Interfacing the 68000

to an AIM 65

a number of reasons the most famous are only three,

the 8086, the Z8000 and the Motorola MC68000. We
have been hearing a lot about what they can and cannot do; as
a matter of fact, boards employing one of such CPUs did not
have too much luck.

This recalls to memory what happened years ago: every-
body realized that the Z80 was more powerful than the 8080,
but an upgrading kit for 8080 machines simply did not sell.
The reason was not the lack of Z80 software, because the Z80
can run 8080 software. It was that the user was not willing to
spend money for something maybe better but not “useful.”

Nowadays we have to ask ourselves how useful is a 16-bit
CPU; we feel it is not for the computer consumer, the one who
buys a computer just to play games or little more. There is a
range of applications requiring more computational power
than what is currently available on 8-bit CPUs. When we say
“computational power,” we do not only mean an extended in-
struction set or the capability of running standard programs
ten times faster: all those aspects have to be considered as a
whole, along with all the hardware facilities. Many concepts
developed for the old mainframes are becoming prominent in
microsystem design: can you imagine a multi-task, multi-
processor system without the test-and-set instruction and the
user-supervisor environment? Even the hobbyist with little
background can successfully experiment with concurrent pro-
gramming on a fairly small system, provided he has the right
CPU to start with.

We think that a good 16-bit CPU has enough power to
handle fairly sophisticated, concurrent programming. Among
the available devices, the MC68000 is a good choice. Besides
its nice hardware structure, the following points are to be
taken into account:

T oday -there are several 16-bit CPUs on the market; for

1) Its instructions are powerful but limited in number. We feel
that a large instruction set does not necessarily make a pro-
cessor more powerful, it may instead confuse the program-
mer.

2) The instruction set is microprogrammed; it may be im-
proved without changing the overall structure.

3) Its pipelined structure is optimized for speed.

4) It is asynchronous; this feature allows for easy interfacing
with all kinds of devices and peripherals.

The 68000 has some drawbacks, too:

1) It does not provide a dynamic memory refresh like the
Z8000; this is a really handy feature, even if software re-
fresh is an alternative.

2) Its most interesting supporting chips are not scheduled to
be available in the near future.

3) Like most of its competitors, there is not too much soft-
ware available if we exclude that delivered from Motorola
for their boards and development systems (which, in any
case, are quite expensive).

Nowadays it seems that what really interests the computer
consumer is software. He does not care too much about the
underlying hardware, he is most concerned about the programs
he can run on his machine. At most he considers the interface
capabilities of his computer, but usually he even does not
know the internal hardware structure. In our opinion there are
still some people interested in system design: people who like
to experiment with new devices. The tool for this kind of
work is called a development system. After the hobbyist elimi-
nates the ones that are too expensive, what is left is an evalua-
tion system which basically is a single board equipped with a
CPU and a handful of switches and LEDs. Experimenting
with such boards is time consuming and not rewarding at all in
any case. There must be a better solution.

The Idea

Almost all of the computer enthusiasts around already
own a microcomputer. Why not use our own system to control
a 680007 In this article we will describe this hardware and
software implementation on a Rockwell AIM 65. For the read-
er who is unfamiliar with this machine we will summarize its
features. It is a single board based on the 6502 with a
QWERTY keyboard, a 20-column thermal printer and an al-
phanumeric display, 4K byte of RAM, an 8K byte ROM moni-
tor, a 4K byte ROM assembler, and 2 Versatile Interface
Adapter chips for I/O and expansion. We had to make only a
few trivial hardware changes.

We have said, indeed, that we are going to control our
68000, but which way? We want to be able to control it dur-
ing each read or write cycle (from now on simply cycle), in
real time, changing the mode of operation according to neces-
sity among all the ones available to our system. Furthermore,
we want to be able to manipulate during each cycle all the
68000 control signals; this way we can simulate interrupts,
multi- processing and so on.

The Hardware

All we needed to implement our idea was nine eight-bit
I/O ports and a couple of decoders. The 68000 became a peri-
pheral connected to the AIM bus at a certain address. On the
AIM expansion connector we found all we needed: the 8-bit
bi-directional data lines, the 16-bit address lines, and two con-
trol signals: R/W and 02 which are used for synchronizing
R/W operations. Figure 1 (page 15) shows the block diagram of
the interface; Figure 2 (page 16) is the schematic. For all the
6502 timings, the reader can refer to the 6502 hardware manual,

From now on we assume the reader understands 68000
hardware and software details; refer to the MC68000 user’s
manual for a complete description of this processor.

As the 68000 is asynchronous, we can control each cycle us-
ing the signal DTACK, which stands for data transfer acknow-
ledge. When the 68000 wants to perform a read or a write, it
asserts the AS signal and waits for DTACK. At this point our
AIM program can do all it has to, and when finished it asserts

Luca Fusina and Claudio Granuzzo

Luca Fusina, Via Mocenigo 8, Verona 37100, Italy.

All the article content may be used for any non-commercial
purpose.

DTACK by writing to location $8XXB, signaling the 68000 to
continue, IC 20 (a 74LS74 flip-flop) takes care of negating
DTACK when 68000 negates AS.

All 68000 signals are interfaced to the AIM through six
DM81LS95 buffers and three 74LS373 latches. The 68000
interface is seen by the AIM as a 1Kbyte memory. The 6502

12

Dr. Dobb’s Journal, Number 63, January, 1982

can address up to sixty-four 1Kbyte pages and the board can
be located anywhere inside them, provided there are no con-
flicts with the AIM 65 requirements. This is accomplished with
a DM8131 six-bit comparator (IC 10). To select the right page
the user must supply the appropriate logic levels to the com-
parator inputs. In our implementation the board is located at
$8000. Inside this address space there are sixteen meaningful
locations, from address $8XX0 to address $8XXF. Only
twelve are, however, actually used and only the first nine are
used to interface the 68000, by means of selecting one of the
1/0 ports. Selection 10 (signal Y9 in Figure 2, address $8XX9)
is used to control the HALT line. Number eleven is not con-
nected. Number twelve asserts DTACK (signal Y11 in Figure
2, address $8XXB). Refer to Figures number 3, 4, 5 (page 17)
for a detailed explanation about how the ports are arranged.
Note that with this hardware it is not possible to use the M
command of the AIM monitor inside the board space.

There are two 68000 signals not connected to any port:
VMA (valid memory address) and E (enable). Motorola imple-
mented these signals to maintain compatibility with existing
6800 peripherals. In our opinion it is better to use them as test
points. The user can easily add one additional port to the
interface to monitor them under program control.

