IIIOS AICROCOMPUTERS

Users' Manual Memory Expansion Module KIM-3B

Users' Manual Memory Expansion Module KIM-3B

The information in this manual has been reviewed and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. The material in this manual is for informational purposes only and is subject to change without notice.

First Edition

© MOS TECHNOLOGY, INC.

"All Rights Reserved"

MOS TECHNOLOGY, INC. 950 Rittenhouse Road Norristown, PA. 19401

Introduction

Congratulations on your purchase of a KIM memory expansion board. It has been carefully engineered to provide high reliability and a long service life. Please make sure you take a few minutes and read this <u>User's Manual completely</u>. You will then be familiar with all the features of your memory expansion board and will find it easy to connect the board to your existing KIM-1 system.

A single memory expansion board may be wired directly to your KIM-1.

By using the KIM-4 motherboard you may add additional memory modules to expand your memory space by an additional 58,000 bytes

Like all MOS Technology, Inc. microprocessor modules, your memory expansion module is completely assembled and tested. Even if you are not using a KIM-4 motherboard, all you will have to do is wire a simple cable. Your KIM memory expansion module is covered by a complete 90-day warranty and, like all KIM modules, factory repair services are available even after the expiration of your warranty.

Your KIM memory expansion board has its own +5v regulator and requires only 8 to 10 VDC unregulated for satisfactory operation. If you already have a regulated +5v supply, you may use it with your expansion board and bypass the regulation circuitry.

All the necessary circuitry has been included to make your memory expansion module completely compatible with KIM-1. By setting the switches on the

memory expansion board, you can select the address locations in memory where you wish your expansion memory to reside.

The integrated circuit memories used on your board are high-speed static memory modules. No refresh cycles are required and access to this memory will not require any slow-down of your KIM-1.

Chapter 2 of this manual explains how to install your new memory expansion module in your KIM system. Chapter 3 explains how to check out your memory expansion module and how to test it if you ever suspect that it has failed.

Chapter 4 contains information on your memory expansion module warranty, and Chapter 5 explains the theory of operation. If for any reason you are unable to get your memory expansion module operating satisfactorily, follow carefully the checkout instructions in Chapter 3. If you are still unable to get satisfactory operation, return the module as described in Chapter 4 or contact the manager of KIM Customer Support at MOS Technology, Inc. corporate headquarters, 950 Rittenhouse Road, Norristown, PA 19401.

Installation

2.1 INTRODUCTION

How you install your KIM memory expansion module will depend on whether or not you are using a KIM-4 motherboard to interface your expansion module to KIM-1. The pin configuration on your KIM-3B allows you to plug your memory expansion module directly into the KIM-4 motherboard and begin operation immediately. You may insert as many KIM-3B memory expansion modules into the motherboard as you wish, taking care that each is set to a different memory location. If, however, you are connecting your memory expansion module directly to KIM-1, only one KIM-3B may be connected in this manner. In this case you will have to wire a cable for your memory expansion module which connects to the KIM-1 expansion and application connectors. (See Figure 1)

2.2 CONNECTING YOUR MEMORY EXPANSION MODULE TO THE MOTHERBOARD (KIM-4)

If you have already installed a KIM-4 motherboard in your KIM system, it is only necessary to plug the KIM-3B into any slot on the motherboard. Make sure that your motherboard power supply has sufficient capacity to supply the needs of your memory expansion module. See your KIM-4 User Manual for power supply connections. The KIM-3B memory expansion module draws 2.1A maximum. Your KIM memory expansion module should be inserted in the motherboard so that the component side of the board faces away from the end of the motherboard to which KIM-1 is connected. Prior to inserting the memory board in the motherboard set the address switches located on the memory board to the correct position

Figure 1

for the address in KIM's memory space where you wish to have the additional memory reside. Setting the address switches is described below. When the memory switches are set and the card is inserted in the motherboard you are ready to check out the operation of the board. See Chapter 3 for this operation.

