wipe out the old program. It appends the later program to the earlier
one and only if both segments have some common line numbers is
there any conflict. In this case any common numbered lines from the
last blocked tape will be the lines that survive.

So00 - this is an unusual machine language program used with
BASIC because it ultimately takes none of the BASIC space.

After the BASIC is enabled, exit via ESCAPE and load the BASIC
HELPER PROGRAM (or VISA VERSA). 1 use the FI and F3 keys
to activate automatic line numbering with shorthand and F2 to acti-
vate only the shorthand. This later option is used when keying in
someone else’s program (or fixes to your own) when nice even incre-
ments between lines are not achievable.

With the F1 keys the display asks ‘*FROM =" to which you respond
with the starting line number desired (delete is allowed or the last four
hex characters will be used-no leading zero’s required). Hit **space™
or “RETURN’" and the display will prompt with *‘INC=."" At this
point key-in the increment you want and hit **space’’ or **'RETURN"™
and you are in WARM START BASIC with the starting line number
already showing. Enter the rest of the line, hit RETURN, and the new
line number is there ready for you.

INTERACTIVE

This automatic line numbering is handy but it is only part of the story.
By using the control key and any of the alphabet keys (Except M) and
F2 and F3 you can also get an automatic entry of what I think are the
most used, longest, or messiest-to-type BASIC commands. For
instance Control I gives you ‘‘INPUT,”’ Control L gives you
“LEFT$(’ etc. There are even some split BASIC commands. Con-
trol O gives you ‘‘ON’’ then you type the variable name or expression
without any spaces. When you key in ‘‘space,’’ the program com-
pletes the GOTO portion of the ON---GOTO statement. Control F3
gives ON---GOSUB and Control T gives you IF---THEN.

The complete list of shorthand commands and mnenomic aids for
helping to remember them are given in a table following the program
listing and command tables.

As I see it there are three major benefits of this program:

1) It makes it much faster to type

2) There are many fewer typing errors

3) The correct form for these commonly used statements are either
input or prompted ($ in strings aid the left (as a prompt)).

The program works as follows: The F1 key jumps to OEOO which
clears the display and then calls the ‘‘FROM’’ subroutine. The line
number is stored in two places OFFB,C where it is held for updating
and OFF1,2 for processing to input it to BASIC which then displays
it. The segment starting at OE18 inserts a space and then sequentially
outputs INC by three output subroutine calls.

The JSR EAAE at OE27 is the ADDIN subroutine which is not
described in the manuals. It outputs ‘* ="' and waits for four (more or
less) hex characters. If less it assumes leading zero; if more it accepts
the last four. The increment value may be as many as four digits and
is stored in OFF3,4. In all of the above cases the data is stored in high
byte-low byte sequence (it is not an address in the conventional
sense).

The segment of the program from OE39 through OE3F sets a Flag in
OFF7 to indicate if the auto increment mode is ON (OO) or OFF
(FF). The F2 entry point is at OE3D.

The group of instructions from OE42 through OE4E set up the user
input mode (55 in A412 and the user input vector to location OE62 in
Location 0108,9).

The next group through OESE initializes conditions so that the last
character output (OFFS) was apparently a carriage return so that the
line number will be output if that mode is active. Any value other
than 20 in OFFD is OK-20 indicates that a split command has had the
first part entered and is waiting for the **space’’ code to enter the sec-
ond segment.

The OO in OFF6 indicates that the program is not in the middle of
inputing a line number.

INTERACTIVE

=== 8 - L L

The segment named ‘USER PROCESSOR’ is the point where the
user input is vectored to. In BASIC at this point, the Y register is
pointing to the BASIC input buffer location for the next key-in so it
must be saved (in this case on the stack). The USER input may have
to turn something on when it is entered the first time so the first time
the carry is clear on subsequent entries the carry must be set. In this
case it doesn’t make any difference so that I could have left out the
instructions in OE64, 66, and 67 and the SEC instructions in OE92
and OECF. But I left them in because I am trying to teach some with
this column too.

The mode decode function works as follows: The test at OE6E deter-
mines if the auto-line option is desired-if it is the test at OE72 deter-
mines if it is necessary to output a line number or if we are in
process-if the answer is yes we execute the segment at OE94. We will
come back to this later. The test at OE76 determines if we are in pro-
cess of generating a command. These in-process tests are necessary
because only one character is generated and supplied to BASIC and
BASIC comes back for the next one. If we are in process of
generating a command, the jump at OE78 is executed. Otherwise, we
use the CUREAD subroutine to read a character from the keyboard
and then save it in the last character buffer, OFFS.

This character must be examined to see if it is a control-alpha (OE83)
to start outputing a new command at OEF9 or if it matches (20
matching 20) the split command wait indicator in OFFD (OE88). If
so, the JMP OFIA in OE8A is executed. If it is none of these, it is an
old-fashioned, plain ordinary key stroke input. In this case BASIC’s
Y register is restored, the input character recovered, and the RTS
takes it back to the BASIC input processing.

The Auto increment processing is performed as follows: The test in
OE97 determines if this is the first digit to be processed. If it is, the
Line input in Process Flat at OFF6 is set to 4 and and also the charac-
ter count is checked for zero (OEA4). If it is, the segment of instruc-
tions from OEOI through OEF7 restores flags and increments (in

Page 9

decimal) the line number for the next line. This program then returns
to look for the next input character.

If it was not the final pass, the segment from OEA6 through OEBD
shifts the next digit (most significant digit first) into OFFO. OEB4
counts the number of digits down by one and OEC2 through OEC7
converts it to ASCII and holds it in OFFA for output after the BASIC
Y register is restored OECA through OEDO.

If the character input was a control character (value less than 1F) the
program will commence from OEF9. Since this entry is for the start
of a new command the code input 01 to 1E will be used as a pointer to
the start of text. It is moved to the Y register and is used to point to a
byte in Table 1 *‘POINTERS TO START OF EACH COMMAND.”’
This is accomplished in locations OEF9 through OEFA. That byte is
then used to index the text table. ‘COMMANDS IN ASCII,”’ Table
2. The Y value is then incremented and saved for the next pass. If the
input byte was 00 (OF07), it indicates ‘‘end of text’’ so some flags are
restored and the next key is input (OF27 to OF2c). If the input byte
was 20 (OFOB) it indicates a split command so the wait code (20) is
stored in OFFD and the next key is input (OF14-OF17). If neither of
these, the code is output using the sequence of instructions OEC7-
OEDO in the auto- line number output section.