The network of open collector inverting gates connected
to the 555 timer and the $8XX9 selection is used to interface
correctly the 68000 HALT and RESET signals, which are bi-
directional. Two LEDs can be used to monitor their logic
levels. The board performs an automatic power-on reset; a
manual reset is also provided, as well as software HALT and
RESET control.

The Software

Before entering into program details, it may be a good
idea to lay down its objectives:

Run-time control of the dynamic evolution of each
68000 instruction step using the AIM keyboard. It is possible
to execute a program stopping the 68000 every cycle, or to
execute any number of instructions consecutively; a dynamic
switch between these two modes is possible, too.

Run-time control of the 68000 input control signal (IC
19, #74L8374 latch). The AIM 65 keyboard can be used to
supply a byte to be stored in that latch. We called this feature
“dummy memory.”

Output on display/printer of each 68000 cycle including
addresses, data and control signals coming out from the
processor.

Dynamic allocation of memory. 68000 memory is seg-
mented and each segment base address can be located any-
where inside the AIM free RAM. If the 68000 is doing a read,
it is possible to enter data from keyboard; if it is doing a write,
it is possible to do a data display. This way no effective mem-
ory operations are done.

Use of all AIM 65 peripherals and utilities under 68000
program control. We defined that a 68000 segment cannot
be greater than 64Kbytes (in automatic mode). If a write is
performed inside the first 256 bytes of the last 1Kbyte page
available to a segment (address $00FCXX) it is assumed that a
6502 subroutine call is made. The 68000 lower data byte is
loaded in the 6502 accumulator. The 68000 upper data byte
is used to index a table of pointers to 6502 subroutines. On
return, the 6502 accumulator is copied into two locations, one

Bring the flavor of Unix
To your Z80-based
CP /M system with

Unica

“Unicum: a thing unique in its kind, especially an example of writing.
Unica: the plural of unicum.”

The Unica: a unique collection of programs supporting many features
of the Unix operating system never before available under CP/M. The
Unica are more than software tools; they are finely crafted in-
struments of surgical quality. Some of the Unica are:

bc - Dbinary file compare

cat - catenate files

cp - copy one or more files

dm - disk map and statistics

hc - horizontal file catenation

In . create file links (aliases)

Is - directory lister

mv - move (rename) files, even across users

rm - remove files

sc . source file compare, with resynchronization
srt - in-memory file sorter

st . search multiple files for a pattern

sp . spelling error detector, with 20,000 word dictionary

Each Unicum understands several flags (“options” orswitches”)
which control program alternatives. No special“shell” is needed;
Unica commands are typed to the standard CP/ M command inter-
preter. The Unica package supports several Unix-like facilities, like
filename user numbers:

sc data.bas;2 data.bas;3
(compares files belonging to user 2 and user 3);
Wildcard patterns:

rm “tmp° v
(types each filename containing the letters TMP and asks whether to
delete the file);
1/0 redirection:

Is -a P list
(writes a directory listing of all files to file“list™);
Pipes:

cat chap” ! sp ! srt »Ist:
(conc tes each file wh name starts with“chap”, makes a list of
mispelled words, sorts the list, and prints it on the listing device).

hi

The Unica are written in XM-80, a low level lang which cc
rigorously checked procedure definition and invocation with the vers-
atility of Z80 assembly language. XM-80 includes a language
translator which turns XM-80 programs into source code for
MACRO-80, the industry standard assembler from Microsoft. It also
includes a MACRO-80 object library with over forty “software com-
ponents”, subroutine packages which are called to perform services
such as piping, wildcard matching, output formatting, and device-
independent 1/0 with buffers of any size from 1 to 64k bytes.

The source code for each Unicum main program (but not for the soft-
ware component library) is provided. With the Unica and XM-80, you
can customize each utility to your installation, and write your own
applications quickly and efficiently. Programs which you write using
XM-80 components are not subject to any licensing fee.

Extensive doc tation includes tutorials, reference manuals, in-
dividual spec sheets for each component, and thorough descriptions
of each Unicum.

Update policy: each Unica owner is informed when new Unica or com-
ponents become available. At any time, and as often as you like, you
can return the distribution disk with a $10 handling fee and get the
current versions of the Unica and XM-80, with documentation for all
new or changed software.

The Unica and XM-80 (which requires MACRO-80) are priced at
$195, or $25 for the documentation. The Unica alone are supplied as
* COM executable files and are priced at $95 for the set, or $15 for the
documentation. Software is distributed on 8” floppy disks for 280
CP/M version 2 systems.

“Shaping Knowledge for Evolving Worlds”
P.O. Box 283
Wilsonville, Oregon 97070

Visa/Mastercard customers call (503) 635-5701 after hours for next
day shipment.

CP/M is a trademark of Digital Research; Unica is a trademark of Knowlogy;
Unix is a trademark of Bell Telephone Labs; XM-80 is a trademark of Scientific
Enterprises; 280 is a trademark of Zilog Inc.

Dr. Dobb’s Journal, Number 63, January, 1982

13

DISK DRIVE WOES?
PRINTER INTERACTION?
MEMORY LOSS?
ERRATIC OPERATION?

Don’t
Blame The
Software!

Power Line Spikes, Surges &
Hash could be the culprit!
Floppies, printers, memory & processor often interact! Our unique
ISOLATORS eliminate equipment interaction AND curb damaging
Power Line Spikes, Surges and Hash.

* [SOLATOR (1SO-1) 3 filter isolated 3-prong sockets; integral
SurﬁelSpike Suppression; 1875 W Maximum load, 1 KW load any
socket $62.95

* ISOLATOR (I1SO-2) 2 fiiter Isolated &grong socket banks; (6

sockets total); integral Spike/Surge Suppression; 1875 W Max
load, 1 KW either bank $62.
* SUPER ISOLATOR (ISO-3), simiiar to ISO-1 except double
filtering & Suggresslon
* ISOLATOR (ISO-4), similar to ISO-1 except unit has 6
individually flitered sockets $106.95
* ISOLATOR (ISO-5), similar to 1SO-2 except unit has 3 socket
banks, 9 sockets total
* CIRCUIT BREAKER, any model (add-CB)
e CKT BRKR/SWITCH/PILOT (-CBS)
Master-Charge, Visa, American Express
Order Toll Free 1-800-225-4876
(except AK, HI, MA, PR & Canada)

[ZZ/ Electronic Specialists, Inc.

