
Example Programs for 6502 Microprocessor Kit

0001 0000
0002 0000 GPIO1 .EQU $8000
0003 0000
0004 0000
0005 0200 .ORG $200
0006 0200
0007 0200 A5 00 LDA $0
0008 0202 8D 00 80 STA $GPIO1
0009 0205 00 BRK
0010 0206
0011 0206
0012 0206 .END
tasm: Number of errors = 0

Build Your Own 6502 Microprocessor kit
http://www.kswichit.com/6502/6502.html

Preface

The example programs for 6502 Microprocessor kit demonstrate
how to enter the computer program in hex code and how to use
the onboard input/output devices, e.g. GPIO1 LED, key switch,
speaker, 7-segment display, and 10ms system tick generator.

Each program is simple and short. The instruction hex codes are
provided. Students can enter the hex code to memory and test it
directly. No need others tools.

The monitor program provides single step running with user
registers and zero page memory displaying. Students can check
the result of CPU operation with these registers easily.

The program can be modified at the 8-bit constants, or even with
the instruction itself, student will learn the result after program
modifications.

For the hardware programming, e.g. key switch, speaker, 7-
segment display and interrupt please study the hardware
schematic in user manual.

Wichit Sirichote

Contents

Program1: Binary number counting....................4

Program2: Bit shifting...7

Program3: LOAD and STORE...............................8

Program4: 8-bit Addition.......................................9

Program5: Conditional branch instruction.......12

Program6: Reading switch status......................14

Program7: Producing tone 800Hz.....................16

Program8: Simple MORSE code keyer.............18

Program9: Seven segment display....................20

Program10: Testing IRQ with 10ms Tick..........24

Program1: Binary number counting

This program uses memory location 0 in zero page as the 8-bit
variable. We will see the 8-bit binary number counting by writing
the contents of memory location 0 to the GPIO1 LED at location
$8000. Logic 1 will make LED ON and logic 0 for LED OFF.

We can enter the instruction hex code to the memory started
from location $200 to the last byte at location $20D.

To test the program, press key RESET, PC then press STEP and REP
together.

Did you see the 8-bit binary number counting?

Line Addr hex code Label Instruction
0001 0000
0002 0000 GPIO1 .EQU $8000
0003 0000
0004 0000
0005 0200 .ORG 200H
0006 0200

5

0007 0200 A9 00 LDA #0
0008 0202 85 00 STA $0
0009 0204
0010 0204 A5 00 LOOP LDA $0
0011 0206 8D 00 80 STA GPIO1
0012 0209 E6 00 INC $0
0013 020B
0014 020B 4C 04 02 JMP LOOP
0015 020E
0016 020E .END
tasm: Number of errors = 0

The 6502 kit display and keypad use hex number. Since each hex
digit represents 4-bit binary number or one nibble. It will make us
more easy to enter the program using hex number.

The actual code in memory is binary number. For example the hex
code of instruction LDA #0 has two bytes A9 and 00. The display
will show us as A9 at location 0200. The real value, however in
memory will be 1010 1001.

Here is the number representation for decimal, binary and
hexadecimal number.

Decimal 4-bit Binary Hex

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

For example the instruction hex code of LDA #0 is A9 and 00.

We can write the first byte in 8-bit binary as 1010 1001 and the
second byte as 0000 0000.

Note

Writing hex number in the Assembly Program can be done with $
or H symbol.

We see that the assembler directive .org 200H will be the same
as .org $200.

The sharp symbol # indicating the number is 8-bit data to be
loaded. If no # symbol, the 8-bit data will be memory location.

For example,

LDA #0 ; load accumulator with data 0
LDA $0 ; load accumulator with memory location 0 in

zero page.

7

Program2: Bit shifting

This program looks similar to Program1, but we use instruction
that shifts the bit, ASL $0, instead of INC $0. Enter the hex code,
then test it with STEP & REP key.

What is the result on the GPIO1 LED?

0001 0000
0002 0000 GPIO1 .EQU $8000
0003 0000
0004 0000
0005 0200 .ORG 200H
0006 0200
0007 0200 A9 01 LDA #1
0008 0202 85 00 STA $0
0009 0204
0010 0204 A5 00 LOOP LDA $0
0011 0206 8D 00 80 STA GPIO1
0012 0209 06 00 ASL $0
0013 020B
0014 020B 4C 04 02 JMP LOOP
0015 020E
0016 020E .END
tasm: Number of errors = 0

We see that the GPIO1 LED is very useful for reading the 8-bit
data. We can see the result of internal operation by using the
Accumulator register as the data carrier.