If the 20 matches 20 test in OE88 indicates that the second segment of
a split statement is to be inserted, the program starting at OF1A
through OF25 is executed. This cancels the ‘‘wait”> Flag at OFFD
and puts a low value (00) into the last command byte (OFF5) so that it
indicates a shorthand command in-process and then loads the pointer
for the next character of the command. It then continues to execute as
if it were a normal shorthand command.

This is a longer and more complex program than I have generated for
this column before but I think that you will like it. I think I will have
it loaded whenever I am keying-in a BASIC program. It saves so
much time and aggravation.

SHORTHAND COMMANDS AND MNEMONIC AIDS

= ABS(

TAB(TABBBB
MID$(CENTER$
DATA

RIGHT$(END$
FOR

GOTO

LEN(HOW LONG
INPUT

GOSUB JUMPSUB
GET GET KEY
LEFT$(

IS NOT USABLE
NEXT

ON+ ++GOTO

OZIrX="IOTMMOO®>

L (| (|| | | | | A | | B 1

POKE

RND(QUANTITY
RETURN

STR$(

IF+++THEN TEST
= USR(

VAL(

INT(WHOLE VALUE
RESTORE X-OUT READ
READ PARAMETER
STEP SIZZZE

IS NOT USABLE
DEFFN FUNCTION
ON+++GOSUB

NKXxsEs<CHOIO T
o

Page 10

010C
010F
0112

BASIC HELPER PROGRAM

OE00
OEO3
0E06
OE09
OEOC
OEOF
0E12
OE15

4C JMP 0OE00
4C JMP OE3D
4C JMP 0OEOO

20 JSR E9FO
20 JSR E7A3
AD LDA A41C
8D STA OFF2
8D STA OFFC
AD LDA A41D
8D STA OFFB
8D STA OFF1

INPUT INCREMENT

OE18
OE1B
OE1D
0E20
0E22
0E25
0E27
OE2A
O0E2D
0E30
OE33
0E36

20 JSR E83E
A9 LDA #49

20 JSR E97A
A9 LDA #4E

20 JSR E97A
A9 LDA #43

20 JSR E97A
20 JSR EAAE
AD LDA A41C
8D STA OFF4
AD LDA A41D
8D STA OFF3

BYPASS AUTO LINE NO.

0E39
OE3B
OE3D
OE3F

A9 LDA #00
FO BEQ OE3F 02
A9 LDA #FF
8D STA OFF7

SET UP USER INPUT

0E42
OE44
OE47
OE49
OE4C
OE4E

PARAMETER SET UP AND GO TO WARM START

0ES51
OE53
0E56
OE59
OE5B
OESE

A9 LDA #55
8D STA A412
A9 LDA #62
8D STA 0108
A9 LDA #OE
8D STA 0109

A9 LDA #0D
8D STA OFF5
8D STA OFFD
A9 LDA #00
8D STA OFF6
4C JMP B003

USER/PROCESSOR

0E62
OE63
OE64
0E66
0E67

MODE DECODE —— SUBSTITUTE OR READ

OE68
OE6B
OE6E
0E70
OE72
OE74
0E76
0E78
OE7B
OE7E
0E81

98 TYA
48 PHA
BO BCS OE68 02
68 PLA
60 RTS

AC LDY OFF5
AD LDA OFF7
DO BNE OE74 04
CO CPY #0D
FO BEQ OE94 20
CO CPY #1F
BO BCS OE7B 03
4C JMP OFOF
20 JSR FES83
8D STA OFF5
C9 CMP #1F

OE83 90 BCC OEF9 74 OFOF
OE85 CD CMP OFFD OF12
OE88 DO BNE OE8S8D 03 OF14
OE8A 4C JMP OF1A 0F17
OES8D 68 PLA OF1A
OES8E A8 TAY OF1C
OE8F AD LDA OFF5 OF1F
O0E92 38 SEC OF22
0E93 60 RTS 0F25