2.3 CONNECTING YOUR MEMORY EXPANSION MODULE WITHOUT A MOTHERBOARD

If you are connecting your memory expansion module directly to a KIM-1, it will be necessary for you to wire a cable to connect the memory expansion module connector to the application and expansion connectors on your KIM-1. Note that if you wish to use the same +5v supply which presently powers your KIM-1, that supply should be connected to pin 21 and pin Y on your memory expansion module connector. If, however, you wish to use an unregulated +8v to +10v supply, that unregulated voltage should be connected to pins 19 and 20 on your memory expansion module. Unregulated +8v to +10v should never be connected to your KIM-1. In either case, insure that your supply can provide at least 1.3A for KIM-3B.

Tables 2A and 2B show the interconnection between KIM-1 and your memory expansion module. If you do not have the appropriate connectors for the KIM-1 expansion connector and your KIM-3B memory expansion module, they can be obtained from most electronic parts supply houses. They are manufactured by Vector and their part number is R644. Note that the pin designation is marked next to each pin on the connector. Once you have wired the cable interconnecting the three connectors, carefully recheck your wiring for incorrectly placed wires or inadvertent short circuits. Note that the wiring table shows the pins on the KIM-1 connectors are preceded by an "A" or "E." The "A" indicates that the connection should be made to the appropriate pin on the applications connector; the "E" indicates that the pin is on the expansion connector.

TABLE 2A

KIM-3B Connector Pin		KIM-1 Connections
1		A-1
2		No Connection
3		No Connection
4		No Connection
5		No Connection
6		No Connection
7		No Connection
8		E-8
9		E-9
10		E-10
11		E-11
12		E-12
13		E-13
14		E-14
15		E-15
16		A-K (Remove Jumper from A-1)
17	•	No Connection
18		No Connection
19		+8v]
20		+8v Connect only +5v or +8v, NOT BOTH
21		+5v J
22		A-1
NOTE: Cable f or less		must be six inches in length

TABLE 2B

KIM-3B Connector Pins	KIM-1 Connections
A	A-1
В	E-A
С	E-B
D	E-C
E	E-D
F	E-E
Н	E-F
J	E-H
K	E-J
L	E-K
М	E-L
N	E-M
P	E-N
R	E-P
S	E-R
T	E-S
U	E-T
V	E-U
W	E-V
Х	E-Y
Y	To +5v (If +8v NOT USED)
Z	A-1

2.4 SETTING THE ADDRESS SWITCHES

In order to make your memory expansion module as versatile as possible, we have included four switches to allow you to place your expansion memory at any memory address (see Figure 3). We suggest that you place your first memory expansion module starting at address 2000 hex and continue to expand your memory into successively higher memory locations. Tables 4 and 5 indicate the switch settings for various memory locations using your KIM-3B. Be sure to consult the appropriate table for the module you have purchased. Once you have chosen the memory space for your expansion module and correctly set the addressing switches, turn off all power and insert the memory module in its connector. You are now ready to test your memory expansion module.

Note: Do <u>not</u> set the switches so that your expansion memory has an address below 2000_{hex} as it will conflict with the memory and other circuitry in your KIM-1. It is <u>not</u> possible to put your expansion memory in the Memory block 0400-1400_{hex} already decoded on KIM-1.

KIM-3B Address Switch Setting

When	Addres	S	Switch	Is:	Lowest	Address	Is:	Highest Ad	ddress Is:
	<u>3</u>	2	<u>1</u>						
	0	0	0			0000		1FFF	(do not use)
	0	0	X			2000		3FFF	
	0	X	0			4000		5FFF	
	0	Х	X			6000		7FFF	
	Х	0	0			8000		9FFF	
	Х	0	Х			A000		BFFF	
	Х	Х	0			C000		DFFF	
	Х	X	х			E000		FFFF	

X = Switch is NOT on

Note: Switch 4 will logically disconnect the board when closed. Switch 5 is used for write protection when left open.

^{0 =} Switch IS on

Checkout and Test Program

3.1 Your memory expansion module has been carefully tested to assure correct operation. In this section we will describe how you can briefly check the operation of your memory expansion module. We have also included a test program which will allow you to verify correct operation of all memory cells in your memory expansion module. It should only be necessary to run this program if you suspect that the memory module has failed.

To verify that your memory expansion module has been correctly wired and that the address switches are correctly set, just address some of the memory locations and verify that you can change the contents of those locations.