The instruction STA GPIO1, having hex code as 8D 00 80 will
write the contents of accumulator register to GPIO1 LED.

8

Program3: LOAD and STORE

Another method to test program running is to use BRK instruction.
We will test the code with key GO.

Our program has only three instructions, LDA $0, STA $GPIO1
and BRK.

BRK instruction will make the CPU to jump back to monitor
program, saving the CPU registers to user registers. We can keep
the results in user registers for program checking.

This program will load the accumulator with contents at memory
location $0 then write it to GPIO1 LED and ended with BRK
instruction.

0001 0000
0002 0000 GPIO1 .EQU $8000
0003 0000
0004 0000
0005 0200 .ORG 200H
0006 0200
0007 0200 A5 00 LDA $0
0008 0202 8D 00 80 STA $GPIO1
0009 0205 00 BRK
0010 0206
0011 0206
0012 0206 .END
tasm: Number of errors = 0
Enter the hex code, press RESET, PC and GO.

What is result on the GPIO1 LED?

If we change the byte at location $201 from 00 to 01, what is the
result?

10

Program4: 8-bit Addition

Let us play with 8-bit binary addition.

Suppose we want to add two 8-bit binary numbers as shown
below.

Number 1 0101 1011+ 5B+
Number 2 0101 1010 5A
Result is __________ _____

Remember 1+1= 10
Try with hand compute, write the result for both binary and hex.
Now let us check the result from 6502 computing.

0001 0000
0002 0000 GPIO1 .EQU $8000
0003 0000
0004 0000
0005 0200 .ORG 200H
0006 0200
0007 0200 18 CLC
0008 0201 A9 5B LDA #%01011011
0009 0203 69 5A ADC #%01011010
0010 0205 8D 00 80 STA $GPIO1
0011 0208 00 BRK
0012 0209
0013 0209
0014 0209 .END
tasm: Number of errors = 0

The program will load number1, 5B to the accumulator. Then add
it with 5B and then write the result to GPIO1 LED.

Do you have got the same result?
11

Since the ADC instruction will add two numbers with carry flag,
so for the rightmost digit, there is no carry flag. We then clear it
beforehand with instruction CLC, CLear Carry.

You can try replace the first byte from 18 (CLC) to 38, SEC
instruction that sets carry flag. And test the program again.

What is the result?

Carry flag will be used for multi ple bytes addition the same as we
add multi ple digits of decimal number.

We can modify above program for testing with logical instructions
as well. By replacing ADC instruction with,

Logical OR with instruction ORA #n
Logical AND, AND #n
Exclusive OR, EOR #n

For example if we want to find the result of logical AND between
$4A and $33 the program will be,

0005 0200 .ORG 200H
0006 0200
0007 0200 18 CLC
0008 0201 A9 4A LDA #$4A
0009 0203 29 33 AND #$33
0010 0205 8D 00 80 STA $GPIO1
0011 0208 00 BRK
0012 0209
0013 0209
0014 0209 .END
tasm: Number of errors = 0
We see that at the address 0203, now the hex code is 29, the
AND instruction. And the 2nd byte is 33, the 8-bit data to be

ANDed with 4A. Result will show on the GPIO1 LED directly.

Note

Symbol % shown in the program is for binary number constant.
Remember $ is for hex number.

The hex code for AND #n is $29

 ORA #n is $09

 EOR #n is $49

Find more the 6502 hex code from

http://www.obelisk.demon.co.uk/6502/reference.html

Program5: Conditional branch instruction

The 6502 CPU has the instructions that jump with flag condition.
The example of flag is ZERO flag. The zero flag will be '1' when
all bits in a given memory location or register are zero.

We can use such indication for changing program flowing
direction.

Let us see the example of using BNE instruction.
0001 0000
0002 0000 GPIO1 .EQU $8000
0003 0000
0004 0000
0005 0200 .ORG 200H
0006 0200
0007 0200 A2 10 LDX #$10
0008 0202
0009 0202 8E 00 80 LOOP STX GPIO1
0010 0205 CA DEX
0011 0206 D0 FA BNE LOOP
0012 0208
0013 0208 8E 00 80 STX GPIO1
0014 020B 4C 0B 02 HERE JMP HERE
0015 020E
0016 020E .END
tasm: Number of errors = 0

Register X is loaded with $10. Main loop is to write the X register
to GPIO1 LED. DEX instruction will decrement X register by one.

