JANUARY, 1982

ISSUE NO. 7

G W

Introduction to Forth
Countdown Timer

Errata and Update to Forth
Manual

Centronics—Type Printer
Driver

Uncolon . . . A Forth
Disassembler

AIM 65 ROM Expansion

10

19
21
21
23
23
24
24

2716/2532 EPROM
Programmer

Frequency Counter
Random Number Generator
System Spotlight

Using Smudge

Number Input Function
Dumping Basic

Cassette Problem

Page 2

EDITOR’S CORNER

INTERACTIVE NOW FREE!!!

That’s right. We 've decided to drop the subscription price for the news-
letter. So there is no need to send more money—just articles! However,
since this newsletter is being mailed bulk rate, you'll have to continue
to keep us up to date on your current mailing address. Send that infor-
mation to: Subscription Desk, Mail Stop RCSS, Rockwell International
POB 3669, Anaheim, CA 92803. You don't need to re-register. If you
received this issue through the mail, you're on the list and will continue
to receive INTERACTIVE at no charge. If you're not on the list. send
your name and address to our subscription dept.

RM65 BOARD STATUS

As 1 write this (December 4, 1981) all boards are available from stock
except for the CRT Controller and the Floppy Disk Controller modules.
These two boards are expected to be ready by the end of this month,
however.

How many of you would like to see INTERACTIVE publish a monitor
program for the RM6S Single-Board Computer module so it could be
used standalone with the ACIA board as a complete system’

If you're looking for a compact, easy to package, 6502 system, you could
not find one much better than the RM65 module set. The only problem
at this time is that there is no software available to ‘tie it all together. ™
I'd be willing to take on the task of developing a mini-monitor for the
SBC if there is enough interest. How about it?

SPECIAL FORTH ISSUE

No, this isnt the first publication to dedicate an issue to FORTH. But
FORTH is such an important addition to our language “‘arsenal " that |
don’t see how it could get too much coverage. To help seed the field,
I even sat down and wrote the EPROM programmer driver software in
FORTH (somewhere in this issue) to give you an idea of what FORTH
is all about.

ERIC C. REHNKE—EDITOR

All subscription correspondence and articles should be sent to:

EDITOR, INTERACTIVE
ROCKWELL INTERNATIONAL
POB 3669, RC 55
ANAHEIM, CA 92803

COPYRIGHT 1982 ROCKWELL INTERNATIONAL CORPORATION

Rockwell does not assume any liability arising out of the application or use of any
products, circuit, or software described herein, neither does it convey any license
under its patent rights nor the patent rights of others. Rockwell further reserves
the right to make changes in any products herein without notice.

INTERACTIVE

If you're a newcomer to FORTH, I strongly suggest that you purchase
a copy of the AIM 65 FORTH USER MANUAL. from your local Rock-
well sales office. Another book that is very good is called STARTING
FORTH. It is written by Leo Brodie and is available from Mountain
View Press, POB 4656, Mountain View. CA 94040 (415-961-4103).
The book costs around $16 (here in the states) and is an excellent com-
panion to the AIM 65 FORTH manual.

ISSUES #1 AND #2 ALL GONE

We are completely out of stock of these two issues and have no plans
on reprinting in the near future.

CORRECTIONS TO ISSUE #6

PAGE 3 —in the second paragraph on the right hand side of the page.
change the last part of the third sentence to read *. . . size
to 3686.°" Also, the cursor positions indicated came out in
the wrong positions.

PAGE 21 —pin 21 of U2 (the 2716 EPROM) must be connected to =35

volts.

FORTH IN
MAINLAND CHINA

Add Forth to the list of Chinese dialects. Dr. Ray Dessy of the Virginia
Polytechnic Institute made a visit to Beijing's Chinese Academy of Sci-
ence, Institute of Chemistry. as part of an exchange program for labo-
ratory automation. He took along his Rockwell AIM 65 microcomputer
(programmable in Forth) to demonstrate points in his 21-hour lecture
series.

The Forth machine remained behind while he made a side trip to
Shanghai. While Dessy was gone. his Chinese colleagues put the micro-
computer to work in their instrumentation laboratory. They were most
impressed by the ease with which Forth can be tailored to special uses.
And they only reluctantly gave up the hardware when he returned.

In addition to the academic interest. Forth is also hard at work in 17
petroleum-retining research pilot plants in China. The CBX/S computer-
control systems were supplied by the Xytel Corp. and use the poly-
FORTH software package tfrom Forth, Inc. The Research Institute of
Petroleum Processing. at Beijing, was so pleased with polyFORTH's
performance that it signed up for a system-wide software license.

FORTH TIDBIT

If you get an error when you attempt to compile a FORTH program trom
the AIM 65 text editor, location SOODF contains the address of the text
pointer where the error occurred. To find that area, simply execute HEX
DF (@« CR 20 — 20 TYPE to print the 20 (hex) characters in front of the
place where the error occurred.

INTERACIIVE

INTRODUCTION
TO FORTH

Gordon Smith
Rockwell International

FORTH, is an extensible language. It you need a capability or instruction
that the language implementers did not include. you may add it yourself.
In fact, programming in FORTH is accomplished by adding extensions
to its command set until the final extension is the command to execute
the final program. There are no reserved words or characters (except
space and backspace) that the programmer cannot use for FORTH com-
mand names. If the programmer wishes. even existing FORTH words
may be redetined and the compiler operation moditied.

It is a procedure-oriented language. To call a procedure all the pro-
grammer does is use the procedure name. This may be included as part
of the definition of a new procedure or it may be used interactively under
keyboard control. Just typing the name of the procedure followed by a
carriage return causes that procedure to execute.

FORTH is extremely easy to debug since immediately after defining a
new procedure (called a word in FORTH), the procedure may be checked
without any disk or editor or linker or additional programming manip-
ulation. Just put some data where the procedure expects it, call the pro-
cedure, and see if the results were as predicted. As each new step of the
program is written, it may be checked immediately. Any debugging
required only relates to the single procedure just completed. FORTH is
the most easily debugged of all the higher-level languages.

FORTH is a stack-oriented language. The stack (also called parameter
stack) resembles the hardware stack in that data may be put onto the
stack and removed from the stack without any address referencing. Most

FORTH instructions expect the data for each procedure to be on top of

the stack and they also leave the results of the procedure on the stack
although access to any location in memory is allowed. To put data into
the stack. just type the values desired (separated by spaces) and key the
carriage return. After calling the procedure by typing its name, the results
may be inspected by typing a print command (.). This causes the top
value on the stack to be printed and deleted from the stack. The stack
orientation also eliminates some of the debugging problems that assembly
language and the BASICs have. What would be termed local variables
in PASCAL (variables associated with a procedure and not the global
variables associated with the whole program) are contained in the stack
and in most cases do not even have names. Consequently, the errors
associated with reusing a name or referencing the wrong data name are
unlikely with FORTH.

FORTH is a structured language. There is no GOTO command to cause
complicated intertwining ot the program. It does have all of the normal
structured programming formats:

IF ..o THEN

IF oo ELSE THEN
BEGIN WHILE............ ... REPEAT
BEGIN UNTIL

Page 3

BEGIN AGAIN
DO LOOP
DO +LOOP

FORTH has elements of a compiler as well as an interpreter in it. It also
has an assembly language capability built into it so that high speed is
possible. Normal high level FORTH is about the same speed as PASCAL
but since it has the direct assembly language capability as well, it can
have the most inner loop procedures defined in machine language so that
it can handle most real time control functions readily.

FORTH is also extremely compact. The FORTH program ROMs that
Rockwell offers with the RM 65 board module line and the AIM 65 and
AIM 65/40 single board computers provide the compiler, the interpreter,
the assembler, a mass storage operating system and a total of approxi-
mately 300 procedures all in a total of 8K bytes. An applications program
is obtained by programming additional procedures until the final pro-
cedure is the complete program the user desires. These procedures may
also be implemented in ROM or PROM. 1t is possible to compress the
program even more by generating new ROMs or PROMs which contain
only the FORTH procedures actually used in the application and which
omit the name information that is no longer needed. A FORTH appli-
cation program, including the overhead, can be even shorter than if the
program were completely written in assembly language!