171 South Main Street. Natick, Mass. 01760

Technical & Non-s00 16176551532

PROBLEM:
How to mate your CP/M- or ISIS-
system to the

Z-8000

(without losing all your present capabilities)

SOLUTION:

is the software connection which permits
ZEX Z-8000 applications to run under your cur-

rent operating system, resulting in portable
16-bit software which runs under CP/M or ISIS! And ZEX
is user-configured for any Z-8000 alternate bus master, so
that it can support your prototype hardware, as well as
commerciaily available Z-8000 boards.

is a complete Z-8000 Development Package,
ZAS which includes a powerful relocatable

cross assembler (ZAS), a flexible object task
builder (ZLK), and an absolute object loader (ZLD), as well
as the ZEX run time module. The package was developed
specifically for the Z-8000, and supports the complete
Zilog instruction syntax for both the Z8001 and Z8002, in-
cluding support for mixed segmented and non-
segmented code.

ZAS Package CPIMe .. $395
W ISIS-ll° .. $495
Manual Only $25

WESTERN Supplied on Single Density 8” Disk

WARES CP/M- Digital Research, Inc. ISiS-II Intei Corp.

Box C Norwood, CO 81423 (303)327-4898

inside the 68000 user data segment and the other inside its
supervisor data segment.

The 68000 is operated cycle by cycle by the program in
Listing 1, p. 36. As the program currently running evolves,
whatever happens is shown on the display/printer or whatever
is connected to the AIM 65. Various instruction combinations
can be tried, and the operation of the 68000 becomes clear.

The five objectives that we have so far discussed are im-
plemented in a program 519 bytes long. The user has to select
the operating mode by storing an appropriate value in a con-
trol byte, CONTRL. Each bit controls a mode as explained
below.

If bit 0 is set, after printing the 68000 address the AIM 65
program requests a byte from the keyboard. It will be stored
in the latch connected to the 68000 input control signals.

If bit 1 is set, manual mode is selected, otherwise auto-
matic mode is assumed. Manual mode corresponds to the
dummy memory R/W mode previously discussed; in the auto
mode, R/W is performed from memory.

If bit 2 is set, before issuing the DTACK signal the user is
requested to validate all operations performed during the
current cycle by entering a carriage return. This is also called
step mode. Any other character will repeat the current cycle,
No such validation check is made if bit 2 is cleared.

If bit 4 is set, fast mode is selected. When this mode is
selected 68000 cycle status output is suppressed. This allows
for fast 68000 program running, as a great deal of the AIM
housekeeping time is spent reporting things on display/printer.

The previous modes can be mixed together. Fast mode
overrides all the others. When it is set, the other modes are
used to select the mode that will be entered upon error. Dy-
namic mode changing can be accomplished by executing a
68000 instruction that stores a new value in the control varia-
ble. Thus, a 68000 program can put itself in Step mode.

Memory segmented is implemented using two tables,
FCTAB and MAXADD. They specify the AIM 65 base ad-
dresses of each 68000 segment and their extension. These lat-
ter values must be supplied, and they must be consistent with
the former ones. Of course, each 68000 segment starts from
location $0000000.

Final Thoughts

We have so far discussed how to build from scratch a small
development system for Motorola’s 16-bit processor, the
MC68000. The underlying concepts are quite general, and it
should not be difficult to implement our idea using the read-
er’'s own computer instead of our AIM 65. The ones familiar
with this machine will have already noted that the accompany-
ing program was not listed with the 20-column thermal printer
available on the AIM board, and that the assembler was modi-
fied.

In fact, besides using the AIM 65 as an experimental com-
puter, we use it as our “big” system. Anyone who is interested
and wants more information about how we did it may write to
the authors. Let us now report the impressions about the
MC68000 that we gained using the board we have here pre-
sented. We appreciated most the power and simplicity of its
instruction set. Some things shocked us, though. For example,
you can try to execute a CLR to memory and see what hap-
pens. Before clearing the desired locations, the processor reads
them. This, of course, wastes time and has no usefulness. Any-

Dr. Dobb’s Journal, Number 63, January, 1982

way, summing up all the againsts and fors, it proved to be a
superior processor. After executing just a few programs, the
user accustomed to 8-bit microprocessors will no longer be
satisfied with them.

The MC68000 architecture is a bit different from standard
8-bit machines. The reader who will use our board might then
have some problems. Let us give some hints that may prove
useful.

The 68000 has a pipelined structure. This means that it
fetches one or more words before actually executing the in-
struction. These words, which may be subsequent instructions,
are printed and displayed. Such a thing may lead one to think
that the processor is not executing properly; on the contrary,
it is doing its job. Again, during stacking operations, words
may not be stacked following the address ordering; the overall
stacking procedure is still correct.

The MC68000 is a 16-bit machine, therefore it addresses
by words. Instructions must start on even boundaries. If the
user specifies the initial PC to be at an odd address, the 68000
will enter an address error exception. If the supervisor stack
point also starts at an odd address, well, you will be in trouble.

There are, of course, many other things that should be said,
but it may be more interesting to explore the 68000 world
yourself.

Concluding, we would like to point out that everything
we have said so far is not restricted to a particular machine.
Some readers will like to experiment with a different CPU, say
the Z8000, and we think they will not have too many prob-
lems adapting our ideas to their needs. After a few weeks of
experimenting with our board, the need for more sophisticated
software may arise. It should not be too difficult to write a
cross assembler using AIM BASIC. This would eliminate the
need for hand compiling all the 68000 instructions. Again, it is
possible to slightly modify the hardware to let the 68000 have
an independent life, without passing through the AIM for
executing its instructions.

Italy is not that far away; anyone who wants to write us
to exchange opinions about computers is encouraged to do so.

| 2 4t
(Figures 2-6 on pages 16 and 17)
(Listing begins on page 36)

CONTROL

68000 Control Board Block Schematics
by Luca Fusina and Claudio Granuzzo

BUS OUT

CONTROL
BUFFER

CONTROL
BUS IN

CONTROL

LATCH MC68000

DTACK

STEP

CONTROL AS

DATA
BUS

DATA
BUFFERS

6502
AND LATCHES DATA BUS

CLOCK

ADDRESS
BUS
ADDRESS
BUFFERS
23
DECODED
LINES
RESET
7

6502 ADDRESS
AND CONTROL BUS

ey

BOARD SELECTION
AND DECODING

LOGIC

Figure 1

Dr. Dobb’s Journal, Number 63, January, 1982

15

ceeefeeeeccr:

ISEEE:EEEEEEEE

&

| BLIIUI §9 WIV/000SIOW JO dNEBWADS
b -3 MUVWBBH'“
= 41 o Ko oo b o
o o e ps [o |
N T LN
ShSIPHT S SbSTHHE £7) SLEONIRS prenke
X al
& rd e} YT 1 VISO4 vonT Aq
> pppDpD » Y L JE @ —
nfiedeq {58 o e o o o g o i : s
T o H..w b4
| | o—1e F l\ﬂw
- 3 w N —a
SN $SIWACH 99 KL TErSTo] v- P ST A u::D# && .&.—M
o 4343!. % YOS W £ YOS c?
S [
A 21}
UTT 4y
Ak P
n g <
e {r § oo G:;% "o sorntoy mrcosmm wor sostee oy
.u sty e
- 37 13 5
Yo ® & vy
—.“wqq G OSTIT _
e W o .ﬂq
v rm e - R wETHY C-o 4953y
hTTTT R [P, S0
= [o)
...3_ nnn.,_z
$0NY dluqg ¢9
HES 4 i :
El
:+; —p .- £ SN SOSINL Wy
Y‘-\ =
A4
(1] oF S Y
s = % F SVE
s ; rapfr S o L :
LUl 114 kil
g vo0] ¢ 3 - HY e
] Y le ¢ By Forv foc
I Y LLLH RO] 1A AN L o1 bonve e
«» kAL SR AR 44 - [LTS
] L rvle i LN QI 3y w 10T vtsIn < n4
oF % " 4 Soum, LA 14 2) » 4 3 b -
> LA A | TSIV
,!IL nm b CL9d LI Kad = o N LLY %
1 A0 ¢ .
v §7.0d RN R4 ——
17 e me #51%81089n "
— : a8 HIAV :
—— wyls g o Hire
¥ i W o T
——1 oau st _ o —
—1 Toglt T o i TG T, 41 nil
1} L N kAL 1ig d 3] A ﬂ_
] I MH vagftr £ wlaq mﬁ. 9% nﬂ._rﬁ
— I(‘o o . » topls o v <o oS m S0Y I0UINCT B9
sofrwam | x 1 vov |t 5 uw LS gl
—1% £ 3 o€ o 3 org e 3y
L2 M 8 it L v P 337 il
-1 eyt & oo [y] iy
= i M [Tv]? LA
1" .wx [9a]%? T
Y+I | 4¥¢ RAE K AL
4y
LV ﬂ - SRRRREE 4 o
.M- L4 o
- 3 R S K])
| f T " Lol A A SOE glpd 99 PEE 3 ° * ~®
+ Faglt ~ v ¢ oLy Lo m
44 » <y P~ oy T GhSTg W HCSINE
= ¥Y oy wl T T
mq«f{\ [- i [v a2 hapaws ' 52 wfdugwas
|4 : M"m Yo in m g Bia bhbkbbb b 333
< — 3
5™ ss3%000 59 oo v ¥ or | o & v £ iﬁﬂﬁ mwwNWWWu WNW mwww
er2 o b——] w vt 3 thwe
st -1 W W< aav |
>l
byl
$
$NY biba ¢9 NG Wlka g9

Dr. Dobb’s Journal, Number 63, January, 1982

Figure 2

i6

68000 On-Board Selections

Address (Hex)

8XX0
8XXl1
8XX2

8XX3

8XX4
8XXS5
8XX6
8XX7
8XX8
8XX9
8XXA
8XXB

Selection

68000 lower 8 data bit (WRITE)
68000 upper 8 data bit (WRITE)
68000 output control signals
(refer to Figure 4)

68000 input control signals
(refer to Figure 5)

68000 lower 8 address bit
68000 middle 8 address bit
68000 upper 7 address bit
68000 lower 8 data bit (READ)
68000 upper 8 data bit (READ)
HALT

N.C. (not connected)

DTACK

Figure 3

68000 Input Control Signals

(IC19)

Bit No. on AIM Data Bus Signal

ADO BGACK bus grant ack

ADI BERR bus error

AD2 N.C. (not connected)

AD3 VPA valid peripheral
address

AD4 BR bus request

ADS IPLO interrupt priority
level O

AD6 IPL1 interrupt priority
level 1

AD7 IPL2 interrupt priority
level 2

Figure 5

68000 Output Control Signals

Bit No. on AIM Data Bus

ADO
AD1
AD2
AD3
AD4
AD5
AD6
AD7

(IC22)

Signal
WRITE write
LDS lower data strobe
UDS upper data strobe
AS address select
BG bus grant
FC2 function code 2
FC1 function code 1
FCoO function code 0

Figure 4

Elegance

Power
Speed

BDS € Users’ Group
Supporting All C Users

Box 287

Yates Center, KS 66783

Meaning of the fields in the AIM listing of the 68000
program:

Data:
68000 Data Bus

0000

Optional Fieldl:

Byte stored in the 68000
Control Input Lines
Optional Field2:

M=Manual Mode, Else Blank

000000

Address:
68000 Address Bus

)L

RW

R/W Code:

RW/WW=R/W Word

WH/RH=R/W High byte of a
Word

RL/WL=R/W Low Byte of a
Word

Sp

68000 Function Code:

SP = Supervisor Program
UP = User Program

SD = Supervisor Data

UD = User Data

IA = Interrupt Acknowledge
Figure 6

(Listing begins on page 36)

17

68000/AIM 65

(Listing, text begins on page 12)
(See Figure 6, page 17 for meaning of fields in Listing)

#y-801 00 00 00 00 CONTROL HMODE TO AUTO AND
</> 0801 D4 T STEP

*)=200 RUN

@Gy/ J

SP RW 000000 0000 T ssv FEIOH
SP RW 000002 DOFE

sF RW 000004 0000 T vt FetoH

SP RW 000006 0008

SP RW 000008 46FC T HovE. U 0, SR SWITCH TO USER PROGRAM
SP RW 00000A D000

GP RW 00000C 4E71 ~——WOP FETCHED BUT NOT EXECUTED (FBNE)
UP RW 00000C 33FC
UP KW OOODOE 0100 MOVE.W H$100,$FCOD.L LINK AIH SUBROUTINE READBYTE

uP RW 000010 0000
UP RW 000012 FCOO
uUP RW 000014 13F9

up WW DOFCO0 0% EXEC READBYTE THE BYTE SHOWN IN THE DATA FIELD WAS
UP RW 000016 0000 ENTERED WITH THE AIM KEYBOARD)

UP RW 000018 0000 MOVE.B 0000.L 000 1.1

UP RW 00001A 0000

uD RH 000000 0504 READ 1.OC. 0000

UP RW DOOO1C 0001

up WL 000000 0% WKITE LOC. 0001 (MODE CONTROL LOC.)