Zero flag will be set if the all bits in X register are zero.

We can control the number of loop running by BNE instruction
then. 14

BNE, Branch if Not Equal to ZERO, has two bytes hex code, i.e.
D0 and FA. The second byte, FA is signed number. It is the OFFSET
byte that will be used to add to the current program counter if
the result is not equal to zero.

Current program counter after these two bytes were read by the
CPU is 208. We see from the program that the loop location is
202. Thus the OFFSET byte is 202-208=-6. Or jump backward 6
bytes. We can make -6 from +6 by using 2's complement.

The computer uses 2's complement to represent the negative
number.

Here is +6 in 8-bit binary,

0000 0110

2's complement is 1's complement +1

This is 1's complement

1111 1001

Then +1

1111 1010 or FA, we see that the OFFSET byte FA is then -6.

We can also use key REL for finding the OFFSET byte. At the
display 0206 with D0, press REL key, the address 0206 will be
start address. Press key + for the destination, enter 0202, the
press key GO. The OFFSET byte FA will be placed at address 0207
automatically. On the hex keypad, you may count backward from
key F to key A. You will get -6 is FA!

We will use conditional jump instructions with relative addressing
for many programs. 15

Program6: Reading switch status

The kit has one bit that ties REP switch (S19). We can read the
status of this switch easily by reading it then write it to GPIO1
LED. Logic '1' means switch is opened, and logic '0' means switch
is closed. U13 is tri-state buffer used as the 8-bit input port.

Program is repeating loop read the byte from PORT0. REP key is
tied to bit 6 (PA6). We want to check status only this bit, so we
remove the rest bits with instruction AND #%01000000. Also we
invert it with EOR (Exclusive OR) EOR #%01000000.

0001 0000
0002 0000 GPIO1 .EQU 8000H
0003 0000 PORT0 .EQU 8001H
0004 0000
0005 0200 .ORG 200H
0006 0200
0007 0200 AD 01 80 LOOP LDA $PORT0
0008 0203 29 40 AND #%01000000
0009 0205 49 40 EOR #%01000000
0010 0207 8D 00 80 STA $GPIO1
0011 020A 4C 00 02 JMP LOOP
0012 020D 16

0013 020D
0014 020D .END
tasm: Number of errors = 0

We test this program with key GO.

What happen if we press key REP?

Note

Logical AND can be used to maskout undesired bit by logic '0'.

Logical Exclusive OR can be used to invert the logic by using logic
'1'.

Logical OR can be used to set the desired bit to be '1' by using
logic '1'.

Program7: Producing tone 800Hz

We can produce the tone signal 800Hz using one bit output port.
A simple tone signal is square wave, ON and OFF. We will try
with 800Hz.

The small speaker is tied to bit 7 of PORT1. It is driven by Q1, PNP
transistor. We can make this bit ON and OFF by writing bit 1 and
bit 0 to this port. Each time we make such bit ON or OFF, a small
delay is inserted. The example shown below, the delay will make
period for ½0.5*1/800Hz.

19
0001 0000
0002 0000 GPIO1 .EQU 8000H
0003 0000 PORT0 .EQU 8001H
0004 0000 PORT1 .EQU 8002H
0005 0000
0006 0200 .ORG 200H
0007 0200
0008 0200 A9 3F TONE LDA #%00111111
0009 0202 8D 02 80 STA PORT1
0010 0205 20 13 02 JSR DELAY
0011 0208 A9 BF LDA #%10111111
0012 020A 8D 02 80 STA PORT1
0013 020D 20 13 02 JSR DELAY
0014 0210 4C 00 02 JMP TONE
0015 0213
0016 0213 A0 79 DELAY LDY #$79
0017 0215 88 DELAY2 DEY
0018 0216 D0 FD BNE DELAY2
0019 0218 60 RTS
0020 0219
0021 0219 .END
tasm: Number of errors = 0

For 800Hz, the half period is 625 microseconds.

The delay subroutine will need to delay approx. a bit smaller than
625 microseconds.

Can you change the frequency? Where is the byte to be modified?