Finally FORTH gives the user much more intimate control of the com-
puter than any of the other languages. The FORTH programmer may
switch from the normal decimal operation to hexadecimal for addressing
memory mapped input/output locations, to binary for manipulating bit
flags for control or status information, and to base 36 arithmetic (using
the character 0-9, A-Z for the 36 symbols required) for compact storage
of text for prompts and messages. The programmer may directly address
any location in memory for any purpose.

FORTH is a continually growing language because of its extensibility
and flexibility, but it is highly standardized. There is an international
standards organization which has defined a minimum core set of FORTH
procedures (called *“*‘words™" in FORTH) and has defined a proposed set
of extension words so that FORTH programs will continue to be highly
transportable from one computer to another. The AIM 65 FORTH was
defined before the standard was published, but it does meet most of the
requirements and does, in fact, include many additional features.

In most computer implementations of FORTH, it is RAM based. Rock-
well, in order to have modular software to go with its line of modular
boards and computers, has implemented FORTH in ROM. This makes
it particularly applicable to industrial control where both the run-time
package and the application package may be in non-volatile memory.

The Rockwell AIM 65 computer makes an efficient, low cost, devel-
opment system for developing and debugging FORTH programs. A
resulting program then may be implemented in PROM and used in either
the AIM 65 packaged into the user application or may be used in a com-
puter made from RM 65 modules. o

Page 4

COUNTDOWN TIMER

Randy Dumse
Rockwell International

The program shown uses the R6522 on the AIM 65 system as a time
base for a count down timer. It is written in FORTH and demonstrates
the flexibility of the language and its usefulness to AIM 65 system users.
Once the program has been compiled a user has only to type the number
of seconds delay that is desired, followed by a space and the word SEC-
ONDS, then hit return. The seconds count will decrement on the display
and print OK when the time is up.

A look at the words as they are defined will reveal this program’s inner
workings. The word SECONDS first puts a zero on the stack above the
user entered value for seconds, then the address of the variable HSEC
and does a store operation (!). This zeros HSEC. The number of seconds
to be counted is again at the top of the stack. The address of the variable
SEC is added to the stack so the store operation (!) can place the value
of seconds into that variable.

The word START-TIMER is executed which starts the R6522 Timer 1
in the free running mode. Timer 1 will time out every 1/20 of a second
from that point on. A loop is set up to be the word BEGIN that will
continue until the variable SEC becomes zero. The word HSEC-TICK
waits for Timer 1 to time out then returns. The word UPDATE adds 5
to the hundreths of a second count and updates the second count after
a full second has passed.

Following that the word DISPLAY checks to see if the hundreth of a
second count is zero. If so, it clears the display and prints the newly
updated second count. The address of SEC is then put on the stack so
the fetch command (@) can bring its value to the stack. The value is
tested by the word NOT and the loop begun again by UNTIL if the
second count is not yet zero.

The word DISPLAY operates by putting the address of HSEC on the
stack and using the fetch command () to get its value which is then
inverted by NOT. IF skips the commands following all the way to the
word THEN if HSEC did not contain a zero. If it did however the
machine code routine CLR is called, the address of SEC is used to fetch
(@) the seconds count and that value is printed (.).

The word UPDATE performs its function by first getting the current
hundreth second count (HSEC @) and then adding five to the count with
the words 5+ . The result is duplicated (DUP) to allow a copy for testing
purposes. A 99 is put on the stack and compared to this duplicate copy
by the > operator. If the result of the test is false execution will skip

INTERACTIVE

L5

from the IF word to the THEN. If the result is true however the word
DO-SEC is executed and the hundreth second count dropped from the
stack (DROP) and replaced by a zero. After THEN, which ever value
remains on the stack is stored in HSEC (HSEC !).

DO-SEC is a fairly simple word that fetches the value from second count
variable (SEC («), subtracts one from it (1 —) and returns this value back
(SEC).

The word CLR takes advantage of the ease with which FORTH can
decend to assembly language (machine coded) routines. Because there
is a very useful routine in the monitor that clears the display but doesn’t
run the printer (called CLR in the monitor listing, address $EB44), the
word CLR in this program is created with the defining word CODE. The
two machine level instructions call the monitor routine (EB44 JSR,) and
return control back to FORTH (NEXT JMP,). END-CODE terminates
this word.

The word HSEC-TICK is defined simply as calling the two other words
WAIT-ON-TIMER and CLEAR-FLAG. WAIT-ON-TIMER starts a loop
with the word BEGIN that continues until Timer | sets its flag by timing
out. The Flag Register is fetched by the words 6522-TIMER-FLAGS and
Ct . The Clu insures that only one register is read from the R6322.
Reading more than one register could give invalid results. This copy of
the Flag Register is logically ANDed with $40 so that only the T1 flag
value remains. The word UNTIL repeats the loop until the T1 flag is no
longer zero.

The timer is started by the word START-TIMER. A SC@ is put in its
auxiliary control register (CO ACR C!) and a value of 50,000 in its
counter (HSEC-COUNT-VALUE 6522-TIMER).

The timer flag is cleared by the word CLEAR-FLAG each time it is set.
CLEAR-FLAG simply reads the low byte of the counter (6522-TIMER
C(«) which causes the flag in the Flag Register to clear and throws away

‘the fetched value (DROP) which has no use in the program. The

remaining listing lines not described above. simply define the variables
and constants used elsewhere in the program.

If the user wants more than the OK prompt to indicate the end of the
count down. another word could be added. It would use SECONDS as
shown and end with a rountine such as CR.

When SECONDS was done the CR would run a line on the printer.
giving an audible indication of completion. (i.e., :ALARM SECONDS
CR). If something fancy is required a user defined word could replace
CR and sound a buzzer, ring a bell or flash a light.

imlm:@ﬁll‘_/jzé Page 5

(COUNTDOWN TIMER PROGRAM BY R. DUMSE) ERRATA AND UPDATE
HEX TO FORTH MANUAL

AOO4 CONSTANT 6522-TIMER p. 4-30 If you get a compilation error when compiling from
ACOD CONSTANT &6522-TIMER-FLAGS the text editor, the 16 bit pointer at location $00DF
AOOB CONSTANT ACR will indicate where the error occurred in the text buffer.
DECIMAL Perform a

SO000 2 — CONSTANT HSEC-COUNT-VALUE HEX DF (¢ 20 - CR 20 TYPE

HEX to see the last 20 characters before the error occurred.
0 VARIABLE HSEC

O VARIABLE SEC p. 4-31 The last sentence in the warning should start **FOR-

GETing TASK then . . ."
WAIT-ON-TIMER BEGIN

6522-TIMER-FLAGS p. 4-37 The explanation for LEAVE is incomplete. Refer to
Ca 40 AND the definition on page B-29.
UNTIL ;3
p. 4-55 The short sequence at the top of the page SHOULD
: START-TIMER CO ACR C! read
HSEC-COUNT-VALUE
6522-TIMER ! P BASE (« DUP DECIMAL.

The word BASE? should be defined as follows:

CLEAR-FLAG &522-TIMER Ca DROFP ;
: BASE? BASE (« DUP DECIMAL .