0F27
AUTO-INCREMENT 0F29
OE94 AD LDA OFF6 0F2C

OE97 DO BNE OEA1 08

OE99 A9 LDA #04

POINTERS TO START OF EACH COMMAND

INTERACTIVE

ACLDY
DO BNE
8D STA
4C JMP
A9 LDA
8D STA
8D STA
AC LDY
DO BNE
A9 LDA
8D STA
4C JMP

OFFE
OEFE
OFFD
OE7B
#00

OFFD
OFF5
OFFE
OEFE
#20

OFF5
OE7B

D7

OE9B 8D STA OFF6 <M>= (OFD1 00 01 06 OB
OE9E 8D STA OFF8 < > OFD5 11 16 1E 22
OEA1 AD LDA OFF8 < > OFD9 27 2C 32 38
OEA4 FO BEQ OED1 2B < > OFDD 3C 43 45 4A
OEA6 A9 LDA #00 < > OFEl 52 57 5C 63
OEA8 8D STA OFFO < > (FE5 69 71 76 7B
OEAB A9 LDA #04 < > OFE9 80 83 8D 8D
OEAD 8D STA OFF9 < > OFED 8D 94 %A
OEBO 18 CLC
OEB1 2E ROL OFF2 COMMANDS IN ASCII
OEB4 2E ROL OFF1 <M>= (F30 41 42 53 28
OEB7 2E ROL OFFO < > O0F34 00 54 41 42
OEBA CE DEC OFF9 < > (OF38 28 00 4D 49
OEBD DO BNE OEBO F1 < > O0F3C 44 24 28 00
OEBF CE DEC OFF8 < > 0F40 44 41 54 41
OEC2 AD LDA OFFO < > O0F4 00 52 49 47
OEC5 69 ADC #30 < > (0F48 48 54 24 28
OEC7 8D STA OFFA < > OF4C 00 46 4F 52
OECA 68 PLA < > OF50 00 47 4F 54
OECB A8 TAY < > OF54 4F 00 4C 45
OECC AD LDA OFFA < > OF58 4E 28 00 49
OECF 38 SEC < > OF5C 4E 50 55 54
OEDO 60 RTS < > (0F60 00 47 4F 53
< > (F6e4 55 42 00 47
PREPARE FOR NEXT LINE < > (F68 45 54 00 4C
OED1 A9 LDA #20 < > (OF6C 45 46 54 24
OED3 8D STA OFF5 < > (0F70 28 00 OD 00
OED6 A9 LDA #00 < > O0F74 4E 45 58 54
OED8 8D STA OFF6 < > (0F78 00 4F 4E 20
OEDB F8 SED < > OF7C 47 4F 54 4F
OEDC 18 CLC < > OF80 00 50 4F 4B
OEDD AD LDA OFFC < > (F84 45 00 52 4E
OEEO0 6D ADC OFF4 < > (OF88 44 28 00 52
OEE3 8D STA OFFC < > OF8C 45 54 55 52
OEE6 8D STA OFF2 < > O0F90 4E 00 53 54
OEE9 AD LDA OFFB < > 0F9%4 52 24 28 00
OEEC 6D ADC OFF3 < > (0F98 49 46 20 54
OEEF 8D STA OFFB < > (F9C 48 45 4E 00
OEF2 8D STA OFF1 < > (OFA0 55 53 52 28
OEF5 D8 CLD < > (OFA4 00 56 41 4C
OEF6 B8 CLV < > (OFA8 28 00 49 4E
OEF7 50 BVC OE7B 82 < > OFAC 54 28 00 52
< > (OFBO 45 53 54 4F
SHORTHAND COMMAND INSERTION < > OFB4 52 45 00 52
OEF9 A8 TAY < > OFB8 45 41 44 00
OEFA B9 LDA OFD1Y < > OFBC 53 54 45 50
OEFD A8 TAY < > OFCO 00 00 00 44
OEFE B9 LDA OF2FY < > OFC4 45 46 46 4E
OF01 C8 INY < > OFC8 00 4F 4E 20
OF02 8C STY OFFE < > (OFCC 47 4F 53 55
OF05 C9 CMP #00 < > OFDO 42

OF07 FO BEQ OF27
0F09 C9 CMP #20

1E (EDITOR’S NOTE: If you’d like a set of stick-on labels for the basic
OFOB FO BEQ OF14 07 One-key entry program, send $1 to Ron Riley, POB 4310, Flint,
OFOD DO BNE OEC7 B8 Mich. 48504. These Labels are printed on adhesive-backed stock

with all the proper Basic commands printed on them.)

4

INTERACTIVE

PROM PROGRAMMER CARD
FOR AIM 65

A PROM Programmer and Code Editor (CO-ED) module is now avail-

able as a plug-on peripheral for the AIM 65 printing microcomputer from
Rockwell.

The PROM memory devices programmed with the new module may then
be used with any 6500-based system, including AIM 65, Microflex 65,
and SYSTEM 65.

The module provides PROM check, read and verify functions in addition
to programming. Data load, verify and dump, each with offset, and an
object code editor (CO-ED) are additional features included in the mod-
ule’s built-in ROM firmware. CO-ED controls a program pointer and can
search, disassemble and modify R6500 object code programs.

R6551 ACIA CHIP NOW
AVAILABLE

The R6551 Asynchronous Communication Interface is now available
from Rockwell. This new device offers several advantages over older
ACIA designs. The main advantage is that the R6551 contains its own
on-chip baud rate generator with 15 program-selectable rates from 50
baud to 19,200 baud. The only additional component required is a stan-
dard 1.8432 MHZ crystal.

The R6551 has programmable word lengths of 5, 6, 7, or 8 bits; even,
odd, or no parity; and 1, 1% or 2 start bits. Besides the normal interface
control lines (RTS-Request To Send, CTS-Clear To Send, and DCD-
Data Carrier Detect) the R6551 provides two additional lines, to further
enhance the modem interface. These two lines are DTR-Data Terminal
Ready (which indicates the R6551 status to the modem) and DSR-Data
Set Ready (indicates the status of the modem to the R6551).

The built-in programmable baud rate generator offers certain advantages
to the system designer. Since fewer external components are required for
boards designed around the R6551, more compact and/or more densely
designed systems are possible. This in turn translates to a cost savings
which can become very substantial as the quantity of systems to manu-
facture increases.

For data sheets and more information on the R6551 ACIA contact your
local Rockwell sales office.

Page 11

The PROM programmer CO-ED module, part number A65-901, plugs
directly into the expansion connector of the AIM 65 microcomputer. The
module includes 1K byte of R2114 static RAM which, when used with
the 4K RAM AIM 65 model, allows single-pass programming of 4K X
8 PROMs. It also includes internal logic to select PROM programming
characteristics for the Intel 2758, 2716, or 2732, or the TI 2508, 2516 or
2532 without switch or jumper changes.

The module requires only a single supply voltage, +5 VDC @ 0.7 amp,
which is usually available from the power supply for the host AIM 65.
Appropriate PROM programming voltage levels are generated by an on-
board DC-DC converter.

The module measures approximately 4.4 inches wide by 6.7 inches long
and is fully assembled, tested and warranted.

For more information contact the Electronic Devices Division of Rock-
well International, P.O. Box 3669, Anaheim, CA 92803. Telephone
(714) 632-3729 or your local Rockwell sale office.

NEW APPLICATION NOTE

A new application note entitled PRINTER CONTROL WITH THE
R6522 is (document #256) is now available from Rockwell. This note
describes how the AIM 65 can be used to directly control all the func-
tions of a dot matrix printer mechanism through the on-board user R6522
VIA chip. The printer mechanism chosen is the Two-Day Corporation
80 column bidirectional 10600 series.

This 24 page app. note actually contains two complete software/hard-
ware interface schemes—one for each of the two printer mechanisms
available from the Two-Day Corp.

One of the models (the 10600A) has a synchronous motor drive while the
other (the 10600B) has a stepper motor drive and an independent paper
feed.

For a copy of this or other app. notes write: Literature Request,
Rockwell International, Box 3669 RC55, Anaheim, CA 92803. Be sure
to specify the document numbers.