20

Program8: Simple MORSE code keyer

Let us have some fun with MORSE keyer program. We will
combine Program 7 and Program 8. Program 7 enables us to read
status of key REP and Program 8 produces 800Hz tone at the
speaker.

We will read if key REP was pressed, Tone 800Hz will be turned
on. If key REP was released, Tone 800Hz will be turned off.

This will make a simple MORSE code keyer.

0001 0000
0002 0000 GPIO1 .EQU 8000H
0003 0000 PORT0 .EQU 8001H
0004 0000 PORT1 .EQU 8002H
0005 0000
0006 0200 .ORG 200H
0007 0200
0008 0200 20 1A 02 MORSE JSR TONE
0009 0203 AD 01 80 LDA PORT0
0010 0206 29 40 AND #%01000000
0011 0208 F0 F6 BEQ MORSE
0012 020A
0013 020A 20 2B 02 JSR DELAY
0014 020D
0015 020D AD 01 80 WAIT LDA PORT0
0016 0210 29 40 AND #%01000000
0017 0212 D0 F9 BNE WAIT 21

0018 0214
0019 0214 20 2B 02 JSR DELAY
0020 0217 4C 00 02 JMP MORSE
0021 021A
0022 021A A9 3F TONE LDA #%00111111
0023 021C 8D 02 80 STA PORT1
0024 021F 20 2B 02 JSR DELAY
0025 0222 A9 BF LDA #%10111111
0026 0224 8D 02 80 STA PORT1
0027 0227 20 2B 02 JSR DELAY
0028 022A 60 RTS
0029 022B
0030 022B A0 79 DELAY LDY #$79
0031 022D 88 DELAY2 DEY
0032 022E D0 FD BNE DELAY2
0033 0230 60 RTS
0034 0231
0035 0231 .END
tasm: Number of errors = 0

We see that now we have two subroutines, TONE and DELAY.

The TONE subroutine will be called from the main code only when
REP key was pressed.

Testing key status now can be done by using logical AND bit6 of
the PORT0.

MORSE tone is widely used between 750Hz to 900Hz.

Can you modify our code that produces 800Hz for higher or
lower frequency?

22

Program9: Seven segment display

One of the generic device for displaying decimal number is 7-
segment display. We have the rightmost digit for experimenting by
using jumper J2.

The segment A,B,C,D,E,F,G and DP are driven by PORT2.

We see that each bit, CMOS output is capable for driving each
segment of the LED. Logic '1' will make the segment ON.

23

A

B

C

D

E

F G

DP

To display a number says, 0,1,2,3,4,5,6,7,8,9, we must convert
the 8-bit value into the corresponding pattern. See the table
below.

Number SEGMENT CODE Display

0 $BD '0'

1 $30 '1'

2 $9B '2'

3 $BA '3'

4 $36 '4'

5 $AE '5'

6 $AF '6'

7 $38 '7'

8 $BF '8'

9 $BE '9'

If we want to show number 0, the segment code $BD will be
used instead. By writing $BD to PORT2 at location $8003 and put
the jumper J2 to pin 1-2.

Our segment driver using 74HC573, CMOS Latch, has no current
limiting resistors. To produce the suitable brightness of the 7-
segment display, we use PWM (Pulse Width Modulation) method.
The method is to turn ON and OFF the LED at high repetition rate.

To make low brightness, turn ON period will be smaller than turn
OFF period.

The average DC power will then smaller and no heat dissipation!

If we use series current limiting resistors, heat will be I2R.
Let us have a look our program.

0001 0000 PORT1 .EQU 8002H
0002 0000 PORT2 .EQU 8003H
0003 0000
0004 0200 .ORG 200H
0005 0200
0006 0200 A9 BF LDA #$BF
0007 0202 8D 02 80 STA PORT1
0008 0205
0009 0205 A9 BD LOOP LDA #$BD
0010 0207 8D 03 80 STA PORT2
0011 020A 20 18 02 JSR DELAYON
0012 020D A9 00 LDA #%00000000
0013 020F 8D 03 80 STA PORT2
0014 0212 20 1E 02 JSR DELAYOFF
0015 0215 4C 05 02 JMP LOOP
0016 0218
0017 0218 A0 01 DELAYON LDY #1
0018 021A 88 DELAY2 DEY
0019 021B D0 FD BNE DELAY2
0020 021D 60 RTS
0021 021E
0022 021E A0 C8 DELAYOFF LDY #200
0023 0220 88 DELAY3 DEY
0024 0221 D0 FD BNE DELAY3
0025 0223 60 RTS
0026 0224
0027 0224
0028 0224 .END
tasm: Number of errors = 0

Line 6 and 7 will prevent BREAK command. Let us focus at the
main loop. We first write $BD to PORT2 and call delay for LED

ON. Then turn off all bits at PORT2 and call delay for LED OFF.