: HSEC-TICK WAIT-ON-TIMER CLEAR-FLAG ; BASE -
Otherwise, BASE gets changed to decimal whenever
CODE CLR BASE? is executed.
EB44 JSR,
NEXT JMP, p. 4-57 The sequence at the top of the page should read:
END-CODE
DECIMAL 65 EMIT
DECIMAL L
: DO-SEC SEC @ 1- SEC ' ; p. 5-1 The second paragraph in section 5.1.1 should read:
**. .. quotient (top of the stack) and the remainder
: UPDATE HSEC @ S + DUP (second on the stack) . . .
9 >
IF p. 5-14 Delete the two numbers (500 5) from the example at
DO-SEC DROP O the bottom of the page. Those numbers will be on the
THEN stack from the sequence immediately above. You must
HSEC ! ; press the RETURN key after CR TYPE CR.
: DISPLAY HSEC 2 NOT p. 5-19 Change the number 7F to IF in the second code
IF sequence from the bottom of the page. The last code
CLR SEC @ . sequence should read:
THEN
LATEST CR ID.
: SECONDS O HSEC ' SEC ! START-TIMER)
BEGIN p. 6-6 The hex data at location $030F should be changed
HSEC-TICK UPDATE DISPLAY from 04 to D4
SEC @ NOT
UNTIL 3

FINIS . more —

Page 6

p. 10-5

p. 10-6

p. 10-7

p. 10-7

RP) does not work correctly. It returns 101 decimal
(65 hex) instead of 101 hex. If you need to use it in
your assembly language you’ll have to redefine it.

HEX 101 CONSTANT RP)

The text in the parenthesis at the bottom of the page
should read:
(the <space> bar was pressed here)
Delete the second line (ASSEMBLER) in the example
in 7.2.1. The assembler will be called when CODE is
executed.
In 7.3.4d the code should read:

: DUMMY ARM [SMUDGE
see J-8 for ARM.
Don’t forget to insert a space immediately after the

first parenthesis in all the comment lines in both pro-
gram examples.

Again the comment in the >STROBE example needs
to have a space after the first parenthesis.

The first sentence in paragraph 9 should start **Set and
verify . . .”

Change step 12 to read:

(12) Restore dummy word TASK, verify that TASK
is entered into the FORTH dictionary and its PFA
is $309 and read the dictionary pointer (DP).

: TASK ;
VLIST
309 TASK <space>

DP (@ . <return> 30B OK
Note that any new words now added to the dic-
tionary will be located at $30B on up.
Change step 13 also.

(13) Display the link field address of TASK to get the
address of the last application word for use in step
15.

> TASK LFA S (« 0 D.
<return> 305 LAST

Change the assembly language instruction in Section
1S from LDA AOQ,Y to LDA (A4),Y

p. 10-11

Appendix B41

Appendix G-3

Appendix [-2

Appendix |

Appendix -6

Appendix -7

Appendix 1-8

Appendix K-1

INTERACTIVE

=LA LIV

At the top of the page change * = 800 to * = D000.

Remove ‘addr’ from the stack notation of ‘WORD".
Also delete the last sentence in the definition.

The number of bytes for parameter name MODE is 2
(not 8).

255 places should be allotted to the variable IB (not
25).

0 VARIABLE IB
255 ALLOT

Forth String Words.

To make this string package more nearly compatible
with the one found in BASIC several changes are
necessary.

Change the definitions for MID$, LEFTS$ and RIGHT$S
to:

: MID$ DROP 1- ROT + SWAP ;
: LEFTS DROP SWAP ;
: RIGHTS DUP 4 PICK MIN - + SWAP :

Under explanation for S!, there should be a space
inserted between the double quotes and ‘COWS’

* COWS not "*COWS
change the explanation of MIDS$ to the following:

MIDS$ gets M characters of a string starting at the Nth
character position, for example

6 3 AS MIDS TYPE
will print the word EAT.
Under the explanation for VAL delete the space fol-
lowing the number 128.
128" VAL D.
Under the explanation for SUB the second program
line should read:
* ATE™ 6 3 AS MID$ SUB
In the definition for OFF, the word DROP right before
the semicolon should be deleted. It should read:

: OFF A004 (@ 12B + DUP CR IF FFFF
DNEGATE D. ELSE . THEN

INTERACIIVE Page 7

CENTRONICS-TYPE
PRINTER DRIVER

Joe Hance
Rockwell International

(EDITOR'S NOTE—Joe has an EPSON MX 80 hooked up to his AIM 65
and is mighty happy with it. Here's how he did it.)
2000 35 THE HARDWARE CONNECTIONS ARE =
2000 H
2000 s CB2 ———> STROBE
2000 s CB1 ———> ACK
2000 ;s PBO ———> DATO
2000 s PBR1 ——-3> DAT1
2000 ;s PR2 ——> DAT2
2000 3 PB3 ———> DAT3
2000 s PB4 ——> DATA4
2000 s PBS ———> DATS
2000 s PB6 ——> DATS
2000 s PB7 —-> DAT?7
2000 s GND ——-> GND
2000 3
2000 PB =$A000 ;5 PORT B OF R&522
2000 DPB =%$A002 s PORT B DIRECTION
2000 PCR =$A00C ; CONTROL REGISTER
2000 IFR =$A00D s FLAG REGISTER
2000 H
2000 3
2000 ;s USER OUTPUT VECTOR
2000 ;s COMES HERE
2000 H
2000 *=%$0FEQ
OFEQ
OFEQ 90 0OC uouT BCC INIT s CARRY CLEAR IF FIRST TIME
OFE2 A9 10 LDA #%$10 ; LOOK FOR CB1 TRANSITION
OFE4 2C OD A0 WAIT BIT IFR ;s WAIT UNTIL FLAG
OFE7 FO FB BEQ WAIT
OFE? 68 PLA 5 GET CHARACTER
OFEA 8D 00 AQ STA PB s STORE TO PORT
OFED &0 RTS
OFEE H
OFEE s INITIALIZE INTERFACE
OFEE H
OFEE A9 FF INIT LDA #$FF s PORT BR TO OUTPUT
OFFO 8D 02 A0 STA DPB
OFFX A9 AD LDA #%$A0 3 CB2 HANDSHAKE AN
OFFS 8D OoC A0 STA PCR 3 CB1+TRANSITION
OFF8 &O RTS

OFF9 .END
o

Page 8

UNCOLON
. . . A FORTH
DISASSEMBLER

Once a FORTH word has been compiled, you can 't normally list it unless
you've saved the source code. It's sort of like assembly language in that
respect. Of course, once a program has been converted to machine code,
you could use a disassemble to convert the opcodes back into their mne-
monic form to get some idea of what’s going on.

Well, here’s a disassembler (if we can use the term correctly) for FORTH
words. Actually, the word UNCOLON (de-Forth?) seems to fit the
operation more closely.

What it does is decompile higlevel FORTH words—(not CODE words)
into the subwords that make them up.

The original author for this program is unknown. Gordon Smith, here
at Rockwell, modified the program somewhat and is presenting it to us
to add to our FORTH toolbox. UNCOLON has proven to be very handy.

Once you have entered it into your system, use it as follows:To decom-
pile .R execute the following:

* .R UN:
What you are doing is entering UN: with the parameter field address
(PFA) of the word .R on the stack.
If you typed in all the definitions correctly, you'll get the following
printout:

C959 B589 >R
C95B C311 S->D
C95D B599 R>
C95F €925 D.R
C961 B55B :SOK

Here is what a DO . . . LOOP looks like when decompiled:

First the definition:

: TEST 1000 0 DO I . LOOP :

Now, decompile TEST.
' TEST UN: <CR>

SA4 BO40 LIT

S5A6 1000

SA8 B7F1 0

SAA B173 (DO)

SAC B18C |

SAE C967

SBO B10C (LOOP) SAC
5B4 B5SB :S OK

Experiment with other FORTH constructs such as BEGIN . . . UNTIL,
IF . . . ELSE . . . THEN etc. to familiarize yourself with the decompiler.

As you will notice when you compare the above disassembly with what
you wrote, sometimes FORTH does some processing while it compiles
a word. The 1000 that was written is repeated in the definition but after
an internal FORTH word called LIT (LIT tells FORTH that the next
word encountered is really a number and not an address). The 0 (zero)
which was the next entry in the definition was not written as a LIT
sequence. This is because 0 (zero) is defined in FORTH as a CON-
STANT with the name 0 (zero).