UP RW DDDOAE 7F4E71 ——NOP NOW THE MODE IS CHANGED: IT IS REQUESTED A BYTE TO BE
UP KW 000020 7F4E71 NOP STORED ON THE 68000 CONTROL INPUT LINES (LEV. 4 INT.)
SD WW DOOOFC FFOO1E . GTACK PC LOW (CNTRL BYTE=$FF, INT. CLEARED)
1A RW FBFFFC FFH 0064 —f———— I AS FUNCTION CODE=IA, WE ARE
SD WW 0D0OF8 FFODOD | STACK STATUS IN MANUAL MODE: VECT.H=64

SD WW DDOOFA ESCAPE FROM THE PROGRAM TO
<M>=801 05 00 00 00 THANGE MODE: NOW WITHOUT THE
</> 0801 04 CONTROL BYTE

*) =200

<BY/

D WW DOOOFA 0000 — STACK PC HIGH

SD RW 000190 K 0000 g FETCGH INT. VECT. (WE ARE IN MAN. MODE AS WE
SD RW 000192 M 4000 ARE OUT OF SUP. DATA SEGMENT
SP RW 004000 M 4E73 ——R1E MANUAL MODE AS WE ARE OUT THE SUP. PROG. SEG
SP RW 004002 M 4E71 NOP FBNE, MANUAL HODE

S RW 000OUF8 0000 —_— ———— UNSTACK PARAMETERS

SD RW OOOOFA 0000 j_-———- .

S0 RW 0000OFC OO1E "

UP RW ODDO1E 4E71 NOP BACK 10 USER PROGRAM

UP RW 000020 4E71 —NOP

UP RW 000022 4E71 NOP

UP RW 000024 4E71 —NoP

UP RW 000026 4E71 NOP

M>=801 04 00 00 0O
</> 0801 06
*)=200

(Gr/

SP RW 000000
SP RW 000002
8P RW 000004
$P RW 000006
SF RW 004000
P RW 004002
SP RW 004004
UP RW 004004
UF RW 004006
up RW 004008
up RW 007000
un RW 007002
UP RW 004004
up Ww 007002
up Www 007000
UP RW 00400C
UP RW 00400E
UP RW 004010
UP RW 004012
UP RW 004014

-CONTROL MODE TO MANUAL AND
STEP

RUN

I

I
0000 j———d\%ﬁP FETCH
1000
0000 :r—_—-_T’l' FETCH
4000
46FC j—-MOUI W #0,SR SWITCH TO USER PROGRAM
4E71 = HOP FETCHED BUT NOT EXECUTED (FBNE)
4288 CLR.L $7000.W CLEAR LOC. $7000-$7003
7000 -

4E71 HOP
FFFE READS THE LONG WORD (UNUSEFUL)

4E71 NOP
0000 CLEAR | OHG WORD

4E71 —NOP
303C j_MOUF LW H$2000,D0 SET DATA REG. O

COFC j—HllLll.w #4,.D0 14-BIT MULTIPLICATION

UP RW 004016 M 33C0 —p—HOVE.W DO, $8000.1 SHOW DO CONTENTS
UP RW 004018 onon —

UP RW 004014 —

UP RW 00401C M 4E71 ~——NOP

UD WU 008000 H 8000 — THE RESULT OF MULU.W 1§ $8000
UP RW D0401E 4E71 NOP

UP RW 004020 BOFC j_IHUU.H DO, KO ZERO DIVIDE: WHAT HAPPENS NOW?
upP RW 22 0noon

UF KW 004024 4E71 —=—NOP FBNE

SD WW DDOFFE 4024 j——————-g'mm(PC: 7FRO DIVIDE EXCEPTION
SD WW O0OFFA 0004

S0 WW 00OFFU 0non STACK STATUS

5D RW 000014 H 000U —p———————"READS ZFRO DIVIDE VECTOR

5D RW 000016 {001

SP KW 009000 4E73 R RETURN FROM EXCEPTION

SP RW 009002 4E71 ——iji0r FRRE

S0 RW O00FFA
SD RW OOOFFLE
8D RW OOOFFF
UP RW 004024
UP RW 004026
UP RW 0040283
UPF RW 004024
Up RW 0040210
Ub WY 006000
UP RW 00402E

0004 ————————INSTACK PARAKETERS

0000 .

4024

4E71 ———NOP BACK 1O USER PROGRAI

33co HOVE LW DO, $6000.1 SHOW DD CONTENIS AFTEK THI
0000 ZERG DIVIDF

4E71 NOP
8000 IT DID NOT CHANGE
4E71 ——NOP

XX XIXIIIIIIZTIITIIIIIIXIIIIIIZIZIIIIIIIIIIIZIIITX
g
=

raGE 01
Pass 2
0000 0000 BN MM MMHINN KKK HIEH NI I I I, NN
oot 0000 ;% MCAB000 INVERFACING PROGRAM *
0on2 0000 3% *
0non3 0nno 7 *
o4 0000 3% WRITTEN BY LUCA FUSINA AND CLAUDIO GRANUZZO %
000% 0000 Nk * NN
0z 0000 ;TF MORE A502 USER SUBROUTINES ARE ADDED. THEIR EXACT
0013 Nonon NUMBER MIIST BF. SPECIFIED
ngta 0000 MAXROU=2
0nté unon JBOARD BASE ADDRESS
0017 0000 BRDADD=$8000
0019 oonn sATM 45 MONITOR SUBROUTINES EQUATES
R0 0000 CRLOW=$EA13 sOUTPUT CR,LF
2 0nooo BI.ANK =$EB3E FOUTPUT A BLANK
0000 E JOUTPUT A BYTE AS TWO HEX CHAR.
00600 QUTPUT=$EP7A FOUTPUT A CHAR.
0000 RBYTE=$E3FD SREAD TWO HEX CHAR. FROM KEYBOARD
000rn H AND PACK THEM IN ONE BYTE
ooRé 0000 RFEAD=$ES3C sREAD ONE CHAR.