The ratio between Time ON and OFF can be approx. using the
loop counter in register Y. We see that it is approx. 1:200 or 0.5%.

Try enter the hex code and test it with key GO. Then put the
jumper J2 to pin 1-2. Check the brightness of the LED.

Can you make it more brighter?

Can you change the number to be displayed?

Before reset the board, remove J2 to pin 2-3.

26

Program10: Testing IRQ with 10ms Tick

The onboard 10ms tick generator is produced by the AT89C2051
microcontroller.

The 10ms tick signal is a 100Hz. We will learn how the 6502
responded with this signal. SW1 is the selector between 10ms tick
or IRQ switch SW2.

27

The 6502 reset and interrupt vectors are put at the last page of
64kB memory space.

2106 EF1F
2107 EF1F ; VECTOR NMI,RESET AND IRQ
2108 EF1F
2109 EF1F
2110 FFFA .ORG 0FFFAH
2111 FFFA
2112 FFFA 6C C8 .WORD NMI ; NMI
2113 FFFC 00 C0 .WORD 0C000H ; RESET
2114 FFFE 6F C8 .WORD IRQ ; IRQ

The monitor program put the vector address for IRQ at location
$C86F.

1923 C86C 6C FA 00 NMI JMP ($FA)
1924 C86F 6C FE 00 IRQ JMP ($FE)

At the location $C86F, we put JUMP indirect using RAM vector at
location $00FE for low byte and $00FF for high byte.

With this method, we can then test the IRQ process by placing the
IRQ vector in RAM.

0001 0000
0002 0000 GPIO1 .EQU 8000H
0003 0000 PORT0 .EQU 8001H
0004 0000 PORT1 .EQU 8002H
0005 0000 PORT2 .EQU 8003H
0006 0000
0007 0000
0008 0030 .ORG $30
0009 0030

0010 0030 SEC100 .BLOCK 1
0011 0031 SEC .BLOCK 1
0012 0032
0013 0032
0014 00FE .ORG $FE
0015 00FE 0C 02 .WORD SERVICE_IRQ
0016 0100
0017 0200 .ORG 200H
0018 0200
0019 0200 A9 0C MAIN LDA #SERVICE_IRQ&$FF
0020 0202 85 FE STA $FE
0021 0204 A9 02 LDA #2
0022 0206 85 FF STA $FF
0023 0208
0024 0208 58 CLI ; ENABLE IRQ
0025 0209 4C 09 02 JMP $; jump here
0026 020C
0027 020C
0028 020C SERVICE_IRQ
0029 020C
0030 020C 78 SEI
0031 020D
0032 020D F8 SED ;DECIMAL MODE
0033 020E E6 30 INC SEC100
0034 0210 A5 30 LDA SEC100
0035 0212 C9 64 CMP #100
0036 0214 D0 10 BNE SKIP1
0037 0216 A9 00 LDA #0
0038 0218 85 30 STA SEC100
0039 021A
0040 021A 18 CLC
0041 021B A5 31 LDA SEC
0042 021D 69 01 ADC #1
0043 021F 85 31 STA SEC
0044 0221
0045 0221 A5 31 LDA SEC
0046 0223 8D 00 80 STA GPIO1

0047 0226
0048 0226 SKIP1
0049 0226 40 RTI
0050 0227
0051 0227 .END
0052 0227
tasm: Number of errors = 0

Main program begins with storing the service address of IRQ at
location $00FE and $00FF. The service address is $020C. Then
ENABLE the interrupt with instruction CLI. And jump here waiting
the trigger from 10ms tick.

When the CPU recognize the IRQ trigger, it will save current PC
and jump to interrupt service subroutine at $020C.

The service for IRQ will be entered every 10ms. The SEC100
variable will be incremented, when it is 100, it will be one second.

The SEC variable will then be incremented in BCD number and
wrote to the GPIO1 LED.

Let us test the code with key GO and see what happen on the
GPIO1 LED?