Using the keypad provided with your KIM-1, and assuming that you have set the address switches on your memory expansion module so that the lowest address is 2000, use the following procedure:

Checkout and Test Program

See Displayed
xxxx xx
XXXX XX
2000 XX
2000 XX
2000 3A
2000 79
2001 XX
2001 37

If you are unable to change the data in memory there are two possible sources of trouble:

- 1. The memory expansion board is not correctly connected to KIM-1. If you are using a motherboard, check that the motherboard is correctly installed and that the memory expansion card has the component side of the board facing away from the KIM-1. If you are not using a motherboard, carefully check your wiring against the list provided in Tables 2A and 2B.
- 2. You have incorrectly set the memory address switches. The figure below shows the appearance of the memory address switch when it is configured so that the lowest expansion memory address is 2000_{16} . Recheck the information in Chapter 2 if you are unsure of the placement of the memory expansion module.

3.2 TEST PROGRAM FOR MEMORY CHECKOUT

Although your KIM memory expansion module has been carefully tested before shipment, like any other electronic device, it can fail in use. If you suspect that your memory expansion module is not working correctly, the following program can be used to check the memory operation. It should be noted that programs for testing memory modules for all possible failure modes would be quite complex and require lengthy running time on KIM. The following programs simply write and read every possible bit pattern in every memory location. They do not check, for instance, whether writing to a given memory location may also affect other memory locations.

3.3 CHECKING YOUR MEMORY FROM A TERMINAL

The following program assumes that you have a terminal connected to the serial input and output ports of your KIM-1. To use the program, type it into KIM memory starting at location 20016; make a paper tape copy once you have loaded the program using the KIM dump routine. To operate the program, load the lowest address which you wish to test in location 0000 and 0001, then load the highest memory address you wish to test in location 0002 and 0003. For instance, to check all memory locations between 2000 and 2FFF you would load 00 in location 0000, 20 in location 0001, FF in location 0002, and 2F in location 0003. To operate the program, load address 022A and hit the G key. The program will then fill the specified memory locations with 0's and then read all locations to verify that the zero has been written. It will then load the specified memory with 01 and again verify the data. The process will continue until all bit patterns from 00 to FF have been written and read correctly. If any memory location fails to read or write correctly the address of the defective cell will be written to the terminal, along with the code which would not