The DO word is an immediate word in FORTH which executes even
though FORTH is in the compiling mode. What DO actually does is to
compile (DO) and put the address of the first command in the loop on
the stack. The remaining commands until the LOOP word are compiled
directly. LOOP. however. is another immediate word which compiles
(LOOP) into the dictionary and computes the relative address (16 bits)
to get back to the address which was placed on the stack by DO.

The disassembler shows the absolute address for convenience. but it was
the 16 bit relative address which was compiled to the dictionary. The :
(semicolon) gets compiled as :S which tells the interpreter to get the next
command. The (DO) command when it is executed takes the two top
values off the stack and puts them in the return stack. The (LOOP) com-
mand pulls the top two values off the return stack, increments the index
and if the index is not equal to or greater than the limit value, it puts the
new values back on the return stack and does a 16 bit relative branch
back to the beginning of the DO loop. If the results of the incrementing
indicate termination of the loop, the two values are dropped and the rel-
ative address is ignored.

As you can see. you can learn alot about how FORTH operates by using
the UN: command.

The decompiler doesn’t handle CODE defined or other special cases
words but does a good job with most others.

Now you can decompile FORTH to see how it works and to become
more familiar with how the experts use it.

INTERACTIVE Page 9

(DISASSEMBLE) AIM-65 ROM EXPANSION

I just received a flyer from 2 company that says they have a ROM
expansion board for AIM-65 computers. It looks like a bare p.c. board
that can hold up to 6 ROM/EPROMs and a selector for the chip select
lines. The board mounts over top of the ROM sockets and connects to

HEX
: EXIT R> R> DROP DROP ;

: IP&W (CFA ——— CFA . Co . .
CR DUP DUP O 4 the computer with two 24-pin dip headers. They re asking $12.50 for
D.R 2 DUP 0 5 D.R the bare p.c. board.
SPACE 3

You can contact them at:

WRITELN IP&W DUP

MICRO PROCESSOR PRODUCTS

* CLIT CFA =
IF ." CLIT * 2916 EAST COURT ST.
DROP 2+ DUP C@ IOWA CITY, IOWA 52240
o D. 1- (319) 351-7587 a
ELSE 2+ NFA ID.
THEN ;
: ?LIT (PFA——PFA F)
A WHILE
DUP @ * LIT CFA LIT IF 2+ IPW
o DROP ELSE

?BRA IF 2+ DUP 2
OVER + O D.
ELSE

?CPLE (PFA—-PFA F)
DUF @ * COMPILE

CFA =3 2CPLE IF 2+ DUP
: 7STOP (PFA——PFA F) ngg NFA 1ID.
DUP @ DUP ’ ;S CFA = -
e cones *STRING IF STRNG
CFA = DR SWAP THEN THEN THEN
DROP ; THEN 2+
REPEAT
: 7BRA DUP @ DUP DROP ;
B10C = OVER
B13C = : UN: BASE @ SWAP
OR OVER BOEB HEX DUP CFA @ DUP
- DR OVER B7S6 = IF DROP DISASM
BOCC = OR ELSE DUP B7AE = IF
SWAP DROP 3 DROP DROP
CR ." VARIABLE "
. ?STRING (PFA———PFA F) ELSE DUP B792 = IF
DUP @ * (.") CFA DROP DROP
= ; CR ." CONSTANT *
ELSE DUP B7DE =
: STRNG (PFA——-PFA+2) IF DROP DROP
2+ DUP COUNT DUP CR ." USER VARIABLE "
SR TYPE R> 1- + 3 ELSE BC79 = IF
DROP CR ." DEFINED WORD *
: DISASM (PFA———) ELSE CR ." CODE OR SPECIAL @ “
BEGIN O D. THEN THEN THEN
2TERMINAL IF THEN THEN BASE ' ;

EXIT THEN
WRITELN ?STOF

0= FINIS o

Page 10

2716/2532 EPROM
PROGRAMMER

Eric C. Rehnke
Editor

Here’s an EPROM programmer (hardware and software) that will burn
the two most popular 5 volt only devices (2716 and 2532). The software
driver is written in FORTH to give you an idea of how this new language

can be applied to ‘‘real world"" applications.

As you can see, the hardware design is fairly simple and straightforward.
It can be operated from the user R6522 VIA or an AIM 65, AIM 65/40,
or RM 65 single board computers. The DC-DC converter (VA-15 15)
and output regulator (723) are optional and can be replaced by a 25 volt
supply if one is available.

Operation of the unit is also fairly straightforward.

A CMOS 4040 12-bit counter chip generates the addresses for the
EPROM. This significantly cuts down on the number of I/O lines needed
for the interface by giving two lines the power of 12.

Reed relays are used to control the two voltages that are needed (+5 and
+25). These relays are driven through two open collector buffers (part
of the 7407) and a DPDT switch is used to accomodate the slight dif-
ferences between the Intel (2K) 2716 and the TI 2532 (4K) pinouts.

The connection from pin 20 of the EPROM socket to PB7 of the R6522
is used along with a bit of software to let us read the position of the
selector switch.

Notice how the program was built up from low-level words (routines)
such as READ-PORTB and WRITE-PORTB which evolved into words
such as CS=HIGH, PULSE=READ and 25V-ON.

See how FORTH programs grow?

The software driver was written to use names as descriptive as possible
to increase readability and make the definitions easy to follow. The pro-
gram compiles from the AIM 65 system text editor which occupies about
8K bytes. The compiled object code occupies slightly less than 2K bytes
however.

There are two ways to comrnand the unit to program an EPROM. You
can execute PROGRAM, whereby the software will prompt you for the
start and end addresses of the data to be burned into EPROM as well as
the starting address of the data in the EPROM and the EPROM type
(2716 or 2532).

Or, you can execute BURN-EPROM with the starting address and ending
address of the data to get burned into the EPROM as well as the target
address of the data in the EPROM on the stack and the switch in the
proper position.

INTERACTIVE

=N

Suppose you had 256 bytes of data located at $2100 and you wanted it
to be located one page up from the start of the EPROM. You would
execute the phrase

HEX 2100 21FF 0100 BURN-EPROM

to use the quick program entry.

The program would then automatically make sure the EPROM is erased
in the area that you will be programming and verify that it had pro-
grammed correctly after it completed the programming cycle. Messages
are displayed during these three operations so you know what’s going
on.

When executing BURN-EPROM, there are no checks made for addresses
out of range or the switch being in the wrong position.

These *‘idiot checks'" are made, however, when you enter by executing
PROGRAM (nothing need be on the stack).

The first prompt you'll receive when you execute PROGRAM will be
START ADDRESS=

Type in the starting address (in hex) of the memory location where the
data to be programmed into the EPROM is located. Then press the
RETURN key (this will terminate all the inputs). By the way, the printer
will be turned on here to record the prompts and the parameters that you

type in.

The next prompt to appear is

END ADDRESS =

Type in the last address of the memory locations where the data to be
programmed into the EPROM is located. Terminate with a carriage
return.

TARGET ADDRESS=

is the next prompt to appear and refers to the address of the first location
IN THE EPROM where the data is to be programmed.

You can program any number of locations (even just one) starting at any
address within the EPROM.

If the data is to be burned into the EPROM starting at the first location
in the EPROM you would enter 0000 for the target address (or just 0).
However, if the data was to start at the 80th (decimal) location in the
EPROM, you would enter 50 (hex) as the target address.

The ADJ-EPROM-START routine ignores the top 4 or 5 bits of the target
address (depending on whether the EPROM is a 2K or 4K size) so the
target address could be entered as the actual memory address of the
EPROM when it is installed in the system.