Page 12

INTERRUPT DRIVEN
KEYBOARD

Marvin DedJong
Pt. Lookout, MO

(Ed. note-Although the author cites amateur radio as an example ap-
plication for an interrupt driven keyboard, this technique is just as re-
levent in the possible industrial uses of the AIM 65. Interrupt driven
systems are becoming increasingly useful in data gathering applica-
tions as well as machine control areas.)

The AIM 65 Monitor polls the AIM 65 keyboard for key depressions by
calling subroutines. These subroutines wait for a key to be depressed be-
fore continuing to execute the commands that have been entered or be-
fore continuing to process the data that have been entered. There are
certain situations in which this treatment of the keyboard is undesirable.
In this application note such a situation is described, and a routine to read
the keyboard on an interrupt basis is described.

Suppose an amateur radio operator wishes to use the AIM 65 to send
either Morse code or RTTY (radioteletype). The AIM 65 monitor rou-
tines could be used for this, but the send routine would have to wait for
a key depression before it could send the character, and the operator
would have to wait for the send routine to finish sending the character
before he could type in a new character. The usual technique calls for a
buffer that stores the characters typed on the keyboard, and concurrently
sends the characters at a prescribed speed. Thus, the operator can type
in characters as quickly as he can type, and the send routine empties the
buffer at the prescribed speed. This form of keyboard operation is diffi-
cult, if not impossible, to achieve with the AIM 65 monitor software
which, in addition to reading the keyboard, must also debounce the keys.

An alternative approach is to let the send program (or any other program
in which this interrupt approach is used) continue operating, but use a
regular interrupt to scan the keyboard to see if any new characters have
been entered. If a new character has been entered on the keyboard, it can
be stored in a buffer to await its turn to be processed by the main pro-
gram. [f no new character has been keyed, the interrupt routine branches
around the buffer storage instructions.

The listings given here form a routine that will read the AIM 65 keyboard
on an interrupt basis. The initialization routine sets up the interrupt vec-
tor to point to the interrupt routine at SOBFF (of course, the locations of
all of these routines may be changed). Next the initialization routine sets
up the T1 timer on the user’s 6522 to produce equally spaced interrupts,
at five millisecond intervals. (Longer intervals can also be used, but
shorter intervals may produce keybounce errors.) The last instruction in
the initialization routine produces an infinite loop that simulates the
user’s main program, a Morse code send program for example.

The interrupt routine starting at $OBFF is very similar to the AIM 65
GETKEY subroutine in the AIM 65 monitor. Most of the coding is taken

INTERACTIVE

——
A A A

from that routine, with some important modifications to make it operate
on an interrupt basis. Note that all the registers are saved by the interrupt
routine. Also note that the interrupt routine contains a JSR $ODOO in-
struction. If a key depression is detected, then the accumulator contains
the ASCII representation of the key just prior to the JSR $ODOO in-
struction. The subroutine at $ODOO is expected to place the accumula-
tor contents in a memory location where it can be processed by the main
program, a buffer for example.

Finally, we have included a display routine at $ODOO that displays the
key just pressed on the AIM 65 display. This routine is included to test
the initialization and interrupt routines. It has no other use.

s 170

UTil. =hA004

UT1CH =$A003

UT1LL =$A006

UARC =$A00R

UTER =HA00E

TREV2 =$A404

CFIY =$A42A

CFRIYL =$A42R

ROLLFL =$A47F

DIRAZ =$A480

ORE2 =HA4E2

sMONITOR SURROUILTNES

ONERKEY =4$EDOT

ONER2 =4$EDOR

QuUTDIL =$EF7R

FHXY =HERPE

FLXY =HERAC

ROWL =$F 421
2000 X=$0E00
OEQO
OEOO0 A% FF LIA #INTRN
OEO02 8D 04 A4 5TA ITRQEV2
OEO0S A% OR LA #>INTRN
QEO7 8D 03 A4 S5TA TRAV2+1
OEO0A 78 SET
OEOR ¥
OEOR FSET TI&CERL INYT FLAG

OEOE A% CO
OEOn 8D OF AQO

LA #4$C0
5TA UIER

OELO ¥

0E10 ¥

OE10 $SET T1 IN FREE
OEL10 s RUNNING MODE

OEL10 A9 40
OE12 8D OR A0

LA #4$40
5TA UARC

INTERACTIVE

n OE1S
OEL1S
OE1S
OE17
OELA
OELC
QELF
OE20
OE20
OE20
OE20

OER3
ORFF
ORFF
ORFF
ORFF
0Co0
0C03
0CO3
0Co3
0606
0CO6
0C06
0Coy
OCOR
0Con
OLon
oCon
01O
01O
0C10
0C12
0CL4
0cLa
octLa
014
OCLé
061y
001y
0019
0019
0CLe
oCLs
0C1Le
0619
0cLe
0C19
00Le
ocin
OCLF
QOCLF

OCILF

on2l

“

A9
80
Ay
8
a8

4C

48
20

Al

Al
ce
FoO

on

49
0o

A2
BE

20
88
30

A
a8h

868
06
13
05

20

.
04

82
FF
07

FF
43

00
20

035 ED

7

8F
80

AD

AO

OE

AO

A4

"~ A4

A4

A4

s8ET T1 LATCHES
LA #4688
STA UTILL
LA #4613
STA UT1CH
CLY

~

¥
sFPROGRAM SIMULATION
ME

JMF ME

X=$ORFF
$SAVE REGISTERS
INTRN

FHA

JER FHXY

A

»

sCLEAR T1 INT
Loe Ut

;

$OEE IF KEY DOWN

oA DRR2

CMF $6FF

BEQ ROOL

SACCERT LAasST KEY
ORA ROLLFL

TS

STRORBES
EOR #$FF
BNE ROONEK

INVERT

a

v
s CLEAR
ROOL

MASK

L.IX

6TX

$00
CRIY

;

$G0 THROUGH KB ONCE
SANDT RETURN IF ANY
SKEY

5Y=ROWCL-8) & STEKEY
5=COLUMN, IF NO KEY
5 Y0

STRKEY =$FF

¥
JOR O ONERKEY
DEY
BMI NOKEY
¥
sCHOK CLMN Sybe?