Program 1

```
CARD = LOC
                          CODE
                                             CARD
                                       BOTLO=$0
BOTHI=$1
       1234
                                       TOPLO=$2
TOPHI=$3
PTRLO=$4
       567
                                        PTRHI=$5
                                       MASK=$6
PRTBYT=$1E3B
OUTSP=$1E9E
       8
       9
     10
11
12
13
14
                                       CRLF=$1E2F
*=$200
INCPTR INC
            0000
                                                   INC
                      E6
            0200
                           04
                                                         PTRLO
            0202
                                                          END
                      DO
                           02
                           05
                      E6
                                                    INC
                                                          PTRHI
     15
16
17
18
            0206
                                       END
                                                    RTS
                      60
                                           ERROR ROUTINE FOR TTY
            0207
0209
020C
020E
0211
0214
                           05
3B
                                                          PTRHI
PRTBYT
     ERROR
                                                    LDA
                                                   JSR
LDA
                                1E
                      20
                                                          PTRLO
                           04
                      A5
                      20
                                                    JSR
                                1E
                                                          PRTBYT
                           3B
                           9E
                                 ĪĒ
                                                    JSR
                                                          OUTSP
                      A5
20
20
                                                          MASK
PRTBYT
                           06
                                                    LDA
            0216
                                                   JSR
JSR
                           3B'
                                1E
                                                          CRLF
            0210
                                                   RTS
                      60
                                         INITIALIZATION SUBROUTINE
     31
32
33
34
35
            0210
                      A9
                           00
                                       INIT LDA
                                                      = $00
            021F
0221
0223
0225
0227
0229
                      85
                                                   STA MASK
                           06
                                                   LDA BOTLO
STA PTRLO
LDA BOTHI
                      A5
                           00
                                       RESET
                      85
                           04
                      A5
                           01
     36
                      85
                           05
                                                    STA
                                                          PTRHI
     37
                      60
                                                   RTS
     38
                                         MAINLINE FOR MEMORY TEST
     40
     41
            022A
022B
                      D8
20
                                       BEGIN CLO INIT
     42
                           1D
                                 02
            022E
0230
0232
0234
                                                   LP1
LDA
STA
                                                         2DY #$00
MASK
(PIRLO),Y
     43
                      A0
A5
91
                            00
                                       WRLOUP
     44
                           06
                           04
     45
                                                   JSR
LDA
     46
                      20
                                                          INCPTR
                           00
                                02
            0237
                                                          PTRLU
                      A5
C5
     47
                           04
           0239
0238
023D
023F
0241
                           02
F3
     48
                                                   CMP
                                                          TOPLO
                      DO
                                                   BNE
     49
                                                          WRLOOP
     50
                      A5
                           05
                                                   LDA
                                                          PTRHI
                                                   CMP
BNE
     51
52
                      C5
D0
                           03
ED
                                                          TOPHI
                                                          WRLOOP
                           21
                                                          RESET (PTRLO),Y
     53
            0243
                                                    JSR
                      20
                                02
            0246
                                       ROLOOP
     54
                      B1
                                                   LDA
           0248
024A
024C
     55
56
57
                      Ç5
F0.
                                                   CMP
BEQ
                                                          MASK
                           06
                           03
                                                          CONT
                      20
                                                   JSR
                                                          ERRUR
                                02
            024F
0252
0254
                      20
                           00
                                02
                                       CONT
                                                    JSR
     58
                                                          INCPTR
                      A5
C5
D0
                                                   LDA
     59
                           04
                                                          PTRLO
     60
                           02
EE
05
                                                          TOPLO
            0256
                                                   BNE
     61
                                                          ROLOUP
            0258
0254
025C
                      45
     62
                                                   LDA
                                                          PTRHI
                                                   CMP
                           03
                                                          TOPHI
     63
     64
                           E8
                                                          ROLOUP
            025E
0260
0262
0265
0268
     65
                      E6
                           06
                                                    INC
                                                          MASK
                           03
2F
21
2E
                                                          CYCLE
                                                   BNE
     66
                      DO
                      20
                                                   JSR CRLF
JSR RESET
                                1E
02
02
     67
                                       CYCLE
     68
                      4C
                                                   JMP LP1
     69
```

END OF MOS/TECHNOLOGY 650X ASSEMBLY VERSION 4 NUMBER OF ERRORS = 0, NUMBER OF WARNINGS = read or write correctly. When all bit patterns have been tested in all specified cells, the program will output a carriage return and line feed and begin the entire cycle over again. For a 4K memory expansion module the entire test will take about 1-1/2 minutes.

3.4 CHECKING MEMORY OPERATION WITH THE KEYPAD

Program 2 tests memory in a similar fashion, but does not require a terminal. As in the first program, the address of the lower limit and upper limit of the memory to be checked is inserted in locations 0 through 3. When the program has been keyed in, you will probably wish to record it on your audio cassette for future use. When the starting address (022E) is loaded and the GO button is depressed the program will check memory as described above. However, if a defective cell is encountered the address of the defective cell will be displayed on the leftmost four digits of the display and the program will halt. Pushing any button on the keypad will resume the testing operation. When all memory cells have been checked, a value of 0000 will appear in the display and the program will halt.