INTERACTIVE

e e PN

So, if the EPROM were to reside at $2000 in the system and you wanted
the data to be located one page up into the EPROM, you could type in
2100 or, 100 since the address gets ‘“‘corrected’” by ANDing it with the
appropriate mask.

The last user prompt is
EPROM TYPE=

You're expected to enter the correct EPROM type number here (either
2716 or 2532). The type number you enter must also agree with the
setting of the selection switch. If there are any discrepancies, the type
prompt will reappear.

If you entered the correct number, the program will turn off the printer
and start checking the EPROM to make sure that the area you wish to
program has been erased (each location should contain FF). The display
will contain the message NOW CHECKING.

After that the actual programming will commence signified by the mes-
sage NOW PROGRAMMING on the display.

Finally, the program will go back and verify that the EPROM was pro-
grammed correctly. NOW VERIFYING will be displayed. Any differ-

Page 11

ences will cause the program to abort and print out the first address that
didn’t get programmed correctly.

These two interfaces are included just to give you an idea of what can
be done with FORTH. There is more error checking when you start at
PROGRAM. The end address is tested to be greater than the start address
but not by more than the EPROM capacity.

There is also a utility included called READ-EPROM. It reads the con-
tents of an EPROM into a specified memory buffer area.

The size of the buffer used (2K or 4K) will depend on the switch setting.
If you wanted to read a 2532 EPROM into memory starting at $2000,
you would set the switch to 2532 and execute the phrase

HEX 2000 READ-EPROM

Hopefully, this program will provide you with some programming
examples to study and perhaps some words you can pull out and use in
one of your own programs.

That's a good way to learn this language. FORTH seems odd at first,
but give yourself some time and you'll begin to master it.

+5 200
+25
. . 1 +5 +30 14 12 10 S
‘11 2
MC1723C
e VA15-15 6 or 3
1ouf —— DC-DC LM723
6K 10
v 3 4 0K
5 13 I
13 7 - 100pf voltage
100K adjust
V .01 uf
VA15-15 available for $31
from Reliability Inc.
P.O. Box 218370 51K

Houston, TX 77218
(713) 492-0550

OPTIONAL POWER SUPPLY

Page 12 IIWTER Gii\Vﬁ_E

PA7 17
PA6 16
PA5 15
PA4 14
+
PA3 .13 25
PA2 11
PA1 10 5
K2
PAO 9 o1 .
+5 1
z: IN914
2.2K g 2.2K m T 47utd]
&
PB1 01,2 o9
20 ww
I) . - 12
| g 38
| 8 =
2716 o
| 3 o \V4
5 [™_s o o
PBO IU1 | (DI- z
& | w o
n | o
& 2532 W
18
+5
/
1
15 19 K1
14 22 24 e
— ¢
12 23]
13 1 IN914
Z 2 AN
u2 |2 8
3 4
+5
PB3 11|Reset |2 S
6 6
PB2 10| o 7 7
9 8
5 2200
W //
2.2K 22K LEDs
PB4 ur 2) .
3 \4
PB5 W/
U1 = SN7407 open collector buffer
U2 = CD4040 12-bit counter

K1,K2 = GORDOS 831C-1
EPROM PROGRAMMER

lMIE II/\T}II\/E? Page 13

(EPROM FPROGRAMMING SOFTWARE —--ECR 10/14/81)
HEX

(6522 CONSTANTS FOLLOW)

AOOQ CONSTANT PORTB
AQQ2 CONSTANT PBDD
AOOD CONSTANT IFR
AQOB8 CONSTANT T2L
ADOF CONSTANT T2H
AOOB CONSTANT ACR
AOOF CONSTANT PORTA
A0O3 CONSTANT PADD

(ROMABLE VARIABLES FOLLOW)

60 USER EPROM-TYPE SMUDGE
62 USER RAM-START SMUDGE
64 USER RAM-END SMUDGE

66 USER EPROM-START SMUDGE
68 USER COUNTER SWUDGE

CODE PULSE-IT { OUTPUT A 50 MS PULSE)
(ON PULSE LINE -PBO)

(FIRST INVERT THE SIGNAL AT PBO)
PORTB LDA, 1 # EOR, PORTB STA,
(THEN STARTUP THE TIMER)
O # LDA, ACR STA, T2L STA,
CIX # LDA, T2H STA,
20 # LDA,
BREGIN, (LOOP TIL TIME-OUT)
IFR BIT,
0= NOT
UNTIL,
(INVERT PBO AGAIN)
PORTE LDA, 1 # EOR, PORTB STA,
T2L LDA, (CLEAR FLAG)
NEXT JMP,
END-CODE

EPROM-TYPE? EPROM-TYPE 2 3

: PORTA=INPUT © PADD C!' ;

PORTA=0UTPUT FF PADD C! ;

WRITE-FORTA PORTA C! 3

READ-PORTA PORTA Ca2 ;

WRITE-PORTB PORTB C! 3

READ-PORTR PORTB Ca 3

m

-

Page 14 lN'E ll/iT}I

L
\

BUMP-COUNTER (INCREMENT ADDRESS)
(COUNTER BRY ONE)

READ-PORTB 04 OR DUP WRITE-PORTR
FB AND WRITE-PORTB 1 COUNTER +!' ;

SETUP-PORTB (INITIALIZE PORTB S0)
(PBO-PB6 ARE OUTPUTS)
(AND PB7 IS AN INPUT)

FF WRITE-PORTB 7F PRDD C!' ;

RESET-COUNTER (RESET ADDRESS)
(COUNTER TO ZERO)

READ-PORTR 08 OR DUP WRITE-PORTB
F7 AND WRITE-PORTB O COUNTER ! ;

BURN-BYTE (N ——» ——-)
(WRITE LOWER EIGHT BITS OF N)
(INTO EPROM AT PRESENT ADDRESS)
(COUNTER LOCATION)

WRITE-FORTA PULSE-IT BUMP-COUNTER ;
(THE FOLLOWING FOUR WORDS TURN THE)
(APPROPRIATE REED RELAYS ON OR OFF)
(WHICH SUPPLY VOLTAGE TO THE EPROM)

25V-0FF READ-PORTB 20 OR WRITE-PORTB

25V-ON READ-PORTB DF AND WRITE-PORTB

SV-0FF READ-PORTB 10 OR WRITE-PORTB ;

SV-ON READ-PORTB EF AND WRITE-PORTB ;

H-ON (TURN PRINTER ON)

80O A411 C! ;

H-OFF (TURN PRINTER OFF)

0 A411 C' ;

(THE FOLLOWING THREE WORDS SET THE)
(STATE OF THE CS AND PULSE LINES)

CS=HIGH READ-PORTB 02 OR WRITE-PORTR

ue

CS=L0OW READ-PORTR FD AND WRITE-PORTR

e

PULSE=LOW READ-PORTB FE AND WRITE-PORTB ;

l MIE “Aﬁ'lVEE Page 15

CHECK-TYPE (SET PULSE AND CS LINES AND)
(READ STATE OF EPROM SELECT)
(SWITCH ON PB7)

PULSE=L0OW CS=HIGH
READ-FPORTB 80 AND 0= ;

SET-PULSE-STATE (SET INITIAL POLARITY)
(OF PULSE LINE ACCORDING)
{ TO EPROM TYPE)

READ-PORTB EPROM-TYPE?
IF
01 OR
ELSE
FE AND
THEN
WRITE-PORTB ;

: SET-EPROM-START (INCREMENT ADDRESS COUNTER)
(UNTIL IT AGREES WITH THE)
(EPROM TARGET ADDRESS)

RESET-COUNTER EPROM-START @
BEGIN
DUP 0= NOT
WHILE
BUMF-COUNTER 1-—
REPEAT
DROP ;

: ADJ-EPROM-START (CONVERTS THE TARGET ADDRESS)
(TO AN ADDRESS INCREMENT FOR)
(COUNTER AND THEN BUMPS UP)
(THE COUNTER TO THE PROPER)
(

INITIAL VALUE)

EPROM-START @ EFPROM-TYPE?
IF

FFF AND EPROM-START !
ELSE

7FF AND EPROM-START !
THEN
SET-EPROM-START ;

: BURN-LOOP (THIS ROUTINE DOES THE)
(ACTUAL DIRTY WORK OF)
(PROGRAMMING THE EPROM.)