FEBF
IRAZ

LI
5TA

0C24

0C24
0CRy
0Ces
0C2e
0CRs
oca2e
0C2A
oC2a
0C2a
0C2A
0C2c
oC2e
0Cac
OC2E
OC2E
OC2F
0C30
0631
0C3l
0C31
0C31
0034
o037
0037
0C37
0038
0034
OC3R
0C3C
OC3E
OC3E
OC3E
0C40
0Ca40
0C40
0C40
041
0cal
0C41
0C44
0C44
0C44
0Caé
0C4é
0C4s
0047
0Ca7
0c4y
0C4n
0C4n
0Caa
0Can

Al B2 A4

a0

RO

A2
AP
38

6N
48

20
AL

4A
?0
68
CaA
o

FO

68
Al
49

AA

20

20

03

7F

OR
82

06

Fo

SR

2R

L 2A

0%

ED

A4

A4

ET

Page 13

9

JCHECK ROW 1
LA DRREB2
LER A

;

sIF=1ly NO CTRL OR

FOHIFT

BCS GETKL

JCLMN Seby 7 (ONTRL

FOHIFTLy SHIFTRD
LIOX #43

y
sCTRL OR SHIFTyWHICH
L.oAa #67F
GETKO
SEC
ROR A
FHA

y
sLETS GET CTRLL OR
FSHIFT INTO X
JOR ONEKZ
LA DIRRB2
¥
$ONLY ROW 1
L.SR A
BCC GETKOOQ
FL.A
IEX
BNE GETKO
H
sNO KEYy SO EXIT
REQ NOKEY

A

4
sGET STBKEY INTO X
GETKOO

FL.A

§
sCLMN INTO X
L.éa CFIY1

y
s COMPLEMENT STRRS
EOR #$FF

sCTRL DR SHIFT TO X
TAX

v

sOET MBK=$01

INC CRIY

;

sNOW GET ANY KEY

GETK
JER ONEKEY

Page 14

0C4n
0C4n
ocan
OCAE
OCAE
0CAE
OC4E
0CH0
OGS0
0C50
OCH3
0Cs3
OCs3
0Cs3
OCH3
OC5S
QL7
007
o7
oSy
OUEY
OLse
OCHR
OS5k
0050
OUsED
OUSE
OCSHE
OCSE
OCHF
OCHO
0C6 1
0C&R
OC6&R
OCéHR
OCéH2
0063
0C63
OC63
OC6EE
0066
0Ca7
OC&Y
OLHA
0C60L
QL6
o6
OCHE
OCaF
GC7o
OC70
070
OC7l
o7l

86

o

Al

Co
EBO

90
30
Ed

EA
]

98
Of
O
0N

f8

Al

40
@0
e

o

RY
48

8A

09

2B

42

40

2R

03

Fa

2

A N

A4

A4

Fa

Py

¥
s CHORK THE
DEY

ROW (1-8)

a

14
sCHEK IF
sGHIFT

CTRL. OR

BNE GETKLIR
¥
sENTERED LAST

LA CRIYL

IF CLMN
IT AGAIN
CMF
RCS

H
:
§ SebeeB IO
;

b7
GETK2

&
v

SGET CTRL QR SHIFT
RODNEK

BRCC NOKEY
GETRKILR

BMI NOKEY
GETK2

NOF

NOF

NOF
§
sMULT BY 8

TYA

ASL. A

AsL A

ASL A
3
FNOW A HAS ROW ADDR
SFROM ROW 1

TaY
sADD CLMN T0O Y

LI CRIYL
GETKI

LGR A
s BETKS

L GETRS

sGET THE CHR

GETRA4
LId ROWLeY
FHA

SCTRL OR SHIFT USEDT?
TXA

:ﬁIEiF: CH IF NO CTRL OR

0C71
OC71
OC73
0C73
0C73
Q7%
QL7
0C75S
Q77
0C78
o778
QC78
0C78
074
0C7A
OC74
oc?n
Qe
OCY7E
OC7E
OC7F
OC7F
QCYF
QC?F
ocel
Org3
oCga
oCgs
0ras
OCes
oCe?
oCe?
oceg?
oCe?
oree
ocege
ocee
ocen
OLBR
OCanR
ocgn
oCsn
oCen
OC8E
QCP0
L2
QLY2
O
QCe
0?3
0Ce3
oCe3
OCPE
0Le?

FoO
29

FoO
68

29

40
68

48

FoO

RO

68
29
Lo

68

0
o

24
10

06

3F

28

40
L4

OF

QF
o
05
EF

06

10
01

o

INTERACTIVE

sSHIFT
BEQ GETK?Y

v
s CTRLT

AND #4610
§
FNOy GO GETRS

REQ GETKS
Fl.A

FMASK OFF 2 MSE FOR
sCONTROL.

AND 6 3F
4
SEXIT TO DISF

JMP GETRS
GETKS

Fl.A
sSAVE IT

FHA
¥
s IF ALFHA CHARS 110
sNOT SHIFT

ANID #4440

BNE GETKY

Fl.A

FHA

A

¥
sONLY LS8R
ANIN G OF
§
00 NOT INTERCHANGE
s (SFACEDY OR O

REQ GETK?

Py
»

FACCH=$0CT
CMF #1400

¥

SYES ACCH=4$00
BCS GETKSG

;

sEXLT
Fl.a
ANI
BNE

G EF
GETRE
;
$ACCH=400
GETRG

Fl.A
;

sRIT 4=1

ORA
BNE
GETKY

Fb 1O
GETKE

INTERACTIVE

SUPER SIMPLE
AUTO-START

Under normal circumstances, when power is applied to the AIM 635, the
reset line is automatically asserted by the power-on-reset circuitry asso-
ciated with the 555 timer (Z4) and the CPU starts executing the reset
sequence contained in the Monitor ROM.

While this sequence of events is fine for most uses, there are others, such

Page 15

in the keyboard socket on the main board and shorting the two pins that
correspond to the ‘5,” ‘6’ or ‘N’ key.

If you wish the system to automatically jump to $B000 on power up,
short pins 11 and 13 on the DIP header (pins 12 and 14 for address
$B003) or pins 3 and 14 for a starting address of $D00O0.