0029
0030
0031
0032
no33
Qo34

0037
0038
0039

04t
0042
a4
0044
0045
0046
un4sy

0049
0os0
0051
[l
nos3
0054
0055

Pase 02

0058
0059
0060
0061
0062

0065
0néé6
0067
0068
0069
nonzo
0071
0naz2
0073
0074
0075
0076
0077
0078
0079
0080
0081
o082
0083
0084
008Y%
0086
0087
ooss
0089
0090

009
0094
0097
0098
0099
0100
0401
0102
0103
n104
0105
0106

0109
0110
0111
0112
0113
0114

Page 03

0115
0116
0117
DRRE]
0119
0120
0121
0122
0123
0124
012%

0128
0129
0130
0131
0132
0133
0134
013%
0136
0137
0138
0139
0140

0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0154

0000
0000
009
0800
0800
0500

03500
0500
0NKA

DOFA
00FA
O0Fa
00FB
QOFB
OUFB
O0FC

NOFC
00FC
0OFD
VOFD
ONFE
OOFE

NOFF

OOFF
0OFF
OOFF
00FF
0801

0801
0801
0801
8000
8000
8001
8001
8002
8002
8003
8003
8004
8004
800%
8005
8006
8006
8007
8007
8008
8008
8009
8009
800A
800A
anns

8O0B
0200
0201
0203
0206
0209
oRoc
020E
0210
0213
o215
0217

0214
021A
0214
0214
oA
0214

021
021F
0z20
naz21
o222
0223
0224
0227
02247
0220
0230

0233
0233
0233
0233
0233
0236
0238
0239
0234
023D
0240
0243
0246

0249
0249

0R49
0249
024C
0240
024F

0252
o263
0255
[1F3a:)

78
ASFF
8D03s0
2013EA
ADO2810
2908
DOF9
ADD108
2908
FO03
4C2E03

ADD280

BDESBO3
207AE9
BDEF03
207AE9
203EE8

ADN280
2907
0A

AR
BDDBO3
207 AES
BDD?03
R207AE9
203EE8

ADD480
A

85FD
ADOSBO

2h

;USER MAY SPECIFY THESE VAR. ADDR.; IF SEGMENT ADDR.

$ARE CHANGED, THESE ADDR. MUST BE ACCORDINGLY DEFINED
*::4800

SAVEAL SREFER TO THE CAI SUB ROUTINE

SAVEAS SREFFR TO THE CALSUB ROUTINE

$POINTER TO START ADDR. OF 6502 SUBR. ADDR. TARLE
*=$FA

LOCIMP

sTHE FOLLOWINGS ARF USFD AS POINTER FOR
SINDIRECT 4502 ADDRESSING

LEL N
L] FHIGH BYTE OF A POINTER USED
H FOR 68000 TO MEMORY OPERATIONS
*=x4+1
F1 5LOW BYTE OF POINTER
3THE FOLL. ARE USED TO SAVE THE 48000 ADDR.
LEL N
SAVEL
LTI TR
SAVEM
> ¥4
SAVEH

$HODE CONTROL VARIABLE. THE ADDR. OF TH1S VAR.
JMUST BE INSIDE USER DATA SEGMENT., S0 A 68000
sPROGRAM CAN CHANGE IT

*-:$801
CONTRL

sTHF FOLL. ARE THE BOARD ADDR.; REFER T0 THE TEXT
;HARDWARE DESCRIPTION FOR THE THEIR MEANING

#=BRDADD
DIt
w=xt]
DIH
*=%41
CIN
*o %1
cout
*uk4q
ADDL
*= %4
ADDM
PR |
ADDH
*=u4]
DOL.
*=x41
DOH
EET TR
HALT
LEL RN
RES
*= %4
DTAC
*=$200
MMM&8H SEIX
LDA HSFF
5TA CouT ;CLEAR 48000 INPUT SIGN.
Loop JSR CRLOW
WAITAS LDA CIN
AND H8
BNE WALITAS sWAIT FOR ADDR. STROBE
LDA CONTRL
AND W8 JSPEEDY MODE CONTROL BIT
REQ@ OUTFC
JMP FAST

5OUTPUT 6B000 FUNCTION CODE

7U1 (UNDEFINED) , U2 CUNDEF INED) , UP (USER
$PROGRAM) , SP (SUPERVISOR PROGRAM) »
FUD(USER DATA),SD(SUPERVISOR DAYTA) -
SUBCUNDEFINED) , TACINTERRUPT ACK.)
OUTFE L.DA CIN

AND #Z11100000
LSR A

LSR A

ILSR A

LSR A

TAX

LDA TABFC,X
JSR OUTPUT
LDA TABFC+1,X
JSR OUTPUT
JSR BLANK

sOUTPUT 48000 R/W CODE
FWWC(WRITE WORD),RW(READ WORD),WH(WRITE HIGH
FBYTE) WL(WRITE LOW BYTE),RL(READ LOW BYTE),
SRH(READ HIGH RYTE),UNCUNDEFINED)
OUTRWL. L.DA CIN

AND #7

ASL. A

TAX

LDA TABRWL X

JSR OUTPUT

LDA TABRWL+1,X

JSR OUTPUT

JSR BLANK

5OUTPUYT 48000 ADDRESSES
FWE MULTIPLY BY TWO TO CONVERT FROM
68000 WORD ADDR. TO BYTE ADDR.
OUTADD LDA ARDL

ASL A

STA SAVEL.

LDA ADDM

ROL A

STA SAVEM

L.DA ADDH

ROL A

36

Dr. Dobb’s Journal, Number 63, January, 1982

N4
st
0156
0157
0158
0159
0160

0163
0164
016%
0164
0167
0168
0169
0170
0174
0172

Pase 04

a17G
0176
0177
0178
0179
0180
0181
0182

0184
0185
0186
naz
0188
0189

0191
0192
0193
0194
019%
N196
0197

0200
0201

0203
0204
020%
0206
0207
0208
0209
0210
n211

0212
0213
0214
0215
0216
0217

0218
0219
0220

0224
022%
0226
o227
0228
0229
0230

0250
0251
0252

0254
0255

0rs7
0258
0259
0260
0261
0262
0263
0244
0264

0268
0269
0270
0271
naza
¢}

nase

0270

OR7F
027F
0R7F
0281
0284
0287
0284
0281

O28F
028E
0291
0294
aRe7
0294

0290
029D
029D
02an
02A3
02A6
0RA9

0240
0Rac

024F
ORAF
024F
02R1
n282
02R3
02B4
02B%
0284
0RB7
0289
02BB
0280
02BF
02c1
02c3
02c3
0;
02¢