RAM—END 3 1+ RAM-START 2
DO

1 C? BURN-BYTE
LOOP ;

Page 16 l WIE ﬁ/\(ﬂli’fﬂ

BURN-IT (SET EVERYTHING UFP FOR)
(BURN-LOOP.)

CR ." NOW FROGRAMMING"
SET-PULSE-STATE RESET-COUNTER
SET-EPROM-START CS=HIGH
PORTA=0UTPUT S5V-ON 23V-0ON
BURN-LOOFP 25V-0FF SV-OFF ;

VERIFY-LOOP (GO THROUGH THE PART THAT)
(WAS PROGRAMMED AND MAKE)
(THAT EVERYTHING WENT OK.)

RAM-END @ 1+ RAM-START 2
DO
READ-PORTA I C? = O=
IF
H-ON CR
." DIDN’T PROGRAM CORRECTLY AT $"
EPROM-START @ I RAM-START @ — + .
CR SV-OFF ABORT
THEN
BUMP-COUNTER
LOOP ;

: CHECK-CLR-LOOP (USED BY CHECK-CLEAR TO)
(CYCLE THROUGH EPROM)
(AND MAKE SURE THAT THE)
(AREA TO BE PROGRAMMED)
(

HAS BEEN ERASED)

FORTA=INPUT
RAM—END @ RAM-START 2@ - 1+

O DO
READ-PORTA FF = 0=
IF
H-ON CR

- " ALREADY PROGRAMMED AT %"
CR I EPROM-START @ + .
CR 5SV-0OFF ABORT

THEN
BUMP—-COUNTER
LOOP 3;
: CHECK—-CLEAR (SETUP EVERYTHING SO THAT)
(CHECK-CLR-LOOF CAN DO)
(ITS THING.)
CR ." NOW CHECKING" SETUP-PORTB

SV-0ON CHECK-TYPE EPROM-TYPE !
PULSE=L0OW CS=L0W RESET-COUNTER
ADJ-EPROM-START

PORTA=INPUT CHECK-CLR-LOOP 3SV-OFF ;

S ——

l MIE n:“‘;]:.‘{, Eé Page 17

VERIFY-CORRECT (SET IT ALL UP FOR VERIFY-LOOP)

CR ." NOW VERIFYING " SETUP-PORTB SV-ON

PORTA=INPUT PULSE=LOW CS=L0OW RESET-COUNTER

SET-EPROM-START VERIFY-LOOFP S5SV-0OFF ;
READ-EPROM ADDR ——->)
READ CONTENTS OF EPROM)
INTO 2K OR 4K BUFFER)
STARTING AT ADDR)

(
(
(
(

SETUP-PORTB PORTA=INPUT SV-ON
RESET—-COUNTER CHECK-TYPE EPROM-TYPE !
CS=LOW PULSE=LOW EPROM-TYPE?
IF
1000
ELSE
800
THEN
0 DO
DUP READ-PORTA SWAP C!
1+ BUMP-COUNTER
LOOP
SV-OFF ;

: BURN-EPROM (THIS IS THE LOW LEVEL ENTRY)
(POINT FOR THE PROGRAMMING)
{ SOFTWARE. MAKE SURE THAT THE)
(START, END AND TARGET ADDRS)
(ARE ON THE STACK AND THE)
(SELECT SWITCH IS CORRECTLY)
(

POSITIONED.)

EFPROM-START ' RAM-END ! RAM-START !
CHECK-CLEAR BURN-IT VERIFY-CORRECT j;

: INPUT (GET A NUMBER FROM THE KEYBOARD)
(AND LEAVE IT AS A DOUBLE-)
(PRECISION ON THE STACK)

PAD 10 EXPECT
O O PAD 1- (NUMBER)
DROP ;

: ERROR-EXIT (IN CASE OF AN ERROR, HERE’S A)
(CLEAN WAY TO LEAVE.)

H-ON CR ." ADDRESS ERROR" CR ABORT ;

Page 18

INTERACTIVE

GET-FROM (GET THE FIRST ADDRESS OF THE DATA)
(THAT GETS BURNED INTO THE EPROM)
(AND MAKE SURE IT IS A SINGLE-)
(PRECISION NUMBER. IF NOT, THEN)
(LEAVE VIA ERROR-EXIT.)
CR ." START OF DATA=" INPUT O=
IF
RAM-START !
ELSE
ERROR-EXIT
THEN ;

THE NEXT TwWO

DEFINITIONS ARE JUST AROUT IDENTICAL)

TO GET-FROM THAT THEY DON’T REALLY NEED TO BE)
EXPANDED OR EXPLAINED AT ALL.)

GET-TO CR ."

0= IF RAM-

GET-TARGET CR ." TARGET ADDRESS="
0= IF EPROM-START !

END OF DATA=" INPUT
END ! ELSE ERROR-EXIT THEN ;

INPUT
ELSE ERROR-EXIT THEN ;

GET-TYPE (THIS WORD GETS THE EPROM TYPE NUMBER)
(FROM THE OPERATOR AND CHECKS TO MAKE)
(SURE THAT THE NUMBER IT RECEIVES)
(AGREES WITH THE SETTING OF THE)
(SWITCH. IF NOT, IT WILL CONTINUE TO)
(ASK FOR THE EPROM TYPE UNTIL THE)
(NUMBER IT RECEIVES AGREES WITH THE)
(SETTING OF THE SWITCH. THIS IS JusT)
(ONE MORE WAY TO IDIOT PROOF A SYSTEM)
1 BEGIN
CR ." EPROM TYPE=" INPUT
DROP DUF 2716 =
IF
O EPROM-TYPE ! DROF
ELSE
DUP 2532 =
IF
1 EPROM-TYPE ! DROP
ELSE DROP
DROP O
THEN
THEN
IF
CHECK-TYPE
EPROM-TYPE @ =
ELSE
0
THEN

UNTIL ;

l NIE IIAT}]I\" Eg Page 19

FREQUENCY COUNTER

AIM 65 U1
Randy Dumse
Michael Dalessio +5
Rockwell International
This program uses the unique features of the R6522 timers on the AIM PB6 17 ° m

65 microcomputer and the power of the FORTH language to convert the
AIM 65 into a frequency counter. Accuracy is good to the microsecond,
the highest frequency readable being 500 KHz. Very minimal hardware
is required to complete the system. Two versions are shown. The first
uses two signal diodes to clamp the swing of the input in TTL ranges
(the input must be >2.5V Peak to Peak). No special gating is provided

so the counting window is switchable only for lower frequencies. The
second circuit also uses the clamping diodes but has additional compo- diodes can be most any germanium signal types such as 1N34.
nents to shape the counting window to exactly 50.000 us (1/20th of a
second) and should give accurate readings of frequency on signals to
500,000 cycles per second with a resolution of 20 cycles per second. more —

: CHECK-ADDRESS (THIS ROUTINE CHECKS THE)
(ADDRESS RANGE TO MAKE SURE)
(THAT IS CONSISTENT WITH THE)
(EPROM TYPE AND CONSISTS OF)
(

AT LEAST ONE DATA BYTE)

RAM—END @ RAM-START @ -
EPROM-START 2@ + DUP

1 <
IF
DROF ERROR-EXIT
THEN
EPROM-TYPE?
IF
1000 SWAP -
ELSE
800 SWAP -
THEN
1 <
IF
ERROR-EXIT
THEN ;
: PROGRAM THIS IS THE MAIN ENTRY POINT FOR

IT IS SELF-PROMFTING AND

(
{ THE EPROM PROGRAMMER SOFTWARE.
{
{ REASONABLY SELF EXPLANATORY.