For OEM applications where the keyboard is still needed, the same effect
can be achieved by temporarily shorting the correct pins with a reed re-
lay driven by a timer chip. The time constant should be slightly longer
than that of the power-on-reset timer (Z4) for proper operation.

as OEM installations and dedicated controller applications, which re-
quire that the system comes up running a user written operating program
without the need for any special operator intervention.

CORRECTIONS TO ISSUE
#2

The first solution that usually comes to mind involves the replacement of
the Monitor ROMS. However, there is an easier way to accomplish the

same effect without having to sacrifice all those built-in /O drivers. In the DISASSEMBLER UTILITY on page 11, the periods should be

removed from in front of the labels DEB and LECT in the source listing.

The only restriction is that the user program must start at address $B000,

$B003, or $D000 (corresponding to the ‘5,” ‘6 or ‘N’ key vectors). The OFFSET LOADER program on page 13 was missing the immediate
symbol (#) from all four of the immediate instructions (locations 0200,

If you have the Assembler or BASIC ROMs installed in your system, try 0205, 0222, and 0252).
holding down the ‘N’ key (or ‘5’ key) while you turn on the power. No-

tice how it comes up running in the assembler? In the WE’VE GOT OUR EARS ON article on page 10, the correct Post

Office box is 3669 (not 33093).
w In a dedicated controller application, where the keyboard isn’t being

used, the same effect can be achieved by installing a 16-pin DIP header A note table was left out of the AIM 65 SOUND article on page 8. It

belongs right before the section headed ‘‘HERE’S HOW TO MAKE

MUSIC’".
|
OCy 7 68 Fl.& B0=251 (B below first C) B=124
OrYs 5 C=237 (first C) Cl1=117 (C above first C)
oCes s GO DISKFLAY C#=224 Cl#=111
oCes GETKS D=211 D1=104
ore8 20 00 0D JER DISF D#=199 Di#=99
OC9OR H E=188 E1=93
OU9R FRESTORE REGISTERS F=177 F1=88
0CYR NOKEY F# =167 Fl#=83
OCYB 20 AC ER JER PLXY G=157 G1=78
OCYE 68 FL.A G#=149 G1#=73
OUYF AY 00 LIa #4000 A=140 Al=69
oCal BD 2A A4 STa CRIY A#=132
oCas 40 RYTI
OUAYS X=$ON00 In the AIMPLOT program on page 4, the opcode at location 0232 should
Onoo be 8D (not BD). Also, the bit instructions at locations 02A9 and 02BA
Qnoo DIsE are somewhat misleading. What the author really needed in this situation
OnoG &z 13 LIOX #413 was a BIT IMMEDIATE instruction. But, as the 6502 doesn’t have such
ono2 0% 80 ORA #4$80 an instruction, he had to simulate it. He did this by finding the proper bit
Ono4 g pattern in the AIM 65 monitor ROMS and using the address of this bit
Ono4 sCONVERT X INTO ADDR pattern as the operand instead of the bit pattern itself thereby accom-
Ono4 JFOR DISFLAY plishing the same effect as a BIT IMMEDIATE instruction.
QDo4 20 7R OEF JOROOUTDRN
W07 60 RTS Has anyone generated a table of all the bit patterns ($00-$FF) available
onog cEND in the AIM 65 monitor ROMS? ['d sure like to publish it.

Page 16

LETTERS TO THE EDITOR

Dear Editor

I would like to see a clearer explanation of how to output data to the
printer than that illustrated in the AIM 65 Users Manual, ref Chapter 7.
I would like to write an assembly language program, and then at some
point in that program have the printer print the contents of either one of
the index registers, accumulator, or a memory location. Quite simply
put, I'd like an easy to follow subroutine that would do as shown:

LDA XXXX :some memory location
JSR PRINT :print contents of acc.

then return to a users program.
Is there an easy way to do this?

Thank you
R. A. Fairman

Mr. Fairman,

There is a subroutine called NUMA ($EA46) that will output a hex value
in the accumulator as two ASCII digits, but if the printer is not enabled,
it will just be sent to the display. So, to do what yvou want will require
making sure the printer is on before you JSR to NUMA. The best way to
accomplish this is with a short subroutine that gets included in your pro-
gram. The subroutine will have to save the present printer flag from
PRIFLG (8A4411), force the printer flug on by making it $80, do a JSR to
NUMA, and then restore the printer flag to whatever it was before.

PRTBYT SEC
ROR PRIFLG

ASL PRIFLG

CLC

RTS
Bit 7 is the only bit in the printer flag (PRIFLG) that has anv meaning.
It is this bit that gets tested to see if output gets sent to the printer (see
line 2411 and 2412 in the AIM 65 monitor listing for an example of test-
ing the printer flug). This means that the remaining 6 bits are free for
our use. The first thing that is done upon entry to PRTBYT is to set the
carry flag to a *1." This will be put into bit 7 of the print flag location by
the ROR PRIFLG instruction to *'turn the printer on.”" The ROR PRIFLG
instruction actually does two things. First, it rotates the carry flug into
the bit 7 position of the printer flug (which turns the printer on) and also
saves the previous print flag in bit 6 so it can be restored after we're
Sfinished. The instruction JSR NUMA outputs the character to the printer.
To restore the printer flag to its original condition we execute the ASL
PRIFLG instruction. This simply shifts bit 6 back to the bit 7 position and
moves the ‘1" which was shifted into the bit 7 position from the carry flag
back to the carry flag. The carry flag is then cleared to prepare for our

return to the main routine.)
the Editor

1

JSR NUMA 7

¢f 2
"

Dear Sir,

Congratulations on a really-usable, cost-effective AIM65 and now a
newsletter to match.

ADDITION TO MARK REARDONS REAL TIME CLOCK
(issue #1 p. 11)

250 REM NOW THE TIME IS H HOURS, M MINUTES, S
SECONDS

251 REM BUG! NOT IF H OR M CHANGED WHILE PEEKING.

252 REMIF THEY DID TIME COULD BE OUT BY ONE HOUR.

253 REM FIX! TO DOUBLE CHECK THE TIME.

254 IF PEEK(220)=H OR PEEK(221)=M THEN GO TO 240

255 REM NOW! THE TIME IS H HOURS, M MINUTES, S
SECONDS.

= NOT EQUAL TO (sorry, no arrows).