0208
02cn
0RCh
02CE
0201
0201
0201
02n1
0203

0z2ns
0207
02DA
02nc

02DE
02DE
0RE1
02E3

02F 4

O2F 6
02F&
02F8
02FR
ORFD
0300

0303
0303
a30%
0307
030A
0300
030F
0311
0314

0317
0317
n31z
0317
0314
0310
031E

2046EA
203EES8

ALO108
2901

Foné
20FDES3
800380
ADO108
2902
Fo20

A94D
207AE9
R03EEB
ADD280
2901
DOOF

ADO180
2046EA
ADDDBO
2046EA
4C1703

20FDE3
annaasn
R0FDE3
800780
401703

ADORBO

Doo3
4CA203
DPO004
BOB2

18
7DFBO3

8LF(
ASFD

8HFB
AND280
2901
noz2s

ADD280O
2902
nooa

AOON
ADO180
91FB
2046FEA
AND280
2904
DO0A

ANO1
ADOORO
?1FB
R046EA
401703

ADOO
B1FB
800881
2046EA
ADOD1
B1FB
800780
PO4AGEA

ADO108
2904
FOoA
203CE?
cs0D
F0O3
400602

STA
JER
LDA

LDA
JSR
JSR

INCMD LDA
AND

H
BEQ
JSR
5TA
LDA
AND
BEQ

MD

NOCMD

SAVEH
NUKA
SAVEM
NUMA
SAVEL.
NUMA
BLANK

CONTRL
1 sWITH THIS BIT SET A BYTE IS
ENTERED FROM KEYBOARD
TO CONTROL THE 48000 INPUT SGN.
NOCMD
RBYTE
cout
CONTRL.
H2 s MANUAL
AUTO

OR AUTO MODE CNTR. BIT

sMANUAL. MODE: READ FROM KEYROARD,
sMEMORY WRITE TO DISPLAY/PRINTER ONLY

MANUAL. LDA
ISR
JSR
LDA
AND
BNE

H$4D
OUTPUT
BLANK
CIN

FOUTPUT "M”

#1 sTEST 68000 R/W
READM

$IF WRITE OUTPUT 48000 DATA BUS
DIH

WRITEM LDA
JSR
1.DA
JSR
JMP

5 IF READ,
iON THE
READM JSR
STA
JSR
STA
JNP

NUMA
DIL

NUMA
TSER

GET TWO BYTES FROM KEYBOARD AND PUT THEM
48000 INPUT DATA LATCHES

RBYTE
DOH
RBYTE
DoL
TSER

FAUTO MODE: R/W FROM
AUTO LDA CIN

MEMORY

FMEMORY SEGMENTATION SECTION: IF OVERFLOW
sERROR OR INTA STATE SWITCH TO MANUAL MODE
FCADnD AND #X11100000
LSR A
LSR A
LSR A
LER A
LSR A
TAX
CPX #7
BEQ MANUAL.
L.DA SAVEH
BNE MANUAL.
LDA SAVEM
CMP HS$FC
3 ADDR .
BNE LABN
CALSUB
MAXADD, X
BCS MANUAL FERR. IF SEGMENT IS
H OUT OF ITS RANGE

768000 HAS ACK. AN INTERRUPT

sSEGMENT GREATER THAN 64K.

1S EQUAL TO $00FCOO0

LABD

ADC FCTAR,X FADD SEG. OFFSET 10 EFFECTIVE
48000 ADDR., S0 TO SELECT THE
RIGHT MEMORY LOCATIONS TN THE

AIM MEMORY SPACE

8TA F1
1.DA SAVEL

&TA FO
LDA CIN
AND #1 FTEST 68000 R/W
BNE READA
FAUTO WRITE IN MEMORY
WRITA LDA CIN

AND ®2

BNE NOUDS

sTEST 68000 UPPER DATA STROBE

UPPER DATA BYTE
LD HOO

LDA DIH

STA (FO) .Y
JSRNUMA

LDA CIN

AND H4

BNE NOLDS

SWRITE
WRIUDS

NOUDS
sTEST 68000 LOWER DATA STROBE

SWRITE 68000 LOWER DATA BYTE
WRILDS 1.DY #

LDA DIL

STA (FO),Y

JSR NUHA
NOLDS JHP TSER
sREAD A WORD FROM MEMORY
READA LDY #O

LDA (FO),Y

STA DOH

JSR NUMA

LDY #1

LDA (FO),Y

STA DOL.

JSR NUMA

#IF STEP MODE IS SELECTED, WAIT FOR A CHAR. FROM

SKEYBOARD: IF JT I8 NOT A CR DO NOT TSSUE

sDTACK, AND REPEAT THE CICLE

TSER LDA CONTRL
AND #4
BEG DTA
JJSR READ
CMP #$0D
BEQ@ DTA
JMP LOOP

STEP MODE CONTROL BIT

76502 SUBROUTINE CALL IF 48000

0279
0280
0281

0284

0284
o287
0288

Pase 06

0289
n290
0291
0292
0293
0294
0290
0296

0z9e
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310

(4}
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322

0324
0325
0326
0327
0328
0229
0330
0331
0332
0333
0334
0334
0336
0337
0338

0340
0341
0342
0343
0344
0345
0346

Pase 07

0347
0348

0351
352

0
0353

0384
0385
0386

0388
0389

0391
0392

0394
0395
0396
0397
0398

0328
0328
0328

0332
0334
0337
0338
0334
0330
033E
0340

0343
0343
0343
0343
0346
0348
0349
0344
0348
034C
034D
034E
0350
0352
0354
0356
0358
0354
035D
035F
0360
0363
0365
0348
0364

0364C
0340C
036F
0371
0373
0375
0378
037A
037n
037F
03841
0383
0386
0388
0388

038E
038E
0390
0392
0395
0397
0399

039C
039F

03A2
03A2

0342
03A2
03A2
03a2
03a2
03a2
0342
0342
03AS
0347
0349
03ac
O3AF

n381

03B3
0384
0385
0388
03BA
038D
03BF
03c2

03C%
03ce
03ce

03CE

0301

0304
03n4
03né

0308
0308

03E8
03E8

ADOBRO
4CN602

AaD048H
na

8OFB
ADOS80
2h
85FE
ADD&BU
24

FO03
461A02

ADO28N
29E0
4A

4A

ADO280
2901
no22

ADO2BO
2902
nooz
AO000
ADO180
91F8B
ADO280
2904
D007
ADO1
ADNOBO
91FB
ADORBBOD
460902

ADOO
B1FB
800880
ACOD1
B1FB
8D0780

ADOBBO
460902

ADRO280
2901
FON3
4C7F02
ADD180
ce02
BOFé&

ADORBL
460602

4CFADD

46EA
FDE3

F ISSUE DTACK
DTA LDA
JMP

sFAST AUTO M

FSAVE 68000
FAST LDA
ASL

STA
1.DA
ROL
8TA
LDA
ROL
BEQ

OUTF1 JMp

DTACK
Loop

ONDE: NO OUTPUT IS PERFORMED
ADDR.
ADDL
A

SMULTIPLY BY TWO

FO
ADDM

A
SAVEM
ADDH
A
FAST1
OUTFC

$6KIP IF SEG. IS LESS THAN 4K

FERR.: OQUTPUT CYCLE STAT.