N N e N

HEX H-ON GET-FROM GET-TO GET-TARGET
SETUFP-PORTR GET-TYPE CR H-OFF
ADJ-EFROM-START CHECK-ADDRESSES
CHECE-CLEAR BURN-IT VERIFY-CORRECT ;

FINIS o

Page 20
AIM 65 J1

|
| +5
l +5

PB7} 15

PB6 | 17 !
{ 7400
|
|
|
|
|

The FORTH program uses seven major word definitions to accomplish
the task. The word RUN performs initialization (INIT) and then begins
a loop (BEGIN) consisting of counting the number of cycles occurring
in a 1/20th of a second interval (GETVAL), then multiplying by 20 to
give cycles per second, and displaying the result (FREQ). The keyboard
is checked for a key down (? TERMINAL) and the loop continued if no
key is down (UNTIL). The word INIT outputs a carriage return (CR) to

INTERACITIVE

clear the display and sets the modes on Timer | and Timer 2 in the
Auxiliary Control Register (ACR) of the R6522. The word GETVAL
starts Timer 2 counting cycles and Timer | counting 1/20th of a second
(START-TIMERS). waits for Timer 1 to time out (WAIT-ON-T1), and
then reads the counts from Timer 2 (READ-COUNTS). The word FREQ
takes the value from the stack, multiplies it by 20 and prints it with a
label. The word START-TIMERS simply puts on SFFFF in Timer 2 (—1)
and a count of 50,000 in Timer 1 which begins counting. The word
WAIT-ON-T1 polls the Interrupt Flag Register (IFR) until the T1 bit is
set. The word READ-COUNTS places an $FFFF on the stack: reads

timer 2 and subtracts that value from SFFFF. The difference is the
number of cycles counted on the input during the 1/20th of a second

period.

As an exercise left to the reader, two improvements would be very
desirable to make. The first would be to replace the word CR in the
definition of FREQ with a code segment that calls the subroutine CLR
($EB44) in the AIM 65 monitor. This would keep the frequency from
being printed each time taken. The second would be to write new detf-
initions that would automatically scale the amount of time spent counting
the input pulses until a given number of significant digits were assured.

(FREQUENCY COUNTER PROGRAM BY R. DUMSE)

DECIMAL

30000 CONSTANT 1/20TH-SEC

HEX

A0O4 CONSTANT TIMER1
AOOB CONSTANT TIMERZ2
AOOD CONSTANT IFR
AOOB CONSTANT ACR

INIT
CR A0 ACR C! ;

START-TIMERS
-1 TIMERZ2 !
1/20TH-SEC TIMER1

WAIT-ON-T1
REGIN

IFR C3

40 AND

UNTIL ;

READ-COUNTS
-1 TIMER2 @ — ;

GETVAL

START-TIMERS WAIT-ON-T1 READ-COUNTS ;

(SET TIMER CONTROLS IN ACR)

(PUT &FFFF INTO TIMER2)

{ SET TIMER1 FOR S0000 MS)

($FFFF-TIMER2= COUNTS LEFT ON STACK)

mor¢ ——

INTERACTIVE

RANDOM NUMBER
GENERATOR

RNG’s come in handy for a number of applications from games to sys-
tems modelling. Here is one which uses the countdown timer in the
R6522 to obtain the ““seed” value.

HEX
0 VARIABLE SEED
: SETSEED
AO04 (« SEED !:

: RND
SEED (« 4000 AND 0=
SEED (2 * DUP >R
4000 AND 0= XOR R>
OR DUP SEED !:

: RANDOM
RND 7FFF AND SWAP MOD:

To define these functions, make sure you're in HEX number mode.

To use this function. execute SETSEED in the beginning of your pro-
gram to initialize the SEED variable.

From then on. whenever you need a positive random number, execute
RANDOM with a range value on the stack. The random number will be

returned on the stack.

If you need a random number between 0 and 6. place 7 on the stack and
execute RANDOM.

7 RANDOM
If you now examine the stack, you'll find a number between 0 and 6.
If you can't use 0, simply add one to the result.
7 RANDOM | +

Now the random number will be in a range from 1 through 7.

Page 21

SYSTEM SPOTLIGHT

Randomatic Data Systems Inc. recently adapted an AIM 65 and wrote
a program to computerize their product, a card filing and retrieval
system. What the system does, and how AIM 65 now helps do it, might
be of interest to many INTERACTIVE readers.

To begin with, Randomatic has for years made and marketed a system
which provides a means of automatically retrieving randomly filed cards
very quickly. The filing system accommodates cards of all sizes and
materials—microfilm aperture cards, ledger cards, microfiche, etc. Each
card to be filed is coded with edge notches.

Retrieval is accomplished by entering a code into the system. This causes
bars in the selector trays to be raised. The bars match the edge coding,
and, the selected cards are ejected so they “‘pop up’’ above the rest of
the cards. They're then removed manually.

Cards can be filed and re-filed singly or in groups, at random, or under
any sort of system you want. Up to 1,500 cards can be stored in a selector
tray and up to ten trays may be searched simultaneously.

The Randomatic system has several obvious advantages. It provides
instant retrieval. It eliminates misfiling, since selection is by code and
requires no sequential filing. It can eliminate duplicate files by allowing
cards to be retrieved by more than one criteria.

The success of the system depends upon accurate coding of the cards.
The Randomatic system uses six fields of coding. With up to ten vari-
ations (0 through 9) in each of the six fields, 999,999 possible combi-
nations are provided.

The system allows for thirty notch positions along any card edge. Each
of the six fields has five possible notch positions. Using a 2 out of §
code system, these thirty notch positions provide ten selection variables
in each of six fields.

Until the AIM 65 was recently adapted, notching the edge of the cards
and informing the system of the desired code to be retrieved was accom-
plished through a 10-button keyboard.

mor¢ ——

DECIMAL
: FRE®

: RUN
INIT
BEGIN

GETVAL FRER 7?TERMINAL

UNTIL ;

FINIS

{ MULTIPLY STACK VALUE BY 20, LABEL AND PRINT)
20 M*» ." FRE@=" D. CR

Page 22

In actual operation, a blank card is inserted into a punch unit, the desired
six digit code is entered on the keyboard, the punch is activated and the
card ends up notched and ready for filing. For retrieval, the code is
entered in the keyboard, an “‘operate”” key is depressed, and the system
“‘pops up '’ the proper card(s) automatically.

The changeover to the AIM 65 has been very straightforward. The AIM
65 replaces the 10-button keyboard and an interface unit has been added
between the AIM 65 and the system. All other parts of the system remain
the same.

The AIM 65 used by Randomatic has 1K of RAM with two programmed
2716 EPROMs replacing the two R2332 monitor ROMs. It uses a Condor
AAS524 power supply and an enclosure from the Enclosure Group. The
interface and the programming are from Randomatic.

The new computerized system will accept a code of up to 20 alphanu-
meric characters instead of only the six-digit one. It allows the operator
to use whatever fits his normal system—names., word descriptions, part
numbers, etc.

Since the Randomatic system is still searching for only a six digit code,
a mathematical formula programmed into the AIM 65 converts the 20-
character input into a six digit number. The formula makes sure that the
same input always results in the same output. There is the possibility that
the converted numbers may be redundant but this doesn 't seriously affect
the Randomatic system results.

Use of the AIM 65 offers other benefits compared to the old 10-key
board. A display is now provided so the operator can check and verify
a code before activating the system. And, the AIM 65 printer can be
used to keep a record of inputs and outputs.

The AIM 65 also ‘‘thinks™ a little when used with the Randomatic
interface unit. As an example, the operator can pre-determine one or
more selector trays, if desired. In this example, if the code number was
CR 765432 FS 2 , the interface unit would first accept the file select
(FS) number, turn to tray 2, then transmit the CR number of 765432 to
select a card.