SORRY! YOU LOSE YOUR BET we did know how to edit BASIC pro-
grams but bet you didn't know you don’t need tape to do it.

If memory is split between the EDITOR and BASIC then a LOAD can
be done using the memory read routine used by the Assembler. The pro-

cedure is described below and assumes you have 4K of memory to beﬁ

split down the middle to the EDITOR and BASIC.

1. Allocate the MREAD routine (FADO) to the user input vector at
HEX 0108. 0108 = DO 0109 = FA.

Initialize BASIC answering 2047 to MEMORY SIZE? prompt.
From here on only re-enter BASIC using comma
Lodth =

3. Escape from BASIC and initialize the EDITOR answering; FROM
**800°" TO **FFF’" to the prompts. From here on only re-enter the
EDITOR using command *‘T.""

4. You may now load your program into the EDITOR with the usual
commands. Entry may be either from tape or the keyboard but ob-
serve the following rules;

a. The top line must always be a SPACE only.
b. The bottom line must always be CONTROL Z only.

c. Always exit the EDITOR using **'T"" then **Q"". This leaves the
pointer on the top line.

w

TOR and re-enteyBASIC. LOAD in the usual way but answer “‘U"’
to the IN prompt where upon you will find your program being
zapped into BASIC memory space.

£5¢

6. You may now RUN your program in the usual way but escaping to
the EDITOR when editing is required and then re-load the program
into BASIC for executing.

6.7
Uelalag ek

. When you want E LOAD your program into BASIC exit the EDI-C

N\

INTERACTIVE

A

7. Sometimes you may find it more useful to do program modifica-
tions direct on the BASIC program leaving the EDITOR unaltered
so you can quickly restore the original by re-loading. To re-load
you must re-enter the EDITOR to get the pointer on the top line
otherwise nothing will get loaded.

This EDITOR-BASIC technique has hidden depths which only become
apparent with use and the application of a little ingenuity. So get to it!

Here are some clues.

1. The EDITOR can have direct commands entered into it such as
NEW or RUN and these will be directly executed as the program
is loaded.

2. Normal program statements may be entered without line numbers
and these will be directly executed as well. This is particularly use-
ful for POKEing in machine code without occupying BASIC pro-
gram space.

3. If the EDITOR contains two lines with the same number the second
will overlay the first. So don’t erase a line in order to replace it—
just type in the new line after it. Erase a line only when your sure
you won’t want to go back to it.

4. A line can be temporarily erased either by inserting REM before
the line number or by inserting just the line number on the line after
the one to be erased.

5. If you are going to LOAD an EDITOR tape containing direct com-
mands into BASIC the tape must have remote control connected.

6. If REMarks are entered into the EDITOR with-out line numbers
then they will not get loaded into BASIC space. Thus it is possible
to have a lavishly commented EDITOR tape for development use
and a fast loading BASIC tape for the user.

7. You can LOAD part of a program in the EDITOR by putting a
SPACE line before the section wanted and a CONTROL-Z line
after it. Don’t use “‘T"” when exiting the EDITOR, leave it pointing
at the SPACE line before the section you want.

8. Because LOAD does not erase existing lines, a large program can
be built up and debugged by over-laying from a fairly small EDI-
TOR space.

An extension of the above techniques allows the writing of long self-
loading over-laid programs operating within the AIM 65°s 4K ram. The
approach is ideal for Automatic Test Equipment (A.T.E.) programs and
if the Editor so wishes I will write further on it in the future.

KEN FULLBROOK

England
Ken,

You're right. I didn’t know how to edit BASIC without using the cassette.
Thairks a bunch!!! I'm sure our readers will appreciate it.

The Editor

Page 17

SOFTWARE REVIEW

by the EDITOR
How would you like to develop 1802 programs on your AIM 65?

Or, how would you like to be able to set up a library of MACROS which
can be called from your assembly language programs?

If either, or both of these things interests you, then you’ll be interested
in a new software package for the AIM 65 called MACRO.

MACRO is actually a pre-processor that works in conjunction with the
AIM 65 assembler. Its function is to accept a source file that contains
macro calls, expand those macros by looking them up in a library file,
and outputting a new source file with all the macros expanded so that the
AIM 65 ROM assembler can assemble it.

The macro library file must be set up which defines all the macros which
are to be used and must be memory resident at the time the input file is
submitted for expansion. (makes AIM 65 sound like a large machine,
doesn’t it?)

Here’s an example of what it looks like:

SAMPLE MACRO
INCD POINTR

SAMPLE MACRO DEFINITION
&INCD

INC !l

BNE *+4

INC '1+1

&

SAMPLE MACRO OUTPUT
INC POINTR

BNE *+4

INC POINTR+1

(The ‘&’ character is used both to start and terminate a macro definition)

Now that last little programming sequence- (incrementing a double byte
pointer) is something 6502 programmers do alot of.

The same technique can be used to set up a cross assembler for most any
other CPU. (6800,1802,8080 etc) Pretty excitin’ stuff!!!

According to the documentation that accompanies MACRO, the mini-
mum usable system is an AIM 65 with 2K of RAM, the assembler ROM,
and remote control of least one cassette deck. The price is $15 which
includes documentation and a cassette of the object code. The source
code for MACRO is available either on cassette or as a listing for an ad-
ditional $30. (This would enable you to adapt MACRO to your 6502
floppy system)

So far, I haven’t found any bugs in the system (I'm good at finding bugs)
and it worked right the first time I tried it.

POLAR SOLUTIONS
Box 268
Kodiak, Alaska 99615

It’s available from:

Page 18

TEMPERATURE
CONVERSION PROGRAM

(This program was reprinted from the Rockwell Hobby Club Newsletter
of the Anaheim CA facility).

If you’ve ever had the need to convert temperatures from Celsius to Fahr-
enheit, then here is a program written in AIM 65 BASIC that will make
life a little easier.

Just follow the prompts and type in the start and end values in degrees
Fahrenheit and the program will print out a table of the temperature in
degrees centigrade (Celsius).