Program 2

```
CARD
      = LOC
                     CODE
                                     CARD
                                 BOTLU=$0
                                 BOTH 1 = $1
      3
                                 TUPL 0=$2
     5
                                 TOPHI = $3
                                 PTRLU=$4
     6
                                 PTRHI = $5
                                 MASK=$6
PUINTH=$FB
      7
     8
     9
                                 POINTL=$FA
    10
                                 SCANS=$1F1F
    11
                                 AK=$1EFE
                                 RESVEC=$1C22
*=$200
    13
          0000
    14
                                          INC
                                               PTRLO
          0200
                  E6
                                 INCPTR
                      04
         0202
0204
0206
    15
                      02
                  DO
    16
                  E6
                                           INC
                                                PTRHI
    17
                  60
                                 END
                                           RTS
    18
    19
                                  ERROR ROUTINE FOR KEYPAD
    20
    21
22
23
24
25
26
27
29
          0207
                  A5
                      05
                                 ERROR
                                           LDA
                                                PTRHI
         0209
020B
                  85
A5
                                                POINTH
                                           STA
                      FB
                       04
                                           LDA
                                                PTRLO
                  85
          0200
                      FA
                                           STA
                                                POINTL
                  A5
                                           LDA MASK
          020F
          0211
                  85
                      F9
                                         STA $F9
                                                SCANS
                                           JSR
          0213
                  20
                      15
                           16
                                 ER1
          0216
                  20
                      FE
                           16
                                           JSR
                                                AK
         0219
0218
021E
                  FO
                      F8
                                                ER1
                                          BEQ
                  20
    30
                      FE
                           16
                                 ERLOOP
                                           JSR
                                                AK
    31
                      FB
                                           BNE
                                                ERLOOP
          0220
    32
                  60
                                           RTS
    33
    34
                                  INITIALIZATION SUBROUTINE
    35
         0221
0223
0225
0227
0229
0228
0220
                                 INIT LDA = $00
                  A9
    36
                      00
    37
                                           STA MASK
                  85
                      06
                                         LDA BOTLU
STA PTRLO
    38
                  A5
                      00
                                 RESET
    39
                  85
                      04
    40
                  45
                      01
                                          LDA
                                                BUTHI
                  85
                                           STA
                                                PTRHI
    41
                      05
    42
                  60
                                           RIS
    43
                                  MAINLINE FOR MEMORY TEST
    44
    45
         022E
022F
0231
    46
                  D8
                                 BEGIN CLD
                                          LDY
JSR
                  A0
20
    47
                      00
                                                = $00
    48
                      21
                                                INIT
                           02
          0234
                                          LDA
    49
                                 WRLOOP
                  A5
                      06
                                                MASK
          0236
0238
                  91
20
                                                (PTRLO),Y
    50
                      04
    51
                                           JSR
                      00
                           02
                                                INCPTR
    52
          0238
                  A5
                                           LDA
                                                PTRLO
                      04
    53
                                           CMP
          0230
                  C5
                      02
                                                TOPLU
          023F
0241
                                           BNE
    54
                      F 3
                  0)
                                                WRLÖOP
    55
                  A5
                                           LDA
                                                PTRHI
                      05
    56
          0243
                                           CMP
                                                TOPHI
                      03
          0245
    57
                  DO
                                         BNE WRLOOP
JSR RESET
                      ED
    58
          0247
                  20
                      25
                           02
                                          LDA
                                                (PTRLU),Y
    59
                      04
                                 ROLOGP
                  81
          J240
    60
                  C5
                      06
                                                MASK
                                          BEQ
    61
          024E
                  FO
                      03
                                                CUNT
          0250
                  20
                           02
                      07
                                                ERROR
    62
          1253
                           02
                                           JSR
                  20
                      00
                                 CONT
                                                INCPTR
    63
          0256
                  A5
    64
                                                PTRLU
                      04
                                           LDA
                  05
                      02
                                           CMP
                                                TOPLU
    65
          0254
                  ĎO
                      EE
                                           BNE
    66
                                                ROLOUP
          025C
025E
                  45
05
00
    67
                      05
                                           LDA
                                                PTRHI
                                          CMP
                                                TOPHI
    68
                      03
    69
          0260
                                           BNE
                      E8
                                                RDLOOP
                                               MASK
          0262
                                           INC MAS
BNE LOOP
    70
                  E6
                      06
                       09
    71
          0264
                  D<sub>0</sub>
    72
          0266
                  A9
                       00
                                           LDA = $00
    73
          0268
                       FA
                                           STA $FA
                  85
    74
          026A
                  85
                       FB
                                           STA $FB
    75
          026C
                   4C
                       22 1C
                                           JMP RESVEC
     76
          026F
                       25 02
                   20
                                           LOOP JSR RESET
     77
          0272
                   4C
                       34 02
                                                 JMP WR LOOP
     78
                                           .END
```

Warranty and Service

Should you experience difficulty with your KIM-3B module and be unable to diagnose or correct the problem, you may return the unit to MOS Technology, Inc. for repair.