ON ERROR

$MEMORY SEGMENTATION SECTION;
FSTANDARD CYCLE HANDLING IS ENTERED.
sFAST MODE IS RE-ENTERED NEXT CYCLE
FAST1 1.DA CIN

AND

AND
L.SR
L8R
LSR
LSR
ISR
TAX
CPX
BEQ
LbA
CHP
BEQ
1.DA
CHP
BCS
cLc
ADC
STA
LDA
AND

HS$ED ;68000 FUNCTION CODE
A
A
A
A
A

w7

OUTF1
SAVEM
HSFC
CALSUB
SAVEM
MAXADD X
OUTF1

$SKIP IF INTA

56502 SUBROUTINES CALL

$O0UT OF SEG. RANGE ERR.

FCTAB, X 5ADD SEG. OFFSET
F1
CIN
#1 sTEST 48000 R/W

BNE READF

FFAST MEMORY WRITE

WRITF LDA CIN
w2 768000 UDS

. NOUDSF

1.DY #0O

DIH

¢ (FO),Y

LDA CIN

AND H4 ;68000 LDS

NOLDSF

#1

WRFUDS

NOUDSF

WRFLDS
i.DA DII
(FO) .Y
LDA DTACK
JMP WAITAS

NOLDSF

sFAST MEMORY READ

READF LDY #O
LDA (FD),Y
STA DOH
LDY #1
LDA (FO).Y
STA DOL

LLDA DTACK
JMP WAITAS

36502 SUBROUTINES HANDLER. 68000 UPPER
sDATA BYTE IS THE INDEX TO THE SUBROUTINES
ADDRESS TABLE; 48000 LOWER

;NDATA BYTE IS LOADED IN THE 6502 ACC.

ON RETURN THE 6502 ACC. IS COPIED IN

;TWO LOCATIONS SPECTFIED BY THE USER:
FSAVEAL IS LOCATED IN THE USER DATA SEGHMENT:
;SAVEAS 1§ LOCATED IN THE SUPERVISOR

sDATA SEGMENT

CALSUB LDA CIN

AND H1

BEQ CALSU1
JMP MANUAL
LDA DIH

CMP HMAXROU
BCS ERR

ASL A

TAX

LDA TABSUB,X
STA LOCJIMP
LDA TABSUB+1,X
STA LOCIMP+1
LDA DIL

JSR JMPSUB
STA SAVEAU
STA SAVEAS
LDA DTACK
JMP L.OOP

sTEST 48000 R/W BECAUSE
FONLY WRITE IS ALLOWED
ERR

CALSU1
TABLE OVERFLOW

5SUBR. ADDR.

JAMPSUB UMP (LOCJUMP)

;4502 SUBR. TABLE
TABSUB .WORD NUMA
-WORD RBYTE

568000 R/W CODES
TABRWL. .BYTF "WWRWWLRLWHRHUNUN"

568000 FUNCTION CODES
TABFC .BYTE "UMU2UPSPUDSDU3IA"

FSEGHENT START ADDR., EXPRESSED IN PAGES OF 256
3BYTES EACH. USER MAY CHANGE THESE VALUES: TF
SHE DOES S0 HE HAS TO CHANGE ALL THE RELATED
;VARTABLE ADDRESSES (SEE TOP OF PROGRAM) .

SHE MAY HAVE TO CHANGE VALUES TN THE MAXADD

(Continued on next page)

Dr. Dobb’s Journal, Number 63, January, 1982

37

68000/AIM 65

(Listing continued, text begins on page 12)

0399 03F8
0400 03F8
401 03F9
0402 O3FA
0403 03FB
0404 ORFC
Paae 08
0405 Q3FD
0406 O3FE
0407 O3FF
0410 0400
0411 0400
0412 0400
0413 0400
Q414 0400
041% 0401
0416 0402
0417 0403
0418 0404
(1419 0405
0420 0406
0421 0407
042 0403
0426 0408

ERRORSG = 0000

MAXROU
NiHA
SAVEAL
F1
UORTRL
Ccour
}1€]
DTACK
OUTHC
)
READM
WRITA
NOLDS
FAST
WRFUDE
READY
JMPSU
FoTaB

A 0002
2 EA4A
¢ oosue
NOFe
s+ osu1
£ 8003
At 8007
A HOOB

>>D>D D>

o U3F8

on
on
o
04
0g

819

00

00
0o
04
oz
N4

0n
0o

STABLE,TOO

FOTAR BYTE

SBYTE
-BYTE
BYTE
BYTE

-BYTE
SBYTE
-BYTE

[¢]
0
$0C
é

FUNDEFINED

FUNDEF INED

FUSER PROGRAM
FSUPERVISOR PROGRAM
FUSER DATA

s SUPERVISOR DATA
FUNDEFINED
s CINTAY

FNUMBER OF PAGES AVATLABLE TO EACH SEGMENT.
FUSER MAY CHANGE THESE VALUES; HOWEVER THEY
FMUST BE CONSTISTENT WITH THE SEGMENTS START

s ADDREGSES
MAXADD LBYTE

1
0
4

Pl

4
1
-~ 0
Q

FEND OF PROGRAM

BRDAD
oNTPUT
SAVEAS
SAVEL
DIl
ADDI.
DOR
MMM48
OUTRWL
NOECMD
AUTO
WRTUDS
READA
QUTFl
NOUDSF
CALSUR
TABSUR
MAXADD

END

a1 8000
G E974a
nnoo
NN
BOOO
B004
8008
0200

CRLOW
RBYTE
1OCHP
BAVEHN
DIH
ADDH
HALT
L.OOP
QUTADD
HANUAL
FCADD
NouDns
TSER
FASTY
WRFLDS
ERR
TABRWL

JHUST DEF INED

7UNDEF INED

s UNDEF INED

FUSER PROGRAM (1K)

58UP. PROGRAM (512 BYTES)
$USER DATA (1K)

iSUP. DATA (256 BYTES)
FUNDEF INED

5 CINTA)

2 FAl3 BLANK AT EBRE
s E3FD READ A E?3C
: 00FA ¥Fo A OOFB
@ OUFE SAVEH Az O0OFF
i 8001 CIN A BOO2
@ 80075 GDDH A 8006
@ 8009 RES Al BODA
5 0206 WAITAS a: 0209
10249 TNCMD Al 026B
T DR27F WRITEM A: 02BE
i ORAF LABO Az 02C8
* 0REF WRILDS Az D2F6
£ 0317 DTA Az (328
v 343 WRITF Az 0340
= 0381 NOLDSF A: 0388
: D3AY Cal.SU1 Af 03AC
= (308 TABFC A: 0O3ES

End Listine