PROGRAM

490 INPUT *“*START’’; S

492 INPUT “‘FINISH’; F

493 PRINT! “‘DEG.”’, “‘DEG.”"

494 PRINT! “'FAR."’, ““CELS.™"

495 DEF FNA(A)=INT(A*100+.5)/100
500 FOR I=STO F

505 R=(1-32)*5/9

510 PRINT! ILFNA(R)

515 NEXT I

SAMPLE PRINTOUT

START? 0
FINISH? 8
DEG. DEG.
FAR. CELS.
0 -17.78
1 -17.22
2 -16.67
3 —16.11
4 —15.56
5 -15
6 —14.44
7 —13.89
8 —13.33

FOUND HIDING . ..

a BASIC command not found in the manual

Dale Hall

Torrance, CA

Statement Syntax/Function Example
POS POS (expression) Print POS(0)

Returns print head
position 0-19.
requires a dummy
argument.

BASIC USR HELPER

Georges-Emile April
Montreal, Canada

(Ed. note-If you call many machine language subroutines from your
BASIC programs, this routine should be able to save you some time.)

I find it inconvenient to have to use POKE statements every time I wish
to use machine language programs; so I wrote the following set of ma-
chine language programs which may be assembled on top of RAM mem-
ory, or placed in a ROM somewhere else.

Version shown here is in last page of 4K RAM. See listings.
The programs work in the following manner:
a) Program SETADD
When called, this program takes the argument passed to it by BASIC and
places it in 4 and 5 to be used as an address by next access to ‘‘USR”’

function.

b) Program CALLIT

Vg

”
This program uses program SETADD to set up address of ‘“‘USR’’ then

calls program

The programs are used as follows:

Two subprograms (lines 1 and 2) are written in Basic.
Line I sets up 4 and S to point to SETADD, then returns.
Line 2 sets up 4 and S to point to CALLIT, then returns.
Two situations may arise:

a) It is desired to call machine language program (lets us call it
SUBI), that needs an argument (ARG).

The following sequence will call it the first time:
100 GOSUBI: X=USR(SUBI): X=USR(ARG)

Where SUBI is decimal value of address of machine language pro-
gram we wish to call. Subsequent calls to the same program can be
made simply by X=USR(ARG) since address has been set up by
line 100.

MEBA!?_[!!E Page 19

b) It is desired to call machine language program (SUB2). That needs It should be noted that program SETADD returns a value of 0 to
no argument (e.g. input data). basic so that the following sequence does not modify the value of
Y:

The followings will do just that:
170 GOSUBI1: Y=Y + USR(SUBI)
150 GOSUB2: X=USR(SUB2)
Therefore line 100 could have been written:
or
100 GOSUBI: X=USR(SUBI) + USR(ARG)
160 GOSUBI: X=USR(SUB2): X=USR(DUMMY)

Lines 150 and 160 are fully equivalent but line 150 will execute
faster. As was the case in a), subsequent calls to same program can
simply be X=USR(DUMMY). Where DUMMY can by any valid
variable or constant, since program needs no argument.

ROUTINES TO ERSE USE OF LUSKEOXD>
i $DF=223, $0B=219

==BFDR FIXIT £CHEBB JMP (FIXID i TRANSFORM DATA TO FIXED FOINT
; THE FOLLOWING SETS UP DATA AS ADDRESS OF USRS, THEN RETURNS
5 TO BRSIC WITH USR(X)=6
i SHOULL BE USED WHEN FUNCTION FEGUIRES RRGUMENT
i “GOSUEL” SETS UP LINK TO THIS ROUTINE

==gF(& SETAL0 ASAY LDA EXF

Co%n CHMP #5908 ;SEE IF TOO LARGE FOR SIGNED TRERTMENT
Daeh BNE OK
ASAA LA MSD i IF TOO LARGE, TAKE MSD & mSD1 RS DATA

8585 STR LINKH
ASRE LDA MSDL
==gFE? COMMON 5564 STA LINKL

A%aE LDA #8
@9A% STR EXP i MAKE USRCX)=@
£H RTS
==GFEE 0K 20DRAF JSK FIXIT ; TRANSFORM ARGUMENT T RDDRESS

ASAC LDR LSDL

8585 STR LINKH

ASAD LDA LSO

4CE7GF JHF COMMON i G0 COMFLETE TRANSFER

i THE FOLLOWING SETS UP ADDRESS FROM ARGUMENT
i THEN CALLS ROUTINE
i USED WHEN NO ARGUMENT IS NEEDED
i “GOSUBZ" SETS UP LINK TO THIS ROUTINE

i $DF=223, $FA=250

==BFFR CALLIT 280B&F JSK SETADD
fLadea JMP (LINKD i CALL POUTINE
==10468 EN . END

ERRORS= @aae

INTERACIIVE

QUICK INSERTION ROM BASIC RECOVERY
SOCKETS PROCEDURE

Ron Riley by Antonio Berges

Flint, MI Dominican Republic

I recently purchased PL-65 and after switching between BASIC and How many times have you entered a rather long BASIC program into the
PL-65 ROMS several times, I decided to look into using zero-insertion AIM 65, confidently entered the monitor and then inadvertently hit the
force sockets. The problem with most of these sockets is that they require ‘5" key (rather than the ‘6’ key) to reenter BASIC? You saw the

more room than AIM 65 has available. I did finally locate one that fits, ominous MEMORY SIZE? question and probably thought your BASIC
however. It is part #504012459 and is available from WELLS ELEC- program was ‘‘down the tubes.”’

TRONICS INC., 1701 S. MAIN ST., SOUTH BEND, IND 46613.

Since the zero insertion sockets gets plugged into the normal ROM As long as you don’t press the RETURN key, you're safe. The program

socket, no desoldering is necessary. ROMs can now be swapped in and in memory can be recovered by hitting the ESC key followed by M 01

out with no danger of damaging the ROM or the socket. RETURN /00 B9. BASIC can now be reentered with the *6°* key. What
you’ve done is to replace the JMP $CEA3 at location $0000 to a JMP
$B900.

=141

NEWSLETTER EDITOR Bulk Ralo
ROCKWELL INTERNATIONAL U.S. POSTAGE
P.O. Box 3669, RC55 RATE
Anaheim, CA 92803 U.S.A. Santa Ana Calif.
PERMIT NO. 15