4.1 IN-WARRANTY SERVICE

All KIM series microcomputer modules are warranted by MOS Technology, Inc. against defects in workmanship and materials for a period of ninety (90) days from date of delivery. During the warranty period, MOS Technology, Inc. will repair or, at its option, replace at no charge components that prove to be defective provided that the module is returned, shipping prepaid, to:

KIM Customer Service Department 901 California Ave. Palo Alto, CA 94304

This warranty does not apply if the module has been damaged by accident or misuse, or as a result of repairs or modifications made by other than authorized personnel at the above captioned service facility.

No other warranty is expressed or implied. MOS Technology, Inc. is not liable for consequential damages.

4.2 OUT-OF-WARRANTY SERVICE

Beyond the ninety (90) day warranty period, KIM modules will be repaired for a reasonable service fee. All service work performed by MOS Technology,

Inc. beyond the warranty period is warranted for an additional ninety (90) day period after shipment of the repaired module.

4.3 POLICY OF CHANGES

All KIM series modules are sold on the basis of descriptive specifications in effect at the time of sale. MOS Technology, Inc. shall have no obligation to modify or update products once sold. MOS Technology, Inc. reserves the right to make periodic changes or improvements to any KIM series module.

4.4 SHIPPING INSTRUCTIONS

It is the customer's responsibility to return the KIM series module with shipping charges prepaid to the above captioned service facility.

For in-warranty service, the KIM module will be returned to the customer, shipping prepaid, by the fastest economical carrier.

For out-of-warranty service, the customer will pay for shipping charges both ways. The repaired KIM module will be returned to the customer C.O.D. unless the repairs and shipping charges are prepaid by the customer.

Please be certain that your KIM module is safely packaged when returning it to the above captioned service facility.

Theory of Operation

5.1 The schematic shows the interconnection of the components on the KIM-3B board. The diagram below illustrates the pin connections to the 2114-type memories used on the boards. When $\overline{\text{CSX}}$ is low, four of the 1024 bits in the package are selected. If $\overline{\text{WE}}$ is low, the selected cells will have the values of the I/O lines (1 or O) written into them. If pin $\overline{\text{WE}}$ is high, the contents of the addressed cells will be placed on the I10 lines.

		6550		
A6	1		18	VCC
A5	2		17	A7
A4	3	2	16	A8
A3	. 4		15	A9
AO	5	1	14	I/01
Al	6	1	13	I/02
A2	7	4	12	I/03
CS	8		11	I/04
GND	9		10	WE

The board is composed of the memory circuits, addressing circuitry, and buffers. An on-board voltage regulator is also provided.

In operation, address bus lines 0 through 9 are buffered by AlO, BlO and Bll, and connected directly to the memory circuits. The high-order address

lines (AB13 - 15) are presented to B12, a 4-bit comparator. The bit pattern on these lines is compared with the bit pattern generated by the three address switches. If the address switch settings and the high-order address lines match, pin 6 of B12 will go high. This signal is passed off the board as the board SELECTED line (BDSEL). When BDSEL goes high it disables U4 on KIM-1, preventing the memory circuits on KIM-1 from conflicting with addresses intended for the expansion memory board.

Address bus lines 10, 11 and 12 are decoded in All to provide eight output lines. Each of these eight lines is connected to two memory circuits to determine which memory will be active at any time. The memory circuits will not be activated unless the proper address configuration exists on address bus lines 13, 14 and 15. The comparison signal from pin 6 of Bl2 is also used in Al2 to combine with the $\emptyset 2$ and R/W signals from KIM-1 to control the input and output buffers (Al and Bl).

When clock phase 2 is present the data bus buffers will be enabled, allowing data to be fed into or out of the board, depending on the condition of the Read/Write line. All will enable the appropriate two memory circuits and the selected memory circuits will decode the ten least significant address bits to complete the Read/Write operation.

Also present is a conventional 3-terminal regulator, which takes the unregulated +8v supplied to the board and supply a regulated +5v for the circuitry.

TWX:510/660/4033

TEL: (215) 666-7950

brought to you by andy finkel