So, this shows how one company has adapted an AIM 65 to control an
electromechanical system. It’s a unique application and one that might
be of interest to INTERACTIVE readers, both in its own right and as
a stimulus to think of other AIM 65 applications.

Our purpose isn't to sell Randomatic products. Rockwell International
has no connection or interest in Randomatic. However. Randomatic does
have products for sale that might be of interest.

A customized AIM 65 can be purchased as a “‘stand alone™ to convert
any 20-character alphanumeric input into a six digit output, displaying
the codes as required and holding them in memory. Or. the program for
accomplishing this can be acquired from Randomatic. And. of course,
a complete Randomatic filing and retrieval system is also for sale.

INTERACTIVE

Randomatic desk console. with two recessed selector trays to the left and
the AIM 65 controller to the right. The slot in front of the AIM 65 is
the punch unit. The power supply and interface are inside the console.

L.G. Stine, president of Randomatic, has also expressed an interest in
providing an interface mechanism, on a custom basis, between AIM 65
and almost any electromechanical equipment.

For more information on Randomatic products or services, please contact
the company direct:

Randomatic Data Systems Inc.
216 Robbins Ave.

Trenton, New Jersey 08638
(609) 833-4860.

And, if you have an interesting AIM 65 application you would like to
share with others. please send it to:

Editor, Interactive RC55
Rockwell International
P.O. Box 3669
Anaheim. CA 92803
(714) 632-3729

INTERACTIVE

USING SMUDGE

Get out your AIM 65 FORTH User Manual and look at page 5-17. Notice
the smudge flag in the second illustration? The use of that flag has pre-
sented me with some difficulty so you may be having trouble with it
also.

Basically, it's used to prevent the dictionary search routine from finding
the name of the word that’s presently being compiled. This would only
be a problem if you were attempting to redefine another routine and per-
haps change the function slightly.

For example, if you wanted to change the word MON to print out a
message before leaving FORTH, you might say:

: MON . " BYE BYE FORTH " MON

In FIG-FORTH (AIM-65 FORTH is based on FIG-FORTH) if it weren't
for the smudge flag, the dictionary search would find the name of the
routine you were defining and think you meant to perform a recursion
(when a routine calls itself) instead of referencing the MON word already
built into the FORTH Rom.

So. when a routine is starting to be defined. the smudge flag gets set
automatically to prevent the new name from showing up in the search.
The flag is then cleared when the new function compiles successfully.

Ahhh . . . but what happens if the new function DOESN'T compile suc-
cessfully. Well, I'm glad you asked that question because that’s precisely
the reason [wrote this piece.
Try compiling this definition.

: TESTI GHBFM :

Unless you had already defined a function called GHBFM, the system
should choke and wonder what the heck you're trying to do. But. since
FORTH is very well-mannered it will only say—

GHBFM
Now, try to forget TESTI.

FORGET TESTI <return ™
Since the smudge flag got set at the beginning of the definition and the

definition didn't compile correctly, that flag never got reset. The word
TEST! will show up in a VLIST—try it—but can’t be forgotten.

Fortunately, FORTH provides us with an antidote for this seemingly

strange and frustrating behavior.
Type in—
SMUDGE <return>

After FORTH indicates that it’s now OK, try to FORGET TESTI again.
Success!!!

Now, that wasn't so difficult, was it? By the way—SMUDGE only
works on the last word defined in the dictionary. .

Page 23

NUMBER INPUT FUNCTION

If you're working on a FORTH program that needs to prompt the user
for some number input, it would be handy to have a generalized number
input routine.

There is a routine called INPUT (appropriately enough) which is defined
on page 5-15 of the AIM-65 FORTH User Manual, but it needs some
minor changes for it to suit our purposes.

As it’s defined, INPUT returns the number typed in as a double precision
value and the address of the location just beyond where the ASCII string
of that number (before it was converted to a number) is located in
memory.

A slight mod will eliminate the address and make the routine a bit more
useful.

Here is the modified form of INPUT:

- INPUT
PAD 10 EXPECT
00 PAD I-
(NUMBER) DROP :

Since INPUT returns a double precision number, we could DROP the
top number on return from INPUT to leave a single-precision number,
or we could test it for zero to make sure the user didn’t type in a number
that was too large. We can easily do this test by using the @ = function
after the call to INPUT.

: TEST
CR . " INPUT NUMBER " INPUT
0= NOT IF CR . " TOO LARGE "~
DROP THEN :
: TEST
CR . " INPUT NUMBER " output carriage return and message
INPUT get input from keyboard
0= if top stack value equals zero,
then number is single precision
NOT invert truth value
IF if truth value tlag = | then number

was too large
CR . " TOO LARGE "~ output carriage return and error
message
DROP drop rest of number

THEN : if truth value flag = 0, branch to
THEN and exit with single pre-

cision number on stack

See how easy it is to add new functions to FORTH?

Page 24
DUMPING
BASIC
A. Ward
192 Greenock Road,
Largs,
Ayrshire,

Scotland, U.K.

It is sometimes convenient to record BASIC on cassette tape as if it were
a program in MACHINE CODE which of course it is in a sense. All that
is necessary is to record the zero page usage as well as the program itself
which starts near the beginning of page 2 of memory ($0212). However,
do not record page | of memory as trying to read this back can cause
problems and page 1 is not required.

" An example may help to make the position clear. Let's imagine you
originally answered the BASIC prompt ‘*Memory Size?"" with 1024, this
means of course that your memory up to the top of page 3 (SO3FF) has
been allocated to BASIC. When you want to record the program (as
BASIC !) treat the whole operation as a machine code dump (under a
suitable file name such as BFILE) by entering Monitor and using the
*“D’” key. First dump page 0 ($000-SO0FF) and then reply to the prompt
“‘More?’” with yes “*Y" and proceed to dump pages 2, 3 ($0200-
$03FF). If you have any machine code subroutines associated with Basic
you can dump these also by continuing to answer 'Y "" and giving their
address range.

When reloading your program enter Monitor then use the “'L"" key and
ask for BFILE. To enter your BASIC program hit the 6" key for
“‘warm start’’ and there you are. The advantages of this procedure are
that you don’t have to use the remote control on the cassette recorder
and a mixed program of Basic and Machine Code subroutines can all be
under the one file name.

CASSETTE PROBLEM

I have received and confirmed reports from two separate sources that
there is a bug somewhere in the cassette interfuce software in the AIM
65 system.

There are at least three file lengths that cause the system to ““hang-up™
when reading.

If you dump a file with a length of hex 161, 162 or 163 bytes, the data
will dump and load o.k. But, the program never returns from the LOAD
sequence. The data does GET LOADED but the program hangs up.

The problem has something to do with the number of file characters that
are used to “*pad " the last block to make it 80 bytes long. If the number
of pad characters (S00) are less than four, the program will never exit
the routine of SE321 (LOAD 4) in the monitor.

There may be other lengths (besides S161., $162 and $163) that cause
this problem, but I haven't been able to tind them. BEWARE!!!

COMPAS, WHERE
ARE YOU?

[have received several phone calls from folks who claim that COMPAS
Microsystem (supplier for AIM 65 accessories) is now defunct.

To verify this, I tried to call their number (got a strange busy signal) and
then attempted to get their number from the local (Ames, lowa) infor-
mation operator. She had no listing for any such company.

So, it you were considering using their products, I'm sure glad you read
this.

NEWSLETTER EDITOR
ROCKWELL INTERNATIONAL
P.O. Box 3669, RC55
Anaheim, CA 92803 U.S.A.

I.L.
RUBER] CHA
TECHNICAL
1234 SO F1
ARCADIA,CA

Bulk Rate
U.S. POSTAGE
RATE
Santa Ana Calif.
PERMIT NO. 15

LFES HONARD PHD
ONSULTANT
ST AvVF

910006

